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Abstract

In this thesis we study the NS-α model of flow turbulence. In this model the

closure arises through a modified nonlinearity. For the NS-α model currently used

in published numerical studies, the parameter representing turbulent fluctuations,

α2, is a scalar and is assumed to be a constant. This corresponds to homogeneous,

isotropic fluctuations. In this thesis we investigate the NS-α model for the more

practical situation where fluctuations may be inhomogeneous and anisotropic. We

begin by reviewing the derivation of the governing equations using Hamilton’s prin-

ciple. This is followed by the formulation of a subgrid model, where the dependent

variable is the smoothed velocity. The isotropic and anisotropic subgrid models are

then tested on a recirculating cavity flow and a fully turbulent channel flow. Initial

tests used a simple definition of the model parameter based on the grid size. Two

specific problems with the model in these test cases were isolated and addressed.

For the cavity flow we found abrupt changes in the model parameter at the solid

boundary led to numerical oscillations. To overcome this problem an alternative

definition was proposed and found to produce improved turbulence statistics. For

the channel flow, interaction between the model and the velocity streaks near the

wall led to high skin friction. A damping factor through the streak-affected region

removed this problem.
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6.29 Energy transfer term ũiF̃i on the z = 0.03 plane for the 483 mesh,

Re = 10, 000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.30 Contour plots of α2
j/h

2
j highlighting the wall jet impingement and

spreading regions for the 643 mesh, Re = 10, 000. . . . . . . . . . . 107

6.31 Subgrid force to the x−momentum equation on the z = 0.3 plane

(through the impingement region) for the 643 mesh, Re = 10, 000.

With α2
k based on the grid the force is high in the laminar regions

(near the lid and downstream wall), whereas with the alternative

definition (equations (6.20)-(6.22)) the force is high only in the tur-

bulent regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.32 Mean flow, rms and shear stress profiles for the 483 mesh with the

flow dependent definition of α2, Re = 10, 000. The solid line is with

Helmholtz inversion; dashed line is with the box filter, symbols are

experimental data [111]. . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Sketch of the plane channel flow . . . . . . . . . . . . . . . . . . . . 111

7.2 Regions of the channel flow. Dashed lines represent u+ = y+ in the

viscous sublayer and u+ = 2.5 lny+ + 5 in the logarithmic region.

After Tennekes and Lumley [133], chapter 5. . . . . . . . . . . . . . 114

xii



7.3 Velocity streaks on an x − z plane in the viscous sublayer. The red

color indicates high speed fluid while blue indicates low speed fluid,

where high and low speed are relative to the mean. . . . . . . . . . 116

7.4 Mean flow, rms and shear stress profiles with no model, full channel.

Symbols are DNS data[58]. . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 RMS vorticity profiles with no model, full channel. Symbols are DNS

data [58]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6 Results with α2
k based on the mesh. Solid line is default model,

dashed line is with α2
z = 0 while dotted line is with α2

y = 0. Symbols

are DNS data [58]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 Results with two different filters; α2
k based on the mesh. Dashed line

is Helmholtz inversion with α2
k = h2

k/6; solid line is a box filter with

α2
k = h2

k/6; dash-dotted line is Helmholtz inversion with α2
k = h2

k. . . 125

7.8 Contours of the instantaneous spanwise velocity. Contour levels ±0.08.126

7.9 Mean, rms and shear stress profiles with no model for the (24, 64, 24)

mesh; symbols full channel DNS [58]. . . . . . . . . . . . . . . . . . 129

7.10 Mean, rms and shear stress profiles. Dash-dotted line (blue), C =

1/6, (16, 64, 16); dashed line (red), C = 1/6, (24, 128, 24); dotted

line (black), C = 2/3, (32, 64, 32); green line (solid) C = 1/6,

(32, 128, 32); symbols full channel DNS [58]. To look at the effect

of refining the mesh while keeping the subgrid resolution constant

the blue, red and green lines can be compared. To look at the effect

of keeping the physical size of α2
k constant while refining the mesh

(hence increasing the subgrid resolution) the blue and black lines can

be compared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.11 Contours of the instantaneous spanwise velocity for the minimal

channel for the (32, 128, 32) mesh. . . . . . . . . . . . . . . . . . . . 131

7.12 FCS PDFs at two different wall normal locations. Blue line, minimal

channel DNS (mesh II); black line, minimal channel NS-α (mesh II);

green line, full channel no model; red line, full channel NS-α with

damping. Meshes are given in Tables 7.1 and 7.3 for the full channel

and minimal channel respectively. . . . . . . . . . . . . . . . . . . . 132

7.13 Energy transfer T+
SGS for two different subgrid resolutions. Dashed

line (red), T+
SGSA; solid line (blue), T+

SGSB; dash-dotted line (green)

T+
SGSC ; dotted (black), total. . . . . . . . . . . . . . . . . . . . . . . 133

xiii



7.14 RMS vorticity profiles. Solid line (blue), no model (24, 64, 24); dashed

line (red), NS-α model (32, 128, 32); dotted line (black), NS-α model

(24, 64, 24); symbols full channel DNS [58] . . . . . . . . . . . . . . 135

7.15 Two point correlations in the spanwise direction, left panel is DNS

and right panel is the NS-α model. Solid line is at y+ ≈ 7, dashed

line is y+ ≈ 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.16 Definition of the vorticity inclination angle θ. . . . . . . . . . . . . . 137

7.17 Streamwise vorticity PDFs. Left column is DNS and right column

is NS-α model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.18 Mean flow, rms and shear stress profiles; no model (solid black);

isotropic NS-α with damping (dashed red); anisotropic NS-α with

damping (dash-dot blue). Symbols are DNS data [58]. . . . . . . . . 142

7.19 RMS vorticity profiles; no model (solid black); isotropic NS-α with

damping (dashed red); anisotropic NS-α with damping (solid blue).

Symbols are DNS data [58]. . . . . . . . . . . . . . . . . . . . . . . 143

7.20 Mean flow, shear stress and rms profiles; no model (solid black); NS-

α with α2
k based on the mesh (dashed red); NS-α with flow-dependent

α2
k (solid blue); Leray model with α2

k based on the mesh (dash-dotted

green). Symbols are DNS data [58]. . . . . . . . . . . . . . . . . . . 145

7.21 RMS vorticity profiles. Results with no model (solid black); NS-α

with α2
k based on the mesh (dashed red); NS-α with flow-dependent

α2
k (solid blue); Leray model with α2

k based on the mesh (dash-dotted

green). Symbols are DNS data [58]. . . . . . . . . . . . . . . . . . . 146

7.22 Streamwise spectra for the full channel measured at y+ ≈ 80. Black

crosses are DNS [58]; blue is without a model; black dashed is the

default NS-α model. A slope of −5/3 is also shown. . . . . . . . . . 147

7.23 PDFs of the relative helicity, (a) minimal channel; DNS (meshII),

blue; default NS-α, red; (b) full channel; NS-α with damping (anisotropic

model), red; no model, green. Blue line is from the minimal channel

DNS, shown for comparison. . . . . . . . . . . . . . . . . . . . . . . 148

xiv



Chapter 1

Introduction

Turbulent flows can be readily observed in the world around us. The motion of

leaves on a windy day and a billowing smokestack are common examples. These

flows exhibit a range of eddy sizes, and while they appear random and intermittent,

careful observation may reveal a pattern. It is this dual nature of turbulent flows,

random yet containing organized, coherent structures, that makes them difficult to

characterize and to study. In combination with the sophisticated numerical, ana-

lytical and experimental techniques available today, this has led to widely different,

and typically very specialized approaches to model turbulent flows. In light of this,

it is good to remember that our basic understanding of turbulent flows is still heav-

ily based on early thought experiments, where careful observation and reasoning

were the key tools.

Historically, the academic study of turbulent flows is often traced back to experi-

ments carried out by Osborne Reynolds in 1876. Upon injecting dye into a pipe flow

he found that above certain speeds the dye was no longer arranged in layers, but

exhibited bursts. This illustrates one of the key properties of turbulent flows that

distinguishes them from laminar ones, their ability to transport and mix fluid. This

property makes turbulence desirable in some situations, and problematic in others.

For example, it is a benefit when increased heat transfer is the goal in combustion

devices, but not when the increased momentum transfer leads to higher drag and

hence greater fuel consumption for automobiles and aircraft. Turbulence also pro-

vides an effective means through which pollutants in the atmosphere and ocean are

dispersed. Clearly the study of turbulent flows is of fundamental importance for a

wide range of industrial and environmental problems.
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In this thesis we will be concerned with the turbulent motion of a three-dimensional

incompressible, constant density fluid in Cartesian geometries. The fluid motion is

governed by the Navier-Stokes equations, written in non-dimensional form as

∂ui

∂xi

= 0, (1.1a)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂x2
k

. (1.1b)

The parameter that arises through the non-dimensionalization is known as the

Reynolds number

Re =
ul

ν
, (1.2)

where u and L are characteristic velocity and length scales of the flow, and ν is the

kinematic viscosity. For example, in pipe flow L could be the pipe diameter and u

the bulk flow velocity. The Reynolds number is a measure of the relative strength

of inertia to viscous forces. This can be seen more directly by writing the Reynolds

number as

Re =
u · ∇u

ν∇2u
= O

(
u2/l

νu/l2

)
= O

(
ul

ν

)
. (1.3)

The primary obstacle in solving the Navier-Stokes equations is the wide range of

scales that arise in a turbulent flow. The largest scales are on the order of the

flow geometry (eg. pipe diameter in a pipe flow), while the smallest scales are

those that have just enough inertia to withstand dissipation by viscous forces. This

range of scales is a result of the nonlinear term in the Navier-Stokes equation, which

transfers energy between different scales. This is seen most easily by writing the

nonlinear term in Fourier space (c.f. Pope, pg. 214 [110])

F.T.

(
uj

∂ui

∂xj

)
= ikj

∫
k=p+q

ûi(p)ûj(q)dp. (1.4)

The nonlinear term is now a convolution and describes the interaction between two

velocity components, û(p) and û(q) where q = k−p and k,p, q are wavenumbers.

Taking the dot product of (1.4) with û(k) would then give the contribution of the

nonlinear term to the energy equation for a mode with wavenumber k, indicating

an energy transfer to or from k, mediated by two other scales p and q.

The classic picture of the energy transfer in three-dimensional turbulence was put

forth by Richardson [115] who conceptualized a turbulent flow as consisting of a

cascade wherein large scales transfer energy downscale to smaller ones. Credit for

2



the energy cascade is, however, typically given to Kolmogorov [61] because he was

the first to establish firm ground for this concept by developing a statistical theory

amenable to verification by experiment. Kolmogorov considered the relative motion

that ensues when a fluid is set into motion by a stirring force. He reasoned that the

large scale stirring would lead to ‘pulsations’ in scales of the next smallest order,

which in turn would excite those of the next smallest order, and so on. This cas-

cade of energy would continue until the excitation reached scales small enough to

be affected by molecular viscosity, at which point the motion would be damped and

the energy transfered into heat. Such a picture of energy transfer provides a plausi-

ble means through which the small scales of the flow would have ‘forgotten’ where

they came from, which is central to the hypothesis that a high Reynolds number

flow should be locally isotropic in a region far from boundaries and singularities.

To assist experimentalists in identifying such regions Kolmogorov put forward two

hypotheses that could be tested. Since relative motion can be described by the

velocity structure functions

〈|∆u|p(r)〉 = 〈|u(x + r) − u(x)|p〉, (1.5)

where 〈·〉 denotes an ensemble average, Kolmogorov developed his scaling laws in

terms of the distribution laws of the structure functions. The first hypothesis of

similarity refers to the small scales that are directly affected by viscosity and states:

• For locally isotropic turbulence the distribution laws of 〈|∆u|p〉 should be

uniquely determined by the kinematic viscosity ν and the energy dissipation

rate ε.

From this one can use dimensional analysis to obtain the scaling of the pth order

structure function to be

〈|∆u|p〉 ∼ upF (r/η) (1.6)

where η is the Kolmogorov length scale , η = (ν3/ε)1/4.

In the study of turbulence models we are generally more concerned with the second

hypothesis of similarity because it pertains to larger scales that are capable of be-

ing resolved numerically. This is the intermediate range of scales that are affected

neither by large-scale stirring, nor by dissipation. The second hypothesis states:

• If the length scale of interest, r, is large compared to the dissipation scale,

the distribution laws for 〈|∆u|p〉 will be uniquely determined by ε and do not

depend on ν.
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In this inertial range dimensional analysis yields,

〈|∆u|p〉 ∼ (εr)p/3. (1.7)

For p = 2 this is the 2/3 law for the second-order structure function

〈|∆u|2〉 ∼ (εr)2/3. (1.8)

Kolmogorov’s picture of the energy cascade is usually visualized by looking at the

energy spectrum, E(k), rather than the structure functions, because E(k) is easier

to measure in practice. The energy spectrum tells us how the kinetic energy is

distributed over the wavenumbers∫
V

uiui

2
dV =

∫ ∞

0

E(k) dk. (1.9)

Following the same reasoning as above for the inertial range scaling, but working

now with E(k) and ε yields

E(k) ∼ ε2/3k−5/3. (1.10)

This can also be determined directly from (1.8) using the relationships between

the spectral density function and the two-point correlation tensor (see Davidson

[14] pg. 229). A sketch of the energy spectrum is shown in Figure 1.1. The flow

of energy is denoted by the arrows and shows the energy input at the large scales

being transfered through the inertial subrange and dissipated at the small scales.

A very good example of an energy spectrum measured in the field can be found in

Grant [38]. This was one of the first measurements that verified the −5/3 scaling,

taken in a tidal channel off the coast of British Columbia using a towed hot film

anemometer. The Reynolds number was very high at 4 × 107 and hence thieir

spectrum demonstrates a wide inertial subrange. Prior to this measurement most

energy spectra were obtained in the laboratory and the Reynolds numbers were not

high enough to show a clear inertial subrange.

Kolmogorov’s theory also gives a heuristic estimate of the degrees of freedom ac-

tive in a turbulent flow. By equating the rate at which energy is input at the large

scales, u3/L, to the dissipation rate, ε, one can obtain the ratio of the largest to

smallest active scales as
L

η
= (Re)3/4. (1.11)
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Figure 1.1: Schematic of the energy spectrum for three-dimensional turbulence.
They second hypothesis yields the −5/3 scaling of the energy spectrum in the
inertial subrange.

This means that as the Reynolds number increases we can expect a wider range of

active scales. This presents the main difficulty in numerically solving the Navier-

Stokes equations. When we solve the discretized equations on a finite computational

domain, the smallest flow structure which can be resolved is proportional to the

grid spacing, while the largest is proportional to domain size. Clearly then, if the

Reynolds number is very high a large grid with a fine mesh will be required. For

this reason direct numerical simulations (DNS) of turbulent flows are still limited to

fairly low Reynolds numbers. At moderate to high Reynolds numbers a turbulence

model must be introduced to account for the scales that cannot be resolved

Large-Eddy Simulation (LES)

The picture of the energy cascade and the hypothesis of local isotropy at the small

scales are the central tenets of a turbulence modeling approach known as large eddy

simulation (LES). The idea behind LES is to capture the large scales directly and

confine modeling to the small scales. Because of the small-scale isotropy this is

expected to result in models that are fairly universal, meaning they can be applied

to a wide variety of flows without tuning. To remove the small scales a low-pass

filter is applied to the Navier-Stokes equations. Denoting the low-pass filtering

operation by ·̃ the filtered Navier-Stokes equations are

∂ũi

∂xi

= 0, (1.12a)
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∂ũi

∂t
+ ũj

∂ũi

∂xj

= − ∂p̃

∂xi

+
1

Re

∂2ũi

∂x2
k

− ∂τij

∂xj

, (1.12b)

where τij is the subgrid stress

τij = ũiuj − ũiũj. (1.13)

In filtering the Navier-Stokes equations to obtain (1.12a)-(1.12b) it is assumed that

the filter operator commutes with differentiation, which means we can write

∂̃ui

∂xi

=
∂ũi

∂xi

∂̃u

∂t
=

∂ũi

∂t
.

This is only true when the filter width is not a function of space or time, or for spe-

cial classes of filters [120, 141]. When nonuniform filters are used additional terms

arise in the filtered Navier-Stokes equations, and neglecting these terms leads to the

so-called commutator errors. Here we will follow the convention that these terms

can be neglected. This subject has received attention only recently, and a thorough

treatment can be found in van der Bos [137] and references therein.

In practice, large eddy simulation does not normally involve the application of

an explicit filtering operation. Instead, the finite support of the computational grid

is normally relied on to provide the filtering [82, 81]. In this context the unclosed

term, equation (1.13) is usually referred to as the subgrid stress, and represents

those scales that cannot be captured on the computational grid. This term can-

not be determined from the filtered velocity field because it contains a product of

unfiltered velocity components, ũiuj. This represents the closure problem in large

eddy simulation and the need for subgrid models.

Now consider the filtered Navier-Stokes equation (1.12b) with the grid acting as an

implicit filter and with τij=0. If this equation is solved numerically on a sufficiently

fine grid it is simply a DNS for ũi. Attempts to resolve this equation on a coarse

grid, as is usually the case, will result in a build-up of energy near the wavenumber

corresponding to the grid cut-off, due to nonlinear interactions between the resolved

scales1. Since the small scales are not resolved the physical dissipation mechanism

that would, in reality, drain this energy is missing. An appropriate choice of τij will

serve to dissipate this energy as it is generated, leading to a stable simulation and

good overall prediction of energy dissipation. This is the primary reason for the

1Numerically, one can also look at this as aliasing [34]
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development of numerous eddy-viscosity models popular in large eddy simulations.

In the eddy-viscosity approach the subgrid stress is related to the filtered rate of

strain through the constitutive relationship [120]

τij − δij

3
τkk = −2νT S̃ij (1.14)

where νT is the eddy viscosity. For LES the most popular choice of eddy viscosity

is composed of a mixing length Cs∆, where ∆ is the filter width, and a time scale

based on the resolved rate of strain S̃ij

νT = (Cs∆)2(2S̃ijS̃ij)
1/2

. (1.15)

This is known as the Smagorinsky model, and the coefficient Cs is called the

Smagorinsky coefficient. It was first proposed by Smagorinsky [127] for numeri-

cal weather prediction. Later work by Lilly [77] showed that the coefficient can be

determined analytically for isotropic turbulence by equating the energy dissipation

rate to the rate at which energy is transferred from the resolved to subgrid scales.

For a spectral cut-off filter this yields Cs = 0.18. The Smagorinsky model has been

found to work well in isotropic turbulence and in free shear flows such as jets and

mixing layers. As discussed by Jimenez [55] the success of this model relies largely

on its robustness, and not in the fact that it provides a correct model for the flow

physics. For example, if the constant Cs is too low then there will be a buildup

of energy in the resolved scales, leading to an increase in S̃ij, and thus increased

dissipation, bringing the energy drain back to the appropriate level. This can prob-

ably account for why selecting a value of Cs substantially lower than that predicted

analytically has been fairly successful for simple flows. However, the shortcomings

of the Smagorinsky approach in predicting more complex flows are well known.

From (1.15) we can see that the simple constitutive relationship assumes alignment

between the subgrid stress and the strain rate. It has been found both in analysis of

DNS data and in experimental studies that this is far from the truth. For example

Tao et al. [131] find the most probable angle between the most extensive eigenvec-

tor of the subgrid stress and the most compressive eigenvector of S̃ij to be 34o. The

alignment is important because it is related to the energy transfer between the re-

solved and subgrid scales, which is τijS̃ij when the subgrid stress is symmetric. The

Smagorinsky model is also strictly dissipative for positive viscosities, and unstable

for negative ones. This means it cannot capture the reverse energy transfer from

small to large scales, known as backscatter. Although energy transfer is on aver-

age from large to small scales in three-dimensional turbulence, there are a number
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of flows where local backscatter effects are important. Examples from shear flows

include, the later stages of boundary layer transition [108], hairpin vortices in the

near-wall region [109, 42] and vortex pairing in mixing layers [126]. One popular

method to incorporate backscatter is by adding a stochastic forcing term [85] to the

Smagorinsky model. The rationale behind this is that while a dissipative model can

capture the ‘in the mean’ forward transfer, the subgrid stress exhibits significant

fluctuations about this mean, and it is these fluctuations that are responsible for

the backscatter. In practice though, backscatter tends to be strongly correlated

with coherent structures, leading some to hypothesize that a deterministic model

may be more appropriate [109]. Finally, the Smagorinsky model is too dissipative

to be used for transitional flows, damping out the small perturbations in the linear

instability stage and causing relaminarization of the flow [106, 144].

A remarkable improvement to Smagorinsky’s model is the dynamic procedure,

proposed by Germano [29], and modified by Lilly [78]. In this approach Cs is

determined as a function of the local flow dynamics, which alleviates somewhat the

problems encountered with the standard Smagorinksy model in transitional flows

and near solid walls. The dynamic model is based on Germano’s identity, which

relates the subgrid stress determined at a test filtering level to that at the pri-

mary filtering level, where the test filter is wider than the primary filter. The only

unknown emerging from this identity is Cs. The dynamic model thus allows this

parameter to be determined at every grid point, instead of specifying one constant

over the entire flow. However, in practice spatial averaging must be included in

evaluation of Cs for numerical stability. This can be done either by averaging over

homogeneous directions (as is done for example in a channel flow) or by employing

a Lagrangian averaging procedure where the average is taken along a streamline

[89]. While the dynamic approach has been very successful [106, 113, 103], there are

still shortcomings, most notably the computational overhead associated with the

test filtering operation, and the assumptions inherent in the eddy viscosity ansatz.

A different approach is represented by the scale-similarity family of models, which

are based on the idea that the relevant contribution to the subgrid stress will be

from those scales near the filter cut-off, and in this region it is then assumed that
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u ∼ ũ [1]. In this case the model for the subgrid stress is2

τij = ˜̃uiũj − ˜̃ui
˜̃uj. (1.17)

Unlike the Smagorinsky model, the scale similarity model is known to produce good

correlation between the modeled τij and that obtained from both filtered DNS [1]

and experimental data [79] and is capable of capturing backscatter [90, 109]. How-

ever, while it produces good results in a priori tests, in practice the model is not

dissipative enough [1]. This has led to the development of mixed models, in which

the scale similarity term is supplemented with a dissipation term [1, 151]. The

dissipation term is usually evaluated dynamically, and the resulting combination of

a mixed model with a dynamic procedure is expensive, estimated at adding ∼ 20%

to the total computation time as compared to ∼ 7% for the Smagorinsky model for

a plane channel flow [106]. It should be noted that cost estimates for the dynamic

procedure alone vary widely. For plane channel flow where the coefficient is aver-

aged over homogeneous directions, Piomelli [106] estimates that it adds only 15%

to the total computation time. However, for the flow past a square cylinder, where

there are no homogeneous directions and either clipping or a Lagrangian averaging

procedure are used to stabilize the coefficient, the model has been found to increase

the computation time by 200 − 400% [97].

The Smagorinsky and scale-similarity models are only two examples of the vast

array of approaches to subgrid modeling that have been proposed and tested. A

thorough review can be found in the text by Sagaut [120]. One consistent trend has

been the use of models which are either strictly dissipative, or contain a dissipative

component. This concept is well-founded, since the role of the model is to mimic

the energy drain provided by the smallest scales in the Navier-Stokes equation, that

were removed by the filtering operation. As we have discussed above, in some cases

it may be necessary to add a backscatter model.

2Note that ˜̃u �= ũ unless the filter is a projector (c.f. Sagaut [120], pg. 24), which is one for
which Gn = G. For example a spectral filter with transfer function

G(k) =
{

1 if k < kc

0 otherwise (1.16)

is a projector.
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NS-α model

Now, let’s say that instead of using a model that contains a dissipative term for

forward energy transfer and a model for backscatter, we take a step back and ask

what our governing equation would look like if we had a system that stopped trans-

ferring energy to small scales when a certain wavenumber, say kα, is exceeded, but

did not stop the backscatter. In other words, we no longer have to model the for-

ward transfer to the small scales because these transfers are not part of the system,

nor do we need to model the missing backscatter because it has not been removed.

This is in essence the idea behind the NS-α model 3.

How does the NS-α model do this? Since we know the energy transfer between

different scales comes from the nonlinear term, it is logical that this term should

be modified in some way. If we think harder about how energy is transferred in

a turbulent flow, this gives us another clue. Physically, the energy transfer from

large to small eddies is attributed to a mechanism known as vortex stretching (c.f.

Tennekes and Lumley [133]). To understand this phenomena we must derive an

equation for the vorticity, defined as ω = ∇×u. This is easily done by first writing

the Navier-Stokes equation in velocity-vorticity form

∂ui

∂t
− u × ω = − ∂

∂xi

(
p +

1

2
ukuk

)
+

1

Re

∂2ui

∂x2
k

, (1.18)

and then taking the curl to obtain

∂ωi

∂t
+ uj

∂ωi

∂xj

= ωj
∂ui

∂xj

+
1

Re

∂2ωi

∂x2
k

. (1.19)

The first term on the right hand side is called the vortex stretching term, although

technically it is responsible for stretching, compression and tilting of vortex lines.

It is known that on average stretching dominates over compression in turbulent

flows, leading to smaller, more intense vortices, in the limit of an inviscid flow

[136]. In practice a turbulent flow is populated with a variety of vortical structures,

usually categorized as being either sheet-like or tube-like (see Davidson pg. 246

for a discussion). These structures are constantly undergoing deformation by the

background strain field [35]. If we think about smoothing this background flow

so that the characteristic length scale of the strain field is large relative to the

3This is in fact one interpretation of the NS-α equations as a turbulence model. However it
should be kept in mind that these equations were not originally developed for the purpose of
turbulence modeling. See Holm [46] for a history on the origins of the NS-α equations.
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size of the vortices, we would expect the velocity gradients to become less effective

at stretching and tilting the vortices. In turn this would prevent the creation of

smaller and smaller scales, and hence eliminate the need to model the effects of

these scales when we carry out a coarse grid numerical simulation. Because the

smoothed background flow is also advecting the vorticity, such a picture leads us

to the following vorticity equation

∂ωi

∂t
+ ũj

∂ωi

∂xj

= ωj
∂ũi

∂xj

. (1.20)

The corresponding momentum equation is given by

∂ui

∂t
+ ũj

∂ui

∂xj

+ uj
∂ũj

∂xi

= −∂pα

∂xi

, (1.21)

where pα = p + umũm/2. To obtain (1.21) we have enforced continuity on the

smoothed velocity, which is logical because this is the advecting velocity in (1.20).

At this point we have not specified how the smoothed and unsmoothed velocities

are related. For the NS-α model this is not arbitrary and we will see in Chapter 3

that they are related through a Helmholtz equation (given here for the case where

α2 is constant),

ui = ũi − α2 ∂2ũi

∂x2
k

. (1.22)

In Fourier space

ˆ̃ui(k) =
ûi(k)

1 + α2|k|2 , (1.23)

from which it is clear that the smoothed velocity is low-pass filtered since the high-

wavenumber components are attenuated. From this relationship we can see there

is a new parameter, α, that can be interpreted as a filter width.

The above equation (1.21) is inviscid and is known as the Euler-α model [50].

The viscous version

∂ui

∂t
+ ũj

∂ui

∂xj

+ uj
∂ũj

∂xi

= −∂pα

∂xi

+ ν
∂2ui

∂x2
k

(1.24)

will be referred to in this thesis as the Navier-Stokes-α or NS-α model (see also

[25, 32]). It is also known as the LANS-α model (where LANS is an abbreviation

for Lagrangian-Averaged Navier-Stokes) [92, 37] and is closely related to the Vis-

cous Camassa-Holm equation (VCHE). A discussion of the history of the model
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and the origin of the different names is given in Holm [50].

The NS-α model is part of a broader class of methods that are based on regu-

larization of the nonlinear terms in the Navier-Stokes equations [32]. The simplest

model in this group is the Leray model, which consists of replacing the advecting

velocity in the Navier-Stokes equations by a smoothed velocity. The governing

equations for the Leray model are

∂ui

∂xi

= 0, (1.25a)

∂ui

∂t
+ ũj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂x2
k

. (1.25b)

Note that in (1.25a) it is the unsmoothed velocity that satisfies the continuity

equation. This means the contribution of the nonlinear term to the energy equa-

tion cannot be written in a purely redistributive form, and effectively creates an

additional source/sink term [140]. Most subgrid models create such an additional

term in the energy equation, which is a source/sink term representing energy ex-

change between the resolved and subgrid scales. However, for the Leray model

it has been shown that this additional term can lead to significant problems in

wall-bounded flows [140]. For an unbounded mixing-layer the Leray model led to

reduced small-scale variability as compared to both the DNS and the NS-α model,

but was found to be more robust on coarse meshes than the NS-α model [32], both

of which are probably related to the fact that the Leray model has been hypothe-

sized to have an even more compact energy spectrum than the NS-α model [32].

While the development of the NS-α model from a modified vorticity equation (see

also Montgomery and Poquet [95]) and the interpretation of α as a smoothing scale

or filter width are perfectly valid, in this thesis we will go into greater detail to

describe the origin of the NS-α equations and the parameter α. We will see that

before α became interpreted as a filter width it had a different definition, either as

a measure of the displacement of a particle from a mean trajectory, or as a mixing

length. By understanding more clearly the derivation of the NS-α equation (Chap-

ter 3) we will see that the equation used most often in the literature (1.24), and the

subgrid model based on this equation [51, 32], assume isotropic and homogeneous

fluctuations, meaning the turbulence parameter, α2, is a scalar and is constant. In

this thesis we will consider wall-bounded flows, which are both inhomogeneous and

anisotropic. It is very tempting to proceed in these cases by solving the same equa-
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tion (1.24) for the more complex flow situation. For the strongly sheared flows in the

present thesis early numerical tests following this approach found that the simula-

tions diverged if α2 was kept constant, and produced erroneous results if anisotropy

was incorporated in an ad-hoc manner. Thus it was necessary to develop a more

general subgrid model, which was done by starting with the anisotropic, variable-α

equations presented in Holm [47].

The outline of the thesis is as follows. In Chapter 2 we will review the literature

on the NS-α model and discuss the relationship between the model and turbu-

lence theory. We will see that this model is on solid footing with regards to the

theory and has been found capable of capturing both forward energy transfer and

backscatter. In theory, the model only seeks to modify the nonlinearity in such

a way that the cascade of energy to small scales is attenuated, which is in agree-

ment with the central problem of the Navier-Stokes equation. In Chapter 3 we

will present a derivation of the governing equation from Hamilton’s principle. This

derivation is not new in that it is comprised of principles seen before [5, 47, 3] but

it is hoped the presentation is easier for the non-mathematician to understand than

that commonly encountered in the literature. In Chapter 4 we will formulate our

governing equation into the LES template so that it can be easily implemented in a

finite volume code, which will be described in Chapter 5. Benefits and shortcomings

to using the model will then be illustrated using two test cases, a lid-driven cavity

flow, and a turbulent channel flow, discussed in Chapters 6 and 7 respectively. This

will be followed by conclusions and recommendations for future work.

Objectives of the thesis

The majority of existing literature on the NS-α model is theoretical in nature,

with most numerical simulations directed towards verifying the underlying theory.

For this purpose, studies of isotropic box turbulence are the preferred numerical

experiment. The primary goal of this thesis was to investigate the NS-α model in

a more general setting. To this end the following objectives were defined:

• Review the derivation of the NS-α equations for the general case of anisotropic

and inhomogeneous fluctuations.

• Investigate isotropic and anisotropic versions of the models using an LES

methodology. This means developing an equation with the smoothed velocity
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as the dependent variable and with the subgrid model written as the diver-

gence of a tensor. Implement this model in a standard finite-volume code

used for engineering applications.

• Investigate this subgrid model first basing α2 on the grid scale, the standard

choice for the smoothing scale in the LES community. Determine if this is a

good choice for the NS-α model. If not, identify shortcomings and suggest a

new definition of α2.

• Gain insight into how the model changes the resolved flow. If it is not dissi-

pative, then what does it do in physical space? Is it useful?
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Chapter 2

Review of Literature on the NS-α

model

2.1 Motivation to use the NS-α equations as a

turbulence model

2.1.1 Scaling of the Energy Spectrum

In LES we are often concerned with how the model changes the scaling of the energy

spectrum on the premise that this will tell us what kind of computational savings

we can expect from using the model. For the NS-α model scaling arguments can be

deduced in the same manner as is done for the Navier-Stokes equations. Here we

discuss arguments for the energy spectrum scaling law that are commonly encoun-

tered in the literature. At times the concepts in this section are phenomenological,

thus vector notation is dropped as are any constants of order unity.

2.1.1.1 Conserved Energy

Before reviewing scaling arguments for the NS-α equations we need to understand

an important difference between the NS-α equations and other models for turbu-

lence. Instead of draining energy from the system, the NS-α equations change

the energy conservation properties by conserving a different quadratic form. The

conserved energy for the (inviscid) NS-α equations (1.21) is [25]

Eα =
1

V

∫
V

1

2
uiũi dV. (2.1)
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Recalling that the smoothed ũ and unsmoothed u velocities are related through the

Helmholtz operator u = ũ − α2∇2ũ we can rewrite this in terms of the smoothed

velocity as

Eα =
1

V

∫
V

1

2

(
ũiũi + α2|∇ũi|2

)
dV (2.2)

where we have integrated by parts and used either periodic boundary conditions or

ũi = 0 on the boundary. It can be seen in (2.2) that there are two components to

the conserved energy, the kinetic energy ũiũi/2 and a velocity gradient term. The

second term is generally considered to impose an energy penalty [17] in the sense

that as smaller and smaller scales are generated and the velocity gradients increase

this will come at the expense of reduced kinetic energy, ũiũi. If we were to draw

only the energy spectrum of ũiũi/2 we would expect to see the small-scale portion

of this spectrum being attenuated with increasing α2, or with the mean-squared

velocity gradient term increasing. The form of the conserved energy also provides

another way to look at the effect the model has on vortex stretching. In order to

maintain a certain level of kinetic energy in the system the velocity gradients can

only become so steep. Because these gradients are related to vorticity ω = ∇× u

and the stretching/tilting term ω · ∇ũ, the vorticity filaments will be limited in

how small they can become.

2.1.1.2 Eddy turnover time arguments

The most common scaling arguments given in the literature for the NS-α model

are based on the model put forth by Kraichnan [65]. In this model the interscale

transfer rate in the inertial subrange is given by the rate at which an eddy of size

1/k transfers its energy to a smaller eddy of size 1/2k1. For this purpose the energy

equation in Fourier space is considered. Following Foias et al. [25] we denote ûk as

the velocity for Fourier modes in the range [k, 2k) and the energy by e = ûkûk/2.

The energy equation in Fourier space can be written (for the transfer between

modes k and 2k)
∂e

∂t
= Tk − T2k + νk2e. (2.3)

1The choice of 2k for the second eddy comes from the view that eddies transfer energy most
effectively to those which are approximately half their size. Physically this was hypothesized since
an eddy can be most effectively stretched by a shear which is approximately of the same order
of magnitude. This can be easily visualized by considering stirring the fluid in a coffee cup. A
large spoon (but not as large as the domain size, which is the cup) will be a more effective stirring
mechanism than a very tiny stir stick. More concrete evidence that energy is transferred mostly
to scales separated in wavenumber space by a factor of two is given in the study by Meneveau
and Lund [88].
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Here Tk denotes the energy transfer from modes with wavenumbers less than k,

to those greater than k and T2k is the transfer from modes with wavenumbers less

than 2k to those greater than 2k. Kolmogorov’s picture of the energy cascade

can then be visualized as follows. If we assume there is a large scale forcing, Fk,

and that there is a sufficient separation of scales such that the dissipation is only

relevant at the very small scales, then the energy injected by the forcing will be

approximately balanced by the transfer out of the forcing wavenumber range by

nonlinear interactions

Fk ∼ Tk. (2.4)

Similarly, when we get to the dissipation range the energy entering this range should

be balanced by viscous dissipation, denoted by ε,

T2nk ∼ ε, (2.5)

where n indicates the number of eddy turnover times. In the inertial range we are

by definition far from any forcing or dissipation and energy is only transferred from

one eddy to another through nonlinear interactions

T2nk ∼ T2n+1k. (2.6)

Thus the dissipation rate, ε, is also equal to the interscale transfer rate which is

the rate at which an eddy of size k transfers its energy to one of size 2k. Following

Kraichnan [65] this is given by the energy in the wavenumber range [k, 2k), divided

by the eddy turnover time (τ)

ε =
1

τ

∫ 2k

k

E(k)dk. (2.7)

The eddy turnover time is the time it takes an eddy to turnover, and is based on

the eddy size and average eddy velocity

τ =
1

kUk

. (2.8)

The average eddy velocity can be estimated from the kinetic energy

Uk =

(∫ 2k

k

E(k)dk

)1/2

∼ (kE(k))1/2. (2.9)
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When we substitute these into the equation for ε (equation (2.7)) we find

ε = k(kE(k))1/2

∫ 2k

k

E(k)dk ∼ k5/2E(k)3/2, (2.10)

from which the well known inertial-range scaling emerges

E(k) ∼ ε2/3k−5/3. (2.11)

While the above derivation was for the Navier-Stokes equations, the same arguments

are followed to develop a scaling law for the NS-α equations (for full details see Foias

et al. [25]). We begin with the energy based on the smoothed and unsmoothed

velocities

ea ≡
∫

V

ˆ̃uiûi

2
dV =

∫ ∞

0

Eα(k) dk, (2.12)

and interscale transfer rate

εα =
1

τ

∫ 2k

k

Eα(k)dk. (2.13)

Once again the eddy turnover time is given by

τ =
1

kUk

. (2.14)

What is not clear is how to specify the average eddy velocity. There are three

possibilities,

Uk =
(

ˆ̃uk
ˆ̃uk

)1/2

= (kEα(k))1/2 (1 + α2k2)−1/2 (2.15)

Uk =
(
ûk

ˆ̃uk

)1/2

= (kEα(k))1/2 (2.16)

Uk = (ûkûk)
1/2 = (kEα(k))1/2 (1 + α2k2)1/2 (2.17)

or,

Uk = (kEα(k))1/2 (1 + α2k2)
n−1

2 for n=0,1,2. (2.18)

Following the same steps as for the Navier-Stokes equations we arrive at the ex-

pression for the energy spectral density

Eα(k) ∼ ε
2/3
α k−5/3

(1 + α2k2)
n−1

3

. (2.19)
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Thus when (α k)2 	 1 the scaling is the same as for Navier-Stokes turbulence,

while for (α k)2 
 1 it is,

n = 0 k−1 (2.20)

n = 1 k−5/3 (2.21)

n = 2 k−7/3. (2.22)

Early numerical simulations of the NS-α equations [10, 92] showed an energy spec-

trum, Eα that had a steeper roll-off than k−5/3, which would suggest the average

kinetic energy should be based on the product of the unsmoothed velocities (n = 2).

The fact that the slope is steeper than that of Navier-Stokes turbulence was one of

the main reasons why the equations were promoted in the literature as a turbulence

model.

2.1.1.3 The Kármán-Howarth equation

We have seen in the previous section that, depending on how we define the eddy

turnover time, we arrive at different scalings for the energy spectrum. To further

refine the scaling arguments Holm developed the Kármán-Howarth equation for

the NS-α equations [48]. This equation relates the third order structure function to

the energy dissipation rate. It is the physical space representation of the evolution

equation for the spectral tensor φ̂ij(k), the trace of which is the well-known equa-

tion for the energy spectral density E(k) when integrated over spherical shells in

wavenumber space. In physical space the trace of the two-point correlation tensor

gives the detailed energy balance for the Navier-Stokes equation, where ‘detailed

energy balance’ refers to the energy transfer between different scales in the flow.

To develop the Kármán-Howarth equation one first writes the momentum equation

for the velocity at a field point x, u = u(x), and then writes a second momentum

equation for the velocity at a field point x′, u′ = u(x′), where x′ = x + r. Multi-

plying the first equation by u′ and the second by u and averaging the results then

gives an equation for the two-point correlation tensor Qij = 〈uiu
′
j〉 [14]

∂Qij

∂t
=

∂

∂rk

(Sikj + Sjki) + ν∇2
rQij, (2.23)

where Sikj is the third-order correlation tensor

Sikj = 〈ui(x)uk(x)uj(x + r)〉.
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When you integrate (2.23) over a volume of fluid with periodic boundary conditions

the divergence term is zero and we have the familiar result that the rate of change

of energy is equal to the viscous dissipation in the absence of forcing.

The Kármán-Howarth equation provides another means to obtain the −5/3 law

that, unlike the previous methods, comes directly from the Navier-Stokes equation.

First of all consider that if we are in an inertial range (where viscous dissipation

can be neglected), equation (2.23) tells us

ε ∼ u3

l
,

where l is a characteristic eddy length scale. If we keep in mind that kE(k) ∼ u2

we obtain,

ε ∼ (kE(k))3/2

l
, (2.24)

or

E(k) ∼ ε2/3k−5/3. (2.25)

Thus the scaling law is derived which is free from any assumptions other than

isotropy and the existence of an inertial range.

If you follow similar steps as for the Navier-Stokes equation you can arrive at a

Kármán-Howarth equation for the NS-α equation [48]. To do this you start with

the NS-α equation written in terms of the unsmoothed velocity at a field point x,

u(x), and then the equation for the smoothed velocity at a second field point x′,

ũ(x′). Cross-multiplying, averaging and rewriting in symmetric form, one obtains

an equation for the two-point correlation tensor, Qα
ij = 〈uiũ

′
j + ũju

′
i〉. It is this

tensor that is of interest when developing scaling arguments for the energy eα. The

symmetric form of the Kármán-Howarth equation for the NS-α model is [48]

∂Qα
ij

∂t
=

∂

∂rk

(
τijk − α2S̃α

ijk

)
+ 2ν∇2

rQ
α
ij. (2.26)

The tensor τijk denotes the triple correlation

τijk = 〈(uiũ
′
j + ujũ

′
i + u′

iũj + u′
jũi

)
ũk〉, (2.27)

and the last term, α2S̃α
ijk, is the subgrid term and is a function of only the smoothed

velocity and the filter function (see Holm [48] for details). The important thing to
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know here is that the subgrid term scales as α2ũ3/l2. From dimensional scaling

arguments we then have

εα =
1

l

(
uũ2 − α2

l2
ũ3

)
. (2.28)

When (α/l)2 ∼ 0 the smoothed and unsmoothed velocities are equal, ũ ∼ u, which

gives the usual Navier-Stokes scaling, ε ∼ u3/l. On the other hand when (α/l)2 
 1

the scaling is,

ũ3 ∼ εαα−2l3 (2.29)

from which you can obtain (using ũu ∼ kEα(k) and u ∼ ũα2/l2),

Eα(k) ∼ ε2/3
α α2/3k−1 (2.30)

This supports the k−1 scaling given from the eddy turnover time arguments when

the eddy velocity is based on the kinetic energy from the smoothed velocities alone.

While this slope is shallower than that of the Navier-Stokes equations, it translates

to a slope of k−3 for the energy spectrum based on the smoothed velocity alone

(using Eũ(k) ∼ Eα(k)/(1 + α2k2). Thus if we follow an LES methodology and

use ũi as the dependent variable we would still expect an energy spectrum with a

steeper slope than that of the Navier-Stokes equations, and the equations can still

be considered a good candidate for investigation as a subgrid model.

2.1.2 Reduction in Degrees of Freedom

The steeper slope of the energy spectrum for the NS-α equations implies a larger

Kolmogorov scale and an overall reduction in the degrees of freedom as compared

to the Navier-Stokes equation. An estimate of the Kolmogorov scale for the NS-α

equations can be obtained by integrating the energy spectrum,

εα ∼
∫ kηα

0

νk2Eα dk. (2.31)

Substituting in the energy spectrum from (2.30) you arrive at

kηα =
ε
1/6
α

ν1/2α1/3
, (2.32)
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Figure 2.1: Energy spectrum, Eũ(k), for the NS-α model (based on discussion in
Foias [25]). The dotted line shows where the slope is steeeper than the Navier-
Stokes spectrum at wavenumbers higher then 1/α.

where kηα is the Kolmogorov scale for the NS-α equation. From this the degrees of

freedom can then be estimated [25]

DOFNSα = (kηαl)3 ∼ Re3/2

(α/l)
, (2.33)

where l is the characteristic length scale of the energy containing eddies. It was

anticipated in early studies that for high Reynolds numbers α/l ∼ const and the

degrees of freedom would be DOFNSα ∼ Re3/2, a significant reduction from that of

the Navier-Stokes equations, DOSNS ∼ Re9/4. More recent results suggest α ∼ η

with a much more modest reduction in the degrees of freedom [37]. Foias estimates

the Kolmogorov scale for the NS-α equation to be related to that of the NS-α

equation according to

kηα = k
2/3
ηNSk1/3

α (2.34)

where kα ∼ 1/α. Given that kα is generally taken to be in the inertial subrange,

this implies kηα < kηNS. A schematic of the proposed energy spectrum [25, 17] is

shown in Figure 2.1, where the Kolmogorov scales are marked as η and ηα for the

Navier-Stokes and NS-α equations respectively.

2.1.3 Attenuation of nonlinear interactions

Based on the picture given in the introduction that the NS-α model alters the

vortex stretching term, and hence the cascade of energy to the small scales, we

would expect that the interscale energy transfer for the NS-α equations will be

different than that of the Navier-Stokes equations. Further understanding as to

how the NS-α equations change the interscale transfer can come from looking at

the triad interactions in Fourier space. Recall that the nonlinear term in the Navier-
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Figure 2.2: Schematic of local (a) and nonlocal (b) triads, c.f. Sagaut [120]

Stokes equation can be written in Fourier space as,

F.T.

(
uj

∂ui

∂xj

)
= ikj

∫
p+q=k

ûj(p)ûm(q)dp. (2.35)

The three wavenumbers in (2.35), k,p, q form a triad, such that k = p + q. If

all three wavenumbers are of the same order of magnitude, the triad is considered

local, and the energy transfer will also be local, as shown in Figure 2.2 (a). On the

other hand if one of the legs of the triad differs from the other two in magnitude by

a factor of two or more the triad is considered non-local. For the example shown in

Figure 2.2 (b) the triad can have both local and nonlocal energy transfer. A study

of the triad interactions for 3D Navier-Stokes turbulence was carried out by Waleffe

[146] using helical wave decomposition (HWD)2. This is similar to a decomposition

into Fourier modes, except that each Fourier mode is further decomposed into ‘+’

modes and ‘-’ modes, where the ‘+/-’ refers to the direction in which the velocity

vector rotates about the k axis. The velocity field is expressed as

u(x) =
∑

k

û(k)eik·x

=
∑

k

(
a+(k)h+ + a−(k)h−

)
eik·x,

(2.36)

where a− and a+ are helical wave coefficients and h+ and h− are the new basis

vectors. The basis is formed by constructing a plane perpendicular to k and repre-

senting the velocity in terms of three components, one of which is in the k direction,

and two other components which are orthogonal to each other and to k. One can

then set the amplitude of the component in the k direction to zero, since k · û = 0

by continuity. The two basis vectors are then chosen to be complex-valued such

2This is especially appealing approach for the NS-α model because the nonlinear terms can be
written compactly in velocity-vorticity form ũ × ω.
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Figure 2.3: Schematic of F triads (a) and R triads (b) after Waleffe [146]. Solid
lines indicate forward transfers, while the dashed line is backscatter.

that one rotates clockwise and one counter-clockwise. Using this decomposition

each triad discretely conserves energy and helicity.

From this decomposition amplitude equations can be derived for each component

(a
+/−
k , a

+/−
p , a

+/−
q ) of a triad. Analysis of these equations then tells you which modes

are stable and which are unstable. Waleffe [146] classified the unstable triads into

two groups based on whether the two largest wavevectors have the same spin or

opposite spins. In the former case it is shown that the middle wavenumber is un-

stable and loses energy to the other two, one of which is larger and one of which

is smaller. It can be shown that most of the energy is transferred to the smaller

wavenumber, which is a reverse transfer, and hence these are called R triads. For

the F triads the two largest wavenumbers have opposite spins and it is the small-

est wavenumber which is unstable, thus the energy transfer is from large to small

scales, or in the forward direction. A sketch of these two types of triads is shown in

Figure 2.3. By looking at the vorticity equation Waleffe shows that the stretching

term corresponds to an interaction involving HWD coefficients of opposite spin (a+

and a−) giving further evidence to the hypothesis that forward transfers are due

to vortex stretching. On the other hand, advection of small scales by large ones

corresponds to interactions between coefficients with the same spin, and thus this

is the physical interpretation of the R triads.

Instead of looking at the full nonlinear term u × ω, Domaradzki and Holm [17]

considered the Fourier transform of the advection term in the NS-α equations

F.T.(ũj
∂ul

∂xj

) =
i

2

(
kmPlj

∫
ûj(p)ûm(q)

1 + α2|q|2 dp + kjPlm

∫
ûm(q)ûj(p)

1 + α2|p|2 dp

)
(2.37)
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where Plj and Plm are the projection tensors that arise when we take the divergence

of the momentum equation and project the nonlinear term into a plane perpendic-

ular to k [110]. For example

Plj = δlj − klkj

|k|2 . (2.38)

Based on the nonlinear term (2.37) we can consider the following scenarios

• Consider a local triad where all three scales are large, |k|α, |p|α|, |q|α 	 1.

The attenuation factors will be close to unity, 1 + α2|q|2 ∼ 1 + α2|p|2 ∼ 1,

and the dynamics of the large scales will be unchanged by the model.

• Consider a local triad where all three scales are small, |k|α, |p|α, |q|α 
 1.

The attenuation factors will be very large, 1 + α2|q|2 ∼ 1 + α2|q|2 
 1. In

this case the nonlinear transfer term will be close to zero. Thus the dynam-

ics leading to local energy transfer between the small scales are essentially

removed.

• Consider a nonlocal triad with |k|α < 1 and |p|α, |q|α both 
 1. In this case

k is the smallest wavenumber and can lose energy to the other two. These

are forward-transfers due to the non-local interaction that occurs between a

large scale and two small scales. The attenuation factors will be large and

the non-linear term will again be close to zero, indicating that these transfers

have been removed.

• Consider a nonlocal triad where k is an intermediate scale, for example |p| <

|k| < |q|. In this case k is the intermediate wavenumber and can lose energy

to the other two [146]. If we let |p|α 	 1, |k|α ≈ 1 and |q|α > 1, the second

component of the non-linear term in equation (2.37) will not be changed by

the presence of α. Physically, this is the advection of a small scale component

|q| by a large scale component |p|, and corresponds to the ‘non-local sweeping’

referred to in the literature [17]. Note that it is the partial smoothing of the

nonlinear term that gives rise to this interaction being preserved. If both

velocity components were smoothed, the denominator of the non-linear term

would contain a product of the two factors, 1 + α2|p|2 and 1 + α2|q|2, and

would be damped regardless of which velocity was the advection velocity.

The removal of the small scale interactions can also be seen by decomposing the

non-linear term (in physical space) as

uiũj = ũiũj + ũju
sgs
i (2.39)
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where the decomposition into a smoothed and subgrid component is used ui =

ũi + usgs
i is used [120]. This can be contrasted to the usual nonlinear term

uiuj = ũiũj + ũiu
sgs
j + ũju

sgs
i + usgs

i usgs
j . (2.40)

The small-scale triad interactions are represented by the last term usgs
i usgs

j [110],

and are usually modeled by an eddy viscosity term [11, 28]. In the NS-α equations

these dynamics are not generated, and hence an eddy viscosity term is not needed

to dissipate them. On a similar note the backscatter from the unresolved scales is

not missing in the NS-α model since the triads leading to non-local sweeping are

not attenuated. Therefore, a backscatter model is also not needed.

2.2 Results from numerical simulations

In the previous section we have seen that the NS-α equations can be interpreted as

a model for turbulence in the sense that they possess fewer degrees of freedom than

the Navier-Stokes equations, and in theory attenuate vortex stretching and the cas-

cade of energy to the small scales. Some of these properties have been explored in

numerical simulations of box turbulence at modest Reynolds numbers of Reλ ∼ 130

[10] and Reλ ∼ 90 [92], where Reλ is the Reynolds number based on the Taylor

microscale and the velocity scale u = 2
∫∞

0
E(k)dk . These experiments found an

energy spectrum steeper than k−5/3, vortex structures that were shorter and fat-

ter than in 3D Navier-Stokes turbulence [10], and that, unlike the Smagorinksy

model, the model can predict the correct alignment between the eigenvectors of

the strain rate tensor and subgrid stress [92]. None of these simulations were of

sufficiently high resolution to confirm the k−1 scaling for Eα(k) predicted by the

Kármán-Howarth equation (equation (2.30)), and it is only recently that a numeri-

cal study addressing this question has been published [37]. Recall that based on the

results from the Kármán-Howarth equation, if we were to measure the third order

structure function in the NS-α fluid we would expect to find the scaling 〈|δũ|3〉 ∼ l3

from (2.29), while if we were to measure the energy spectrum we would expect to

see Eα(k) ∼ k−1 from (2.30). It therefore came as some surprise to learn that, in

high Reynolds number (Reλ ∼ 1300) numerical simulations of the NS-α equations,

while the correct scaling for the structure function was observed, the scaling of the

energy spectrum was k1 instead of k−1 [37].

The reason for this is that the NS-α fluid is comprised of both regions undergo-
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ing the Navier-Stokes dynamics of vorticity transport and stretching, and regions

of ‘rigid rotators’ where stretching is inhibited [37]. These rigid-rotators do not

contribute to the scaling of the velocity structure function since by definition, they

contain no relative motion. Thus the structure function scaling follows l3 as antici-

pated. On the other hand, rigid rotators do have kinetic energy and would therefore

contribute to the scaling of the energy spectrum, Eα(k). What would this scaling

be? Following Graham et al. [37], we write

uũ ∼ kEα(k), (2.41)

and use the relationship u ∼ (1+α2k2)ũ to arrive at Eα(k) ∼ (ũ2α2)k when αk 
 1.

Rigid rotators have a constant velocity u, which means for a given α2 the scaling

of the energy spectrum is Eα(k) ∼ k. Thus while both scalings are valid, the k−1

scaling is subdominant, and it is the k1 scaling which is observed in practice. This

implies that the scaling for the energy spectrum Eũ(k) would be

Eũ(k) ∼ ε2/3k−1,

which is shallower that that of the Navier-Stokes equations. One might interpret

this as implying that the degrees of freedom are greater than the Navier-Stokes

equation, which would make this a very poor candidate for an LES model. How-

ever, since rigid rotators possess no internal degrees of freedom, it seems the energy

spectrum alone is not necessarily an appropriate measure of DOF. On the other

hand the energy spectrum does suggest there would be a pile up of energy at the

high wavenumbers, hardly a desirable feature for a subgrid model to have. Gra-

ham et al. [37] suggest this should not be a problem provided that the build-up

does not contaminate the large energy containing motions that are typically the

dominant contribution to the first and second order statistics. However, a similar

conclusion could be reached for dissipative models, in that if they do have excessive

dissipation, as long as the quantities of interest are not affected there is no problem.

On the other hand we recall the earlier results of Mohseni et al. [92] and Chen

et al. [10] that found the energy spectrum for Eα(k) to be steeper than that of the

Navier-Stokes equations for wavenumbers greater than 1/α, in contradiction to the

k1 spectrum found at higher resolutions. Note that because these earlier simula-

tions were at lower Reynolds numbers and had inertial ranges spanning only about

a decade of wavenumbers the model would mostly affect the dissipation scales and

you would not see the change in slope because the energy transfer is dominated by
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viscous dissipation [37]. For example, in the DNS of Chen et al. [10] the transfer

spectrum is attenuated only in the dissipation range of wavenumbers. One picture

emerging from these studies is that it may be necessary for α to be close to the

end of the inertial subrange. This makes the model potentially less attractive com-

putationally, and implies it may not be useful for high Reynolds number turbulence.

While box turbulence studies are an important part of model investigation and

validation, real-world turbulence is rarely isotropic or even homogeneous. Many

models have been found to work well in the idealized box turbulence case, but

have been later found to have poor performance in more complex flows. A ma-

jor objective of this thesis was to investigate the NS-α model in scenarios of more

practical relevance. The first studies in this direction were by those by Nadiga and

Margolin [98] and Holm and Nadiga [51] where they looked at using the model

as a non-dissipative parameterization of mixing in a gyre, and Geurts and Holm

[32] where they studied a transitional mixing layer. In both cases the NS-α model

performed better than the traditional dissipative closures. In particular, the NS-α

model captured the mixing layer transition better than even the dynamic model at

a comparable cost, a very promising result. More recently the model has been used

as a parameterization in simulations of mesoscale eddies with considerable success

[105, 44, 45].

In numerical simulations it is necessary to choose a physical value or relationship to

determine α2. For isotropic turbulence α can be chosen to be a specific fraction of

the mesh size, corresponding to a length scale in the inertial subrange. In the more

general case, the length scales of the flow are not known as precisely. Since α2 can

be thought of as a smoothing scale, or filter width, it is logical to start by relating

α2 to the mesh spacing. This brings up the question of what is the required scale

separation between α and the mesh size? This question was addressed by Geurts

and Holm [32] in their mixing layer study. In these simulations, the levels of tur-

bulent kinetic energy in the later stages of transition were too high when the NS-α

model was used. By keeping α2 constant and subsequently refining the mesh they

were able to lower the fluctuation levels until good agreement with the DNS data

was found. In this way the overprediction was attributed to insufficient subgrid

resolution (where the subgrid resolution refers to number of grid points per filter

width, and indicates the scale separation between the cut-off wavenumber of the

model, and that of the computational mesh). Similar problems were seen in the

study of forced and decaying isotropic turbulence by Mohseni et al. [92]. For the
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case where 1/α was close to the energy containing range there was a significant

build up of large scale energy. This was alleviated by increasing the grid resolu-

tion. In the study of Geurts and Holm, the recommended subgrid resolution was

α ∼ h for the NS-α model, determined through trial and error. This resolution

can be understood more readily in light of what we have discussed above. While

the NS-α model is expected to attenuate triad interactions associated with the for-

ward energy transfer, it would not do so abruptly at a wavenumber corresponding

to kα = 1/α. It can be expected that a scale separation between the grid scale

cut-off and α would be required to allow for this attenuation. If we consider that

we still need to resolve the scales that eddies of size 1/α transfer their energy to,

this means3 kmax = 2/α. Since the maximum wavenumber is also related to the

grid spacing as kmax = π/h this gives, α/h ∼ 2/π ∼ 1.

While the mixing layer study addressed the important question of free transition,

successful application of the model to a wall-bounded flow with no-slip boundary

conditions has not yet been realized. An excellent study in this direction, and

indeed the study that first attempted to use the NS-α equations as a model for tur-

bulence, was the analytical study of pipe and channel flow by Chen et al. [7, 8, 9].

Using the ansatz that the smoothed velocity in the NS-α can be interpreted as a

Reynolds average, they simplified the NS-α equations to yield the streamwise mo-

mentum balance for a channel flow, as is customary in turbulent flow studies of this

geometry. The mean velocity profile from this simplified momentum equation was

in good agreement with experimental and DNS data. The analysis also yielded an

expression for the shear stress as a function of Reynolds number that exhibited the

correct trends when compared with the data. Numerical simulations of the NS-α

equations did not follow soon after the analytical study. The first attempt came

seven years later in an a priori 4 study by Zhao and Mohseni [153] where they

developed a dynamic version of the subgrid model used previously for box turbu-

lence [92]. This model is based on the isotropic, constant α equations. Clearly,

this is inappropriate for a wall-bounded flow, and it was expected that using the

dynamic procedure to determine α would correct this deficiency. In the a priori

results the dynamically determined α was found to decrease linearly from the wall

in the viscous sublayer and lower buffer layer, after which it became constant. The

3Here we have used a factor of two again based on the evidence the eddies transfer their energy
most effectively to scales half their size.

4An a priori study refers to one where the subgrid model terms are computed but not added
to the momentum equations as source terms. Thus the velocity field evolves without the effect of
the model, and the subgrid terms and model performance are assessed. In contrast an a postereori
study is one where the model terms added to the momentum equations.
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a postereori results were less promising [152] showing little improvement over the

dynamic Smagorinsky model. Because the base model, NS-α, is more expensive

than the Smagorinsky model, it is difficult to justify using the NS-α model with

a dynamic procedure unless is shows remarkably improved results. However, Zhao

and Mohseni did not show or comment on the model performance using the default

model without the dynamic procedure, which is surprising. It is possible that they

found (as we did) that it is not possible to obtain a converged result when using

the default isotropic model near a solid wall.

Based on their experience we felt it was a good time to investigate the anisotropic,

non-constant α equations as a subgrid model for wall-bounded flows. One of the

principle difficulties in this endeavor was determining what equations to use. There

are at least two versions in the literature [47, 84], the derivation of neither of which

is easily accessible to the engineer or model practitioner. Zhao and Mohseni did not

pursue this path because they felt it was too early. Here we felt that by solving one

of the equations numerically, we could at least generate insight into how it performs

as a turbulence model, and perhaps contribute a different dimension to the problem.

To this end we first sought a more accessible derivation of the Eulerian-averaged

equations from Hamilton’s principle, and this is given in the next chapter.
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Chapter 3

Derivation of the model from

Hamilton’s Principle

3.1 Introduction

The NS-α model is derived by applying Hamilton’s principle to an averaged La-

grangian. While this method of averaging is new in the context of turbulence mod-

eling, there are several examples where it has been used before in fluid mechanics.

In particular, in studying the interaction between a slowly-varying mean flow, and

a rapidly varying wave field [148], for which one practical result has been improved

understanding of energy transfer in the ocean [101]. In a sense, the application of

variational principles to develop a turbulence model which can be used in practical

situations represents an attempt to bridge many of the ideas in mechanics to those

in turbulence theory, and in turn to use these in an applied setting. It remains to

be seen what we can learn about turbulence using such an approach.

We start by giving a bit of background about functionals and Hamilton’s prin-

ciple. This is followed by a discussion of material and spatial representations of

fluid flow. Finally, a derivation of the NS-α equation from an Eulerian perspective

is given. In this method variations are taken with respect to the Eulerian coor-

dinates and averaging is carried out at a fixed spatial location. There are several

reasons for choosing this instead of the Lagrangian (particle-following) method. In

engineering applications of fluid mechanics we are used to working with the Eule-

rian description of a fluid, and it is more intuitive to develop a model from this

perspective. Eulerian-averaging is also more consistent with the manner in which

the data we are comparing against are averaged.
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Since the term ‘Lagrangian’ can have two meanings in this Chapter, one being

the difference between the kinetic and potential energies, and the other ‘particle

following’, we will refer to the particle following representation as the material

description of the fluid. The method is given here for an incompressible flow of

constant density, since this is the form of the NS-α equations that we will be look-

ing at in this thesis. For extensions to stratified and rotating fluids see Holm [47],

and for compressible flow see Bhat [3].

3.2 Hamilton’s principle and Newton’s Law

Hamilton’s principle is an example of a variational principle, which is a principle

that seeks to find the stationary point (for example a minimum or maximum) of

a given functional. There are only a few things that we will need to know about

functionals here, so we will discuss them briefly first. A good discussion of these

preliminaries can be found in the text by Gelfand and Fomin [27].

A functional, often called a ‘function of functions’, can be thought of as an opera-

tion that maps a function (or a set of functions) onto a scalar value. The general

form is usually given as

J [y] =

∫ b

a

F (x, y, y′)dx, (3.1)

where y′ is dy/dx. Note that the square brackets are used for a functional to signify

the fact that it is acting on a function. As an example of a functional consider

J [y] =

∫ b

a

√
1 + y′2 dx, (3.2)

which is the functional that describes the length of a curve y(x) from a to b, and is a

function of the slope, y′. Minimizing this functional is then equivalent to finding the

function, y(x) (satisfying the imposed boundary conditions), which will yield the

shortest distance between [a, y(a)] and [b, y(b)]. This turns out to be the straight

line, y′ = constant. Evaluating the functional for a given y′ then gives you the

distance between a and b, which is a scalar.

The functional we will be interested in here is called the action, S, and is de-

fined as the integral between beginning and end times of the difference between

the kinetic and potential energies of a system. The difference between the kinetic
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energy (T) and potential energy (Φ) is called the Lagrangian, L. The action can

be written as

S[x] =

∫ t2

t1

(T − Φ)︸ ︷︷ ︸
L

dt. (3.3)

Hamilton’s principle can be thought of as a special variational principle in that

it leads to Newton’s second law. Because the functional, S, is called the action

Hamilton’s principle is often called the ‘principle of stationary action’. In a finite-

dimensional system we can think of our system as being composed of a number of

particles, and consider the state of the system to be specified when the position

and velocity of these particles is known. It is then assumed that the initial and

final configurations of the system are specified, which means that the variations are

zero at t1 and t2. The question then is, for all possible trajectories from an initial

configuration, x(t1), ẋ(t1), to a final configuration, x(t2), ẋ(t2), which is the one for

which S is stationary? To see that this question leads us to Newton’s Law consider

the following action for a general N-particle system,

S =

∫ t2

t1

N∑
n=1

(
mn

1

2

∂xn

∂t
· ∂xn

∂t
− Φ(xn)

)
dt. (3.4)

To find the stationary point of the action we need to consider the difference between

the action on a varied trajectory S[x + δx], and that on a true trajectory S[x].

This difference is called the increment, ∆S. For our action in (3.4) the increment

is

∆S =

∫ t2

t1

N∑
n=1

(
mn

∂xn

∂t

∂(δxn)

∂t
− ∂Φ

∂xn

δxn + O(δxn)2

)
dt. (3.5)

Integrating the first term by parts and applying the condition δxn(t1) = δxn(t2) = 0

∆S =

∫ t2

t1

N∑
n=1

[(
−mn

∂2xn

∂t2
− ∂Φ

∂xn

)
δxn + O(δxn)2

]
dt (3.6)

The condition that the functional is stationary corresponds to vanishing of the first

variation, defined as the first order terms in the increment. Similar to a regular

derivative, this can be done by taking the limit, in this case as the true and varied

trajectories approach each other. We do this by denoting the difference between

the two as the area ε2, see Figure 3.1. We then consider the limit 1
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Figure 3.1: Sketch of the trajectory variation.

δS

δx
≡= lim

ε2→0

S(x + δx) − S(x)

ε2
(3.7)

= lim
ε2→0

∫ t2

t1

1

ε2

N∑
n=1

(−mn
∂2xn

∂t2
− ∂Φ

∂xn

)
ε︸︷︷︸

δxn

+ O(ε2)︸ ︷︷ ︸
(δx)2

 ε︸︷︷︸
dt

(3.8)

=

[
N∑

n=1

(
−mn

∂2xn

∂t2
− ∂Φ

∂xn

)]
t=to

(3.9)

Since the time t = to is arbitrary this must be true for all times t ∈ (t1, t2) and

when the first variation is zero we are left with Newton’s Law

N∑
n=1

(
−mn

∂2xn

∂t2
− ∂Φ

∂xn

)
= 0 (3.10)

3.3 Moving from material to spatial representa-

tions

In the previous section we considered the action principle for an N−particle system.

This is different from the approach we will use to develop the NS-α equations in that

i) it is a discrete representation of the system and ii) it is given in terms of material

coordinates, which are particle positions and velocities. The transformation from

discrete to continuous can be made by replacing the sum over discrete particles to

an integral over particle labels (where the label can be, for example, the position

1For a more thorough discussion see Gelfand pg. 27 [27].
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of the particle at an initial time)

S[x, ẋ] =

∫ t2

t1

∫
V (a)

L(x, ẋ)d3a dt, (3.11)

while the transformation from the material to spatial frame is done by reformulating

the Lagrangian in terms of Eulerian coordinates. In the general case the Lagrangian

can be written as a function of the velocity, density and entropy (c.f. [5, 122]),

S[u, ρ, s] =

∫ t2

t1

∫
V (x)

L(u, ρ, s)d3x dt. (3.12)

In the material representation (3.11) variations are taken with respect to the parti-

cle position. This is a very natural way to apply Hamilton’s principle, since it is a

method which seeks to find the trajectory for which the action is stationary. This

trajectory is usually described in terms of generalized coordinates, which do not

necessarily have to coincide with physical coordinates. However, for the system de-

scribed here, this trajectory is in fact a physical displacement trajectory, and is the

familiar pathline we learn about in undergraduate fluid mechanics. So we can look

at this as having fixed endpoints, and considering all possible pathlines between

these endpoints. The pathline of interest is the one for which the action is station-

ary. In the previous section we saw this is the one that is governed by Newton’s law.

In the spatial picture (3.12) variations of the Eulerian coordinates (u, ρ, s) are

taken at a fixed point. The first question is then, how are variations of a particle

trajectory reflected in these coordinates? Consider that if we are sitting at a fixed

point watching particles being advected past, we have different particles passing

through our fixed point. We can anticipate that the variation of an Eulerian vari-

able will be composed of two parts, one will be the associated with the variation of

a particle trajectory (as seen from a fixed position) while the second will be due to

the fact that different labels will occupy that position.

To make this clear we need to define a function that connects the field position

x to a label a. Such a function is given by the trajectory, which we will denote

by η. More formally, let η be the function that maps particles with labels a to

the field points they occupy at time t. For our purposes here we will assume this

map is one-to-one, invertible and sufficiently smooth that we may differentiate it
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as many times as necessary. The particle position x is then

x = η(a, t). (3.13)

Similarly, let η−1 be the map that tells you the label a of the particle occupying

the field point x at time t,

a = η−1(x, t), (3.14)

η−1 is often called the ‘back-to-labels’ map in the literature. As an example consider

the mapping 2

x = η(a, t) = a(1 + 2t)1/2. (3.15)

From this mapping we know that a particle with label (2, 0, 0) will be at (2
√

5, 0, 0)

at time t = 2. In general, if we know the labels, then at a given time we would

also know the particle positions. The inverse map for our example is given by

a = η−1(x, t),

a(x, t) =
x

(1 + 2t)1/2
. (3.16)

From the inverse map we know the particle at x = (2
√

5, 0, 0) at time t = 2 has

label a = (2, 0, 0).

The Eulerian and Lagrangian velocities at a given point are related through the

identity

u(x, t) =
d

dt
η(a, t). (3.17)

This states that the velocity at a given point is equal to the velocity of the particle

which occupies that point at that time. This can be written as

u = η̇(η−1(x, t), t), (3.18)

or

u = η̇ ◦ η−1 (3.19)

where the ◦ operator denotes a composition of maps (the dot indicates a time

derivative). Consider that if we only know the mapping η, then to find the ve-

locity, u(x, t), at a given field point x, we can evaluate a = η−1(x, t) at our field

point to find the particle occupying that point at time t. Knowing the particle (de-

2A excellent introduction to Eulerian and Lagrangian descriptions of fluid flow is given in the
monograph by James Price, ‘Lagrangian and Eulerian Representations of fluid flow: Kinematics
and the equations of motion’, http : //ocw.mit.edu/ans7870/resources/price/essay3sum.pdf.
The notation used here follows more closely that used in the NS-α literature [3, 50].
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dη/dtη-1

Figure 3.2: Mapping from a field point, to a label, and finally to the velocity field

noted by the label a we can then evaluate η̇(a, t) to get the velocity at that point.

A sketch of this is given in Figure 3.2. The central idea to keep in mind here is

that in the Eulerian framework the dependence of the velocity field on the particle

trajectory comes into play in two places, one in calculating the rate of change of

the trajectory and the other in evaluating the label. This means when we vary the

velocity field we need to take both of these into account.

For our variational principle we will also need to vary the volume element, defined

as [47]

D = det(da/dx) (3.20)

which is the ratio of the volume in the initial configuration to that in the current

configuration. This is related to the Jacobian, J = det(∇η) according to

D(x, t) =
1

det(∇η)
. (3.21)

To take variations we will also write the LHS in terms of the trajectory η

D ◦ η =
1

det(∇η)
. (3.22)

From these expressions for the velocity (3.19) and volume element (3.22) we will

be able to relate variations of the Eulerian coordinates to the particle trajectory.

3.4 Derivation of the NS-α equations

The NS-α equations have been proposed in the literature as a turbulence model,

and are considered to be different from other approaches in that the effects of tur-

bulence are introduced at the level of the variational principle. To incorporate the

effects of turbulence within the framework of Hamilton’s principle consider that in

the material description of a fluid, the state of the fluid is specified by the particle
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Figure 3.3: Different paths to the Euler-Poincaré equations (from Holm 2002 [49]).

displacements x(a, t) and their velocities, ẋ(a, t). It is natural then to incorporate

turbulence by adding a random component to the displacement of a fluid particle,

and, given that this random component is a function of time, to its velocity.

On the other hand, the vast majority of turbulence models are derived by working

with the Eulerian description of a fluid, where the state of the (isentropic) fluid is

described by u(x, t) and ρ(x, t). For example, the well-known RANS equations for

an incompressible flow are developed by decomposing the velocity field into mean

and fluctuating components, substituting into the Navier-Stokes equations, and av-

eraging. This suggests a different way of using the variational principle, which is to

write it in terms of Eulerian coordinates and decompose these coordinates (instead

of the particle position) into a mean and a fluctuation.

The goal in developing a turbulence model is usually to find a closed set of equations

for the average state of the fluid. For both methods described above the equations

that describe this average state are developed by averaging the Lagrangian and

applying Hamilton’s principle. The final momentum equation can thus be reached

by different routes. Qualitatively, this is best illustrated using the diagram in Fig-

ure 3.3. In this Figure 〈·〉 denotes an averaging operation, EL the Euler-Lagrange

equation (equation for which the action is stationary, in the material frame) and

EP the Euler-Poincaré equation (equation for which the action is stationary, in the

spatial frame). Thus moving from left to right means an average is being applied,

back to front is a transformation from the material to spatial frame and top to

bottom indicates an application of Hamilton’s principle (moving from the action

integral to the differential equation). The route we will follow here is indicated by
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the arrows. We start with the Lagrangian in the spatial frame (denoted by the

plain uppercase L), decompose the Eulerian velocity into a mean and a fluctuation

and average the Lagrangian 〈L〉, then apply Hamilton’s principle to obtain the

averaged Euler-Poincaré equations 〈EP 〉. Following Holm, the derivation will be

given for an incompressible, constant density flow. Following the objective of this

thesis, we will try to keep things as simple as possible without resorting to undue

assumptions and leaps of faith. The full details are well beyond the scope of this

thesis and can be found in Holm [47] and references therein.

The general form for the Lagrangian in Eulerian coordinates is [5]

S =

∫ t2

t1

∫
V

(
ρ(x, t)

2
ui(x, t)ui(x, t) − E(ρ(x, t), s(x, t)) − φ(x, t)

)
d3x dt (3.23)

where E is the internal energy, s is the entropy and φ is the potential energy. Here

we will consider an incompressible, constant density fluid of uniform entropy with

no sources of potential energy. In the action principle we then remove the internal

and potential energy functions and add an equation constraining the density to be

constant

S =

∫ t2

t1

∫
V

(
ρ(x, t)

2
ui(x, t)ui(x, t) + p (ρo − ρ(x, t))

)
d3x dt. (3.24)

Using conservation of mass we can relate the density ratio to the volume element D

by D = ρ/ρo, where ρo is the reference density. Using this we arrive at the action

S =

∫ t2

t1

∫
V

(
D

2
ui(x, t)ui(x, t) + p (1 − D)

)
d3x dt, (3.25)

where we have divided through by ρo.

To incorporate turbulence the velocity is then expressed as the sum of a mean

component and a random fluctuation, (here ω is a random variable)

ui(x, t; ω) = ui(x, t) + u′
i(x, t; ω), (3.26)

where the averaging operator 〈·〉 and u are defined as [47]

u(x, t) = 〈u(x, t; ω)〉 = lim
T→∞

1

T

∫ T

0

u(x, t; ω) dω. (3.27)
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The manner in which the velocity fluctuation is defined is a significant source of

debate in the α modeling community. Here we will start by reviewing the method

given in Holm [47]. In this method the expression for the velocity fluctuation is

determined by equating Eulerian and Lagrangian velocities at a point x + ξ where

ξ represents a random particle displacement from its mean trajectory,

ui(x + ξ; ω) =
D(xi + ξi(x, t; ω))

Dt
. (3.28)

Note that on the LHS the dependence on the random variable ω is contained in the

velocity field, while on the RHS it is contained in the particle displacement field.

To first order in ξ equation (3.28) can be written

ui(x, t; ω) + ξj(x, t; ω)
∂ui(x, t; ω)

∂xj

=
D(xi + ξi(x, t; ω))

Dt
. (3.29)

Substituting in the velocity from (3.26)

ui(x, t) + ξj(x, t; ω)
∂ui

∂xj

+ u′
i(x, t; ω) + ξj(x, t; ω)

∂u′
i

∂xj

=
Dxi

Dt
+

Dξi(x, t; ω)

Dt
. (3.30)

It is then assumed that the random displacement ξ is small and that the velocity

fluctuation is of the same order of magnitude as this displacement so that we have

ui(x)︸ ︷︷ ︸
O(1)

+ ξj
∂ui

∂xj︸ ︷︷ ︸
O(ξ)

+ u′
i(x)︸ ︷︷ ︸
O(ξ)

+ ξj
∂u′

i

∂xj︸ ︷︷ ︸
O(ξ2)

=
Dxi

Dt︸︷︷︸
O(1)

+
Dξi

Dt︸︷︷︸
O(ξ)

. (3.31)

Equating terms of O(ξ) gives:

ξj(x, t; ω)
∂ui

∂xj

+ u′
i(x, t; ω) =

Dξi(x, t; ω)

Dt
(3.32)

Now, recall that the RHS of this equation is the velocity due to changes in the

particle position (material) while the LHS is the velocity at a fixed point (Eulerian).

For the Eulerian-averaged equations Holm [47] then ascribes all of the turbulent

fluctuations to those of the Eulerian velocity, which means the RHS of (3.32) is

zero, leading to the two expressions

u′
i = −ξj

∂ui

∂xj

, (3.33a)

Dξi

Dt
= 0. (3.33b)
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The first equation is the expression for the velocity fluctuation, which we will use in

the kinetic energy term of the action principle. The second equation is interpreted

in the literature as Taylor’s hypothesis applied to the displacement field. From this

equation we can obtain
D〈ξkξm〉

Dt
= 0, (3.34)

which states that each component of the particle displacement covariance advects

like a scalar. A different equation for the displacement covariance is obtained when

you apply the averaging along flow trajectories instead of at a fixed position. In

this case, Holm’s Lagrangian-averaged equations result in a displacement covariance

that is Lie-advected
Dξ

Dt
− ξ · ∇u = 0 (3.35)

which follows from (3.32) when you set u′ = 0, or when you ascribe all of the

fluctuation to the material coordinates. The same expression is obtained in Bhat

[3] although in this case they explicitly choose the displacement covariance to be

Lie-advected because it can be shown that this means the displacement field will

remain divergence-free as it is advected along a trajectory.

The expression for the velocity fluctuation (3.33b) can be easily interpreted in

the engineering sense if we think of ξ as a mixing length. For example, the velocity

at a point x + ξ can be written (to first order)

ui(x + ξ) = ui(x) + ξj
∂ui

∂xj

. (3.36)

Defining the velocity fluctuation as the difference between our smoothed velocity

at two points, ũ(x+ ξ) and ũ(x) and choosing the sign such that if a parcel of low

speed fluid at x is brought into a region of high speed fluid it at x + ξ will be a

negative fluctuation gives

u′
i = −ξj

∂ui

∂xj

. (3.37)

At the risk of belaboring this point, an alternative interpretation of this picture

can be found by looking at ξ as the error between true and modeled trajectories.

Given that
Dx

Dt
= u (3.38)
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a simple first order discretization of the true trajectory xt and the modeled trajec-

tory xm would be

xn
t = xn−1

t + un−1
t

(
xn−1

t

)
∆t,

xn
m = xn−1

m + un−1
m

(
xn−1

m

)
∆t,

(3.39)

where the superscript n indicated the time level. Defining the error as the difference

between the true and modeled trajectory we find [6]

εn = εn−1 +
(
un−1

t (xn−1
t ) − un−1

m (xn−1
m )

)
∆t. (3.40)

We can relate the true velocity to that at the modeled particle location using the

definition of the error

un−1
t (xn−1

t ) = un−1
t (xn−1

m + εn−1)

∼ un−1
t (xn−1

m ) + εn−1 · ∇un−1
t

(3.41)

then split the true velocity into a large and small scale component, and assume the

large component is equal to the modeled field to obtain

εn = εn−1 +
(
un−1

s (xn−1
m ) + εn−1 · ∇un−1

l

)
∆t (3.42)

which is a discrete form of the equation for the fluctuation equation (3.32)

Dξ

Dt
= u′ + ξ · ∇.ũ (3.43)

Looking at things from this perspective does not give us any new tools, but is an

interpretation some may find more concrete. If we look at ξ as a background error

field, when we set Dξ/Dt = 0 this means the error is frozen along a particle tra-

jectory. When we neglect the mean of ξ, ie. 〈ξ〉 = 0 we are assuming this error has

zero mean (there is no bias).

Substituting the velocity fluctuation into the Lagrangian in (3.25) and using 〈ξ〉 = 0

yields the averaged Lagrangian,

〈L〉 =

∫
V

(
D

2

(
uiui + 〈ξkξl〉 ∂ui

∂xk

∂ui

∂xl

)
+ p(1 − D)

)
d3x. (3.44)

Here we have followed the notation used in Holm [47] where the averaged velocity is

u, but where we keep the brackets for the averaged displacement covariance 〈ξkξl〉.

42



The action principle is

S =

∫ t2

t1

〈L〉 dt. (3.45)

To apply Hamilton’s principle, start by considering variations with respect to ui,

D and 〈ξkξl〉. The first variation of the action is

δS =

∫ t2

t1

∫
V

(
∂〈l〉
∂ui

δui +
∂〈l〉
∂D

δD +
∂〈l〉

∂〈ξkξl〉δ〈ξkξl〉
)

d3x dt, (3.46)

where (l) is the Lagrangian density (Lagrangian/unit volume). The partial

derivatives with respect to the volume element and particle displacement are

∂〈l〉
∂D

=
uiui

2
+

〈ξkξl〉
2

∂ui

∂xk

∂ui

∂xl

− p, (3.47)

∂〈l〉
∂〈ξkξl〉 =

D

2

∂ui

∂xk

∂ui

∂xl

. (3.48)

For the velocity∫
V

∂〈l〉
∂ui

δui dV =

∫
V

Duiδ ui + D
〈ξkξl〉

2

(
∂

∂xk

(δui)
∂ui

∂xl

+
∂ui

∂xk

∂

∂xl

(δui)

)
d3x

(3.49)

=

∫
V

Duiδui + D〈ξkξl〉
(

∂ui

∂xl

∂

∂xk

(δui)

)
d3x. (3.50)

Integrating by parts∫
V

∂〈l〉
∂ui

δui d
3x =

∫
V

Duiδui + D〈ξkξl〉
(

∂ui

∂xl

∂

∂xk

(δui)

)
d3x, (3.51)

=

∫
A

D〈ξkξl〉∂ui

∂xl

δui dAk +

∫
V

(
Dui − ∂

∂xk

(
D〈ξkξl〉∂ui

∂xl

))
δui d

3x.

(3.52)

If we apply the boundary condition that the normal component of 〈ξkξl〉 is zero,

the surface integral in (3.52) is zero and we have∫
V

∂〈l〉
∂ui

δui d
3x =

∫
V

Dui − ∂

∂xk

(
D〈ξkξl〉∂ui

∂xl

)
δui d

3x. (3.53)

The reason for showing this is that later we will use the boundary condition

〈ξkξl〉nk = 0 when we solve this equation numerically.
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In our varied action (3.46) we have variations of the Eulerian coordinates δui, δD

and δ〈ξkξl〉. To take the limit as the varied trajectory approaches the true one

we need to relate the variations, δui, δD and δ〈ξkξl〉 to variations in the particle

trajectory. The particle trajectory variation is defined as [3]

δη :=
d

dε

∣∣∣∣
ε=0

(η + ε δη)︸ ︷︷ ︸
ηε

(3.54)

From (3.19) the varied velocity is

uε = η̇ε ◦ (ηε)−1. (3.55)

Denoting the velocity variation as [3]

δu :=
d

dε

∣∣∣∣
ε=0

uε (3.56)

and carrying out the chain rule (see Appendix A) gives the following expression for

the velocity variation

δu =
∂w

∂t
+ u · ∇w − w · ∇u, (3.57)

where w is the trajectory variation expressed at a field point, w := δη ◦ η−1. The

corresponding velocity variation for the averaged velocity is

δu =
∂w

∂t
+ u · ∇w − w · ∇u. (3.58)

The first two terms in (3.58) are the substantial derivative of w. In Appendix A it

is shown that the substantial derivative can be expressed as δη̇ ◦η−1, and since this

is evaluated for η−1 (the unvaried inverse trajectory) this is the fixed label part.

The third term is the change due to the label variation. This is not obvious from

looking at the term itself, since the label dependence is hidden, as it should be,

but can be seen from the calculations in Appendix A. In the Appendix A it is also

shown that the variations of the volume element and displacement covariance are

δD = −∇ · (D w), (3.59)

and

δ〈ξkξl〉 = −w · ∇〈ξkξl〉. (3.60)

44



Substituting these variations (3.58),(3.59),(3.60) into (3.46)

δS =

(∫ t2

t1

∫
V

∂〈l〉
∂ui

(
∂wi

∂t
+ uj

∂wi

∂xj

− wj
∂ui

∂xj

)
− ∂

∂xi

(Dwi)
∂〈l〉
∂D

− ∂〈l〉
∂〈ξkξl〉

∂〈ξkξl〉
∂xi

wi

)
d3x dt.

(3.61)

Integrating by parts and changing sign

δS =

∫ t2

t1

∫
V

[(
∂

∂t
+ uj

∂

∂xj

)
∂〈l〉
∂ui

+
∂〈l〉
∂uj

∂uj

∂xi

− D
∂

∂xi

∂〈l〉
∂D

+
∂〈l〉

∂〈ξkξl〉
∂〈ξkξl〉

∂xi

]
wid

3x dt

−
∫

V

∂〈l〉
∂ui

wi dV

∣∣∣∣t2
t1︸ ︷︷ ︸

I

−
∫ t2

t1

∫
A

∂〈l〉
∂ui

ujwi dAj︸ ︷︷ ︸
II

+

∫ t2

t1

∫
A

∂〈l〉
∂D

wi dAi︸ ︷︷ ︸
III

(3.62)

The last three terms are zero for the following reasons:

(I) variations are zero at beginning and end times (same as for Newton’s law),

(II) velocity is either periodic or has zero normal component for a solid surface,

(III) trajectory variation (w) is tangent to the bounding surface [96].

Setting the first variation to zero and imposing the constraint D = 1 yields the

Euler-Poincaré equation

0 =

(
∂

∂t
+ uj

∂

∂xj

)
δ〈L〉
δui

+
δ〈L〉
δuj

∂uj

∂xi

− D
∂

∂xi

δ〈L〉
δD

+
δ〈L〉

δ〈ξkξl〉
∂〈ξkξl〉

∂xi

. (3.63)

The Euler-Poincaré equation (3.63) can be written in the more familiar form (to

see this substitute the partial derivatives (3.53), (3.47), (3.48) into (3.61) and take

the limit as d3x,wi, and dt go to zero)

∂vi

∂t
+ uj

∂vi

∂xj

+ vj
∂uj

∂xi

= −∂pα

∂xi

− 1

2

∂〈ξkξl〉
∂xi

∂um

∂xk

∂um

∂xl

(3.64)

where the following variables have been defined (using the constraint D = 1)

vi =
δ〈L〉
δui

= ui − ∂

∂xk

(
〈ξkξl〉∂ui

∂xl

)
(3.65)

pα = p − 1

2
umum − 〈ξkξl〉 ∂ui

∂xk

∂ui

∂xl

. (3.66)

If we impose isotropy 〈ξkξl〉 = α2δkl and assume α2 is constant, we arrive at the
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inviscid form of the NS-α equations found in the literature [51, 32]

∂vi

∂t
+ uj

∂vi

∂xj

+ vj
∂uj

∂xi

= −∂pα

∂xi

, (3.67)

with

vi = ui − α2 ∂2ui

∂x2
k

. (3.68)

There are a few things to note here. The first is that the averaged velocity u be-

comes the smoothed velocity when we consider that v and u are related through a

Helmholtz operator. This is what is meant in the literature by ‘temporal averaging

in the variational principle implies a spatial smoothing in the momentum equation’

[47], although one could anticipate this from the expression for the velocity fluc-

tuation. Another aspect to note is that if we had not considered the functional

dependence on 〈ξkξl〉 we would not have obtained the ∂〈ξiξl〉/∂xi term in the final

momentum equation (3.64). This term is necessary to conserve momentum, which

you can see either by considering Noether’s theorem for the action principle, or

by removing this term and trying to write the momentum equation in conservative

form. Some studies of the NS-α equations have not included this term in their anal-

yses yielding incorrect results, as pointed out in the literature [112, 52]. Finally, by

following through with this method we are able to understand how the boundary

conditions for the NS-α equations arise.

The reader may have noticed that we have at times applied incompressibility to the

averaged (or smoothed) velocity ∇·u = 0. This does not come from the variational

principle itself but from the equation for the volume element [47]

∂D

∂t
+ ∇ · (Du) = 0. (3.69)

Imposing the constraint D = 1 then gives ∇·u = 0, or ∇· ũ = 0 when we recognize

u is the smoothed velocity according to the Helmholtz operation.

Note that other methods can also be used to derive the equations from Hamil-

ton’s principle. For alternative examples on the use of variational principles in

fluid mechanics see Salmon [122] and Finlayson [24]. When using their methods

the advection equation (3.34) needs to be added as a constraint equation to ob-

tain the last term on the RHS of Equation (3.64) that contains the gradient of the

particle displacement covariance.
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Chapter 4

The Subgrid Model

4.1 Model Formulation

For the subgrid model the anisotropic Eulerian-averaged equations from Holm [47]

(equation 280) are used as a starting point. These equations were derived in Chapter

3 (see equation (3.64)) and are written as

∂ũi

∂xi

= 0, (4.1)

∂ui

∂t
+ ũj

∂ui

∂xj

+ um
∂ũm

∂xi

= −∂pα

∂xi

− 1

2

∂〈ξkξl〉
∂xi

(
∂ũm

∂xk

∂ũm

∂xl

)
, (4.2)

with the modified pressure,

pα = p − 1

2
(ũmũm) − 1

2
〈ξkξl〉

(
∂ũm

∂xk

∂ũm

∂xl

)
(4.3)

and the following relationship between the smoothed and unsmoothed velocity,

ui =

(
1 − ∂

∂xk

(
〈ξkξl〉 ∂

∂xl

))
ũi. (4.4)

Using the vector identity

um
∂ũm

∂xi

+
∂pα

∂xi

+
1

2

∂〈ξkξl〉
∂xi

(
∂ũm

∂xk

∂ũm

∂xl

)
=

∂p

∂xi

− ∂

∂xl

(
〈ξkξl〉∂ũm

∂xi

∂ũm

∂xk

)
, (4.5)
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the momentum equation can also be written in momentum-conservation form

∂ui

∂t
+ ũj

∂ui

∂xj

= − ∂p

∂xi

+
∂

∂xl

(
〈ξkξl〉∂ũm

∂xi

∂ũm

∂xk

)
. (4.6)

The form of equation used as a starting point to develop a subgrid model depends

on the goal. Here, the objective is to derive a subgrid model for the primitive

variables [ũi, p̃] with the subgrid term written as the divergence of a tensor. The

motivation behind this is so that the subgrid model can be easily implemented in

a finite-volume formulation in a manner similar to most subgrid models. For this

purpose, we will start with the equation in momentum conservation form (4.6).

However, if vorticity was to be used as the dependent variable, it is easier to start

with (4.2) and rewrite it in rotational form before taking the curl to obtain a vor-

ticity equation.

The derivation of the governing equations for the NS-α model is done using Hamil-

ton’s principle and does not incorporate non-conservative forces. This is why the

above equation does not have a viscous term, which means one must be added

after the derivation. Holm [47] suggests the following viscous term with a modified

Laplacian

ν

(
∂

∂xk

(
〈ξkξl〉 ∂

∂xl

))
︸ ︷︷ ︸

∆̃

ui. (4.7)

The reason for chosing this form of viscous term is that the contribution from this

term to the conserved energy, eα =
∫

V
uiũi dV , is always negative [47], and thus

the viscous term always provides a sink of energy. However, this also means the

viscous term is dependent on the model parameter. In particular if 〈ξkξl〉 → 0, as

is required near a no-slip boundary, the viscous forces will also be zero.

In practice, most studies [8, 10, 32] use the standard Laplacian operator acting

on the momentum velocity, ui. This is the approach used here. When we develop

the smoothed momentum equation we will be looking at it from the point of view of

an LES model, following a similar methodology as that used in other applications.

Our equation will have ũi as a dependent variable and will contribute viscous sink

to the resolved flow energy equation of the form −ν∂kũi∂kũi as it is in other LES

studies.

To develop an equation with the smoothed velocity as the dependent variable we
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follow the approach taken in Holm and Nadiga [51] and use the commutator be-

tween the substantial derivative and the smoothing operator, where the substantial

derivative is defined using a smoothed advecting velocity, D/Dt = ∂t + ũj∂j [47].

For our subgrid model we would like to have the substantial derivative acting on

the smoothed velocity. This is done by rewriting the advective terms in (4.6) as

∂ui

∂t
+ ũj

∂ui

∂xj

= [D/Dt,H]ũi + H

(
∂ũi

∂t
+ ũj

∂ũi

∂xj

)
. (4.8)

Here [D/Dt,H] is the commutator between the substantial derivative and the

Helmholtz operator, H and is defined as [D/Dt,H]ũi = D/Dt(H(ũi))−H(D/Dt(ũi)).

Recall that the Helmholtz operator relates the smoothed and unsmoothed velocities

according to

ui =

(
1 − ∂

∂kk

(
〈ξkξl〉 ∂

∂xl

))
︸ ︷︷ ︸
H, Helmholtz operator

ũi. (4.9)

Using the commutator and adding a viscous term, the momentum equation (4.6)

can be written

∂ũi

∂t
+ ũj

∂ũi

∂xj

= H−1

(
∂p

∂xi

+ ν
∂2ui

∂x2
k

+
∂

∂xl

(
〈ξkξl〉∂ũm

∂xi

∂ũm

∂xk

)
− [D,Dt,H]ũi

)
.

(4.10)

Expanding and simplifying the commutator we found it could be expressed as,[
∂

∂t
+ ũj

∂

∂xj

,

(
1 − ∂

∂xk

(
〈ξkξl〉 ∂

∂xl

))]
ũi =

∂

∂xj

(
〈ξkξl〉 ∂ũi

∂xk

∂ũj

∂xl

+ 〈ξjξl〉∂ũk

∂xl

∂ũi

∂xk

)
− ∂

∂xk

((
∂〈ξkξl〉

∂t
+ ũj

∂〈ξkξl〉
∂xj

)
∂ũi

∂xl

)
.

(4.11)

Note that for constant, isotropic fluctuations (〈ξkξl〉 = α2δkl), the first two terms

on the RHS of (4.11) are the Leray model found in the literature [32]. Thus, we

can look at these two terms here as an anisotropic Leray model, although this is

not strictly true since we applied ∂jũj = 0 in deriving the commutator, while the

continutity equation for the Leray model is ∂juj = 0 [32].

For the NS-α model the last term on the RHS of (4.11) can in theory be neglected,

because for the Eulerian-averaged equations each component of the particle dis-
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placement is transported by the mean flow like a scalar (Chapter 3, equation (3.34)),

D〈ξkξl〉
Dt

= 0. (4.12)

In the context of LES modelling, this term represents the explicit change in filter

width. It is customary in the LES community to neglect these types of terms

in preliminary evaluations of a subgrid model, a simplification discussed in detail

in the literature (see [137] and references therein). As is the case with all subgrid

terms, these terms will lead to energy transfer between resolved and subgrid modes,

and neglecting these terms therefore changes the subgrid transfer dynamics. For

the equation above this is clearly seen by considering the isotropic case, where the

last term in (4.11) can be written,

∂

∂xk

((
Dα2

Dt

)
∂ũi

∂xk

)
. (4.13)

The substantial derivative of α2 can be seen to play the role of a variable eddy vis-

cosity. It will dissipate energy when α2 increases along a flow path and backscatter

energy when it decreases. It is interesting that this is exactly the method suggested

in the literature [137] to model the commutation error in LES. The idea being that

when a flow scale is advected into a region where the grid is coarser, it will go from

being resolved to modelled, leading to dissipation, and vice versa when the grid is

refined.

Whether or not these terms can be neglected depends on their magnitude to the

other subgrid terms. If we consider the one-dimensional case and only spatial vari-

ations in α2 this term can be neglected if

ũ
∂α2

∂x
	 α2 ∂ũ

∂x
,

1

α2

∂α2

∂x
	 1

ũ

∂ũ

∂x
,

(4.14)

which means that the filter field must be smoother than the flow field. We found

that while this is not always true for the test cases considered here, including the

Dα2/Dt term does not lead to improved results1. This term tends to be large in

regions where the resolved flow advection terms are also large. We found it does

1This may be because in the present work α2 is a function of the spatially varying grid size.
Including only the advective part of the substantial derivative of α2 means the equations are no
longer Galilean invariant.
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not have as significant of an impact as the third term on the RHS of equation (4.10)

(which comes from the tilting term in the momentum equation) because the latter

tends to be large when the resolved flow advection terms are small, so there is little

to counter it other than the pressure gradient.

With equation (4.12) the momentum equation (4.10) can be written (here we are

assuming the filter commutes with differentiation for the pressure gradient and

viscous term 2),

∂ũi

∂t
+ ũj

∂ũi

∂xj

= − ∂p̃

∂xi

+ ν
∂2ũi

∂x2
k

− H−1

(
∂mij

∂xj

)
(4.15)

with the subgrid stress

mFULL
ij = 〈ξkξl〉 ∂ũi

∂xk

∂ũj

∂xl︸ ︷︷ ︸
Aij

+ 〈ξjξl〉∂ũk

∂xl

∂ũi

∂xk︸ ︷︷ ︸
Bij

−〈ξkξj〉∂ũm

∂xi

∂ũm

∂xk︸ ︷︷ ︸
Cij

.
(4.16)

The Aij term is an anisotropic version of the gradient model, Aij+Bij an anisotropic

Leray model (with ∂jũj = 0 as we noted earlier) and Aij +Bij −Cij the anisotropic

NS-α model. The subgrid stress in (4.16) is composed of three terms, each of which

is a second order tensor. In contrast, the subgrid model used by Geurts and Holm

[32], which was based on the isotropic, constant α2, equations, has three terms,

each of which is a third order tensor. Since the isotropic equations are considered

to be as expensive to solve as the Dynamic Smagorinsky model [32], it is desir-

able at this stage to simplify the expression for the subgrid stress to reduce the

computational effort. We then proceed by retaining only the diagonal components

of 〈ξkξl〉. This gives us a formulation similar to that derived using second order

reconstruction methods [149, 145] where the lack of diagonal terms arises when

the three-dimensional filter is applied as the composition of three one-dimensional

filters, L = l1 ◦ l2 ◦ l3, where lj (j = 1, 2, 3) represents a one dimensional filter in

the xj-direction [120].

Retaining only the diagonal components of 〈ξkξl〉, the subgrid stress (4.16) becomes

mANISO
ij = α2

kδkl
∂ũi

∂xk

∂ũj

∂xl

+ α2
l δjl

∂ũk

∂xl

∂ũi

∂xk

− α2
kδkj

∂ũm

∂xi

∂ũm

∂xk

(4.17)

2While commutation error has been recently discussed in the literature [137] for the advective
terms, other terms in the filtered Navier-Stokes equation are still a subject of future work for the
community.
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where we have used α2
k = 〈ξkξk〉. For the isotropic case the expression for the

subgrid stress reduces to the form given already in the literature [32],

mISO
ij =

(
α2 ∂ũi

∂xk

∂ũj

∂xk

+ α2 ∂ũk

∂xj

∂ũi

∂xk

− α2 ∂ũk

∂xi

∂ũk

∂xj

)
(4.18)

We now have a source term which can be incorporated into a standard primitive-

variable finite volume code. This has been done by starting with the most general

form of the Eulerian-averaged equation, where 〈ξkξl〉 is a function of space and

time and the fully anisotropic form is used. This is a useful exercise because the

assumptions used to obtain the simplified form are clear.

4.2 Resolved flow energy equation

From the momentum equation

∂ũi

∂t
+ ũj

∂ũi

∂xj

= − ∂p̃

∂xi

+ ν
∂2ũi

∂x2
k

− H−1

(
∂mij

∂xj

)
(4.19)

we can obtain an equation for the resolved flow energy ẽ = ũiũi/2. For the moment

let us assume the filter width (here proportional to αk or α) is constant which

means the filtering and differentiation operators commute and we can write

H−1

(
∂mij

∂xj

)
=

∂m̃ij

∂xj

. (4.20)

The equation for the resolved flow energy, ẽ = ũiũi/2, then takes the form

∂ẽ

∂t︸︷︷︸
I

+
∂

∂xj

(ẽũj)︸ ︷︷ ︸
II

= − ∂

∂xi

(ũip̃)︸ ︷︷ ︸
III

+ ν
∂2ẽ

∂x2
k︸ ︷︷ ︸

IV

− ν
∂ũi

∂xk

∂ũi

∂xk︸ ︷︷ ︸
V

− ∂

∂xj

(ũim̃ij)︸ ︷︷ ︸
V I

+ m̃ij
∂ũi

∂xj︸ ︷︷ ︸
V II

(4.21)

The physical meaning of the different terms is [126]

(I) and (II) total (local and convective) change in the resolved flow kinetic energy

(III) redistribution due to pressure/velocity interactions

(IV) redistribution due to viscous effects

(V) energy dissipation due to molecular viscosity

(VI) redistribution due to interactions between the resolved velocity and the sub-

grid stress

(VII) subgrid transfer term (TSGS).
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Assessment of a subgrid model generally focuses on the subgrid transfer term

(TSGS), which also appears with an opposite sign in the equation for the subgrid

energy (c.f. Sagaut [120]). This term is often referred to in the literature as the

subgrid dissipation, but we prefer to call it a transfer term because it can be both

positive and negative. When it is negative we say it is a dissipative term (energy

drain from the resolved to subgrid scales) while when it is positive we say it is

backscattering energy (reverse transfer from subgrid to resolved scales). The em-

phasis on this term in the literature is due to the prevalent view that the primary

role of a subgrid model is to accurately capture the energy transfer from large to

small scales. This was the central design criteria for the early Smagorinsky model

[127, 77], and more recently for the velocity estimation model by Park and Mahesh

[103]. A significant difference between older and newer approaches is that in the

past it was believed to be sufficient to model the net energy transfer from large

to small scales using a dissipative term, while more recently the emphasis is on

properly accommodating both forward transfer and backscatter.

However, the emphasis on the subgrid transfer term alone may at times be mis-

leading. In particular the redistribution term involving the subgrid stress (term VI

in equation 4.21) indicates the subgrid model interacts with and can modify the

distribution of mean flow energy, which will in turn affect the subgrid dissipation

indirectly. In the subgrid model of Park and Mahesh [103] the subgrid dissipation

was constrained to match that of the dynamic Smagorinsky model, but their model

outperformed the dynamic model for a plane channel flow. They found the subgrid

redistribution term was over twice as big as the transfer term in the near wall re-

gion, and their results suggest the term plays an important role, thus affecting the

overall statistics.

When the filter width is not constant we should leave the filter acting on the

divergence term and we cannot split the energy transfer into a redistribution term

and a source/sink term. In this case the energy transfer due to the subgrid model

is

ũiH
−1

(
∂mij

∂xj

)
. (4.22)
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4.3 Physical Interpretation of the subgrid force

When written as a subgrid stress the effect of the mij term is not easily interpreted

physically. This term provides a force to the momentum equation, and we will now

rewrite it such that the form of this forcing function is a clarified. To keep things

simple in this section we will assume 〈ξkξl〉 = α2δkl and that α2 is constant. We will

also make use of the difference between the unsmoothed and smoothed velocity,

uST
i = −α2 ∂2ũi

∂x2
k

. (4.23)

In the LES literature this velocity would be called the subgrid fluctuation. In the

NS-α literature it is referred to as the ‘Stokes velocity’ [47, 10], due to its relation-

ship with the Stokes drift velocity [47], which is the first order difference between

the averaged Lagrangian and Eulerian velocities [69]. For the NS-α model the ve-

locity averaged at a fixed point was ũ, so we can consider this to be the Eulerian

velocity. The velocity associated with the particles being advected (u) is the La-

grangian velocity. The difference between the two ui − ũi is equation (4.23) given

above. For a more detailed discussion on this see Holm [47] Section 4.

Using the Stokes velocity, we found the commutator can be written in more in-

tuitive way

[D/Dt,H] ũi = 2 ∂jAij − uST
j

∂ũi

∂xj

. (4.24)

This means that the first two terms of the subgrid tensor can be written as

∂j(Aij + Bij) = 2 ∂jAij − uST
j

∂ũi

∂xj

. (4.25)

We can now see that the cross derivative term in Bij, which has the form ũj∂j, is

related to the advection of the resolved velocity due to the Stokes drift. If we go

back to the momentum equation (4.6) it can now be written

H

(
∂ũi

∂t
+ ũj

∂ũj

∂xi

)
= −∂pα

∂xi

− 2
∂Aij

∂xj

+ uST
j

∂ũi

∂xj

− uk
∂ũk

∂xi

. (4.26)

Using the identity

uST
j

∂ũi

∂xj

= −uST × ω̃ + uST
k

∂ũk

∂xi

(4.27)

54



the momentum equation can be written

∂ũi

∂t
+ ũj

∂ũj

∂xi

= −∂p̃∗

∂xi

− H−1

(
2
∂Aij

∂xj

+ uST × ω̃

)
(4.28)

where p∗ is a modified pressure. We can now see that the subgrid model is composed

of two forcing terms. The first term, Aij, is well known in the literature where it

goes by many names, such as the Clark model [36], filtered gradient model [144]

and Tensor-Diffusivity term [149]. Here we will refer to it as the gradient model,

because the Clark model and Tensor-Diffusivity model both technically contain an

additional Smagorinsky-like term [145, 149]. It is a generic subgrid closure which

can be derived by expanding the subgrid stress τij in a Taylor series expansion and

retaining terms up to O(∆2), where ∆ is the filter width. When the Helmholtz

operator is approximated by a box filter, α2
k ≈ ∆2

k/24, where ∆k is the width of a

box filter in the k−direction, this term is identical to the model used commonly in

the literature [149]

2Aij = 2α2
k

∂ũi

∂xk

∂ũj

∂xk

=
∆2

k

12

∂ũi

∂xk

∂ũj

∂xk

.

(4.29)

This suggests an alternative (more approximate) way of deriving an equation for the

smoothed velocity, which would be to start with the momentum equation, rewrite it

with the Stokes vortex force on the RHS, apply a filter to the equations, and close

the resulting τij term with an explicitly filtered gradient model. For alternative

forms of the governing equations for the NS-α model see Domaradzki and Holm

[17].

The vortex force is what makes the NS-α model different from other approaches.

To highlight how a vortex forcing term is fundamentally different than, for exam-

ple, a Smagorinsky model, consider a simple two-dimensional mixing layer with

u = tanh(y). The Smagorinsky model will add a diffusion term to the momentum

equation with diffusivity,

νT = (Cs∆)2 |Sij| ∼ (Cs∆)2 sech2y. (4.30)

The diffusivity will be highest at the middle of the mixing layer, and it is not sur-

prising that such a model cannot be used for studies of mixing layer transition,

where it damps out the small amplitude perturbations preventing transition [144].
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On the other hand, due the presence of the mean shear ∂ũ/∂y, the vortex force

would make its most significant contribution to the vertical momentum equation,

with a vertical forcing term

uST ω̃z ∼ α2 ∂2ũ

∂y2
ω̃z. (4.31)

At the very early stages of transition this term would provide equal and opposite

vertical forcing to the mixing layer, and therefore leaves the mixing layer unchanged.

However, as soon as undulations in the layer appear the flow is no longer symmetric

and such a terms would serve to ‘push’ the mixing layer back and forth. Unlike the

Smagorinsky model, the NS-α model was found to correctly capture the growth of

a transitional mixing layer [32].

Kinematically we can see how the vortex force can affect the flow in the process of

mixing layer transition, but is there any link with fully-developed 3D turbulence?

The Stokes velocity defined by equation (4.23) means uST scales as α2|k|2 (where k

is a wavenumber) and can be interpreted as a small scale velocity component. Thus

the vortex force uST × ω̃ represents the nonlinear interaction between a small-scale

velocity and a large scale vorticity. These types of interactions were studied by Kerr

et al. [57] and were found to be responsible for 70 − 90% of the energy transfer

from the large to small scales in isotropic box turbulence, giving some support to

the idea of using such a term as a subgrid model.
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Chapter 5

Numerical Methods

5.1 The STREAM code

The STREAM code is a colocated finite-volume method that has been used exten-

sively in testing Reynolds-stress and k-ε turbulence models [75]. The version of the

code used in this thesis is simpler than the original STREAM code [74] in that it is

for Cartesian geometries and a fluid of constant density. The algorithm is outlined

briefly below.

We start with the continuous form of the momentum equation with a source term

Su

∂ũi

∂t
+

∂

∂xj

(ũiũj) = − ∂p̃

∂xi

+
∂

∂xk

(
ν

∂ũi

∂xk

)
+ Su. (5.1)

In our case the source term is the subgrid force H−1 (∂jmij) (see equation (4.15)).

Integrating the momentum equation over a control volume, using Gauss’s theorem

to express the divergence terms as surface integrals∫
V

∂ũi

∂t
dV +

∫
CS

ũiũj Aj = −
∫

V

∂p̃

∂xi

dV +

∫
CS

(
ν

∂ũi

∂xk

)
Ak +

∫
V

Su dV. (5.2)

We now write this in discrete form, using the x−momentum equation in two di-

mensions as an example. The extension to three dimensions is straightforward. For

the time derivative we use a three-level scheme [23]∫
V

∂ũi

∂t
dV ∼

(
3ũn+1

P − 4ũn
P + ũn−1

P

2∆t

)
VP (5.3)
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Figure 5.1: Variable arrangement for the colocated finite volume method, shown
here in 2D. The nodes are marked by capitals letters, and the faces by lowercase
letters.

where the subscript ‘P’ denotes the node and the superscript ‘n’ denotes the time

level. Nodal variables are denoted by the upper case subscripts P,E,W,N,S while

values at control volume faces are denoted with the lower case subscripts, e,w,n,s.

Note that in the current colocated grid arrangement variables are only defined at

the nodes, thus all face values are obtained by interpolating nodal values. A sketch

of the variable arrangement is given in Figure 5.1 for clarification.

The advection terms in the momentum eqution (5.2) can be written∫
CS

ũiũjAj = ũeṁe − ũwṁw + ũnṁn − ũsṁs (5.4)

where ṁe, ṁw, ṁnṁs are the mass fluxes through the east, west, north and south

faces of the control volume. The method used to calculate the mass fluxes will be

discussed below with the pressure correction scheme, at this time we will leave them

in symbolic form. The face velocities are interpolated from nodal values using the

QUICK scheme (c.f. Ferziger [23]) for the cavity flow and a second order central

difference scheme (CDS) for the channel, unless otherwise noted. As an example of

the implementation consider CDS for a non-uniform mesh,

ũe = ũEλe + ũP (1 − λe) (5.5a)

ũw = ũW λw + ũP (1 − λw) (5.5b)

ũn = ũNλn + ũP (1 − λn) (5.5c)

ũs = ũSλs + ũP (1 − λs) (5.5d)
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Figure 5.2: Notation used for distances between control volume nodes and faces

where λe, λw, λn and λs are the linear interpolation factors. The QUICK scheme

is implemented using a deferred correction approach, full details are given in Lien

[73]. The implementation of both advection schemes along with the time-stepping

method was verified by advecting wavepackets and comparing the numerical group

velocity to that obtained analytically using the method described in Trefethen [135].

The diffusion terms are discretized using central differences (recall that the vis-

cosity is constant)∫
CS

(
ν

∂ũ

∂xk

)
Ak =

[
ν
∂ũ

∂x
Ax

]
e

−
[
ν
∂ũ

∂x
Ax

]
w

+

[
ν
∂ũ

∂y
Ay

]
n

−
[
ν
∂ũ

∂y
Ay

]
s

(5.6a)

= ν

[
(ũE − ũP )

Axe

δxe

− (ũP − ũW )
Axw

δxw

+ (ũN − ũP )
Ayn

δyn

− (ũP − ũS)
Ays

δys

]
. (5.6b)

Here we have introduced the notation δxe to denote the distance between the centers

of the P and E nodes, as shown in Figure 5.2, δxw, δyn and δys are defined in a

similar fashion. Combining (5.3),(5.4),(5.5a)-(5.5d), and (5.6b), we now have the

u−momentum equation in discrete form

Apũ
m+1
p =

∑
nb

Anbũ
m+1
nb − p̃m

e − p̃m
w

δxP

+ Sm
u (5.7)
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where the subscript nb denotes the control volumes neighbouring P. In 2D this is

E,W,N and S. The coefficients in the discrete equation are

AE = −λeṁe + νAxe/δxe (5.8a)

AW = −λwṁw + νAxw/δxw (5.8b)

AN = −λnṁn + νAyn/δyn (5.8c)

AS = −λsṁs + νAys/δys (5.8d)

AP = AE + AW + AN + AS + 3
2

Vp

∆t
(5.8e)

Su =
(
2ũn

p − 1
2
ũn−1

p

) Vp

∆t
− H−1

∑
CS m1jAj, (5.8f)

where the last term in Su is the subgrid model integrated over the control volume

(see section 5.2). In equation (5.7) we have written the velocity field at iteration

level m + 1 to reflect the inner iteration level within the timestep. The ũ momen-

tum equation is solved implicitly at iteration level m + 1 using the pressure field,

mass fluxes and source term from the previous iteration level m. This is followed

by solution of the ṽ and w̃ momentum equations and finally the pressure correction

equation. If the maximum residual from one of the equations exceeds the conver-

gence criteria, we return to the ũ momentum equation and repeat the cycle until

convergence is achieved. The simulation then proceeds to the next time level. The

subgrid force was calculated each iteration level (m) priori to the ũ-momentum

equation. This means the subgrid forces are held constant during the solution of

the ũ,ṽ and w̃ momentum equations.

The ṽ and w̃ momentum equations are discretized in the same manner as the u

equation. We then have three equations for ũ, ṽ, w̃, but not yet a method to de-

termine the unknown pressure field. To link the momentum equations with an

equation for the pressure we use the SIMPLEC method, which we will now outline

briefly.

The discrete momentum equations are solved in turn using a pressure field from the

previous iteration level. The equations are solved without imposing the continu-

ity constraint, thus the resulting momentum fields do not necessarily satisfy mass

conservation. To reflect this we rewrite equation (5.7) in terms of new variables

ũ∗, ṽ∗, w̃∗ and p̃∗ (dropping the iteration level index for simplicity)

Apũ
∗
p =

∑
nb

Anbũ
∗
nb −

p̃∗e − p̃∗w
δxP

+ Su. (5.9)
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The true velocity fields are the sum of this approximate solution with an (unknown)

correction

ũ = ũ∗ + ũ′ (5.10a)

p̃ = p̃∗ + p̃′. (5.10b)

Subtracting (5.9) from (5.7) yields an equation for the corrections

AP ũ′
p =

∑
nb

Anbũ
′
nb −

p̃′e − p̃′w
δxP

. (5.11)

For the SIMPLEC method we approximate the first term on the RHS of (5.11) as∑
nb

Anbũ
′
nb ≈ ũ′

P

∑
nb

Anb. (5.12)

Because the corrections are zero at convergence this simplification does not affect

the final result [138]. The equation relating the velocity correction to the pressure

corrections is then

ũ′
p = − p̃′e − p̃′w

δxP (AP −∑nb Anb)
. (5.13)

Taking the divergence of both sides of (5.13) and requiring the velocity u to satisfy

continuity (which means 0 = D(ũ∗) + D(ũ′) where D is the discrete divergence

operator) yields an equation that can be solved for the pressure corrections

D(ũ∗
P ) = D

(
(p̃′e − p̃′w)

δxP (AP +
∑

nb ũ′
nb)

)
. (5.14)

We recognize the left hand side as the divergence of the nodal velocity, or the mass

flux. To calculate the mass flux we need the face velocities. Because of the colo-

cated variable arrangement used here, a simple interpolation of nodal velocities to

the control volume faces in (5.14) can lead to a decoupling between the velocity

and pressure fields, in which the velocity field cannot sense a pressure difference on

the order of the mesh spacing, leading to grid-scale oscillations. This was discussed

by Rhie and Chow [114] and in this thesis we follow their method in which an addi-

tional pressure smoothing term is included in the calculation of the face velocities,

see [73] for details.

With these face velocities the mass flux is calculated to obtain the LHS of the pres-

sure correction equation (5.14). The pressure correction equation is then solved
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using a preconditioned conjugate gradient solver [23] to obtain the pressure cor-

rection field. From this we calculate the velocity corrections using (5.13) and then

update the guessed velocity and pressure fields using ũ = ũ∗ + ũ′ and p̃ = p̃∗ + p̃′.

Before moving on to the subgrid model a few remarks regarding the advection

schemes should be made. One of the key differences between the LES methodology

and RANS models is that in LES the turbulent flow statistics (eg. rms velocities)

are computed directly from the resolved flow. This means the method is more sen-

sitive to the numerical methods used. For example if first-order upwinding is used

with a Smagorinsky model the contribution of the numerical dissipation associated

with the truncation error could be larger than that from the subgrid stress, and your

results may not reflect the true performance of the model. It is common practice in

LES to use central differencing schemes that contain only dispersive, not dissipa-

tive errors, and (in theory) therefore do not compete directly with the (dissipative)

model. However, this does not remove the problem because dispersion errors can

also contaminate the results. In the context of LES this is usually interpreted in

terms of the modified wavenumber associated with the central difference operator

[31]. Dispersion errors can also lead to higher numerical dissipation indirectly, by

increasing flow gradients [43].

In this thesis we use the QUICK scheme used for the lid driven cavity flow, and

second-order central differences for the channel flow. The QUICK scheme can be

written as the sum of a second-order CDS and a third-order upwinding, hence it

contains dissipative and dispersion errors [147]. The CDS scheme used for the chan-

nel flow contains only dispersion errors. For both the cavity and channel flow the

time-stepping method is a second-order scheme weighted backwards in time, and

contains some numerical dissipation.

In practice, to determine if the discrepancy between the LES results and DNS

or experimental results is due to numerical error or modeling deficiencies a com-

mon strategy is to refine the mesh while keeping the filter width constant [30, 32].

This is referred to as increasing the subgrid resolution, which is the scale separation

between the filter width (∆) and the mesh spacing (h). As ∆/h → ∞, the solution

approaches a state where the numerical errors are negligible and any errors left are

due to the model itself. In this thesis we encountered difficulties when attempting

to increase the filter width for some cases, and were limited in our ability to carry

out a systematic study of this nature. Similar problems with increasing the physical
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size of α2 have been found by others using the NS-α model [105]. It was however,

ensured that the main problems encountered, numerical oscillations for the cavity

flow and high skin friction for the channel, could be reproduced on various meshes

and with at least two different subgrid resolutions.

5.2 Model Implementation

In the finite volume formulation the source term appears on the right-hand side of

the momentum equation (Equation (4.15)) as∫
V

H−1

(
∂mij

∂xj

)
dV (5.15)

where H is the Helmholtz operator and mij is the subgrid stress. If we first calculate

the subgrid stress mij at cell centers and then compute the divergence, this means

the velocity gradients in the mij terms would be computed at cell centers. It was

found that doing this using second-order central differences made the model more

susceptible to numerical oscillations. As an alternative, the method used here is to

write the source term in a manner consistent with the other terms in the momentum

equation

H−1

∫
V

∂

∂xj

(mij) dV = H−1

∫
CS

mijAj. (5.16)

The velocity gradients are now computed at control volume faces, which means the

source term is computed from velocity differences between adjacent nodes. Thus

the procedure is to first compute the subgrid force at all interior nodes

Fi =

∫
CS

mijAj, (5.17)

and then find the filtered force F̃i. This can be done either by solving the Helmholtz

equation

Fi = F̃i − ∂

∂xk

(
α2

k

∂F̃i

∂xk

)
, (5.18)

or by using another method to apply the filter. In this thesis both Helmholtz in-

version and a simple box filter were used. Each will now be discussed in turn.

For the cavity flow Helmholtz inversion was carried out by first discretizing the

equation using central differences, and then solving the discrete system using a
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conjugate gradient solver [23]. For the channel flow an FFT solver was used in the

periodic directions while a direct solver was used in the wall-normal direction (see

Appendix B). For both the direct solver and the conjugate gradient solver values of

the force Fi were not required at the solid boundaries because the boundary value

of Fi is multiplied by the boundary value of the normal component of α2
k, which is

zero according to the specified boundary condition (see Chapter 3). To make this

more clear consider a 1-D discretization of the Helmholtz equation

FP = F̃P − 1

δxP

(
α2

e

∂F̃

∂x

∣∣∣∣∣
e

− α2
w

∂F̃

∂x

∣∣∣∣∣
w

)
. (5.19)

If there is a solid boundary at the east face α2
e = 0 we do not need to specify the

gradient ∂F̃/∂x at the boundary. Note that the Helmholtz filter can be imple-

mented in the same manner for both the anisotropic and isotropic models. For the

isotropic model we used α2 = 0 on the boundary.

While the Helmholtz equation can be solved efficiently using FFTs on a periodic

domain, the conjugate gradient method used in the more general case (here cav-

ity flow) is expensive. For this reason it is preferable to approximate Helmholtz

inversion by using an equivalent operator. This issue has been discussed in the

literature [32, 105]. Because of the similarity between their transfer functions, it is

common to use a box filter to approximate Helmholtz inversion. Recall that when

solving the Helmholtz equation the relationship between the filtered and unfiltered

variables is (for the case of isotropic, constant filter width)

φ =
(
1 − α2∇2

)
φ̃. (5.20)

For Helmholtz inversion the transfer function is

ĜHelm =
1

1 + α2k2
. (5.21)

When (αk)2 < 1 this can be written

ĜHelm = 1 − (αk)2 + (αk)4 − ... (5.22)

For the box filter the relationship between the filtered and unfiltered variables is

φ̃ =

∫ ∞

−∞
φ(ξ)G(x − ξ) dξ, (5.23)
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with the kernel,

Gbox(x − ξ) =

{
1
∆

if |x − ξ| ≤ ∆
2

0 otherwise
(5.24)

The transfer function for the box filter is

Ĝbox =
sin(k∆/2)

k∆/2
, (5.25)

which can be written

Ĝbox = 1 − 1

3!

(
k∆

2

)2

+
1

5!

(
k∆

2

)4

− ... (5.26)

If (αk)2 	 1 and we retain only terms to second order, equating (5.22) with (5.26)

yields α2 ≈ ∆/24, a relationship used in the literature when comparing the NS-α

model to other models [32]. A picture of the two transfer functions is shown in

Figures 5.3, where we have used α = ∆/5 to plot Ĝhelm. We can see that for low

values of ∆k the box filter is a good approximation to Helmholtz inversion, while

at higher αk values the box filter displays oscillatory behaviour. Most of our sim-

ulations used a ∆k value of ≈ 6 (based on kmax = π/h and ∆ = 2h where h is the

grid spacing), and we found very little difference between the two filters. In the

study by Petersen et al. [105] they used ∆k values as high as ≈ 27 and found a

stronger attenuation of small scale activity (expressed in their study as the level

of eddy kinetic energy) with the box filter as compared to Helmholtz inversion.

We can also see from Figure 5.3 that the transfer function for the box filter is not

strictly positive. In the paper by Petersen et al. [105] it was found the box filter

can lead to problems with negative energy and instability. In this thesis we did not

encounter any problems with the explicit filtering operation. At times the subgrid

model was found to lead to a numerical instability through excessive backscatter.

In these cases it was verified that the filter had a stabilizing effect.

The box filter given by equation (5.23) with kernel (5.24) can be evaluated using

either the trapezoidal rule or Simpson’s rule. For a uniform mesh and an integra-

tion interval of 2h the two approximations in one-dimension are:

trapezoidal rule

φ̃P =
1

4
(φW + 2φP + φE) (5.27)
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Figure 5.3: Filter transfer functions; solid line, box filter (5.25); dashed line
Helmholtz inversion (5.21)

Simpson’s rule

φ̃P =
1

6
(φW + 4φP + φE) . (5.28)

If you substitute eikx for φP and eik(x−h) and eik(x+h) for φW and φE respectively

you arrive at the discrete transfer functions:

trapezoidal rule

Ĝtrap =
1 + cos(kh)

2
(5.29)

Simpson’s rule

ĜSimp =
2 + cos(kh)

3
(5.30)

A plot of the two transfer functions is shown in Figure 5.4 over the range of resolv-

able wavenumbers. We can see that using the trapezoidal rule the transfer function

effectively decays to zero at the Nyquist frequency, and will be more effective at

attenuating high wavenumber components, which can be contaminated with nu-

merical errors. For this reason the trapezoidal rule is often chosen in practice [99].

For the box filter three-dimensional filters were constructed as the composition of

three one-dimensional filters, L = l1 ◦ l2 ◦ l3, where lj (j = 1, 2, 3) represents a

one dimensional filter in the xj-direction [121]. The cavity flow used nonuniform

meshes in the x and y directions while the channel flow used a nonuniform mesh

in the y direction only. In these directions the one-dimensonal filter followed the

trapezoidal rule for a nonuniform mesh (recall δxe and δxw are defined in Figure
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Figure 5.4: Discrete transfer functions for the box filter; solid line, trapezoidal rule
Eqn. (5.29); dashed line, Simpson’s rule Eqn. (5.30).

5.2)

φ̃P =
φEδxe + φP (δxe + δxw) + φW δxw

2(δxe + δxw)
. (5.31)

The box filter was used only for the anisotropic model. For the isotropic model

the filter width should be the same size in each direction. To implement this on a

stretched mesh you would have to adjust your stencil in each direction to be the

correct physical size. This could lead to a stencil that does not even contain one

grid cell if the mesh is highly stretched in a given direction. For the isotropic model

only Helmholtz inversion was used. While the isotropic model was not generally

stable, it should be noted that the performance was better when the correct filter

was used. For example, it was found you cannot use an anisotropic filter with an

isotropic model and vice versa.

Comparing transfer functions is one way to look at the differences between the box

filter and Helmholtz inversion. Another way that may be more meaningful here is

to compare the filter width computed from the actual filter coefficients used in the

numerical simulation. For example, for the trapezoidal rule the filter coefficients

are (1/4, 1/2, 1/4) while for Simpson’s rule they are (1/6, 2/3, 1/6). For Helmholtz

inversion the filter coefficients can be determined from the discrete Green’s func-

tion [105]. This is the solution of the Helmholtz equation given u = δ(x − xo)

(impulse response). Once the filter coefficients, Wj, are known the filter width can
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Figure 5.5: Filter coefficients returned by the conjugate gradient solver; blue +,
α2 = h2/6; red x, α2 = 2h2/3; green *, α2 = h2.

be computed from [80]

∆

h
=

√√√√12

(N−1)/2∑
j=−(N−1)/2

j2Wj. (5.32)

Lund used this definition to show that apparent discrepancies in the type of filter

used in the dynamic Smagorinsky model could in fact be accounted for by properly

defining the filter width.

In the discussion of the results in this thesis we consider the filter width for the box

filter to be the interval over which the trapezoidal rule is evaluated. For Helmholtz

inversion the relationship from the transfer functions α2 = ∆2/24 is used to re-

late a chosen value of α2 or α2
k to an effective filter width. For example, if we set

α2
x = h2

x we interpret this as a filter width ∆x =
√

24hx ≈ 4.9hx. One question

is then, if we calculate the filter width from the coefficients, does this relationship

still hold? For the trapezoidal rule the coefficients evaluated over 2h and 4h are

(1/4, 1/2, 1/4) and (1/8, 1/4, 1/4, 1/4, 1/8) respectively. From equation (5.32) the

filter widths for these two cases are 2.5h and 4.2h, slightly larger than expected.

For Helmholtz inversion a plot of the filter coefficients for the conjugate gradient

solver are shown in Figure 5.5 for three different values of α2 and the filter widths

from equation (5.32) are given in Table 5.2. We can see that the discrete filter

widths are very close to the ones from the estimate α2 = ∆2/24. In this thesis we

primarily used filters of widths ∆ ≈ 2h and found little difference between the box

filter and Helmholtz inversion for both the cavity flow and channel flow. Therefore,

while a more detailed analysis of filters could be done, we will leave this to a later
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α2 ∆/h based on α2 = ∆2/24 ∆/h based on Eq. (5.32)
h2/6 2.0 2.0
2h2/3 4.0 4.0
h2 4.9 4.6

Table 5.1: Filter widths for Helmholtz inversion.

study employing larger filter widths.
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Chapter 6

Lid-driven cavity flow

6.1 Physical problem

The application of the NS-α model to a practical problem is studied here using a lid-

driven cavity flow at Reynolds numbers of 3,200 and 10,000, where the Reynolds

number is based on the lid velocity and cavity length. The chosen cavity has a

spanwise aspect ratio (SAR) of 1 (it is a cube) and has been studied before both

experimentally [111, 64, 63, 62] and numerically [151, 4, 71]. The three-dimensional

cavity flow contains a variety of flow structures and is a challenging test case for

a subgrid model due to the lack of homogeneous directions, the presence of both

laminar and turbulent flow regions, and the anisotropic nature of the flow.

At the lower Reynolds number of 3,200 the flow is transitional and the primary

features are the primary eddy (PE), upstream and downstream secondary eddies

(referred to as USE and DSE respectively), corner vortices and the Taylor-Goertler-

like (TGL) vortices. A schematic of the test case is shown in Figure 6.1. While the

primary and secondary eddies and corner vortices are ubiquitous features of the

three-dimensional lid-driven cavity flow, the TGL vortices are specific to the flow

around this Reynolds number. These vortices are known to form around Re = 1, 000

due to the instability of the concave shear layer which is present at the interface be-

tween the primary eddy and downstream secondary eddy [125]. In the simulations

the vortices were found to ‘meander to and fro’ along the bottom of the cavity,

similar to what is described in the experimental studies [111]. A picture of the

streamwise vorticity contours is shown in Figure 6.2 showing a single pair of TGL

vortices for the cubical cavity (SAR = 1) and 8 pairs for a wider cavity of SAR = 3

(although the focus is on the SAR = 1 case, a few simulations were done on wider
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(b) Sketch of flow structures in the lid-driven cavity flow. The TGL vortices
are present for the Re = 3, 200 case only.

Figure 6.1: The lid-driven cavity flow
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(a) SAR = 1

(b) SAR = 3

Figure 6.2: TGL vortices shown using vorticity contours on the x = .75 plane. Red
indicates positive vorticity while blue is negative.

cavities). It is important to note that at a Reynolds number of 3, 200 the observed

fluctuations are largely coming from the unsteadiness of the vortex structures in the

cavity, and are not turbulent in nature. The inherent unsteadiness of the cavity at

this Reynolds number is closely related to the TGL vortices. When the movement

of these vortices is inhibited the rms fluctuations in the cavity are negligible. This

was shown experimentally [111] when a cavity with a narrower span (SAR = 0.5)

was used. In this case the TGL vortices were locked in position at the cavity cen-

ter, which was attributed to the fact that at a narrower span the drag due to the

endwalls becomes more significant relative to the momentum transferred by the lid.

The TGL vortices become less coherent with increasing Reynolds number. In

the experiments, it was found that their presence could no longer be detected

at Re = 7, 500 [111]. For the higher Reynolds number test case considered here,

Re = 10, 000, the key feature of the flow is the formation of two jets which separate

off the downstream wall and impinge on the cavity bottom. After impingement the
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wall jets spread along the cavity bottom before encountering the upstream wall.

The experimental measurements reported a small inertial subrange in the impinge-

ment region.

The lid driven cavity has been studied previously using Large Eddy Simulations.

Zang, Street and Koseff [151] used the dynamic mixed model to study the cav-

ity flow at both Re = 3, 200 and Re = 10, 000, although for the higher Reynolds

number they looked at a narrower cavity (SAR=0.5), for which the flow is not

turbulent. Thus both of their test cases should be considered quasi-laminar. Nev-

ertheless, it can be difficult to use a model in such a regime, and from this point of

view the study is useful. Their results showed that the Smagorinsky coefficient Cs

determined from the dynamic procedure was non-zero only near the downstream

secondary eddy, where the flow is transitional. Their mean flow and rms profiles

were also in good agreement with the experimental data. A more recent LES study

was carried out by Bouffanis and Deville [4] for the cubical cavity at Re = 10, 000

using a spectral element method. They used both the dynamic model and the

dynamic mixed model and found little difference between the two. The mean flow

and rms profiles were also in good agreement with DNS data from an earlier study

of the same cavity which used twice the resolution as the LES [71]. The models

were found to be active in the turbulent parts of the flow, and mostly inactive in

the laminar regions, as they should be.

The objective of using the NS-α model for this test case was to determine how

suitable the model is for a complex flow. Both of the previous studies used dy-

namic models, in some cases with additional similarity terms. These models are of

similar cost to the NS-α model [32], but in a study of a transitional mixing layer

the NS-α model was found to have better performance. We would like to see if we

can still obtain better results with the NS-α model in a case now containing solid

boundaries, where it is not appropriate to use a constant α2 as was done for the

mixing layer.

6.2 Numerical Description

The lid-driven cavity flow is studied numerically using the methods described in

Chapter 5. The mesh used is stretched in the x and y directions to resolve the shear

layers near the walls, but uniform in the spanwise since the relevant flow physics

(TGL vortices for the low Reynolds number and wall jets for the high Reynolds
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Re (Nx,Ny,Nz) hmin hmax/hmin

3,200 (32,32,32) 5.6 × 10−3 12.4
10,000 (48,48,48) 3.6 × 10−3 12.5
10,000 (64,64,64) 2.6 × 10−3 12.9

Table 6.1: Mesh parameters for the lid-driven cavity flow

number) are not clustered near the endwalls, but distributed along the span. The

parameters pertaining to the mesh are given in Table 6.1. Different stretching ratios

were tested for the x and y directions, the ones chosen provided the best compro-

mise between near wall resolution and a reasonable mesh size in the interior. Note

that for the high Reynolds numbers, two different resolutions were used, 643 and

483.

To assess the time step and total sampling time we first compare our parame-

ters to those used in the experiments. For the lid-driven cavity all quantities are

non-dimensionalized by the cavity length (L) and lid velocity (U). The character-

istic time scale is then L/U . This can be written in terms of the Reynolds number

(since the lid velocity was not reported in the experiments)

L

U
=

L2

ν

ν

UL
=

1

Re

L2

ν
.

Estimating the kinematic viscosity of water at room temperature as 1 × 10−6m2/s

and knowing the length of the cavity to be 150 mm gives L/U = 7.31s for the

Re = 3, 200 case and L/U = 2.25s for the Re = 10, 000 case. A time step of 0.01

then corresponds to physical time of 0.0731s and 0.025s or physical frequencies of

13Hz and 44Hz respectively. The power spectra shown from the experiments for

all cases have very little frequency content above 1Hz. Therefore, it was expected

that the timestep chosen would be adequate. This was verified by the fact that

simulation results showed very little difference when run at a timestep half as big.

The timestep is important because a smaller time step will obviously mean more

steps to achieve a total simulation time. It was found in particular for the high

Reynolds number case long integration times were needed to achieve a statistically

stationary state, which was assessed by monitoring the rolling averages of the mean

and rms velocities, as well as the total kinetic energy. Once a statistically steady

state was achieved, statistics were collected over 20L/U . This was found to be

adequate for converged statistics.
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The procedure used to initialize the simulations was as follows. On each mesh

a simulation with the model turned off was started from a state of rest. Thus, at

time t = 0 the lid was set into motion at a uniform velocity and a recirculating flow

slowly developed in the cavity. When the flow was statistically steady the instan-

taneous fields were written to a file. This flow state was then used to initialize the

runs with the NS-α model. With the NS-α model active a new statistically steady

state was established before samples were collected.

Following the convention in the literature, we have dropped the tilde on the fil-

tered variables in reported results. In this chapter averaging is carried out with

respect to time. Time averages are denoted by the overbar · and a fluctuation

about this mean is denote with a prime.

6.3 Results with no model

We will begin by showing some sample results from running the code without a

turbulence model. The mean flow, rms and shear stress profiles are shown in Fig-

ure 6.3 for the Re = 3, 200 case using both the QUICK [23] and the UMIST [76]

advection scheme. The UMIST scheme is a TVD (total-variation diminishing) ver-

sion of QUICK and is shown here for comparison because it will be used later

when we look at the numerical oscillations encountered with the model. We can

see the mean flow profiles are well captured for both schemes, while the rms and

shear stress profiles are slightly underpredicted for the UMIST scheme. Looking at

these results, the reader might wonder why use a subgrid model at all if the flow is

well-predicted without one? One thing to keep in mind is that in a complex flow

situation, eg. a flow with laminar, transitional and fully turbulent regions, it is

required that the flow remain inactive during the laminar flow regime. Thus, it is

useful to know what effect the NS-α model will have, if any, at this relatively low

Reynolds number.

In Figure 6.4 contours of the spanwise vorticity show the primary recirculation

cell, the DSE and the USE. If we compare the urms profiles in Figure 6.3 with

these contours we can see the upper peak in the urms profile (y ≈ 0.2) comes from

the unsteadiness of the wall jet that separates off the downstream wall. For this

Reynolds number the wall jet does not impinge on the cavity bottom. On the other

hand, the lower peak in the urms profile (y ≈ 0.05) is related to the movement of

75



−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

u

v

(a) Mean flow

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

10*u
rms

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

1
0

*v
rm

s

(b) RMS

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

50
0u

′ v
′

500u′v′

(c) Shear stress

Figure 6.3: Comparison of no model run and experimental data for Re = 3, 200.
Profiles are along the centerlines on the cavity midplane. Solid line is the QUICK
scheme, dashed line is the UMIST scheme, symbols are experimental data [111].
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the DSE and USE pulling on the boundary layer and the TGL vortices moving

back and forth [111]. The movement of these vortices is reflected in a time trace of

the velocity taken near the cavity center and close to the bottom, shown in Figure

6.5. The trace using the UMIST scheme is qualitatively similar to that shown in

the experimental study of Prasad and Koseff [111] in that there is a low frequency

modulation with a few higher frequency peaks. However, the lower frequency we

measure here f ≈ 1/50 = 0.02 is lower than that in the experiments f ≈ 0.04. The

trace from using the QUICK scheme has some additional high frequency peaks,

but is qualitatively similar to that from the UMIST scheme. Similar sensitivity of

the TGL vorticies to the advection scheme was found in the GAMM workshop on

the lid-driven cavity flow [125]. Before looking at the higher Reynolds number we

will note that as a means of verifying the code further a simulation of a narrower

cavity (SAR = 0.5) with a finer mesh (128, 128, 32) was also carried out. We found

that the TGL vortices were locked in position at the cavity center, and that the

rms fluctuations are negligible in agreement with the experimental data [111]. The

narrow span cavity was chosen for a higher resolution study because for this case

we could use enough grid points to have a uniform mesh in the x − y plane. This

test case was then used later to troubleshoot problems with the NS-α model (by

having a uniform mesh we eliminate α2
k gradients in the domain interior, but dis-

continuities at the endwalls, where α2
k = 0 remain a problem).
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Y
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0.2

0.4
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Figure 6.4: Spanwise vorticity, ωz on the cavity midplane z = 0.5 for Re = 3, 200

For the higher Reynolds number case of Re = 10, 000 the mean flow, rms and

shear stress profiles are shown in Figure 6.6 for the two different meshes. We can
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Figure 6.5: Time traces of u velocity taken at a point on the midplane at a height
of 7mm (y = 0.047) from the cavity bottom as in the experiments [111].

see that on both meshes the rms and shear stress profiles are underpredicted, with

the (64)3 results being better than those at (48)3. The mean flow profile for the

u−velocity on the 483 mesh also has a nose that is peaked and more closely re-

sembles a laminar flow profile (turbulent profile is flatter due to enhanced mixing).

6.4 NS-α model results

Since α2
k is a smoothing scale we start with a simple definition based on the grid

size

α2
k = C

(
h2

k

)
(6.1)

where hk is the grid spacing in the k -direction and C is a constant denoting what

fraction of the grid spacing to use. Because α2
k can be related to the filter width,

∆k, of a box filter via α2
k = ∆2

k/24 [32], we choose C = 1/6, which corresponds to

a filter width that is twice the grid size.

Initially when we turned on the NS-α model for the lid driven cavity flow we
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Figure 6.6: Profiles along the centerlines on the cavity midplane with no model for
the Re = 10, 000 case. Solid line is the (48)3 mesh, dashed line is the (64)3 mesh,
symbols are experimental data [111].
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encountered some perplexing model behavior. The model generated small-scale

activity that, at a first glance, could be interpreted as turbulence. There were

difficulties in increasing the physical size of α, counter to our intuition instead of

increased smoothing this often led to even more small-scale activity. This has been

seen in previous studies, where it was attributed to either numerical error [32] or

the fact that the model allows more energetic structures to exist near the grid-scale

[105, 33]. The initial poor performance of the model was not altogether surprising,

the lid-driven cavity is a challenging flow, and many models have serious difficulties

when they are run in a wall-bounded flow for the first time. However, the failure

mode of the NS-α model was found to be different than that described in the litera-

ture for dissipative models, which tend to damp too much near boundaries and lead

to flow that is too laminar-like. In this section we discuss the problems encountered

with the NS-α model, their physical interpretation, and a proposed solution.

6.4.1 Problems Encountered when α2 is based on the mesh

Numerical oscillations

Before we begin we will show some representative results that led us to suspect

numerical oscillations were contaminating the solution. Initially, when the NS-α

model was applied to the cavity flow there were two persistent results that were

problematic. The first was high fluctuation levels in the downstream wall jet region

for the low Reynolds number (Re = 3, 200) test case. This was accompanied by

premature separation of the wall jet, which in turn affects the shape of the u and

urms profiles on the midplane. A sample of the mean flow and rms profiles on the

cavity midplane is shown in Figure 6.7. The second problematic result was more

prominent for the high Reynolds number case (Re = 10, 000) where the wall jet

was found to be pushed out too far from the wall, as shown in Figure 6.8. These

problems were observed for both isotropic and anisotropic models (where isotropic

is with a scalar model parameter α2, and the anisotropic model is with separate

model parameter for each direction, α2
k), on both coarse and refined meshes, over

a few different α2
k values, and with both Helmholtz inversion and box filtering.

Initially both of these problems were attributed to the model itself. The ratio-

nale behind this is easier to follow if we recall that we can rewrite the subgrid term,

H−1 (∂jmij), in the form

H−1
(
2 ∂jAij + uST × ω̃

)
, (6.2)
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Figure 6.7: Profiles along the centerlines on the cavity midplane for the Re = 3, 200
case, anisotropic NS-α model. Symbols are experimental data [111].
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Figure 6.9: Vortex force (x component) and ∂jA1j term for the Re = 3, 200 case,
anisotropic model.

with the Stokes velocity

uST = −α2
k

∂2ũ

∂x2
k

. (6.3)

A plot of the two source terms in the symmetry plane is shown in Figure 6.9, we

can see that the vortex force term is much larger than the ∂j(Aij) term. Because

the wall jet is pushed too far out from the downstream wall in the x-direction, we

now look at the contribution of the vortex force to the ũ-momentum equation

vST ω̃z − wST ω̃y. (6.4)

Near the downstream wall ω̃z 
 ω̃y and ∂x 
 ∂y, ∂z and it was expected that the

problem was coming from following component of the vortex force,

α2
x

∂2ṽ

∂x2
ω̃z. (6.5)

Given that the vorticity field is unsteady this will be an unsteady forcing term

which could cause the wall jet to oscillate back and forth, leading to high fluctu-

ation levels. Depending on the balance between the positive and negative forcing,

it is possible that that this could lead to the jet being pushed too far out from the

wall in the mean. For the anisotropic model this hypothesis could be easily tested

by turning off α2
x. This was done for the high Reynolds number test case, and to

our surprise this did not help the situation. Instead, it was turning off α2
z which

solved this problem.

A closer examination of the flow fields corresponding to the α2
z �= 0 and α2

z = 0
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cases showed that the main difference between the two is the appearance of stream-

wise vortices (along the downstream wall these are in the vertical direction, ω̃y)

in the downstream wall jet region when α2
z �= 0, as shown in Figure 6.10. These
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Figure 6.10: Vertical vorticity (ω̃y) on the y = 0.6 plane near the downstream wall
for the Re = 10, 000 case. All simulations are done with the (64)3 mesh.

vortices do not appear when a model is not used or when the Leray model is used

and are a numerical artifact of the NS-α model 1. The presence of these vortices

can be understood if there is significant modulation of the velocity in the spanwise

1Some simulations were done with the Leray model, which means only the Aij + Bij terms
in the subgrid stress were used. The model was able to run stably long enough to collect some
statistics, but later diverged.
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direction, as for example could be caused by spanwise numerical oscillations. Recall

that the vortex force in the momentum equations appears as advection and stretch-

ing/tilting terms in the vorticity equations. In particular the stretching/tilting term

in the vertical vorticity equation is

ω̃x
∂vST

∂x
+ ω̃y

∂vST

∂y
+ ω̃z

∂vST

∂z
. (6.6)

Since we know it is α2
z that is causing the problem, we can see that spanwise oscil-

lations leading to ṽST ≈ α2
z∂

2ṽ/∂2z might be leading to the generation of vertical

vorticity. A closer inspection of the flow fields for the NS-α model shows there

are numerical oscillations in the spanwise direction, which are most easily seen in

the weak spanwise velocity component, as shown in Figure 6.11. In particular if

spanwise oscillations manifest themselves as ∂ṽ/∂z this will generate both vST and

ωx and the first term in (6.6) will tilt this x-component of vorticity into the vertical.

There is an interesting analogy between the behavior seen here, and an alterna-

tive interpretation of the NS-α equations. It has been pointed out [47] that these

equations are similar to the Craik-Leibovich equations, which are used to account

for the long-time averaged effect of surface waves on mean momentum transfer [87].

The effect of surface waves is to create a relative velocity between a fluid particle

(Lagrangian) and the background current (Eulerian) [69]. This relative velocity is

called the Stokes drift velocity. The effect of this relative velocity is to tilt verti-
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cal vorticity into the streamwise direction to create streamwise vortices (Langmuir

cells) which transport momentum perpendicular to the free surface and flatten the

velocity profile below the surface, leading to a mixed layer. A schematic of this

(called the CL2 mechanism) is shown in Figure 6.12(a) following the review article

by Leibovich [70]. The basic ingredients are, the Stokes velocity, seed vorticity,

and a feedback mechanism. Kinematically the seed vorticity is tilted by the Stokes

velocity. For the physical surface mixed layer you find in oceans and lakes, the

Stokes velocity is the relative velocity described above, the seed vorticity (which

is in the vertical direction) comes from planetary vorticity and/or wave-breaking

[130], and the feedback mechanism is that the tilted vortices (Langmuir cells) lead

to further inhomogenites in the spanwise direction, promoting further the forma-

tion of vertical vorticity - which is the seed vorticity. If we take this picture and

now rotate it 90o about the spanwise axis (and apply a no-slip condition for the

cavity flow) we have Figure 6.12(b). Now we have a vertical Stokes drift velocitiy,

tilting the x−component of vorticity into the vertical direction. This generates

large streamwise vortices which transport momentum away from the downstream

wall, generating the flat velocity profile we see in Figure 6.8. In this scenario the

seed vorticity is the numerical oscillations, the Stokes velocity is coming from the

subgrid model, and the feedback is again that the streamwise vortices promote

further disturbances in the spanwise direction (the spanwise perturbation would

actually be very small so there would be numerous perturbations creating an ar-

ray of vorticies). Thus, this result is not erroneous in the sense that it is a real

solution to the given equations in the presence of small scale spanwise oscillations

which generate the necessary seed vorticity and/or Stokes velocity. However, the

problem is that the oscillations are not coming from something physical, but from

an unwanted numerical effect. It should be noted that although the source term

due to the model is not large in the spanwise direction, there is little to balance its

effect in the spanwise direction. It was found that the flat velocity profile seen in

Figure 6.8 developed slowly over time, indicating that the long-time average effect

of the vertical vortices is a mixing out of the velocity profile. Similar problems

were observed in cases where the numerical oscillations were not visually obvious,

again showing that since the effect builds up over time, small oscillations can have

a significant impact.
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Figure 6.12: Creation of streamwise vorticity through the vortex force.
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Figure 6.13: 2D cavity, velocity contours for the anisotropic model, ũ-velocity (left)
and ṽ-velocity (right). Solid and dashed lines indicated positive and negative con-
tours respectively.

At this point it is clear that it is not possible to interpret the physical behavior of

the NS-α model until the numerical oscillations can be understood and dealt with

appropriately. For the purpose of understanding this problem further we turned

to 2D simulations to see if we could recreate the problem in a simpler setting. It

was found upon reducing the mesh stretching ratio that two problematic regions

emerged, as can be seen in Figure 6.13. Both are found in the vicinity of the zero

contours of the ũ and ṽ velocity respectively. The contours shown in Figure 6.13 are

for the anisotropic model with α2
k taken to be proportional to the grid spacing (the

mesh is stretched in both directions). Similar results are found when the isotropic

model is used, and when a uniform mesh is used, in which case they are much

worse. Recall that the subgrid model can be written (see Equation (6.13)) as

mij = Aij + Bij − Cij, (6.7)

where the first two terms constitute the Leray model, and the NS-α model is com-

prised of all three. Since the Leray model does not have this problem, we know it

is coming from the Cij term. By trial and error it was found that the oscillations

near the lid are coming from the following term in the ṽ momentum equation,

∂C22

∂y
≈ ∂

∂y

(
α2

y

∂ũ

∂y

∂ũ

∂y

)
, (6.8)
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while those near the downstream wall are coming from the following term in the ũ

momentum equation,
∂C11

∂x
≈ ∂

∂x

(
α2

x

∂ṽ

∂x

∂ṽ

∂x

)
. (6.9)

Note that it is gradients of the ũ velocity which are acting as source terms in the ṽ

momentum equation and vice versa (which makes this problem a bit different than

some more standard sources of numerical oscillations, such as the Peclet number

problem [116] and oscillations in central differencing schemes [135]).

Since the oscillations near the lid are very pronounced, we will now look at this

region in more detail. The y−momentum balance at x = 0.47 near the lid is shown

in Figure 6.14. When the model is turned off, it can be seen in Figure 6.14(a) that

the balance is between the streamwise advection ũ ∂ṽ/∂x and the vertical pressure

gradient ∂p̃/∂y, and that both decrease monotonically as the lid is approached.

From Figure 6.14(b) we can see that the model generates a large source term near

the lid. This source term is balanced by the vertical pressure gradient, and leads

to non-monotonic behaviour near the lid and the oscillations we see in Figure 6.13.

This problem is coming from the near wall behavior of the model parameter α2.

While the grid stretching means that α2 → 0 at a solid wall, when α2 is based on

the mesh it is not possible to have ∂α2/∂y → 0 as well. As we move from a highly

stretched mesh to a uniform mesh, but continue to impose the Dirichlet condition,

α2 = 0, we create a jump in ∂α2/∂y at the boundary. If the balance is between the

pressure gradient and ∂yC22, the vertical momentum equation becomes

∂p̃

∂y
=

∂

∂y

(
α2

y

(
∂ũ

∂y

)2
)

. (6.10)

When we integrate this over the control volume adjacent to the lid (here n and s

indicate the north and south faces) we obtain,

p̃n − p̃s =

[
α2

y

(
∂ũ

∂y

)2
]

n

−
[
α2

y

(
∂ũ

∂y

)2
]

s

. (6.11)

The first term on the right-hand side will be zero if the north face is a solid wall

(α2
y|n = 0), which means the pressure gradient will be negative. If we were to

require ∂α2
y/∂y = 0 at the boundary, then we would not have this problem. To

demonstrate this the 2D cavity flow case was run again explicitly setting α2
y|n =

α2
y|s for the control volume adjacent to the upper and lower boundaries. The
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(c) NS-α model, ∂α2/∂y = 0 at y = 1

Figure 6.14: Momentum balance near the lid for the 2-D cavity flow, Re = 3, 200.
Solid line is ∂p̃/∂y, dashed line is ũ ∂ṽ/∂x, dash-dot is ṽ ∂ṽ/∂y; and dash-dot-dot

is ˜∂(C22)/∂y.
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Figure 6.15: Vertical velocity contours for the 2D cavity, Re = 3, 200. Top row
is the isotropic model while lower half is the anisotropic model. Left column is
with the homogeneous Dirichlet boundary condition while right column is with the
homogeneous Neuman condition for α2 (isotropic) and α2

k (anisotropic).

numerical oscillations are significantly reduced, as shown in Figure 6.15. The flow

is also now in agreement with the no model case, as it should be for a 2D laminar

flow. Alternatively we can remove the oscillations by setting α2 on the boundary

according to the value that will give pn − ps = 0. For example at the top boundary

α2
n = α2

s

(∂ũ/∂y)s

(∂ũ/∂y)n

This also removed oscillations, but effectively shifts the boundary condition to the

requirement that u = ũ instead of having the normal component of α2
k = 0. When

we derived these equations in Chapter 3 it was the latter condition that we used,

so we feel it is more correct to enforce this in the simulations.
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For the 3D cavity flow the mesh used is sufficiently stretched in the x − y plane

to avoid any problems associated with the N/S/E/W boundaries. The problem

arises instead because the mesh is uniform in the spanwise direction. When we use

the NS-α model for this case in its present form and set α2
z to be proportional to

the mesh spacing h2
z, when we get to an endwall the boundary condition α2

z = 0

implies ∂zα
2
z �= 0 and we find oscillations are generated in the spanwise direction.

Out of interest, we also tried solving the Helmholtz equation in the spanwise direc-

tion keeping α2
z constant, in which case the boundary values do not arise when you

discretize the Helmholtz equation. Similar to the study by Petersen et al. [105]

we found that this led strong damping near the walls. For the Re = 3, 200 cavity,

this completely suppressed the motion of the TGL vortices, which we know is not

physically correct.

Finally, it should be noted that the oscillations seen are not just a boundary prob-

lem but will occur whenever α2 changes too abruptly. As a simple example a

laminar Couette flow was also tested. In this case there are two walls at y = ±h

moving in equal and opposite directions and the velocity gradient is uniform. An

α2
y discontinuity was introduced in the middle at y = 0. When the model was

turned on there was a jump in the vertical velocity at the discontinuity. This was

from the Cij term, and was balanced partly by the unsteady term and partly by

the pressure gradient. Clearly, α2 is supposed to be a smoothing parameter, and

abrupt changes are not physical, leading to unphysical results.

Near-lid Backscatter

For the lid-driven cavity flow it was found that the isotropic model overpredicts the

mean flow velocity and was particularly susceptible to divergence. These problems

were found to be due to excessive backscatter of energy near the cavity lid, which

was easily confirmed by turning the model off in this region. This backscatter not

only increases the energy of the resolved flow (leading to the overacceleration) but

can also lead to divergence. A picture of the velocity profiles is shown in Figure

6.16 for both the low and high Reynolds numbers.

We found the backscatter problem could be reproduced when α2 is constant. This

means we can write the contribution of the subgrid model to the resolved flow

energy equation as the sum of a redistribution term and a subgrid transfer term

91



−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

u

v

(a) Re = 3, 200

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

u

v

(b) Re = 10, 000

Figure 6.16: Mean flow profiles for anisotropic and isotropic models showing the
tendency of the isotropic model to overpredict the mean flow. Solid line is the
isotropic model and dashed line the anisotropic model.

(TSGS) ∫
V

ũi
∂

∂xj

m̃ij dV =

∫
V

( ∂

∂xj

(ũim̃ij)︸ ︷︷ ︸
redistribution

− m̃ij
∂ũi

∂xj︸ ︷︷ ︸
TSGS

)
dV. (6.12)

In Figure 6.17 we show the total energy transfer for the isotropic and anisotropic

versions of the subgrid model, and the decompositions into the redistribution and

TSGS terms. It can be seen that the energy transfer is much higher for the isotropic

model in the laminar flow regions near the lid and downstream wall. This is from

the redistributive part of the transfer (negative redistribution corresponds to a

positive source term in the resolved flow energy equation). Further decomposing

the energy transfer into contributions from the Aij, Bij and Cij terms respectively

in Figure 6.18 shows that the dominant contribution to the energy transfer is the

gradient term (Aij). This is the first term in the subgrid stress

mISO
ij =

(
α2 ∂ũi

∂xk

∂ũj

∂xk︸ ︷︷ ︸
Aij

+ α2 ∂ũk

∂xj

∂ũi

∂xk︸ ︷︷ ︸
Bij

−α2 ∂ũk

∂xi

∂ũk

∂xj︸ ︷︷ ︸
Cij

)
. (6.13)

The gradient model has been the subject of various analyses in the literature and in

particular it has been shown that it should be applied to wall bounded flows with

care due to a negative viscosity problem which can arise if the model length scale is

too large close to the wall [143, 40, 59]. The most popular remedies for this problem

are clipping [144], which means turning off the model when it is backscattering, and
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Figure 6.17: Energy transfer for the Re = 3, 200 case. Left panel, anisotropic
model; right panel, isotropic model. Note that for this isotropic model there is
strong evidence that the model is active in the laminar flow regions (near the lid
along the upper part of the downstream wall).
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Figure 6.18: SGS redistribution term, isotropic model, Re = 3, 200. Note that the
Aij term is large in the laminar flow regions near the lid and the upper part of the
downstream wall.

94



using near wall damping functions [149]. Part of the appeal of using the NS-α model

is its ability to naturally accomodate backscatter, so in this thesis we will not use

clipping. Wall-damping functions may be of interest for a channel flow case, but

are difficult to develop (and not entirely appropriate) for the complex lid-driven

cavity flow. Fortunately, we found the instability was not a problem when the

anisotropic model was used for an acceptable range of α2
k values. For example,

for value ranging from a filter width between two to 5 times the grid size. This

motivated the emphasis on the anisotropic model over the isotropic one.

6.4.2 An alternative defnition of α2

The results shown in the previous section highlight some of the problems encoun-

tered when we use a definition of α2 which is based on the mesh size. It was found

that physically relevant results are associated with having both α2 and ∂α2/∂y → 0

at the wall, and that abrupt changes in α2 can lead to unphysical numerical oscil-

lations. It was also found that the model can generate excessive backscatter near

the cavity lid, though this was not a significant problem for the anisotropic model.

Since the problems we see are associated with near-wall behaviour another logi-

cal approach would be to introduce a damping factor which reduces the magnitude

of α2 near the wall. However, the lid-driven cavity is a complex flow, and is far

from canonical wall-bounded flows, such as the turbulent boundary layer or channel

flow. As such, it is not really an appropriate test case for near wall behavior (the

boundary layers are not generally turbulent). Damping factors based on this flow

would probably have little relevance to other situations. Instead, it was found more

useful to move in a direction more appropriate to a complex flow situation. Here,

this meant moving away from a grid based definition for α2 to one where α2 is a

function of the flow.

In doing this we first recall that α2 is, in theory, a measure of the mean-squared

displacement of a particle from an averaged trajectory. Particle displacements in

turbulent flows were discussed in a very insightful manner by Taylor [132] for the

one-dimensional case. The relationship between the NS-α model and Taylor’s work

has been pointed out earlier [50], and there are two results from his paper which

we would now like to use. The first one is that when the time over which the

particle has travelled from an initial to final point, T , is sufficiently short such that

the particle velocities at the beginning and end of motion are well-correlated, the
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mean-squared displacement of the particle from its initial position is

[X2] ∼ [u2]T 2 (6.14)

where u is the particle velocity and the square brackets denote a statistical average.

Based on this we let α2 be defined according to

α2 = [u2]T 2. (6.15)

If we take T to be a timescale indicative of the resolved flow a reasonable choice

would be

T = (g̃ij g̃ij)
−1/2 , (6.16)

where g̃ij is the resolved velocity gradient.

To determine u2 we will draw on a second argument given in Taylor’s paper which

is that in considering the dispersion of a particle due to turbulent motion it is not

the total kinetic energy of the particle, u2, that is relevant, but the number of times

the particle switches direction (or effectively, the number of zero crossings about

the mean). In one dimension this can be captured by (∂xu)2 or (∂tu)2. In the more

general case a second-order structure function could be used. In the anisotropic

case this would be [72]

F aniso
2 (x, L, t) =

1

6

3∑
i=1

[|u(x, t)−u(x+Lxiei, t)|2−|u(x, t)−u(x−Lxiei, t)|2]
(

L

Lxi

)2/3

.

(6.17)

Here ei denotes a unit vector and L is a length scale based on an appropriate volume.

For homogeneous, isotropic turbulence this is similar to using the turbulent kinetic

energy to estimate u2 since in that case there is a simple relationship between the

second order structure function and the energy spectral density (see Batchelor p.

120 [2])

F iso
2 (x, Lx) = 4

∫ kc

0

E(k)

[
1 − sin(kLx)

kLx

]
dk. (6.18)

Putting the velocity and time scales together we would then arrive at the following

definition for α2
k,

α2
k =

F aniso
2 (x, L, t)

g̃ij g̃ij

. (6.19)
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In practice F2 is computed using the six closest neighbors to a given mesh point

[22] (Lx = hx). This means such a definition of α2
k would reduce to the wall nor-

mal spacing in a uniform shear flow such as a Couette flow, which will result in

little improvement over the simple grid-based definition. This problem can be an-

ticipated because in a wall bounded flow, for example a channel flow with ∂ũ/∂y

as the shear, the velocity difference associated with ũ(y + ∆y) − ũ(y) contains a

contribution from the mean flow gradient which should not be included in the com-

putation of F2. This problem has been discussed in the literature in applications

of the structure function model to channel and boundary layer flows [22]. In this

case the problem was resolved by not including ũ(y + ∆y)− ũ(y) in the calculation

of F2. In the more complex situation other strategies, such as high pass filtering,

are often used [22].

Instead of using the second order structure function the definition that was found

to work well was

α2
x = max

[
(δxũ)2, (δyũ)2, (δzũ)2

]
T 2 (6.20)

α2
y = max

[
(δxṽ)2, (δyṽ)2, (δzṽ)2

]
T 2 (6.21)

α2
z = max

[
(δxw̃)2, (δyw̃)2, (δzw̃)2

]
T 2 (6.22)

where again T 2 is (g̃ij g̃ij)
−1 and the δ symbol denotes a velocity increment. In prac-

tice this can computed as the velocity difference between adjacent mesh points. The

max function in equation (6.20)-(6.22) was chosen to allow the simulation to use

the largest length scale, and hence the maximum smoothing. The objective here

was not to arrive at a rigorous method to determine α2
k, but to see if a simple

intuitive definition can improve the results. In the future a more rigorous method

could be used to determine α2
k such that it fulfills specific requirements, such as

ensuring the model contribution is zero in a laminar flow region.

Whereas a structure function is based on the velocity difference in a given direction

and tells us about energy contained in eddies of a given size, this definition tells

us about the energy in the horizontal, vertical and spanwise velocity fluctuations.

The idea with the definition in equations (6.20)-(6.22) was then that horizontal

particle displacements should be based on fluctuations in the horizontal velocity,

and similarly for the vertical and spanwise components.
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6.4.2.1 Results for Re=3,200

Mean flow and rms profiles with the alternative definition of α2
k are shown in Figure

6.19. It can be seen that for the low Reynolds number case the effect of the model

on the first and second order statistics is negligible. This is not a bad result because

the flow is laminar over most of the cavity at this Reynolds number. We can see

from the energy transfer in Figure 6.20 that the model is active in the transitional

flow regions, and inactive in the laminar ones, as it should be. The exception to

this is the high source terms generated in the top right corner. We did not find

this to have a significant impact in that turning off the model in this corner did

not change the results. Previous studies have also found a relative insensitivity to

the corner singularity in the flow field away from the corner [125].

While not investigated in detail in this thesis, it was found that the NS-α model

can have a significant impact on the TGL vortices. Time traces of the stream-

wise velocity from a probe at a height y = 0.047 from the cavity bottom and in

the middle of the x − y plane are shown in Figure 6.21. Both of these are taken

from a simulation where the UMIST scheme was used. The trace with no model is

qualitatively similar to that shown in the experimental study of Prasad and Koseff

[111] in that there is a low frequency modulation with a few higher frequency peaks

(this was mentioned earlier at the beginning of this Chapter). The ratio between

the two frequencies is ≈ 4, the same as that measured in the study by Freitas and

Street [26]. In this study they found the slow part of the system was associated

with oscillations of the TGL pair at the cavity center, which does not meander but

is fixed. The shorter time scale was thought to be due to a a secondary instability

of the TGL vortices offset from the center.

With the model we no longer see the slow oscillation in the time trace in Fig-

ure 6.21 but record only one frequency (which is the same as the higher frequency

without the model). The frequency and appearance of the time trace with the

model is in fact almost identical to that measured experimentally by Koseff and

Street [62] in the shear layer separating the DSE and the PE (upstream of where

we are measuring here). We can also see in Figure 6.22, which are plots of the

streamwise vorticity contours with time, that the pattern is similar to the no model

case, but occurs at a faster rate. It is not clear why the model has this effect on the

TGL vortices. One possibility is because it is backscattering energy in the vicinity

of the vortices, enhancing the faster oscillation such that the slow one is no longer

detected at the cavity center. A plot of the energy transfer is shown in Figure 6.24
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Figure 6.19: Mean flow, rms and shear stress profiles with the flow-dependent
definition of α2

k for Re = 3, 200. Solid lines are without the model, dotted lines are
the NS-α model, symbols are experimental data [111].
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Figure 6.20: Energy transfer for the anisotropic model with α2
k based on the flow

dependent definition, Re = 3, 200. In contrast with the mesh-based definition
(Figure 6.17(b)) the high energy transfer in the laminar regions near the lid and
upper part of the downstream wall are no longer present, with the exception being
the top right corner.

time trace TGL plane

X

Ulid

Figure 6.21: Time traces of the streamwise velocity measured near the cavity bot-
tom at (0.50, 0.047, 0.5).
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(a) no model (b) NS-α

Figure 6.22: Streamwise vorticity with time, Re = 3, 200, 323 mesh.

Figure 6.23: Contours of streamwise vorticity with time both without a model and
with the model. Notice how the pattern is similar with and without the model, but
with the model it occurs at a higher frequency.

with contours of streamwise vorticity superimposed. There is a high concentration

of backscatter where the TGL vortices are located, x ≈ 0.78, as shown in figure

6.24.

6.4.2.2 Results for Re = 10, 000

We now look at the performance of the model with the alternative definition of α2
k

given in equations (6.20)-(6.22) for the higher Reynolds number case. For compar-

ison, results are also shown for the case where no subgrid model is used. There

are several ways the performance of a subgrid model can be assessed. We start by
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Figure 6.24: Energy transfer term TSGS in the bottom half of the cavity. Streamwise
vorticity contours are superimposed to show the coincidence between backscatter
(red) and the TGL vortices. Re = 3, 200, 323 mesh.
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Figure 6.25: Contours of v looking down at the cavity bottom (on the y = .005
plane) for Re = 10, 000 on the 483 mesh. This figure shows that the wall jet
correctly splits into two when the model is used, but does not split without the
model.

looking at how well the mean flow is captured, which is reflected in the wall jet

structure. Recall that the flow should split into two wall jets, which impinge on the

cavity bottom. We can see in Figure 6.25 that when a model is not used the flow

does not split into two jets, and that this situation is corrected when we used the

NS-α model. We found that even on the coarse mesh of (32)3 the NS-α model with

the alternative definition of α2
k can correctly produce the splitting into two wall jets.

However, because the energy spectra at such a coarse resolution did not exhibit a

k−5/3 slope, no results from this test case are shown. The mean flow, rms and shear

stress profiles are shown in Figure 6.26 for the 483 mesh and in Figure 6.27 for the

643 mesh. In Figure 6.26 we also show the mean flow profile from using the mesh-

based α2
k. It can be clearly seen that with the flow-dependent definition we are able

to obtain the correct mean flow profile. It can also be clearly seen that the new

model does a good job of capturing the velocity fluctuations near the lid and in the

downstream wall jet region, and that the shear stress profiles are in excellent agree-

ment with the experimental data [111]. In contrast, without the model (solid line)

the fluctuations are too low, and the shear stress is underpredicted. For the finer

mesh results shown in Figure 6.27 the differences with and without the model are

small, indicating that as α2
k → 0 the simulation moves towards a DNS as it should.

The highly inhomogeneous and anisotropic nature of lid driven cavity flow was

well documented in the DNS study of Leriche and Gavrilakis [71] and LES carried
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Figure 6.26: Mean flow, rms and shear stress profiles on the midplane for the 483

mesh, Re = 10, 000. Solid line is no model, dotted line (first plot only) is NS-α with
the mesh-based definition of α2

k and dashed line is NS-α with alternative definition
of α2

k. Symbols are experimental data.[111]
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Figure 6.27: Mean flow, rms and shear stress profiles on the midplane for the 643

mesh, Re = 10, 000. Solid line is no model, dashed line is with alternative definition
of α2

k. Symbols are experimental data. [111]
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1 :
∫

V
u2/v2 dV :

∫
V

u2/w2 dV
DNS (Lauriche 2000) 1:1.22:50

no model (coarse DNS) 1:1.23:118
NS-α with α2 based on (6.20)-(6.22) 1:1.22:60

Table 6.2: Relative ratios of the volume-averaged mean velocity components.
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(a) no model, 643
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(b) flow-dependent NS-α, 483

Figure 6.28: Turbulent kinetic energy production near the jet impingement region
on the z = 0.3 plane, Re = 10, 000.

out by Bouffanais and Deville [4]. One measure of anisotropy they used is the

relative ratios of the volume-averaged mean velocity components. In the present

study it was found the ratios with the model compare much more favorably with

the DNS study, see Table 6.2. In particular, without the model there is not enough

energy associated with the spanwise component. As we have seen in Figure 6.25

when a model is not used the flow does not correctly split into the two wall jets,

consequently there is not enough momentum transfer in the spanwise direction.

The flow in the downstream wall jet region is characterized by positive and neg-

ative turbulent energy production [71]. Plots of the total production are shown

in Figure 6.28. As the downstream wall is approached the dominant contribution

to turbulent kinetic energy production is from the −v′v′∂yv terms, and is posi-

tive as the flow decelerates. In the impingement region the contributions from the

−u′u′∂xu and −w′w′∂zw terms dominate, and these are negative as the flow accel-

erates. This scenario is in good agreement with the description in the DNS study

[71], and we can see from Figure 6.28 that the NS-α model is able to capture this

on a fairly coarse mesh of (483). It is interesting to contrast the turbulent kinetic

energy production with the contribution to the subgrid model. For the lid-driven
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Figure 6.29: Energy transfer term ũiF̃i on the z = 0.03 plane for the 483 mesh,
Re = 10, 000.

cavity the filter width (α2
k) is not constant and we cannot split the energy transfer

into a redistribution term and a source/sink term. Instead we plot the total SGS

contribution, ũiF̃i divided by the control volume, where the subgrid force is

F̃i = H−1

∫
V

∂mij

∂xj

dV. (6.23)

Contour plots of ũiF̃i on a plane near the cavity bottom are shown in Figure 6.29.

Note that the energy transfer is an order of magnitude smaller than the turbulent

kinetic energy production in Figure 6.28.

To compare the current definition of α2
k given in (6.20)-(6.22) with the mesh-based

definition from equation (7.14), plots of α2
k/h

2
k are shown in Figure 6.30. We can

see that α2
y/h

2
y is high in the jet impingement region, while α2

x/h
2
x and α2

z/h
2
z reflect

the spreading of the jet on cavity bottom, and the impingement on the upstream

wall. Considering that the relationship between the unsmoothed and smoothed

velocity in Fourier space is ûi(k) = (1 + α2|k|2)ˆ̃ui(k) we can also look at this as

the range of (αk)2 values. When (αk)2 = 0 the model is inactive, while in the

turbulent regions we expect (αk)2 ∼ 1. This is reflected in the plots shown in

Figure 6.30. The actual force experienced by the flow due to the subgrid model

is also of interest. In Figure 6.31 we plot the subgrid force contribution to the

x−momentum equation, which can be compared to the mesh based definition dis-

cussed earlier. It can be seen that the high source terms near the lid and in the

downstream wall jet region are eliminated when the flow dependent version of α2
k is

used, and instead the flow is active in the turbulent regions near the cavity bottom.
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Figure 6.30: Contour plots of α2
j/h

2
j highlighting the wall jet impingement and

spreading regions for the 643 mesh, Re = 10, 000.
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Figure 6.31: Subgrid force to the x−momentum equation on the z = 0.3 plane
(through the impingement region) for the 643 mesh, Re = 10, 000. With α2

k based
on the grid the force is high in the laminar regions (near the lid and downstream
wall), whereas with the alternative definition (equations (6.20)-(6.22)) the force is
high only in the turbulent regions.
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The previous plots were from simulations where the explicit filter was applied using

Helmholtz inversion. For the cavity flow this method was very expensive, adding an

overhead of 90% to the computation time. Because Helmholtz inversion is the true

operator used in the model development, these initial simulations were done with

this filter to ensure that the problems encountered were not due to approximating

the Helmholtz operator using another method. In Figure 6.32 we show the mean

flow, rms and shear stress profiles comparing the box filter and Helmholtz filter for

the (48)3 mesh when that flow-dependent version of α2
k is used. It can be seen that

the differences between the two are negligible. However, when the box filter is used

the model overhead (30%) is much lower than with Helmholtz inversion (90%).

This makes the model comparable to other advanced methods [106] that are used

for complex flows. Similar results were found by Petersen et al. [105], where they

found that to make the model competitive it is necessary to use a box filter, and

also reported a computational overhead of 27%.

6.5 Summary

At a Reynolds number of 3, 200 the flow is reasonably well-captured without a

model, hence a subgrid model should remain relatively inactive. With the mesh-

based definition of α2 and α2
k neither the isotropic or anisotropic model were able to

fulfill this requirement. The isotropic model generated excessive backscatter near

the lid and was very susceptible to divergence. The anisotropic model performed

much better in this respect. However both models experience problems due to the

α discontinuity encountered at the endwalls when the boundary condition α2 =

0 or α2
z = 0 is enforced. For the complex flow used here we decided to use a

simple definition of α2
k as a function of the flow to overcome this problem. With

this definition the model remained largely inactive for the low Reynolds number

case, and produced results for the higher Reynolds number that were a significant

improvement over the no model case for a fairly coarse mesh of 483 (as compared

to 643 used in the literature [151, 4]).

109



−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

u

v

(a) mean

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

10*u
rms

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

10
*v

rm
s

(b) rms

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Y

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1
X

50
0u

′ v
′

500u′v′

(c) shear stress

Figure 6.32: Mean flow, rms and shear stress profiles for the 483 mesh with the
flow dependent definition of α2, Re = 10, 000. The solid line is with Helmholtz
inversion; dashed line is with the box filter, symbols are experimental data [111].
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Chapter 7

Channel Flow

7.1 Introduction

Turbulent channel flow (also known as plane Poiseuille flow) is a pressure-driven

flow between two flat plates. A sketch is shown in Figure 7.1. It was one of the

first test cases to be considered in the pioneering LES studies of the 1970s and

early 1980s [16, 124, 93] and remains popular due to its simplicity and relevance to

the fundamental problem of flow near solid boundaries. There are many similari-

ties between the channel flow and boundary layers, and both form a basic building

block for more complex cases such as the flow over aircraft wings, turbine blades,

and the atmospheric boundary layer. However, the test case is not as simple as

it looks. Consider that the underlying idea in LES is to capture the large ener-

getic scales, while confining modeling assumptions to the small, unresolved ones.

In model development, the filter width is typically assumed to be in the inertial

subrange, separating the energy containing and dissipative scales. A fundamental

y=0

y=2H
y

x
z

U(y)

Figure 7.1: Sketch of the plane channel flow
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problem encountered in the channel flow test case is that there is no inertial sub-

range close to the wall and the energetic and dissipative scales overlap [56]. To

reduce the effect of the model on the energy-containing scales near the wall it is

often necessary to decrease the filter width in this region. Damping functions are a

popular way to accomplish [41, 83, 107], but are rarely suitable for more complex

flows. Another difficulty with wall-bounded flows is the anisotropy of the near-wall

region. The early LES of Schumann [124] used two eddy viscosities, one for the

isotropic flow and a second to deal with anisotropy and inhomogenity. A similar

model was used by Moin and Kim [93] with reasonable results. Recent models are

more sophisticated, incorporating for example dynamic procedures, scale-similarity

terms, and velocity reconstruction techniques, but some still have difficulty with

even the mean flow profile [20, 39, 123].

The LES literature regarding the channel flow test case can be confusing for the

newcomer. Simulation results exhibit a high sensitivity to the mesh resolution

[39, 83, 99]. A recent paper by Meyers and Sagaut [91] showed that the conver-

gence towards a DNS result is not monotonic with grid spacing. Their study looked

at two different vertical resolutions and two different Reynolds numbers and inves-

tigated convergence towards DNS as a function of the streamwise and spanwise

grid spacing 1. The convergence was quantified primarily in terms of skin friction

error, but the rms velocities were also studied. In all cases the convergence was not

monotonic, and cases that had negligible error for skin friction did not necessarily

produce the correct rms fluctuations. The sensitivity to the horizontal mesh reso-

lution is not surprising given the anisotropy of the near-wall structures, however it

took them considerable computational effort (≈ 700 simulations) to demonstrate

this clearly, and it is likely that the error map would be different for a different

numerical method. It has long been a tradition in the LES community to test

a subgrid model using a coarse-grid channel flow, and to base the success of the

model largely on its ability to reproduce the correct log-law. This study brings

into question (finally) the use of plane channel flow as the primary test case for

subgrid models, and in particular the emphasis on the logarithmic law. While the

study by Sagaut and Meyers was only published recently, the inconsistencies in the

literature regarding the channel flow test case were part of the motivation in the

1The emphasis on the streamwise and spanwise spacing is because for the channel flow the
mesh in these directions is coarse, while a finer mesh is usually used in the wall-normal direction.
The fine mesh in the vertical is used so the vertical scales are well resolved and a filter is not
required in this direction. This avoids having to deal with non-uniform filter widths that would
arise because the mesh is stretched in the vertical
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present thesis to include a study of the cavity flow.

The outline of this chapter is as follows. We will start by giving an overview

of the physical problem and the numerical description. We will then present results

from using the NS-α model for this flow with α2
k based on the mesh, along with a

discussion of one possible reason why the model has difficulty in this flow. Finally,

damping factors and the flow-dependent definition of α2 will be tested and recom-

mendations for future work will be made.

The notation in the reported results is the same as that used for the cavity flow. An

averaged quantity is denoted by an overbar, and a fluctuation about this state is

denoted with a prime. For the velocity, vorticity and other profiles reported (quan-

tities that are a function of the vertical coordinate) the averaging is taken over the

statistically homogeneous directions x and z as well as with time to increase the

statistical sample.

In this chapter quantities are non-dimensionalized using the channel half-height,

H, and the shear velocity uτ

uτ ≡ √
τw, (7.1)

where τw is the wall shear stress

τw ≡ ν
∂u

∂y

∣∣∣∣
w

(7.2)

These non-dimensional quantities are denoted

u+ =
u

uτ

y+ =
yuτ

ν
Reτ =

uτH

ν
. (7.3)

In the discussion we will refer at times to the different regions of the turbulent

velocity profile, shown in Figure 7.2. The focus in this thesis was on wall-resolving

LES, thus we are going to consider Reynolds numbers at the low end of the turbulent

regime. These channels have only a very small logarithmic region, therefore the

discussion herein we will be primarily concerned with the viscous sublayer and

buffer region. An alternative approach would have been to focus on high Reynolds

number boundary layers, using a wall model. This is beyond the scope of the

present work, but should be investigated in a future study.
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Figure 7.2: Regions of the channel flow. Dashed lines represent u+ = y+ in the
viscous sublayer and u+ = 2.5 lny+ + 5 in the logarithmic region. After Tennekes
and Lumley [133], chapter 5.

7.2 Physical Problem

In the channel flow test case the solid walls decelerate the flow, and this drag

force is balanced by the driving pressure gradient. In a numerical computation the

pressure gradient is supplied through a source term in the streamwise momentum

equation, while in the laboratory it is supplied by the pump or fan driving the flow.

When the flow is fully developed it can be considered statistically homogeneous

in the streamwise direction and with time. Typically, in a numerical experiment,

it is assumed the duct is very wide, and thus the flow is taken to be statistically

homogeneous in the spanwise direction as well. Together these assumptions mean

the derivatives of all averaged quantities in these directions is zero

∂ ·
∂x

=
∂ ·
∂z

=
∂ ·
∂t

= 0. (7.4)

For the purpose of analysis this allows the governing equations to be simplified

considerably. Employing the Reynolds decomposition of the flow velocity into a
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mean and fluctuating quantity, the streamwise momentum equation simplifies to

0 = −∂p

∂x
+

1

Re

∂2u

∂y2
− ∂u′v′

∂y
. (7.5)

A similar simplification of the vertical momentum equation will tell you the driv-

ing pressure gradient is independent of the vertical coordinate. Integrating (7.5),

applying boundary condition u′v′ = 0 at y = ±H and using the definition of wall

shear stress (7.2) gives you a relationship between the driving pressure gradient and

the drag force
∂p

∂x
=

τw

H
. (7.6)

Based on the above momentum balance, the turbulent channel flow appears to be

very simple. However, the near-wall region of this flow is populated with coherent

structures that interact in a complex way to sustain turbulence [54]. The most well

known of these structures are the so-called horseshoe vortices postulated first by

Theodorsen [134]. It is thought that these vortices form from a perturbation or kink

in the spanwise vorticity [117, 102]. Through self-induction this kink is lifted up to

from the wall which brings the tip of the vortex into a region of high-speed fluid

relative to the legs. The velocity difference between the tip and the legs stretches

the vortex to form the hairpin shape.

In recent years improvements in DNS capabilities and experimental methods have

enabled a more accurate picture of boundary layer flows. While classic hairpin

vortices have been found, most consist of a single leg, or cane shape [117]. In the

near-wall region, additional structures have been found. These are streamwise vor-

tices and streaks. The streaks are long bands of alternating low and high speed

fluid, where low and high speed is relative to the mean streamwise velocity. A pic-

ture is shown in Figure 7.3. The streamwise vortices (which may be related to the

legs of the hairpins, or may arise from other mechanisms [102, 56]) are thought to

play a crucial role in the formation of these streaks by bringing up low-speed fluid

from the near-wall region and returning high-speed fluid. The streaks are known

to periodically eject their fluid away from the wall in a process known as bursting.

There are different hypotheses as to why the streaks eject fluid [102], one hypoth-

esis being that a low-speed streak creates a local inflection point in the streamwise

velocity profile, and the burst is a manifestation of the subsequent instability. The

fluid ejected in a burst is replaced by high speed fluid carried into the streak region

from the outer region, in an event known as a sweep. Together bursts and sweeps

are responsible for the production of Reynolds stresses and hence turbulent kinetic
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Figure 7.3: Velocity streaks on an x−z plane in the viscous sublayer. The red color
indicates high speed fluid while blue indicates low speed fluid, where high and low
speed are relative to the mean.

energy. In the context of subgrid modeling they are also associated with forward

energy transfer and backscatter respectively [109].

Given this complex taxonomy of structures is is worthwhile to consider which as-

pects of a turbulent boundary layer a model should be able to capture (keeping in

mind that one of the benefits of using LES over RANS is the resolution of energy-

containing structures). The streaks are not turbulent in nature and are very long,

L+
x ≈ 103−104, with an average spanwise spacing of L+

z ≈ 100 [56]. Each streak has

several streamwise vortices associated with it. The vortices are inclined to the wall

and typically interact with the near-wall region over a distance of of x+ ≈ 200 [56].

Experience has shown that the mesh must be fine enough to sense these large-scale

features, ∆+
z ≈ 30 and ∆+

x ≈ 80 with three grid points in the viscous sublayer are

recommended as minimum values [150] in a wall-resolving LES. The bursts, sweeps

and dynamics of the streamwise and hairpin vortices are not typically fully resolved,

and their effect on the first and second order statistics (notably turbulent energy

production) then needs to be captured by the model. This is complicated by the

fact that several studies have shown both forward energy transfer and backscatter

are associated with the streamwise and hairpin vortices [100, 108, 109]. Given this,

it is not surprising that the Smagorinsky model has difficulty in this flow [42, 108].

Adding a stochastic backscatter term to the Smagorinsky model in the near wall

region can compensate for the under-resolved energy production, yielding improved

results [85, 19]. This may be because high dissipation near the wall (due to the

model) leads to overly-stable streaks. Adding backscatter can serve to destabilize

these streaks, leading to the bursting processes necessary for turbulent energy pro-

duction. Mason [85] has pointed out that accounting for backscatter near the wall

is especially important because the lack of the inertial range in this region means
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the backscatter will affect the energy containing scales directly.

7.3 Numerical Description

The channel flow is studied using the STREAM code described in Chapter 25.

Periodic boundary conditions are applied in the homogeneous directions (stream-

wise and spanwise) while no-slip conditions are used for the solid boundary located

at y = ±H. The mesh is uniformly spaced in the homogeneous directions but

stretched in the wall-normal directions using a hyperbolic tangent profile

yi =
1

2

(
1 +

tanh(Γ(2i/Ny − 1))

tanh(Γ)

)
, i = 0..Ny (7.7)

where Γ is the stretching parameter. A stretching parameter of 2.0 was used as

this gives reasonable resolution near the wall (first node around y+ ≈ 1 − 2). A

summary of the mesh spacing and domain size used is given in Table 7.1 where the

non-dimensionalization for the + units is with the Reynolds number Reτ = 180.

(Lx, Ly, Lz) (Nx, Ny, Nz) h+
x h+

y (min)/h+
y (max) h+

z

(4π, 2, 4π/3) (32,48,32) 71 1.2/16 35

Table 7.1: Mesh parameters for the channel flow

In our simulations a constant mean mass flux was enforced at a Reynolds number of

4160 based on the centerline velocity of a laminar flow and the channel half-height

H. This is equivalent to a bulk flow Reynolds number of Reb = 2773. The Reynolds

number was chosen to correspond to Reτ = 180 for which DNS data is available for

comparison. The relationship between the bulk flow and friction Reynolds numbers

is given by the empirical formula [15]

Reτ = 0.175(Reb)
0.875. (7.8)

The driving pressure gradient is supplied to the flow through a body force in the

streamwise momentum equation. This is done by splitting the pressure gradient

term into the sum of a constant driving force (fx) and a periodic contribution, pper,

giving the following streamwise momentum equation (assuming for simplicity that

filtering and differentiation commute)

∂ũ

∂t
+

∂

∂xj

(ũũj) = −∂p̃per

∂x
− fx +

1

Re

∂2ũ

∂x2
k

− ∂m̃1j

∂xj

. (7.9)

117



Integrating over the domain and applying the periodic and no slip conditions yields∫
V

∂ũ

∂t
dV = −fxV + 2τwAy. (7.10)

where τw is the wall shear stress defined in equation (7.2). Equation (7.10) tells us

that for steady flow the applied body force fxV is balanced by the drag force. For

the channel flow the height is 2H where H = 1, therefore 2Ay = V and we can

write ∫
V

∂ũ

∂t
dV = −fxV + τwV. (7.11)

Thus our unknown force that appears as a source term in the momentum equation

can be calculated from

fxV = τwV −
∫

V

∂ũ

∂t
dV. (7.12)

To maintain a constant mass flux the procedure is as follows. For each time step

to first calculate τw and Ubulk based on the velocity field at the previous time level

and then for each control volume calculate the source term

fxV = τwV − K
utarget − ubulk

∆t
V (7.13)

where the constant K is used to control how much of the correction is applied each

time step. This is in essence a simple proportional controller. For K = 0.01 the

mass flux usually wanders by about < 0.5% during a simulation, having a negligible

impact on the overall statistics 2

There are number of different ways the turbulent channel flow can be initialized.

While the method used does not affect the fully developed solution (the flow is by

definition homogeneous with respect to time), it does affect the time required to

reach a statistically steady state where averaging can begin. One method widely

used because it is simple is to begin with a laminar (parabolic) profile with white

noise superimposed to trigger the transition to turbulence. Here instead we used

a parabolic profile with a superimposed Tollmien-Schlicting (T-S) wave to provide

a 2D disturbance. A T-S wave with amplitude of 10% of the centerline velocity

and wavenumber 2 (made dimensionless with the channel half-height) was found to

bring the flow to a turbulent state quickly. This method also provided a means to

check the periodic boundary conditions. While the transition to turbulence is not

physical, in that the planar Poiseuille flow is linearly stable to small perturbations

2This method to control the flowrate was suggested to the author by J. Larsson, 2007.
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for Reb < 3848 [21] (and for this reason the T-S wave used corresponds to a higher

Reynolds number flow), by initializing the flow with a large scale disturbance non-

linear interactions quickly generate a cascade of energy towards the small scales.

In addition, because the flow initially develops into an array of periodic structures,

any errors in the boundary conditions become immediately apparent. This method

was preferred over white noise because it was found the noise had a tendency to

either decay before generating a turbulent state, or require a longer time to reach a

turbulent state. Although a thorough study was not carried out here, initialization

methods should be studied systematically in a separate study.

The method described above was used to initialize all simulations where a model

was not used. Simulations with the NS-α model were initialized both using the

method described above and also by reading in instantaneous fields from a sim-

ulation with the model turned off. Both methods produce the same converged

statistics, but the latter method is faster.

7.4 Full Channel Flow Results

7.4.1 No model results

We begin by looking at results with the model turned off. This is important because

in some cases a numerical code will produce good results even without a model, and

the model results are in fact not a large deviation from this state. In our case, the

STREAM code is a very flexible code that is used for a wide variety of geometries

and applications, and is not optimized for channel flow. In Figure 7.4 we can see

that when a model is not used the logarithmic law is overpredicted although the

slope is correct. This means the viscous sublayer is too thick. The skin friction is

also underpredicted by 13%, see Table 7.2. The streamwise velocity fluctuations

shown in Figure 7.4 are too high, while the vertical and spanwise fluctuations are

too low. These results are typical at such low grid resolutions [67] and are prob-

ably due to insufficient resolution of the streamwise vortices and/or overly stable

streaks.

Vorticity fluctuations with the model turned off are shown in Figure 7.5. We can see

that while the spanwise fluctuations are well predicted, the streamwise and vertical

fluctuations are too low. An important part of the self-sustaining cycle of near-wall

119



10
0

10
1

10
2

0

5

10

15

20

u
+

y+

(a) Mean flow

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

y+

u
r
m

s

(b) Streamwise

0 50 100 150
0

0.2

0.4

0.6

0.8

1

y+

v r
m

s

(c) Wall normal

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y+

w
r
m

s

(d) Spanwise

0 50 100 150
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

y+

u
′ v

′

(e) Shear stress

Figure 7.4: Mean flow, rms and shear stress profiles with no model, full channel.
Symbols are DNS data[58].
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turbulence is the streamwise vorticies, and these are thought to be generated pri-

marily by the lifting up of transverse vorticity, defined as (ω2
y + ω2

z)
1/2, away from

the wall where it is tilited into the streamwise direction by the mean flow gradient

[53]. The fact that the vertical and streamwise vorticity are underpredicted is not

surprising given that the mesh is too coarse to properly resolve these details.

7.4.2 NS-α model results

The situation changes dramatically when we use the NS-α model. The results in

this section are with α2
k equal to a filter width of twice the grid spacing. This

corresponds to C = 1/6 for

α2
k = C

(
h2

k

)
(7.14)

where hk is the grid spacing in the k -direction. We will refer to this as the default

NS-α model. In Figure 7.6 there is a significant undershoot of the logarithmic

law, corresponding to high skin friction, see Table 7.2 (recall the velocity is non-

dimensionalized with the friction velocity, which is proportional to the skin friction).

Note also that the peaks for the vertical velocity fluctuations and shear stress are

in good agreement with the DNS data, although the slopes are incorrect, because

the channel is too wide in viscous units. The streamwise fluctuations are slightly

reduced as compared to the no model case (Figure 7.4), and the peak is closer to the

wall than the DNS data, indicating a thin viscous layer. This is in sharp contrast to

results with a Smagorinsky model, which typically produces a thick viscous region

and low spanwise fluctuations [83].

The most surprising result with the NS-α model is the overshoot of the spanwise

fluctuations in Figure 7.6(d). Initially it was thought this problem might be related

to α2
y given the problems encountered for the cavity flow regarding the wall-normal

Case Skin Friction (Cf ) Cf error
full channel DNS [58] 3.73 × 10−3 -
no model 3.25 × 10−3 -12.9%
NS-α-default 7.46 × 10−3 100 %
NS-α-default with α2

y = 0 7.10 × 10−3 90.3%

NS-α-default with α2
z = 0 4.63 × 10−3 24%

Table 7.2: Skin friction for the full channel with and without the NS-α model. Our
results are for a (32, 48, 32) mesh, the DNS used a spectral method with a resolution
of (192, 129, 160).
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component of α2
k. To investigate further the model was turned off first in the wall

normal direction (α2
y = 0), and then in the spanwise direction (α2

z = 0). We can see

from the mean velocity profiles in Figure 7.6 and the skin friction coefficients given

in Table 7.2 that it was not α2
y but α2

z causing the problem. It should be noted

that checks were made to ensure this was not a simple implementation error, for

example by switching the coordinate directions, and also by comparing analytical

solutions for the mij term with computed solution using a simple test field. We

can see from the rms and shear stress profiles that turning off α2
y does smooth out

some slight oscillations in the shear stress profiles, but otherwise does not have a

significant impact on the results, while turning off α2
z removes the near-wall peak

in the wrms profile. In fact, because the DNS data from Kim et al. [58] underpre-

dicts the spanwise velocity fluctuations as compared to the experimental data [68],

the spanwise fluctuations with α2
z = 0 are actually fairly good. Turning off α2

z also

moves the peak in the streamwise fluctuations farther from the wall. The peak is at

y+ ≈ 10 for the default model, while for α2
z = 0 it is at y+ ≈ 14. In the DNS study

[58] the peak in the urms profile is at y+ ≈ 15. It was also verified that the results

are not due to a problem with the explicit filter. In Figure 7.7 we can see the results

are almost identical when a box filter is used. The only difference between the two

is that the spanwise fluctuations are slightly lower when Helmholtz inversion is used.

High fluctuation levels have been reported before in the literature for the NS-α

model [32]. In this case their remedy was to refine the mesh, increasing the subgrid

resolution. They found using α ∼ h to yield reasonable results. Due to the fact

that our numerical code was not parallelized, increasing the mesh resolution was

not an option for this channel. Instead we set αk = hk, thus increasing the subgrid

resolution (scale separation between filter width and smallest grid size) by increas-

ing the physical size of α2
k. The results with this increased scale separation are

shown in Figure 7.7, and we can see that this does not improve the situation. The

problematic high spanwise fluctuations are still present, and the underprediction of

the logarithmic law is even more severe.

To put the results from the NS-α model without wall modification into perspec-

tive we recall that when the default Smagorinsky model is used without near-wall

damping or a dynamic procedure the flow relaminarizes [129]. A comparison with

the NS-α model would be to use the isotropic NS-α model without any near-wall

modifications, for example either setting α2 to a constant, or to the grid-cell vol-

ume. We found in this case the simulation diverged quickly. Using the anisotropic

model allows for numerically stable solutions, but basing α2
k on the mesh does not
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Figure 7.6: Results with α2
k based on the mesh. Solid line is default model, dashed

line is with α2
z = 0 while dotted line is with α2

y = 0. Symbols are DNS data [58].
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Figure 7.8: Contours of the instantaneous spanwise velocity. Contour levels ±0.08.

necessarily lead to physically relevant results.

It is interesting to compare snapshots of the instantaneous spanwise velocity with

and without the NS-α model. These are shown in Figure 7.8. We can see the

velocity field for the NS-α contains more small-scale activity and coherent struc-

tures close to the grid scale. This is consistent with what is found in other studies

[45, 32]. While the activity appears to be poorly resolved, the energy spectrum

shown later in section 7.7 does not show any build-up in the high wavenumbers,

thus we don’t believe that this result is dominated by numerical error at the small

scales. In contrast, we can see that without a model the velocity contours are very

diffuse.

While the current results for the NS-α model are not encouraging in that the

skin friction is too high and there is clearly a problem associated with the near-wall

region, it should be pointed out that there are some promising aspects to these

results. The NS-α model clearly has an entirely different behavior than that re-

ported for eddy viscosity models [83]. If we can understand this behavior then

there is potential for the model to produce very good results. Working towards this

understanding is the focus of the next section.
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Re (Lx, Ly, Lz) (Nx, Ny, Nz) h+
x h+

y (min)/h+
y (max) h+

z

I 4,160 (π, 2, 0.3π) (16,64,16) 35.3 0.875/11.6 10.6
II 4,160 (π, 2, 0.3π) (24,64,24) 23.6 0.875/11.6 7.07
III 4,160 (π, 2, 0.3π) (32,64,32) 17.7 0.875/11.6 5.30
IV 4,160 (π, 2, 0.3π) (32,128,32) 17.7 0.424/5.80 5.30

Table 7.3: Mesh parameters for the minimal channel flow.

7.5 Minimal channel flow

To look at the channel flow over a wider range of parameters an investigation was

done using the minimal channel flow. This channel is much smaller than the one

used in the previous section, allowing us to use a fine grid (resolution almost equiv-

alent to a DNS). The meshes used are summarized in Table 7.3. The term ‘minimal

channel’ refers to the smallest flow unit that has been found able to sustain tur-

bulence for a given Reynolds number [53]. Such a flow unit consists of a single

low-speed streak (or more accurately, a section of such a streak) along with a pair

of quasi-streamwise counter-rotating vortices. While it is not large enough to pro-

vide a realistic description of the dynamics of the outer region, Jimenez [53, 54] has

shown that it provides a valid representation of the near-wall region. Hence, these

channels are often used in studies of near-wall turbulence.

For this purpose we chose a channel of dimension (π, 2, 0.3π) with Reynolds number

Reτ = 180. This means the spanwise dimension in viscous units will be L+
z ∼ 180.

This is wide enough to sustain turbulence, which is estimated by Jimenéz [53] to

be L+
z ∼ 85 − 110. Note that the channel width required to sustain turbulence

corresponds to the width of a streak. Jimenez [53] showed that narrower channels

had a tendency to relaminarize.

The DNS here was initialized in the same manner as for the full channel simulations

in the previous section. Simulations were run for t = 400Ub/h before beginning to

collect statistics (at this time the total skin friction was oscillating with time about

a mean value and the time-averaged total shear stress exhibited a linear variation

across the channel width). Statistics were then collected over t = 400Ub/h. For

the minimal channel long integration times are required since you are essentially

sampling only one or two turbulent structures instead of a larger array as you would

have in a larger domain.
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7.5.1 Mean flow and RMS and shear stress profiles

Mean flow, rms and shear stress profiles are shown in Figure 7.9 for the no model

case with the (24, 64, 24) mesh. We can see that all quantities are in good agree-

ment with the full channel DNS [58]. The rms profiles deviate slightly from the full

channel DNS data near the channel center. This is to be expected for the minimal

channel flow, because it is towards the center that the presence of the missing outer

flow is felt [53] . Reynolds stress budgets were also computed (not shown) and were

in good agreement with those reported for the full channel DNS [58].

Simulation results with the NS-α model are shown in Figure 7.10. For the re-

sults shown α2
y = 0 to keep the comparison with the two different C values on the

(16, 64, 16) and (32, 64, 32) meshes exact in the sense that the α2
k values on the two

meshes are identical (recall from earlier results also that α2
y does not significantly

impact the results). We have already seen for the full channel turning off α2
y has a

negligible impact on the results, and preliminary tests found this to be the case also

for the minimal channel. Consistent with the results at the lower mesh resolution,

NS-α model severely underpredicts the log-law. The rms profiles are somewhat

different than those at the lower resolution (compare Figure 7.10 with Figure 7.6).

We now have an underprediction of the streamwise velocity fluctuations, and high

spanwise and vertical fluctuations.

There are two main features the reader should be aware of when looking at Figure

7.10. The first is that when C is maintained at a constant value of 1/6, correspond-

ing to a filter width of twice the mesh spacing, and the mesh is refined, the results

do not approach the DNS data. Instead, they become slightly worse in that the urms

and vrms increasingly deviate from the DNS data. While this might seem counter-

intuitive, other studies have also found that decreasing the filter width (and thus

the model contribution) does not necessarily mean the simulation results monoton-

ically approach a DNS [32]. The reason for this is at a finer mesh numerical errors

that may have been compensating for modeling deficiencies (eg. numerical dissi-

pation) are smaller. Here we also have a model composed of products of velocity

gradients. Refining the mesh, and improving the resolution of these gradients, may

be increasing the subgrid contribution more than decreasing the actual value of α2
k.

The second feature to note is that varying the subgrid resolution by altering the C

value while keeping the physical size of α2
k constant significantly worsens the results.

Again, this could be due to the fact that on the finer mesh the gradient are higher.

When we keep the physical value of α2
k the same the overall effect would then be a
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Figure 7.9: Mean, rms and shear stress profiles with no model for the (24, 64, 24)
mesh; symbols full channel DNS [58].

higher subgrid stress. Pictures of the instantaneous spanwise velocity are shown

in Figure 7.11. Unlike the full channel where we could clearly see grid-resolution

effects, for the minimal channel the small-scales are well resolved. However, once

again there is too much small-scale activity for the NS-α model, especially in the

near-wall region.

To investigate the effect of the model on the flow structures further in Figure

7.12 we plot PDFs of the coherent structure function FCS. The coherent structure

function is defined as [60],

FCS =
Q

E
, (7.15)

where Q is defined as

Q =
1

2

(
W̃ijW̃ij − S̃ijS̃ij

)
, (7.16)

and E is

E =
1

2

(
W̃ijW̃ij + S̃ijS̃ij

)
. (7.17)

The tensors W̃ij and S̃ij are the rotation and strain tensors

S̃ij =
1

2

(
∂ũj

∂xi

+
∂ũi

∂xj

)
, (7.18)

W̃ij =
1

2

(
∂ũj

∂xi

− ∂ũi

∂xj

)
. (7.19)
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Figure 7.10: Mean, rms and shear stress profiles. Dash-dotted line (blue), C = 1/6,
(16, 64, 16); dashed line (red), C = 1/6, (24, 128, 24); dotted line (black), C = 2/3,
(32, 64, 32); green line (solid) C = 1/6, (32, 128, 32); symbols full channel DNS
[58]. To look at the effect of refining the mesh while keeping the subgrid resolution
constant the blue, red and green lines can be compared. To look at the effect of
keeping the physical size of α2

k constant while refining the mesh (hence increasing
the subgrid resolution) the blue and black lines can be compared.

130



X

Y

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

8.0E-02
4.0E-02
0.0E+00

-4.0E-02
-8.0E-02

(a) DNS

X

Y

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

8.0E-02
4.0E-02
0.0E+00

-4.0E-02
-8.0E-02

(b) NS-α

Figure 7.11: Contours of the instantaneous spanwise velocity for the minimal chan-
nel for the (32, 128, 32) mesh.

The parameter Q is often used to identify coherent structures in a turbulent flow

and measures the relative strength of rotation vs. strain [14]. The parameter FCS

is then a normalized measure of rotation vs. strain with

−1 ≤ FCS ≤ 1. (7.20)

By looking at PDFs of FCS we can get an idea of the distribution of the flow struc-

tures. These PDFs are shown in Figure 7.12 for two wall-normal locations. The

first, at y+ ≈ 18 is in the buffer layer, while the second, at y+ ≈ 85 is in the upper

buffer or lower logarithmic region. We can see that for the full channel when a

model is not used there is a narrower distribution of flow structures as compared to

the minimal channel indicating the coarse resolution used for the full channel fails

to capture the full range of FCS (assuming the minimal and full channels would

have roughly the same PDFs at equivalent resolutions). When the NS-α model

is used the distribution in the buffer layer is too wide, indicating the intermittent

nature of the flow (in fact part of this may be because the buffer layer is most

likely closer to the wall for the default NS-α model, so at y+ = 18 we are already

outside the buffer layer). On the other hand the PDF farther from the wall is in

better agreement with the DNS, indicating the model influences the flow structures

mostly in the near-wall region on this fine mesh. For the full channel we also show

results for the NS-α model with a wall-normal damping function (the specific func-

tion will be discussed later). The important aspect to take note of here is that with

wall damping the NS-α model produces PDFs on a coarse mesh that are in good

agreement with those without a model for the minimal channel (mesh II) at both

wall-normal locations. Because the minimal channel has a finer mesh than the full
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Figure 7.12: FCS PDFs at two different wall normal locations. Blue line, minimal
channel DNS (mesh II); black line, minimal channel NS-α (mesh II); green line, full
channel no model; red line, full channel NS-α with damping. Meshes are given in
Tables 7.1 and 7.3 for the full channel and minimal channel respectively.

channel (compare Tables 7.1 and 7.3) this indicates the NS-α does a good job of

capturing vortex structures at a coarser grid resolution, in qualitative agreement

with other studies [44, 32]. While concrete conclusions could only be made with a

full channel DNS and using a more thorough investigation of definitions of coherent

structures, these preliminary results do indicate there is a clear benefit to using the

model with regards to statistics of flow structures.

As discussed earlier in Section 4.2 the subgrid energy transfer term, TSGS = m̃ij∂jũi,

is important in the assessment of a subgrid model because it represents the energy

transfer from the resolved to subgrid scles. In this section α2
x and α2

z are constant,

while α2
y is zero, and we can split the energy transfer into the source/sink term

(TSGS) and redistribution term (see Equation (4.21)). Plots of TSGS as a function

of the wall normal distance are shown in Figure 7.13. Both the total transfer due

to the mij term and the individual contributions from the Ãij, B̃ij and C̃ij terms

(see eg. (4.16)) are shown. Note that the contributions from both the Ãij and B̃ij

terms are net dissipative, while the C̃ij term produces net backscatter. For all three

terms the instantaneous values (not shown) fluctuated about these mean values by

an order of magnitude, exhibiting both forward transfer and backscatter.

In Figure 7.13 for the case where C = 1/6 (filter width of twice the grid size)

the minimum subgrid transfer (or maximum SGS dissipation) is T+
SGS ≈ −0.06
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Figure 7.13: Energy transfer T+
SGS for two different subgrid resolutions. Dashed

line (red), T+
SGSA; solid line (blue), T+

SGSB; dash-dotted line (green) T+
SGSC ; dotted

(black), total.

which is in good agreement with that reported in the literature from filtering DNS

data for a channel flow at the same Reynolds number with the same filter [41, 109].

This is interesting because, while it is tempting to try to improve the performance

of the NS-α model by adding dissipation, as is the usual remedy for non-dissipative

model, this result suggests that is not the correct approach for this particular prob-

lem. The main problem instead is that the dominant physics is too close to the

wall. The peak transfer in our simulations occurs at y+ ≈ 5, as compared to that

in the literature at y+ ≈ 10.

For the C = 2/3 case (filter width four times the grid size), the net transfer

switches from dissipative very close to the wall (y+ ≈ 5) to backscatter farther

away (y+ ≈ 12). This is technically incorrect as the filtered DNS results in the lit-

erature demonstrate the net transfer should always be dissipative. It is interesting

that although the physical size of α2
k is the same in both cases, the energy transfer

with C = 2/3 is substantially higher than for the C = 1/6 case. This may be

because on the finer mesh the velocity gradients are well resolved, thus the subgrid

force itself may be higher.

7.5.2 Vorticity Fluctuations

The normalized vorticity fluctuations, ω+ = ωrmsν/u2
τ , are shown in Figure 7.14

for the (24, 64, 24) and (32, 128, 32) meshes, both use C = 1/6. Again the mini-

mal channel DNS is in good agreement with the data from the full channel DNS

[58], while the NS-α model significantly overpredicts the streamwise and spanwise
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vorticity fluctuations very close to the wall. The peak in the streamwise vorticity

fluctuation at the edge of the buffer layer (at y+ ≈ 20 for the DNS) is much closer to

the wall for the NS-α model (here at y+ ≈ 9) and higher in magnitude. As we men-

tioned earlier, this peak is indicative of the streamwise vortices in the buffer layer

[58]. This indicates the streamwise vortices are stronger for the NS-α model (which

is expected also from the high vertical and spanwise velocity fluctuations) and that

the viscous layer is very thin, bringing the buffer layer closer to the wall. This is

reflected also in the vertical vorticity fluctuations, which peak too close to the wall.

The high streamwise vorticity peak at the wall for the NS-α model was partic-

ularly surprising because, according to the streamwise vortex model of Kim et al.

[58], the ratio between the streamwise vorticity peak at the wall to that in the buffer

layer should be ≈ 1.3. Here we have instead a ratio of ≈ 2 (taking the peak at

y+ ≈ 10 to be the buffer layer vortices). The wall value of the streamwise vorticity

for the NS-α model is ω+
x |w ≈ 0.4, twice that in the DNS where ω+

x |w ≈ 0.18. This

discrepancy can be accounted for by including a vortex tilting term to analyze the

NS-α model results. Streamwise vorticity can be created by tilting of the spanwise

vorticity into the streamwise direction, as can be accomplished for example by the

ωz
∂u
∂z

term in the spanwise vorticity equation. For the NS-α model this term is

augmented by the ωz
∂uST

∂z
. We can compare the two by writing the tilting term for

the Navier-Stokes equation as

ωNS
tiltx ≈ ωNS

z

(
∂u

∂z

)NS

, (7.21)

and that for the NS-α equation as

ωα
tiltx ≈ ωα

z

(
∂ũ

∂z

)α

+ ωα
z

(
∂uST

∂z

)
. (7.22)

Although we do not know the spanwise velocity gradient, ∂u/∂z, close to the wall

the most significant contribution to this term would be from the streaks, thus we

take this velocity gradient to be proportional to the rms streamwise velocity fluctu-

ation divided by the streak spacing. The streak spacing can be measured from the

two point correlation Ruuz [58], which is shown in Figure 7.15 for both the present

minimal channel DNS and the NS-α model results. We can see the average streak

spacing is narrower with the NS-α model. At y+ ≈ 7 the minimum in Ruuz is at

L+
z ∼ 20 with the model, indicating a streak spacing of L+

z ≈ 40. In compari-

son, the DNS here has a streak spacing of L+
z ≈ 80. In comparison, for the full
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Figure 7.15: Two point correlations in the spanwise direction, left panel is DNS
and right panel is the NS-α model. Solid line is at y+ ≈ 7, dashed line is y+ ≈ 18.

channel DNS in the literature it is L+
z ≈ 100. For the NS-α model the spacing is

too small by about a factor of two. It is not clear at this point why this is the case 3.

Returning to our streamwise vortex model, and using the streamwise velocity values

from Figures 7.9 and 7.10, for the minimal channel DNS ∂u/∂z is approximately

2.7/80 = 0.035 while for the NS-α model it is 2/40 = 0.05. If we then take the con-

tribution for the spanwise gradient of the Stokes velocity (∂zu
ST ≈ ∂z (α2

z∂
2
zzũ) to

be proportional to (α2/h2
z)(dũ/dz)α we arrive at the following relationship between

the two source terms

ωα
tiltx

ωNS
tiltx

=
ωα

z (dũ/dz)α(1 + α2/h2
z)

ωNS
z (dũ/dz)NS

(7.23)

Substituting (dũ/dz)α/(du/dz)NS ∼ 0.05/0.035, α2/h2
z ≈ 1/6 and ωα

z /ωNS
z =

0.48/0.38 (wall values from Figure 7.14) into Equation (7.23) we arrive at

ωNS
tiltx

ωα
tiltx

= 2.1 (7.24)

3One possibility is, given that the streak spacing is believed to emerge from a secondary
instability of the Tollmein-Schlicting wave (Jimenez pg. 219 [53]), the spacing we see here may be
related to possible differences that would arise through a stability analysis of the NS-α equation as
compared to the same anaylysis for the Navier-Stokes equation. For example, it has been shown
that the model lowers the critical wavenumber for baroclinic instability in a two-layer quasi-
geostrophic model. Although the initialization here was not representative of a true transition
process, there were significant differences observed in how the flow became turbulent from the
perturbed laminar state when the NS-α model was used, as compared to without.
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which agrees well with the values from the minimal channel of 0.38/0.18. While this

is a very simple model, and does not explain other features, for example the high

spanwise fluctuations near the wall, it is still enlightening. The streamwise vortices

and streaks are considered the major physical features of the near-wall region at

this Reynolds number, and streamwise vortices are strongly correlated with skin

friction [66]. Because the skin friction is also so high for the NS-α model, we felt if

the problem with the streamwise vorticity could be corrected, other anomalies may

follow suit.

To investigate the streamwise vortices in the NS-α model further, in Figure 7.17 we

compare probability density functions (PDFs) of the vorticity angle θ = arctan(ω̃y/ω̃x)

at three different heights from the wall. This is loosely defined as the streamwise

vortex inclination angle, a sketch is shown in Figure 7.16. For the DNS the PDFs

were measured using the instantaneous vorticity vector on three x − z planes, at

vertical locations of y+ ≈ 7, y+ ≈ 18 and y+ ≈ 72. The first is in the viscous

sublayer, the second is in the buffer layer, and the last is in the upper buffer or

lower logarithmic layer. In the viscous sublayer we can see two peaks in the PDF

at ±90o corresponding to the low-speed streaks. (Consider that alternating bands

of high and low speed u velocity in the spanwise direction will produce vertical vor-

ticity). As you move into the buffer region a shoulder appears near 25o/−155o that

corresponds to the streamwise vortices, and farther from the wall we see the peaks

merge into a broader peak around +45o/ − 135o indicating the average inclination

angle of the streamwise vortices (and possibly hairpin vortex legs) in this region.

These results are in good agreement with those from the literature [94].

For the NS-α model the PDFs were initially measured at the same y+ values as

in the DNS. They did not show any evidence of low-speed streaks, but all peaked

in the range 40o − 50o. Additional measurements were then made closer to the
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Figure 7.17: Streamwise vorticity PDFs. Left column is DNS and right column is
NS-α model.
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wall, and are shown in Figure 7.17. At y+ ≈ 5.4 we can see there are shoulders

near θ ≈ ±90o and more distinct peaks at θ ≈ +20o/− 160o, the former indicating

streamwise streaks and the latter indicating streamwise vortices. PDFs measured

closer to the wall (not shown) had a single peak at θ ≈ 0 (zero vertical vorticity,

as required by the no-slip condition at the wall). Thus we did not see any PDFs

indicating a region dominated by low-speed streaks (similar to the one at y+ ≈ 7

for the DNS). For the NS-α model the PDFs farther from the wall (beyond about

y+ ≈ 8) peak at ≈ +45o/− 135o which is in good agreement with the DNS farther

from the wall.

These results suggest that the ω̃z
∂uST

∂z
term in the NS-α model provides an addi-

tional mechanism for producing vorticity in the near-wall region by tilting spanwise

vorticity directly into the streamwise direction. This is physically incorrect in two

respects. First, vortex tilting and stretching processes should occur farther away

from the wall, in the buffer region, not in the viscous sublayer which is what we

see here. Second, the path of streamwise vorticity creation is incorrect. In the lit-

erature the streamwise vorticity comes from first lifting up the transverse vorticity

into the buffer layer and then tilting of the vorticity into the streamwise direction

[53], while here we have a direct tilting of spanwise vorticity into the streamwise

direction. On the other hand, the ability of the model to alter the vorticity field

directly is interesting and possibly advantageous.

7.6 Results with the alternative α2
k and with damp-

ing

The results in the previous section indicate damping of α2
k in the near wall region

may be necessary. In the study by Zhao and Mohseni [153] they found in an a priori

study using a dynamic procedure that α followed a linear variation from zero at

the wall to a constant value of 0.02 around y+ ≈ 10. In a later study [152] they

tested this distribution for α (now turning off the dynamic procedure and fixing α

to follow the specified profile), but their results were not very promising. Similar to

what we found, their spanwise velocity fluctuations were excessively high. This is

not surprising because their α distribution was determined using an a priori study,

which does not account for the feedback of the model on the flow. For example, in

the previous section we saw that the effect of having the streamwise vortices closer

to the wall is to increase skin friction. This is the type of effect you will not see in
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an a priori study.

Following Zhao and Mohseni we also used a linear variation of α and αk from

zero at the wall to a constant value at a specified wall-normal distance. However,

the damping was applied over the region y+ < 60 instead of the region y+ < 10

that was used in their study. This choice was motivated by the study by Jimenez

that demonstrated in the region y+ < 60 the low-speed streaks are a critical part

of the autonomous cycle of near-wall turbulence [54]. Thus we consider this to be

the ‘streak-affected’ region, and since the problem is related to the velocity gra-

dients from the streaks, ∂ũ/∂z, it is logical to apply the damping factor through

this region. Other values were tested along with exponential damping profiles in-

stead of the simple linear one. The shape of the damping profile was found to be

insignificant, with the wall-normal distance being the important factor. Damping

over the streak affected region was found to consistently provide the best results.

The damping function used was

f(y+) =

{
(y+/60)

2
if y+ ≤ 60

1 otherwise.
(7.25)

Results with damping are shown in Figure 7.18 for the isotropic and anisotropic

models. For the isotropic model α2 was specified as α2 = f (y+) (0.02)2, where

f (y+) is given by equation (7.25) and 0.02 is the value of α away from the wall

determined by Zhao and Mohseni using a dynamic procedure. For the anisotropic

model α2
k = f (y+) Ch2

k was used for α2
x and α2

z while α2
y was set to zero. Initially

a C value of 1/6 was used such that it is a damped version of the default model.

However, with this value the logarithmic law was significantly underpredicted (in

terms of the y-intercept), so the results reported here used C = 1/12. Even with

this value the skin friction is still overpredicted. To have the same physical equiv-

alent α for the isotropic and anisotropic models you would need to use C = 1/24

or ∆ = h. This was tested (results not shown) and it did bring the mean velocity

profile into good agreement with the DNS data, but it does not seem to make good

physical sense because this would mean the filter width is equal to the grid spacing.

We can see in Figure 7.18 that damping removes the problem with the high spanwise

fluctuations, and improves some quantities slightly (eg. mean flow profile, shear

stress and streamwise velocity fluctuations) but overall the differences between the
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no model and NS-α model results are very small when damping is used. Changes in

the numerical scheme or grid resolution would probably impact the results within

a similar degree as the model. Similar conclusions can be made for the vorticity

fluctuations in Figure 7.19. The damping factor does remove the high peak in

the streamwise vortices near the wall, but also reduced the strength of the vortices

in the buffer layer, such that they are now too weak, similar to the no model result.

Results with the Leray model (with ∂jũj enforced) and with the flow-dependent

α2
k are shown in Figures 7.20 and 7.21. Note that no damping was used for the

Leray model. For comparison results with no model and the default NS-α model

are also shown. The no model and default NS-α model results were shown earlier

at the beginning of this chapter. We can see in Figure 7.20 that the results with

the default Leray model (only the first two terms, Aij and Bij in the subgrid stress

are significantly different than those from the default NS-α model. Although we

have not focused specifically on the Leray model in the thesis, it provides a means

of isolating the problem with the NS-α model. With the Leray model the predic-

tion of the mean flow is improved as compared to the no model case but there is

only a slight improvement to the RMS profiles. It should be noted that there is no

anisotropic Leray model previously reported in the literature. Channel flow results

with the isotropic Leray model were presented by van Reeuwijk [139] following a

different methodology (using the unsmoothed velocity as the dependent variable).

In that case it was found the model generated a thick boundary layer near the wall,

and this was due to enforcing continuity using the unsmoothed velocity. Here we

enforce continuity with the smoothed velocity, and do not encounter that problem.

However, we did find the Leray model to be less stable numerically than the NS-α

model. For example we were unable to run the model over as wide of a range of α2
k

values as for the NS-α model.

Results with the flow-dependent definition of α2
k are also shown in Figure 7.20.

In this case the mean flow gradient was not considered in the calculation of α2
x, a

similar strategy is used in implementing the structure function model in boundary-

layer flows [22]. The results with the flow-dependent definition are disappointing

in that they remove the near-wall problem, but do not yield a visible improvement

as compared to the no model case. In some cases (eg. vertical fluctuations) the

results with the Leray model are better.

The vorticity fluctuations are shown in Figure 7.21. Using the flow-dependent
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Figure 7.18: Mean flow, rms and shear stress profiles; no model (solid black);
isotropic NS-α with damping (dashed red); anisotropic NS-α with damping (dash-
dot blue). Symbols are DNS data [58].
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definition of α2
k removes the problematic high streamwise vorticity fluctuations in

the region y+ < 10 but also reduces the strength of the streamwise vorticies farther

from the wall such that they are now underpredicted. It is disappointing that none

of the models show an improvement in predicting the vorticity fluctuations over the

no model result.

7.7 A preliminary look at nonlinear activity

The NS-α model is an example of a nonlinear regularization model 4. In theory

these models smooth the nonlinear term in such a way that the energy transfer to

the small scales is attenuated. We would expect evidence for this to be found for

example in a steeper energy spectrum, although the recent work by Graham et al.

[37, 36] has shown this may not be the case for the NS-α model. In the present

thesis it was not possible to test the scaling arguments discussed in Chapter 2 be-

cause this requires very fine mesh resolutions. The study by Graham et al. [36]

used (2048)3 mesh points for box turbulence, far beyond our resolution capabili-

ties. In addition, neither the channel flow or cavity flow are appropriate test cases

for a careful validation the theoretical results based on isotropic turbulence theory,

although a future study of energy transfer in the channel flow could be interesting

(c.f. Domaradzki [18] for a study of interscale interactions in wall-bounded flows

using the Navier-Stokes equations.).

The streamwise velocity spectrum is shown in Figure 7.22 for the full channel.

Other spectra that were measured were similar. From this spectrum we can see

the model does not damp the high wavenumber region, but instead has reduced

energy at the lower wavenumbers (this was found also in the study by Graham et

al. for some cases [37]). It is possible that this is related to the observation [10]

that vortex structures are shorter and fatter in 3D NS-α turbulence than in regular

Navier-Stokes turbulence.

Both the spectrum without the model and the one with the NS-α model exhibit

a small inertial subrange. The latter being at higher wavenumbers. We also see

the spectrum with the model begins to drop off around the wavenumber kα = 1/αx

4Mathew et al.[86] define a regularization model as ‘an ad hoc modification of a model problem
to keep it well behaved at all times’. For a turbulent flow the solution can diverge when the small
scales are not accounted for, thus regularization in this context refers to a method to prevent
divergence.
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Figure 7.20: Mean flow, shear stress and rms profiles; no model (solid black); NS-α
with α2

k based on the mesh (dashed red); NS-α with flow-dependent α2
k (solid blue);

Leray model with α2
k based on the mesh (dash-dotted green). Symbols are DNS

data [58].
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Figure 7.21: RMS vorticity profiles. Results with no model (solid black); NS-α with
α2

k based on the mesh (dashed red); NS-α with flow-dependent α2
k (solid blue); Leray

model with α2
k based on the mesh (dash-dotted green). Symbols are DNS data [58].
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Figure 7.22: Streamwise spectra for the full channel measured at y+ ≈ 80. Black
crosses are DNS [58]; blue is without a model; black dashed is the default NS-α
model. A slope of −5/3 is also shown.

(here kα = 6.2) similar to what has been seen in other studies [10].

To investigate the possibility that the NS-α model exhibits altered nonlinear prop-

erties as compared to the Navier-Stokes equations we looked at the relative helicity

PDFs. The relative helicity is a dimensionless quantity defined as [118]

h =
u · ω
|u||ω| . (7.26)

The relationship between nonlinearity and helicity can be seen when we consider

that in rotational form the Navier-Stokes equation can be written

∂u

∂t
+ ω × u = −∇

(
p +

1

2
u · u

)
+ ν∇2u. (7.27)

For the NS-α model in the LES-template we can write

∂ũ

∂t
+ ω̃ × ũ = −∇

(
p +

1

2
ũ · ũ

)
+ ν∇2ũ − H−1

(
∂mij

∂xj

)
. (7.28)

Combining the nonlinear term ũ× ω̃ with the definition of relative helicity in terms

of the smoothed velocity and vorticity (which we will denote by h̃) we arrive at

(ũ · ω̃)2

|ũ|2|ω̃|2 +
(ũ × ω̃)2

|ũ|2|ω̃|2 = 1. (7.29)
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Figure 7.23: PDFs of the relative helicity, (a) minimal channel; DNS (meshII), blue;
default NS-α, red; (b) full channel; NS-α with damping (anisotropic model), red; no
model, green. Blue line is from the minimal channel DNS, shown for comparison.

This relationship is often used to relate regions of high helicity to a depleted non-

linearity, and long-lived coherent structures [118]. Given that the NS-α equations

are described as having a reduced nonlinearity [17], we might expect they may

also have high relative helicity. The PDFs shown in Figure 7.23 were measured

away from the walls at y+ ≈ 90. We can see for the minimal channel the default

NS-α model (red) has two shoulders near +/ − 1 indicating a higher probability

of increased helicity relative to the Navier-Stokes equations (blue). Values of h̃2

are given in Table 7.4. A uniform distribution would correspond to h̃2 = 0.33.

For the full channel we can see when a model is not used the PDF is too peaked

and h̃2 is too low, but when the damped NS-α model is used the results are closer

to the minimal channel DNS. Because we expect the minimal channel DNS to be

representative of a full channel at a finer mesh spacing, this suggests that the NS-α

model can produce helicity statistics on a coarse mesh that are comparable to those

from a finer mesh without a model. We also carried out a few simulations with a

standard Smagorinsky model with wall damping for the full channel, and found

they did not improve the helicity statistics as compared to the no model case.

7.8 Summary

The results presented here show that the NS-α model with a mesh-based definition

of α2
k (anisotropic) does not perform well in that it significantly overpredicts the
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model h̃2

DNS (minimal channel) 0.31
NS-α (default, minimal channel) 0.37

NS-α (damping, full channel) 0.29
no model (full channel) 0.21

Table 7.4: Values of h̃2.

skin friction, and produces erroneous near-wall behavior that is reflected primarily

in high spanwise velocity fluctuations and high streamwise vorticity fluctuations.

A possible explanation for this was proposed, which was that the vortex tilting

term in the model was generating streamwise vorticity very close to the wall (in

what should be the viscous sublayer) due to interaction between the model and

the streaks. Damping through the streak-affected region was found to remove the

problem, but the results did not yield a noticeable improvement over the no model

case. It should be pointed out that the anisotropic model was able to achieve

a numerically stable result, something which we found was not possible with the

isotropic one when α2 was based on the grid volume.

The poor performance of the default NS-α model with regards to skin friction

is not entirely unexpected. Many models that do not incorporate either a dynamic

procedure or a sensor to detect energy build up (along with an appropriate drain)

also have difficulty in this flow. Future directions could be to either develop such

a sensor within the NS-α framework, or move towards higher Reynolds number

boundary layers, where the near wall region is not resolved. In the latter case ap-

proximate boundary conditions for the wall could be used (c.f. Sagaut [120]).

On the other had the ability of the NS-α model to reproduce the statistics of the

coherent structure function and resolved flow helicity on a mesh that is coarser (in

terms of mesh sizes in + units) than the DNS by a factor of 2− 4 in each direction

is very promising. We found the computational overhead for the NS-α model in

the channel flow to be about 30% for both the box and FFT filters, in agreement

with other studies [105, 32]).
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Chapter 8

Conclusions and Future Work

8.1 Outcomes of the thesis

At the time this thesis was proposed the NS-α model was emerging as a promising

alternative to strictly dissipative closures. At that time (and continuing to the

present day) the bulk of the literature was of a theoretical nature with simulation

results available for only a few cases, isotropic turbulence [10, 92], the transitional

mixing layer [32] and the wind-driven gyre [51]. Simulations of turbulent channel

flow were carried out later by Zhao and Mohseni [153, 152], and more recently the

model was used as a parameterization for mesoscale eddies [105, 44, 45]. All of

the above studies used the isotropic equations with constant α2 with the exception

of Zhao and Mohseni [152] who used the isotropic NS-α equations with an α2 dis-

tribution determined using a dynamic procedure in an a priori analysis. Similar

to the situation found here, their results showed excessively high fluctuations in

the spanwise velocity, though no explanation was given. The present thesis con-

tributes to this picture by: (i) developing a subgrid model for the general case of

an anisotropic and/or variable model parameter α2
k, (ii) showing that the source

of the poor performance in the turbulent channel flow when a mesh-based defini-

tion of α2
k is used is due to interaction between the model and the velocity streaks,

thus damping through the streak-affected regions leads to improved results, (iii)

proposing a preliminary (albeit ad-hoc) definition of α2
k that is not solely depen-

dent on the mesh-spacing. This definition worked well for the lid-driven cavity flow.

Interpretation of the results in this thesis was at times confounded by the com-

plexity of the test cases chosen. To simplify analysis of the results it would have

been easier to build these test cases from simpler elements. For example, a turbu-
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lent channel flow can be built by starting with a homogeneous shear flow [119] to

look at shear production and anisotropy, before adding walls. On a similar note,

the interaction between the NS-α model and solid walls could be carried out first

without the complicating effects of the shear flow by following the study by Perot

and Moin [104]. In this study they looked at the effect of solid boundaries on tur-

bulence by using two separate types of boundary conditions in turn. The first was

a free-slip wall (to investigate kinematic blocking), and the second was a permeable

wall (to investigate the no-slip condition without the kinematic blocking).

It should also be pointed out that the first two terms in the anisotropic subgrid

stress developed in this thesis (either Equation (4.16) or Equation (4.17)) can be

used as an anisotropic Leray model if one enforces ∂jũj = 0. In fact, enforcing

∂jũj = 0 was one of the recommendations from the study by Van Reeuwijk on the

Leray model in wall-bounded flows [140]. We found this anisotropic Leray model

could be used in a turbulent channel flow without additional wall-damping.

8.2 Future directions regarding NS-α turbulence

Recent studies [37, 36, 33] have contributed significantly to our understanding of the

NS-α equations as a turbulence model. Recall that the NS-α equations were found

to generate rigid-rotators that do not participate in the energy cascade, leading to

a shallower energy spectrum than that of the Navier-Stokes equations. However,

a detailed understanding of interscale energy transfer in the NS-α model is still

lacking. Analytical arguments (see Section 2.1.3) have yet to be verified through

numerical simulations, and in fact are based on our understanding of the relevant

triad interactions for the Navier-Stokes equations, not the NS-α equations. It would

be useful to look into this in more detail as it may help guide our understanding of

model results, or assist in the development of an appropriate energy drain to make

the model more robust.

In the present thesis we have taken the approach of solving the NS-α equations with

the smoothed velocity ũ as the dependent variable. One question then is, what is

the implication of the resolved energy norm
∫

V
uiũi dV when we solve the equations

in this manner? Recall the equation for the resolved flow energy, ẽ = ũiũi/2,

∂ẽ

∂t
+

∂

∂xj

(ẽũj) = − ∂

∂xi

(ũip̃) + ν
∂2ẽ

∂x2
k

− ν
∂ũi

∂xk

∂ũi

∂xk

− ∂

∂xj

(ũim̃ij) + m̃ij
∂ũi

∂xj

. (8.1)
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If we consider the inviscid case for simplicity and integrate over a control volume

with periodic boundary conditions the conserved energy is∫
V

∂ẽ

∂t
dV =

∫
V

m̃ij
∂ũi

∂xj

dV. (8.2)

Recall that for the NS-α equation with u as the dependent variable for the case of

inviscid flow with periodic boundary conditions the conserved energy is∫
V

∂ẽ

∂t
dV +

∫
V

∂

∂t

(
α2

2
|∇ũi|2

)
dV = 0. (8.3)

Subtracting Equation (8.2) from (8.3) yields∫
V

∂

∂t

(
α2

2
|∇ũi|2

)
dV = −

∫
V

m̃ij
∂ũi

∂xj

dV (8.4)

from which we can see that the subgrid transfer term m̃ij∂ũi/∂xj can be viewed as

providing a source term to the equation for the resolved flow gradients, and therefore

the resolved flow enstrophy,
∫

V
ω̃ · ω̃. In light of this it might be useful in the future

to look more closely at how the NS-α model affects the resolved flow vortices (see

da Silva et al. [13] for a study of this nature for other subgrid models). Studies in

this direction have practical implications as well, for example in applications where

it is the size, strength and location of the fluid vortices that is of interest.

8.3 Application of the model to practical prob-

lems

The question remains as to what types of problems we expect the NS-α model to be

a useful approach. In the present thesis we have looked at the performance of the

NS-α model in wall bounded flows where the approach taken has been to resolve

the near-wall dynamics. We found that for the channel flow reasonable results can

be obtained when we use a damping function. Though the mean flow and rms

profiles are not better than those found using other approaches, the NS-α model

also does not contain a sensor and drain mechanism which other models found to

be successful do [29, 128]. Both the lid-driven cavity and the flow structures in the

channel flow were found to be well captured with the NS-α model on a coarse mesh.

In this respect the model performance is consistent with other studies [32, 45]. The

picture emerging is that the model is promising for flows where integrity of the flow
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structures would be compromised by a dissipative method (eg. growth and merg-

ing of vortex structures in mixing layer or boundary layer transition) and this poor

resolution of the flow structures would directly impact the quantities of interest

(eg. sound pressure level due to flow-resonant interaction between a mixing layer

vortex and an acoustic field).

In all of the potential future studies a question that needs to be addressed is whether

it is useful to interpret the model parameter as a filter width and tie it directly to

the mesh. The problems encountered in this thesis (numerical oscillations for the

lid-driven cavity and high skin friction for the channel flow) both arose when a

simple mesh-dependent definition of α2 (isotropic) or α2
k (anisotropic) was used.

On a similar note Graham et al. [37] found for isotropic turbulence that choosing α

to correspond to a length scale in the inertial subrange (as is done when following

an LES methodology) led to high energy in the small scales.

Moving away from a simple interpretation of the model parameter as either a filter

width or length scale in the inertial subrange would mean using another approach

to determine α2
k. For example, returning to the definition of α2

k as the mean-squared

particle displacement from an average trajectory, solving an advection equation for

α2
k within the channel flow may be one method to at least generate insight into

how particle trajectories are altered by the presence of a solid wall. For the more

general case of a complex flow, a dynamic procedure may be necessary. While using

a dynamic procedure or solving an advection equation may be too expensive for

practical implementation, the α2
k values determined using these methods could be

used to generate insights into new modeling strategies.
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Appendix A - Details of the Variations

The variation of the velocity and volume element are based on the discussion in

Bhat’s thesis [3] (although Bhat works with the density field, the mathematics is

similar for the volume element).

The velocity variation is defined as

δu :=
d

dε

∣∣∣∣
ε=0

uε (A-5)

with

uε =η̇ε ◦ (ηε)−1

=η̇ ◦ (ηε)−1 + εδη̇ ◦ (ηε)−1.
(A-6)

Differentiating with respect to ε and setting ε = 1

δu = ∇η̇ · d

dε

∣∣∣∣
ε=0

(ηε)−1 + δη̇ ◦ η−1. (A-7)

The second part of (A-7) is the rate of change of the trajectory variation for the

original label. We would like to find an expression for this in terms of the trajectory

variation at a field point, w = δη ◦ η−1. To do this follow Bhat [3] and calculate

the time derivative of w

∂w

∂t
= δη̇ ◦ η−1 + ∇δη · ∂

∂t

(
η−1
)
. (A-8)

To evaluate the last derivative we make use of the property (where Id is the identity)

η ◦ η−1 = Id (A-9)

and differentiate both sides with respect to time

∂

∂t

(
η−1 ◦ η

)
= 0 (A-10)

∂η−1

∂t
◦ η + ∇η−1 · ∂η

∂t
= 0. (A-11)
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Composing both sides with η−1,

∂η−1

∂t
◦ η ◦ η−1 + ∇η−1 · η̇ ◦ η−1 = 0 (A-12)

which gives
∂η−1

∂t
= −∇η−1 · η̇ ◦ η−1. (A-13)

Going back to (A-8) we now have an expression for δη̇ ◦ η−1,

∂w

∂t
= δη̇ ◦ η−1 −∇δη · ∇η−1︸ ︷︷ ︸

∇w

· η̇ ◦ η−1︸ ︷︷ ︸
u

(A-14)

or,

δη̇ ◦ η−1 =
∂w

∂t
+ u · ∇w (A-15)

which tells us that the rate of change of the trajectory variation with the label fixed

(unvaried label is denoted by the η−1) is given by the substantial derivative.

The first part of the velocity variation in (A-7) is the change with respect to the

label. To evaluate this we need to find

d

dε

∣∣∣∣
ε=0

(ηε)−1 (A-16)

This can be done by using

(ηε)−1 ◦ (ηε) = Id, (A-17)

and differentiating both sides

d

dε

∣∣∣∣
ε=0

(ηε)−1 ◦ η + ∇η−1 · d

dε
(ηε)︸ ︷︷ ︸
δη

= 0 (A-18)

Moving the last term over to the right hand side and composing both sides with η−1

(or in other words, applying the back to labels map, which brings our independent

variable back to the field position x instead of the label a), yields

d

dε

∣∣∣∣
ε=0

(ηε)−1 = −∇η−1 · δη ◦ η−1. (A-19)

This is the same as equation (20) in Bretherton [5] where it is consdered the rela-

tionship between infinitesimal changes between the forward mapping η and those
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incurred in the inverse mapping η−1. Putting this together with the last term in

(A-7)

δu =
∂w

∂t
+ u · ∇w −∇η̇ · ∇η−1︸ ︷︷ ︸

∇u

·δη ◦ η−1︸ ︷︷ ︸
w

. (A-20)

Finally we have arrived at the expression for the velocity variation

δu =
∂w

∂t
+ u · ∇w − w · ∇u = 0. (A-21)

For variations of the volume element start with the expression

D ◦ η =
1

det∇η
. (A-22)

To take variations of the LHS of equation (A-22) write

Dε ◦ ηε = D(ηε) + ε δD(ηε) (A-23)

differentiate with respect to ε

d

dε

∣∣∣∣
ε=0

(Dε ◦ ηε) =

[
∂D

∂ηε
· δη
]

ε=0

+ δD ◦ ηε|ε=0 (A-24)

=∇D · δη + δD ◦ η (A-25)

For the RHS of equation (A-22)

∂

∂ε

∣∣∣∣
ε=0

(
1

det(∇ηε)

)
= − 1

(det∇η)2
· ∂

∂ε

∣∣∣∣
ε=0

det(∇ηε) (A-26)

156



To differentiate the determinant a two-dimensional example will suffice

d

dε

∣∣∣∣
ε=0

(det∇ηε) =

∣∣∣∣∣∂δηx

∂a
∂δηx

∂b
∂ηy

∂a

∂ηy

∂b

∣∣∣∣∣+
∣∣∣∣∣ ∂ηx

∂a
∂ηx

∂b
∂δηy

∂a

∂δηy

∂b

∣∣∣∣∣ (A-27)

=
∂δηx

∂a

∂ηy

∂b
− ∂δηx

∂b

∂ηy

∂a
+

∂ηx

∂a

∂δηy

∂b
− ∂ηx

∂b

∂δηy

∂a
(A-28)

=det∇η
∂η−1

i

∂xj

∂δηj

∂ai

(A-29)

=det∇η
∂

∂xj

(
δη ◦ η−1

)
(A-30)

=det∇η · w. (A-31)

Putting the RHS and LHS together

δD ◦ η + ∇D · δη = − 1

det∇η
∇ · w. (A-32)

Composing both sides with η−1

δD = −∇D · δη ◦ η−1︸ ︷︷ ︸
w

−D∇ · w (A-33)

= −∇D · w − D∇ · w (A-34)

= −∇ · (Dw) (A-35)

For variations of the particle displacement covariance write D〈ξkξl〉/Dt in material

form

〈ξkξl〉 ◦ η = 〈ξkξl〉i (A-36)

where the subscript i denotes the initial value. This equation tells us the dis-

placement covariance is preserved along trajectories. Now vary both sides, and

differentiate with respect to ε noting that the RHS is constant

d

dε

∣∣∣∣
ε=0

(〈ξkξl〉ε ◦ ηε) = 0 (A-37)

which gives

∇〈ξkξl〉 · δη + δ〈ξkξl〉 ◦ η = 0. (A-38)
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Composing both sides with η−1

δ〈ξkξl〉 = −∇〈ξkξl〉 · w (A-39)
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Appendix B - Helmholtz equation solver for the
channel flow

In this Appendix the method used to solve the Helmholtz equation for the channel

flow will be described. For the channel flow the mesh spacing was constant in the

homogeneous directions x and z. This means when α2
k is based on the mesh spac-

ing, α2
x and α2

z are both constant. In some cases a flow-dependent definition of α2

was used. In these cases the plane-averaged values of α2
x and α2

z were used. For the

isotropic model α2 is a function of the vertical coordinate y only.

We begin with the Helmholtz equation in physical space, indicating the filtered

and unfiltered variables by φ̃ and φ respectively.

φ = φ̃ − α2
x

∂2φ̃

∂x2
− ∂

∂y

(
α2

y

∂φ̃

∂y

)
− α2

z

∂2φ̃

∂z2
(B-1)

After carrying out a Fourier transform in the periodic directions x and z we have

and equation for φ̂

φ̂ = ˆ̃φ + α2
xk

2
x
ˆ̃φ − ∂

∂y

(
α2

y

∂ ˆ̃φ

∂y

)
+ α2

zk
2
z
ˆ̃φ. (B-2)

Here φ̂ = φ̂(kx, y, kz) and ˆ̃φ = ˆ̃φ(kx, y, kz). Discretizing the vertical derivative using

finite differences

∂

∂y

(
α2

y

∂ ˆ̃φ

∂y

)
=

1

δyP

α2
y

∂ ˆ̃φ

∂y

∣∣∣∣∣
i,n,k

− α2
y

∂ ˆ̃φ

∂y

∣∣∣∣∣
i,s,k


=

1

δyP

[
α2

y|n
ˆ̃φ(kx, j + 1, kz) − ˆ̃φ(kx, j, kz)

yj+1 − yj

− α2
y|s

ˆ̃φ(kx, j, kz) − ˆ̃φ(kx, j + 1, kz)

yj − yj−1

]
(B-3)

. Equation (B-2) can now be written in the form

aP
˜̂
φP = aN

˜̂
φN + aS

˜̂
φS + Sφ, (B-4)
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with

aN =
1

δyP

[
α2

y|n
yj+1 − yj

]
(B-5)

aS =
1

δyP

[
α2

y|s
yj − yj−1

]
(B-6)

aP = 1 + α2
xk

2
x + α2

zk
2
z + aN + aS (B-7)

Sφ = φ̂. (B-8)

Equation (B-4) can be efficiently solved using an algorithm for tridiagonal matrices

(TDMA [12]) for each kx, kz. The solution variable ˆ̃φ(kx, y, kz) is transformed back

to physical space φ̃(x, y, z). The Fourier transforms and inverse transforms were

carried out using the routines in Numerical Recipes in Fortran [142]. The method

was tested on two and three dimensional problems with known analytical solutions,

such as a gaussian hump and a superposition of sinusoidal waves.
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