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Abstract 

This research evaluates the decomposition of leaf litter while in litter traps.  More 

specifically this study asks, ‘Does sugar maple (Acer saccharum Marsh.), American 

basswood (Tilia Americana L.) and American beech (Fagus grandifolia Ehrh.) leaf litter 

collected bi-weekly from litter traps undergo a loss of dry mass and nutrient content (C, N, P, 

K, Ca and Mg) in comparison to freshly abscised leaf litter?’The objective of the initial 

experiment was to determine if sugar maple, basswood and beech leaf litter collecting in 

litter traps, while exposed to in-situ conditions, experienced decomposition. Results indicated 

that sugar maple, basswood and beech leaf litter experienced early stages of decomposition 

and identified precipitation, freezing temperatures and microbial activity as possible 

mechanisms for the observed decomposition. It was found that the dry weight of sugar maple 

and basswood differed significantly (p < 0.05 and p < 0.10, respectively) post- 14-day 

experiment period as compared to the initial dry weight. Consequently, three experiments 

were completed to examine the aforementioned variables. Conclusions were based on 

measured changes in the mass and nutrient (C, N, P, K, Ca and Mg) content of freshly 

abscised sugar maple, basswood and beech leaf litter under ex-situ conditions. It was found 

that the dry weight sugar maple and basswood leaf litter exposed to 30 mm, 60 mm and 100 

mm of precipitation differed significantly (p < 0.05) as compared to freshly abscised leaf 

litter. In general, this research affirmed that precipitation and freezing temperature contribute 

to a change in mass and nutrient content of leaf litter collecting in litter traps. Furthermore, 

through measurable production of CO2 and Community Level Physiological Profiling it was 

determined that microbes are present and active on the leaf surface and contribute to the 

decomposition of leaf litter in litter traps. 
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Chapter 1 

General Introduction and Literature Review 

1.1 Problem Statement 

Leaf litter is an intrinsic component of the ecological integrity of a forested ecosystem. 

This is evident through the many processes within a forest ecosystem that are influenced by the 

quality and quantity of leaf litter. Specifically, studies on leaf litter evaluate the leaf litter 

quantity and nutrient content to determine energy fluxes and productivity (Meier et al., 2006). 

This is largely because leaf-litter, and its subsequent decomposition, strongly influences primary 

production and regulates energy flow and nutrient cycling in forest ecosystems (Waring and 

Schlesinger, 1985). Thus, leaf litter is a major participant in the transfer of energy and nutrients 

in a forest ecosystem (Guo and Sims, 1999; Villela and Proctor, 1999). 

Leaf litter is often collected by means of open traps, referred to as a litter trap, set-up 

under the forest canopy and above the forest floor. The sampling period and frequency of leaf 

litter collection from the litter traps differs among studies. The frequency of leaf litter collection 

is important to ensure quality and quantity, otherwise nutrients and soluble compounds may be 

leached out by rain and wet litter can begin to decompose and lose mass (Berg and Laskowski, 

2006). In many studies leaf litter is collected from the traps on a biweekly or monthly basis 

during peak leaf litter production, normally September to November in northern temperate 

systems (Gosz et al., 1972, Ukonmaanaho and Starr, 2001). Some studies have identified that 

mass and nutrients are lost from the collected leaf litter, however, the relationship between the 

quantity lost and the processes involved are unknown (Oelbermann, 1999; Ukonmaanaho and 

Starr, 2001). Therefore, this unaccounted loss of nutrients, via decomposition, could potentially 

alter the current understanding of the role of leaf litter in biogeochemical cycling in forested 

ecosystems. 

 To date, it is believed that no study has quantified the loss of mass and nutrients as a 

result of processes of decomposition of leaves collecting in litter traps as part of leaf litter and 

nutrient flux investigations. The purpose of this study is to address the aforementioned gap in the 
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literature. To first address this problem a literature review was conducted. The following 

literature review section is intended to provide greater context and understanding of the theories 

and concepts governing this research. 

1.2 Biogeochemistry in Forested Ecosystems 

The study of energy and nutrient distribution, and the dynamics of chemical elements 

within an ecosystem are referred to as biogeochemistry (Kimmins, 2004). Nutrient cycling in a 

forested ecosystem largely determines the system’s characteristics. Decades of research found 

the abundance, distribution and productivity of organisms within an ecosystem proportional to 

the availability and transfer of energy (Bray and Gorham, 1964). In general, a forest is an open 

ecosystem where nutrient and energy are influenced by inputs gained from various interacting 

sources, outputs lost to different sinks, and an array of internal cycling (Vitousek and Reiners, 

1975). Nutrient cycling within a forest ecosystem is displayed in Figure 1.1. There are three 

basic components of biogeochemistry: geochemical, biogeochemical, and biochemical (Switzer 

and Nelson, 1972; Kimmins, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.1: Biogeochemical cycle adopted from (Attiwill and 
Adams, 1993) 
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1.2.1 Geochemical Cycle 

The geochemical cycle is the exchange of, or the inputs and outputs of, energy and 

nutrients between ecosystems (Switzer and Nelson, 1972; Kimmins, 2004). This involves, but is 

not limited to, inputs from rain, dust, weathering of rocks and biological fixation (e.g. carbon and 

nitrogen fixation), and outputs (denudation: transport of nutrients out of an ecosystem) to stream 

water, ground water and the formation of gas, as in denitrification (Attiwill and Adams, 1993; 

Kimmins, 2004). The input of nutrients from the weathering of parent material significantly 

contributes to mineral based nutrient reserves in forest ecosystems (Morris, 2000; Balogh-

Brunstad et al., 2008). For example, the supply of phosphorus (P) and base cations (Ca, Mg, K 

and Na) from parent material is sufficient to ensure adequate plant growth (Morris, 2000). Biota 

and soils act as mediating agents in the weathering of parent material and subsequently as 

storage for the nutrients (Balogh-Brunstad et al., 2008). 

The nutrient retention hypothesis predicts the biotic control on the biogeochemical cycle, 

specifically the biotic demand on nutrient input and output (Vitousek and Reiners, 1975; Gorham 

et al., 1979; Hedin et al., 1995; Balogh-Brunstad et al., 2008). This predicts that rapidly growing 

mid-successional forests, when forest productivity is high, significantly retain nutrients while 

early and old growth forests do not (input approximately equals output) (Vitousek and Reiners, 

1975; Gorham et al., 1979; Cole and Rapp, 1981; Hedin et al., 1995; Balogh-Brunstad et al., 

2008).  For instance, Vitousek and Reiners (1975) explain that in an early successional state the 

input of nutrients from rainfall will be lost, in this case to hydrologic outputs, at a rate similar to 

that introduced due tothe the systems inability to conserve nutrients. As the system matures, 

compartments like biomass and soil organic matter are more apt to take-up and store elements 

resulting in higher inputs than outputs (Vitousek and Reiners, 1975). Biomass growth will 

eventually reach a steady state, net ecosystem growth will approach zero, and inputs again will 

be approximately equal to outputs (Vitousek and Reiners, 1975). 
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1.2.2 Biogeochemical Cycle 

The biogeochemical cycle is the exchange of chemicals within an ecosystem (Kimmins, 

2004). For example, nutrients are transferred and cycled from plant to soil (Attiwill and Adams, 

1993). Also commonly referred to as uptake and return, the biogeochemical cycle is represented 

by the four major processes (Attiwill and Adams, 1993): 

1. Nutrient uptake by plants from the soil for growth 

2. Retention of nutrients within plants  

3. Return of nutrients through leaf decay and leaching, and root turnover  

4. And eventually the decomposition of the dead plant material (detritus) 

The uptake and the retention of nutrients vary considerably depending upon the species, 

stand age, and site characteristics (Attiwill and Adams, 1993; Morris, 2000). The return of 

nutrients depends on the quantity and process of decomposition and is influenced by 

temperature, moisture, pH, and litter quality (nutrient chemistry) (Hobbie and Vitousek, 

2000).The biogeochemical cycle is a process of positive feedback (Ehrenfeld et al., 2005). That 

is, plants can influence change in the composition and activity of soil biota, and the physical and 

chemical properties and the rates of ecosystem processes. In this way, the process subsequently 

affects the living conditions of the environment (Ehrenfled et al., 2005).  

1.2.3 Biochemical Cycle 

The biochemical cycle, commonly referred to as the internal cycle, is the redistribution of 

chemicals within individual organisms, also commonly described as the internal transfer 

relationship (Kimmins, 2004; Attiwill and Adams, 1993; Switzer and Nelson, 1972). 

Specifically, the biochemical cycle is the redistribution of elements within a plant. The process 

of retranslocation is the movement of inorganic and organic foliar nutrients from senescing 

leaves to surviving tissue (Killingbeck, 1986; Nambiar and Fife, 1991; Aerts and Chapin, 2000). 

Retranslocation of mobile nutrients like nitrogen (N), phosphorus (P), potassium (K), sulfur (S), 

copper (Cu) and zinc (Zn) is important when soils nutrient levels are depleted (Nambiar and Fife, 

1991). As a result, retranslocation is a significant contributor to tree growth (Nambiar and Fife, 

1991).  For example, as much as 80% of P and N, and much less of other nutrients, have been 
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found to retranslocate from the foliage nutrient pool (Hagen-Thorn et al., 2006). Although 

retranslocation is commonly thought to be a reactive process to leaf senescent (Switzer and 

Nelson, 1972; Killingbeck, 1986), it has been found to occur from young and actively growing 

leaves (Nambiar and Fife, 1991). 

Leaves are subject to the majority of internal nutrient retranslocation (Nambiar and Fife, 

1991). However, it has been found that other plant tissue, like branch and stem tissue, experience 

nutrient retranslocation (Nambiar and Fife, 1991). The degree to which nutrients circulate within 

a tree differs among species and fluctuates according to soil fertility, leaf nutrient status, annual 

precipitation and summer temperature (Hagen-Thorn et al., 2006; Berg and Laskowski, 2006). 

Nambiar and Fife (1991) attribute differences in nutrient retranslocation to source-sink 

relationships, seasonality in growth patterns and the longevity of leaf life. With many fluctuating 

variables biochemical cycling of nutrient can be widely different from year to year. Although 

this study focuses on the biogeochemical cycle, and specifically nutrient cycling as it relates to 

leaf litter, all three cycles, geochemical, biogeochemical and biochemical, are interrelated and 

greatly influence leaf nutrient condition. 

1.3 The Role of Leaves in Biogeochemical Cycling 

The release of nutrient from leaves is an integral component of nutrients recycling (Robert 

et al., 1996; Rutigliano et al., 1998). It is, in fact, the principal pathway for the return of nutrients 

to the soil (Miller et al., 1979; Kavvadias et al., 2001). Leaves are an essential link between 

primary producers and consumers. The recycling of nutrients from leaves is a result of 

retranslocation (discussed earlier), leaching of the canopy, commonly referred to as throughfall, 

and leaf litter (Dechesne et al., 2001).  

1.3.1 Throughfall 

The transfer of solutes from the canopy to the forest floor, by rainfall, provides an 

important pathway for nutrient recycling. It is important for the biogeochemical and hydrological 

cycles, and many ecological processes (Parker, 1983; Levia and Frost, 2003; Staelens et al., 

2006). Incident precipitation, defined as rainfall that has yet to be intercepted by vegetation is 

chemically altered as it moves through the vegetation (Eaton et al., 1973). Nutrients are picked 
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up through the processes of throughfall and stemflow. Throughfall is the precipitation that runs 

off of the canopy (Eaton et al., 1973). Stemflow is the precipitation that runs down the boles of 

the trees (Eaton et al., 1973). These processes add nutrients directly to the nutrient pool as these 

substances are already in a form for up-take unlike leaf litter which requires decomposition 

(Eaton et al., 1973). In general, stemflow has been found to be more nutrient rich than 

throughfall. However throughfall intercepts a greater amount of precipitation (Waring and 

Schlesinger, 1985; Levia and Frost, 2006; Parker, 1983). Robson et al. (1994) reported stemflow 

nutrient concentrations as almost twice that of throughfall in a broadleaf forest. Typically 

throughfall represent 60-90% of the precipitation collected (Parker, 1983). Throughfall is said to 

account for 90% of the annual return of nutrients that are leached (Waring and Schlesinger, 

1985). 

The interception of rainfall varies spatially (Beier et al., 1993). The solute concentration is 

inversely proportional to the distance from the tree trunk (Beier et al., 1993). Hansen (1996) 

found a similar spatial distribution of intercepted rainfall and ion concentration. Hansen (1996) 

reported decrease in interception fluxes further down the canopy structure (greater quantities at 

higher reaches of the canopy) and an associated increase in ion concentrations, as a result of 

further canopy interception. This is partly influenced by increased dry deposition at the top of the 

canopy, as this part of the tree is most in contact with turbulent air, where then lower levels of 

the canopy will be exposed to enriched throughfall (Hansen, 1996).The chemistry of the 

throughfall is altered by dry-deposited elements on the plant surface, the leaching of nutrients, 

and absorption of ions from rain (Eaton et al., 1973; Potter et al., 1991; Beier et al., 1993). More 

specifically, the nutrient content of the throughfall may be altered as elements within the incident 

rainfall are retained by the leaf canopy, either absorbed by the leaf or deposited as salts on the 

leaf surface. Nutrients may also be taken-up by microflora (Lovett et al., 1996; Eaton et al., 

1973).  

The extent of leaching can be attributed to characteristics associated with the environment 

and those associated with the plant. The concentration of ions in throughfall is related to the 

amount and intensity of a precipitation event (Pryon and Barthelmie, 2005; Eaton et al., 1973). It 

has been found that the proportion of nutrients leached and washed from the canopy is inversely 
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related to the magnitude of the storm (Robson et al., 1994). The majority of chemical alteration 

of throughfall occurs in the initial phase of a precipitation event (Levia and Frost, 2006). Hansen 

et al. (1994) found that in general the majority of ion (Na+, Cl-, Mg2+, SO4
2-) concentrations were 

highest at the beginning of the rain event and the concentration would continue to decrease until 

reaching a plateau. Throughfall ion concentrations also increase with longer durations of dry 

periods between precipitation events (Tobon et al., 2004).  

Throughfall yield is related to canopy morphology, stand structure and leaf characteristics, 

such as leaf shape and orientation (Levia and Frost, 2006). For example, Staelens et al. (2006) 

found that the architecture of the canopy leaves and branches significantly influences spatial 

distribution of throughfall deposition. Staelens et al. (2006) also found a strong positive 

correlation in canopy cover to the deposition of ions (with the exception of H+). The morphology 

of the canopy structure, namely the branch inclination angle and geometry influences the amount 

of incident rainfall that is intercepted as throughfall and stemflow (Pryon and Barthelmie, 2005; 

Herwitz, 1987). This results in intra-species differences (Pryon and Barthelmie, 2005; Herwitz, 

1987). The amount of rainfall and the length of interaction with leaves, dependent on such 

factors as texture, cuticle thickness, petiole orientation and where nutrients are held within the 

biological material, affect the extent of chemical exchange (Levia and Frost, 2006; Eaton et al., 

1973). Lastly, there is a significant relationship between the health of a forest, defined as one that 

maintains and sustains desirable ecosystem functions and processes (Natural Resources Canada, 

2008), and the leaching of nutrient. Increased foliar leaching of base cations and organic 

compounds is found to be associated with the decline of forest health, specifically related to plant 

tissue damage (Balestrini and Tagliaferri, 2001). This also relates to the physiological condition 

of the plant tissue. Tukey (1970) stated that injured and senescing leaves are more susceptible to 

leaching nutrients then younger and intact leaves. 

1.3.2 Leaf Litter 

Leaf litter studies in forest stands have been conducted for over a century (Ebermayer, 

1876; Zhou et al., 2006). The collection of leaf litter has been executed for a variety of reasons 

and in a variety of forest stands. Earlier studies focused on the amount, composition and 
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distribution of leaf litter (Zhou et al., 2006). More recently, leaf litter studies focus on the 

ecological role of leaf litter in nutrient cycling, and possible interactions with biotic and non-

biotic variables (Zhou et al., 2006). In 1876, Ebermayer conducted the first major study primarily 

concerned with leaf litter in response to visible evidence of forest health deterioration. 

Ebermayer (1876) was interested in the effects of continued removal of leaf litter from the forest 

floor. Traditionally, leaf litter was removed from the forest floor and used as animal bedding in 

barns over the winter (Attiwill and Adams, 1993). Come spring, the litter, enriched with animal 

droppings would be spread over farm fields, thus removing significant nutrients from the forest 

ecosystem (Attiwill and Adams, 1993). Ebermayer’s (1876) findings now form the basic 

foundation for leaf litter studies. 

Leaf litter is essential to the ecological sustainability of a forest. The amount and nutrient 

composition of leaf litter has long been identified as important to energy and nutrient cycling. 

Many processes within the forest ecosystem are dependent on the quality and quantity leaf litter. 

For example, leaf litter has been studied to evaluate the nutrient content to determine energy 

fluxes and productivity (Bray and Gorham, 1964; Meier et al., 2006). This is largely because leaf 

litter, and subsequently decomposition, strongly influence primary production and regulate 

energy flow and nutrient cycling in forest ecosystems (Waring and Schlesinger, 1985). Along 

with providing nutrients for tree, leaf litter also provides energy and a living environment for the 

soil fauna and microorganisms (Guo and Sims, 1999). As well, the decomposition of leaf litter is 

necessary for soil fertility and the formation of organic matter (Guo and Sims, 1999), and the rate 

of decomposition regulates productivity (Swift et al., 1979). Thus, leaf litter is a major 

participant in the transfer of energy and nutrients in a forest ecosystem (Guo and Sims, 1999; 

Villela and Proctor, 1999). 

As stated, the input of nutrients to the soil is the result of leaf litter, throughfall and 

stemflow (Pedersen and Bille-Hansen, 1999). However, of these three pathways leaf litter is the 

most important source of nutrient flux, providing a nutrient flux greater than that combined in 

throughfall and stemflow (Miller et al., 1979; Stevens et al., 1989; Ukonmaanaho and Starr, 

1999). On average, leaf litter contributes 70% of the total aboveground litterfall (Meentemeyer et 

al., 1982). Once on the forest floor, leaf litter provides important ecological functions and 
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influences the internal nutrient composition of trees (Flower – Ellis and Olsson, 1978). Leaf litter 

can be used as an indicator of forest conditions as it is an integrated response of biological 

heredity of the trees and the influence of environmental fluctuations (Pedersen and Bille-Hansen, 

1999). Climatic change or disturbance, as well as change in other environmental factors, may 

impinge leaf litter patterns (Pedersen and Bille-Hansen, 1999). Foliage, or the loss of foliage, 

was measured as an indicator of the ecological integrity of a forest (Pedersen and Bille-Hansen, 

1999). Pedersen and Bille-Hansen (1999) compared the amount of leaf litter and its element 

concentrations and fluxes between even-aged stands to evaluate leaf litter as an indicator of 

forest health. Pedersen and Bille-Hansen (1999) determined that leaf litter can be used as an 

indicator of forest health reflecting major disturbances from the surrounding environment. Zhou 

et al., 2006 also stated that the quality and quantity of leaf-litter produced in a forested ecosystem 

is influenced by environmental factors, such as acid rain. 

The decomposition of leaf litter is fundamental to the healthy operation of a forest 

ecosystem (Graca et al., 2005). Decomposition is the breakdown of dead organic material by 

organisms, such as bacteria and fungi, and physical forces, such as freeze-thaw and leaching 

(Leuschner, 2005). Essentially, the decomposition of leaf litter can be divided into three phases, 

a fast loss in mass from the leaching of the soluble components, subsequent colonization by 

microorganisms, also referred to as conditioning, and degradation by invertebrate feeding and 

physical abrasion, also referred to as breakdown (Boulton and Boon, 1991). Decomposition 

allows for the breakdown of complex energy rich molecules, including carbohydrates, proteins 

and lipids, into carbon dioxide, water and inorganic nutrients (Leuschner, 2005). Mineralization 

is the process in which decomposition releases inorganic compounds (CO2, H20, NH4
+ and Ca+2) 

(Waring and Schlesinger, 1985; Leuschner, 2005). Thus, decomposition and mineralization 

complete the nutrient cycle and are vital to forest productivity and the global carbon budget 

(Prescott, 2005). On a regional scale, climate is assumed to have the most significant effect on 

litter decomposition rates, whereas on a local scale litter quality will dominate the decomposition 

rate (Berg and Laskowski, 2006). In a global context, 71% of the differences in the rate of mass 

loss of leaf litter is accounted for by annual precipitation and evapotranspiration (Dyer et al., 

1990). Freshly fallen litter contains high levels of simple compounds, such as simple sugars, 
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lower fatty acids and proteins (Berg and Laskowski, 2006). Initial decomposition causes a rapid 

decrease of these molecules as they are easily taken up by microorganisms and leached (Berg 

and Laskowski, 2006). Leaching may account for up to a 30% loss of the water soluble 

compounds (Berg and Laskowski, 2006). 

1.4 Litter Collection Methods: The Litter Trap 

To study leaf litter, a device referred to as the litter trap is used to collect samples. 

Generally, the litter-trap is constructed to a known surface area and used to catch naturally 

abscised material from the overhanging canopy, which is subsequently collected and analyzed 

(Morris, 2000). Studies on the litter trap have primarily focused on size, shape and distribution. 

As part of the International Biological Program (IBP), Newbould (1967) standardized the litter 

trap design. Newbould (1967) specified the trap to have an opening of 0.5 m2 and to be conically 

shaped. This was meant to allow comparison of data between different communities for global 

wide usage (Burquez et al., 1999). Despite the simplistic design, it has not been widely adopted, 

likely because of the variety of environments and requirements for which the litter trap is used 

(Burquez et al., 1999). The litter trap has been built and modified to meet a variety of 

circumstances. Morrison (1991) studied four trap designs with varying height and surface area in 

a Canadian old growth sugar maple forest. Although no trap type displayed a distinct advantage, 

analysis of variance showed that height and surface area significantly affected the amount of 

litter that was trapped (Morrison, 1991). One significant conclusion Morrison (1991) found was 

that traps should not be placed in microsites that support the accumulation of windblown leaves. 

As well, slight modifications to the basic design can be made to reduce loss of leaf litter. For 

example, Pedersen and Bille-Hansen (1999) increased the brim height to reduce the common 

onset of air turbulence from lifting leaf litter from the trap. Burquez (1999) examined the litter 

trap design for desert-like ecosystems. This required a trap located much closer to the ground as 

the ecosystem is largely dominated by shrub like species (Burquez, 1999). Chapman (1983) 

proposed necessary guidelines for proper litter-trap utilization. These include: the trap must 

intercept litterfall before reaching the ground (minimizing aerodynamic disturbance), litter must 

be held within the trap, litter on the soil surface cannot be able to enter the trap, water should be 
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able to drain without causing loss of litter, and lastly the size and number of traps much be 

adequate to provide an appropriate degree of accuracy (Chapman, 1983).  

It is agreed that litter traps should be placed randomly over the plot (Berg and Laskowski, 

2006). As well, the mesh size of the catchment netting should vary depending on the foliage 

being collected (Berg and Laskowski, 2006). The sampling periods and frequency of collection 

differ among studies. The frequency of leaf litter collection is important to ensure quality and 

quantity. This is because nutrients and soluble compounds may be leached out by rain and wet 

litter can begin to decompose and lose mass (Berg and Laskowski, 2006). It is best to collect 

litter that is shed naturally as litter collected off of the tree may have a different chemical 

composition (Berg and Laskowski, 2006). 

1.5 Nutrient Characteristics of Leaf litter 

The amount of elements leached from leaved varies according to season and the type of 

tree (Waring and Schlesinger, 1985).  Leaching rates increase as leaves senesce, but can differ 

between leaf types depending on nutrient concentration, surface-area-to-volume ratio, surface 

texture and leaf age (Waring and Schlesinger, 1985).  

Throughout the growing season, nutrients leaching from the canopy follows K>P>N>Ca 

(Waring and Schlesinger, 1985). Similarly, Eaton et al. (1973) stated that the mobility and 

leachability of elements from the canopy during summer months is greatest in Na and 

sequentially lower in S>K>Mg>Ca>N>P. Eaton et al. (1973) found that the leaching of Ca and 

Mg remained constant throughout June, July and August and maximized in September, and then 

declined just before senescence. The leaching of N was variable throughout the summer and then 

also reached a maximum in September followed by a decline before senescing (Eaton et al., 

1973). The actual leaf content of N, P and K is kept at a relatively high level throughout the 

growing season and is largely removed from leaves in the fall, mostly through retranslocation.  

Total organic matter concentrations were found to be relatively low throughout the summer, but 

increased to highest measured levels before senescence (Eaton et al., 1973). Furthermore, 

concentrations of ammonium (NH4
+), nitrate (NO3

-) and hydrogen ions (H+) in throughfall have 

been found to be taken up by plants throughout the growing season (Hansen, 1996; Tukey, 
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1970). In general, soluble forms of N have been shown to be absorbed by leaves from rainfall 

(Waring and Schlesinger, 1985).  

As previously stated, nutrients leaching from leaves depend on a number of variables. 

Physical characteristics, including leaves with a smooth and waxy surface are more resistant to 

becoming wet as readily as other leaves and are less likely to leach nutrients (Tukey, 1970). With 

that said, almost all leaf constituents leach, including macro and micro-elements, organic and 

inorganic substances (free sugars, pectic substances and sugar alcohols), and amino and organic 

acids (Tukey, 1970). For the most part organic substances, mainly carbohydrates, represent the 

considerable component of leached materials (Tukey, 1970), although inorganic elements are 

found to be more mobile (Eaton et al., 1973; Tukey, 1970). Eaton et al. (1973) suggest this is the 

case because inorganic elements are readily exchangeable as they originate from cell sap. 

Organic elements are associated with plant tissue and storage and, therefore, rely more on the 

processes of decomposition in recycling (Eaton et al., 1973). The decomposition of litter releases 

inorganic elements, including Ca, K and Mg, and organic compounds, such as sugars and 

proteins (Ibrahima et al., 1995). 

The release of nutrients from decomposing litter is not a consistent characteristic as it is 

influenced by a number of variables. Litter deficient in a nutrient is likely to be immobilized in 

the initial stages of decomposition, while nutrients in abundance would readily be released (Swift 

et al., 1979; Laskowski et al., 1995). Laskowski et al. (1995) summarized a general pattern for 

the release of nutrients from decomposing litter in temperate forest ecosystems. Laskowski et al. 

(1995) stated that N and P exhibit a similar pattern in decomposing litter. Nitrogen and P usually 

increase in the initial stages of decomposition and then are released (Laskowski et al., 1995). 

However, it has been observed that N and P sometimes decrease slightly before beginning to 

increase (Laskowski et al., 1995). Inorganic elements like Ca, K and Mg are usually observed to 

decrease in absolute amounts (Laskowski et al., 1995). This may mean that the concentration of 

these elements continues to be constant, as has been most notably seen in Ca, or the 

concentrations may decrease, as is most frequently observed in K and Mg (Laskowski et al., 

1995). Laskowski et al. (1995) associated the increase of nutrients, whether it be N, P or K, to 
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microbial immobilization (if it is a relative increase) or inputs from an external source (if it is 

absolute). 

Swift et al. (1979) suggest that the rate of nutrient turnover follows, K>Ca>Mg>P>N. In 

agreement, Attiwill (1967) suggested the order of the mobility of nutrients from decomposing 

litter is K>Ca>Mg>P. This essentially takes into account the readily mobilization of K and Mg 

from plant litter, and there low residence time in decomposing litter (Tukey, 1970; Swift et al., 

1979). Nitrogen and P, on the other hand, are measurable in decomposing litter for much longer 

(Swift et al., 1979). Tukey (1970) reported highest levels of leaching of inorganic nutrients, like 

K, Ca, Mg, Mn, as opposed to N and P. This said, physical condition and the elemental 

concentration of the leaves is by far the greatest determining factor in the rate of leaching (Eaton 

et al., 1973). Leaf litter generally has lower concentrations of N, P and soluble carbohydrates, 

due to retranslocation, then living leaf tissue. As well, in most cases leaf litter has higher 

concentrations of Ca, tannin and leaf structural material, like lignin (Waring and Schlesinger, 

1985). Microbial growth frequently immobilizes N and P that may have otherwise been lost 

through processes of decomposition. Elements like K and Mg are lost relatively quickly from 

litter as they are not usually limiting for microbial growth (Waring and Schlesinger, 1985). Thus 

they are released as soluble ions to the soil (Waring and Schlesinger, 1985).  

1.4.1 Calcium (Ca) 

The loss of calcium (Ca) from decomposing litter is slow due to its importance as a 

structural component. Its loss is correlated with the breakdown of lignin (Attiwill, 1967). 

Calcium is not retranslocated because of its position within the leaf, thus rendering it immobile 

(Chapin, 1980; Cole and Rapp, 1981; Ostman and Weaver, 1981; Likens et al., 1998). For 

forested ecosystems, the recycling of Ca is largely dependent on the uptake of nutrients from the 

decomposition of litter, as opposed to leaching (Gosz et al., 1973; Likens et al., 1998).  

The availability of Ca in forests is a combination of atmospheric supply, cation exchange, 

mineral weathering, decomposition of soil organic matter (SOM) and from the leaching and 

sequester of vegetation (Likens et al., 1998). Waring and Schlesinger (1985) reported that Ca 

increases in leaves before abscission. Similarly, Dechesne et al. (2001) measured the 
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concentration of Ca over an entire season (in sugar maple and beech) and determined that Ca 

concentrations are low in the early spring and increase throughout the season until senescence. 

Lastly, litter is the most prevalent source of Ca in a forest ecosystem, approximately 88% of the 

Ca cycled (Ostman and Weaver, 1982).  

1.4.2 Potassium (K) 

As opposed to Ca, K is readily leached from leaf litter because it is highly soluble (Likens 

et al., 1994; Likens et al., 1998) and concentrated in cells present close to the leaf surface 

(Waring and Schlesinger, 1985). For the same reasons, throughfall is considered an important 

source of K as it is easily leached from the canopy (Waring and Schlesinger, 1985). Joergensen 

and Meyer (1990) stated that K is electrostatically bonded to cell membranes, and therefore 

readily leached as membranes are destroyed. The retranslocation properties of K are debated. 

While Cole and Rapp (1981) stated that very little K is reabsorbed. Ostman and Weaver (1982) 

reported that approximately 63% of K was retraslocated. As well, Waring and Schlesinger 

(1985) stated that K is readily reabsorbed before abscission, along with N and P. The differences 

found may relate to the earlier discussed circumstances which affect the cycling of nutrients in 

this case the efficiency of recycling required (nutrient use efficiency). Many studies have 

observed the rapid decrease in K in the initial stage of decomposition (Rutigliano et al., 1998; 

Laskowski and Berg, 1993). Potassium concentrations, specifically measured in beech and sugar 

maple, are highest in May and from there decrease over the season, reaching lowest measured 

levels at senescence (Dechesne et al., 2001). 

1.4.3 Magnesium (Mg) 

 Cole and Rapp (1981) report that, similar to Ca, Mg is not retranslocated and is actually 

available in abundance. Therefore, no nutrient cycling efficiency is required. As opposed to Ca, 

which is structurally bonded, Mg is generally more soluble (Joergensen and Meyer, 1990). Mg is 

present in plant tissue in chlorophyll, enzymes and in salts (Joergensen and Meyer, 1990). 

Although, Gosz et al. (1973) stated that Mg acts similar to K in that it rapidly leaches from litter 

during the initial stages of decomposition, Staff and Berg (1982) reported conflicting results. 

Staff and Berg (1982), as well as Laskowski et al. (1995) found that Mg concentrations remained 
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constant, thus implying a direct relationship between Mg release and litter decomposition. 

Similarly, Joergensen and Meyer (1990) found that beech leaf litter released Mg and Ca at the 

same rate as C was lost.   

1.4.4 Phosphorus (P) 

Phosphorus is one of the most tightly cycled major plant nutrients and is an essential plant 

macronutrient (Wood et al., 1984; Yanai, 1992; Fiorentino et al., 2003).  Usually more than half 

of the P in deciduous leaves is retranslocated back to the tress before leaf abscission (Chapin, 

1980). Phosphorus (P) is found to initially leach from leaf litter and then is lost through 

microbial decomposition in later stages of decomposition (Rutiglaine et al., 1998). In some cases 

the concentration of P in decomposing litter has been reported to decrease, while others report 

that P remains constant (or a relative increases) (Morre et al., 2006). This is a characteristic of 

the leaf litter quality and the site, namely whether P is limited (Moore et al., 2006). Rutigliane et 

al. (1998) suggested that the increase in P was the result of microorganism immobilization as it 

was a limiting resource. This is also used to explain the increase in N. 

1.4.5 Nitrogen (N) 

In leaves, Nitrogen (N) is bound to C, for this reason the cycling of N is dependent on the 

cycling of C or the release of N from C through mineralization (Cole and Rapp, 1981). Nitrogen 

can also become available through fixation, nitrification and denitrification (Cole and Rapp, 

1981; Laskowski et al., 1995). For the most part N is the most frequently limited nutrient in 

forested ecosystems (Prescott, 2002). 

 Cole and Rapp (1981) report that N from atmospheric input is greater then is lost through 

leaching. More N is added by precipitation then is lost by leachate. Generally, the greatest 

transfer of N back to the plant is by retranslocation, an estimate of 78.5% (Cole and Rapp, 1981; 

Ostman and Weaver, 1982). T he remainder is returned back to the system through 

decomposition of leaf-litter (Cole and Rapp, 1981). During the decomposition of litter, N may be 

lost initially through leaching, followed by a longer period in which N increases, at least relative 

to C (Laskowski et al., 1995). The increase in N is associated with microbial fixation of 
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atmospheric N2, inputs from external sources, like throughfall, and microbial immobilization 

(Laskowski et al., 1995). 

1.4.6 Carbon (C) 

 The decomposition of litter is largely dependent on the chemical quality (Aerts, 1997). 

This is most often related to the ratio of carbon (C) to N, as well as the ratio of C to P (Taylor et 

al., 1989; Aerts, 1997). The C/N ratio, and other C/element ratios, are litter quality characteristics 

which modify the decomposition rate of organic substrates (Flanagan and Van Cleve, 1983). 

Chemical quality directly influences microbial activity and mineral release (Flanagan and Van 

Cleve, 1983). This has been found to be strongly correlated to the content of N. Nitrogen 

limitations largely limit microbial production (Taylor et al., 1989). Thus N is often immobilized 

in litter during early stages of decomposition (Taylor et al., 1989). In general, the rate of organic 

matter decomposition is inversely related to the C/N ratio and is directly related to the N and P 

concentration of the litter (Flanagan and Van Cleve, 1983). High C/N ratios result in slow 

decomposition rates (Melillo et al., 1982; Flanagan and Van Cleve, 1983; Aber at al., 1990). In 

N-limited conditions the C/N ratio will decrease without the loss of N until a ‘critical’ level is 

reached (Joergensen and Meyer, 1990).  

Carbon to element ratios is used to relate the loss of an element to the loss of dry weight  

(Lousier and Parkinson, 1978). If the ratio increases, the release of the element is often due to 

leaching or mineralization processes (Lousier and Parkinson, 1978). If the ratio decreases, the 

element is accumulating through biological or physiochemical processes (Lousier and Parkinson, 

1978). If the ratio remains constant then the release of the element is related the dry weight 

(Lousier and Parkinson, 1978; Staaf and Berg, 1981). Taylor et al. (1989) stated that the critical 

C/N ratios is 30:1, litter with C/N  >30:1 initiate N immobilization, while litter <30:1 cause N 

mineralization. The critical ratio for C/P is more inconsistent (Taylor et al., 1989). Lousier and 

Parkinson (1978) reported that litter <230:1 initiates mineralization. The critical value represents 

the heterotrophic demand for the element and/or the value at which the element is released 

(Lousier and Parkinson, 1978).  
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1.4.7 Dissolved Organic Carbon (DOC) 

 Dissolved organic carbon is an important source of C to a forest ecosystem (Neff and 

Anser, 2001; Peichl et al., 2007). It is also important to soil formation processes (Neff and Asner, 

2001). DOC in leachate from the forest floor consist of high-molecular-mass complexes of 

organic acids, often characterized as humic or prehumic substances, formed from incomplete 

decomposition and microbial modification (Currie et al., 1997; Cronan and Aiken, 1985).  

Dissolved organic carbon is defined in this study as solutes that are able to pass through a 

filter with pore size of <0.70 µm (Michalzik et al., 2001). The leaching of DOC from litter is 

controlled by biological, chemical and physical processes (Michalzik et al., 2001), of which 

temperature and precipitation are known to have the greatest affect. This mostly due to their 

effect of microbial activity and leaching patterns (Godde et al., 1996). Godde et al. (1996) found 

that temperature increased the solubilization and mobilization of DOC. This was explained by 

Godde et al. (1996) as a microbial dependent relationship; DOC is released by the activity of 

microbes and the activity of microbes is increased in higher temperatures. As well, Godde et al. 

(1996) concluded that DOC leaching was affected by the frequency of treatment application. 

Total DOC leached was greater within litter exposed to regular treatments, but was less 

concentrated after each application, as opposed to less regular applications (Godde et al., 1996). 

Michalzik et al. (2001) found that DOC leaching for the forest floor litter is positively correlated 

to annual precipitation. The affect of precipitation pH on DOC leaching is variable (Michalzik et 

al., 2001), whereas litter quality (measured as C:N ratio) is positively related to the loss of DOC 

(Godde et al., 1996). Godde et al. (1996) found that higher C:N value were associated with 

greater loss of DOC. However, microbial organisms are unable to degrade DOC (Godde et al., 

1996; Qualls and Haines, 1992). Although many studies have indicated that the release of DOC 

is related to microbial activity, in early stages of litter decay the release of organic matter (DOM 

in general) can leach irrelevant of microbial requirement for inorganic nutrients (Kalbitz et al., 

2000). Whether or not litter C/N ratios affect DOC leaching is debatable. While Michel and 

Matzner (1999) and Michalzik and Matzner (1999) found that the flux of DOC was not related to 

litter C/N ratios, Godde et al. (1996) reported a positive relationship.   
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1.4.8 Dissolved Organic Nitrogen (DON) and Dissolved Inorganic Nitrogen (DIN) 

 In most cases the majority of total dissolved nitrogen is dissolved organic nitrogen 

(DON), and the majority of DON is amino N (Michalzik and Matzner, 1999). Dissolved organic 

nitrogen from leaf litter represents a significant flux of N into the soil (Michalzik and Matzner, 

1999). The release of DON from litter is dependent on abiotic processes (Michalzik and Matzner, 

1999). Dissolved organic nitrogen is defined as the difference between mineral N (NO3
- and 

NH4
+) and total dissolved N (organic and mineral N) (Michalzik and Matzner, 1999; Park et el. 

2002). In this study DON is calculated as the difference between Total Kjehldahl Nitrogen 

(Organic N and NH4
+) and NH4

+. 

 Temperate and northern regions are most often characterized as N-limited (Vitousek and 

Howarth, 1991 from Neff). Dissolved organic nitrogen is more abundant than inorganic N in 

terrestrial ecosystems (Neff et al., 2003). Dissolved organic nitrogen enters a forest ecosystem 

through the interaction of precipitation with soil and vegetation (Neff et al., 2002). The largest 

flux of DON is found in throughfall and in the surface layers of soil solution. In contrast to 

dissolved inorganic N, the forest canopy is a source for DON (as well as DOC) (Michalzik et al., 

2001). Fluxes of DON in throughfall are positively related to fluxes of NH4
+ and NO3

- 

(Michalizik et al., 2001). Unlike DON fluxes in throughfall, the litter layer DON fluxes are also 

positively correlated with annual precipitation (Michalzik et al., 2001). Mean annual 

precipitation is positively related to the annual flux of DON (as well as DOC) from the litter 

layer (forest floor) (Michalzik et al., 2001). However, Michalizik et al. (2001) concluded that it 

was indiscernible whether precipitation directly influenced the leaching of DON (and DOC) or 

whether precipitation enhanced optimal moisture conditions. The release of DON from litter has 

not been found to be related to the C/N ratio of plant material (Michel and Matzner, 1999), to 

levels of NH4
+ and NO3

- from leaf litter leachate, or to leaf litter (Michalizik et al., 2001). 

Furthermore, Michalizik et al. (2001) reported that DOC and DON fluxes and concentrations are 

highly correlated. Both respond similarly to precipitation (Michalizik et al., 2001).  Dissolved 

organic nitrogen encompasses a number of compounds, ranging from simple compounds that can 

easily be taken up by plants and microbes to more complex compounds like polyphenols and 

tannins (Neff et al., 2003). Dissolved organic nitrogen that leaches from plant litter is highly 
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decomposable (Neff et al., 2003). Dissolved organic nitrogen is the main form of N to leach from 

the forest floor (Cortina et al., 1995). 

1.6 Research Objectives 

As previously mentioned, many studies have suggested that leaf litter is subjected to 

nutrient leaching while collecting in litter traps (Mulholland, 1981; Inverson et al., 1982; Benson 

and Pearson, 1993; Ukonmaanaho and Starr, 2001; Hagen-Thorn et al., 2006). Ukonmaanaho 

and Starr (2001) is the only study that has measured the in-situ flux of nutrients from leaf litter 

collecting in litter-traps with the intent to determine if leaf litter nutrient contributions are 

underestimated. Ukonmaanaho and Starr (2001) positively identified that nutrient cycling studies 

have underestimated the return of nutrients from leaf litter. Similarly, Oelbermann (1999) 

conducted an ex-situ study to determine if leaf litter collecting in litter traps, when exposed to 

precipitation, would undergo weight and nutrient change from leaching. However, Oelbermann 

(1999) found that, for the most part, leaf litter studies likely overestimate the amount of nutrients 

entering the system. The literature lacks consensus and a proper investigation into the extent of 

nutrient modification in leaf litter collected from litter traps.    

The purpose of this study is to address the previously mentioned gap in the literature and 

determine: ‘Does the litter trap method produce inaccuracy in leaf litter studies?’ Foremost, this 

study will determine whether sugar maple (Acer saccharum Marsh.), American basswood (Tilia 

americana L.) and American beech (Fagus grandifolia Ehrh.) leaf litter collected from litter 

traps after a two week period undergo change in comparison to freshly abscised leaf litter.  

The specific objectives of the research were to: 

1. Determine the effect of in-situ litter trap conditions on leaf litter dry weight and 
nutrient content (C, N, P, K, Ca and Mg). 

2. Determine the effect of precipitation on leaf litter dry weight and nutrient content 
(C, N, P, K, Ca and Mg). 

3. Determine how different levels of precipitation effect leaf litter dry weight and 
nutrient content (C, N, P, K, Ca and Mg). 

4. Determine the effect of freeze-thaw action on leaf litter dry weight and nutrient 
content (C, N, P, K, Ca and Mg). 



 

 20 

5. Determine the effect of microbial activity on litter collected in litter-traps. 

6. Compare differences in litter degradation between three species of deciduous 
trees. 

The anticipated outcome of this study is to devise a correction that would take into account 

the change in the nutrient content of leaf litter collecting in litter traps so to provide an accurate 

representation of freshly abscised leaf litter. It is hypothesized that leaf litter studies have 

historically underestimated the nutrient content of leaf litter due to failure to account for lost 

nutrients from climatic and microbial degradation while left in litter traps. 

 The remainder of this thesis consists of four chapters each addressing the specific 

objectives noted above. Chapter 2 will investigate the decomposition of leaf litter in litter traps 

under in-situ conditions over a 14-day period. The purpose of chapter 2 is to identify if the 

nutrient content and dry weight of sugar maple (Acer saccharum Marsh.), American basswood 

(Tilia americana L.) and American beech (Fagus grandifolia Ehrh.) leaf litter is influences by in-

situ litter trap conditions. This chapter’s findings will provide the insights necessary to determine 

the potential sources of nutrient and dry weight change. Based on the knowledge gained through 

chapter two, the following three chapters further investigate the influence of precipitation 

(Chapter 3), freeze-thaw (Chapter 4) and microbial activity (Chapter 5) on the change in dry 

weight and nutrient content of leaf litter in litter traps under ex-situ conditions. Chapters 3, 4 and 

5 provide a specific Introduction (literature review), Material and Methods, Results and 

Discussion, and Summary and Conclusion sections relevant to the objectives of that chapter. The 

results of chapters 2 through 5 will be synthesized in the Final Summary and Conclusion chapter. 

The results of each of these chapters will merge to form a complete picture of the changes in dry 

weight and nutrient content of leaf litter in litter traps.   

1.7 Study Site 

This study was conducted in the Laurel Creek Conversation Area (LCCA), which is owned 

and managed by the Grand River Conservation Authority. It is located in the northwest corner of 

the City of Waterloo, 43° 27' N and 80° 22' W, and is 317 metres above sea level (Figure 1.3). 

Laurel Creek Conversation Area stretches over 293.3 hectares and is divided into the Nature 
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Centre (LCNC) and Conservation Area (Tupman, 2004). Laurel Creek Conversation Area is in 

the centre of the Laurel Creek watershed, an area approximately 74 km2 in size, located within 

the boundaries of the Region of Waterloo. Within the watershed are a variety of land-uses from 

farming to woodlots. However, the majority of LCCA is located within the City of Waterloo and 

therefore greatly influenced by urban pressures. Specifically, the area surrounding the LLCA is 

under rapid urban development. Almost all of the area is bordered by residential development. 

The majority of LLCA was acquired by 1965 in order to mitigate flooding. It wasn’t until 1975 

that 48.5 hectares which now forms the LCNC lands were purchased by GRCA to act as a 

drainage buffer. At that time the area was of rural designation, but since has been managed as a 

growing woodlot used mainly to provide outdoor education to the Public and Catholic school 

boards.  

Today, the LCNC is designated as an upland hardwood vegetation community of 

intermediate maturity (Oelbermann, 1999). The area has provincially significant wetland along 

one-side, a subdivision development along another and farmland bordering the remaining portion 

(Tupman, 2004). Despite efforts to keep the property closed from public use outside normal 

working hours, a boardwalk constructed to facilitate the Nature Centre’s educational mandate, 

attracts a large number of the local residence. From observational evidence, it is clear that the 

community has taken liberties with the forest property and are encroaching off the path. It is the 

objective of the LCNC management to conserve, protect and enhance the property though 

conservation and restoration efforts (Tupman, 2004).  

Laurel Creek Conservation Area is underlain by Salina bedrock and the surficial geology is 

largely glacio fluvial ice-contact deposit, modern fluvial deposit and Maryhill till (Tupman 

2004). The majority of the area is characterized as sandy loam soil but also includes loam, 

organic and fine sandy loam areas (Tupman 2004). The soil classification is Grey-Brown 

Luvisol. The mean annual precipitation is 907.9mm and the average daily temperature is 6.7°C 

(Environment Canada, 2007). 

This study site was chosen as means to increase the applicability of the study. The LCNC 

is found within the Deciduous Forest region, as designated by Ministry of Natural Resources 
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(Watkins, 2006). LCNC forest provides a good representation of forest found within this region, 

which is widespread in the eastern United States, as well as the neighbouring forest-region 

entitled Great Lakes St. Lawrence Forest (Watkins, 2006). These areas are dominated by tolerant 

hardwoods and mixedwood stands (Watkins, 2006). Both of these regions, being located within 

southern Ontario, are under great development stress (Watkins, 2006). Forests within these areas 

are characterized as small woodlots adjacent to farmland, fragmented and have been greatly 

modified by human activities (Watkins, 2006). In total, only 17% of it is covered by forests, most 

of which is found in areas with low agriculture potential.  

The specific species that were studied are sugar maple (Acer saccharum Marsh.), 

American basswood (Tilia americana L.) and American beech (Fagus grandifolia Ehrh.). 

Henceforth, Acer saccharum Marsh. is referred to as sugar maple, Tilia Americana L. as 

basswood and Fagus grandifolia Ehrh. as beech. These three tree species were chosen because 

they are commonly found in the Deciduous Forest region (Figure 1.2).  

 



 

 23 

 

 
Figure 1.2: Relative abundance of sugar maple (Acer saccharum Marsh.), basswood (Tilia 
Americana  L.)  and  beech  (Fagus  grandifolia  Ehrh.)  trees  in  Ontario,  Canada  (Watkins, 
2006). 
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Figure  1.3:  (a)  Location  of  Laurel  Creek  Conservation  Area,  Waterloo,  ON 
(Conservation Ontario,  2008  ).  (b) Orthophoto  of  Laurel  Creek  Conservation 
Area. Section highlighted in red outlines the Nature Centre (Tupman, 2004). 
 



 

 

 

 

1.8 Gen

1.8.1 Lea

T

plots with

study plo

shading i

authority

activities

T

Figure 1.

a 28x30 m

neral Mater

af litter Coll

Throughout th

hin LCCA-N

ot locations w

in Figure 1.4

y further restr

s. Those area

Figure
area  s
circled
was sa

The nine stud

.5, a grid wa

m area. Nine

rial and Me

lection 

he study the

Nature Centr

were restrict

4, as the stud

ricted access

as are within

e  1.4:  Laure
shaded  in gr
d are the se
ampled from

dy plots were

as imposed o

e areas were

2

ethods 

 method of l

re were chos

ed to the upl

dy species w

s to two mai

n the boundar

l Creek Con
reen  represe
ctions of th
m. Image ado

e selected us

over a picture

 chosen, thre

25 

leaf litter col

sen using a S

land hardwo

were present i

in areas so as

ries of the ci

nservation A
ents  the up
e upland ha
opted from T

sing a random

e of the Natu

ee for each o

llection rema

Simple Rand

ood commun

in this area o

s to avoid in

ircles display

Area Nature 
pland hardw
ardwood for
Tupman (200

m number ge

ure Centre gr

of the three s

ained consta

dom Samplin

nity, represen

only. The Na

nterference w

yed in Figur

Centre Gro
ood  forest. 
rest that the
04). 

enerator. As

rounds. Each

species of in

ant. Nine stu

ng technique

nted by green

ature Centre 

with program

re 1.4. 

 
ounds.  The 
The areas 

e  leaf  litter 

s evident from

h box repres

nterest.  With

udy 

e. The 

n 

mmed 

m 

sents 

hin 



 

 26 

each area a 10x10 m net was hung from corner posts one-metre above the ground. No part of the 

net was in contact with the ground. The majority of traps collected mono-species litter, meaning 

the majority was sugar maple, basswood or beech depending on the site. If litter other than the 

specie of interest was collected it was discarded in the field while emptying the traps or in the lab 

before refrigeration.  

 

 
Figure  1.5:  The  division  of  the  study  plot  into  28x30 m  plots.  The 
areas filled in red represent the leaf litter collection locations chosen 
randomly. Three areas chosen for sugar maple, three for basswood 
and  three  for  beech  leaf  litter  collection.  Image  adopted  from 
Tupman (2004). 

 

Litter fall collection took place throughout the fall, beginning September 20th, 2007 

through to October 31st, 2007. Freshly abscised and undamaged leaves were collected daily. This 

was an integral requirement of the sample collection as it formed a baseline for litter quality 

levels and ensured the litter did not suffer post senescent leaching. Leaves collecting in the nets 

overnight or during a rainstorm were discarded. The site was visited twice daily throughout this 

period, once in the morning to remove litter that had fallen over night and in the evening to 
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collect litter that had fallen that day. Once collected from the nets, samples were sealed in a 

polyethylene bag and refrigerated at 4 °C to avert degradation until use (Jones and Steyn, 1973). 

Upon returning to the lab the samples were sorted and weighed for fresh weight analysis. A sub-

sample from each collection was dried at 65 °C for 36 hours for a representative dry weight 

measurement. The remainder of the leaves were refrigerated for no more than 48 hours before 

being used for analysis. 

1.8.2 Dry Weight Determination 

Leaf litter used in experiments was not pre-dried. Drying litter can greatly affect the 

decomposition in an unpredictable manner. Gessner and Schwoerbel (1989) found that air-dried 

leaves (alder and willow) lost 20-25% mass, while fresh leaves did not lose a significant percent 

of mass. Taylor and Barlocher (1996) suggested that air-drying leaf litter significantly affects the 

amount of mass lost through short-term leaching, although the amount and direction of change 

was quite variable. More specifically, Barlocher (1992) found that air drying sugar maple (Acer 

saccharum March.) litter induced an increase in leaching. However, all of these studies measured 

differences based on litter immersed in water. Taylor (1998) measured the affect of air-drying on 

the decomposition of alder and aspen litter kept in litter bags on the forest floor.  It was found 

that air-dried litter lost less mass than fresh litter over the long term with significant difference, 

enough to conclude that air-drying added at least 1 year in order for alder to degrade down to 

50% of the original mass. In general, drying litter can damage the physical leaf structure by 

disrupting the cellular structure or cuticle layer.  Lousier and Parkinson (1976) stated that oven 

drying can harm the continuity of the microbial succession, thus over a short term study a loss of 

microbial activity will affect the decomposition. As well, oven drying can affect the 

physiochemical constituents of the litter tissue through a release of nutrients (Lousier and 

Parkinson, 1976).  

Not pre-drying leaf litter was particularly important to keep in mind when preparing litter 

for microbial analysis. It was suggested by Taylor (1998) that drying litter caused irreversible 

cell damage making microbial enzymatic attack of cellular structure incapable thus greatly 

minimizing the microbial community present. Clein & Schimel (1994) also explained that 
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drought conditions cause microbial communities and success of enzymatic attack to be 

negatively affected. 

To avoid having to determine the dry weight of leaf litter used in experiments a 

relationship between the fresh weight and dry weight for each species was devised. Samples 

were taken strictly for dry weight analysis throughout the study period. The fresh weight was 

measured for each sample and then the dry weight after being in the oven for 36 hours at 

60°C.The relationship between the dry weight and fresh weight of these samples was used to 

determine the unknown initial dry weight of leaf litter used in the experiments based on the fresh 

weight of the leaf litter prior to experimentation.  
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Chapter 2  

Litter Trap Experiment 

2.1 Introduction 

The return of nutrients to the soil depends primarily on processes of throughfall, 

stemflow and leaf-litter (Pedersen andBille-Hansen, 1999). Many studies found leaf-litter to be 

the greatest contributor of nutrients to the soil (Ukonmaanaho and Starr, 2001; Lousier and 

Parkinson, 1976; Gray and Schlesinger, 1981), although leaf litter is nutrient poor as a result of 

retranslocation and/or leaching of nutrients prior to senescence (Taylor and Parkinson, 1988a). 

However, there exists the possibility for the contribution of energy and nutrients from leaf litter 

to be underestimated. The collection of leaf litter for subsequent analysis usually requires a litter-

trap, set-up under the forest canopy, to catch freshly fallen litter. The litter from the trap is then 

periodically collected on a biweekly or monthly schedule. Between sampling schedules the litter 

is likely subject to early stages of decomposition, as litter in traps has been found to leach 

nutrients (Ukonmaanaho and Starr, 2001). Nutrients leached from litter will become part of the 

soil nutrient or soil water flux pool (Ukonmaanaho and Starr, 2001).  

Specifically, litter collecting in traps can be exposed to early processes of decomposition, 

such as deterioration by bacteria and fungi, and climatic influence, namely leaching, and freezing 

and thawing (Leuschner, 2005). Although litter-traps eliminate soil microbial influences, studies 

have found that before abscission, leaves are already colonized with fungi and bacteria, also 

referred to as phyllosphere communities (Ostman and Weaver, 1982). Furthermore, many studies 

have found that in the initial stage of decomposition the majority of mass and nutrients lost are 

attributed to leaching (Bocock, 1963; Anderson, 1973; Gosz et al., 1973; Prescott 2005; Maclean 

and Wein, 1978; Ibrahima et al., 1995). Since leaching refers to the removal of leaf-litter 

constituents primarily by rainfall, dew, mist and fog (Tukey, 1970), it is likely that leaf-litter in 

litter traps would be equally affected. Likewise, leaf litter in traps can be affected by cycles of 

freeze-thaw, which been found to have an adverse effect on nutrient mineralization rates and 

nutrient leaching (Ellis et al., 2006). 
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As previously mentioned, Ukonmaanaho and Starr (2001) is the only study that has 

measured the in-situ flux of nutrients from leaf litter collecting in litter-traps with the intent to 

determine if leaf litter nutrient contributions are underestimated. Ukonmaanaho and Starr (2001) 

measured the leaching of nutrients from litter collected in a Scots pine and mixed forest stand. 

Ukonmaanaho and Starr (2001) positively identified that nutrient cycling studies have 

underestimated the return of nutrients from leaf litter. However, ex-situ studies, specifically 

Oelbermann (1999), found that, for the most part, leaf litter studies tend to overestimate the 

amount of nutrients entering the system. Oelbermann (1999) compared the loss of nutrients 

under four precipitation treatment, 21.0 mm, 49.0 mm and 62.0 mm deionized (DI) water, and 

49.0 mm of rainwater, on freshly abscised Populus spp. leaf litter. The litter exposed to 49.0 mm 

(DI and rainwater) and greater had a significant weight gain (Oelbermann, 1999).  

2.2 Objective 

The objective of this study is to determine if, under in-situ conditions, sugar maple (Acer 

saccharum Marsh. hereafter “sugar maple”), american basswood (Tilia Americana L. hereafter 

“Basswood”) and american beech (Fagus grandifolia Ehrh. Hereafter “beech”) leaf litter in litter 

traps underwent change in comparison to freshly abscised collected leaf litter. In addition, this 

study tests whether sugar maple, basswood and beech leaf litter respond differently to the same 

environmental conditions. Two approaches were used to evaluate the change in the nutrient 

dynamics of freshly abscised leaf litter: (i) mass loss and change in nutrient (C, N, P, K, Ca and 

Mg) content of leaf litter during a two week period; and (ii) the leaching of dissolved organic 

carbon and nitrogen and dissolved inorganic nitrogen. Unfortunately, the conditions of this study 

did not permit sufficient leachate collection over the study period for dissolved organic and 

inorganic nutrient analysis.  

2.3 Material and Methods 

2.3.1 Setup and Analysis 

The leaf litter collected on October 14th and 15th 2007 was used in the litter trap 

experiment that took place over a 14-day period beginning October 16th through to October 30th, 
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2007. In total, nine litter trap experiments were set-up, three for sugar maple, three for basswood 

and three for beech. A trap was set-up at each of the nine sampling locations (Figure 1.5). The 

traps were staked to the ground and stood 40 cm high and had a radius of 38 cm (Figure 2.1). For 

sugar maple and basswood, 20 g of leaf litter collected at each of the locations was suspended 

over the trap. However, at this point beech trees had only begun to shed their canopy, as a result, 

the beech traps contained 15 g (fresh weight) as opposed to 20 g of leaf litter. Netting was placed 

over the trap opening (and leaf litter samples) to eliminate opportunity for sample to be lost or 

for additional leaf litter to be added to the trap. Henceforth, the three sugar maple traps will be 

referred to as M1, M2 and M3 where ‘M’ stands for sugar maple and the number (1,2,3) denotes 

the location of the trap. The same identification process will be used on the remaining species, 

where B corresponds to basswood and Be correspond to beech. 

 From the leaf litter collected on October 14th and 15th 2007 an additional 10 g sample of 

leaf litter was taken from each of the collection locations (Figure 1.5). These samples represent 

the baseline data for this study. These samples were dried at 65 °C for 36 hours, weighed, ground 

with a Wiley Mill using a 2 mm sieve and then a Retsch Ball Mill. The samples were analyzed 

for phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) at the Soil and Nutrient 

Laboratory at the University of Guelph. Carbon (C) and nitrogen (N) analysis was conducted 

using a Costech Instrument ECS 4010 though elemental combustion analysis.  

 After the 14-day study period, the litter was returned to the lab, dried at 65 °C for 36 

hours and weighed. The samples were ground in a Wiley Mill using a 2mm sieve and 

subsequently ground with a Retsch Ball Mill. The samples were analyzed for P, K, Mg and Ca at 

the Soil and Nutrient Laboratory at the University of Guelph. Carbon and N analysis was 

conducted using a Costech Instrument ECS 4010 though elemental combustion analysis. 
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Figure 2.1: Pictures of sugar maple litter‐trap experiment set up in Laurel Creek Conservation 
Area Nature Centre. Taken by Cassie Corrigan on October 20th 2007. 
 

2.4 Statistical Analysis 

To determine if there is a difference between the two samples, baseline (freshly abscised 

leaf litter) and post-14-day litter trap leaf litter (following the 14-day study period), a paired t-test 

was completed. The paired t-test was completed to compare each of the measured parameters, 

where permitting (in some cases the measured parameter was below detectable limits). These 

parameters were dry weight, C, N, P, K, Ca and Mg. All data was examined for homogeneity of 

variances between the two sets of compared data (using the Levene Test) and normal distribution 

was tested using Kolmogorov-Smirnov (K-S) Test and the Shapiro-Wilks Test (Dytham, 2003). 

The variance of the data is homogeneous, normally distributed and continuous. For all statistical 

analyses the threshold probability level for determining significant differences was p<0.05 and 

p<0.10.  
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2.5 Results and Discussion 

2.5.1 Dry Weight Analysis 

In the field litter trap experiment, sugar maple leaf litter was found to have the greatest 

decline in dry weight over the two week period, a mean percent decrease of 12.46%, whereas the 

dry weight of basswood leaf litter decreased by a mean of 6.80% (Table 2.1). The percent change 

in dry weight was determined as the percent difference between the baseline dry weight (defined 

earlier as the dry weight of freshly abscised leaf litter collected on October 14th and 15th 2007) 

and the dry weight of leaf litter post-14-day litter trap experiment. Compared to the baseline, the 

dry weight of sugar maple and basswood differed significantly (p < 0.05 and p < 0.10, 

respectively) after the 14-day litter trap experiment. Beech leaf litter decreased minimally 

(0.18%) displaying no significant difference from freshly abscised litter (Table 2.1). The three 

beech samples showed considerable variation in the reported final dry weight between the three 

litter traps, such that one of the samples (Be3) reported an increase of 2.09% (Table 2.1).  
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Table 2.1: Summary of the percent dry weight change of basswood (B), sugar maple (M) and 
beech (Be) leaf litter before and after 14‐days in a litter traps at each of the study site locations 
(1, 2, 3). Negative percent change identifies a decrease in weight and a positive percent change 
identifies an increase. Standard deviation is given in parentheses. 

Sample ID Dry Weight Before 
(g) 

Dry Weight After 
(g) 

% Change in 
Weight 

M1 11.00 9.79 -11.00 

M2 10.80 9.49 -12.12 

M3 10.60 9.09 -14.25 

Mean: 10.80(0.2) 9.46(0.35) -12.46 

B1 12.20 11.35 -6.97 

B3 12.78 11.98 -6.26 

B2 12.40 11.51 -7.18 

Mean:  12.46(0.29) 11.61(0.33) -6.80 

Be1 11.46 11.27 -1.66 

Be2 11.25 11.14 -0.98 

Be3 11.75 11.99 2.09 

Mean:  11.49(0.25) 11.47(0.46) -0.18 

 

A decrease in weight is generally associated with leaching and decomposition of litter 

(Nykvist, 1959). Most often the rate of decomposition and mineralization are controlled by 

temperature, moisture and the chemical and physical quality of the litter (Prescott, 2002). 

Therefore, observed decomposition of the litter is likely the product of climate, micro-climate 

and litter quality (chemical composition) (Taylor and Parkinson, 1988a; Knutson, 1997). The 

following results and discussion investigate the impact of climate and litter quality on the 

observed decomposition of the leaf litter in the litter traps.  

2.5.2 Climatic Influences 

Over the two week period that the litter traps were set-up in LCNC the litter was exposed 

to a mean daily high temperature of 15˚C and an mean daily low temperature of 6˚C (University 

of Waterloo Weather Station, 2008) (Figure 2.2). During the study period there was a total of 
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23.2 mm of precipitation, the bulk of which can be accounted for on October 23rd 2007(11.4 

mm) (University of Waterloo Weather Station, 2008) (Figure 2.2). The remainder of the days 

received anywhere from 0 – 4.2 mm of rainfall (University of Waterloo Weather Station, 2008) 

(Figure 2.2). The temperature was less than or equal to 0˚C only once for an eight hour stretch in 

the evening between October 28th – 29th. From the observed decrease in mass it can be assumed 

that these climatic conditions assisted in the decomposition of the litter. As mentioned, the initial 

stage of decomposition is evident through a loss of mass, most often attributed to leaching 

(Lousier and Parkinson, 1978; Huang and Schoenau, 1997). Huang and Schoenau (1997) found 

that the greatest decline in weight in the first month of decomposition, regardless of litter type. 

The initial rapid weight loss was accredited to leaching and decomposition of water soluble 

material (Huang and Schoenau, 1997). A rapid loss in mass has also been reported in a number 

of other studies, including Parsons et al. (1990) who referred to this initial rapid loss as a 

universal observation. As well, cycles of freezing and thawing have been found to accelerate 

decomposition, nutrient mineralization and nutrient leaching (a topic discussed in greater detail 

in Chapter 5)(Campbell et al., 2005; Matzner and Borken, 2008).  

 
Figure 2.2: Daily high and low temperatures (°C) and daily precipitation (mm) for each 
day  from October 16‐30th  in 2007  collected at  the University of Waterloo Weather 
Station (43 28’ 25.6” N and 80 33’ 27.5”W, elevated 334.4m). 
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2.5.3 Structural Influences 

Many studies have also reported that leaf texture affects the decomposition of litter (King 

and Heath, 1967). Leaf texture is dependent on structural material, mainly lignin, and the 

thickness and wax content of the cuticle, all of which were found to be inversely related to litter 

decomposition (King and Heath, 1976). In this study the texture of beech leaf litter was found to 

be relatively hardier compared to basswood and sugar maple as beech leaf litter did not show 

structural degradation. Furthermore, leaching characteristics have also been related to leaf 

toughness and cuticle thickness (Pereira et al., 1998). Leaching is generally slower in tough litter 

with a thick cuticle (Pereira et al., 1998). This may explain differences in weight lost between 

sugar maple and basswood, such that basswood may have a thicker cuticle. Taylor and Parkinson 

(1988b) found that thick and waxy cuticles were better able to resist water absorption, thus 

allowing for lower initial mass loss rates.    

The differences in the three species, although primarily due to differing litter quality 

characteristics, may also be attributed to differences in canopy cover. First of all, it takes 

approximately 1-3 mm of rainfall to wet the canopy, ensuring relative saturation, before it is able 

to reach the ground, or before throughfall and stemflow are initiated (Eaton et al., 1979). 

Moreover, the amount of rainfall that is intercepted is directly related to the tree species, size and 

form (Eaton et al., 1979). Besides altering the hydrologic and chemical composition of the 

precipitation, the canopy can also shade and insulate the ground surface, thus dictating the 

microclimate (Prescott, 2002). The canopy structure of sugar maple and basswood were quite 

thin when the study was initiated, and by mid way (first sugar maple and then basswood) the 

trees were almost fully bare. Basswood trees in this study had no lower canopy, a typical 

basswood characteristic. Beech did not lose all of its leaves until the very late fall, and some of 

the lower branches continued to hold foliage until late November. In addition to having foliage 

later into the season, beech also had a lot of lower branches sheltering the traps. Due to these 

differences in canopy structure it is fair to assume that the beech litter traps were impacted less 

by rainfall than the sugar maple or basswood traps.  The loss of the canopy can increase 

decomposition (Edmonds, 1979), primarily due to stimulating optimal microbial conditions, such 

as increased sunlight and water infiltration (Edmonds, 1991). It is possible that the lack of cover 
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over the study’s sugar maple and basswood litter may have stimulated greater microbial growth 

and thus explaining the greater increase in decomposition, as compared to beech. 

As discussed earlier, throughfall is able to alter the chemical composition of the lower 

reaches of the canopy by depositing nutrients leached from the upper region of the canopy 

(Hansen, 1996). This has been observed to also extend to litter collecting in litter traps 

(Ukonmaanaho and Starr, 2001).  Although throughfall was not measured, it is noteworthy to 

mention that the leaf litter may have been affected by throughfall, particularly beech litter trap #3 

which exhibited an increase in weight. The areas surrounding beech litter trap 1 and 2 were 

dominated by beech trees, where as beech trap 3 (Be3), although located under a beech tree, had 

neighbouring sugar maple trees.  The throughfall from the sugar maple trees, likely enriched in 

comparison to beech, may have deposited nutrients.     

2.5.4 Nutrient Analysis  

Although all of the litter would have been exposed to the same climatic conditions, 

differences in the extent of decomposition, measured as a change in mass, still persist. This is 

likely related to the nutrient content of the leaf litter, often referred to as the litter quality. The 

quality of the litter is often expressed as a ratio of C to other elements (Flanagan and Van Cleve, 

1983). Nitrogen and P are most commonly used as they often limit microbial activity (Taylor et 

al., 1989). The results of this study found that P did not provide a good comparative measure as 

nutrient analysis of sugar maple and beech found P to be below detectable limits, however N was 

measured in all three species. 

The results of this study indicate that basswood had the lowest initial C/N ratio, followed 

by beech and then sugar maple. The mean initial C/N ratio for basswood, beech and sugar maple 

were 37.15(1.37), 58.60(1.69) and 69.17(0.25), respectively. Although many studies found the 

C/N ratio negatively correlated to decomposition, this study did not find the initial C/N ratio to 

be correlated to the observed loss in weight. This may suggest that it is the observed shifts in the 

C/N ratios during the study period that is responsible for leaf litter weight loss. The C/N ratio 

post-14-day study period found basswood to be the lowest, followed by sugar maple and then 

beech. The post-14-day C/N ratio for basswood, sugar maple and beech are 37.36(1.25), 



 

 38 

65.31(0.51) and 71.83(1.37), respectively. The change in the C/N ratio observed during the study 

was an increase of 21.22% for beech and 0.80% for basswood.  While sugar maple C/N ratio 

decreased by 5.57%. Therefore, it appears that the decrease in C/N ratio is positively correlated 

to the loss of dry weight (Table 2.2).  

Table 2.2: The relationship between the change in the C/N ratio and dry weight of sugar maple, 
basswood and beech  leaf  litter. A negative percent change  reflects a decrease and a positive 
change reflects an increase. Standard error is given in parenthesis. 

  Initial C/N  
 

Post‐14‐day C/N
 

% Change in  
C/N 

% Change in  
Dry Weight 

Sugar Maple  69.17(0.25)  65.31(0.51)  ‐5.57  ‐12.46 

Basswood  37.15(1.37)  37.45(1.25)  0.80  ‐6.80 

Beech  58.60(1.69)  71.03(1.32)  21.22  ‐0.81 

The observed change in the C/N ratio in this study emphasizes the importance of the C/N 

ratio in dictating leaf litter weight loss. Similarly, Swift et al. (1979) stressed the importance of 

substrate quality of different species in dictating decomposition rates. Many studies have 

attributed the decomposition of litter to the C/N ratio (Aerts, 1997; Flanagan and Van Cleve, 

1983; McClaugherty et al., 1985; Taylor et al., 1989; Huang and Schoenau, 1997). The 

decomposition of litter is often limited by insufficient nutrient levels (Gosz et al., 1973). As 

previously stated, this is specifically important with respect to N as it is found to most 

significantly limit microbial production (Taylor et al., 1989). In Melillo et al. (1982) the 

decomposition of litter was found to be highly negatively correlated to the ratio C to N (C/N 

ratio). 

Taylor et al. (1989) stated that C/N ratios >30:1 initiate N to be immobilized, while ratios 

<30:1 cause N to be mineralized. All of the litter in this study had higher C/N ratios suggesting 

that N should be immobilized. However, N levels were found to decrease, most noticeably in 

beech which had an initial (58.60) and final (71.03) C/N ratio well above 30:1 (Table 2.2). The 

decrease in N in basswood and beech litter types, and the decrease in C in basswood and sugar 

maple litter may be attributed to initial losses from leaching. The change in C and N 
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concentrations caused sugar maple litter to become more decomposable, basswood to essentially 

remain the same, and beech to become considerably less decomposable (Table 2.2). 

This study found the post-14-day C/N ratio of basswood to be the lowest, followed by 

sugar maple, and then beech (Table 2.2). Many studies have reported basswood and sugar maple 

to have similar decomposition rates, both of which have been reported to be greater than beech 

(Gosz et al., 1973; McClaugherty et al., 1985; Joergensen and Meyer, 1990). However, 

basswood had a much lower C/N ratio than sugar maple but did not exhibit as great of a decrease 

in mass. The difference in weight change between sugar maple and basswood could not be 

explained by litter quality characteristics, therefore it may be that sugar maple litter was 

significantly damaged and more susceptible to microbial attack, and/or that microbial activity 

was more prevalent on the surface of sugar maple litter, a topic that will be discussed in greater 

detail in Chapter 5. 

Elemental analysis determined that the Ca content of beech litter significantly (p<0.10) 

decreased after 14 days in the litter trap. Although not differing significantly, all other elements 

analyzed (C, N, P, K, Ca and Mg) were observed to change, at least minimally, after the 14 day 

study period in all three species (Figure 2.3). This is with the exception of P in beech which was 

not detected in either the freshly abscised samples or in the treated samples. With a lack of 

statistically significant results the use of descriptive analysis was used but with caution. 
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Figure 2.3: The mean percent decrease of K, Mg, P and Ca (measured  in mg/kg)  in post‐ 
litter  trap  experiment  leaf  litter  as  compared  to  pre‐  litter  traps  experiment  leaf  litter 
(baseline). Results are the mean of the three litter traps set‐up for sugar maple, basswood 
and beech. Note that K and P  in sugar maple and K  in beech were below the detection 
level and so were assumed to be just below the detection limit. This was done to give an 
idea of the minimalist case. 

 

The K and P content of sugar maple litter and the K content of beech litter collected from 

the litter traps were below a detectable level (Table 2.4 and 2.5). In order to compare the change 

in these elements it was assumed that they were just below the detection level (K=0.29 mg/kg 

and P=0.045 mg/kg). This allowed for minimalist conclusions concerning the effects of leaving 

leaf litter in litter traps. However, these results are substantiated by the literature as K is readily 

leached, if not completely, from leaf litter as it is highly soluble (Likens et al., 1994).  

Descriptive analysis suggests that the elemental components of sugar maple (i.e. K, Mg, 

P, and Ca) are affected by litter trap conditions during a two week period. Basswood also showed 

a decreases in K and Ca, and to a lesser extent, Mg and P (Figure 2.3). Beech exhibiting minimal 

decreases in K, Mg and Ca as compared to sugar maple and basswood (Figure 2.3). Although, all 

3 litter types exhibited change, none of them showed comparable trends. Sugar maple litter 
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declined, from greatest to least, Mg>Ca>K>P, whereas Basswood litter K>Ca>P> Mg and beech 

litter Ca>Mg>K (Table 2.4 and 2.5). 

The measured dry weight of Be3 was found to increase suggesting that there should not 

be a demonstrated decrease in other nutrient levels. However, this is not substantiated by the 

levels of Ca, Mg, P, K and N as they were found to decrease. Although it may be fair to suggest 

that an increase in weight is the result of additional litter being introduced into the trap from over 

head canopy, measures were taken to minimize such opportunity. Furthermore, Oelbermann 

(1999) also witnessed an increase in dry weight of Populus spp. Oelbermann (1999) suggested 

that this may be due to microbial activity. 

This study supports the findings of Ukonmaanaho and Starr (2001). Ukonmaanaho and 

Starr (2001) studied the importance of the loss of leaf litter leachate from litter, accumulating in 

litter traps, to the total flux of nutrients from leaf litter to the forest floor. Similar to this study, 

Ukonmaanaho and Starr (2001) found that K significantly leached from the leaf litter while in 

litter traps. Calcium and Mg also leached but to a much lesser extent (Ukonmaanaho and Starr, 

2001). Furthermore, studies on the initial decomposition of litter have found similar changes in 

litter. For example, Gosz et al. (1973) found that K, Mg and dry weight decreased from the initial 

point of the study under litter bag conditions. As well, Parsons et al. (1990) found that intact 

aspen leaf litter lost 14.2% of the original mass after 14 days of being in a litter bag on the forest 

floor. Huang and Schoenau (1997) found a dry weight decline of 8.9% and 12.4% in Aspen and 

Hazel leaf litter, respectively, after one month in a litter bag study, where precipitation was 

10mm over the entire month. A similar decrease in weight and nutrient levels, in sugar maple 

and basswood of this study, suggests that litter in litter traps decompose, or leaches, similarly to 

litter in litter bags. This would then suggest that initial stages of decomposition are not dependent 

on ground level influences (e.g. soil microbial activity, invertebrate feeding). Therefore, the 

decomposition of leaf litter in litter-traps is unavoidable. 

The results from this study support some of the findings of Oelbermann (1999). 

Oelbermann (1999) found that, leaf litter exposed to 21.0 mm of deionized water (DI), similar to 

the 23.2 mm of rainfall in this study, exhibited a decrease in weight, K, N, and P. However, 
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Oelbermann (1999) observed an increase in weight, N and P when exposed to 49.0 mm of 

rainfall and 62.0 mm of deionized water (DI). Oelbermann (1999) concluded that leaf litter 

studies likely overestimate the amount of nutrients entering the system if precipitation is 49.0 

mm or greater. Although precipitation levels did not reach 49.0 mm or higher during this study, 

further investigation into in-situ studies during heavier rainfall is recommended. A noteworthy 

remark, in Ukonmaanaho and Starr (2001) more than 49.0 mm of rainfall occurred, supporting 

Oelbermann (1999) results. 
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Table  2.3:  Summary  of  carbon  (C),  nitrogen  (N)  and  phosphorus  (P)  before,  pre‐  litter  trap 
experiment freshly abscised leaf litter, and after, post‐ 14‐day litter trap experiment, C, N and P 
(measured as mg/kg) for sugar maple (M), basswood (B) and beech for each of the three litter 
traps. Sugar maple, basswood and beech are abbreviated to M, B and Be, respectively, and the 
number denotes the location of the trap. 

  C Before 
mg/kg 

C After 
mg/kg 

N Before 
mg/kg 

N After 
mg/kg 

P Before 
mg/kg 

P After 
mg/kg 

M1  46.04  45.55  0.67  0.69  <0.050  <0.050 
M2  47.31  45.67  0.68  0.71  <0.050  <0.050 
M3  45.69  45.94  0.66  0.70  <0.050  <0.050 
B1  43.78  45.47  1.27  1.20  0.07  0.06 
B2  45.26  45.65  1.16  1.15  0.056  0.062 
B3  44.79  45.26  1.18  1.30  0.07  0.06 
Be1  48.41  48.62  0.81  0.71  <0.050  <0.050 
Be2  48.64  49.48  0.88  0.66  <0.050  <0.050 
Be3  48.61  49.52  0.80  0.71  <0.050  <0.050 

 

 
Table 2.4: Summary of potassium  (K), calcium  (Ca) and magnesium  (Mg) before, pre‐  litter 
trap experiment freshly abscised leaf litter, and after, post‐ 14‐day litter trap experiment, C, 
N and P (measured as mg/kg) for sugar maple (M), basswood (B) and beech for each of the 
three  litter  traps.  Sugar  maple,  basswood  and  beech  are  abbreviated  to M,  B  and  Be, 
respectively, and the number denotes the location of the trap. 

  K Before 
mg/kg 

K After 
mg/kg 

Ca Before 
mg/kg 

Ca After 
mg/kg 

Mg Before 
mg/kg 

Mg After 
mg/kg 

M1  0.39  <0.30  2.04  2.04  0.35  0.33 
M2  0.31  <0.30  2.34  2.05  0.39  0.29 
M3  <0.30  <0.30  2.28  2.06  0.4  0.29 
B1  0.54  0.32  3.67  3.4  0.57  0.47 
B2  0.3  <0.30  3.3  3.07  0.53  0.49 
B3  0.51  <0.30  4.18  3.64  0.48  0.48 
Be1  <0.30  <0.30  1.3  1.2  0.41  0.39 
Be2  0.31  <0.30  1.29  1.08  0.39  0.33 
Be3  <0.30  <0.30  1.37  1.12  0.37  0.34 
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2.6 Summary and Conclusions 

It was the objective of this study to determine if, under in-situ conditions, deciduous leaf 

litter in litter traps underwent change in comparison to freshly abscised leaf litter. After 14-days 

in a litter-trap freshly abscised sugar maple leaf litter exhibited a decrease in weight, C, Ca, Mg 

and K, while N levels increased. Freshly abscised basswood leaf litter responded similarly, 

exhibiting a decrease in weight, Mg and K and an increase in C. Basswood leaf litter showed 

variable N and P results. Freshly abscised beech leaf litter exhibited a decrease in weight, N, K, 

Ca and Mg and an increase in C. Results from this study confirm that leaf litter collected from 

litter traps for a 14-day period does undergo change, however the change is variable (Table 2.5). 

As well, this study tested whether sugar maple, basswood and beech leaf litter would 

respond differently to the same environmental conditions. The results of this study suggest that 

different deciduous leaf liter responds differently to similar environmental conditions. For the 

most part this is due to different litter quality characteristics. However, leaf litter in litter traps is 

likely affected by the surrounding environment. Specifically, the results of this study suggest that 

the overhead canopy may protect and/or add additional nutrients to leaf litter collecting in litter 

traps.   

Although this experiment confirmed that leaf litter in litter traps does undergo change, the 

mechanism of the change has not been clearly identified. During the study period, the leaf litter 

was subjected to precipitation and freezing temperatures (Figure 2.2). As well, the loss in weight 

and nutrient content suggest that microbial activity contributed to the decomposition of the leaf 

litter. Therefore, the results of this study has inspired further research into the influence of 

precipitation, freezing temperatures and microbial activity on the decomposition of leaf litter 

collecting in litter traps. The following three chapters focus on investigating the impact of each 

of these individually.  
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Chapter 3 
Leaf Litter Leaching Experiment 

3.1 Introduction 

 The decomposition of leaf-litter involves physical and chemical processes that reduce it 

to its elemental constituents (Aerts, 1997). Although the process involved in decomposition of 

leaf-litter is shown to vary in description, generally following three main phases: an initial rapid 

decline in mass due to leaching and loss of soluble components (abiotic breakdown), 

conditioning by microorganisms, and breakdown through invertebrate feeding and physical 

abrasion (biotic breakdown) (Berg and Staaf, 1981; Boulton and Boon, 1991). Together these 

processes mineralize nutrients making elements available for plant uptake (thus controlling plant 

growth), and humify organic matter maintaining soil organic matter content (SOM) (Lavelle et 

al., 1993). Besides mineralization, nutrients can also be made available to plants via leaching 

from leaf litter (Berg and Staaf, 1981). Leaching is considered to be important in only the first 

few weeks following leaf litter production (Tietema and Wessel, 1994). This was found, by 

Tietema and Wessel (1994), to be due to a decrease in the amount of leachable solutes in the leaf 

litter following the initial period of decomposition.  

The efficiency of nutrient release (or the rate of decomposition) is dependent on a variety 

of factors. These factors include micro- and macro-climates (Edwards, 1975), leaf-litter chemical 

composition and physical state (Swift et al., 1979; Anderson, 1991; Aerts 1999), the quantity 

(Knutson, 1997) and diversity of leaf litter (Ball et al., 2008). Lavelle et al. (1993) proposed a 

hierarchal model for the decomposition of litter, suggesting that some factors dictate the 

decomposition of litter more than others. The levels of the hierarchal model are as follows: 

climate (temperature and moisture)> physical properties of soil (clay and nutrients)>litter 

quality> macro and microorganisms (Lavelle et al., 1993). However, many studies have stated a 

simpler set of dictating factors that influenced the decomposition of litter. These factors are the 

following: (i) environmental conditions, (ii) the chemical quality of the leaf-litter, and (iii) soil 

organisms (Swift et al., 1979; Beare et al., 1992; Couteaux et al., 1995; Aerts, 1997).   
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Continual debates persist on the importance of abiotic and biotic processes in the 

decomposition of litter. While some confirm that the decomposition of litter is primarily 

dependent on the substrate quality (Swift et al., 1979l; Flanagan and Van Cleve, 1983), others 

maintain that temperature and moisture are more important (Bunnel et al., 1977). Taylor and 

Parkinson (1988c) studied the relative importance of moisture and temperature on decomposition 

and found temperature to be a considerably more important determinant (Taylor and Parkinson, 

1988c). This is in contrast to the many studies that have found temperature and moisture 

interdependent. 

Although decomposition rates will differ depending on the conditions present, almost all 

litter decomposition follows an exponential decay curve, at least in short term studies (Prescott, 

2005). As previously stated, the initial stage of decomposition is typically met by a relatively 

large decrease in mass which is usually attributed to leaching (Bocock, 1963; Anderson, 1973; 

Gosz et al., 1973; Prescott 2005; Maclean and Wein, 1978; Ibrahima et al., 1995; Parsons et al., 

1990). Leaching refers to the removal of leaf-litter constituents primarily by rainfall, but can also 

be attributed to dew, mist and fog (Tukey, 1970). Taylor and Parkinson (1988d) determined that 

the decomposition of aspen (Populus tremuloides) litter followed the exponential decay curve. 

The first two weeks showed a rapid decline of 14% of the total mass resulting from leaching of 

labile nutrients (Taylor and Parkinson, 1988d). Parsons et al. (1990) found that although aspen 

litter had rapidly lost mass in the first few weeks of decomposition, the loss was mainly 

attributed to physical leaching. Two weeks was not sufficient time for microbial populations to 

establish (Parsons et al., 1990). 

Many studies demonstrated the importance of climate, and more specifically, the 

importance of rainfall to the decomposition of litter, especially in the early stages of 

decomposition (Swift et al., 1979; Couteaux et al., 1995; Martin et al., 1997). Rainfall was 

shown to directly impact leaf litter by stimulating the leaching of soluble (labile) compounds and 

substantially decreasing the mass (Nykvist, 1963; Tukey, 1970; Swift et al., 1979; Martin et al., 

1997; Salamanca et al., 2003). This is typically found because leaching is greatest when the 

concentration of inorganic nutrients (K, Ca, Mg) is high in the intercellular spaces of the leaves, 

a situation usually present in freshly abscised leaves, as well as rapidly growing leaves (Chapin, 
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1980). If the rate of nutrients lost is equal to or less than the rate of mass lost then decomposition 

of organic matter is the cause, but if the rate of nutrients lost is greater than the rate of mass lost 

it is more likely due to leaching (Gosz et al., 1973). However, the degree of elemental leaching 

will depend on the nutrient content of the leaves (Chapin, 1980).  Many have observed that 

nutrient leaching is proportional to the age of the leaf, and thus leaching is greatest at senescence 

(Tukey, 1970). 

The intensity and quantity of rainfall influences the rate of leaf-litter leaching in that a 

lower intensity, more frequent rainfall will increase leaching of leaf-litter (Tukey, 1970).  

Vanlauwe et al. (1995) found that the decomposition of litter was related to a number of rainfall 

events, whereas no relationship could be made with the quantity of rainfall (varying from 15-159 

mm) on the rate of decomposition. This is further corroborated by Salamanca et al. (2003) study 

where it was concluded that only a lack of rainfall, even over a short period time and when soil 

moisture was kept optimal (threshold limit for microbial activity), reduced the rate of 

decomposition of the leaf-litter. Salamance et al. (2003) found that full or partial application of 

rainfall showed similar rates of decomposition. Lensing and Wise (2006) found that when 

precipitation is increased and decreased in relation to current ambient conditions, litter 

decomposition declines. However, rainfall levels below ambient conditions significantly 

decreased decomposition (Lensing and Wise, 2006). Yet, some researchers have argued that 

rainfall doesn’t significantly affect litter decomposition. Martin et al. (1997) studied the long 

term decomposition of Quercus pyrenaica in a temperate Mediterranean site from which it was 

concluded that rainfall did not seem to decisively affect decay, but was more influenced by soil 

moisture. Martin et al. (1997) suggested that because soil moisture is correlated with rainfall the 

variables that influence decomposition can be masked. 

Quantifying the effect of leaching in the initial stage of decomposition is difficult.  It is 

challenging to separate loss due to leaching from loss due to microbial activity, both of which are 

influenced by rainfall (Smith and Brown, 1994; Vanlauwe et al., 1995). To minimize the 

interference of microbial activity in measuring the affect of precipitation, Smith and Brown 

(1994) suggest treating foliage with rainfall over short periods of time or measuring the leachate 

chemical content. As well, most leaching studies are conducted by submerging leaf-litter in 
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water (Nykvist, 1963; Ibrahima et al., 1995). This can alter the physical structure of the leaf-litter 

(Salamanca et al., 2003) and is not representative of the effects of rainfall on leaf-litter 

decomposition. 

3.2 Objective 

As previously stated, leaching of nutrients is believed to significantly affect leaf litter in 

litter traps. The objective of this study was to measure the change in dry mass and nutrient 

content of deciduous leaf litter, specifically sugar maple (M), basswood (B) and beech (Be), 

exposed to precipitation. Two approaches were used to evaluate the change in the nutrient 

dynamics of freshly abscised leaf litter: (i) mass loss and change in nutrient (C, N, P, K, Ca and 

Mg) content of leaf litter during a two week period; and (ii) the leaching of dissolved organic 

carbon (DOC) and nitrogen (DON) and dissolved inorganic nitrogen (DIN). The intention was to 

evaluate the response of leaf litter to precipitation, and determine if sugar maple, basswood and 

beech leaf litter respond differently to precipitation. Multiple precipitation levels were tested to 

determine a relationship between leaching and rainfall event magnitude.  

3.3 Material and Methods 

3.3.1 Leaf-litter Collection 

 The leaf litter sampling procedure for the leaching experiment was the same as that 

discussed previously in the General Material and Methods section (Chapter 1). Freshly abscised 

leaf-litter, collected between October 22nd and 24th 2007, was used in the laboratory leaching 

experiment. Sub-samples of 20 g (fresh weight) were divided into triplicates (n=3) for each 

treatment and species. A total of 36 individual experiments were conducted (3 species x 4 

treatments x 3 replicates). 

3.3.2 Treatments 

Four treatment levels were tested – control (Ctrl), low (L), medium (M) and high (H). 

Total precipitation data for the month of October from 1981-2006 was used to determine the 

mean L, M and H treatments as 30 mm, 60 mm and 100 mm, respectively (Figure 3.1). The 

precipitation treatments were determined by dividing the data into three categories – L, M and H 
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3.3.3  Rainwater Collection 

Rainwater was collected in a large circular shaped tub (Diameter =1.50 m, height= 0.50 

m) that was placed outside during each rainfall event in an open area with no overhead canopy 

present to avoid throughfall or stemflow nutrient enrichment. Care was taken to clean the 

catchment container before and after each collection period with deionized water.  The rainwater 

was stored in 2 L bottles and frozen within one hour of collection. Twelve hours before 

application, the rainwater was taken out of the freezer and kept under dark conditions to thaw 

(daily at 9 pm). Once thawed, the rainwater from each 2 L container was mixed together (daily at 

9 am). It was found necessary to mix the rainwater to ensure that each treatment was exposed to 

a heterogeneous application of rainwater. Rainwater was collected throughout September and 

October of 2007 and was applied as treatment precipitation throughout the two week 

experimental period. Rainwater was analyzed for pH, DOC, ammonium (NH4
+), nitrate (NO3

-) 

and total Kjeldahl nitrogen (TKN). 

3.3.4 Experimental Set-up 

The 20 g samples of leaf litter were suspended over a plastic tub (0.32 x 0.27 x 0.12 m) 

with netting. The netting allowed leachate to percolate through and collect in the tub (Figure 

3.3). Each day, the respective treatments (Ctrl, L, M, H) were applied from approximately 9-10 

am. From 10-11 am, leachate was collected, filtered and frozen immediately for later analysis. 

Samples collected for DOC analysis were not frozen and instead were kept in the dark at 4 °C. 

Rainwater was applied via a watering can at a low flow rate. Care was taken to ensure the 

rainwater was applied evenly over the litter. One hour provided enough time for the rainwater to 

percolate through. Leachate was collected on days 1, 6, 10 and 14 over the two-week 

experiment.  
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Figure 3.3: Experimental set‐up of leaf litter leaching with exposure to 0 (Ctrl), 30 (L), 60 (M) 
and 100 mm (H) to evaluate changes in litter nutrient content and DOC, DON and DIN or the 
leachate. Photo taken by Cassie Corrigan. 

3.3.5 Sample Analysis 

After the 14-days study period, the litter was dried at 65 °C for 36 hours. The samples 

were ground in a Wiley Mill using a 2 mm sieve and subsequently ground with a Retsch Ball 

Mill. The samples were analyzed for phosphorus (P), potassium (K), magnesium (Mg) and 

calcium (Ca) at the Soil and Nutrient Laboratory at the University of Guelph. Carbon (C) and 

nitrogen (N) analysis was conducted using a Costech Instrument ECS 4010 through elemental 

combustion analysis. Leachate was analyzed for NH4
+, NO3

-, and TKN using continuous-flow 

colorimetry (AAIII Bran-Luebbe) and DOC was analyzed using a Rosemont - Dohrmann High 

Temperature Total Carbon Analyzer. 

3.4 Statistical Analysis 

A one-way ANOVA was completed to compare the change in dry weight, C, N, P, K, Ca 

and Mg between treatments, as well as in comparison to the baseline (freshly abscised leaf litter 

collected on October 22nd and 24th 2007). All data sets were examined for homogeneity of 

variances between the two sets of compared data (using the Levene Test) and normal distribution 

was tested using Kolmogorov-Smirnov (K-S) Test and the Shapiro-Wilks Test (Dytham, 2003). 

The variance of the data is homogeneous, normally distributed and the data is continuous. For all 

statistical analyses the threshold probability level for determining significant differences was 

p<0.05 and p<0.10. 
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To determine if there is a difference between treatment leachate concentrations over the 

study period repeated measures of ANOVA was completed. Repeated  measures of ANOVA was 

completed to compare each of the measured parameters, DOC, DON, NO3
- and NH4

+, between 

treatments over the study period. Sampling time (over a two week period) was the repeated 

(within subjects) factor and DOC, DON, NO3
- or NH4

+ was the main (between subjects) factor. 

All data sets were examined for homogeneity of variances between the two sets of compared 

data (using the Levene Test) and normal distribution was tested using Kolmogorov-Smirnov (K-

S) Test and the Shapiro-Wilks Test (Dytham, 2003). The variance of the data is homogeneous, 

normally distributed and the data is continuous. Significance levels were adjusted using the 

Greenhouse-Geisser and Huyuh-Feldt to account for violations in sphericity.   

3.5 Results and Discussion 

3.5.1 Dry Weight Analysis 

The percent change in dry weight varied between treatment and litter type (Figure 3.4). 

For beech, an increase in precipitation was met by an increase in the change in weight, such that 

samples receiving treatment H displayed the greatest decline in weight. Treatments Ctrl, L, M 

and H had a mean percent change of 9.30%, 10.34%, 10.65% and 12.48% (Figure 3.4). The loss 

of dry weight of sugar maple followed H>L>M>Ctrl, indicating that treatment L stimulated a 

greater level of leaching then treatment M. For sugar maple, the mean weight of samples from 

treatments H, L, M, and Ctrl declined by 16.04%, 13.68%, 5.68% and 2.89%, respectively 

(Figure 3.4). For sugar maple, only samples treated with H significantly (p<0.10) declined in 

weight in comparison to the Ctrl. Basswood, exhibited considerably different results. The dry 

weight increased in all treatments. Basswood leaf litter weight increased most in the Ctrl sample 

and consecutively less in M> L>H (Figure 3.4). Because the increase in weight was observed in 

Ctrl it can be assumed that the increase is not related to precipitation, and is likely due to other 

ambient variables that Ctrl controlled for, such as humidity and temperature. Precipitation may 

have minimized the influence of other environmental factors as the weight increase is inversely 

proportionate to the amount of rainfall applied. By subtracting the changes seen in Ctrl by the 
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changes seen in the treatment samples, one would assume the difference would be the absolute 

affect of the treatment on the sample. In this case, the difference would simply be the affect of 

rainfall on leaf litter (Figure 3.5). The corrected percent change in weight of basswood indicates 

that H declined the most (13.35%), followed by L (6.87%) and then M (4.54%), identical to the 

pattern followed by sugar maple (Figure 3.5).  Furthermore, by applying this rational to sugar 

maple and beech, it is found that precipitation did not greatly influence beech leaf litter weight 

change, while sugar maple leaf litter was still considerably affected (Figure 3.5). In considering 

strictly the effect of rainwater on leaf litter decomposition (as measured as the relative change in 

weight, Figure 3.5), basswood and sugar maple responded similarly. Relative to sugar maple and 

basswood leaf litter, beech leaf litter was affected minimally. 

Although this study observed a change in the dry weight in comparison to the initial dry 

weight of the leaf litter, it is with caution that these results are reported. As mentioned 

previously, the initial dry weight was determined based on a relationship found between the fresh 

(wet) weight and the dry weight (Table 3.1). The relationship was found to exhibit relatively low 

variability (standard deviation) among the measurements. This gives greater credibility to the 

relationship, however, there is still a possibility that the approximate initial dry weight may be 

incorrect.  
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Table 3.1: The relationship between the fresh weight of sugar maple, basswood and beech leaf 
litter to the dry weight of the leaf litter. The relationship was used to approximate the initial dry 
weight of the leaf litter. Standard deviation given in parenthesis. 

Sugar Maple  Basswood  Beech 
10.00  5.91  10.00 6.60 10.00  7.60
10.00  5.57  10.00 6.10 10.00  7.50
10.00  5.50  10.00 6.20 10.00  7.80
10.00  5.70  10.00 6.39 10.00  7.70
10.00  5.65  10.00 6.30 10.00  7.65
10.00  5.60  10.00 6.35 10.00  7.60
10.00  5.65  10.00 6.40 10.00  7.55
10.00  5.65  10.00 6.35 10.00  7.65
10.00  5.50  10.00 6.30 10.00  7.80
10.00  5.85  10.00 6.30 10.00  7.75

  5.66(0.13)  6.33(0.13)   7.66(0.10)
Fresh‐Dry Weight 

Relationship: 
1.77  1.58   1.30

   

 
Figure 3.4: Absolute percent change of dry weight (comparison of the initial to final dry weight) 
for  basswood,  sugar maple  and  beech  leaf  litter  after  exposure  to Medium  (60mm),  High 
(100mm),  Low  (30mm)  and  Control  (0mm)  precipitation  treatments  over  a  14‐day  period. 
Values above zero identify a decrease in dry weight and values below zero identify an increase 
in the dry weight. 
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Figure  3.5:  The  relative  percent  decrease  in  dry  weight  (comparison  between  control  and 
treatment) for basswood, sugar maple and beech leaf litter after exposure to Medium (60mm), 
High (100mm) and Low (30mm) precipitation treatments over a 14‐day period. 

The loss of dry weight of beech leaf litter in response to precipitation is similar to 

previously reported findings. This study found the loss of dry weight in beech leaf litter directly 

related to the quantity of precipitation applied. Many studies found supporting evidence that the 

decomposition of litter is attributed to the quantity of rainfall, at least over the short-term.  

Salamanca et al. (2003) measured the in-situ decomposition of litter (deciduous broad-leaf forest 

dominated by Quercus species) under varying degrees of exposure to rainfall, namely fully 

covered, partially covered, and uncovered. It was found that mass loss decreased with reduced 

exposure to rainfall (Salamanca et al., 2003). Knutson (1997) found increased annual total 

decomposition of an Eastern Deciduous Forest, dominated by sugar maple, basswood and oak, 

associated with higher levels of precipitation.   

Sugar maple and basswood leaf litter did not exhibit a direct response to precipitation. 

Precipitation levels higher than,and lower than, medium precipitation induced greater leaching. 

Lensing and Wise (2007) conducted an in-situ study on litter from an oak-maple-hickory forest 

to determine if changes in precipitation regimes would affect rates of litter decomposition. The 

litter was exposed to ambient, below ambient and above ambient precipitation levels (Lensing 
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and and Wise, 2007). However, results found that above and below ambient precipitation levels 

retarded the rate of decomposition (Lensing and Wise, 2007). Litter exposed to above ambient 

conditions decayed 20% slower than ambient and litter exposed to below ambient conditions 

decayed 78% slower (Lensing and Wise, 2007). This study found that increased precipitation 

induces increased decomposition among sugar maple and basswood samples. This results was 

the opposite of the Lensing and Wise (2007) study. Sugar maple and basswood samples exposed 

to treatment L decayed 8% and 2.33%, respectively, more then compared to samples treated with 

M. Many studies suggest that mass loss associated with rainfall is due to leaching and microbial 

activity (Salmanca et al., 2003). This may help to explain why sugar maple and basswood did not 

behave similar to other studies. Treatment M must have unfavourably influenced the microbial 

community, eliminating opportunity for microbes to assist in further decomposition. 

The increase in weight, experienced by Basswood, has been reported in other studies. 

Oelbermann (1999) tested four precipitation treatment, 21.0 mm, 49.0 mm and 62.0 mm 

deionized (DI) water, and 49.0 mm of rainwater, on freshly abscised Populus spp. leaf litter. The 

litter exposed to 49.0 mm (DI and rainwater) and greater had a significant weight gain 

(Oelbermann, 1999). Although no conclusive explanation could be made, it was suggested that 

the weight increase may be related to microbial activity (Oelbermann, 1999).  Likewise, no clear 

explanation can be made from this study, except that the increase was likely not related to 

precipitation as it was also measured in the control. This may suggest that nutrient deposition via 

rainwater assisted in the weight increase. 

3.5.2 Nutrient Analysis 

As previously mentioned, two main variables that dictate the decomposition of litter are 

climate and litter chemistry (Swift et al., 1979; Lavelle et al., 1993). Having already accounted 

for the affect of climate (i.e. between treatment variations), the influence of leaving leaf litter in 

litter traps for two weeks may be due to the chemical composition of the litter. Joergensen and 

Meyer (1990) studied the decomposition of beech (Fagus sylvatica L.) leaf litter in an in-situ 

experiment in Goettingen Forest of Lower Saxony, Germany. Joergensen and Meyer (1990) 

found the decomposition rates of freshly abscised beech leaf litter to be similar from year to year 
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although the climatic conditions varied. This suggests that for beech the chemical composition of 

the litter is a larger determinant of the decomposition rate as opposed to precipitation. In this 

study beech leaf litter exhibited a decrease in N. This resulted in an increase in the C/N ratio 

(Figure 3.6 and 3.7). The decrease in N, and thus an increase in the C/N ratio, was most 

pronounced in M, followed by L>H>Ctrl. These results resemble the dry weight change, in that 

H lost the most weight and also had the highest C/N ratio. The C content of beech leaf litter did 

not change over the two week study period.  

Similar to the findings of this study, other studies have also reported a low rate of beech 

leaf weight loss (Joergensen and Meyer, 1990; Mellilo et al., 1982). This has mainly been 

attributed to a high lignin and low N content (Joergensen and Meyer, 1990). Likewise, many 

studies have found the decomposition of beech to be slower than that of sugar maple (Gosz et al., 

1973; Mellilo et al., 1982). Gosz et al. (1973) determined that after the first month sugar maple 

had significant mass loss compared to beech, mainly due to leaching. Gosz et al. (1973) 

concluded that beech was highly resistant to leaching or has fewer constituents to leach. The C/N 

ratio of beech leaf litter in comparison to basswood leaf litter explains the differences in dry 

weight results; however, the differences in C/N ratio between beech and sugar maple litter 

cannot entirely be explained by C/N ratios as they are very similar (Figure 3.6). The difference 

may be associated with leaching.  

Similar to this study, other researchers demonstrated the similarities between sugar maple 

and basswood decomposition. Page and Mitchell (2008) noted that beech leaf litter had a 

significantly higher lignin:N ratio and the lower mass loss rate, as compared to both basswood 

and sugar maple. Basswood leaf litter was reported to have the lowest C:N ratio explaining its 

relatively high decomposition rate, followed by sugar maple (Page and Mitchell, 2008). 

Furthermore, Madritch and Cardinale (2007) found that basswood had the lowest C:N ratio and 

lignin content and the fastest rate of decomposition, although sugar maple decomposed at a very 

similar rate. This study found sugar maple to lose more weight than basswood leaf litter, 

however, basswood leaf litter had a much lower C/N ratio (Figure 3.6) suggesting that it should 

have had a greater decrease in mass. 
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Figure 3.6: Carbon to Nitrogen (C/N) ratios for sugar maple, beech and basswood leaf 
litter before the pre‐ leaching experiment (baseline) and post‐ leaching experiment 
(after) for each of the treatments (Ctrl, L, M and H). 

 
 

 
Figure 3.7: The percent change of carbon to nitrogen (C/N) ratios (a comparison of the 
baseline C/N to the  final C/N after the experiment)  for treated  (Ctrl, L, M and H) sugar 
maple, basswood and beech  leaf  litter. Values above zero reflect a decrease  in the C/N 
ratio and values below zero reflect an increase in the C/N ratio. 

 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Initial Control Low Medium High

C/
N
 

Sugar Maple Beech Basswood

‐10.0

‐5.0

0.0

5.0

10.0

15.0

20.0

Control Low Medium High

%
 C
ha

ng
e 
in
 C
/N

Sugar Maple Beech Basswood



 

 59 

Sugar maple and basswood leaf litter exhibited an increase in the N content of the leaf 

litter with increased precipitation . This resulted in a decrease in C/N ratio (Figure 3.6). The 

increase in N is likely from immobilization, as determined by Rutigliano et al. (1998), and/or 

sequestration of N from rainwater, as determined by Ukonmaanaho and Starr (2001). Rutigliano 

et al. (1998) studied the factors regulating decomposition of beech (Fagus sylvatica L.) and fir 

(Abies alba Mill.) litter in Mount Taburno state (50 km east of Naples). Results determined that 

the N content increased in the litter due to microbial immobilization and degradation of easily 

decomposable substances (e.g. carbohydrates). Ukonmaanaho and Starr (2001) found leaf litter 

in litter traps to be a N sink. This was considered to be due to uptake of N in throughfall by 

microbes living on the leaf litter (Ukonmaanaho and Starr, 2001). These results do not directly 

follow the change in dry weight. Samples treated with L lost more weight than samples treated 

with M, but M showed a smaller ratio. Other studies reported that the lower the C/N ratio the 

greater the decomposition (Melillo et al., 1982; Flanagan and Van Cleve, 1983; Aber at al., 

1990), and these differences were attributed to leaching. Both sugar maple and basswood did not 

exhibit a change in the C content of the leaf litter.  

The unexpected behavior of sugar maple leaf litter, specifically related to the loss of dry 

weight and the high C/N ratio, is likely attributed to leaching. As stated previously, the initial 

rapid loss in weight of decomposing litter is often attributed to leaching of soluble compounds 

(Bocock, 1963; Anderson, 1973; Gosz et al., 1973; Prescott 2005; Maclean and Wein, 1978; 

Ibrahima et al., 1995; Pereira et al., 1998). The difference in weight lost from leaching between 

litter types is often associated to leaf toughness and cuticle thickness (Pryon, 1976; Gallardo and 

Merino, 1993). Leaf toughness and cuticle thickness was not measured in this study. However, 

the observed behavior suggest that sugar maple may have lost more mass because the leaf 

structure was not as tough and the cuticle was not as thick as basswood. 
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Figure 3.8: The mean sugar maple nutrient content (in mg/kg) of leaf litter after the 14‐
day study period for medium (M), high (H), low (L) and control (Ctrl) treatments. 

 

 
Figure  3.9:  Basswood  nutrient  content  (in mg/kg)  of  leaf  litter  after  the  14‐day  study 
period for medium (M), high (H), low (L) and control (C) treatments. 
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Figure 3.10: Beech nutrient content (in mg/kg) of  leaf  litter after the 14‐day study period 
for medium (M), high (H), low (L) and control (C) treatments. 

 
For sugar maple (Figure 3.8) and beech (Figure 3.10) K was below detectable limits (0.30 

mg/kg) in all treatments and controls. Freshly abscised sugar maple, basswood and beech leaf 

litter collected for baseline analysis had measurable levels of K of 0.43 mg/kg, 0.45 mg/kg and 

0.31 mg/kg, respectively (Table 3.1).  This suggests that K is readily lost, even without being 

exposed to precipitation (as the Ctrl also lost K). Many studies reported that K is readily 

immobilized from plant material during the initial stages of decomposition (Attiwill, 1967; 

Tukey, 1970; Waring and Schlesinger, 1985). Gosz et al. (1973) reported similar baseline results. 

Gosz et al. (1973) reported that K concentrations in sugar maple leaf litter were 0.39 mg/kg, with 
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basswood and sugar maple, respectively.  These are very similar to the findings in the freshly 

collected leaf litter measured in this study. For basswood, only samples exposed to treatment M 

showed K to significantly (p<0.05) decrease in comparison to the control sample (Figure 3.9).  

Phosphorus was below detectable levels for all sugar maple and beech samples, both 

treated and freshly abscised samples (< 0.05 mg/kg) (Figures 3.8 and 3.10). This indicates that P 

was removed from the leaves before abscission, either retranslocated or leached. More than half 

of the P in deciduous leaves is re-translocated back to the trees before leaf abscission (Deshesne 

et al., 2001; Chapin, 1980). For the most part, P is not considered to readily leach from 

decomposing leaves (Cole and Rapp, 1981), however, P has been found to initially leach and 

then rely on microbial decomposition (Rutigliano et al., 1998). Tukey (1970) and Qualls et al. 

(1991) reported P to leach from senescing leaves.   

For basswood, P levels were found to increase in comparison to the control ( Figure 3.9). 

Basswood samples treated with L precipitation levels had the greatest increase in P, followed by 

H and then M (L>H>M). The increase in P decreased the C/P ratio. A decrease in the ratio 

implies that the element is being accumulated through biological or physiochemical processes 

(Lousier and Parkinson, 1978), in this case likely sequestered through rainfall. A decrease in the 

C/P ratio also indicates an increase the decomposability of the litter (Lousier and Parkinson, 

1978). The disproportionate increase of P in L treatments to M and H treatments may be due to 

stresses, such as leaching or washing away of microbes, from excessive water application.   

Gosz et al. (1973) reported P concentrations of 0.02 mg/kg and 0.03 mg/kg in freshly 

abscised sugar maple and beech leaf litter.  This is assumed to be similar to the findings in this 

study as the low concentration reported by Gosz et al. (1971) are below detectable measures and 

it is may be unlikely that the litter would be completely absent of P. This is further corroborated 

by the fact that P is found to leach from the litter during early stages of decomposition 

(Rutiglaine et al., 1998). In a number of studies, P has been reported to increase over the course 

of litter decomposition, usually over a longer period of time (Gosz et al., 1973; Laskowski et al., 

1995; Oelbermann, 1999). The rapid increase in P by basswood may be related to a number of 

factors.  In both Gosz et al. (1973) and Laskowski et al. (1995) the increase in P is explained by 
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microbial immobilization. The increase in P may also be associated with inputs from rain water. 

Carlisle et al. (1966) reported that P had been removed from incident precipitation by foliage, as 

measured by a decrease of P in throughfall. 

In all three litter types, treatment H induced the greatest amount of Mg lost (Figures 3.8, 

3.9 and 4.10). In both sugar maple and beech, Mg declined proportionate to the level of 

treatment, hence M>L. However, the opposite is true for basswood. Magnesium is lost more in L 

samples than in M samples (L>M).  The leaching of Mg is strongly influenced by rainfall 

(Buldgen, 1982). The loss of Mg is attributed to leaching from increased rainwater application. 

Since the loss of Mg is not equal to the loss of C, the decrease is not related to microbial activity 

(Staff and Berg, 1982, Laskowski et al., 1995).  Mg concentrations in this study are somewhat 

higher then reported by Gosz et al. (1973). Gosz et al. (1973) reported 0.07 mg/kg in sugar maple 

and 0.11 mg/kg in beech of freshly collected litter. Over one month Mg changed minimally in 

both beech, decreasing to 0.10% , and sugar maple, increasing to 0.08%. Freshly collected sugar 

maple litter in this study reported concentrations of 0.44 mg/kg Mg and decreased over a two 

week period between 0.30 mg/kg  to 0.34 mg/kg. Freshly collected beech litter in this study 

reported concentrations of 0.40 mg/kg, and decreased over the two week period ranging from 

0.35 mg/kg to 0.40 mg/kg. The differences reported in the study may be related to the amount of 

precipitation the litter was exposed to during this initial phase of decomposition. This study also 

reports higher levels of Mg in freshly collected sugar maple and basswood than Ferrari (1999) 

reports. The higher concentration of Mg and the lack of significant difference found in this study 

may be related to microbial requirement. Elements limiting for microbial growth are often 

immobilized in litter up to a minimum concentration and then released at a rate equal to the rate 

of weight loss (Staaf and Berg, 1982).   

Calcium increased in all samples, with the exception of basswood M in which it 

decreased by 2.80%. In basswood and sugar maple, Ca increased most in H, followed by L. 

Sugar maple treatments H, L and M increased by 5.74%, 4.30% and 1.77%, respectively (Figures 

3.8 and 3.9). These differences are much more pronounced in basswood, where basswood H 

increased by 13.62% and basswood L by 8.08%. The increase of Ca in beech samples was much 

greater than in either basswood or sugar maple. For beech, L increased the most by an amount of 
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17.01%, where as beech H increased by 11.20% and beech M by 9.54% (Figure 3.10). It is fair to 

assume that the increase is primarily related to being exposed to precipitation as freshly abscised 

Ca levels were similar to the control in all three litter types.  Similar to Gosz et al. (1973) K and 

Mg is lost from the litter at a greater rate than Ca. This is mostly related to the fact that Ca is 

immobile (Likens et al., 1998). The loss of Ca during litter decomposition in Attiwill (1967) 

increased over the first three months before subsequently decreasing. Attiwill (1967) found that 

Ca, along with P and Mg, were lost at rates similar to the loss of dry matter. Gosz et al. (1973) 

found similar results, although not in as high of concentrations. It is believed that the 

concentration of Ca in basswood M, although lower than the Ca concentration in freshly 

collected litter, did not decrease but remained constant. The standard deviation of Ca in fresh leaf 

litter was relatively high suggesting that the Ca content of the M treated samples are within the 

measured range (Table 3.1).  

In this study, Ca decreased in the control samples of sugar maple by 22.25%, in 

basswood by 12.20% and in beech by 6.95%. The control samples were not exposed to 

precipitation and essentially air-dried over the two week period. Without similar finding from 

other reports, this study is left to suggest that air-drying may cause physical deterioration of the 

structural components of the leaf allowing Ca to be lost. This is adapted from the understanding 

that drying litter can cause leaf structural changes (Tukey, 1970). 

All treatment samples (H, M, L) from the three litter types (sugar maple, basswood, 

beech) were compared to freshly abscised samples. In all samples the weight change in sugar 

maple and basswood were significantly (p<0.05) different from freshly abscised samples 

analyzed directly after collection, whereas, only beech L was significantly (p<0.10) different. As 

well, the K content of basswood litter exposed to M treatment significantly (p<0.05) differed 

from freshly collected litter, along with basswood L P content. Sugar maple exposed to H 

treatment displayed significantly (p<0.05) decreased levels of K (assuming K=0.29 mg/kg) and 

Mg when compared to the freshly abscised litter. Sugar maple samples treated with L 

significantly (p<0.05) different K (assuming K=0.29 mg/kg) from freshly collected litter, and 

maple control Mg content significantly (p<0.05) differed from the Mg content of freshly abscised 
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litter. In beech samples treated with H, Mg significantly (p<0.05) differed when compared to 

freshly collected litter.  

3.5.3 Leachate Analysis 

The concentration of DOC, DON, NH4
+ and NO3

- in the leachate (rainwater percolating 

through the leaf litter) were corrected for rainwater DOC, DON, NH4
+ and NO3

- concentrations. 

As well, the measured concentrations of DOC, DON, NH4
+ and NO3

- in the leachate were 

corrected for the quantity of treatment applied (by multiplying the treatment quantity). This was 

done to correct for a dilution effect. Reported negative values identify when rainwater nutrients 

were taken up by the leaf litter resulting in a lower concentration in the leachate.   

Dissolved organic carbon leached from all treatments throughout the entire study period. 

The first day of the study, after receiving only one treatment application, exhibited the greatest 

concentration of DOC in the leachate (Figures 3.11, 3.12, 3.13). Over the remainder of the study, 

DOC concentrations stayed relatively constant, with little fluctuation. Some treatments 

developed minor variation to this pattern. Treatments basswood L and sugar maple L leached 

more DOC after five days, as opposed to the initial treatment (Figures 3.11 and 3.12). Beech 

litter receiving treatment L, showed the lowest levels of DOC after the fifth day of the study 

(Figure 3.13). The amount of DOC leached from the litter was proportionate to the quantity of 

precipitation applied and characteristics of the litter. The greater the precipitation amount applied 

to the litter the higher the concentration of DOC in the leachate and in total (over the two week 

period). Hence, treatments H leached more DOC than M, which leached more DOC than L. In 

addition, sugar maple leached the most DOC over the two week period, followed by basswood, 

and then beech. Moore et al. (2006) stated that the loss of mass is approximately proportional to 

the loss of C. In this experiment it was found that the loss of DOC was proportional to the loss of 

mass, however, the results from C analysis did not relate to this finding.   

Godde et al. (1996) reported a similar DOC leaching pattern. Godde et al. (1996) found 

that DOC concentrations were highest during the initial period of the study and then declined. 

Following the decline was a period of steady-state within 4to7 days of the litter receiving daily 

treatment applications (Godde et al., 1996). As mentioned the difference in the amount leaching 



 

 66 

is attributed to the amount of precipitation. Michalzik et al. (2001) concluded that, similar to this 

study, increased precipitation directly stimulates increased DOC. Results from Czech and 

Kappen (1997) study stated that the greater the repellency of the leaf cuticle to water the less 

DOC leached. This may explain why beech leached so little DOC in comparison to sugar maple 

and basswood. 

 

 
Figure 3.11: Dissolved organic carbon (mg) leached from sugar maple (M) leaf litter when 
exposed to L (30 mm), M (60 mm) and H (100 mm) precipitation treatments during a 14‐
day leaching experiment. The DOC concentrations were corrected for rainwater quantity 
and DOC concentration. 
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Figure  3.12: Dissolved  organic  carbon  (mg)  leached  from  basswood  (B)  leaf  litter when 
exposed to L (30 mm), M (60 mm) and H (100 mm) precipitation treatments during a 14‐
day  leaching experiment. The DOC concentrations were corrected  for  rainwater quantity 
and DOC concentration. 

 

 
Figure  3.13:  Dissolved  organic  carbon  (mg)  leached  from  beech  (Be)  leaf  litter  when 
exposed to L (30 mm), M (60 mm) and H (100 mm) precipitation treatments during a 14‐
day  leaching experiment. The DOC concentrations were corrected  for  rainwater quantity 
and DOC concentration. 
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Qualls et al. (1991) and Michalzik et al. (1999) determined that the majority of DON 

leached from the forest floor is from the initial soluble substances in leaf litter. Past studies have 

found leaching of DON responsive to precipitation regimes (Michalizik et al., 2001).  Similarly, 

this study found that DON generally leached more when the litter was exposed to higher 

treatments of precipitation (Figures 3.14, 3.15 and 3.16). This was most evident in basswood leaf 

litter (Figure 3.15). Basswood exhibited the greater losses of DON when treated with higher 

precipitation regimes. Basswood leaf litter leached the greatest concentration of DON initially 

and then continuously decreased over the two week period. The decrease in the flux of DON can 

be attributed to an initial loss of more easily removable compounds, followed by a lack of easily 

removable compounds. Similarly, Cleveland et al. (2004) found that N initially leached when 

DON concentrations where high, but as the experiment progressed inorganic forms of N 

dominated. Michalzik et al. (1999) determined that DON and DOC fluxes were correlated and 

Neff et al. (2003) stated that DOC could be used as a proxy for DON concentrations. In this 

study basswood DOC and DON followed a comparable leaching trend. 

The leaching of DON from beech leaf litter responded more erratically (Figure 3.16). 

Over the two week period beech leaf litter treated with M leached the most DON followed by H 

and then L. Beech leaf litter exposed to treatment M exhibited an increase in DON leaching 

during the two week period. Leaf litter exposed to H and L exhibited inverse leaching results 

(Figure 3.16). For H, the loss of DON was greatest at the beginning and end of the two week 

period. For L, the loss of DON was greatest during the middle of the study period. Treatment H 

showed a similar relationship to inorganic N leaching that Cleveland et al. (2004) reported. For 

the most part, inorganic N was low when organic N was high. Michalzik et al. (2001) reported 

that there is no relationship between DON leaching and NH4
+ and NO3

- leaching or to the input 

of NH4
+ and NO3

- from rainfall. Leaching of DON from sugar maple leaf litter did not respond to 

different levels of precipitation as was expected. The only discernable trend that could be 

obtained from the concentration of DON lost from sugar maple leaf litter was that more DON 

was lost on day 14 of the experiment than at any other sampling points during the two week 

period (Figure 3.14). For both beech and sugar maple DON leaching did not relate to DOC 

leaching. 
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Figure  3.14: Dissolved  organic  nitrogen  (mg)  leached  from  sugar maple  (M)  leaf  litter 
samples  after  treated  with  L  (30mm),  M  (60mm)  and  H  (100mm).  The  DON 
concentrations were corrected for treatment quantity and rainwater DON concentration. 

 
Figure 3.15: Dissolved organic nitrogen  leached  from basswood  (B)  leaf  litter samples 
after treated with L (30mm), M (60mm) and H (100mm). The DON concentrations were 
corrected for treatment quantity and rainwater DON concentration. 
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Figure 3.16: Dissolved organic nitrogen  leached  from beech  (Be)  leaf  litter  samples after 
treated  with  L  (30mm),  M  (60mm)  and  H  (100mm).  The  DON  concentrations  were 
corrected for treatment quantity and rainwater DON concentration. 
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noted that this study assumed that if leachate concentrations of NO3
- and NH4

+ were higher than 

rainwater concentrations then the litter did not remove any NO3
- and NH4

+ from the rainwater. 

 
Figure  3.17:  Dissolved  inorganic  nitrogen, measured  as  ammonium  (NH4

+)  and  nitrate 
(NO3

-),  leached  from sugar maple  (M)  leaf  litter samples after treated with L  (30mm), M 
(60mm) and H (100mm). Ammonium and NO3

- were corrected for treatment quantity and 
rainwater NH4

+ and NO3
- concentrations.  
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Figure  3.18: Dissolved  inorganic  nitrogen, measured  as  ammonium  (NH4

+)  and  nitrate 
(NO3

-),  leached  from basswood  (B)  leaf  litter  samples  after  treated with  L  (30mm), M 
(60mm)  and H  (100mm). Ammonium  and NO3

- were  corrected  for  treatment quantity 
and rainwater NH4

+ and NO3
- concentrations.  

 
Figure 3.19: Dissolved  inorganic nitrogen, measured as ammonium  (NH4

+) and nitrate 
(NO3

-), leached from sugar maple (M) leaf litter samples after treated with L (30mm), M 
(60mm) and H  (100mm). Ammonium and NO3

- were corrected  for treatment quantity 
and rainwater NH4

+ and NO3
- concentrations. 
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The up-take of inorganic N by leaves has been reported in many studies. Throughfall can 

be altered by becoming enriched by dry-deposited elements and leaching of plant material, or by 

loss of nutrients through absorption of ions from the incident rainfall (Potter et al., 1991; 

Gundersen et al., 2006). Specifically, many investigations into this topic have found that 

inorganic nitrogen (NH4
+, NO3

- and NO2) is readily adsorbed from rainwater (Lovett and 

Lindberg, 1984; Yavitt and Fahey, 1986; Potter et al., 1991). This phenomenon has also been 

observed when rainwater (incident or throughfall) is in contact with leaf litter. Segal et al (1990) 

found that NH4
+ concentrations in throughfall were lower than concentrations in leachate, 

suggesting that the litter absorbed NH4
+. Nitrate, however, was more concentrated in the 

throughfall than in the leachate, suggesting that it had been leached from the litter, at least during 

the dormant season (Segal et al., 1990). Similar to this study, Ukonmaanaho and Starr (2001) 

evaluated the loss of nutrients from litter collecting in litter traps. Ukonmaanaho and Starr (2001) 

also found that N was taken up from the percolating throughfall.  

3.6 Summary and Conclusion 

The results of this study indicated that precipitation does affect sugar maple, basswood 

and beech leaf litter in litter traps for a two week period. The three litter types studied showed 

signs of leaching when exposed to medium precipitation (60mm, mean for the month of 

October), as well as below (30mm) and above medium (100mm). However, the influence of the 

precipitation was variable. Each species responded uniquely to the different treatments.  

Precipitation induced a decrease in the dry weight in all species studied. Sugar maple 

exhibited the greatest decrease, followed by basswood and beech.  For basswood and sugar 

maple, increased precipitation narrowed the C/N ratio, increasing the litter quality. The 

decreased C/N ratio is due to an increase of N. For beech, precipitation increased the C/N ratio of 

the leaf litter through initiating a loss of N. This study found basswood’s pre and post experiment 

C/N ratio to be the lowest, followed by sugar maple, then beech. Potassium and Mg were readily 

lost from all litter. The loss of K is proportional to the precipitation magnitude. In the case of 

sugar maple, the loss of Mg was proportional to the precipitation applied. For basswood and 

beech, treatment H lost the greatest amount of Mg. Basswood lost more Mg in treatments with L 
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than M, and beech lost more Mg in treatments M than L. Phosphorus was not measured in any of 

the beech samples, was found to increase in all basswood samples, and increased in  L and H 

treated sugar maple samples. The leaching of DOC was proportional to precipitation treatments 

for sugar maple and basswood samples. For beech, DOC leached most in treatment M, followed 

by H and L. Similarly, DON leaching increased with increased precipitation. In most cases the 

presence of DON was higher in the precipitation than in the leachate, suggesting it was taken up 

by the litter. 

A relationship between leaching of C, N, P, K, Ca and Mg and the different precipitation 

regimes could not be made. Each species and tested parameter (C, N, P, K, Ca and Mg) 

responded differently. Based on a two week interval, precipitation generally induces a loss in 

easily leachable nutrients, like K. Elements associated with structural components, like C and 

Ca, remain relatively constant. Nutrients are likely to be assimilated from rainwater, especially 

N. Elements limiting microbial growth will be immobilized, like P, otherwise will be leached if 

they are readily lost.  
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Chapter 4  

Freeze-Thaw Experiment 

4.1 Introduction 

Cycles of freeze-thaw accelerate litter decomposition, nutrient mineralization rates, 

nutrient leaching and gas fluxes from the soil (Campbell et al., 2005; Matzner and Borken, 

2008). Measurable changes in C and N cycling and emissions of CO2 and N2O have been 

observed in forested ecosystems as a result of freeze-thaw cycles (Matzner and Borken, 2008). 

The changes induced by freeze-thaw are related to increased microbial activity and changes to 

the soil structure, as well as an increase in the death of roots (Campbell et al., 2005; Matzner and 

Borken, 2008).  

It is believed that microbes are active during freeze and thaw events as evident from 

measurable levels of N2O and CO2 (Matzner and Borken, 2008). However, no consensus has 

been reached on the relationship between microbial activity and the presence of N2O and CO2. 

Some argue that freeze-thaw has no effect on microbial biomass (Lipson et al., 2000; Grogan et 

al., 2004). Instead it is the result of a build-up of gases in active unfrozen sites (Koponen et al., 

2001; Matzner and Borken, 2008). Nitrous oxide and CO2 are unable to release from soil due to 

decreased diffusion and advection until the soil thaws (Koponen et al., 2001; Matzner and 

Borken, 2008). This was typically found in studies involving alpine and tundra environments 

(Lipson et al., 2000; Grogan et al., 2004). In other cases, in particular arable soils, freeze-thaw 

was found to decrease the microbial biomass (Matzner and Borken, 2008). The increased activity 

was explained by microbial necromass (Herrmann and Witter, 2002). The increased availability 

of nutrients from the dead microbes initiated a quick recovery of microbial communities 

following a freeze (Hermann and Witter, 2002; Matzner and Borken, 2008).  

Freeze-thaw cycles may also affect the soil structure by making soil aggregates, 

previously unavailable, accessible for mineralization, increasing microbial activity (Morkved et 

al., 2006; Matzner and Borken, 2008). Nitrate leaching from soils has been shown to increase 

following freeze-thaw cycles, as Boutin and Robitaille (1995) observed under sugar maple trees.  
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Harris and Safford (1996) found that freezing and thawing of leaf-litter led to an increase in the 

leaching of soluble C, when compared to samples not exposed to cycles of freezing-thawing. 

With the increased frequency of freeze-thaw cycles follows a decrease in effects 

discussed previously. Specifically, a greater frequency of freeze-thaw cycles reduces microbial 

respiration and N mineralization rates (Harrmann and Witter, 2002). These are often greatest in 

the initial cycles and continually decrease with every subsequent freeze-thaw cycle (Herrmann 

and Witter, 2002). The extent to which freezing influences the process of decomposition is 

dependent on the species and intensity of freezing. After being thawed from very cold 

temperatures (-13 °C), soils of a northern hardwood-dominated forest (beneath sugar maple 

trees) showed an increase in CO2 and N2O and C and N cycling (Neilsen et al., 2001). Neilsen et 

al. (2001) also showed that freezing these soils increased NH4
+ leaching, but decreased NO3

- 

leaching. However, this is not typical, autotrophic nitrifiers  are generally believed to be 

vulnerable to stress, like freezing, and recover slowly (Neilsen et al., 2001).  

Although there have been a number of studies concerned with the effects of freeze-thaw 

on soil, much less attention has been paid to its effect on leaf-litter. However, similar to the 

influence of freeze-thaw on soil, leaves exposed to freeze-thaw are believed to become 

fragmented, leading to increased leaching and vulnerability to microbial deterioration (McBrayer 

and Cromack, 1980; Taylor and Parkinson, 1988e). Cycles of freeze-thaw are hypothesized to 

increase fragmentation (physical damage) of leaf-litter increasing the release of soluble 

compounds and subsequently increasing decomposition (Ivarson and Sowden, 1970; Skogland et 

al., 1988; Fitzhugh et al., 2001).  

Taylor and Parkinson (1988e) conducted the first study to determine if repeated cycles of 

freeze-thaw accelerated the decomposition of aspen and pine leaf-litter. Results determined that 

freeze-thaw cycles can induce cellular structural damage to the leaf litter, specifically degrading 

the cuticle and allowing for increased water absorption (Taylor and Parkinson, 1988e).  

Consequently, this increased the leaching of substances from the leaf litter and increased 

microbial invasion (Taylor and Parkinson, 1988e). Taylor and Parkinson (1988e) concluded that 

water absorption was related to the frequency of freezing and thawing and not the length of time 
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the freezing occurred, however, repeated freezing of aspen leaves eventually no longer induced 

leaching. Similarly, Barlocher (1991) and Herrmann and Witter (2002) suggested that freshly 

abscised litter exposed to frost increased leaching losses. Many studies reported that cycles of 

freeze-thaw disrupt the physical state of the litter, by affecting the cell health, causing soluble 

components to be released (Barlocher, 1992; Harris and Safford, 1996). For leaf-litter, freeze-

thaw cycles have varying affects depending on the species, moisture content of the litter, 

temperature fluctuations, the extent of freezing (lowest temperature reached), rate of temperature 

change, the frequency of freeze-thaw events and the duration of freezing and thawing periods 

(Taylor and Parkinson, 1988e). 

4.2 Objectives 

The objective of this study was to measure the change in dry mass and nutrient content of 

deciduous leaf litter, specifically sugar maple (M), basswood (B) and beech (Be), exposed to 

freeze-thaw temperatures. The intention was to evaluate the response of leaf litter to freeze-thaw, 

and determine if leaf litter from various deciduous tree species respond differently. Two 

approaches were used to evaluate the change in the nutrient dynamics of freshly abscised leaf 

litter: (i) mass loss and change in nutrient (C, N, P, K, Ca and Mg) content of leaf litter during a 

two week period; and (ii) the leaching of dissolved organic carbon (DOC) and nitrogen (DON) 

and dissolved inorganic nitrogen (DIN). It was hypothesized that cycles of freezing and thawing 

would result in increased nutrient leaching and mass loss, and that basswood and sugar maple 

would leach more nutrients than beech leaves. 

4.3 Material and Methods 

4.3.1 Experimental Set-up 

To test the affects of freeze-thaw on leaf litter, an additional laboratory experiment, 

similar to the laboratory leaching experiment, was conducted. Leaf litter sampling and collection 

procedures are outlined in General Material and Method section (Chapter 1). Freshly abscised 

leaf litter, collected between October 22nd and 24th 2007, was used in the laboratory freeze-thaw 

experiment. Twenty grams (fresh weight) of leaf litter from each of the species, in triplicates, 



 

 78 

were suspended over a plastic tub (0.32 x 0.27 x 0.12 m). Each treatment received 60 mm of 

water, simulating rainfall, over a 2-week period. On days 5, 9, and 13, the litter was frozen at 

0°C for 3 hours. Simulated rainfall was applied daily at 9:00 am and litter was exposed to 

freezing temperatures from 16:00 hrs to 19:00 hrs. Rainwater collection and application 

procedure were the same as that outlined in Chapter 3. Control (Crtl) samples, in triplicates for 

each litter type, were also treated with 60 mm of rainfall over a two the week period but kept at 

room temperature throughout the study period. Leachate was collected on days following the 

freeze-thaw treatment to measure whether the freeze-thaw treatment induced greater leaching of 

the leaf litter (days 1, 6, 10 and 14).  

4.3.2 Sample Analysis 

After the 14-day study period, the litter was dried at 65 °C for 36 hours. The samples 

were ground in a Wiley Mill through a 2 mm sieve and subsequently ground with a Retschball 

mill. The samples were analyzed for phosphorus (P), potassium (K), Magnesium (Mg) and 

calcium (Ca) at the Soil and Nutrient Laboratory at the University of Guelph. Carbon (C) and 

nitrogen (N) analysis was conducted using a Costech Instrument ECS 4010 through elemental 

combustion analysis. Leachate was analyzed for ammonium (NH4
+), nitrate (NO3

-), and total 

Kjeldahl nitrogen (TKN) using colorimetric analysis (AAIII Bran-Luebbe) and Dissolved 

Organic Carbon (DOC) was analyzed using a Rosemont - Dohrmann High Temperature Total 

Carbon Analyzer. 

4.4 Statistical Analysis 

A one-way ANOVA was completed to compare the change in dry weight, C, N, P, K, Ca 

and Mg between treatments, as well as in comparison to the baseline (freshly abscised leaf litter 

collected on October 22nd and 24th 2007). All data sets were examined for homogeneity of 

variances between the two sets of compared data (using the Levene Test) and normal distribution 

was tested using Kolmogorov-Smirnov (K-S) Test and the Shapiro-Wilks Test (Dytham, 2003). 

The variance of the data is homogeneous, normally distributed and the data is continuous. For all 

statistical analyses the threshold probability level for determining significant differences was 

p<0.05 and p<0.10. 
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To determine if there is a difference between treatment leachate concentrations over the 

study period repeated measures of ANOVA was completed. Repeated  measures of ANOVA was 

completed to compare each of the measured parameters, DOC, DON, NO3
- and NH4

+, between 

treatments over the study period. Sampling time (over a two week period) was the repeated 

(within subjects) factor and DOC, DON, NH4
+ or NO3

- was the main (between subjects) factor. 

All data sets were examined for homogeneity of variances between the two sets of compared 

data (using the Levene Test) and normal distribution was tested using Kolmogorov-Smirnov (K-

S) Test and the Shapiro-Wilks Test (Dytham, 2003). The variance of the data is homogeneous, 

normally distributed and the data is continuous. Significance levels were adjusted using the 

Greenhouse-Geisser and Huyuh-Feldt to account for violations in sphericity.   

4.5 Results and Discussion 

4.5.1 Dry Weight Analysis 

The leaf litter exposed to freezing and thawing exhibited a relative reductions in weight 

when compared to the control samples (litter not exposed to freeze-thaw conditions), with the 

exception of beech. Basswood leaf litter exposed to freeze-thaw cycles exhibited a significant 

(p<0.10) change in weight in comparison to basswood control. Sugar maple leaf litter did not 

significantly decrease but a visible decline was produced. Beech leaf litter, on the other hand, 

displayed higher dry weight results then the control.  

It was hypothesized that there would be a greater decrease in weight among the treated 

samples compared to the control samples. This is mainly attributed to increased leaching as a 

result of structural disruption and membrane rupture (Tukey 1966; Burke et al., 1976; Hurst et 

al., 1985), producing a greater loss in mass (Swift et al., 1981). Therefore, it is no surprise that 

treated basswood and sugar maple leaf litter exhibited a greater loss in weight. Many studies 

have reported a decrease in mass over winter months (Gosz et al., 1973, Lousier and Parkinson, 

1976; Hobbie and Chapin, 1996). The loss was concluded to be due to physical processes, like 

fragmentation and leaching associated with freeze-thaw (or biologically activity during the 

winter). Barlocher (1992) found that sugar maple leaf litter loss in mass was greater when 
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exposed to freeze-thaw conditions. Yet, some studies have reported that freeze-thaw has no 

significant affect on senescent leaf litter (Hurst et al., 1985; Melick and Seppelt, 1992). Melick 

and Seppelt (1992) reported that a lack of significance implies that since the action of freeze-

thaw alters the membrane, senescent leaf litter is not greatly affected as the membrane has 

already undergone rupturing.  The apparent lack of response from beech leaf litter in this study 

follows Melick and Seppelt (1992) and Hurst et al. (1985) findings. Furthermore, a greater loss 

in mass of the this study’s control suggests that cycles of freeze-thaw may have inhibited normal 

microbial and leaching activity. Studies have found that microbial communities can tolerate slow 

freezing and thawing cycles, similar to what would occur in the field (Campbell et al., 2005). 

This experiment induced a rapid change in temperature that may have negatively affected the 

microbial communities. 

 

Table 4.1: Mean dry weight  (g) of  control  (samples exposed  to 60 mm of precipitation)  and 
freeze‐thaw (samples exposed to 60 mm of precipitation and freeze temperatures 3/bi‐weekly) 
treated sugar maple, basswood and beech  leaf  litter.  Initial weight refers to the dry weight of 
leaf litter prior to the experiment and after refers to the dry weight post‐ 14‐day study period. 
Standard error is given in parenthesis. 

  Control  Freeze‐thaw 

Species  Initial (g)  After (g)  Initial (g)  After (g) 

Sugar Maple  11.33  10.52(0.59)  11.33  10.05(0.27) 

Basswood  12.19  14.66(0.19)  12.19  13.87(0.22) 

Beech  11.21  9.77(0.31)  11.21  13.87(0.38) 
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Figure 4.1: Mean percent change  in dry weight (comparison of the  initial to the final dry 
weight) of control (60 mm of precipitation) and freeze‐thaw (60mm of precipitation and 
freeze‐thaw)  treated  sugar  maple,  basswood  and  beech.  Positive  values  identify  a 
decrease in the weight upon completion of the experiment and a negative value identifies 
an increase. 

 

4.5.2 Nutrient Analysis 

Cycles of freeze-thaw accelerate litter decomposition and nutrient mineralization rates 

(Campbell et al., 2005; Matzner and Borken, 2008).  Freeze-thaw cycling affected the elemental 

content of the leaf litter, however, each litter type responded differently. Significant and 

measurable changes to C and N cycling have been observed in forested ecosystems (Matzner and 

Borken, 2008). This study’s basswood sample results corroborate these findings. Basswood 

exhibited a decrease in the C/N ratio in the control sample but a larger decrease in the treated 

samples (Figure 4.2). The decrease in the C/N ratio within the control is due to an increase in N, 

similar to Chapter 3 results, likely due to the assimilation of N from the applied rainwater. In the 

treated basswood samples, the decrease in C/N ratio is a result of decreased C content. This may 
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Sugar maple and beech samples exposed to freezing and thawing conditions did not 

demonstrate a decrease in C/N ratio. Sugar maple control samples had an increase in N, resulting 

in an increase in C/N ratio, similar to Chapter 3’s findings. The treated sugar maple sample’s C 

and N content was very similar to freshly collected leaf litter, suggesting that the C and N 

content was not affected by freezing and thawing. Both the control and treated beech samples 

exhibited an increase in the C/N ratio as a result of a decrease in N and no change in the C 

concentration. Beech control sample lost less N than the treated sample and thus had a greater 

C/N ratio than the beech treated samples (Table 4.2).  

 
Figure 4.2: Mean carbon to nitrogen (C/N) ratio of control and freeze‐thaw treated sugar 
maple, basswood and beech leaf litter after the 14‐day freeze‐thaw experiment. 

Similar to Chapter 3’s  results, the potassium (K) and phosphorus (P) content in sugar 

maple and beech litter fell below the detectable limit in both the control and treated samples 

(Figure 4.3). For K this is <0.30 mg/kg and for P this is <0.05 mg/kg. Freshly abscised sugar 

maple and beech litter had measurable levels of K, 0.42 mg/kg and 0.31mg/kg, respectively, and 

sugar maple had P concentration of 0.57 mg/kg (Table 4.2). This suggests that freeze-thaw did 

not inhibit the leaching of K and P from sugar maple and beech. As previously stated, K is 

readily leached from litter (Hagen-thorn et al., 2006). Therefore, it is possible that after the first 
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precipitation application the majority of K was lost from the litter. If this is the case, cycles of 

freeze-thaw would not have had an opportunity to affect K leaching. 

Both K and P have been shown to leach during the initial phase of decomposition 

(Waring and Schlesinger, 1985; Hagen-Thorn et al., 2006; Gosz et al., 1973; Hurst et al., 1985; 

Kwabaih et al., 2001; Tukey). Potassium concentration of cells near the surface of the leaf makes 

its leaching predictable (Waring and Schlesinger, 1985). Potassium is not dependent on 

mineralization for release from leaf litter (Cole and Rapp, 1981) and is generally not limiting for 

microbial growth (Waring and Schlesinger, 1985). Phosphorus is not as predictable, and is more 

dependent on the requirement for growth of decomposers (Swift et al., 1979). Although many 

have found P to leach during early stages of decomposition, it is also readily immobilized 

(Waring and Schlesinger, 1985). Immobilization of P either follows the initial leaching phase 

(Kwabaih et al., 2001) or immediately, depending on the requirement of P for microbial growth 

(Swift et al., 1979). As well, P and K are both retranslocated from the leaf back to the plant, but 

this process is much more pronounced in P (Waring and Schlesinger, 1985). Freeze-thaw was 

found to decrease the K content of basswood leaf litter. As mentioned, this is most likely due to 

the readily leachable nature of K (Gosz et al., 1973). Hurst et al. (1985) found that cycles of 

freeze-thaw accelerated the loss of K from litter. The differences in K concentration between 

sugar maple, basswood and beech, in this study, are likely due to differences in the initial K 

concentration of the leaf litter prior to the study. 

Basswood leaf litter exposed to freeze-thaw conditions had higher levels of P than the 

control samples, but lower than freshly abscised leaf litter. Phosphorus is known to leach from 

litter in early stages of decomposition (Kwabaih et al., 2001). From this two conclusions are 

formed, either treating the litter to repeated cycles of freeze-thaw slowed down the loss of P or P 

did not leach from the litter. The former conclusion does not agree with the literature on the 

effect of freeze-thaw treatment on leaf litter. The literature states that cycles of freeze-thaw 

accelerate losses of nutrients through increased leaching (Campbell et al., 2005; Matzner and 

Borken, 2008). However, this may confirm Melick and Seppelt (1992) and Hurst et al. (1985) 

speculation as to the lack of effect of freeze-thaw on senescent litter. However, other parameters, 
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such as dry weight, suggest that freeze-thaw does accelerate senescent basswood leaf litter 

decomposition.  

The latter conclusion is based on the high standard deviation of P in the freshly abscised 

leaf litter. The levels of P found in the freshly abscised samples were lower than the levels found 

in the control and freeze-thaw treatments. Variation in the concentration of elements can be due 

to the timing and duration of leaf fall from deciduous trees (Carlisle et al., 1966; Gosz et al., 

1972). The climatic conditions at the time of senescence can facilitate leaf fall prematurely, thus 

leaf litter may have higher concentration than would otherwise if it had fallen naturally (Gosz et 

al., 1972). The variation in timing in leaf fall can have substantial ramifications on the litter 

quality and nutrient cycling (Taylor and Parkinson, 1988b).  As well, P may have been 

immobilized by microbial activity, thus exhibiting a tiny increase in relation to the losses 

discussed earlier.  

The Ca content of sugar maple litter exposed to freeze-thaw treatment decreased in 

comparison to the control (Figure 4.3), as well as decreased in comparison to freshly collected 

leaf litter (Table 4.2). This coincides with the conclusions of Tukey (1966), Burke et al. (1976) 

and Hurst et al. (1985) that freezing and thawing litter ruptures cellular structural components. 

Calcium is a part of this process and is often immobilized until structural decomposition. In 

comparison to freshly collected litter, Basswood leaf litter display a decrease in Ca, however, 

basswood control lost more Ca than treated litter.  The Ca content of beech litter increased in 

both the control and freeze-thaw treated litter in comparison to freshly collected litter. The 

increase in Ca was greater in freeze-thaw treated beech litter than the control litter. 

The loss of Ca is dependent on the decomposition of litter as it is an immobile element 

(Likens et al., 1998). Since freeze-thaw cycles instigate a faster initial rate of decomposition by 

increasing the leaching of leaf material (Tukey 1966; Burke et al., 1976; Hurst et al., 1985), 

freeze-thaw should increase the loss of Ca. The findings reported for sugar maple litter follow 

this rationale. Beech leaf litter did not exhibit a decrease in weight, suggesting that it was 

unaffected by cycles of freeze-thaw. For beech, the Ca content was proportionate to the weight 

such that the control exhibited both a greater decline in weight and Ca, than the treated litter. The 
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lack of Ca lost from beech leaf litter further suggests that cycles of freeze-thaw do not contribute 

to the decomposition of beech litter. As stated previously, different results may have been found 

had the temperature gradually changed. This may also explain why treated basswood litter lost 

less Ca than the control samples.  

Exposing sugar maple and basswood leaf litter to freeze-thaw conditions produced a 

greater loss of magnesium (Mg) relative to the control sample (Figure 4.3). These finding are 

very similar to K results as was expected. Like Potassium, Mg is a readily leachable element 

(Gosz et al., 1973; Tukey 1970). These results suggest that freeze-thaw accelerates the leaching 

in both sugar maple and basswood. These finding corroborate those of Barlocher (1991), Melick 

and Seppelt (1992), Harris and Safford (1996) and many more, all of whom find that freeze-thaw 

accelerated the leaching of material from leaf litter.  

For beech leaf litter, the opposite was found with regard to Mg (Figure 4.3). Treated 

beech leaf litter, although exhibiting a decrease in Mg concentrations in comparison to freshly 

collected litter, showed less of a decrease in Mg than the control. This result follows all of the 

trends regarding beech nutrient concentrations reported previously. This reiterates the likelihood 

of either a lack of freeze-thaw affect or experimental error. 
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Figure  4.3: Mean  nutrient  content  (mg/kg)  of  control  (60 mm  of  precipitation)  and 
freeze‐thaw  (60mm  of  precipitation  and  freeze‐thaw)  treated  sugar  maple  (M), 
basswood  (B)  and beech  (Be)  leaf  litter. Control  treatment  is  abbreviated  to Ctrl  and 
freeze‐thaw to F. 

 
Figure 4.4: Percent change  (comparison of  the control and post‐ 14‐day experiment) of 
nutrient  content  (mg/kg)  in  freeze‐thaw  treated  sugar maple  (M),  basswood  (B)  and 
beech (Be) leaf litter in comparison to the control. A negative percent change identifies an 
increase while a positive percent change identifies a decrease. 
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4.5.3 Leachate Analysis 

The concentration of DON, DON, NH4
+ and NO3

- in the leachate (rainwater percolating 

through the leaf litter) were corrected for rainwater DOC, DON, NH4
+ and NO3

- concentrations. 

Measured concentrations of DOC, DON, NH4
+ and NO3

- were corrected for the quantity of 

treatment applied. This was done to correct for a dilution effect. Reported negative values 

identify when rainwater nutrients were taken up by the leaf litter resulting in a lower 

concentration in the leachate. 

After the initial treatment, the loss of DOC from beech leaf litter exposed to cycles of 

freeze-thaw was greater than the beech control samples (Figure 4.5). Similarly, Harris and 

Safford (1996) found that freeze-thaw significantly increased the loss of soluble C from freshly 

abscised leaf litter. Melick and Seppelt (1992) and Hurst (1985) found that (pre-senescent) litter 

exposed to freeze-thaw cycles leached more carbohydrates. Contrary to these findings, the sugar 

maple and basswood control samples leached more DOC than was lost from leaf litter exposed to 

cycles of freeze thaw (Figure 4.5). As previously mentioned, some studies have found that 

senesced leaf litter is not significantly affected by freeze-thaw cycles (Melick and Seppelt, 1992; 

Hurst, 1985). Schimel and Clein (1996) found a large flux of CO2 from soil following exposure 

to freeze-thaw. This was attributed to an increase in metabolic activity in response to increased 

organic substances from microbial death (Schimel and Clein, 1996). The results of this study 

indicate that increased microbial metabolism may reduce the loss of organic matter from the 

plant material. Matzner and Borken (2008) suggest that physical disruption of aggregates by frost 

might cause increased bursts of microbial activity as a result of increasing available food 

sources. Taylor and Parkinson (1988e) found that the leaching from aspen leaf litter exposed to 

cycles of freeze-thaw was less then litter not exposed to freezing and thawing temperatures. 

However, Taylor and Parkinson (1988e) found that pine needles leached more when treated with 

freeze-thaw cycles. The lack of leaching by aspen litter suggested that the water soluble content 

of aspen leaves was rendered insoluble by repeated freezing (Taylor and Parkinson, 1988e). The 

results from Taylor and Parkinson (1988e) determined that the cuticle is damaged during 

repeated freeze-thaw applications. The damaged cuticle allows microbial organism’s access to 

easily decomposable matter that would normally be protected (Taylor and Parkinson, 1988e). 
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Figure 4.5: Dissolved organic  carbon  (DOC) measured  in mg  leached  from  control  (Ctrl) 
and  treated  (F)  sugar maple, basswood  and beech  leaf  litter over  the  two week  study 
period.  

 

The pattern of DON leaching resembled DOC leaching (Figure 4.6). Specifically, the loss 

of DON from beech litter exposed to cycles of freeze-thaw were higher than the control. 

Basswood leaf litter exposed to freeze-thaw treatment leached less DON then the control. 

Leaching of DON from sugar maple behaved slightly different. On day 10, sugar maple leaf litter 

exposed to freeze-thaw treatment leached more DON then the control sample. As expected, 

DON measured on the other days was lower in treated samples than control samples.  

In all three litter types DOC was leached in greatest quantities on the first day. Both sugar 

maple and basswood DOC levels declined over the two week period. Beech leaf litter also 

exhibited a decline in DOC leaching, although not to the same extent. For DON leaching, 

basswood was the only litter type to leach the greatest quantity on the first day and then show a 

continual decrease of the remainder of the study. Both beech and sugar maple lost the lowest 

level of DON on the first day. From there, beech leaf litter displayed a plateau. Similar to DOC, 

sugar maple litter exposed to freeze-thaw had decreased DON concentrations by the end of the 
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experiment, while the control continually increased. Furthermore, both control and treated, sugar 

maple leaf litter leached more DOC than basswood, while basswood leached more DOC than 

beech (Sugar Maple>Basswood>Beech). The concentration of DON fluxes where similar 

throughout the three litter types. 

 

 
Figure 4.6: Dissolved organic nitrogen (DON) measured in mg leached from control (Ctrl) 
and  treated  (F)  sugar maple, basswood  and beech  leaf  litter over  the  two week  study 
period.  

 

In all cases, NH4
+ and NO3

- were assimilated from the rainwater on the first day of the 

experiment. The remainder of the sampling period indicated that NH4
+ was lost from all three 

litter types. Analysis of the leaching pattern found that exposing litter to freeze-thaw cycles 

delayed the loss of NH4
+. While treated samples continued to leach NH4

+, peaks exhibited in the 

control where displayed in the treated samples later in the study. By the end of the study NH4
+ 

levels had begun to decline in all control samples, as well as in sugar maple and beech treated 

samples (Figures 4.7 and 4.9). Basswood samples exposed to freeze-thaw conditions showed an 

increase in NH4
+ leaching compared to earlier concentrations and to the control (Figure 4.8). 

However, the increase displayed by basswood litter may be a lag affect induced by NH4
+. It is 
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believed that the concentration would have again decreased if measured after day 14. Neilson et 

al. (2001) found that soils under areas dominated by sugar maple exhibited an increase in NH4
+ 

and a decrease in NO3
- leaching, along with increased N mineralization. Although, in this study 

sugar maple did not display increased NH4
+ and decreased NO3

- in comparison to the control, 

overall NH4
+ was leached while NO3

- was not.  

 Throughout the two week freeze-thaw period, the majority of the sampling days found 

that NO3
- was taken up by treated litter. This is in contrast to the often reported increase in NO3

- 

leaching from forest ecosystems following a frost (Matzner and Borken, 2008). Both beech and 

sugar maple litter exposed to freeze-thaw cycles exhibited a loss of NO3
- at the beginning of the 

study (Figures 4.7 and 4.9). This may indicate that litter exposed to freeze-thaw can induce a loss 

of NO3
-, rather than absorption from the rainwater. However, this is not substantiated by 

concentrations found after this initial period. In basswood, treated samples did not leach NO3
- 

while control samples did. This would indicate that freeze-thaw cycles inhibit leaching of NO3
-, 

and promote absorption of NO3
- from rainwater.  While Hobbie and Chapin (1996) found that N 

was lost from litter during the winter months, due to biological or physical processes related to 

freezing and thawing, the leaching of NH4
+ and NO3

- did not increase.  

 Overall, treated litter lost less NH4
+ and NO3

- than the control samples. However, 

following the freezing periods NH4
+ and NO3

- showed relative increases in the loss of inorganic 

N. Schmidt et al. (2007) and Schimel and Clein (1996) found similar results, although their 

studies took place using soil. Schmidt et al. (2007) found that microbial turnover is a substantial 

source, as well as a sink, for DON and DIN following winter thaw in soils. Schimel and Clein 

(1996) found that freeze-thaw cycles caused a flush of microbial N, and that increased exposure 

minimized the ability for microbial communities to decompose SOM. 
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Figure 4.7: Dissolved inorganic nitrogen (NO3

- and NH4
+) measured in ppm leached from 

control  and  treated  sugar maple  over  the  two  week  study  period.  Negative  values 
identify an assimilation of inorganic N by the leaf litter. 

 
 

 
Figure 4.8: Dissolved  inorganic nitrogen (NO3

- and NH4
+) measured  in mg  leached from 

control and treated basswood over the two week study period. Negative values identify 
an assimilation of inorganic N by the leaf litter. 
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Figure  4.9: Dissolved  inorganic  nitrogen  (NO3

-  and NH4
+) measured  in mg  leached  from 

control  (Ctrl)  and  treated  (F)  beech  over  the  two  week  study  period.  Negative  values 
identify an assimilation of inorganic N by the leaf litter. 

 
 

It is possible that the lack of significant findings in the study may be due to the 

methodological approach. As stated earlier, the leaves were exposed to cycles of freezing and 

thawing mid-way between applications. Taylor and Parkinson (1988e) found that cycles of 

freeze-thaw induced a greater mass loss when the moisture content was greater. This study did 

not take moisture into consideration. As well, the rate of temperature change may have 

influenced the results. Both Campbell et al. (2005) and Taylor and Parkinson (1988e) stated that 

microbial communities can tolerate slow freezing and thawing cycles, similar to what would 

occur in the field. This study induced a quick temperature change, from a 21˚C room to a 0˚C 

cooler. 

 The difficulty in predicting the affect of freeze-thaw on leaf litter is the number of 

variables that must be taken into account. As previously mentioned, Taylor and Parkinson 
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4.6 Summary and Conclusions  

The results of this study indicate that freezing and thawing temperatures influence sugar 

maple, basswood and beech leaf litter in litter traps. Freezing and thawing leaf litter generally 

stimulated a greater decrease in weight in comparison to the control samples (litter not exposed 

to freeze-thaw conditions), with the exception of beech. Similarly, the litter quality (C/N ratio) 

was found to increase in sugar maple and basswood samples due to the leaching of N. Beech leaf 

litter exhibited a decrease in the C/N ratio as a results of increased N. Beech leaf litter exhibited 

an increase in N, Ca and Mg. Sugar mapleand basswood leaf litter displayed a decrease in N, Ca 

and Mg. Potassium was found to readily leach from all litter types. Phosphorus was measured in 

only basswood leaf litter and was found to increase. The leaching of dissolved organic carbon 

(DOC) and nitrogen (DON) was not influenced by freeze-thaw treatment. The leaching of DIN 

showed variable response. Beech leaf litter leached more NH4
+ and NO3

- when exposed to 

freeze-thaw temperatures, however, sugar maple and basswood did not.  

Although this study has clearly identified that leaf litter in litter traps was influence by 

freeze-thaw treatments, determining a specific response was found to be unfeasible. The three 

deciduous species and the parameters measured responded differently. No identifiable trend 

could be determined to approximate changes in future studies. The differing responses may be 

related to different microbial communities and there response to freeze-thaw temperatures. 

Further investigation into the influence of freeze-thaw on phyllosphere (leaf surface) microbial 

community structure is required.   
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Chapter 5 
Phyllosphere Microbial Experiment 

5.1 Introduction 

For over a century it has been well recognized that bacteria inhabiting the leaf’s surface 

are distinct from bacteria that inhabit the pedosphere (Beattie and Lindow, 2003). The 

phyllosphere microbial community structure is influenced by leaf age, light incidence, and 

microclimate (Yadav, 2005).  

The leaf surface, also commonly known as the phyllosphere, is considered an extreme 

environment as it is subject to severe environmental conditions (Hirano and Upper 2000; Yang et 

al., 2001; Lindow and Brandl, 2003). During the day, leaves are dry and exposed to high 

temperatures and intense UV radiation, where as in the night leaves are exposed to cool 

temperatures and are usually moist from dew (Andrews and Harris, 2000; Yang et al., 2001). 

However, this becomes a hostile environment due to the frequent rapid and repeatedly 

fluctuating conditions over short periods of time (Hirano and Upper 2000; Leveau, 2006). In a 

temperate environment, this is compounded by the changing physical and biological properties 

of the leaves over a season, such that deciduous leaves emerge, develop and senesce over just 

several weeks (Hirano and Upper 2000). Along with the leaf’s surface topography, nutrient 

availability of the phyllosphere is an important regulator of the inhabiting microbial community 

(Ibekwe, 2000). In general the phyllosphere is nutrient deficient and is susceptible to damage 

(weathering) from wind and rain (Andrews and Harris, 2000; Yang et al., 2001). 

However, it is well recognized that the phyllosphere supports an abundant and dynamic 

epiphytic microbial population (Jackson et al., 2006). It is considered one of the most commonly 

inhabited environments by terrestrial microorganisms (Lambias et al., 2006). This is likely due to 

the abundance of leaf surfaces available for colonization; estimated to be an area of 6.4x108 km2 

(Lindow and Brandl, 2003). Although bacteria, of many different genera, are the most abundant 

inhabitant of the phyllosphere, a diverse arrangement of microorganisms are also present 
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including filamentous fungi, yeast, algae, and to a much lesser extent protozoa and nematodes 

(Lindow and Brandl, 2003). 

Studies that have conducted leaf-imprints demonstrate that bacteria colonize specific 

sites, and are not distributed uniformly (Beattie and Lindow, 2003). It is predominately found 

that epiphytic microbes colonize the phyllosphere in protective topographical areas, such as 

veins, trichomes, stomata openings, epidermal cell joint and depressions in the cuticle (Andrews 

and Harris, 2000; Beattie and Lindow, 2003). It has also been found that microbial populations 

tend to be greater on the underside of the leaf (abaxial), as opposed to the upper side (adaxial), 

likely due to better nutrient and microhabitat conditions (Andrews and Harris, 2000). Population 

size and location may fluctuate in relation to deposition of nutrients and the leaching of nutrients 

in order to optimally utilize the energy source. Leaves in the lower section of the canopy also 

tend to have a higher population of microbes (Andrews and Harris, 2000; Yadav et al., 2005), 

that may be due to increased protection from environmental stresses and greater opportunity to 

utilize nutrient deposition from throughfall. Microclimatic factors contribute to variations in the 

distribution of microbes over the leaf surface. For example temperature may differ from the 

centre of the leaf to the edge which will affect the rate at which water is evaporated from the 

surface and the availability of water to the microbes (Leveau, 2006). 

Epiphytic populations vary considerably over the short and long term. This is mostly 

related to the fluctuations in the physical and chemical conditions typical of the phyllosphere 

(Lindow and Brandl, 2003). Short term fluctuations are generally influenced by environmental 

conditions, like rainfall, whereas long term fluctuations are prominently related to seasonal 

changes (Andrews and Harris, 2000). For example, Thompson et al. (1993) reported discrete 

colonization patterns throughout the year, cooler and rainy seasons supported the highest 

bacterial populations and in warm, dry seasons populations were greatly diminished. As well, 

younger leaves support the greatest diversity, as opposed to older leaves (Thompson et al., 1993). 

Bacterial abundance and metabolic activity are highest on moist leaves (Jackson et al., 2006). It 

is likely that bacterial populations reside in more protected areas, but take advantage of less 

inhabited areas when environmental conditions are favourable (Andrews and Harris, 2000). 
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Epiphytic bacteria present in the phyllosphere are believed to migrate from the 

surrounding air once the leaf has materialized (Kadivar and Stapleton, 2003). Suggested 

mechanisms for migration from the surrounding air include, deposition by aerosol, wind, rain, 

insects, and leaf-to-leaf transfer (throughfall) (Leveau, 2006; Lindow, 1996; Lilly et al., 1997; 

Andrews and Harris, 2000).  

Because the phyllosphere is a nutrient limited environment (Ibekwe, 2000; Lindow and 

Brandl, 2003), the availability of carbon containing compounds is a significant limiting condition 

for the colonization microorganisms (Lindow and Brandl, 2003). The most abundant source of 

nutrients available to support microbial communities is plant metabolites, like photosynthates, 

specifically, glucose, fructose and sucrose (Leveau, 2004). These become most readily available 

through leaching (Leveau, 2006). This corroborates, the general understanding that microbial 

communities thrive, or are most plentiful, when the temperature is cool and the conditions are 

moist, coincidently conditions which promote leaching. The composition and quantity of 

nutrients, like carbohydrates, organic acids and amino acids, that sustain the epiphytic 

community are influenced by plant species, leaf age, leaf physiological status and the presence of 

tissue damage (Yang et al., 2001). 

One of the main driving forces for difference in community structure and composition are 

related to variations in nutrient availability (Leveau, 2006). These nutrient variations are related 

to differences in the cuticle properties, photosynthesis rate, leaf age and plant nutrition (Leveau, 

2006). An important contributing factor to the viability of microbial communities in the 

phyllosphere is the opportunity and extent of nutrient leaching. Leveau (2006) stated that rain 

greatly increases the microorganism population likely because of increased nutrient availability 

as a result of induced leaching. It has also been observed that bacterial quantity and metabolic 

activity are significantly greater on wet leaves as opposed to dry leaves (Kinkel et al., 2000; 

Monier and Lindow, 2004). However, rainfall may also remove the microbial population if 

intense enough (Hirano; Leveau, 2006). 

The cuticle layer, in particular, is an important determinant of microbial growth as it 

regulates nutrient and water availability (Leveau, 2006). Its main function is to protect the leaf 
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from the surrounding environment (Leveau, 2006). It is composed of cutin and waxes making it, 

to some degree, lipophilic and impermeable (Hirano and Upper, 2000). The cuticle limits 

diffusion of nutrients and water vapour and determines the hyrdophobicity of the leaf (Lindow 

and Brandl, 2003). The cuticle structure will vary with plant species and leaf age, and can be 

altered by epiphytes (Leveau, 2006). The cuticle can deter bacterial colonization by limiting 

nutrient diffusion and by inhibiting the wetting of the phyllosphere (Lindow and Brandl, 2003). 

However, not substantiated, it has been suggested that the cuticle, being made of carbon 

containing compound, could be a source of nutrients (Beattie, 2002). 

Although, much effort has been placed into understanding the phyllosphere and its 

inhabitants many questions still remain. The relationship between the phyllosphere and the 

epiphytic community is not yet completely understood (Leveau, 2006). It has been found that 

some bacteria are able to inhabit the phyllosphere better than others (Arias, 1999). Many have 

reported similar bacterial species present on a wide variety of plants, suggesting that some 

species are well adapted to the phyllosphere environment. Some epiphytic bacteria have been 

found to provide important ecological functions, like fixing nitrogen (Sengupta et al., 1981), 

repelling insects (Battu and Arora, 1997) and as biocontrol agent (Leben, 1985). Studies have 

also found that bacteria are able to modify the phyllosphere environment (Beattie and Lindow, 

2003). 

Little is known about the diversity of microorganisms that inhabit the phyllosphere 

(Lambais et al, 2006). Microbial populations associated with the phyllosphere are often similar 

among plant species (Yang et al., 2001; Lambias et al., 2006). This suggests that specific plant 

traits select for particular microbial communities (Lambias et al., 2006; Yang et al., 2001), as 

well as influence the carrying capacity (Lindow and Bandl, 2003). Leveau (2006) suggested that 

if selection is possible it is likely based on leaf characteristics, like occurrence of protective sites, 

or environmental factors.  

Microbial communities are good for measuring change as they quickly respond to 

temporal and spatial transformations (Garland, 1997). Different microbial community structure 

may affect ecosystem processes, like nutrients cycling and decomposition (Garland, 1997). 
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Microbial activity is a sensitive indicator of microbial response to changing environmental 

conditions (Boulton and Boon, 1991) and the rate of decomposition (Skambracks and Zimmer, 

1998).  

5.2 Objectives 

The initial stage of decomposition usually results in a relatively fast loss in mass, 

dissolved organic matter (DOC and DON) and inorganic solutes (Berg 1984; Tietema and 

Wessel, 1994; Gosz et al., 1973; Yavitt and Fahey 1984). This is generally attributed to 

processes of leaching and microbial activity in terrestrial ecosystems. Although many studies 

have recognized the importance of leaching and microbial activity during this initial phase, a 

limited number of studies have addressed them in tandem (Yavitt and Fahey, 1986; Joergensen 

and Mayer, 1990; Tietema and Wessel, 1994). While preceding chapters have investigated the 

loss of leaf material through leaching, this chapter investigates the relationship leaching and 

microbial activity. 

This study evaluates the response of phyllosphere microbes to litter trap conditions. The 

objective of this study was to determine if phyllosphere (leaf surface) microbes contribute to the 

decomposition of leaf litter collecting in litter traps. Two approaches were used to evaluate the 

contribution of microorganisms to the decomposition of freshly abscised sugar maple, basswood 

and beech leaf litter: (i) Microbial community structure was analyzed through community level 

physiological profiling at the end of the study period. The objective of this was to determine if 

microbial community structure was different between treatment and species. (ii) Microbial 

activity was measured as the evolution of CO2 throughout the study period. The objective of this 

was to determine if microbes were active and how they responded to varying precipitation and 

temperature treatments (same treatments studied in chapters three and four). It was hypothesized 

that microbial community structure and activity would be greatest in basswood and sugar maple 

samples, and less in beech samples. 
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5.3 Material and Methods 

5.3.1 Experimental Set-up 

Freshly fallen and undamaged leaf-litter was collected between October 29th and October 

30th 2007 from sugar maple, basswood and beech. The method of leaf litter collection was 

discussed previously in General Material and Methods (chapter one). Samples of 15 g (fresh 

weight) of leaf litter were first suspended over a plastic tub with netting. Four treatment levels 

were tested in triplicates (n=3) – low (L), medium (M), high (H) and freeze-thaw (F). The 

treatment applications were equivalent to a monthly precipitation amount of 30 mm, 60 mm and 

100 mm. The treatment application was determined by dividing a monthly precipitation amount, 

low (30 mm), medium (60 mm) and high (100) mm, by 31 days (Figure 3.2). This was done to 

find the daily amount of precipitation that would be received assuming an equal amount of 

precipitation had fallen each day. Freeze-thaw treated leaf litter received the same amount of 

precipitation as the M treatment (60 mm) and was exposed to 0 °C on November 5th, 11th and 

17th. After applying the treatments the litter was weighed and then placed into a 1 L jar. The jars 

were retrofitted and included a septum in the lid for gas extraction. All jars were kept in the dark 

and at 21 °C. The litter was weighed every other day (days when the lid was not sealed) and if 

the weight decreased it was amended by applying rainwater until the initial weight was reached 

again. Leaf litter incubation continued for a 26 day study period. Applying rainwater treatment to 

leaf litter stimulates microbial activity, and as such care was taken to leave time for the microbial 

activity to equilibrate before closing the jars for activity measurements. 

5.3.2 Commuity Level Physiological Profiles (CLPP) 

Following the 26 day incubation period community level physiological profiles (CLPP) 

were assessed using Biolog EcoplateTM (Biolog Inc., CA, USA). The community level 

physiological profiles were only analyzed after the incubation experiment was completed. This 

followed the previously stated objective to determine if microbial communities were influenced 

by environmental conditions experienced by leaf litter while in litter traps. Samples from the 

same species and treatment were mixed together to form one sample. This was done because a 

single Biolog EcoplateTM provides triplicates (n=3). A representative sample of 2 grams was 
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taken from this and cut into 2x2 cm squares and placed into a centrifuge tube. To the centrifuge 

tube, 10 ml of 0.85% NaCl solution was added and then subsequently shaken vigorously for 10 

minutes to dislodge bacteria from the phyllosphere. A serial dilution was performed to reach a 

1:10 000 concentration. From this 150 µl were added into each of the wells of the Ecoplate. The 

Ecoplate were incubated at 25 °C and the colour development of each well was read as optical 

density (OD) at 590 nm with a plate reader at time 0 and every 12 hours thereafter, up to 168 

hours.  

The microbial communities were characterized through overall rate of colour 

development (1); richness (R) (2); evenness of response (Shannon Index) (3); and the relative 

rate of substrate utilization (4) (Garland, 1997): 

ሺ1ሻ ܴܽݐ݊݁݉݌݋݈݁ݒ݁ܦ ݎݑ݋݈݋ܥ ݂݋ ݁ݐ ൌ  
590݊݉ ݐሻܽܦሺܱ ݕݐ݅ݏ݊݁݀ ݈ܽܿ݅ݐ݌݋

ሻݎሺ݄ ݁݉݅ݐ
 

ሺ2ሻ ݏݏ݄ܴ݁݊ܿ݅ ݈ܾܽ݅݋ݎܿ݅ܯ ሺܴሻ ൌ ሺ൐ ݏ݁ݐܽݎݐݏܾݑݏ ݊݋ܾݎܽܥ ݀݁ݖ݅݀݅ݔ݋ ݂݋ ݎܾ݁݉ݑ݊   ሻܦ0.25ܱ

ሺ3ሻ ݄ܵܽ݊݊ݔ݁݀݊ܫ ݊݋ ሺܪሻ ൌ  െ ෍ ܲ݅ ሺln ܲ݅ሻ  

ሺ4ሻ ݐ݊݁݉݌݋݈݁ݒ݁ܦ ݎݑ݋݈݋ܥ ݈݈ܹ݁ ݁݃ܽݎ݁ݒܣ ሺܦܥܹܣሻ ൌ  ෍
݅ܦܱ
31

 

where Pi is the ratio of the activity on each substrate (ODi) to the sum of activities on all 

substrates (∑ODi).  

The threshold for a positive test was defined as the positive value after background 

correction of 0.25 absorbency (abs.) (Garland, 1997). Optical density data was corrected by 

blanking each response well against its first reading immediately following inoculation (Insam 

and Goberna, 2004). Blanking against the first reading (t=0) eliminates absorbance of the carbon 

reading and negative values often associated with subtracting the control well from the response 

well (Insam and Goberna, 2004). The well response was not standardized as it was important to 

take into consideration the response of the community per unit habitat (Garland, 1997).   

5.3.3 Microbial Respiration 

Once the litter was placed in the incubation jars, the jars were sealed and placed in the 

dark at 21 °C, after 24 hours. A 250 µl sample was taken from the sealed jar through the septum 
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and analyzed using an HP6890 gas chromatographer for Carbon Dioxide (CO2) and Nitrous 

Oxide (N2O) evolution at time 0 and 24 hours. Throughout the 26 day incubation period the 

sampling sequence was: from 0 to 24 hours with the lid loosely sealed, 15 minutes the lid was 

open and from 24 (minus the 15 minutes) to hour 48 the lid was tightly sealed. This sampling 

sequence continued throughout the study period.  The gas was sampled immediately after tightly 

closing the lid (hour 24 of the sampling procedure) for the initial concentration and then after 24 

hours of the lid being closed (hour 48 of the sampling procedure) to determine the amount 

evolving within the 24 hour period. The daily CO2 flux was determined using the following 

equation adapted from Hogg et al. (1992): 

ሺ5ሻ   ܴሺμ݃ CO2/݃/݀ ൌ ሺݏܥ െ  ሻݐ/ܯሺ/ܦሻܸܽܥ

where R (µg CO2 g-1 d-1) is the amount of CO2 (µg) evolved per gram of dry material (in this 

case leaf litter); Cs is the concentration of CO2 from the leaf litter (µL/L); Ca is the concentration 

of CO2 (µL/L) from the control sample; V is the volume of effective headspace (L); D is the 

density of CO2 adjusted for temperature, pressure and humidity (g/L); M is the dry mass of the 

sample (G); and t is the sampling time in interval in days.  

 Henceforth the samples will be abbreviated to include both the species and treatment 

type. Sugar maple, basswood and beech samples will by denoted by M, B or Be, respectively. 

The treatments low, medium, high and freeze-thaw will be denoted as L, M, H and F, 

respectively. For example, if the sample in context is sugar maple exposed to medium treatment 

it will be denoted as MM.  

5.4 Statistical Analysis 

A one-way ANOVA was completed to compare the change in C and N between 

treatments, as well as in comparison to the baseline (freshly abscised leaf litter collected on 

October 22nd and 24th 2007). All data sets were examined for homogeneity of variances between 

the two sets of compared data (using the Levene Test) and normal distribution was tested using 

Kolmogorov-Smirnov (K-S) Test and the Shapiro-Wilks Test (Dytham, 2003). The variance of 

the data is homogeneous, normally distributed and the data is continuous. For all statistical 
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analyses the threshold probability level for determining significant differences was p<0.05 and 

p<0.10. 

To determine if there is a difference between treatment leachate concentrations over the 

study period repeated measures of ANOVA was completed. Repeated  measures of ANOVA was 

completed to compare each of the measured evolution of CO2 between treatments over the study 

period. Sampling time (over the 26 day study period) was the repeated (within subjects) factor 

and CO2 evlotuion was the main (between subjects) factor. All data sets were examined for 

homogeneity of variances between the two sets of compared data (using the Levene Test) and 

normal distribution was tested using Kolmogorov-Smirnov (K-S) Test and the Shapiro-Wilks 

Test (Dytham, 2003). The variance of the data is homogeneous, normally distributed and the data 

is continuous. Significance levels were adjusted using the Greenhouse-Geisser and Huyuh-Feldt 

to account for violations in sphericity.  With limited statistically significant results it was deemed 

prudent to advance this research through the use of descriptive statistics. This decision is 

supported by Dytham (2003) who argued that the use of descriptive statistics is important for 

they often reveal stories and trends that often go unnoticed. 

5.5 Results and Discussion 

5.5.1 Community Level Physiological Profiling 

The rate of colour development was measured from the initial point of inoculation, every 

12 hours, up to 132 hours (Figure 5.1). The rate of colour development is based on the average 

well colour development (AWCD) (Garland, 1997). Differences in rate of colour development 

are dependent on inoculums density (Garland, 1997). In this study, the rate of colour 

development was related to litter type (species) and treatment application. Sugar maple litter 

exhibited the lowest rate of colour development, in comparison to beech and basswood. 

Basswood and beech samples showed similar rates of colour development. Sugar maple samples 

displayed the greatest responses in L, followed by H and M (which were very similar), and then 

F (L>H>M>F). Basswood samples displayed the greatest response in F samples, followed by L, 

M and then H (F>L>M>H). The beech samples’ results differed substantially. Beech samples 

treated with M had the greatest rate of colour development, followed by L and H and then F 
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(M>L>H>F). Since the rate of colour development is directly proportional to the inoculums 

density (Garland, 1997), it is fair to assume that basswood and beech samples harbored a more 

favourable environment for microbial growth over sugar maple litter. This is contradictory to 

previous chapter results. Specifically, basswood and sugar maple exhibited a decrease in weight, 

suggesting a greater extent of decomposition, while beech did not exhibit a decrease in weight 

suggesting that little decomposition had transpired. The results of the microbial response to 

species suggest that maple likely lost the majority of weight through leaching as opposed to 

microbial activity. 

 

 

 
Figure 5.1: Rate of colour development over a 132 hour inoculation period. The first part 
of  the  name  in  the  legend  refers  to  the  species  and  the  second  part  refers  to  the 
treatment. 

 

Similarly, AWCD was greatest in basswood, and subsequently lower in beech and then 

sugar maple (Figure 5.2). Within treatments, AWCD did not display a particular trend. Sugar 

maple samples displayed the following trend, L>H>M>F, while basswood sample exhibited 

L>F>H>M. Beech samples responded much differently, namely M>L>F>H. With the exception 
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of basswood, sugar maple and beech exhibited the same trends in AWCD as in rate of colour 

development. However, these results do not coincide with microbial respiration results, with the 

exception of one case. Basswood displayed an increase in microbial activity in freeze-thaw 

treatments and displayed a greater AWCD in F samples over treatment M. As well, sugar maple 

displayed an increase in microbial activity in the medium samples over freeze-thaw treatment 

and similarly displayed an increase in AWCD in M over F. 

Similar to average well colour development, microbial richness (R) and the Shannon 

Index (H)1 were greatest in basswood samples, followed by beech and sugar maple. In all of the 

treatments, AWCD, R and H showed a proportionate relationship, such that treatments that 

displayed a high AWCD also displayed a high R and H (Figure 5.2). 

 

 
Figure 5.2: Average well colour development (AWCD), richness (R) and Shannon Index (H) 
at t=108 hours for each of the measured treatments (L, M, H and F) for sugar maple (M), 
basswood (B) and beech (Be) leaf litter. 

 

                                                      
1 It is standard for the Shannon Index to be denoted by ‘H’, however to this point in this study ‘H’ has stood for 
high, with regard to the level of precipitation. Therefore, an italicized ‘H’ will denote the Shannon Index for the 
remainder of this study. 
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Principal components analysis (PCA) was performed to determine if C source 

metabolism differed between species and treatment (Figure 5.3). Data was normalized to correct 

for inoculums density differences with AWCD (Garland, 1997). When comparing all of the 

species and treatments together, the first principal component (PC) explains 45% of the variance, 

while the second and third PC’s explain 18% and 11%, respectively. Samples BF, BL, BeF and 

BeL formed one distinct cluster, and samples BM, MM, MH, ML and MF formed another 

distinctive cluster. Samples BeH, BH and BeM were situated in a relatively dispersed pattern, 

distant from all other samples.  

Observed carbon source utilization profiles indicated a distinct microbial metabolic 

response related to species and moisture level. However, inconsistency in microbial response to 

moisture level is contradictory to previous research. 

 
Figure 5.3: Principal  component analysis on  carbon  source utilization of Biolog Ecoplate  for 
each of  the  studied  treatments  (L, M, H  and  F)  for  sugar maple, basswood  and beech  leaf 
litter.  
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5.5.2 Microbial Respiration 

In general, microbial respiration was greatest during the initial phase of the experiment, 

day one to day six.  After this initial period, the respiration substantially fell over the following 6 

days. From day 12 to day 20 the respiration increased minimally and began to plateau. All three 

litter species were within a similar range, between approximately 5 and 35 µg CO2 g-1d-1. Overall 

sugar maple displayed the highest levels of respiration, followed by beech and then basswood, 

although beech and basswood were very similar. 

  Microbial activity did not correspond with treatment type as no distinguishable or 

consistent trend could be found within or between species. Microbial respiration levels of 

basswood and beech CO2 evolution greatly fluctuated over the study period. Basswood leaf litter 

exposed to treatment H differed significantly (p<0.05) from basswood samples treated with L 

and M. Sugar maple respiration levels were very similar between treatments. Thus, sugar maple 

phyllosphere microbes were not influenced by varying precipitation and temperatures levels. 

Microbial respiration rates correspond to the loss of weight measured in earlier chapters. 

Microbial respiration was highest in sugar maple and basswood, and lowest in beech. 

 

 
Figure 5.4: Microbial activity measured as evolution of CO2 over a 26 day  study period 
from sugar maple leaf litter treated with H, L, M and F. 
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Figure 5.5: Microbial activity measured as evolution of CO2 over a 26 day  study period 
from basswood leaf litter treated with H, L, M and F. 

 

 

Figure 5.6: Microbial activity measured as evolution of CO2 over a 26 day study period 
from beech leaf litter treated with H, L, M and FT. 
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5.5.3 Nutrient Analysis 

Initial C and N results determined basswood leaf litter to have the lowest C/N ratio, 

followed by sugar maple and beech. Treated litter displayed a change in C/N ratios; however 

basswood continued to have the lowest C/N results followed by sugar maple and then beech 

(Table 5.1). Treated basswood and sugar maple leaf litter had a decrease in the C/N ratio mostly 

due to an increase in N, similar to chapter three. Basswood samples treated with M had the 

largest decrease followed by F, L and then H. Sugar maple samples had the lowest C/N ratio in 

freeze-thaw treated litter followed by H, L and then M (F>H>L>M). Beech leaf litter exhibited a 

substantial decrease in the C/N ratio of freeze-thaw treated samples but an increase in the H, M 

and L (H>M>L). Beech freeze-thaw treated samples exhibited an increase in N, while H, M and 

L exhibited a decrease in N.  

 

Table  5.1:  Carbon  and  Nitrogen  (mg/kg)  results  from  post‐  incubation 
experiment for sugar maple, basswood and beech. 
Species  Treatment  C 

(mg/kg) 
N 

(mg/kg) 
C/N 

Sugar Maple  H  44.22  0.85  52.02 
  M  44.67  0.78  57.27 
  L  45.01  0.85  52.95 
  F  45.89  1.00  45.89 
  C  44.52  0.63  70.67 
Basswood  H  44.87  1.31  34.25 
  M  45.12  1.65  27.35 
  L  45.02  1.52  29.62 
  F  44.71  1.59  28.12 
  C  44.73  1.58  28.31 
Beech  H  48.67  0.70  69.53 
  M  47.99  0.76  63.14 
  L  48.49  0.85  57.05 
  F  48.61  1.04  46.74 
  C  48.06  0.87  55.24 
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Litter quality, microbial activity and microbial structure did not correspond. It was 

hypothesized that a low C/N ratio would harbor more microbial activity. Overall, basswood had 

the lowest C/N ratio, the greatest community dynamics and high microbial activity (higher then 

beech and same as sugar maple), followed by sugar maple and then beech.  

None of the measured variables (microbial activity, community structure or C/N ratio) 

directly related to the moisture level. No trend could be determined based on microbial activity, 

community structure and changes to the C/N ratio and the applied treatment.  

The findings of this study contradict many studies that have reported an increase in 

microbial activity in response to increased moisture levels (Taylor and Parkinson, 1988c; 

Howard and Howard, 1993; Vanhala, 2002). The lack of response to increased moisture level in 

this study suggests that under these conditions moisture level did not dictate litter decay. In 

general, litter decomposition is dependent on moisture, temperature, and physical and chemical 

characteristics of the litter (Edmonds 1980). Taylor and Parkinson (1988c) found that large 

differences in moisture level were required to produce different decomposition rates, and thus 

temperature was a more important determinant of decomposition over moisture levels. 

Schlentnen and Van Cleve (1985) stated that at high moisture levels microbial activity was more 

responsive to temperature changes. The unexpected results of this study may either be due to 

similar moisture regimes or high moisture regimes. However, Schlentner and Van Cleve (1985) 

stated that at 10-20˚C microbial activity is more responsive to moisture changes. This may 

suggest that the quality of the litter was the determining characteristic. Swift et al. (1979) found 

that litter quality was more important than climatic conditions in determining the decay rate. 

Swift et al. (1979) reported that the decomposition of litter from different species was dissimilar 

regardless of the same climatic conditions. The rate of decomposition is inversely related to the 

lignin and C:N ratio and is directly related to the N and P concentrations (Flanagan and Van 

Cleve, 1983). Therefore microbial activity is greatly dependent on the quality of litter (Flanagan 

and Van Cleve, 1983). Microbial activity was related to the initial C/N ratios. Microbial activity 

was higher in sugar maple and basswood samples then beech samples, as was the initial C/N 

ratio. In earlier chapters basswood was the only species to have measurable levels of P. Although 
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P was not measured in this experiment it is possible that it was higher which would explain why 

basswood leaf litter exhibited a greater microbial dynamics.   

In a study conducted by Aerts and de Caluwe (1997) it was found that the initial rate of 

litter respiration was nutrient controlled. Specifically, the initial rate of respiration is dependent 

on the easily decomposable compounds, and thus dependent on the amount of labile substances 

in the litter of each of the species (Aerts and de Caluwe, 1997). Ryan (2005) also stated that 

substrate strongly controlled respiration, but is also related to soil moisture.  

This study’s trend of respiration rate observed over the 26 day period is inconsistent with 

the results reported by Taylor and Parkinson (1988c). Taylor and Parkinson (1988c) reported that 

aspen litter exposed to medium (30 ml/week) and high (60 ml/week) watering rates stimulated 

increasing respiration rates when incubated at 18˚C and 26˚C for at least the first 20 days of the 

study. In this study the temperature was kept at 21˚C. Thus it is reasonable to believe that similar 

results should have been observed. However, this was not the case and this study’s findings 

resembled the finding of Taylor and Parkinson’s (1988c) 2˚C and 10˚C treatments.  Under this 

treatment the respiration rate was observed to decrease for at least the first 20 days in low 

(15ml/week), medium and high watering conditions (Taylor and Parkinson, 1988c). This was 

presumed to be due to saturated condition (Taylor and Parkison, 1988c). Similar to this study, 

litter leveled off after the initial decrease (Taylor and Parkinson, 1988c). Therefore, it may be 

that this study over watered the leaf litter throughout the incubation period also producing 

saturated conditions.   

Sugar maple samples exposed to freeze-thaw conditions exhibited a significant (p<0.10) 

decrease in respiration in comparison to the M, suggesting that microbial activity was hindered. 

Kowal (1969) found leaching to significantly relate to mass loss and CO2 production. In the 

proceeding chapter, sugar maple litter showed an increase in inorganic nutrient leaching (K, Ca 

and Mg) and weight loss due to exposure to freeze-thaw cycles, but did not exhibit an increase in 

DOC or DON leaching. This may suggest that although the leaf litter was structurally affected by 

freeze-thaw treatment, microbes associated with sugar maple leaf litter were not. As well, 

Schimel and Clein (1996) deduced that a decrease in respiration below control is likely due to a 

reduced ability of microbes to metabolize C and respire.  
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Following a thaw, basswood and beech generally displayed an increased flux of 

microbial respiration, with the exception of day nine. However, only FT treated beech samples 

significantly (p<0.05) differed from M treated beech samples. Many studies have reported an 

initial flux of CO2 following a thaw (Vanhala; Schimel and Clein, 1996; Neilsen et al., 2001; 

Teepe and Ludwig, 2004). Specifically, a similar trend was reported by Schimel and Clein 

(1996).  As previously stated, Schimel and Clein (1996) suggest that the flux is due to 

metabolism of organic substances released from microorganisms that died as a result of the 

freeze-thaw treatment. As well, each subsequent freeze-thaw treatment produced less of a 

response then the previous application. Schimel and Clein (1996) described a similar occurrence, 

relating to less biomass being killed with each successive cycle. Neilson et al. (2001) also found 

an increase in microbial respiration when freezing was induced. However, Neilson et al. (2001) 

did not measure a decrease in microbial biomass, thus it was concluded that induced freezing 

cause a release C from the soil.   

Although many studies have reported increased nitrous oxide (N2O) emission following 

freeze-thaw conditions (Neilsen et al., 2001; Ryan, 2005; Matzner and Borken, 2008), this study 

did not observe such an event, per se. Similar to CO2 emissions, sugar maple litter produced less 

N2O when exposed to freeze-thaw treatment, as compared to medium treatment. Basswood and 

beech leaf litter displayed increased N2O emissions initially but did not exhibit increased peaks 

with later freeze-thaw treatment. Teepe and Ludwig (2004) found that fluxes of N2O from forests 

soils differed considerably depending on site conditions, such as dominant plant species. Teepe 

and Ludwig (2004) observed an increase in beech dominated areas, but not in aspen. Many of the 

studies reporting an increase in N2O are conducted on soil. Matzner and Borken (2008) stated 

that the increase in C and N from thawing soil is often related to microbial biomass, death of 

roots and changes in the soil structure. As stated, microbial biomass and structural changes can 

explain results from freeze-thaw activity on leaf litter. However it is likely that the results from 

soil systems provide greater response to freeze-thaw, at least with respect to structural changes 

due to the complexity of soil structure. For example, Matzner and Borken (2008) reported that 

some studies associated the increased flux of N2O from sites where production of gases built up 
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during frost. Furthermore, many studies have reported increased N mineralization associated 

with freeze-thaw treatment (Matzner and Borken, 2008 and Neilson et al., 2001).  

5.6 Summary and Conclusions 

 It was the purpose of this chapter to determine if microbes contribute to changes in the 

sugar maple, basswood and beech leaf litter collecting in litter traps. The results of this 

experiment indicate that microbes are present and are active in the leaf litter. Increases in the N 

content of leaf litter imply that microbes may have an effect on the leaf litter. Microbial activity 

and community structure did not increase with increased precipitation levels. Over the study 

period microbial activity decreased. This is likely due to a lack of readily decomposable material 

available. In the initial stages of the study microbes are highly active. As the amount of leachable 

material decreases so does the microbial activity until reaching a steady state.  

The results of this study find that the initial concentration of C and N (litter quality) are 

better predictors of microbial activity then environmental conditions. The difference observed in 

the three species is likely related to the microbial community structure. Many studies have found 

contrasting results related to the manner in which microbes respond to similar environmental 

conditions. As well, this study’s findings indicate that microbial activity will affect leaf litter 

collecting in litter traps. Specifically, sugar maple, basswood and beech leaf litter exposed to 0˚C 

and 21˚C and 30mm, 60mm and 100 mm moisture levels.   
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Chapter 6 
Final Summary and Conclusion 

6.1 Summary and Conclusion 

The purpose of this research was to determine if litter fall collecting in litter traps 

undergoes initial stages of decomposition. As such, this study asked the research question: Does 

sugar maple (Acer saccharum Marsh.), american basswood (Tilia Americana L.) and american 

beech (Fagus grandifolia Ehrh.) leaf litter collected from litter traps after a two week period 

undergo change in comparison to freshly abscised leaf litter? 

 Two pivotal studies contributed to the development of this research question. 

Ukonmaanaho and Starr (2001) measured the in-situ flux of nutrients from leaf litter collecting in 

litter-traps with the intent to determine if leaf litter nutrient contributions were underestimated. 

Ukonmaanaho and Starr (2001) positively identified that nutrient cycling studies underestimated 

the return of nutrients from leaf litter. Similarly, Oelbermann (1999) conducted an ex-situ study 

to determine if leaf litter collecting in litter traps, when exposed to precipitation, would undergo 

weight and nutrient loss from leaching. However, Oelbermann (1999) found that, for the most 

part, leaf litter studies likely overestimated the amount of nutrients entering the system. Further 

research was required to find a consensus.  

  A preliminary study (Chapter 2) was conducted to measure whether under in-situ 

conditions sugar maple, basswood and beech leaf litter in litter traps, for a 14 day period, 

underwent change in comparison to freshly abscised leaf litter.  For the most part, the results 

determined that the leaf litter nutrient content and dry weight would be underestimated. 

Specifically, sugar maple litter collected from the traps led to an underestimation of 

magnesium(Mg) by 31.1%, Calcium (Ca) by 25.1% and dry weight by 12.4%. Potassium (K) 

and phosphorus (P) were no longer detected. Assuming the concentrations were just below 

detection, K was underestimated by 33.9% and P by 14.0%. Nitrogen (N) increased by 4.47% 

and carbon (C) remained constant. Basswood litter collected from the traps led to an 

underestimation of Mg by 4.9%, Ca by 9.8%, K by 23.8%, P by 3.7% and dry weight by 4.65%. 
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Nitrogen increased by 1.10% and C remained constant. Beech litter collected from the traps led 

to an underestimation Mg by 10.5%, Ca by 12.3%, K by 6.5% and dry weight by 0.16%. 

Phosphorus was not detected in freshly abscised leaves or leaves from the litter trap. N decreased 

by 16.5% and C remained the same. Leaf litter from different species responded differently while 

in litter traps when exposed to the same environmental conditions. 

The results of this preliminary study indicated that leaf litter collecting in litter traps 

experienced initial stages of decomposition as a result to its exposure to precipitation, freezing 

and thawing temperatures, and microbial decomposition. This study also evaluated litter 

decomposition using an  an ex-situ approach to evaluate the relationship between precipitation, 

freezing and thawing temperatures, microbial activity and the measured decomposition of litter.  

The first of these studies measured the change in dry mass and nutrient content of sugar 

maple, basswood and beech leaf litter exposed to varying levels of precipitation. The intention 

was to evaluate the response of leaf litter to precipitation, and determine if leaf litter from 

different deciduous species respond differently. The results of this study (Chapter 3) determined 

that precipitation influenced sugar maple, basswood and beech leaf litter in litter traps left only 

for a two week period as it induced a decrease in dry weight. However, the influence of 

precipitation on the nutrient content was variable. The degree to which the element increased or 

decreased did not relate to the precipitation magnitude. The lack of an identifiable trend allows 

for only general conclusions.  The results state that K and Mg were readily leached from all 

species. Phosphorus was undetectable after the 14-day study period in sugar maple and beech but 

increased in basswood. The Ca content of the leaf litter increased. It is assumed that Ca would 

continue to increase, via immobilization, until the structural components of the leaf litter began 

to decompose (e.g. Attiwill, 1967).     

The initial C/N ratio, leaf physical characteristics and the level of degradation of the litter 

can help to determine the influence of precipitation on leaf litter. Sugar maple exhibited the 

greatest decrease in weight due to leaching of organic matter (DOC and DON). The considerable 

influence of precipitation on sugar maple is likely because it does not have a waxy or tough 

cuticle and showed signs of physical deterioration. Basswood was also greatly affected by 
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precipitation. This may be due to its relatively low C/N ratio. Beech leaf litter was moderately 

affected. This may be due to its thick and waxy cuticle, and high C/N ratio.  

Starr et al. (2007) stated that precipitation reaching the forest floor is significantly 

different from precipitation collected from an open area. In this study, rainfall was collected from 

an open area. In a forest ecosystem, or in-situ, it is likely that leaf litter in litter traps would be 

intercepted by throughfall and stemflow. Further analysis should be conducted to investigate the 

importance of throughfall in manipulating the nutrient content of leaf litter. It is hypothesized 

that the litter would be further enriched through deposition from throughfall and stemflow. Effort 

should be taken to collect rainwater from the location the litter was taken. Not only to simulate 

similar nutrient fluxes from throughfall, but also to minimize variability in atmospheric 

deposition.  

 The second of these studies measured the change in dry mass and nutrient content of 

sugar maple, basswood and beech leaf litter exposed to freeze-thaw temperatures. The intention 

was to evaluate the response of leaf litter to freeze-thaw and determine if leaf litter from different 

deciduous species respond differently. Results of this study (Chapter 4) determined that freeze-

thaw influences sugar maple, basswood and beech leaf litter in litter traps. Freezing and thawing 

leaf litter induced a greater decrease in weight in comparison to the control samples (litter not 

exposed to freeze-thaw conditions), with the exception of beech. The influence of freezing and 

thawing leaf litter was proportional to the initial C/N ratio. Unlike the literature, this study did 

not find a significant increase in C and N decomposition and nitrous oxide (N2O) production. 

The literature did state that cycles of freeze-thaw accelerate litter decomposition (Campbell et 

al., 2005; Matzner and Borken, 2008) through structural disruption and membrane rupture 

(Tukey 1966; Burke et al., 1976; Hurst et al., 1985). This study found a decrease in N and Ca in 

sugar maple and basswood leaf litter. This is markedly different from chapter three and is likely 

due to structural damage induced by freeze-thaw. Beech exhibited an increase in N and Ca 

suggesting that it did not undergo structural damage.  

As stated earlier, it is difficulty in predict the affect of freeze-thaw on leaf litter due to the 

number of variables that must be taken into account. Taylor and Parkinson (1988e) noted a 
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number of factors to consider including species, moisture content, temperature range 

(specifically the final low temperature), rate of temperature change, duration of freezing and 

thawing periods and the number of repeated cycles. This study did not take the rate of 

temperature change and moisture content into consideration. In future studies effort should be 

made to mimic these parameters more accurately. 

 The last of these studies measured the response of phyllosphere microbes to litter-trap 

conditions. The intent of the studies was to determine if microbes contribute to changes in leaf 

litter collecting in litter traps. As well, this study proposed to evaluate the relationship between 

phyllosphere microbial activity, varying precipitation levels and freeze-thaw temperatures. The 

results of this study indicated that microbes are present and are active in the leaf litter. Microbial 

activity and community structure did not increase with increased precipitation levels. Over the 

study period microbial activity decreased. Similar to earlier studies, this study also found that the 

initial concentration of C, N and P are better predictors of microbial activity than environmental 

conditions.  

Although many studies reported increased N2O emission following freeze-thaw 

conditions (Neilsen et al., 2001; Ryan, 2005; Matzner and Borken, 2008), this study did not. 

Similar to CO2 emissions, sugar maple litter produced less N2O when exposed to freeze-thaw 

treatment, as compared to the control. Basswood and beech leaf litter displayed increased CO2 

and N2O emissions initially but did not exhibit increased peaks with later freeze-thaw treatment.  

 The greater microbial community structure and microbial response to freezing conditions 

of beech leaf litter over sugar maple litter does not correspond with other findings of this study. 

The characteristics of beech leaf litter suggest that it is a less favorable environment for 

microbial growth. Further research is required to determine the relationship between microbial 

community structure and leaf litter characteristics. As well, this study assumed that the microbial 

community structure changed over the study as samples exposed to different treatments reported 

different dynamics. In order to better understand the behavior of phyllosphere microbial 

communities further research is required to map the change in community structure.  
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6.2 Implication of this Research 

The overall objective of this study was to devise a correction that would take into account 

the changes in leaf litter collecting in litter traps so to provide an accurate representation of 

freshly abscised leaf litter. Meeting this proposed objective proved to be difficult. The variability 

in species response to treatments and in the measured constituents (C, N, P, K, Ca and Mg) 

obscured an opportunity to determine a significant trend.   

The results of this study indicated that leaf litter collecting in litter traps was influenced 

by precipitation, freezing and thawing temperatures and microbial activity. Many of the results 

of this study were similar to litter bag decomposition studies (e.g. Gosz et al., 1973, Parsons et 

al., 1990, Huang and Schoenau, 1997). The results of this study indicate that changes in leaf litter 

collecting in litter traps observed over a two week period is equivalent to  the decomposition of 

leaf litter in the initial stages of decomposition. This suggests that initial stages of decomposition 

are not dependent on ground level processes (e.g. soil microbial activity). Most of the change is a 

result of leaching and the microbial demand. Thus, the change in the litter is dictated by litter 

quality and leaf structural properties (e.g. thickness of cuticle) more than the climatic conditions 

tested in this study. The results of this study suggested that leaf litter similar to sugar maple and 

basswood may experience considerable change while in litter traps, even over a 14-day period. 

Leaf litter similar to beech can tolerate longer periods in the litter trap without suffering 

significant change, at least over a 14-day period.   

6.3 Recommendation for Future Research 

This study measured the influence of leaving leaf litter in litter trap for 14-days. Many 

studies have reported leaving the litter in litter traps for longer. Further research into a temporal 

pattern of litter decomposition while in litter traps may help to define an appropriate length of 

time for litter to be in litter traps. 

Many studies reported that mixing different species of litter increases the decomposition 

of leaf litter. Since a number of litter trap studies are interested in collecting a representative 

sample of the canopy, effort is not taken to reduce species mixing. Further research is required to 
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understand and predict the influence of mixing different species on the decomposition of litter 

while in litter traps. 

Academic literature is significantly lacking attention on topics of freeze-thaw and 

phyllosphere activity on the decomposition of leaf litter. The majority of the present literature 

looks at the affects of freeze-thaw and microbial activity on the soil profile. As a result, this 

study formed an exploratory approach to these ideas. Further research is required to understand 

the influence of freezing and thawing temperatures and phyllosphere activity strictly on leaf 

litter.   
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The following is the specifications for the Gas Chromatography HP6890 which was used to analyze 

for CO2 and N2O in Chapter 5. This also outlines the method information for the method that I 

produced to analyze for CO2 and N2O. 

 

          Method: C:\CHEM32\1\METHODS\GHG.M 

        Modified: 6/10/2008 at 7:15:11 PM 

 

 

 

 

                         Injection Source and Location 

 

     Injection Source:   Manual 

 

     Injection Location: Back 

========================================================================

===== 

                                6890 GC METHOD 

========================================================================

===== 

 

OVEN 

   Initial temp:  35 'C (On)               Maximum temp:  325 'C 

   Initial time:  10.00 min                Equilibration time:  0.50 min 

   Ramps: 

      #  Rate  Final temp  Final time 

      1   0.0(Off) 

   Post temp:  50 'C 

   Post time:  0.00 min 

   Run time:  10.00 min 

 

FRONT INLET (PURGED PACKED)             BACK INLET (SPLIT/SPLITLESS) 
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   Initial temp:  50 'C (Off)              Mode:  Splitless 

   Flow:  3.1 mL/min (Off)                 Initial temp:  200 'C (On) 

   Gas type:  Helium                       Pressure:  9.20 psi (On) 

                                           Purge flow:  25.0 mL/min 

                                           Purge time:  0.00 min 

                                           Total flow:  38.0 mL/min 

                                           Gas saver:  On 

                                           Saver flow:  20.0 mL/min 

                                           Saver time:  2.00 min 

                                           Gas type:  Helium 

 

COLUMN 1                                COLUMN 2 

   Capillary Column                        Capillary Column 

   Model Number:  Agilent 19091J-413       Model Number:  J&W 19095P-Q04 

   HP-5  5% Phenyl Methyl Siloxane         HP-PLOT 

   Max temperature:  325 'C                Max temperature:  290 'C 

   Nominal length:  30.0 m                 Nominal length:  30.0 m 

   Nominal diameter:  320.00 um            Nominal diameter:  530.00 um 

 

 

   Nominal film thickness:  0.25 um        Nominal film thickness:  40.00 um 

   Mode:  constant pressure                Mode:  (see column 1) 

   Pressure:  9.20 psi                     Pressure:  9.20 psi 

   Nominal initial flow:  2.1 mL/min       Nominal initial flow:  8.1 mL/min 

   Average velocity:  33 cm/sec            Average velocity:  66 cm/sec 

   Inlet:  Back Inlet                      Inlet:  Back Inlet 

   Outlet:  Front Detector                 Outlet:  Back Detector 

   Outlet pressure:  ambient               Outlet pressure:  ambient 

 

FRONT DETECTOR (FID)                    BACK DETECTOR (TCD) 

   Temperature:  250 'C (On)               Temperature:  225 'C (On) 

   Hydrogen flow:  35.0 mL/min (On)        Reference flow:  16.0 mL/min (On) 
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   Air flow:  200.0 mL/min (On)            Mode:  Constant column+makeup flow 

   Mode:  Constant makeup flow             Combined flow:  12.0 mL/min 

   Makeup flow:  0.2 mL/min (On)           Makeup flow:  On 

   Makeup Gas Type: Helium                 Makeup Gas Type: Helium 

   Flame:  On                              Filament:  On 

   Electrometer:  On                       Negative polarity:  Off 

   Lit offset:  0.5 

 

SIGNAL 1                                SIGNAL 2 

   Data rate:  20 Hz                       Data rate:  5 Hz 

   Type:  front detector                   Type:  back detector 

   Save Data:  On                          Save Data:  On 

   Zero:  0.0 (Off)                        Zero:  0.0 (Off) 

   Range:  0                               Range:  0 

   Fast Peaks:  Off                        Fast Peaks:  Off 

   Attenuation:  0                         Attenuation:  0 

 

COLUMN COMP 1                           COLUMN COMP 2 

   Derive from front detector              Derive from back detector 

 

                                        POST RUN 

                                           Post Time: 0.00 min 

 

TIME TABLE 

   Time       Specifier                     Parameter & Setpoint 

 

                               GC Injector 

     Front Injector: 

No parameters specified 

 

     Back Injector: 

No parameters specified 
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=============================================================== 

                          Calibration Table                           

=============================================================== 

 

  

 

Calib. Data Modified  :      5/7/2008 5:23:12 PM 

 

Calculate             :      External Standard 

Based on              :      Peak Height 

 

Rel. Reference Window :      5.000 % 

Abs. Reference Window :      0.000 min 

Rel. Non-ref. Window  :      5.000 % 

Abs. Non-ref. Window  :      0.000 min 

Use Multiplier & Dilution Factor with ISTDs 

Uncalibrated Peaks    :      not reported 

Partial Calibration   :      Yes, identified peaks are recalibrated 

Correct All Ret. Times:      No, only for identified peaks 

 

Curve Type            :      Linear 

Origin                :      Included 

Weight                :      Equal 

 

Recalibration Settings:        

Average Response      :      Average all calibrations 

Average Retention Time:      Floating Average New 75% 

 

Calibration Report Options : 

    Printout of recalibrations within a sequence: 

        Calibration Table after Recalibration 

        Normal Report after Recalibration 
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    If the sequence is done with bracketing: 

        Results of first cycle (ending previous bracket) 

 

Signal 1: NEW, 

Signal 2: FID1 A,  

Signal 3: TCD2 B,  

 

RetTime   Lvl   Amount     Height   Amt/Height Ref Grp Name           

 [min] Sig     [ng/ul]                                                

-------|--|--|----------|----------|----------|---|--|--------------- 

  1.258  3  1  100.00000 2937.59985 3.40414e-2        CO2                                                

  1.394  2  1    5.00000    3.72815    1.34115        CH4                                                

  1.883  3  1   10.00000    7.05710    1.41701        N2O                                                

=============================================================== 

=============================================================== 

 


