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Abstract

This thesis proposes an optimization formulation to ensure accuracy and stability in the

local volatility function calibration. The unknown local volatility function is represented

by kernel splines. The proposed optimization formulation minimizes calibration error and

an L1 norm of the vector of coefficients for the kernel splines. The L1 norm regularization

forces some coefficients to be zero at the termination of optimization. The complexity of

local volatility function model is determined by the number of nonzero coefficients. Thus by

using a regularization parameter, the proposed formulation balances the calibration accu-

racy with the model complexity. In the context of the support vector regression for function

based on finite observations, this corresponds to balance the generalization error with the

number of support vectors. In this thesis we also propose a trust region method to deter-

mine the coefficient vector in the proposed optimization formulation. In this algorithm, the

main computation of each iteration is reduced to solving a standard trust region subprob-

lem. To deal with the non-differentiable L1 norm in the formulation, a line search technique

which allows crossing nondifferentiable hyperplanes is introduced to find the minimum ob-

jective value along a direction within a trust region. With the trust region algorithm, we

numerically illustrate the ability of proposed approach to reconstruct the local volatility

in a synthetic local volatility market. Based on S&P 500 market index option data, we

demonstrate that the calibrated local volatility surface is smooth and resembles in shape

the observed implied volatility surface. Stability is illustrated by considering calibration

using market option data from nearby dates.
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Chapter 1

Introduction

One of the main objectives of this thesis is to formulate an optimization problem to calibrate

the local volatility function stably and accurately. We extend a trust region algorithm for

bound constrained minimization problem to solve the calibration problem which includes a

1-norm of the unknown vector of coefficients in the objective function. The stability and

accuracy of the model calibration is controlled by regularization based on the 1-norm of

unknown coefficients.

In this chapter, we provide financial and theoretical background for this thesis work.

The standard Black-Scholes model and its drawbacks, illustrated by the volatility smile,

various proposals and discussions by researchers regarding this issue, and finally an outline

of the proposed LVF model calibration approach using kernel splines are described in the

following sections.

1.1 Black-Scholes Model and Volatility Smile

A financial derivative is a contract whose value depends on a specified underlying asset like a

stock, bond, commodity, interest or exchange rate. The well-known classical Black-Scholes
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model [4] has long been applied to price options and other derivative securities. Under

the Black-Scholes model, the behavior of the underlying asset price S is modeled by the

following stochastic differential equation:

dS

S
= µdt + σdWt.

This equation describes that the asset return follows a diffusion process, where Wt is a

standard Brownian motion, µ is the expected return of the asset and σ is the volatility of

the underlying asset. The stochastic behavior of the value of a derivative V (S, t) can be

derived from the Ito’s lemma:

dV = (
∂V

∂t
+ µS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
)dt + σS

∂V

∂S
dWt.

Under the Black and Scholes model, it is possible to construct a portfolio of the derivative

and the underlying which is instantaneously riskless. Under the assumption of no-arbitrage

opportunity the portfolio must earn the same rate of return as other short-term risk-free

securities. By taking this equality, the following Black-Scholes equation is obtained:

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0.

The Black-Scholes differential equation is independent of the risk preferences as µ does not

appear in it. In the Black-Scholes equation, the only parameter which cannot be observed

from the market directly is the volatility σ. In fact, σ is a measure of the uncertainty

about the return provided by the underlying asset. It can be estimated empirically from

historical asset prices. In reality finance engineers usually work with what is known as

implied volatility. These are the volatilities implied by the market option data. They are

obtained by inverting Black-Scholes formula with observed option prices. If the Black-
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strike(% of spot)
maturity(yrs) 85% 90% 95% 100% 105% 110% 115% 120%

.425 .177 .155 .138 .125 .109 .103 .1 .114

.695 .172 .157 .144 .133 .118 .104 .1 .101
.94 .171 .159 .149 .137 .127 .113 .106 .103
1 .171 .159 .15 .138 .128 .115 .107 .103

1.5 .169 .16 .151 .142 .133 .124 .119 .113

Table 1.1: Implied volatilities for S&P 500 Index Options in Oct, 1995

Scholes model truly describes the underlying price dynamically, they would be the same

constant for all options on the underlying with different strikes and maturities. However

the observed implied volatilities show a strong dependence of implied volatility on the

option strikes (volatility skew) and maturities (volatility term structure). This dependence

is collectively referred to as the volatility smile. For example, in October 1995, the implied

volatility of at-the-money S&P 500 Index Option for a maturity of 1 year is 13.8% [1]. While

the out-of-the-money option with strike of 110% spot asset price has implied volatility

11.5%. Table 1.1 lists the S&P 500 Index Option implied volatilities of strikes at % of

the spot price in Oct, 1995 [1]. Figure 1.1 shows the variation of implied volatility with

respect to strikes and maturities. We can find that the implied volatilities are lower for

out-of-the-money options and for options with shorter maturities. In addition, in October

1987, the two-month S&P 500 futures price fell 29% [20]. This would only happen with

probability of 10−160 under the lognormal diffusion process hypothesis, which is the standard

constant volatility assumption. These examples reveal that the Black-Scholes model is not

satisfactory. In practice, the finance traders use different implied volatilities to price options

with different strikes and maturities. Unfortunately it is difficult to price exotic options since

these options are very sensitive to specification of volatility. Thus it is unreasonable to use

any constant volatility to price many types of exotic options.

3
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Figure 1.1: Implied volatilities for S&P 500 Index Options in Oct, 1995 with respect to
strikes and maturities

1.2 Models for Volatility Smile

Researchers have attempted to improve the Black-Scholes model to fit the volatility smile.

Merton [23] suggests a model where the asset price has jumps superimposed upon a ge-

ometric Brownian motion. These jumps follow a Poisson process. Hull and White [18]

propose a stochastic volatility model for the asset price. Under this model, options prices

can be obtained using a Monte Carlo method; simple European options can also be priced

with an analytic formula. In these two models, a second random factor, is added. Thus a

non-traded source of risk, such as jumps and stochastic volatility is added, which can lose

the completeness of the model when hedging portfolios by adding options.

Dupire [15] introduces a one-factor model of a risk-neutral process for the spot asset:

dSt

St
= (r − q)dt + σ(St, t)dWt (1.1)

where St is the stock price at time t, r > 0 is the risk free interest, q > 0 is a constant

dividend yield, and σ(St, t) is the local volatility function (LVF), which now depends de-

terministically on St and t. The local volatility function σ(St, t) can be chosen so that the

model prices of all European options are consistent with the market. This model is known
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as the LVF model. Similar to the Black-Scholes model, it only has one source of random-

ness. Under this model, any option on the underlying can be priced and hedged using the

underlying asset. One can also use deterministic local volatility model to price and hedge an

exotic option. It is shown, see e.g., Dupire [15] and Andersen and Brotherton-Ratcliffe [1],

that σ(St, t) can be calculated analytically below:

σ2(K, T ) = 2
∂V 0/∂T + qV 0 + (r − q)K∂V 0/∂K

K2(∂2V 0/∂K2)
(1.2)

where V 0(K, T ) is the initial price of an option with strike price K and maturity T . This

equation can be used to estimate the LVF σ(St, t) if option prices for all strikes and maturi-

ties are available in the market. Unfortunately in reality option prices are available only for

a discrete set of strikes and maturities. Thus the calibration of the local volatility function

becomes recovering the local volatility from a finite set of market option prices. This is an

inverse problem and is ill-posed [6], e.g., there are more than one local volatility surfaces

that can give theoretical prices matching market prices. A simple solution would be to use

interpolation and extrapolation to create options data of all strikes and maturities. But it

is not safe to interpolate option prices because it may create arbitrage opportunities and

add erroneous information to the market options.

1.3 Methods for LVF Model Calibration

Researchers have been making efforts towards solving this ill-posed problem in a stable way.

Dupire [15], Derman & Kani [13] and Rubinstein [20] propose implied binomial/trinomial

tree algorithms for pricing options. They introduce a method to infer risk-neutral proba-

bilities on the tree from market option prices. Then the local volatility structure at lattices

is implied by these risk-neutral probabilities. However, the methods in [20, 13] force the

well-posedness by constructing a complete set of market options using interpolation and

5



extrapolation of available market option prices.

Avellaneda [2] constructs a representation for σ(St, t) with a relative-entropy method.

However, the local volatility surface constructed with their method consists of “humps” and

“troughs” near strike/expiration date. This local volatility irregularity may be unrealistic

and bring difficulty to discretise the space-time domain in a finite difference or finite element

pricing method.

Smoothness and stability have been the main objective of local volatility reconstruc-

tion. Methods have been proposed by selecting a LVF to match option prices with the

model values. These methods involve solving minimization problem:

min
σ(St,t)

m∑

j=1

(V 0
j (σ(St, t))− V̄ 0

j )2

where V̄ 0
j , 1 ≤ j ≤ m, are observed m initial market option prices, and {V 0

j }m
j=1 are the

model option values with local volatility function σ(St, t) at the same strikes and maturities

as the market options {V̄ 0
j }m

j=1. To recover a local volatility function stably, numerical meth-

ods that focus on adding a regularization criterion with the above minimization problem

have been considered. Lagnado & Osher [21] present a regularized method which minimizes

the L2 norm of the gradient of the local volatility to fit the volatility smile using a finite

difference method. This approach does not require explicit interpolation or extrapolation

of observed market prices. However it has disadvantage of high computation cost. The cal-

culation of derivatives in the gradient descent minimization requires extensive computation

of solutions to partial differential equations.

Splines have been known to play an important role in approximating smooth curves

and surfaces [14]. They have also been used as a tool for regularizing ill-posedness of func-

tion approximations from finite known data [29]. Jackson & Süli [19] present an algorithm

which chooses the local volatility function to be a 2-dimensional spline constructed by nodal
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points in price-time space. The representation of σ(St, t) is therefore guaranteed to be a

smooth function. An adaptive finite element method is used to solve the partial differen-

tial equation. The LVF σ(St, t) approximation is fulfilled by using regularization strategy

which minimizes a cost function of partial derivative of local volatility with respect to time

and underlying price at nodal points. However this method still requires relatively heavy

computation.

Coleman, Li and Verma [10] propose a spline functional approach. The local volatility

function σ(St, t) is represented by a cubic spline constructed with a fixed set of spline knots

and end condition. The method chooses the number of spline knots to be no greater than

the number of available option prices. The local volatility is approximated by solving a

constrained nonlinear optimization problem to match the market option prices. Unlike the

proposal of Jackson and Süli that uses nodal points over price-time domain, this approach

chooses only a few knots to construct the spline. The stability of the LVF is controlled

by the number and placement of these knots. Since the degree of freedom is the same as

the number of spline knots, the dimension of the optimization problem is typically small

and the local volatility computation is cost-efficient. However this approach still has some

disadvantages:

• The choice and placement of spline knots is judged by a rule of thumb. Inappropriate

choices may affect the effectiveness of local volatility approximation.

• If the number of knots is not chosen appropriately, calibration is not sufficiently robust

against the inevitable noise of market options data. Slight difference in the market

data will give deviated volatility at low or high spot prices. This causes difficulty in

pricing exotic options accurately.

• The LVF calibration from data on consecutive dates can be quite different.

• The calibrated LVF from market options data seems to have unrealistic oscillations.

7



Based on this survey of numerical methods for the LVF model calibration, we propose an

efficient, accurate, robust and stable approach. By stability we mean the property that an

algorithm identifies genuine relations of the data source [24]. If we rerun the algorithm on a

new sample from the same source it should identify a similar relation. While robustness is

the property that an algorithm is insensitive against the noise perturbation of the sampled

data. In this thesis, we propose a kernel spline σ(S, t; x) in contrast to cubic spline to rep-

resent the unknown local volatility function. This kernel spline is formulated by the inner

product of linear splines with infinite number of knots. The unknown coefficients x ∈ <n in

the kernel spline representation are determined by solving an optimization problem. The

kernel coefficients x ∈ <n are computed to make the local volatility produce option prices

that match the given market data. Ill-posedness of the problem is solved by adding regu-

larization criterion of L1 norm of coefficient vector. Specifically, our optimization problem

becomes:

min
x∈<n




m∑

j=1

(
V 0

j (σ(S, t; x))− V̄ 0
j

)2


 + ρ ‖ x ‖1

where ρ > 0 is a regularization parameter. This proposed formulation is motivated by sup-

port vector regression for function estimation based on a few observations. Finite difference

method is used to determine the option prices by solving a partial differential equation.

The above proposed formulation balances the calibration accuracy with the model com-

plexity based on the regularization parameter ρ. Minimizing the L1 norm of coefficient

vector x for the kernel spline forces some coefficients to be zero [16]. This corresponds to

minimizing the number of support vectors in the context of the support vector regression

for function estimation based on finite observations. The larger the regularization param-

eter ρ is, the larger the calibration error is allowed. Thus the less the number of nonzero

coefficients x exists, and the simpler the complexity of calibration model is, which makes it

more stable.

8



Our LVF calibration formulation overcomes the disadvantages of previous LVF calibra-

tion approach by cubic splines. Our computational results indicate that the calibrated LVF

surface is stable and smooth for market S&P 500 Index Options on different dates. A slight

change of market options will not cause unrealistic oscillation of LVF surface. In addition,

the model calibration is insensitive against the number and placement of the training points

we choose in price-time domain. Since the kernel spline used is smooth, our approach keeps

the advantage of smoothness of cubic spline approach. Because the number of degrees

of freedom of the problem is the number of unknown coefficients x, the dimension of the

optimization is reasonably small. Finally this method does not introduce any erroneous

information due to the interpolation and extrapolation of the available market data.

The proposed calibration problem has the following form:

min
x∈<n

f(x)+ ‖ x ‖1

where f : <n → <1 is a smooth function. In this thesis, we present an interior trust region

algorithm to solve this nonlinear function plus one-norm variable optimization problem.

The main part of this algorithm is reduced to a standard trust region quadratic subprob-

lem. In this algorithm we introduce a line search technique to deal with the problem of

non-differentiability at points with zero components. Experiment results demonstrate the

effectiveness and efficiency of this algorithm for our LVF calibration problem.

The presentation of the thesis is organized as follows. We first describe the local volatil-

ity approximation with a kernel spline in Chapter 2. Next we present the trust region

algorithm and a simple function estimation example in Chapter 3. Performance and com-

putational discussion of a synthetic option example and a real market option example are

described in Chapter 4. Finally, Chapter 5 presents concluding remarks.
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Chapter 2

An L1 Optimization Formulation

for a Stable LVF Calibration

Our objective is to estimate a local volatility function (LVF) based on a finite number of

market option prices which can be regarded as indirect measurement of LVF. This problem is

very challenging. Let us consider a simpler problem first. Imagine that we want to determine

a LVF based on a finite number of direct function observations, i.e., local volatility values at

some sample points of price-time domain. Support vector regression (SVR) can be employed

to identify the LVF efficiently and stably. Notions of support vector and kernel method in

classification problem help to explain the essential properties of the SVR algorithms. With

the indirect measurement of LVF, we propose an L1 optimization formulation to calibrate

the LVF model. This approach is proposed to achieve the corresponding properties of SVR

method for function estimation with direct measurement. In this chapter, we first present

the overview of the LVF model calibration problem. Next we explain the notions of support

vectors and kernel function for support vector machines for classification problems. Then

we propose the kernel spline representation of a local volatility function σ(St, t) and the

L1 optimization formulation for the LVF model calibration. We motivate our proposed

10



formulation which attempts to achive the key properties of the SVR method.

2.1 LVF Model Calibration

Dupire [15] first proposes a local volatility function model for option pricing. Under this

model, a risk-neutral process for the underlying asset price in the form of a one-factor

diffusion is:
dSt

St
= (r − q)dt + σ(St, t)dWt (2.1)

where St is the stock price at time t, constants r > 0 and q > 0 are the risk free interest

and the dividend yield, Wt is a standard Brownian motion, and σ(St, t) is the LVF which

depends deterministically on St and t. Under the no-arbitrage assumption, the following

partial differential equation can be derived:

∂V

∂t
+

1
2
σ2(S, t)S2 ∂2V

∂2S
+ (r − q)S

∂V

∂S
− rV = 0 (2.2)

where V (S, t) is the model option price for asset price S at time t. The boundary condition

can be found as the final payoff of V at t = T . If the local volatility function σ(S, t) is known,

the option value V can be uniquely determined by the above backward parabolic equation

(2.2). American option prices can be determined from a partial differential complementarity

equation. Furthermore the local volatility σ(S, t) can be utilized for other path-dependent

options pricing and constructing dynamic hedging portfolios.

Unfortunately, the local volatility σ(S, t) cannot be observed directly from the market.

In addition, it cannot be obtained analytically with equation (1.2) described in the previous

chapter because a complete set of market option prices is normally not available. Our

problem becomes to determine local volatility σ(S, t) as stably as possible to match limited

market information accurately. Suppose that we have m market option prices {V̄ 0
j }, 1 ≤
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j ≤ m with strikes K̄j and maturities T̄j . We want to find the σ(S, t) such that the solutions

to equation (2.2) at these strikes and maturities satisfy

Vj(S0, 0; K̄j , T̄j) = V̄ 0
j (K̄j , T̄j), ∀ 1 ≤ j ≤ m. (2.3)

This is referred as model calibration problem. A good calibrated model should price as-

sets and derivatives consistently with the market. In addition, the calibration should be

stable. Specifically, similar set of market option prices should lead to similar calibrated

local volatility. The model calibration can be used to predict the future behavior of the

underlying asset in (2.1) with the available market option prices. With the calibrated local

volatility function one can price path-dependent exotic options.

Dupire [15] introduces an adjoint partial differential equation for pricing European op-

tions:
∂V 0

∂T
− 1

2
σ2(K,T )K2 ∂2V 0

∂K2
+ (r − q)K

∂V 0

∂K
+ qV 0 = 0 (2.4)

where σ(K, T ) is equivalent to σ(S, t) with variables S and t replaced with K and T .

Function V 0(K,T ) is the initial (t = 0) price of the option with strike K and maturity T .

The boundary condition of V 0 can be found from the payoff function at T = 0. In contrast

to the backward parabolic Black-Scholes equation (2.2), this is a forward parabolic equation

since the computation direction is from T = 0 to T = Tmax. Actually the equation (1.2)

that gives the analytic solution of σ(K,T ) is obtained by solving this equation. The adjoint

equation allows us to price a range of options of different strikes and maturities by solving

only one PDE. To compute m option values it only takes one pde calculation, which is 1
m

computational cost of using Black-Scholes equation. Thus the calibration problem becomes

to find a local volatility function σ(K,T ) such that the solutions to the forward parabolic

equation (2.4) satisfy condition (2.3).

12



2.2 Function Estimation with SVR

Determining a LVF by solving (2.3) in the previous section is an ill-posed inverse problem.

There exist more than one local volatility functions which can price available market options

accurately. We have described various intensive efforts [1, 6, 2, 21, 19, 10] towards solving

this problem in Chapter 1. However since there are still some drawbacks in these methods,

developing a more efficient, stable and accurate calibration method is our ultimate goal.

One of the key problems in the LVF calibration is a proper mechanism to balance cal-

ibration accuracy and stability of the calibrated model. Accuracy requires the model to

be sufficiently complex to match all given data, while stability demands the model to be

sufficiently simple so that a slight change of data does not cause large change in the model.

In [10], the local volatility function is represented by a cubic spline with a fixed number of

spline knots and end conditions. The conflicting goals of achieving accuracy and stability is

balanced by choosing a minimum number of spline knots (making a model simple) to match

option prices accurately. Unfortunately this process is difficult to automate as described in

the previous chapter.

The local volatility function estimation is clearly a challenging problem. Consider first

the following simpler problem. Assume that the local volatility function only depends on

underlying asset price S, i.e., σ(S, t) ≡ σ(S). In addition, assume that we actually have

direct observations of the local volatility σ̄j = σ(Sj) at Sj , j = 1, 2, ..., m. The problem

of determining a function σ(S) from the observations (Sj , σ̄j), j = 1, 2, ...,m, is a known

statistical learning problem. In particular, the support vector regression offers a solution

approach, see e.g., Vapnik [28]. The support vector (SV) method was discovered in the early

1960s for constructing separating hyperplanes for the pattern recognition problem [27, 26].

Then in 1992-1995, it was generalized for constructing nonlinear separating functions with

kernel methods [5, 12]. In 1995, it was generalized for estimating real-valued functions [25],
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called support vector regression. SVR has shown to give good generalization performance

on a wide variety of problems. It generalizes a number of well-known learning models such

as neural networks and radial basis function networks [28].

Our proposed formulation for the LVF calibration is motivated by examining the prop-

erties of the solution to the support vector regression. To illustrate this, we first review

a classification problem with SV method and then a classical function estimation prob-

lem with SVR. Suppose we want to separate two classes of data with a linear function

h : <N → {±1} using input-output training data

(s1, y1), ..., (sl, yl) ∈ <N × {±1}

such that h will correctly classify unseen data points (s, y). We consider the class of hyper-

planes

(z · s) + b = 0, z ∈ <N , b ∈ <,

and the corresponding decision function

h(s) = sign((z · s) + b)

where · denotes the inner product of two vectors. Figure 2.1 shows a hyperplane (z ·s)+b = 0

and two marginal hyperplanes (z · s) + b = ±1 that separate two classes of data. Suppose

s1 and s2 are points on these two hyperplanes respectively, the margin of the classification

problem is the distance between these two hyperplanes, i.e., z
‖z‖2 · (s1 − s2) = 2

‖z‖2 . The

optimal hyperplane is the one that has the maximum margin of separation between the

14



classes:

minimize
1
2
‖z‖2

2

subject to yi ∗ ((z · si) + b) ≥ 1, i = 1, ..., l.

This constrained optimization problem is solved by introducing Lagrange multipliers βi ≥ 0,

1 ≤ i ≤ l, and a Lagrangian function

L(z, b, β) =
1
2
‖z‖2 −

l∑

i=1

βi(yi ∗ ((si · z) + b)− 1).

By minimizing L with respect to the primal variables z and b and maximizing L with respect

to the dual variables βi, one can obtain the dual of the optimization problem (Appendix

A):

maximize
l∑

i=1

βi − 1
2

l∑

i,j=1

βiβjyiyj(si · sj)

subject to
l∑

i=1

βiyi = 0,

βi ≥ 0, i = 1, ..., l.

The decision function can be written as

h(s) = sign(
l∑

i=1

yiβi ∗ (s · si) + b)

where b is obtained by applying a data point with its corresponding βj 6= 0 in the KKT

complementarity condition:

βj ∗ [yj ∗ ((sj · z) + b)− 1] = 0
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where the solution vector z is an expansion of those training points whose βi is non-zero:

z =
l∑

i=1

βiyisi.

Those training points are called Support Vectors. By the KKT complementarity conditions,

all SVs lie on the marginal hyperplanes. All remaining data points are irrelevant to the

optimal solution since they do not appear in the solution vector z. In Figure 2.1 dark points

are SVs.

z⋅ s+b=0

z⋅ s+b=−1

z⋅ s+b=+1

y
i
=−1

y
i
=+1

s
2

s
1

Figure 2.1: An optimal hyperplane separates two data classes

The above method only constructs linear optimal hyperplane. How can we deal with

the case of a decision function which has a nonlinear relation with the input data? To

construct SV machines for nonlinear decision functions, kernel methods are used to extend

the optimal hyperplane algorithm. The key aspect of a kernel method is that data items

are embedded in a vector space called the feature space and with some learning algorithm
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input space feature space

Figure 2.2: Mapping data from input space to feature space

corresponding relations are sought among the mapped data in the feature space. Using

kernel functions, only the pairwise inner products of mapped data is used in determining the

decision function. The coordinates of the data in feature space are not used. The pairwise

inner products actually are computed efficiently directly from the data in input space using

a kernel function. These methods enable researchers to analyze nonlinear relations in a

high-dimensional feature space and yet preserve the efficiency of linear algorithms. Figure

2.2 shows an example of mapping data to a feature space, where an optimal hyperplane can

be constructed. The mapped data in the feature space can be in high dimensionality. It

might be difficult to write the nonlinear mapping function Φ(s) in an explicit form. Note

that both the optimization problem and the decision function require only the evaluation

of dot products of Φ(s). The dot product of Φ(s) can be represented as a kernel function

with variables s in the input space. Thus to construct SV machines, we replace each s with
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Φ(s). The quadratic problem and the decision function become:

maximize
l∑

i=1

βi − 1
2

l∑

i,j=1

βiβjyiyjF (si, sj)

subject to
l∑

i=1

βiyi = 0

βi ≥ 0, i = 1, ..., l

and

h(s) = sign(
l∑

i=1

yiβi ∗ F (s, si) + b)

where we denote the kernel function F (si, sj) = Φ(si) ·Φ(sj). However, noise data can cause

overlaps of the data classes; a strictly separating hyperplane may not exist. In this case, slack

variables ξi ≥ 0, i = 1, ..., l, and corresponding relaxed constraints yi ∗ ((z · si) + b) ≥ 1− ξi,

i = 1, ..., l, are introduced to allow for the class data overlaps. In this case, we maximize the

margin via ‖z‖2 and minimize the number of outliers, i.e., minimizing an objective function

min
z,ξ

1
2
‖z‖2

2 + C
l∑

i=1

ξi.

Constant C > 0 controls the trade-off between the two factors. By rewriting it with respect

to the Lagrange multipliers (Appendix B), we find that the quadratic optimization problem

is similar to the separable cases except that the constraints become

l∑

i=1

βiyi = 0 and 0 ≤ βi ≤ C, i = 1, ..., l.

We can see that the Lagrange multiplier βi is upper bounded by C. The decision function

has the same form of separable cases with b computed by the fact that for all SVs with

βi < C, the slack variable ξi is zero, i.e.,
∑l

j=1 yiβj · F (si, sj) + b = 1 from complementary
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KKT conditions.

The learning algorithm illustrated above, support vector machine (SVM), uses the con-

cept of margin which is specific to classification problems in pattern recognition. Later the

SVM method is extended to function estimation [28]. An ε−insensitive loss function below

is introduced to construct a marginal hyperplane:

|y − h(s)|ε = max{0, |y − h(s)| − ε}. (2.5)

Any y data with error less than ε can be considered within a tube of radius ε centered

ξ
+ε

−ε
0

Figure 2.3: An ε tube introduced with loss function for function estimation

around function values. Figure 2.3 depicts a separating hyperplane for function estimation.

Slack variables ξ are introduced for function values outside of the ε tube. For a linear
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regression case, to estimate h(s) = (z · s) + b with precision ε one needs to minimize

1
2
‖z‖2

2 + C
l∑

i=1

|yi − h(si)|ε.

where C > 0 is a constant priori. Therefore a constrained optimization problem can be

constructed

minimize
1
2
‖z‖2

2 + C

l∑

i=1

(ξi + ξ̄i)

subject to ((z · si) + b)− yi ≤ ε + ξi, for all i = 1, ..., l

yi − ((z · si) + b) ≤ ε + ξ̄i, for all i = 1, ..., l

ξi, ξ̄i ≥ 0, for all i = 1, ..., l.

Incorporating kernel functions, we represent the optimization problem in terms of the La-

grange multipliers (Appendix C):

maximize − ε
l∑

i=1

(β̄i + βi) +
l∑

i=1

(β̄i − βi)yi (2.6)

−1
2

l∑

i,j=1

(β̄i − βi)(β̄j − βj)F (si, sj)

subject to
l∑

i=1

(βi − β̄i) = 0,

0 ≤ βi, β̄i ≤ C, i = 1, ..., l.

The regression estimation has the form:

h(s) =
l∑

i=1

(β̄i − βi)F (si, s) + b,
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where b is obtained by using the fact that for all SVs the constraints take equality and have

ξi = 0 if 0 < βi < C and ξ̄i = 0 if 0 < β̄i < C. The SVs for function estimation problem are

those training vectors on margins or outside of the ε tube. All other training vectors within

the tube are irrelevant to the problem solution. Since a training vector can only land on

either outer side of the ε tube, βi and β̄i cannot both be nonzero. Therefore SV can be

given as below:

SV
def= {i : either βi 6= 0 or β̄i 6= 0}

= {i : β̄i − βi 6= 0}.

The number of SVs is affected by the accuracy level ε. Suppose we want to approximate

a function h(s) with the accuracy level ε. An ε tube is constructed to find the estimation

function. It is a nonlinear tube since we introduce kernel mapping for input data. Since the

ε tube tends to be flat, it will touch some sample points. The axis of the ε tube constructs

the estimation function h(s) and those sample points that touch the ε tube becomes the

support vectors. For some points lying outside of the tube (with the introduction of slack

variables ξ and ξ̄), their β (β̄) parameters are nonzero and should be included in the final

estimation function. Therefore these points are also included as support vectors. It is

easy to see that the wider the ε tube the lower the number of touching points, i.e., the

fewer the support vectors. It can be shown that the number of SVs controls the balance of

generalization accuracy and stability. The larger the ε level is allowed, the less the number

of existing SVs is, the simpler the model complexity is, and therefore the more stable the

generalization model is.
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2.3 Kernel Spline Representation of LVF

In the simple example with observed local volatility values at sampled training points, we

can form the quadratic optimization problem in the SVR framework to estimate a local

volatility function. However when observing the indirect measurements of σ(S, t), i.e., a

finite number of available market option prices, we are not able to form the classical SVR

quadratic optimization problem (2.6). Instead we motivate our L1 optimization formulation

to attempt to achieve the advantageous properties of SVR.

First we utilize kernel splines to represent the estimation function, i.e., σ(S, t) according

to the formulation in SVR. Spline kernels can be used to approximate nonlinear functions.

Splines are created with either a fixed number of knots or an infinite number of knots. In

this thesis we will use an infinite number of knots which construct an infinite dimensionality

piecewise linear approximation of a function. Suppose that a one-dimensional function

defined on the interval [0, sb], 0 < sb < ∞, is approximated by splines of order d ≥ 0 with

infinite number of knots: {ti}, 1 ≤ i < ∞. A one-dimensional variable s is mapped into an

infinite-dimensional vector u:

s → u = (1, s, ..., sd, (s− t1)d
+, ..., (s− ti)d

+, ...)

where

(s− tk)d
+ =





0 if s ≤ tk,

(s− tk)d if s > tk.

Then the spline has the form:

h(s) =
d∑

i=0

ais
i +

∫ sb

0
a(t)(s− t)d

+dt,
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where ai, i = 0, ..., d, are unknown coefficients and a(t) is an unknown function that con-

structs the expansion using an infinite number of knots. One attractive feature of kernel

methods is that only a pairwise inner product is considered. And the inner products are

computed eventually from data items in input space. Therefore coefficients ai and function

a(t) for h(s) are not our concern. Instead we consider the kernel function that generates

the inner products of variable s and training input data si in the feature space as follows:

F (s, si) =
∫ sb

0
(s− t)d

+(si − t)d
+dt +

d∑

k=0

sksk
i

=
∫ (s∧si)

0
(s− t)d(si − t)ddt +

d∑

k=0

sksk
i

=
∫ (s∧si)

0
(u)d(u + |s− si|)ddu +

d∑

k=0

sksk
i

=
d∑

k=0

Ck
d

2d− k + 1
(s ∧ si)2d−k+1|s− si|k +

d∑

k=0

sksk
i

where s ∧ si denotes the minimum value between s and si, i.e., min(s, si), and Ck
d is the

number of choices for choosing k samples from d samples. For the linear spline with d = 1

in particular, we have the following function after integration:

F (s, si) = 1 + ssi +
1
2
| s− si | (s ∧ si)2 +

(s ∧ si)3

3

where si is a training input data in interval [0, sb]. The above kernel function can be

extended with the estimated function defined on interval [−sb, +∞), 0 ≤ sb < ∞. Actually,
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we have

F (s, si) =
∫ +∞

−sb

(s− t)d
+(si − t)d

+dt +
d∑

k=0

sksk
i

=
∫ (s∧si)

−sb

(s− t)d(si − t)ddt +
d∑

k=0

sksk
i

=
∫ (s∧si+sb)

0
(s− t + sb)d(si − t + sb)ddt +

d∑

k=0

sksk
i

Therefore for the linear spline d = 1 the kernel function becomes

F (s, si) = 1 + ssi +
1
2
| s− si | (s ∧ si + sb)2 +

(s ∧ si + sb)3

3

It can be proven that the above kernel function is twice differentiable. Actually one can

easily show that for all si, 1 ≤ i ≤ l:

lim
s→s−i

d(F (s, si))
ds

= lim
s→s+

i

d(F (s, si))
ds

,

lim
s→s−i

d2(F (s, si))
ds2

= lim
s→s+

i

d2(F (s, si))
ds2

.

Using this kernel, we represent an estimation function as

h(s; x) =
l∑

i=1

x(i)F (s, si) + x(0)

where s and training input data si, 1 ≤ i ≤ l, are defined in [−sb, +∞); this corresponds to

x(i) = β̄i − βi, for 1 ≤ i ≤ l, and x(0) = b in the quadratic optimization problem described

in (2.6). The above kernel spline expansion is analogous to the linear SV approximation
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where a function is represented in the form:

h(s; x) =
l∑

i=1

x(i)(s · si) + x(0).

By replacing the inner product of input space data (s, si) with a kernel function F (s, si), a

learning algorithm with a kernel method has the same computation complexity as with a

linear method. For N−dimensional space cases, the kernel splines are defined using tensor

products of one-dimensional kernel functions:

F (s, si) =
N∏

k=1

F (s(k), s
(k)
i ),

where we use s = (s(1), ..., s(N)) to denote a variable in a N−dimensional space.

In this thesis we use this kernel spline to represent a LVF:

σ((K, T );x) =

∣∣∣∣∣
l∑

i=1

x(i)F ((K, T ), (Ki, Ti)) + x(0)

∣∣∣∣∣ , (2.7)

with

F ((K,T ), (Ki, Ti)) = [1 + KKi +
1
2
| K −Ki | (K ∧Ki + Kb)2 +

(K ∧Ki + Kb)3

3
]×

[1 + TTi +
1
2
| T − Ti | (T ∧ Ti + Tb)2 +

(T ∧ Ti + Tb)3

3
]

where (K,T ) denotes a variable in two-dimensional strike-maturity space, and F is the ten-

sor product of the kernel functions in these two dimensions. The function variables (K, T )

and l training variables (Ki, Ti) are defined in interval [−Kb,+∞) × [−Tb, +∞). In (2.7),

we use absolute value of the linear expansion of kernel splines since the local volatility is

positive in finance practice.

However local volatility values σ(Ki, Ti) at training vectors {Ki, Ti}l
i=1 are not observed
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in the market. We only have market option prices {V̄ 0}m
j=1 available. The quadratic opti-

mization problem based on SVR cannot be formulated directly in this situation.

The goals of calibration remain the same. We first want to minimize the calibration

error, which can be measured as

m∑

j=1

wj

(
V 0

(
(K̄j , T̄j);x

)− V̄ 0
j

)2

where each model option value V 0(K̄j , T̄j ;x) is uniquely determined by the local volatility

function (2.7) specified by the unknown coefficients x. We have included the weights {wj ≥
0} in the formulation, which can be used to achieve desired accuracy when option values

are of significantly different magnitudes.

In addition to control calibration error, we want to keep the local volatility function

simple to reduce the generalization error of the local volatility function based on finite

observations. We attempt to achieve this by pushing unnecessary coefficients of the kernel

function representation (2.7) of the local volatility function to have zero values. Then the

complexity of the model becomes simple enough. Combining these two objectives together,

we solve the optimization problem:

min
x∈<l+1

m∑

j=1

wj

(
V 0

(
(K̄j , T̄j);x

)− V̄ 0
j

)2 + ρ
l∑

i=0

|x(i)| (2.8)

where the constant ρ > 0 is a regularization parameter balancing the tradeoff between

the two objectives. When the parameter ρ is large, the calibration error is large but the

calibration local volatility function has more zero coefficients and tends to be simpler. This

corresponds to the property in SVR solution: if we have fewer support vectors left in the

estimation function with SVR approach, the function is an expansion of less complexity

and thus simpler and is likely to be more stable.
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We emphasize the use of the 1-norm of the coefficients ‖x‖1 in the objective function

of the proposed formulation. We can think of this term as the exact penalty function for

the constraints x(i) = 0, 0 ≤ i ≤ l. Indeed, with a finite ρ > 0, typically some subset of

constraints will be satisfied. In addition, for each constraint x(i) = 0, there exists a finite

lower bound for ρ such that when ρ is greater than this bound, the constraint x(i) = 0

will be satisfied. If we use the quadratic penalty function ‖x‖2
2 in the objective function,

even though the objective function becomes smooth, the coefficients {x(i)} are typically

nonzero at the solution [16]. The optimization problem (2.8) has the following equivalent

constrained optimization formulation:

minimize
m∑

j=1

wj(V 0((K̄j , T̄j);x)− V̄ 0
j )2 + ρ

l∑

i=0

x̄(i)

subject to x̄(i) − x(i) ≥ 0, for all i = 0, ..., l

x̄(i) + x(i) ≥ 0, for all i = 0, ..., l

x̄(i) ≥ 0, for all i = 0, ..., l.
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Chapter 3

A Trust Region Algorithm

We now develop a trust region method based on proper affine scaling for the proposed LVF

calibration problem. The LVF estimation problem (2.8) can be formulated as a slightly

more general problem which minimizes a nonlinear function f(x) plus the one-norm of the

vector x as follows:

min
x∈<n

f(x) + ‖x‖1 (3.1)

where f : <n → <1 is a twice continuously differentiable function, and ‖x‖1 =
∑n

i=1 |x(i)|.
We use x(i) to denote the ith component of the vector x.

3.1 Algorithm Outline

The objective function (3.1) has a smooth component f(x) and a piecewise linear component

‖x‖1. In [8] by Coleman and Li, an interior trust region method is proposed to solve the

bound-constrained minimization problem,

min
x∈<n

f(x), l ≤ x ≤ u
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where l ∈ {< ∪ {−∞}}n, u ∈ {< ∪ {∞}}n, l < u, and f : <n → <1 is a smooth function.

At each iteration, the main computation is a trust region subproblem based on appropriate

scaling, which depends on the first order KKT optimality condition as well as closeness of

the current iterate to the constraints. In addition, a reflective technique is used to accelerate

convergence, more details can be found in [7, 9].

One of the main component of solving (3.1) is to identify which variables have zero values

at the solution (or which constraints become active at a solution). We outline subsequently

a similar trust region method for solving (3.1). The trust region subproblem is based on

appropriate affine scaling. The affine scaling matrices Dk and Ck are given naturally by

examining the first-order KKT conditions for (3.1) (Appendix D): if a point x is a local

minimizer, then

x(i)[(∇f(x))(i) + sign(x(i))] = 0 and | (∇f(x))(i) |≤ 1 for 1 ≤ i ≤ n (3.2)

where

sign(x(i)) def=





1 if x(i) ≥ 0,

−1 otherwise.

This condition can be expressed as the nonlinear system of equations

D(x)(∇f(x) + sign(x)) = 0 (3.3)

where

D(x) def= diag(v(x)),
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and the vector v(x) ∈ <n is defined below: for each 1 ≤ i ≤ n,

v(i) def=





| x(i) | if |(∇f(x))(i)| ≤ 1,

1 otherwise .

(3.4)

In (3.4) we use |x(i)| instead of x(i) so that we could introduce an affine scaling matrix

D
− 1

2
k later. Actually using |x(i)| also meets the first-order KKT condition (3.2). A vector x

satisfies equations (3.3) if and only if the first-order KKT conditions of (3.1) hold at x. To

see this, let us suppose that the first-order KKT conditions hold at x. Then for 1 ≤ i ≤ n,

either x(i) = 0 and | (∇f(x))(i) |≤ 1 or (∇f(x))(i) +sign(x(i)) = 0. Naturally we have either

v(i) = 0 or (∇f(x))(i) + sign(x(i)) = 0 for 1 ≤ i ≤ n. Thus the nonlinear equations (3.3)

hold at x. On the other hand, if the equations (3.3) hold at x we have either v(i) = 0 or

(∇f(x))(i) + sign(x(i)) = 0 for 1 ≤ i ≤ n. It leads to either x(i) = 0 and | (∇f(x))(i) |≤ 1 or

(∇f(x))(i) + sign(x(i)) = 0 for 1 ≤ i ≤ n, which gives x(i)[(∇f(x))(i) + sign(x(i))] = 0 and

| (∇f(x))(i) |≤ 1 for 1 ≤ i ≤ n, i.e., the first-order KKT conditions.

Assume that, at the iteration k, x
(i)
k 6= 0, 1 ≤ i ≤ n. A Newton step for (3.3) at the kth

iteration satisfies

(Jv
kdiag(gk) + diag(vk)∇2f(xk))dk = −diag(vk)gk (3.5)

where gk
def= ∇f(xk)+ sign(xk). Here Jv(x) ∈ <n×n is a diagonal matrix which corresponds

to the Jacobian of | v(x) |. Each diagonal element equals to zero or ±1.

Equation (3.5) can be written below:

M̂ksk = −ĝk, (3.6)
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where

sk = D
− 1

2
k dk

ĝk = D
1
2
k gk = diag(v

1
2
k )gk

M̂k = D
1
2
k ∗ ∇2f(xk) ∗D

1
2
k + diag(gk) ∗ Jv

k

The Newton step (3.6) suggests an affine scaling transformation: sk = D
− 1

2
k dk. With

the transformation, our nonlinear plus one-norm minimization problem (3.1) can be locally

reduced to a typical nonlinear unconstrained problem. A natural way to improve xk is to

solve the trust region subproblem

min
s∈<n

{ψ̂k(s) : ‖s‖2 ≤ ∆k}, (3.7)

where

ψ̂k(s) = ĝT
k s +

1
2
sT M̂ks.

The subproblem (3.7) has its counterpart in the original variable space:

min
d∈<n

{ψk(d) : ‖D− 1
2

k d‖2 ≤ ∆k} (3.8)

where

ψk(d) = gT
k d +

1
2
dT Mkd

Ck = D
− 1

2
k ∗ diag(gk) ∗ Jv

k ∗D
− 1

2
k

Mk = ∇2fk + Ck

dk = D
1
2
k sk.
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The affine scaling matrix Dk defines the shape of the ellipsoid created by ‖D− 1
2

k d‖2 = ∆k.

With this choice, the ellipsoid is short in directions corresponding to components of x(i) close

to zero and |(∇f(x))(i)| ≤ 1, and long in directions corresponding to relatively large | x(i) |
or |(∇f(x))(i)| > 1. In this way the quadratic model (3.8) takes small steps along the

direction with components of x(i) close to zero and |(∇f(x))(i)| ≤ 1.

The nonlinear system (3.3) derived from the KKT conditions is not differentiable when

x(i) = 0. We define a differentiable region in which all points have no zero component:

F def= {x : x ∈ <n, x(i) 6= 0, for all 1 ≤ i ≤ n}.
For any given direction d, we consider the following piecewise quadratic approximation

of objective function (3.1):

φk(d) def= ∇fT
k d +

1
2
dT∇2fkd + ‖xk + d‖1 − ‖xk‖1 +

1
2
dT Ckd (3.9)

As an approximation to the change in objective function (3.1), φk(d) has at least ac-

curacy of linear order O(‖d‖). Note that without 1
2dT Ckd, φk(d) has quadratic accuracy

order O(‖d‖2). But 1
2dT Ckd is added to match our quadratic model ψk(d). Since the dif-

ferentiable region in (3.1) is not connected, and since we do not know in which region the

optimal point lies, our algorithm must allow crossing points of nondifferentiability. Note

that ψk(d) is derived from (3.5) based on the Newton step for the KKT condition; thus it

may not be a good approximation to the change of the objective function far away from

a solution. Because φk(d) approximates the change of the objective function in (3.1) even

though it is not differentiable everywhere, it gives a better way than ψk(d) to represent

quadratic approximation of objective function.

If [xk, xk + d] ⊂ F , there is no sign change from xk to xk + d. Quadratic approximation

φk(d) equals the objective value ψk(d) of the trust region subproblem. This can be seen
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Proposed Trust Region Algorithm. Let 0 < µ < 1.
For k = 0, 1, ...

Step 1. Compute fk, gk, Dk, Mk and Ck; define the quadratic model

ψk(d) = gT
k d +

1
2
dT Mkd.

Step 2. Compute a step dk such that xk + dk ∈ F , based on subproblem:

min
d
{ψk(d) : ‖D− 1

2
k d‖2 ≤ ∆k}.

Step 3. Compute

ρf
k =

f(xk + dk)− f(xk) + ‖xk + dk‖1 − ‖xk‖1 + 1
2dT

k Ckdk

φk(dk)

Step 4. If ρf
k > µ, then set xk+1 = xk + dk. Otherwise set xk+1 = xk.

Step 5. Update ∆k as specified below.

Updating Trust Region Size ∆k

0 < µ < η < 1, ΛU > 0, 0 < γ3 < 1 and 0 < γ0 < γ1 < 1 < γ2

1. If ρf
k < 0 then set ∆k+1 = min(∆kγ0, ΛU )

2. If 0 < ρf
k < µ then set

∆k+1 = min(∆kγk, ΛU )

γk = max(γ0, γ1‖D− 1
2

k dk‖2/∆k)

3. If ρf
k ≥ µ then

If ‖D− 1
2

k dk‖2/‖pk‖2 < γ3 then

γk = γ0

Otherwise
If ρf

k ≥ η then

γk = max(1, γ2‖D− 1
2

k dk‖2/∆k)

Otherwise γk = 1

4. Set ∆k+1 = min(∆kγk,ΛU )

Figure 3.1: A trust region algorithm for the optimization problem (3.1)
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easily from below:

φk(d) def= ∇fT
k d +

1
2
dT∇2fkd + ‖xk + d‖1 − ‖xk‖1 +

1
2
dT Ckd

= ∇fT
k d + ‖xk + d‖1 − ‖xk‖1 +

1
2
dT Mkd

= ∇fT
k d + sign(xk)T d +

1
2
dT Mkd

= gT
k d +

1
2
dT Mkd.

In the proposed algorithm, we maintain differentiability for all iterates {xk}. Assume that dk

is the solution to the trust region subproblem (3.8). It is possible that non-differentiability

occurs from xk to xk+dk, i.e., some of variables may become zero. For any descent direction

d, let φ∗k[d] denote the minimum value of φk(d) along d within the trust region, i.e.,

φ∗k[d] def= min
‖αD

− 1
2

k d‖2≤∆k,α≥0

φk(αd).

A simple backtracking technique used in many interior points can similarly be used to avoid

landing exactly on the points of non-differentiability.

The proposed trust region algorithm is summarized in Figure 3.1. Similar to the bound-

constrained trust region method [7], global convergence can be ensured if, at each iteration,

φk(dk) ≤ βgφ
∗
k[−Dkgk] (3.10)

where 0 < βg < 1 is a given constant. In addition, under some regularity conditions, local

quadratic convergence can be achieved if

φk(dk) ≤ βpφ
∗
k[pk] (3.11)
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where 0 < βp < 1 is a given constant, and pk is the solution of trust region subproblem

(3.8). To satisfy both convergence conditions, we should allow crossing nondifferentiable

hyperplanes when searching for minimizer along both steepest descent direction −Dkgk

and trust region solution pk. Condition (3.10) ensures the global convergence condition.

However searching along this direction to reach a solution is quite slow in practice. On

the other hand, the trust region solution pk can lead to rapid convergence when started

close enough to a solution. Therefore we choose the better improvement along these two

directions for each iteration.

The trust region size is adjusted at each iteration to ensure a sufficient decrease of the

objective function. The size of the trust region is critical to the effectiveness of each step.

If the region is too small, the iteration misses a chance to take a larger step to move closer

to the minimizer of the objective function. If too large, the minimizer of the model may be

far from the minimizer of the objective function; in this case we have to reduce the size of

the region and try again. In practice, we choose the size of the trust region according to

the performance of the algorithm during previous iterations. Basically we increase the size

of trust region, i.e., ∆k, to take more ambitious steps if the quadratic approximation well

represents the objective function reduction, i.e., ρf
k > η. On the contrary, we decrease ∆k if

our quadratical model is an inadequate representation of the objective function. Similar to

the algorithm proposed by Coleman and Li for bound constrained minimization problem,

the trust region method also allows possible trust region size reduction even when ρf
k > η.

Specifically, when the chosen step dk is much smaller than the trust region solution pk, even

if ρf
k > η, the trust region size ∆k should still be reduced. This situation would happen

when the current iterate is very close to a hyperplane x(i) = 0, 1 ≤ i ≤ n, and the gradient

after the hyperplane becomes ascent. Backtracking steps within differentiable region F of

both trust region direction pk and steepest descent direction −Dkgk are typically very small.

In addition, line search steps allowing crossing are also small as the gradient after x(i) = 0
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hyperplane becomes ascent. Therefore the chosen step dk is eventually very small compared

with trust region step pk.

3.2 Two Line Search Variations: TR1 and TR2

To ensure the global convergence and local quadratic convergence, we introduce a line

search technique allowing crossing points of non-differentiability. In the methods proposed

by Coleman and Li [7, 9] for bound-constrained optimization, a line search with a reflective

technique accelerates the optimization convergence. Reflection on bounds along sk allows

further decrease of the objective function and improve performance significantly. Similar to

the reflective technique, the line search technique which permits crossing makes a difference

in the computational performance. In the proposed algorithm, we illustrate two types of

line search techniques which are referred to as TR1 and TR2. The difference between these

two methods is that TR1 allows crossing only one hyperplane x(i) = 0 and TR2 allows

crossing as many hyperplanes as possible within the trust region. We want to investigate

how different line search techniques can affect the algorithm performance.

To illustrate the two line search techniques, we describe how a direction d is divided by

the hyperplanes. We also describe backtracking along this direction. Suppose direction d of

infinite length is divided into m segments (α1−α0)d, (α2−α1)d,... (αm−αm−1)d by m−1

breakpoints (xk)1,... (xk)m−1 as in Figure 3.2. In particular, break points and segments

can be calculated below:

(xk)i = xk + αid, α1 ≤ α2 ≤, ... ≤ αm−1, 1 ≤ i ≤ m− 1,

αi ∈ {α : α > 0, α = −x
(j)
k /d(j), 1 ≤ j ≤ n}, 1 ≤ i ≤ m− 1, α0 = 0, αm = +∞.
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The objective function approximation φk(αld), 1 ≤ l ≤ m − 1, equals to the sum of

ϕi
k((αi − αi−1)d), 1 ≤ i ≤ l, of all segments:

φk(αld) =
l∑

i=1

ϕi
k((αi − αi−1)d), (3.12)

ϕi
k((αi − αi−1)d) = (αi − αi−1)(gk)T

i−1d+ (αi − αi−1)2
1
2
dTMkd

where (gk)i is the gradient immediately after crossing the ith breakpoint (xk)i:

(gk)0 = gk, (gk)i = (gk)i−1 + (αi − αi−1)Mkd− 2sign(x(j)
k )ejn, 1 ≤ i ≤ m− 1

where j is the zero component index of (xk)i, e
j
n is a vector of size n with all zeros but

1 at the index j. Figure 3.2 shows how d is divided. Note that for any iterate, x(j)
k 6= 0,

1 ≤ j ≤ n.

xk

(xk)1 (xk)2 (xk)3 (xk)m−1 d

Figure 3.2: Breakpoints (xk)i along direction d

To see why equation

φk(αld) =
l∑

i=1

ϕi
k((αi − αi−1)d)

holds, we simply show the case with l = 2 here. We use α−2 to denote a value immediately

before α2. Since xk + α1d is zero at the index of sign change from xk to xk + α−2 d, we

have sign(xk + α−2 d)
T (xk + α1d) = sign(xk)T (xk + α1d). Then with the fact that Mk is a
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symmetric matrix, we obtain the following:

φk(α2d) = α2∇fT d + ‖xk + α2d‖1 − ‖xk‖1 +
1
2
α2

2d
T Mkd

= α1∇fT d + (α2 − α1)∇fT d + sign(xk + α−2 d)T (xk + α2d)− sign(xk)T xk

+
1
2
α2

1d
T Mkd +

1
2
(α2 − α1)2dT Mkd + α1(α2 − α1)dT Mkd

= α1(∇fT + sign(xk)T )d + (α2 − α1)(∇fT + sign(xk + α−2 d)T + α1d
T Mk)d

+
1
2
α2

1d
T Mkd +

1
2
(α2 − α1)2dT Mkd

= α1(gk)T
0 d +

1
2
α2

1d
T Mkd + (α2 − α1)(gk)T

1 d +
1
2
(α2 − α1)2dT Mkd

= ϕ1
k(α1d) + ϕ2

k((α2 − α1)d).

For the cases when l > 2, the above equation can also be verified similarly.

For both line search techniques of TR1 and TR2, we use φk[d] to denote the minimum

value φk(τ∗kd) that we search along d, in which τ∗k ∈ [0, +∞), denotes a minimizer along

d within the trust region. For TR1 method, we allow crossing at most one hyperplane

x(i) = 0, 1 ≤ i ≤ n:

φk[d] def= φk(τ∗kd) def= min{φk(τd) : ‖τD
− 1

2
k d‖2 ≤ ∆k, 0 ≤ τ ≤ α2}.

Since τ∗k is a minimizer within the trust region, it can be obtained as shown in Figure 3.3.

Note that τ = − (gk)T
1 d

dT Mkd
solves (τ(gk)T

1 d + 1
2τ2dT Mkd)′τ = 0, thus gives an optimal point

along d if (gk)T
1 d < 0. And τ is bounded by α2−α1 to make sure the optimal point is within

the interval [xk, xk +(α2−α1)d]. Inequality (gk)T
1 d ≥ 0 means that ϕ2

k((α2−α1)d) becomes

ascent along d. In this case, τ∗k corresponds to the optimal point in interval [xk, xk +α1d]. A

special condition we should consider is when dT Mkd ≤ 0. Under this condition, the objective

value approximation φk is always decreasing along d as long as (gk)T
i d < 0, 0 ≤ i ≤ m− 1.

Therefore an optimal point within an interval [xk + αid, xk + αi+1d] is simply at the end of
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if (gk)T
1 d ≥ 0 or ‖D− 1

2
k α1d‖2 ≥ ∆k

if dT Mkd ≤ 0
τ = α1

else

τ = min(− gT
k d

dT Mkd
, α1)

end if

τ∗k‖D
− 1

2
k d‖2 = min(∆k, ‖τD

− 1
2

k d‖2)
else

if dT Mkd ≤ 0
τ = α2 − α1

else

τ = min(− (gk)T
1 d

dT Mkd
, α2 − α1)

end if

τ∗k‖D
− 1

2
k d‖2 = min(∆k, ‖(α1 + τ)D

− 1
2

k d‖2)
end if

Figure 3.3: Solve τ∗k in TR1 method
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the interval, xk + αi+1d. With the calculation, it can be guaranteed that xk + τ∗kd is within

the trust region and is an optimal point within interval [xk, xk + α2d].

For TR2 method, we allow crossing as many hyperplanes x(i) = 0, 1 ≤ i ≤ n, as possible.

We define:

φk[d] def= φk(τ∗kd) def= min{φk(τd) : ‖τD
− 1

2
k d‖2 ≤ ∆k, τ ≥ 0}.

To illustrate the computation steps for τ∗k , we let (τ)i denote the minimizer of φk that we

search along d allowing going across breakpoints until we reach xk + αid.

(τ)i
def= argminτ{φk(τd) : ‖τD

− 1
2

k d‖2 ≤ ∆k, 0 ≤ τ ≤ αi}.

A minimizer τ∗k which permits crossing as many breakpoints as possible can be obtained

as shown in Figure 3.4. With the calculation, we can guarantee that τ∗k finds the minimizer

along d within the trust region.

To avoid landing exactly on a point at which the objective function becomes nondif-

ferentiable, we backtrack slightly as follows. If xk + τ∗kd lands at the lth, 1 ≤ l ≤ m − 1,

breakpoint, we have τ∗k = αl. We use B∗
k[d] to denote a possible step-back from d to keep

strict differentiablity. Define

B∗
k[d] def=





τ∗kd if xk + τ∗kd ∈ F ,

αl−1d + θk(τ∗k − αl−1)d if τ∗k = αl, 1 ≤ l ≤ m− 1.

For our algorithm implementation, we use

θk = max(0.95, 1− V Gnorm), V Gnorm = ‖D(xk)(∇f(xk) + sign(xk))‖∞ (3.13)

where for any vector x ∈ <n

‖x‖∞ = max
i
|x(i)|.
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(τ)0 = 0
for i = 1 to m

if (gk)T
i−1d ≥ 0 or ‖D− 1

2
k αi−1d‖2 ≥ ∆k

(τ)i = (τ)i−1

else

if dT Mkd ≤ 0
τ = αi − αi−1

else

τ = min(−(gk)T
i−1d

dT Mkd
, αi − αi−1)

end if

(τ)i‖D− 1
2

k d‖2 = min(∆k, ‖(αi−1 + τ)D
− 1

2
k d‖2)

if φk((τ)id) ≥ φk((τ)i−1d)
(τ)i = (τ)i−1

end if

end if

end for

τ∗k (d) = (τ)m

Figure 3.4: Solve τ∗k in TR2 method
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Variable V Gnorm is a criteria for convergence. It approaches zero when current iterate

approaches an optimal solution. We take very cautious backtracking when the iteration

converges. With above updates on d, we can guarantee that xk +B∗
k[d] is a point very close

to xk + τ∗kd and does not land exactly on a breakpoint.

For both TR1 and TR2 in Step 2 in Figure 3.1, we compute dk from

φk(dk) = min(φk[−Dkgk], φk[pk])

to satisfy the global convergence requirement (3.10) and local quadratic convergence re-

quirement (3.11). In the following chapters we will demonstrate the performance for algo-

rithm TR1 and TR2 respectively. Intuitively, TR2 method takes fewer iterations than TR1

method as TR2 allows more objective reduction for each iteration. Since line search along a

direction d has linear computation complexity, TR2 does not add much cpu time compared

with TR1 for one iteration. Therefore TR2 is expected to outperform TR1 in speed. We

will investigate how large the difference is computationally.

3.3 A Function Estimation Example

In this section, we will give a simple function estimation example using kernel splines and

optimization formulation (3.1). With this example, we illustrate the problem formulation,

extended trust region algorithm performance, and several computation issues.

3.3.1 Problem Formulation

As described in the previous chapter, support vector learning methods can be applied to

function estimation based on a few sample observations. In our LVF model calibration

problem, the sampled input training data are the strikes and maturities {(Ki, Ti)}l
i=1 in

the price-time domain. However the function observations, e.g., the real local volatilities
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{σ̄(Ki, Ti)}l
i=1 at these input points, are not observed. Our local volatility function esti-

mation has to be based on the collected market option data {V̄ 0
j }m

j=1, which are indirect

observations of local volatility function. To apply support vector regression in estimating

the local volatility function, we propose an idea that uses the kernel splines to represent the

σ function in (2.7)

σ((K, T );x) =

∣∣∣∣∣
l∑

i=1

x(i)F ((K, T ), (Ki, Ti)) + x(0)

∣∣∣∣∣ ,

F ((K,T ), (Ki, Ti)) = [1 + KKi +
1
2
| K −Ki | (K ∧Ki + Kb)2 +

(K ∧Ki + Kb)3

3
]×

[1 + TTi +
1
2
| T − Ti | (T ∧ Ti + Tb)2 +

(T ∧ Ti + Tb)3

3
]

and then unknown x coefficients are determined by the formulation (2.8)

min
x∈<l+1

m∑

j=1

wj

(
V 0

(
(K̄j , T̄j);x

)− V̄ 0
j

)2 + ρ
l∑

i=0

|x(i)|

which we described in Chapter 2. Minimizing the calibration error has similar effect as min-

imizing the loss function |σ̄(K, T )− σ(K, T )|ε, where σ̄(K, T ) stands for the local volatility

function that prices the market options. In addition, one-norm regularization on x plays

a key role in capacity control and forcing some x coefficients to be zero, yielding a small

number of nonzero x.

To demonstrate our problem formulation, we first consider a simple function estimation

problem. Suppose that we have observation data (s̄1, ȳ1), ..., (s̄m, ȳm) collected according

to:

ȳj = sin(s̄j), 1 ≤ j ≤ m.
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We want to estimate a function based on the above data, which is as close to the samples

as possible. We assume that the unknown function is represented by a spline kernel

h(s; x) =
l∑

i=1

x(i)F (s, si) + x(0),

F (s, si) = 1 + ssi +
1
2
| s− si | (s ∧ si + sb)2 +

(s ∧ si + sb)3

3
.

The coefficient x in the kernel expansion is obtained by solving the optimization problem

min
x∈<l+1

m∑

j=1

(ȳj − h(s̄j ; x))2 + ρ

l∑

i=0

|x(i)| (3.14)

with constant ρ > 0. Training points {si}l
i=1 are chosen to be evenly placed in function def-

inition interval. They are different from the input data {s̄j}m
j=1 of observations to simulate

a regression with indirect measurement of estimated function.

3.3.2 Computation Results and Issues

For the above estimation problem, we let the observations be {ȳj}m
j=1 = sin([0 : 0.4 : 2.8])

at {s̄j}m
j=1 = [0 : 0.4 : 2.8], in which [0 : 0.4 : 2.8] is a Matlab command that represents an

array starting with 0, ending at 2.8 and with a step 0.4. The training points are placed at

{si}l
i=1 = [0.2 : 0.4 : 2.6]. In Chapter 2, we mention that the kernel function F (s, si) for

generating splines with an infinite number of knots is twice differentiable. The estimated

function is represented by a linear expansion of kernel functions. Therefore the estimated

function should be smooth and twice differentiable as well. Figure 3.5 shows the kernel

splines F (s, si) with respect to different si with s and si defined in [0, 3]. In the figure each

curve represents a basis function F (s, si) for a specific si. We can see that curve F (s, si) is

above F (s, sj) when si > sj .

We compare two different algorithms, TR1 and TR2 trust region methods. Algorithm
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TR2 is expected to be faster than TR1 since it allows crossing as many x(i) = 0 hyper-

planes as possible in each iteration. Thus we first consider the TR2 algorithm to solve the

optimization problem (3.14). The exact trust region updating parameters in Figure 3.1 are

chosen as

µ = 0.25, η = 0.75, ΛU = 0.5(
√
‖x0‖1 + 1), ΛL = 10−5

γ0 = 0.0625, γ1 = 0.5, γ2 = 2, ∆0 = min(0.1 ∗ ‖∇f(x0) + sign(x0)‖2,ΛU )

where x0 denotes the initial value of x variable. Our experiments are carried out with the

Matlab. The stopping criteria for this problem is

either V Gnorm ≤ tol,

or φk(dk) ≤ qtol

where V Gnorm is defined in (3.13). We define the tolerance for V Gnorm, tol = 10−4, and

the tolerance for change of objective function approximation, qtol = 10−7. We also impose

an upper bound of 600 on the number of iterations.

In trust region algorithm implementation, the gradient and Hessian matrix of f(x)

should be evaluated. For the example of sin function estimation, f(x) in optimization

problem (3.1) is formulated as:

f(x) =
1
ρ

m∑

j=1

(ȳj − h(s̄j ; x))2.

To express the gradient and Hessian matrix with some ease, we define a vector-valued

residual function R : <l+1 → <m where component j of R is given by (2
ρ)

1
2 (ȳj − h(s̄j ; x)),
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Figure 3.5: Kernel function F (s, si) for si = [0.2 : 0.4 : 2.6]

for j = 1, ...,m. Therefore we have:

f(x) =
1
2
R(x)T R(x).

We define J(x) as the Jacobian matrix of R with respect to x:

J(x) =




(∇R(1)
)T

...
(∇R(m)

)T




.

In our optimization algorithm, we use automatic differentiation [11] to compute the m ×
(l + 1) matrix J(x). The gradient of f(x) is:

∇f(x) =
m∑

j=1

R(j)(x)∇R(j)(x) = J(x)T R(x).
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ρ 1 10−2 10−4 10−6

iterations 16 14 22 42
error 0.817 5.9 ∗ 10−3 1.87 ∗ 10−4 1.25 ∗ 10−6

# of “SVs” 2 2 3 7

Table 3.1: sin function estimation performance with TR2 method

Furthermore the Hessian matrix of f(x) can be expanded:

∇2f(x) =
m∑

j=1

∇R(j)(x)∇R(j)(x)T +R(j)(x)∇2R(j)(x) = J(x)T J(x)+
m∑

j=1

R(j)(x)∇2R(j)(x).

Note that our optimization problem is expected to be a small-residual problem, i.e., R(x∗) ≈
0, when approaching an optimal solution x∗. Therefore

∑m
j=1 R(j)(x)∇2R(j)(x) is omitted

in the Hessian matrix of f(x) because it is much smaller compared with the other term

J(x)T J(x). Thus we have the approximate Hessian matrix of f(x):

∇2f(x) ≈ J(x)T J(x). (3.15)

We first demonstrate the results of the sin function estimation with starting x
(i)
0 = 0,

0 ≤ i ≤ l. Table 3.1 shows the TR2 algorithm performance, calibration errors
∑m

j=1(ȳj −
h(s̄j ; x))2 and number of “support vectors” for different choices of parameter ρ. We consider

those training vectors that have nonzero coefficients x(i) as “support vectors”, although they

are not strictly support vectors in SVR. Figure 3.6 shows plots of estimated functions com-

pared with sin function. In general, computation with larger ρ takes fewer iterations, yields

larger calibration errors and leads to smaller number of “SVs”. The “support vectors” are

judged by examining the corresponding x(i), 1 ≤ i ≤ l, parameters of training points. Table

3.2 lists the x(i) values after optimization termination when we choose ρ = 1. It may not

be obvious for us to see if a x(i) coefficient is zero. We decide the “SVs” in a standard way.

The largest absolute value of x(i) is |x(2)| = 0.27412513459983 in Table 3.2. We consider
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Figure 3.6: sin function estimation for different ρ

48



point x coefficient
0.2 0.00000105763502
0.6 0.27412513459983
1 -0.00000000063126

1.4 -0.00000000008146
1.8 -0.00000000002170
2.2 0.00000000000003
2.6 -0.00018903984863

Table 3.2: Coefficients x after optimization for sin function estimation with training points
[0.2 : 0.4 : 2.6] and ρ = 1

those |x(i)| which is less than 10−4 × |x(2)| as zeros. According to this criteria, in Table 3.2

we find only x(2) and x(7) are non-zeros. The training vectors of non-zero x(i) are referred to

as “support vectors”. Therefore we have two “SVs”, which are training points at s2 = 0.6

and s7 = 2.6.

As analyzed previously, the TR2 algorithm is expected to be more efficient than the orig-

inal TR1 algorithm in that the line search in TR2 allows going across as many breakpoints

as possible to search the minimizer along trust region solution. Normally the TR2 method

can obtain larger objective value reduction than TR1 method for one iteration under the

same computation condition. Therefore we expect that using TR2 algorithm costs fewer

iterations than TR1 algorithm. By setting initial x
(0)
0 = 0, 0.5 and 1, and x

(i)
0 = 0 for all

1 ≤ i ≤ l, we run the optimization problem with TR1 and TR2 algorithms respectively. The

same optimal points are found for the same parameter settings, but TR2 method outper-

forms the TR1 method in CPU time. Table 3.3 lists the number of iterations for these two

methods. We find that all TR2 computations take fewer iterations than TR1. Especially

when x
(0)
0 = 1, TR2 converges much faster than TR1 method.

The main contribution of our proposed L1 norm optimization formulation is to control

the conflict between minimizing the calibration error and making a stable calibration model.

We expect that the larger the regularization parameter ρ is, the larger the calibration error
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Parameter\Method TR2 TR1

x
(0)
0 = 0

ρ = 1 16 16
ρ = 10−2 14 18
ρ = 10−4 22 26
ρ = 10−6 42 46

x
(0)
0 = 0.5

ρ = 1 17 18
ρ = 10−2 10 14
ρ = 10−4 16 19
ρ = 10−6 27 31

x
(0)
0 = 1

ρ = 1 35 33
ρ = 10−2 10 30
ρ = 10−4 15 33
ρ = 10−6 24 44

Table 3.3: Comparison between TR2 and TR1 for different parameter ρ and starting x in
numbers of iterations

ε \ ρ 1 10−2 10−4 10−6

±2% 2 2 4 7
±5% 2 2 5 7
±10% 2 3 5 7

Table 3.4: Number of “support vectors” for different ρ and noise level ε

is allowed. Thus the lower the number of “SVs” is, and the simpler and more stable the

calibrated model is. To demonstrate how stability is affected by the choice of parameter ρ,

we introduce noise to the collected data in the sin function estimation example. We add

ε = ±2%, ±5%, and ±10% uniform distribution error to the observed data respectively.

Particularly, we have the corrupted data as

s = [0 : 0.4 : 2.8], yi = sin(si) ∗ (1 + κ ∗ (rand− 0.5)), κ = 0.04, 0.1, 0.2, 1 ≤ i ≤ 7

where rand returns a uniform random sample in [0, 1].

Figure 3.7 lists the estimated functions for different choices of regularization parameter

ρ and noise level. We find that larger ρ yields larger calibration error but more robust
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Figure 3.7: Robustness of sin function estimation with different ρ and noise level ε

Rows from top to bottom: ρ = 1, 10−2, 10−4, 10−6. Columns from left to right:
ε = ±2%, ±5%, ±10%. (solid line: sin function; dashed line: estimation function;
circle: sample data)
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the estimated function, i.e., the function is less affected by the noise. Table 3.4 shows the

number of “support vectors” for the corresponding implementations. It also verifies that

the larger parameter ρ, the smaller the number of “SVs” and thus leads to more robust

estimation h(s).
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Chapter 4

LVF Calibration Examples

To illustrate accuracy and stability of the proposed method for LVF model calibration, we

investigate a numerical example with a synthetical option data and then a real option data

in more details. Various computational issues such as data centering for kernel expression,

initial guess of a local volatility function, and influence of regularization parameter ρ are

discussed in this chapter.

4.1 Computation Set-up

In Chapter 2, we introduce a kernel spline approach (2.7) to represent local volatility func-

tion with appropriately chosen training vectors {(Ki, Ti)}l
i=1 in the strike-maturity domain.

Coefficient vector x ∈ <l+1 = (x(0), ..., x(l)) in (2.7) is determined by the proposed opti-

mization problem (2.8).

There are a variety of numerical techniques used for option pricing such as binomial/trinomial

trees, Monte Carlo methods, and numerical methods (finite difference or finite element

methods) for solving partial differential equations. We use Crank-Nicolson finite difference
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method to determine initial model option values {V 0
j }m

j=1 by solving the adjoint equation:

∂V 0(K, T )
∂T

− 1
2
σ2(K,T )K2 ∂2V 0(K, T )

∂K2
+ (r − q)K

∂V 0(K, T )
∂K

+ qV 0(K,T ) = 0. (4.1)

Without loss of generality, we assume available initial prices are call option prices and use

the following boundary conditions:

lim
K→+∞

V 0(K,T ) = 0

∂V 0(K, T )
∂T

+ qV 0(K,T ) = 0, at K = 0

V 0(K, T ) = max(S0 −K, 0), at T = 0.

Computation domain for the adjoint equation is D = [0, Kmax) × [0, Tmax) ⊂ <2, where

Kmax = 2S0 and Tmax is the maximum maturity among all given market options, and S0 is

the initial underlying price. A uniform grid discretization is used in D with N ×M nodal

points:

KN
i = iKmax

N−1 , i = 0, ..., N − 1,

TM
j = j Tmax

M−1 , j = 0, ..., M − 1.
(4.2)

To construct the kernel spline representation of a local volatility function, l training

vectors need to be selected in the region D. Since the option price observations rather than

local volatility function value observations are given, these training vectors do not necessarily

have to correspond to the strikes and maturities of the option price observations. In addition,

the total number of training vectors does not have to correspond to the total number

of observations. The total number of nonzero coefficients, i.e., relevant training vectors,

can be determined by minimizing ‖x‖1 component in the objective function. However a

large number of training vectors l can increase computational cost of the optimization, we

choose the number of the vectors l to be approximately the number of market option price
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observations m. In the following test examples, we choose l < m in particular. Later on

we will further investigate the robustness of model calibration if we choose l À m training

points.

The model option price depends on the unknown local volatility surface. However this

dependence is not uniform in the computation region D. The option price depends little

on the local volatility values at very small or large K far from initial underlying asset S0.

We denote DS = [0.7S0, 1.3S0]× [0, Tmax] as a region centered around S0 in which the local

volatility value is significant in option pricing and hedging. Therefore in our experiment we

place training vectors of kernel spline uniformly in this significant region.

For kernel methods, data centering in a feature space can improve the performance of a

kernel algorithm. Basically, in a kernel method, a Gram matrix is formed with the pairwise

inner product of mapped data. The Gram matrix will be ill-conditioned if the origin is

far away from the training data [22, 3]. Therefore data centering preprocess is used for

the numerical reason in support vector learning algorithms. Our LVF calibration approach

follows some properties of SVR and in our computation context the strike and maturity

values are not around zero. Particularly the strikes are around S0 which are far away form

zero. Therefore in our method, we shift the data of strikes and maturities in the significant

region Ds. We use constants CK > 0 and CT > 0 to denote the centers for strike K and

maturity T , and QK > 0 and QT > 0 to denote the scales for K and T . We want the strikes

and maturities to be translated and scaled so that they are centered around 0 and have

deviation from center around 1. Note that the training points and testing points should be

centered consistently. The training points in kernel expansion (2.7) are (Ki, Ti); the testing

points are variables (K, T ). Using data centering, the kernel spline representation of local

volatility is as follows:

σ((K, T );x) =

∣∣∣∣∣
l∑

i=1

x(i)F ((KC , TC), (KCi, TCi)) + x(0)

∣∣∣∣∣ ,
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with

F ((KC , TC), (KCi, TCi)) =
(

1 + KCKCi +
1
2
| KC −KCi | (KC ∧KCi + Kb)2 +

(KC ∧KCi + Kb)3

3

)
×

(
1 + TCTCi +

1
2
| TC − TCi | (TC ∧ TCi + Tb)2 +

(TC ∧ TCi + Tb)3

3

)

in which (KC , TC) and (KCi, TCi) are centered and scaled 2-dimensional variables for (K, T )

and (Ki, Ti) in Ds. And these centered and scaled training variables are defined in interval

[−Kb,+∞)× [−Tb,+∞). The centering and scaling of a point (K, T ) is given below:

KC =
K − CK

QK
, TC =

T − CT

QC
.

For minimizing the nonlinear objective problem (2.8), we employ the trust region algo-

rithm TR2 described in Chapter 3. In this algorithm, the gradient and Hessian matrix of

f(x) should be evaluated. Similarly as in Chapter 3, we introduce a residual function R,

use the automatic differentiation to compute the Jacobian J of the residual function and

approximate Hessian matrix with JT J . For our LVF model calibration in particular, f(x)

in the objective function (3.1) of the trust region algorithm is formulated as:

f(x) =
1
ρ

m∑

j=1

wj(V 0(K̄j , T̄j ; x)− V̄j)2

where wj > 0, j = 1, ..., m, are weights which can be used to ensure desired accuracy for

option values calibration. The vector-valued residual function is R : <l+1 → <m, where

component R(j) is given by (2wj

ρ )
1
2 (V 0(K̄j , T̄j ; x)− V̄ 0

j ), for j = 1, ..., m. Therefore we have

f(x) = 1
2R(x)T R(x). Then we similarly approximate the Hessian matrix with JT J since

the residual function is close to zero, i.e. R(x∗) ≈ 0, when the optimization computation is
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Figure 4.1: Nonlinearity of objective function f(x) + ‖x‖1 with 2-variable vector x

close to an optimal solution x∗. In fact finite-difference technique can also approximate the

Hessian matrix of f(x).

The functional f(x)+‖x‖1 can be highly nonlinear with respect to the unknown variable

x. Figure 4.1 shows the mesh plot of f(x)+‖x‖1 against (x(1), x(2)) when only two training

points are placed and the constant term x(0) is set to zero for simplicity. The parameter

ρ = 1 and weights wj = 1 for 1 ≤ j ≤ m. Figure 4.1 can be accounted for by the nonlinearity

of the option value with respect to the local volatility surface as well as the nonlinearity of

the local volatility with respect to the parameters x due to the kernel spline representation.

Therefore the performance of the optimization algorithm can be highly influenced by a good

priori of initial x0. We choose x0 such that the local volatility surface given by x0 resembles

the dependence given by the volatility smile. In particular, suppose m market options have

implied volatilities {σ̃j}m
j=1, we choose the initial local volatility surface such that its values

at {(K̄j , T̄j)}m
j=1 are as close to {σ̃j}m

j=1 as possible. Specifically, we choose x0 to satisfy the

following as much as possible:

σ((K̄j , T̄j);x0) ≡
l∑

i=1

x
(i)
0 F ((K̄j , T̄j), (Ki, Ti)) + x

(0)
0 = σ̃j , 1 ≤ j ≤ m. (4.3)
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(4.3) is a set of m linear equations for vector x0 of l + 1 unknown variables. If l + 1 < m,

it is an overdetermined problem and can be easily solved. On the other hand, we minimize

the one norm of x in the objective function. Thus it would be more efficient if the initial x0

are not too large. Therefore we solve the following minimization problem which minimizes

the 2-norm of difference of the left side and right side of (4.3) with constraints on x0:

min
x0∈<l+1

m∑

j=1

‖σ((Kj , Tj);x0)− σ̃j‖2
2 (4.4)

lb ≤ x0 ≤ ub

where lb < 0 and ub > 0 are bounds for x0. For our calibration example, this linear

optimization problem can be solved efficiently with Matlab toolbox within one second cpu

time.

Finally in the trust region algorithm, we set the stopping criteria in Figure 3.1 to be

tol = 2 ∗ 10−3 or qtol = 10−7. In the following experiments we will see the results give

accurate approximation of the local volatility function with the chosen stopping criteria.

4.2 Synthetic Data Examples

In order to illustrate computation issues such as data centering and scaling, choice of reg-

ularization parameter, good priori choice of x and model robustness against data noise, we

consider the following calibration examples used in [10].

Suppose that the underlying asset follows an absolute diffusion process (1.1) in which

the local volatility function σ∗ is a function of the underlying asset price only:

σ∗(S, t) =
σc

S
(4.5)
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with σc = 15. In addition, we let the initial asset price S0 = 100, the risk free interest rate

r = 0.05, and the dividend rate q = 0.02. We assume that 22 European call options values

generated from the model (4.5) are market option prices. Half of the options have 0.5 year

maturity with strikes [90 : 2 : 110] and the other half have 1 year maturity with the same

strikes. The 22 option prices are obtained from adjoint equation (4.1) with Crank-Nicolson

method, in which the local volatility function σ(K, T ) = σc
K . The discretization parameters

are set as M = 101 and N = 51 in (4.2) for strikes and maturities respectively.

For a good priori of x, we set lb = −0.8 and ub = 0.8 for lower and upper bounds in

(4.4) respectively. Unless specified explicitly, weight wj for each option is unity.

We let the number of training vectors l = 18 and place these points evenly in the

significant region Ds of price-time domain. First we place them on the grid of [80 : 5 :

120]× [0.25, 0.75]. The centering parameters are set at CK = S0 = 100, QK = 20 for strike

and CT = 0.5, QT = 1 for maturity. For regularization parameter ρ = 1, the optimization

method takes 28 iterations and the calibration error, i.e., the sum of squares of the option

price residuals
∑m

j=1(V
0
j − V̄ 0

j )2 is 3.3× 10−4.

Figure 4.2 shows the reconstructed local volatility compared with the model local volatil-

ity (4.5) when ρ = 1 and ρ = 10−2. It demonstrates that the local volatility is reconstructed

accurately in the region of [70, 130] × [0, 1]. Three plots for t = 0, t = 0.5 and t = 1 show

the reconstruction is more accurate when t is close to 1. Compared with the plots of ρ = 1,

ρ = 10−2 gives better reconstruction with less calibration error at 1.6× 10−6.

We now consider the local volatility function as a deterministic function of underly-

ing price only for simplicity. In this case, the kernel spline representation of volatility is
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Left plot: ρ = 1 Right plot: ρ = 0.01

Figure 4.2: 2-dimensional LVF reconstruction for noise-free data with uniform weights
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Figure 4.3: 1-dimensional LVF reconstruction for noise-free data with uniform weights

simplified as:

σ((K, T );x) =

∣∣∣∣∣
l∑

i=1

x(i)F (K, Ki) + x(0)

∣∣∣∣∣ ,

F (K,Ki) = (1 + KKi +
1
2
| K −Ki | (K ∧Ki + Kb)2 +

(K ∧Ki + Kb)3

3
).

We place l = 9 training data points on grid [80 : 5 : 120] since the local volatility function

estimation is based on strike only. The parameter set-up of data centering and the initial

guess x0 is similar to the two-dimensional experiment except that we only use parameters

related to strikes. Figure 4.3 shows the one-dimensional local volatility reconstruction when

ρ = 1 and ρ = 0.01. In general the one-dimensional local volatility function reconstruction

is computationally easier. It takes 20 and 41 iterations for ρ = 1 and ρ = 0.01 respectively.

Parameter ρ = 0.01 gives more accurate reconstruction of local volatility than ρ = 1.

Table 4.1 illustrates the performance of our approach with different training point place-

ment. In general, one-dimensional local volatility reconstruction is more efficient since it

has less number of unknowns, therefore less computation complexity. A larger ρ means we
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require smaller ‖x‖1 and allow larger calibration error. Therefore we have fewer “support

vectors” and the model calibration is more robust. This can be further seen when we in-

troduce noise to the option data. Usually larger ρ also takes fewer iterations.

The “support vectors” are decided by examining the corresponding x parameters of

training vectors as illustrated in the last chapter. Table 4.2 lists the x values at termination

when we choose one-dimensional training vectors [80 : 5 : 120] and ρ = 1. The largest co-

efficient in magnitude is |x(1)| = 0.08341018779593. Therefore we consider those |x(i)| less

than 10−4 ∗ |x(1)| as zeros. The training vectors of non-zero x(i) are referred to as “support

vectors”. Therefore training points with strikes at 80, 105 and 120 are “support vectors”

in Table 4.2.

[80 : 5 : 120] [80 : 5 : 120]× [0.25, 0.75]
ρ = 1 ρ = 0.01 ρ = 1 ρ = 0.01

iteration 20 41 28 50
error 5.6 ∗ 10−4 1.9 ∗ 10−6 3.3 ∗ 10−4 1.6 ∗ 10−6

# of “SVs” 3 5 11 14

Table 4.1: LVF reconstruction performance for synthetic option example

point x coefficient
80 0.08341018779593
85 0.00000013710573
90 0.00000034895936
95 0.00000477462809
100 0.00000000000990
105 0.01582733622649
110 -0.00000000001277
115 0.00000000055154
120 0.00453346330431

Table 4.2: Parameter x at optimization termination for 1-dimensional reconstruction on
training points [80 : 5 : 120]

In practice the market data is collected within a bid-ask spread. We investigate the in-
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Figure 4.4: 1-dimensional LVF reconstruction for noisy data with uniform weights

fluence of data noise by adding uniformly distributed noise to the synthetic market option

prices. Considering that OTM option prices are less reliable in the market, we add larger

perturbation for these options. In particular, the option price used in the previous example

is multiplied by:





(1 + 0.04 ∗ (rand− 0.5)), if (K̄, T̄ ) = (108, 0.5), (110, 0.5), (110, 1);

(1 + 0.02 ∗ (rand− 0.5)), otherwise.

We choose training points [80 : 5 : 120]× [0.25, 0.75] and [80 : 5 : 120] for two-dimensional

and one-dimensional experiments respectively. Other parameters setting is the same as the

noise-free examples. The optimization algorithm takes similar number of iterations as be-

fore, but the calibration error is larger. Figure 4.4 and 4.5 demonstrate the reconstructed

local volatility function with one-dimensional and two-dimensional kernel spline represen-

tation. From these plots we find that the reconstructed local volatility is still smooth for

the noisy option data. Larger ρ seems to give more robust model calibration, i.e., the local

volatility function has less variation with noise perturbation.
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Left plot: ρ = 1 Right plot: ρ = 0.01

Figure 4.5: 2-dimensional LVF reconstruction for noisy data with uniform weights
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More experiments are implemented with different training points placement. We place

18 points on grid [76 : 6 : 124] × [0.25, 0.75] for two-dimensional cases and 9 points on

grid [76 : 6 : 124] for one-dimensional cases. Good reconstruction of local volatility func-

tion is also obtained for noise-free data and the parameter ρ influences in the same way

as the previous experiments. Moreover, we experiment with more training points on grid

[70 : 5 : 130]× [0.2 : 0.2 : 0.8]. We choose the parameter ρ = 1 and compute with both error-

free data and data with the same noise as previous experiments. The optimization takes

a similar number of iterations and calibration errors are close to previous two-dimensional

examples. The reconstructed local volatility surfaces are graphed in Figure 4.6. It can be

observed that it demonstrates the accuracy of the function approximation and robustness

with noise information added. Furthermore, the appearance of local volatility surface is

fairly close to the previous example. This experiment shows that our model calibration is

relatively insensitive against the number and placement of training points.

4.3 LVF Calibration from S&P 500 Index Option Data

In spite of its attractiveness (such as market completeness), it is unlikely that a local

volatility function model exactly specifies an underlying market price. Some of the criticisms

of the local volatility model is that the calibrated local volatility often have unreasonable

oscillations. In addition, the calibrated local volatilities calibrated within a small time

window seem to have unreasonably large change.

The previous synthetic option example reveals that the reconstructed local volatility

function is smooth and robust against some data perturbation. We now consider the local

volatility calibrated from our proposed method using the S&P 500 Index Option data.

Specifically, we are interested in the characteristic and stability of the calibrated local

volatility surface.
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Left plot: noise-free data Right plot: noisy data

Figure 4.6: 2-dimensional LVF reconstruction with uniform weights and training points
more than available options
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Maturity \ Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 .172 .157 .144 .133 .118 .104 .100 .101
1 .171 .159 .150 .138 .128 .115 .107 .103

1.5 .169 .160 .151 .142 .133 .124 .119 .113

Table 4.3: Implied volatilities of S&P 500 Index Options in Oct 95 of maturities (year) and
strikes (% of underlying price)

Maturity \ Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 101.9 76.26 52.76 32.75 16.47 6.02 1.93 .62
1 108 83.6 61.55 41.57 25.41 12.75 5.5 2.13

1.5 117.2 94.37 73.14 53.97 37.33 23.68 14.3 7.65

Table 4.4: Prices of S&P 500 Index Options in Oct 95 of maturities (year) and strikes (%
of underlying price)

In this section we first calibrate a LVF model with a real market option data set in Oct

1995. We show that the calibrated local volatility function resembles the implied volatility

surface. And we add some random noise to the option prices and our experiment shows the

LVF calibration is robust against noisy data. In addition we calibrate LVF with market

options on two close dates, March 02, 2004 and April 05, 2004. We find that the two

calibrated local volatility surfaces appear fairly similar. We also demonstrate effects of

introducing individual weights in calibration.

4.3.1 Calibration from Data in Oct 1995

Table 4.3 shows the implied volatilities for S&P 500 Index Options in October 1995. This

data is also used in [10]. The prices for these options are listed in Table 4.4. The option

pricing parameters are: initial asset S0 = $590, interest rate r = 0.06 and dividend rate

q = 0.0262. The discretization parameters are M = 101 for the strike axis and M = 76

for the maturity axis. The market option prices are computed from implied volatilities

with Matlab blsprice function based on the constant volatility Black-Scholes formula. We

67



500
550

600
650

700
750

0.5

1

1.5
0.1

0.12

0.14

0.16

0.18

KT

im
p
lie

d
 v

o
la

til
ity

520 540 560 580 600 620 640 660 680 700
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

K

im
p
lie

d
 v

o
la

til
ity

T=0.695

T=1 T=1.5

Figure 4.7: Implied volatility surface of S&P 500 Index Options in Oct 95
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Left plot: collected market data without noise Right plot: perturbed market data

Figure 4.8: 3-D plot of calibrated LVF from S&P 500 Index Options in Oct 95 with uniform
weights

Maturity \ Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 -.10 0.19 .66 .06 3.55 11.4 -2.37 -51.79
1 -.10 -.06 -.72 -1.08 -2.53 -.76 -2.35 -19.37

1.5 .17 .11 .07 -.10 .19 1.37 -.26 .12

Table 4.5: Relative calibration error in % for S&P 500 Index Options in Oct 95 of maturities
(year) and strikes (% of underlying price) with uniform weights
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Left plot: collected market data Right plot: perturbed market data

Figure 4.9: 3-D plot of calibrated LVF from S&P 500 Index Options in Oct 95 with weights
(4.6)

Maturity \ Strike 85% 90% 95% 100% 105% 110% 115% 120%

0.695 -.09 0.20 .61 -.23 2.78 11.95 11.11 -13.39
1 -.11 -.02 -.64 -1.07 -2.79 -.71 2.94 2.74

1.5 .09 .15 .25 .1 .04 .45 -1.29 1.5

Table 4.6: Relative calibration error in % for S&P 500 Index Options in Oct 95 of maturities

(year) and strikes (% of underlying price) with weights (4.6)
(For a smooth LVF calibration, we have to allow large errors for some low-price options. The largest

error 11.95%, 11.11%, and −13.39 are for options priced at 6.02, 1.93 and .62.)
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choose 18 training points on grid [0.8S0 : 0.05S0 : 1.2S0] × [0.5, 1]. Centering and scaling

parameters are set as: CK = S0, QK = 50, CT = 0.75 and QT = 1. These choices make the

strikes and maturities centered around zero and with a deviation from center around one.

The regularization parameter ρ = 10 is used. Note that the calibration error is expected

to be much larger than the error in the previous test examples because the option prices

are almost 6 time larger. Therefore we choose a larger ρ = 10 to ensure more appropriate

balance of the values in the objective function. The optimization takes 51 iterations and the

calibration error is 2.4. The reconstructed local volatility surface is shown as the left 3-D

mesh plot in Figure 4.8. It can be observed that the local volatility surface is smooth within

the significant region [.7S0, 1.3S0]× [0, 1.5]. Moreover, the local volatility surface resembles

the implied volatility surface shown in Figure 4.7. The relative errors of calibrated option

prices V̄ 0(K̄i,T̄i)−V 0(K̄i,T̄i)
V̄ 0(K̄i,T̄i)

in % are listed in Table 4.5. For most options, the errors are within

±1%. However for out-of-the-money call options with short maturities, the relative errors

are larger because their prices are quite smaller; thus their errors have relatively smaller

weights in the sum of the squared errors. The calibration errors for out-of-the-money (OTM)

options can be decreased if we allocate larger weights wj for them. For example, we set the

weights as below:

wj =





45 j = 8

4 j = 7, 16

2 j = 15

1 otherwise.

(4.6)

We order the options {V 0
j }24

j=1 by strikes and maturities in this way: j = 1, ...8 for strikes

from low to high at maturity 0.695; similarly j = 2, ...16 and j = 17, ...24 for maturity at 1

and 1.5. Table 4.6 shows the calibration relative errors for each option and we can see that

errors for OTM options are lower than the uniform weight case.
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02 March 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 .197 .1872 .1645 .1588 .1538 .1398 .1323 .1257

.84 .194 .1801 .1709 .1595 .1576 .1448 .1344 .1324
1.34 .1976 .1908 .1782 .1725 .1649 .1577 .1503 .1402

05 April 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 .1952 .1852 .1597 .1582 .1471 .1305 .1228 .1164
1 .201 .1936 .1797 .1689 .1628 .152 .1473 .1394

1.25 .2097 .196 .1894 .1785 .1776 .1673 .1584 .1511

Table 4.7: Implied volatilities for S&P 500 Index Options on 02 Mar 2004 and 05 Apr 2004

In order to illustrate the robustness of the calibrated local volatility function, we add

uniformly distributed noise to the market index option prices. Similar to the previous

synthetic data example, we add larger perturbation for some OTM options. In particular,

the option price is multiplied by:





(1 + 0.06 ∗ (rand− 0.5)), if (K̄, T̄ ) = (1.15S0, .695), (1.2S0, .695), (1.2S0, 1);

(1 + 0.02 ∗ (rand− 0.5)), otherwise.

We use the same experiment parameters as the noise-free option example. The optimization

algorithm takes 64 iterations and finally gives the calibration error at 4.53. The calibrated

local volatility surface is illustrated in the right plot of Figure 4.8, which is close to the

previous one calibrated from noise-free option data. Using unequal weight {wj}24
j=1 in (4.6),

Figure 4.9 shows the 3-D mesh plot of calibrated local volatility surfaces for options data

with and without noise. We see that adding larger weights on some out-of-the-money

options still gives a smooth volatility surface and the shape of the surface does not change

much. As a whole, this example reveals that our LVF model calibration with kernel spline

method is relatively robust against the option data noise.
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02 March 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 141 120.4 81 65 50.9 26.9 12.7 5

.84 148.7 127.1 93 75 62.2 37.4 20 10.9
1.34 164.2 145.8 111.8 96.4 81 57.6 38.6 23

05 April 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 138.9 117.9 77.2 62.2 46 21.7 8.8 2.8
1 157.1 138.1 103 85.2 70.6 45.9 29.2 16.3

1.25 167.7 146.4 115.2 97.3 85.3 60.2 40.3 25.6

Table 4.8: Prices for S&P 500 Index Options on 02 Mar 2004 and 05 Apr 2004
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Left plot: options on 02 Mar 2004 Right plot: options on 05 Apr 2004

Figure 4.10: Implied volatility surface of S&P 500 Index Options in 2004
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02 March 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 -.9 -.88 .92 .12 -1.34 .48 -2.35 -5.51

.84 -.16 1.41 -.38 1.86 -.86 .57 3.7 -6.59
1.34 .02 .0 -2.45 -.46 .76 -.92 -1.68 3.57

05 April 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 -.42 -.48 1.66 -1.57 -.29 2.92 -3.55 -16.19
1 .09 -.06 -.68 1.13 1.13 1.7 -2.79 -2.09

1.25 -.54 1.29 -1.11 1.07 -1.52 -1.16 .37 3.06

Table 4.9: Relative calibration error in % for S&P 500 Index Options on 02 Mar 2004 and
05 Apr 2004 with uniform weights

4.3.2 Stability of Proposed LVF Calibration Method

A stable calibration model should yield similar local volatility surfaces for option data on

nearby dates. Therefore two sets of S&P 500 Index Options data are collected. They are

chosen on two close dates, 02 March 2004 and 05 April 2004, which are the closest dates

collected from http : //www.marketdataexpress.com/dataEODSumOverview.aspx?u =

SPX. The underlying price is 1149.1 on 02 March 2004 and 1150.57 on 05 Apr 2004. The

interest rate r = 0.01 and dividend rate q = 0.016 are the same for two days. Table 4.7 and

4.8 list the implied volatilities and prices for the collected options. Similarly 18 training

points on grid [0.8S0 : 0.05S0 : 1.2S0] × [0.5, 1] are chosen and the scaling parameters are:

CK = S0, QK = 120, CT = 0.75 and QT = 1. We use the regularization parameter ρ = 10.

Finally we list the relative calibrated error in % in Table 4.9. Two dimensional plots and

three dimensional mesh plots for both examples are illustrated in Figure 4.11 and 4.12.

These plots demonstrate that both calibrated local volatility surfaces are smooth in region

of [0.7S0, 1.3S0]. Furthermore the shapes of surfaces look quite similar and resemble their

implied volatility surfaces shown in Figure 4.10. They give higher local volatility for lower

S&P 500 index. As time goes by the local volatility is higher for high index values.

73



900 1000 1100 1200 1300 1400
0

0.1

0.2

0.3

0.4

0.5

S

lo
ca

l v
o

la
til

ity

t=0

900 1000 1100 1200 1300 1400
0

0.1

0.2

0.3

0.4

0.5

S

lo
ca

l v
o

la
til

ity

t=0

900 1000 1100 1200 1300 1400
0

0.1

0.2

0.3

0.4

0.5

S

lo
ca

l v
o

la
til

ity

t=0.67

900 1000 1100 1200 1300 1400
0

0.1

0.2

0.3

0.4

0.5

S

lo
ca

l v
o

la
til

ity

t=0.62

900 1000 1100 1200 1300 1400
0

0.1

0.2

0.3

0.4

0.5

S

lo
ca

l v
o

la
til

ity

t=1.34

900 1000 1100 1200 1300 1400
0

0.1

0.2

0.3

0.4

0.5

S

lo
ca

l v
o

la
til

ity

t=1.25

Left plots: options on 02 Mar 2004 Right plots: options on 05 Apr 2004

Figure 4.11: LVF calibration from S&P 500 Index Options in 2004 with uniform weights
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Left plot: options on 02 Mar 2004 Right plot: options on 05 Apr 2004

Figure 4.12: 3-D plot of calibrated LVF from S&P Index Options in 2004 with uniform
weights

02 March 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.58 -.92 -.93 .78 -.05 -1.51 .63 -.87 -.66

.84 -.14 1.42 -.38 1.86 -.82 .84 4.64 -4.45
1.34 .02 .02 -.19 -.38 .83 -.99 -2.2 1.88

05 April 2004

Maturity \ Strike 1025 1050 1100 1125 1150 1200 1250 1300

.5 -.45 -.54 1.5 -1.76 -.44 3.72 .95 -3.56
1 .12 -.02 -.62 1.21 1.27 2.13 -1.92 -.84

1.25 -.54 1.29 -1.11 1.06 -1.56 -1.31 -.2 1.24

Table 4.10: Relative calibration error in % for S&P 500 Index Options on 02 Mar 2004 and
05 Apr 2004 with weights (4.7)
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Figure 4.13: LVF calibration from S&P 500 Index Options in 2004 with weights (4.7)
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Left plot: options on 02 Mar 2004 Right plot: options on 05 Apr 2004

Figure 4.14: 3-D plot of calibrated LVF from S&P 500 Index Options in 2004 with weights
(4.7)

To enhance the model accuracy for those out-of-the-money options, we carry out the

same experiment as above with individual weights assigned as

wj =





9 j = 8

4 j = 16, 24

2 j = 7, 15, 23

1 otherwise.

(4.7)

Similarly We order the options {V 0
j }24

j=1 by strikes and maturities from low to high. Par-

ticularly j = 1, ...8, j = 2, ...16 and j = 17, ...24 are for options with maturities at 0.58,

0.84 and 1.34 on 02 March 2004 and 0.5, 1 and 1.25 on 05 April 2004. Table 4.10 gives

the relative calibration error and Figure 4.13 and 4.14 give the 2-D and 3-D local volatility

plots. We can see that calibrated errors for some OTM options are improved. In addition,

the calibrated local volatility surfaces still look similar for two nearby dates, 02 Mar 2004

and 05 Apr 2004. Moreover the shapes in the region of high spot prices are even slightly
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smoother and closer between two dates than the uniform weights case.
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Chapter 5

Concluding Remarks

We propose a stable local volatility surface calibration method based on SVR for function

estimation with kernel generating splines. Determining a local volatility function from a

finite number of market prices is an ill-posed inverse problem. One of the key problems in

the LVF calibration is to control the balance between calibration accuracy and stability of

the calibration. SVR has good generalization performance since the ε level of regression

adjusts the number of SVs, and therefore controls the balance between these two factors.

Unfortunately we only have a set of market option prices available which is the indirect

measurement of the local volatility function. The classical SVR quadratic optimization

problem cannot be directly used. Instead, by examining the good generalization properties

of SVR we motivate our calibration formulation (2.8):

min
x∈<l+1

m∑

j=1

wj(V 0((K̄j , T̄j);σ((K, T );x))− V̄ 0
j )2 + ρ

l∑

i=0

|x(i)|

in which LVF σ((K, T );x) is represented by a linear expansion of kernel generating splines:

σ((K, T );x) =

∣∣∣∣∣
l∑

i=1

x(i)F ((K, T ), (Ki, Ti)) + x(0)

∣∣∣∣∣ ,
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with

F ((K,T ), (Ki, Ti)) = [1 + KKi +
1
2
| K −Ki | (K ∧Ki + Kb)2 +

(K ∧Ki + Kb)3

3
]×

[1 + TTi +
1
2
| T − Ti | (T ∧ Ti + Tb)2 +

(T ∧ Ti + Tb)3

3
].

The proposed calibration approach has the following features:

• The local volatility function representation follows the format of estimation function

in the SVR framework. The only unknowns we need to determine is the coefficient

vector x. In this representation, a kernel spline constructed by an infinite number of

knots gives the kernel function of input variables (K,T). In SVR, kernel methods allow

us to analyze nonlinear relations in a high dimensional feature space while preserve

the efficiency of linear algorithms.

• The proposed approach minimizes the calibration error, which has the similar effect

of minimizing the loss function of regression estimation in SVR approach.

• We emphasize minimizing one-norm of the coefficients ‖x‖1 in the proposed formu-

lation. It forces some coefficients x(i) to be zero at the termination of optimization.

Thus the local volatility function is formed by an expansion of kernel splines associ-

ated with nonzero coefficients of x. This corresponds to minimizing the number of

SVs in the SVR framework.

• The regularization parameter ρ controls the trade-off between the calibration accu-

racy and model stability. Large ρ allows large calibration error, small number of

“SVs”, and therefore obtains a simple and stable calibration model. This achieves the

corresponding property in SVR solution: a large ε level in loss function allows large

regression error, leading to small number of SVs and a stable estimation function.
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The proposed calibration formulation (2.8) becomes a problem of minimizing a smooth non-

linear function plus one-norm of the variables. In this thesis we also propose a trust region

method to determine the coefficient vector x in the proposed optimization formulation. In

this algorithm, the main computation of each iteration is reduced to solving a standard trust

region subproblem. A line search technique which allows crossing nondifferentiable x(i) = 0

hyperplanes is introduced to find the minimum objective value along a direction within a

trust region. To ensure global convergence and local quadratic convergence, a minimizer

for each iteration is chosen from the minimum of objective values along trust region sub-

problem solution and steepest descent direction. We compare two methods TR1 and TR2

which are slightly different in that TR1 allows crossing only one x(i) = 0 hyperplane and

TR2 allows crossing as many hyperplanes as possible in the line search. TR2 is expected

to converge faster than TR1 since it attempts to achieve larger objective value reduction at

each iteration.

Two local volatility calibration examples are implemented in this thesis. The first exam-

ple uses synthetical call options computed with a known LVF model. The second example

experiments with real S&P 500 Index European options. For better optimization perfor-

mance, we try to obtain a priori of vector x. Issues such as data centering and placement

of training points in price-time domain are also illustrated. The first example demonstrates

the accuracy of reconstructed LVF and robustness with noise added to the market options.

Parameter ρ tunes the balance between these two factors. Larger ρ allows larger reconstruc-

tion errors and leads to a more robust model, i.e., the reconstructed LVF is less affected by

the noise added to the data. One-dimensional LVF reconstruction is computed by assum-

ing that the LVF only depends on underlying asset price. In this case the computation is

easier than two-dimensional reconstruction which assumes that LVF depends on both the

underlying price and time. In the synthetic data example we experiment on the number of

chosen training points in price-time domain. Results show that the LVF reconstruction is
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relatively insensitive against the number and placement of the training points.

The second example calibrates a LVF first based on market S&P 500 Index Options in

October 1995, and then on options on two close dates, March 02, 2004 and April 05, 2004.

With appropriate choices of parameters, a calibrated LVF is smooth and resembles the

shape of the implied volatility surface. Moreover calibration is robust against the uniform

distributed noise added to October 1995 option data. Calibration from options on two close

dates reveals that the proposed approach is stable for slightly different option data samples.

However if we use uniform weights for all option data in the calibration formulation, the

calibration errors for out-of-the-money (OTM) options are larger than those of other op-

tions. This is due to the fact that the OTM options have lower prices and are less important

in the calibration formulation. By using larger weights for OTM options, we obtain better

calibration accuracy for OTM options. With the specified individual weights, the relative

calibration error is within ±1% for most options and within ±5% for other (OTM) options.

Moreover the calibrated LVF for two nearby dates looks closer with individual weights,

especially in large index region.
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Appendix A

SVM Optimization Formulation for

Separable Classification

Suppose we want to find a linear function h : <N → {±1} to separate training data

(s1, y1), ..., (sl, yl) ∈ <N × {±1}.

The following optimization problem determines the optimal hyperplane:

minimize
1
2
‖z‖2

2, z ∈ <N

subject to yi ∗ ((z · si) + b) ≥ 1, i = 1, ..., l, b ∈ <,

with decision function

h(s) = sign(z · s + b).

To solve the constrained optimization problem, one can introduce a Lagrangian

L(z, b, β) =
1
2
‖z‖2 −

l∑

i=1

βi[yi ∗ ((si · z) + b)− 1] (A.1)
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with Lagrange multipliers βi ≥ 0. The Lagrangian L has to be minimized with respect to

the primal variables z and b and maximized with respect to the dual variables βi. Therefore

at the saddle point, one has

∂

∂b
L(z, b, β) = 0,

∂

∂z
L(z, b, β) = 0,

which leads to
l∑

i=1

βiyi = 0 and z =
l∑

i=1

βiyisi. (A.2)

By substituting (A.2) into (A.1), one obtains the dual optimization problem: find multipliers

βi which solves

maximize
l∑

i=1

βi − 1
2

l∑

i,j=1

βiβjyiyj(si · sj)

subject to
l∑

i=1

βiyi = 0, and βi ≥ 0, i = 1, ..., l.

Since the Lagrangian L has to be maximized with respect to the dual variables βi, for all

constraints which are not met as equalities, i.e., yi ∗ (z · si + b)− 1 > 0, the corresponding

βi = 0. This gives the KKT complementarity conditions

βi ∗ [yi(z · si + b)− 1] = 0, i = 1, ..., l.

The hyperplane decision function can be written as

h(s) = sign(
l∑

i=1

yiβi(s · si) + b)
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where b is computed using KKT complementarity condition with a βj 6= 0:

βj ∗ [yj((sj · z) + b)− 1] = 0

with

z =
l∑

i=1

βiyisi.
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Appendix B

SVM Optimization Formulation for

Nonseparable Classification

Suppose we have training data

(s1, y1), ..., (sl, yl) ∈ <N × {±1}

and there is no hyperplane which can separate these two classes. We want to find an

optimal hyperplane that allows some overlaps of class data. By introducing slack variables

ξi, 1 ≤ i ≤ l, the optimal hyperplane solves:

minimize
1
2
‖z‖2

2 + C
l∑

i=1

ξi, z ∈ <N

subject to yi ∗ ((z · si) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l, b ∈ <,
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where C > 0 is a constant. The decision function is

h(s) = sign(z · s + b).

To solve the constrained optimization problem, one can introduce a Lagrangian

L(z, b, ξ, β, β∗) =
1
2
‖z‖2 + C

l∑

i=1

ξi −
l∑

i=1

βi(yi ∗ (si · z + b)− 1 + ξi)−
l∑

i=1

β∗i ξi (B.1)

with Lagrange multipliers βi ≥ 0 and β∗i ≥ 0. The Lagrangian L has to be minimized with

respect to the primal variables z, b and ξ and maximized with respect to the dual variables

βi and β∗i . Therefore at the saddle point, the derivative to the primal variables leads to

l∑

i=1

βiyi = 0, z =
l∑

i=1

βiyisi, and C − βi − β∗i = 0, 1 ≤ i ≤ l. (B.2)

By substituting (B.2) into (B.1), one obtains the dual optimization problem: find mul-

tipliers βi which solves

maximize
l∑

i=1

βi − 1
2

l∑

i,j=1

βiβjyiyj(si · sj)

subject to
l∑

i=1

βiyi = 0, and C ≥ βi ≥ 0, i = 1, ..., l.

Since the Lagrangian L has to be maximized with respect to the dual variables βi and β∗i ,

for the following constraints which are not met as equalities, i.e.,

yi ∗ (z · si + b)− 1 + ξi > 0,
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one has the corresponding βi = 0. This gives the KKT complementarity conditions

βi ∗ [yi(z · si + b)− 1 + ξi] = 0, i = 1, ..., l.

For the other constraints which are not met as equalities, i.e., ξi > 0, one has the corre-

sponding β∗i = 0. Thus we can see that βi is bounded by C and equals to C when ξi > 0.

The hyperplane decision function can be written as

h(s) = sign(
l∑

i=1

yiβi ∗ (s · si) + b)

where b is computed using KKT complementarity conditions

βj ∗ [yj(
l∑

i=1

yiβi ∗ (sj · si) + b)− 1] = 0, for βj < C, j = 1, ..., l.
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Appendix C

SVM Optimization Formulation for

Function Estimation Regression

Suppose we have training data

(s1, y1), ..., (sl, yl) ∈ <N ×<.

We want to estimate a linear regression

h(s) = z · s + b, z ∈ <N , b ∈ <.

By using Vapnik’s ε−insensitive loss function

|y − h(s)|ε def= max{0, |y − h(s)| − ε},

one can minimize
1
2
‖z‖2

2 + C

l∑

i=1

|yi − h(si)|ε
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with accuracy ε > 0 and priori constant C > 0.

By introducing slack variables ξ ≥ 0 and ξ̄ ≥ 0 for 1 ≤ i ≤ l, one rewrites this as a

constrained optimization problem:

minimize
1
2
‖z‖2

2 + C
l∑

i=1

(ξi + ξ̄i)

subject to ((z · si) + b)− yi ≤ ε + ξi

yi − ((z · si) + b) ≤ ε + ξ̄i

ξi, ξ̄i ≥ 0, for all i = 1, ..., l.

To solve the constrained optimization problem, one can introduce a Lagrangian

L(z, b, ξ, ξ̄, β, β̄, β∗, β̄∗) =
1
2
‖z‖2 + C

l∑

i=1

(ξi + ξ̄i) (C.1)

−
l∑

i=1

βi(yi − (si · z + b) + ε + ξi)−
l∑

i=1

β∗i ξi

−
l∑

i=1

β̄i(−yi + (si · z + b) + ε + ξ̄i)−
l∑

i=1

β̄∗i ξ̄i

with Lagrange multipliers βi ≥ 0, β̄i ≥ 0, β∗i ≥ 0 and β̄∗i ≥ 0. The Lagrangian L has to be

minimized with respect to the primal variables z, b, ξ and ξ̄ and maximized with respect

to the dual variables βi, β̄i, β∗i and β̄∗i . Therefore at the saddle point, derivative to primal

variables leads to

l∑

i=1

βi − β̄i = 0 (C.2)

z =
l∑

i=1

βisi − β̄isi

C − βi − β∗i = 0, 1 ≤ i ≤ l

C − β̄i − β̄∗i = 0, 1 ≤ i ≤ l.
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By substituting (C.2) into (C.1), one obtains the dual optimization problem: find mul-

tipliers βi, β̄i which solves

maximize −ε
l∑

i=1

(β̄i + βi) +
l∑

i=1

(β̄i − βi)yi

−1
2

l∑

i,j=1

(β̄i − βi)(β̄j − βj)(si · sj)

subject to
l∑

i=1

(βi − β̄i) = 0, and C ≥ βi, β̄i ≥ 0, i = 1, ..., l.

Since the Lagrangian L has to be maximized with respect to the dual variables βi, β̄i, β∗i

and β̄∗i , we can find the KKT complementarity conditions

βi ∗ [yi − (si · z + b) + ε + ξi] = 0, 1 ≤ i ≤ l

β̄i ∗ [−yi + (si · z + b) + ε + ξ̄i] = 0, 1 ≤ i ≤ l

and

β∗i ξi = 0 and β̄∗i ξ̄i = 0, 1 ≤ i ≤ l.

Thus we can see that βi (β̄i) is bounded by C and equals to C when ξi > 0 (ξ̄i > 0).

The hyperplane decision function can be written as

h(s) = sign(
l∑

i=1

yiβi ∗ (s · si) + b)

where b is computed using KKT complementarity conditions with a point with βi < C

(ξi = 0) or β̄i < C (ξ̄i = 0).
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Appendix D

First-order Optimality Conditions

for Nonlinear L1 Optimization

Suppose an optimization is defined below:

min
x∈<n

f(x) + ‖c(x)‖1 (D.1)

where f : <n → <1 is a twice continuously differentiable function, c : <n → <m is a

continuously differentiable function, and ‖c(x)‖1 =
∑m

i=1 |c(i)(x)|. We let the sign function

be defined:

sign(c(i)) def=





1 if c(i) ≥ 0,

−1 if c(i) < 0.

And denote J
def= J(x) with J(x) def= [∇c(1)(x), ...,∇c(m)(x)] ∈ <n×m.

The following first order necessary conditions can be obtained from Theorem 14.2.1,

14.2.2, 14.2.3 and Lemma 14.3.1 in [17]. If x is a local minimizer of a nonlinear L1 problem

(D.1), then there exists y ∈ <m with |y| ≤ 1 and y(i) = sign(c(i)) if c(i) 6= 0, such that

∇f + Jy = 0.
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If c(x) = x, the first-order condition can be written as following. If x is a local minimizer

of a nonlinear L1 problem

min
x∈<n

f(x) + ‖x‖1, (D.2)

then there exists y ∈ <n with |y| ≤ 1 and y(i) = sign(x(i)) if x(i) 6= 0, such that ∇f + y =

0. Therefore we obtain the first-order KKT conditions for (D.2): if a point x is a local

minimizer, then

x(i)[(∇f(x))(i) + sign(x(i))] = 0 and | (∇f(x))(i) |≤ 1 for 1 ≤ i ≤ n.
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