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Abstract

This thesis deals with credit risk modeling and related mathematical issues. In

particular we study first-passage models for credit risk, where obligors default upon

first passage of a “credit quality” process to zero.

The first passage problem for correlated Brownian motion is a mathematical

structure which arises quite naturally in such models, in particular the seminal

multivariate Black-Cox model. In general this problem is analytically intractable,

however in two dimensions analytic results are available. In addition to correcting

mistakes in several published formulae, we derive an exact simulation scheme for

sampling the passage times. Our algorithm exploits several interesting properties

of planar Brownian motion and conformal local martingales.

The main contribution of this thesis is the development of a novel multivari-

ate framework for credit risk. We allow for both stochastic trend and volatility in

credit qualities, with dependence introduced by letting these quantities be driven by

systematic factors common to all obligors. Exploiting a conditional independence

structure we are able to express the proportion of defaults in an asymptotically

large portfolio as a path functional of the systematic factors. The functional in

question returns crossing probabilities of time-changed Brownian motion to contin-

uous barriers, and is typically not available in closed form. As such the distribution

of portfolio losses is in general analytically intractable. As such we devise a scheme

for simulating approximate losses and demonstrate almost sure convergence of this

approximation. We show that the model calibrates well, across both tranches and

maturities, to market quotes for CDX index tranches. In particular we are able to

calibrate to data from 2006, as well as more recent “distressed” data from 2008.
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Chapter 1

Introduction

In many financial contracts, such as mortgages and corporate bonds, one of the

parties involved has contractual obligations which extend over several years. The

term “credit risk” refers to the fact that said party may prove unable to fulfill

these obligations. As evidenced by the ongoing sub-prime mortgage crisis in the

United States, the consequences of such failures, or “defaults,” can be severe and

widespread, extending far beyond those involved in the original transactions and

even crossing international borders. This crisis has also demonstrated that industry-

standard models for credit risk are simply not appropriate. These include models

used by large financial institutions to value complex contracts, as well as those

used by regulatory bodies to communicate the risk profiles of such contracts to less

sophisticated investors.

Central to credit risk applications are “default times.” These are instances when

an obligor defaults on some or all of its obligations. Mathematical modeling of

default times presents a challenging multivariate problem for several reasons. One

reason is that dependence between default times of various firms is quite significant.

The sources of this dependence could be a shared set of macroeconomic or industry

factors which influence firm values, or business relationships such as that between

an auto manufacturer and its suppliers. In addition quantities such as default rates

and correlations tend to evolve dynamically through time, for instance both tend to

be much higher during recessions. While a realistic dependence structure between

default times is crucial, it is often complicated by practical concerns. Large financial

institutions typically have exposure to a very large number of credits, and many

popular credit derivatives are based on underlying portfolios consisting of up to

125 obligors. This means that the dimension of many real-world applications is

quite high, and the trade-off between complexity of the model and computational
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efficiency is a recurring theme in the literature.

The exact joint distribution of default times is not always required in credit

risk applications. In many cases the distribution of the loss on a given portfolio is

sufficient. For example a portfolio manager will typically be interested in quantities

such as Value-at-Risk or expected losses. Mathematically the portfolio loss at a

given time t is represented as

L(t) =
N∑

i=1

Ei(1−Ri)I (τi ≤ t)

where N is the number of obligors in a given portfolio, Ei is the principal owed

by the ith obligor (often referred to as the exposure to the obligor), Ri is the

recovery rate for the ith obligor, τi is the default time for the ith obligor and I (A)

is the indicator of the event A. In practice recovery rates cannot be predicted with

certainty and should be treated as random variables. In addition recovery rates

tend to be correlated with default rates, which entails a further complication to the

modeling process.

In recent years credit risk has become the most vibrant field of research in math-

ematical finance. A major impetus for this activity has been the rapid growth in

the market for credit derivatives. At the present time the most liquid credit deriva-

tives are credit default swaps (CDS) and CDS index tranches. Loosely speaking a

CDS is an insurance contract against corporate defaults. In exchange for regular

premium payments, a buyer of protection is reimbursed for losses incurred as a

result of a specific default. Default swaps and their valuation are discussed in more

detail in Appendix A.

A CDS index tranche is an example of a collateralized debt obligation (CDO).

Loosely speaking a CDO allocates the cash flows accruing from a pre-specified port-

folio of credits to different investors. These underlying credits could be individual

mortgages, corporate bonds or even credit default swaps. The structure of CDOs

can be quite complex, here we attempt the briefest of introductions. The proce-

dure is to first define a series of “tranches” of varying levels of “seniority.” Each

tranche is defined by an “attachment” and “detachment” point. For example the

“mezzanine” tranche might have attachment and detachment points of 3% and 7%,

respectively. An investor in this tranche would not experience any losses until 3%

of the portfolio has defaulted. Our investor would then be responsible for absorb-

ing all subsequent portfolio losses, until their cumulative level has reached 7% of

the portfolio prinicpal. Upon the occurence of this event our investor’s contractual

obligations are essentially terminated. As the individual tranches of a CDO are
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subject to varying degrees of risk, they are compensated accordingly. For example

our mezzanine investor might receive a regular coupon payment equal to 2% of

the portfolio principal, while an investor in a tranche with an attachment point of

15% might only receive 0.5%. A CDS index tranche is simply a CDO where the

underlying portfolio is a set of 125 individual default swaps on investment-grade

corporations. CDOs and index tranches, as well as their valuation, are discussed in

more detail in Appendix A.

The application of any model requires the specification of certain parameters,

and appropriate methods for inferring or estimating the relevant parameters are

crucial. Index tranches are the only liquid product whose values are directly in-

fluenced by dependence between defaults in large portfolios, as such their prices

constitute an extremely valuable source of information regarding that dependence.

On this issue Finger [55] notes that the availability of index tranche quotes

. . . is the most direct indicator of the correlation of the names in the

collateral pool. It is desirable, then, to leverage this information to value

non-standard tranches on the index portfolios, as well as synthetic CDOs

backed by other portfolios. Of course, there is a basis risk involved

with applying correlations for the index portfolio to bespoke CDOs, but

this risk appears preferable to any of the more indirect methods [such

as historical default experience or time series of equity correlations] of

establishing correlations.

It is no surprise, then, that market participants have begun to view the ability of

a particular model to calibrate to market quotes for index tranches as a crucial

property.

1.1 Credit Risk Modeling

There is a vast literature on the modeling of default times, portfolio losses and

the valuation of credit derivatives. A good introduction is Bielecki and Rutkowski

[18], though with the rapid pace of innovation in this area several new approaches

are not included there. A fantastic source of cutting-edge research is the website

www.defaultrisk.com. This site is managed by a professional in the field, and

is essentially a repository working papers from both industry and academia. We

begin with a brief description of the industry-standard model for pricing CDX index

tranches.
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1.1.1 The Industry-Standard Model

Li [87] is generally credited with introducing copulae to the finance community,

and the Gaussian copula has now become the industry standard for pricing index

tranches and other related products. Note that in general the N -dimensional Gaus-

sian copula has N (N − 1) /2 correlation parameters. The industry-standard model

assumes that default times for the names in the portfolio have a Gaussian copula

with equal correlation ρ.

Having specified the copula, the joint distribution becomes uniquely specified

once marginal distributions are assigned. Construction of marginal distributions is

typically accomplished in practice by using a term structure of default swap spreads.

O’Kane and Turnbull [93] discuss a common procedure which assumes τi has the

same distribution as the first event in a Poisson process with piecewise constant

intensity. Intensities over various intervals are chosen to match the observed term

structure of swap spreads for a particular name.

It is well known that the equicorrelated Gaussian copula model provides a poor

fit to market quotes for CDS index tranches. In particular it is typically not possible

to determine one correlation parameter which prices all tranches at a single maturity

accurately. A common phenomenon when fitting the model to individual tranche

quotes is the so-called “correlation skew.” Given the spread on a particular index

tranche, the implied correlation for that tranche is the value of ρ which equates

the model-implied spread with the observed spread. If one successively computes

the implied correlation for each tranche, it is quite typical to find a pattern such

as that in the first row of the following table, taken from D’Amato and Gyntelberg

[36]

Tranche 0-3% 3-7% 7-10% 10-15% 15-30%

Implied Correlation 0.21 0.06 0.15 0.22 0.26

Base Correlation 0.25 0.3 0.35 0.42 0.62

A problem with the implied correlation approach is that in some cases, there may

be either multiple solutions (i.e. more than one correlation parameter which prices

the tranche under consideration correctly) or no solution at all. To this end market

participants tend to employ the base correlation approach, described nicely by Fin-

ger (see [55], which contains an excellent discussion of the industry implementation

of the Gaussian copula)

The key observation in the approach is that any arbitrary tranche can

be represented as the difference between two first-loss tranches. For
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instance, selling protection on the 3-7% tranche of the North Ameri-

can index is equivalent to buying protection of the 0-3% tranche and

selling protection on a hypothetical 0-7% tranche. Under the base cor-

relation approach, we fix a single correlation to price the 0-3% tranche,

then look for a second correlation to price the 0-7% tranche such that

the price difference is consistent with the observed 3-7% tranche. By

construction, this approach resolves the problem of multiple correla-

tion solutions, since first loss tranche prices are always monotonic with

correlation.

We conclude this section with a simple observation. In the equicorrelated Gaussian

copula model we may express (for positive correlation) the default time of obligor

i as τi = F−1
i (Φ (Xi)), where Fi is the marginal distribution function of τi, Φ is the

standard normal distribution function and

Xi =
√
ρM +

√
1− ρ2Yi (1.1)

Here M,Y1, . . . , YN are independent standard normal variables. The common factor

M is a systematic component, common to all firms, and is typically interpreted as

representing the “state of the market.” The Yi represent firm-specific risk factors,

often interpreted as representing idiosyncratic risk. The parameter ρ ∈ (−1, 1)

represents the sensitivity of obligors to the common factor and is equal to the

correlation between credit qualities (though not necessarily the correlation between

default times).

1.1.2 Copula and Factor Models

There is an abundance of available information on the marginal distributions of

default times, in the form of both bond yields and default swap spreads. Though

default risk certainly plays a major role in determining bond yields, several authors

(see [49] and references therein) have noted that additional factors, such as liquidity,

also play an important role. As such market participants have come to view swap

spreads as a “more pure” form of information on default risk, and prefer these

quotes as a source of data for inferring marginal distributions of default times.

Copulae provide the simplest method for constructing a multivariate model

when marginal distributions are known (or at least when one has considerable

information on marginal distributions). In a copula model one simply passes the

ascribed margins through a given copula to arrive at the joint distribution of default
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times. Hager and Schöbel [68] discuss how various observed correlation smiles can

be obtained using more general correlation structures in the Gaussian copula, while

Laurent and Gregory [65] investigate CDO valuation using the Clayton copula. We

note in passing that the Archimedean copulae represent an important class due

to the fact that they often admit a conditional independence structure, which can

have enormous implication for efficient evaluation of the portfolio loss distribution.

In a factor model one explicitly models default times as a function of both

systematic and idiosyncratic “factors.” The typical approach would be to model

the default time of obligor i as

τi = fi (M,Yi)

where M,Yi, . . . ,YN are independent random vectors and fi is a deterministic

function. Here M represents “systematic” risk factors common to all firms, while

Yi represents “idiosyncratic,” or firm-specific risk factors. A simple one-factor

structure would be

τi = F−1
i (Hi (Xi)) (1.2)

Xi = θiM +
√

1− θ2
i Yi (1.3)

where θi is a constant with |θi| ≤ 1, Hi is the distribution function of Xi and Fi is

an ascribed marginal distribution for τi. By varying the distribution of the factors

one can typically obtain reasonable fits to index tranche quotes for a particular

maturity. Hull and White [74] obtain a satisfactory fit to iTraxx index quotes using

using constant θi and a t-distribution with four degrees of freedom for the factors.

Kalemanova et al. [79] compare five different one-factor models - Gaussian, t with 3

and 4 degrees of freedom, and two different normal inverse Gaussian models. They

find that the normal inverse Gaussian provides a somewhat better fit than the t

models, and that the t models require nearly ten times as much computational time.

Finally, Fabozzi et al. [51] consider a one-factor model where the factors have a

distribution which is a mixture of a standard normal and t with fractional degrees

of freedom. They carry out an extremely comprehensive calibration exercise, and

find that this model does a very good job of fitting index tranche quotes.

Andersen and Sidenius [6] investigate extensions of the basic structure (1.2),(1.3)

and their implications for CDO valuation. In particular they allow recovery rates to

be correlated with the factors, in addition to allowing for “random factor loadings.”

They find the impact of random recovery rates to be minor, however they find that

models of the form

Xi = θi(M)M + σiYi − ci
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can provide quite significant correlation skews. Here

σi =
√

1− V ar(θi(M)M) ci = E [θi(M)M ]

Introducing the function θi(M) allows for stochastic correlation between defaults,

with correlations being stronger in bear markets (small M) than in bull markets

(large M). The specific choice of θi used in that paper is of a two-point form

θi(M) =

{
αi M ≤ mi

βi M > mi

When the portfolio is homogeneous, useful asymptotic approximations have

been obtained in a wide variety of copula and factor models. These results typically

focus on the large N asymptotics of the proportion of defaults

1

N

N∑
i=1

I (τi ≤ t) (1.4)

in particular the identification of its distribution. Vasicek [109] appears to be the

first member of the finance community to embark on such an endeavour, obtaining

the distribution of (1.4) in the context of the equicorrelated Gaussian copula model.

Schönbucher [104] investigates the asymptotic distribution in the context of various

Archimedean copula families, while O’Kane and Schloegl [92] obtain it for the

t copula. Similar results can be obtained for multi-factor models, and even for

heterogeneous portfolios under certain conditions, see Frey and McNeil [59] for

example. In Section 4.1.1 we provide rather general conditions for existence of this

limit in any model with conditionally independent defaults.

Factor models enjoy widespread popularity among practitioners, mainly due

to their computational efficiency. The key to this efficiency is that, conditional

upon the systematic factors, default times are independent. There are by now well-

established techniques for evaluating the portfolio loss distribution which exploit

this conditional independence structure, see for example Hull and White [74] or

Andersen and Sidenius [6]. The primary deficiency of factor models is their lack of

time dynamics. The economic environment in which obligors operate is ostensibly

determined “today” and is not permitted to evolve over time. This is not consistent

with empirical observations that both default rates and correlations are significantly

affected by the state of the economy. See Andersen [5] for a discussion of this issue

as well as some potential extensions of this framework incorporating time-dynamics

of the underlying factors.
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1.1.3 Intensity-Based Models

In the seminal credit risk model, namely the Black-Cox model to be discussed in the

next section, the default time is predictable with respect to the filtration available

to investors. Predictability of default is perceived as a major shortcoming here

for several reasons. From a practical perspective this tends to produce corporate

bond spreads which are unrealistically low for very short maturities. From an

intuitive perspective, default can often come as a complete surprise (recall Enron

and WorldCom) to market participants.

Intensity-based models draw on the general theory of counting processes and

focus on the “hazard rate” of the process Nt = I (τ ≤ t). In particular the inten-

sity λ(s) is often taken to be stochastic, typically as a function of some underlying

process. The seminal paper in this area is Duffie and Singleton [45], who de-

velop closed-form expressions for single-name defaultable contingent claims. In a

multivariate setting the Cox process framework is often used, that is to say that

conditional on some underlying covariate process Xt the individual processes N i
t

are independent, with jumps occurring at the first event time in a Poisson process

with individual intensity of the form λi (t,Xt). See Lando [85] for an early example

using this approach. Duffie et al. [43] conduct an interesting empirical study of the

applicability of this “doubly-stochastic” framework, while Bielecki and Rutkowski

[18] provide an excellent and comprehensive introduction to the intensity framework

in general.

Several authors have also investigated the use of counting process theory to

model portfolio loss directly. In this “top-down” approach the focus is shifted

from the characteristics of individual names to overall behaviour of portfolio losses.

An interesting example here is Errais et al. [50] who treat portfolio loss as a

marked point process, with marks representing random recovery. The intensity of

the default process Dt =
∑N

i=1 I (τi ≤ t) is of the form

λt = ct + δ

∫ t

0

e−κ(t−s)dDs

where c is a deterministic function (the first-to-default intensity) and δ, κ are non-

negative constants. In this way the default process becomes “self-exciting,” in the

sense the default of one name has an immediate impact (which dies out over time)

on the default intensity of other names.

A natural advantage of this framework, as compared to copula and factor mod-

els, is that they do allow for significant time dynamics of default rates and corre-
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lations. For example Errais et al. [50] find that their Hawkes process framework

reproduces the tendency of defaults to cluster in time.

1.1.4 Structural and First-Passage Models

Structural models of credit risk occupy a special place in the hearts of both aca-

demics and practitioners. The primary reason for this affection appears to be

the fact that these models provide a concrete link between the default event and

economic fundamentals such as the value of a firm, its capital structure and the

complex negotiations between debt and equity-holders. This is in contrast to al-

ternative approaches such as factor or intensity models, where default times and

intensities are simply treated as variables or processes to be modeled. While these

approaches are able to incorporate macroeconomic and firm-specific covariates in-

fluencing default rates, these covariates influence the likelihood of the default event

as opposed to precipitating the event directly.

Merton [91] is widely acknowledged as having pioneered this approach in what

many consider to be the first recognizable credit risk model. The motivation for this

seminal work was to develop a theory “for pricing bonds when there is a significant

probability of default.” Merton considers a firm whose outstanding debt consists

of a zero-coupon bond with fixed maturity T . The value of a firm’s assets, say St,

is assumed to follow a geometric Brownian motion. One may think of this asset

value as the liquidation value of the firm, should it choose to cease operations at

time t. The firm is decreed to be in default at time T if ST is less than the face

value of debt. Simply put, the firm defaults if it cannot pay back its obligations.

A more general framework, which reflects the fact that firms may default at

any time prior to the maturity of their debt, was put forth by Black and Cox

[20]. These authors retained the assumption that the firms’s asset value St follows

a geometric Brownian motion, but assume that corporate debt contains a safety

covenant which allows bondholders to force bankruptcy and liquidation in the event

of poor performance. The criteria for poor performance is given by a “default

threshold” Bt = Keλt where K < S0, and bondholders may force bankruptcy at

the moment that St falls below Bt. Thus the default time is given by the first

passage time

τ = inf {t ≥ 0 : St ≤ Bt}

Mathematically default occurs upon first passage of a standard Brownian motion

to a linear barrier.
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There have been a staggering number of extensions of this basic framework. As

we cannot possibly hope to do justice to this entire body of work, we mention that

excellent references can be found in Duffie and Lando [44], Ericsson and Reneby

[24], Embrechts et al. [48] and Bielecki and Rutkowski [18].

Several extensions of the Black-Cox framework have proceeded along “eco-

nomic” grounds, with emphasis placed on theoretical underpinnings of the model.

For instance Leland and Toft [86] retain the assumption of geometric Brownian mo-

tion for the firm value, and consider the optimal level and maturity of debt, as well

as the optimal default threshold, from the shareholders’ perspective. These quanti-

ties are determined with consideration of parameters such as bankruptcy costs and

the tax shield on corporate interest payments. Collin-Dufresne and Goldstein [33]

retain the geometric Brownian motion assumption for the firm’s asset value and

model the log-default threshold via

dbt = λ (st − ν − bt) dt

where st is the logarithm of firm value. Interpreting the default threshold as be-

ing related (if not exactly equal) to the outstanding value of the firm’s debt, this

specification accounts for the fact that firms often have target leverage ratios (rep-

resented by the parameter ν here) and adjust debt levels accordingly over time.

Huang et al. [71] extend this approach by allowing for a target leverage ratio which

is time-dependent. As a final note, Yildirim [110] retains all assumptions of the

Black-Cox model, but redefines the default event using an “occupational time,”

rather than first-passage, approach. In this approach default does not occur until

firm value has spent a fixed amount of time below the default threshold, and the

default time is defined as

τ = inf

{
t ≥ 0 :

∫ t

0

I (Su ≤ Bu) du ≥ c

}
where c is a positive constant. This specification reflects the fact that, when a firm

defaults on its obligations, it may often apply for bankruptcy protection. When a

successful application is made, the firm is given a fixed amount of time to “right

the ship,” so to speak, before being forced into liquidation.

It is worth noting that the assumption that discounted firm value follows a

martingale under the risk-neutral measure is virtually ubiquitous in the literature.

It can be argued that this implicitly treats firm value as a traded asset, which

is tenuous at best. The only example we are aware of which does not make this

assumption is Buffet [30], who models the profit rate of a firm directly and treats
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equity as the traded asset. The author then derives a risk-neutral measure under

which discounted equity is a martingale, but the value of the firm’s assets is not. The

reader with even a passing interest in structural modeling is strongly encouraged

to explore this reference.

Other extensions have taken a more “distributional” approach, with the em-

phasis placed on more appropriate models for the asset value St. As with many

models for financial assets it is typically held that the geometric Brownian motion

assumption is inappropriate. Unfortunately, unlike stock prices, asset values are

not directly observable and empirical evidence for use of a particular process is

typically unavailable. Nonetheless it is a widely-held belief that many empirically

observed phenomena for stocks should also hold for asset values. As such many

models used for stock price processes have also been used for firm value processes

in the Black-Cox framework, for example Fouque et al. [57] incorporate stochastic

volatility in the firm value process. Zhou [112] models St as a jump diffusion (the

continuous part of which is still assumed geometric Brownian motion) and finds

that credit spreads increase dramatically in the presence of unanticipated jumps.

In particular spreads for short-term bonds are no longer negligible, which has long

been a major criticism of the Black-Cox model. Other models for St have been

put forth with an emphasis on valuation of credit derivatives. For example Luciano

and Schoutens [89] model firm value as the exponential of a variance-gamma pro-

cess (successfully calibrating the model to credit default swap spreads), while Kuen

et al. [84] investigate the pricing of credit default swaps in a Markov-modulated

regime-switching model.

In the Black-Cox model investors have “full information” in the sense that the

firm’s asset value is fully observable. This leads to predictable default times, which

is often perceived as a serious deficiency for reasons noted in Section 1.1.3. Several

extensions of the model have proceeded along “informational lines.” This approach,

pioneered by Duffie and Lando [44], is to assume imperfect information on the part

of investors. In the case of a fixed (and known) default boundary this amounts

to working with a sub-filtration of that generated by the firm’s continuous asset

value process. Assuming that investors only observe firm value at discrete intervals

(for example through financial statements), Duffie and Lando [44] determine that

defaults in this case are unpredictable with respect to the investor filtration and de-

rive the intensity of the default process Nt = I (τ ≤ t). Several recent papers have

investigated similar methods for modeling information reduction and resulting in-

tensities of default times in more general structural models. For example Guo et al.

[67] study the problem in the context of general diffusions for firm value, including
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regime switching models, while Jarrow et al. [77] determine default intensities for

diffusion models where firm value is only observed at certain first passage times.

Giesecke [62] investigates the case where the (time-independent) default boundary

is a random variable unobserved by investors.

The discussion thus far has focused on the univariate (i.e. single-name) case,

as there has been much less attention paid to multivariate structural modeling.

Hull et al. [72] and Overbeck and Schmidt [94] investigate the basic multivariate

extension of the Black-Cox model, namely a model in which the asset value of firm

i follows a geometric Brownian motion

dSi
t = Si

t

[
µidt+ σidW

i
t

]
(1.5)

where the W i are correlated Brownian motions. Here firm i defaults upon first

passage of Si to the barrier Kie
λit. We note that Overbeck and Schmidt [94] incor-

porate deterministic time-changes to the firm value processes, in an effort to obtain

exact calibration to default swap data. There are two distinct similarities between

these papers. To begin, both use Euler-type Monte Carlo schemes of the type de-

scribed in Section 2.2.2 for valuation of multiname derivatives. In such a scheme

one discretizes the time horizon under consideration and treats the correlated pro-

cesses as if they were independent within each small time interval. Though useful

as a first approximation the accuracy of this method can require a very small time

step, making implementation prohibitively expensive.1 A second common thread is

that both studies find that model prices are quite similar to those obtained from a

Gaussian copula model. Hull et al. [72] find this for index tranches, while Overbeck

and Schmidt [94] observe the same phenomenon for basket default swaps. These

observations provided the motivation for our work in Chapter 2.

While several alternative multivariate structural models have appeared in the

literature (see Luciano and Schoutens [89], Fouque et al. [58] or Hurd [75] for ex-

ample), the authors are aware of only one working paper (Baxter [12]) in which

a multivariate structural model calibrates successfully to index tranche spreads.

Unfortunately the model does not appear to calibrate to various maturities simul-

taneously. This observation provided the motivation for the material in Chapter 4,

which in turn spawned Chapter 3. Before proceeding with an outline of this thesis,

we find it prudent to mention that while we are not aware of successful attempts

to calibrate multivariate structural models across both tranches and maturities, we

1We note that there are several approaches to reducing the bias in such a scheme. For example
Schevchenko [106] employs Fréchet bounds while Huh and Kolkiewicz [69] employ large deviation
techniques.
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are aware of such endeavours in the context of intensity models, for example see

DiGraziano and Rogers [41].

1.2 Outline of Thesis

Our original goals in this thesis were motivated by the experiences of Hull et al. [72]

and Overbeck and Schmidt [94], discussed in Section 1.1.4. In particular we were

interested in developing more efficient methods for implementing the multivariate

Black-Cox model, as well as acquiring a deeper understanding of the nature of

dependence in the model. The relevant mathematical structure here is first passage

times of correlated Brownian motion to fixed levels, a problem which is still very

far from being solved. In Chapter 2 we begin with the very simplest case, namely

two dimensions and zero drift. Analytic results are possible here, unfortunately

several published formulae are incorrect. In addition to correcting these mistakes,

we derive a (nearly) exact simulation scheme for sampling the first passage times.

Our algorithm exploits several interesting features of planar Brownian motion and

conformal local martingales. We also compile a modest body of evidence concerning

the similarity of the copula of these passage times to the Gaussian copula.

In Chapter 3 we investigate more general first-passage probabilities for one-

dimensional Brownian motion. For “sensible” functions f and g we define τf,g as

the first passage time of the time-changed Brownian motion W (gt) to the barrier f

and study the functional

Ψ (f, g) = P (τf,g ≤ T )

establishing its continuity over a “reasonable” product of function spaces. We also

investigate the random variable L = Ψ (A,B) were A is a stochastic process and B

a stochastic time change. We devise approximate simulation schemes, and methods

for assessing their accuracy, for approximating expectations E [h (L)] for bounded,

continuous functions h. Our motivation here is two-fold. To begin this provides a

method for approximating crossing probabilities of a time-changed Brownian mo-

tion W (Bt) to a stochastic barrier At, under very minimal conditions on the barrier

and time-change. In addition, in Chapter 4 we propose a model for credit risk where

L represents the proportion of defaults on an asymptotically large portfolio. Quan-

tities of the form E [h (L)] are then crucial for implementing the model, in particular

for pricing tranches on CDOs.

In virtually any structural model for credit risk, default is given by the first

passage time of a “credit quality” process Xt to the level zero. That is, with τ
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representing the default time of a particular obligor, we have

τ = inf {t ≥ 0 : Xt ≤ 0} (1.6)

For instance in the Black-Cox model Xt = log (St/Bt) and is often referred to as

the “log-leverage” ratio of the firm. Indeed one may treat this abstract notion

of credit quality as the starting point of the modeling process. This is precisely

the approach we take in Chapter 4, where we propose a general multivariate first-

passage framework which models the credit quality of an obligor as an explicit

combination of systematic and idiosyncratic “factor processes.” As such we feel

it provides a natural dynamic extension of the widely popular factor models. In

addition we are able to calibrate several versions of the model to market quotes for

index tranches. The model calibrates quite well across both tranches and maturities

simultaneously. We are particularly pleased with the fact that the model continues

to calibrate well in today’s “distressed” environment.
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Chapter 2

First Passage Times for

Correlated Brownian Motion to

Fixed Levels

Recall that in the multivariate Black-Cox model the credit quality of firm i is given

by

dX i
t = µidt+ σidW

i
t X i

0 = xi
0 > 0

where the W i are correlated Brownian motions with Cov(W i
t ,W

j
t ) = ρijt. In ad-

dition firm i defaults upon first passage of X i to zero, and we denote this default

time as

τi = inf
{
t ≥ 0 : X i

t = 0
}

At the present time the joint distribution of the τi is unknown, as such the “stan-

dard” implementation of the model in the finance literature is an Euler-based Monte

Carlo scheme of the sort described in Section 2.2.2. Using this approach one dis-

cretizes the time horizon under consideration, conditions on the values of the process

at the endpoints of each interval and treats the resulting bridged processes as if they

were independent. Though a very reasonable first approximation, the accuracy of

such an approach requires a very fine time step, as such its implementation can

become incredibly time-consuming.

Our original motivation in this context was to develop efficient alternatives to

the standard Monte Carlo implementation of the model. In Section 2.1 we begin

with the very simplest case, namely two dimensions and zero drift. In addition

to correcting published formulae for the joint density of the hitting times and exit
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location1, we derive a (nearly) exact simulation scheme for sampling (τ1, τ2). Our

algorithm is “indirect” in a sense, exploiting the strong Markov property of Brown-

ian motion as well as known results for conformal local martingales. Unfortunately

we are not able to extend our results to the case of non-zero drift, however our

algorithm provides exactly the right output (i.e. Girsanov factors) required for

unbiased estimation of various quantities in the presence of drift.

2.1 Exact Simulation in Two Dimensions

The problem we are interested in solving in this section is as follows. Let W (t) =

(W1(t),W2(t)) be a correlated two-dimensional Brownian motion started at the

origin. That is, each of W1(t) and W2(t) is a standard Brownian motion, with

Cov (W1(t),W2(t)) = ρt |ρ| < 1

Note that we ignore the trivial cases |ρ| = 1. Given positive numbers a1 and a2,

our goal is to simulate the random variables (τ1, τ2), where

τi = inf {t > 0 : Wi(t) = ai}

Iyengar [76] has found the joint density of this pair,2 which means that in principle

we could sample from the joint distribution of (τ1, τ2) as follows

1. Generate τ1 from its marginal distribution. Since

P (τ1 ≤ s) = 2Φ

(
− a1√

s

)
this is easily accomplished using inverse transform.

2. Having generated τ1 = s, generate τ2 from its conditional density

P (τ2 ∈ dt|τ1 ∈ ds) =

√
2πs3

a1

ea2
1/2sf(s, t)dt

where

P (τ1 ∈ ds, τ2 ∈ dt) = f(s, t)dsdt

1By exit location we mean the point at which the two-dimensional process first exits the region
(−∞, b1)× (−∞, b2)

2The formulae below are corrected versions of those found in Iyengar [76]. Details can be found
in Section B.4 of Appendix B.
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Unfortunately the density f(s, t) is rather complicated. For s < t it is given by

f(s, t) =
π sinα

2α2
√
s(t− s)

√
t− s cos2 α

exp

(
− r

2
0

2s

t− s cos 2α

(t− s) + (t− s cos 2α)

)
×

∞∑
n=1

n sin

(
nπ(α− θ0)

α

)
Inπ/2α

(
r2
0

2s

t− s

(t− s) + (t− s cos 2α)

)
while for s > t we have

f(s, t) =
π sinα

2α2
√
t(s− t)

√
s− t cos2 α

exp

(
−r

2
0

2t

s− t cos 2α

(s− t) + (s− t cos 2α)

)
×

∞∑
n=1

n sin

(
nπθ0

α

)
Inπ/2α

(
r2
0

2t

s− t

(s− t) + (s− t cos 2α)

)
where Iν(·) is the modified Bessel function (of the first kind) of order ν, and

r0 =
√

a2
1+a2

2−2ρa1a2

1−ρ2

θ0 =


π + tan−1

(
a2

√
1−ρ2

a1−ρa2

)
a1 < ρa2

π
2

a1 = ρa2

tan−1

(
a2

√
1−ρ2

a1−ρa2

)
a1 > ρa2

α =


π + tan−1

(
−
√

1−ρ2

ρ

)
ρ > 0

π
2

ρ = 0

tan−1

(
−
√

1−ρ2

ρ

)
ρ < 0

As this joint density is rather unwieldy, the conditional density in the second

step is not amenable to common simulation techniques such as inverse transform

or acceptance-rejection. An interesting feature of this density3 for positive values

of ρ is that it explodes along the line s = t. That is, f(s, t) →∞ as |s− t| → 0 for

positive values of ρ. This implies that for a given value s, the conditional density in

the second step explodes at the point t = s, which creates problems for acceptance-

rejection. Using inverse transform would require integration of the conditional

density and the inversion of this integral, which is an imposing endeavour.

In light of the difficulties involved with the application of standard Monte Carlo

techniques, we have developed a simulation algorithm which exploits several inter-

esting properties of planar (i.e. two-dimensional) Brownian motion. Our algorithm

3See Section B.4 of Appendix B.
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actually solves an alternative formulation of the problem, involving a standard (i.e.

uncorrelated) Brownian motion Z(t) started inside the wedge

Cα =
{
(r cos θ, r sin θ) ∈ R2 : r ≥ 0, 0 < θ < α

}
The next section re-states the problem in the context of such a process, and provides

a brief outline of our algorithm.

Re-Stating the Problem

With the same notation as in the previous section, consider the transformation

T : R2 → R2 defined by

T (w) =

[
a1−ρa2√

1−ρ2

a2

]
−

[
1√
1−ρ2

− ρ√
1−ρ2

0 1

]
w (2.1)

where w ∈ R2. This transformation is best understood by considering it as the com-

position of the three individual transformations. Details are provided in Appendix

B. The crucial facts here are that under T (·)

• The vertical line at w1 = a1 becomes the line z2 = z1 tanα. Note that when

α = π/2 this is simply the vertical line with z1 = 0.

• The horizontal line at w2 = a2 becomes the horizontal axis z2 = 0.

• The process Z(t) = T (W (t)) becomes a standard planar Brownian motion

started at z0 = (r0 cos θ0, r0 sin θ0). Note that z0 ∈ Cα.

It follows that

• τ1 is the first passage time of Z(t) to the line z2 = z1 tanα

• τ2 is the first passage time of Z(t) to the horizontal axis z2 = 0

• τ = min (τ1, τ2) is the first passage time of Z(t) to ∂Cα, the boundary of the

wedge.

A brief outline of our algorithm for simulating (τ1, τ2) is as follows

1. Simulate the exit location Z(τ). The exact distribution of this random vari-

able is easily determined for the special case α = π/2, while the conformal

invariance of planar Brownian motion allows the general case to follow easily.
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2. Simulate the exit time τ conditional on the exit location. This requires the

joint distribution of the pair (τ, Z(τ)), which has been found by Iyengar [76].

We use acceptance-rejection to generate from the conditional density of τ

given Z(τ).

3. Use the fact that {Z(t+ τ)− Z(τ) : t ≥ 0} is a Brownian motion independent

of {Z(s) : 0 ≤ s ≤ τ} to generate τ ′ = max (τ1, τ2). This will only require

simulating from an inverse Gaussian distribution.

This algorithm produces an exact drawing from the joint distribution of (τ, τ ′, Z(τ)),

which determines an exact drawing from (τ1, τ2).

Having reformulated the problem, we now turn to some known results concern-

ing Brownian motion in the wedge. Throughout, P z0 will denote the probability

measure associated with standard planar Brownian motion beginning at z0. The

following expression has been derived by several authors, including Buckholtz and

Wasan [29], Iyengar [76] and Rebholz [99], and has apparently been available in the

literature since at least 1894. If z = (r cos θ, r sin θ) is a point in Cα, then

P z0 (τ > t, Z(t) ∈ dz) =
2r
tα
e−(r2+r2

0)/2t
∞∑

n=0

sin
nπθ

α
sin

nπθ0
α

Inπ/α

(rr0
t

)
drdθ (2.2)

Integrating (2.2) over r and θ yields the distribution of the first exit time from the
wedge

P z0 (τ > t) =
2r0√
2πt

e−r2
0/4t

∞∑
n odd

1
n

sin
(
nπθ0
α

)[
I(νn−1)/2(r20/4t) + I(νn+1)/2(r20/4t)

]
(2.3)

where νn = nπ/α. Equation (2.3) is a corrected version of the formula appearing

in Iyengar [76], which corrected one of two mistakes in Buckholtz and Wasan [29].

The correct derivation is carried out in Section B.2 of Appendix B. A nearly correct

version also appears in Rebholz [99], while a correct version also appears in Zhou

[111].

We note here that Bañuelos and Smits [9] provide an expression analogous to

(2.3) for general cones in Rn, and investigate its asymptotics as t → ∞. Unfor-

tunately the expression seems rather impractical, as it involves eigenfunctions and

eigenvalues of the Laplace-Beltrami operator on the (n− 1)-dimensional sphere. In

addition these authors verify that the series (2.3) is uniformly convergent in t on

any interval [ε,∞).
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2.1.1 Distribution of Z(τ)

In this section we derive the distribution of the random variable Z(τ). It will

be profitable to think of this random variable in terms of its polar co-ordinates

(R(τ),Θ(τ)), where R(t), Θ(t) denote the radial and angular parts of Z(t), re-

spectively. Note that the range of R(τ) is [0,∞) while the range of Θ(τ) is the

two-point set {0, α}. When we refer to the distribution of Z(τ) or the exit location

distribution we are referring to probabilities of the form

P z0 (R(τ) ∈ dr,Θ(τ) = δ) r ∈ [0,∞) δ ∈ {0, α}

Iyengar [76] purports to have obtained the distribution, however the formula given

there is incorrect and does not integrate to unity. We note that this result was

merely presented as a side remark, and does not affect any of the main results of that

paper. The remainder of this section is dedicated to determining the distribution

of Z(τ) and discussing its simulation.

Exit Location for the Positive Quadrant

In this section we derive the exit location distribution of planar Brownian motion

from the positive quadrant Cπ/2. We will often find it more convenient to work in

rectangular co-ordinates, in which case we will write z0 = (x0, y0). We will need

the following preliminary result, which is a problem in Karatzas and Shreve [80].

Lemma 2.1.1. Let W (t) be a (one-dimensional) Brownian motion started at x > 0,

and let T0 denote the first passage time of W to zero. Then

P (W (t) ∈ dy, T0 > t) = p(t;x, y)− p(t;x,−y)

where

p(t;x, y) =
1√
2πt

exp
(
−(y − x)2/2t

)
y > 0

Proof. Note first that B(t) = x−W (t) is a Brownian motion beginning at zero. It

is well known (see Shepp [105] for example) that the joint density of B(t) and its

running maximum MB(t) is given by

f(b,m) =
2(2m− b)√

2πt3
exp

(
−(2m− b)2/2t

)
b ≤ m m > 0
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If mW (t) denotes the running minimum of W (t), it is clear that MB(t) = x−mW (t).

Hence for y > 0 we have

P (W (t) ∈ dy, T0 > t) = P
(
W (t) ∈ dy, mW (t) > 0

)
= P

(
W (t)− x ∈ dy − x, mW (t)− x > −x

)
= P

(
x−W (t) ∈ x− dy, x−mW (t) < x

)
= P

(
B(t) ∈ x− dy, MB(t) < x

)
=

∫ x

x−y

f(x− y, z)dz

= p(t;x, y)− p(t;x,−y)

where we have used the fact that if B(t) ∈ x− dy, it must be the case that MB(t)

is greater than x− y.

We are now in a position to determine the exit distribution, which is given in

the following

Proposition 2.1.2. Let R, Θ denote the radial and angular parts of a planar

Brownian motion Z, and let τ denote the first exit time of Z from the interior of

the positive quadrant. Then for z0 ∈ Cπ/2 we have

P z0 (R(τ) ∈ dr, Θ(τ) = 0) =
1

π

y0

(r − x0)2 + y2
0

− 1

π

y0

(r + x0)2 + y2
0

(2.4)

P z0

(
R(τ) ∈ dr, Θ(τ) =

π

2

)
=

1

π

x0

(r − y0)2 + x2
0

− 1

π

x0

(r + y0)2 + x2
0

(2.5)

Proof. Note first that

τi = inf {t > 0 : Zi(t) = 0}

Using Lemma 2.1.1 we have that for any r > 0

P z0 (Z1(t) ∈ dr, τ1 > t) = p(t;x0, r)− p(t;x0,−r)

Note also that P z0(τ2 ∈ dt) = (y0/t)p(t; 0, y0). Now, since τ2 is independent of both
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τ1 and Z1(t), we obtain

P z0 (R(τ) ∈ dr,Θ(τ) = 0) = P z0 (Z1(τ2) ∈ dr, τ2 < τ1)

=

∫ ∞

0

P z0 (Z1(τ2) ∈ dr, τ2 < τ1|τ2 ∈ dt)P z0 (τ2 ∈ dt)

=

∫ ∞

0

P z0 (Z1(t) ∈ dr, t < τ1|τ2 ∈ dt)P z0 (τ2 ∈ dt)

=

∫ ∞

0

P z0 (Z1(t) ∈ dr, t < τ1)P
z0 (τ2 ∈ dt)

=

[∫ ∞

0

[p(t;x0, r)− p(t;x0,−r)] (y0/t)p(t; 0, y0)dt

]
dr

=

[
1

π

y0

(r − x0)2 + y2
0

− 1

π

y0

(r + x0)2 + y2
0

]
dr

which is the difference of two Cauchy densities. An analogous argument shows that

P z0

(
R(τ) ∈ dr,Θ(τ) =

π

2

)
=

[
1

π

x0

(r − y0)2 + x2
0

− 1

π

x0

(r + y0)2 + x2
0

]
dr

which concludes the proof.

It is interesting to note that the probability Z hits the vertical axis before it

hits the horizontal axis is equal to 2θ0/π, and does not depend on the initial radius.

This can be seen by integrating (2.5) over (0,∞).

In the next section we find it profitable to express the exit location distribution

in polar co-ordinates. Tedious manipulation of (2.4) and (2.5) yields

P z0 (R(τ) ∈ dr,Θ(τ) = 0) =
2

πr0

(r/r0) sin(2θ0)

sin2(2θ0) + [(r/r0)2 − cos(2θ0)]2
(2.6)

P z0

(
R(τ) ∈ dr,Θ(τ) =

π

2

)
=

2

πr0

(r/r0) sin(2θ0)

sin2(2θ0) + [(r/r0)2 + cos(2θ0)]2
(2.7)

Exit Location for the General Wedge

Recall that for complex z and real a we may define za as raeiaθ, where (r, θ) are the

radial and angular parts of z, respectively. Hence the complex mapping z 7→ zπ/2α

“folds the wedge up” into the positive quadrant, while the mapping z 7→ z2α/π

“unfolds” the positive quadrant into the wedge. This suggests that in order to study

the exit location of our planar Brownian motion Z, we consider the transformed

process Zπ/2α. Note that we are viewing Z as a C-valued process here, and some

care is required in defining Zπ/2α in order to ensure it is a continuous process.
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The proof of Theorem 2.1.3 demonstrates that, while not a Brownian motion

itself, the process Zπ/2α is in fact the time-change of a Brownian motion. As such

the exit location for the general wedge may be recovered from the exit location given

by (2.6) and (2.7). Before proceeding with the statement and proof of Theorem 2.1.3

we collect several known facts concerning conformal local martingales, each of which

may be found in Rogers and Williams [101]. Given a probability space (Ω,F , P ),

we recall that a C-valued process Y = U + iV is said to be a conformal local

martingale (CLM), relative to the filtration Ft, if U and V are local martingales,

relative to Ft, such that [U ] = [V ] and [U, V ] = 0, where [·], [·, ·] denote quadratic

variation and quadratic co-variation, respectively. The results used in the proof of

Theorem 2.1.3 are as follows

(C1) Analytic transformations preserve the CLM property. If Y is a CLM

and f : C → C is analytic, then f(Y ) is a CLM.

(C2) CLMs are time-changed Brownian motion. If Y = U + iV is a CLM,

then there exists a complex Brownian motion B such that Y (t) = B ([U ](t)).

Note that B is a Brownian motion relative to Gt = FAt , where

At = inf {s ≥ 0 : [U ](s) > t}

(C3) If Z is a complex Brownian motion, then log (R(t)) + iΘ(t) is a CLM, where

R and Θ denote the radial and angular parts of Z, respectively.

We now proceed with the main result of the section

Theorem 2.1.3. Let Z be a planar Brownian motion beginning at z0 ∈ Cα. Then

there exists a planar Brownian motion B, beginning at b0 = z
π/2α
0 ∈ Cπ/2, such that

Z(τ) = [B (τB)]2α/π

where

• τ = inf {t ≥ 0 : Z(t) ∈ ∂Cα}

• τB = inf
{
t ≥ 0 : B(t) ∈ ∂Cπ/2

}
Proof. Let R(t),Θ(t) denote the radial and angular parts of Z(t), respectively. By

(C3) we know that the process U = log (R) + iΘ is a CLM. Using the properties

of quadratic and co-variation, this means that for any real β the process βU =
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log
(
Rβ
)

+ iβΘ is also a CLM. Finally, since f(z) = ez is analytic, (C1) allows us

to conclude that the process

V = Rβ exp (iβΘ)

is a CLM. Now, set β = π
2α

and let ΘV , RV denote the angular and radial parts of

V , respectively. Note that V begins at the point v0 = z
π/2α
0 ∈ Cπ/2. In addition

since ΘV = πΘ/2α we have

τ = inf {t ≥ 0 : Θ(t) /∈ (0, α)} = inf {t ≥ 0 : ΘV (t) /∈ (0, π/2)} =: τV

Moreover we may recover Z(τ) from V (τV ) via

R(τ) = (RV (τV ))2α/π Θ(τ) =
2α

π
Θ(τV ) (2.8)

Now, since V is a conformal local martingale it follows from (C2) that there exists

a Brownian motion B (beginning at b0 = v0) such that V = B([V ]). Thus V and

B will trace out exactly the same path in the plane, indeed they will simply move

along this path at different speeds. As such they will strike the boundary of Cπ/2

at exactly the same point, that is V (τV ) = B(τB). Recalling (2.8) we obtain the

desired result.

Recall that if X is a random variable with pdf fX(x), then for γ 6= 0 the pdf of

Y = Xγ is given by

fY (y) =
y(1/γ)−1

γ
fX(y1/γ) (2.9)

This observation provides us with the general exit location distribution, as seen in

the following

Corollary 2.1.4. Let R, Θ denote the radial and angular parts of a planar Brow-

nian motion Z, and let τ denote the first exit time of Z from the interior of Cα.

Then for z0 ∈ Cα we have

P z0 (R(τ) ∈ dr,Θ(τ) = 0) =
1

αr0

(r/r0)
(π/α)−1 sin (πθ0/α)

sin2 (πθ0/α) + [(r/r0)π/α − cos (πθ0/α)]
2

P z0 (R(τ) ∈ dr,Θ(τ) = α) =
1

αr0

(r/r0)
(π/α)−1 sin (πθ0/α)

sin2 (πθ0/α) + [(r/r0)π/α + cos (πθ0/α)]
2

Proof. In the notation of Theorem 2.1.3, substitute b0 into (2.6) and (2.7) to obtain

the distribution of (RB(τB),ΘB(τB)). Since

(R(τ),Θ(τ)) =
(
(RB(τB))2α/π, 2αΘB(τB)/π

)
the result follows from setting γ = 2α/π in (2.9).
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We may also use Theorem 2.1.3 to demonstrate that the probability Z hits a

given line (passing through the origin) before it hits the horizontal axis does not

depend on the initial radius.

Corollary 2.1.5. Let Z be a planar Brownian motion beginning at z0 ∈ Cα. Then

the probability Z hits the line z2 = z1 tanα before it hits the horizontal axis is equal

to θ0

α
.

Proof. Z hits the line before the axis if and only if Θ(τα) = α, where τα denotes

the first exit time of Z from the wedge Cα. By Theorem 2.1.3 we obtain

P z0 (Θ(τα) = α) = P z∗0
(
Θ(τπ/2) = π/2

)
=
θ0

α

where z∗0 = z
π/2α
0 . The result follows upon integrating (2.5) (with respect to r over

(0,∞).

Before proceeding with simulation of Z(τ), we would like to point out that the

distribution obtained in Corollary 2.1.4 can be used to obtain numerical solutions

for the Dirichlet problem in the wedge. To this end suppose we seek a continuous

function u, harmonic inside the wedge, which satisfies the boundary conditions

u(x) = f(x) for x ∈ ∂Cα. Here f : ∂Cα → R is continuous. According to Karatzas

and Shreve [80] u has the stochastic representation

u(x) = Ex [f (Zτ )]

for any x ∈ Cα, provided of course Ex [|f (Zτ )|] < ∞. Thus the distribution

obtained in Corollary 2.1.4 could be used to numerically ascertain the value of u at

an arbitrary point in the closure of our wedge.

Simulating the Exit Location

In light of the relationship provided by Theorem 2.1.3, we may obtain the exit loca-

tion of a Brownian motion Z beginning at a point z0 in the interior of Cα as follows

- begin a Brownian motion B at the point b0 = r
π/2α
0 (cos(πθ0/2α), sin(πθ0/2α)),

run it until it exits the interior of the positive quadrant for the first time, and set

(R(τ),Θ(τ)) =
(
(RB(τB))2α/π , 2αΘB(τB)/π

)
Thus simulation of the general exit location only requires that we be able to simulate

from the distribution given by (2.4) and (2.5). If R and Θ have this distribution,
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it is easily seen that we may generate Θ as follows

Θ =
π

2
I

(
V ≥ 2θ0

π

)
where V is a random number.4 Conditional on Θ = 0 the distribution function of

R is given by

F0(r) = P (R ≤ r|Θ = 0) = 1 +
1

π − 2θ0

[
tan−1

(
r − x0

y0

)
− tan−1

(
r + x0

y0

)]
It is shown in Section B.3 in Appendix B that the inverse of this function is given

by

F−1
0 (u) = r0

√
cos(2θ0)−

sin(2θ0)

tan ((π − 2θ0)(u− 1))

Similarly the conditional distribution function of R, given Θ = π/2, is given by

Fπ/2(r) = P (R ≤ r|Θ = π/2) = 1 +
1

2θ0

[
tan−1

(
r − y0

x0

)
− tan−1

(
r + y0

x0

)]
and its inverse is given by

F−1
π/2(u) = r0

√
− cos(2θ0)−

sin(2θ0)

tan ((2θ0)(u− 1))

These facts allow us to inverse transform to generate R, conditional on the value

of Θ. The following proposition summarizes the algorithm for generating from this

distribution

Proposition 2.1.6. Let U , V be independent random numbers, and define

Θ =
π

2
· I
(
V ≥ 2θ0

π

)
R = r0

√
cos(2θ0)−

sin(2θ0)

tan ((π − 2θ0)(U − 1))
· I (Θ = 0)

+r0

√
− cos(2θ0)−

sin(2θ0)

tan (2θ0(U − 1))
· I (Θ = π/2)

Then the distribution of (R,Θ) is given by (2.6) and (2.7).

In order to simulate the exit location for a general wedge Cα and initial point

z0 we use the following recipe

4By a random number we mean a random variable uniformly distributed on the interval (0, 1).
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• Use Proposition 2.1.6 with parameters r
π/2α
0 and πθ0/2α to generate variables

R∗ and Θ∗.

• Set Θ = 2αΘ∗/π and R = (R∗)2α/π.

Having generated the exit location, we now discuss conditional simulation of the

exit time given the exit location. This requires the joint distribution of the triplet

(τ,Θ(τ), R(τ)) which has been obtained by Iyengar.

2.1.2 Conditional Distribution of τ

According to Iyengar [76] the joint distribution of (Z(τ), τ) is given by

P z0 (τ ∈ dt, Z(τ) ∈ dz) =
1

2

∂

∂n
f(t, z, z0)

where f is the transition density

f(t, z, z0)dz = P z0 (τ > dt, Z(t) ∈ dz)

and for a point z on the boundary of the wedge

∂

∂n
f(t, z, z0)

denotes the derivative of f with respect to z, in the direction of the inward normal

to the boundary at the point z. Note that the inward normal n is either (0, 1) or

(sinα,− cosα), according as z lies on the horizontal axis or line z2 = z1 tanα. For

a point z = (r, 0) on the horizontal axis it follows easily that

P z0 (τ ∈ dt, R(τ) ∈ dr, Θ(τ) = 0) =
π

α2tr
e−(r2+r2

0)/2t

∞∑
n=0

gn (r0, θ0, α, r) dr dt

where

gn (r0, θ0, α, r, t) = n sin

(
nπθ0

α

)
Inπ/α

(rr0
t

)
(2.10)

For a point z = (r cosα, r sinα) on the line z2 = z1 tanα we have

P z0 (τ ∈ dt, R(τ) ∈ dr, Θ(τ) = α) =
π

α2tr
e−(r2+r2

0)/2t

∞∑
n=0

gn (r0, α− θ0, α, r) dr dt

This latter formula can be obtained either by direct calculation, or by using the first

formula and noting that the process Z̃ obtained by reflecting Z through the line z2 =

tan(α/2)z1 is also a planar Brownian motion. The radial components of the two
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processes are equal and the angular parts are related by Θ̃(t) = α−Θ(t) and the exit

times from the wedge are equal (i.e. τ̃ = τ). With z̃0 = r0(cos(α− θ0), sin(α− θ0))

it immediately follows that

P z0 (τ ∈ dt, R(τ) ∈ dr, Θ(τ) = α) = P z̃0 (τ ∈ dt, R(τ) ∈ dr, Θ(τ) = 0)

Using these expressions we see that the conditional distribution of τ , given Z(τ) is

given by

P z0 (τ ∈ dt|R(τ) ∈ dr,Θ(τ) = 0) =
πe−(r2+r2

0)/2t

c(θ0, r0, r, 0)α2tr

∞∑
n=0

gn (r0, θ0, α, r, t) dr dt

(2.11)

P z0 (τ ∈ dt|R(τ) ∈ dr,Θ(τ) = α) =
πe−(r2+r2

0)/2t

c(θ0, r0, r, α)α2tr

∞∑
n=0

gn (r0, α− θ0, α, r) dr dt

(2.12)

where

c(θ0, r0, r, 0) = P z0 (R(τ) ∈ dr, Θ(τ) = 0)

and c(θ0, r0, r, α) is defined analogously.

Now suppose that we have simulated the exit location Z(τ) and obtained the

values R(τ) = r and Θ (τ) = δ. Suppressing its dependence on all other parameters,

let f(t) denote the associated conditional density of τ , given these values. As there

is no analytic expression for the integral of this density (or its inverse), conditional

simulation via inverse transform is not an option. Recall that if we can find a

density g(t) (supported on (0,∞)) which is easy to simulate from, and for which

sup
t≥0

f(t)

g(t)
<∞

then we may simulate observations from f(t) using the acceptance-rejection algo-

rithm. This algorithm would begin by first determining an upper bound on the

ratio, that is a value of c such that f(t) ≤ cg(t) for all t, and then proceeding as

follows

• Simulate a random variable T from the density g

• Simulate a random number U , independent of T

• If U ≤ f(T )/cg(T ), set τ = T . Repeat otherwise.

In the present situation f(t) is only expressible as a series and this creates a slight

problem in the last step, namely computing the ratio f(t)/g(t). We have found
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that this series tends to converge quite rapidly, as such we use an approximate

acceptance-rejection scheme by replacing f(t) with fN(t). Here fN(t) denotes the

function obtained by summing the first N terms in the series representation of f(t).

The only remaining issue now is identifying densities g which dominate fN(t) in

both tails, and for which reasonable approximations to the upper bound of the ratio

fN(t)/g(t) can be determined. In what follows we use the following asymptotics for

Bessel functions, each of which can be found in Abramowitz and Stegun [2]

Iν(z) ∼ (z/2)ν/Γ(ν + 1) z → 0

Iν(z) ∼ 1√
2πz
ez z →∞

Our first candidate density is that of the random variable T = X−1, where X is a

gamma variate. This candidate works quite well for simulated values of R(τ) = r

for which r is near r0. In addition we are able to derive what we believe to be an

explicit upper bound on the ratio fN(t)/g(t). In Proposition 2.1.7 we establish that

the ratio is bounded, which clearly only requires the ratio to have a finite limit in

both tails (i.e. as t → 0 and t → ∞). In addition, Proposition 2.1.7 implicitly

assumes that the simulated value for Θ (τ) is zero.

Proposition 2.1.7. Let g(t) be the inverse gamma density

g(t) =
1

Γ(β)λβ

1

tβ+1
e−1/tλ

Then for each N

(i) For λ ≥ 2
(r−r0)2

and β ≤ π/α we have

lim
t→0

fN(t)

g(t)
= 0 lim

t→∞

fN(t)

g(t)
<∞

(ii) For λ = 2
(r−r0)2

and β = π/α we have

lim
t→∞

fN(t)

g(t)
=

(
r0

r − r0

)2π/α [
sin2(πθ0/α) +

(
(r/r0)

π/α − cos(πθ0/α)
)2]

Proof. The tail behaviour of the ratio is determined by terms of the form

tβ exp

(
2− λ(r2 + r2

0)

2λt

)
Inπ/α

(rr0
t

)
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As t→ 0 the first term tends to unity, while the product of the latter terms behave

as

exp

(
2− λ(r2 + r2

0)

2λt

)
Inπ/α

(rr0
t

)
∼ exp

(
2− λ(r2 + r2

0)

2λt

)√
t

2πrr0
err0/t

=

√
t

2πrr0
exp

(
2− λ(r − r0)

2

2λt

)
These terms will explode if 2− λ(r − r0)

2 > 0 and tend to zero otherwise. Now as

t→∞ the ratio is governed by the behaviour of

tβInπ/α(rr0/t)

the latter tending to zero and the former exploding. Asymptotically we have

tβInπ/α(rr0/t) ∼ tβ
(rr0

2t

)nπ/α 1

Γ((nπ/α) + 1)

=
(rr0/2)nπ/α

Γ((nπ/α) + 1)
tβ−(nπ/α)

and these terms will explode unless β ≤ π/α. Now, setting β = π/α and λ =

2/ (r − r0)
2 the ratio becomes

πΓ(π/α)2π/α

rα2c(θ0, r0, r, 0)(r − r0)2π/α
tπ/α exp(−rr0/t)

∞∑
n=1

n sin

(
nπθ0

α

)
Inπ/α

(rr0
t

)
The ratio tends to zero as t→ 0, since

tπ/αe−rr0/tInπ/α

(rr0
t

)
∼
√

t

2πrr0
tπ/α

As t→∞ the behaviour of the ratio is governed by the terms

tπ/αInπ/α(rr0/t) ∼ tπ/α
(rr0

2t

)nπ/α

/Γ((nπ/α) + 1)

=
(rr0)

nπ/α

2nπ/αΓ((nπ/α) + 1)
t(1−n)π/α

and we see that such terms tend to zero for n ≥ 2 and the term for n = 1 tends to

(rr0)
π/α

2π/αΓ((π/α) + 1)

A little tedious algebra finally shows that

lim
t→∞

fN(t)

g(t)
=

sin(πθ0/α)(rr0)
π/α

rα(r − r0)2c(θ0, r0, r, 0)
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which can be further simplified to yield(
r0

r − r0

)2π/α [
sin2(πθ0/α) +

(
(r/r0)

π/α − cos(πθ0/α)
)2]

The efficiency of the acceptance-rejection algorithm is determined by the max-

imum value of the ratio fN(t)/g(t). Since g depends on the parameters λ and β, it

follows that the efficiency of the algorithm depends on the chosen values for these

parameters. In particular for maximum efficiency one should choose these param-

eters in such a way is to minimize the maximum value of fN(t)/g(t), a quantity

which does not admit a closed form expression. Extensive numerical evidence (i.e.

numerically approximating this quantity for a large number of parameter values)

indicates that the maximum value of the ratio here is minimized when λ is set equal

to its lower bound and β is set equal to its upper bound. The same evidence also

indicates that in this case the ratio is increasing, which would imply that maximum

efficiency in the conditional simulation is obtained by setting the rejection constant

c equal to the limit found in (ii). As a final note, Proposition 2.1.7 implicitly as-

sumes the simulated value of the exit location lies on the horizontal axis, that is

Θ (τ) = 0. Thankfully the analogous result remains true when Θ (τ) = α, we need

only change the “-” to a “+” in front of the cosine in (ii).

Inspection of (ii) in Proposition 2.1.7 reveals that the rejection constant becomes

quite large for values of r near r0. Indeed for parameter values θ0 = π/4, α = 3π/4

and r0 = 1 the constant exceeds 10 for 0.4 < r < 1.8. This deficiency motivates our

second choice for a dominating density, which tends to perform quite well precisely

when r is close to r0.

Proposition 2.1.8. Let g(t) denote the “absolute Cauchy” density

g(t) =
1

rr0π

1

1 + (t/rr0)2

Then

lim
t→0

fN(t)

g(t)
= lim

t→∞

fN(t)

g(t)
= 0

Proof. Letting z = rr0/t we may express the ratio as

π2

c(θ0, r0, r, 0)α2r
z
[
1 + z−2

]
exp (−bz)

∞∑
n=1

n sin

(
nπθ0

α

)
Inπ/α (z)

31



where b =
r2+r2

0

2rr0
> 1. Denoting this function by h(z), we see that z →∞ we have

ze−bzIν(z) ∼ ze−bz 1√
2πz

ez

=

√
z

2π
e(1−b)z

This quantity tends to zero for b > 1, and it follows that h(z) → 0 as z →∞. Now,

as z → 0 we have

z(1 + z−2)Iν(z) ∼ (z + z−1)zν 1

2νΓ(ν + 1)

=
[
zν+1 + zν−1

] 1

2νΓ(ν + 1)

which tends to zero provided ν > 1, which is satisfied for ν = nπ/α and n ≥ 1.

Therefore

lim
z→0

z(1 + z−2)Inπ/α(z) = 0

for n ≥ 1, and it follows that h(z) → 0 as z →∞.

Unfortunately we have not been able to derive an exact formula for the max-

imum of the ratio in this case, and in our simulations we typically use a value

of 15. This is nearly twice what our numerical experimentation has indicated is

acceptable.

We now have a (nearly) exact algorithm to simulate the triplet (τ, R(τ),Θ(τ)).

Due to the Markov property of Brownian motion it is a simple matter to simulate

τ ′ = max(τ1, τ2) conditional on this triplet. This is discussed in the next section.

2.1.3 Distribution of max(τ1, τ2)−min(τ1, τ2)

In this section we show that the distribution of τ ′−τ is an inverse Gaussian mixture,

where the mixing variable is R(τ). Recall that τ ′ = max(τ1, τ2) and τ = min(τ1, τ2).

In addition we show how the joint density of (τ1, τ2) may be obtained, with details

provided in Section B.4 of Appendix B.

To begin we note that by the strong Markov property of Brownian motion, the

process

{Z(t+ τ)− Z(τ) : t ≥ 0}

is a Brownian motion independent of {Z(s) : 0 ≤ s ≤ τ}. Now suppose that Z

strikes the boundary of the wedge for the first time at the point (r cosα, r sinα). In
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this case we have that X(t) = {Z(t+ τ) : t ≥ 0} is a Brownian motion beginning

at (r cosα, r sinα), and that τ ′ − τ = τ2 − τ1 is simply the first passage time of X

to the horizontal axis. It is clear, then, that conditional on the this value of Z(τ)

we have

τ ′ − τ = inf {t ≥ 0 : X2(t) = 0}

which has an inverse Gaussian distribution with distribution function

F (t) = 2Φ

(
−r sinα√

t

)
Next suppose that Z strikes the boundary of the wedge for the first time at the

point (r, 0), so that X(t) = {Z(t+ τ) : t ≥ 0} is a Brownian motion beginning at

(r, 0) and τ ′ − τ = τ1 − τ2 is the first passage time of X to the line x2 = x1 tanα.

Letting X̃ denote the counter-clockwise rotation of X by the angle π − α, we see

that X̃ is a Brownian motion beginning at (−r cosα, r sinα). In addition, under

this rotation the boundary x2 = x1 tanα becomes the horizontal axis, so that

τ ′ − τ = inf
{
t ≥ 0 : X̃2(t) = 0

}
which again has the inverse Gaussian distribution with distribution function

F (t) = 2Φ

(
−r sinα√

t

)
We have now demonstrated that

P z0 (τ ′ − τ ≤ t|τ, R(τ),Θ(τ)) = 2Φ

(
−R(τ) sinα√

t

)
Therefore having generated (τ, R(τ),Θ(τ)) we may simulate τ ′ − τ as

τ ′ − τ =

(
R(τ) sinα

Φ−1(U/2)

)2

where U is a random number independent of the triplet. We now have a complete

algorithm for generating (τ1, τ2) as follows

• Generate the pair (R(τ),Θ(τ)).

• Conditional on this pair, generate τ using acceptance-rejection and τ ′ − τ

using inverse transform, and set τ ′ = (τ ′ − τ) + τ .

• We now have the four variables (R(τ),Θ(τ), τ, τ ′) which we use to obtain

(τ1, τ2) by setting

τ1 = τ ′I (Θ(τ) = 0) + τI (Θ(τ) = α)

τ2 = τ ′I (Θ(τ) = α) + τI (Θ(τ) = 0)
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We may also use the distribution of τ ′ − τ derived in this section to derive an

expression for the joint density of (τ1, τ2). Details of this endeavour are carried out

in Section B.4 of Appendix B

2.1.4 Expectations in the Presence of Drift

In this section we began with first passage times of a correlated Brownian motion

Wt, and transformed the problem into one involving the first passage times of

standard Brownian motion Zt = a−AWt, where a and A are given in (2.1). If the

original process had drift γ, say, then the transformed process Z = T (W ) would

be a standard Brownian motion with drift µ = −Aγ. Unfortunately the presence

of drift destroys the conformal local martingale property of Z, and we are not able

to extend our results to this more general case.

We might hope that, since a Girsanov factor provides the ratio between the

two distributions, it is possible to simply simulate in the zero drift case and use

acceptance-rejection to obtain samples from the non-zero drift distribution. Un-

fortunately for financial applications the original process will drift away from the

barriers, meaning that the transformed process drifts away from the boundary of

the wedge. That is, for virtually all financial applications we would have both com-

ponents of µ being positive. To illustrate the problems this creates for acceptance-

rejection, consider the ratio

P z0
µ (τ ∈ dt, R(τ) ∈ dr, Θ(τ) = 0)

P z0
0 (τ ∈ dt, R(τ) ∈ dr, Θ(τ) = 0)

= exp
(
µ1r − µ′z0 − |µ|2t/2

)
(2.13)

For µ1 > 0 this ratio does not remain bounded over the region [0,∞) × [0,∞),

and it is therefore not possible to generate the triplet in the non-zero drift case by

generating the triplet (τ, R(τ),Θ(τ)) in the zero drift case, and accepting with a

certain probability. A similar phenomenon holds for the ratio between the densities

of (τ1, τ2). These phenomena can be traced to the fact that if the process drifts

away from a fixed level, it becomes possible that this level is never breached. As

such the hitting times (τ1, τ2) are defective in the sense that P (τi = ∞) > 0.

Despite the fact that we may not use our zero-drift abilities to simulate exactly

in the presence of drift, we can use these abilities to approximate expected values

in the presence of drift. Indeed the outputs of our algorithm are exactly what we

need in order to be able to simulate the Girsanov factor. To see this note that

Eµ [f(τ)] = E0

[
exp

(
µ′(Z(τ)− z0)− |µ|2τ/2

)
f(τ)

]
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A similar expression would hold for functions f(τ, Z(τ)) of exit time and location.

This would be very useful in the valuation of certain complex credit derivatives such

as an option on a second-to-default swap (on two names) which can be exercised

as soon as the first default occurs. Similarly, to evaluate expectations of functions

f(τ1, τ2) of both hitting times, we would have

Eµ [f(τ1, τ2)] = E0

[
exp

(
µ′(Z(τ ′)− z0)− |µ|2τ ′/2

)
f(τ1, τ2)

]
where τ ′ is the maximum of τ1 and τ2.

2.2 Approximation of the Survivor Function in

More Than Two Dimensions

Unfortunately we have not been able to extend our results for exact simulation to

more than two dimensions. As alluded to in the Introduction, however, the exact

distribution (or ability to simulate from the exact distribution) of default times

is not always required for credit risk applications. In this section we examine an

approximation, devised by Bhansali and Wise [16], to the survivor function

P (t) = P (τ1 > t, . . . , τN > t)

where the τi are first passage times of correlated Brownian motion to fixed levels.

There are at least two problems for which a good approximation to P (t) would

be useful. For a homogeneous portfolio of N names the portfolio loss is determined

by the distribution of the number of survivors

SN(t) =
N∑

i=1

I (τi > t)

Known results for exchangeable Bernoulli variables (see [81] for example) can be

used to express the distribution of this variate in terms of probabilities of the form

q(k) = P (τ1 > t, . . . , τk > t) k = 1, . . . , N

Thus a valid approximation to the q(k) would provide a much more efficient alter-

native to the standard Monte Carlo scheme. Unfortunately the expression relating

the distribution of SN to the q(k) can become numerical unstable as N gets reason-

ably large, usually in the neighbourhood of about 30. Fortunately it is known (see

[81]) that the limit S(t) = limN→∞ S
N(t) exists almost surely and has a distribution
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whose kth moment is given by q(k). One might hope that good approximations to

q(k) would provide a reasonable approximation to the Laplace transform of S(t),

which could then be inverted to obtain an approximate distribution for SN(t) in

cases where N is large.

As a second application, we note that Brasch [22] shows how a kth-to-default

swap on a basket of N names can be exactly replicated with first-to-default swaps

on sub-baskets. Valuation of a first-to-default swap only requires knowledge of the

distribution of the first default, and this is precisely 1 − P (t). Again this would

provide an alternative to Monte Carlo valuation of basket default swaps, though

it would only provide an efficient alternative for reasonably small baskets (the

number of first-to-default swaps needed to replicate a kth-to-default swap grows

quite rapidly in both k and N). We note that the approximation suggested by

Bhansali and Wise [16] is not restricted to the homogeneous situation, so that it

could be used to price swaps on baskets with arbitrary characteristics.

The basic model in this section is correlated Brownian motion - that is, a mul-

tivariate process

dX i
t = µidt+ σidW

i
t

where the W i are standard Brownian motion with Cov(W i
t ,W

j
t ) = ρijt. We are

interested in the minimum of the first passage times

τi = inf
{
t ≥ 0 : X i

t = bi
}

That is, we are interested in the random variable

τ = min {τ1, . . . , τN}

which is simply the first exit time of the multivariate process Xt =
(
X1

t , . . . , X
N
t

)
from the interior of the region

B = (−∞, b1]× · · · × (−∞, bN ]

Without loss of generality we may assume that σi = 1 for all i, and note that the

transition density of the process X, defined as

f (t, x0, x) dx = P x0 (Xt ∈ dx)

satisfies the forward equation[
∂

∂t
+

N∑
i=1

µi
∂

∂xi

− 1

2

N∑
i=1

∂2

∂x2
i

−
∑
i<j

ρij
∂2

∂xi∂xj

]
p(t, x0, x) = 0
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subject to the initial condition

f(0, x0, x) =
N∏

i=1

δ(xi
0 − xi)

where δ(·) is the Dirac delta function.

The approximation begins with the observation that the transition sub-density

of the absorbed process Xt∧τ , defined as

p(t, x0, x)dx = P x0 (Xt ∈ dx, τ > t)

satisfies the same forward equation as f , subject to the same initial condition in

addition to the boundary conditions

• p(t, x0, x) = 0 for x /∈ Bo, where Bo denotes the interior of B.

• p(t, x0, x) → 0 as xi → −∞ for each i.

If one knew the sub-density p, the survivor function of τ could be recovered as

P x0 (τ > t) =

∫
B

p(t, x0, x)dx

Bhansali and Wise [16] perform a regular perturbation in each correlation parameter

to obtain an approximation to the sub-density, which is then integrated to arrive

the following approximation to the survivor function P (t) = P 0 (τ > t)

P (t) ≈
N∏

i=1

Pi(t)

[
1 +

1

2

∑
i6=j

(
Pi,j(t)

Pi(t)Pj(t)
− 1

)]

where Pi(t) is the marginal survivor function of τi and Pi,j(t) is the bivariate survivor

function of min (τi, τj). The beauty of this approximation is that semi-explicit

expressions are available for each of these terms. With zero drift Pi,j(t) can be

obtained from (2.3) and will involve an infinite series of Bessel functions. The

series tends to be rapidly convergent, with 10 to 15 terms typically sufficient, and

its evaluation does not present a computational burden. With non-zero drift one

must integrate a Girsanov factor against (2.3), which involves a series of double

integrals of Bessel functions.

An alternative form for the approximation is given by

P (t) ≈ Q(t) +
∑
i<j

[Qi,j(t)−Q(t)] (2.14)
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where

Q(t) =
N∏

i=1

Pi(t) Qi,j(t) = Pi,j(t)
∏
k 6=i,j

Pk(t)

Note that Q(t) would be the survivor function of τ if all components were uncor-

related, and Qi,j(t) would be the survivor function of τ if only component i and

j were correlated. As Bhansali and Wise [16] (henceforth BW) are rather terse in

their development, we now provide a brief outline of their argument.

2.2.1 Outline of Bhansali and Wise’s Argument

For ease of exposition we will assume that µi = 0 for each i, and note that the

argument put forth here extends easily to the case of non-zero drift. We begin by

noting that if Zt is a standard (i.e. uncorrelated) N -dimensional Brownian motion

beginning at a point x ∈ Bo, then the transition sub-density of the absorbed process

Zt∧τ defined as

q(t, x, z)dz = P x
(
Z1

t ∈ dz1, . . . , Z
N
t ∈ dzN , τ > t

)
is equal to 0 for z /∈ Bo and is equal to

N∏
i=1

1√
2πt

[
e−(zi−xi)

2/2t − e−(2bi−zi−xi)
2/2t
]

for z ∈ Bo. This latter expression follows from Lemma 2.1.1 and the independence

of the components. As discussed in the previous section, for a given x ∈ Bo this

function solves the equation[
∂

∂t
− 1

2

k∑
i=1

∂2

∂z2
i

]
q(t, x, z) = 0 (2.15)

subject to the initial and boundary conditions

• q(0, x, z) =
∏N

i=1 δ(zi − xi)

• q(t, x, z) = 0 for z /∈ Bo.

• q(t, x, z) → 0 as zi → −∞ for each i

It appears that we may interpret q as the Green’s function for the problem[
∂

∂t
− 1

2

k∑
i=1

∂2

∂z2
i

]
g(t, z) = k(t, z) (t, z) ∈ [0,∞)×B (2.16)

subject to
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• g(0, x) =
∏N

i=1 δ(xi)

• g(t, x) = 0 for x /∈ Bo.

• g(t, x) → 0 as xi → −∞ for each i

We are led to believe that for a given function k the solution to (2.16) satisfying

the given initial and boundary conditions can be obtained via

g(t, x) =

∫ t

0

∫
B

q(t− s, x, z)k(z, s)dzds

Returning to our original problem with correlated Brownian motion Xt, fix a pair

(i, j) with i 6= j and assume that only these components are correlated. That is,

assume that ρk` = 0 for (k, `) 6= (i, j). In addition we assume that the process

begins at the origin and define

pij(t, x) = P 0 (Xt ∈ dx, τ > t)

so that pij satisfies [
∂

∂t
− 1

2

N∑
i=1

∂2

∂x2
i

− ρij
∂2

∂xi∂xj

]
pij(t, x) = 0 (2.17)

subject to the appropriate initial and boundary conditions. Expanding pij in a

perturbation series

pij(t, x) = p
(0)
ij (t, x) + ρijp

(1)
ij (t, x) + ρ2

ijp
(2)
ij (t, x) + . . .

and substituting into (2.17) we find that after equating powers of ρij the p`
ij are

obtained recursively as[
∂

∂t
− 1

2

N∑
k=1

∂2

∂x2
k

]
p

(0)
ij (t, x) = 0

[
∂

∂t
− 1

2

N∑
k=1

∂2

∂x2
k

]
p

(1)
ij (t, x) =

∂2

∂xi∂xj

p(0)(t, x)

and in general [
∂

∂t
− 1

2

N∑
k=1

∂2

∂x2
k

]
p(`+1)(t, x) =

∂2

∂xi∂xj

p(`)(t, x)
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again subject to the appropriate initial and boundary conditions. The “linear

approximation” (more precisely, an approximation at linear order in ρij) to pij(t, x)

is then

pij(t, x) ≈ p
(0)
ij (t, x) + ρijp

(1)
ij (t, x) (2.18)

Based on our discussion at the beginning of this section we see that these first two

terms are given by

p
(0)
ij (t, x) = q(t, 0, x) (2.19)

p
(1)
ij (t, x) =

∫ t

0

∫
B

q(t− s, w, x)
∂2

∂wi∂wj

q(s, 0, w)dwds (2.20)

It is interesting to note that the integrand in (2.20) can be expressed as the product ∏
k 6=i,j

ψ(t− s, wk, xk)ψ(s, 0, wk)

ψ(t− s, wi, xi)ψ(t− s, wj , xj)
∂ψ

∂wi
(s, 0, wi)

∂ψ

∂wj
(s, 0, wj)

where

ψ(t, w`, x`) =
1√
2πt

[
e−(x`−w`)

2/2t − e−(2b`−x`−w`)
2/2t
]

= Pw`
(
X`

t ∈ dx`, τ` > t
)

One can verify with tedious calculation that∫ b`

−∞
ψ(t− s, w`, x`)ψ(s, 0, w`)dw` = ψ(t, 0, x`)

Alternatively one can verify this by noting that∫ b`

−∞
ψ(t− s, w`, x`)ψ(s, 0, w`)dw` = E

[
P
(
X`

t ∈ dx`, τ` > t|X`
s , τ` > s

)]
All of this means that

p
(1)
ij (t, x) =

[∏
k 6=i,j

ψ(t, 0, xk)

]
K(t, xi, xj) (2.21)

where K(t, xi, xj) is given by∫ t

0

∫ bi

−∞

∫ bj

−∞
ψ(t− s, wi, xi)ψ(t− s, wj, xj)

∂ψ

∂wi

(s, 0, wi)
∂ψ

∂wj

(s, 0, wj)dsdwidwj

We note at this point that one can obtain a linear (in ρij) approximation to the

survivor function Qij(t) by integrating the linear approximation to the sub-density

(2.18)

Qij(t) ≈
∫

B

(
p

(0)
ij (t, x) + ρijp

(1)
ij (t, x)

)
dx (2.22)

= Q(t) + ρij

∫
B

p
(1)
ij (t, x)dx (2.23)
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Unfortunately BW are a little unclear as to exactly how this simple method is

extended to the more general situation of an arbitrary correlation structure. In the

case of arbitrary correlation the transition sub-density p(t, x) satisfies[
∂

∂t
− 1

2

N∑
i=1

∂2

∂x2
i

−
∑
i<j

ρij
∂2

∂xi∂xj

]
p(t, x) = 0 (2.24)

subject to the appropriate boundary and initial conditions. They begin by “ex-

panding the joint survival probability density [i.e. the sub-density of the absorbed

process] in powers of the off diagonal correlation matrix elements” and write

p(t, x) = p(0)(t, x) + p(1)(t, x) + . . .

with the statement “where p(0)(t, x) is the solution with the correlations set to zero,

p(1)(t, x) contains all the terms linear in the off diagonal elements of the correlation

matrix, etc.” They then claim that the “contribution to the joint survival probabil-

ity density that is linear in the asset correlations p(1)(t, x) satisfies the differential

equation” [
∂

∂t
− 1

2

N∑
k=1

∂2

∂x2
k

]
p(1)(t, x) =

∑
i<j

∂2

∂xi∂xj

p(0)(t, x) (2.25)

These characterizations of p(0) and p(1) appear to be based on a “formal” expansion

of the form

p(t, x) = h(0)(t, x) +
∑
i<j

ρijh
(1)
ij (t, x) +

∑
i<j

∑
k<`

ρijρk`h
(2)
ijk`(t, x) + . . .

If we insert this expression into (2.24) and equate coefficients we obtain the system

of equations [
∂

∂t
− 1

2

N∑
k=1

∂2

∂x2
k

]
h(0)(t, x) = 0

[
∂

∂t
− 1

2

N∑
k=1

∂2

∂x2
k

]
h

(1)
ij (t, x) =

∂2

∂xi∂xj

h(0)(t, x)

[
∂

∂t
− 1

2

N∑
k=1

∂2

∂x2
k

]
h

(2)
ijk`(t, x) =

∂2

∂xi∂xj

h
(1)
k` (t, x)

and this would imply that

h(0)(t, x) = q(t, 0, x)

h
(1)
ij (t, x) = p

(1)
ij (t, x)
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where p
(1)
ij is given in (2.20). It is easily verified that if p(1) =

∑
i<j ρijp

(1)
ij then p(1)

satisfies (2.25). The linear approximation is therefore given by

p(t, x) ≈ q(t, 0, x) +
∑
i<j

ρijp
(1)
ij (t, x)

Integrating this over B would provide what BW call a first-order approximation to

the survivor function P (t)

P (t) ≈ Q(t) +
∑
i<j

ρij

∫
B

p
(1)
ij (t, x)dx (2.26)

which they compute by numerically integrating the individual terms given by (2.21).

We make one small adjustment in the zero-drift case to eliminate the need for these

integrals. Using (2.22) and (2.23) we note that

Qij(t)−Q(t) ≈ ρij

∫
B

p
(1)
ij (t, x)

Plugging this into (2.26) we obtain

P (t) ≈ Q(t) +
∑
i<j

[Qij(t)−Q(t)]

In the next section we provide selected results from extensive Monte Carlo investi-

gation into the accuracy of this approximation.

2.2.2 Monte Carlo Assessment

In order to get some insight with respect to the accuracy of the approximation we

compared (2.14) to a simulated empirical survivor function based on an Euler-type

Monte Carlo scheme. For given correlation parameters and barrier levels we fixed

a terminal time horizon T and partitioned the interval [0, T ] into M equally spaced

intervals [0, t1], [t1, t2], . . . , [tM−1, T ] with tk = kδ and δ = T/M . We then generated

an exact “skeleton path” Xt1 , Xt2 , . . . , XT using the facts that the increments are

multivariate normal and distinct increments are independent. Conditional on the

values of the process at each of these times we then treated the processes

X i,k =
{
X i

u : u ∈ [tk−1, tk], X
i
tk−1

= xi
k−1, X

i
tk

= xi
k−1

}
as if they were independent. Note that each X i,k is a Brownian bridge with X i,k and

X i,` being independent for k 6= `. In general X i,k and Xj,k will not be independent

for i 6= j, however if M is large the dependence should be negligible. For each
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X i,k we can generate a random variable τ i,k having the same distribution as the

first passage time to the level bi of a Brownian bridge from xi
k−1 to xi

k over the

interval [0, δ]. Note that this distribution is defective in the sense that τ i,k = ∞
if the bridge does not attain the level bi, and P

(
τ i,k = ∞

)
> 0. Proposition 3.18

in Section 3.3.1 illustrates that the cumulative distribution function for the first

passage time to the level b of a Brownian bridge from 0 to y over the interval [0, T ]

is given by

F (t) = 1− Φ

 b− t
T
y√

t
(
1− t

T

)
+ exp

(
−2b(b− y)

T

)
Φ

 t
T

(b− y)− b
(
1− t

T

)√
t
(
1− t

T

)


for t ∈ [0, T ]. Simulation from this distribution using inverse transform is easily

accomplished using Newton’s method. The final step is to set

τ i = min
{
τ i,k : 1 ≤ k ≤M

}
This algorithm provides one observation from an approximate distribution of the

random vector

(τ1, . . . , τN)

and we repeat this procedure n times. The marginal distributions of the resulting

τi are correct.5 Our aim is to compare the resulting empirical distribution function

of

τ = min {τ1, . . . , τN}

to the approximation, and in order to ensure that we have chosen sufficiently large

M we compare empirical distributions of min {τi, τj} with the exact formulae Pi,j(t).

Our results indicate that the approximation to the survivor function is remark-

ably accurate for reasonably small values of N , and quite robust against the cor-

relation structure. In all cases discussed here we use T = 10, M = 1000 (so that

δ = .01) and 10,000 skeleton paths. Figure 2.1 shows the results for a correlation

matrix with off-diagonal entries of (.5, .11, .09) and barrier levels (1, 1.1, 1.2). It is

perhaps surprising that the approximation works this well when one of the correla-

tions is as high as 50%. Figure 2.2 indicates that M is sufficiently large that we are

generating τij = min (τi, τj) from the correct distribution. The exact distributions

plotted in this figure are given by (2.3).

Figure 2.3 illustrate the approximation breaking down as N increases. Both

plots are based on a homogeneous group with pairwise correlation of 25% and

5Note that we actually draw from the distribution of τiI (τi ≤ T ) +∞I (τi > T ).
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Figure 2.1: Empirical and Approximate Distributions for N = 3
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Figure 2.2: Empirical and Exact Distributions of τij = min (τi, τj) for N = 3
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Figure 2.3: Empirical and Approximate Distributions for N = 5 and N = 15
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individual barrier levels of 2.5. The approximation appears quite reasonable when

N = 5, but when N = 15 it leaves something to be desired, and the situation only

gets worse from there.

2.3 Similarity to the Gaussian Copula

Suppose that the copula of the pair (τ1, τ2) were Gaussian, with correlation param-

eter θ. Then the joint density of this pair would be given by

h(s, t) =
φθ (Φ−1 (F1(s)) ,Φ

−1 (F2(t)))

φ (Φ−1 (F1(s)))φ (Φ−1 (F2(t)))
f1(s)f2(t) s, t ≥ 0 (2.27)

where fi and Fi are the density and distribution function of τi, respectively, φ and

Φ are the density and distribution function of a standard normal variate and φθ is

45



the standard bivariate normal density

φθ(x, y) =
1

2π
√

1− θ2
exp

(
−x

2 + y2 − 2θxy

2 (1− θ2)

)
(x, y) ∈ R2

Since the actual joint density of (τ1, τ2) explodes along the line s = t, and since

(2.27) is bounded, it follows that the copula of (τ1, τ2) is not Gaussian. However

several authors have provided evidence that the true copula may in fact be quite

similar to the Gaussian. For example Overbeck and Schmidt [94] find that basket

swap spreads computed using first passage times of correlated Brownian motion are

quite similar to those computed using a Gaussian copula. In addition McLeish [90]

devises a bivariate normal approximation to the joint distribution of the maxima

of two correlated Brownian motion which appears to be remarkably accurate. In

this section we investigate this similarity in more detail.

2.3.1 Goodness-of-Fit in Two Dimensions

In this section we apply our ability to simulate the pair exactly to the problem of

assessing the similarity between a Gaussian copula and the true copula of the pair

(τ1, τ2). We do so by applying a goodness-of-fit test to simulated observations from

the exact joint distribution. The test was designed by Genest et al. [61] to test a

hypothesis of the form

H0 : C ∈ C (2.28)

where C is the copula of a given pair of random variables (X, Y ) and

C = {Cθ(u, v) : θ ∈ Θ}

is a given parametric family of copulas. We will see that the test has a hard time

rejecting this null hypothesis when C is the Gaussian family, and take these results

as an indication that while the true copula is not Gaussian, it is similar enough to

the Gaussian that this test has a hard time distinguishing between the two.

We will not provide details of the test, rather we will simply give an outline.

Let (X, Y ) be a given pair of random variables with copula C and marginals F and

G, and suppose we are interested in testing the hypothesis (2.28) for some given

parametric family. To any parametric family C = {Cθ(u, v) : θ ∈ Θ} there is an as-

sociated parametric family of univariate distribution functions K = {Kθ(t) : θ ∈ Θ}
where Kθ(t) is defined as via a bivariate probability integral transform

Kθ(t) = P (Cθ(U, V ) ≤ t)
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and the pair (U, V ) have joint distribution Cθ. The idea of Genest et al. [61] is

to convert the two-dimensional goodness-of-fit test on the copula of (X, Y ) to a

univariate test on the distribution of

T = H(X, Y ) = C(F (X), G(Y ))

Given independent observations (X1, Y1), . . . , (Xn, Yn) from a distribution with cop-

ula C and marginals F , G they construct “pseudo-observations”

T̂i = Ĥ(Xi, Yi) = Ĉ(F̂ (Xi), Ĝ(Yi))

where Ĥ, F̂ and Ĝ are the empirical bivariate and marginal distributions, and Ĉ

is the empirical copula. Either a one-dimensional Kolmogorov-Smirnov or Cramer-

von Mises test is then performed on the pseudo-observations to test the hypothesis

that K ∈ K. See Genest et al. [61] for an investigation of the asymptotic properties

of the test statistics and the power of the test.

Table 2.1 presents P -values for the test obtained using different parameters

values. In each case we simulated 1,000 observations from the exact distribution of

(τ1, τ2) and applied the test to the simulated population. The columns CVS and

KS refer to P -values for the Cramer-von Mises and Kolmogorov-Smirnov statistics,

respectively. The test requires an estimate of the copula parameter based on the

simulated data, which is reported in the last column. Note that this is not an

estimate of the correlation between the Brownian motions, rather it is an estimate

of the copula parameter under the assumption that the copula is Gaussian. We see

that in no cases would the test reject the hypothesis that the simulated values of

(τ1, τ2) were drawn from a distribution with a Gaussian copula. While we know that

the true copula is not Gaussian, we see that it is similar enough that this test has

trouble distinguishing between the two, even for as many as 1,000 observations. It

is interesting to note that when the two barriers are very far apart, the dependence

between the hitting times is not significantly affected by the correlation between

the processes.

2.3.2 Tail Dependence in Two Dimensions

It is known that the Gaussian copula does not possess dependence in either its

upper or lower tails. In this section we verify that the pair (τ1, τ2) has no upper

tail dependence.

To begin, let ρ be the correlation between (W 1,W 2) and assume for the moment

that the barrier levels are equal, say b1 = b2 = b > 0. We recall that the marginal
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Table 2.1: P -Values for Goodness-of-Fit Test

b1 b2 ρ CVS KS θ̂

8 8 .25 .1710 .1950 .1651

8 8 .50 .3020 .2960 .4177

2 2 .25 .2140 .3500 .1984

2 2 .50 .1190 .2030 .4162

2 8 .25 .6490 .7320 .2467

2 8 .50 .5750 .6380 .2054

distribution of τi is 2Φ
(
−b/

√
t
)

and that the survivor function of τ = min (τ1, τ2)

is given by the uniformly convergent (see Bañuelos and Smits [9]) series

P (τ > t) =
2r0√
2πt

e−r2
0/4t

∞∑
n odd

1

n
sin

(
nπθ0

α

)[
I(νn−1)/2(r

2
0/4t) + I(νn+1)/2(r

2
0/4t)

]
where α < π, r0 and θ0 are parameters depending on the correlation ρ and the

barrier level b.

The coefficient of upper tail dependence in this case is

λU = lim
u↗1

P
(
τ1 > F−1(u)|τ2 > F−1(u)

)
= lim

t→∞

P (min(τ1, τ2) > t)

P (τ1 > t)

= lim
t→∞

P (τ > t)

1− F (t)

For large t the denominator behaves proportionally to t−1/2, while the numerator

behaves proportionally to t−π/2α. This means that the ratio behaves as t(α−π)/2α,

which tends to zero since α < π. Therefore λU = 0 when the barriers are equal. To

see these individual behaviours, first note that

Φ(x) =
1

2
+

1√
2π
x+ o(x)

where o(x)/x tends to zero as x tends to zero. Therefore as x→ 0 we have

1− 2Φ(x) ∼ −
√

2

π
x

and this means that as t→∞ we have

1− F (t) = 1− 2Φ
(
−b/

√
t
)
∼
√

2

π

b√
t
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Next we show that

lim
t→∞

tπ/2αP (τ > t) = c

for a constant c, which will demonstrate that

P (τ > t) ∼ ct−π/2α

The survivor function of τ is a series containing terms of the form

e−r2
0/4tt−1/2I(νn±1)/2

(
r2
0/4t

)
with νn = nπ/α. Multiplying terms by tπ/2α and ignoring the exponential terms

(which tend to one as t→∞) we get a series with terms of the form

t(π−α)/2αI(νn±1)/2

(
r2
0/4t

)
Noting that

Iν
(
r2
0/4t

)
∼ kνt

−ν

where kν is a positive constant depending on the order, we see that

t(π−α)/2αI(νn+1)/2

(
r2
0/4t

)
∼ k(νn+1)/2t

−1−(n−1)π/2α

which tends to zero for all n ≥ 1. Next we see that

t(π−α)/2αI(νn−1)/2

(
r2
0/4t

)
∼ k(νn−1)/2t

−(n−1)π/2α

which is a constant for n = 1 and tends to zero for n ≥ 2. All of this shows that,

in the series for tπ/2αP (τ > t), all terms except the first tend to zero as t explodes,

while the first term tends to a constant. That is

lim
t→∞

tπ/2αP (τ > t) = k

for some constant k (which we can determine exactly), and therefore

P (τ > t) ∼ kt−π/2α

as t→∞.

Now in the situation where the barriers are different, say b1 < b2 we have

F1(t) > F2(t) =⇒ F−1
1 (u) < F−1

2 (u)

which implies

P
(
τ1 > F−1

1 (u), τ2 > F−1
2 (u)

)
≤ P

(
τ1 > F−1

1 (u), τ2 > F−1
1 (u)

)
= P

(
τ > F−1

1 (u)
)
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And this means that

λU = lim
u↗1

P
(
τ2 > F−1

2 (u)|τ1 > F−1
1 (u)

)
= lim

u↗1

P
(
τ1 > F−1

1 (u), τ2 > F−1
2 (u)

)
P
(
τ1 > F−1

1 (u)
)

≤ lim
u↗1

P
(
τ > F−1

1 (u)
)

P
(
τ1 > F−1

1 (u)
)

= 0

with the last equality following from our result when the barrier levels are equal.

Since λU ≥ 0 we conclude that there is no upper-tail dependence between the pair

in any case.

We have had difficulty obtaining the analogous result in the case of lower tail

dependence. However it has come to our attention through a private communication

that Bo Shi, a graduate student at the University of Pittsburgh, has successfully

established that the pair has no lower tail dependence.

2.3.3 First-to-Default in Three Dimensions

We may also use this approximation to get further insight into the similarity be-

tween the copula of (τ1, . . . , τN) and the Gaussian copula. To do so we will answer

the following question - suppose that Yi has the same marginal distribution as τi, but

that the copula of (Y1, . . . , YN) is Gaussian with correlation matrix Σ̂. How similar

are the distributions of τ = min (τ1, . . . , τN) and Y = min (Y1, . . . , YN)? Clearly the

answer will depend on the Gaussian correlation matrix Σ̂, and we choose to make

the comparison in such a way as to match the bivariate survival probabilities over

a fixed time horizon T . That is, we choose Σ̂ij such that

P (τi > T, τj > T ) = P (Yi > T, Yj > T )

Using N = 3 with correlations and barrier levels of (.5,.11,.09) and (5,8,2.4) for the

Brownian motion, we obtain “matched” correlations of (.4873,.1011,.0813) which we

use in the Gaussian copula. Figure 2.4 plots Bhansali and Wise’s [16] approximation

to the distribution of min (τ1, τ2, τ3) against a simulated empirical distribution of

(Y1, Y2, Y3) where the Yi have the same marginal distributions as the τi, but a

Gaussian copula with the matched correlation parameters.
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Figure 2.4: True vs. Gaussian Copula
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As the two distributions are virtually indistinguishable this indicates that the

first default time in a “correlated Brownian drivers” model is quite similar to the

first default time in a Gaussian copula model. As noted in the introduction to

this chapter the first default time is the fundamental object in many credit risk

applications, indicating that one might expect reasonably similar results from the

two models.
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Chapter 3

Stochastic Barriers and

Time-Changed Brownian Motion

The original impetus for the material presented in this chapter was to justify an

approximation scheme used in Chapter 4. As we delved deeper into the subject we

realized that the results presented here are of sufficient generality and independent

interest to warrant their own chapter.

The problem we are interested in here is as follows. For fixed T > 0 suppose

that f : [0, T ] 7→ R is a deterministic function with f(0) > 0. We define ψ (f) as the

probability that a standard Brownian motion breaches the (upper) barrier f at some

point over the interval [0, T ]. Our interest lies in the random variable created by

replacing the deterministic f with a stochastic process A. That is, we are interested

in the random variable L := ψ (A), where A = {At : 0 ≤ t ≤ T} is seen as a random

element of an appropriate function space. In applications one may be compelled

to compute expectations of the form E [h (L)] for various deterministic functions

h. In general the distribution of L is extraordinarily difficult, if not impossible, to

determine and one is forced to rely on simulation methods. For reasons discussed

in Section 3.1, exact simulation is generally not possible. As such this chapter is

dedicated to approximate simulation methods, their justification and an assessment

of their accuracy.

In Section 3.4 we generalize our methods and results to the case of a time-

changed Brownian motion. To this end let g : [0, T ] 7→ [0,∞) be a strictly increasing

function with g(0) = 0. We define Ψ (f, g) as the probability that a Brownian

motion, subjected to the time-change g, breaches the barrier f at any point over

the interval [0, T ]. Section 3.4 extends our methods and results to approximate

simulation of Ψ (A,B), where B is a stochastic time change.
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3.1 Motivation and Related Literature

Suppose that W is a standard Brownian motion and that f is a deterministic

function. The first passage time is defined as

τf = inf {t ≥ 0 : W (t) ≥ f(t)}

In general closed form expressions for crossing probabilities P (τf ≤ T ) are only

available in very specific cases, for example linear barriers or barriers of the form

given by Daniels [37] and later generalized by Di Nardo et al. [39]. However the ap-

proximation of such probabilities is a very well-developed problem in the literature.

These efforts were pioneered by Durbin [46] and Park and Schuurmann [95], who

focused on characterizing the cumulative distribution function of τf as the solution

to a Volterra equation of the first kind1. This approach has the distinct advan-

tage of providing rapid approximations (see Section 3.3.2), however it does not

appear possible to obtain bounds on the resulting approximation error. A more

recent approach, pioneered by Pötzelberger and Wang, approximates P (τf ≤ T )

with P (τfn ≤ T ), where fn is a piecewise linear approximation to f . Section 3.3.1

discusses two methods for computing such probabilities. The advantage of this

approach is that it provides explicit and computable bounds on the approxima-

tion error. As such we will focus primarily on this approach, as these bounds are

necessary in order to prove our convergence results in Section 3.2.

Suppose now that we are given a stochastic process A, independent of the stan-

dard Brownian motion W , and inquire about the first passage time

τA = inf {t ≥ 0 : W (t) ≥ A(t)} (3.1)

There has been much less attention devoted to this problem in the literature. When

A is such that X = W − A is a Markov process (with A(0) > 0), one may appeal

to the integral equation derived by Peskir and Shiryaev [96]

P (Xt ≥ 0) =

∫ t

0

P (Xt ≥ 0 |Xs = 0) dG(s) (3.2)

where G is the cumulative distribution function of τA. Provided the kernel here

is non-singular, numerical approximation of (3.2) is straightforward. When A is

the sum of a deterministic function and a process with stationary and independent

1Durbin [46] investigates techniques for numerical solution of a singular equation which was
originally derived by Fortet [56] Park and Schuurmann [95] derive a non-singular equation which
admits simple numerical approximation.
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increments, Beekman and Park [13] investigate the approximation of probabilities

P (τA ≤ T ) using a similar approach based on integral equations. Unfortunately in

both cases it does not appear possible to bound the resulting error.

For the general A we see that only isolated analytic or semi-analytic results are

available, and it is natural to inquire about simulation methods. Provided ψ (A)

is a version of the conditional crossing probability P (τA ≤ T |σ (At : 0 ≤ t ≤ T )),

we note that P (τA ≤ T ) = E [ψ (A)]. In an ideal world one would be able to

carry out the following program for simulating realizations of L = ψ (A), and hence

approximating the desired first-passage probability E [L]

• Simulate a realization of A, say a = {at : 0 ≤ t ≤ T}

• Evaluate ψ (a)

Unfortunately there are two problems here for the general A. First, it may not be

possible to simulate a full path, as would be the case when A is the integral of a

diffusion process. Hence in the first step we may have to content ourselves with

simulating a linear approximation to A, say An. The second problem arises from

the fact that even if we can simulate a full path of A, for example if A were the

integral of a shot-noise process2, closed-form expressions for the functional ψ(a) are

unavailable for all but the simplest a, for example linear or of the form given in

Daniels [37]. Fortunately semi-analytic expressions are available in the case that

a is piecewise linear and continuous. Hence in the case where we can simulate a

full path of A, we might approximate ψ(a) with ψ(an), where an is a piecewise

linear approximation to a. But this simply amounts to simulating one observation

of the random variable ψ (An). Thus we see that in general, regardless of the form

of A, both problems in the “idealized algorithm” can be solved by considering the

following approximate (and perhaps more importantly, feasible) algorithm

• Simulate a full path of An, say an = {an(t) : 0 ≤ t ≤ T}. Here An is simply

a piecewise linear process which approximates A in a certain sense.

• Evaluate ψ (an)

In using this algorithm we will be able to simulate observations of Ln = ψ (An)

exactly (up to a small numerical or Monte Carlo integration error) and approximate

E [L] with E [Ln]. Such an approximation will be justified provided Ln converges

2This processes are discussed in more detail in Section 3.3.3
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weakly to L, since L is bounded. In Section 3.2 we prove almost sure convergence

under very mild conditions on A, and in Section 3.3.3 we show how one may obtain

an estimate of the approximation error |E [Ln − L]| via simulation.

Further motivation for this problem is as follows. In Chapter 4 we propose

a model for credit risk where the random variable L = Ψ (A,B) represents the

proportion of defaults in an asymptotically large portfolio. In applications of the

model one might want to estimate crucial quantities such as the probability that

portfolio losses exceed some critical upper level, or compute expectations such as

E
[
(L−K)+] for constant K. These latter expectations are the necessary ingre-

dients for pricing collateralized debt obligations on the portfolio. In both cases

analytic results are difficult at best, impossible at worst. Thus weak convergence

of Ln = Ψ (An, Bn) to L = Ψ (A,B) makes model implementation possible.

Before proceeding we recall the definition of a random element (see Billingsley

[19]), which will be used in Sections 3.2 and 3.4. Suppose that (S, d) is a metric

space with Borel σ-algebra S. Given a probability space (Ω,F , Q), a mapping

X : Ω → S is called a random element of S if it is measurable between (Ω,F) and

(S,S).

3.2 Main Results

Throughout this section we will confine ourselves to a fixed time horizon [0, T ], W

will denote a standard Brownian motion and the set H[0, T ] will consist of all ab-

solutely continuous functions f over [0, T ], whose derivatives are square-integrable∫ T

0

[f ′(t)]
2
dt <∞

This space is often referred to as the Cameron-Martin space, and in what follows

we endow it with the uniform metric

d (f, g) = sup {|f(t)− g(t)| : 0 ≤ t ≤ T}

For f ∈ H[0, T ] we define the first passage time of W to the barrier f as

τf = inf {t ≥ 0 : W (t) ≥ f(t)} (3.3)

and note that τf = 0 if f(0) ≤ 0. Our first result of this section states that first

passage probabilities P (τf ≤ T ) are continuous in the barrier f .
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Theorem 3.2.1. The functional ψ : H[0, T ] 7→ [0, 1] defined by

ψ (f) = P (τf ≤ T ) (3.4)

is continuous.

Proof. Our first step is to show that for f ∈ H[0, T ] the random variable Mf defined

as

Mf = max {W (t)− f(t) : 0 ≤ t ≤ T} (3.5)

is a continuous random variable. Since Mf = Mf−f(0) − f(0) we may assume

without loss of generality that f(0) = 0. Let B ⊂ R be a Borel set with Lebesgue

measure zero. Using Girsanov’s Theorem we see that

P (Mf ∈ B) = E [ΛI (M0 ∈ B)]

where

Λ = exp

(
−
∫ T

0

f ′(t)dWt −
1

2

∫ T

0

[f ′(t)]
2
dt

)
Since the maximum of a standard Brownian motion is continuous, it follows that

P (Mf ∈ B) = 0, hence Mf is continuous.

Now let f ∈ H[0, T ] and suppose that fn is a sequence with εn = d(f, fn) → 0.

It is easy to see that

|Mf −Mfn| ≤ εn a.s.

Using this fact and the continuity of Mf and Mfn we obtain the inequality, valid

for any real m

P (Mf ≥ m+ εn) ≤ P (Mfn ≥ m) ≤ P (Mf ≥ m− εn) (3.6)

Since Mf is continuous and ψ (f) = P (Mf ≥ 0), it follows that ψ (fn) → ψ (f), as

required.

Theorem 3.2.1 reveals that if fn is a sequence of approximating functions which

converge uniformly to f , then ψ (fn) → ψ (f). Moreover, setting εn = d (f, fn),

switching f and fn in (3.6) and using the fact that

ψ (fn + εn) ≤ ψ (fn) ≤ ψ (fn − εn)

one readily obtains the following bound on the approximation error in terms of the

distance εn = d (f, fn)

|ψ (f)− ψ (fn)| ≤ max (ψ(fn − εn)− ψ(fn), ψ(fn)− ψ(fn + εn)) (3.7)
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An approximation scheme only becomes operational (i.e. practical) when ψ (fn)

and ψ (fn ± εn) can be computed, as such the only “sensible” schemes are those

in which the approximating functions are piecewise linear. There are myriad ways

of choosing a piecewise linear approximating sequence fn, of which we now discuss

two. We take as given an array of node times

{ti,n : n ≥ 1, 0 ≤ i ≤ n, 0 = t0,n < t1,n < . . . < tn,n = T} (3.8)

with the property that

∆n = max {ti,n − ti−1,n : 1 ≤ i ≤ n} → 0 as n→∞ (3.9)

We call a “type one” approximation the sequence fn, where fn is linear over the

interval [ti−1,n, ti,n] with fn (ti,n) = f (ti,n). For such an approximation it is straight-

forward to show that

d (f, fn) ≤ 2∆n sup {|f ′(t)| : 0 ≤ t ≤ T} (3.10)

hence such an approximating sequence is justified provided f has a bounded deriva-

tive.

For a stochastic process At, defined on a probability space (Ω,F , P ), we define

the type one approximation An as the process which is linear over [ti−1,n, ti,n] with

An (ti,n) = A (ti,n). Thus An is a piecewise linear process whose law is determined

by that of the random vector (A (0) , A (t1,n) , . . . , A (T )). Before proceeding with

our next main result, which deals with weak convergence of ψ (An) to ψ (A), there

are some technical issues which we feel are prudent to discuss. If every sample of

A lies in H[0, T ], then the mapping ω 7→ A (·, ω) is measurable3 and we may view

A as a random element of H[0, T ]. Moreover for each ω ∈ Ω there exists a function

A′ (·, ω) ∈ L2[0, T ] with the property that A (t, ω) =
∫ t

0
A′ (s, ω) ds. There are some

delicate issues involved with such a construction. To begin such an A′ is clearly not

unique, so we call any fixed choice a determination of A′. In addition it is not clear

that in general, quantities such as ω 7→ sup0≤t≤T |A′ (ω, t)| will be measurable. As

such we include this as a condition in the following corollary to Theorem 3.2.1

Corollary 3.2.2. Let A be a random element of H[0, T ], and suppose there exists

a determination of A′ such that

ω 7→ sup
0≤t≤T

|A′ (ω, t)|

3This follows from the facts that H[0, T ] is separable and that a continuous function is deter-
mined by its values at rational times.
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is measurable with

P

(
sup

0≤t≤T
|A′(t)| <∞

)
= 1

Then ψ (An) → ψ (A) almost surely, where An is the type one approximation to A.

Proof. By (3.10) we have

d (A,An) ≤ 2∆n sup {|A′(t)| : 0 ≤ t ≤ T}

and since the bounding random variable is almost surely finite, we have that

d (A,An) → 0 almost surely as n → ∞. Since ψ is continuous it follows that

ψ (An) → ψ (A) almost surely.

The conditions of Corollary 3.2.2 are in fact quite general. For example they

are satisfied in the situation At = A0 +
∫ t

0
Msds, where Mt is a process with càdlàg

sample paths. A situation where the conditions do not apply is also easily imagined,

for example the case where At = Xt3/4, where X is a random variable.

In many cases, for example when A is the integral of a diffusion process, only

simulation of A′ is possible. In such cases the type one approximation is not feasible,

and it is therefore desirable to investigate linear approximation schemes which rely

solely on knowledge of a function’s derivative. Motivated by the trapezoidal rule

we define the “type two” approximating sequence fn via

fn(t) = fn(ti−1,n) +
f ′(ti−1,n) + f ′(ti,n)

2
(t− ti−1,n) t ∈ [ti−1,n, ti,n] (3.11)

with the convention that fn(0) = f(0). It is straightforward to show that for such

an approximation we have

d(f, fn) ≤ T · w (f ′,∆n) (3.12)

where w denotes the modulus of continuity

w (f, δ) = sup {|f(t)− f(s)| : 0 ≤ s, t ≤ T, |s− t| ≤ δ}

If f ′ is continuous, then w (f, δ) → 0 as δ → 0, therefore the type two ap-

proximation is appropriate provided f has a continuous derivative. Note that

in this case both the type one and two approximations are appropriate. For a

stochastic process A with square-integrable derivative A′ we define the type two

linear approximation as that process for which An(0) = A(0) and An is linear

over [ti−1,n, ti,n] with slope (A′ (ti−1,n) + A′ (ti,n)) /2. Thus An is a piecewise linear

(and continuous) process whose law is determined by that of the random vector

(A(0), A′(0), A′(t1,n), A′(t2,n), . . . , A′(T )). As a second corollary to Theorem 3.2.1

we have
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Corollary 3.2.3. Let A be a random element of H[0, T ], and suppose that there

exists a determination of A′ such that the event

{ω : A′ (·, ω) is continuous}

is measurable and almost sure. Then ψ (An) → ψ (A) almost surely, where An is

the type two approximation to A.

Proof. By (3.12) we have

d (A,An) ≤ Tw (A′,∆n)

Since A′ is almost surely continuous we have that d (A,An) → 0 almost surely as

n→∞. Continuity of ψ yields the desired results.

3.3 Computational Methods and Examples

In this section we investigate two methods for computing first passage probabili-

ties for standard Brownian motion to piecewise linear barriers. Both methods are

constructed by combining the Markov property of Brownian motion with known

closed-form results for linear barriers. The first method is numerical integration,

which is essentially exact, but can become computationally expensive quite rapidly.

The second method, Monte Carlo simulation, is significantly faster but introduces

statistical error. We compare both methods when used to approximate first pas-

sage probabilities to the square-root barrier f(t) =
√

1 + t. We find that using node

spacings as large as 0.25 can produce approximations which are exact to within sev-

eral significant digits. For completeness we also compare the efficiency of the Monte

Carlo method to the integral equation approach, finding the latter to be superior

in terms of computational efficiency.

Section 3.3.3 discusses approximation of E [h (ψ (A))] via simulation. In par-

ticular we show how one may assess, also via simulation, the error inherent in

approximating such quantities with E [h (ψ (An))]. As an illustrative example we

investigate the case where A is an integrated shot-noise process and find the approx-

imation error to be quite reasonable with node spacings as large as 0.25. Moreover

one can get a remarkably accurate estimate of this error with a very small sample

size.
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3.3.1 Piecewise Linear Barriers

In this section we look at two methods for approximating crossing probabilities in

the case where the (deterministic) barrier f is piecewise linear. Throughout this

section W will denote a Brownian motion and P x will denote the measure under

which W begins at x - that is P x (W0 = x) = 1. When x = 0 we will remove the

superscript, that is P = P 0. Recall that the first passage time is defined as

τ = inf {t ≤ 0 : Wt ≥ f(t)} (3.13)

We begin with the simplest case where f(t) = b+mt is “purely” linear, for which

the following results are well-known (see Karatzas and Shreve [80] for example)

• Under P x the distribution function of τ is defined as

F (x, b,m, t) = P x (τ ≤ t)

and the domain may be taken to be R4. For t < 0 this function is clearly

zero, while for x ≥ b it is degenerate in the sense that F (x, b,m, t) = 1 for

t ≥ 0. In the non-degenerate case where x < b we have, for t ≥ 0

F (x, b,m, t) = Φ

(
−(b− x) +mt√

t

)
+ e−2(b−x)mΦ

(
mt− (b− x)√

t

)
(3.14)

where Φ is the cumulative distribution function of a standard normal random

variable.

• The sub-density ψ (w, x, b,m, t) of the absorbed processWt∧τ will have domain

R4 × [0,∞) and is defined via

P x (Wt ∈ B, τ > t) =

∫
B

ψ (w, x, b,m, t) dw

If x ≥ b, then τ is almost surely zero under P x, hence ψ is zero for x ≥ b. In

the case where x < b, ψ may be defined for t = 0 as δ (w − x), where δ is the

Dirac delta function. Finally in the case where x < b and t > 0 we have that

ψ (w, x, b,m, t) =
1√
2πt

[
φ

(
w − x√

t

)
− e−2(b−x)mφ

(
w + x− 2b√

t

)]
(3.15)

where φ is the probability density function of a standard normal random

variable.
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• The conditional crossing probability is defined as

p (x, y, b,m, t) = P x (τ ≤ t |Wt = y )

The function p has domain R4× (0,∞). For x ≥ b we have that p is equal to

one, while for x < b it is given by

p (x, y, b,m, t) =

{
exp

(
−2(b−x)(b+mt−y)

t

)
y < b+mt

1 y ≥ b+mt
(3.16)

Another result which does not appear to be as well known concerns the cumulative

distribution function of the first passage time of a Brownian bridge to a linear

barrier (note that such a random variable may be defective in the sense that it

takes on the value ∞ with positive probability), namely probabilities of the form

q (x, y, b,m, t, T ) = P x (τ ≤ t |WT = y ) (3.17)

The domain of this function may be taken as the product of R4 with the set

{(t, T ) : T > 0, t ≤ T}. For t < 0 we have that q = 0 for all values of the other

parameters. When x ≥ b we have that q = 0 for t < 0 and q = 1 for t ≥ 0. An

explicit form for q in non-degenerate cases is provided in the following

Proposition 3.3.1. For T > 0, 0 < t < T and x < b we have that q(x, y,m, b, t, T )

defined by (3.17) is equal to

d1 (x, y, b,m, t, T ) + exp

(
−2 (b− x) (b+mT − y)

T

)
d2 (x, y, b,m, t, T ) (3.18)

where

d1 (x, y, b,m, t, T ) = Φ

− t
T

(b+mT − y) + (b− x)
(
1− t

T

)√
t
(
1− t

T

)


d2 (x, y, b,m, t, T ) = Φ

 t
T

(b+mT − y)− (b− x)
(
1− t

T

)√
t
(
1− t

T

)


Proof. To begin we note that P x (τ ≤ t |Wt ) = p (x,Wt, b,m, t). Now, since A :=

{τ ≤ t} ∈ FW
t we have that WT−Wt is independent of σ (Wt, IA), where IA denotes

the indicator of the event A. Therefore

P x (τ ≤ t |WT ) = Ex [IA |WT ]

= Ex [Ex [IA |WT −Wt,Wt ] |WT ]

= Ex [Ex [IA |Wt ] |WT ]

= Ex [p (x,Wt, b,m, t) |WT ]
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Thus in order to evaluate the desired quantity we simply need to compute the

integral ∫
R
p (x,w, b,m, t)P x (Wt ∈ dw |WT = y ) (3.19)

Recalling (3.16) we see that this integral may be split into two pieces, one of which

is∫ ∞

b+mt

P x (Wt ∈ dw |WT = y ) = P x (Wt ≥ b+mt |WT = y ) = d1 (x, y, b,m, t, T )

where we have used the fact that, conditional upon WT = y, the distribution of Wt

is Gaussian with mean x + t
T

(y − x) and variance t
(
1− t

T

)
. The second piece of

(3.19) is given by ∫ b+mt

−∞
e−2(b−x)(b+mt−w)/tP x (Wt ∈ dw |WT = y )

It is easy to verify that if X is Gaussian with mean µ and variance σ2, then

E
[
eaXI (X ≤ c)

]
= exp

(
a

(
µ+

aσ2

2

))
Φ

(
c− (µ+ aσ2)

σ

)
Using this result and the known conditional distribution of Wt, given WT = y we

obtain that this integral is indeed given by

exp

(
−2 (b− x) (b+mT − y)

T

)
d2 (x, y, b,m, t, T )

as required.

Our goal now is to show how these results, combined with the Markov property

of Brownian motion, can be used to compute crossing probabilities to piecewise

linear barriers. For the remainder of this section we fix T > 0 and suppose that f

is piecewise linear and continuous over [0, T ] with node times 0 = t0 < t1 < . . . <

tN−1 < tN = T . Denote the values of the function at each node by

fi = f(ti) i = 0, 1, . . . , N (3.20)

and the slope of f over the interval [ti−1, ti] as

mi =
fi − fi−1

ti − ti−1

i = 1, 2, . . . , N (3.21)

We will illustrate each method in the case T = N = 3, f0 = 1, (m1,m2,m3) =

(1, 0,−1) with equally-spaced nodes. This barrier is pictured in Figure 3.1 below.
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Figure 3.1: Sample Barrier
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For given s < t define As,t to be the event that W remains below f over [s, t]

As,t = {Wu < f(u) : u ∈ [s, t]} (3.22)

By the Markov property of Brownian motion we have for ti < t ≤ ti+1

P x (Ati,t |Wti ) = 1− F (Wti , fi,mi+1, t− ti)

P x (Wt ∈ dw, Ati,t |Wti ) = ψ (w,Wti , fi,mi+1, t− ti) dw

where F and ψ are given by (3.14) and (3.15), respectively. Now define, for each

i ≥ 1, the function

ψi(w) = P (Wti ∈ dw, τ > ti) = P (Wti ∈ dw, A0,ti)

and note that ψ1(w) is available in closed form

ψ1(w) = ψ (w, 0, f0,m1, t1)
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with ψ given by (3.15). Due to the Markov property of Brownian motion we obtain

the following recursive relationship

ψi+1(w) = P
(
Wti+1

∈ dw, A0,ti+1

)
= P

(
Wti+1

∈ dw, A0,ti , Ati,ti+1

)
= E

[
P
(
Wti+1

∈ dw, A0,ti , Ati,ti+1
|Wti

)]
= E

[
P
(
Wti+1

∈ dw, Ati,ti+1
|Wti

)
P (A0,ti |Wti )

]
=

∫ ∞

−∞
ψ (w, x, fi,mi+1, ti+1 − ti)P (A0,ti |Wti ∈ dx)P (Wti ∈ dx)

=

∫ fi

−∞
ψ (w, x, fi,mi+1, ti+1 − ti)ψ

i (x) dx

Starting with the known function ψ1 we may recursively compute all the ψi numer-

ically, and we have found that the simple trapezoidal rule works quite well. Armed

with the ψi we may now compute first passage probabilities. To see this, using the

Markov property of Brownian motion once again we obtain for ti < t ≤ ti+1

P (τ ∈ (ti, t]) = P
(
AC

ti,t
, A0,ti

)
= E

[
P
(
AC

ti,t
|Wti

)
P (A0,ti |Wti )

]
=

∫ ∞

−∞
F (x, fi,mi+1, t− ti)P (A0,ti |Wti ∈ dx)P (Wti ∈ dx)

=

∫ fi

−∞
F (x, fi,mi+1, t− ti)ψ

i(x)dx

And since P (τ ≤ t1) = F (0, f0,m1, t1) is available in closed form we may use the

following relationship for i ≥ 1 and ti < t ≤ ti+1

P (τ ≤ t) = P (τ ≤ ti) + P (τ ∈ (ti, t])

We implemented this method to compute the cumulative distribution function of τ

for the barrier pictured in Figure 3.1, computing Fj = P (τ ≤ sj) for 3,000 equally-

spaced points over the interval [0, 3]. We found the shape of the (approximated)

density function to be quite interesting, and it is pictured in Figure 3.2. The density

was approximated via (Fj+1 − Fj) / (sj+1 − sj).

Monte Carlo

The method described in the previous section can become quite slow, especially as

the number of nodes increases. A much more rapid approach is to use simulation
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Figure 3.2: Density Function - Piecewise Linear Example
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methods. Without loss of generality assume we wish to approximate P (τ ≤ T ),

and for 1 ≤ i ≤ N define the random variable

Qi = P
(
Ati−1,ti

∣∣Wti−1
,Wti

)
= 1− p

(
Wti−1

,Wti , fi−1,mi, ti − ti−1

)
(3.23)

By the Markov property of Brownian motion we have that

P (τ ≤ T ) = 1− P (τ > T )

= 1− P

(
N⋂

i=1

Ati−1,ti

)

= 1− E

[
P

(
N⋂

i=1

Ati−1,ti

∣∣∣∣∣Wt1 , . . . ,WT

)]

= 1− E

[
N∏

i=1

P
(
Ati−1,ti

∣∣Wti−1
,Wti

)]

= 1− E

[
N∏

i=1

Qi

]
An unbiased estimator for P (τ ≤ T ) is easily simulated by first simulating a “skele-

ton” path Wt1 , . . . ,WT and then computing the realized value of
∏N

i=1Qi. We note
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that in order to determine the value of this product, it is not always necessary to

simulate W at each and every node time. Indeed if it is found that Wt1 ≥ f1, then

Q1 = 0 and hence
∏N

i=1Qi = 0. We see, therefore, that we may terminate the

algorithm as soon as a simulated value is found to exceed the barrier. As a result,

implementing the algorithm recursively can produce modest efficiency gains. Also

note that as an immediate by-product of this simulation scheme one can compute

for no extra cost the variables 1−
∏i

j=1Qj for 1 ≤ i ≤ N , thus obtaining unbiased

estimators for P (τ ≤ ti) for each node time.

Consider now the case where N = 2 and suppose we are interested in computing

Pj = P (τ ≤ sj) for n values of sj ∈ [t1, t2]. Without loss of generality assume that

s1 = t1, sn = t2 and set s0 = 0. In analogy with the method described in the

previous paragraph we could set Qi = 1− p
(
Wsi−1

,Wsi
, f1,m2, si − t1

)
and use the

estimator

Pj = 1−
j∏

i=1

Qi

which is unbiased for P (τ ≤ sj). Note that this requires simulating the Brown-

ian path at n time points, which may become expensive as n gets large. As an

alternative we may note that for s ∈ (t1, t2) we have

P (At1,s |Wt1 ,Wt2 ) = 1− q (Wt1 ,Wt2 , f1,m2, s− t1, t2 − t1)

where q is given by (3.18). Hence in order to construct an unbiased estimator we

may set

Q1 = 1− p (0,Wt1 , f0,m1, t1)

Qn = 1− p (Wt1 ,Wt2 , f1,m2, t2 − t1)

Qi = 1− q (Wt1 ,Wt2 , f1,m2, si − t1, t2 − t1) 2 ≤ i ≤ n− 1

An unbiased estimator for P (τ ≤ sj) is then given by

Pj = 1−
j∏

i=1

Qi

and only requires simulating the Brownian motion at two time-points, as opposed

to n. We have found that the main advantage of this method is that it tends to

produce “smoother” estimates of the distribution function. This is illustrated in

Figure 3.3, which plots the estimated distribution functions for the barrier in Figure

3.1, using both the latter “semi-analytic” method and the former “crude” method.

We have found this to be the only major difference between the two methods, as

neither method appears to be significantly more efficient or accurate.
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Figure 3.3: MC Distribution Functions - Piecewise Linear Example. Each panel

illustrates the estimated distribution function using a different Monte Carlo method.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4
Semi−Analytic MC

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4
Crude MC

67



Table 3.1: Numerical Approximation

N ∆ Time ψ (fN) Error Bound ψ (gN) Error Bound

1 5 .0382 .4613 .0616 .4216 .1361

2 2.5 .2498 .4388 .0258 .4201 .0391

5 1 .9251 .4273 .0067 .4229 .0069

10 0.5 3.1548 .4250 .0021 .4238 .0018

20 0.25 6.6806 .4245 .0006 .4242 .0005

40 0.125 13.3618 .4243 .0002 .4242 .0002

3.3.2 Square-Root Boundary

In this section we apply the methods of Section 3.3.1 to the problem of approxi-

mating ψ (f) = P (τf ≤ T ) for the boundary f(t) =
√

1 + t and T = 5. We use

N equally spaced nodes so that ti = i∆ for ∆ = T/N . In order to bound the

error using (3.7) we must be able to compute the distance between f and its linear

approximations. For the type-one approximation fN defined by fN(ti) = f(ti),

concavity of f allows us to determine that the maximum distance between f and

fN over the interval [ti−1, ti] occurs at t∗i which satisfies

2
√

1 + t∗i =
ti − ti−1√

1 + ti −
√

1 + ti−1

Since fN ≤ f over the entire interval [0, T ], for the type one approximation we

have that εN = d(fN , f) is given by the maximum of f(t∗i ) − fN(t∗i ). For the type

two approximation gN defined by gN(0) = 1 and g′N(t) = (f ′(ti−1) + f ′(ti)) /2 for

t ∈ (ti−1, ti) we approximate εN = d(gN , f) numerically.

Table 3.1 displays the results when using numerical integration. The first column

lists the number of nodes used in the approximation, while the second reports the

associated distance between nodes. The third column reports the computational

time required, in seconds, with computations being conducted using Matlab 7 on

a PC with a Pentium 4 processor. The next two columns display the value of the

type one linear approximation along with its error bound

max (ψ (fN − εN)− ψ (fN) , ψ (fN)− ψ (fN + εN)) (3.24)

The final two columns reported the analogous quantities for the type two approx-

imation. We see that for both approximations the error becomes acceptable quite

rapidly, being one-fifth of one percent for node spacings as large as 0.5. As a final
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note we see that the computational time required is roughly linear in the number

of nodes used, requiring approximately 0.3309 seconds per node.

We also compared a Monte Carlo estimator, using only the type one approxi-

mation. With P = 1−
∏N

i=1Qi and

Qi = 1− p

(
Wti−1

,Wti , fN(ti−1),
f(ti)− f(ti−1)

ti − ti−1

, ti − ti−1

)
(3.25)

we simulate 10,000 skeleton paths for W , compute Pj for each path and estimate

the desired probability via P̄ , the average of the simulated Pj. Note that if we

replace fN(ti−1) in (3.25) with fN(ti−1)+ εN , we may obtain an unbiased estimator,

say P−, of ψ (fN + εN). Similarly, replacing fN(ti−1) with fN(ti−1)− εN we obtain

an unbiased estimator, say P+, of ψ (fN − εN). Now, since (3.24) is equal to

max
(
E
[
P+ − P

]
, E
[
P − P−

])
≤ E

[
max

(
P+ − P, P − P−

)]
(3.26)

we may obtain an estimate (3.24) by averaging the simulated values of

max
(
P+

j − Pj, Pj − P−j
)

Table 3.2 reports the results. The first column reports the number of nodes used,

while the second and third columns compare the computational times required for

Monte Carlo and numerical integration, in seconds. The fourth column reproduces

the type one approximations from Table 3.1, while the fifth column reports P̄ , the

average of the simulated Pj, with the standard error of P̄ reported in parentheses.

The sixth column reproduces the upper bound on the approximation error from Ta-

ble 3.1, while the final column reports the Monte Carlo estimates of this quantity,

with standard errors in parentheses. The most striking feature is that the Monte

Carlo algorithm is much faster, indeed almost 45 times faster when 40 nodes are

used. In addition Monte Carlo appears quite accurate, using 40 nodes the esti-

mated probability lies within three significant digits of the numerical value. Indeed

it appears that benefit of increased efficiency is well worth the cost of moderate

statistical error. As a final note, it appears that we may estimate the approxima-

tion error (i.e. the error due to using a linear approximation) given by (3.24) with

remarkable accuracy.

As noted in Section 3.1, piecewise linear approximation is only one of two tech-

niques well-established techniques for approximating first passage probabilities. As

an alternative we may consider the approach proposed by Park and Schuurmann

[95], where the authors show that if G denotes the cumulative distribution function
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Table 3.2: Monte Carlo Approximation

N Time Approximation Error Bound

Numerical MC Numerical MC Numerical MC

1 .0382 .0088 .4613 .4583 .0616 .0640

(.0030) (.0002682)

2 .2498 .0141 .4388 .4357 .0258 .0268

(.0037) (.0001996)

5 .9251 .0353 .4273 .4256 .0067 .0069

(.0043) (.0000900)

10 3.1548 .0735 .4250 .4227 .0021 .0021

(.0045) (.0000380)

20 6.6806 .1516 .4245 .4231 .0006 .0006

(.0047) (.0000136)

40 13.3618 .3060 .4243 .4241 .0002 .0002

(.0048) (.0000046)

of the first passage time, then

Φ

(
−f(t)√

t

)
=

∫ t

0

Φ

(
−f(t)− f(s)√

t− s

)
dG(s) (3.27)

Equation (3.27) is a Volterra equation of the first kind with kernel K(s, t) =

Φ
(
−f(t)−f(s)√

t−s

)
. When the barrier f is differentiable this kernel is non-singular,

and since lims↗tK(s, t) = 1
2

we may define K(t, t) = 1
2
. A rapid approximation to

the solution of (3.27) is then possible by noting

Φ

(
−f(ti)√

ti

)
=

∫ ti

0

K (s, ti) dG(s) ≈
i∑

j=1

K (tj, ti) [G (tj)−G (tj−1)] (3.28)

and this system of equations is easily solved in a recursive manner. Table 3.3

presents the results from implementing this procedure, and compares the compu-

tational time required (in seconds) with that of the Monte Carlo approach. We

see that the integral equation approach provides an incredibly efficient alternative

to Monte Carlo. When efficiency is of utmost importance, then, it appears that

this may be the most preferable alternative. However it does not appear possi-

ble to obtain error bounds on this approximation, hence when an assessment of

approximation error is of utmost importance one might prefer to use Monte Carlo.
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Table 3.3: Integral Equation Approximation

N ∆ Approximation Time MC Time

1 5 .2733 .0003 .0088

2 2.5 .3409 .0004 .0141

5 1 .3904 .0021 .0353

10 0.5 .4073 .0025 .0735

20 0.25 .4156 .0042 .1516

40 0.125 .4199 .0118 .3060

3.3.3 Stochastic Barriers

Suppose that A is a random element of H[0, T ], and let An denote a piecewise

linear approximation to A. In light of the development in Section 3.3.1 we are now

able to simulate ψ (An) exactly, provided of course that we are able to simulate An

exactly. Moreover by Corollaries 3.2.2 and 3.2.3 we may approximate E [L] with

E [Ln] under very mild conditions on A. Here L = ψ (A) and Ln = ψ (An). These

observations suggest simulating variates Ln and using their average L̄n as a “point

estimate” of E [L]. Note that the subscript n refers to the number of nodes in the

approximation, and not the number of simulations used. The estimation error in

such a scheme may then be decomposed into two sources as follows

E [L]− L̄n = E [L]− E [Ln]︸ ︷︷ ︸
Approximation Error

+E [Ln]− L̄n︸ ︷︷ ︸
Statistical Error

(3.29)

The second term here is “simulation noise,” and may be “controlled” by either using

a large number of simulated paths or an appropriate variance reduction technique.

The first term is more dangerous, as it cannot be dealt with simply by increasing

the number of simulations (though we do know it tends to zero as n → ∞). In

order to confidently approximate E [L] with E [Ln], it is necessary to assess the

approximation error |E [L]− E [Ln]|. In this section we demonstrate how one may

assess this error via simulation.

To begin let An denote a linear approximation to A, and define the upper and

lower approximations to A as

An ± εn = {An(t)± εn : 0 ≤ t ≤ T}

where the random variable εn is defined as εn = d (A,An). In addition we define

L−n = ψ (An + εn) L+
n = ψ (An − εn)
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In light of (3.7) we obtain

|L− Ln| ≤ max
(
L+

n − Ln, Ln − L−n
)

leading to the following upper bound on the approximation error

|E [L]− E [Ln]| ≤ E [|L− Ln|] ≤ E
[
max

(
L+

n − Ln, Ln − L−n
)]

(3.30)

The crucial fact here is that the random variable U := max (L+
n − Ln, Ln − L−n )

can be simulated, thus we may approximate its mean via Monte Carlo, thereby

obtaining an estimate of the approximation error. In the more general case where

we are interested in approximating E [h (L)] where h is increasing and continuous

we obtain the analogous bound on the approximation error

|E [h (L)]− E [h (Ln)]| ≤ E
[
max

(
h
(
L+

n

)
− h (Ln) , h (Ln)− h

(
L−n
))]

and the random variable Uh := max (h (L+
n )− h (Ln) , h (Ln)− h (L−n )) may also be

simulated, providing an estimate of the approximation error.

We apply this method when the barrier is given by the integral of the stationary

shot-noise process, that is

At = b+

∫ t

0

Msds

where b > 0 is a constant and Mt is given by

Mt = M0e
−αt +

Nt∑
i=1

e−α(t−Ti)Xi

Here α > 0 is a constant, Nt is a homogeneous Poisson process with intensity λ

and event times T1, T2, . . . and the Xi are i.i.d. random variables, independent of

the Poisson process. We assume the jumps have the symmetric Laplace distribu-

tion with mean zero and scale parameter β, and that M0 has characteristic function

φ (u) = (1 + β2u2)
−λ/2α

. It can be shown that in this case Mt is stationary. In addi-

tion, we note that M0 is easily simulated as the difference between two independent

gamma variates.

As the derivative of A is bounded, but discontinuous, we must use the type one

approximation. Our goal is to assess the approximation error for estimating both

E [L] and E [h (L)], where h(x) = (x−K)+ for a constant K. Relevant quantities

are simulated according to the following recipe

• Simulate a realization of A, say a. Note that this only requires simulating

a finite number of variables, namely the number of events, the event times

and the jump sizes. Having simulated these variables the value a(t) can be

computed for any t.
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Table 3.4: Approximation Error for the Shot-Noise Example

N ∆ L̄n Ū h (Ln) Ūh

1 5 .2997 .0955 .0352 .0434

(.0079) (.0031) (.0037) (.0031)

2 2.5 .2982 .0480 .0394 .0206

(.0083) (.0014) (.0041) (.0015)

5 1 .3099 .0198 .0445 .0077

(.0085) (.0006) (.0042) (.0006)

10 0.5 .3028 .0098 .0368 .0036

(.0080) (.0002) (.0037) (.0003)

20 0.25 .3119 .0049 .0459 .0018

(.0086) (.0001) (.0043) (.0001)

• Compute the associated realization of εn = d (A,An), say εn = d (a, an). This

is accomplished by computing the values a(t) and an(t) at T · 10−3 equally-

spaced points, and set εn equal to the maximum of the distances between

these values.

• Compute `n = ψ (an), `+n = ψ (an − εn) and `−n = ψ (an + εn). We compute

these quantities using numerical integration.

• Set u = max (`+n − `n, `n − `−n )

• Set uh = max (h (`+n )− h (`n) , h (`n)− h (`−n ))

Table 3.4 presents the results of the experiment. The relevant parameters here are

b = 2.5, λ = 2.3, α = 0.5, β = 0.2, T = 5 and K = 0.4. These results are based on

500 simulated paths for A.

The first column indicates the number of nodes used in the approximation,

while the second column indicates the associated node spacing. The third column

reports the average L̄n, which may be seen as an estimate of E [L]. Standard errors

are reported in parentheses. The fourth column reports the average Ū , which may

be seen as an estimate of the approximation error. The most striking feature is

that the approximation error can be estimated quite efficiently, as indicated by the

very small standard errors. The last two columns report the analogous quantities

for estimating E
[
(L− 0.4)+]. Here we see that the approximation error is quite

reasonable, even for node spacings as large as 0.25. Moreover the estimate of this

error is remarkably accurate.
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3.4 Introducing a Time Change

In this section we generalize the results of Section 3.2 by introducing a stochastic

time change to the Brownian motion. We continue to confine ourselves to the

fixed time horizon [0, T ] and W continues denote a standard Brownian motion.

Let C[0, T ] denote the set of continuous functions on this interval, and C+[0, T ]

denote those g ∈ C[0, T ] which are strictly increasing with g(0) = 0. Both function

spaces are endowed with the uniform metric d. Our first result concerns the random

variable

Mf,g = max {W (g(t))− f(t) : 0 ≤ t ≤ T} (3.31)

and is as follows

Proposition 3.4.1. If fn → f uniformly in C[0, T ] and gn → g uniformly in

C+[0, T ], then Mfn,gn converges weakly to Mf,g.

Proof. Define the processes Yn = W (gn) − fn and Y = W (g) − f , noting that Y

and Yn are random elements of (C[0, T ], d). Since gn(T ) → g(T ) and all functions

concerned are continuous, we have K = sup (g(T ), g1(T ), . . .) <∞. Now

d (Y, Yn) ≤ d (f, fn) + w (W, d (g, gn))

where

w (W, δ) = sup {|Wt −Ws| : 0 ≤ s, t ≤ K |s− t| ≤ δ}

Since W is uniformly continuous on [0, K] with probability one, we have that

w (W, δ) → 0 almost surely as δ → 0. Therefore d (Y, Yn) → 0 almost surely as

n→∞, hence Yn converges weakly to Y . Finally, since λ : C [0, T ] → [0,∞) defined

by λ(f) = max (|f(t)| : 0 ≤ t ≤ T ) is continuous, it follows that Mfn,gn = λ (Yn)

converges weakly to Mf,g = λ (Y ).

Our ultimate goal here is to demonstrate that first-passage probabilities

P (τf,g ≤ T )

are continuous in the barrier/time-change pair, where

τf,g = inf {t ≥ 0 : W (g(t)) ≥ f(t)} (3.32)

In order to demonstrate this continuity we may restrict (f, g) to an appropriate

space, over which the random variables are Mf,g are continuous. To this end we let

AC[0, T ] denote the set of absolutely continuous functions on [0, T ], and introduce

74



AC+[0, T ] as those g ∈ AC[0, T ] with the property that g(0) = 0 and g′ is bounded

away from zero, that is inf {g′(t) : 0 ≤ t ≤ T} > 0 (note that this implies g is

strictly increasing). We are now ready for our main result of this section, and in

what follows we endow the space H[0, T ]×AC+[0, T ] with the metric

ρ ((f1, g1) , (f2, g2)) =
√
d(f1, f2) + d(g1, g2)

where d is the uniform metric.

Theorem 3.4.2. The functional Ψ : H[0, T ]×AC+[0, T ] → [0, 1] defined by

Ψ (f, g) = P (τf,g ≤ T ) (3.33)

is continuous.

Proof. Our first step is to show that if (f, g) ∈ H[0, T ] × AC+[0, T ], then f ◦
g−1 ∈ H[0, g(T )]. Since g′ > 0 almost everywhere, it follows that g−1 is absolutely

continuous (see [107]). Absolute continuity of f and g−1, combined with the fact

that g−1 is strictly increasing, imply that the composition f ◦ g−1 is also absolutely

continuous. Moreover (f ◦ g−1)
′
(s) = f ′ (g−1(s)) /g′ (g−1(s)), and we see that∫ g(T )

0

[
f ′ (g−1(s))

g′ (g−1(s))

]2

ds =

∫ T

0

[f ′(t)]2

g′(t)
dt <∞

since g′ is bounded away from zero. Therefore f ◦ g−1 ∈ H[0, g(T )]. Now, since

Mf,g = max
{
W (s)− f

(
g−1(s)

)
: 0 ≤ s ≤ g(T )

}
it follows that Mf,g is a continuous random variable (recall the proof of Theorem

3.2.1).

Now if (fn, gn) → (f, g), Proposition 3.4.1 ensures that Mfn,gn converges weakly

to Mf,g, and since Mf,g is continuous we have

Ψ (fn, gn) = P (Mfn,gn ≥ 0) → P (Mf,g ≥ 0) = Ψ (f, g)

as required.

The introduction of a time change poses no new computational challenges. To

see this suppose we are interested in approximating Ψ (f, g) and let (fn, gn) be a

sequence of appropriate (either type one or two) piecewise linear approximating

functions. Assuming that fn, gn have the same node times 0 = t0 < t1 < . . . <

tn = T we may note that the composition hn = fn ◦ g−1
n is also piecewise linear
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(over [0, gn(T )]) with node times 0 = gn(0) < gn(t1) < . . . < gn(T ), and the

slope over each interval is given by (fn(ti)− fn(ti−1)) / (gn(ti)− gn(ti−1)). Since

Ψ (fn, gn) = ψ (hn), where the domain of ψ here is H[0, gn(T )], we may use the

methods described in Section 3.3.1 to compute this quantity. Also note that when

gn(T ) = g(T ) we may use (3.7) to bound the approximation error as

|Ψ (f, g)−Ψ (fn, gn)| ≤ max (ψ (hn − εn)− ψ (hn) , ψ (hn)− ψ (hn + εn))

where

εn = d
(
f ◦ g−1, fn ◦ g−1

n

)
= sup

0≤s≤g(T )

∣∣f (g−1(s)
)
− fn

(
g−1

n (s)
)∣∣

In addition when one does not require an estimate of the approximation error, we

may appeal to the following Volterra equation of the first kind (see Peskir and

Shiryaev [96])

Φ

(
− f(t)√

g(t)

)
=

∫ t

0

Φ

(
− f(t)− f(s)√

g(t)− g(s)

)
dH(s)

where H denotes the cumulative distribution function of τf,g. When f and g are

differentiable the kernel here is non-singular, as such an approximation of H(T )

may obtained using a system of equations analogous to (3.28).

We are now prepared to derive the following analogue of Corollaries 3.2.2 and

3.2.3

Corollary 3.4.3. Let A be a random element of H[0, T ] and let B, defined on the

same probability space, be a random element of AC+[0, T ]. Then

(i) If there exist determinations of A′ and B′ which are almost surely finite,

then Ψ (An, Bn) → Ψ (A,B)almost surely, where An and Bn are the type one

approximations to A and B, respectively.

(ii) If there exist determinations of A′ and B′ which are almost surely continuous,

then Ψ (An, Bn) → Ψ (A,B) almost surely, where An and Bn are the type two

approximations to A and B, respectively.

Proof. In each case the distance between (A,B) and (An, Bn) converges to zero

almost surely. Continuity of Ψ then ensures the desired result.

We conclude this section with a similar experiment to that performed in Section

3.3.3, only replacing ψ (A) with Ψ (A,B). To this end we let A be as defined there
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Table 3.5: Approximation Error for the Time-Changed Shot-Noise Example

N ∆ L̄n Ū h (Ln) Ūh

1 5 .2117 .0975 .0318 .0394

(.0093) (.0039) (.0041) (.0036)

2 2.5 .2069 .0517 .0306 .0205

(.0093) (.0022) (.0040) (.0022)

5 1 .2033 .0199 .0296 .0070

(.0092) (.0008) (.0041) (.0008)

10 0.5 .2212 .0112 .0318 .0042

(.0091) (.0004) (.0037) (.0004)

20 0.25 .2110 .0053 .0280 .0019

(.0090) (.0002) (.0037) (.0002)

and let Bt =
∫ t

0
Vsds, where Vt is a shot-noise process with exponential jumps,

and we assume the two processes are independent. Table 3.4 presents the results

of this experiment, namely assessing the approximation error E [L] and E [h (L)],

where L = Ψ (A,B). The results are quite similar, namely the approximation error

appears quite reasonable, and can be estimated very accurately.
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Chapter 4

Alternatives to the Black-Cox

Model

In this chapter we propose a multivariate first-passage framework for credit risk. In

order to motivate the framework let us briefly re-examine the multivariate Black-

Cox model discussed in Section 1.1.4. Despite its significant intuitive appeal the

model is simply not capable of describing market data for multiname credit deriva-

tives. Recall that in this model a firm defaults upon first passage of its “credit

quality” process, denoted X i, to zero. Credit quality is defined as the log-ratio of

the firm’s asset value to its default threshold and is given by

X i
t = xi

0 + µit+ σiW
i
t (4.1)

Here µi, σi, x
i
0 are constant parameters while the W i are correlated Brownian mo-

tion. The parameters µi and σi represent trend and volatility in credit qualities,

respectively, while systematic risk appears under the guise of correlated “noise”

about this trend.

Our contention is that the “location” of systematic risk here is the model’s

fatal flaw. It is well-documented that quantities such as returns, volatilities and

correlations between financial assets are significantly influenced by the general state

of the economy. In recognition of this fact, our model in effect removes systematic

risk from the driving Brownian motion in (4.1), and places it in trend and volatility.

We allow for both stochastic trend and volatility in credit qualities, with dependence

introduced by letting these quantities to be driven by systematic factors common

to all obligors.

In order to test the model’s abilities we calibrate several versions to market data

for CDX index tranches. We use two sets of quotes, the first consisting of pre-crisis
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quotes taken from November 2006 and the second consisting of more recent quotes

taken from March 2008. For the 2006 data, which includes quotes for super-senior

tranches, we obtain very encouraging results when the model is calibrated across

both tranches and maturities simultaneously. In addition the calibrated parame-

ters predict CDS spreads, which are not used in the calibration, that match up

almost perfectly with market quotes. For the 2008 data, which does not include

super-senior or CDS quotes, we also obtain very encouraging results. As an ex-

ample the model discussed in Section 4.2.3 contains ten parameters, and produces

an average relative pricing error of only 3% when fitted to fifteen total spreads

(each of five tranches at three different maturities). We are particularly pleased

with these results, as the industry-standard model is not capable of describing this

“distressed” data. For the 15-30% tranches, there are simply no parameter val-

ues in the Gaussian copula model which are capable of producing spreads as large

as those observed in early 2008. Our model is able to simultaneously price these

tranches at five, seven and ten-year maturities with a maximum error of only 0.8

basis points. This is accomplished while maintaining a very reasonable fit to both

equity and mezzanine tranches. Our hope is that these pleasant results encourage

market participants and regulators to seriously consider the framework proposed

here.

4.1 General Framework

As in the widely popular factor models, we model both systematic and idiosyncratic

risk explicitly in our framework. Systematic risk is modeled via the pair of processes

(M,V ), which are not assumed to be independent of one another. We often refer

to this pair as the “systematic factors.” In order to facilitate discussion we loosely

interpret these factors as being representative of the economic environment in which

obligors operate, however we do not make an explicit link between the factors

and any specific macroeconomic covariates. Idiosyncratic risk is introduced via

a sequence of independent Brownian motions W 1,W 2, . . ., and we assume that

(M,V ) is independent of this sequence. Together these elements combine to drive

the “credit quality” of obligor i as follows

dX i
t = µi (Mt) dt+ σi (Vt) dW

i
t X i

0 = xi
0 (4.2)

Here xi
0 > 0 is a constant, while µi, σi are deterministic functions. In order that X i

be well-defined we require µi(Mt) and σ2
i (Vt) to have integrable sample paths. To
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this end we assume that µi and σi are continuous functions, and that all sample

paths of the systematic factors are càdlàg. Note also that while we do not allow

the initial value of credit quality to be stochastic, this added generality could be

handled quite easily. We decree that obligor i defaults upon first passage of X i to

zero, that is

τi = inf
{
t ≥ 0 : X i

t ≤ 0
}

(4.3)

A heuristic interpretation of this framework is as follows. Conditional upon the

realized values of Mt, Vt, the incremental change X i
t+h−X i

t is approximately Gaus-

sian with mean hµi(Mt) and variance hσ2
i (Vt). Moreover incremental changes of

distinct obligors are approximately independent. Thus we may think of the system-

atic factors as “setting the tone” for a day’s operations, and once this tone has been

set the fortunes of individual obligors are independent. By allowing the systematic

factors to be time-varying and stochastic, we allow the economic environment in

which obligors operate to evolve dynamically through time. This is not allowed in

the Black-Cox model. One may also view our framework as providing a very nat-

ural extension of one-period factor models, incorporating the time dynamics which

are sorely missed in those models. Moreover this framework circumvents many of

the difficulties involved in extending these models to a discrete-time setting, as

discussed by Andersen [5].

It is worth noting that several existing models fit within this general framework.

For example if trend and volatility were functions of a finite-state Markov chain

we would recover the model used by Kuen et al. [84] to price credit default swaps

in a single-name setting. If drift were constant and volatility were expressed as a

function of one or more Ornstein-Uhlenbeck processes, we would recover the models

used by Fouque et al. to study the effects of stochastic volatility on bond yields

[57] and portfolio loss distributions [58].

It is worthwhile to note that, in general, credit qualities are not Markov processes

in this framework. For example if volatility were constant (and non-stochastic)

and µi(Mt) were an Ornstein-Uhlenbeck process, it is easily verified that X i is

not Markov. In this case X i is a Gaussian process whose covariance function is

available in closed form. Moreover Feller [53] provides a necessary and sufficient

condition, based on the covariance function, for a Gaussian process to be Markov.

It is straightforward to verify that the condition is not satisfied for this example.

Additional insights into this framework may be gained by noting that credit

qualities are semi-martingales with finite variation part given by

Ai
t = xi

0 +

∫ t

0

µi (Ms) ds (4.4)
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and quadratic variation

Bi
t =

∫ t

0

σ2
i (Vs) ds (4.5)

In modeling the derivatives of these quantities we implicitly restrict ourselves to the

class of continuous semi-martingales. Thus, despite the fact that the systematic

factors may be allowed to possess jumps, credit qualities will always be continuous.

One might suspect that in a purely continuous framework such as this, severe

“market crashes” are not possible. However we will see in Section 4.2 that this is

not true, as scenarios where a large percentage of a portfolio (say 50%) defaults in

a short time horizon (say six months) are entirely possible.

The predictability of default times is often of theoretical interest in dynamic

models of credit risk. This property depends on the information available to in-

vestors. If investors here are endowed with the filtration generated by X i, then

τi is predictable since this process is continuous. As such default does not come

as a surprise, as immediately prior to the event investors are aware that default is

imminent. In Section 4.2.2 we will see that if investors are also privy to the realized

paths of the systematic factors, this may lead to situations where the default event

is in a sense “super-predictable,” as certain realizations of these factors may allow

investors to predict the time of default with near-certainty as much as five years

in advance. As such we decree that the systematic factors are unobservable, in the

sense that they are not both adapted to the filtration available to investors.

Let us now turn to the problem of computing marginal default probabilities

P (τi ≤ t). To this end we note that the law of X i may be expressed in terms of

time-changed Brownian motion with stochastic drift

X i
t
L
= Ai

t +W i
(
Bi

t

) L
= Ai

t −W i
(
Bi

t

)
(4.6)

where
L
= denotes equality in law. Hence the distribution of τi is identical to that of

τ̃i, the first passage time of the process W i (Bi) to the stochastic barrier Ai. Thus

P (τi ≤ t) = E
[
P
(
τ̃i ≤ t

∣∣Ai, Bi
)]

= E
[
Ψt

(
Ai, Bi

)]
where Ψt is given by (3.33).1 Approximation of such quantities via simulation was

the subject of Chapter 3, and we see that the methods discussed there may be

brought to bear on the present problem. Moreover these simulation methods are

1Note the slight change of notation here. For deterministic functions f and g defined on [0, T ]
and τf,g defined by (3.32), we define Ψt (f, g) = P (τf,g ≤ t) for each t ∈ [0, T ].
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valid under very minimal conditions on the systematic factors, the only require-

ments are either continuous or bounded sample paths and the ability to simulate

linear versions of Ai and Bi.

Seen in the light of (4.6), our framework bears some resemblance to the mul-

tivariate first-passage models presented by Luciano and Schoutens [89], as well as

Hurd [75]. These models may be described as pure time-change models, where Ai

is proportional to Bi, leading to credit qualities which are time changed Brownian

motion. In [89] the time-change is a Gamma subordinator, leading to Lévy credit

qualities, while in [75] Bi could take more general forms such as the integral of a

CIR process.

The most important feature of this framework from a computational point of

view is that of conditional independence. Conditional upon the realized paths of

the systematic factors, credit qualities are independent diffusion processes, in fact

they are conditionally Gauss-Markov. The next section exploits this structure to

represent the proportion of defaults on an asymptotically large portfolio as a path

functional of the systematic factors. This will have significant consequences in terms

of dimension reduction when implementing the model in a large-portfolio setting,

as well as provide useful insights into the nature and behaviour of portfolio losses

in the model.

4.1.1 Large Portfolio Approximation

In this section we investigate the large N asymptotics of the proportion of defaults

DN
t =

1

N

N∑
i=1

I (τi ≤ t) (4.7)

Our main result, whose proof is provided following a brief discussion, is the following

Proposition 4.1.1. Let Ht = σ (Ms, Vs : 0 ≤ s ≤ t) denote the filtration generated

by the systematic factors. Then for each t we have

lim
N→∞

[
DN

t − E
[
DN

t |Ht

]]
= 0

almost surely.

Intuitively we see from this result that one can predict the proportion of defaults

in a large portfolio based solely on the information provided by the systematic

factors. More formally, when it exists we call

Dt = lim
N→∞

DN
t (4.8)
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the asymptotic proportion of defaults, and note that a necessary and sufficient con-

dition for Dt to be well-defined is that the conditional expectations E
[
DN

t |Ht

]
have an almost sure limit. In this case we clearly have

Dt = lim
N→∞

E
[
DN

t |Ht

]
so that Dt is necessarily Ht-measurable. Thus the sequence of idiosyncratic, or

firm-specific, risk processes W 1,W 2, . . . are in fact irrelevant with respect to the

realized value of Dt. This lends formal justification to heuristic claims such as “in

a large portfolio all risk is systematic” or “in a large portfolio idiosyncratic risk can

be diversified away.”

Let us now suppose that credit qualities are homogeneous in the sense that

µi = µ, σi = σ and xi
0 = x0, so that

dX i
t = µ (Mt) dt+ σ (Vt) dW

i
t X i

0 = x0

In this situation the laws of theX i are identical, and we clearly have that conditional

default probabilities are equal across obligors

P (τi ≤ t |Ht ) = P (τj ≤ t |Ht ) ∀ i, j

It is easy to explicitly identify the asymptotic proportion of defaults here, since

Dt = lim
N→∞

E
[
DN

t |Ht

]
= lim

N→∞

1

N

N∑
i=1

P (τi ≤ t |Ht )

= P (τ1 ≤ t |Ht )

Hence in the homogeneous case, the asymptotic proportion of defaults is given

by the conditional default probability of an arbitrary obligor. In light of our dis-

cussion in the previous section we see that Dt = Ψt (A,B), providing an explicit

representation of the proportion of defaults in terms of the systematic factors.

As another example consider a portfolio consisting of a finite number of groups,

with credit qualities being homogeneous within groups. We may think of oblig-

ors within each group as belonging to the same industry, or possessing the same

credit rating. Indexing the groups by k = 1, . . . , K, within-group homogeneity is

tantamount to the assumption that if obligor i belongs to group k, then

dX i
t = µk (Mt) + σk (Vt) dW

i
t X i

0 = xk
0
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Thus if obligors i and j both belong to group k, then their conditional default

probabilities are identical

P (τi ≤ t |Ht ) = P (τj ≤ t |Ht ) = Ψt

(
Ak, Bk

)
where Ak

t =
∫ t

0
µk (Ms) ds and Bk

t =
∫ t

0
σ2

k (Vs) ds. Thus Ψt

(
Ak, Bk

)
represents the

conditional default probability of an arbitrary obligor belonging to group k. Now

let wk,N denote the proportion of obligors 1 through N which belong to group k.

Provided that the proportion of obligors in each group is asymptotically stable,

that is wk := limN→∞wk,N is well-defined for each k, we have

Dt = lim
N→∞

E
[
DN

t |Ht

]
= lim

N→∞

1

N

N∑
i=1

P (τi ≤ t |Ht )

= lim
N→∞

K∑
k=1

wk,NΨt

(
Ak, Bk

)
=

K∑
k=1

wkΨt

(
Ak, Bk

)
and we see that in such a portfolio, the asymptotic proportion of defaults is simply

a weighted average of conditional default probabilities.

Proof of Proposition 4.1.1

Turning to the proof of Proposition 4.1.1 we begin by noting that DN
t can be

described as the proportion of successes in a sequence of conditionally independent

Bernoulli trials. To make this notion precise let us suppose that Z1, Z2, . . . are

a sequence of Bernoulli variables2 defined on some probability space (Ω,F , P ).

Furthermore suppose these variables are conditionally independent, given some sub-

σ-algebra G ⊂ F . In fact, Theorem 4.1.2 below remains true under the apparently

weaker assumption that the Zi are conditionally uncorrelated, that is

E [ZiZj |G ] = E [Zi |G ]E [Zj |G ] ∀i 6= j (4.9)

We note that a conditionally independent sequence automatically satisfies (4.9).

The proportion of “successes” in n trials is then given by

1

n

n∑
i=1

Zi (4.10)

2By a Bernoulli variable we mean a random variable taking on only the values zero and one.
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Conditional independence alone is not sufficient for (4.10) to converge almost surely.

To see this take any two deterministic sequences of zeros and ones, say {xi}∞i=1

and {yi}∞i=1, for which 1
n

∑n
i=1 xi and 1

n

∑n
i=1 yi fail to converge.3 Letting U be

a Bernoulli variable, and setting Zi = xi if U = 1 and Zi = yi otherwise, we

obtain a sequence of conditionally independent variables with the property that

with probability one, (4.10) fails to converge. Theorem 4.1.2 shows that a necessary

and sufficient condition for (4.10) to converge is that 1
n

∑n
i=1E [Zi |G ] converges. In

addition this result shows that when it exists, the limiting proportion of successes

is necessarily G-measurable.

Theorem 4.1.2. Suppose that Z1, Z2, . . . are conditionally independent Bernoulli

variables. Then with probability one we have

lim
n→∞

1

n

n∑
i=1

(Zi − E [Zi|G]) = 0 (4.11)

Proof. To begin we denote Z̃i = E [Zi |G ]. A simple application of the tower prop-

erty, combined with G-measurability of Z̃j and (4.9) yields, for any i 6= j

E
[
ZiZ̃j

]
= E

[
Z̃iZ̃j

]
= E [ZiZj]

Next we define

Yi =
Zi − Z̃i

i
and note that the Yi form an orthogonal sequence, that is E [YiYj] = 0 whenever

i 6= j, with second moments bounded by

E
[
Y 2

i

]
≤ 1

i2

Using the integral and comparison tests for series it follows that

∞∑
i=1

log2(i)E
[
Y 2

i

]
<∞

and we may now invoke the Rademacher-Menchoff Fundamental Convergence The-

orem for orthogonal random variables (see [108], Theorem 2.3.2), which guarantees

that the partial sums Sn =
∑n

i=1 Yi converge almost surely to some random variable

S. Applying Kronecker’s Lemma we obtain the desired result.

3A concrete example is furnished by considering sequences such as

0,
1
2
,
1
3
,
1
4
,
2
5
,
3
6
,
3
7
, . . . ,

3
12
,

4
13
, . . . ,

9
18
, . . .

which oscillates between 1
2 and 1

4
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Proposition 4.1.1 now follows easily by setting Zi = I (τi ≤ t) and G = Ht.

We wish to stress the fact that Theorem 4.1.2 may be applied to any model in

which default times are conditionally independent. This includes the widely popular

factor models, as well as many intensity-based models such as those based on Cox

processes.

4.1.2 Simulation of Portfolio Losses

Consider a portfolio consisting of N obligors with nominal exposures Ei and recov-

ery rates Ri, which we assume are deterministic. The crucial object in applications

is the percentage loss on the portfolio

LN
t =

N∑
i=1

wi (1−Ri) I (τi ≤ t) (4.12)

where wi = Ei/
∑N

i=1Ei. In this section we discuss the problem of simulating

trajectories for portfolio losses over a fixed time interval [0, T ]. In particular we are

interested in simulating the process LN at discrete times 0 < t1 < t2 < . . . < tn = T .

A critical observation here is that we need not simulate default times exactly, we

need only simulate the interval of default for each name

Ii = min
1≤j≤n

{j : τi ≤ tj} (4.13)

with the convention that min {∅} = +∞.

In the case where credit qualities are homogeneous we have that conditional

on the realized paths of the systematic factors, the distribution of Ii is determined

solely by the values Dt1 , . . . , Dtn , where Dti = P (τ1 ≤ ti |Hti ).
4 Moreover, condi-

tional on these realized paths the Ii are independent random variables. Therefore

in order to simulate portfolio losses we may carry out the following program

• Simulate Dt1 , . . . , Dtn (or indeed any random vector having the correct joint

distribution)

• For each obligor, independently generate a random number Ui and set

Ii = min
1≤j≤n

{
j : Ui ≤ Dtj

}
4Recall that Dt = Ψt (A,B). We assume for the moment that these variables may be simulated

exactly.
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Having simulated the interval of default for each name, it is a simple matter to

reconstruct the path of portfolio losses. In the more general case where credit

qualities are not homogeneous, this program would simply need to be repeated

for each group of homogeneous obligors. For the model presented in Section 4.2.2

we simulated losses over a ten-year period at 3-month intervals for a homogeneous

portfolio with 125 names. Using Matlab 7 on a PC with a Pentium 4 processor,

this required approximately 2.8 seconds for 10,000 trajectories.

It is in fact not always necessary to generate the interval of default for each

name. When the portfolio is equally-weighted and recovery rates are constant across

obligors, the percentage loss is simply proportional to the proportion of defaults,

that is LN
t = (1−R)DN

t . In order to simulate portfolio losses here, one need not keep

track of who defaults, as each default impacts the portfolio in exactly the same way.

One might imagine that efficiency gains are possible by devising a scheme which

only keeps track of the number of defaults in each interval, and not their identity.

Assuming credit qualities are homogeneous one such scheme may be constructed

as follows. Conditional upon the realized paths of the systematic factors, the law(
DN

t1
, . . . , DN

tn

)
is determined by the values (Dt1 , . . . , Dtn). Given the value of DN

ti−1
,

there are N
(
1−DN

ti−1

)
obligors which have not defaulted, each of whom defaults

in the interval (ti−1, ti] with probability
(
Dti −Dti−1

)
/
(
1−Dti−1

)
. Therefore in

order to simulate portfolio losses we may carry out the following program

• Simulate Dt1 , . . . , Dtn

• For each i generate a binomial variate, Zi, with N
(
1−Dti−1

)
trials and

success probability
(
Dti −Dti−1

)
/
(
1−Dti−1

)
.

• Set DN
ti+1

= DN
ti

+ Zi

N

In the more general case where credit qualities are not homogeneous, this program

would simply need to be repeated for each group of homogeneous obligors. Imple-

menting this scheme in the scenario described in the previous paragraph, we find

that simulation of 10,000 trajectories required approximately 6.5 seconds, roughly

6 seconds of which was spent generating the binomial variates. We conclude that,

somewhat surprisingly, the more general algorithm described in the previous para-

graph, which keeps track of the identity of defaults, is in fact much more efficient.

As a final note we point out that simulating the asymptotic proportion of de-

faults, Dt, is often significantly faster than simulating the exact number of defaults
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DN
t . Indeed simulating the asymptotic proportion of defaults in the scenario de-

scribed in each of the previous two paragraphs requires only 0.35 seconds for 10,000

trajectories, nearly one-tenth the time required to simulate the exact number of de-

faults.

4.2 Calibration Results and Discussion

In this section we calibrate several specifications of our framework to market data

for index tranche quotes. Each of the models investigated here is specified up to

a finite number of parameters, say θ ∈ Rd. In each case we assume that credit

qualities are homogeneous, recovery rates are 40% for each name and the risk-

free term structure of interest rates is flat at 5%. In addition we calibrate the

asymptotic version of the model, that is we make the simplifying assumption that

the underlying portfolio is infinitely large.

Having specified the parameters of a particular model, tranche spreads are com-

puted via simulation. The general procedure for Monte Carlo valuation of tranche

spreads is discussed in Appendix A, and this procedure requires the simulation

of portfolio loss trajectories. In light of the assumptions made here, this requires

simulation of

Lt = (1−R)Dt = (1−R) Ψt (A,B)

In situations where exact simulation is not possible we simulate approximate losses

via Ψt (An, Bn), as discussed in Chapter 3. As the building blocks for tranche

spreads are expectations of the form E
[
(Lt −K)+] for various constants K, Corol-

lary 3.4.3 justifies such an approximation.

Given market quotes for each of I tranches at J distinct maturities, let smkt
i,j

denote the market spread for tranche i at maturity j. In addition, for a particular

model and parameter choice θ, let smod
i,j (θ) denote the model-implied spread for the

associated tranche and maturity. The units of smod
i,j (θ) will always be taken to be

basis points. As we will typically have nearly twice as many spreads as parameters,

a perfect fit to all tranches is not a realistic goal. As such we define a discrepancy

function d (θ) and attempt to minimize the function numerically. Two choices we

investigated were the mean average error

d1 (θ) =
1

IJ

I∑
i=1

J∑
j=1

∣∣smkt
i,j − smod

i,j (θ)
∣∣
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and the mean relative error

d2 (θ) =
1

IJ

I∑
i=1

J∑
j=1

∣∣smkt
i,j − smod

i,j (θ)
∣∣

smkt
i,j

We have found that the choice of objective function can significantly impact the

minimization results. Using the mean average error tends to provide a nearly perfect

fit to the equity and mezzanine tranches at the expense of the senior tranches.

Conversely using the mean relative error tends to provide a very good fit to the

senior and super-senior tranches at the expense of the equity and mezzanine. This

should not be surprising, as equity spreads are typically in the thousands of basis

points, while senior tranches typically trade in the neighbourhood of ten basis points

(at least this was true before the credit crunch). Note that, despite the fact that

we sometimes report equity spreads as percentage points, all spreads are computed

in terms of basis points. This ensures the units are uniform across spreads in the

calibration procedure.

For either choice of objective function, the surface di (θ) appears to be highly

irregular, with certain parameters being highly influential in certain regions while

highly insignificant in others. As a consequence we have found that the “greedy”

Nelder-Mead algorithm tends to get trapped in local minima, and “optimal” results

are significantly influenced by starting values. As a result we used a stochastic min-

imization algorithm known as simulated annealing. For an excellent introduction

to the general theory of simulated annealing, the reader is referred to Aarts and

van Larrhoven [1]. For a detailed exposition of the specific algorithm implemented

here the reader is referred to Corana et al. [34]. Our implementation followed the

pseudo-code given there virtually word-for-word.

The basic idea behind this algorithm is as follows. Begin with an initial point

θ(0), and select a candidate point θ∗ by randomly perturbing one co-ordinate of the

initial point. For example θ∗ might be selected by setting θ∗k = θ
(0)
k for 2 ≤ k ≤ d

and θ∗1 = θ
(0)
1 + ε, where ε is uniformly distributed on the interval [−c, c] for some

constant c > 0. If θ∗ produces a lower value of the objective function, that is

d (θ∗) < d
(
θ(0)
)
, we accept θ∗ as the next point and set θ(1) = θ∗. If θ∗ produces a

higher value for the objective function we accept it as the next point with probability

Q = exp
((
d
(
θ(0)
)
− d (θ∗)

)
/T
)
, where the constant T > 0 is often referred to as

the “temperature.” That is, we generate a random number U and set θ(1) = θ∗ if

U ≤ Q and θ(1) = θ(0) otherwise. The fact that we are allowed to accept points

which yield higher values of the objective function allows us to escape from local

minima. The algorithm proceeds by cycling through each parameter in order, and
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Corana et al. [34] recommend reducing the temperature every 200 cycles, that is

after each parameter has been perturbed 200 times. In addition they recommend

adjusting c (a different value of which is used for each parameter) every ten cycles.

We have found simulated annealing to be vastly superior to Nelder-Mead. To

begin it tends to produce much lower values for the objective function (and hence

much better fits to tranche spreads), in many cases up to one-third the value found

by Nelder-Mead. Perhaps more importantly, we have found simulated annealing to

be quite robust with respect to starting values, and this gives us much more confi-

dence in our calibrated parameters. The downside in using simulated annealing is

that it requires significantly more function evaluations. We have found that 20-30

temperatures are typically required for the algorithm to converge. Recalling that

each temperature requires 200 function evaluations, this implies that convergence

typically requires between four and six thousand function evaluations per param-

eter. Thus in a model with eight parameters we typically need to value tranches

spreads using somewhere between 32,000 and 48,000 different parameter sets. In

light of this fact we hope the reader can empathize with our decision to use the

asymptotic approximation.

4.2.1 A Simple One-Factor Model

In this section we investigate what is perhaps the simplest specification of our

general framework, which we term the “random drift” model. In this specification

credit qualities are simply Brownian motion with random drift

dX i
t = Mdt+ dW i

t X i
0 = x0

where M is a random variable. Conditional upon the realized value of M credit

qualities are independent Brownian motion with constant drift, as such conditional

default probabilities are available in closed form. Recalling that the asymptotic

proportion of defaults is equal to the conditional default probability of an arbitrary

obligor we obtain

Dt = Φ

(
−x0 +Mt√

t

)
+ e−2x0MΦ

(
Mt− x0√

t

)
(4.14)

It is easy to see that the proportion of defaults is monotone in M , with smaller

values of this factor producing a larger proportion of defaults. In addition, we note

that exact simulation of portfolio losses is possible here.
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The distribution of M is arbitrary here, and in order to investigate the im-

portance of heavy tails for the model’s ability to price senior tranches accurately,

we have attempted to calibrate the model under two different distributional as-

sumptions. In the first case we take M to be Gaussian with mean µ and variance

σ2, while in the second case we take M to be a symmetric Laplace variable. The

Laplace distribution is discussed in detail in Appendix C, at this point we note

that when parametrized by its mean (µ) and variance (σ2), the symmetric Laplace

density is given by

f(m) =
1√
2σ2

exp

(
−
√

2 |m− µ|
σ

)
m ∈ R

The Laplace density thus has much heavier tails than the Gaussian. There are thus

three parameters in this model - the mean and variance of the market factor, as

well as the initial value of credit quality.

Table 4.1 presents the results of calibrating the model parameters to market

data for iTraxx tranches. The data was obtained from Ferrarese [54] and consists

of market quotes for five-year tranches as recorded on April 13, 2006. In [54] the

author calibrated six different factor models of the form discussed in Section 1.1.2.

We reproduce the results found in [54] for the equicorrelated Gaussian copula model,

as well as a model with normal inverse Gaussian factors and stochastic correlation

(SC NIG in the table). The former is in fact the standard industry model, while

the latter provided the best fit to the data among the six models.

Comparing the two random drift models we see that, as would be expected, the

heavier-tailed Laplace distribution provides a much better fit to the more senior

tranches. We note also that the average five-year CDS spread, which was not

included in the calibration, is priced quite well relative to the market. In both cases

calibrated parameters are comparable, although presumably owing to its heavier

tails the Laplace specification can “get away” with a smaller mean and standard

deviation.

Comparing the random drift and factor models, we see that both random drift

specifications vastly outperform the industry standard. In addition we see that the

random drift model with Laplace drift provides a better overall fit to the data than

the best factor model, with a total pricing error of 2.1 basis points as compared to

12.7 basis points.

Figure 4.1 plots sample trajectories for portfolio losses in the random drift

model. Using the calibrated parameters we compute the 25th, 50th and 75th quan-

tiles ofM . That is, we determine the unique value ofm for which P (M ≤ m) = 0.25
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Table 4.1: Calibration to iTraxx Data. All spreads expressed in basis points and

quoted as running premia. Average pricing error used for objective function.

DJ iTraxx 5Y

Tranche 0-3% 3-6% 6-9% 9-12% 12-22% CDS

Market 1,226 63 18 9 4 31.5

Random Drift Models

Gaussian Drift 1,226 63.1 9.5 3.2 0.5 27.7

Laplace Drift 1,226 63 18.6 7.9 3.6 29.1

Factor Models

Normal Copula 1,226.7 117.5 23.4 4.7 0.4 31.5

SC NIG 1234.1 62.1 20.6 9.5 3.4 31.5

Parameters

Model x0 µ σ

Gaussian 1.1678 1.7966 .3517

Laplace 1.4156 1.4393 .2587

Table 4.2: Implied Spreads for Longer Maturity

0-3% 3-6% 6-9% 9-12% 12-22% CDS

5Y 1,226 63 18.6 7.9 3.6 29.1

7Y 950 48.8 15.3 6.5 3.1 22.1

10Y 731 37.1 12.0 5.1 2.5 16.7

and plot the corresponding path for Dt, repeating the exercise for 0.5 and 0.75. In-

spection of the figure reveals that virtually all defaults occur within the first year

or two, and those obligors who survive this period essentially live forever.

This “now or never” phenomenon (obligors either default very soon, or never

at all) has significant implications for pricing longer-maturity tranches. Using the

calibrated parameters for the five-year spreads and the Laplace model, we calculated

the implied fair spreads for longer-dated contracts. Table 4.2 presents the results,

and in all cases we see that spreads decrease with maturity, a phenomenon which

is most emphatically not observed in the market.

Our conclusions from this calibration exercise are as follows. To begin the simple

random drift model is quite capable of calibrating to single-maturity quotes. In-
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Figure 4.1: Sample Loss Paths in the Random Drift Model
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deed this model outperformed both the industry standard Gaussian copula model,

as well as the richer factor model with heavy-tailed factors and stochastic correla-

tion. We have also noted that heavy tails are crucial for accurate pricing of more

senior tranches. Finally we have pointed out the dangers in calibrating to only

one particular maturity, which can lead to nonsensical spreads for longer-dated

tranches.

4.2.2 Linear Models

In this section we investigate a slightly more general specification of our framework

by introducing stochastic volatility in credit qualities. In this case we obtain

dX i
t = Mdt+

√
V dW i

t X i
0 = x0

where M and V are (not necessarily independent) random variables. Conditional

upon the systematic factors, credit qualities are simply independent Brownian mo-

tion with drift. Hence conditional default probabilities are simply first-passage

probabilities for such processes to the level zero, and are available in closed form

Dt = Φ

(
−x0 +Mt√

V t

)
+ e−2x0M/V Φ

(
Mt− x0√

V t

)
(4.15)

As with the random drift model, we note that exact simulation of portfolio losses

is possible (and quite easy) here.

In order to model the joint distribution of (M,V ) we employ the copula ap-

proach. Owing to the success of the Laplace distribution in the previous section,

we calibrate this model under the assumption that the marginal distributions of

M and V are Laplace and log-Laplace, respectively, and tie these margins together

with a Gaussian copula. The properties of the Laplace and log-Laplace distribu-

tions are reviewed in Appendix C. There are eight parameters in this model - three

for each of the marginal densities, the copula parameter ρ, and the initial level of

credit quality x0.

Table 4.3 presents our preliminary calibration results. The data was obtained

from DiGraziano and Rogers [41] and consists of market quotes for CDX tranches

at each of three maturities, as of November 1, 2006. In [41] the authors calibrate

an intensity model consisting of 32 parameters, and obtain a more or less perfect

fit. In order to truly test the model’s abilities we have included the super-senior

tranches (30-100%) in the calibration. Also note that we do not include default

swap spreads in the calibration.
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Table 4.3: Calibration to CDX Data - Linear Model. Equity spreads expressed in

percentage points and quoted as upfront fees with 500 basis point running premium.

All other spreads expressed in basis points and quoted as running premia. Relative

pricing error used as objective function.

5Y

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% CDS

Market 24.38 90 19 7 3.5 1.73 35

Model 24.43 90.2 17.5 7 2.5 0.38 34.8

7Y

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% CDS

Market 40.44 209 46 20 5.75 3.12 45

Model 40.61 250.5 45 20 9.3 2 47.3

10Y

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% CDS

Market 51.25 471 112 53 14 4 57

Model 49.1 471.1 112 44 19.8 4 57.5

Marginal Parameters

α β1 β2

M .0835 .0514 .0706

V -1.4958 .2809 .6399

Other Parameters

x0 ρ

1.8371 .8908
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The results presented here are quite encouraging. We obtain a uniformly good

fit across both maturities and tranches, with only two egregious pricing errors in

the five-year super-senior and seven-year mezzanine spreads. Of particular note is

the fact that swap spreads, which were not included in the calibration, are priced

quite accurately.

Having calibrated the model, we asked ourselves the question “what does it take

for the super-senior tranches to experience losses here?” In order to gain insights

into the answer to this question we performed the following experiment. Using

the calibrated parameters we simulated 10,000 realizations of (M,V ), which can

be thought of as 10,000 possible scenarios for the economic conditions in which

obligors operate. Recall that this is a very loose interpretation of the systematic

factors, however we find that it facilitates discussion quite well. Among these

10,000 simulated scenarios the five-year super-senior tranche experienced losses only

thirteen times. Our first observation when examining these scenarios was that they

are all characterized by abnormally low values of both M and V . Letting vi denote

the realized value of V on the ith such scenario, it turns out that the maximum value

of P (V ≤ vi) is 3.15%, while the average of these values is 0.44%. The analogous

quantities for P (M ≤ mi) are 0.25% and 0.09%, respectively.

When we originally came to this discovery we must admit that we were slightly

disappointed. Our naive intuition was that, since low volatility is “good” and

high volatility is “bad,” the predictions of this model were somehow “nonsensical.”

However the nature of market crashes in this model has a very sensible explanation

which coincides nicely with empirical observations. For the moment let us char-

acterize economic downturns as those scenarios in which M is abnormally low. A

heuristic justification of this interpretation will be given momentarily. With this

interpretation, and in light of the strong positive correlation between M and V , we

see that these downturns also tend to be accompanied by abnormally small values

of V . Now, X i
t = x0 + Mt +

√
VW i

t and we see that when V is close to zero the

idiosyncratic component W i
t has very little impact on credit quality. Thus we reach

the conclusion that in a severe recession all risk is systematic. It is tempting to

conclude that this coincides with the empirically observed phenomenon that corre-

lations between many financial assets tend to be significantly higher in recessionary

periods. It is important to remember, however, that conditional upon the system-

atic factors credit qualities are totally independent in our framework, hence there is

zero conditional correlation between different obligors. Nonetheless in these crash

scenarios their behaviour is virtually identical, namely processes characterized by

a linear trend with very small fluctuations about that trend. Thus we might be
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tempted to conclude that there is significant “apparent correlation” between credit

qualities in a severe recession, and interpreting this phrase very loosely.

A heuristic justification for interpreting downturns as being characterized by

abnormally small values of M is as follows. To begin, note that by the law of the

iterated logarithm for Brownian motion (see Karatzas and Shreve [80]) we have

that √
VW i

t = O
(√

2t log log t
)

= o(t)

almost surely as t→∞. Hence

X i
t

t
= M + o(t)

and we may indeed interpretM as the dominant factor with respect to the long-term

behaviour of credit qualities. This in turn lends credence to our characterization of

recessionary periods begin characterized by abnormally low values of this factor.

Figure 4.2 plots the realized trajectory of portfolio losses in one of our “crash”

scenarios, corresponding to simulated values of M = −0.3873 and V = .0025. We

note that P (M ≤ −0.3875) = 0.07% and P (V ≤ .0025) = 0.06%. As the idiosyn-

cratic component of credit qualities is negligible here, we see that in this scenario

credit qualities behave much like the deterministic and linear process 1.8371−.3875t,

which strikes zero with certainty at time t∗ = 4.7434. From the figure we see that

indeed, virtually all obligors default within a very short window of this critical

time. These features are in fact characteristic of each of our “crash scenarios,”

namely 100% of the portfolio defaulting within a very short window of the critical

time −x0/M . If only the realized trajectory of credit quality was available to mar-

ket participants, the default event would be predictable in the traditional sense,

meaning investors would know that default is imminent immediately prior to the

occurence of said event. However if the realized values of the systematic factors

were available to market participants, the default event of an individual obligor

would become what we call “super-predictable,” meaning that the default time can

be predicted with near-certainty approximately four years in advance. As alluded

to in Section 4.1, in order to avoid this “super-predictability” we assume that the

systematic factors are unobserved by market participants.

We now proceed with a more formal investigation of this phenomenon of “low-

volatility market crashes.” Let us begin by defining the function

h(m, v, x0, t) = Φ

(
−x0 +mt√

vt

)
+ e−2x0m/vΦ

(
mt− x0√

vt

)
(4.16)
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Figure 4.2: Market Crashes in the Linear Model
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and note that h is simply the probability that a linear Brownian motion x0 +mt+
√
vWt strikes zero by time t. Our original presumption, admittedly driven largely

by financial lore, was that low volatility is “good” and high volatility is “bad.” As

such we expected the function h to be increasing in v. Indeed for all values of

(m,x0, t) it can be shown that

lim
v→∞

h(m, v, b, t) = 1

hence such processes immediately hit zero as volatility increases without bound.

In the context of our financial model this means that all obligors default instantly.

The behaviour of h when v is close to zero is in fact ambiguous, as it depends on

the values of the other arguments. For values of (m,x0, t) such that x0 + mt > 0

we have
∂h

∂v
> 0 lim

v→0
h(m, v, x0, t) = 0

indicating that our naive presumption was in fact correct in this case. However

when (m,x0, t) are fixed such that x0 +mt < 0 we have

lim
v→0

h(m, v, x0, t) = 1

Thus as volatility disappears obligors default with certainty. This fact may seem

counter-intuitive at first, yet it has a simple explanation. When v = 0 credit

quality is the deterministic and linear process x0 + mt. Thus all obligors default

at exactly the same moment in time, namely t∗ = −x0

m
. When v is small but non-

zero the presence of stochastic behaviour serves to make avoiding default possible

(though not terribly likely), and default probabilities initially decrease as stochastic

behaviour is introduced.

Figure 4.3 plots the function h(−0.4, v, 0.6, 3), which represents three-year de-

fault probabilities as a function of volatility when x0 = 0.6 and m = −0.4. We

see that the introduction of stochastic behaviour initially serves to lower default

probabilities, but that this effect eventually “wears off,” as default probabilities

again begin to increase with volatility. As a final note we point out ∂h/∂m < 0 for

all values of (m, v, x0, t), indicating that default probabilities are in fact monotone

in the factor M , and there is no ambiguity here.

It is also worthwhile to investigate the behaviour of conditional default proba-

bilities in terms of the dimensionless quantities A = x0/
√
V and B = M/

√
V . It is

straightforward to see that the function h defined by (4.16) is equal to

h(m, v, x0, t) = H

(
x0√
v
,
m√
v
, t

)
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Figure 4.3: Effect of Volatility on Default Probabilities
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where

H(a, b, t) = Φ

(
−a+ bt√

t

)
+ e−2abΦ

(
bt− a√

t

)
(4.17)

is the probability that a standard Brownian motion strikes a linear barrier, with

initial value a and slope b, by time t. It is clear that H is monotone increasing

in both a and b, since the barrier becomes more remote as these quantities are

increased. Thus the effect of the dimensionless quantities on conditional default

probabilities is unambiguous. It is interesting to note here that our previous dis-

cussion concerning the effect of m and v indicates that if a → ∞ and b → −∞
while the ratio a/b is held fixed at a negative value, then H tends to one for any

fixed t > 0. Thus in terms of crossing probabilities for a standard Brownian motion

to a linear barrier, the effect of an infinitely negative slope dominates that of an

infinitely remote initial position.

Calibrating to Distressed Data

Recent times have seen significant turmoil in markets for credit derivatives. In early

2008 spreads for all tranches were significantly higher than historical levels, with

senior tranches trading at spreads in excess of 115 basis points, more than thirty

times their typical pre-crisis levels. We obtained a set of CDX quotes as of March

10, 2008 from Krekel [83], according to whom

In February and March 2008 it was temporarily not possible to calibrate

the standard Gaussian base correlation model to the complete set of

CDX and iTraxx tranche quotes. The reason is that the Gaussian base

correlation model was not able to generate enough probability for high

portfolio losses, while preserving the calibration to mezzanine and equity

tranches.

In light of this fact we felt it would be instructive to investigate the performance of

our model under these harsher conditions. Table 4.4 presents the calibration results.

We note that neither super-senior tranche nor default swap data was available. The

results are again encouraging, with the overall relative pricing error at 5.3%. The

model is able to capture the senior spreads reasonably well, while at the same time

maintaining an acceptable fit to the equity and mezzanine.

Let us now compare the two sets of calibrated parameters. As expected the

initial value of credit quality is much lower for the distressed data, indicating that

the market feels obligors are in a much more precarious position now than they
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Table 4.4: Calibration to Distressed CDX Data - Linear Model. Equity spreads

expressed in percentage points and quoted as upfront fees with 500 basis point

running premium. All other spreads expressed in basis points and quoted as running

premia. Relative pricing error used as objective function.

5Y

0-3% 3-7% 7-10% 10-15% 15-30%

Market 67.38 727 403 204 115

Model 65.90 733 355 219 100

7Y

0-3% 3-7% 7-10% 10-15% 15-30%

Market 70.5 780 440 248 128.5

Model 70.79 859 417 265 128.1

10Y

0-3% 3-7% 7-10% 10-15% 15-30%

Market 73.5 895.5 509 282 139.5

Model 71.76 894.7 430 277 141.2

Marginal Parameters

α β1 β2

M .0831 .01 .0534

V -3.2536 .0271 .1455

Other Parameters

x0 ρ

0.5865 .8217
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were two years ago. In order to compare the marginal parameters for M we plot

the two calibrated densities in the top panel of Figure 4.4. As the location pa-

rameters are almost identical, the major difference between these densities is that

the “distressed” density is skewed much more heavily to the left. This may be

taken as a sign that the market feels major economic downturns are much more

likely today than they were two years ago. Again this is not a surprise. The most

striking difference between the two sets of parameters is revealed by inspecting the

calibrated densities for V . These are plotted in the lower panels of Figure 4.4, and

we encourage the reader to note the two different scales on which these are plot-

ted. The distressed density is much more heavily concentrated about small values,

and the difference is quite staggering - the essential support of V in recent times

[0, 0.2], an interval which was assigned a probability of approximately 58% by the

“normal” data. Recalling that, when V is small, idiosyncratic risk has very little

effect on credit qualities, we may interpret these findings as an indication that, at

the present time, idiosyncratic risk is insignificant relative to systematic forces.

Based our findings here we feel that a re-interpretation of V may be in order.

It appears as if the data “wants” this factor to play a role akin to a stochastic cor-

relation factor, reflecting the dependence between credit qualities. Moreover this

dependence should be stronger in downturns, with V downgrading the relative im-

portance of idiosyncratic risk in such times. We believe that such a re-interpretation

could serve to enhance the modeling process, and will have more to say on the sub-

ject in our concluding chapter.

Theoretical Shortcomings

We are pleased with the fact that the model presented in this section calibrates well

to market data, and predicts behaviour in severe downturns that is consistent with

empirical fact. However no model is perfect, and we now discuss two theoretical

shortcomings of our linear specification. To begin, at least under “normal con-

ditions,” super-senior tranches experience losses only when 100% of the portfolio

defaults, and we observe an “all-or-nothing” phenomenon similar to the “now-or-

never” phenomenon of the random drift model. We may classify these scenarios as

severe economic downturns, and due to the lack of time dynamics in the systematic

factors, there is essentially no recovering from a recession here. The systematic

components are realized today, and the economic environment in which obligors

operate remains frozen forever.

Before proceeding with the second shortcoming, we make the following obser-
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Figure 4.4: Calibrated Densities
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vation. Suppose that ai + bit are two linear functions with ai > 0, and let Fi denote

the cumulative distribution function of the first passage time of a standard Brow-

nian motion to the ith barrier. It is a fact that F1 = F2 if and only if a1 = a2 and

b1 = b2. To see this let fi denote the associated densities, and note that F1 = F2

if and only if f1 = f2. Moreover if f1 = f2 then the ratio log (f1(t)/f2(t)) must be

identically zero, which is tantamount to the following polynomial being identically

zero (
a2

2 − a2
1

)
+ 2t [log (a1/a2)− a1b1 + a2b2] + t2

(
b22 − b21

)
which is only possible if a1 = a2 and b1 = b2. In words we see that there is

a one-to-one correspondence between linear functions and associated first-passage

distributions.

Returning to our model we note that conditional on the realized values of the

systematic factors the asymptotic proportion of defaults is simply the cumulative

distribution function of the first passage time of a standard Brownian motion to a

straight line with initial value x0/
√
V and slope M/

√
V . Thus if one observes the

trajectory of Dt over any interval [0, T ], one can “back out” the realized values of

these quantities. In practice a simple iterative procedure to determine the initial

value and slope often converges quite rapidly. Having determined the realized values

of x0/
√
V and M/

√
V our observer can now predict the future evolution of portfolio

losses with certainty, which is clearly at odds with reality.

4.2.3 Dynamic Models

Despite the fact that the linear model calibrates quite well to market data, it suffers

from significant shortcomings. In particular an observer of asymptotic losses over

any time interval may predict future losses with certainty. This problem may

be traced to the fact that the “market environment” in which firms operate is

ostensibly determined “today,” and is not permitted to evolve over time. We have

seen that this implies that there is in effect no recovering from economic downturns,

with the result that super-senior tranches may only experience losses in “doomsday”

scenarios where 100% of a portfolio defaults in a finite time.

Presumably these problems may be “solved” by introducing time dynamics to

the systematic factors. To this end, in this section we investigate the homogeneous

model

dX i
t = Mtdt+

√
VtdW

i
t X i

0 = x0
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where Mt and Vt are now mean-reverting diffusion processes

dMt = θM (µM −Mt) dt+ σM (Mt) dZ
1
t

dVt = θV (µV − Vt) dt+ σV (Vt) dZ
2
t

Here Z1, Z2 are correlated standard Brownian motion, independent of the sequence

W 1,W 2, . . .. Owing to the success of the Laplace and log-Laplace distributions in

the previous section, we use the results of Bibby et al. [17] to choose the func-

tions σM , σV in such a way as to ensure M and V are ergodic, with Laplace and

log-Laplace invariant densities, respectively. Details of these constructions are con-

tained in Appendix C, and explicit expressions for σM and σV are given by (C.6)

and (C.7), respectively.

In this dynamic model we have that for fixed T > 0, conditional default proba-

bilities, and hence asymptotic portfolio losses, are given by

DT = P (τi ≤ T |HT ) = ΨT (A,B)

where Ψ is defined and studied in Section 3.4 and

A =

{
x0 +

∫ t

0

Msds : 0 ≤ t ≤ T

}
B =

{∫ t

0

Vsds : 0 ≤ t ≤ T

}
Exact simulation ofDT is not possible, hence we must rely on the methods discussed

in Chapter 3. The first step in simulating portfolio losses is the simulation of paths

for Mt and Vt. To this end we use a simple Euler scheme with a time-step of

h = 10−2. That is, we generate the systematic factors recursively via

Mti+1
= Mti + hθM (µM −Mti) +

√
hσM (Mti)Y

1
i

Vti+1
= Vti + hθV (µV − Vti) +

√
hσV (Vti)Y

2
i

where ti = ih and (Y 1
i , Y

2
i ) are correlated standard normal variables, the correlation

being set equal to the correlation between Z1
t and Z2

t . As a final note, we point out

that due to the correlation between Z1 and Z2, the bivariate stationary distribu-

tion of (Mt, Vt) is non-trivial (note that the marginal stationary distributions are

available). In order to produce a pair (M0, V0) which is approximately distributed

according to the correct bivariate distribution,5 we “begin” these processes five

years in advance, where they are set equal to their long-run means. That is, we set

M−5 = µM and V−5 = µV and use our Euler scheme to simulate the values (M0, V0).

5Assuming the initial values of the systematic factors are distributed according to their sta-
tionary distribution is consistent with the assumption that these factors are unobservable.
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Having simulated paths for the systematic factors, the next step is to construct

linear approximations to their integrals. Clearly we must use the type two approx-

imation, and for reasons of computational efficiency we choose node spacings of

∆ = 0.25 and set

An (ti) = x0 + ∆
i∑

k=1

Mtk Bn (ti) = ∆
i∑

k=1

Vtk

where ti = i∆. Note that not all simulated values of (Mt, Vt) are used in con-

structing the linear approximation. In order that those values which are used are

accurately simulated, we are required to generate more than we need. Armed with

the simulated linear approximations An, Bn it is a simple matter to obtain the asso-

ciated realization of the default proportion DT = ΨT (An, Bn). Again, for reasons of

computational efficiency we use the Monte Carlo technique as opposed to numerical

integration.

In order to verify that the linear approximation is justified in this case, we first

note that Mt has continuous sample paths. In addition it can be shown (see [17])

that the origin is not attainable for Vt here, that is P (Vt > 0 ∀t ∈ [0, T ]) = 1.

As the origin is unattainable, and as sample paths of V are continuous, almost all

paths of this process are bounded away from zero on any bounded time interval.

As a result the conditions of Corollary 3.4.3 are satisfied.

There are ten parameters in this model. These include the initial value of credit

quality x0 as well as the correlation ρ between Z1 and Z2. Each systematic factor

also has four “marginal” parameters. These include the mean reversion rates θM

and θV , as well as the three parameters governing each invariant density. These

parameters influence both the stationary distributions, on which their influence is

straightforward, as well as the diffusion coefficients σM and σV .

Table 4.5 presents the calibration results for both of our sets of data. In both

cases we obtain a better overall fit than with the linear model. For the “non-

distressed” 2006 data the average relative pricing error here is 15.14 basis points,

as compared to 16.45 for the linear model. We note that despite the fact we obtain

a better overall fit here, we obtain a slightly worse fit to the super-senior tranches.

Turning to the “distressed” 2008 data we see that we obtain a better fit than with

the linear model. The mean relative pricing error here is 3.36 basis points, as

compared to 5.3 for the linear model. In addition the senior tranches, the bane of

the industry-standard model, are priced to a total average error of only 1.2 basis

points, with the maximum pricing error being 0.8 basis points for the seven-year

tranche.
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Table 4.5: Calibration to CDX Data - Diffusion Model. Equity spreads expressed in

percentage points and quoted as upfront fees with 500 basis point running premium.

All other spreads expressed in basis points and quoted as running premia. Relative

pricing error used as objective function.

Non-Distressed Data

5Y

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% CDS

Market 24.38 90 19 7 3.5 1.73 35

Model 22.30 89.4 19.1 8 3.5 0.36 33.6

7Y

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% CDS

Market 40.44 209 46 20 5.75 3.12 45

Model 40.90 235.7 46.5 18.9 6.21 1.39 46

10Y

0-3% 3-7% 7-10% 10-15% 15-30% 30-100% CDS

Market 51.25 471 112 53 14 4 57

Model 51.04 471 110.5 42 14 1.49 55.4

Distressed Data

5Y

0-3% 3-7% 7-10% 10-15% 15-30%

Market 67.38 727 403 204 115

Model 64.71 727 376 223 115

7Y

0-3% 3-7% 7-10% 10-15% 15-30%

Market 70.5 780 440 248 128.5

Model 70.46 842 437 263 129.3

10Y

0-3% 3-7% 7-10% 10-15% 15-30%

Market 73.5 895.5 509 282 139.5

Model 71.89 899.6 452 282 139.1
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Table 4.6: Calibrated Parameters - Diffusion Model

Parameter Non-Distressed Distressed

x0 1.1155 2.5010

θM 0.5657 0.4638

θV 0.1252 2.4119

µM 0.0274 0.1968

µV 0.0627 0.6327

νM 0.0693 0.3244

νV 0.0567 0.2552

ρ 0.9810 0.9967

We turn now to a comparison of the calibrated parameters, which are presented

in Table 4.6. The table lists calibrated mean reversion rates θM , θV , mean rever-

sion levels µM = E [Mt],µV = E [Vt], as well as calibrated standard deviations

νM =
√

Var (Mt) and νV =
√

Var (Vt). We found this to be more instructive than

comparing the calibrated parameters of the invariant densities directly.

The results here are rather surprising at first glance. To begin we note that

the initial value of credit quality is larger for the distressed data than it is for

the non-distressed, which appears at first glance to be counter-intuitive. A sim-

ilar phenomenon is found when comparing mean reversion levels, we see that for

both factors, the long-run means µM = E [Mt] and µV = E [Vt] are almost ten

times larger in 2008 than in 2006. This stands in stark contrast to the linear

model, where both systematic factors had “distressed” distributions which were

more heavily concentrated and skewed towards smaller values. Here the calibrated

invariant densities are much more heavily concentrated towards larger values of the

systematic factors. Making only these two comparisons it might seem surprising

that the 2008 parameters actually produced much larger spreads. It appears that

the answer to this “paradox” lies in the calibrated variances for the systematic fac-

tors. In both cases the systematic factors are roughly 4.5 times as volatile in 2008

as they were in 2006.

Default probabilities and the portfolio loss distribution in this model are the

result of a complex interplay between the model parameters. In order to generate

large enough spreads, the model must make the two systematic processes much

more volatile. However in order to prevent spreads from become too large, the

model must compensate by starting obligors farther from the origin, and raising
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the long-run trends of the systematic factors.

Figure 4.5 plots representative sample paths for the systematic factors, as well as

the associated path for portfolio losses. Paths were simulated using an Euler time-

step of h = 10−2, and portfolio losses were approximated using node spacings equal

to the Euler time-step, that is ∆ = 10−2. This trajectory is typical in the sense that

periods where defaults “cluster,” as in the 2-4 year window here, are characterized

by prolonged periods where M is far below its long-run mean. Moreover given the

extremely strong correlation between the Brownian motions driving the systematic

factors, these periods also tend to be accompanied by periods where Vt is near

zero. Thus we reach the same conclusion as in the linear model, namely market

crashes tend to be driven by the factor Mt, and idiosyncratic risk is dwarfed by

systematic risk in these periods. It is also interesting to note that it takes time

for a market crash to feed its way into portfolio losses. In the figure Mt takes a

dive after approximately one year, yet its effect is not felt by the portfolio until two

years. This indicates that short-term downturns do not cause large portfolio losses,

in order that 10% of the portfolio defaulted here M had to experience a prolonged

depression.

The tail end of Figure 4.5 also reveals a very pleasing property of our dynamic

model. We note that the market crashed here between 2 and 4 years, yet recovered

thereafter. In the linear model we saw that there was in effect no recovering from

recession. Moreover after eight years there was another pronounced downswing,

which led to another period of default clustering.

To summarize we feel that the phenomena illustrated by Figure 4.5 captures the

essence of what we were trying to accomplish with a dynamic model. The almost

cyclical nature of portfolio losses reflects the fact that we have produced a dynamic

economic environment in which obligors operate. In addition suppose that one

observes asymptotic losses over a fixed interval, say zero to five years. Even if one

could somehow back out the associated realized paths for the systematic factors,

one could not possibly predict the calamity which befell the economy after eight

years (though one could in principle assess the likelihood of this event).

As a final note we point out that, given the high correlation between the system-

atic factors here, a one-factor model where Vt = f(Mt) may be just as appropriate

as our two-factor specification. In addition, given the somewhat counter-intuitive

calibration results, perhaps the Laplace diffusion is not the most appropriate choice

for Mt. Nonetheless we feel we have accomplished what we set out to do, namely

develop a dynamic model which does a good job of describing market data. More
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Figure 4.5: Illustrative Path - Dynamic Model
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appropriate specifications will be the subject of future research.

4.3 Variance Reduction

In this section we take a deeper look at Monte Carlo estimators of fair tranche

spreads in our model. In particular our goal is to enhance the efficiency (i.e. reduce

the variability) in the “crude” estimators used in Section 4.2. To this end suppose

that all parameters of the model have been specified, and that the risk-neutral

probability measure is P . Further suppose that we are interested in estimating the

fair spread on a particular tranche, say the super-senior tranche, with maturity

T . Letting L = {Lt : 0 ≤ t ≤ T} denote the trajectory of portfolio losses, the fair

spread on this tranche may be expressed as

s =
E [d (L)]

E [p (L)]
(4.18)

where d(L) is the present value of the default leg for the tranche, and p(L) is the

present value of the protection leg. Note that in order to keep the discussion general

we have not specified whether we are working with the asymptotic version of the

model, and also note that our tranche experiences losses if and only if d(L) > 0.

In Section 4.2 we employed the following “crude” scheme for estimating fair

tranche spreads

• Simulate independent portfolio loss paths Li.

• Compute the associated present values of the default and protection legs,

d (Li) and p (Li)

• Estimate s via

ŝ =
1
n

∑n
i=1 d (Li)

1
n

∑n
i=1 p (Li)

(4.19)

As tranche losses tend to be rare for all but the equity and mezzanine tranches,

we might view estimation of the numerator in (4.18) as the most troublesome

component of such a scheme. That is, we might expect that most of the variability

in (4.19) may be traced to the numerator of that quantity, namely the unbiased

estimator for expected tranche losses

1

n

n∑
i=1

d (Li) (4.20)
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Indeed in Section 4.2.2 we saw that a sample of 10,000 simulated scenarios produced

only 13 in which the super-senior tranche experienced losses. Thus 9,987 scenarios,

or 99.87% of the simulations, are essentially uniformative with respect to the default

leg of this tranche. Put another way, though the original Monte Carlo sample size

was 10,000, the effective sample size for estimating expected tranche losses is only

13.

Importance sampling is a technique which can be incredibly useful in precisely

such situations. To this end suppose that P̃ is a measure which is equivalent to

P , and let the random variable Λ = dP/dP̃ denote the likelihood ratio (Radon-

Nikodym derivative) between the two measures. Further suppose that tranche

losses are much less rare under P̃ , for example under this measure the probability

our tranche experiences losses might be 60%, as opposed to approximately 0.13%

under P . An unbiased estimator for expected tranche losses is given by

1

n

n∑
i=1

Λid (Li) (4.21)

where (Λi, Li) are independent copies of the likelihood ratio and portfolio losses,

simulated according to P̃ (note that Λi is not necessarily independent of Li). Sim-

ulating portfolio losses under P̃ has the effect of producing more information on

the relevant portion of the loss distribution, while multiplying by Λ weights each

observation by the relative likelihood of actually observing such a loss trajectory in

practice (i.e. under P ). Note that (4.21) is unbiased since E [d (L)] = Ẽ [Λd (L)].

In order that such a scheme be practical, it is necessary that both Λ and L be

easily simulated under P̃ . In addition, in order that the scheme produces more

efficient estimators it must be the case that

Ṽar (Λd (L)) < Var (d (L)) (4.22)

where Ṽar denotes variance under the measure P̃ . Identification of measures P̃

with these two properties is by no means trivial.

In general there are no standard methods for selecting effective importance

measures. Ideally we would like to develop an objective procedure for such an

endeavour, which would prove effective across a wide variety of specifications of

our framework. Asmussen et al. [7] consider the use of entropy-minimization as

a tool for selecting effective importance distributions in the context of estimating

tail probabilities of sums of heavy-tailed random variables, and report very pos-

itive results. Extending their approach to our problem, one would first define a
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parametric family of candidate measures {Pθ : θ ∈ Θ}, where Θ is some (possibly

infinite-dimensional) parameter space and each Pθ is equivalent to P . Next, one

selects the importance measure as that member which minimizes the cross-entropy,

or Kullback-Leibler distance

h (θ) = E∗
[
log

dP ∗

dPθ

]
(4.23)

where the measure P ∗ is defined by

P ∗(A) = P (A |d (L) > 0)

In this way, one hopes to obtain an importance measure under which the distribu-

tion of portfolio losses “looks as close as possible” to its conditional distribution,

where we condition upon our tranche experiencing losses. We now turn to the re-

sults of a preliminary investigation into the use of this paradigm in the context of

a very simple specification of our basic framework.

4.3.1 Preliminary Results

The model used in our preliminary investigation is the homogeneous “pure time-

change” model, where the credit quality of obligor i is given by

X i
t = x0 + bV t+

√
VW i

t

where x0 > 0 and b ∈ R are constants and V is a random variable. This is a model

where relevant quantities can in fact be determined numerically, and we hope to

use it to gain insights into the cross-entropy paradigm in more sophisticated models

where Monte Carlo is the method of choice.

We considerK tranches, labeled k = 1, . . . , K, with attachment and detachment

points Ak, Dk and a common maturity of T years. As our focus is on the situation

where tranche losses are rare, we ignore the equity tranche, that is we assume

Ak > 0 for each k. In addition we assume that tranches are indexed by seniority,

so that Ak < Ak+1.

We assume the underlying portfolio is asymptotically large, and that the total

notional is one dollar. Before proceeding we wish to remind the reader of the

following fundamental facts with respect to the model and its use in pricing tranches

of CDOs
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• The proportion of defaults by time t is

Dt = P (τi ≤ t |V ) = Φ

(
−x0 + bV t√

V t

)
+ e−2x0bΦ

(
bV t− x0√

V t

)
• The percentage loss by time t is

Lt = (1−R)Dt

where R is the deterministic (and constant across firms) recovery rate

• For tranche k, the cumulative loss experienced by time t is

fk (Lt) = (Lt − Ak)
+ − (Lt −Dk)

+

while the outstanding tranche principal at time t is

gk (Lt) = (Dk − Ak)− fk (Lt)

• The present value of the default leg is

dk (V ) =
N∑

i=1

e−rti
[
fk (Lti)− fk

(
Lti−1

)]
where N is the number of payment dates and ti = i∆ with ∆ = T/N and T

the maturity of the contract. Here r is the constant and deterministic risk-free

interest rate.

• Given a contracted spread Sk, the present value of the protection leg is given

by Skpk(V ), where

pk (V ) = ∆
N∑

i=1

e−rti
gk (Lti) + gk

(
Lti−1

)
2

• The fair spread for tranche k is given by

sk =
E [dk(V )]

E [pk(V )]
(4.24)

Thus the fair spread simply equates the expected present values of the two

cash flow “legs.”

We assume that V has the log-Laplace density (C.3), discussed in greater de-

tail in Appendix C. Recall that this is a three-parameter family with parameters

(α, β1, β2). Thus there are five parameters in the model, and using the following

parameter choices

115



x0 b α β1 β2

1.0058 -1.6688 -3.7099 0.1418 0.0569

we obtain the following relevant quantities for five-year tranches.

Tranche E [dk(V )] P (dk(V ) > 0) Model Spread Market Spread

3-7% .0016 .1232 90.1 bp 90 bp

7-10% .0003 .0173 19.4 bp 19 bp

10-15% .0001 .0062 6.0 bp 7 bp

15-30% .0001 .0016 0.79 bp 3.5 bp

The model spreads are those reported by DiGraziano and Rogers [41] for five-year

tranches (we exclude both the equity and super-senior tranches). All quantities

have been computed numerically and are treated as exact.

In order to use our cross-entropy paradigm we must first select a parametric

family of candidate densities for the systematic factor V . To this end let g denote

the actual density of V , that is the density (C.3) with parameters

(α, β1, β2) = (−3.7009, 0.1418, 0.0569)

In addition for µ ∈ R define gµ as the density (C.3) with parameters

(µ, 0.1418, 0.0569)

Thus our candidates remain in the log-Laplace family, with only the “location-type”

parameter being adjusted.

For tranche k we have that dk(V ) > 0 if and only if V ≥ vk, where vk solves

Ak = (1−R)

[
Φ

(
−x0 + bvkt√

vkt

)
+ e−2x0bΦ

(
bvkt− x0√

vkt

)]
(4.25)

Note that if Ak ≥ (1 − R)e−2x0b then (4.25) has no solution and tranche k never

experiences losses. We call vk the “critical level” for tranche k. Letting g(k) denote

the conditional density of V , given V ≥ vk, our goal is to minimize the Kullback-

Leibler distance

ek (µ) =

∫ ∞

vk

log

(
g(k)(v)

gµ(v)

)
g(k)(v)dv (4.26)

It is straightforward to derive a closed-form expression for (4.26), which is easily

minimized numerically. We call that value of µ which minimizes (4.26) the “optimal

importance” parameter for tranche k, and denote it by µk. Moreover the density

gµk
will be called the “optimal importance density” for tranche k.
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Figure 4.6: Actual and Importance Densities
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The top panel of Figure 4.6 plots the true density and the optimal importance

density for the most senior tranche, namely the 15-30%. We see that we’ve both

fattened the tails and shifted the density with this one parameter. The bottom

panel of Figure 4.6 plots both densities when the 3-7% tranche is targeted. We

see that there is a similar, but less pronounced effect. This figure indicates that

we need to move the importance density “farther” from the true density as the

seniority of the tranche under consideration increases.

Under each importance density, the associated tranche has a probability of

experiencing losses of approximately 88%. Thus simulating V according to the

density gµk
will produce a sample in which tranche k experiences losses in roughly

90% of simulated scenarios. Our paradigm has therefore proved successful according

to our first criteria, namely that it provides more information on the relevant portion

of the loss distribution. Our second, and more important criteria, is that the
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paradigm enhances the efficiency of Monte Carlo estimators of expected tranche

losses. That is, letting Λk(v) = g(v)/gµk
(v) denote the likelihood ratio between

the actual and importance densities, we would like the standard deviation of the

importance sampling estimator

1

n

n∑
i=1

Λk (Vi) dk (Vi)

to be small relative to the standard deviation of the crude estimator

1

n

n∑
i=1

dk (Vi)

Recall that in the former estimator the Vi are simulated from the importance density

gµk
, while in the latter they are simulated from the actual density g. The following

table illustrates the potential efficiency gains by reporting estimated values of√
Var (dk (V ))

Vark (Λk (V ) dk (V ))

where Var denotes variance under the actual density and Vark denotes variance

under the importance density gµk
.

Tranche

3-7% 7-10% 10-15% 15 -30%

Gain 4.3019 13.2825 16.6251 19.1957

The results here are quite encouraging. In terms of estimator standard deviations

for the most senior tranche, simulating 1,000 observations under the optimal im-

portance density is equivalent to simulating 20,000 observations under the actual

density. In more sophisticated models where computing portfolio losses is a com-

putational burden, such an improvement would pay massive dividends.

Suppose now that we are interested in the simultaneous estimation of expected

losses for all tranches under consideration. Using a different set of simulated val-

ues for the systematic factor for each individual tranche would require four times

as much computational effort as simulating one set, and using it to estimate the

relevant quantity for all tranches. As such suppose that we choose our importance

density by “targeting” tranche k, that is using the optimal importance density gµk
.

Further suppose we simulate values Vi from this density and use them to estimate

the expected losses on tranche j. That is we use the estimator

1

n

n∑
i=1

Λk (Vi) dj (Vi)
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Table 4.7: Efficiency Gains - Expected Tranche Loss

Targeted Tranche

3-7% 7-10% 10-15% 15 -30%

3-7% 4.3019 1.1549 .4150 .4330

7-10% 2.7948 13.2825 7.5519 1.1459

10-15% 2.1598 6.4476 16.6251 6.8861

15-30% 1.3494 4.0609 7.1283 19.1957

where Vi is simulated according to gµk
. Table 4.7 illustrates the potential efficiency

gains inherent in this endeavour. The (j, k) element of the table reports estimated

values for √
Var (dj (V ))

Vark (Λk (V ) dj (V ))

Inspection of the table reveals that there is no “globally optimal” tranche to target.

In order to obtain maximum efficiency for estimating expected losses for tranche

k, one must target that very tranche. In addition if the targeted tranche is “too

far” from the tranche under consideration, importance sampling can actually lead

to less efficient estimators. For example targeting the most senior tranche in order

to estimate expected losses on the mezzanine leads to an importance sampling

estimator which is nearly twice as variable as a crude estimator.

For completeness we also investigate the potential for efficiency gains when

estimating the probability of tranche loss. The crude estimator would be

1

n

n∑
i=1

I (dj (Vi) > 0)

while the importance sampling estimator when tranche k is targeted would be

1

n

n∑
i=1

Λk (Vi) I (dj (Vi) > 0)

The (j, k) element of Table 4.8 reports estimated values for the ratio√
Var (I (dj (V ) > 0))

Vark (Λk (V ) I (dj (V ) > 0))

The results for estimating probability of tranche loss are broadly similar to those

for estimating expected tranche losses, and we will not discuss them further.

119



Table 4.8: Efficiency Gains - Probability of Tranche Loss

Targeted Tranche

3-7% 7-10% 10-15% 15 -30%

3-7% 5.0796 .2803 .0395 .7691

7-10% 3.0697 14.6960 2.6154 .4003

10-15% 2.9979 9.3970 23.7802 2.4783

15-30% 2.7906 7.7286 14.5967 48.6936

Recall that a crude Monte Carlo estimator of the fair spread sk would simulate

V according to its actual density g and set

ŝk =
1
n

∑n
i=1 dk(Vi)

1
n

∑n
i=1 pk(Vi)

(4.27)

In the introduction to this section we noted that, as the numerator here is the

most troublesome component of CDO pricing, variance reduction techniques which

improve estimation of this quantity might be expected to provide greater efficiency

than the crude estimator. Unfortunately here we have found that this is in fact not

the case. To this end we compared the standard deviation of (4.27) with that of

the importance sampling estimator

1
n

∑n
i=1 Λk(Vi)dk(Vi)

1
n

∑n
i=1 Λk(Vi)pk(Vi)

(4.28)

We generated 1,000 realizations of the spread estimators (each estimate based on

10,000 realizations of V ) and obtained the following results

Estimated Standard Deviations of Spread Estimator

Method Tranche

0-3% 3-7% 7-10% 10-15%

Crude 3.2880 1.6809 .9204 .2755

IS 620.0723 348.1453 105.6633 13.6307

These somewhat surprising results can be traced to the behaviour of the likelihood

ratios Λk (v). Recalling Figure 4.6 we see that this ratio tends to be quite small

when v is large, and quite large when v is small. Despite the fact that small values

of V are not likely under the importance density, a large sample will contain a

few small values of the systematic factor. As dk(v) will be zero in these cases,

abnormally large values of the likelihood ratio are offset by null tranche losses.
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However this is not the case for the protection leg pk(v). In the rare event that the

simulated value of V is small, the associated likelihood ratio Λk (V ) is not offset by

a null value of pk(V ). Though likelihood ratio is bounded in all cases, the (sharp)

upper bound is approximately ten million when the most senior tranche is targeted.

Thus Λk(V ) will occasionally be extraordinarily large, and even one or two such

values causes estimation of E [pk(V )] via

1

n

n∑
i=1

Λk (Vi) pk (Vi)

to go horribly awry. Though the importance sampling estimator reduces variability

in estimating the numerator, this benefit is offset by increased variability in the

denominator. The net result is a massive increase in variability of the tranche

spread estimator.

All is not lost, however, as we have found a way to use our importance sampling

scheme to enhance the efficiency of spread estimators. We begin by noting that

with ck = eµk−α, the distribution of ckV when V has density g is precisely gµk
.

Thus both dk(V ) and Λk (ckV ) dk (ckV ) are unbiased estimators of E [dk(V )], when

V has density g. To see this note that

E [Λk (ckV ) dk (ckV )] = Ek [Λk (V ) dk (V )]

= E
[
Λ−1

k (V ) Λk (V ) dk (V )
]

= E [dk (V )]

This suggests the following estimator

1
n

∑n
i=1 Λk (ckVi) dk (ckVi)

1
n

∑n
i=1 pk (Vi)

where the Vi are independent simulations of the systematic factor, drawn from

the actual density g. The behaviour of the numerator of this estimator “mimics”

the behaviour of the importance sampling estimator for E [dk(V )] which we saw

perform so well earlier in the section. The following table reports the estimated

efficiency gains from using this method.

Estimated Efficiency Gains

Tranche

3-7% 7-10% 10-15% 15-30%

3.9721 14.6391 22.9636 38.8251
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We reach the encouraging conclusion that our cross-entropy importance sampling

paradigm can significantly enhance the efficiency of Monte Carlo estimators for

fair tranche spreads. As an alternative to using this “trick”, we may consider the

following more general approach. Let g̃ be any density with support (0,∞) and

consider the importance sampling estimator

1
n

∑n
i=1 dk (Vi) Λ̃ (Vi)

1
n

∑n
i=1 pk (Vi) Λ̃ (Vi)

(4.29)

where Vi is simulated from the density g̃ and Λ̃(v) = g(v)/g̃(v). According to the

development in Appendix D the variance of (4.29) is approximately minimized by

setting

g̃k(v) = ckg(v)

∣∣∣∣ dk(v)

E [dk(V )]
− pk(v)

E [pk(V )]

∣∣∣∣
where

ck =
1

E
[∣∣∣ dk(V )

E[dk(V )]
− pk(V )

E[pk(V )]

∣∣∣]
The top panel of Figure 4.7 plots the density g̃k for the 15-30% tranche. We see

that the variance-minimizing density has the distinct appearance of a mixture, the

first component of which resembles the actual density g and the second component

of which assigns most of its mass to the critical region (i.e. the region where

dk(V ) > 0) [vk,∞). Motivated by this observation the bottom panel of Figure 4.7

plots the following crude approximation to the optimal density g̃k (for which we

have no closed-form expression)

ĝ(v) =
1

2
(g(v) + gµk

(v))

where gµk
is the importance density given in the top panel of Figure 4.6. The

advantage of this mixture approach is that the likelihood ratio is bounded above

(by 2 in this case), eliminating the previously encountered problem of unstable

likelihood ratios. Using this importance density we obtain an efficiency gain over

a crude simulation of approximately 15. This preliminary exercise suggests that

in order to minimize variance of the importance sampling estimator of fair tranche

spreads, one use a mixture of the form

p · g(v) + (1− p) g1(v)

where g is the actual density of V , and g1 is a density which “targets” the event

that our tranche experience losses. In using mixtures of this form one eliminates

the problem of unstable likelihood ratios, while maintaining an emphasis on the
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Figure 4.7: Optimal Importance Density
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extreme tail of the tranche loss distribution. The optimal selection of the mixing

parameter p ∈ (0, 1), as well as the rare-event density g1, will be the subject of

future research.

We also believe this technique, namely approximating the optimal importance

density for tranche spread estimators via mixtures, should be applicable in more

general models. In particular, for the linear model of Section 4.2.2, Figure 4.8

presents contour plots of the function

f̃(m, v) = f (m, v)

∣∣∣∣ pk (m, v)

E [pk (M,V )]
− dk (m, v)

E [dk (M,V )]

∣∣∣∣
where f(m, v) is the calibrated joint density of (M,V ) (calibrated parameters are

taken from the non-distressed data). These contours also resemble a mixture den-

sity, as there are two distinct “regions” here. The first set of contours closely

resemble those of the actual density f(m, v), while the second set of contours are

concentrated in the region where both M and V are abnormally small. In Section

4.2.2 we saw that this is precisely the region where the super-senior tranche experi-

ences losses. We have attempted two crude attempts at simulating from a density

resembling that pictured in Figure 4.8, each of which simulates from a mixture of

the form

p · f(m, v) + (1− p) · h(m, v)

where p ∈ (0, 1) and h is a density designed to target super-senior tranche losses.

Our first choice for h was the uniform density on [−.45,−.3] × [0, .03], while our

second choice was to simply re-center the bivariate density f at the point (m, v) =

(−0.3357, 0.0049). In both cases, even after varying the parameter p, we were not

able to obtain significant efficiency gains. However we believe this approach should

still be fruitful, and plan to investigate more appropriate mixtures in the future.
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Figure 4.8: Contour Plot - Optimal Importance Density
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Chapter 5

Extensions and Future Work

In many ways this thesis culminated with Chapter 4. Our original motivation

was a deeper understanding, and enhanced implementation, of the multivariate

Black-Cox model. As we delved deeper into the subject we learned more about

the similarity between this and the Gaussian copula, and began to realize that

more appropriate models were required. This planted the seed1 for the framework

presented in Chapter 4. In turn, in an effort to implement this model appropriately,

Chapter 3 was born.

In this concluding chapter we discuss future avenues for research with an em-

phasis on the material presented in Chapter 4. In order to implement the model

we used the asymptotic approximation for portfolio losses. Indeed calibration was

simply not feasible without using this approximation. We feel that a detailed anal-

ysis of this approximation and its effect on portfolio loss distributions and CDO

spreads is in order.

We would also like to take a deeper look at the problem of inferring the paths

of the systematic factors based on an observed trajectory of portfolio losses. In the

dynamic model an observed trajectory is simply the first-passage distribution for

a time-changed Brownian motion to a continuous barrier. The problem therefore

becomes imputing, or reconstructing, the barrier and time change based on the

first-passage distribution. Having done so one obtains the history of the systematic

factors, and can then determine the conditional distribution of future losses. In the

absence of a time change the first problem is well-studied in the literature - existence

and uniqueness are available (see Chadam et al. [32]), as are computational methods

for reconstructing the barrier based on a given first passage distribution (see [3] for

1The author wishes to express his utmost gratitude to Don L. McLeish for planting this seed.
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example). Unfortunately the introduction of a time change appears to complicate

matters significantly, as it becomes necessary to isolate the effects of both the

barrier and time-change. Furthering this train of thought, we note that one never

actually observes asymptotic losses. Our observable quantities are therefore a finite

set of imperfectly observed first-passage probabilities, and we believe that results

for empirical processes may be useful in this regard.

We believe there is also significant scope for enhancing the modeling process

itself. The overwhelming conclusion of our calibration exercises was that, in order

to correctly model “bad times,” we had to completely remove idiosyncratic risk in

this periods. We feel this warrants a re-interpretation of the “volatility” factor Vt

as something akin to a stochastic correlation factor, which weights the relative im-

portance of systematic and idiosyncratic forces. To this end we might try modeling

credit quality as

dXt = θ (Mt)Mtdt+ (1− θ (Mt)) dW
i
t (5.1)

where the function θ takes values in [0, 1] and explicitly weights the importance of

each factor. Alternatively we might consider retaining Vt as a volatility factor and

trying something along the lines of

dXt = θ (Mt)Mtdt+ (1− θ (Mt))
√
VtdW

i
t (5.2)

thus allowing for both stochastic volatility and correlation. It would be interesting

to see the effect of Vt here when it is not required to play the stochastic correlation

role. More generally we might model the idiosyncratic component as something

other than a time-changed Brownian motion, for example

dXt = θ (Mt)Mtdt+ (1− θ (Mt)) dY
i
t (5.3)

where Y i is now a more general process. Note that this might significantly compli-

cate evaluation of conditional default probabilities.

We are particularly pleased with the prospects for cross-entropy minimization

as a tool for selecting importance measures in the rare event setting, and would

like to extend the method to importance sampling for diffusion processes. This is

an area which is very underdeveloped in the literature. To this end suppose that

X is a one-dimensional diffusion process

dXt = µ (Xt) dt+ σ (Xt) dWt

and suppose that we are interested in approximating an expectation of the form

E [φ (X)], where φ : C[0, T ] → R is a path functional and the event {φ (X) > 0} is
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rare. For example we may think of φ as an indicator of a rare event, the payoff of

a deep out-of-the-money option, or, as in Section 4.3, as the loss on a senior CDO

tranche. When φ is the indicator of a rare event, large deviations techniques might

be employed (see Dembo and Zeitouni [38]), however this typically results in a very

difficult variational problem.

In many situations this problem may be reduced to one involving standard

Brownian motion as follows. Provided σ is non-zero and has a continuous derivative

we may define Zt = s (Xt), where

s (x) =

∫ x

x0

1

σ (z)
dz

where x0 is a constant in the state space of X. Denoting the inverse of s by g, Ito’s

Lemma shows

dZt = a (Zt) dt+ dWt

where

a(z) =
µ (g (z))

σ (g (z))
− 1

2
σ′ (g (z))

Using the results of DiCesare and McLeish [40], provided

exp

(
−
∫ t

0

a (Zs) dWs −
1

2

∫ t

0

[a (Zs)]
2 ds

)
is a martingale, it is possible to obtain unbiased estimators of φ (Z) by simulating Z

as a standard Brownian motion. Thus in many situations the general problem may

be restated in terms of estimating expected values of path functionals of standard

Brownian motion, to which we now turn.

Suppose now that Wt is a standard Brownian motion over [0, T ]. Recall that the

first criteria for selecting an effective importance measures for estimating E [φ (W )]

is that W be easily simulated under this measure. As Brownian motion with de-

terministic drift is indeed easy to simulate, we define the candidate family as those

defined by the Radon-Nikodym derivatives

dPθ

dP
= exp

(∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

)
where θ ∈ L2[0, T ]. Note that we have

dWt = θtdt+ dW θ
t

where W θ
t = Wt −

∫ t

0
θsds is a standard Brownian motion under Pθ. Our goal is to

identify that θ which minimizes the Kullback-Leibler distance between Pθ and the
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conditional measure P̃ defined by

P̃ (A) = P (A |φ (W ) > 0)

Clearly P̃ is absolutely continuous with respect to P (though the converse is not

necessarily true), and the Radon-Nikodym derivative is easily seen to be

dP̃

dP
=
I (φ (W ) > 0)

P (φ (W ) > 0)

It is also clear that
dP̃

dP
=

1

P (φ (W ) > 0)
P̃ − a.s.

The quantity to be minimized is then

Ẽ

[
log

dP̃

dPθ

]
= Ẽ

[
log

dP̃

dP
+ log

dP

dPθ

]

= − log (P (φ (W ) > 0)) + E

[
dP̃

dP
log

dP

dPθ

]

= − log (P (φ (W ) > 0)) + E

[
log

dP

dPθ

∣∣∣∣φ (W ) > 0

]
= − log (P (φ (W ) > 0))− E

[∫ t

0

θsdWs

∣∣∣∣φ (W ) > 0

]
+

1

2

∫ t

0

θ2
sds

Proposition 5.0.1 identifies that function θ which minimizes this quantity.

Proposition 5.0.1. Let ht = E [Wt |φ (W ) > 0]. Provided h is twice differentiable

with square-integrable first derivative, cross-entropy is minimized by setting

θt =
d

dt
ht =: ḣt

Proof. In order to minimize entropy we need only choose θ to minimize

−E
[∫ t

0

θsdWs

∣∣∣∣φ (W ) > 0

]
+

1

2

∫ t

0

θ2
sds (5.4)

Since

θtWt =

∫ t

0

θsdWs +

∫ t

0

θ̇sWsds

we obtain that

−E
[∫ t

0

θsdWs

∣∣∣∣φ (W ) > 0

]
=

∫ t

0

θ̇shsds− θtht

= −
∫ t

0

θsḣsds
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Plugging into (5.4) we must choose the function θ to minimize

1

2

∫ t

0

θ2
sds−

∫ t

0

θsḣsds =
1

2

∫ t

0

[
θs − ḣs

]2
ds− 1

2

∫ t

0

ḣ2
sds

and clearly this is minimized by setting θt = ḣt.

This provides an objective criterion for choosing an importance measure, how-

ever the effectiveness of the result is not yet clear. The problem of optimal im-

portance sampling for diffusion processes is very underdeveloped in the literature,

however in a recent paper Guasoni and Robertson [66] consider optimal impor-

tance sampling as follows (their method is an extension of the method devised

by Glasserman et al. [64] in the context of multivariate normal vectors). Letting

G(W ) = log (φ(W )) these authors base their optimality criteria based on “small-

noise asymptotics,” by defining

α (ε, θ) = E

[
exp

(
ε−1

(
2G
(√

εW
)
−
√
ε

∫ T

0

θtdWt +
1

2

∫ T

0

θ2
t dt

))]
(5.5)

and setting

L (θ) = lim sup
ε→0

ε logα (ε, θ) (5.6)

A candidate drift θ̂ is then deemed optimal if

θ̂ = min
θ
L (θ) (5.7)

Conditions under which an optimal drift exists are discussed in the paper, and when

it exists the drift is expressed as the solution to a variational problem, which may

be reduced to an Euler-Lagrange differential equation.

In order to investigate the relative performance of the cross-entropy method we

apply it to the problem of pricing path-dependent options under the assumption

the stock price follows

dSt = St [rdt+ σdWt]

The payoff to a geometric Asian option with strike price K is given by(
exp

(
1

T

∫ T

0

logStdt

)
−K

)+

which can be re-written as a path functional of W via

φ (W ) =
K

c

(
exp

(
a

∫ T

0

Wtdt

)
− c

)+
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where a = σ/T and c = K
S0
e−T (r−σ2/2)/2. The optimal drift according to the Gua-

soni/Robertson criteria is linear

θ̂t = α̂ (T − t)

where α̂ is the unique solution to

aα̂T 3 + 3 log

(
α̂− a

cα̂

)
= 0

In order to determine the entropy-minimizing drift we need only calculate

E

[
Wt

∣∣∣∣∫ T

0

Wtdt >
log c

a

]
which is straightforward, and leads to a drift which is also linear

θ̃t = α̃ (T − t)

where

α̃ =

√
3

T 3
·
φ
(
−K̃

)
Φ
(
−K̃

) K̃ =

√
3

T 3

log c

a

Figure 5.1 plots the values of α̃ and α̂ for various strike prices and maturities. In

most cases these two parameters are indistinguishable. We are quite excited about

the possibilities here, as this example illustrates that the entropy method performs

quite well. Though an explicit determination of the optimal drift is not necessarily

easy outside of special cases, the fact that it is expressed as an expectation leads us

to believe that “preliminary simulations” may be useful in identifying drifts close

to the optimal solution. In turn, this might provide a much more practical method

than one involving difficult variational problems. As a final note we mention that

applications of this method would not be limited to financial mathematics, indeed

we believe it could be useful in many problems involving rare events of diffusion

processes.
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Figure 5.1: Guasoni’s Parameter vs. Entropy Parameter
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Appendix A

Liquid Credit Derivatives

Credit derivatives are traded in over-the-counter markets, and the specifics of each

contract can vary widely between deals. Two of the most popular credit derivatives

are credit default swaps (CDS) and CDS index tranches. These are among the

most liquid due to their high degree of standardization.

For a good introduction to the world of credit derivatives, extending far beyond

the basic products mentioned here, the reader is referred to Banks et al. [10]. Hull

and White [73] provides an excellent introductions to single-name default swaps

and their valuation. Finally, for an excellent description of CDS indices and index

tranches the reader is referred to D’Amato and Gyntelberg [36]. Here we provide a

brief discussion of default swaps and index tranches and present simple valuation

formulae.

Roughly speaking a CDS is contract which provides insurance against losses

suffered as a result of corporate defaults. There is an incredible variety among

contracts which fall under this name, the simplest being a single-name CDS. The

following description of such a contract is taken from D’Amato and Gyntelberg [36]

A single-name CDS contract is an insurance contract covering the risk

that a specified credit defaults. Following a defined credit event, the

protection buyer receives a payment from the protection seller to com-

pensate for credit losses. In return, the protection buyer pays a premium

to the protection seller over the life of the contract.

The compensation payments and premium payments are typically referred to as

the default leg and protection leg of the contract, respectively.
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As an example the reference credit might be $1 million worth of General Motors

bonds, and the contract might last for five years with quarterly payments. The

protection payments are typically quoted as a “spread,” which is agreed upon by

the parties at the inception of the contract and stated as an annual simple interest

rate. If the spread in our example were set at 6%, this would correspond to quarterly

payments of $15,000. Should GM “survive” the five year life of the contract, the

buyer would be required to make this payment at each of the 20 payment dates.

Should GM default on its bonds at any time over the life of the contract, the

seller would make a lump-sum payment to reimburse the buyer for the resulting

losses. If the post-default value of GM’s bonds were forty cents per dollar principal

(corresponding to a recovery rate of 40%), then the seller would pay the buyer

$600,000 and the buyer would not be obligated to make future premium payments.

This reimbursement would be made at the time of default, and the buyer would

need to make a final “accrual” payment at this time to account for the fact that she

was “protected” between the most recent payment date and the time of default. If

GM defaulted two months after the third payment date, the buyer would owe an

additional (in addition to the three previous premium payments) amount of $10,000

at the time of default (one-sixth of a year at 6% simple interest).

Valuation of single-name CDS contracts is quite similar to valuation of futures

contracts. The present value of the contract from the buyer’s perspective is the

difference between the present value of the default leg and the present value of

the protection leg. The present value from the seller’s perspective is simply the

negative of the present value from the buyer’s perspective. The contract is “fair”

if the expected present values (under the risk-neutral measure) to both parties are

equal, which occurs if and only if they are each equal to zero. The “fair spread”

is that which equates the expected present values of each leg. Hull and White

[73] show that this spread approximately eliminates arbitrage opportunities, and

provide a “non-parametric” valuation method using prices of the reference credit

and Treasury bonds. O’Kane and Turnbull [93] provide a good discussion of how

CDS valuation is typically carried out in practice.

Ignoring the final accrual payment and assuming a constant risk-free interest

rate r, we can express the present value of the protection leg in a single-name CDS

on $1 notional as
N∑

i=1

s∆e−rtiI (τ ≥ ti)

where s is the spread, ∆ is the length of time between two payment dates, ti = i∆
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is the ith payment date and τ is the default time. Letting

τ ∗ = ∆
⌊ τ
∆

⌋
denote the payment date immediately preceding default (here bxc is the integer

part of x), we can write the present value of the final accrual payment as

s(τ − τ ∗)e−rτI (τ ≤ T )

The expected present value of the “protection leg” is therefore

sE
[
(τ − τ ∗)e−rτI (τ ≤ T )

]
+ s∆

N∑
i=1

e−rtiP (τ ≥ ti)

The present value of the “default leg” in the contract is simply

(1−R)e−rτI (τ ≤ T ) = (1−R)
N∑

i=1

e−rτI (ti−1 < τ ≤ ti)

If we assume that the recovery rate is constant the expected value of the default

leg is simply

(1−R)E
[
e−rτI (τ ≤ T )

]
= (1−R)

N∑
i=1

E
[
e−rτI (ti−1 < τ ≤ ti)

]
Therefore the fair spread on the contract (which is independent of the notional) is

given by

s =
(1−R)E [e−rτI (τ ≤ T )]

E [(τ − τ ∗)e−rτI (τ ≤ T )] + ∆
∑N

i=1 e
−rtiP (τ ≥ ti)

(A.1)

If τ is a discrete random variable taking on values in {∆, 2∆, . . . , } with pi =

P (τ = i∆), then (A.1) reduces considerably to

s =
(1−R)

∑N
i=1 pie

−rti

∆
∑N

i=1 qie
−rti

(A.2)

where qi = P (τ ≥ i∆). In the more general case where τ could be continuous (or

discrete with a different support), O’Kane and Turnbull [93] show that equation

(A.2) with pi = P (ti−1 < τ ≤ ti) often provides a fast and accurate approximation

to (A.1).

There are many variations of the single-name CDS. These include multi-name

versions, often referred to as basket default swaps, an example of which would be

a kth-to-default swap. In such a contract reimbursement from the seller is only
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made after the kth default in a portfolio of n reference credits take place. No

reimbursement is made for the first (k − 1) defaults. A general expression for the

fair spread in this situation, assuming constant recovery rates, would be

s =
E
[
(1−R(k))D(k)e

−rτ(k)I
(
τ(k) ≤ T

)]
E
[
(τ(k) − τ ∗(k))e

−rτ(k)I
(
τ(k) ≤ T

)]
+D∆

∑N
i=1 e

−rtiP
(
τ(k) ≥ ti

)
where Di and Ri are the notional principal and recovery rate on the ith credit,

D =
∑N

i=1Di is the total notional. Here τ(k) denotes the kth order statistic of the

default times, and D(k) and R(k) denote the notional principal and recovery rate of

the kth firm to default (not the kth largest values of the Di and Ri). This simplifies

significantly if principals and recovery rates are constant across the reference credits,

although one would still require the marginal distribution of the order statistic. The

significant difference between basket default swaps and single-name swaps is that,

in general, the distribution of the kth order statistic will depend on the entire joint

distribution of the default times. We note in passing that Brasch [22] shows how

a kth-to-default basket swap can be exactly replicated with first-to-default swaps

on various sub-baskets. This means that pricing a kth-to-default swap is possible

if one only knows the distribution of the first order statistic for each sub-portfolio.

Unfortunately the number of first-to-default swaps needed can grow quite rapidly

with k and n, although in the homogeneous case only k − 1 “sub-valuations” are

required.

At the present time the market for single-name default swaps is quite liquid,

indeed D’Amato and Gyntelberg [36] comment that these contracts are more liq-

uid than most corporate bonds. As these markets have developed several indices

have been introduced to track spreads on large portfolios of investment grade cor-

porations. In particular Dow Jones has introduced the CDX and iTraxx series,

which report average spreads on portfolios of 125 investment grade US and Euro-

pean corporations, respectively. Indices are available for various maturities, as well

as various sub-portfolios such as financials or industrials. The composition of the

underlying portfolios is updated semi-annually and is determined by dealers.

There is also a liquid market for standardized basket default swaps on these

indices, referred to as CDS index contracts. With these products the seller of

protection reimburses the buyer for each default in the index, and each time a

default occurs the buyer’s premium payments are reduced (the buyer pays the

same spread, but on a reduced principal). Each firm is equally weighted, in the

sense that the notional principals are equal. See D’Amato and Gyntelberg [36] for

a good description of the indices and index contracts.
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We conclude this section with a brief discussion of collateralized debt obligations

(CDO) and CDS index tranches. The reader is referred to Banks et al. [10] for a

comprehensive treatment. In a CDO an underlying portfolio of assets is defined,

along with several “tranches.” Each tranche is defined by two percentages: an

attachment point (KA) and a detachment point (KD), for example 3% and 7%.

The buyer of protection in this tranche is not reimbursed for any defaults until

cumulative losses on the portfolio have reached 3% of the original notional principal.

Once cumulative losses have hit this attachment point, the buyer is reimbursed for

all defaults until cumulative losses have reached 7%. Once cumulative losses exceed

the detachment point the buyer on this tranche is not reimbursed for any future

losses. In return for this protection the buyer makes regular payments to the seller.

As with default swaps, these payments are typically referred to as the “tranche

spread,” and quoted as a simple annual rate. In our example the buyer is initially

covered for an amount equal 4% of the total notional, and until the attachment

point is hit the spread is assessed on this amount. As defaults occur which are

absorbed by this tranche, the amount to which the spread is applied decreases by

amounts equal to each loss.

The key concepts in CDO valuation are “tranche losses” and “tranche princi-

pal.” With NP denoting the original notional principal on the portfolio, consider

a tranche with attachment point KA and detachment point KD. As the buyer of

protection on this tranche is insured up to a maximum of NP (KD −KA), we call

this the “initial tranche” principal. Now with L(t) denoting the total cumulative

losses on the portfolio up to time t, the “cumulative tranche loss” is defined as

0 if L(t) < NP ·KA

L(t)−NP ·KA if NP ·KA < L(t) < NP ·KD

NP (KD −KA) if L(t) > NP ·KD

The original amount to which the tranche spread is applied is NP (KD −KA)(this

the amount for which the buyer of protection is insured). Each time the tranche

absorbs a loss, this amount is reduced by the amount of that loss. Therefore at any

time t, the amount for which the buyer is insured is given by

NP (KD −KA) if L(t) < NP ·KA

KD − L(t) if NP ·KA < L(t) < NP ·KD

0 if L(t) > NP ·KD

We call this the “tranche notional” and note the outstanding tranche principal at

any time is simply the initial amount for which the buyer is covered, less the value

of any reimbursements paid out.
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The fair spread for a CDO tranche is determined in the same way as a default

swap, namely it is the spread which equates the present values of the default and

protection legs. As with default swaps, accrual payments are due at each default

time in addition to the regular quarterly payments. For example, suppose that as

of the third payment date the tranche principal is $4 million, and that the tranche

absorbs a $500,000 loss one month after this date. The buyer was insured for this

$500,000 for a one-month period and if the tranche spread is 12% a payment of

$5,000 would be due at the time of the loss. Should no more losses be absorbed by

the tranche by the next payment date, an amount of $105,000 would be due on the

next payment date. This is because the buyer was insured for the $3.5 million of

“undefaulted tranche principal” for the full three-month period. Including accrual

payments in an expression for the present value of protection payments can entail

significant complications as one must not only keep track of the tranche principal

at payment dates, but default times as well.

To simplify evaluation of the fair spread it is quite common to ignore accrual

payments and assume the following simplified payment structure (see [27]). At each

payment date ti, the spread is assessed on the simple average of the outstanding

tranche principal over [ti−1, ti]. Thus we would simply taken the beginning and

end-of-period tranche principals and apply the spread to their average value. In

addition it is also common to assume default reimbursements are made only on the

payment dates, with no accounting for the timing of defaults within an interval.

While the specific features of CDOs can vary widely from deal to deal, there

is a very liquid market for “CDS index tranches.” These standardized contracts

are essentially CDOs on an equally-weighted portfolio of default swaps. The names

in the portfolio are the companies in the CDX and iTraxx indices. For the CDX

investment grade index the available tranches are 0-3%, 3-7%, 7-10%, 10-15% and

15-30%. For the iTraxx investment grade index the available tranches are 0-3%,

3-6%, 6-9%, 9-12% and 12-22%.

A.1 Valuation of CDO tranches

Consider a portfolio of N names, with nominal exposures Ei and recovery rates Ri.

The cumulative percentage loss on the portfolio up to time t is given by

LN(t) =
N∑

i=1

wi(1−Ri)I (τi ≤ t)
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where wi = Ei/
∑N

i=1Ei. When valuing tranches of CDOs written on this portfolio,

we may assume without loss of generality that the total notional is one dollar, that

is
∑N

i=1Ei = 1. For a tranche with attachment and detachment points KA and KD,

respectively, the cumulative loss experienced by the tranche up to time t is given

by

f (LN(t), KA, KD) = max [0,min (LN(t), KD)−KA] (A.3)

Similarly, the outstanding tranche principal as of time t is given by

g (LN(t), KA, KD) = max [0, KD −max (LN(t), KA)] (A.4)

and we note that

g (LN(t), KA, KD) = (KD −KA)− f (LN(t), KA, KD)

Suppose that our tranche is initiated today and has a maturity of T years with N

equally-spaced payment dates ti = i∆. Here ∆ = T/N is the length of time between

payment dates. As mentioned in the previous section, a common assumption when

valuing tranches is to assume that all losses are reimbursed at the payment dates.

With this assumption the present value of the default leg (i.e. the present value of

cash flows received by the buyer of protection on this tranche) is given by

PV (Default) =
N∑

i=1

e−
R ti
0 r(s)ds [f (LN(ti))− f (LN(ti−1))] (A.5)

where we have suppressed the dependence of f on KA and KD, and where r(t) is

the risk-free interest rate. A further simplifying assumption commonly made when

valuing tranches is to ignore accruals in protection payments. Assuming the spread

on the tranche is S and the protection payment due at ti is based on the (simple)

average outstanding principal over [ti−1, ti] we obtain that the present value of the

protection leg (i.e. the present value of cash flows received by the seller of protection

on this tranche) is given by

PV (Prot) =
N∑

i=1

e−
R ti
0 r(s)ds (S∆)

g (LN(ti)) + g (LN(ti−1))

2
(A.6)

The fair spread is then taken to be that value of S which equates the expected

present values (under the risk-neutral pricing measure) of the default and protection

legs. The formula for the fair spread, say Ŝ, is then given by

Ŝ =

∑N
i=1E

[
e−

R ti
0 r(s)ds [f (LN(ti))− f (LN(ti−1))]

]
∆
∑N

i=1E
[
e−

R ti
0 r(s)ds [g (LN(ti)) + g (LN(ti−1))]

]
/2
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As a final note, we point out that for the investment grade CDX and iTraxx

tranches, there is a slightly different payment structure for the equity tranches

(i.e. tranches with an attachment point of 0%). For these tranches the running

spread is typically fixed at 500 basis points, and parties to the contract negotiate an

upfront fee which is paid at inception. This fee is expressed as a percentage (quoted

either in basis or percentage points) of the initial tranche notional, in which case

the present value of the protection leg becomes

PV (Prot) = SKD +
N∑

i=1

e−
R ti
0 r(s)ds (.05∆)

g (LN(ti)) + g (LN(ti−1))

2
(A.7)

and the fair spread is given by

Ŝ =
E [PV D]− .05E [PV P ]

KD

where

PV D =
N∑

i=1

e−
R ti
0 r(s)ds [f (LN(ti))− f (LN(ti−1))]

PV P = ∆
N∑

i=1

E
[
e−

R ti
0 r(s)ds [g (LN(ti)) + g (LN(ti−1))]

]
/2

In order to evaluate tranche spreads, one need only compute the expectations

E [f (LN(ti))] for each payment date. When using Monte Carlo one may simu-

late trajectories for portfolio losses, compute the present value of each leg for each

trajectory, and approximate the fair spread by the ratio of their averages.
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Appendix B

Appendix to Chapter 2

B.1 Transformation Details

In this section we carry out the details of the transformation in Section 2.1. As

mentioned in that section, the overall transformation is best understood as the

composition of the following three individual transformations

1. The linear transformation

U(t) =

[
1√
1−ρ2

− ρ√
1−ρ2

0 1

]
W (t)

It is easy to verify that U(t) is a standard planar Brownian motion started

at the origin. In addition, the vertical line at w1 = a1 becomes the line

u2 =
a1

ρ
−
√

1− ρ2

ρ
u1

and the horizontal line at w2 = a2 becomes the horizontal line at u2 = a2.

Note that these lines intersect at the point

(u1, u2) =

(
a1 − ρa2√

1− ρ2
, a2

)

Note also that if ρ = 0 this step is not carried out.

2. The translation

V (t) = U(t)−

[
a1−ρa2√

1−ρ2

a2

]
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V (t) is a standard planar Brownian motion started at(
ρa2 − a1√

1− ρ2
,−a2

)
The line

u2 =
a1

ρ
−
√

1− ρ2

ρ
u1

becomes the line

v2 = −
√

1− ρ2

ρ
v1

while the horizontal line u2 = a2 becomes the horizontal axis v2 = 0. It is

worthwhile to note that the polar co-ordinates of the starting point are given

by

r
′
0 =

√
a2
1+a2

2−2ρa1a2

1−ρ2

θ
′
0 =


tan−1

(
a2

√
1−ρ2

a1−ρa2

)
a1 < ρa2

π + tan−1

(
a2

√
1−ρ2

a1−ρa2

)
a1 ≥ ρa2

3. The rotation by the angle π

Z(t) =

[
−1 0

0 −1

]
V (t)

Due to the rotational invariance of Brownian motion, Z(t) is a standard planar

Brownian motion. The line

v2 = −
√

1− ρ2

ρ
v1

becomes the (same) line

z2 = −
√

1− ρ2

ρ
z1

B.2 Correcting to Iyengar’s Formula for P (τ > t) .

In this section we will need the following results concerning Bessel functions, which

are available in Abramowitz and Stegun [2]

2I ′ν(z) = Iν−1(z) + Iν+1(z) (B.1)∫ ∞

0

e−βt2Iν(αt)dt =
1

2

√
π

β
exp

(
α2

8β

)
Iν/2

(
α2

8β

)
(B.2)
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We now derive Equation (2.3) from Equation (2.2). Equation (2.2) can be written

P z0 (τ > t, Z(t) ∈ dz) =
2

tα
e−r2

0/2t

∞∑
n=0

sin
nπθ0

α
gn(r, θ)drdθ

where, for given values of t, α, r0 we define

gn(r, θ) = re−r2/2t sin
nπθ

α
Inπ/α

(rr0
t

)
The distribution of τ is obtained by integrating (2.2) over r and θ (recall that

z = (r cos θ, r sin θ))

P z0 (τ > t) =

∫ ∞

0

∫ α

0

P z0 (τ > t, Z(t) ∈ dz) dθdr

=
2

tα
e−r2

0/2t

∞∑
n=0

sin
nπθ0

α

∫ ∞

0

∫ α

0

gn(r, θ)dθdr

Since ∫ α

0

sin
nπθ

α
dθ =

{
0 n even
2α
nπ

n odd

we obtain

P z0 (τ > t) =
4

πt
e−r2

0/2t

∞∑
n odd

1

n
sin

nπθ0

α

∫ ∞

0

re−r2/2tInπ/α

(rr0
t

)
dr

Using integration by parts and identities (B.1) and (B.2) we find that for ν 6= 0∫ ∞

0

re−r2/2tIν

(rr0
t

)
dr =

r0
√

2πt

4
exp

(
r2
0

4t

)[
I(ν+1)/2

(
r2
0

4t

)
+ I(ν−1)/2

(
r2
0

4t

)]
Therefore

P z0 (τ > t) =
2r0√
2πt

e−r2
0/4t

∞∑
n odd

1

n
sin

(
nπθ0

α

)[
I(νn−1)/2(r

2
0/4t) + I(νn+1)/2(r

2
0/4t)

]
where νn = nπ/α.

B.3 Inverse Transform for Exit Location

In this section we derive inverses for the functions

F (r) = 1 +
1

π − 2θ0

[
tan−1

(
r − x0

y0

)
− tan−1

(
r + x0

y0

)]
G(r) = 1 +

1

2θ0

[
tan−1

(
r − y0

x0

)
− tan−1

(
r + y0

x0

)]
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where 0 < θ0 < π/2 and r0 > 0 are the polar co-ordinates of the point (x0, y0).

Note that this implies x0, y0 > 0.

For a given b > 0 it is straightforward to verify that

tan−1(a)− tan−1(b) =


tan−1

(
a−b
1+ab

)
− π a < −1

b

−π
2

a = −1
b

tan−1
(

a−b
1+ab

)
a > −1

b

Therefore the equation u = F (r) (which, for a given value of u has a unique solution

in r) can be re-arranged as follows

(u− 1)(π − 2θ0) =

 tan−1
(

− sin(2θ0)
(r/r0)2−cos(2θ0)

)
− π r2 < r2

0 cos 2θ0

tan−1
(

− sin(2θ0)
(r/r0)2−cos(2θ0)

)
r2 < r2

0 cos 2θ0

so that

tan ((u− 1)(π − 2θ0)) =
− sin 2θ0

(r/r0)2 − cos 2θ0

Re-arranging we obtain

F−1(u) = r0

√
cos(2θ0)−

sin(2θ0)

tan ((π − 2θ0)(u− 1))

An analogous argument can be used to show that

G−1(u) = r0

√
− cos(2θ0)−

sin(2θ0)

tan ((2θ0)(u− 1))

B.4 Derivation of the Joint Density of (τ1, τ2)

To begin note that for s < t we have

P z0 (τ1 ∈ ds, τ2 ∈ dt) = P z0 (τ1 ∈ ds, τ2 ∈ dt)
= P z0 (τ ∈ ds, τ ′ ∈ dt, Θ(τ) = α)

= P z0 (τ ∈ ds, (τ ′ − τ) ∈ d(t− s),Θ(τ) = α)

And so the probability in question can be obtained by integrating (with respect to

r)

P z0 (τ ∈ ds, (τ ′ − τ) ∈ d(t− s),Θ(τ) = α, R(τ) ∈ dr)

This integrand can be re-written as the product

P z0 ((τ ′ − τ) ∈ d(t− s)|R(τ) ∈ dr)P z0 (τ ∈ ds, Θ(τ) = α, R(τ) ∈ dr)
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In Section 2.1.3 it was shown that the first term here is the inverse Gaussian density

P z0 (τ ′ − τ ∈ d(t− s)|R(τ) ∈ dr) =
r sinα√

2π(t− s)3/2
exp

(
−r

2 sin2 α

2(t− s)

)
while in Section 2.1.2 we saw that the second term is given by

P z0 (τ ∈ ds, R(τ) ∈ dr, Θ(τ) = α) =
πe−(r2+r2

0)/2s

α2sr

∞∑
n=1

gn (r0, α− θ0, α, r, s) dr ds

where gn is given by (2.10). Multiplying these two terms and re-arranging we obtain

π sinα√
2πα2s(t− s)3/2

e−r2
0/2s

∞∑
n=1

n sin(nπ(α− θ0)/α)e−βr2

Inπ/α(rr0/s) (B.3)

where

β =
t− s cos2 α

2s(t− s)

Using identity (B.2) we find (after a significant amount of simplification)∫ ∞

0

e−βr2

Inπ/α(rr0/s)dr =

√
π

2

√
s(t− s)

t− s cos2 α

× exp

(
r2
0

2s

(t− s)

(t− s) + (t− s cos 2α)

)
×Inπ/2α

(
r2
0

2s

(t− s)

(t− s) + (t− s cos 2α)

)
Integrating (B.3) and inserting this expression we get, after a tremendous amount

of simplification, that for s < t the probability P z0 (τ1 ∈ ds, τ2 ∈ dt) is given by

π sinα

2α2
√
s(t− s)

√
t− s cos2 α

exp

(
− r

2
0

2s

t− s cos 2α

(t− s) + (t− s cos 2α)

)
×

∞∑
n=1

n sin

(
nπ(α− θ0)

α

)
Inπ/2α

(
r2
0

2s

t− s

(t− s) + (t− s cos 2α)

)
Now, to see that this explodes as s↗ t we first note that

1
t− s

Inπ/2α

(
r20
2s

t− s

(t− s) + (t− s cos 2α)

)
∼ kn [(t− s) + (t− s cos 2α)]−nπ/2α (t− s)

nπ
2α
−1

where kn is a constant depending on n. Thus bringing the term 1/(t − s) inside

the series we see that for π
2
< α < π, the leading term explodes as s↗ t while the

rest of the terms tend to zero.
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To derive the joint density for s > t we must integrate the product of the terms

P z0 (τ ∈ dt, R(τ) ∈ dr, Θ(τ) = 0) =
πe−(r2+r2

0)/2t

α2tr

∞∑
n=1

g (r0, θ0, α, r, s)

P z0 (τ ′ − τ ∈ d(s− t)|R(τ) ∈ dr) =
r sinα√

2π(s− t)3/2
exp

(
−r

2 sin2 α

2(s− t)

)
Following the same steps we obtain that for s > t the probability

P z0 (τ1 ∈ ds, τ2 ∈ dt)

is given by

π sinα

2α2
√
t(s− t)

√
s− t cos2 α

exp

(
−r

2
0

2t

s− t cos 2α

(s− t) + (s− t cos 2α)

)
×

∞∑
n=1

n sin

(
nπθ0

α

)
Inπ/2α

(
r2
0

2t

s− t

(s− t) + (s− t cos 2α)

)
These are the equations presented in the main body of the thesis.
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Appendix C

The Laplace and log-Laplace

Distributions

In this appendix we discuss the Laplace distribution, which is a three-parameter

family with several pleasing features, including heavy tails, infinite divisibility and

asymmetry. We also discuss the related log-Laplace, which also has pleasing fea-

tures such as power tails at both zero and infinity. In addition we discuss the

construction of ergodic diffusion processes possessing the Laplace and log-Laplace

as their invariant densities.

The Laplace Distribution

A random variable X is said to have a Laplace distribution if it has a probability

density function of the form

f(x) =


[β1 + β2]

−1 e(x−α)/β2 −∞ < x ≤ α

[β1 + β2]
−1 e(α−x)/β1 α ≤ x <∞

(C.1)

This is a three-parameter family with a location parameter α ∈ R and scale-type

parameters β1, β2 > 0. Figure C.1 plots a typical member of this family.

The Laplace density obtains as the density of the random variable X = α +

β1Z1 − β2Z2, where Z1 and Z2 are independent unit-mean exponential variates.

Infinite divisibility is immediate from this representation, as is the fact that the

mean of (C.1) is α + β1 − β2. Several studies have found the Laplace to be quite

capable of describing financial quantities such as log-changes in interest rates (see
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Figure C.1: A Laplace Density
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[82]). A more compact parametrization of (C.1) is given by

f(x) =
σ2 − κ2

2σ
exp (κ(x− α)− σ |x− α|)

where

σ =
1

2

β1 + β2

β1β2

κ =
1

2

β1 − β2

β1β2

A comprehensive treatment of this and related distributions is available in Kotz et

al. [82].

The moment generating function for (C.1) is given by

m (u) = E [exp (uX)] =
euα

(1− uβ1) (1 + uβ2)
− 1

β2

< u <
1

β1

(C.2)

which will be important when discussing moments of the log-Laplace distribution.
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Figure C.2: Log-Laplace Densities
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The log-Laplace Distribution

If X has Laplace density (C.1), the distribution of Y = eX is called the log-Laplace

and is easily seen to have density

g(y) =


[β1 + β2]

−1 e−α/β2y(1−β2)/β2 0 < y ≤ eα

[β1 + β2]
−1 eα/β1y−(1+β1)/β1 y ≥ eα

(C.3)

Figure C.2 illustrates the wide variety of shapes that are possible within this family.

Interesting features of the log-Laplace distribution are that it has power tails

at both zero and infinity, in particular it has heavier right-hand tails than the

gamma distribution. In addition this family is clearly invariant to scaling and

exponentiation.

Existence of the moments of (C.3) is governed solely by the parameter β1. Re-

calling (C.2) we see that for integer k, E
[
Y k
]
< ∞ if and only if k < β−1

1 . In

particular (C.3) has finite mean provided β1 < 1 and finite variance when β1 < 1/2.
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When it exists the mean of (C.3) is given by

eα

(1− β1)(1 + β2)

which obtains easily using (C.2). As a final note we point out that (C.3) is bounded

provided β2 ≤ 1.

Constructing Ergodic Laplace Diffusion Processes

Our goal in this section is to construct an ergodic diffusion process Xt possessing

(C.1) as its invariant density. Our main tool will be the results of the Bibby et al.

[17], which we outline here.

Suppose that f is a probability density which is continuous, bounded, strictly

positive on the interval (l, u) and zero outside (l, u). Here −∞ ≤ l < u ≤ ∞ and

we require f to have a finite mean µ. For a given θ > 0 define the function

σ2(x) :=
2θ
∫ x

l
(µ− z) f(z)dz

f(x)
(C.4)

The domain of σ is taken as (l, u). Bibby et al. [17] consider the stochastic differ-

ential equation

dXt = θ (µ−Xt) dt+ σ (Xt) dWt (C.5)

and show that (C.5) has a unique weak solution with invariant density f . Clearly,

if X0 ∼ f then Xt is stationary as well.

The Laplace density (C.1) satisfies the conditions required for this result, and

it is straightforward to verify that in this case µ = α+ β1 − β2 and

σ2(x) =

{
2θβ2 [β1 + α− x] x ≤ α

2θβ1 [β2 + x− α] x > α
(C.6)

When simulating large numbers of trajectories for such a process using an Euler-

type scheme one would need, at each time step, to identify which values of Xti are

above and below α. The time required for such a computation, though quite simple,

can significantly slow down the simulation process. In order to eliminate the need

to identify those sample paths for which Xti > α, say, it is useful to re-express (C.6)

as follows

σ2(x) =
2θ

σ2 − κ2
[1 + σ |x− α|+ κ (x− α)]

where

σ =
1

2

β1 + β2

β1β2

κ =
1

2

β1 − β2

β1β2
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Constructing Ergodic log-Laplace Diffusion Processes

For the Laplace distribution one can construct an ergodic diffusion with (C.1) as

its invariant density for all values of the parameters. The same cannot be said of

the log-Laplace density (C.3). In order that a log-Laplace density have finite mean

we require β1 < 1, and in order that such a density be bounded we require β2 < 1.

Using the results from Bibby et al. [17] discussed in the previous section, and

with f given by (C.3) with max(β1, β2) < 1 we have that for θ > 0 the process

dXt = θ (µ−Xt) dt+ σ (Xt) dWt

has f as its invariant density, where µ = eα/ (1− β1) (1 + β2) and

σ2(x) =

 2θβ2x
[
µ− x

1+β2

]
0 ≤ x ≤ eα

2θβ1x
[

x
1−β1

− µ
]

x ≥ eα
(C.7)

This can be expressed in the more compact form

σ2(x) = 2θx [σ (x− eα) + κ |x− eα|+ µβ1β2]

where we have re-defined µ and σ via

σ =
β1 + 2β1β2 − β2

2 (1− β1) (1 + β2)

κ =
β1 + β2

2 (1− β1) (1 + β2)
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Appendix D

Optimal Importance Sampling for

Ratios

In this appendix we discuss optimal importance sampling for ratio estimators. More

specifically, suppose that X is a d-dimensional random vector with density function

f and consider the problem of estimating, via simulation, the ratio

E [h1 (X)]

E [h2 (X)]
(D.1)

where h1, h2 are real-valued functions defined on Rd such that hi (X) has non-

zero first moment and finite second moment. A crude estimation procedure would

simulate independent copies of X, say Xi, from the density f and approximate

(D.1) via
1
n

∑n
i=1 h1 (Xi)

1
n

∑n
i=1 h2 (Xi)

=

∑n
i=1 h1 (Xi)∑n
i=1 h2 (Xi)

In order to enhance the efficiency of such a procedure one might consider an im-

portance sampling scheme which simulates Xi from an alternative density g and

estimate (D.1) via ∑n
i=1 h1 (Xi)

f(Xi)
g(Xi)∑n

i=1 h2 (Xi)
f(Xi)
g(Xi)

(D.2)

An optimal importance density ĝ will minimize the variance of (D.2), that is

ĝ = arg min Varg

(∑n
i=1 h1 (Xi)

f(Xi)
g(Xi)∑n

i=1 h2 (Xi)
f(Xi)
g(Xi)

)

where Varg denotes variance when Xi has density g and the minimum is taken over

all densities g which have the same support as f .
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An approximation to ĝ, say g̃, may be obtained as follows. To begin, it can

be shown (indeed we will demonstrate this shortly) that for sufficiently large n we

have

Varg

(∑n
i=1 h1 (Xi)

f(Xi)
g(Xi)∑n

i=1 h2 (Xi)
f(Xi)
g(Xi)

)
≈ 1

n

(
µ1

µ2

)2

Varg

(
f (X)

g (X)
h (X)

)
(D.3)

where

h (x) =
h1 (x)

µ1

− h2 (x)

µ2

(D.4)

and µi = Ef [hi (X)]. Thus a reasonable approximation to ĝ is given by

g̃ = arg min Varg

(
f (X)

g (X)
h (X)

)
Now, since

Eg

[
f (X)

g (X)
h (X)

]
= Ef [h (X)] = 0

we may use Jensen’s inequality to obtain

Varg

(
f (X)

g (X)
h (X)

)
= Eg

[(
f (X)

g (X)
h (X)

)2
]

= Eg

[(
f (X)

g (X)
|h (X)|

)2
]

≥
(
Eg

[
f (X)

g (X)
|h (X)|

])2

= (Ef [|h (X)|])2

and since this lower bound is obtained by the following density, we see that g̃ is

given by

g̃ (x) =
f(x) |h (x)|
Ef [|h (X)|]

(D.5)

The crucial step in this development was the approximation (D.3). To see

the validity of this approximation we note that if X and Y are random variables

with finite second moments and E [Y ] 6= 0, then (see Crámer [35]) the limiting

distribution, as n→∞, of

√
n

(∑n
i=1Xi∑n
i=1 Yi

− µX

µY

)
is normal with mean zero and variance(

1

µY

)2
[
σ2

X − 2
µX

µY

σXσY ρ+

(
µX

µY

σY

)2
]

(D.6)
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Here (Xi, Yi) are independent copies of (X, Y ), µX and σX denote the mean and

variance ofX, µY and σY denote the mean and variance of Y , and ρ is the correlation

between X and Y . Noting that (D.6) is equal to(
µX

µY

)2

Var

(
X

µX

− Y

µY

)
it follows that for sufficiently large n we have

Var

(∑n
i=1Xi∑n
i=1 Yi

)
≈ 1

n

(
µX

µY

)2

Var

(
X

µX

− Y

µY

)
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