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Abstract

Image registration is widely used in different areas nowadays. Usually, the

efficiency, accuracy, and robustness in the registration process are concerned in ap-

plications. This thesis studies these issues by presenting an efficient intensity-based

mono-modality rigid 2D-3D image registration method and constructing a novel

mathematical model for intensity-based multi-modality rigid image registration.

For mono-modality image registration, an algorithm is developed using Rapid-

Mind Multi-core Development Platform (RapidMind) to exploit the highly parallel

multi-core architecture of graphics processing units (GPUs). A parallel ray casting

algorithm is used to generate the digitally reconstructed radiographs (DRRs) to

efficiently reduce the complexity of DRR construction. The optimization problem

in the registration process is solved by the Gauss-Newton method. To fully exploit

the multi-core parallelism, almost the entire registration process is implemented in

parallel by RapidMind on GPUs. The implementation of the major computation

steps is discussed. Numerical results are presented to demonstrate the efficiency of

the new method.

For multi-modality image registration, a new model for computing mutual in-

formation functions is devised in order to remove the artifacts in the functions

and in turn smooth the functions so that optimization methods can converge to

the optimal solutions accurately and efficiently. With the motivation originating

from the objective to harmonize the discrepancy between the image presentation

and the mutual information definition in previous models, the new model computes

the mutual information function using both the continuous image function repre-

sentation and the mutual information definition for continuous random variables.

Its implementation and complexity are discussed and compared with other models.

The mutual information computed using the new model appears quite smooth com-

pared with the functions computed by others. Numerical experiments demonstrate

the accuracy and efficiency of optimization methods in the case that the new model

is used. Furthermore, the robustness of the new model is also verified.
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Chapter 1

Introduction

Nowadays, digital images have been widely used to convey information as a kind

of media. In the field of medicine, physicians often utilize digital images to collect

clear information about some parts of the patients’ bodies which are not externally

visible. This helps physicians analyze certain kinds of disease and make future

treatments. In the realm of earth remote sensing, some characters of the earth,

which are not directly observable for humans, are obtained by generating digital

images using sensors positioned in the air or in earth orbit. Those images are

important data for future analysis (e.g., weather report). Very often, to receive

comprehensive information of an huge object, or compare information of the same

object at different times, many different images are generated from the same or

different sensor devices. To combine different information of the same object from

different images, images are required to be aligned in the same coordinates. This

process is known as image registration.

Image registration is helpful and sometimes required in practice. Because of

its importance, different people have paid and are paying considerable attention

to that with different emphases: physicians focus on different impacts of different

anatomical regions to the performance of image registration; statisticians desire

to obtain statistical characters from images to facilitate registration processes; the

practicality attracts a lot of engineers to build stable and easy-to-use products

for conducting image registration; applied mathematicians and computer scientists

concentrate on the mathematical models and algorithms behind image registration

processes.

Image registration is broad and can be classified into different categories based

on different criteria. Based on whether deformation of images is allowed, image
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registration can be classified into rigid image registration and non-rigid image reg-

istration. In rigid image registration, images are considered as rigid objects and no

deformation of images is allowed. Because of their rigid characters, the transforma-

tions of the images are restricted to rotation and spatial translation. In comparison,

non-rigid image registration treats images as soft objects and deformation of images

is allowed. In this thesis, we mainly focus on rigid image registration.

Image registration in the case that images are generated from the same sensor

device with the same physical parameters is called mono-modality image regis-

tration. In this case, one image is the same as, or similar to, others when they

are aligned. This kind of image registration problems has been solved well by

standard methods. However, for sequential programs, computational complexity

dramatically increases when one or more than one image is in high dimensions. For

example, in 2D-3D image registration, the target image is in 2D and the template

image is in 3D. In this kind of registration problems, volume rendering and the

optimization processes are normally computationally intensive and require a sig-

nificant amount of time. We consider parallel computing as a way to improve the

efficiency.

Hardware acceleration methods using hundreds or even thousands of processors

have been studied and employed for image registration [6]. Though it has been re-

ported with success in many cases, the physical size of large computer clusters limits

their use in clinical applications. Multi-core processing has become an attractive

alternative in the past few years. The multi-core architectures exploit hardware

parallelism on the chipsets while maintaining a small form factor. Ohara et al.

[18] implement mutual-information-based multi-resolution registration algorithms

on Cell Broadband Engines. However, it is only for 3D-3D registration, and the ran-

dom sampling strategy is used due to the memory limit of Cell Broadband Engines.

Chisu [5] investigates both graphics processing unit (GPU) and central processing

unit (CPU) acceleration techniques for 2D-3D rigid image registration. The author

applies GPUs for solving the optimization problems in registration processes, but

still use CPUs for the volume rendering computation. Based on our experiments,

the CPU time for the volume rendering computation is a significant part in the reg-

istration process; see Section 3.4. Hence, an efficient GPU computation for volume

rendering becomes crucial for optimal efficient performance.

In this thesis, a parallel 2D-3D image registration method is developed using

GPUs implemented by RapidMind Multi-core Development Platform as a way to

improve the efficiency. In contrast with the previous work [5, 18], our efficient image

registration method [32] performs almost the entire 2D-3D registration process
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using GPUs to fully exploit the multi-core parallel efficiency. Numerical results are

also included to verify this point.

Multi-modality image registration refers to the case that the images for reg-

istration are generated from different sensor devices (e.g., X-rays and magnetic

resonance imaging (MRI)) or the same sensor device with different physical pa-

rameters (e.g., T1-weighted MRI, T2-weighted MRI, and proton density (PD-)

weighted MRI). Comparing to mono-modality image registration, multi-modality

image registration is a challenging task since there is no direct relationship in pixel

intensity values between images. Mutual information, which first originates from

information theory and statistics, was introduced to the field of multi-modality im-

age registration as the similarity measure by Viola and Wells [28] and Collignon,

Maes, Delaere, Vandermeulen, Suetens, and Marchal [8] independently in 1995. In

mutual information, image intensity values are treated as random variables and

statistical characters of the intensity values are exploited in the similarity measure

to conduct image registration. The optimal transformation solutions are computed

by maximizing the mutual information. In this process, the evaluation of mutual

information requires the computation of probability density functions (PDFs) of

intensity values in images. However, because only discrete intensity values can be

acquired, PDFs can only be estimated using discrete probability distributions. Vi-

ola et al. and Collignon et al. provide different approaches to compute probability

distributions as ways to estimate PDFs. The mutual information is then computed

by exploiting the probability distributions. Viola et al. devise a histogramming

model. Although it is straightforward and computationally efficient, the resulting

mutual information is not a smooth function of the transformation parameters (the

first derivative is not continuous), which hampers the convergence to the optimal

solutions of optimization methods. Colligon et al. apply the Parzen windowing

strategy and the model is qualitatively better than, though not as computationally

efficient as, the model Viola et al. provide. However, the mutual information is still

not smooth. Maes, Collignon, Vandermeulen, Marchal, and Suetens [14] introduce

the partial volume model and the mutual information is generally much smoother

than before. However, when all or most of the pixel locations in the transformed

template image are aligned with the pixel locations in the target image during the

transformation, the mutual information function becomes non-smooth. This kind of

phenomenon is known as interpolation artifacts and it can hamper the performance

of optimization methods. In fact, this phenomenon also exists in the previous two

models. Chen and Varshney [3] suggest a generalized partial volume model us-

ing a way similar to B-spline interpolation in order to spread the weight of image

3



pixel intensity values, as an extension of the partial volume model. Albeit this

model helps reduce the interpolation artifacts, the interpolation artifacts cannot

be totally removed. Other suggestions for reducing interpolation artifacts include

resizing the pixel size [27], jittering or blurring images [27], and balancing the size

of bins for computing probability distributions [10, 26]. However, none of them has

fundamentally solved the problem. Any derivative-based optimization may easily

get stuck in one of those artifacts due to the non-smoothness. Because of that rea-

son, derivative-free methods, such as simplex methods [3, 4], Powell’s method [8],

simulated annealing [34], and genetic algorithms [33], are used in order to obtain

optimal solutions. However, it is not guaranteed that those optimization methods

always converge to the optimal solutions; failure cases can still occur based on our

experience.

This thesis specifically focuses on analyzing the reason why interpolation arti-

facts occur and devising a new model to totally remove the interpolation artifacts

and in turn smooth the mutual information. After realizing that the artifacts hap-

pen because discrete interpolated intensity values are extracted from the images for

computing the mutual information functions based on discrete random variables,

we suggest constructing continuous image functions, using all the information of

those continuous functions to compute the PDFs analytically, and then computing

the mutual information based on continuous random variables. Although similar

ideas have also been mentioned in [11] and [22], no concrete proposal has been

suggested due to the computational difficulty to evaluate the image functions in

continuous domains. To avoid that bottleneck, we assume the image functions to

be simple interpolants for observable pixel values. In this case, computing mutual

information functions numerically using analytical PDFs for 1D images is possible.

The resulting mutual information functions appear smooth without any artifact.

However, computing mutual information numerically using the analytical PDFs for

higher dimensional (2D or higher) images is challenging because the correspond-

ing analytical PDFs are more difficult to define. Alternatively, we reduce the task

for computing PDFs for higher dimensional images to the one for computing sev-

eral PDFs for 1D images. We evaluate the mutual information functions and no

artifact is observable. To verify the benefit of the smoothness of the mutual informa-

tion functions computed in our new model, a trust region optimization method (a

derivative-based method) and the Nelder-Mead method (a derivative-free method)

are applied to the new model. Fast convergence and high accuracy are obtained in

the experiments. The robustness of the model is verified at the same time.

The thesis is organized as follows. Chapter 2 includes an overview of image
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registration problems. Following a general description, different categories of image

registration classified using different criteria are introduced. In addition, mathe-

matical formulation is constructed by describing image registration as an optimiza-

tion problem. Chapter 3 shows a way to improve the efficiency using GPU-based

parallel computing. The 2D-3D image registration problem is introduced. The

parallel computing is recognized as a way to accelerate the registration process.

Numerical experiments are also included to verify this point. Chapter 4 discusses

multi-modality image registration. Mutual information, as a different similarity

measure from those in mono-modality image registration, is defined. Usually, mu-

tual information functions are defined as the ones of the probability distributions of

image intensity values. Different approaches to compute the probability distribu-

tions are shown based on different models. The interpolation artifact phenomenon

in those models is then demonstrated and analyzed. Some optimization methods

which are used for solving the registration problems are also described. Chapter

5 presents a new model to solve the interpolation artifact problems arising from

previous models. The motivation of constructing the new model is explained. A

concrete process of constructing the new model is described in the case that the

images are in one or two dimensions. The complexity of the new model is also

analyzed. Moreover, we discuss the relationship between the partial volume model

and our continuous model. Chapter 6 contains numerical experiments for verifying

the advantages of the new model by comparing it with other models. The mutual

information functions turn out to be quite smooth using our new model. At the

same time, the robustness of the new model is verified by changing the modalities

and resolution of images. By applying our new model to compute the mutual in-

formation, it can be observed that optimization methods converge to the optimal

solutions both efficiently and accurately. The numerical error analysis and the ef-

fect of different parameters in our model are also examined. Finally, conclusions

and future work are comprised in Chapter 7.
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Chapter 2

Image Registration

The objective of image registration is to align one image with another using the

optimal transformation in order to combine information from both images. Image

registration has been widely and successfully used in a lot of fields, such as medical

applications [15] and remote sensing [21]. In this chapter, we start with a general

description of image registration from the perspective of its applications, followed

by its classification with different criteria. Finally, we introduce the mathematical

criteria which are used to find the optimal transformation parameter sets.

2.1 General Description

Image registration is used to align a pair of images in the same coordinate system

in order to get comprehensive information from different images. For example,

physicians make clinical plans and decisions by comparing a medical image including

an organ of a particular patient with another medical image including a normal one.

However, the anatomical information in those two images may not be necessarily

aligned. It is necessary to transform one image to align with the other one so that

the difference between the anatomical information can be easily observed. Image

registration is also widely used in the field of remote sensing. By aligning two

images of the earth information at the same location but taken at different times,

it is easy to detect and further analyze the change.

In image registration, we assume one image is fixed and transform another one

to align with the fixed one. The image whose location is fixed is called the target

image. The image which is transformed to aligned with the target one is called the

template image.
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2.2 Classification

Image registration can be classified into different categories based on different as-

pects. For different types of registration, different registration methods are applied.

A fully description of the classification is included in [15]. Here, we only focus

on four aspects: registration bases, image dimensions, transformation types, and

modalities.

2.2.1 Registration Bases

Image registration can be conducted by extracting different information from im-

ages. Based on the kind of information, image registration can be classified into

landmark-based and intensity-based methods.

In landmark-based image registration, features of the objects (points, curva-

tures, gradients, etc.) in images are extracted for registration. The choice of

landmarks highly depends on the shape of the objects in images. Thus, locating

features precisely is difficult. Also, preprocessing of images, such as image segmen-

tation, is often needed before the registration, which may affect the robustness of

registration. In comparison, intensity-based image registration only use intensity

values to perform registration. Although it generally requires more computation

than landmark-based image registration, intensity-based image registration is con-

sidered more robust because no preprocessing of images is required. In this thesis,

we exclusively focus on intensity-based image registration.

2.2.2 Image Dimensions

The dimensions of the target and the template images are usually the same. Com-

mon types in this category include 2D-2D and 3D-3D image registration, which

indicate that the target and the template images are both in two dimensions or

three dimensions, respectively.

The dimensions of the target and the template images can also be different. For

example, in 2D-3D image registration, the target image is in two dimensions and

the template image is in three dimensions. Registering those two images requires

transforming the three dimensional template image, including mapping a 3D data

volume onto a 2D image, to align with the 2D target image. It will be discussed in

Chapter 3 in more details.
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2.2.3 Transformation Types

Image registration can be classified into rigid and non-rigid image registration. In

rigid image registration, we assume template images are rigid bodies, and only

rotation and translation are included in the transformation parameter sets. For

example, we consider three degrees of freedom when template images are in two

dimensions (rotation through one axis and translation in two dimensions), and six

degrees of freedom when template images are in three dimensions (rotation through

three axes and translation in three dimensions). In non-rigid image registration, in

addition to rigid transformations, deformable (e.g., affine, projective, curved, etc.)

transformations are also considered, which requires much more degrees of freedom

than rigid image registration.

Transformation types essentially depend on the characters of objects in the

images. If the attributes of objects are rigid (e.g., bones) or almost rigid (e.g., kid-

neys), rigid image registration is preferred. Conversely, if the attributes of objects

indicate that corresponding objects can be deformed (e.g., livers), it is more suitable

to perform non-rigid image registration. Although non-rigid image registration is

more general, the computational complexity is high due to its high degrees of free-

dom. To reduce the computational complexity, rigid image registration is usually

performed first to approximately align the images. Afterwards, non-rigid registra-

tion is implemented to get more accurate solutions. In this thesis, we focus on how

to perform rigid image registration efficiently and accurately.

2.2.4 Modalities

Image registration can also be classified into mono-modality and multi-modality

depending on image modalities. If the target and the template images are produced

by the same sensor with the same physical parameters, this kind of registration is

called mono-modality image registration. Multi-modality image registration refers

to the case that the target and the template images are produced by different sensors

or the same sensor with different physical parameters. Figure 2.1 shows an example

of medical images in different modalities (T1-, T2-, PD-weighted MRIs and CT).

Those images are from Retrospective Image Registration Evaluation Project1 and

1 The images and the standard transformations were provided as part of the project,
“Retrospective Image Registration Evaluation”, National Institutes of Health, Project Num-
ber 8R01EB002124-03, Principal Investigator, J. Michael Fitzpatrick, Vanderbilt University,
Nashville, TN.
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provided by courtesy of Professor Jeffery Orchard from the School of Computer

Science at the University of Waterloo. They are aligned using the gold-standard

transformations and further re-sampled.

Figure 2.1: T1- (upper left), T2- (upper right), PD- (lower left) weighted MRIs and

CT (lower right).

In mono-modality image registration, the target and the template images have

the same or similar intensity values when they are registered. However, in multi-

modality image registration, different sensors or different physical parameters result

in different intensity values between the target and the template images. Unlike

mono-modality image registration, direct relationship between the image intensity

values may not be easily found for registration.
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2.3 Mathematical Formulation

Image registration can be formulated as a mathematical problem. In this section,

we start with the mathematical description of image functions. We then indicate

that solving an image registration problem is equivalent to solving an optimization

problem. Also, different similarity measures for optimization are discussed.

2.3.1 Image Functions

An image refers to a finite set of digital value vectors located at a set of rectangle

grids (pixels) in a Cartesian coordinate system. We can formulate the relationship

as a map

Id : A 7−→ Nn,

where

A = {xi} $ Rm.

xi denotes the discrete grid positions in Rm, where i represents the indices of the

pixel locations, and m represents the dimensions of images (e.g., m = 2 denotes a

2D image; m = 3 denotes a 3D image). Each mapping value vector Id(xi) represents

the vector of the color intensity values in Nn, where n denotes the number of the

color channels. For example, an image in the RGB color space consists of three

color intensity values at each pixel location, in which case n = 3. In a grey image,

on the other hand, there is only one pixel intensity at each pixel location; i.e., n = 1.

We mainly consider grey images in this thesis. Intensity values normally range in

a subset of N. For example, intensity values range in the integers in the range of

[0, 255] for grey images encoded in 8 bits.

Although only intensity values at pixel locations can be observed, mathemati-

cally, we often consider images as functions defined not just at the pixel locations

but also on the whole image area with the observable intensity values as the sample

values of that function. More precisely, an image can be defined as a function

I : Rm 7−→ R, (2.1)

satisfying I(xi) = Id(xi). For simplicity, we denote the pixel value at xi by Ii.

Note that in practice, only I(xi) = Ii are given. The image function I(x) is usually

constructed by interpolation. The pre-image of I is denoted by I−1, representing

the domain of the image.

In this thesis, Ig(x) and If (x) denote the target image and the template image,

respectively.
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2.3.2 Optimization

Let φ be the transformation with a parameter set s. The transformed template

image can be written as

φ
(
If ; s

)
(x) .

The image registration problem is to find an optimal parameter set s such that the

difference between the target and the transformed template images is minimized.

Mathematically, the registration problem can be formulated as an unconstrained

minimization problem

s = argmin Γ
(
Ig (x) , φ

(
If ; s

)
(x)
)
,

where Γ is a measure of the difference between the two images. An alternative is

to consider the registration problem as the one to maximize the similarity between

the target and the transformed template images. The formulation thus becomes an

unconstrained maximization problem

s = argmax Ψ
(
Ig (x) , φ

(
If ; s

)
(x)
)
,

where Ψ is a measure of the similarity between the two images.

2.3.3 Similarity Measures

Let the set I represent the indices where the corresponding pixel locations are in

the intersection of domains of the target and the transformed template images,

denoted by

I def
=
{
i|xi ∈ Ig−1 ∩ φ

(
If ; s

)−1
}

.

In mono-modality image registration, the images for registration have the same or

close intensity maps. A commonly used similarity measure is the sum of squared

differences (SSD):

ΓSSD =
∑
i∈I

(
φ
(
If ; s

)
i
− Ig

i

)2
. (2.2)

It is the l2 norm of the pixel value differences between the target and the trans-

formed template images. SSD has the advantage that it is also the optimum mea-

sure even if those two images differ by a Gaussian noise [29].

Alternatively, the similarity measure can be chosen as the sum of absolute dif-

ferences (SAD):

ΓSAD =
∑
i∈I

∣∣φ (If ; s
)
i
− Ig

i

∣∣ .
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It is the l1 norm of the pixel value differences between the target and the trans-

formed template images.

If intensity values of the two images are not identical but linearly related when

they are aligned (e.g., two images are generated from the same sensor with the

same physical parameters but different numbers of bits are encoded), another kind

of similarity measure called correlation coefficient (CC) can be applied. It is defined

as

ΨCC =

∑
i∈I
(
Ig
i − Īg

i

) (
φ
(
If ; s

)
i
− φ̄

(
If ; s

)
i

)√∑
i∈I
(
Ig
i − Īg

i

)2∑
i∈I
(
φ (If ; s)i − φ̄ (If ; s)i

)2 ,

where Īg
i and φ̄(If ; s)i denote the mean of the intensity values in the target image

and the mean of the intensity values in the transformed template image , respec-

tively. Different from SSD and SAD, CC registers two images by maximizing the

objective function, assuming intensity values of the two images are positively re-

lated. On the contrary, in the case that intensity values of the two images are

negatively related, we can register the two images by minimizing the objective

function.

For multi-modality image registration, because there is no explicit relationship

between intensity values in the target and the transformed template images, sim-

ilarity measures, such as SAD, SSD, and CC, cannot be applied in this scenario.

Other similarity measures are used instead, and mutual information [8, 28] is most

commonly used among them. In this similarity measure, intensity values in the im-

ages for registration are treated as random variables. Mutual information is then

computed using their probabilities. It will be made more precise in Chapter 4.

Similarity measures normally depend on the image intensity values in the overlap

region of the target and the transformed template images. However, determining

the set I during the registration process is quite complicated. To simplify the

registration process, in this thesis, we assume the template image is periodic at the

region of the target image. We further assume the image intensity values applied

to similarity measures are always at the pixel locations of the target image.
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Chapter 3

GPU-based Acceleration

2D-3D image registration is playing important roles in many medical image appli-

cations, such as radiation therapies [30] and computer-assisted surgeries [24, 25].

However, this kind of registration is computationally intensive, especially due to

3D volume rendering involved in the whole registration procedure. We begin the

chapter with an introduction to 2D-3D mono-modality rigid image registration, and

then describe the Gauss-Newton method, which is used to solve the 2D-3D image

registration. Noticing that this problem can be accelerated using parallel comput-

ing on multi-core hardware, we also address how we implement the Gauss-Newton

method on graphics processing units (GPUs) using RapidMind Multi-core Devel-

opment Platform (RapidMind) to speed up the procedure. Numerical experiments

are included at the end of this chapter to show the improvement of the efficiency.

3.1 2D-3D Image Registration

In 2D-3D image registration, the target image is in 2D and the template image is

in 3D. The objective of 2D-3D image registration is to transform the 3D template

image to align with the 2D target image. This kind of registration is widely used in a

lot of medical applications. In computer assisted surgeries, to locate the instruments

in patients’ bodies, physicians often use 2D X-ray images collected from the sensors

attached to the instruments to adjust the positions of the instruments. Technically,

the 2D images collected by the sensors are called portal images. Although portal

images help physicians determine the positions of the instruments to some degree,

it is really difficult to precisely locate the positions of the instruments in patients’

3D bodies using 2D images. In order to solve the problem, a 3D CT data volume
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for a patient’s body is often collected before a surgery. During the surgery, it is

transformed to align with the portal images in order to get a precise position of

the instrument. Similarly, in radiation therapies, due to the harm of radiation,

cancers are supposed to receive more radiation than healthy tissues. 2D-3D image

registration is used to precisely adjust the focus of the radiation by aligning a pre-

acquired 3D CT data volume of the tissues with 2D portal images collected by a

sensor attached to the beam collimator.

Different from other image registration where the target and the template images

are in the same dimensions, a 2D-3D image registration process involves volume

rendering from a 3D image to a 2D image. After rotated and translated, the 3D

volume is rendered into a 2D image which is expected to be close to the portal image.

Technically, the generated 2D image is called a digitally reconstructed radiograph

(DRR). Figure 3.1 shows the schematic of the 2D-3D image registration procedure.

With an initial guess of the transformation, the DRR is computed. By comparing

it with the portal image based on some similarity measure, new transformation

parameters are generated to transform the 3D image in the next iteration. The

process is iterated till the solutions converge.

Figure 3.1: The iteration scheme of 2D-3D medical image registration.

Volume rendering is an essential step to compute DRRs. The real mechanism for

volume rendering is complex since the effect of attenuation need to be considered.

For simplicity, we assume the volume rendering refers to a perspective projection

from a 3D volume onto a 2D plane, as is shown in Figure 3.2.
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Figure 3.2: The framework of DRR construction.

Algorithms for volume rendering include ray casting [20] and the shear-warp

factorization [12]. Although efficient, the shear-warp factorization makes artifacts

in the resulting DRRs under certain circumstances and thus is not suitable for

accurate image registration [12]. In comparison, ray casting is more accurate and

simple. Thus, it is chosen as the volume rendering algorithm in our experiments.

Figure 3.3 shows the mechanism of a ray casting algorithm. Each intensity

value in the DRR is computed as follows: a ray emitted from the ray source passes

through a specific pixel location in the DRR, and eventually passes through the

3D volume. In principle, the pixel value on the DRR should be calculated as the

accumulated intensity values of the 3D volume along the ray. However, it is quite

expensive to determine the line integral along the ray. Instead, the ray casting

algorithm selects m equidistant samples which are the intercepts of the ray with m

concentric spheres with different radii covering the 3D volume. The intensity value

of the corresponding pixel on DRR is computed as the sum of the intensity values

of those m samples, which are determined by interpolation based on voxels in the

3D volume. In principle, the centers of those concentric spheres are assume to be

located at the ray source. For intensity values on other pixels of the DRR, we use

the same strategy and use the same spheres to determine the samples. Normally,

those spheres need to cover the possible positions of the 3D volume to achieve

accurate solutions.

The complexity of the ray casting algorithm is O(N2m), assuming the resolution

of the DRR is N × N . Although simple, the volume rendering process can be

computationally intensive, especially when DRRs are in high resolution.
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Figure 3.3: The schematic of the ray casting algorithm.

3.2 Gauss-Newton Method

The Gauss-Newton method is one of the most popular optimization methods for

mono-modality rigid image registration. Sum of squared differences (2.2) is often

used as the similarity measure in this method.

Let Ig and If be the portal image and the 3D data volume, respectively. Also, we

denote the DRR by φ(If ; s), where s is the transformation parameter set. Precisely,

s = (θx, θy, θz, τx, τy, τz)
T , where θx, θy, and θz are the rotation angles in the three

axes, and τx, τy, and τz are the translation in the x, y, and z directions, respectively.

Equation (2.2) is a nonlinear least squares problem. Let symbol sn denote the

transformation parameter set at the iteration n, and ∆sn+1 = sn+1− sn denote the

change of solutions between iteration n and n + 1. For simplicity, we omit If in

φ(If ; s). By Taylor series expansion, at pixel (i, j), φ(sn+1)i,j can be written as

φ(sn+1)i,j = φ(sn)i,j +∇φ(sn)T
i,j ·∆sn+1 + · · · , (3.1)

where ∇φ(sn)i,j = (
∂φ(sn)i,j

∂θx
,

∂φ(sn)i,j

∂θy
,

∂φ(sn)i,j

∂θz
,

∂φ(sn)i,j

∂τx
,

∂φ(sn)i,j

∂τy
,

∂φ(sn)i,j

∂τz
)T is the

gradient of φ(sn)i,j. By substituting (3.1) into (2.2), the optimization problem can

be approximated by

min
∆sn+1

∑
i,j

(
φ (sn)i,j − Ig

i,j +∇φ (sn)T
i,j ·∆sn+1

)2

.

This is a linear least squares problem which can be rewritten in the matrix form as

min
x
‖Ax− b‖2

2 ,
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where A = ∇φ(sn) = N2 × 6 matrix, x = ∆sn+1, and b = Ig − φ(sn) = N2 × 1

vector, assuming the resolution of the DRR is N × N . The linear least squares

problem can then be solved by the normal equation

AT Ax = ATb (3.2)

using Gaussian elimination on a 6× 6 linear system.

Once x = ∆sn+1 is determined, it can be used to update the orientation of the

3D volume. The procedure is repeated until {sn} have converged to an accurate

solution.

The computational complexity is linear to the number of pixels in the DRRs and

portal images. In the case that the DRRs or portal images are in high resolution,

the complexity can be large.

3.3 Parallel Computing

The 2D-3D image registration is often used in clinical treatments, and the efficiency

of the registration process is important. However, the large complexity in the

algorithms, especially the DRR construction, results in considerable delay. Parallel

computing is considered as a way to reduce the complexity and accelerate the

registration process.

In each iteration, the first step of the registration process is constructing the

DRR. Note rotating and translating the 3D data volume is equivalent to rotating

and translating the sample points by opposite values. Taking the solution of ∆sn

in the previous iteration, the sample points are rotated and translated. Because we

only consider rigid transformations, all positions of the sample points are applied to

the same linear transformation, and their transformed positions can be computed

in parallel. Given the intensity value and the position of each voxel in the 3D data

volume , the interpolation of the intensity values at the sample points can be done

in parallel. Considering each sample point in each sphere is from a pixel point in

the DRR, the sample points in each sphere can be constructed as a 2D array. Since

each sphere has the same arrangement of points, the entire sample points can be

formed as a 3D array. Finally, the interpolated intensity values at the sample points

corresponding to a ray is summed up as an intensity value in the DRRs. This is

equivalent to project the 3D array, whose elements represent the pixel values at the

sample points, into a 2D array. That can also be parallelized on each simulated ray

for constructing DRRs.
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After the DRR is computed, the second step is using the Gauss-Newton method

to acquire a new solution. This procedure can also be parallelized. In order to com-

pute the matrix A in (3.2), the gradient vector at each pixel (i, j) is approximated

by finite difference. For example,

∂φ (sn)i,j

∂θx

≈
φ (sn + ∆sθx)i,j − φ (sn)i,j

∆θx

, (3.3)

where ∆sθx = (∆θx, 0, 0, 0, 0, 0)T . φ(θn
x +∆θx) is obtained from the DRR by chang-

ing the rotation angle θn
x to θn

x + ∆θx but keeping the other parameters fixed. The

parallel DRR construction has been explained above. Then, the subtraction and

division in (3.3) are easily computed in parallel. Other derivatives can also be

computed in parallel in similar ways. Finally, we have six 2D arrays of ∂φ
∂θx

, · · · ,
∂φ
∂τz

which correspond to the six columns of A. To compute each entry in AT A

in the normal equation, we take two derivative arrays, multiply the corresponding

elements in parallel, and then use a reduction operation to compute the global sum.

Regarding the right-hand side, b represents the difference between Ig and φ(sn) ,

which can be easily computed in parallel. ATb can be computed in parallel in a

similar manner as AT A. However, to solve the final 6× 6 linear system in parallel

is not that obvious. Fortunately, the scale of the system is so minimal that the

computational time for this part can almost be neglected in the whole registra-

tion process. This is the only part that parallel computing is not applied in the

registration procedure.

3.3.1 Graphics Processing Units

Multi-processing is a commonly used technique for parallel computing. In a multi-

processing system, more than one central processing unit (CPU) in one computer

system is exploited to complete different parts of one task at the same time. In

this kind of system, a task is first divided into several parts. Each part is assigned

to each processor and then implemented sequentially. Data computed by each sub-

task need to communicate with others if necessary. Finally, the data computed by

different processors are gathered together.

Multi-processing is powerful. However, it normally takes large space and thus

is not suitable for clinical environment. Also, maintaining such a giant system is

not easy.

Different from multiprocessing systems, multi-core architectures refer to the

case that more than one independent core is built in the same integrated circuit.
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Compared to multi-processing systems, multi-core processors have a much smaller

form factor. Multi-core CPUs, cell processors, and GPUs are all in this category.

Considering modern GPUs normally have more than 100 cores which are more than

the other two, GPUs are used as the underlying hardware to implement the parallel

2D-3D image registration in this thesis.

GPUs are a kind of multi-core devices for graphics rendering for personal com-

puters (PCs), workstations or game consoles. Due to their highly parallel architec-

tures, GPUs are widely used for parallel stream computing nowadays. Figure 3.4

shows the GPU of NVIDIA GeForce 8800 GTX, which is exploited in the experi-

ments.

Figure 3.4: NVIDIA GeForce 8800 GTX.

3.3.2 RapidMind Multi-Core Development Platform

To make full use of the cores in a GPU, several GPU programming languages,

such as OpenGL [31], Brook for GPUs [1], and Cg [16], have been designed in

the past few years. However, those languages normally require programmers to

have substantial knowledge of the underlying architectures such as vertex shader,

rasterizer, texture maps, etc.

The RapidMind Multi-core Development Platform1 makes GPU programming

more convenient. As shown in Figure 3.5, the platform acts as a median layer

between the applications and the multi-core hardware (e.g., GPUs). It essentially

abstracts the hardware complexity from the users and makes GPU programming

1http://www.rapidmind.com
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much easier than before. In RapidMind, the parallel processing arithmetic is per-

formed as array operations. Parallel processing is achieved by performing opera-

tions on all the elements in all the arrays concurrently. Also, it can automatically

optimize the code to further improve the efficiency of the performance.

Figure 3.5: The architecture of RapidMind. Copyright 2008 RapidMind Inc. All

rights reserved.

We use RapidMind to implement the registration process in parallel on a GPU

for improving the efficiency. All the procedures, except for solving a 6 × 6 linear

system, are executed in a GPU in parallel in each iteration. After the linear system

is computed, we transfer the matrix AT A and right-hand side ATb to a CPU and

solve the linear equations using the Gauss elimination method in order to obtain a

new update for the transformation parameter set. Afterwards, we transfer the new

solution from the CPU back to the GPU for the next iteration.

3.4 Numerical Results

Both synthetic and clinical data are used to demonstrate the efficiency of the reg-

istration process in parallel using RapidMind on GPUs. For both of the data, two
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kinds of experiments, including the regular C++ language on CPUs and the Rapid-

Mind code on GPUs, are executed on the same registration problem. The C++

code is used to test the CPU efficiency, and RapidMind code is used to test the

GPU efficiency. Their times are recorded for comparison. All the experiments are

performed on a standard PC running with Ubuntu 7.04 Linux operating system,

Intel processor with 3GHz, 1GB memory, and a graphics card of NVIDIA GeForce

8800 GTX.

The common parameters for all the experiments are fixed for consistency. As

shown in Figure 3.2, the center of the 3D volume is placed in the center of the 3D

coordinates. The initial guess of the transformation is set as s = (0, 0, 0, 0, 0, 0)T

The center of the 2D projection plane is located on the z axis, and the plane is

perpendicular to z axis. The ray source is also located on the z axis. In the

experiments, the positions of the ray source and the center of the projection plane

are chosen as 2.5 × Lz and 1.5 × Lz, respectively, where Lz is the length of the

3D volume in the z direction. Regarding DRR construction, we adopt ray casting

algorithm explained in Section 3.1. The radii of those concentric spheres arranging

from Lz to 4× Lz seem sufficient to cover the possible positions of the 3D volume.

The portal images are synthesized by constructing DRRs with known transfor-

mation parameter sets for the 3D volume. Also, we assume the resolution of DRRs

is the same as that of corresponding target 2D images.

3.4.1 Synthetic Data

Synthetic data are used to test the acceleration regarding the same registration

problem but with different resolution images. An advantage of using synthetic data

is that we can generate image volumes with different resolution without affecting the

image quality. In the experiments, the 3D volume is chosen as a white cube (e.g., all

intensity values in the 3D volume are 255 for 8-bit grey images). For consistency,

the size of the cube is scaled to [0, 1] × [0, 1] × [0, 1] for all the resolution. We

construct the initial DRRs without any rotation or translation. The portal images

are simulated using the transformation parameter set s as (5◦, 5◦, 5◦, 0.1, 0.1, 0.1)T in

all of the experiments. We also keep the resolution of the white cube, the resolution

of the DRR, and the resolution of the portal image consistent with one another in

each experiment. For instance, assuming the resolution of the white cube is set as

64×64×64, the resolution of the DRR and the portal image are also set as 64×64.

Figure 3.6 (left) shows the initial guess of the DRR and Figure 3.6 (right) shows

the simulated target image.
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Figure 3.6: The initial guess of the DRR (left) and simulated target image using

the transformation parameter set s as (5◦, 5◦, 5◦, 0.1, 0.1, 0.1)T (right).

Table 3.1 shows the CPU times for registration using images with different res-

olution. The 3D volume resolution varies from 16 × 16 × 16 to 128 × 128 × 128.

Each total CPU time is subdivided into two CPU times corresponding to the time

for DRR computation (DRR), which is included in both DRR construction and

linearized optimization problem, and the time for the rest non-DRR computa-

tion (Non-DRR). Note that the times are per iteration. The stopping criteria are

‖∆sn‖2 < 0.1. The total numbers of iterations are also shown.

As the 3D resolution increases, the CPU time for the regular C++ code increases

with a factor of around 10. While the per iteration time is less than 1 second for

the lower resolution dataset, it increases rapidly to over 50 seconds for the higher

resolution dataset (128 × 128 × 128). The CPU time for the RapidMind code

increases much slower; the per iteration time is less than 1 second for all datasets.

For the higher resolution dataset (128× 128× 128), the total registration time for

RapidMind is around 2 seconds, whereas for regular C++, it is almost 6 minutes.

By comparing the DRR times and non-DRR times in the column of regular

C++, we note that the former is around 2-4 times longer than the latter. Because

DRR computing dominates the CPU time in the entire registration process, it is

important to use efficient parallel algorithms for DRR computation to improve the

efficiency of the performance. Also, it is easy to implement the algorithms using

RapidMind on GPUs.

We have also tried different parameters to construct DRRs and simulated the

portal images. Similar timing results are achieved.
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Resolution Time (sec) Regurlar C++ RapidMind

DRR 0.012 0.029

16× 16× 16 Non-DRR 0.003 0.109

Total 0.015 0.138

Iteration 6 6

Resolution Time (sec) Regular C++ RapidMind

DRR 0.140 0.047

32× 32× 32 Non-DRR 0.060 0.139

Total 0.200 0.186

Iteration 5 5

Resolution Time (sec) Regular C++ RapidMind

DRR 3.990 0.091

64× 64× 64 Non-DRR 1.318 0.171

Total 5.308 0.262

Iteration 5 5

Resolution Time (sec) Regular C++ RapidMind

DRR 40.331 0.152

128× 128× 128 Non-DRR 16.388 0.248

Total 56.720 0.400

Iteration 6 6

Table 3.1: Average CPU times for each iteration of the image registration process.
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3.4.2 Clinical Data

We also demonstrate the capability of RapidMind on GPUs using clinical data.

The experimental image volume is a real 3D CT volume from the database of the

Department of Radiology at the University of Iowa, which shows a tripod fracture

of a skull2; see Figure 3.7.

Figure 3.7: A tripod fracture of a skull

The resolution of the image is 256 × 256 × 203 with each voxel dimension as

0.7mm× 0.7mm× 2mm. This 3D volume is quite large and we only use the central

chuck in the first 100 slices. The resulting resolution is 128 × 128 × 100 for our

numerical experiments. The portal images are also synthesized similar to the first

experiment, but we use different parameters, which are shown in the first column of

Table 3.2. The parameters are still 0 for constructing the initial DRRs. The CPU

times for the entire image registration process are also shown in Table 3.2. The

stopping criteria are chosen as ‖∆s‖2 < 0.8. The resulting relative errors are less

than 0.012 for all of our experiments by comparing the final numerical solutions

with the corresponding ground truths.

Similar to the synthetic experiments, the RapidMind implementation accelerates

the registration process by a factor of over 100 for clinical images.

2http://www.radiology.uiowa.edu/downloads/
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Portal image parameters Time (sec) Regular C++ RapidMind

Rotation: DRR 123.27 0.62

(2◦, 2◦, 2◦) Non-DRR 44.89 1.13

Translation: Total 168.16 1.75

(2mm,2mm,2mm) Iteration 5 5

Portal image parameters Time (sec) Regular C++ RapidMind

Rotation: DRR 191.94 0.98

(4◦, 4◦, 4◦) Non-DRR 71.36 1.72

Translation: Total 263.30 2.70

(4mm,4mm,4mm) Iteration 8 8

Portal image parameters Time (sec) Regular C++ RapidMind

Rotation: DRR 267.96 1.32

(6◦, 6◦, 6◦) Non-DRR 103.43 2.33

Translation: Total 371.39 3.65

(6mm,6mm,6mm) Iteration 11 11

Table 3.2: Total CPU times for the entire image registration process.
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Chapter 4

Multi-modality Image

Registration

In this chapter, mutual information, which is one of the similarity measures for

multi-modality image registration, is discussed. The definition of the mutual in-

formation is first introduced, followed by different models for computing it. The

optimal translations can normally be obtained by maximizing the mutual infor-

mation functions. However, non-smoothness and interpolation artifacts, which are

derived from the models, hamper standard optimization processes. We discuss

those issues for different models. Optimization methods suitable for those models

are also discussed.

4.1 Mutual Information

In multi-modality image registration, since there is no explicit relationship between

intensity values in the target and the template images, similarity measures cannot

use the intensity values directly. Instead, the statistical properties of intensity

values are exploited and used in similarity measures.

In the perspective of statistics, the image intensity value in one image can be

considered as a random variable. Entropy [9] is defined as a function of its probabil-

ity distribution if the random variable is discrete, or its probability density function

(PDF) if the random variable is continuous. It is a measure of the randomness of

the random variable. This term originally arises from classical thermodynamics as a

measure of randomness of molecules in a system. Recently, it has been widely used

in statistics, chemical thermodynamics, statistical mechanics, quantum mechanics,
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astrophysics, information theory, and many other areas. In the area of information

theory, Shannon entropy [23] is commonly used. Also, it has also become a popular

similarity measure in image registration in the last decade.

4.1.1 Discrete Cases

Given a discrete random variable X, let {pX
i }NX

i=1 represent its probability distribu-

tion, assuming there are NX possible observations. We denote the entropy of X by

the symbol HX , which is defined as

HX def
= −

NX∑
i=1

pX
i log pX

i .

Note that in the case pX
i = 0, we simply assign pX

i log pX
i = 0.

The joint entropy is a term describing the relationship between two random

variables. It is essentially a function of the joint probability distribution. Let

Y be another discrete random variable with the probability distribution {pY
j }NY

j=1,

where NY denotes the number of possible observations. Let the joint probability

distribution of X and Y be pXY
i,j , where i = 1, · · · , NX and j = 1, · · · , NY . The

joint entropy of these two random variables HXY is defined as

HXY def
= −

NX∑
i=1

NY∑
j=1

pXY
i,j log pXY

i,j . (4.1)

The joint entropy characterizes how related two random variables are, or how

random the joint distribution is. The more related the two random variables are, the

lower the joint entropy is, and vice versa. This can be verified from two examples.

In the first example, the two random variables, X and Y , are independent; i.e.,

pXY
i,j = pX

i · pY
j i = 1, · · · , NX ; j = 1, · · · , NY .

27



The joint entropy is computed by

HXY = −
NX∑
i=1

NY∑
j=1

pXY
i,j log pXY

i,j

= −
NX∑
i=1

NY∑
j=1

pX
i pY

j log
(
pX

i pY
j

)
= −

NX∑
i=1

NY∑
j=1

pX
i pY

j log pX
i −

NX∑
i=1

NY∑
j=1

pX
i pY

j log pY
j

= −
NX∑
i=1

pX
i log pX

i −
NY∑
j=1

pY
j log pY

j

= HX + HY ,

where HX and HY represent the individual entropies for X and Y , respectively.

In another example, suppose X and Y have the relationship X = Y . We have

pXY
i,j =

pX
i = pY

j if i = j,

0 otherwise.

In this case, the joint entropy will be

HXY = HX = HY .

Comparing to the first example where the two random variables are independent

of each other, after the relationship X = Y is specified, the two random variables

are more related than before. Accordingly, the joint entropy also decreases .

The relationship between the information of X and Y can be expressed using

the diagram shown in Figure 4.1. The information of X is represented using the left

circle, and its area denotes the entropy of X; the information of Y is demonstrated

using the right circle, and its area denotes the entropy of Y . The area of the union

of the two circles represents the joint entropy of X and Y . When the two random

variables are less related, the two circles will fall apart. The union of the two circles

will be larger, and the joint entropy will be higher (e.g., HX + HY when X and Y

are independent). In the contrary, when the two random variables are more related,

the two circles will get closer. The union of the two circles will be smaller, and the

joint entropy will be lower (e.g., HX or HY when X = Y ).

Mutual information is a measure of the reduction of the uncertainty of one

variable given the knowledge of the other one. Let the symbol M represent the
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HX M HY

HXY

Figure 4.1: The relationship between the information of X and Y .

mutual information. It is defined as

M
def
= HX + HY −HXY . (4.2)

In Figure 4.1, mutual information is denoted by the intersection of the two circles

representing individual entropies. When the two random variables are more related,

the two circles are closer, the measure of the intersection is larger, and the mutual

information is higher. When the two random variables are less related, the two

circles spread apart. The measure of the intersection decreases, and so does the

mutual information.

4.1.2 Continuous Cases

Shannon entropy can easily be extended for continuous random variables. As a

counterpart, let X̃ and Ỹ be two continuous random variables associated with the

PDFs of pX and pY respectively, and their joint PDF be pXY . The individual

entropy of X̃ is denoted by H̃X , which is defined as

H̃X def
= −

∫ +∞

−∞
pX(x) log pX(x)dx. (4.3)

Similarly, the individual entropy H̃Y of Ỹ is defined as

H̃Y def
= −

∫ +∞

−∞
pY (y) log pY (y)dy. (4.4)

The joint entropy H̃XY is defined as

H̃XY def
= −

∫ +∞

−∞

∫ +∞

−∞
pXY (x, y) log pXY (x, y)dxdy.
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Accordingly, the mutual information M̃ is defined as

M̃
def
= H̃X + H̃Y − H̃XY .

They have similar interpretations with those in the discrete case.

4.1.3 Mutual Information for Image Registration

By (2.1), the image intensity value can be assumed to be a continuous function

with respect to the image coordinates. In this case, the image intensity value is

treated as a continuous random variable, and the observable pixel intensity values

are treated as observations of the random variable. Shannon entropy can be used

here to represent how much information an image has.

For multi-modality image registration, the target image intensity value Ig and

the transformed template image intensity value φ(If ; s) are assumed to be differ-

ent random variables associated with different distributions. The PDFs for the

target image and the transformed template image are represented by pg and pf ,

respectively. Their entropies are represented by H̃g and H̃f .

In multi-modality image registration, let H̃fg be the joint entropy of the two

images, which can be considered as the similarity measure. The target image inten-

sity value Ig and transformed template image intensity value φ(If ; s) are considered

as two random variables. Since the transformed template image is a function with

respect to the transformation s, H̃fg is also a function of s. When the two images

are aligned, since the two random variables are most related, H̃fg obtains its min-

imum. Otherwise, while the two images fall apart, H̃fg will increase. Thus, the

optimal transformation parameter set for registering two images can be obtained

by minimizing the joint entropy.

Mutual information M̃ has a similar interpretation to the joint entropy. We

can find the optimal transformation parameter set to align two images by maxi-

mizing the mutual information. However, in literature, it is preferred using mutual

information. The reason is because there may be an incorrect global minimum for

the joint entropy in certain cases. Considering the case that two images have only

background regions overlapped, if the region of interest is defined as the intersec-

tion of the two images, the joint entropy will attain its global minimum, which is

not the desired solution [10, 19]. In our case, the region of interest is defined as

the region of the target image. The template image is assumed to be periodic in

the transformation process. The joint entropy is less possible to have the same

30



problem. Though, we still choose mutual information as the similarity measure in

this thesis.

Although image intensity values can be treated as continuous random variables,

the observable images are always discrete arrays, and only finite observations of

the underlying continuous image functions can be obtained. Thus, it is difficult to

attain the individual and joint PDFs of image intensity values. As a result, finite

observations of intensity values lead people to use entropies and mutual information

based on discrete random variables for image registration. As a counterpart, in the

mutual information definition based on discrete random variables, we denote Hg and

Hf by the individual entropies for the target image and the transformed template

image respectively, Hfg by the joint entropy, and M by the mutual information.

4.2 Probability Distributions

Note that mutual information depends on the individual entropies and the joint

entropy. Individual entropies depend on individual probability distributions, and

the joint entropy depends on the joint probability distribution. Thus, mutual in-

formation is determined by how probability distributions are constructed.

Formally, let [0, Imax] be the range of the intensity values of an image (e.g.,

Imax = 255 for an image encoded in 8 bits). The possible range is further divided

into subintervals, or bins,

Bi
def
= [Ji−1, Ji) i = 1, · · · , NB − 1,

BNB

def
= [JNB−1, JNB

] ,

where Ji = ihB, hB = Imax

NB
, and NB denotes the number of bins. The individual

probability distribution is constructed by assigning appropriate probabilities pi to

the corresponding bins Bi where i = 1, · · · , NB. The basic idea is that pi represents

the proportion of the pixels located in each bin Bi.

The joint probability distribution can be constructed in a similar way. Let

{Bg
i }

Ng
B

i=1 be the bin partition for the target image and {Bf
j }

Nf
B

j=1 be the bin partition

for the transformed template image, where N g
B and N f

B denote the number of bins

for the target image and the transformed template image, respectively. A natural

bin partition approach for the joint probability distribution can be defined as

Bfg
i,j

def
=
{

(α, β) |α ∈ Bg
i , β ∈ Bf

j

}
i = 1, · · · , N g

B; j = 1, · · · , N f
B.
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The corresponding joint probability distribution is denoted by pfg
i,j . It is used to

quantify the measure of the pixels located in each corresponding bin.

The individual and joint probability distributions can be computed differently

using different models and further exploited to compute the mutual information.

We will mainly discuss different models in this section.

4.2.1 Interpolation-based Models

One kind of models is called interpolation-based models. In this class of models,

the calculation of mutual information requires the evaluation of intensity values

located at the same fixed positions for both the target and the transformed template

images. For simplicity, evaluation positions are chosen as the pixel locations in the

target image. Thus, for the target image, observable intensity values are directly

used for calculating the individual entropy Hg and the joint entropy Hfg. For the

transformed template image, the pixel locations may not generally be aligned with

the pixel locations of the target image. However, pixel pairs of the target image

and the transformed template image are necessary in order to compute the joint

probability distribution. Intensity values need to be assigned at the pixel locations

of the target image. The interpolation-based models compute the intensity values

using interpolation strategies.

Having the pixel pairs, the simplest way to calculate probability distributions

is histogramming. The individual and joint probabilities associated with each bin

are evaluated by counting the frequency of the intensities whose values are located

at the corresponding bin. We further normalize the frequencies so that the sums of

the normalized frequencies are equal to ones, which is consistent with the definition

of probability distributions. Mathematically, suppose the number of pixels in the

images is N and let 1S(·) denote the characteristic function of set S which is defined

as

1S(α)
def
=

1 if α ∈ S,

0 otherwise.

The individual probability distribution for the target image is then computed by

pg
i =

1

N

N∑
k=1

1Bg
i
(Ig

k) i = 1, · · · , N g
B,

where Ig
k represents each pixel intensity value in the target image. The individual
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probability distribution for the transformed template image is computed by

pf
j (s) =

1

N

N∑
k=1

1Bf
j

(
φ
(
If ; s

)
k

)
j = 1, · · · , N f

B, (4.5)

where φ(If ; s)k denotes each interpolated pixel intensity value in the transformed

template image. Finally, the joint probability distribution is defined as

pfg
i,j(s) =

1

N

N∑
k=1

1Bfg
i,j

(
Ig
k , φ

(
If ; s

)
k

)
i = 1, · · · , N g

B; j = 1, · · · , N f
B. (4.6)

Figure 4.2 shows the individual entropy for the target image, the individual

entropy for the transformed template image, the joint entropy, and the mutual

information with respect to the horizontal translation using the histogramming

model. The target image is chosen as the T1-weighted MRI; the template image

is chosen as the CT. Both of the images are shown in Figure 2.1. The number of

bins are set by N g
B = N f

B = 128. The interpolation strategy is chosen as bilinear

interpolation in the processes of image transformations. Note that the two images

are roughly aligned. It can be observed that the mutual information obtains its

maximum when the translation is near 0. However, we may also observe that

the mutual information is not smooth. Notice that the characteristic function

1S(·) is a discontinuous function. By (4.5) and (4.6), pf
i (s) and pfg

i,j(s) are in turn

discontinuous functions.

It can also be illustrated using an image plot shown in Figure 4.3. Suppose we

only consider the case for 1D images. The transformation parameter set s only

contains the translation τ in one direction. Two adjacent pixels of the transformed

template image are shown as the circle symbols when τ = τ0. The interpolated

intensity value at xk is φ(If ; τ0)k. In this case, it falls into the bin Bf
i . In the case

that we translate the transformed template image a little further to the right, the

two new pixel locations are in turn shifted to the right, as shown by the square

symbols. Then the interpolated value at xk becomes φ(If ; τ0 + ∆τ)k, which now

falls into the bin Bf
i−1. In this process, the frequency of pixels in the bin Bf

i−1

increases by 1 and the frequency of the pixels in the bin Bf
i decreases by 1, leading

to a discontinuous change in the probabilities. As a result, the entropies and mutual

information are also not smooth.

In order to smooth the mutual information function, an intuitive approach is

substituting the characteristic function for other functions that are smoother. One

example is called Parzen windowing. Let

Jg

i− 1
2

def
=

1

2

(
Jg

i−1 + Jg
i

)
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Figure 4.2: The individual entropy for the target image (upper left), the individual

entropy for the transformed template image (upper right), the joint entropy (lower

left), and the mutual information (lower right) using the histogramming model, as

one of the interpolation-based models.
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Figure 4.3: The interpolated intensity value in the transformed template image may

cross the boundaries of bins and lead to discontinuous change of the probabilities.

and

Jf

j− 1
2

def
=

1

2

(
Jf

j−1 + Jf
j

)
be the central intensity values at each bin for the target image and the transformed

template image, respectively. Let W(·) be the kernel function which can be used to

substitute the characteristic function. Probability distributions are then calculated

as

pg
i =

1∑
m pg

m

N∑
k=1

W
(
Ig
k − Jg

i− 1
2

)
i = 1, · · · , N g

B,

pf
j (s) =

1∑
n pf

n (s)

N∑
k=1

W
(
φ
(
If ; s

)
k
− Jf

j− 1
2

)
j = 1, · · · , N f

B, (4.7)

and

pfg
i,j(s) =

1∑
m,n pfg

m,n (s)

N∑
k=1

W
((

Ig
k , φ

(
If ; s

)
k

)
−
(
Jg

i− 1
2

, Jf

j− 1
2

))
i = 1, · · · , N g

B; j = 1, · · · , N f
B. (4.8)

The kernel function W(·) is often chosen to satisfy

1. W ∈ C0,

2.
∫ +∞
−∞ W(α)dα = 1.
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The first condition is to guarantee that mutual information is at least continuous.

The second one is to guarantee that it is consistent with the idea to construct the

probability distributions. Common weighting functions W include Gaussian func-

tions, double exponential functions, and splines. The resulting mutual information

functions are then continuous. However, they are still not smooth enough. Note

that in (4.7) and (4.8), the normalization factors 1/
∑

n pf
n(s) and 1/

∑
m,n pfg

m,n(s)

depend on the transformations and thus may not be smooth. Accordingly, pf
j (s)

and pfg
i,j(s) are not smooth and so are Hf and Hfg. Finally, the mutual information

is in turn not smooth. Some special kernel functions such as B-spline functions [2]

can avoid the normalization factors depending on transformations. However, there

will still be interpolation artifacts phenomenon; see Section 4.3.

Since interpolation for the transformed template image is necessary in the trans-

formation process to determine the pixel intensity value pairs, we call this kind of

models as interpolation-based models. The flow chart of interpolation-based mod-

els are shown in Figure 4.4. Because interpolation is involved, from the perspective

of the transformed template image, the sample locations change with respect to

the transformations. Thus, the individual probability distribution and joint prob-

ability distribution will change with respect to the transformation. That is why

the individual entropy for the transformed template image will be affected by the

transformation, as shown in Figure 4.2. However, conceptually, the individual en-

tropy for the transformed template image should not depend on transformations

since the underlying image function and hence its intensity values do not change

under rigid transformations.

4.2.2 Partial Volume Models

To solve the problem that the individual entropy depends on the transformation,

the partial volume model [14] is introduced. Similar to the interpolation-based

models, the partial volume model uses the intensity values of the target image to

compute the individual probability distribution and the individual entropy for the

target image in the same way as the histogramming model. However, different from

the interpolation-based models, the individual probability distribution and the in-

dividual entropy for the transformed template image are also computed by taking

the intensity values of the transformed template image at its own pixel locations in

the same way as the individual probability distribution and the individual entropy

for the target image. In this case, its intensity values do not depend on transforma-

tions and hence no interpolation is required. Thus, pf
i and Hf is independent of the
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Figure 4.4: The flow chart of interpolation-based models.

transformation parameters. However, since the pixel locations in the transformed

template image may not necessarily be aligned with those in the target image, we

do not have the intensity pairs directly. The joint probability distribution in turn

cannot be calculated directly. Other strategies need to be explored.

To explain how the joint entropy is calculated, we assume the target image and

the template image are both in 2D for simplicity. When the template image is

transformed, from another perspective, the transformation can be considered as

the one applied to the coordinates of the image functions instead of the intensity

values. After applying the transformation, the template image becomes If (ξ(x, y)),

where (x, y) represents the coordinates of the image functions and ξ(·) denotes the

transformation applied to the coordinates. Let (xf
k , y

f
l ), k = 1, · · · , Nx and l =

1, · · · , Ny, be the pixel locations in the template image, where Nx×Ny denotes the

resolution of the template image. They become ξ(xf
k , y

f
l ) after the transformation.

In general, ξ(xf
k , y

f
l ) do not align with the pixel locations in the target image.

Instead, each pixel ξ(xf
k , y

f
l ) generally is located in the box domain determined by

four adjacent pixels in the target image. Let the four adjacent pixels be located at

(xg
k0

, yg
l0
), (xg

k1
, yg

l0
), (xg

k0
, yg

l1
), (xg

k1
, yg

l1
), as shown in Figure 4.5.
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We assume the size of every pixel is hx × hy and further denote

(∆x, ∆y)
def
= ξ

(
xf

k , y
f
l

)
−
(
xg

k0
, yg

l0

)
,

ω0,0
def
=

∆x∆y

hxhy

,

ω1,0
def
=

(hx −∆x) ∆y

hxhy

,

ω0,1
def
=

∆x (hy −∆y)

hxhy

,

ω1,1
def
=

(hx −∆x) (hy −∆y)

hxhy

.

The partial volume model computes the joint probability distribution by histogram-

ming the intensity vector pairs of(
Ig
(
xg

k0
, yg

l0

)
, If
(
ξ
(
xf

k , y
f
l

)))
,(

Ig
(
xg

k1
, yg

l0

)
, If
(
ξ
(
xf

k , y
f
l

)))
,(

Ig
(
xg

k0
, yg

l1

)
, If
(
ξ
(
xf

k , y
f
l

)))
,(

Ig
(
xg

k1
, yg

l1

)
, If
(
ξ
(
xf

k , y
f
l

)))
.

with the weights ω1,1, ω0,1, ω1,0, and ω0,0 respectively for each pixel in the trans-

formed template image. More precisely, we compute the joint probability distribu-

tion by

pfg
i,j(s) =

1

N

Nx∑
k=1

Ny∑
l=1

(
ω1,11Bfg

i,j

(
I
(
xg

k0
, yg

l0

)
, I
(
ξ
(
xf

k , y
f
l

)))
+

ω0,11Bfg
i,j

(
I
(
xg

k1
, yg

l0

)
, I
(
ξ
(
xf

k , y
f
l

)))
+

ω1,01Bfg
i,j

(
I
(
xg

k0
, yg

l1

)
, I
(
ξ
(
xf

k , y
f
l

)))
+

ω0,01Bfg
i,j

(
I
(
xg

k1
, yg

l1

)
, I
(
ξ
(
xf

k , y
f
l

))))
(4.9)

i = 1, · · · , N g
B; j = 1, · · · , N f

B,

where N = Nx ×Ny represents the total number of pixels.

The idea of this model is to distribute the weight of each pair of pixels into dif-

ferent bins for constructing the joint probability distribution so that the individual

entropies are independent of the transformations, the joint probability distributions

change more smoothly with respect to the transformation, and the joint entropy

and the mutual information are in turn smoothed. Figure 4.6 shows the individual
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Figure 4.5: A pixel in the transformed template image is located among four pixels

in the target image.

entropy for the target image, the individual entropy for the transformed template

image, the joint entropy, and the mutual information with respect to the horizontal

translation using the partial volume model. The images and parameters for the

experiment are the same with the ones for the histogramming model. It can be

clearly observed that the individual entropies for both the target and the trans-

formed template image are independent of the transformation. Also, the mutual

information attains its maximum value when the two images are roughly aligned.

4.3 Interpolation Artifacts

Figure 4.2 and Figure 4.6 show an interesting phenomenon. Assuming only spatial

translation is considered in the transformation parameter sets, the mutual informa-

tion functions are not differentiable at the integer pixel translation. In other words,

during the transformation process, whenever all or most of the pixel locations in

the transformed template image are aligned with those in the target image, mutual

information is not smooth and an artifact will happen. Similar observations have

been reported by others [2, 3, 4, 10, 11, 13, 19, 22, 27, 33].

The reason of this phenomenon varies in different models. In order to analyze

the reason, we assume the two images are originally aligned, the pixel sizes of the

target and the template images are the same, and only the translation in one axis

(i.e., either horizontal or vertical translation) is considered. Let τ be the translation

in the transformation parameter set in one direction and h be the pixel size in the

corresponding direction.
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Figure 4.6: The individual entropy for the target image (upper left), the individual

entropy for the transformed template image (upper right), the joint entropy (lower

left), and the mutual information (lower right) using the partial volume model.
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In interpolation-based models, the interpolated intensity values in the trans-

formed template image change periodically with respect to the translation τ (every

pixel interval h). That leads to the artifacts in the individual entropy for the trans-

formed template image, the joint entropy, and in turn the mutual information at

the integer pixel translation.

In the partial volume model, the artifact phenomenon can be explained by a

mathematical analysis. Suppose τ changes from τ0 = n0h to τ1 = (n0 + 1)h for

some integer n0. By (4.1), we can rewrite the joint entropy as

Hfg = −
∑
i,j

γ
(
pfg

i,j (τ)
)

,

where

γ(α) = α log α.

By (4.9), it is known that pfg
i,j(τ) is a linear function in τ . Let p0

i,j = pfg
i,j(τ0) and

p1
i,j = pfg

i,j(τ1). Then pfg
i,j(τ) can be written as

pfg
i,j(τ) =

τ1 − τ

h
p0

i,j +
τ − τ0

h
p1

i,j τ ∈ [τ0, τ1] .

The first derivative of γ(pfg
i,j(τ)) can be written as

dγ
(
pfg

i,j (τ)
)

dτ
=

dγ
(
pfg

i,j

)
dpfg

i,j

·
dpfg

i,j (τ)

dτ

=
1

h

(
log pfg

i,j (τ) +
1

ln 2

)(
p1

i,j − p0
i,j

)
.

That results in the first derivative of Hfg to be

dHfg

dτ
= −1

h

∑
i,j

(
log pfg

i,j (τ) +
1

ln 2

)(
p1

i,j − p0
i,j

)
.

Let τ2 = (n0 + 2)h and p2
i,j = pfg

i,j(τ2). We have

lim
τ→τ1−

dHfg (τ)

dτ
= −1

h

∑
i,j

(
log p1

i,j +
1

ln 2

)(
p1

i,j − p0
i,j

)
,

lim
τ→τ1+

dHfg (τ)

dτ
= −1

h

∑
i,j

(
log p1

i,j +
1

ln 2

)(
p2

i,j − p1
i,j

)
.

In general,

lim
τ→τ1−

dHfg (τ)

dτ
6= lim

τ→τ1+

dHfg (τ)

dτ
.
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Therefore, dHfg

dτ
is not continuous and thus Hfg is not smooth at the point τ = τ1.

We further examine the second derivative of γ(pfg
i,j) in the interval of (τ0, τ1). In the

case that p0
i,j 6= 0 or p1

i,j 6= 0,

pfg
i,j (τ) 6= 0 ∀τ ∈ (τ0, τ1) .

We then have
d2γ

(
pfg

i,j (τ)
)

dτ 2
=

1

ln 2
·
(
p1

i,j − p0
i,j

)2
h2pfg

i,j (τ)
> 0.

Accordingly, γ(pfg
i,j) is a convex function. In the case that p0

i,j = p1
i,j = 0,

pfg
i,j (τ) = 0.

It is obviously a convex function. Therefore, γ(pfg
i,j) is a convex function in (τ0, τ1).

By the definition of convex functions,

γ
(
pfg

i,j (τ)
)

= γ

(
τ1 − τ

h
p0

i,j +
τ − τ0

h
p1

i,j

)
6

τ1 − τ

h
γ
(
p0

i,j

)
+

τ − τ0

h
γ
(
p1

i,j

)
∀τ ∈ [τ0, τ1] .

Consequently,

Hfg(τ) = −
∑
i,j

γ
(
pfg

i,j (τ)
)

>
τ1 − τ

h

(
−
∑
i,j

γ
(
p0

i,j

))
+

τ − τ0

h

(
−
∑
i,j

γ
(
p1

i,j

))

=
τ1 − τ

h
Hfg (τ0) +

τ − τ0

h
Hfg (τ1) .

That proves the joint entropy is a concave function in the interval (τ0, τ1). Simi-

larly, we can also prove that the joint entropy is a concave function in the interval

of (τ1, τ2). Note that the joint entropy is not continuous at τ1. Therefore, the joint

entropy is not smooth and there is often a local minimum at τ1. Because the indi-

vidual entropy for the target image and the individual entropy for the transformed

template image are both independent of τ , mutual information only depends on the

joint entropy: the shape of mutual information should be exactly the same as −Hfg

except for a constant difference. Thus, the mutual information will have an artifact

at τ1. The result can be extended when τ = nh, n ∈ Z. The mutual information is

therefore a piecewise convex function but not smooth at the points where the pixel

locations in the template image are all aligned with those of the target image.
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We refer to this phenomenon as interpolation artifacts. Increasing the sizes of

the bins for computing probability distributions can help smooth mutual informa-

tion functions. However, the artifacts are hard to be removed totally. Figure 4.7

and Figure 4.8 show the mutual information functions with the number of bins as

64 and 32 for both the target and the transformed template images using the his-

togramming model and the partial volume model, respectively. The image pairs for

registration are the same as the ones used in Figure 4.2 and Figure 4.6. Comparing

those plots together with Figure 4.2 and Figure 4.6, it can be observed that the

mutual information functions get smoother with the increase of the bin sizes, or

decrease of the numbers of bins. However, artifacts are hard to remove and can

still be observed. Furthermore, on the other hand, making bin size too large will

also decrease the accuracy of mutual information [10].

Other approaches for reducing interpolation artifacts include using a generalized

partial volume model [3], resizing the pixel size [27], and jittering or blurring images

[27]. However, interpolation artifacts have never been totally removed.

4.4 Optimization Methods

Artifacts hamper the performance of optimization methods. Most of the derivative-

based optimization methods cannot be applied to these models because the mutual

information functions are not smooth. Some derivative-free optimization methods

such as simplex methods [3, 4], Powell’s method [8], simulated annealing [34], and

genetic algorithms [33], occasionally succeed. Up to now, there is no optimization

method that can totally solve this kind of problems.

There are two different optimization methods applied on the mutual information

functions in this thesis. One is a trust region method for non-linear optimization

problems [7], which is a derivative-based method. It is provided by courtesy of Pro-

fessor Yuying Li from the School of Computer Science at the University of Waterloo.

In this method, a local optimum is found based on the gradient and curvature in-

formation of the objective function. At each iteration, the method approximates

the function in a certain trust region as a local quadratic function and further finds

its optimum. This method requires objective functions to be smooth enough to

guarantee quick convergence to optimal solutions. In this method, the gradient

information and Hessian matrix information of the objective function are required,

and they are approximated using the finite difference method in our approach, see

Section 6.4.

43



−5 −4 −3 −2 −1 0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Horizontal translation (pixels)

M
ut

ua
l i

nf
or

m
at

io
n

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

Horizontal translation (pixels)

M
ut

ua
l i

nf
or

m
at

io
n

Figure 4.7: Mutual information using the histogramming model with the numbers of

bins as 64 (upper) and 32 (lower) for both the target and the transformed template

images. Although the mutual information function gets smoother with the increase

of bin sizes, the interpolation artifacts can still be observed.
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Figure 4.8: Mutual information using the partial volume model with the numbers of

bins as 64 (upper) and 32 (lower) for both the target and the transformed template

images. Although the mutual information function gets smoother with the increase

of bin sizes, the interpolation artifacts can still be observed.
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The other one is the Nelder-Mead method [17], which is a derivative-free method.

This method defines a simplex in the domain of the objective function. In each

iteration, it tests the function values at the test points arranged by the simplex,

and replaces a part of the test points with new test points. The simplex is expected

to move to one of the local maxima eventually.
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Chapter 5

Continuous Models

Artifacts in mutual information functions prevent standard optimization methods

converging to the optimal transformation solutions for aligning images. Even if

some methods can attain the optimal solutions in some scenarios, the convergence

is normally slow, and the sub-pixel accuracy is not easy to obtain. To increase

the efficiency as well as the accuracy of registration, it is necessary to remove the

artifacts. Previous approaches can help smooth mutual information functions, but

none of them can totally remove artifacts. In this chapter, a novel model is proposed

in order to remove the artifacts and further improve the efficiency and accuracy of

the optimization methods after the new model is applied.

We start from the motivation, followed by the detailed explanation of the new

model. Finally, we discuss the relationship between the partial volume model and

our new model.

5.1 Motivation

The fundamental reason why mutual information is not smooth in the interpolation-

based models and the partial volume model is because images are treated as con-

tinuous functions so that the use of interpolation can make sense, but the formulas

used for computing probability distributions, entropies, and mutual information are

all based on discrete random variables for image intensity values. This discrepancy

eventually leads to the artifacts in mutual information functions. In contrast, our

model treats image intensity values as continuous random variables and exploits the

formulas based on continuous random variables to compute the PDFs, entropies,
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and mutual information. Our idea is to directly address the issue of the discrep-

ancy. Since both images and formulas are based on continuous random variables,

the new model is called a continuous model.

5.2 One Dimensional Image Registration

We first explain the continuous model in the case that both the target image and

the template image are in 1D.

5.2.1 Image Functions

Let the resolution of both the target image and the template image be N , and the

1D arrays {Ig
i }N−1

i=0 and {If
j }N−1

j=0 be the observable intensity values of the target

image and the template image, respectively. To model an image function defined

in a continuous domain from the observable pixels, one of the simplest ways is

using linear interpolation. Note that other interpolation strategies can also be

used. Also, for easy exposition, we assume the images are periodic and continuous.

Ghost points Ig
N and If

N are added for the target image and the template image,

respectively, satisfying

Ig
N = Ig

0 ,

If
N = If

0 .

Let {xi}N
i=0 be the pixel locations for the images, satisfying xi = ih, where h is the

pixel size. We denote the functions Ig(·) and If (·) as the linear interpolants for

{(xi, I
g
i )}N

i=0 and {(xj, I
f
j )}N

j=0, respectively. Formally, Ig(·) satisfies

Ig (xi) = Ig
i i = 0, · · · , N,

and If (·) satisfies

If (xj) = If
j j = 0, · · · , N.

In each subinterval [xk−1, xk], k = 1, · · · , N , the target image Ig and the template

image If are linear functions; i.e., ∀x ∈ [xk−1, xk],

Ig(x) =
xk − x

h
Ig
k−1 +

x− xk−1

h
Ig
k ,

If (x) =
xk − x

h
If
k−1 +

x− xk−1

h
If
k .
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In the 1D case, there is only one element, translation τ , in the transformation

parameter set s. Thus, the transformed template image can be simply rewritten as

φ
(
If ; s

)
= φ

(
If ; τ

)
.

Also, translating an image is equivalent to translating the corresponding 1D im-

age function. Mathematically, ∀α ∈ R, the transformed template image has the

property

φ
(
If ; τ

)
(x) = φ

(
If ; τ + α

)
(x + α) . (5.1)

5.2.2 Individual Probability Density Functions

We first construct the individual PDF for the target image Ig. By assumptions,

Ig is a piecewise linear function. For simplicity, we normalize the image length as

1, and hence the pixel size h = 1
N

. In order to construct the PDF for the target

image, it is natural to first consider the construction of the PDF in each subinterval

where Ig is a simple linear function.

In the subinterval [xi−1, xi) where i ∈ {1, · · · , N}, we first discuss the case that

Ig
i−1 < Ig

i , as shown in Figure 5.1. In the histogramming models, the probability in

each bin is quantified using the normalized frequency of the pixels whose intensity

values are in that bin. As a counterpart, in the continuous case, for any α ∈ R, the

cumulative distribution function, F g
i (α), which is formally defined as the probability

of intensity value being in the interval (−∞, α], should be equal to the proportion

of the measure of the image domain whose intensity value is in that subinterval

over the length of the subinterval [xi−1, xi). Since the image function is linear in

the subinterval [xi−1, xi), F g
i should also be a linear function in the subinterval

[Ig
i−1, I

g
i ). Also, obviously, F g

i (α) = 0 when α < Ig
i−1 and F g

i = 1 when α > Ig
i .

Formally,

F g
i (α)

def
= P {ig ∈ (−∞, α]} =


0 if α ∈ (−∞, Ig

i−1),
α−Ig

i−1

Ig
i −Ig

i−1
if α ∈ [Ig

i−1, I
g
i ),

1 if α ∈ [Ig
i , +∞),

(5.2)

where ig denotes the observation of Ig. Since F g
i is almost everywhere differentiable,

its first derivative can be used as the PDF. Let pg
i be the PDF corresponding to
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the interval [xi−1, xi). It can be defined as

pg
i (α) =

d

dα
F g

i (α) =


0 if α ∈ (−∞, Ig

i−1),

1
Ig
i −Ig

i−1
if α ∈ [Ig

i−1, I
g
i ),

0 if α ∈ [Ig
i , +∞).

(5.3)

I
i
g

Ig
i−1

x
i−1

x
i

Figure 5.1: The target image in the case that Ig
i−1 < Ig

i .

In the case that Ig
i−1 > Ig

i , as shown in Figure 5.2, following the similar idea, pg
i

can be defined as

pg
i (α) =

d

dα
F g

i (α) =


0 if α ∈ (−∞, Ig

i ],

1
Ig
i−1−Ig

i
if α ∈ (Ig

i , Ig
i−1],

0 if α ∈ (Ig
i−1, +∞).

(5.4)

A special case needed to be considered is Ig
i−1 = Ig

i , as shown in Figure 5.3. By

the analysis above, it is clear that

pg
i (α) = 0 ∀α 6= Ig

i .

By the definition of PDFs, pg
i should also satisfy∫ +∞

−∞
pg

i (α) dα = 1.
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Figure 5.2: The target image in the case that Ig
i−1 > Ig

i .

x
i

x
i−1

Ig
i−1

 (Ig
i
)

Figure 5.3: The target image in the case that Ig
i−1 = Ig

i .
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Considering pg
i has similar properties as the Dirac delta function δ(·), we model it

as

pg
i (α) = δ (α− Ig

i ) .

Since all of the subintervals have the same length, pg
i should contribute to the

PDF for the target image equally. Formally, let the PDF for the target image be

pg. It is defined as the normalized summation of the PDFs corresponding to each

subinterval [xi−1, xi). Combining those three different cases, let

J g def
=
{
j|Ig

j−1 < Ig
j

}
,

Kg def
=
{
k|Ig

k−1 > Ig
k

}
,

Lg def
=
{
l|Ig

l−1 = Ig
l

}
.

Then pg can finally be written as

pg(α) =
1

N

N∑
i=1

pg
i (α)

=
1

N

(∑
j∈J g

1[Ig
j−1,Ig

j )
(α)

Ig
j − Ig

j−1

+
∑
k∈Kg

1(Ig
k ,Ig

k−1]
(α)

Ig
k−1 − Ig

k

+
∑
l∈Lg

δ (α− Ig
l )

)
,

(5.5)

where 1
N

is a normalization factor. Note that pg(α) is a function combined with

piecewise constant functions and Dirac delta functions. In Section 5.2.7, an example

is shown to illustrate how the individual PDF is constructed.

We model the individual PDF for the transformed template image similarly.

Let pf be the individual PDF for the transformed template image. Following the

same idea for constructing the individual PDF for the target image, the individual

PDF for the transformed template image can be written as

pf (α; τ) =
1

N

N∑
i=1

pf
i (α; τ) , (5.6)

where pf
i (α; τ) denotes the individual PDF for the transformed template image

corresponding to the subinterval [xi−1 + τ, xi + τ). Here, α denotes the variable of

the image intensity value and τ denotes the translation parameter.

By (5.1), ∀τ 6= 0, the transformed template image φ(If ; τ) can be written as

φ
(
If ; τ

)
(x) = φ

(
If ; 0

)
(x− τ) = If (x− τ) .

Therefore, φ(If ; τ) can be treated as a shifted function of If . By the idea for

constructing PDFs, it is clear that the shifted function generates the same PDF as
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the initial one so that pf
i (α; τ) and pf

i (α; 0) are the same. Thus, the PDF in (5.6)

is independent of the transformation, and the PDF for the transformed template

image is the same as the PDF for the template image. We omit the parameter

τ , and simply denote the individual PDF for the transformed template image as

pf (α), which is exactly the PDF for the template image.

Similar to the case for the target image, let

J f def
= {j|If

j−1 < If
j },

Kf def
= {k|If

k−1 > If
k },

Lf def
= {l|If

l−1 = If
l }.

The PDF for the transformed template image can be written as

pf (α) =
1

N

N∑
i=1

pf
i (α)

=
1

N

∑
j∈J f

1[If
j−1,If

j ) (α)

If
j − If

j−1

+
∑
k∈Kf

1(If
k ,If

k−1] (α)

If
k−1 − If

k

+
∑
l∈Lf

δ(α− If
l )

 .

(5.7)

5.2.3 Joint Probability Density Functions

To model the joint PDF, the target and the transformed template images need

to be considered together. The target image Ig(x) is a piecewise linear function

determined by the data points {xi, I
g
i }, i = 0, · · · , N , and the transformed template

image φ(If ; τ) is also a piecewise linear function. Since we assume the template

image is periodic for simplicity, the function is determined by the node points

{(xi + τ) (mod 1)}, i = 0, · · · , N − 1. Let ∆h = τ (mod h). Then {(xi + τ)

(mod 1)} can be simplified as {xi + ∆h}, i = 0, · · · , N − 1. Let

zi
def
=

x i
2

if i is even,

x i−1
2

+ ∆h if i is odd.

{zi}2N
i=0 is the union of the set of the node points in the target image and the set of

the node points in the transformed template image. In each subinterval [zi−1, zi),

both the target image and the transformed template image are linear functions.

Considering the joint PDF in each of those subintervals can finally facilitate us to

construct the joint PDF.

For simplicity, we denote Ig(zi) = Kg
i and φ(If ; τ)(zi) = Kf

i . We first discuss

the case that Kg
i−1 6= Kg

i or Kf
i−1 6= Kf

i , as shown in Figure 5.4. In the domain
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of the joint PDF, let Ci be the segment determined by the end points (Kg
i−1, K

f
i−1)

and (Kg
i , Kf

i ), which is defined as

Ci
def
= {(α, β) |t ∈ [0, 1)} ,

where

α (t) =
(
Kg

i −Kg
i−1

)
t + Kg

i−1,

β (t) = (Kf
i −Kf

i−1)t + Kf
i−1;

see Figure 5.5. α denotes the intensity value of the target image and β denotes

the intensity value of the transformed template image. Similar to the idea for

constructing the individual PDF, the joint PDF pfg
i associated with the images in

the subinterval [zi−1, zi) can be modeled as

pfg
i (α, β) =


1

‖(Kg
i ,Kf

i )−(Kg
i−1,Kf

i−1)‖2

if (α, β) ∈ Ci,

0 otherwise.
(5.8)

 

 

The target image
The transformed template image

z
i−1 z

i

Kf
i−1

Kg
i

Kg
i−1

Kf
i

Figure 5.4: Images in the case that Kg
i−1 6= Kg

i or Kf
i−1 6= Kf

i .

In the case that Kg
i−1 = Kg

i and Kg
i−1 = Kg

i as shown in Figure 5.6, pfg
i can be

modeled as

pfg
i (α, β) =

δ(α−Kg
i , β −Kf

i ) if (α, β) = (Kg
i , Kf

i ),

0 otherwise.
(5.9)
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Kg
i

Kg
i−1

Kf
i

Kf
i−1

C
i

Figure 5.5: The domain of the joint PDF where pfg
i 6= 0 is denoted by Ci in the

case that Kg
i−1 6= Kg

i or Kf
i−1 6= Kf

i .

 

 

The target image
The transformed template image

z
i−1 z

i

Kf
i−1

 (Kf
i
)

Kg
i−1

 (Kg
i
)

Figure 5.6: Images in the case that Kg
i−1 = Kg

i and Kf
i−1 = Kf

i .
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Kf
i−1

 (Kf
i
)

Kg
i−1

 (Kg
i
)

Figure 5.7: The point where pfg
i is a Dirac delta function in the case that Kg

i−1 = Kg
i

and Kf
i−1 = Kf

i .

Figure 5.7 shows the point where the joint PDF is a Dirac delta function in the

domain of the joint PDF.

The joint PDF is modeled by combining each pfg
i . Considering the probability

contributed by the images in each subinterval should be proportional to its own

length, the joint PDF is defined as the normalized summation of pfg
i with the

weight proportional to the length of [zi−1, zi). Considering the two cases in (5.8)

and (5.9), let

U def
= {u|Kg

u−1 6= Kg
u or Kf

u−1 6= Kf
u},

V def
= {v|Kg

v−1 = Kg
v and Kf

v−1 = Kf
v }.

(5.10)

The joint PDF is finally defined as

pfg(α, β) =
2N∑
i=1

ωip
fg
i (α, β)

=
∑
u∈U

ωu
1Cu(α, β)

‖(Kg
u, Kf

u )− (Kg
u−1, K

f
u−1)‖2

+
∑
v∈V

ωvδ(α−Kg
v , β −Kf

v ),

where

ωi = zi − zi−1 =

∆h if i is odd,

h−∆h if i is even.
(5.11)

56



It can easily be verified that the projections of the joint PDF are the individual

PDFs for the target and the transformed template image, which is consistent with

the property of the joint PDF.

5.2.4 Individual Entropies

We now explain the computation of individual entropies. By definition, the en-

tropies are computed by (4.3) and (4.4). Although individual PDFs for images

can be modeled analytically by (5.5) and (5.7), the entropies are hard to compute

analytically in general. Instead, we compute the entropies numerically. However,

since the points where the PDFs are not continuous are a lot and the disconti-

nuities are hard to be determined, standard numerical integration methods based

on function evaluation of an interpolating polynomial, such as integration of an

interpolating polynomial, composite integration, and Gaussian integration, would

not be applicable here. Other strategies need to be exploited.

We first explain how the individual entropy for the target image is computed.

Let [0, Ig
max] be the range of the intensity value of the target image. The PDF is

possibly non-zero on that interval. To facilitate the integral computation, we divide

the interval [0, Ig
max] into equal subintervals, or cells,

Dg
i

def
=
[
Lg

i−1, L
g
i

)
i = 1, · · · , N g

D − 1,

Dg
Ng

D

def
= [Lg

Ng
D−1

, Lg
Ng

D
],

where Lg
i = ihg

D, hg
D = Ig

max

ND
, and N g

D is the number of cells. The individual entropy

can be written as the summation of the integration in each cell; i.e.,

H̃g = −
∫ +∞

−∞
pg (α) log pg (α) dα

= −
Ng

D∑
i=1

∫
Dg

i

pg (α) log pg (α) dα.

(5.12)

Considering the integrand pg(α) log pg(α) is not a continuous function, the integra-

tion in each cell is still quite difficult to compute analytically. Instead, we approx-

imate the PDF as a constant function in each cell Dg
i with the value qg

i computed

by

qg
i

def
=

1

hg
D

∫
Dg

i

pg (α) dα.

There are two advantages to approximate the PDF in each cell in this way. First,

the PDF is approximated as a piecewise constant function, and so is pg log pg. That
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facilitates the approximation to the entropy in (5.12). Second, it is easy to verify

that the integration of the approximate PDF over the whole domain is 1, which is

consistent with the definition of the PDF.

By (5.5), qg
i can be rewritten as

qg
i =

1

Nhg
D

∫
Dg

i

N∑
k=1

pg
k (α) dα

=
1

Nhg
D

N∑
k=1

∫
Dg

i

pg
k (α) dα.

(5.13)

Note that
∫

Dg
i
pg

k(α)dα is easy to compute since pg
k(α) is either a constant function

or a Dirac delta function.

After qg
i is computed, the integrand can be approximated by

pg (α) log pg (α) ≈ qg
i log qg

i ∀α ∈ Dg
i .

By (5.12), we can finally approximate the entropy by

H̃g ≈ H̄g def
= −hg

D

Ng
D∑

i=1

qg
i log qg

i . (5.14)

There is an example shown in Section 5.2.7 to demonstrate how the individual PDF

is computed.

For the transformed template image, we use the same idea to approximate its

entropy H̃f . By dividing the range of the intensity value of the template image

[0, If
max] into cells

Df
i

def
= [Lf

i−1, L
f
i ), i = 1, · · · , N f

D − 1,

Df

Nf
D

def
= [Lf

Nf
D−1

, Lf

Nf
D

],

where Lf
i = ihf

D, hf
D = If

max

ND
, and N f

D is the number of cells. We approximate the

PDF in each cell as a constant function with the value qf
i , denoted by

qf
i

def
=

1

Nhf
D

N∑
k=1

∫
Df

i

pf
k (α) dα. (5.15)

The entropy is finally approximated by

H̃f ≈ H̄f def
= −hf

D

Nf
D∑

i=1

qf
i log qf

i . (5.16)
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Note that both the PDF for the target image pg and the PDF for the transformed

template image pf are independent of the transformation. Thus, by (5.13) and

(5.15), both qg
i and qf

i are independent of the transformation, and hence H̄g and

H̄f are also independent of the transformation.

5.2.5 Joint Entropies and Mutual Information

Similar to individual entropies, we compute the joint entropy numerically. Let the

joint PDF be defined over the domain

Ω
def
=
{
(α, β) |α ∈ [0, Ig

max] , β ∈
[
0, If

max

]}
.

By using the partition scheme for computing individual entropies, it is natural to

divide Ω into cells

Dfg
i,j

def
= {(α, β)|α ∈ [Kg

i−1, K
g
i ), β ∈ [Kf

j−1, K
f
j )}.

The joint entropy can then be written as

H̃fg = −
∫∫

Ω

pfg (α, β) log pfg (α, β) dαdβ

= −
Ng

D∑
i=1

Nf
D∑

j=1

∫∫
Dfg

i,j

pfg (α, β) log pfg (α, β) dαdβ.

Similar to the individual case, in each cell Dfg
i,j , we approximate the joint entropy

by a constant function with the value q̄fg
i,j computed by

q̄fg
i,j

def
=

1

hg
Dhf

D

∫∫
Dfg

i,j

pfg (α, β) dαdβ. (5.17)

Note that the joint PDF pfg is composed by a set of Dirac delta functions and

a set of constant functions defined in segments which are zero measure subsets of

Ω. Using the formula (5.17) will incur the loss of the contribution of piecewise

constant functions to the joint entropy. To avoid that, we modify the formula

(5.17) by substituting the double integral for the line integral where the joint PDFs

associated with subintervals are not Dirac delta functions but still keep the double

integral for Dirac delta functions, denoted by

qfg
i,j

def
=

1

hg
Dhf

D

(∫
Ck∩Dfg

i,j

∑
u∈U

ωup
fg
u (t) dt +

∫∫
Dfg

i,j

∑
v∈V

ωvp
fg
v (α, β) dαdβ

)

=
1

hg
Dhf

D

(∑
u∈U

ωu

∫
Ck∩Dfg

i,j

pfg
u (t) dt +

∑
v∈V

ωv

∫∫
Dfg

i,j

pfg
v (α, β) dαdβ

)
,

(5.18)

59



where U and V are defined in (5.10), and ωu and ωv are defined in (5.11). Since

pfg
u is constant functions and pfg

v is Dirac delta functions,
∫
Ck∩Dfg

i,j
pfg

u (t)dt and∫∫
Dfg

i,j
pfg

v (α, β)dαdβ are easy to compute. Finally, qfg
i,j can be easily computed.

Let H̄fg be the approximate joint entropy. H̃fg is then approximated by

H̃fg ≈ H̄fg def
= −

Ng
D∑

i=1

Nf
D∑

j=1

∫∫
Dfg

i,j

qfg
i,j log qfg

i,jdαdβ

= −hghf

Ng
D∑

i=1

Nf
D∑

j=1

qfg
i,j log qfg

i,j .

(5.19)

Finally, the mutual information is computed numerically using the approximate

entropies H̄g, H̄f , and H̄fg. Let M̄ be the approximate mutual information. It is

computed by

M̄ = H̄g + H̄f − H̄fg. (5.20)

An example shown in Section 5.2.7 demonstrate the constant value of the ap-

proximate PDF in each bin qfg
i,j is a smooth function with respect to the translation

τ . By (5.19), H̄fg is in turn a smooth function. Also, considering H̄g and H̄f are

constant functions, by (5.20), the approximate mutual information M̄ is finally a

smooth function. The plots shown in Section 6.2 verify this point.

5.2.6 Complexity Analysis

By (5.13), the complexity for approximating the individual PDF for the target im-

age as constant functions in cells is O(ÑN), where Ñ denotes the average number

of cells where the PDF is nonzero corresponding to each pixel subinterval. Gen-

erally, Ñ is around 2 or 3 on average if the image is not noisy. Then, by (5.14),

with the knowledge of qg
i , the complexity for computing the individual entropy is

O(N g
D). Thus, the complexity for computing the individual entropy for the target

image is O(N g
D + ÑN). Considering N � N g

D generally, the complexity is O(ÑN).

Similarly, by (5.15) and (5.16), the complexity for computing the individual

entropy for the transformed template image is also O(ÑN).

Regarding the joint entropy, by (5.18), it is known that the complexity for

computing every qfg
i,j is O(ÑN). Then, by (5.19), it can be analyzed that, with

the knowledge of qfg
i,j , the complexity for computing the joint entropy is O(N g

DN f
D).
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Combining the two steps, the complexity for computing the joint entropy is O(ÑN+

N g
DN f

D). Considering N � N g
DN f

D, the complexity is O(ÑN).

Finally, by (5.20), the complexity for computing the mutual information is also

O(ÑN).

It can be analyzed that the complexity of the histogramming model and the

partial volume are both in O(N + N g
BN f

B). Considering N ∼ N g
BN f

B in practice,

the complexity of our new model is about the same with the histogramming model

and the partial volume model.

5.2.7 Examples

An example is shown to clearly illustrate how the individual entropies are computed

using our model. Suppose we have a continuous target image function shown in

Figure 5.8 which is obtained from linear interpolation described in Section 5.2.1.

For simplicity, we normalize the possible pixel value range as [0, 1].
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Figure 5.8: An example of an image function.

As explained in Section 5.2.2, we consider the PDF associated with the image

in each pixel subinterval. Consider the image from pixel 0 to pixel 1. The intensity

value changes linearly from 0 to 0.8. By (5.3), pg
1 is a piecewise constant function.

It is nonzero over the intensity value range [0, 0.8). The value of the constant is

given by (5.3), which is 1.25. Similarly, pg
2, · · · , pg

6 are constructed by either (5.3)

or (5.4). They are shown in Figure 5.9.
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Figure 5.9: The PDF associated with the image in each subinterval.
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By (5.5), the PDF pg associated with the whole image is defined as the normal-

ized summation of those PDFs pg
i , i = 1, · · · , 6, as shown in Figure 5.10.
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Figure 5.10: The PDF associated with the whole image.

In general, it is difficult to determine the value of pg at a specific intensity

value. Thus, we approximate the PDF as a piecewise constant function by (5.13).

Figure 5.11 shows the piecewise constant approximate PDF with only two cells. In

this case, qg
1 ≈ 1.008 and qg

2 ≈ 0.992. The individual entropy can then easily be

computed using (5.14).

As shown in Section 5.2.5, we approximate the joint PDF pfg in each cell Dfg
i,j

defined in the PDF domain as a constant function qfg
i,j by (5.18). We can consider qfg

i,j

as a function with respect to the translation τ . Another example is to demonstrate

the smoothness of the function qfg
i,j (τ). We take the T1-weighted MRI as the target

image and the CT as the template image, which are shown in Figure 2.1. For

simplicity, we assume there are 4 × 4 cells in the joint PDF domain and the plots

of qfg
i,j (τ), i = 1, · · · , 4, j = 1, · · · , 4, are shown in Figure 5.12.

As can be observed, each qfg
i,j (τ) changes smoothly with respect to translation.

It illustrates why the joint entropy H̄fg and hence the mutual information M̄ will

also be smooth; see Section 6.2.
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Figure 5.11: The PDF is approximated as a constant function in each cell.

−5 0 5
0.73

0.74

0.75

0.76

0.77

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
1,1

−5 0 5
0.02

0.025

0.03

0.035

0.04

0.045

0.05

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
1,2

−5 0 5
0.008

0.01

0.012

0.014

0.016

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
1,3

−5 0 5
0.01

0.015

0.02

0.025

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
1,4

−5 0 5
0

0.002

0.004

0.006

0.008

0.01

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
2,1

−5 0 5
0.165

0.17

0.175

0.18

0.185

0.19

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
2,2

−5 0 5
2

3

4

5

6

7

8x 10
−3

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
2,3

−5 0 5
0

0.002

0.004

0.006

0.008

0.01

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
2,4

−5 0 5
0

1

2

3

4x 10
−3

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
3,1

−5 0 5
0

2

4

6

8x 10
−3

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
3,2

−5 0 5
0

0.2

0.4

0.6

0.8

1x 10
−3

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
3,3

−5 0 5
0

0.5

1

1.5

2x 10
−3

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
3,4

−5 0 5
0

1

x 10
−4

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
4,1

−5 0 5
0

1

x 10
−4

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
4,2

−5 0 5
0

1

2

3

4

5

6x 10
−5

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
4,3

−5 0 5
0

0.5

1

1.5x 10
−4

Horizontal tranlsation (pixels)

P
ro

ba
bi

lit
y

qfg
4,4

Figure 5.12: The approximate probabilities associated with each bin in the PDF

domain with respect to the horizontal translation.
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5.3 Two Dimensional Image Registration

Based on the same motivation for 1D images, given the target image Ig and the tem-

plate image If which are both in 2D, the mutual information can also be computed

numerically.

Continuous functions can be modeled using the observable pixel intensity values.

Let the observable intensity values be {Ig
i,j} and {If

i,j} for the target image and the

template image, respectively, where i = 0, · · · , Nx−1 and j = 0, · · · , Ny−1. Nx×Ny

denotes the resolution of the target image and the template image with the pixel

size of hx × hy. For consistency with the assumption that images are continuous

and periodic in our model, we add ghost points at the boundaries of images. For

example, for the target image, extra elements of {Ig
i,Ny

} where i = 0, · · · , Nx − 1

and {Ig
Nx,j} where j = 0, · · · , Ny, are added to the 2D image array, satisfying

Ig
i,Ny

= Ig
i,0 and Ig

Nx,j = Ig
0,j. For the template image, the same strategy can be

applied. Interpolation is used for the data points {(xi, yj), I
g
i,j} and {(xi, yj), I

f
i,j} to

construct the continuous target and template images, respectively. The continuous

model uses bilinear interpolation to construct the continuous functions, though

other interpolation strategies are also possible to be used. Formally, ∀(x, y) such

that x ∈ [xi−1, xi] and y ∈ [yj−1, yj], the intensity value at the position (x, y) in the

target image is determined by

Ig(x, y) = ω1,1I
g
i−1,j−1 + ω0,1I

g
i,j−1 + ω1,0I

g
i−1,j + ω0,0I

g
i,j,

where

ω1,1 =
(hx −∆x) (hy −∆y)

hxhy

,

ω0,1 =
∆x (hy −∆y)

hxhy

,

ω1,0 =
(hx −∆x) ∆y

hxhy

,

ω0,0 =
∆x∆y

hxhy

,

∆x = x− xi−1,

∆y = y − yi−1.

The template image can be constructed using the same bilinear interpolation strat-

egy.

Unfortunately, unlike the case for 1D images, the analytical PDFs for 2D images
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are not easy to compute. Alternatively, we reduce the problem for 2D images to a

problem for 1D images.

5.3.1 Translation

In general, the transformation of images in a 2D domain includes the rotation

through the axis perpendicular to the image plane as well as the translation in

x and y axes. For simplicity, we first discuss the case that only translation is

considered.

In this case, the transformation function ξ(·) defined in Section 4.2.2 can be

simplified as

ξ (x, y) = (x + τx, y + τy) ,

where τx denotes the translation horizontally and τy denotes the translation verti-

cally. The node points {(xi, yj)} will be translated to {(xi+τx, yj+τy)}. We have the

assumption that images are periodic to avoid the case that images may be translated

out of boundaries. {(xi + τx, yj + τy)} can be simplified as {(xi + ∆hx, yj + ∆hy)},
where ∆hx = τx (mod hx) and ∆hy = τy (mod hy).

To easily construct the PDFs, following the similar idea in the 1D case, we

divide the images domain into sub-domains and then construct the PDFs for each

sub-domain. Naturally, the image domain can be divided using the node points in

both the target image and the transformed template image. Formally, let

si
def
=

x i
2

if i is even,

x i−1
2

+ ∆hx if i is odd.

tj
def
=

y j
2

if j is even,

y j−1
2

+ ∆hy if j is odd.

{(si, tj)} is the union of the node points in both the target image and the trans-

formed template image. As shown in Figure 5.13, those node points generally divide

the whole image domain into sub-domains

Ei,j
def
= {(x, y) |x ∈ [si−1, si) , y ∈ [tj−1, tj)} .

In each sub-domain, PDFs are still not easy to compute analytically. Alter-

natively, we divide each Ei,j into several horizontal strips with equal width and
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Figure 5.13: The pixels in the target and the transformed template images generally

divide the whole image domain into sub-domains.

approximate image functions as linear 1D image function in each strip. Formally,

assuming the number of strips are fixed and denoted as NS, let

tkj
def
= tj−1 + hSk k = 0, · · · , NS,

where hS =
tj−tj−1

NS
. As shown in Figure 5.14, Ei,j is divided into strips Sk

i,j defined

by

Sk
i,j

def
=
{
(x, y) |x ∈ [si−1, si) , y ∈

[
tk−1
j , tkj

)}
k = 1, · · · , NS.

Note that Ig and φ are linear both horizontally and vertically. However, when hS

is small enough (i.e., NS is large enough), the image functions in each strip can

be approximated as functions which are linear horizontally and constant vertically.

For example, the target image in the strip Sk
i,j can be approximated by

Ig (x, y) ≈ Īgk
i,j (x, y)

def
=

si − x

si − si−1

Ig

(
si−1,

tk−1
j + tkj

2

)
+

x− si−1

si − si−1

Ig

(
si,

tk−1
j + tkj

2

)
∀ (x, y) ∈ Sk

i,j. (5.21)

The transformed template image in each strip can be approximated by the same

strategy.

Let the approximate individual PDF for the target image in Sk
i,j be p̄gk

i,j. Con-

sidering (5.21) is constant vertically, it is the same as the PDF for the equivalent

linear 1D function, which has been discussed in Section 5.2.2. The approximate

PDF in each sub-domain Ei,j is computed by combining the approximate PDFs

in each strip. Since we assume the strips have equal width, the approximate PDF
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Figure 5.14: Each sub-domain is divided into strips with equal width.

in each strip contributes to the approximate PDF in each sub-domain Ei,j equally.

Let the symbol pg
i,j be the PDF associated with the sub-domain Ei,j and the symbol

p̄g
i,j be the approximate PDF associated with the same sub-domain. We have

pg
i,j ≈ p̄g

i,j
def
=

1

NS

NS∑
k=1

p̄gk
i,j.

Finally, let pg be the PDF for the target image Ig. It can be approximated by

combining the approximate PDFs in each sub-domain with the weight proportional

to its own area; i.e.,

pg ≈ p̄g def
=

(si − si−1) (tj − tj−1)

NxhxNyhy

2Nx∑
i=1

2Ny∑
j=1

p̄g
i,j.

The PDF for the transformed template image and the joint PDF can be approx-

imated using similar strategies. Since we finally translate the 2D image problems

into 1D image problems, entropies and mutual information can be computed as the

same ways described in the 1D case.

Note when only horizontal translation is considered in the transformation, it

is exactly the same with the model applied for 1D images and the individual en-

tropies are independent of the translation. However, when vertical translation is

also considered, the individual entropies for the target image and the template im-

age are not independent of the translation anymore because the positions of the

strips change with the translation. However, the errors are so minimal that they

will not qualitatively affect the behaviour of mutual information; see Section 6.2.
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5.3.2 Rotation

When rotation is also considered in the transformation parameters, to analyze PDFs

is quite difficult. However, since rotation normally does not make the final mutual

information non-smooth in the interpolation-based models [11], we separate the

transformation into rotation and translation. When rotation is first performed, we

use interpolation to evaluate the pixel intensity values of the transformed template

image, which is the same as the case in the interpolation-based models. Then, we

only consider translation in the transformation parameters and apply the continu-

ous model to compute the mutual information. The experiments shown in Chapter

6 verify this point.

5.3.3 Complexity Analysis

In the 2D case, the computation of the mutual information consists two steps.

When rotation is first considered in the transformation parameters, the complexity

for interpolating the transformed template image is O(NxNy).

Afterwards, each sub-domain is divided into strips and computing the PDFs

corresponding to each strip is treated as a 1D image problem. Since both the tar-

get image and the transformed template image are linear functions in each strip,

according to the analysis of the complexity in the 1D case, the complexity for

computing the PDFs numerically corresponding to each strip is O(Ñ) where Ñ is

defined in Section 5.2.6 and it is normally 2 or 3. Combining the PDFs in each

strip in each sub-domain, we can compute the PDFs numerically with the com-

plexity O(ÑNSNxNy). Given the knowledge of the approximate PDFs, entropies

and finally the mutual information are computed with the complexity O(N g
DN f

D).

The total complexity in this step is O(ÑNSNxNy + N g
DN f

D). Considering that

NxNy � N g
DN f

D in general, the complexity is O(ÑNSNxNy).

Combining the two steps, the final complexity is O(ÑNSNxNy). The complex-

ity of the histogramming model and the partial volume model are both O(NxNy +

N g
BN f

B). Considering that NS is not that large (NS = 32 for most of our experi-

ments) and NxNy ∼ N g
BN f

B, the complexity of our new model is comparable to the

other two.

69



5.4 Relationship with Partial Volume Models

Assuming nearest-neighbour interpolation is exploited to construct the continuous

image functions, the partial volume model can be interpreted as a variant of our

new model when only translation is considered in the transformation parameter

set.

Following the same idea in the continuous model, the nearest neighbour inter-

polation can be interpreted as a piecewise constant image function defined in a

continuous domain. Formally, for each pixel location (xi, yj), let the box domain

Fi,j
def
=
{

(x, y) |x ∈
[
xi− 1

2
, xi+ 1

2

)
, y ∈

[
yj− 1

2
, yj+ 1

2

)}
,

where

xi− 1
2

def
=

1

2
(xi−1 + xi) ,

xi+ 1
2

def
=

1

2
(xi + xi+1) ,

yj− 1
2

def
=

1

2
(yj−1 + yj) ,

yj+ 1
2

def
=

1

2
(yj + yj+1) .

Image intensity values in the domain Fi,j are assumed to be the same as the one at

the pixel location (xi, yj). That can be interpreted as a constant function over the

box domain Fi,j.

Regarding the individual PDFs, since both the target and the transformed tem-

plate images are constant functions in each of their own box domains, according to

the way constructing PDFs in our new model, the constant function in each box

domain corresponds to a Dirac delta function in the PDF, and finally contributes to

a cell with the same weight as the constant functions in other box domains. This is

equivalent to the case in the partial volume model: each pixel contributes to some

bin with equal weight in order to construct the individual probability distribution.

Regarding the joint PDF, considering four adjacent box domains composed of

Fi−1,j−1, Fi,j−1, Fi−1,j, and Fi,j, if only translation is considered in the transforma-

tion parameters, the union of the four domains generally covers a box domain of

the transformed template image (Figure 5.15), which can be denoted by

F ′ def
=
{

(x, y) |∃k, l, s.t. x ∈
[
xk− 1

2
+ τx, xk+ 1

2
+ τx

)
, y ∈

[
yl− 1

2
+ τy, yl+ 1

2
+ τy

)}
,

where τx and τy represent the horizontal and vertical translation, respectively.
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Figure 5.15: A box domain of the transformed template image is generally located

among four adjacent box domains of the target image.

Note that the target image intensity value in the domain Fi−1,j−1, Fi,j−1, Fi−1,j,

and Fi,j are constants. When the template image are translated, its intensity value

is also constant in the domain F ′. To construct the joint PDF associated with the

domain of F ′, we can analyze it in each of the sub-domains where both of the target

image and the transformed template image are constants, denoted by

F ′
0,0

def
= F ′

⋂
Fi−1,j−1,

F ′
1,0

def
= F ′

⋂
Fi,j−1,

F ′
0,1

def
= F ′

⋂
Fi−1,j,

F ′
1,1

def
= F ′

⋂
Fi,j.

They are also shown in Figure 5.15.

In each of the sub-domains, since both of the target and transformed template

images are constants, the joint PDF associated with each sub-domain (i.e., F ′
0,0, F ′

1,0,

F ′
0,1, and F ′

1,1) is a Dirac delta function. According to the continuous model, it will

finally contribute to some cell in the PDF domain with the weight proportional to

its area. It is equivalent to assigning the weight of the pixel (xk + τx, yl + τy) to

the bins associated with the pixel intensity value pairs of itself and its neighbours

with the same manner in the partial volume model. Similar analysis can also be

performed for other box domains in the transformed template image.

After the PDFs have been computed, by comparing (4.1) and (5.19), it can be

noticed that the entropies and finally the mutual information in the continuous

model are computed similarly to the ones in the partial volume model.
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Chapter 6

Numerical Results for Continuous

Models

In this chapter, numerical experiments are performed to compare the continuous

model and the other models. For different clinical images, smooth mutual informa-

tion functions can be observed based on the new model. Besides, by applying stan-

dard optimization methods, including a trust region method and the Nelder-Mead

method, to the model, both efficiency and accuracy of the registration problem are

validated. At the same time, the robustness of the model is also demonstrated.

6.1 Images

The images for the experiments are a set of the T1-weighted MRI, T2-weighted

MRI, PD-weighted MRI, and CT shown in Figure 2.1. Those images are extracted

from the same patient. They are aligned using the gold-standard transformations

and further re-sampled. All of the images are encoded in 8 bits. The resolution is

256× 256 for all the images.

6.2 Smoothness

Taking the T1-weighted MRI as the target image and the CT as the template image,

Figure 6.1 and Figure 6.2 show the individual entropies, the joint entropy, and the

mutual information with respect to the horizontal and vertical translation using

the continuous model, respectively. The cell numbers for estimating PDFs are 8
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for both the target and the transformed template images. The number of strips is

chosen as 32 for each sub-domain. We refer them as the default parameters in the

following experiments.
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Figure 6.1: The individual entropy for the target image (upper left), the individual

entropy for the transformed template image (upper right), the joint entropy (lower

left), and the mutual information (lower right) with respect to the horizontal trans-

lation.

Compared with the mutual information functions computed using the histogram-

ming model and the partial volume model shown in Figure 4.2 and Figure 4.6, the

mutual information functions computed using our continuous model (Figure 6.1

and Figure 6.2) are quite smooth and no artifact is observed.

Comparing Figure 6.1 and Figure 6.2, it is noticed that individual entropies

are both constant functions with respect to the horizontal translation but it is

not the case in the individual entropies with respect to the vertical translation.

That is because, according to the analysis in Section 5.3.1, when only horizontal

translation is considered in the transformation parameter set, the 2D image problem

is equivalent to the 1D image problem, and the individual entropies should be

independent of the transformation. In comparison, entropies depend on the vertical

translation as shown in Figure 6.2. However, the magnitude of the fluctuation in the
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Figure 6.2: The individual entropy for the target image (upper left), the individ-

ual entropy for the transformed template image (upper right), the joint entropy

(lower left), and the mutual information (lower right) with respect to the vertical

translation.
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entropies is so small (i.e., 10−5) that it does not qualitatively affect the smoothness

of the mutual information. It can be observed that the mutual information function

in Figure 6.2 is visibly as smooth as the one in Figure 6.1.

6.2.1 Image Modalities

Based on our observation, when the image modalities of the two images for regis-

tration are close (e.g., one is a T1-weighted MRI and the other is a T2-weighted

MRI), the mutual information computed using the histogramming model or the

partial volume model is smoother than the cases that the modalities of the two

images differ a lot (e.g., one image is an MRI and other one is a CT).

Figure 6.3 and Figure 6.4 show the mutual information functions with respect to

the horizontal translation using the histogramming model and the partial volume

model by taking the T1-weighted MRI as the target image and the T2-weighted

MRI as the template image. The bin numbers are 128 and 128 for the target and

the template images respectively, which are the same as the ones used in Figure 4.2

and Figure 4.6. By comparing Figure 6.3, Figure 6.4, Figure 4.2, and Figure 4.6, it

can be observed that, when the image modalities are close (e.g., the T1-weighted

and T2-weighted MRI pair), the mutual information can be smoother than the

cases that the modalities of the two images differ a lot (e.g., the T1-weighted MRI

and CT pair).

In comparison, the mutual information functions computed using our continu-

ous model are consistently smooth. Figure 6.5 plots the mutual information with

respect to the horizontal translation with the default parameters except taking the

T1-weighted MRI as the target image and the T2-weighted MRI as the template im-

age. Note that both Figure 6.5 and Figure 6.1 present smooth mutual information

functions, which demonstrates the robustness of our model.

6.2.2 Image Resolution

We also notice that the image resolution affects the smoothness of mutual informa-

tion functions using the histogramming model. By downsampling the images using

nearest-neighbour interpolation from 256 × 256 to 64 × 64, Figure 6.6 shows the

mutual information functions with respect to the horizontal translation using the

histogramming model. It can be observed that the mutual information becomes

less smoother when the resolution decreases. That is because less image intensity
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Figure 6.3: The mutual information taking the T1-weighted MRI as the target

image and the T2-weighed MRI as the template image using the histogramming

model.
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Figure 6.4: The mutual information taking the T1-weighted MRI as the target

image and the T2-weighed MRI as the template image using the partial volume

model.
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Figure 6.5: The mutual information taking the T1-weighted MRI as the target

image and the T2-weighed MRI as the template image using the continuous model.

values fail representing the statistical behaviour of the probability distributions.

In comparison, the continuous model is more robust: it is smooth no matter the

resolution decreases or not. Figure 6.7 demonstrates that the mutual information

is always smooth even if the image resolution decreases from 256× 256 to 64× 64.

This is very useful when multi-resolution schemes [26] are used in order to ef-

ficiently solve the image registration problem. In multi-resolution schemes, images

for registration are first downsampled as images in lower resolution. Registration is

first performed using those images in lower resolution. After computing a solution

close to the real optimal solution, we increase the resolution of images and imple-

ment another image registration process with the initial guess as the final solution

in the last scenario which is referred as the first level. The procedure is performed

iteratively until the resolution increases to the original resolution of images. Since

image resolution is relatively lower in the first few levels, the registration process

can be accelerated in some degree.

In practice, when images for registration are in lower resolution, the non-

smoothness that can be observed in Figure 6.6 hamper the performance of the

multi-resolution strategy because the artifacts prevent the numerical optimization

methods from converging to the optimal solution. In comparison, our model turns

out to be quite robust: the mutual information functions maintain smoothness even

though images are in lower resolution (Figure 6.7). This facilitates the optimiza-
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Figure 6.6: The mutual information taking the images in the resolution of 256×256

(upper), 128× 128 (middle), and 64× 64 (lower) using the histogramming model.
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Figure 6.7: The mutual information taking the images in the resolution of 256×256

(upper), 128× 128 (middle), and 64× 64 (lower) using the continuous model.
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tion methods to converge to a better initial guess for the next level and finally

accelerates the whole registration process.

6.3 Sub-pixel Accuracy

The objective of this section is to test the sub-pixel accuracy when different models

are used for optimization methods. We manually shift the template image by 0.8

pixels horizontally and re-sample the shifted template image using bilinear interpo-

lation. Figure 6.8 shows the mutual information plots using different models. The

numbers of bins are 128 for both the target and the transformed template images

in the histogramming and partial volume models; the numbers of cells are 8 for

both the target and transformed template images and the number of strips is 32

for each sub-domain in the continuous model.

In Figure 6.8, the solid lines indicate the mutual information functions taking

the original T1-weighed MRI as the target image and the CT as the template

image; the dash lines indicate the mutual information functions taking the original

T1-weighted MRI as the target image and the shifted CT as the template image.

We can observe that both the histogramming model and the continuous model can

detect the sub-pixel accuracy, showing that the global maximum is also shifted by

0.8 pixel to the left. The partial volume model fails doing that since the global

maximum always happens at integer pixel translation according to the analysis in

Section 4.3. Thus, optimization methods can never detect the sub-pixel accuracy

in this case.

6.4 Optimization Performance

To illustrate the benefit of the smoothness of the mutual information using the

continuous model, two different optimization methods mentioned in Section 4.4,

a trust region method for non-linear optimization problems and the Nelder-Mead

method, are applied on the mutual information functions computed using different

models.

In the trust region method, the gradient and the Hessian matrix information

of the mutual information function are required for efficient convergence. Central

difference method is exploited to approximate them. More specifically, let the
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Figure 6.8: The mutual information with respect to the horizontal translation using

the histogramming model (upper), the partial volume model (middle), and the

continuous model (lower).
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transformation parameter set be

s = (θ, τx, τy),

where θ denotes the rotation, τx denotes the horizontal translation, and τy denotes

the vertical translation. In order to compute the gradient of the mutual information

function, the first-order partial derivatives are then approximated by the central

difference method. For example,

∂M(s)

∂θ
≈ M(s + ∆sθ)−M(s−∆sθ)

2∆θ
,

where ∆sθ = (∆θ, 0, 0). M(s + ∆sθ) and M(s − ∆sθ) are obtained by changing

the rotation from the angle θ to θ + ∆θ and θ −∆θ, respectively, but keeping the

other parameters fixed. Other derivatives can be approximated in similar ways

by choosing appropriate ∆τx and ∆τy as the steps in the horizontal and vertical

translation. After ∂M(s)
∂θ

, ∂M(s)
∂τx

, and ∂M(s)
∂τy

are approximated, the gradient of the

mutual information function can then be formed as

∇M(s) =

(
∂M(s)

∂θ
,
∂M(s)

∂τx

,
∂M(s)

∂τy

)T

.

In order to computed the Hessian matrix, the second-order partial derivatives of

the mutual information function can be approximated using the central difference

method twice. For example,

∂2M(s)

∂θ∂τx

≈ ∂

∂θ

(
M(s + ∆sτx)−M(s−∆sτx)

2∆τx

)
≈ (M1,1 −M0,1)− (M1,0 −M0,0)

4∆θ∆τx

,

where

M1,1 = M(s + ∆sθ + ∆sτx),

M0,1 = M(s−∆sθ + ∆sτx),

M1,0 = M(s + ∆sθ −∆sτx),

M0,0 = M(s−∆sθ −∆sτx),

∆sτx = (0, ∆τx, 0).

After all the second-order partial derivatives of the mutual information function

are approximated, the Hessian matrix can then be formed as

H(M) =


∂2M
∂θ2

∂2M
∂θ∂τx

∂2M
∂θ∂τy

∂2M
∂τx∂θ

∂2M
∂τx

2
∂2M

∂τx∂τy

∂2M
∂τy∂θ

∂2M
∂τy∂τx

∂2M
∂τy

2

 .
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In our experiments, we choose ∆θ = 0.1 radian and ∆τx = ∆τy = 0.1 pixel as the

default parameters.

Since the interpolation artifacts mainly happen when spatial translation is con-

sidered in the transformation parameter set, to verify the benefit of the smoothness

of the mutual information functions computed using the continuous model and

compare them with the ones computed by other models, we first assume the trans-

formation parameters only include pure translation.

Table 6.1 shows the performance of the trust region method on different mod-

els. The mutual information is computed using the T1-weighted MRI as the target

image and the CT as the template image. The images are sampled from the origi-

nal images using nearest-neighbour interpolation with the resolution as 128× 128.

Different initial guesses are chosen in order to test the performance of the method.

The stopping criteria of the method are chosen as 10−4.

In the table, the first column denotes different initial guesses. The first element

in each vector represents the translation in the horizontal axis; the second one rep-

resents the translation in vertical axis. Both of them are in the units of pixels.

Different models are employed to evaluate the mutual information, including the

histogramming model (HM), the partial volume model (PV), and our continuous

model (CM). The number of iterations (IT), the gradient count (GC), and the com-

puted solution are also shown in the table as the performance of the optimization

methods. Last column indicates whether the trust region method converges to the

optimal solutions successfully. Note that the optimal solutions are approximately

(0, 0).

For the histogramming model, since the objective functions are not smooth, the

trust region method easily gets stuck at wrong computed solutions due to non-

smoothness. In all of our experiments, it is noticed that solutions generally stop at

some points around the initial guesses. For the partial volume model, it is known

that the mutual information is smooth except for the interpolation artifacts. The

method easily converges to one of those artifacts. In Experiment 1, since the initial

guess is a local maximum, the computed solution does not move. In the other two,

it can be observed that the solutions converge to interpolation artifacts nearest to

the initial guesses. In comparison, since the objective functions are globally smooth

in our continuous model, the trust region method always quickly converges to the

optimal solutions (0, 0) based on our experiments.

Table 6.2 shows the performance of the Nelder-Mead method on different mod-

els. The images used for registration are exactly the same with the ones in the
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Experiment 1

Initial Model IT GC Computed Success?

guess solution

HM 10 7 (9.6257, 11.3601) NO

(10, 12) PV 3 1 (10, 12) NO

CM 17 15 (0.1897,−0.0222) YES

Experiment 2

Initial Model IT GC Computed Success?

guess solution

HM 3 2 (8.2994, -10.2010) NO

(8.3,−10.2) PV 7 5 (7.9931,−9.9798) NO

CM 18 15 (0.1882,−0.0212) YES

Experiment 3

Initial Model IT GC Computed Success?

guess solution

HM 5 2 (-7.3033, -5.7567) NO

(−7.3,−5.8) PV 5 4 (-6.9915,-5.9885) NO

CM 18 16 (0.1897,-0.0222) YES

Table 6.1: The trust region performance for different models with different initial

guesses (the optimal solutions = (0, 0)).
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Experiment 1

Initial Model IT FC Computed Success?

guess solution

HM 44 95 (10.3842, 0.2621) NO

(10, 12) PV 32 61 (10, 12) NO

CM 50 95 (0.1882, -0.0185) YES

Experiment 2

Initial Model IT FC Computed Success?

guess solution

HM 49 103 (0.2607, 0.2245) YES

(8.3,−10.2) PV 48 92 (−0.1473, 0.2259)× 10−4 YES

CM 49 92 (0.1881, -0.0185) YES

Experiment 3

Initial Model IT FC Computed Success?

guess solution

HM 32 79 (0.6719, -6.5746) NO

(−7.3,−5.8) PV 35 66 (-7.0000, -6.0000) NO

CM 56 105 (0.1882, -0.0185) YES

Table 6.2: The Nelder-Mead performance for different models with different initial

guesses (the optimal solutions = (0, 0)).

former experiment. The stopping criteria of the optimization method are chosen

as 10−4. The description of the table is almost the same as Table 6.1 except sub-

stituting the column indicating the gradient count (GC) for the function count

(FC). Compared with the trust region method, the Nelder-Mead method has more

capability to skip the artifacts. For the histogramming model, based on our exper-

iments, the Nelder-Mead method may converge to the optimal solutions. However,

we still notice that it fails doing that sometimes (e.g., Experiment 1 and Experi-

ment 3). For the partial volume model, similarly to the case in the histogramming

model, some failed cases can be observed (e.g., Experiment 1 and Experiment 3).

In contrast, for the continuous model, the globally smoothness of the mutual in-

formation facilitate the method to converge to the global maximum. Based on our

experiments, the Nelder-Mead method always converges to the optimal solutions

efficiently.

Table 6.3 shows the performance of different optimization methods when ro-
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Experiment 1

Optimization IT GC Computed Success?

method solution

Trust Region 13 11 (0.0139, 0.4007, -0.0524) YES

Experiment 2

Optimization IT FC Optimal Success?

method solution

Nelder-Mead 117 207 (0.0110, 0.3312, -0.0479) YES

Table 6.3: Optimization performance for the continuous model (the optimal solu-

tions = (0, 0, 0)).

tation is also included in the transformation parameter sets using our continuous

model. The image data and stopping criteria are chosen as the same as previous ex-

periments. The initial guesses of the positions of the transformed template image

are chosen as 5◦ for the rotation and 5 pixels for both the horizontal and verti-

cal translation. In the column indicating the computed solution, the first element

presents the rotation in the unit of radians, the second one indicates the translation

in the horizontal axis, and the last one indicates the translation in the vertical axis.

Both of the horizontal translation and vertical translation are in the units of pixels.

From the table, it can be observed that methods converge to the optimal solutions

(0, 0, 0) efficiently.

6.5 Numbers of Strips

When the target image and the template image are both in 2D, we convert the

2D image registration problem into 1D image registration problems. Regarding the

vertical translation, it will involve some computational errors in PDFs and finally

in entropies and mutual information. The errors depend on the number of strips

in each sub-domain. In theory, the more strips we use, the more accurate the com-

puted mutual information will be, and vice versa. To analyze the errors, taking the

images used in Section 6.4 for registration, we sample the mutual information with

respect to horizontal translation at some fixed points. Then, we flip both of the

images over along their diagonals and sample the mutual information with respect

to vertical translation at the same fixed points. The former are the analytical so-

lutions of the mutual information and the latter represent the numerical solutions.
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Number of strips Mean of the magnitude of the errors

8 7.2929× 10−5

16 3.3264× 10−5

32 2.1528× 10−5

Table 6.4: Error analysis.

Table 6.4 shows the mean of the magnitude of the differences between them. It can

be obviously noticed that the errors decrease while the number of strips increases.

When the number of strips in each sub-domain goes to infinity, the mutual infor-

mation will be exactly the analytical solution for the 2D image problem. However,

too many strips will make the image registration more computationally intensive.

In practice, we need to seek a balance between the accuracy and efficiency. Based

on our experience, making the number of strips as 32 is large enough to facilitate

the fast convergence in optimization methods.

6.6 Numbers of Cells

In theory, since we use numerical schemes to compute the mutual information, the

more cells we use for computing PDFs, the more the numerical mutual information

is close to the analytical solution. On the other hand, by the complexity analysis

in Section 5.3.3, more cells will make the computation quite intensive. Figure 6.9

shows the mutual information plots for different numbers of cells for estimating

PDFs by fixing the number of strips as 32 in each sub-domain in image functions.

It can be noticed that the mutual information is still smooth even if the number of

cells decreases to 4× 4. Considering the smoothness and accuracy are not sensitive

to the number of cells based on our experience, setting the number of cells as 8× 8

is enough for us to quickly find accurate solutions in smooth mutual information

functions.
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Figure 6.9: The mutual information computed using 4× 4 cells (upper), 8× 8 cells

(middle), and 16× 16 cells (lower).
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Chapter 7

Conclusions

This thesis presents an efficient parallel 2D-3D mono-modality rigid image registra-

tion method which is amenable for GPU processing. Also, it provides a new robust

model for computing smooth mutual information functions in order to facilitate the

accuracy and efficiency in the multi-modality image registration processes.

Regarding the 2D-3D mono-modality image registration, we have implemented

an algorithm using the RapidMind Multi-core Development Platform to exploit

the intensive parallelism of GPUs. Numerical experiments using both artificial and

clinical image data show that our method is much faster than regular CPU process-

ing. For the clinical image dataset, it only takes around 3 seconds for performing

the 2D-3D image registration and in turn accelerates the image registration process

by about 100 times.

Regarding the multi-modality image registration, a new model is devised in or-

der to smooth the mutual information functions. We have analyzed the underlying

reason of the occurrence of artifacts. Different from others, our model directly

removes the discrepancy between the image representation and the mutual infor-

mation formula and finally makes the mutual information quite smooth. Moreover,

using our new model, mutual information can be computed with a comparable

complexity with other models. Numerical experiments show that standard opti-

mization methods can converge to the optimal solutions much more accurately and

efficiently after the new model is exploited. At the same time, the robustness of

the new model has been validated.

Future work can be made in the following aspects. Firstly, besides rigid image

registration, RapidMind is possible to be applied in the non-rigid image registra-

tion problems for developing efficient parallel algorithms. Secondly, implement-
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ing our new model in parallel on GPUs using RapidMind can further accelerate

the multi-modality image registration processes without losing accuracy. Thirdly,

multi-resolution schemes can be applied to the new model and further increase the

efficiency. Fourthly, assuming 2D images can be modeled as special continuous

functions so that PDFs can be computed analytically, the mutual information will

be computed more accurately and the computational complexity can be even more

reduced. Lastly, extending the new model to 3D image registration problems can

make our new model more widely applicable.
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