Mathematical Modeling of Free-radical Six-component Bulk and Solution Polymerization

by

Woosung Jung

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science in
Chemical Engineering
Waterloo, Ontario, Canada, 2008

©Woosung Jung 2008

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Woosung Jung

Abstract

The purpose of this project is to reexamine established free-radical polymerization theories and build a mechanistic reactor model for multi-component (up to six monomers) bulk and solution polymerizations under batch/semi-batch reactor configurations. The six-monomer system of interest is: Styrene (Sty), n-Butyl acrylate (BA), Butyl methacrylate (BMA), Hydroxyethyl acrylate (HEA), Hydroxybutyl acrylate (HBA), and Acrylic acid (AA). In order to develop a flexible, comprehensive, and user-friendly model, not only a physical/kinetic database of individual monomers and ingredients such as solvents, initiators, and chain transfer agents, but also a co-polymer database of reactivity ratios, and glass transition temperatures were built and combined with the modeling steps. Through an extensive literature search for polymerization models and kinetics, the simulation model was developed in a general way to cover the range from homo- to hexa-polymerization at both regular and elevated temperature levels, and explain various polymerization kinetics and characteristics.

Model testing was conducted with experimental data as much as possible to check the model's reliability. Due to limited experimental data for higher multi-component polymerizations, the simulation model was tested with homo-polymerizations and other available cases of combinations of two to four monomers. Very reasonable agreement was found between model predictions and experimental data on rate of polymerization, molecular weight, polymer composition, sequence length, etc. through the entire conversion.

This multi-component modeling study continuously requires experimental checkups and parameter fine-tuning for better predictions. Further literature search or experimental studies still remain necessary for the hydroxyalkyl acrylate kinetic database and model testing of the depropagation feature. Sensitivity analysis also could be performed to locate critical parameters. This model should find use in industry for analyzing and optimizing reactor conditions as well as in the academic field as a research and educational tool.

Acknowledgements

I have reached another milestone in my life. The last two years will be remembered as one of the most important moments to me: full of tough, exciting, and precious experiences... Thank God!

Space is too limited to thank all the people in my mind. First of all, I gratefully express deep appreciation to my gentle supervisors, professors Duever and Penlidis, who have shown their kind and invaluable interaction, support, and advice for my academic success and personal life as well. I also acknowledge IPR and PSE members for their help, and BASF SE for funding and constant interest in my project.

Many thanks to my dearest guys, Heon Park, Jurngu Song, Sangman Hwang, Sejin Kim, Jinsung Choi, and Hwangyong Shim. I will never forget our great time of friendship.

I would like to thank my brilliant lab mate, Ian D. Washington for sharing hard times to overcome the difficulties.

Finally, I most deeply acknowledge my mother and father, and families-in-law for their unceasing encouragement, support, patience, and prayers. Without them, everything would have been impossible and meaningless.

Dedication

To my wife Jungeun and my son Joonho... I love you.

Table of Contents

List of Figures ix
List of Tables xix
Chapter 1 Introduction 1
1.1 Objectives1
1.2 Outline. 3
Chapter 2 Brief Polymerization Background and Literature Review 5
2.1 Kinetics of free-radical multi-component polymerization 5
2.1.1 Initiation 6
2.1.2 Thermal initiation by monomer (Diels-Alder mechanism) 6
2.1.3 Propagation 7
2.1.4 Termination 7
2.1.5 Transfer to monomer 8
2.1.6 Transfer to solvent 8
2.1.7 Transfer to chain transfer agent (CTA) 9
2.1.8 Transfer to impurity (retarder/inhibitor) 9
2.1.9 Transfer to polymer (long chain branching) 9
2.1.10 Terminal double bond polymerization (long chain branching) 10
2.1.11 Internal double bond polymerization (crosslinking) 10
2.2 Assumptions used in the simulation model 11
2.3 Literature review 11
2.3.1 Tetra-polymerization 12
2.3.2 Ter-polymerization 12
2.3.3 Co-polymerization 14
2.3.4 Homo-polymerization 23
Chapter 3 Model Development 28
3.1 Model development in a batch/semi-batch reactor 28
3.1.1 Monomer and Radical balances 28
3.1.2 Reaction volume 30
3.1.3 Polymer balances 31
3.1.4 Additional ingredient balances 31
3.2 Calculated Outputs: Part A 32
3.2.1 Total/partial molar conversions 32
3.2.2 Instantaneous/accumulated polymer composition 32
3.2.3 Multi-component pseudo rate constants for overall reaction rate calculations. 34
3.2.4 Number/weight average molecular weights and branching 37
3.3 Diffusion-control kinetics 41
3.4 Calculated Outputs: Part B 46
3.4.1 Number/weight average sequence lengths 46
3.4.2 Triad fraction calculation 53
3.5 Depropagation 59
Chapter 4 Model and Simulation Features 68
4.1 Description 68
4.2 Six-component polymerization recipe 69
Chapter 5 Model Testing/Troubleshooting 71
5.1 Sty homo-polymerization 71
5.2 MMA homo-polymerization 75
5.3 EA homo-polymerization 79
5.4 AN homo-polymerization 81
5.5 VAc homo-polymerization 82
5.6 Sty/EA co-polymerization 83
5.7 Sty/AN co-polymerization. 86
5.8 BA/VAc co-polymerization. 89
5.9 MMA/VAc co-polymerization 91
Chapter 6 Multi-component Modeling Case Studies 94
6.1 BA homo-polymerization 94
6.2 BMA homo-polymerization 96
6.3 HEA homo-polymerization 98
6.4 Sty/BA co-polymerization 99
6.5 BA/MMA co-polymerization 104
6.6 Sty/HEA co-polymerization 111
6.7 BA/MMA/VAc ter-polymerization 114
6.8 Sty/EA/HEA ter-polymerization 121
6.9 Sty/EA/MAA ter-polymerization 126
6.10 EA/HEA/MAA ter-polymerization. 130
6.11 Sty/EA/HEA/MAA tetra-polymerization 132
Chapter 7 Six-component Recipe Trends 141
Chapter 8 Concluding Remarks and Recommendations. 158
8.1 Concluding Remarks 158
8.2 Future Recommendations 159
8.2.1 Immediate steps 159
8.2.2 Long-term steps 160
Appendices
Appendix A Multi-component Polymer Composition Models 162
A. 1 Rate incorporation equations 162
A. 2 Extended Walling and Briggs (WB) model 163
A. 3 Extended Valvassori and Sartori (VS) model 166
A. 4 Extended Hocking and Klimchuk (HK) model 166
A. 5 Simulation results and discussion 167
Appendix B Method of Moments Calculations and Comparisons for Branched Co-polymers 170
B. 1 Kuindersma (1992) and Gao (1992) 171
B. 2 Hamielec et al. (1987b) 172
B. 3 Dubé et al. (1991) 172
B. 4 Xie and Hamielec (1993) 173
B. 5 Simulation results and discussion 174
Appendix C Monomer Kinetic Database 180
Appendix D Sty Thermal Polymerization. 187
General Nomenclature 192
Bibliography 199

List of Figures

Figure 1.1. Project objectives diagram2Figure 2.1. Typical molecular weight vs conversion 5
Figure 3.1. Sequence length distribution of Sty in Sty/AN co-polymer, T $=60^{\circ} \mathrm{C}$ 48
Figure 3.2. Sty cumulative average sequence lengths of Sty/AN co-polymer, $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]=0.05$
M , and $f_{\mathrm{Sty} 0}=0.7$ 52
Figure 3.3. Sty cumulative average sequence lengths of Sty/AN co-polymer, T $=60^{\circ} \mathrm{C},[\mathrm{AIBN}]=0.05$
M , and $f_{\mathrm{Sty0} 0}=0.9$. 53
Figure 3.4. Sty-centered triad fraction calculation of Sty/AN co-polymer at T $=60^{\circ} \mathrm{C}$ 58
Figure 3.5. AN-centered triad fraction calculation of Sty/AN co-polymer at T $=60^{\circ} \mathrm{C}$ 58
Figure 3.6. MA-centered triad fraction calculation of MMA/MA co-polymer at $\mathrm{T}=50^{\circ} \mathrm{C}$ 59
Figure 3.7. Simulation of composition drift of $F_{\text {AMS }}$ in AMS/MMA co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$,
AIBN $=0.5 \mathrm{~mol} \%$ 67
Figure 3.8. Simulation of composition drift of $F_{\text {AMS }}$ in AMS/MMA co-polymerization, $\mathrm{T}=80^{\circ} \mathrm{C}$,
\qquadFigure 5.1. Simulation of bulk polymerization of Sty at $60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.0164 \mathrm{M}$......................... 72
Figure 5.2. Simulation of bulk thermal polymerization of Sty at $170^{\circ} \mathrm{C}$ 73
Figure 5.3. Simulation of molecular weights of Sty thermal polymerization at $170^{\circ} \mathrm{C}$ 73
Figure 5.4. Simulation of solution polymerization of Sty, T $=80^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.04 \mathrm{M}$, and$\left[\right.$ Toluene $_{0}=1.8 \mathrm{M}$74
Figure 5.5. Simulation of bulk polymerizations of MMA at 50,70 , and $90^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.0258 \mathrm{M} .75$
Figure 5.6. Simulation of bulk polymerizations of MMA at 50,70 , and $90^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.01548 \mathrm{M}$76

Figure 5.7. Molecular weight predictions for MMA polymerization at $70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.0258 \mathrm{M} . . .76$
Figure 5.8. Molecular weight predictions for MMA polymerization at $90^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.0258 \mathrm{M} . . .77$
Figure 5.9. Molecular weight predictions for MMA polymerization at $70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.01548 \mathrm{M} .77$
Figure 5.10. Molecular weight predictions for MMA polymerization at $90^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.01548 \mathrm{M}$

Figure 5.12. Simulation of bulk EA polymerizations at $40^{\circ} \mathrm{C}$.. 80
Figure 5.13. Simulation of bulk EA polymerizations at $50^{\circ} \mathrm{C}$.. 80
Figure 5.14. Simulation of bulk polymerizations of AN ... 81
Figure 5.15. Simulation of bulk polymerization of VAc at $50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.004 \mathrm{~mol} / \mathrm{L} ~ . ~ 82 ~$
Figure 5.16. Simulation of bulk co-polymerizations of Sty/EA at $\mathrm{T}=50^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$
Sty)... 84
Figure 5.17. Cumulative polymer composition of Sty in Sty/EA co-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C}$,
$[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty $)$
Figure 5.18. Simulation of solution co-polymerization of Sty/EA ($50 / 50 \mathrm{wt} \%$), $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ and Octanethiol $=0.5 \mathrm{wt} \%$ of total monomer .85

Figure 5.19. Cumulative polymer composition of Sty in Sty/EA (50/50 wt\%) co-polymerization, $\mathrm{T}=$ $130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ and Octanethiol $=0.5 \mathrm{wt} \%$ of total monomer .85

Figure 5.20. Simulation of bulk co-polymerizations of Sty/AN, T $=60^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty) .87

Figure 5.21. Simulation of residual mole fractions of Sty in Sty/AN co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty $)$88

Figure 5.22. Simulation of accumulated number average sequence lengths of Sty in Sty/AN copolymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=\mathrm{Sty})$88

Figure 5.23. Simulation of bulk co-polymerization of BA/VAc, T $=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.00054 \mathrm{M}$, and $f_{\mathrm{BA} 0}=0.80$

Figure 5.24. Cumulative polymer composition of BA in BA/VAc co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.00054 \mathrm{M}$, and $f_{\text {BA0 }}=0.80$
Figure 5.25. Simulation of bulk co-polymerization of MMA/VAc, T $=60^{\circ} \mathrm{C},[\operatorname{AIBN}]_{0}=0.01 \mathrm{M}$, and $f_{\text {MMA0 }}=0.30$

Figure 5.26. Cumulative polymer composition of MMA in MMA/VAc co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.01 \mathrm{M}$, and $f_{\mathrm{MMA} 0}=0.30$
Figure 5.27. Molecular weight averages of MMA/VAc co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.01$
M , and $f_{\text {MMA0 }}=0.30$... 93
Figure 6.1. Simulation of bulk polymerizations of BA at $50^{\circ} \mathrm{C}$.. 95

Figure 6.2. Simulation of bulk polymerizations of BA at $60^{\circ} \mathrm{C}$... 95
Figure 6.3. Simulation of bulk polymerizations of BMA at $60^{\circ} \mathrm{C}$, AIBN as initiator 96
Figure 6.4. Simulation of bulk polymerizations of BMA at $60^{\circ} \mathrm{C}, \mathrm{BPO}$ as initiator 97

Figure 6.6. Simulation of bulk co-polymerizations of Sty/BA, T $=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty)
Figure 6.7. Simulation of bulk co-polymerizations of Sty/BA, T $=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.1 \mathrm{M}(1=$
Sty)
Figure 6.8. Cumulative polymer compositions of Sty in Sty/BA co-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty $)$
Figure 6.9. Cumulative polymer compositions of Sty in Sty/BA co-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.1 \mathrm{M}(1=$ Sty $)$

Figure 6.10. Molecular weight averages of Sty/BA co-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}$, and $f_{\text {Sty } 0}=0.942$ 102
Figure 6.11. Molecular weight averages of Sty $/ \mathrm{BA}$ co-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.1$
M , and $f_{\text {Sty0 }}=0.942$.. 103
Figure 6.12. Simulation of bulk co-polymerizations of BA/MMA, T $=60^{\circ} \mathrm{C}, f_{\text {BA0 }}=0.439$.............. 105
Figure 6.13. Simulation of bulk BA/MMA co-polymerizations, $\mathrm{T}=60^{\circ} \mathrm{C}$ and $f_{\mathrm{BA} A}=0.163 \ldots106$
Figure 6.14. Cumulative polymer composition of BA in BA/MMA co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$ and $f_{\mathrm{BAO}}=0.439$

Figure 6.15. Cumulative polymer composition of BA in BA/MMA co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$ and $f_{\text {BA0 }}=0.163$
Figure 6.16. Molecular weight averages of BA/MMA co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.005$
M , and $f_{\mathrm{BA} 0}=0.439$. 107
Figure 6.17. Molecular weight averages of BA/MMA co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.01$
M , and $f_{\mathrm{BA} 0}=0.439$.
Figure 6.18. Molecular weight averages of BA/MMA co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.005$
M , and $f_{\mathrm{BA} 0}=0.163$.
Figure 6.19. Molecular weight averages of BA/MMA co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.01$ M , and $f_{\mathrm{BA} 0}=0.163$. 109

Figure 6.20. Simulation of composition drift of instantaneous F_{BA} in BA/MMA co-polymerization, T
$=66^{\circ} \mathrm{C}$, Butyl acetate $($ solvent $)=70 \mathrm{wt} \%$, and AIBN $=2 \mathrm{wt} \%$ of total mixture 109

Figure 6.21. Differential instantaneous co-polymer composition distributions of BA in BA/MMA copolymerization, $\mathrm{T}=66^{\circ} \mathrm{C}$, Butyl acetate (solvent) $=70 \mathrm{wt} \%$, and $\mathrm{AIBN}=2 \mathrm{wt} \%$ of total mixture

Figure 6.22. Simulation of Sty/HEA bulk co-polymerizations at $\mathrm{T}=40^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty) 112

Figure 6.23. Simulation of Sty/HEA bulk co-polymerizations at $\mathrm{T}=40^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.025 \mathrm{M}(1=$ Sty) 112

Figure 6.24. Simulation of Sty/HEA bulk co-polymerizations at $\mathrm{T}=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty). 113

Figure 6.25. Simulation of Sty/HEA bulk co-polymerizations at $\mathrm{T}=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.025 \mathrm{M}(1$
$=$ Sty)
Figure 6.26. Simulation of bulk ter-polymerizations of BA/MMA/VAc, T $=50^{\circ} \mathrm{C}$ and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$

Figure 6.27. Simulation of bulk ter-polymerizations of BA/MMA/VAc, T $=70^{\circ} \mathrm{C}$ and $(B A / M M A / V A c)=(30 / 30 / 40 \mathrm{wt} \%)$
Figure 6.28. Simulation of bulk ter-polymerization of BA/MMA/VAc, $[\mathrm{AIBN}]_{0}=0.01 \mathrm{M}$, $(B A / M M A / V A c)=(30 / 30 / 40 \mathrm{wt} \%)$, and non-isothermal condition

Figure 6.29. Cumulative polymer composition in BA/MMA/VAc ter-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.01 \mathrm{M}$, and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$
Figure 6.30. Cumulative polymer composition in BA/MMA/VAc ter-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C}$,
$[\mathrm{AIBN}]_{0}=0.071 \mathrm{M}$, and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$
Figure 6.31. Cumulative polymer composition in BA/MMA/VAc ter-polymerization, $\mathrm{T}=70^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.01 \mathrm{M}$, and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$
Figure 6.32. Cumulative polymer composition in BA/MMA/VAc ter-polymerization, $\mathrm{T}=70^{\circ} \mathrm{C}$,
$[\mathrm{AIBN}]_{0}=0.071 \mathrm{M}$, and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$
Figure 6.33. Molecular weight averages of BA/MMA/VAc ter-polymerization, T $=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=$ 0.01 M , and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$

Figure 6.34. Molecular weight averages of BA/MMA/VAc ter-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=$ 0.071 M , and (BA/MMA/VAc) $=(30 / 30 / 40 \mathrm{wt} \%)$... 119

Figure 6.35. Molecular weight averages of BA/MMA/VAc ter-polymerization, $\mathrm{T}=70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=$ 0.01 M, and (BA/MMA/VAc) $=(30 / 30 / 40 \mathrm{wt} \%)$... 119

Figure 6.36. Molecular weight averages of BA/MMA/VAc ter-polymerization, $\mathrm{T}=70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=$ 0.071 M , and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$... 120

Figure 6.37. Simulation of bulk ter-polymerizations of Sty/EA/HEA, T $=60^{\circ} \mathrm{C}$ and $[\operatorname{AIBN}]_{0}=0.05 \mathrm{M}$ 122

Figure 6.38. Simulation of solution ter-polymerization of Sty/EA/HEA (42/42/16 wt\%), $\mathrm{T}=100^{\circ} \mathrm{C}$, m -Xylene $=60 \mathrm{wt} \%$ of total mixture, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 122

Figure 6.39. Simulation of solution ter-polymerization of Sty/EA/HEA (42/42/16 wt \%), $\mathrm{T}=130^{\circ} \mathrm{C}$, m -Xylene $=60 \mathrm{wt} \%$ of total mixture, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer
Figure 6.40. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt\%) ter-polymerization, T $=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and TBPB $=1.5 \mathrm{wt} \%$ of total monomer. 123

Figure 6.41. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt\%) ter-polymerization, T $=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, No octanethiol and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 124
Figure 6.42. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt\%) ter-polymerization, T $=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer. 124

Figure 6.43. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt\%) ter-polymerization, T $=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, No octanethiol and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 125

Figure 6.44. Simulation of solution ter-polymerization of Sty/EA/MAA, T $=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60$ $\mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer. 127

Figure 6.45. Cumulative polymer composition in Sty/EA/MAA (49/49/2 wt\%) ter-polymerization, T $=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and TBPB $=1.5 \mathrm{wt} \%$ of total monomer.

Figure 6.46. Cumulative polymer composition in Sty/EA/MAA (47.5/47.5/5 wt\%) ter-polymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 128

Figure 6.47. Molecular weight averages of Sty/EA/MAA (49/49/2 wt\%) ter-polymerization, T=130 ${ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer 128

Figure 6.48. Glass transition temperature of Sty/EA/MAA (49/49/2 wt \%) ter-polymer, T $=130^{\circ} \mathrm{C}, \mathrm{m}-$ Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer. 129 Figure 6.49. Simulation of solution ter-polymerization of EA/HEA/MAA ($84 / 11 / 5 \mathrm{wt} \%$), $\mathrm{T}=130^{\circ} \mathrm{C}$, m -Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and TBPB $=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.50. Cumulative polymer composition in EA/HEA/MAA (84/11/5 wt\%) ter-polymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 131

Figure 6.51. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%), T $=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 133

Figure 6.52. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%), T $=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture and No TBPB 133

Figure 6.53. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%), T $=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 134

Figure 6.54. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%), T $=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture and No TBPB 134

Figure 6.55. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetrapolymerization, $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=$ $1.5 \mathrm{wt} \%$ of total monomer 135
Figure 6.56. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetrapolymerization, $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, No octanethiol and $\mathrm{TBPB}=1.5$ $\mathrm{wt} \%$ of total monomer 135

Figure 6.57. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetrapolymerization, $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ of total monomer, and No TBPB

Figure 6.58. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetrapolymerization, $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, No octanethiol and TBPB
Figure 6.59. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetrapolymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=$ $1.5 \mathrm{wt} \%$ of total monomer137

Figure 6.60. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetrapolymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, No octanethiol and TBPB $=1.5$ $\mathrm{wt} \%$ of total monomer

Figure 6.61. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetrapolymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and No TBPB
Figure 6.62. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt \%) tetrapolymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, No octanethiol and TBPB
Figure 6.63. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA, T $=130^{\circ} \mathrm{C}, \mathrm{m}$ Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 139 Figure 6.64. Cumulative polymer composition in Sty/EA/HEA/MAA (42/42/14/2 wt\%) tetrapolymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=$ $1.5 \mathrm{wt} \%$ of total monomer.
Figure 6.65. Cumulative polymer composition in Sty/EA/HEA/MAA (42/42/11/5 wt\%) tetrapolymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=$ $1.5 \mathrm{wt} \%$ of total monomer

Figure 6.66. Cumulative polymer composition in Sty/EA/HEA/MAA (39.5/39.5/16/5 wt\%) tetrapolymerization, $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=$ $1.5 \mathrm{wt} \%$ of total monomer
Figure 7.1. Simulation of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA $(10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%)$, m-Xylene $=60 \mathrm{wt} \%$ and di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Figure 7.2. Bulk vs solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathrm{wt} \%), \mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}-\mathrm{Xylene}=60 \mathrm{wt} \%$ (solution case) and di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture 146

Figure 7.3. Mn of bulk and solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA $(10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%), \mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ (solution case) and di-tert-butyl peroxide $=$ $0.6 \mathrm{wt} \%$ of total mixture 147

Figure 7.4. Mw of bulk and solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA $(10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%), \mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ (solution case) and di-tert-butyl peroxide $=$ $0.6 \mathrm{wt} \%$ of total mixture 147

Figure 7.5. Partial conversions of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA $(10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%), \mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ (solution case) and di-tert-butyl peroxide $=$ $0.6 \mathrm{wt} \%$ of total mixture 148

Figure 7.6. Simulation of solution ter-polymerization of Sty/EA/HEA (42/42/16 wt $\%$), $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}-$ Xylene $=60 \mathrm{wt} \%$ of total mixture, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer 148

Figure 7.7. Molar feed rates of solvent, initiator, and monomers for semi-batch solution hexapolymerization
Figure 7.8. Batch vs semi-batch solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA $(10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%), \mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7 149

Figure 7.9. Moles of monomer profiles of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, and di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture. 150

Figure 7.10. Moles of monomer profiles of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) semi-batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.11. Residual monomer mole fractions of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathrm{wt} \%$) batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, and di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture 151

Figure 7.12. Residual monomer mole fractions of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathrm{wt} \%$) semi-batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure $7.7 \ldots 151$ Figure 7.13. Cumulative polymer composition of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathrm{wt} \%$) batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, and di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture 152

Figure 7.14. Cumulative polymer composition of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathrm{wt} \%$) semi-batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7 .. 152 Figure 7.15. Cumulative number average sequence lengths of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt \%) batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, and di -tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture 153

Figure 7.16. Cumulative number average sequence lengths of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt \%) semi-batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7 153

Figure 7.17. Initiator concentration profile in batch vs semi-batch reactor, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7. 154

Figure 7.18. Overall termination rate constant in batch vs semi-batch reactor, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7 154

Figure 7.19. Radical concentration profile in batch vs semi-batch reactor, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7. 155

Figure 7.20. Glass transition temperature of hexa-polymer in batch vs semi-batch reactor, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7 155

Figure 7.21. Average number of trifunctional branches per molecule in batch vs semi-batch reactor, $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.22. Depropagating and non-depropagating solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt $\%$), $\mathrm{T}=140^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, and di-tertbutyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture.156

Figure 7.23. Mn of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathrm{wt} \%), \mathrm{T}=140^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, and di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture .157

Figure 7.24. Mw of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathrm{wt} \%), \mathrm{T}=140^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, and di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture........ 157

Figure A.1. Instantaneous polymer composition of Sty in Sty/BA bulk co-polymerization, $\mathrm{T}=50^{\circ} \mathrm{C}$, $f_{\text {Sty } 0}=0.258$, and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}$ 168
Figure A.2. Instantaneous polymer composition of Sty in Sty/BA/EA bulk ter-polymerization T $=60$

Figure A.3. Instantaneous polymer composition of Sty in Sty/BA/EA/BMA bulk tetra-

$$
\text { polymerization, } \mathrm{T}=50^{\circ} \mathrm{C}, f_{\mathrm{Sty} 0}=0.280, f_{\mathrm{BA} 0}=0.227, f_{\mathrm{EA} 0}=0.288 \text {, and }[\mathrm{AIBN}]_{0}=0.03 \mathrm{M} ~ 169
$$

Figure B.1. Accumulated number average molecular weights in case 1 176
Figure B.2. Accumulated weight average molecular weights in case 1. 176
Figure B.3. Accumulated number average molecular weights in case 2 177
Figure B.4. Accumulated weight average molecular weights in case 2. 177
Figure B.5. Accumulated number average molecular weights in case 3 178
Figure B.6. Accumulated weight average molecular weights in case 3 178
Figure B.7. Accumulated number average molecular weights in case 4 179
Figure B.8. Accumulated weight average molecular weights in case 4 179
Figure D.1. Number average molecular weight parity plot (predicted by Hui and Hamielec (1972) andour model (denoted as ' x '))190
Figure D.2. Weight average molecular weight parity plot (predicted by Hui and Hamielec (1972) andour model (denoted as ' x ')).190
Figure D.3. Number average molecular weight parity plot (predicted by Matthews et al. (2007) andour model (denoted as ' x '))191Figure D.4. Weight average molecular weight parity plot (predicted by Matthews et al. (2007) andour model (denoted as ' x ')).191

List of Tables

Table 2.1. Reference list for tetra- and ter-polymerization studies. 14
Table 2.2. Reference list for co-polymerization studies 23
Table 2.3. References for homo-polymerization studies 27
Table 3.1. Number of distinguishable and possible triads in multi-component polymerization 57
Table 4.1. Typical multi-component polymerization recipe 70
Table 7.1. Reactivity ratios ($r_{\text {Monomer 1-Monomer 2 }}$) for six component system at $120^{\circ} \mathrm{C}$ 141
Table A.1. Kinetic database of Sty 182
Table A.2. Kinetic database of BA 183
Table A.3. Kinetic database of BMA 184
Table A.4. Kinetic database of HEA 185
Table A.5. Kinetic database of AA 186

Chapter 1

Introduction

1.1 Objectives

Multi-component free-radical polymerization is composed of highly competitive reactions between the same or different radical/monomer species. As the number of monomer species increases, the number of possible reactions also significantly increases and therefore the polymerization mechanism becomes complicated. Notwithstanding this, both the mathematical modeling and the study of multi-component recipes have attracted considerable industrial and academic interest for several decades due to the added economical benefits of enhanced polymer properties and expanded applications via various combinations of monomers.

The objectives of this project are to reexamine the established free-radical polymerization theories and build a mechanistic reactor model for multi-component (up to six monomers) bulk and solution polymerizations under batch/semi-batch reactor configurations. Figure 1.1 shows the project objectives and scope. A lot of effort was put on searching the literature for physical/kinetic parameters, types of models, and experimental data. Using the parameter database of monomers and ingredients (initiators, solvents, chain transfer agents, and impurities), along with a co-polymer database (reactivity ratios and polymer glass transition temperatures), the simulation model was gradually developed into a generalized and comprehensive one, which covers the range from homo- to hexa-polymerization, and can provide quick and reliable predictions of productivity (reaction rate) and quality behaviour
(molecular weight, polymer composition, sequence length, and branching) of multicomponent polymers over a wide range of reaction conditions. After that, the model predictions were compared with available experimental data and results from this stage are discussed on a case by case basis.

This modeling work includes several features: terminal model, pseudo rate constant method, diffusion-controlled kinetics at high conversion, thermal initiation, depropagation at elevated temperatures, molecular weight calculations of linear/branched polymers, and macroscopic (composition) and microscopic (sequence length distribution) characteristics. These features are going to be discussed in detail in Chapter 4.

Figure 1.1. Project objectives diagram

1.2 Outline

Chapter 1 presents the objectives of this project and an outline of the thesis. It also gives a brief explanation of model features.

Chapter 2 introduces free-radical multi-component polymerization kinetics. Starting with the three basic reactions, namely initiation, propagation, and termination, several other transfer/side reactions will be discussed briefly. Assumptions for simulation modeling and an extensive literature review will follow.

Chapter 3 contains batch/semi-batch reactor model development. All the balance equations and the calculated quantities for multi-component polymerization modeling are presented. Chapter 3 also introduces diffusion-control kinetics, sequence length distribution calculations, and depropagation modeling.

Model and simulation features are summarized in Chapter 4. The polymerization recipe for a six-monomer system is introduced here. Successful model predictions for this recipe are the final target of this thesis.

Chapter 5 has nine sections of model testing and troubleshooting results with discussion. Various experimental data (conversion, molecular weight, polymer composition, sequence length, etc.) were compared with model predictions. Depropagation features are also discussed herein.

Chapter 6 is composed of eleven sections about model testing of monomer systems related with the specific recipe discussed in Chapter 4. Due to lack of literature experimental data sources, the model could be compared with homo- to tetra-polymerization experimental data.

Hexa-polymerization model prediction trends related to the specific recipe are shown in Chapter 7. Although they may not be accurate since many kinetic parameters are unknown, they will be helpful in furthering our understanding of polymerization behaviour in multicomponent systems.

Chapter 8 is the final chapter dealing with concluding remarks and recommendations for futural model development.

Appendix A compares several multi-component polymer composition calculation options tested and used in the model.

Appendix B is dealing with a comparison of several versions of molecular weight moment equations and related calculation options tested and used in the model.

Appendix C cites the physical/kinetic database of monomers used in the model.

Finally, Appendix D discusses a case study of Sty thermal polymerization. Model prediction results for average molecular weights are compared with experimental data at elevated temperature levels.

Chapter 2

Brief Polymerization Background \& Literature Review

2.1 Kinetics of free-radical multi-component polymerization

Free-radical polymerization happens when an unsaturated vinyl monomer's π bond is attacked by a radical and turns into a new active radical center for successive addition of another monomer (repeating unit). The reaction mechanism is quite different from step polymerization. Any two molecules, such as monomer-monomer, monomer-dimer, or dimertrimer, can react with each other, and high molecular weight polymer is formed only at high conversion levels in step polymerization (Figure 2.1b, Odian, 1970). On the other hand, in free-radical polymerization, a monomer can only react with propagating radicals, which grow very quickly to a high molecular weight (typically $10^{4}-10^{6} \mathrm{~g} / \mathrm{mol}$ for industrial use) and eventually become unreactive (dead) polymer molecules (Figre 2.1a, Odian, 1970).

Figure 2.1. Typical molecular weight vs conversion (a) Free-radical polymerization; (b) Step polymerization

In multi-component free-radical polymerization, more than two monomers are participating in chain growth and this leads to a "combination" of properties of the individual polymers. Due to reactivity differences and comonomer composition, polymer properties will be significantly affected. The reactions considered in the model development are discussed in the following subsections (r and s denote chain length, and i and j represent monomer species).

2.1.1 Initiation

$$
\begin{gather*}
I \xrightarrow{k_{d}} 2 R_{i n}^{\cdot} \tag{2-1}\\
R_{i n}^{\cdot}+M_{i} \xrightarrow{k_{p, 0 i}} R_{1, i}^{\cdot} \tag{2-2}
\end{gather*}
$$

The initiation step involves two reactions. First, commercially important azo or peroxide initiators usually yield a pair of primary radicals by thermal homolytic cleavage. Not all primary radicals can participate in further reactions. After decomposing, the radicals are trapped by the reaction mixture due to the cage effect. Within the cage, some radicals may recombine, react with each other or with monomer, or diffuse out to initiate polymerization. Upon exiting, some radicals lose their reactivity and become stable. This is described by the initiator efficiency (usually in the range of 0.3 to 0.8), which is essentially the fraction of radicals that successfully lead to growing chains.

2.1.2 Thermal initiation by monomer (Diels-Alder mechanism)

$$
\begin{equation*}
n M_{i} \xrightarrow{k_{t h}} m R_{1, i}^{\bullet}+\text { byproducts } \tag{2-3}
\end{equation*}
$$

Styrenics can undergo initiation without necessarily the presence of an added chemical initiator. This initiation rate is negligible compared to the contribution via chemical initiator decomposition, however, it becomes significant at elevated temperatures (higher than $120^{\circ} \mathrm{C}$).

This purely (auto)thermal or self-initiation follows a Diels-Alder mechanism, as described in Hui and Hamielec (1972).

2.1.3 Propagation

$$
\begin{equation*}
R_{r, i}^{*}+M_{j} \xrightarrow{k_{w w}} R_{r+1, j}^{*} \tag{2-4}
\end{equation*}
$$

In this step, radicals grow by addition of successive monomer species (typically, hundreds or thousands). It should be noted that the higher reactivity a monomer species has, the more it can incorporate into a polymer chain. This is an important feature of multicomponent polymerization that allows the synthesis of an almost unlimited number of different products by variations in the nature and relative amounts of the monomer species in the product.

According to the terminal model based on the first order Markov process, the reactivity of a propagating radical depends only on the monomer unit at the growing radical end and is independent of chain composition. The propagation step is important in a multi-component polymerization because the monomer composition and arrangements eventually encountered in a polymer are mostly dependent on reactivity differences between radical species i and monomer species j. At elevated temperatures where thermodynamic equilibrium is in effect, chains may undergo reversible reaction (depropagation), and this is discussed later in Chapter 3.

2.1.4 Termination

$$
\begin{gather*}
R_{r, i}^{\bullet}+R_{s, j}^{\bullet} \xrightarrow{k_{c c}} P_{r+s} \text { (combination) } \tag{2-5}\\
R_{r, i}^{\bullet}+R_{s, j}^{\bullet} \xrightarrow{k_{t d}} P_{r}+P_{s} \text { (disproportionation) } \tag{2-6}
\end{gather*}
$$

Chain growth stops and (an) unreactive polymer molecule(s) is (are) obtained at some point from the reaction of two radicals, either by combination or disproportionation. While
termination by combination (coupling) makes two radicals into one dead polymer, the other does not. In disproportionation, a hydrogen atom in the beta position of one of the radical centers is transferred to another and a terminal double bond is formed.

2.1.5 Transfer to monomer

$$
\begin{equation*}
R_{r, i}^{\bullet}+M_{j} \xrightarrow{k_{f m i j}} P_{r}+R_{1, j}^{\bullet} \tag{2-7}
\end{equation*}
$$

Radical transfer is a chain-breaking reaction. A radical can be moved from a growing chain to any existing or added substance, such as monomer, initiator, solvent, chain transfer agent (CTA), and impurity. This (side) reaction effectively stops the growth of the original chain. As a result, a polymer's chain length and hence its molecular weight will be decreased.

Transfer to monomer is unavoidable in polymerization. The other transfer reactions to a small molecule follow a similar mechanism (monomer is replaced by other components). Among them, transfer to initiator was considered negligible in the model due to the fairly low content of initiator compared to other ingredients in the mixture, and the fact that initiator molecules are as of lately designed to be stable, so they do not participate in transfer reactions, which would effectively waste valuable and expensive initiator species.

2.1.6 Transfer to solvent

$$
\begin{equation*}
R_{r, i}^{\bullet}+S \xrightarrow{k_{s i}} P_{r}+R_{1}^{\bullet} \tag{2-8}
\end{equation*}
$$

Solvent transfer reaction is important in solution polymerization. For the purpose of lowering the viscosity of a polymerizing mixture and moderating diffusion-control kinetics, the added amount of solvent is sufficiently large to participate in this reaction and influence molecular weight. Organic solvents, such as toluene or xylene, are typical solvents. In multicomponent polymerization, reactivities of the different radical species and solvent concentration will affect the rate of this transfer reaction.

2.1.7 Transfer to chain transfer agent (CTA)

$$
\begin{equation*}
R_{r, i}^{\bullet}+C T A \xrightarrow{k_{\text {rcrii }}} P_{r}+R_{1}^{\bullet} \tag{2-9}
\end{equation*}
$$

CTA is an intentionally added compound in the mixture in order to reduce and control the molecular weight. The typical range of the ratio $k_{f C T A} / k_{p}$ is $10^{-3}-10^{1}$, higher than the other ratios, such as $k_{f S} / k_{p}\left(10^{-6}-10^{-3}\right)$ or $k_{f f} / k_{p}\left(10^{-6}-10^{-4}\right)$. Therefore, even a small addition of CTA readily affects the molecular weight of a polymer. If CTA concentration increases considerably, very short chain length will be obtained by telomerization.

2.1.8 Transfer to impurity (retarderlinhibitor)

$$
\begin{equation*}
R_{r, i}^{\bullet}+Z \xrightarrow{k_{y z i}} P_{r}-Z^{\bullet} \text { (unreactive) } \tag{2-10}
\end{equation*}
$$

Impurity can be any compound which not only reduces chain length, but also suppresses the polymerization rate. It converts all kinds of radicals to unreactive or less reactive species, and the polymerization stops completely (inhibitor) or slows down (retarder) until the impurities are consumed.

2.1.9 Transfer to polymer (long chain branching)

$$
\begin{equation*}
R_{r, i}^{\bullet}+P_{s, j} \xrightarrow{k_{p i j}} P_{r, i}+R_{s, j}^{\bullet} \tag{2-11}
\end{equation*}
$$

As conversion increases, transfer reaction to polymer becomes significant. This results in the abstraction of a hydrogen atom from the dead polymer by the growing radical and a new radical site forms somewhere on the polymer backbone instead. Thus, if any monomer species is added to the revived chain, branched polymer will be produced (tri-functional branching). Transfer to polymer broadens the molecular weight distribution (increase of polydispersity) and increases the weight average molecular weight considerably, but does not influence the number average molecular weight. Unlike other rate constants, measuring the
transfer to polymer rate constant is inherently difficult. Because of this, there are relatively few reliable parameter values/sources available in the literature.

2.1.10 Terminal double bond polymerization (long chain branching)

$$
\begin{equation*}
R_{r, i}^{\bullet}+P_{s, j} \xrightarrow{k_{p i j}^{*}} R_{r+s}^{\bullet} \tag{2-12}
\end{equation*}
$$

This is another mechanism for forming long chain branching (LCB). Terminal double bonds on a dead polymer molecule are obtained by either termination via disproportionation reactions or especially transfer to monomer reactions. Another radical can attack this double bond and one large branched macroradical is created. Eventually, this increases both the number and weight average molecular weights and broadens the molecular weight distribution considerably.

2.1.11 Internal double bond polymerization (crosslinking)

$$
\begin{equation*}
R_{r, i}^{\bullet}+P_{s, j} \xrightarrow{k_{p i j}^{*}} R_{r+s}^{\bullet} \tag{2-13}
\end{equation*}
$$

Crosslinking or network polymer formation is due to the presence of a di-functional monomer, such as 1,3-butadiene, an important monomer widely used in the rubber industry. Addition of a radical to this monomer yields an allylic radical with two possible reasonance structures. This radical reaction proceeds via propagation at either the 1,2 carbon or 1,4 carbon sites. Both polymers have an unsaturated (pendant or residual) double bond internally and this will react with another radical to cause crosslinking (or tetra-functional long chain branching).

$$
\mathrm{R}^{\bullet}+\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}
$$

2.2 Assumptions used in the simulation model

The following typical assumptions used in polymer reactor modeling, have been extended in the multi-component case.

1. Perfect mixing

There are no concentration or thermal gradients in the polymerizing mixture.

2. Kinetic behaviour follows terminal model.

The reactivity of a radical center is independent of chain length and depends only on the monomer at the end of the radical chain.

3. Steady-State Hypothesis (SSH) is valid for radicals.

Rates of initiation and termination readily become equal to each other.

4. Long Chain Approximation (LCA-I) is valid.

Strictly speaking, the rate of monomer disappearance (polymerization) is due to initiation and propagation. But monomer consumption is largely due to propagation steps for producing long chains and consumption by initiation is disregarded.

5. Long Chain Approximation (LCA-II) is valid.

In order to satisfy the steady state of radical species in the multi-component case, the cross-propagation rates are assumed equal.

2.3 Literature review

The collected references are classified based on the number of monomers and these are organized again in chronological order. References are cited by usefulness for kinetics, modeling, and experimental/kinetic data. Unfortunately, polymerization references for more than four monomers could not be found anywhere. Therefore, it will be better to divide reference subsections according to the number of monomers, starting from tetrapolymerization.

2.3.1 Tetra-polymerization

Sahloul (2004) reported experimental data regarding Sty, EA, HEA, and MAA tetrapolymerization. She not only measured conversion, polymer composition, and molecular weights, but also estimated co-polymer reactivity ratios at elevated temperatures. Significant experimental errors were identified due to gel formation from the hydroxyalkyl monomer.

2.3.2 Ter-polymerization

Alfrey and Goldfinger $(1944,1946)$ were the first who derived the polymer composition equation containing three components using the steady state assumption. Walling and Briggs (1945) extended this to the general case of n monomers and verified that predicted and observed polymer compositions agree well for three and four component systems of Sty, MMA, AN, and vinylidene chloride. More simplified ter-polymer equations were proposed by Valvassori and Sartori (1967) and later modified by Hocking and Klimchuk (1996). In this thesis, their equations are extended to a six-component system and compared with one another.

Galbraith et al. (1987) calculated the ter-polymer molecular weight distribution (MWD) and composition of Sty/BA/HEA (or HEMA) using Monte Carlo simulation and investigated the influence of initiation and termination reactions on the molecular weight distribution (MWD) and composition. A practical reactor simulation modeling of solution and emulsion systems was developed by Hamielec et al. (1987b). Using pseudo rate constants and free volume theory, the model provided a common framework for multi-component free-radical polymerization. This work was extended by Dubé et al. (1997) to a more comprehensive version with additional mechanisms.

Dubé and Penlidis (1995b) suggested a systematic approach to a multi-component polymerization kinetic study. In order to conduct ter-polymerization, they started from homopolymerization of each monomer and estimated co-polymer reactivity ratios of BA/MMA, BA/VAc, and MMA/VAc. After that, full conversion ter-polymerization experiments were performed and data collected for polymerization rate, molecular weight, and composition,
which were verified by Gao and Penlidis (2000) and Keramopoulos and Kiparissides (2003) through their own modeling work. Dubé and Penlidis (1996) also conducted a hierarchical data analysis of replicate experimental work in emulsion ter-polymerization for better accuracy of measured data.

Experimental studies on Sty/HEA co- and Sty/HEA/EA ter-polymerization were conducted by McManus et al. (1998). The reactivity ratios of Sty and HEA showed dependence on the initial monomer feed ratios and the possible conclusion was a polarity change of HEA. Also a limited investigation took place over the full conversion range for reaction rates and composition of Sty/HEA co-polymerization along with reaction rates of Sty/HEA/EA ter-polymerization.

Another systematic study of the multi-component polymerization of BA, MMA, and alpha-methyl styrene (AMS) was implemented by McManus et al. (2004) and Leamen et al. (2006). While the latter ones concentrated on parameter estimation and modeling work, the former ones focused on full conversion range studies of ter-polymerization at 115 and $140^{\circ} \mathrm{C}$ and examined depropagation effects on reaction rates, composition, and molecular weights.

Finally, Li and Hutchinson (2007) calculated the propagation rate constant of Sty/BA/BMA ter-polymerization at 60 to $120^{\circ} \mathrm{C}$ using the implicit penultimate model. The references for tetra- and ter-polymerization mentioned above are summarized in Table 2.1.

No. of monomers	Reference	Reference type
Tetra-	Sahloul (2004)	Sty/EA/HEA/MAA
	Alfrey, Goldfinger (1944, 1946)	Polymer composition
	Walling, Briggs (1945)	Polymer composition
	Valvassori, Sartori (1967)	Polymer composition
	Galbraith et al. (1987)	Reactivity ratios
	Hamielec et al. (1987)	Comprehensive

Ter- (continued)	Dubé, Penlidis (1995)	Model testing
	Hocking, Klimchuk (1996)	Polymer composition
	Dubé Penlidis (1996) al. (1997)	Emulsion exp. data
	McManus et al. (1998)	Comprehensive
	Model testing	
	Keramopoulos, Kiparissides (2003)	Model testing
	McManus et al. (2004)	Model testing
	Leamen et al. (2006)	Depropagation
	Li, Hutchinson (2007)	Penultimate kinetics

Table 2.1. Reference list for tetra- and ter-polymerization studies

2.3.3 Co-polymerization

There are many more references in co-polymerization, which will be discussed by topic and chronological order. The pioneering work for the co-polymer composition equation was developed independently by three groups, namely Alfrey and Goldfinger (1944), Mayo and Lewis (1944), and Wall (1944). Thereafter, Merz et al. (1946) attempted to generalize for sequence length distribution and to consider the penultimate monomer unit effect on the copolymer composition equation.

Polymer heterogeneity studies were conducted by several researchers. Harwood and Ritchey (1964) proposed the run number, a parameter for characterizing sequence length distribution (SLD) in co-polymers. Stockmayer (1945) used the Gaussian model for the bivariate distribution of co-polymer chain length and composition. His modeling work was extended and developed further so that it can include the effect of the molar masses of
different monomer types on the final distribution by Tacx et al. (1988), and that both instantaneous and cumulative composition distributions (CCD) can be calculated for the whole polymerization process by Engelmann and Schmidt-Naake (1993). Meanwhile, Scholtens et al. (2001) investigated control strategies for CCD in the Sty/MA continuous emulsion process.

On the other hand, Meyer and Lowry (1965) introduced an analytical solution of the integral form of the co-polymer composition equation as a function of conversion, based on earlier work by Skeist (1946). This analytical solution was used for Sty/MMA co-polymer composition calculations by Chan and Meyer (1968).

2.3.3.1 Kinetic studies: co-polymer reactivity ratios

Reactivity ratios play a major role in multi-component polymerization. Several research groups have studied the correlation between reactivity ratios and the polar/steric effect of vinyl monomers. Otsu et al. (1965) investigated reactivity ratios between Sty and alkyl methacrylates (CH2=CCH3-COO-R), such as methyl (MMA), ethyl (EMA), propyl, butyl (BMA), dodecyl (DMA), phenyl methacrylate, etc. Measured co-polymer compositions were used to estimate reactivity ratios according to the Fineman-Ross (1950) linearization method at low conversion level. Plotting the ratios with a polar substituent constant in the HammetTaft equation, they concluded that reactivities depend on the polar character more so than on the structure of the alkyl groups. Cameron and Kerr (1967) conducted a similar study of Sty and alpha-substituted methyl acrylate ($\mathrm{CH} 2=\mathrm{CR}-\mathrm{COO}-\mathrm{CH} 3$) co-polymerizations and verified that both the steric and polar nature of substituents directly attached on the reacting vinyl site affect the reactivity ratios. A more comprehensive correlation study was performed by Borchardt (1982). He used the Alfrey-Price equation for co-polymer reactivity ratios for combinations of Sty, acrylates, methacrylates, and carboxylic acids. After that, he calculated correlation coefficients between the ratios and the several constants regarding polar and steric factors. As a result, it was revealed that the two factors do not always affect the two reactivity ratios together with the same degree.

Chow (1975) did elemental analysis for co-polymer composition of Sty with HEA, hydroxypropyl acrylate (HPA), and 2-(1-aziridinyl) ethyl methacrylate (AEM), and estimated reactivity ratios. He also recalculated $Q-e$ values which are more reasonable than the ones found in the literature. Borchardt (1982) used ${ }^{13} \mathrm{C}-\mathrm{NMR}$ absorption frequencies of the polymerizing double bond carbon atoms for $Q-e$ values. He calculated reactivity ratios and compared them with literature values from 54 co-polymerizations. Utilizing the ratios with a computer program made by Harwood (1968), the dyad/triad sequence fractions were determined. This computer program was used later to compare with measured dyad/triad/tetrad fractions in MA/MMA system by Kim and Harwood (2002).

Catala et al. (1986) determined reactivity ratios between HEA with MA, EA, and BA using the Fineman-Ross method. They indicated that HEA/MA showed a completely random (Bernoullian) behaviour, i.e., both of the reactivity ratios were one. On the other hand, increasing bulkiness of the alkyl ester group (ethyl- and butyl-) led to favored reaction between HEA radicals with these monomers. However, according to the phase separation experiments regarding the hydrophilic-hydrophobic balance which is dependent on the reaction conditions (temperature $/ \mathrm{pH}$) by Mun et al. (2007), the water soluble HEA/BA copolymer also exhibited Bernoullian behaviour in aqueous solvents and less than $30 \mathrm{~mol} \%$ of BA content.

In the early days when computers were not readily available, two approaches widely used were the Fineman-Ross or Kelen-Tüdos techniques, linear least-squares methods which are incorrect from a statistical point of view, unfortunately still used nowadays. For instance, Jianying et al. (2006) obtained reactivity ratios of Sty with other monomers such as MMA, EMA, BMA, HEA, etc. with the extended Kelen-Tüdos method at $125^{\circ} \mathrm{C}$.

An advanced reactivity ratios estimation approach, Error-in-Variables Model (EVM), was proposed by Patino-Leal et al. (1980). Considering uncertainties in all measured variables, it differs from nonlinear least-squares in which error is only present in the dependent variables. Reilly and Patino-Leal (1981) developed a Bayesian point estimator in order to find parameters' point and interval estimates using EVM, which was turned into an efficient computation algorithm by Reilly et al. (1993). Duever et al. (1983) extended this
method from binary to ternary systems and proved that it was more reliable than using the least-squares method. Rossignoli and Duever (1995) compared reactivity ratios obtained from both methods and confirmed the usefulness of EVM. This statistically powerful estimation method was developed into a computer program (RREVM) by Dubé et al. (1991) and later upgraded by Polic et al. (1998). The latter authors also gave an extensive literature review on the estimation of reactivity ratios.

Co-polymer reactivity ratio estimations at high temperature were performed by several workers. McManus et al. (1999) used EVM to estimate reactivity ratios of bulk BA/MMA co-polymerization at an elevated temperature range (60 to $140^{\circ} \mathrm{C}$) and derived Arrhenius expressions to describe how the ratios vary with temperature. Deviation from the MayoLewis model due to depropagation was not observed in this system. Chambard et al. (1999) also investigated the temperature dependence of the reactivity ratios of Sty/BA with the nonlinear least-squares method. Sahloul and Penlidis $(2004$, 2005) calculated Sty/EA, Sty/MAA, EA/HEA, and HEA/MAA reactivity ratios in bulk and solution up to $130^{\circ} \mathrm{C}$, and developed Arrhenius expressions as well.

2.3.3.2 Modeling studies

Branson and Simha (1943), Simha and Branson (1944), and Walling (1949) studied copolymerization modeling in early efforts. Taking the co-polymer sequence distribution into consideration, Johnston (1973) developed the glass transition temperature equation from the Fox equation, which was essential for free volume calculation. A dependence of the glass transition temperature of the co-polymers on the dyad sequence distribution was found by Switata-Zeliazkow (1993).

Johnson et al. (1978) conducted Sty/MMA co-polymerization up to high conversion and observed deviations of the measured data from the Skeist equation at the onset of autoacceleration. Dionisio and O'Driscoll (1979) confirmed this and discussed the possible diffusion-control of propagation reaction at high conversion. Teramachi et al. (1984) used the same experimental results and calculated the CCD. Revisiting this monomer system,

O'Driscoll and Huang (1989, 1990) measured reaction rates, polymer compositions, and molecular weights and concluded that terminal model is acceptable for composition even to high conversion but penultimate model is better to explain the rate data at low conversion. This penultimate effect was also considered in the Sty/BA co-polymerization concerning the variation of reaction rates as a function of monomer feed composition and the presence of solvents (benzene) by Fernández-García et al. (2003).

Lord (1984) and Garcia-Rubio et al. (1985) reported on the kinetic modeling of bulk Sty/AN co-polymerization to predict conversion, number/weight average molecular weights, and number average sequence length during the entire conversion. Free volume theory was adopted in their model for explaining diffusion-controlled kinetics. This monomer system was investigated again and the influence of gel effect on the kinetics, MWD, CCD, and SLD was examined by Balaraman et al. (1986).

Sty/BA co-polymerization kinetic and modeling studies were investigated by Dubé (1989) and Dubé et al. (1990). The reactivity ratios, rate of polymerization, polymer composition, and number/weight average molecular weights were measured through the full conversion range. With the same methodology, Dubé and Penlidis (1995) conducted systematic co-polymerization studies of BA/MMA, BA/VAc, and MMA/VAc and extended them further to ter-polymerization. It was reported that the largely different reactivity ratios in MMA/VAc co-polymerization caused the double-rate phenomenon. Another full conversion experimental study of Sty/EA and Sty/HEA systems was done by McManus and Penlidis (1996) and Kim (1994), respectively.

Based on the terminal model and pseudo-kinetic rate constant method, Xie and Hamielec (1993) introduced the moments calculation for molecular weights of linear, long chain branched, and crosslinked co-polymers. Using these equations, Vivaldo-Lima et al. (1994) extended the model to the Sty/divinylbenzene system which forms network polymers.

Gao and Penlidis (1998) published a comprehensive co-polymerization simulator and database package. Reviewing and model-testing 15 styrenic/acrylate systems, their predictions proved reliable and satisfactory. The model was extended to MMA/BA/VAc terpolymerization and the results were successful (Gao and Penlidis, 2000). Using the
simulation package, Fujisawa and Penlidis (2008) introduced modeling work regarding three classes of co-polymer composition control strategies in a semi-batch reactor, and discussed the influence of the policies on polymerization rate, composition, molecular weight, branching, and sequence length distribution.

Another important topic, depropagation, has been developed in parallel since McCormick (1957) discovered experimentally that AMS does not polymerize above $61{ }^{\circ} \mathrm{C}$ and verified the relation between thermodynamic equilibrium concentration and the ceiling temperature. Lowry (1960) assumed three cases in which one of the two monomers undergoes reversible propagation and suggested the corresponding co-polymer composition equations. Later on, several efforts to develop a more general equation took place. Howell et al. (1970) and Izu and O'Driscoll (1970) tried to describe both the SLD and composition by considering conditional probability and Monte Carlo methods, respectively. Wittmer (1971) added some correction factors which compensate for radical effects with different terminal sequence distributions, into the Mayo-Lewis equation.

The depropagation model for co-polymer composition by Krüger et al. (1987) was considered more general and stable with better convergence properties than the ones by Lowry (1960) and Wittmer (1971), and this was discussed by Palmer et al. $(2000,2001)$ via AMS/MMA bulk and solution (toluene) batch co-polymerizations at 60 to $140^{\circ} \mathrm{C}$. They estimated the equilibrium constants and cross-depropagation ratios as well as reactivity ratios, and obtained experimental data regarding conversion, composition, and molecular weights through the full conversion range. Using the data, Cheong and Penlidis (2004) showed reasonable model predictions, and Leamen et al. (2005a, 2005b) reinvestigated this monomer system for more acceptable parameters and expanded to AMS/BA/MMA ter-polymerization.

All depropagating models mentioned above were based on terminal model kinetics. On the other hand, combined works of depropagating effects with the penultimate model were considered by Grady et al. (2002) and Li et al. $(2005,2006)$. BMA/BA co-polymerization kinetic and modeling studies were performed at temperatures above $120^{\circ} \mathrm{C}$. They used a semi-batch starved-feed policy which is popular in industry for the purpose of controlling polymer composition and molecular weight. They extended the equilibrium monomer
concentration equation by Bywater (1955) for the depropagating BMA monomer in a semibatch reactor. Another important aspect was the intramolecular chain transfer and scission of BA polymerization. They combined this with the implicit penultimate unit effect model and showed good fitting results. Furthermore, Li et al. (2006) and Wang and Hutchinson (2008) investigated the kinetics of Sty/BMA and Sty/dodecyl methacrylate (DMA), respectively, and explained the depropagating behaviour with the penultimate model. Table 2.2 cites references for co-polymerization kinetic and modeling studies.

Reference	Reference type
Branson, Simha (1943)	Modeling
Alfrey, Goldfinger (1944)	Polymer composition
Mayo, Lewis (1944)	Polymer composition
Simha, Branson (1944)	Modeling
Wall (1944)	Polymer composition
Stockmayer (1945)	Polymer composition
Merz et al. (1946)	Polymer composition
Skeist (1946)	Modeling
Walling (1949)	Reactivity ratio
Fineman, Ross (1950)	Depropagation
Lowry (1960)	SLD
Harwood, Ritchey (1964)	Pompor composition ratios
Otsu et al. (1965)	

Cameron, Kerr (1967)	Reactivity ratios
Chan, Meyer (1968)	Polymer composition
Harwood (1968)	SLD
Howell et al. (1970)	Depropagation
Izu, O’Driscoll (1970)	Depropagation
Wittmer (1971)	Depropagation
Johnston (1973)	Modeling
Chow (1975)	Reactivity ratios
Johnson et al. (1978)	Modeling
Dionisio, O’Driscoll (1979)	Modeling
Patino-Leal et al. (1980)	Reactivity ratios
Reilly, Patino-Leal (1981)	Reactivity ratios
Borchardt (1982)	Reactivity ratios
Hill et al. (1982)	SLD
Duever et al. (1983)	Reactivity ratios
Lord (1984)	Model testing
Teramachi et al. (1984)	CCD
Borchardt (1985)	Reactivity ratios
Garcia-Rubio et al. (1985)	Reactivity ratios Model testing
Balaraman et al. (1986)	CCD, SLD
Catala et al. (1986)	Reactivity ratios

Krüger et al. (1987)	Depropagation
O’Driscoll, Reilly (1987)	Reactivity ratios
Tacx et al. (1988)	CCD
Dubé (1989)	Model testing Reactivity ratios
O'Driscoll, Huang (1989, 1990)	Modeling
Dubé et al. (1990)	Model testing Reactivity ratios
Dubé et al. (1991)	Reactivity ratios
Engelmann, Schmidt-Naake (1993)	CCD
Reilly et al. (1993)	Reactivity ratios
Switata-Zeliazkow (1993)	Modeling
Xie, Hamielec (1993)	Modeling
Kim (1994)	Model testing, Reactivity ratios
Vivaldo-Lima et al. (1994)	Modeling
Dubé, Penlidis (1995)	Model testing, Reactivity ratios
Rossignoli, Duever (1995)	Reactivity ratios
McManus, Penlidis (1996)	Model testing, Reactivity ratios
Gao, Penlidis (1998)	Model testing
Polic et al. (1998)	Reactivity ratios
Chambard et al. (1999)	Reactivity ratios
Martinet, Guillot (1999)	Depropagation

McManus et al. (1999)	Reactivity ratios
Palmer et al. (2000, 2001)	Depropagation
Scholtens et al. (2001)	CCD
Grady et al. (2002)	Depropagation
Kim, Harwood (2002)	SLD
Fernandez-Garcia et al. (2003)	Depropagation
Cheong, Penlidis (2004)	Reactivity ratios
Sahloul, Penlidis (2004, 2005)	Depropagation
Leamen et al. (2005)	Depropagation
Li et al. (2005)	Reactivity ratios
Jianying et al. (2006)	Depropagation
Li et al. (2006)	Reactivity ratios
Mun et al. (2007)	Modeling
Fujisawa, Penlidis (2008)	Wang, Hutchinson (2008)

Table 2.2. Reference list for co-polymerization studies

2.3.4 Homo-polymerization

Most of the references for homo-polymerization cited below are related with kinetic studies in search of better parameters for multi-component polymerization and experimental data for model testing. Similarly to the co-polymerization subsection, this brief homopolymerization literature review is also organized in kinetic and modeling study parts and summarized in Table 2.3.

2.3.4.1 Kinetic studies

Nair and Muthana (1961) studied kinetics of n-BMA and i-BMA bulk/solution homopolymerizations. They measured the rate of polymerization and intrinsic viscosity for molecular weight calculations. EA polymerization was conducted by Raghuram and Nandi (1967, 1970). They observed severe autoacceleration in the bulk case and determined propagation and solvent-transfer rate constants in benzene.

Buback et al. (1989) observed the ratio of termination and propagation rate constants is dependent on conversion ($10-60 \%$) using laser-induced experiments on BA bulk polymerization. They expected its conversion dependence would also be applicable in the region where diffusion-control of propagation occurs, which was verified with measuring termination and propagation rate constants separately from ethylene, BA, and MMA polymerizations by Buback (1990).

Dubé et al. (1991) performed an experimental design for temperature and initiator effects on BA polymerization over the full conversion range and tested conversion data with a simulation model. The reproducibility of the data was ensured by replicate runs. This experimental and simulation study was continued on EA polymerization by Gao et al. (1997).

Pulsed-laser polymerization (PLP) in accordance with MWD measurements by gel permeation chromatography (GPC) greatly improved our estimates of propagation rate constants. For example, Buback et al. (1995) used this method for Sty, and further extended it to other monomers: EMA, n-BMA, and i-BMA by Hutchinson et al. (1995), BA measured by Lyons et al. (1996) and Asua et al. (2004), MAA by Beuermann et al. (1997), n-BMA and n-DMA by Hutchinson et al. (1997), and finally, BMA and tert-BMA by Buback and Junkers (2006). Because the accuracy of this technique is dependent on that of GPC, proper calibration is of great importance.

McKenna et al. (1999) conducted BA solution polymerization studies for the lumped rate constant $\left(k_{p} / k_{t}^{0.5}\right)$ and reported that it decreased as the monomer concentration increased. They suggested a possible conclusion that the termination rate constant is chain-length dependent.

HEA bulk/solution homo-polymerization and atom transfer radical polymerization (ATRP) was carried out by Vargün and Usanmaz (2005). The reaction exhibited a distinctive gel effect without limiting conversion, high molecular weights (insoluble in common solvents), and strong intermolecular hydrogen bonding of the polymer (absorbed more than $30 \mathrm{wt} \%$ of water). This monomer was recently studied by Chen et al. (2007) via frontal polymerization, a localized reaction which is taking place directionally through the vessel and helpful for rapid synthesis of many polymers with spatially controlled microstructures and morphologies.

The mechanism for BA polymerization was investigated further by Peck and Hutchinson (2004). The BA monomer concentration in xylene was kept low by semi-batch starved-feed high temperature reactor operation and significant intramolecular transfer rates were observed resulting in a tertiary radical center which can proceed to termination, propagation, or β-scission. Further, they estimated the relevant parameters and formulated a mechanistic model. Quan et al. (2005) conducted NMR analysis on EA and BA polymerizations at high temperatures $\left(140-180^{\circ} \mathrm{C}\right)$ up to high conversion. The obtained polymer structures were explained by chain transfer to solvent and the additional cyclization mechanism in acrylate polymerization, such as β-scission of the tertiary radical due to intramolecular chain transfer. Rantow et al. (2006) not only estimated the reaction constants through their BA experiments, but also presented microstructural quantities such as number-average terminal double bonds per chain (TDBC) and terminal solvent groups per chain (TSGC). Furthermore, they suggested a possible BA self-initiation by decomposition of impurities at high temperature, including modeling for the mechanism mentioned above.

2.3.4.2 Modeling studies

Numerous modeling studies on homo-polymerization have taken place over the last 30 years or so, and citing them all here is beyond the scope of this section. Gao and Penlidis (1996) reviewed sources of literature with useful experimental data for several monomer systems in their extensive paper, along with a summary of modeling efforts. They also
showed model predictions over a very wide range of monomer systems and conditions, using a comprehensive database of physico-chemical monomer characteristics (WATPOLY). Confirmations and additional extensions were given in Dhib et al. (2000), Gao et al. (1998, 2000) and Gao et al. (2004). Table 2.3 cites some of these most useful references for the present thesis.

Reference	Reference type
Bywater (1955)	Depropagation
McCormick (1957)	Depropagation
Nair, Muthana (1961)	Kinetics
Raghuram, Nandi (1967, 1970)	Kinetics
Hui, Hamielec (1972)	Kinetics Modeling
Friis, Nyhagen (1973)	Kinetics
Arai, Saito (1976)	Modeling
Husain, Hamielec (1978)	Modeling
Marten, Hamielec (1982)	Modeling
Stickler (1983), Stickler et al. (1984)	Modeling
Buback et al. (1989)	Kinetics
Buback (1990)	Kinetics Modeling
Dubé et al. (1991)	Kinetics Modeling
Kumar, Gupta (1991)	Kinetics
Kuindersma (1992)	Model testing

Gao (1992)	Model testing
Buback et al. (1995)	Kinetics
Hutchinson et al. (1995)	Kinetics
Gao, Penlidis (1996)	Model testing
Lyons et al. (1996)	Kinetics
Gao et al. (1997)	Model testing
Beuermann et al. (1997)	Kinetics
Hutchinson et al. (1997)	Kinetics
McKenna et al. (1999)	Kinetics
Dhib et al. (2000)	Model testing
Asua et al. (2004)	Kinetics
Peck, Hutchinson (2004)	Kinetics Modeling
Gao et al. (2004)	Modeling
Quan et al. (2005)	Kinetics
Vargün, Usanmaz (2005)	Kinetics
Buback, Junkers (2006)	Kinetics
Rantow et al. (2006)	Modeling
Matthews et al. (2007): Sty	Molecular weights
Chen et al. (2007)	Kinetics

Table 2.3. References for homo-polymerization studies

Chapter 3

Model Development

3.1 Model development in a batch/semi-batch reactor

3.1.1 Monomer and Radical balances

Assuming LCA-I, monomer balances are as follows.

$$
\begin{equation*}
\frac{d N_{i}}{d t}=F_{i, i n}-R_{p i} V \tag{3-1}
\end{equation*}
$$

where $N_{i}, F_{i, i n}$, and $R_{p i}$ stand for the moles, the molar inflow rate, and the rate of consumption of monomer species i, respectively, and V is the volume of the reaction mixtures. If the model is designed for six monomers, then i changes from 1 to 6 and there are 36 propagation reactions (30 cross-propagations and 6 homo-propagations), assuming, of course, no depropagation steps. In a batch reactor, $F_{i, i n}$ becomes zero. $R_{p i}$ is expressed in terms of rate constants, radical and monomer concentrations.

$$
\begin{gather*}
R_{p i}=\sum_{j=1}^{6} R_{j i}=R_{1 i}+R_{2 i}+\cdots R_{6 i}=\left(k_{p 1 i}\left[R_{1}^{\bullet}\right]+k_{p 2 i}\left[R_{2}^{\bullet}\right]+\cdots k_{p 6 i}\left[R_{6}^{*}\right]\right)\left[M_{i}\right] \tag{3-2}\\
{[M]=\sum_{i=1}^{6}\left[M_{i}\right],\left[R^{\bullet}\right]=\sum_{i=1}^{6}\left[R_{i}^{\bullet}\right], \quad f_{i}=\frac{\left[M_{i}\right]}{[M]}, \Phi_{j}^{\bullet}=\frac{\left[R_{j}^{\bullet}\right]}{\left[R^{\bullet}\right]}}
\end{gather*}
$$

where $[\mathrm{M}],\left[R^{\bullet}\right], f_{i}$ and Φ_{j}^{\bullet} are the total monomer and radical concentration, and the mole fraction of monomer species i and radical species j, respectively.

Now let us build the radical balances. In order to calculate the radical fraction Φ_{j}^{\bullet}, radical balances are governed by LCA-II. Thirty cross-propagation reaction constants should be considered.

$$
\begin{align*}
\frac{d\left[R_{i}^{*}\right]}{d t}= & \left(R_{1 i}+R_{2 i}+\cdots+R_{6 i}\right)-\left(R_{i 1}+R_{i 2}+\cdots+R_{i 6}\right) \\
= & \left(k_{p 1 i}\left[R_{1}^{*}\right]+k_{p 2 i}\left[R_{2}^{*}\right]+\cdots+k_{p 6 i}\left[R_{6}^{*}\right]\right)\left[M_{i}\right] \tag{3-3}\\
& -\left(k_{p i 1}\left[M_{1}\right]+k_{p i 2}\left[M_{2}\right]+\cdots+k_{p i 6}\left[M_{6}\right]\right)\left[R_{i}^{*}\right]=\sum_{\substack{j=1 \\
(j \neq i)}}^{6} R_{j i}-\sum_{\substack{j=1 \\
(j \neq i)}}^{6} R_{i j} \approx 0
\end{align*}
$$

Individual radical concentrations can be obtained from multiplying the total radical concentration by each radical fraction. The total radical concentration is calculated using the Steady-State Hypothesis (SSH), which will be introduced later.

Radical fractions can be solved for from a generalized system (set) of equations. Rearranging equation (3-3) into a matrix form,

$$
\begin{equation*}
\mathbf{M} \cdot \mathbf{r}=\mathbf{b} \tag{3-4}
\end{equation*}
$$

where

$$
\mathbf{M}=\left[\begin{array}{cccccc}
-\sum_{j=2}^{6}\left(k_{p 1 j} f_{j}\right) & k_{p 21} f_{1} & k_{p 31} f_{1} & k_{p 41} f_{1} & k_{p 51} f_{1} & k_{p 61} f_{1} \\
k_{p 12} f_{2} & -\sum_{\substack{j=1 \\
(j \neq 2)}}^{6}\left(k_{p 2 j} f_{j}\right) & k_{p 32} f_{2} & k_{p 42} f_{2} & k_{p 52} f_{2} & k_{p 62} f_{2} \\
k_{p 13} f_{3} & k_{p 23} f_{3} & -\sum_{\substack{j=1 \\
(j \neq 3)}}^{6}\left(k_{p 3 j} f_{j}\right) & k_{p 43} f_{3} & k_{p 53} f_{3} & k_{p 63} f_{3} \\
k_{p 14} f_{4} & k_{p 24} f_{4} & k_{p 34} f_{4} & -\sum_{\substack{j=1 \\
(j \neq 4)}}^{6}\left(k_{p 4 j} f_{j}\right) & k_{p 544} f_{4} & k_{p 644} f_{4} \\
k_{p 15} f_{5} & k_{p 25} f_{5} & k_{p 35} f_{5} & k_{p 45} f_{5} & -\sum_{\substack{j=1 \\
(j=5)}}^{6}\left(k_{p 5 j} f_{j}\right) & k_{p 65} f_{5} \\
k_{p 16} f_{6} & k_{p 26} f_{6} & k_{p 36} f_{6} & k_{p 46} f_{6} & k_{p 56} f_{6} & -\sum_{j=1}^{5}\left(k_{p 6 j} f_{j}\right)
\end{array}\right]
$$

Since $\sum_{i=1}^{6} \Phi_{i}^{\mathbf{\bullet}}=1$, substituting $\Phi_{6}^{\mathbf{\bullet}}=1-\Phi_{1}^{\mathbf{0}}-\Phi_{2}^{\mathbf{\bullet}}-\Phi_{3}^{\mathbf{\bullet}}-\Phi_{4}^{\mathbf{\bullet}}-\Phi_{5}^{\mathbf{\bullet}}$ and rearranging again, the following expression is obtained.

$$
\begin{aligned}
& \mathbf{r}=\left[\begin{array}{lllll}
\Phi_{1}^{\bullet} & \Phi_{2}^{\cdot} & \Phi_{3}^{\cdot} & \Phi_{4}^{\cdot} & \Phi_{5}^{\cdot}
\end{array}\right]^{\prime}, \mathbf{b}=\left[\begin{array}{lllll}
-k_{p 61} f_{1} & -k_{p 62} f_{2} & -k_{p 63} f_{3} & -k_{p 64} f_{4} & -k_{p 65} f_{5}
\end{array}\right]^{\prime}
\end{aligned}
$$

Finally, radical fractions are calculated by $\mathbf{r}=\mathbf{M}^{\mathbf{- 1}} \cdot \mathbf{b}$.

3.1.2 Reaction volume

Due to the change in density from monomer to polymer, the volume of the polymerizing mixture will shrink during the reaction. This can be accounted for by the following equation.

$$
\begin{equation*}
\frac{d V}{d t}=\sum_{i=1}^{6}\left[\frac{F_{i, i n} M w_{i}}{\rho_{i, \text { monomer }}}-R_{p i} M w_{i}\left(\frac{1}{\rho_{i, \text { monomer }}}-\frac{1}{\rho_{\text {polymer }}}\right) V\right] \tag{3-5}
\end{equation*}
$$

where $M w_{i}, \rho_{i, \text { monomer }}$, and $\rho_{\text {polymer }}$ are the molecular weight and the density of monomer species i, and the density of polymer, respectively.

3.1.3 Polymer balances

In a batch reactor, the amount of consumed monomers is equal to that of the generated polymer according to LCA-I. In a semi-batch reactor, additional balances are needed for the inflow of monomers that are incorporated in the polymer, according to Hamielec et al. (1987b):

$$
\begin{equation*}
\frac{d P_{i}}{d t}=F_{p i, i n}+R_{p i} V \tag{3-6}
\end{equation*}
$$

where P_{i} and $F_{p i, i n}$ are the moles and molar inflow of monomer species i bound as polymer.

3.1.4 Additional ingredient balances

Initiator $\left(N_{I}\right)$ and impurity $\left(N_{Z}\right)$ balances are needed to build the full radical balance. Radicals are generally generated by initiator decomposition and consumed by termination, or by reaction with impurity acting as inhibitor/retarder.

$$
\begin{gather*}
\frac{d N_{I}}{d t}=F_{I, i n}-k_{d} N_{I} \tag{3-7}\\
\frac{d N_{Z}}{d t}=F_{Z, i n}-k_{f z} N_{Z}\left[R^{\bullet}\right] \tag{3-8}
\end{gather*}
$$

where k_{d} and $k_{f z}$ are the initiator decomposition rate constant and impurity reaction rate constant.

Now we are ready to calculate the total radical concentration using the following balance.

$$
\begin{equation*}
\frac{d\left(V\left[R^{\bullet}\right]\right)}{d t}=2 f_{e f f} k_{d} N_{I}-k_{f z} N_{Z}\left[R^{\bullet}\right]-k_{t}\left[R^{\bullet}\right]^{2} V \tag{3-9}
\end{equation*}
$$

where $f_{\text {eff }}$ is initiator efficiency and k_{t} is the overall termination rate constant $\left(k_{t}=k_{t c}+k_{t d}\right)$.

Using the Steady State Hypothesis (SSH) for radicals, based on equation (3-9), the total radical concentration is

$$
\begin{equation*}
\left[R^{\bullet}\right]=\frac{1}{2}\left\{\left[\left(\frac{k_{f z}[Z]}{k_{t}}\right)^{2}+8 \frac{f_{e f f} k_{d}}{k_{t}}[I]\right]^{1 / 2}-\frac{k_{f z}[Z]}{k_{t}}\right\} \tag{3-10}
\end{equation*}
$$

Multiplying this with the corresponding radical fractions gives the individual radical concentrations.

If a chain transfer agent $\left(N_{C T A}\right)$ is added for molecular weight control or solvent $\left(N_{S}\right)$ is present in the reactor, these balances should also be included.

$$
\begin{gather*}
\frac{d N_{C T A}}{d t}=F_{C T A, i n}-k_{f C T A} N_{C T A}\left[R^{\bullet}\right] \tag{3-11}\\
\frac{d N_{S}}{d t}=F_{S, \text { in }}-k_{f S} N_{S}\left[R^{\bullet}\right] \tag{3-12}
\end{gather*}
$$

where $k_{f C T A}$ and $k_{f S}$ represent chain transfer rate constant to CTA and solvent, respectively.

3.2 Calculated Outputs: Part A

3.2.1 Total/partial molar conversions

A number of important variables can be calculated from the above balances. The total molar conversion of monomers to multi-component polymer is given by

$$
\begin{equation*}
X=\frac{[M]_{0}-[M]}{[M]_{0}}=\frac{\sum_{i=1}^{6} P_{i}}{\sum_{i=1}^{6}\left(N_{i}+P_{i}\right)} \tag{3-13}
\end{equation*}
$$

Similarly, partial conversion of monomer species i is

$$
\begin{equation*}
X_{i}=\frac{P_{i}}{N_{i}+P_{i}} \tag{3-14}
\end{equation*}
$$

Conversion versus time profiles directly show how fast polymerization proceeds.

3.2.2 Instantaneous/accumulated polymer composition

The instantaneous multi-component polymer composition, the overall mole fraction of monomer species i incorporated instantaneously in the polymer, is calculated as

$$
\begin{equation*}
F_{i}=\frac{d N_{i}}{\sum_{i=1}^{6}\left(d N_{i}\right)}=\frac{R_{p i}}{R_{p}}=\frac{\sum_{j=1}^{6} R_{j i}}{\sum_{i=1}^{6} \sum_{j=1}^{6} R_{j i}}=\frac{\sum_{j=1}^{6}\left(k_{p j i} \Phi_{j}^{\bullet}\right) f_{i}}{\sum_{i=1}^{6} \sum_{j=1}^{6}\left(k_{p j i} \Phi_{j}^{\bullet}\right) f_{i}} \tag{3-15}
\end{equation*}
$$

Equation (3-15) is a generalized one and flexibly covers all kinds of multi-component cases (even homo-polymerization). When reduced to simpler cases, it becomes identical with the Mayo-Lewis (co-polymer), Alfrey-Goldfinger (ter-polymer), and Walling-Briggs equations (ter- and higher). Our simulation model can also compare with Valvassori-Sartori and Hocking-Klimchuck equations which are derived from a simplified LCA-II assumption (see Appendix A).

Instantaneous co-polymer composition normally changes in a batch reactor governed by reactivity ratios and this phenomenon is called 'composition drift'. It is one of the important indicators closely related with polymer's physical/chemical properties and should be controlled to produce a desired product. Estimation of reactivity ratios is the key factor to calculate the composition as well as the radical fraction mentioned above. The definition of a reactivity ratio under the terminal model is the ratio of a homo-propagation rate constant divided by a cross-propagation rate constant.

$$
\begin{equation*}
r_{i j}=\frac{k_{p i i}}{k_{p i j}}(i \neq j) \tag{3-16}
\end{equation*}
$$

where i stands for radical species and j for the monomer species.
In order to estimate these ratios, co-polymerizations should be conducted under various initial monomer fractions $\left(f_{i 0}\right)$ at conversion levels below 5%. The co-polymerization is stopped and the polymer samples are scanned through NMR (${ }^{1}$ Proton or ${ }^{13}$ Carbon) and initial co-polymer compositions ($F_{i 0}$) are determined. Using initial monomer fraction and copolymer composition data, reactivity ratios can be determined by either nonlinear leastsquares or Error-in-Variables Model (EVM) techniques. The number of rate constants for propagation reactions and reactivity ratios in a multi-component polymerization are

No. of propagation reactions $=(\text { No. of monomer species })^{2}$
No. of reactivity ratios $=($ No. of monomer species $)($ No. of monomer species -1$)$

For example, hexa-polymerization involves 36 propagation reactions (assuming no depropagation) and we need 30 binary reactivity ratios for cross-propagations and 6 individual homo-propagation rate constants. Therefore, successful multi-component studies rely on the establishment of good homo- and co-polymerization kinetic data.

The accumulated polymer composition, the average mole fraction of monomer i incorporated into the polymer at a certain conversion level, is determined by

$$
\begin{equation*}
\overline{F_{i}}=\frac{P_{i}}{\sum_{i=1}^{6} P_{i}} \tag{3-17}
\end{equation*}
$$

The accumulated composition is measured from full conversion range experiments and shows how the amount of monomer bound as polymer changes during the polymerization.

3.2.3 Multi-component pseudo rate constants for overall reaction rate calculations

The pseudo rate constant method enables a complicated multi-component polymerization system to be viewed as a virtual "homo-polymerization". The monomer/polymer compositions and radical fractions obtained above are used for the pseudo rate constant calculations in the multi-component case. The individual rate constants are put together into one overall pseudo rate constant by combining with radical fractions, monomer mole fractions, and (or) polymer compositions, depending on the specific reaction (step) mechanism.

3.2.3.1 Initiation

The rate of initiation in multi-component polymerization is the same as that used in homo-polymerization, such as

$$
\begin{equation*}
R_{I}=2 f_{\text {eff } f \text { pseudo }} k_{d, \text { pseudo }}[I] \tag{3-18}
\end{equation*}
$$

where [I] is the chemical initiator concentration, $f_{\text {eff, }}$ pseudo is the pseudo initiator efficiency, and $k_{d, p s e u d o}$ is the pseudo initiator decomposition rate constant. These pseudo values are calculated via superposition as follows:

$$
\begin{align*}
f_{\text {eff }, \text { pseudo }} & =\sum_{i=1}^{6} f_{e f f, i} f_{i} \tag{3-19}\\
k_{d, p \text { seudo }} & =\sum_{i=1}^{6} k_{d, i} f_{i} \tag{3-20}
\end{align*}
$$

Sty monomer undergoes thermal self-initiation without initiator. Its reaction, based on a Diels-Alder mechanism, is reported to follow a $3{ }^{\text {rd }}$ order model, hence the thermal initiation rate is calculated as follows.

$$
\begin{gather*}
R_{t h}=2 k_{t h}[M]^{3} \tag{3-21}\\
R_{I, \text { total }}=R_{I}+R_{t h} \tag{3-22}
\end{gather*}
$$

3.2.3.2 Propagation

The rate of multi-component polymerization is the rate of disappearance of monomer species in the system.

$$
\begin{equation*}
R_{p}=-\frac{d\left(\sum_{i=1}^{6}\left[M_{i}\right]\right)}{d t}=k_{p, p \text { seudo }}[M]\left[R^{\bullet}\right] \tag{3-23}
\end{equation*}
$$

The pseudo propagation rate constant can be expressed as

$$
\begin{equation*}
k_{p, p s e u d o}=\sum_{i=1}^{6} \sum_{j=1}^{6} k_{p i j} \Phi_{i}^{\cdot} f_{j} \tag{3-24}
\end{equation*}
$$

This can similarly be applied to pseudo termination and transfer rate constants.

3.2.3.3 Termination

It is important to note that there are two conventions (British and American) for termination rate parameters. The British convention is used in the model. The rate of termination is given by

$$
\begin{align*}
& R_{t}=k_{t, p s e u d o}\left[R^{\bullet}\right]^{2}=\sum_{i=1}^{6} \sum_{j=1}^{6} k_{t i j}\left[R_{i}^{\bullet}\right]\left[R_{j}^{\bullet}\right] \\
& =\sum_{i=1}^{6} k_{t i i}\left[R_{i}^{\bullet}\right]^{2}+\sum_{\substack{i=1 \\
6}}^{\sum_{\substack{j=2 \\
(i \neq j)}}^{6} 2 k_{t i j}\left[R_{i}^{\bullet}\right]\left[R_{j}^{\bullet}\right]} \tag{3-25}
\end{align*}
$$

where $i=j, k_{t i j}$ is the homo-termination rate constant.
$i \neq j, k_{t i j}$ is the cross-termination rate constant. And $k_{t i j}=k_{t j i}$

The pseudo termination rate constant is

$$
\begin{equation*}
k_{t, p s e u d o}=\sum_{i=1}^{6} \sum_{j=1}^{6} k_{t i j} \Phi_{i_{i}}^{\cdot} \Phi_{j}^{\cdot} \tag{3-26}
\end{equation*}
$$

It is common in the literature to redefine the cross-termination rate constants $k_{t i j}$ as

$$
\begin{equation*}
k_{t i j}=\varphi \sqrt{k_{t i i} k_{t j j}} \tag{3-27}
\end{equation*}
$$

where φ is the cross-termination factor, or Walling's φ factor. It is reported as an adjustable parameter without any physical meaning by many research groups.

3.2.3.4 Transfer to monomer, polymer, CTA, solvent, and inhibitor

The pseudo rate constants for chain transfer reactions are as follows.

$$
\begin{equation*}
k_{f n, p s s u d o}=\sum_{i=1}^{6} \sum_{j=1}^{6} k_{\text {fnij }} \Phi_{i}^{\cdot} f_{j} \tag{3-28}
\end{equation*}
$$

$$
\begin{gather*}
k_{f p, p s s e u d o}=\sum_{i=1}^{6} \sum_{j=1}^{6} k_{f p i j} \Phi_{i}^{\cdot} \overline{F_{j}} \tag{3-29}\\
k_{f C T A, p s e u d o}=\sum_{i=1}^{6} k_{f C T A i} \Phi_{i}^{\cdot} \tag{3-30}\\
k_{f S, \text { pseudo }}=\sum_{i=1}^{6} k_{f S i} \Phi_{i}^{\cdot} \tag{3-31}\\
k_{f Z, p s e n d o}=\sum_{i=1}^{6} k_{f z i} \Phi_{i}^{\cdot} \tag{3-32}
\end{gather*}
$$

The transfer reactions ideally affect molecular weights but do not significantly affect the polymerization rates because they are relatively slower than propagation and termination reaction rates. In equations (3-28) and (3-29), theoretically we also need the cross-transfer reaction constants. However, these values have been scarcely reported, and they still remain unknown. Our model currently relies on reactivity ratios to estimate the cross-transfer rate constants to monomers. Hence, we defined some of the cross-transfer rate constants as

$$
\begin{align*}
k_{f m i j} & =\frac{k_{f n i i}}{r_{i j}} \tag{3-33}\\
k_{f p i j} & =k_{f p j i} \tag{3-34}
\end{align*}
$$

3.2.4 Number/weight average molecular weights and branching

The instantaneous number/weight average molecular weights of linear multi-component polymers can be calculated as

$$
\begin{gather*}
M_{n}=\frac{M w_{e f f}}{\tau+\frac{\beta}{2}} \tag{3-35}\\
M_{w}=\frac{M w_{e f f}(2 \tau+3 \beta)}{(\tau+\beta)^{2}} \tag{3-36}
\end{gather*}
$$

where M_{n} and M_{w} are number/weight average molecular weights, respectively.

$$
\begin{gather*}
M w_{e f f}=\sum_{i=1}^{6}\left[M w_{i}\left(\frac{R_{p i}}{R_{p}}\right)\right]=\sum_{i=1}^{6}\left(M w_{i} F_{i}\right) \tag{3-37}\\
\tau=\frac{k_{t d}\left[R^{\bullet}\right]+k_{f C T A}[C T A]+k_{f S}[S]+k_{f Z}[Z]}{k_{p}[M]}+\frac{k_{f n}}{k_{p}}, \quad \beta=\frac{k_{t c}\left[R^{\bullet}\right]}{k_{p}[M]} \tag{3-38}
\end{gather*}
$$

Equations (3-35) and (3-36) are identical with the homo-polymerization case except for the pseudo effective molecular weight and rate constants. The instantaneous weight fraction of polymer of chain length r at some conversion level X and information about the instantaneous molecular weight distribution are given as follows.

$$
\begin{equation*}
w(r, X)=(\tau+\beta)\left[\tau+\frac{\beta}{2}(\tau+\beta)(r-1)\right] \frac{r}{(1+\tau+\beta)^{r}} \tag{3-39}
\end{equation*}
$$

The cumulative number/weight average molecular weights and weight fraction of polymer of chain length r are given by,

$$
\begin{gather*}
\overline{M_{n}}=\frac{X}{\int_{0}^{X} M_{n}^{-1} d X} \tag{3-40}\\
\overline{M_{w}}=\frac{1}{X} \int_{0}^{X} M_{w} d X \tag{3-41}\\
\overline{w(r, X)}=\frac{1}{X} \int_{0}^{X} w(r, X) d X \tag{3-42}
\end{gather*}
$$

The equations described above are valid for linear (non-branched) systems. When additional reactions such as transfer reaction to polymer or terminal/internal double bond polymerization are significant, branched or crosslinked polymer molecules are obtained, and hence the method of moments should be applied for the radical and dead polymer distributions. The $i^{\text {th }}$ moment of radical distribution Y_{i} and polymer distribution Q_{i} are defined as

$$
\begin{equation*}
Y_{i}=\sum_{r=1}^{\infty} r^{i}\left[R_{r}^{\bullet}\right] \tag{3-43}
\end{equation*}
$$

$$
\begin{equation*}
Q_{i}=\sum_{r=1}^{\infty} r^{i}\left[P_{r}\right] \tag{3-44}
\end{equation*}
$$

The zeroth, first, and second order moments of the radical distribution are as follows.

$$
\begin{gather*}
\frac{d\left(V Y_{0}\right)}{d t}=\left(R_{i}-k_{t} Y_{0}^{2}-k_{f Z} Y_{0}[Z]\right) V \tag{3-45}\\
\frac{d\left(V Y_{1}\right)}{d t}=\left\{\begin{array}{l}
R_{i}+k_{p}[M] Y_{0}-k_{t} Y_{0} Y_{1}+\left(k_{f C T A}[C T A]+k_{f m}[M]+k_{f S}[S]\right)\left(Y_{0}-Y_{1}\right) \\
+k_{f p}\left(Y_{0} Q_{2}-Y_{1} Q_{1}\right)+k_{p}^{*}\left(Y_{0} Q_{1}-Y_{1} Q_{1}+Y_{1} Q_{0}\right)+k_{p}^{* *} Y_{0} Q_{2}-k_{f Z}[Z] Y_{1}
\end{array}\right\} \tag{3-46}\\
\frac{d\left(V Y_{2}\right)}{d t}=\left\{\begin{array}{l}
R_{i}+k_{p}[M]\left(Y_{0}+2 Y_{1}\right)-k_{t} Y_{0} Y_{2}+\left(k_{f C T A}[C T A]+k_{f n}[M]+k_{f f}[S]\right)\left(Y_{0}-Y_{2}\right) \\
+k_{f p}\left(Y_{0} Q_{3}-Y_{2} Q_{1}\right)+k_{p}^{*}\left(Y_{0} Q_{2}+2 Y_{1} Q_{1}+Y_{2} Q_{0}-Y_{2} Q_{1}\right)+k_{p}^{* *}\left(Y_{0} Q_{3}+2 Y_{1} Q_{2}\right) \\
-k_{f Z}[Z] Y_{2}
\end{array}\right\} V \tag{3-47}
\end{gather*}
$$

Using again the Steady State Hypothesis of radicals, the above equations can be simplified.

$$
\begin{align*}
& Y_{0}=\frac{1}{2}\left\{\left[\left(\frac{k_{f z}[Z]}{k_{t}}\right)^{2}+8 \frac{f k_{d}}{k_{t}}[I]\right]^{1 / 2}-\frac{k_{f z}[Z]}{k_{t}}\right\}=\left[R^{\bullet}\right] \tag{3-48}\\
& Y_{1}=\frac{R_{i}+\left\{k_{p}[M]+k_{f m}[M]+k_{f C T A}[C T A]+k_{f S}[S]+\left(k_{f p}+k_{p}^{* *}\right) Q_{2}+k_{p}^{*} Q_{1}\right\} Y_{0}}{k_{t} Y_{0}+k_{f m}[M]+k_{f C T A}[C T A]+k_{f S}[S]+k_{f Z}[Z]+k_{f p} Q_{1}+k_{p}^{*}\left(Q_{1}-Q_{0}\right)} \tag{3-49}\\
& Y_{2}=\frac{\left\{\begin{array}{l}
R_{i}+\binom{k_{p}[M]+k_{f n}[M]+k_{f C T A}[C T A]+k_{f S}[S]}{+k_{f p} Q_{3}+k_{p}^{*} Q_{2}+k_{p}^{* *} Q_{3}} Y_{0} \\
+2\left(k_{p}[M]+k_{p}^{*} Q_{1}+k_{p}^{* *} Q_{2}\right) Y_{1}
\end{array}\right\}}{k_{t} Y_{0}+k_{f m}[M]+k_{f C T A}[C T A]+k_{f S}[S]+k_{f Z}[Z]+k_{f p} Q_{1}+k_{p}^{*}\left(Q_{1}-Q_{0}\right)} \tag{3-50}
\end{align*}
$$

In order to avoid open-ended equations, $Q_{3} \approx \frac{Q_{2}}{Q_{0} Q_{1}}\left(2 Q_{0} Q_{2}-Q_{2}^{2}\right)$ is usually employed.
There are two approaches for the calculation of the moments of the polymer molecule distribution. Kuindersma (1992) and Gao (1992) used the zeroth, first, and second moments of the radical distributions while Hamielec et al. (1987b), Dubé et al., (1991) and Xie and Hamielec (1993) used the zeroth moment (radical concentration) only. After a comparative
evaluation of different approaches (see Appendix B), our model is currently using the Dubé et al. (1991) equations, as follows.

$$
\begin{gather*}
\frac{d\left(V Q_{0}\right)}{d t}=k_{p}[M] Y_{0} V\left(\tau+\frac{\beta}{2}-\frac{k_{p}^{* *} Q_{1}+k_{p}^{*} Q_{0}}{k_{p}[M]}\right) \tag{3-51}\\
\frac{d\left(V Q_{1}\right)}{d t}=k_{p}[M] Y_{0} V\left(1+\tau-\frac{k_{t d} Y_{0}}{k_{p}[M]}\right)=k_{p}[M] Y_{0} V\left(1+\frac{k_{f n}}{k_{p}}+\frac{k_{f s}[S]}{k_{p}[M]}+\frac{k_{f C T A}[C T A]}{k_{p}[M]}+\frac{k_{f z}[Z]}{k_{p}[M]}\right) \tag{3-52}\\
\frac{d\left(V Q_{2}\right)}{d t}=k_{p}[M] Y_{0} V\left\{\begin{array}{l}
(1+\tau+\beta)+2\left(1+\frac{k_{p}^{*} Q_{1}+k_{p}^{* *} Q_{2}}{k_{p}[M]}\right)\left(\frac{1+\tau+\beta+\frac{\left(k_{p}^{* *}+k_{f p}\right) Q_{2}+k_{p}^{*} Q_{1}}{k_{p}[M]}}{\tau+\beta+\frac{k_{f p} Q_{1}}{k_{p}[M]}}\right) \\
+\beta\left(\frac{1+\tau+\beta+\frac{\left(k_{p}^{* *}+k_{f p}\right) Q_{2}+k_{p}^{*} Q_{1}}{k_{p}[M]}}{\tau+\beta+\frac{k_{f p} Q_{1}}{k_{p}[M]}}\right)
\end{array}\right) \tag{3-53}
\end{gather*}
$$

Finally, the cumulative average molecular weights are calculated as

$$
\begin{gather*}
\overline{M_{n}}=M w_{\text {eff }} \frac{Q_{1}}{Q_{0}} \tag{3-54}\\
\overline{M_{w}}=M w_{\text {eff }} \frac{Q_{2}}{Q_{1}} \tag{3-55}
\end{gather*}
$$

The average number of tri/tetra-functional branches per molecule can be computed from the following equations (Dubé et al., 1991).

$$
\begin{gather*}
\frac{d\left(V Q_{0} \overline{B_{N 3}}\right)}{d t}=\left(k_{f p} Q_{1}+k_{p}^{*} Q_{0}\right) Y_{0} V \tag{3-56}\\
\frac{d\left(V Q_{0} \overline{B_{N 4}}\right)}{d t}=k_{p}^{* *} Q_{2} Y_{0} V \tag{3-57}
\end{gather*}
$$

3.3 Diffusion-control kinetics

The termination, propagation, transfer reaction constants and the initiator efficiency can all be affected by the presence of diffusional limitations throughout the entire reaction and may show significant decreases. In bulk and concentrated solution polymerizations, reaction rate remarkably rises at middle or high conversion level and this leads to significant increases in polymer molecular weights. Furthermore, it has been frequently observed at high conversion that the reaction rate falls rapidly and a limiting conversion exists in spite of enough reaction time and initiator/monomer amount. The former is called the autoacceleration, Trommsdorff, Norrish-Smith, or simply gel effect and the latter is known as the glass-transition effect.

It is established that autoacceleration happens due to diffusional (mobility) limitations of radicals and macromolecules. As polymerization proceeds, the growing entangled polymer chains increase the reaction medium viscosity and the reduced radical mobility hinders termination further while initiator is continuously decomposed into small radicals and the chains are growing. As a result, the radical concentration increases and so does polymerization rate.

Several different approaches have been introduced to explain autoacceleration and glasstransition effect as a function of other process variables. We are going to invoke the free volume approach, which is a very powerful semi-empirical model and well tested in the past. The free volume equation is expressed as:

$$
\begin{equation*}
V_{f}=\sum_{i=1}^{n}\left[V_{f, i}^{0}+\alpha_{i}\left(T-T_{g, i}\right)\right] \frac{V_{i}}{V} \tag{3-58}
\end{equation*}
$$

where:
$i \quad$ is component in the reaction mixture (monomer species, polymer, and solvent).
$V_{f, i}^{0}$ is free volume of component i at glass transition temperature.
$\alpha_{i} \quad$ is thermal expansion coefficient above and below glass transition temperature.
$T \quad$ is reaction temperature.
$T_{g i}$ is glass transition temperature for component i.
V_{i}, V are volume for component i and total reaction volume, respectively.
Free volume theory suggested the 'universal values' for $V_{f, i}^{0}$ and α_{i} are $0.025,0.001$ for monomers and solvent, and 0.00048 for polymers, respectively. Where appropriate data exist, these parameters may be estimated. The glass transition temperature of the polymer ($T_{\text {gpoly }}$) at some conversion level is calculated using Johnston's method.

$$
\begin{equation*}
\frac{1}{T_{g p o l y}}=\sum_{i=1}^{6} \frac{w_{i} p_{i i}}{T_{g p i}}+\sum_{i=1}^{6} \sum_{\substack{j=2 \\(j \neq i)}}^{6} \frac{w_{i} p_{i j}+w_{j} p_{j i}}{T_{g p i j}} \tag{3-59}
\end{equation*}
$$

where $T_{g p i}$ is the glass transition temperature for the homo-polymer species $i, T_{g p i j}$ is that of an (ideal) alternating co-polymers coming from monomers i and j, w_{i} is the weight fraction of monomer i bound in the polymer chain, and $p_{i j}$ is the probability of forming a dyad of monomers i and j. This probability will be discussed in the sequence length distribution section.

After the calculation of free volume, we are ready to investigate diffusion-control kinetics. A decrease for k_{t} will be observed first because termination is the (chemically) fastest step and high molecular weight macroradicals are involved during the reaction and are hence more vulnerable to restriction of mobility. The diffusion-control of the overall (pseudo) k_{t} is divided into three intervals: segmental, translational, and reaction-diffusion. When relatively high molecular weight polymers are being produced at low conversions, the termination rate may be controlled by segmental diffusion, which is described by Hamielec et al. (1987b) as follows.

$$
\begin{equation*}
k_{t, \text { seg }}=k_{t, p s e u d o}\left(1+\delta_{c} c\right) \tag{3-60}
\end{equation*}
$$

where:
$k_{t, p s e u d o}$ is a chemically controlled pseudo termination rate constant in equation (3-26).
δ_{c} is a parameter depending on the molecular weight and the solvent quality.
c is the mass concentration of accumulated polymer.
In this region, when the reaction medium is a thermodynamically "good solvent", the polymer coil size decreases and the termination rate constant may actually increase until the
onset of translational diffusion. To recap, in the first (segmental diffusion) interval, the overall termination rate constant is equal to the segmental diffusion termination rate constant ($k_{t, \text { seg }}$) plus the reaction-diffusion termination rate constant, as per equation (3-61). The reaction-diffusion termination rate constant is discussed later (see equation (3-69)).

$$
\begin{equation*}
k_{t, \text { overall }}=k_{t, \text { seg }}+k_{t, r d} \tag{3-61}
\end{equation*}
$$

The second interval, translational diffusion or gel effect region, is determined by a gel effect parameter K_{3} suggested by Marten and Hamielec (1982).

$$
\begin{equation*}
K_{3}={\overline{M_{w c r}}}^{m} \exp \left(\frac{A}{V_{f, c r 1}}\right) \tag{3-62}
\end{equation*}
$$

where:
${\overline{M_{w c r}}}$ is the critical accumulated weight-average molecular weight of polymer.
$V_{f, c r 1}$ is the critical free-volume.
A, m are gel effect model parameters for the specific monomer system found in the monomer database. Usually, $m=0.5$

Stickler et al. (1984) performed experiments to determine K_{3} values in MMA polymerization and built a temperature-dependent Arrhenius expression for K_{3}. In the multi-component case, we used the Arrhenius form and calculated a pseudo K_{3}, composed of the individual values of $K_{3, i}$ via superposition.

$$
\begin{gather*}
K_{3, i}=A_{K, i} \exp \left(\frac{E_{K, i}}{R T}\right) \tag{3-63}\\
K_{3, \text { ssendo }}=\exp \left[1 / \sum_{i=1}^{6}\left(\frac{\overline{F_{i}}}{\log \left(K_{3, i}\right)}\right)\right] \tag{3-64}
\end{gather*}
$$

where $\overline{F_{i}}$ is the cumulative polymer composition of monomer species i.
$K_{3, p s e u d o}$ in equation (3-64) can be calculated for the polymer system in question based on the database characteristics of each monomer.

In the model, the calculated $K_{3, \text { test }}$ in equation (3-65) is compared with the predetermined $K_{3, \text { pseudo }}$ of equation (3-64) as conversion varies (increases).

$$
\begin{gather*}
K_{3, \text { test }}={\overline{M_{w}}}^{m} \exp \left(\frac{A_{p s e u d o}}{V_{f}}\right) \tag{3-65}\\
\frac{1}{A_{p \text { seudo }}}=\sum_{i=1}^{6}\left(\frac{F_{i}}{A_{i}}\right) \tag{3-66}
\end{gather*}
$$

where A_{i} and F_{i} are the gel effect model parameters and instantaneous polymer compositions for monomer species i, respectively. For A_{i}, see earlier the discussion around equation (3-62). These parameters are combined into a pseudo gel effect model parameter $A_{\text {pseudo }}$ in the multicomponent case, as per equation (3-66).

When $K_{3, \text { test }}$ becomes equal to or greater than $K_{3, p s e u d o,}$, then the corresponding $\overline{M_{w}}$ and V_{f} (from equation (3-65)) at the specific time (conversion) step become $\bar{M}_{w c r}$ and $V_{f, c r 1}$, respectively. This signifies the onset of the gel effect (translational diffusion region) and the translationally diffusion-controlled termination rate constant is now governed by equation (367).
where $k_{t, c r}$ is the overall termination constant at the critical point, and n is a parameter, usually equal to 1.75 . This overall termination constant $k_{t, \text { trans }}$ will be observed to decrease significantly in this region.

To recap, in this second (translational diffusion) interval, the overall termination rate constant is equal to the translational diffusion termination rate constant ($k_{t, \text { trans }}$) plus the reaction-diffusion termination rate constant, as per equation (3-68).

$$
\begin{equation*}
k_{t, \text { overall }}=k_{t, \text { trans }}+k_{t, r d} \tag{3-68}
\end{equation*}
$$

At very high conversion (usually, above 85%), it is expected that the chain mobility affected by translational diffusion will decrease so greatly that radical chains cannot move any more. However, two macroradicals may move toward each other by monomer addition. The final interval, reaction-diffusion or residual termination, is described as

$$
\begin{align*}
k_{t, r d} & =\frac{8 \pi N_{A} \delta D}{1000} \tag{3-69}\\
\delta & =\left(\frac{6 V_{m}}{\pi N_{A}}\right)^{1 / 3} \tag{3-70}\\
D & =\frac{n_{s} l_{0}^{2}}{6} k_{p}[M] \tag{3-71}
\end{align*}
$$

where:
N_{A} is the Avogadro's number.
D is a reaction diffusion coefficient.
δ is a reaction radius.
V_{m} is the molar volume of monomer.
n_{s} is the average number of monomer units in one polymer chain.
l_{0} is the length of a monomer unit in the chain.
k_{p} is the propagation rate constant.
In this final interval, the overall termination rate constant is the same as in equation (3-68).
Stickler (1983) and Stickler et al. (1984) enhanced their kinetic model by adding $k_{t, r d}$ to $k_{t, t r a n s}$ in equation (3-68), thus achieving a very good agreement between conversion data and model predictions in MMA polymerization.

Now let us discuss the glass-transition effect. Under viscous polymerizations where the reaction temperature is lower than the glass-transition temperature of the polymerizing mixture being synthesized, even the mobility of small monomer units is limited by diffusion in essentially a solid (glassy) polymer matrix. Thus, even propagation/transfer reactions become diffusion-controlled. The onset happens when the free volume of the polymerizing mixture becomes lower than an experimentally determined critical free volume, and this can be modeled similarly to the translational diffusion-controlled termination.

$$
\begin{gather*}
k_{p}=k_{p 0} \exp \left[-B\left(\frac{1}{V_{f}}-\frac{1}{V_{f, c r 2}}\right)\right] \tag{3-72}\\
k_{f, \text { CTA/ solvent } / \text { impurity }}=k_{f 0} \exp \left[-B\left(\frac{1}{V_{f}}-\frac{1}{V_{f, c r 2}}\right)\right] \tag{3-73}
\end{gather*}
$$

where:
$k_{p 0}$ and $k_{f 0}$ are chemically controlled propagation/transfer rate constants.
B is the glass-transition effect model parameter.
$V_{f, c r 2}$ is the critical free volume for diffusion-control of propagation/transfer rate.
In addition, the initiator efficiency can also undergo diffusion-control and begins to decrease at high conversion, in a way similar to k_{p}. When the free volume of the reaction medium becomes less than an experimentally determined critical free volume, initiator efficiency is calculated using

$$
\begin{equation*}
f=f_{0} \exp \left[-C\left(\frac{1}{V_{f}}-\frac{1}{V_{f, c r 3}}\right)\right] \tag{3-74}
\end{equation*}
$$

where:
f_{0} is the initial initiator efficiency.
C is the efficiency-related model parameter.
$V_{f, c r 3}$ is the critical free volume for diffusion-control of initiator efficiency.

3.4 Calculated Outputs: Part B

3.4.1 Number/weight average sequence lengths

Multi-component polymer composition, F_{i} (instantaneous) and \bar{F}_{i} (cumulative), is able to describe the overall macroscopic instantaneous/accumulated mole ratio of monomer units in the polymer chain. In a batch reactor, composition drift happens and these composition values are not constant during polymerization because of different reactivities among
monomer species. However, F_{i} and \bar{F}_{i} alone cannot describe the distribution of monomer sequences, for example, in block co-polymers such as -AA--A-BB--B-AA-, and purely alternating co-polymers such as -A-B-A-B-A-B-, having the same composition. This microstructural property, information about the average number of monomer units coming from how they are distributed along the polymer chain, can be revealed by the sequence length distribution. Because of reflecting intramolecular heterogeneity, average sequence length and sequence length distribution (SLD) can be important indicators of multicomponent polymer behavior, especially when the individual homo-polymers incorporated have widely differing properties.

To illustrate this, a statistical approach (Koenig, 1980) will be introduced. Assuming the polymerization behaviour follows the terminal model, let us define the probability that a growing radical with unit i in its end adds monomer j, $p_{i j}$. This is the same definition used for the glass-transition temperature equation (3-59) earlier.

$$
\begin{equation*}
p_{i j}=\frac{k_{p i j}\left[R_{i}^{\bullet}\right]\left[M_{j}\right]}{\sum_{j=1}^{6} k_{p i j}\left[R_{i}^{\bullet}\right]\left[M_{j}\right]}=\frac{k_{p i j}\left[M_{j}\right]}{\sum_{j=1}^{6} k_{p i j}\left[M_{j}\right]}=\frac{k_{p i j} f_{j}}{\sum_{j=1}^{6} k_{p i j} f_{j}} \tag{3-75}
\end{equation*}
$$

where

$$
\sum_{j=1}^{6} p_{i j}=p_{i i}+\sum_{k=1}^{6} p_{i k}=1 \quad(k \neq i)
$$

The probability of having n consecutive units of monomer i, that is a sequence of monomer i with length n in a growing chain, is,

$$
\begin{equation*}
N_{i n}=p_{i i}^{n-1} \sum_{k=1}^{6} p_{i k} \quad(k \neq i) \tag{3-76}
\end{equation*}
$$

where

$$
\sum_{n=1}^{\infty} N_{i n}=\sum_{k=1}^{6} p_{i k}\left(\sum_{n=1}^{\infty} p_{i i}^{n-1}\right) \approx \sum_{k=1}^{6} p_{i k} \frac{1}{1-p_{i i}}=\frac{1-p_{i i}}{1-p_{i i}}=1 \quad(k \neq i)
$$

Figure 3.1 gives an example. It is a simulation plot of Sty sequence length probability ($N_{I n}$) distribution in a Sty/AN co-polymer, where the initial Sty monomer feed composition ranges from 0.4 to 0.9 . It is observed that increasing the chain (sequence) length leads to a decrease of the probabilities, and the tendencies are different according to feed compositions. As Sty content increases in the feed, Sty monomer becomes more likely to attach to the Sty radical than AN monomer does. As a result, the existence of longer sequences of Sty will make the probability distribution broader.

Sequence length distribution of Sty monomer

Figure 3.1. Sequence length distribution of Sty in Sty/AN co-polymer, $T=60{ }^{\circ} \mathrm{C}$

The instantaneous number-average sequence length of monomer i is calculated as

$$
\begin{align*}
& \bar{n}_{i}=\frac{\sum_{n=1}^{\infty} n N_{i n}}{\sum_{n=1}^{\infty} N_{i n}}=\sum_{n=1}^{\infty} n N_{i n}=N_{i 1}+2 N_{i 2}+3 N_{i 3}+\cdots=\sum_{n=1}^{\infty}\left(n p_{i i}^{n-1} \sum_{k=1}^{6} p_{i k}\right)=\sum_{n=1}^{\infty}\left\{n p_{i i}^{n-1}\left(1-p_{i i}\right)\right\} \tag{3-77}\\
& =\sum_{n=1}^{\infty} n p_{i i}^{n-1}-\sum_{n=1}^{\infty} n p_{i i}^{n} \approx \frac{1}{\left(1-p_{i i}\right)^{2}}-\frac{p_{i i}}{\left(1-p_{i i}\right)^{2}}=\frac{1}{1-p_{i i}}=\frac{1}{\sum_{k=1}^{6} p_{i k}}
\end{align*}
$$

The instantaneous weight-average sequence length of monomer i is given by

$$
\begin{align*}
& \overline{w_{i}}=\frac{\sum_{n=1}^{\infty} n^{2} N_{i n}}{\sum_{n=1}^{\infty} n N_{i n}}=\frac{\sum_{n=1}^{\infty} n^{2} N_{i n}}{\overline{n_{i}}}=\sum_{k=1}^{6} p_{i k} \sum_{n=1}^{\infty} n^{2} N_{i n}=\sum_{k=1}^{6} p_{i k} \sum_{n=1}^{\infty} n^{2}\left(p_{i i}^{n-1} \sum_{k=1}^{6} p_{i k}\right)=\left(\sum_{k=1}^{6} p_{i k}\right)^{2} \sum_{n=1}^{\infty} n^{2} p_{i i}^{n-1} \tag{3-78}\\
& =\left(1-p_{i i}\right)^{2} \sum_{n=1}^{\infty} n^{2} p_{i i}^{n-1} \approx\left(1-p_{i i}\right)^{2} \frac{1+p_{i i}}{\left(1-p_{i i}\right)^{3}}=\frac{1+p_{i i}}{1-p_{i i}}
\end{align*}
$$

These equations are general. Considering the co-polymer case, for example, they can be expressed in terms of reactivity ratios and monomer feed compositions.

$$
\begin{gather*}
\overline{n_{1}}=\frac{1}{1-p_{11}}=\frac{1}{p_{12}}=\frac{k_{p 11} f_{1}+k_{p 12} f_{2}}{k_{p 12} f_{2}}=1+\frac{k_{p 11} f_{1}}{k_{p 12} f_{2}}=1+r_{12} \frac{f_{1}}{f_{2}}=1+\frac{f_{1}}{\frac{f_{2}}{r_{12}}} \tag{3-79}\\
\overline{n_{2}}=\frac{1}{1-p_{22}}=\frac{1}{p_{21}}=\frac{k_{p 21} f_{1}+k_{p 22} f_{2}}{k_{p 21} f_{1}}=1+\frac{k_{p 22} f_{2}}{k_{p 21} f_{1}}=1+r_{21} \frac{f_{2}}{f_{1}}=1+\frac{f_{2}}{\frac{f_{1}}{r_{21}}} \tag{3-80}\\
\bar{w}_{1}=\frac{1+p_{11}}{1-p_{11}}=\frac{\frac{2 k_{p 11} f_{1}+k_{p 12} f_{2}}{k_{p 11} f_{1}+k_{p 12} f_{2}}}{\frac{k_{p 12} f_{2}}{k_{p 11} f_{1}+k_{p 12} f_{2}}}=\frac{2 k_{p 11} f_{1}+k_{p 12} f_{2}}{k_{p 12} f_{2}}=1+2 \frac{k_{p 11} f_{1}}{k_{p 12} f_{2}}=1+2 r_{12} \frac{f_{1}}{f_{2}}=1+\frac{2 f_{1}}{\frac{f_{2}}{r_{12}}} \tag{3-81}\\
\bar{w}_{2}=\frac{1+p_{22}}{1-p_{22}}=\frac{\frac{2 k_{p 22} f_{2}+k_{p 21} f_{1}}{k_{p 21} f_{1}+k_{p 22} f_{2}}}{\frac{k_{p 21} f_{1}}{k_{p 21} f_{1}+k_{p 22} f_{2}}}=\frac{2 k_{p 22} f_{2}+k_{p 21} f_{1}}{k_{p 21} f_{1}}=1+2 \frac{k_{p 22} f_{2}}{k_{p 21} f_{1}}=1+2 r_{21} \frac{f_{2}}{f_{1}}=1+\frac{2 f_{2}}{\frac{f_{1}}{r_{21}}} \tag{3-82}
\end{gather*}
$$

For the ter-polymer case,

$$
\begin{align*}
& \overline{n_{1}}=\frac{1}{1-p_{11}}=\frac{1}{p_{12}+p_{13}}=\frac{k_{p 11} f_{1}+k_{p 12} f_{2}+k_{p 13} f_{3}}{k_{p 12} f_{2}+k_{p 13} f_{3}}=1+\frac{k_{p 11} f_{1}}{k_{p 12} f_{2}+k_{p 13} f_{3}}=1+\frac{f_{1}}{\frac{f_{2}}{r_{12}}+\frac{f_{3}}{r_{13}}} \tag{3-83}\\
& \overline{n_{2}}=\frac{1}{1-p_{22}}=\frac{1}{p_{21}+p_{23}}=\frac{k_{p 21} f_{1}+k_{p 22} f_{2}+k_{p 23} f_{3}}{k_{p 21} f_{1}+k_{p 23} f_{3}}=1+\frac{k_{p 22} f_{2}}{k_{p 21} f_{1}+k_{p 23} f_{3}}=1+\frac{f_{2}}{\frac{f_{1}}{r_{21}}+\frac{f_{3}}{r_{23}}} \tag{3-84}\\
& \overline{n_{3}}=\frac{1}{1-p_{33}}=\frac{1}{p_{31}+p_{32}}=\frac{k_{p 31} f_{1}+k_{p 32} f_{2}+k_{p 33} f_{3}}{k_{p 31} f_{1}+k_{p 32} f_{2}}=1+\frac{k_{p 33} f_{3}}{k_{p 31} f_{1}+k_{p 32} f_{2}}=1+\frac{f_{3}}{\frac{f_{1}}{r_{31}}+\frac{f_{2}}{r_{32}}} \tag{3-85}
\end{align*}
$$

$$
\begin{align*}
& \bar{w}_{1}=\frac{\frac{2 k_{p 11} f_{1}+k_{p 12} f_{2}+k_{p 13} f_{3}}{k_{p 11} f_{1}+k_{p 12} f_{2}+k_{p 13} f_{3}}}{\frac{k_{p 12} f_{2}+k_{p 13} f_{3}}{k_{p 11} f_{1}+k_{p 12} f_{2}+k_{p 13} f_{3}}}=\frac{2 k_{p 11} f_{1}+k_{p 12} f_{2}+k_{p 13} f_{3}}{k_{p 12} f_{2}+k_{p 13} f_{3}}=1+\frac{2 k_{p 11} f_{1}}{k_{p 12} f_{2}+k_{p 13} f_{3}}=1+\frac{2 f_{1}}{\frac{f_{2}}{r_{12}}+\frac{f_{3}}{r_{13}}} \tag{3-86}\\
& \bar{w}_{2}=\frac{\frac{2 k_{p 22} f_{2}+k_{p 21} f_{1}+k_{p 23} f_{3}}{k_{p 21} f_{1}+k_{p 22} f_{2}+k_{p 23} f_{3}}}{\frac{k_{p 21} f_{1}+k_{p 23} f_{3}}{k_{p 21} f_{1}+k_{p 22} f_{2}+k_{p 23} f_{3}}}=\frac{2 k_{p 22} f_{2}+k_{p 21} f_{1}+k_{p 23} f_{3}}{k_{p 21} f_{1}+k_{p 23} f_{3}}=1+\frac{2 k_{p 22} f_{2}}{k_{p 21} f_{1}+k_{p 23} f_{3}}=1+\frac{2 f_{2}}{\frac{f_{1}}{r_{21}}+\frac{f_{3}}{r_{23}}} \tag{3-87}\\
& \bar{w}_{3}=\frac{\frac{2 k_{p 33} f_{3}+k_{p 31} f_{1}+k_{p 32} f_{2}}{\frac{k_{p 31} f_{1}+k_{p 32} f_{2}+k_{p 33} f_{3}}{k_{p 31} f_{1}+k_{p 32} f_{2}}}=\frac{2 k_{p 33} f_{3}+k_{p 31} f_{1}+k_{p 32} f_{2}}{k_{p 31} f_{1}+k_{p 32} f_{2}}=1+\frac{2 k_{p 33} f_{3}}{k_{p 31} f_{1}+k_{p 32} f_{2}}=1+\frac{2 f_{p 32} f_{2}+k_{p 33} f_{3}}{\frac{f_{1}}{r_{31}}+\frac{f_{2}}{r_{32}}}}{} \tag{3-88}
\end{align*}
$$

These are easily extended to tetra-, penta-, and higher multi-component cases.
In order to determine the cumulative distribution as a weighted composite of the instantaneous values, we must perform an integration of the instantaneous values. Two basic approaches were found in the literature, the first one by Ray (1977) and the second one by Hamielec/MacGregor/Penlidis (HMP) (Hamielec et al., 1987a). The difference between the two is that HMP's equation is normalized in equation (3-91) while Ray's one is not. This leads to some differences in number/weight average sequence length calculations, which is going to be discussed later. The governing equations are expressed as follows.

$$
\begin{array}{r}
\overline{N_{i n, R a y}}=\int_{0}^{X_{i}} N_{i n} d X_{i}=\int_{0}^{X} N_{i n} F_{i} d X=\int_{0}^{X}\left(p_{i i}^{n-1} \sum_{k=1}^{6} p_{i k}\right) F_{i} d X=\int_{0}^{X}\left\{p_{i i}^{n-1}\left(1-p_{i i}\right)\right\} F_{i} d X \quad(k \neq i) \\
\overline{N_{i n, H M P}}=\frac{\int_{0}^{X}\left(\frac{N_{i n}}{\overline{n_{i}}}\right) d X_{i}}{\int_{0}^{X} \frac{d X_{i}}{\overline{n_{i}}}}=\frac{\int_{0}^{X}\left(\frac{N_{i n}}{\overline{n_{i}}}\right) F_{i} d X}{\int_{0}^{X} \frac{F_{i} d X}{\overline{n_{i}}}=\frac{\int_{0}^{X}\left\{p_{i i}^{n-1}\left(\sum_{k=1}^{6} p_{i k}\right)^{2}\right\}_{i} F_{i} d X}{\int_{0}^{X}\left(\sum_{k=1}^{6} p_{i k}\right) F_{i} d X}=\frac{\int_{0}^{X}\left\{p_{i i}^{n-1}\left(1-p_{i i}\right)^{2}\right\} F_{i} d X}{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}} \tag{3-90}
\end{array}
$$

where

$$
\begin{equation*}
\sum_{n=1}^{\infty} \overline{N_{i n, H M P}}=\frac{\int_{0}^{X}\left(\sum_{n=1}^{\infty} p_{i i}^{n-1}\right)\left(1-p_{i i}\right)^{2} F_{i} d X}{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}=\frac{\int_{0}^{X} \frac{1}{\left(1-p_{i i}\right)}\left(1-p_{i i}\right)^{2} F_{i} d X}{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}=\frac{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}=1 \tag{3-91}
\end{equation*}
$$

Ray's and HMP's cumulative number-average sequence lengths of monomer i are calculated as

$$
\begin{gather*}
\overline{N_{i, R a y}}=\frac{\sum_{n=1}^{\infty} n \overline{N_{i n, R a y}}}{\sum_{n=1}^{\infty} \overline{N_{i n, R a y}}}=\frac{\int_{0}^{X}\left(\sum_{n=1}^{\infty} n p_{i i}^{n-1}\right)\left(1-p_{i i}\right) F_{i} d X}{\int_{0}^{X}\left(\sum_{n=1}^{\infty} p_{i i}^{n-1}\right)\left(1-p_{i i}\right) F_{i} d X} \approx \frac{\int_{0}^{X} \frac{1}{\left(1-p_{i i}\right)^{2}}\left(1-p_{i i}\right) F_{i} d X}{\int_{0}^{X} \frac{1}{\left(1-p_{i i}\right)}\left(1-p_{i i}\right) F_{i} d X}=\frac{\int_{0}^{X} \frac{1}{\left(1-p_{i i}\right)} F_{i} d X}{\int_{0}^{X} F_{i} d X} \tag{3-92}\\
\overline{N_{i, \text { HMP }}}=\frac{\sum_{n=1}^{\infty} n \overline{N_{i n, H M P P}}}{\sum_{n=1}^{\infty} \overline{N_{i n, \text { HMP }}}}=\frac{\int_{0}^{X}\left(\sum_{n=1}^{\infty} n p_{i i}^{n-1}\right)\left(1-p_{i i}\right)^{2} F_{i} d X}{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X} \approx \frac{\int_{0}^{X} \frac{1}{\left(1-p_{i i}\right)^{2}}\left(1-p_{i i}\right)^{2} F_{i} d X}{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}=\frac{\int_{0}^{X} F_{i} d X}{\int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X} \tag{3-93}
\end{gather*}
$$

Their cumulative weight-average sequence lengths of monomer i are given by,

$$
\begin{align*}
\overline{W_{i, R a y}} & =\frac{\sum_{n=1}^{\infty} n^{2} \overline{N_{i n, R a y}}}{\sum_{n=1}^{\infty} n \overline{N_{i n, R a y}}}=\frac{\int_{0}^{X}\left(\sum_{n=1}^{\infty} n^{2} p_{i i}^{n-1}\right)\left(1-p_{i i}\right) F_{i} d X}{\int_{0}^{X}\left(\sum_{n=1}^{\infty} n p_{i i}^{n-1}\right)\left(1-p_{i i}\right) F_{i} d X} \approx \frac{\int_{0}^{X} \frac{1+p_{i i}}{\left(1-p_{i i}\right)^{3}}\left(1-p_{i i}\right) F_{i} d X}{\int_{0}^{X} \frac{1}{\left(1-p_{i i}\right)^{2}}\left(1-p_{i i}\right) F_{i} d X}=\frac{\int_{0}^{X} \frac{1+p_{i i}}{\left(1-p_{i i}\right)^{2}} F_{i} d X}{\int_{0}^{X} \frac{1}{1-p_{i i}} F_{i} d X} \tag{3-94}\\
\overline{W_{i, H M P}} & =\frac{\sum_{n=1}^{\infty} n^{2} \overline{N_{i n, H M P}}}{\sum_{n=1}^{\infty} n \overline{N_{i n, H M P}}}=\frac{\sum_{n=1}^{\infty} n^{2} \overline{N_{i n, H M P}}}{\overline{N_{i, H M P}}}=\frac{\int_{0}^{X}\left(\sum_{n=1}^{\infty} n^{2} p_{i i}^{n-1} \int^{n}\left(1-p_{i i}\right)^{2} F_{i} d X\right.}{\overline{N_{i, H M P}} \int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X} \\
& \approx \frac{\int_{0}^{X} \frac{1+p_{i i}}{\left(1-p_{i i}\right)^{3}}\left(1-p_{i i}\right)^{2} F_{i} d X}{\overline{N_{i, H M P}} \int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}=\frac{\int_{0}^{X} \frac{1+p_{i i}}{1-p_{i i}} F_{i} d X / \int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}{\int_{0}^{X} F_{i} d X / \int_{0}^{X}\left(1-p_{i i}\right) F_{i} d X}=\frac{\int_{0}^{X} \frac{1+p_{i i}}{1-p_{i i}} F_{i} d X}{\int_{0}^{X} F_{i} d X} \tag{3-95}
\end{align*}
$$

The cumulative distribution is in principle more useful, since it is closely related to triad or pentad data determined via NMR experiments. Figures 3.2 and 3.3 show the differences between Ray and HMP calculations for cumulative number/weight average sequence lengths in Sty/AN co-polymerization when $f_{\text {Sty } 0}=0.7$ and 0.9 , respectively. The experimental number average sequence lengths obtained from Garcia-Rubio et al. (1985) are well-explained by the two equations. In Figure 3.2, the number/weight average sequence length prediction curves generated by Ray are consistent with the ones by HMP up to about 65% conversion.

However, as the conversion level goes higher, it is observed that Ray's number/weight average sequence length plots are higher than HMP's calculations. The discrepancies become distinct in Figure 3.3, when the initial feed content of Sty is 0.9. After a conversion level around 50%, the two models begin to digress from each other and Ray's weight average sequence length prediction shows an especially dramatic increase compared to HMP. The normalized HMP equation seems more acceptable since the sum of cumulative sequence probabilities becomes exactly one as per equation (3-91), whereas Ray's equations do not satisfy this. However, in the future, comparing with experimental data of weight average sequence length (if available), will be helpful to discriminate better between the two approaches.

Figure 3.2. Sty cumulative average sequence lengths of Sty/AN co-polymer $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 5} \mathrm{M}$, and $\mathrm{f}_{\mathrm{Sty0}}=\mathbf{0 . 7}$

Figure 3.3. Sty cumulative average sequence lengths of Sty/AN co-polymer

$$
\mathrm{T}=60{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}, \text { and } f_{\mathrm{Sty} 0}=0.9
$$

3.4.2 Triad fraction calculation

Another method to investigate polymer microstructure is the calculation of dyad, triad, or pentad fractions. The model predictions can be compared with experimental measurements of the triad fractions having a given comonomer at the center. Let us investigate triad fraction calculations extended to multi-component polymers.

These triad fractions are related to combinations of dyad fractions, described by the probability functions $p_{i j}$.

$$
\begin{gather*}
A_{i i}=p_{i i}^{2}=\left(\frac{r_{i j} f_{i}}{f_{j}+r_{i j} f_{i}}\right)^{2} \tag{3-96}\\
A_{j i j}=p_{i j}^{2}=\left(\frac{f_{j}}{f_{j}+r_{i j} f_{i}}\right)^{2} \neq p_{j i} p_{i j} \tag{3-97}
\end{gather*}
$$

$$
\begin{equation*}
A_{i j}=A_{j i i}=p_{i i} p_{i j}=p_{i i}\left(1-p_{i i}\right)=\frac{r_{i j} f_{i} f_{j}}{\left(f_{j}+r_{i j} f_{i}\right)^{2}} \tag{3-98}
\end{equation*}
$$

where $i, j=\{1,2\}$
The reader should note here that the triad fraction $A_{j i j}$ is not equal to $p_{j i} p_{i j}$ in equation (3-97).

3.4.2.1 Co-polymer case

There are in total eight possible triads $\left(2^{3}\right)$ in a co-polymer such as [111], [112], [121], [122], [211], [212], [221], and [222]. Six triads can be distinguishable among them: three patterns centered on monomer 1 such as [111], [112](=%5B211%5D), and [212], and another three patterns centered on monomer 2 such as [222], [221](=%5B122%5D), and [121]. Adding up the fractions for each centered monomer gives 1 , such that

$$
\begin{gather*}
A_{111}+A_{112}+A_{211}+A_{212}=A_{111}+2 A_{112}+A_{212}=p_{11}^{2}+2 p_{11} p_{12}+p_{12}^{2}=\left(p_{11}+p_{12}\right)^{2}=1^{2}=1 \tag{3-99}\\
A_{222}+A_{221}+A_{122}+A_{121}=A_{222}+2 A_{221}+A_{121}=p_{22}^{2}+2 p_{22} p_{21}+p_{21}^{2}=\left(p_{22}+p_{21}\right)^{2}=1^{2}=1 \tag{3-100}
\end{gather*}
$$

This calculation can be extended to multi-component cases.

3.4.2.2 Ter-polymer case

Among a total of $27\left(3^{3}\right)$ possible triads, 18 triads can be distinguished, which are
[111], [112] $(=[211]),[113](=[311]),[212],[213](=[312]),[313]$
centered on monomer 1 (6 distinguishable triads out of 9),
[222], $[221](=[122]),[223](=[322]),[121],[123](=[321]),[323]$
centered on monomer 2 (6 distinguishable triads out of 9), and
[333], [331] $(=[133]),[332](=[233]),[131],[132](=[231]),[232]$
centered on monomer 3 (6 distinguishable triads out of 9).
These fractions are calculated in the same way as in the co-polymer case. Only the fractions centered on monomer 1 will be considered from now on. The way is analogous for any monomer species i.

$$
\begin{align*}
& A_{111}+A_{112}+A_{113}+A_{211}+A_{212}+A_{213}+A_{311}+A_{312}+A_{313} \\
& =A_{111}+2 A_{112}+A_{212}+2 A_{213}+A_{313}+2 A_{113} \tag{3-101}\\
& =p_{11}^{2}+2 p_{11} p_{12}+p_{12}^{2}+2 p_{12} p_{13}+p_{13}^{2}+2 p_{11} p_{13}=\left(p_{11}+p_{12}+p_{13}\right)^{2}=1^{2}=1
\end{align*}
$$

3.4.2.3 Hexa-polymer case

Among $216\left(6^{3}\right)$ possible triads, 126 triads can be distinguished, namely,
[111], $[112](=[211]),[113](=[311]),[114](=[411]),[115](=[511]),[116](=[611])$,
[212], $[213](=[312]),[214](=[412]),[215](=[512]),[216](=[612])$,
[313], [314] $(=[413]),[315](=[513]),[316](=[613])$,
[414], [415] $(=[514]),[416](=[614]),[515],[516](=[615]),[616]$
centered on monomer 1 (21 distinguishable triads out of 36),
[222], $[221](=[122]),[223](=[322]),[224](=[422]),[225](=[522]),[226](=[622])$,
[121], $[123](=[312]),[124](=[421]),[125](=[521]),[126](=[621])$,
[323], [324] $(=[423]),[325](=[523]),[326](=[623])$,
[424], [425] $=[524]),[426](=[624]),[525],[526](=[625]),[626]$
centered on monomer 2 (21 distinguishable triads out of 36),
[333], $[331](=[133]),[332](=[233]),[334](=[433]),[335](=[533]),[336](=[633])$,
[131], [132] $(=[231]),[134](=[431]),[135](=[531]),[136](=[631])$,
[232], [234] $(=[432]),[235](=[532]),[236](=[632])$,
[434], [435] $(=[534]),[436](=[634]),[535],[536](=[635]),[636]$
centered on monomer 3 (21 distinguishable triads out of 36),
[444], [441] $(=[144]),[442](=[244]),[443](=[344]),[445](=[544]),[446](=[644])$,
[141], [142] $(=[241]),[143](=[341]),[145](=[541]),[146](=[641])$,
[242], [243] $(=[342]),[245](=[542]),[246](=[642])$,
[343], [345] $=[543]),[346](=[643]),[545],[546](=[645]),[646]$
centered on monomer 4 (21 distinguishable triads out of 36),
[555], $[551](=[155]),[552](=[255]),[553](=[355]),[554](=[455]),[556](=[655])$,
[151], $[152](=[251]),[153](=[351]),[154](=[451]),[156](=[651])$,
[252], [253] $(=[352]),[254](=[452]),[256](=[652])$,
[353], [354] $(=[453]),[356](=[653]),[454],[456](=[654]),[656]$
centered on monomer 5 (21 distinguishable triads out of 36), and

$$
\begin{aligned}
& {[666],[661](=[166]),[662](=[266]),[663](=[366]),[664](=[466]),[665](=[566]),} \\
& {[161],[162](=[261]),[163](=[361]),[164](=[461]),[165](=[561]),} \\
& {[262],[263](=[362]),[264](=[462]),[265](=[562]),} \\
& {[363],[364](=[463]),[365](=[563]),[464],[465](=[564]),[565]}
\end{aligned}
$$

centered on monomer 6 (21 distinguishable triads out of 36).
Summation of the fractions centered on monomer 1 gives,

$$
\begin{aligned}
& A_{111}+A_{112}+A_{113}+A_{114}+A_{115}+A_{116}+A_{211}+A_{212}+A_{213}+A_{214}+A_{215}+A_{216} \\
& +A_{311}+A_{312}+A_{313}+A_{314}+A_{315}+A_{316}+A_{411}+A_{412}+A_{413}+A_{414}+A_{415}+A_{416} \\
& +A_{511}+A_{512}+A_{513}+A_{514}+A_{515}+A_{516}+A_{611}+A_{612}+A_{613}+A_{614}+A_{615}+A_{616} \\
& =A_{111}+2 A_{112}+2 A_{113}+2 A_{114}+2 A_{115}+2 A_{116}+A_{212}+2 A_{213}+2 A_{214}+2 A_{215}+2 A_{216} \\
& +A_{313}+2 A_{314}+2 A_{315}+2 A_{316}+A_{414}+2 A_{415}+2 A_{416}+A_{515}+2 A_{516}+A_{616} \\
& =p_{11}^{2}+2 p_{11} p_{12}+2 p_{11} p_{13}+2 p_{11} p_{14}+2 p_{11} p_{15}+2 p_{11} p_{16}+p_{12}^{2}+2 p_{12} p_{13}+2 p_{12} p_{14}+2 p_{12} p_{15} \\
& +2 p_{12} p_{16}+p_{13}^{2}+2 p_{13} p_{14}+2 p_{13} p_{15}+2 p_{13} p_{16}+p_{14}^{2}+2 p_{14} p_{15}+2 p_{14} p_{16}+p_{15}^{2}+2 p_{15} p_{16}+p_{16}^{2} \\
& =\left(p_{11}+p_{12}+p_{13}+p_{14}+p_{15}+p_{16}\right)^{2}=1^{2}=1
\end{aligned}
$$

It is estimated from Table 3.1 that if the number of monomers is n, there exist n centered monomers and $n\left(\frac{(n-1)^{2}+3(n-1)}{2}+1\right)$ distinguishable triads out of n^{3} possible ones in the multi-component systems.

Sty/AN co-polymer triad fraction calculation plots are depicted in Figure 3.4 (Stycentered) and Figure 3.5 (AN-centered). Experimental data are coming from Hill et al. (1982). Number one stands for Sty and two for AN monomer in the fraction. Basically, AN homo-propagation is faster than Sty and cross-propagation from AN radical with Sty monomer is more favoured than the reverse case. Therefore, as Sty monomer content increases, its sequence increases and Sty-rich fractions such as A111 and A121 become dominant in the co-polymer, while AN-rich fractions such as A222 and A212 are decreasing. On the other hand, A211+A112 and A122+A221 fractions are increasing up to some content level and decreasing later. This can be explained by the competition between two factors,
reactivity and monomer quantity. The same situation happens in another example, the MAcentered triad fraction plot in MMA/MA co-polymerization (Figure 3.6, MMA-centered fraction experimental data from Kim and Harwood (2002) were unavailable). The MA-rich fractions (A222 and A122+A221) are decreasing and the other MMA-rich fraction (A121) is increasing. These profiles are explained by model predictions satisfactorily.

No. of monomer species	Distinguishable triads	Total possible triads
1 (homo-)	1	1
2 (co-)	6	8
3 (ter-)	18	27
4 (tetra-)	40	64
5 (penta-)	75	125
6 (hexa-)	126	216
7	196	343
8	288	512
9	405	729
10	550	1000
11	726	1331
12	936	1728
\ldots	\ldots	\ldots
19	4610	6859
20		

Table 3.1. Number of distinguishable and possible triads in multi-component polymerization

Simulation of Triad fraction data for StylAN

Figure 3.4. Sty-centered triad fraction calculation of Sty/AN co-polymer at $T=60^{\circ} \mathrm{C}$
Simulation of Triad fraction for Sty/ AN

Figure 3.5. AN-centered triad fraction calculation of Sty/AN co-polymer at $\mathrm{T}=\mathbf{6 0}{ }^{\circ} \mathrm{C}$

Simulation of triad fraction data for MMAMA

Figure 3.6. MA-centered triad fraction calculation of MMA/MA co-polymer at $\mathbf{T}=50{ }^{\circ} \mathrm{C}$

3.5 Depropagation

The propagation steps can be reversible at elevated temperatures. The relative importance of the reverse reaction (depropagation) is governed by thermodynamic equilibrium, the Gibbs free energy ΔG_{p}.

$$
\begin{equation*}
\Delta G_{p}=\Delta H_{p}-T \Delta S_{p} \tag{3-103}
\end{equation*}
$$

where ΔH_{p} and ΔS_{p} are the enthalpy and entropy change upon propagation, respectively. For spontaneous polymerization, ΔG_{p} must be negative. Depropagation is insignificant for many systems because the free energy is normally negative at typical reaction temperatures. Highly exothermic polymerization makes ΔH_{p} negative and the propagating polymer chain decreases the degrees of freedom in the system, resulting in negative ΔS_{p} also. However, as T
increases (usually over $120^{\circ} \mathrm{C}$), equation (3-103) is becoming balanced and we call the temperature where this happens as the ceiling temperature T_{c}. The reversible propagation reaction between a radical of chain length r and a monomer unit M is expressed as

$$
\begin{equation*}
R_{r}^{\bullet}+M \underset{\bar{k}_{p}}{\stackrel{k_{p}}{\longleftrightarrow}} R_{r+1}^{\bullet} \tag{3-104}
\end{equation*}
$$

Then the overall (net) polymerization rate becomes

$$
\begin{gather*}
R_{p}=k_{p}\left[R^{\bullet}\right][M]-\bar{k}_{p}\left[R^{\bullet}\right]=k_{p}^{\text {eff }}[M]\left[R^{\bullet}\right] \\
k_{p}^{\text {eff }}=k_{p}-\frac{\overline{k_{p}}}{[M]} \tag{3-105}
\end{gather*}
$$

At extremely low monomer concentrations, the negative term significantly reduces the net rate. At equilibrium, the rate becomes zero and gives the following expression.

$$
\begin{equation*}
K_{e q}=\frac{k_{p}}{\bar{k}_{p}}=\frac{1}{[M]_{e q}} \tag{3-106}
\end{equation*}
$$

The ceiling temperature is shown to be a function of monomer concentration.

$$
\begin{gather*}
\Delta G_{p}^{0}=\Delta H_{p}^{0}-T_{c} \Delta S_{p}^{0}=-R T_{c} \ln \left(K_{e q}\right)=R T_{c} \ln \left([M]_{e q}\right) \tag{3-107}\\
T_{c}=\frac{\Delta H_{p}^{0}}{\Delta S_{p}^{0}+R \ln \left([M]_{e q}\right)} \tag{3-108}
\end{gather*}
$$

In multi-component polymerization, depropagation affects not only the rate of polymerization but also polymer composition, sequence length distribution and molecular weights, therefore several equations should be modified. There are several different models that can be used to predict the composition of a reversible co-polymer system. In this thesis, Krüger's probabilistic approach (Krüger et al., 1987 and Leamen, 2005a) is used for the full depropagation model. Based on material balances and the general assumption that every component can depropagate, it is more powerful and robust than any other model (Lowry (1960) and Wittmer (1971)).

There are 72 reactions in total including 36 propagations and 36 depropagations which need to be considered for a 6-monomer system.

$$
\begin{align*}
& R_{1}^{\cdot}+M_{1} \underset{\overrightarrow{k_{11}}}{\stackrel{k_{11}}{\longleftrightarrow}} R_{11}^{\cdot} \quad R_{2}^{\cdot}+M_{1} \underset{\overrightarrow{k_{21}}}{\stackrel{k_{21}}{\longleftrightarrow}} R_{21}^{\cdot} \quad \cdots \quad \quad R_{6}^{\cdot}+M_{1} \stackrel{k_{61}}{\stackrel{k_{61}}{\longleftrightarrow}} R_{61}^{\cdot} \\
& R_{1}^{\boldsymbol{\bullet}}+M_{2} \underset{\overline{k_{12}}}{\stackrel{k_{12}}{\longleftrightarrow}} R_{12}^{\cdot} \quad R_{2}^{\cdot}+M_{2} \underset{\overline{k_{22}}}{\stackrel{k_{22}}{\longleftrightarrow}} R_{22}^{\cdot} \quad \cdots \quad R_{6}^{\cdot}+M_{2} \underset{\overline{k_{62}}}{\stackrel{k_{62}}{\longleftrightarrow}} R_{62}^{\cdot} \tag{3-109}\\
& \vdots \\
& R_{1}^{\cdot}+M_{6} \underset{\overrightarrow{k_{16}}}{\stackrel{k_{16}}{\longleftrightarrow}} R_{16}^{\cdot} \quad R_{2}^{\cdot}+M_{6} \underset{\overrightarrow{k_{26}}}{\stackrel{k_{26}}{\longleftrightarrow}} R_{26}^{\cdot} \quad \cdots \quad \quad R_{6}^{\cdot}+M_{6} \underset{\overrightarrow{k_{66}}}{\stackrel{k_{66}}{\longleftrightarrow}} R_{66}^{\cdot}
\end{align*}
$$

Monomer and radical balances are expressed in equations (3-110) to (3-115) and (3-116) to (3-121), respectively.

$$
\begin{gather*}
R_{p 1}=-\frac{d\left[M_{1}\right]}{d t}=\sum_{i=1}^{6} k_{p i 1}\left[R_{i}^{\bullet}\right]\left[M_{1}\right]-\sum_{i=1}^{6} \overline{k_{p i 1}}\left[R_{i 1}^{\bullet}\right] \tag{3-110}\\
R_{p 2}=-\frac{d\left[M_{2}\right]}{d t}=\sum_{i=1}^{6} k_{p i 2}\left[R_{i}^{\bullet}\right]\left[M_{2}\right]-\sum_{i=1}^{6} \overline{k_{p i 2}}\left[R_{i 2}^{\bullet}\right] \tag{3-111}\\
R_{p 3}=-\frac{d\left[M_{3}\right]}{d t}=\sum_{i=1}^{6} k_{p i 3}\left[R_{i}^{\bullet}\right]\left[M_{3}\right]-\sum_{i=1}^{6} \overline{k_{p i 3}}\left[R_{i 3}^{\bullet}\right] \tag{3-112}\\
R_{p 4}=-\frac{d\left[M_{4}\right]}{d t}=\sum_{i=1}^{6} k_{p i 4}\left[R_{i}^{\bullet}\right]\left[M_{4}\right]-\sum_{i=1}^{6} \overline{k_{p i 4}}\left[R_{i 4}^{\bullet}\right] \tag{3-113}\\
R_{p 5}=-\frac{d\left[M_{5}\right]}{d t}=\sum_{i=1}^{6} k_{p i 5}\left[R_{i}^{\bullet}\right]\left[M_{5}\right]-\sum_{i=1}^{6} \overline{k_{p i 5}}\left[R_{i 5}^{\bullet}\right] \tag{3-114}\\
R_{p 6}=-\frac{d\left[M_{6}\right]}{d t}=\sum_{i=1}^{6} k_{p i 6}\left[R_{i}^{\bullet}\right]\left[M_{6}\right]-\sum_{i=1}^{6} \overline{k_{p i 6}}\left[R_{i 6}^{\bullet}\right] \tag{3-115}\\
\frac{d\left[R_{1}^{\bullet}\right]}{d t}=\sum_{i=2}^{6}\left(k_{p i 1}\left[R_{i}^{\bullet}\right]\left[M_{1}\right]+\overline{k_{p 1 i}}\left[R_{1 i}^{\bullet}\right]\right)-\sum_{i=2}^{6}\left(k_{p 1 i}\left[R_{1}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 1}}\left[R_{i 1}^{\bullet}\right]\right) \tag{3-116}\\
\frac{d\left[R_{2}^{\bullet}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 2)}}^{6}\left(k_{p i 2}\left[R_{i}^{\bullet}\right]\left[M_{2}\right]+\overline{k_{p 2 i}}\left[R_{2 i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \neq 2)}}^{6}\left(k_{p 2 i}\left[R_{2}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 2}}\left[R_{i 2}^{\bullet}\right]\right) \tag{3-117}\\
\frac{d\left[R_{3}^{\bullet}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 3)}}^{6}\left(k_{p i 3}\left[R_{i}^{\bullet}\right]\left[M_{3}\right]+\overline{k_{p 3 i}}\left[R_{3 i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \neq 3)}}^{6}\left(k_{p 3 i}\left[R_{3}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 3}}\left[R_{i 3}^{\bullet}\right]\right) \tag{3-118}\\
\frac{d\left[R_{4}^{\bullet}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 4)}}^{6}\left(k_{p i 4}\left[R_{i}^{\bullet}\right]\left[M_{4}\right]+\overline{k_{p 4 i}}\left[R_{4 i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \neq 4)}}^{6}\left(k_{p 4 i i}\left[R_{4}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 4}}\left[R_{i 4}^{\bullet}\right]\right) \tag{3-119}
\end{gather*}
$$

$$
\begin{align*}
& \frac{d\left[R_{5}^{\bullet}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 5)}}^{6}\left(k_{p i 5}\left[R_{i}^{\bullet}\right]\left[M_{5}\right]+\overline{k_{p 5 i}}\left[R_{5 i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \not 5)}}^{6}\left(k_{p 5 i}\left[R_{5}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 5}}\left[R_{i 5}^{\bullet}\right]\right) \tag{3-120}\\
& \frac{d\left[R_{6}^{\bullet}\right]}{d t}=\sum_{i=1}^{5}\left(k_{p i 6}\left[R_{i}^{\bullet}\right]\left[M_{6}\right]+\overline{k_{p 6 i}}\left[R_{6 i}^{\bullet}\right]\right)-\sum_{i=1}^{5}\left(k_{p 6 i}\left[R_{6}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 6}}\left[R_{i 6}^{\bullet}\right]\right) \tag{3-121}
\end{align*}
$$

Krüger calculated the penultimate radical concentration [$R_{i j}^{*}$] using the probability that a monomer of type j is attached to a penultimate radical ending in $i, P_{i j}$ (upper-case letter). The reader should note that $P_{i j}$ is different from the sequence length probability, $p_{i j}$ (lower-case letter) which was defined earlier in equation (3-75) for the number/weight average sequence length calculations.

$$
\begin{equation*}
\left[R_{j}^{\bullet}\right]=\sum_{i=1}^{6}\left[R_{i j}^{\bullet}\right], \quad P_{i j}=\frac{\left[R_{i j}^{\bullet}\right]}{\left[R_{j}^{\bullet}\right]} \tag{3-122}
\end{equation*}
$$

where $\sum_{i=1}^{6} P_{i j}=1$
Equations (3-110) to (3-121) can be rewritten using equation (3-122) as follows.

$$
\begin{gather*}
R_{p 1}=-\frac{d\left[M_{1}\right]}{d t}=\sum_{i=1}^{6} k_{p i 1}\left[R_{i}^{\bullet}\right]\left[M_{1}\right]-\sum_{i=1}^{6} \overline{k_{p i 1}} P_{i 1}\left[R_{1}^{\bullet}\right] \tag{3-123}\\
R_{p 2}=-\frac{d\left[M_{2}\right]}{d t}=\sum_{i=1}^{6} k_{p i 2}\left[R_{i}^{\bullet}\right]\left[M_{2}\right]-\sum_{i=1}^{6} \overline{k_{p i 2}} P_{i 2}\left[R_{2}^{\bullet}\right] \tag{3-124}\\
R_{p 3}=-\frac{d\left[M_{3}\right]}{d t}=\sum_{i=1}^{6} k_{p i 3}\left[R_{i}^{\bullet}\right]\left[M_{3}\right]-\sum_{i=1}^{6} \overline{k_{p i 3}} P_{i 3}\left[R_{3}^{\bullet}\right] \tag{3-125}\\
R_{p 4}=-\frac{d\left[M_{4}\right]}{d t}=\sum_{i=1}^{6} k_{p i 4}\left[R_{i}^{\bullet}\right]\left[M_{4}\right]-\sum_{i=1}^{6} \overline{k_{p i 4}} P_{i 4}\left[R_{4}^{\bullet}\right] \tag{3-126}\\
R_{p 5}=-\frac{d\left[M_{5}\right]}{d t}=\sum_{i=1}^{6} k_{p i 5}\left[R_{i}^{\bullet}\right]\left[M_{5}\right]-\sum_{i=1}^{6} \overline{k_{p i 5}} P_{i 5}\left[R_{5}^{\bullet}\right] \tag{3-127}\\
\frac{d\left[R_{1}^{\bullet}\right]}{d t}=\sum_{i=2}^{6}\left(k_{p i 1}\left[R_{i}^{\bullet}\right]\left[M_{1}\right]+\overline{k_{p 1 i}} P_{1 i}\left[R_{i}^{\bullet}\right]\right)-\sum_{i=2}^{6}\left(k_{p 1 i}\left[R_{1}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 1}} P_{i 1}\left[R_{1}^{\bullet}\right]\right) \tag{3-128}\\
\frac{d\left[R_{2}^{\bullet}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 2)}}^{6}\left(k_{p i 2}\left[R_{i}^{\bullet}\right]\left[M_{2}\right]+\overline{k_{p 2 i}} P_{2 i}\left[R_{i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \neq 2)}}\left(k_{p 2 i}\left[R_{2}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 2}} P_{i 2}\left[R_{2}^{\bullet}\right]\right) \tag{3-129}
\end{gather*}
$$

$$
\begin{align*}
& \frac{d\left[R_{3}^{\bullet}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 3)}}^{6}\left(k_{p i 3}\left[R_{i}^{\bullet}\right]\left[M_{3}\right]+\overline{k_{p 3 i}} P_{3 i}\left[R_{i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \neq 3)}}^{6}\left(k_{p 3 i}\left[R_{3}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 3}} P_{i 3}\left[R_{3}^{\bullet}\right]\right) \tag{3-131}\\
& \frac{d\left[R_{4}^{\bullet}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 4)}}^{6}\left(k_{p i 4}\left[R_{i}^{\bullet}\right]\left[M_{4}\right]+\overline{k_{p 4 i}} P_{4 i}\left[R_{i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \neq 4)}}^{6}\left(k_{p 4 i}\left[R_{4}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 4}} P_{i 4}\left[R_{4}^{*}\right]\right) \tag{3-132}\\
& \frac{d\left[R_{5}^{*}\right]}{d t}=\sum_{\substack{i=1 \\
(i \neq 5)}}^{6}\left(k_{p i 5}\left[R_{i}^{*}\right]\left[M_{5}\right]+\overline{k_{p 5 i}} P_{5 i}\left[R_{i}^{\bullet}\right]\right)-\sum_{\substack{i=1 \\
(i \neq 5)}}^{6}\left(k_{p 5 i}\left[R_{5}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 5}} P_{i 5}\left[R_{5}^{\bullet}\right]\right) \tag{3-133}\\
& \frac{d\left[R_{6}^{\bullet}\right]}{d t}=\sum_{i=1}^{5}\left(k_{p i 6}\left[R_{i}^{\bullet}\right]\left[M_{6}\right]+\overline{k_{p 6 i}} P_{6 i}\left[R_{i}^{\bullet}\right]\right)-\sum_{i=1}^{5}\left(k_{p 6 i}\left[R_{6}^{\bullet}\right]\left[M_{i}\right]+\overline{k_{p i 6}} P_{i 6}\left[R_{6}^{\bullet}\right]\right) \tag{3-134}
\end{align*}
$$

Assuming the steady state hypothesis of radical concentrations, the left sides of equations (3-129) to (3-134) become zero. They are rewritten as,

$$
\begin{align*}
& -\left[R_{1}^{\bullet}\right] \sum_{i=2}^{6}\left(k_{p 1 i}\left[M_{i}\right]+\overline{k_{p i 1}} P_{i 1}\right)+\left[R_{2}^{\bullet}\right]\left(k_{p 21}\left[M_{1}\right]+\overline{k_{p 12}} P_{12}\right)+\left[R_{3}^{\bullet}\right]\left(k_{p 31}\left[M_{1}\right]+\overline{k_{p 13}} P_{13}\right) \tag{3-135}\\
& +\left[R_{4}^{*}\right]\left(k_{p 41}\left[M_{1}\right]+\overline{k_{p 14}} P_{14}\right)+\left[R_{5}^{*}\right]\left(k_{p 51}\left[M_{1}\right]+\overline{k_{p 15}} P_{15}\right)+\left[R_{6}^{*}\right]\left(k_{p 61}\left[M_{1}\right]+\overline{k_{p 16}} P_{16}\right)=0 \\
& {\left[R_{1}^{\bullet}\right]\left(k_{p 12}\left[M_{2}\right]+\overline{k_{p 21}} P_{21}\right)-\left[R_{2}^{\bullet}\right] \sum_{\substack{i=1 \\
(i \neq 2)}}^{6}\left(k_{p 2 i}\left[M_{i}\right]+\overline{k_{p i 2}} P_{i 2}\right)+\left[R_{3}^{\bullet}\right]\left(k_{p 32}\left[M_{2}\right]+\overline{k_{p 23}} P_{23}\right)} \tag{3-136}\\
& +\left[R_{4}^{\bullet}\right]\left(k_{p 42}\left[M_{2}\right]+\overline{k_{p 24}} P_{24}\right)+\left[R_{5}^{\bullet 0}\right]\left(k_{p 52}\left[M_{2}\right]+\overline{k_{p 25}} P_{25}\right)+\left[R_{6}^{\bullet}\right]\left(k_{p 62}\left[M_{2}\right]+\overline{k_{p 26}} P_{26}\right)=0 \\
& {\left[R_{1}^{\bullet}\right]\left(k_{p 13}\left[M_{3}\right]+\overline{k_{p 31}} P_{31}\right)+\left[R_{2}^{*}\right]\left(k_{p 23}\left[M_{3}\right]+\overline{k_{p 32}} P_{32}\right)-\left[R_{3}^{\bullet}\right] \sum_{\substack{i=1 \\
(i \neq 3)}}^{6}\left(k_{p 3 i}\left[M_{i}\right]+\overline{k_{p i 3}} P_{i 3}\right)} \tag{3-137}\\
& +\left[R_{4}^{*}\right]\left(k_{p 43}\left[M_{3}\right]+\overline{k_{p 34}} P_{34}\right)+\left[R_{5}^{\bullet}\right]\left(k_{p 53}\left[M_{3}\right]+\overline{k_{p 35}} P_{35}\right)+\left[R_{6}^{*}\right]\left(k_{p 63}\left[M_{3}\right]+\overline{k_{p 36}} P_{36}\right)=0 \\
& {\left[R_{1}^{\cdot 0}\right]\left(k_{p 14}\left[M_{4}\right]+\overline{k_{p 41}} P_{41}\right)+\left[R_{2}^{*}\right]\left(k_{p 24}\left[M_{4}\right]+\overline{k_{p 42}} P_{42}\right)+\left[R_{3}^{*}\right]\left(k_{p 34}\left[M_{4}\right]+\overline{k_{p 43}} P_{43}\right)} \\
& -\left[R_{4}^{\cdot}\right] \sum_{\substack{i=1 \\
(i \neq 4)}}^{6}\left(k_{p 4 i}\left[M_{i}\right]+\overline{k_{p i 4}} P_{i 4}\right)+\left[R_{5}^{*}\right]\left(k_{p 54}\left[M_{4}\right]+\overline{k_{p 45}} P_{45}\right)+\left[R_{6}^{\cdot}\right]\left(k_{p 64}\left[M_{4}\right]+\overline{k_{p 46}} P_{46}\right)=0 \tag{3-138}\\
& {\left[R_{1}^{\bullet 0}\right]\left(k_{p 15}\left[M_{5}\right]+\overline{k_{p 51}} P_{51}\right)+\left[R_{2}^{\bullet 0}\right]\left(k_{p 25}\left[M_{5}\right]+\overline{k_{p 52}} P_{52}\right)+\left[R_{3}^{\bullet}\right]\left(k_{p 35}\left[M_{5}\right]+\overline{k_{p 53}} P_{53}\right)} \\
& +\left[R_{4}^{\bullet}\right]\left(k_{p 45}\left[M_{5}\right]+\overline{k_{p 54}} P_{54}\right)-\left[R_{5}^{\bullet}\right] \sum_{\substack{i=1 \\
(i \neq 5)}}^{6}\left(k_{p 5 i}\left[M_{i}\right]+\overline{k_{p i 5}} P_{i 5}\right)+\left[R_{6}^{*}\right]\left(k_{p 65}\left[M_{5}\right]+\overline{k_{p 56}} P_{56}\right)=0 \tag{3-139}
\end{align*}
$$

$$
\begin{align*}
& {\left[R_{1}^{*}\right]\left(k_{p 16}\left[M_{6}\right]+\overline{k_{p 61}} P_{61}\right)+\left[R_{2}^{*}\right]\left(k_{p 26}\left[M_{6}\right]+\overline{k_{p 62}} P_{62}\right)+\left[R_{3}^{*}\right]\left(k_{p 36}\left[M_{6}\right]+\overline{k_{p 63}} P_{63}\right)} \\
& +\left[R_{4}^{*}\right]\left(k_{p 46}\left[M_{6}\right]+\overline{k_{p 64}} P_{64}\right)+\left[R_{5}^{*}\right]\left(k_{p 56}\left[M_{6}\right]+\overline{k_{p 65}} P_{65}\right)-\left[R_{6}^{*}\right] \sum_{i=1}^{5}\left(k_{p 6 i}\left[M_{i}\right]+\overline{k_{p i 6}} P_{i 6}\right)=0 \tag{3-140}
\end{align*}
$$

The probability $P_{i j}$ is expressed in terms of rate constants and species concentrations as follows.

$$
\begin{equation*}
P_{i j}=\frac{k_{p i j}\left[R_{i}^{\bullet}\right]\left[M_{j}\right]-\overline{k_{p i j}}\left[R_{i j}^{\bullet}\right]}{\sum_{l=1}^{6} k_{p l j}\left[R_{l}^{\bullet}\right]\left[M_{j}\right]-\sum_{l=1}^{6} \overline{k_{p l j}}\left[R_{l j}^{\bullet}\right]}=\frac{k_{p i j}\left[R_{i}^{\bullet}\right]\left[M_{j}\right]-\overline{k_{p i j}} P_{i j}\left[R_{j}^{\bullet}\right]}{\sum_{l=1}^{6} k_{p l j}\left[R_{l}^{\bullet}\right]\left[M_{j}\right]-\sum_{l=1}^{6} \overline{k_{p l j}} P_{l j}\left[R_{j}^{\bullet}\right]} \tag{3-141}
\end{equation*}
$$

In order to eliminate radical concentration terms in equation (3-141) via the steady state hypothesis, the depropagating radical fractions are arranged into an $\mathbf{M} \cdot \mathbf{r}=\mathbf{b}$ form again.

$$
\begin{aligned}
& {\left[\begin{array}{c}
a \\
\left.\begin{array}{c}
a \\
k_{p 21}\left[M_{1}\right]+\overline{k_{p 12}} P_{12} \\
-k_{p 61}\left[M_{1}\right]-\overline{k_{p 16}} P_{16}
\end{array}\right)\binom{k_{p 31}\left[M_{1}\right]+\overline{k_{p 13}} P_{13}}{-k_{p 61}\left[M_{1}\right]-\overline{k_{p 16}} P_{16}}\binom{k_{p 41}\left[M_{1}\right]+\overline{k_{p 14}} P_{14}}{-k_{p 66}\left[M_{1}\right]-\overline{k_{p 16}} P_{16}}\binom{k_{p 51}\left[M_{1}\right]+\overline{k_{p 15}} P_{15}}{-k_{p 61}\left[M_{1}\right]-\overline{k_{p 16}} P_{16}} \\
\left.\binom{k_{p 12}\left[M_{2}\right]+\overline{k_{p 21}} P_{21}}{-k_{p 62}\left[M_{2}\right]-\overline{k_{p 26}} P_{26}} \begin{array}{l}
k_{p 32}\left[M_{2}\right]+\overline{k_{p 23}} P_{23} \\
-k_{p 62}\left[M_{2}\right]-\overline{k_{p 26}} P_{26}
\end{array}\right)\binom{k_{p+2}\left[M_{2}\right]+\overline{k_{p 24}} P_{24}}{-k_{p 62}\left[M_{2}\right]-\overline{k_{p 26}} P_{26}}\binom{k_{p 525}\left[M_{2}\right]+\overline{k_{p 25}} P_{25}}{-k_{p 62}\left[M_{2}\right]-\overline{k_{p 26}} P_{26}}
\end{array}\right.} \\
& \mathbf{M}=\left(\begin{array}{l}
\left.\binom{k_{p 13}\left[M_{3}\right]+\overline{k_{p 31}} P_{31}}{-k_{p 63}\left[M_{3}\right]-\overline{k_{p 36}} P_{36}}\binom{k_{p 23}\left[M_{3}\right]+\overline{k_{p 32}} P_{32}}{-k_{p 63}\left[M_{3}\right]-\overline{k_{p 36}} P_{36}} \quad c \quad\binom{k_{p 43}\left[M_{3}\right]+\overline{k_{p 34}} P_{34}}{-k_{p 63}\left[M_{3}\right]-\overline{k_{p 36}} P_{36}}\binom{k_{p 53}\left[M_{3}\right]+\overline{k_{p 35}} P_{35}}{-k_{p 63}\left[M_{3}\right]-\overline{k_{p 36}} P_{36}} \right\rvert\,
\end{array}\right. \\
& \binom{k_{p 14}\left[M_{4}\right]+\overline{k_{p 41}} P_{41}}{-k_{p 64}\left[M_{4}\right]-\overline{k_{p 46}} P_{46}}\binom{k_{p 24}\left[M_{4}\right]+\overline{k_{p 42}} P_{42}}{-k_{p 64}\left[M_{4}\right]-\overline{k_{p 46}} P_{46}}\binom{k_{p 34}\left[M_{4}\right]+\overline{k_{p 43}} P_{43}}{-k_{p 64}\left[M_{4}\right]-\overline{k_{p 46}} P_{46}} \quad d \quad\binom{k_{p 54}\left[M_{4}\right]+\overline{k_{p 45}} P_{45}}{-k_{p 64}\left[M_{4}\right]-\overline{k_{p 46}} P_{46}} \\
& {\left[\begin{array}{l}
k_{p 15}\left[M_{5}\right]+\overline{k_{p 51}} P_{51} \\
-k_{p 65}\left[M_{5}\right]-\overline{k_{p 56}} P_{56}
\end{array}\right)\binom{k_{p 25}\left[M_{5}\right]+\overline{k_{p 52}} P_{52}}{-k_{p 65}\left[M_{5}\right]-\overline{k_{p 56}} P_{56}}\binom{k_{p 35}\left[M_{5}\right]+\overline{k_{p 53}} P_{53}}{-k_{p 65}\left[M_{5}\right]-\overline{k_{p 56}} P_{56}}\binom{k_{p 45}\left[M_{5}\right]+\overline{k_{p 54}} P_{54}}{-k_{p 65}\left[M_{5}\right]-\overline{k_{p 56}} P_{56}} \quad e \quad e}
\end{aligned}
$$

where

$$
\begin{aligned}
& a=-\sum_{j=2}^{6}\left(k_{p 1 j}\left[M_{j}\right]+\overline{k_{p 11}} P_{j 1}\right)-k_{p 61}\left[M_{1}\right]-\overline{k_{p 16}} P_{16}, \quad b=-\sum_{\substack{j=1 \\
j \neq 2)}}^{6}\left(k_{p 2 j}\left[M_{j}\right]+\overline{k_{p j 2}} P_{j 2}\right)-k_{p 62}\left[M_{2}\right]-\overline{k_{p 26}} P_{26} \\
& c=-\sum_{\substack{j=1 \\
j=3)}}^{6}\left(k_{p 3 j}\left[M_{j}\right]+\overline{k_{p j 3}} P_{j 3}\right)-k_{p 65}\left[M_{3}\right]-\overline{k_{p 36}} P_{36}, \quad d=-\sum_{\substack{j=1 \\
(j \neq 4)}}^{6}\left(k_{p 4 j}\left[M_{j}\right]+\overline{k_{p j 4}} P_{j 4}\right)-k_{p 64}\left[M_{4}\right]-\overline{k_{p 46}} P_{46} \\
& e=-\sum_{\substack{j=1 \\
(j \neq 5)}}^{6}\left(k_{p 5 j}\left[M_{j}\right]+\overline{k_{p j 5}} P_{j 5}\right)-k_{p 65}\left[M_{5}\right]-\overline{k_{p 56}} P_{56}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{r}=\left[\begin{array}{cccc}
\Phi_{1}^{\cdot} & \Phi_{2}^{\cdot} & \Phi_{3}^{\cdot} & \Phi_{4}^{\cdot} \\
\Phi_{5}^{\bullet}
\end{array}\right]^{\prime} \\
& \mathbf{b}=\left[\begin{array}{l}
-k_{p 61}\left[M_{1}\right]-\overline{k_{p 16}} P_{16} \\
-k_{p 62}\left[M_{2}\right]-k_{p 26} \\
p_{26} \\
-k_{p 63}\left[M_{3}\right]-\overline{k_{p 36}} P_{36} \\
-k_{p 66}\left[M_{4}\right]-\overline{k_{p 46}} P_{46} \\
-k_{p 65}\left[M_{5}\right]-\overline{k_{p 56}} P_{56}
\end{array}\right]
\end{aligned}
$$

However, the probability terms are still in the equation $\mathbf{M} \cdot \mathbf{r}=\mathbf{b}$, with radical fractions and probabilities, and therefore the equation does not have an analytical solution. Hence, these nonlinear equations containing radical fractions and probabilities should be solved simultaneously by a numerical method. The number of variables in total is $n(n+1)$ for an n monomer system. In hexa-polymerization, for instance, 42 variables (36 probabilities and 6 radical fractions) are needed. The system of 42 nonlinear equations in $P_{i j}$ and Φ_{j}^{\cdot} can be solved either by Newton's method or the trust region method from the radical balance equations (3-135) to (3-140) and probability equation (3-141). Subsequently, the monomer balance equations (3-123) to (3-128) can be solved and further calculations of conversion, polymer composition, etc. are possible.

Considering depropagation, the sequence length probability $p_{i j}$ in equation (3-75) also needs to be redefined in equation (3-142). Again, the reader is cautioned so as the sequence length probability $p_{i j}$ (lower-case letter) in the left side of equation (3-142) is not confused with the probability $P_{i j}$ (upper-case letter) in the right side.

$$
\begin{equation*}
p_{i j}=\frac{k_{p i j}\left[R_{i}^{*}\right]\left[M_{j}\right]-\overline{k_{p i j}}\left[R_{i j}^{*}\right]}{\sum_{l=1}^{6} k_{p i l}\left[R_{i}^{*}\right]\left[M_{l}\right]-\sum_{l=1}^{6} \overline{k_{p i l}}\left[R_{i l}^{*}\right]}=\frac{\left.\left.k_{p i j}\right] R_{i}^{*}\right]\left[M_{j}\right]-\overline{k_{p i j}} P_{i j}\left[R_{j}^{*}\right]}{\sum_{l=1}^{6} k_{p i l}\left[R_{i}^{*}\right]\left[M_{l}\right]-\sum_{l=1}^{6} \overline{k_{p i l}} P_{i l}\left[R_{l}^{*}\right]} \tag{3-142}
\end{equation*}
$$

The next step is obtaining depropagation rate constants. In hexa-polymerization, 36 rate constants are necessary in total for a fully depropagating system. Krüger introduced the cross-depropagation ratios which can be estimated through experiment for a co-polymer model.

$$
\begin{equation*}
R_{1}^{\prime}=\frac{\overline{k_{p 12}}}{k_{p 21}} \quad R_{2}^{\prime}=\frac{\overline{k_{p 21}}}{k_{p 12}} \quad R_{11}^{\prime}=\frac{\overline{k_{p 11}}}{k_{p 12}} \quad R_{22}^{\prime}=\frac{\overline{k_{p 22}}}{k_{p 21}} \tag{3-143}
\end{equation*}
$$

Individual species equilibrium constants are expressed in terms of $R_{i i}^{\prime}$ and reactivity ratio $r_{i j}$.

$$
\begin{equation*}
K_{e q, i}=\frac{\overline{k_{p i i}}}{k_{p i i}}=\frac{R_{i i}^{\prime}}{r_{i j}} \tag{3-144}
\end{equation*}
$$

From the above information, the extended cross-depropagation ratios for a six component system are as follows.

$$
\begin{array}{llllll}
R_{1}^{\prime}=\frac{\overline{k_{12}}}{k_{21}} & R_{2}^{\prime}=\frac{\overline{k_{21}}}{k_{12}} & R_{3}^{\prime}=\frac{\overline{k_{13}}}{k_{31}} & R_{4}^{\prime}=\frac{\overline{k_{31}}}{k_{13}} & R_{5}^{\prime}=\frac{\overline{k_{14}}}{k_{41}} & R_{6}^{\prime}=\frac{\overline{k_{41}}}{k_{14}} \\
R_{7}^{\prime}=\frac{\overline{k_{15}}}{k_{51}} & R_{8}^{\prime}=\frac{\overline{k_{51}}}{k_{15}} & R_{9}^{\prime}=\frac{\overline{k_{16}}}{k_{61}} & R_{10}^{\prime}=\frac{\overline{k_{61}}}{k_{16}} & R_{11}^{\prime}=\frac{\overline{k_{23}}}{k_{32}} & R_{12}^{\prime}=\frac{\overline{k_{32}}}{k_{23}} \\
R_{13}^{\prime}=\frac{\overline{k_{24}}}{k_{42}} & R_{14}^{\prime}=\frac{\overline{k_{42}}}{k_{24}} & R_{15}^{\prime}=\frac{\overline{k_{25}}}{k_{52}} & R_{16}^{\prime}=\frac{\overline{k_{52}}}{k_{25}} & R_{17}^{\prime}=\frac{\overline{k_{26}}}{k_{62}} & R_{18}^{\prime}=\frac{\overline{k_{62}}}{k_{26}} \\
R_{19}^{\prime}=\frac{\overline{k_{34}}}{k_{43}} & R_{20}^{\prime}=\frac{\overline{k_{43}}}{k_{34}} & R_{21}^{\prime}=\frac{\overline{k_{35}}}{k_{53}} & R_{22}^{\prime}=\frac{\overline{k_{53}}}{k_{35}} & R_{23}^{\prime}=\frac{\overline{k_{36}}}{k_{63}} & R_{24}^{\prime}=\frac{\overline{k_{63}}}{k_{36}} \\
R_{25}^{\prime}=\frac{\overline{k_{45}}}{k_{54}} & R_{26}^{\prime}=\frac{\overline{k_{54}}}{k_{45}} & R_{27}^{\prime}=\frac{\overline{k_{46}}}{k_{64}} & R_{28}^{\prime}=\frac{\overline{k_{64}}}{k_{46}} & R_{29}^{\prime}=\frac{\overline{k_{56}}}{k_{65}} & R_{30}^{\prime}=\frac{\overline{k_{65}}}{k_{56}} \\
R_{101}^{\prime}=\frac{\overline{k_{11}}}{k_{12}} & R_{202}^{\prime}=\frac{\overline{k_{22}}}{k_{21}} & R_{303}^{\prime}=\frac{\overline{k_{33}}}{k_{31}} & R_{404}^{\prime}=\frac{\overline{k_{44}}}{k_{41}} & R_{505}^{\prime}=\frac{\overline{k_{55}}}{k_{51}} & R_{606}^{\prime}=\frac{\overline{k_{66}}}{k_{61}}
\end{array}
$$

$R^{\prime}{ }_{101}, R^{\prime}{ }_{202}$, etc., are used to avoid overlapping with $R^{\prime}{ }_{11}$ and $R^{\prime}{ }_{22}$.
Figures 3.7 and 3.8 show example simulation plots with depropagation. The Mayo-Lewis and Krüger model predictions are compared with experimental data from Martinet and Guillot (1999) for the instantaneous polymer composition drift of AMS in a AMS/MMA copolymer at 60 and $80^{\circ} \mathrm{C}$. Due to the low ceiling temperature of AMS $\left(61^{\circ} \mathrm{C}\right)$, depropagation becomes dominant as the reaction temperature and the AMS feed ratio increase. When $f_{\text {AMS }}$ is greater than 0.5 , the Mayo-Lewis model assuming no depropagation does not hold any longer. Instead, the behaviour of polymer composition $F_{\text {AMS }}$ is explained by Krüger's model very well at both temperature levels.

Figure 3.7. Simulation of composition drift of $F_{\text {AMS }}$ in AMS/MMA co-polymerization $\mathrm{T}=60^{\circ} \mathrm{C}, \mathrm{AIBN}=\mathbf{0 . 5} \mathbf{~ m o l} \%$

Figure 3.8. Simulation of composition drift of $\boldsymbol{F}_{\text {AMS }}$ in AMS/MMA co-polymerization $\mathrm{T}=\mathbf{8 0}{ }^{\circ} \mathrm{C}, \mathrm{AIBN}=\mathbf{0 . 5} \mathbf{~ m o l} \%$

Chapter 4

Model and Simulation Features

4.1 Description

The multi-component polymerization simulation model was coded in MATLAB. Preliminary benchmarking was done versus predictions from WATPOLY, the comprehensive simulator and database package previously developed in the Department of Chemical Engineering, University of Waterloo, in Professor A. Penlidis’ group (e. g., see Gao and Penlidis, 1996, 1998, 2000), which was coded in QuickBASIC under an MS-DOS environment. MATLAB offers powerful and convenient matrix calculations, various library functions for numerical computing, and easy graphical output presentations. Moreover, MATLAB is running under the Windows environment.

This modeling work started from homo-polymerization cases and extended to co-, ter-, and multi-component ones. Therefore, it can cover up to six monomers and is still further extendable via code generalization. The overall coded MATLAB program is composed of several functions: monomer and ingredients kinetic database functions, the subroutine model function containing the model differential equations, and the main function for calculating and plotting physical and chemical state variables of interest. The considered features in the model are as follows.

1. Bulk/solution polymerization
2. Batch/semi-batch reactor configuration
3. Isothermal/non-isothermal reaction by temperature profile
4. Pseudo rate constant method
5. Diffusion-controlled kinetics
6. Thermal initiation for styrenics
7. Branching/crosslinking (method of moments calculations)
8. Depropagation (Krüger's model extended to six monomers)

The model can predict the following output profiles.

1. Total/partial conversion
2. Overall/individual rate of polymerization
3. Total reaction volume (shrinkage)
4. Monomer/radical species concentrations
5. Other ingredients (e. g., initiator, solvent, CTA, inhibitor, etc.) concentrations
6. Residual monomer fraction and radical fraction
7. Instantaneous/accumulated polymer composition
8. Instantaneous/accumulated polymer composition distribution
9. Instantaneous/accumulated number and weight average molecular weights
10. Instantaneous/accumulated polydispersity index (PDI)
11. Instantaneous/accumulated full MWD (for linear chains)
12. Sequence length distribution
13. Instantaneous/accumulated number and weight average sequence lengths
14. Instantaneous/accumulated triad fractions
15. Average number of tri/tetra-functional branches per molecule
16. Polymer glass transition temperature and free volume characteristics
17. Pseudo termination/propagation/transfer reaction constants and initiator efficiency

4.2 Six-component polymerization recipe

The multi-component polymerization recipe (six monomer system) is described in Table 4.1. An extensive database of physico-chemical characteristics for each monomer is
summarized in Appendix C, containing Styrene (Sty), n-butyl acrylate (BA), n-butyl methacrylate (BMA), 2-hydroxyethyl acrylate (HEA), and acrylic acid (AA). No information was found in the literature for hydroxybutyl acrylate (HBA). Regular and elevated temperature ranges can be handled by the model, including thermal initiation (of styrenics) and depropagation scenarios. Since experimental data for ter-, tetra-, penta-, and hexapolymerizations are very scarce (if non-existent), it was deemed better to test the model starting from known homo-polymerizations and extend to multi-component cases where literature data were available.

Ingredients	Reactor Configuration	Temperature
1. Monomers		
Styrene (10 wt\%)		
n -Butyl acrylate (30 wt\%)		
n -Butyl methacrylate (15 wt\%)		
Hydroxyehtyl acrylate (20 wt\%)		$50 \sim 180^{\circ} \mathrm{C}$
Hydroxybutyl acrylate (20 wt\%)	Batch/semi-batch	
Acrylic acid (5 wt\%)		
2. Solvent		
Xylene or Xylene/Ketones		
3. Initiator		
Di-tert-butyl peroxide (DTBP, trigonox B)		

Table 4.1. Typical multi-component polymerization recipe

Chapter 5

Model Testing/Troubleshooting

In this chapter, the multi-component polymerization model is tested with experimental data from various monomer systems: homo-polymerizations of Sty, MMA, EA, AN, and VAc, and co-polymerizations of Sty/EA, Sty/AN, BA/VAc, and MMA/VAc. Experimental results and model predictions are presented according to various recipes from literature sources. This exercise clearly shows that the multi-component model can successfully reduce to simpler cases, thus increasing one's confidence in the reliability of the model.

5.1 Sty homo-polymerization

Sty is one of the monomers that have been extensively studied. Figure 5.1 shows Sty bulk homo-polymerization model predictions and experimental data (Arai and Saito, 1976). We can see the autoacceleration and glass-transition effect in the plot. Predictions and data show good agreement over the entire conversion range.

The most distinctive characteristic of Sty is that it undergoes thermal self-polymerization without initiators at higher temperatures (over $100^{\circ} \mathrm{C}$). Additionally, chain transfer to thermal initiation by-products can affect molecular weights (Hui and Hamielec, 1972), according to:

$$
\begin{equation*}
\tau_{\text {total }}=\tau-\left(1.013 \times 10^{-3}\right) \log _{10}\left(\frac{473.12-T}{202.5}\right) X \tag{5-1}
\end{equation*}
$$

where $\tau=\frac{k_{t d}\left[R^{\bullet}\right]+k_{f C T A}[C T A]+k_{f S}[S]+k_{f Z}[Z]}{k_{p}[M]}+\frac{k_{f n}}{k_{p}}, T$ is the reaction temperature (K), and X is overall conversion.

Figures 5.2 and 5.3 are example plots of thermal initiation at $170^{\circ} \mathrm{C}$ and the experimental data were obtained from Hui and Hamielec (1972). The model gives satisfactory predictions of both conversion and molecular weights.

In solution polymerization, an adequate amount of solvent helps maintain low viscosity of the reaction medium and moderates diffusion-controlled behaviour. This is observed in Figure 5.4, the example plot of solution polymerization. Experimental data are again from Hui and Hamielec (1972).

Figure 5.1. Simulation of bulk polymerization of Sty at $60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1 6 4} \mathbf{M}$

Figure 5.2. Simulation of bulk thermal polymerization of Sty at $170^{\circ} \mathrm{C}$

Figure 5.3. Simulation of molecular weights of Sty thermal polymerization at $170^{\circ} \mathrm{C}$

Figure 5.4. Simulation of solution polymerization of Sty
$\mathbf{T}=\mathbf{8 0}{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 4} \mathrm{M}$ and $[\text { Toluene }]_{0}=\mathbf{1 . 8} \mathrm{M}$

5.2 MMA homo-polymerization

MMA is another widely studied monomer. The model is tested with the experimental data by Kumar and Gupta (1991). They conducted bulk polymerization experiments and measured conversion and molecular weights at 50,70 , and $90^{\circ} \mathrm{C}$ using two AIBN initiator concentration levels of $0.0258 \mathrm{~mol} / \mathrm{L}$ and $0.01548 \mathrm{~mol} / \mathrm{L}$. Figures 5.5 and 5.6 represent model predictions and experimental data of conversion, and Figures 5.7 to 5.10 show the number/weight average molecular weight calculations using the corresponding recipes. The model predictions again follow the experimental data well in this monomer system.

The previous figures also indicate that the model successfully explains free-radical polymerization trends. Comparing Figures 5.7 and 5.8, as well as Figures 5.9 and 5.10, it is observed that molecular weights decrease as reaction temperature is higher. Also, comparing Figures 5.7 and 5.9, as well as Figures 5.8 and 5.10 , we can see that molecular weights increase as initiator concentration is lower.

Figure 5.5. Simulation of bulk polymerizations of MMA at $\mathbf{5 0}, \mathbf{7 0}$, and $90^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 2 5 8} \mathbf{~ M}$

Figure 5.6. Simulation of bulk polymerizations of MMA at 50,70 , and $90^{\circ} \mathrm{C},\left[\mathrm{AIBN}_{0}=\mathbf{0 . 0 1 5 4 8} \mathbf{~ M}\right.$

Figure 5.7. Molecular weight predictions for MMA polymerization at $70^{\circ} \mathrm{C},[\operatorname{AIBN}]_{0}=\mathbf{0 . 0 2 5 8} \mathbf{~ M}$

Figure 5.8. Molecular weight predictions for MMA polymerization at $90^{\circ} \mathrm{C},[\operatorname{AIBN}]_{0}=\mathbf{0 . 0 2 5 8} \mathbf{~ M}$

Figure 5.9. Molecular weight predictions for MMA polymerization at $70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1 5 4 8} \mathbf{~ M}$

Figure 5.10. Molecular weight predictions for MMA polymerization at $90^{\circ} \mathrm{C},[\operatorname{AIBN}]_{0}=0.01548 \mathbf{~ M}$

5.3 EA homo-polymerization

Figures 5.11 to 5.13 show good agreement between model predictions and experimental data obtained by McIsaac (1994). Two initiator concentration levels ($0.0002 \mathrm{~mol} / \mathrm{L}$ and $0.0008 \mathrm{~mol} / \mathrm{L})$ and three temperature levels $\left(40,50\right.$, and $\left.60^{\circ} \mathrm{C}\right)$ were used for the recipes. It is reported that the molecular weight of the polymer formed in bulk EA homo-polymerization is very high, and the system becomes highly viscous shortly after the reaction starts. This is the clue that EA exhibits a strong autoacceleration starting at low conversion levels with no limiting conversion. Considerable branching takes place during the reaction due to transfer to polymer and terminal double bond polymerization. However, the parameters involved in branching reactions (transfer to polymer and terminal double bond polymerization) are not well known.

Figure 5.11. Simulation of bulk polymerizations of EA, $[\text { AIBN }]_{0}=0.0008 \mathrm{M}$

Figure 5.12. Simulation of bulk EA polymerizations at $40^{\circ} \mathrm{C}$

Figure 5.13. Simulation of bulk EA polymerizations at $50^{\circ} \mathrm{C}$

5.4 AN homo-polymerization

Figure 5.14 shows model predictions and experimental data at three different sets of temperature (40,60 , and $80^{\circ} \mathrm{C}$) and initiator concentrations (2, 0.2 , and $0.05 \mathrm{wt} \%$) from Garcia-Rubio et al. (1979). Despite the reasonable trends, what should be noted is that AN polymerization is a heterogeneous reaction. In bulk polymerization, polymer precipitates in the reaction medium (monomer) and forms a polymer-rich phase, which makes some kinetic rate constants different from those in a homogeneous reaction. The complex mechanism of phase separation is not completely understood.

Figure 5.14. Simulation of bulk polymerizations of AN

5.5 VAc homo-polymerization

Vinyl acetate (VAc) is characterized by long-chain branching formation. Figure 5.15 shows model predictions and experimental results at $50^{\circ} \mathrm{C}$ and $0.004 \mathrm{~mol} / \mathrm{L}$ of AIBN from Friis and Nyhagen (1973). The rate of polymerization begins to increase mildly around 30% conversion level and no limiting conversion is observed. Our model predictions are again satisfactory.

Figure 5.15. Simulation of bulk polymerization of VAc at $50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 0 4} \mathbf{~ m o l} / \mathrm{L}$

5.6 Sty/EA co-polymerization

Full conversion range experiments of Sty/EA co-polymerization were conducted in our research group (McManus and Penlidis, 1996) for the first time. Sty and EA monomers are different from each other in physical and chemical properties (like in Sty/BA case) and the co-polymer properties also largely depend on the dominant monomer content. The reactivity ratios are $r_{\text {Sty-EA }}=0.717, r_{\text {EA-Sty }}=0.128$, estimated by the EVM method. Figures 5.16 and 5.17 represent conversion and polymer composition profiles as a function of Sty (monomer 1) content in the feed $\left(f_{10}=f_{\text {Sty } 0}=0.152,0.463\right.$, and 0.762$)$ at $50^{\circ} \mathrm{C}$ with $[\mathrm{AIBN}]_{0}=0.05$ $\mathrm{mol} / \mathrm{L}$. Figure 5.16 shows that polymerization rate becomes slower as Sty becomes more dominant in the monomer feed ratio. Simulation results show reasonable agreement with experimental data throughout the entire conversion when $f_{10}=f_{\text {Sty } 0}=0.152$ and 0.453 . However, some discrepancies are observed from around 40% of conversion in the azeotropic composition case $\left(f_{\text {sty } 0}=0.762\right)$. The model prediction of accumulated polymer composition of Sty explains the experimental data well in Figure 5.17.

Sahloul (2004) conducted solution co-polymerization (Sty/EA $=50 / 50 \mathrm{wt} \%$ in the feed) at $130^{\circ} \mathrm{C}$, with m -Xylene as solvent ($60 \mathrm{wt} \%$ of total mixture), tert-butyl peroxybenzoate (TBPB) as initiator ($1.5 \mathrm{wt} \%$ of total mixture), and octanethiol ($0.5 \mathrm{wt} \%$ of total mixture) as CTA. The model follows the co-polymerization trends satisfactorily in Figures 5.18 and 5.19.

The calculation of the amounts of monomers, solvent, and initiator in this copolymerization recipe is as follows.

Total monomer amounts (grams): 100 (Sty/EA = 50/50)
Total mixture amounts (grams): $100+x$ (solvent) $+y$ (initiator) $+z$ (CTA)
Ratio of solvent in total mixture: $\frac{x}{x+100+y+z}=0.6$
Ratio of initiator in total mixture: $\frac{y}{x+100+y+z}=0.015$
Ratio of CTA in total mixture: $\frac{z}{x+100+y+z}=0.005$

Figure 5.16. Simulation of bulk co-polymerizations of Sty/EA at T $=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 5} \mathrm{M}(1=$ Sty $)$

Figure 5.17. Cumulative polymer composition of Sty in Sty/EA co-polymerization $\mathrm{T}=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 5} \mathbf{~ M}(1=$ Sty $)$

Figure 5.18. Simulation of solution co-polymerization of Sty/EA (50/50 wt\%)
$\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathrm{wt} \%$ of total mixture, $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ and Octanethiol $=\mathbf{0 . 5} \mathbf{w t} \%$ of total monomer

Figure 5.19. Cumulative polymer composition of Sty in Sty/EA (50/50 wt \%) co-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ and Octanethiol $=0.5 \mathrm{wt} \%$ of total monomer

5.7 StyIAN co-polymerization

Sty/AN co-polymer product is used as a common thermoplastic with good mechanical/chemical properties, and easy to process as well. Sty and AN monomers are also often polymerized with butadiene to produce ABS rubber. In spite of the academic/industrial interest, its full conversion kinetics have been largely unstudied. Garcia-Rubio et al. (1985) reported the reactivity ratios as $\left(r_{\text {Sty-AN }}, r_{\text {AN-Sty }}\right)=(0.36,0.078)$ along with full conversion experimental data.

As mentioned earlier, AN exhibits heterogeneous homo-polymerization and this may affect co-polymerization too. Garcia-Rubio et al. (1985) observed that Sty/AN in bulk is a homogeneous process throughout most of the conversion range when the Sty (monomer 1) initial feed composition is higher than 0.5 , hence it was possible to test our model with the experimental data. Figure 5.20 represents conversion profiles of bulk co-polymerization changing $f_{\text {sty0 }}\left(f_{10}\right)$ from 0.5 to 0.9 . Discrepancies start manifesting themselves at Sty content of 70%.

In Figure 5.21, our model predictions of residual Sty monomer mole fraction acceptably follow experimental data. It should be noted that the azeotropic point ($f_{\text {azeo }}$) of this system is expected to exist between 0.5 and 0.6 , after which the decreasing trend of residual monomer starts to reverse in Figure 5.21. This is an important point indicating which monomer is preferentially incorporated into the polymer, determined by reactivity ratios. AN has basically about five times faster a homo-propagation rate constant than Sty, and the crosspropagation rate of AN radical with Sty monomer is about twenty times more favored than the reverse cross-propagation. In this system, Sty monomer is more readily incorporated into polymer than AN monomer when $f_{\text {Sty } 0}$ is 0.5 , a case slightly lower than the azeotropic point and the opposite phenomenon happens at mole fractions higher than the azetrope. The trends are expected to level off at the limiting conversion, after which composition will stay constant.

Figure 5.22 shows accumulated number average sequence length of Sty (predictions and experimental data). This plot helps to understand how Sty/AN microstructure will change
throughout the entire conversion. When Sty and AN molar contents are similar in the system, Sty average sequence length is located slightly above one and the chain develops almost like an alternating co-polymer ($-\mathrm{ABABAB}-$). As $f_{\text {Sty } 0}$ increases, the sequence length also increases, especially at high conversion. Then the monomer sequencing patterns resemble those of a block co-polymer (-AAABBBAA-). Model trends agree well with the experimental data.

Figure 5.20. Simulation of bulk co-polymerizations of Sty/AN $\mathrm{T}=60^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1$ = Sty $)$

Figure 5.21. Simulation of residual mole fractions of Sty in Sty/AN co-polymerization $\mathrm{T}=60^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty $)$

Figure 5.22. Simulation of accumulated number average sequence lengths of Sty in Sty/AN co-polymerization, $\mathrm{T}=60^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty $)$

5.8 BA/VAc co-polymerization

Using EVM, the reactivity ratios were estimated as $\left(r_{\mathrm{BA}-\mathrm{VAc}}, r_{\mathrm{VAc}-\mathrm{BA}}\right)=(5.939,0.026)$ by Dubé et al. (1995). No azeotropic composition exists in this monomer system. Figure 5.23 shows the conversion profile of bulk co-polymerization at $60^{\circ} \mathrm{C}$ with $[\mathrm{AIBN}]_{0}=0.00054$ $\mathrm{mol} / \mathrm{L}$ and $f_{\mathrm{BA} 0}=0.80$. The general trend looks like solution polymerization. Some discrepancies between model predictions and experimental data are observed over 70% conversion. Due to the presence of VAc monomer, reactivity ratios differ widely from each other, and much more BA monomer is consumed at the early stages of the reaction. VAc is incorporated into the polymer after the majority of BA is depleted in the reaction mixture. The corresponding polymer composition over conversion is depicted in Figure 5.24. Model predictions generally follow the trend of composition drift.

Figure 5.23. Simulation of bulk co-polymerization of BA/VAc $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 0 0 5 4} \mathrm{M}$, and $\boldsymbol{f}_{\mathrm{BA} 0}=0.80$

Figure 5.24. Cumulative polymer composition of BA in BA/VAc co-polymerization $\mathrm{T}=\mathbf{6 0}{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 0 0 5 4} \mathrm{M}$, and $\mathrm{f}_{\mathrm{BA} 0}=\mathbf{0 . 8 0}$

5.9 MMA/VAc co-polymerization

MMA and VAc homo-polymerizations show different kinetic behaviours. MMA polymer is linear and reacts much slower than VAc, which exhibits significant long-chain branching. Reactivity ratios are $\left(r_{\text {MMA-VAc }}, r_{\text {Vac-MMA }}\right)=(24.0254,0.026107)$ (by EVM method, Dubé et al. (1995)). Due to the large difference between reactivity ratios, both MMA and VAc radicals prefer to react with MMA monomer and this leads to a significant composition drift and a two-stage 'double rate phenomenon'.

Figure 5.25 exhibits this effect very well. Experimental conditions were set as $\mathrm{T}=60^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.01 \mathrm{~mol} / \mathrm{L}$, and $f_{\mathrm{MMA} 0}=0.30$. Almost a virtual MMA "homo-polymerization" prevails at the early stage of the reaction, up to about 30% conversion level, whereas the second stage is dominated by VAc "homo-polymerization". There is a drastically rapid increase in conversion starting at the second stage because the VAc propagation rate constant is much higher than that of MMA. In Figures 5.26 and 5.27, severe polymer composition drift and a steep increase in weight average molecular weight are also observed after the second stage due to the double rate phenomenon and branching reactions of VAc by transfer to polymer and terminal double bond polymerization. Our model follows these trends satisfactorily.

Figure 5.25. Simulation of bulk co-polymerization of MMA/VAc $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and $\mathrm{f}_{\mathrm{MMA0}}=\mathbf{0 . 3 0}$

Figure 5.26. Cumulative polymer composition of MMA in MMA/VAc co-polymerization $\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and $f_{\mathrm{MMA} 0}=0.30$

Figure 5.27. Molecular weight averages of MMA/VAc co-polymerization $\mathbf{T}=\mathbf{6 0}{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and $f_{\text {MMA }}=\mathbf{0 . 3 0}$

Chapter 6

Multi-component Modeling Case Studies

In this chapter, the multi-component polymerization model is tested with experimental data which are more relevant to the recipe mentioned in chapter 4: homo-polymerizations of BA, BMA, and HEA, co-polymerizations of Sty/BA, BA/MMA, and Sty/HEA, terpolymerizations of BA/MMA/VAc, Sty/EA/HEA, Sty/EA/MAA, EA/HEA/MAA, and finally, tetra-polymerization of Sty/EA/HEA/MAA.

6.1 BA homo-polymerization

Kinetic information on BA is not well known and experimental information is not as readily available as for Sty or MMA. Dubé et al. (1991) performed full conversion range experiments of BA polymerization using a 2^{2} factorial design $\left(\mathrm{T}=50\right.$ and $60^{\circ} \mathrm{C}$, and $[\mathrm{AIBN}]_{0}$ $=0.001 \mathrm{M}, 0.00025 \mathrm{M})$. BA polymerization is fast, with a high k_{p} value, and exhibits gel effect but no limiting conversion, as shown in Figures 6.1 and 6.2. It is reported that the glass transition temperature of a BA polymer is low (about $-50{ }^{\circ} \mathrm{C}$) and there is significant branching formation via transfer to polymer and terminal double bond polymerization. The model follows the experimental data well at low to medium conversion levels, but some discrepancies are observed at high conversion level. Due to complete lack of data in the literature, the number/weight average molecular weight predictions could not be compared.

Figure 6.1. Simulation of bulk polymerizations of BA at $50^{\circ} \mathrm{C}$

Figure 6.2. Simulation of bulk polymerizations of BA at $60^{\circ} \mathrm{C}$

6.2 BMA homo-polymerization

Model predictions are compared with experimental data reported by Nair and Muthana (1961). They obtained conversion data at $60^{\circ} \mathrm{C}$ using two kinds of initiators, $2,2^{\prime}$-azo-bisisobutyonitrile (AIBN) and benzoyl peroxide (BPO). Figures 6.3 and 6.4 represent the bulk polymerization results at different concentration levels of AIBN and BPO, respectively. Autoacceleration starts around 30% conversion and there is no limiting conversion. The model predictions are good.

Figure 6.3. Simulation of bulk polymerizations of BMA at $60^{\circ} \mathrm{C}$, AIBN as initiator

Figure 6.4. Simulation of bulk polymerizations of BMA at $60^{\circ} \mathrm{C}, \mathrm{BPO}$ as initiator

6.3 HEA homo-polymerization

Kim (1994) studied Sty/HEA co-polymerization kinetics. Based on his data, we estimated the HEA homo-polymerization kinetic data. Our model was also compared with experimental data at three different temperature levels $\left(50,60\right.$, and $\left.70^{\circ} \mathrm{C}\right)$ with $6.6 \mathrm{E}-5$ moles of BPO of Vargün and Usanmaz (2005) in Figure 6.5. Fast reaction, strong autoacceleration, and no limiting conversion are observed in the plot and some discrepancies are found at high conversion level and higher temperature (60 and $70^{\circ} \mathrm{C}$). This monomer is used later for further model testing of co-, ter-, and tetra-polymerizations.

Figure 6.5. Simulation of bulk polymerizations of HEA, BPO $=6.6 \mathrm{E}-5 \mathrm{~mol}$

6.4 Sty/BA co-polymerization

The two monomers show fairly different polymerization characteristics. Sty homopolymer is hard and tough with high glass transition temperature $\left(T_{g}\right)$ around $105^{\circ} \mathrm{C}$, while BA is flexible and rubbery with low T_{g}, around $-45^{\circ} \mathrm{C}$. BA homo-polymerization exhibits its gel effect early with no limiting conversion and Sty homo-polymerization shows the opposite behaviour. Therefore, the overall kinetic behaviour of co-polymerization mainly relies on which monomer is more dominant in the monomer feed.

Dubé et al. (1990) investigated Sty/BA co-polymerization kinetics and carried out full conversion range experiments under a variety of reaction conditions. The estimated reactivity ratios are $r_{\text {Sty-BA }}=0.956, r_{\mathrm{BA}-\mathrm{Sty}}=0.183$. Figures 6.6 to 6.11 represent simulation of bulk copolymerizations with three initial monomer feed compositions $\left(f_{\text {Sty } 0}=0.258,0.600\right.$, and 0.942) at $50^{\circ} \mathrm{C}$ and two initiator concentration levels, $[A I B N]_{0}=0.05$ and $0.1 \mathrm{~mol} / \mathrm{L}$. In Figures 6.6 and 6.7, as Sty content becomes more dominant in the monomer feed composition, we can see that polymerization rate becomes slower. This makes sense because Sty homo-polymerization rate is slower than BA homo-polymerization.

Figures 6.8 and 6.9 show the average cumulative composition of Sty monomer in the copolymer throughout the entire conversion. As Sty content increases in the reaction medium, the extent of 'composition drift' is observed to decrease. Looking at the reactivity ratios, the value of $r_{\text {Sty-BA }}$ is almost equal to one, which means that the probability of reaction of Sty radical and BA monomer is the same as that of Sty radical and Sty monomer. On the other hand, the low value of $r_{\mathrm{BA}-\text {-Sty }}$ means BA radical favors Sty monomer over its own monomer species. Therefore, it is expected that Sty monomer is incorporated into the polymer at the early stages of the reaction and hence the Sty cumulative composition $\left(\overline{F_{S y}}\right)$ decreases when the Sty monomer feed content $\left(f_{\text {Sty } 0}\right)$ is lower. At $f_{\text {Sty } 0}=0.942$, the cumulative composition does not fall because it is the azeotropic composition of the co-polymer.

Figures 6.10 and 6.11 are simulations of molecular weight averages of the co-polymer when $f_{\text {Sty }}$ is 0.942 . Predictions generally agree with the experimental data but some
discrepancies are observed at very high conversion. However, these may be due to erroneous measurements equally well.

Figure 6.6. Simulation of bulk co-polymerizations of Sty/BA, $T=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty $)$

Figure 6.7. Simulation of bulk co-polymerizations of Sty/BA, $T=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.1 \mathrm{M}(1=$ Sty)

Figure 6.8. Cumulative polymer compositions of Sty in Sty/BA co-polymerization $\mathrm{T}=50{ }^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty $)$

Figure 6.9. Cumulative polymer compositions of Sty in Sty/BA co-polymerization $\mathrm{T}=50^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=0.1 \mathrm{M}(1=$ Sty $)$

Figure 6.10. Molecular weight averages of Sty/BA co-polymerization
$\mathrm{T}=50{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}$, and $\boldsymbol{f}_{\mathrm{Sty} 0}=0.942$

Figure 6.11. Molecular weight averages of Sty/BA co-polymerization $\mathrm{T}=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.1 \mathrm{M}$, and $\boldsymbol{f}_{\text {Sty0 }}=0.942$

6.5 BA/MMA co-polymerization

Dubé et al. (1995) investigated BA/MMA, BA/VAc, and MMA/VAc co-polymer systems as part of a MMA/BA/VAc ter-polymerization study. Reactivity ratios were estimated as $r_{\text {MMA-BA }}=1.789$ and $r_{\mathrm{BA}-\mathrm{MMA}}=0.297$ (by EVM method), which means that there is no azeotropic composition in this system and hence composition drift is expected for all monomer feed compositions. Figures 6.12 and 6.13 represent conversion profiles as a function of BA feed fractions $\left(f_{\text {BA } 0}=0.439\right.$ and 0.163$)$ at $60^{\circ} \mathrm{C}$ with two initiator levels $\left([\operatorname{AIBN}]_{0}=0.05\right.$ and $\left.0.1 \mathrm{~mol} / \mathrm{L}\right)$. For the low BA content experiment $\left(f_{\mathrm{BA} 0}=0.163\right)$, a limiting conversion is observed in the model prediction plots, which disagrees with the experimental data.

Figures 6.14 and 6.15 show the composition drift of BA in the polymer. Initiator concentration change does not affect the drift and more drift is observed at $f_{\text {BA } 0}=0.439$ (Figure 6.14) than $f_{\text {BA0 }}=0.163$ (Figure 6.15). Figures 6.16 to 6.19 are the measured average molecular weights and prediction plots. Comparing Figures 6.16 and 6.17, and Figures 6.18 and 6.19, the higher initiator amount reduces molecular weights in both cases. More discrepancies are observed at low BA feed fractions, consistent with the conversion discrepancies above. Model predictions, however, give reasonable trends for this system.

Alb et al. (2006) conducted BA/MMA solution co-polymerization with $70 \mathrm{wt} \%$ of butyl acetate solvent and $2 \mathrm{wt} \%$ of AIBN initiator at $66^{\circ} \mathrm{C}$ under different initial monomer feed ratios (weight basis) using an automatic continuous online spectrum monitoring technique, which enables to calculate instantaneous polymer compositions. Note that Figure 6.20 represents the instantaneous (not cumulative) composition drift of BA as a function of conversion. Looking at the reactivity ratios, it is evident that MMA incorporation into the polymer is more favored than BA , which leads to larger composition drift at lower initial BA feed ratios because MMA is depleted earlier than BA.

This can also be verified with the corresponding differential co-polymer composition distribution in Figure 6.21. The values of the y-axis represent the absolute values of the infinitesimal change of total conversion divided by the infinitesimal change of instantaneous
polymer composition of BA, namely the values of inverse slope in Figure 6.20. At the early stages of reaction, more MMA monomer is incorporated into the co-polymer than BA monomer and this does not change much the polymer composition of BA. Therefore, it is observed that with a higher initial MMA content in the system, the slope $\left|d F_{\mathrm{BA}} / d X\right|$ becomes smaller in Figure 6.20 , while the inverse slope $\left|d X / d F_{\mathrm{BA}}\right|$ (the y-value, calculated as $\left|\Delta X / \Delta F_{\mathrm{BA}}\right|$ numerically) becomes larger in Figure 6.21 (the prediction curves are also changing from ' J-shape' to 'U-shape').

It has been reported by Meyer and Lowry (1965) that this 'U-shaped' differential copolymer composition distribution is considered as characteristic of "incompatible" copolymerizations when the differences between reactivity ratios are large. During the entire reaction, the virtual "homo-polymerization" of the more reactive monomer species is favored initially, while the "homo-polymerization" of the other one happens during the final stages of co-polymerization. This also applies to the 'double rate phenomenon' case of MMA/VAc copolymerization in section 5.9.

Figure 6.12. Simulation of bulk co-polymerizations of BA/MMA, $\mathbf{T}=\mathbf{6 0}{ }^{\circ} \mathrm{C}, \boldsymbol{f}_{\mathrm{BA}}=\mathbf{0 . 4 3 9}$

Figure 6.13. Simulation of bulk BA/MMA co-polymerizations, $\mathbf{T}=\mathbf{6 0}{ }^{\circ} \mathrm{C}$ and $\boldsymbol{f}_{\mathrm{BA} 0}=\mathbf{0 . 1 6 3}$
Cumulative composition vs conversion

Figure 6.14. Cumulative polymer composition of BA in BA/MMA co-polymerization $\mathbf{T}=60^{\circ} \mathrm{C}$ and $\boldsymbol{f}_{\text {BA0 }}=\mathbf{0 . 4 3 9}$

Figure 6.15. Cumulative polymer composition of BA in BA/MMA co-polymerization $\mathrm{T}=60^{\circ} \mathrm{C}$ and $f_{\mathrm{BA} 0}=\mathbf{0 . 1 6 3}$

Figure 6.16. Molecular weight averages of BA/MMA co-polymerization $\mathrm{T}=\mathbf{6 0}{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 0 5} \mathrm{M}$, and $f_{\text {BA }}=0.439$

Figure 6.17. Molecular weight averages of BA/MMA co-polymerization
$\mathrm{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and $\boldsymbol{f}_{\mathrm{BA} 0}=\mathbf{0 . 4 3 9}$

Figure 6.18. Molecular weight averages of BA/MMA co-polymerization $\mathrm{T}=60^{\circ} \mathrm{C},\left[\mathrm{AIBN}_{0}=0.005 \mathrm{M}\right.$, and $f_{\text {BA } 0}=0.163$

Figure 6.19. Molecular weight averages of $B A / M M A$ co-polymerization
$\mathbf{T}=60^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and $\boldsymbol{f}_{\mathrm{BA} 0}=0.163$
Composition drift of BA/MMA copolymerization

Figure 6.20. Simulation of composition drift of instantaneous $F_{\text {BA }}$ in BA/MMA co-polymerization $\mathrm{T}=66^{\circ} \mathrm{C}$, Butyl acetate (solvent) $=70 \mathrm{wt} \%$, and $\mathrm{AIBN}=\mathbf{2 w t} \%$ of total mixture 109

Figure 6.21. Differential instantaneous co-polymer composition distributions of BA in BA/MMA co-polymerization
$\mathrm{T}=66^{\circ} \mathrm{C}$, Butyl acetate (solvent) $=70 \mathrm{wt} \%$, and $\mathrm{AIBN}=\mathbf{2 w t} \%$ of total mixture

6.6 Sty/HEA co-polymerization

Sty/HEA full conversion range experiments were conducted by Kim (1994). Kinetic studies of any polymerization involving HEA are extremely scarce. HEA polymerization exhibits high molecular weight products through crosslinking reactions by polymerization of divinyl impurities, which are side products in the hydroxylalkyl acrylate polymerization, and transfer to polymer. This leads to difficulties in the analysis of its polymer characteristics.

Some research groups have given approximate estimates for the reactivity ratios of Sty/HEA co-polymerization, but our model uses $r_{\text {Sty-HEA }}=0.254$ and $r_{\text {HEA-Sty }}=0.279$ from Kim (1994), whose study was more systematic. A 2^{3} factorial design was conducted to investigate the effect of temperature (40 and $50^{\circ} \mathrm{C}$), initiator concentration $\left([A I B N]_{0}=0.025\right.$ and $0.05 \mathrm{~mol} / \mathrm{L})$, and initial monomer feed composition $\left(f_{10}=f_{\mathrm{Sty} 0}=0.515\right.$, and 0.840$)$. Results are shown in Figures 6.22 to 6.25 . Some discrepancies are observed at high conversion. Other than that, our model trends show good agreement with experimental data.

McManus et al. (1998) conducted not only Sty/HEA co-polymerization ($\mathrm{T}=50^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.025 \mathrm{M}$, and $f_{10}=f_{\text {Sty } 0}=0.601$) but also Sty/EA/HEA ter-polymerization experiments. Their co-polymerization data are plotted along with the data from Kim (1994) in Figure 6.25. Again, the model follows the experimental trends well. Model testing with the ter-polymerization experimental data will be discussed later.

Figure 6.22. Simulation of Sty/HEA bulk co-polymerizations at $\mathrm{T}=40^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty)

Figure 6.23. Simulation of Sty/HEA bulk co-polymerizations at $T=40^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.025 \mathrm{M}(1=$ Sty)

Figure 6.24. Simulation of Sty/HEA bulk co-polymerizations at $\mathrm{T}=50^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.05 \mathrm{M}(1=$ Sty)

Figure 6.25. Simulation of Sty/HEA bulk co-polymerizations at $T=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.025 \mathrm{M}(1=$ Sty)

6.7 BA/MMA/VAc ter-polymerization

The simulations of ter- and higher multi-component polymerizations can be obtained by utilizing the existing homo- and co-polymerization database without any additional changes thanks to the pseudo rate constant method. All model predictions in Figures 6.26 to 6.35 are based on the same database used by the previous homo- and co-polymerizations of BA, MMA, and VAc. Dubé and Penlidis (1995b) conducted factorial design experiments over the full conversion range for bulk ter-polymerizations at $\mathrm{T}=50$ and $70^{\circ} \mathrm{C}$, and $[\mathrm{AIBN}]_{0}=0.01$ and $0.071 \mathrm{~mol} / \mathrm{L}$ under $30 / 30 / 40 \mathrm{wt} \%$ of BA/MMA/VAc initial monomer feed ratio.

Examining Figures 6.26 and 6.27 , the polymerization behaviour can be divided into two stages. The rate is more or less constant up to about 60% conversion (first stage), after which it shows a dramatic increase (second stage). A 'double rate phenomenon' is observed. The co-polymer composition plots (Figures 6.29 to 6.32) and average molecular weight plots (Figures 6.33 to 6.36) also corroborate the "double rate" phenomenon and our model satisfactorily describes the behaviour.

It was reported in Dube and Penlidis (1995b) that the samples taken out at higher conversions during the experiment at $70^{\circ} \mathrm{C}$ contained a solid core surrounded by a lower viscosity liquid, and a feasible explanation was that a mild non-isothermal behaviour had occurred. This points to possible discrepancies between model predictions and experimental data at mid- and high conversion levels, as shown in Figure 6.27 ($[\mathrm{AIBN}]_{0}=0.01 \mathrm{M}$ case). However, if one uses a non-isothermal profile (which is what really happened in this case), then one can obtain very good agreement, as shown in Figure 6.28. This is another example of the great uses of a mathematical model, with respect to troubleshooting process behaviour. At first glance, if a discrepancy exists between experimental data and model predictions, the natural tendency is to fault the model. This case is indeed a counter-example, where actually the model is doing very well if fed the appropriate input information.

Figure 6.26. Simulation of bulk ter-polymerizations of BA/MMA/VAc T $=50^{\circ} \mathrm{C}$ and (BA/MMA/VAc) $=(30 / 30 / 40 \mathrm{wt} \%)$

Figure 6.27. Simulation of bulk ter-polymerizations of BA/MMA/VAc

$$
\mathrm{T}=70^{\circ} \mathrm{C} \text { and }(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)
$$

Figure 6.28. Simulation of bulk ter-polymerization of BA/MMA/VAc $[A I B N]{ }_{0}=0.01 \mathrm{M},($ BA/MMA/VAc $)=(30 / 30 / 40 \mathrm{wt} \%)$, non-isothermal profile

Figure 6.29. Cumulative polymer composition in BA/MMA/VAc ter-polymerization $\mathrm{T}=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and (BA/MMA/VAc $)=(30 / 30 / 40 \mathrm{wt} \%)$

Figure 6.30. Cumulative polymer composition in BA/MMA/VAc ter-polymerization $\mathrm{T}=50{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=0.071 \mathrm{M}$, and $($ BA $/ \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$

Figure 6.31. Cumulative polymer composition in BA/MMA/VAc ter-polymerization $\mathrm{T}=70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(30 / 30 / 40 \mathrm{wt} \%)$

Figure 6.32. Cumulative polymer composition in BA/MMA/VAc ter-polymerization $\mathbf{T}=70{ }^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 7 1} \mathrm{M}$, and $(\mathrm{BA} / \mathrm{MMA} / \mathrm{VAc})=(\mathbf{3 0} / \mathbf{3 0} / 40 \mathrm{wt} \%)$

Figure 6.33. Molecular weight averages of BA/MMA/VAc ter-polymerization $\mathrm{T}=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and (BA/MMA/VAc) $=(\mathbf{3 0} / \mathbf{3 0} / 40 \mathrm{wt} \%)$

118

Figure 6.34. Molecular weight averages of BA/MMA/VAc ter-polymerization $\mathrm{T}=50^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 7 1} \mathrm{M}$, and $($ BA/MMA/VAc $)=(\mathbf{3 0} / 30 / 40 \mathrm{wt} \%)$

Figure 6.35. Molecular weight averages of BA/MMA/VAc ter-polymerization $\mathrm{T}=70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 1} \mathrm{M}$, and (BA/MMA/VAc) $=(\mathbf{3 0} / \mathbf{3 0} / 40 \mathrm{wt} \%)$

Figure 6.36. Molecular weight averages of BA/MMA/VAc ter-polymerization $\mathrm{T}=70^{\circ} \mathrm{C},[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 7 1} \mathrm{M}$, and (BA/MMA/VAc $)=(\mathbf{3 0} / \mathbf{3 0} / 40 \mathrm{wt} \%)$

6.8 Sty/EA/HEA ter-polymerization

Sty/EA/HEA and Sty/EA/MAA ter-polymers are used in the paint and surface coatings industry. McManus et al. (1998) performed Sty/EA/HEA bulk ter-polymerization at $60^{\circ} \mathrm{C}$, $[\mathrm{AIBN}]_{0}=0.05 \mathrm{~mol} / \mathrm{L}$ and two levels of monomer initial feed ratios $(\mathrm{Sty} / \mathrm{EA} / \mathrm{HEA}=50 / 45 / 5$ $\mathrm{wt} \%$ and $50 / 40 / 10 \mathrm{wt} \%$). Experiments were limited to maintaining a low HEA level because it was difficult to isolate residual HEA monomer from the polymer when the feed mole fraction of HEA was greater than 0.5 , as this would have increased the experimental error. Figure 6.37 represents model predictions and experimental data, which agree with each other. As HEA content increases, polymerization rate increases.

Sahloul (2004) also studied this system at elevated temperature. She started with Sty/EA co-polymerization and extended it up to Sty/EA/HEA/MAA solution tetra-polymerization. A 2^{2} factorial design was performed to test the effect of temperature $\left(100\right.$ and $\left.130^{\circ} \mathrm{C}\right)$ and the presence of $0.5 \mathrm{wt} \%$ chain transfer agent (octanethiol). Feed composition ratio was Sty/EA/HEA $=42 / 42 / 16 \mathrm{wt} \%$, tert-butyl peroxybenzoate (TBPB) initiator at $1.5 \mathrm{wt} \%$ of total monomer mixture, and m -xylene solvent at $60 \mathrm{wt} \%$ of total reaction mixture. The reactivity ratios estimated at elevated temperature were $\left(r_{\text {Sty-EA }}, r_{\text {EA-Sty }}\right)=(0.8996,0.2083),\left(r_{\text {Sty-HEA }}\right.$, $\left.r_{\text {HEA-Sty }}\right)=(0.5527,0.2347)$, and $\left(r_{\text {EA-HEA }}, r_{\text {HEA-EA }}\right)=(0.7498,2.2361)$ at $100^{\circ} \mathrm{C} ;\left(r_{\text {Sty-EA }}, r_{\text {EA- }}\right.$ Sty $)=(0.9305,0.1996),\left(r_{\text {Sty-HEA }}, r_{\text {HEA-Sty }}\right)=(0.6193,0.2408)$, and $\left(r_{\text {EA-HEA }}, r_{\text {HEA-EA }}\right)=$ $(0.6517,1.4214)$ at $130^{\circ} \mathrm{C}$.

In Figures 6.38 and 6.39 , model predictions show good agreement with conversion experimental data and CTA effects are negligible on reaction rate. As expected, reaction rate becomes faster as temperature increases. However, some significant discrepancies were observed in ter-polymer composition in Figures 6.40 to 6.43. Most of the experimental error is definitely due to the highly branched and potentially crosslinked chains, as this would affect polymer composition characterized by solution ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Figure 6.37. Simulation of bulk ter-polymerizations of Sty/EA/HEA
$\mathbf{T}=60^{\circ} \mathrm{C}$ and $[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 5} \mathrm{M}$

Figure 6.38. Simulation of solution ter-polymerization of Sty/EA/HEA (42/42/16 wt\%) $\mathrm{T}=100^{\circ} \mathrm{C}, \mathbf{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, and TBPB $=\mathbf{1 . 5} \mathbf{w t} \%$ of total monomer

Figure 6.39. Simulation of solution ter-polymerization of Sty/EA/HEA (42/42/16 wt\%) $\mathrm{T}=130{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathrm{wt} \%$ of total mixture, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.40. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt \%) ter-polymerization $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$ and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.41. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt \%) ter-polymerization $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No octanethiol and $\mathbf{T B P B}=\mathbf{1 . 5} \mathbf{w t} \%$ of total monomer

Figure 6.42. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt \%) ter-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=\mathbf{0 . 5} \mathbf{w t} \%$ and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.43. Cumulative polymer composition in Sty/EA/HEA (42/42/16 wt \%) ter-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathbf{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No octanethiol and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

6.9 Sty/EA/MAA ter-polymerization

Full conversion range experiments for this system were conducted by Sahloul (2004) at feed composition ratios of $($ Sty/EA/MAA $)=(49 / 49 / 2 \mathrm{wt} \%$ and $47.5 / 47.5 / 5 \mathrm{wt} \%)$ with tertbutyl peroxybenzoate (TBPB) and octanethiol (1.5 and $0.5 \mathrm{wt} \%$ of total monomer mixture, respectively) in m-xylene solvent ($60 \mathrm{wt} \%$ of total reaction mixture) at $130^{\circ} \mathrm{C}$. The estimated reactivity ratios were $\left(r_{\text {Sty-MAA }}, r_{\text {MAA-Sty }}\right)=(0.2221,0.5717),\left(r_{\text {MAA-EA }}, r_{\text {EA-MAA }}\right)=(4.3616$, 0.4295). Figure 6.44 represents conversion plots of different feed compositions of Sty/EA/MAA ter-polymer, which almost overlap with each other. The model predictions are good. Cumulative polymer composition plots are shown in Figures 6.45 and 6.46. As the monomer feed ratio of MAA increases, more MAA is incorporated into the polymer and the contents of Sty and EA slightly decrease. Some discrepancies do exist in Figures 6.45 and 6.46, but the trends are the same, which indicates possible experimental bias. Figure 6.47 is the first attempt in the literature to both show and try to predict average molecular weights for the system. Despite serious experimental difficulties with gel permeation chromatography for this (and other similar ter-polymers with EA/MAA), the trends seem satisfactory, although experimental error (data point fluctuation) is evident. The glass transition temperature in Figure 6.48 was determined from differential scanning calorimetry (DSC) and the model explains the trend relatively well.

Figure 6.44. Simulation of solution ter-polymerization of Sty/EA/MAA
$\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=\mathbf{0 . 5} \mathbf{w t} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.45. Cumulative polymer composition in Sty/EA/MAA (49/49/2 wt\%) ter-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.46. Cumulative polymer composition in Sty/EA/MAA (47.5/47.5/5 wt \%) ter-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.47. Molecular weight averages of Sty/EA/MAA (49/49/2 wt\%) ter-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.48. Glass transition temperature of Sty/EA/MAA (49/49/2 wt\%) ter-polymer $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=\mathbf{0 . 5} \mathbf{w t} \%$, and $\mathrm{TBPB}=\mathbf{1 . 5} \mathbf{w t} \%$ of total monomer

6.10 EA/HEA/MAA ter-polymerization

We were able to locate only one experimental run with EA/HEA/MAA from Sahloul (2004) conducted in solution using CTA and initiator at $130{ }^{\circ} \mathrm{C}$. The reactivity ratios estimated were $\left(r_{\text {MAA-HEA }}, r_{\text {HEA-MAA }}\right)=(0.568,0.2592)$. Polymerization was carried out with $60 \mathrm{wt} \%$ solvent (m-xylene), $1.5 \mathrm{wt} \%$ initiator (TBPB), and $0.5 \mathrm{wt} \%$ CTA (octanethiol). Weight percentages above refer to the total reaction mixture. The monomer feed composition was $(E A / H E A / M A A)=(84 / 11 / 5 \mathrm{wt} \%$ of total monomer $)$. Figure 6.49 shows a dramatic increase of conversion in a short time, i.e., very fast reaction. Because of this, measurement data at low conversion levels were unavailable. Polymer composition was characterized by utilizing gel phase ${ }^{1} \mathrm{H}$-NMR (a tedious measurement in itself), and our model successfully agrees with the data in Figure 6.50.

Figure 6.49. Simulation of solution ter-polymerization of EA/HEA/MAA (84/11/5 wt\%) $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.50. Cumulative polymer composition in EA/HEA/MAA (84/11/5 wt\%) ter-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

6.11 Sty/EA/HEA/MAA tetra-polymerization

This monomer system represents the highest degree of multi-component polymerization model testing that we have found so far. Solution polymerizations were conducted by Sahloul (2004) using 2^{3} factorial design experiments. m-Xylene was used as solvent with two levels of temperature (100 and $130^{\circ} \mathrm{C}$) and the presence of CTA (octanethiol) and initiator (tertbutyl peroxybenzoate, TBPB). Feed composition was set as (Sty/EA/HEA/MAA) = (41/41/16/2 wt\%) and the amounts of solvent, CTA, and initiator were $60 \mathrm{wt} \%, 0.5 \mathrm{wt} \%$, and $1.5 \mathrm{wt} \%$ of the total reaction mixture. Extra monomer feed compositions were further utilized, such as $($ Sty $/ E A / H E A / M A A)=(42 / 42 / 14 / 2,42 / 42 / 11 / 5$, and $39.5 / 39.5 / 16 / 5 \mathrm{wt} \%)$.

Figures 6.51 to 6.54 are conversion plots at $100 / 130^{\circ} \mathrm{C}$, with or without CTA/initiator. CTA effect is not significant on the polymerization rate in the chemical initiation cases (Figures 6.51 and 6.53). However, the experimental data using CTA show slower rate than the ones without CTA in Figures 6.52 and 6.54 . Our model prediction is poor during thermal initiation because the model contains the thermal initiation option for styrenics only. This can be a clue that other significant thermal initiation "contributions" may happen at elevated temperatures with systems other than styrene.

In cumulative polymer composition plots (Figures 6.55 to 6.62), it is clear that temperature and CTA effects are negligible. Model prediction trends are similar to the ones of the experimental data but some discrepancies are observed. Sahloul (2004) reported that the polymer samples contained microgel and were not completely dissolved during NMR analysis, hence this acted as a source of error in both composition calculations (scattered points) and reactivity ratio estimation.

Figure 6.63 shows conversion profiles from additional experiments (change of monomer feed compositions). There are almost no differences among polymerization rates and the model predictions are good. Figures 6.64 to 6.66 are cumulative polymer composition plots corresponding to the feed compositions in Figure 6.63. Again, model trends are similar but some discrepancies exist due to the reasons discussed above.

Figure 6.51. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%) $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.52. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%) $\mathrm{T}=100^{\circ} \mathrm{C}, \mathbf{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No TBPB

Figure 6.53. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%) $\mathrm{T}=130{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.54. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA (41/41/16/2 wt\%) $\mathrm{T}=130^{\circ} \mathrm{C}, \mathbf{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No TBPB

Figure 6.55. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt \%) tetra-polymerization $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.56. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetra-polymerization $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No octanethiol, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.57. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt \%) tetra-polymerization $\mathrm{T}=100^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=\mathbf{0 . 5} \mathbf{w t} \%$, and No TBPB

Figure 6.58. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt \%) tetra-polymerization $\mathbf{T}=100^{\circ} \mathrm{C}, \mathbf{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No octanethiol and TBPB

Figure 6.59. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt\%) tetra-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.60. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt \%) tetra-polymerization $\mathrm{T}=130{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No octanethiol, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.61. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt \%) tetra-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and No TBPB

Figure 6.62. Cumulative polymer composition in Sty/EA/HEA/MAA (41/41/16/2 wt \%) tetra-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathbf{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, No octanethiol and TBPB

Figure 6.63. Simulation of solution tetra-polymerization of Sty/EA/HEA/MAA
$\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathrm{wt} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and TBPB $=1.5 \mathrm{wt} \%$ of total monomer
Cumulative polymer composition vs conversion

Figure 6.64. Cumulative polymer composition in Sty/EA/HEA/MAA (42/42/14/2 wt \%) tetra-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.65. Cumulative polymer composition in Sty/EA/HEA/MAA (42/42/11/5 wt \%) tetra-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=0.5 \mathrm{wt} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Figure 6.66. Cumulative polymer composition in Sty/EA/HEA/MAA (39.5/39.5/16/5 wt\%) tetra-polymerization $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, Octanethiol $=\mathbf{0 . 5} \mathbf{w t} \%$, and $\mathrm{TBPB}=1.5 \mathrm{wt} \%$ of total monomer

Chapter 7

Six-component Recipe Trends

Typical prediction trends with the full multi-component bulk and solution polymerization model in a batch and semi-batch reactor (refer to the six-component recipe in Chapter 4) are presented herein. Due to the complete absence from the literature of information concerning HBA kinetics, the six monomer recipe cited in Chapter 4 was modified such that HBA monomer was replaced with the same amount of EA monomer (Sty/BA/EA/BMA/HEA/AA $=10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%$ of total monomer). Xylene solvent and di-tert-butyl peroxide initiator amounts were fixed at 66 and $0.6 \mathrm{wt} \%$ of total reaction mixture, respectively. Table 7.1 summarizes the reactivity ratios ($r_{\text {Monomer 1-Monomer } 2}$) used in this six component system at
 $r_{\text {AA-HEA }}$) were impossible to locate in the literature. Therefore, these unknown values were approximated using the $Q-e$ scheme.

		Monomer 1					
		Sty	BA	EA	BMA	HEA	AA
$\begin{aligned} & N \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Sty		0.183	0.218	0.42	0.317	0.18
	BA	0.956		1.273	1.694	0.9	0.58
	EA	0.937	0.718		2.43	1.657	0.91
	BMA	0.61	0.376	0.22		0.777	0.29
	HEA	0.497	0.3	0.687	0.284		0.354
	AA	0.25	1.07	1.02	3.67	1.899	

Table 7.1. Reactivity ratios ($r_{\text {Monomer 1-Monomer 2 }}$) for six component system at $120{ }^{\circ} \mathrm{C}$

Figure 7.1 shows conversion curves for six-component solution polymerizations at 120, 150 , and $180^{\circ} \mathrm{C}$. The reaction rate increases at higher temperature level without limiting conversion. Especially, as the reaction temperature changes from 120 to $150^{\circ} \mathrm{C}$, the rate of polymerization is dramatically increased. For a further analysis of hexa-polymerization, the reaction temperature of $120^{\circ} \mathrm{C}$ was selected as the base case.

Bulk and solution conversion profiles at $120^{\circ} \mathrm{C}$ are compared in Figure 7.2. Distinct autoacceleration is observed in the bulk case because the absence of solvent makes the reaction mixture highly viscous. The differences between bulk and solution polymerizations are also recognizable in the number/weight average molecular weights shown in Figures 7.3 and 7.4. Due to the presence of solvent and transfer reactions with it, molecular weight averages in the solution case are much lower than those in the bulk case. In addition, the molecular weight averages are increasing in bulk while they are decreasing in solution, as expected from typical polymerization behaviour (diffusion-controlled kinetics). Partial conversion plots at $120^{\circ} \mathrm{C}$ are depicted in Figure 7.5. It is observed that Sty is polymerizing faster than any other monomer in this system and the initial rates can be ordered as: Sty $>$ $\mathrm{HEA} \approx \mathrm{BMA}>\mathrm{AA} \approx \mathrm{BA} \approx \mathrm{EA}$, as governed by the corresponding monomer reactivities and reactivity ratios.

Figure 7.6 is a ter-polymerization conversion plot for Sty/EA/HEA shown earlier in Chapter 6 (Figure 6.39). This plot was reproduced here by using the six-component computer program, adjusting the recipe (i.e. solvent and CTA values) and setting certain monomer concentrations, namely $\mathrm{BA}, \mathrm{BMA}$, and AA , to zero. This clearly indicates that our sixcomponent model can successfully be reduced to the three-component one and shows the flexibility of the code to handle homo- to hexa-polymerizations thanks to code generalization.

In order to illustrate another important feature of our model, we have run a sixcomponent semi-batch simulation to show the difference in the polymerization behaviour compared to a batch reactor (simply a straightforward direct comparison without trying to optimize any properties). In Figure 7.7, monomers (Sty/BA/EA/BMA/HEA/AA = $10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%$) were fed into the reactor with fixed rates over 180 minutes. Solvent
(m-xylene, $66 \mathrm{wt} \%$ of total mixture), and initiator (di-tert-butyl peroxide, $0.6 \mathrm{wt} \%$ of total mixture) were fed concurrently with monomers, but for an additional 20 minutes in order to drive the final amount of residual monomer to a low level.

With this recipe, the semi-batch conversion profile was produced and compared with the previous batch case in Figure 7.8. The reaction rate was not as fast as the one in batch polymerization due to the low amount of monomers in the mixture and the final conversion was calculated as 82%, while 100% was attained in the batch reactor. Figures 7.9 and 7.10 show the monomer profiles for the batch and semi-batch reactions, respectively. Differences in the monomer profile will affect the residual monomer fractions, cumulative polymer compositions, and number average sequence lengths. In Figure 7.9, there was no inflow of monomers into the reactor during the polymerization and therefore, all are decreasing. On the other hand, in Figure 7.10, fresh monomers were continuously fed up to 180 minutes.

Figures 7.11 and 7.12 show residual monomer mole fractions vs conversion curves in batch and semi-batch, respectively. Along with the partial conversion curves in Figure 7.5, the residual monomer fractions, namely the relative amounts of unreacted monomers, are clearly indicating the differences of monomer reactivities in the mixture. The fractions of BA, EA, and AA are increasing, whereas Sty, HEA, and BMA show decreasing trends because the former monomers are more slowly incorporated into the polymer compared with the latter ones at the early stages of polymerization. It is interesting that the EA fraction starts to decrease above 90% conversion indicating rapid consumption of EA monomer at that point. The ranges of monomer fractions in the semi-batch reactor (Figure 7.12) are narrower than in the batch case over the entire conversion.

The cumulative (six component) polymer compositions in batch and semi-batch reactors are plotted over the entire conversion range in Figures 7.13 and 7.14, respectively. Again, the observed composition trends are similar to the residual monomer fraction plots (BA, EA and AA compositions are drifting up, while Sty, HEA, and BMA are drifting down as a function of conversion). The reason for the 'composition drift' is that polymer composition is a function of not only reactivity ratios but also residual monomer fractions. Once the faster monomers are incorporated into the polymer backbone (more than the slower ones initially),
their residual amounts will be decreased, and finally, their polymer composition will be drifting towards lower levels as polymerization proceeds. Among the three fast monomers ($10 \mathrm{wt} \%$ of Sty, $20 \mathrm{wt} \%$ of HEA, and $15 \mathrm{wt} \%$ of BMA), Sty shows the most distinctive composition drift, which means that it is the fastest monomer because its cross-propagation rate constants with other radical species are largest. On the contrary, the composition of 5 $\mathrm{wt} \%$ of AA remained almost constant and it is the slowest monomer. On the other hand, the drifting tendencies in the semi-batch reactor (Figure 7.14) were less than in the batch case (Figure 7.13). If the purpose of the semi-batch operation is to minimize the composition drift affecting polymer's physical/chemical properties, then optimizing the monomer feed profiles in Figure 7.7 will be necessary in order to control polymer composition to a more steady level.

Figures 7.15 and 7.16 exhibit the cumulative number average sequence lengths of solution hexa-polymerization in batch and semi-batch reactors, respectively. All the sequence lengths did not exceed 1.3. This means that the probabilities of attaching the same kinds of monomers were low in this system. The sequence lengths of the three fast monomers (Sty, HEA, and BMA) slightly decreased, while the others gradually increased during polymerization (EA and BA showed the most distinctive increases). As these residual monomers are increasing, the sequence probabilities are also expected to increase and the average lengths will be greater as well.

In Figures 7.17 to 7.21 , examples of internal "hidden" variables are plotted and compared in batch and semi-batch cases. Once more, we cite these plots in order to demonstrate the wealth of information one can obtain from such a mathematical model, that otherwise may not be readily apparent. Among them, the initiator concentration profiles (Figure 7.17), overall termination rate constants (Figure 7.18), and radical concentration profiles (Figure 7.19) are highly related with one another. In the batch case, initiator decomposes and its concentration is decreasing. The overall termination rate constant in the batch case shows diffusion control regions, which are segmental (zero to about 20% conversion), translational (20% to 90%), and finally, reaction-diffusion (after 90\%). Accordingly, the radical concentration increases after the onset of translational diffusion control region and decreases
again at very high conversion. On the other hand, in the semi-batch case, initiator concentration increases quickly to around 0.11 M , after which point the initiator gradually decomposes until the monomer feed is stopped. The fact that initiator is fed into the reactor keeps the initiator level in the reactor almost constant, and one can see the initiator concentration increasing at about 180 minutes, when the monomer feed ceases. The overall termination rate constant shows an increasing trend and it never seems to enter the diffusioncontrolled region until about 70% conversion. The radical concentration in the semi-batch case is changing similarly to the initiator profile and also shows higher levels than the batch case.

The glass transition temperature of polymer $\left(T_{\text {gpoly }}\right)$ is plotted in Figure 7.20 versus conversion. The profiles indicate that $T_{\text {gpoly }}$ in batch is higher than in the semi-batch case. This is because $T_{\text {gpoly }}$ is affected in an inverse way by the weight fractions of monomers incorporated into the polymer (see equation (3-59)), and therefore, since the fractions in the semi-batch are generally higher than in the batch case, the glass transition temperature is lower in semi-batch.

Figure 7.21 shows the average number of trifunctional branches per molecule in batch vs semi-batch reactor. Both are increasing as polymerization proceeds, but the batch case produces more branches at the early stages of the reaction, based on the accumulated weight fraction of polymer.

Finally, hexa-polymerization behaviour using depropagating and non-depropagating options at $140^{\circ} \mathrm{C}$ are compared in Figures 7.22 to 7.24 . BMA monomer is the one which depropagates at elevated temperature levels. However, due to the limited literature on multicomponent systems, its kinetic parameters were unavailable and we thus assumed reasonable values for the homo- and cross-depropagation rate constants to check our model trends. The conversion levels with depropagation are lower than those with no depropagation in Figure 7.22. Accordingly, the number/weight average molecular weights with depropagation are also lower in Figures 7.23 and 7.24 , which indicates that our multi-component model is in agreement with polymerization theory.

Figure 7.1. Simulation of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt \%) m -Xylene $=60 \mathrm{wt} \%$, di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Figure 7.2. Bulk vs solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) $\mathrm{T}=120{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ (solution case) di-tert-butyl peroxide $=\mathbf{0 . 6} \mathbf{w t} \%$ of total mixture

Figure 7.3. Mn of bulk and solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) $\mathrm{T}=120{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ (solution case) di-tert-butyl peroxide $=\mathbf{0 . 6} \mathbf{w t} \%$ of total mixture

Figure 7.4. Mw of bulk and solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) $\mathrm{T}=120{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ (solution case) di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Figure 7.5. Partial conversions of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) $\mathrm{T}=120{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathrm{wt} \%$, di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Figure 7.6. Simulation of solution ter-polymerization of Sty/EA/HEA (42/42/16 wt \%) $\mathrm{T}=130^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$ of total mixture, and TBPB $=\mathbf{1 . 5} \mathbf{w t} \%$ of total monomer

Figure 7.7. Molar feed rates of solvent, initiator, and monomers for semi-batch solution hexa-polymerization

Figure 7.8. Batch vs semi-batch solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.9. Moles of monomer profiles of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Figure 7.10. Moles of monomer profiles of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) semi-batch solution hexa-polymerization, $\mathbf{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.11. Residual monomer mole fractions of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=\mathbf{6 0} \mathbf{w t} \%$, di-tert-butyl peroxide $=\mathbf{0 . 6} \mathbf{w t} \%$ of total mixture

Figure 7.12. Residual monomer mole fractions of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt \%) semi-batch solution hexa-polymerization, $\mathbf{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.13. Cumulative polymer composition of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt \%) batch solution hexa-polymerization, $\mathrm{T}=120{ }^{\circ} \mathrm{C}$, m -Xylene $=60 \mathrm{wt} \%$, di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Figure 7.14. Cumulative polymer composition of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt \%) semi-batch solution hexa-polymerization, $\mathbf{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.15. Cumulative number average sequence lengths of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) batch solution hexa-polymerization, $\mathrm{T}=120^{\circ} \mathrm{C}$, m-Xylene $=\mathbf{6 0} \mathbf{w t} \%$, di-tert-butyl peroxide $=\mathbf{0 . 6} \mathbf{w t} \%$ of total mixture

Figure 7.16. Cumulative number average sequence lengths of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 wt\%) semi-batch solution hexa-polymerization, $\mathbf{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.17. Initiator concentration profile in batch vs semi-batch reactor $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.18. Overall termination rate constant in batch vs semi-batch reactor $\mathrm{T}=120{ }^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.19. Radical concentration profile in batch vs semi-batch reactor $\mathrm{T}=120{ }^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.20. Glass transition temperature of hexa-polymer in batch vs semi-batch reactor $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.21. Average number of trifunctional branches per molecule in batch vs semi-batch reactor $\mathrm{T}=120^{\circ} \mathrm{C}$, according to the recipe of Figure 7.7

Figure 7.22. Depropagating and non-depropagating solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA
$(10 / 30 / 20 / 15 / 20 / 5 \mathrm{wt} \%), \mathrm{T}=140^{\circ} \mathrm{C}$, m -Xylene $=60 \mathrm{wt} \%$, di-tert-butyl peroxide $=\mathbf{0 . 6} \mathrm{wt} \%$ of total mixture

Figure 7.23. Mn of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA
(10/30/20/15/20/5 wt \%), $\mathrm{T}=140{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Figure 7.24. Mw of solution hexa-polymerization of Sty/BA/EA/BMA/HEA/AA (10/30/20/15/20/5 $\mathbf{w t} \%$), $\mathrm{T}=140{ }^{\circ} \mathrm{C}, \mathrm{m}$-Xylene $=60 \mathrm{wt} \%$, di-tert-butyl peroxide $=0.6 \mathrm{wt} \%$ of total mixture

Chapter 8

Concluding Remarks and Recommendations

8.1 Concluding Remarks

A reactor model for batch/semi-batch multi-component bulk/solution free-radical polymerizations was developed and tested. Initially benchmarked with the WATPOLY simulator/database package (Gao and Penlidis, 1996, 1998, 2000; Chemical Engineering, University of Waterloo), the model was extended to a six-monomer system from each monomer's homo- and co-polymerization kinetic database with enhanced features. It was designed by code generalization to cover flexibly cases from homo- to hexa-polymerization, and to make future extensions easier. The idea of using a kinetic database separate from the model equations is helpful in handling the simulator program because it makes it more userfriendly and allows for versatile combinations of any monomers in the database. Of course, another contribution in parallel, equally important to developing the model equations, was to develop the accompanying detailed database of physico-chemical monomer characteristics (Appendix C).

An extensive literature search was conducted for multi-component modeling, kinetics and model testing. A general polymerization reaction mechanism was translated into a detailed mathematical model, and the equations were directly transformed into MATLAB code. Free volume theory and the pseudo kinetic rate constant method were adopted for diffusioncontrolled kinetics and multi-component cases, respectively. Several options regarding polymer composition and molecular weight calculations are available in the model. In addition, polymerization behaviour options at elevated temperatures were also included:
thermal self initiation and depropagation. As a result, the developed model can predict a lot of important information over the full conversion range, such as reaction rates, molecular weights, and monomer compositions/sequences either at regular or elevated temperatures (Chapter 4).

A lot of effort has been focused on model reliability testing by comparing model predictions with various multi-component polymerization experimental data obtained from the literature. This is presented in Chapters 5 and 6 . Code generalization not only increases the model flexibility in handling homo- to multi-component bulk and solution polymerizations, but also enables easy extensions to deal with systems composed of more than six monomers. Also, we have attempted full conversion model testing of HEA monomer systems (homo- to tetra-polymerizations) for the first time quite satisfactorily.

Our model has shown successful prediction results and proved to be useful for better understanding of the multi-component polymerization process. It will serve as an excellent tool for industrial, academic, and educational purposes.

8.2 Future Recommendations

Several recommendations for future work are suggested herein and divided into immediate and long-term steps.

8.2.1 Immediate steps

1. Full conversion depropagation model testing is required. BMA monomer is known to exhibit depropagation at high temperature and its homo-depropagation rate constant has been estimated by Grady et al. (2002). However, in multi-component polymerization, further investigations should be conducted to determine which cross-propagations are reversible and their rates should be determined/measured accordingly. The ability of BMA to depropagate depends upon what monomer species is attached at the penultimate position of a radical, since not all BMA
radicals in the terminal position may undergo depropagation. The extended Krüger's model developed in this thesis will be able to work effectively once these parameter values are obtained.
2. Along with depropagation, the secondary reaction mechanism (backbiting and β scission) of acrylate monomers (BA and EA) becomes significant at elevated temperature and affects MWD due to the short chain branching (Quan et al., 2005). The model should be able to explain this because the amount of BA in the feed is greater than any other monomer in the recipe (Chapter 4).
3. Finally, the semi-batch part of the model could be tested further with data and different operating scenarios. In general, the basic limitation in this thesis, like in any other polymerization modeling effort, is the lack of experimental data and reliable parameter values, especially for multi-component cases (certainly for terand higher-, but also for many co-polymerizations).

8.2.2 Long-term steps

1. The kinetic database of HBA homo-polymerization and its relevant co-polymer reactivity ratios are required for the complete hexa-polymerization recipe. As more physico-chemical parameters are estimated for this monomer through experiments, further database development and model testing can be performed.
2. The kinetic parameters of AA employed by Gao (1992) are based on homopolymerization experimental data in water. It is necessary to verify whether or not they are also applicable to bulk and (organic) solution polymerization in our model.
3. Further (replicate) experiments are recommended in aid of model testing for measuring average molecular weights in Sty/EA/HEA/MAA tetra-polymerization (Sahloul, 2004) in Chapter 6. The measured weight average molecular weights were reported considerably higher than those of Sty/EA/MAA ter-polymerization in Figure 6.47 under the same reaction conditions, but without any replication.

This could be clarified experimentally in the future. In addition, the persistent bias between predictions and measurements in co-polymer composition (as, for instance, one can see in Figure 6.46 for a Sty/EA/MAA ter-polymer and in Figure 6.55 for a Sty/EA/HEA/MAA tetra-polymer) should also be clarified/revisited (i.e. is it due to very large experimental error or due to inconsistent model parameters?).

Appendix A

Multi-component Polymer Composition Models

Several instantaneous polymer composition equations developed for multi-component polymerization cases are compared in this Appendix. The available options mentioned in Chapter 3 are the equations by rate incorporation, by the extended Walling and Briggs (WB) model, by the extended Valvassori and Sartori (VS) approach, and finally, by the extended Hocking and Klimchuk (HK) model. The extended WB model showed exactly the same results as the rate incorporation equations while certain deviations were observed with the other two approaches.

A. 1 Rate incorporation equations

The model here is based on the rate of polymerization of individual monomer species. We chose it as a criterion for model testing because it is the mathematical definition of multicomponent polymer composition.

$$
\begin{gather*}
R_{p j}=\left(\sum_{i=1}^{6} k_{p i j}\left[R_{i} \cdot\right]\right)\left[M_{j}\right] \tag{A-1}\\
R_{p}=\sum_{j=1}^{6} R_{p j} \\
F_{j}=\frac{R_{p j}}{R_{p}}=\frac{\left(\sum_{i=1}^{6} k_{p i j} \Phi_{i}^{\cdot}\right) f_{j}}{\sum_{i=1}^{6} \sum_{j=1}^{6}\left(k_{p i j} \Phi_{i}^{\cdot} f_{j}\right)} \tag{A-2}
\end{gather*}
$$

A. 2 Extended Walling and Briggs (WB) model

This is an extension of the ter-polymer composition equation from Walling and Briggs (1945). The symbol $|\mathbf{A}|$ below stands for the determinant of the corresponding matrix \mathbf{A}.

$$
d\left[M_{1}\right]=\left[M_{1}\right]\left[\left.\begin{array}{ccccc}
-\frac{1}{r_{61}} & \frac{1}{r_{21}} & \frac{1}{r_{31}} & \frac{1}{r_{41}} & \frac{1}{r_{51}} \tag{A-3}\\
-\frac{\left[M_{2}\right]}{r_{62}} & A & \frac{\left[M_{2}\right]}{r_{32}} & \frac{\left[M_{2}\right]}{r_{42}} & \frac{\left[M_{2}\right]}{r_{52}} \\
\frac{\left[M_{3}\right]}{r_{63}} & \frac{\left[M_{3}\right]}{r_{23}} & B & \frac{\left[M_{3}\right]}{r_{43}} & \frac{\left[M_{3}\right]}{r_{53}} \\
-\frac{\left[M_{4}\right]}{r_{64}} & \frac{\left[M_{4}\right]}{r_{24}} & \frac{\left[M_{4}\right]}{r_{34}} & C & \frac{\left[M_{4}\right]}{r_{54}} \\
-\frac{\left[M_{5}\right]}{r_{65}} & \frac{\left[M_{5}\right]}{r_{25}} & \frac{\left[M_{5}\right]}{r_{35}} & \frac{\left[M_{5}\right]}{r_{45}} & D
\end{array} \right\rvert\,\left\{\left[M_{1}\right]+\frac{\left[M_{2}\right]}{r_{12}}+\frac{\left[M_{3}\right]}{r_{13}}+\frac{\left[M_{4}\right]}{r_{14}}+\frac{\left[M_{5}\right]}{r_{15}}+\frac{\left[M_{6}\right]}{r_{16}}\right\}\right.
$$

where:

$$
\begin{aligned}
& A=-\left(\frac{\left[M_{1}\right]}{r_{21}}+\frac{\left[M_{3}\right]}{r_{23}}+\frac{\left[M_{4}\right]}{r_{24}}+\frac{\left[M_{5}\right]}{r_{25}}+\frac{\left[M_{6}\right]}{r_{26}}\right), B=-\left(\frac{\left[M_{1}\right]}{r_{31}}+\frac{\left[M_{2}\right]}{r_{32}}+\frac{\left[M_{4}\right]}{r_{34}}+\frac{\left[M_{5}\right]}{r_{35}}+\frac{\left[M_{6}\right]}{r_{36}}\right) \\
& C=-\left(\frac{\left[M_{1}\right]}{r_{41}}+\frac{\left[M_{2}\right]}{r_{42}}+\frac{\left[M_{3}\right]}{r_{43}}+\frac{\left[M_{5}\right]}{r_{45}}+\frac{\left[M_{6}\right]}{r_{46}}\right), D=-\left(\frac{\left[M_{1}\right]}{r_{51}}+\frac{\left[M_{2}\right]}{r_{52}}+\frac{\left[M_{3}\right]}{r_{53}}+\frac{\left[M_{4}\right]}{r_{54}}+\frac{\left[M_{6}\right]}{r_{36}}\right) \\
&\left.\left|\begin{array}{ccccc}
-\frac{1}{r_{12}} & \frac{1}{r_{32}} & \frac{1}{r_{42}} & \frac{1}{r_{52}} & \frac{1}{r_{62}} \\
-\frac{\left[M_{3}\right]}{r_{13}} & E & \frac{\left[M_{3}\right]}{r_{43}} & \frac{\left[M_{3}\right]}{r_{53}} & \frac{\left[M_{3}\right]}{r_{63}} \\
& d\left[M_{2}\right]=\left[M_{2}\right]-\frac{\left[M_{4}\right]}{r_{14}} & \frac{\left[M_{4}\right]}{r_{34}} & F & \frac{\left[M_{4}\right]}{r_{54}} \\
-\frac{\left[M_{4}\right]}{\left.r_{64}\right]} & \frac{\left[M_{5}\right]}{r_{55}} & \frac{\left[M_{5}\right]}{r_{45}} & G & \frac{\left[M_{5}\right]}{r_{65}} \\
-\frac{\left[M_{6}\right]}{r_{16}} & \frac{\left[M_{6}\right]}{r_{36}} & \frac{\left[M_{6}\right]}{r_{46}} & \frac{\left[M_{6}\right]}{r_{56}} & H
\end{array}\right|\left[M_{2}\right]+\frac{\left[M_{1}\right]}{r_{21}}+\frac{\left[M_{3}\right]}{r_{23}}+\frac{\left[M_{4}\right]}{r_{24}}+\frac{\left[M_{5}\right]}{r_{25}}+\frac{\left[M_{6}\right]}{r_{26}}\right\} \text { (A-4) }
\end{aligned}
$$

where:

$$
\begin{aligned}
& E=-\left(\frac{\left[M_{1}\right]}{r_{31}}+\frac{\left[M_{2}\right]}{r_{32}}+\frac{\left[M_{4}\right]}{r_{34}}+\frac{\left[M_{5}\right]}{r_{35}}+\frac{\left[M_{6}\right]}{r_{36}}\right), F=-\left(\frac{\left[M_{1}\right]}{r_{41}}+\frac{\left[M_{2}\right]}{r_{42}}+\frac{\left[M_{3}\right]}{r_{43}}+\frac{\left[M_{5}\right]}{r_{45}}+\frac{\left[M_{6}\right]}{r_{46}}\right) \\
& G=-\left(\frac{\left[M_{1}\right]}{r_{51}}+\frac{\left[M_{2}\right]}{r_{52}}+\frac{\left[M_{3}\right]}{r_{53}}+\frac{\left[M_{4}\right]}{r_{54}}+\frac{\left[M_{6}\right]}{r_{56}}\right), G=-\left(\frac{\left[M_{1}\right]}{r_{61}}+\frac{\left[M_{2}\right]}{r_{62}}+\frac{\left[M_{3}\right]}{r_{63}}+\frac{\left[M_{4}\right]}{r_{64}}+\frac{\left[M_{6}\right]}{r_{65}}\right)
\end{aligned}
$$

$$
d\left[M_{3}\right]=\left[M_{3}\right]\left|\begin{array}{ccccc}
-\frac{1}{r_{23}} & \frac{1}{r_{43}} & \frac{1}{r_{53}} & \frac{1}{r_{63}} & \frac{1}{r_{13}} \tag{A-5}\\
-\frac{\left[M_{4}\right]}{r_{24}} & I & \frac{\left[M_{4}\right]}{r_{54}} & \frac{\left[M_{4}\right]}{r_{64}} & \frac{\left[M_{4}\right]}{r_{14}} \\
-\frac{\left[M_{5}\right]}{r_{2}} & \frac{\left[M_{5}\right]}{r_{45}} & J & \frac{\left[M_{5}\right]}{r_{65}} & \frac{\left[M_{5}\right]}{r_{15}} \\
-\frac{\left[M_{6}\right]}{r_{26}} & \frac{\left[M_{6}\right]}{r_{46}} & \frac{\left[M_{6}\right]}{r_{56}} & K & \frac{\left[M_{6}\right]}{r_{16}} \\
-\frac{\left[M_{1}\right]}{r_{21}} & \frac{\left[M_{1}\right]}{r_{41}} & \frac{\left[M_{1}\right]}{r_{51}} & \frac{\left[M_{1}\right]}{r_{61}} & L
\end{array}\right|\left\{\left[M_{3}\right]+\frac{\left[M_{1}\right]}{r_{31}}+\frac{\left[M_{2}\right]}{r_{32}}+\frac{\left[M_{4}\right]}{r_{34}}+\frac{\left[M_{5}\right]}{r_{35}}+\frac{\left[M_{6}\right]}{r_{36}}\right\} \text { (A }
$$

where:

$$
\left.\begin{array}{l}
I=-\left(\frac{\left[M_{1}\right]}{r_{41}}+\frac{\left[M_{2}\right]}{r_{42}}+\frac{\left[M_{3}\right]}{r_{43}}+\frac{\left[M_{5}\right]}{r_{45}}+\frac{\left[M_{6}\right]}{r_{46}}\right), J=-\left(\frac{\left[M_{1}\right]}{r_{51}}+\frac{\left[M_{2}\right]}{r_{52}}+\frac{\left[M_{3}\right]}{r_{53}}+\frac{\left[M_{4}\right]}{r_{54}}+\frac{\left[M_{6}\right]}{r_{56}}\right) \\
K=-\left(\frac{\left[M_{1}\right]}{r_{61}}+\frac{\left[M_{2}\right]}{r_{62}}+\frac{\left[M_{3}\right]}{r_{63}}+\frac{\left[M_{4}\right]}{r_{64}}+\frac{\left[M_{5}\right]}{r_{65}}\right), L=-\left(\frac{\left[M_{2}\right]}{r_{12}}+\frac{\left[M_{3}\right]}{r_{13}}+\frac{\left[M_{4}\right]}{r_{14}}+\frac{\left[M_{5}\right]}{r_{15}}+\frac{\left[M_{6}\right]}{r_{16}}\right) \\
\left.d\left[M_{4}\right]=\left[M_{4}\right]\left|\begin{array}{llll}
-\frac{1}{r_{34}} & \frac{1}{r_{54}} & \frac{1}{r_{64}} & \frac{1}{r_{14}} \\
-\frac{\left[M_{5}\right]}{r_{24}} & M & \frac{\left[M_{5}\right]}{r_{35}} & \frac{\left[M_{5}\right]}{r_{15}} \\
\frac{\left[M_{5}\right]}{r_{25}} \\
-\frac{\left[M_{6}\right]}{r_{36}} & \frac{\left[M_{6}\right]}{r_{56}} & N & \frac{\left[M_{6}\right]}{r_{16}} \\
-\frac{\left[M_{6}\right]}{\left.r_{21}\right]} \\
r_{31} & \frac{\left[M_{1}\right]}{r_{51}} & \frac{\left[M_{1}\right]}{r_{61}} & O \\
-\frac{\left[M_{2}\right]}{r_{21}} \\
-\frac{\left[M_{2}\right]}{r_{32}} & \frac{\left[M_{2}\right]}{r_{52}} & \frac{\left[M_{2}\right]}{r_{62}} & \frac{\left[M_{2}\right]}{r_{12}}
\end{array}\right|\left[M_{4}\right]+\frac{\left[M_{1}\right]}{r_{41}}+\frac{\left[M_{2}\right]}{r_{42}}+\frac{\left[M_{3}\right]}{r_{43}}+\frac{\left[M_{5}\right]}{r_{45}}+\frac{\left[M_{6}\right]}{r_{46}}\right\} \tag{A-6}
\end{array}\right\} \text { (A. }
$$

where:

$$
\begin{aligned}
& M=-\left(\frac{\left[M_{1}\right]}{r_{51}}+\frac{\left[M_{2}\right]}{r_{52}}+\frac{\left[M_{3}\right]}{r_{53}}+\frac{\left[M_{4}\right]}{r_{54}}+\frac{\left[M_{6}\right]}{r_{56}}\right), N=-\left(\frac{\left[M_{1}\right]}{r_{61}}+\frac{\left[M_{2}\right]}{r_{62}}+\frac{\left[M_{3}\right]}{r_{63}}+\frac{\left[M_{4}\right]}{r_{64}}+\frac{\left[M_{5}\right]}{r_{65}}\right) \\
& O=-\left(\frac{\left[M_{2}\right]}{r_{12}}+\frac{\left[M_{3}\right]}{r_{13}}+\frac{\left[M_{4}\right]}{r_{14}}+\frac{\left[M_{5}\right]}{r_{15}}+\frac{\left[M_{6}\right]}{r_{16}}\right), P=-\left(\frac{\left[M_{1}\right]}{r_{21}}+\frac{\left[M_{3}\right]}{r_{23}}+\frac{\left[M_{4}\right]}{r_{24}}+\frac{\left[M_{5}\right]}{r_{25}}+\frac{\left[M_{6}\right]}{r_{26}}\right)
\end{aligned}
$$

$$
\left.d\left[M_{5}\right]=\left[M_{5}\right]\left|\begin{array}{ccccc}
-\frac{1}{r_{45}} & \frac{1}{r_{65}} & \frac{1}{r_{15}} & \frac{1}{r_{25}} & \frac{1}{r_{35}} \\
-\frac{\left[M_{6}\right]}{r_{46}} & Q & \frac{\left[M_{6}\right]}{r_{16}} & \frac{\left[M_{6}\right]}{r_{26}} & \frac{\left[M_{6}\right]}{r_{36}} \\
-\frac{\left[M_{1}\right]}{r_{41}} & \frac{\left[M_{1}\right]}{r_{61}} & R & \frac{\left[M_{1}\right]}{r_{21}} & \frac{\left[M_{1}\right]}{r_{31}} \\
-\frac{\left[M_{2}\right]}{r_{42}} & \frac{\left[M_{2}\right]}{r_{62}} & \frac{\left[M_{2}\right]}{r_{12}} & S & \frac{\left[M_{2}\right]}{r_{32}} \\
-\frac{\left[M_{3}\right]}{r_{43}} & \frac{\left[M_{3}\right]}{r_{63}} & \frac{\left[M_{3}\right]}{r_{13}} & \frac{\left[M_{3}\right]}{r_{23}} & T
\end{array}\right|\left[M_{5}\right]+\frac{\left[M_{1}\right]}{r_{51}}+\frac{\left[M_{2}\right]}{r_{52}}+\frac{\left[M_{3}\right]}{r_{53}}+\frac{\left[M_{4}\right]}{r_{54}}+\frac{\left[M_{6}\right]}{r_{56}}\right\}
$$

where:

$$
\begin{align*}
& Q=-\left(\frac{\left[M_{1}\right]}{r_{61}}+\frac{\left[M_{2}\right]}{r_{62}}+\frac{\left[M_{3}\right]}{r_{63}}+\frac{\left[M_{4}\right]}{r_{64}}+\frac{\left[M_{5}\right]}{r_{65}}\right), R=-\left(\frac{\left[M_{2}\right]}{r_{12}}+\frac{\left[M_{3}\right]}{r_{13}}+\frac{\left[M_{4}\right]}{r_{14}}+\frac{\left[M_{5}\right]}{r_{15}}+\frac{\left[M_{6}\right]}{r_{16}}\right) \\
& S=-\left(\frac{\left[M_{1}\right]}{r_{21}}+\frac{\left[M_{3}\right]}{r_{23}}+\frac{\left[M_{4}\right]}{r_{24}}+\frac{\left[M_{5}\right]}{r_{25}}+\frac{\left[M_{6}\right]}{r_{26}}\right), T=-\left(\frac{\left[M_{1}\right]}{r_{31}}+\frac{\left[M_{2}\right]}{r_{32}}+\frac{\left[M_{4}\right]}{r_{34}}+\frac{\left[M_{5}\right]}{r_{35}}+\frac{\left[M_{6}\right]}{r_{36}}\right) \\
& \left.d\left[M_{6}\right]=\left[M_{6}\right]\left|\begin{array}{ccccc}
-\frac{1}{r_{56}} & \frac{1}{r_{16}} & \frac{1}{r_{26}} & \frac{1}{r_{36}} & \frac{1}{r_{46}} \\
-\frac{\left[M_{1}\right]}{r_{51}} & U & \frac{\left[M_{1}\right]}{r_{21}} & \frac{\left[M_{1}\right]}{r_{31}} & \frac{\left[M_{1}\right]}{r_{41}} \\
\frac{\left[M_{22}\right.}{r_{52}} & \frac{\left[M_{2}\right]}{r_{12}} & V & \frac{\left[M_{2}\right]}{r_{32}} & \frac{\left[M_{2}\right]}{r_{42}} \\
-\frac{\left[M_{3}\right]}{r_{53}} & \frac{\left[M_{3}\right]}{r_{13}} & \frac{\left[M_{3}\right]}{r_{23}} & W & \frac{\left[M_{3}\right]}{r_{43}} \\
-\frac{\left[M_{4}\right]}{r_{54}} & \frac{\left[M_{4}\right]}{r_{14}} & \frac{\left[M_{4}\right]}{r_{24}} & \frac{\left[M_{4}\right]}{r_{34}} & X
\end{array}\right|\left\{\left[M_{6}\right]+\frac{\left[M_{1}\right]}{r_{61}}+\frac{\left[M_{2}\right]}{r_{62}}+\frac{\left[M_{3}\right]}{r_{63}}+\frac{\left[M_{4}\right]}{r_{64}}+\frac{\left[M_{5}\right]}{r_{65}}\right\}\right\} \text { (A } \tag{A-8}
\end{align*}
$$

where:

$$
\begin{aligned}
& U=-\left(\frac{\left[M_{2}\right]}{r_{12}}+\frac{\left[M_{3}\right]}{r_{13}}+\frac{\left[M_{4}\right]}{r_{14}}+\frac{\left[M_{5}\right]}{r_{15}}+\frac{\left[M_{6}\right]}{r_{16}}\right), V=-\left(\frac{\left[M_{1}\right]}{r_{21}}+\frac{\left[M_{3}\right]}{r_{23}}+\frac{\left[M_{4}\right]}{r_{24}}+\frac{\left[M_{5}\right]}{r_{25}}+\frac{\left[M_{6}\right]}{r_{26}}\right) \\
& W=-\left(\frac{\left[M_{1}\right]}{r_{31}}+\frac{\left[M_{2}\right]}{r_{32}}+\frac{\left[M_{4}\right]}{r_{34}}+\frac{\left[M_{5}\right]}{r_{35}}+\frac{\left[M_{6}\right]}{r_{36}}\right), X=-\left(\frac{\left[M_{1}\right]}{r_{41}}+\frac{\left[M_{2}\right]}{r_{42}}+\frac{\left[M_{3}\right]}{r_{43}}+\frac{\left[M_{5}\right]}{r_{45}}+\frac{\left[M_{6}\right]}{r_{46}}\right)
\end{aligned}
$$

The multi-component polymer composition is calculated by,

$$
\begin{equation*}
F_{i}=d\left[M_{i}\right] / \sum_{i=1}^{6} d\left[M_{i}\right] \tag{A-9}
\end{equation*}
$$

A. 3 Extended Valvassori and Sartori (VS) model

This is an extension of the ter-polymer composition equation by Valvassori and Sartori (1967) to a six monomer system, which is simpler and more readily extendable than the WB equation (1945), due to certain approximations.

$$
\begin{align*}
& d\left[M_{1}\right]=\left[M_{1}\right]\left\{\left[M_{1}\right]+\frac{\left[M_{2}\right]}{r_{12}}+\frac{\left[M_{3}\right]}{r_{13}}+\frac{\left[M_{4}\right]}{r_{14}}+\frac{\left[M_{5}\right]}{r_{15}}+\frac{\left[M_{6}\right]}{r_{16}}\right\} \tag{A-10}\\
& d\left[M_{2}\right]=\frac{\left[M_{2}\right]}{r_{12}} r_{21}\left\{\frac{\left[M_{1}\right]}{r_{21}}+\left[M_{2}\right]+\frac{\left[M_{3}\right]}{r_{23}}+\frac{\left[M_{4}\right]}{r_{24}}+\frac{\left[M_{5}\right]}{r_{25}}+\frac{\left[M_{6}\right]}{r_{26}}\right\} \tag{A-11}\\
& d\left[M_{3}\right]=\frac{\left[M_{3}\right]}{r_{13}} r_{31}\left\{\frac{\left[M_{1}\right]}{r_{31}}+\frac{\left[M_{2}\right]}{r_{32}}+\left[M_{3}\right]+\frac{\left[M_{4}\right]}{r_{34}}+\frac{\left[M_{5}\right]}{r_{35}}+\frac{\left[M_{6}\right]}{r_{36}}\right\} \tag{A-12}\\
& d\left[M_{4}\right]=\frac{\left[M_{4}\right]}{r_{14}} r_{41}\left\{\frac{\left[M_{1}\right]}{r_{41}}+\frac{\left[M_{2}\right]}{r_{42}}+\frac{\left[M_{3}\right]}{r_{43}}+\left[M_{4}\right]+\frac{\left[M_{5}\right]}{r_{45}}+\frac{\left[M_{6}\right]}{r_{46}}\right\} \tag{A-13}\\
& d\left[M_{5}\right]=\frac{\left[M_{5}\right]}{r_{15}} r_{51}\left\{\frac{\left[M_{1}\right]}{r_{51}}+\frac{\left[M_{2}\right]}{r_{52}}+\frac{\left[M_{3}\right]}{r_{53}}+\frac{\left[M_{4}\right]}{r_{54}}+\left[M_{5}\right]+\frac{\left[M_{6}\right]}{r_{56}}\right\} \tag{A-14}\\
& d\left[M_{6}\right]=\frac{\left[M_{6}\right]}{r_{16}} r_{61}\left\{\frac{\left[M_{1}\right]}{r_{61}}+\frac{\left[M_{2}\right]}{r_{62}}+\frac{\left[M_{3}\right]}{r_{63}}+\frac{\left[M_{4}\right]}{r_{64}}+\frac{\left[M_{5}\right]}{r_{65}}+\left[M_{6}\right]\right\} \tag{A-15}
\end{align*}
$$

A. 4 Extended Hocking and Klimchuk (HK) model

This is an extension of the ter-polymer composition equation by Hocking and Klimchuk (1996) to a six monomer system. This is considered as a more refined version of the VS equations above.

$$
\begin{align*}
& d\left[M_{1}\right]=\left[M_{1}\right]\left\{\left[M_{1}\right]+\frac{\left[M_{2}\right]}{r_{12}}+\frac{\left[M_{3}\right]}{r_{13}}+\frac{\left[M_{4}\right]}{r_{14}}+\frac{\left[M_{5}\right]}{r_{15}}+\frac{\left[M_{6}\right]}{r_{16}}\right\}\left\{1+\frac{r_{12}}{r_{21}}+\frac{r_{13}}{r_{31}}+\frac{r_{14}}{r_{41}}+\frac{r_{15}}{r_{51}}+\frac{r_{16}}{r_{61}}\right\}(\mathrm{A}-16) \\
& d\left[M_{2}\right]=\left[M_{2}\right]\left\{\left[M_{2}\right]+\frac{\left[M_{3}\right]}{r_{23}}+\frac{\left[M_{4}\right]}{r_{24}}+\frac{\left[M_{5}\right]}{r_{25}}+\frac{\left[M_{6}\right]}{r_{26}}+\frac{\left[M_{1}\right]}{r_{21}}\right\}\left\{\frac{r_{21}}{r_{12}}+1+\frac{r_{23}}{r_{32}}+\frac{r_{24}}{r_{42}}+\frac{r_{25}}{r_{52}}+\frac{r_{26}}{r_{62}}\right\} \text { (A-17) } \tag{A-17}
\end{align*}
$$

$$
\begin{align*}
& d\left[M_{3}\right]=\left[M_{3}\right]\left\{\left[M_{3}\right]+\frac{\left[M_{4}\right]}{r_{34}}+\frac{\left[M_{5}\right]}{r_{35}}+\frac{\left[M_{6}\right]}{r_{36}}+\frac{\left[M_{1}\right]}{r_{31}}+\frac{\left[M_{2}\right]}{r_{32}}\right\}\left\{\left\{\frac{r_{31}}{r_{13}}+\frac{r_{32}}{r_{23}}+1+\frac{r_{34}}{r_{43}}+\frac{r_{35}}{r_{53}}+\frac{r_{36}}{r_{63}}\right\}\right. \tag{A-18}\\
& d\left[M_{4}\right]=\left[M_{4}\right]\left\{\left[M_{4}\right]+\frac{\left[M_{5}\right]}{r_{45}}+\frac{\left[M_{6}\right]}{r_{46}}+\frac{\left[M_{1}\right]}{r_{41}}+\frac{\left[M_{2}\right]}{r_{42}}+\frac{\left[M_{3}\right]}{r_{43}}\right\}\left\{\left\{\frac{r_{41}}{r_{14}}+\frac{r_{42}}{r_{24}}+\frac{r_{43}}{r_{34}}+1+\frac{r_{45}}{r_{54}}+\frac{r_{46}}{r_{64}}\right\}(\right. \tag{A-19}\\
& d\left[M_{5}\right]=\left[M_{5}\right]\left\{\left[M_{5}\right]+\frac{\left[M_{6}\right]}{r_{56}}+\frac{\left[M_{1}\right]}{r_{51}}+\frac{\left[M_{2}\right]}{r_{52}}+\frac{\left[M_{3}\right]}{r_{53}}+\frac{\left[M_{4}\right]}{r_{54}}\right\}\left\{\frac{r_{51}}{r_{15}}+\frac{r_{52}}{r_{25}}+\frac{r_{53}}{r_{35}}+\frac{r_{54}}{r_{45}}+1+\frac{r_{56}}{r_{65}}\right\}(\mathrm{A} \tag{A-20}\\
& d\left[M_{6}\right]=\left[M_{6}\right]\left\{\left[M_{6}\right]+\frac{\left[M_{1}\right]}{r_{61}}+\frac{\left[M_{2}\right]}{r_{62}}+\frac{\left[M_{3}\right]}{r_{63}}+\frac{\left[M_{4}\right]}{r_{64}}+\frac{\left[M_{5}\right]}{r_{65}}\right\}\left\{\frac{r_{61}}{r_{16}}+\frac{r_{62}}{r_{26}}+\frac{r_{63}}{r_{36}}+\frac{r_{64}}{r_{46}}+\frac{r_{65}}{r_{56}}+1\right\} \tag{A-21}
\end{align*}
$$

A. 5 Simulation results and discussion

Model simulation results of the instantaneous multi-component polymer composition of Sty over the full conversion range are presented in Figures A. 1 to A.3. All of the models are successfully reduced to simpler monomer cases (co-polymerization in Figure A.1, terpolymerization in Figure A.2, and tetra-polymerization in Figure A.3), although some differences are observed.

In Figure A.1, the HK model showed slightly higher values than the other ones, but the differences were not significant. On the other hand, in Figures A. 2 and A.3, the VS result was located higher and the HK lower than the rate incorporation approach, but again the discrepancies were not considerable. The composition profile by the rate incorporation model completely overlapped with the one by the WB model in Figures A. 1 to A.3, which means that the two equations give identical results with each other.

Comparing the composition trends, the differences among the four models are not significantly large relative to typically encountered experimental errors. The rate incorporation composition model is chosen as the default option in our model. Of course, the equations can easily be extended from six to more components, considering the equation patterns.

Figure A.1. Instantaneous polymer composition of Sty in Sty/BA bulk co-polymerization $\mathrm{T}=50^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{sty} 0}=\mathbf{0 . 2 5 8}$, and $[\mathrm{AIBN}]_{0}=\mathbf{0 . 0 5} \mathrm{M}$

Figure A.2. Instantaneous polymer composition of Sty in Sty/BA/EA bulk ter-polymerization $\mathrm{T}=60^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{Sty0} 0}=0.112, \mathrm{f}_{\mathrm{BA} 0}=0.544$, and $[\mathrm{AIBN}]_{0}=0.01 \mathrm{M}$

Figure A.3. Instantaneous polymer composition of Sty in Sty/BA/EA/BMA bulk tetra-polymerization $\mathrm{T}=60^{\circ} \mathrm{C}, f_{\text {Sty } 0}=0.280, \mathrm{f}_{\mathrm{BA} 0}=0.227, \mathrm{f}_{\mathrm{EA} 0}=0.288$, and $\left[\mathrm{AIBN}_{0}=0.03 \mathrm{M}\right.$

Appendix B

Method of Moments Calculations and Comparisons for Branched Co-polymers

In linear polymers, the integration of instantaneous molecular weights and the result of method of moments should be the same. Branched polymers are produced when at least one of the three following reactions are in effect: transfer to polymer molecules $\left(k_{f p}\right)$, terminal double bond $\left(k_{p}{ }^{*}\right)$, and (or) internal double bond $\left(k_{p}{ }^{* *}\right)$ polymerization. All of these reactions involve large dead polymer molecules. Several methods of moments calculations for number/weight average molecular weights of branched co-polymers are compared and discussed in this Appendix. We have already mentioned that there are two approaches for the moments calculation of the polymer molecule distribution (see relevant parts of Chapter 3).

Revisiting equations (3-43) to (3-44) and (3-48) to (3-50), the $i^{\text {th }}$ moments of radical Y_{i} and polymer distribution Q_{i} are as follows.

$$
\begin{align*}
& Y_{i}=\sum_{r=1}^{\infty} r^{i}\left[R_{r}^{\bullet}\right] \tag{B-1}\\
& Q_{i}=\sum_{r=1}^{\infty} r^{i}\left[P_{r}\right] \tag{B-2}
\end{align*}
$$

The zeroth, first, and second moments of radical distribution are given by,

$$
\begin{equation*}
Y_{0}=\frac{1}{2}\left\{\left(\sqrt{\left(\frac{k_{z}[Z]}{k_{t}}\right)^{2}+\frac{4 R_{i}}{k_{t}}}\right)-\frac{k_{z}}{k_{t}}[Z]\right\}=\left[R^{\bullet}\right] \tag{B-3}
\end{equation*}
$$

$$
\begin{align*}
& Y_{1}=\frac{R_{i}+\left\{k_{p}[M]+k_{f n}[M]+k_{f C T A}[C T A]+k_{f s}[S]+\left(k_{f p}+k_{p}^{* *}\right) Q_{2}+k_{p}^{*} Q_{1}\right\} Y_{0}}{k_{t} Y_{0}+k_{f m}[M]+k_{f C T A}[C T A]+k_{f S}[S]+k_{f Z}[Z]+k_{f p} Q_{1}+k_{p}^{*}\left(Q_{1}-Q_{0}\right)} \tag{B-4}\\
& \left\{\begin{array}{l}
R_{i}+\left(\begin{array}{l}
k_{p}[M]+k_{f n}[M]+k_{f C T A}[C T A]+k_{f S}[S] \\
+k_{f p} Q_{3}+k_{p}^{*} Q_{2}+k_{p}^{* *} Q_{3} \\
+2\left(k_{p}[M]+k_{p}^{*} Q_{1}+k_{p}^{* *} Q_{2}\right) Y_{1}
\end{array}\right) Y_{0}
\end{array}\right\} \tag{B-5}\\
& Y_{2}=\frac{k_{f n}[M]+k_{f C T A}[C T A]+k_{f S}[S]+k_{f Z}[Z]+k_{f p} Q_{1}+k_{p}^{*}\left(Q_{1}-Q_{0}\right)}{k_{t}+k_{f n}[M,}
\end{align*}
$$

In order to calculate the moments of polymer molecule distribution, Kuindersma (1992) and Gao (1992) used the moments of radical distribution (Y_{0}, Y_{1}, and Y_{2}). On the other hand, Hamielec et al. (1987b), Dubé et al. (1991), and Xie and Hamielec (1993) used Y_{0} only.

B. 1 Kuindersma (1992) and Gao (1992)

The two sources used the same equations in the model for the moments of polymer molecule distribution. As mentioned earlier, all of the moments of the radical distribution are included in the differential equations.

$$
\left.\begin{array}{c}
\frac{d\left(V Q_{0}\right)}{d t}=\left\{\left(\frac{1}{2} k_{t c}+k_{t d}\right) Y_{0}^{2}+\left(k_{f m}[M]+k_{f C T A}[C T A]+k_{f s}[S]+k_{f Z}[Z]-k_{p}^{*} Q_{0}-k_{p}^{* *} Q_{1}\right) Y_{0}\right\} V
\end{array}\right\} \begin{gathered}
\frac{d\left(V Q_{1}\right)}{d t}=\left\{\begin{array}{l}
\left(k_{t c}+k_{t d}\right) Y_{0} Y_{1}+\left(k_{f m}[M]+k_{f C T A}[C T A]+k_{f s}[S]+k_{f Z}[Z]\right) Y_{1}+k_{f p}\left(Y_{1} Q_{1}-Y_{0} Q_{2}\right) \\
-\left(k_{p}^{*} Y_{0} Q_{1}+k_{p}^{* *} Y_{0} Q_{2}\right)
\end{array}\right\} V(\\
\frac{d\left(V Q_{2}\right)}{d t}=\left\{\begin{array}{l}
k_{t c}\left(Y_{0} Y_{2}+Y_{1}^{2}\right)+k_{t d} Y_{0} Y_{2}+\left(k_{f n}[M]+k_{f C T A}[C T A]+k_{f s}[S]+k_{f Z}[Z]\right) Y_{2} \\
+k_{f p}\left(Y_{2} Q_{1}-Y_{0} Q_{3}\right)-\left(k_{p}^{*} Y_{0} Q_{2}+k_{p}^{* *} Y_{0} Q_{3}\right) \\
\overline{M_{n}}=M w_{e f f} \frac{Q_{1}}{Q_{0}}
\end{array}\right. \\
\overline{M_{w}}=M w_{e f f} \frac{Q_{2}}{Q_{1}}
\end{gathered}
$$

where $M w_{\text {eff }}=M w_{1} F_{1}+M w_{2} F_{2}$

B. 2 Hamielec et al. (1987b)

Using the parameters τ and β, Hamielec et al. (1987b) derived the following moment equations.

$$
\begin{gather*}
\frac{d\left(V Q_{0}\right)}{d t}=k_{p}[M] Y_{0} V\left(\tau+\frac{\beta}{2}-\frac{\left(k_{p}^{*}+k_{p}^{* *}\right) Q_{1}}{k_{p}[M]}\right) \tag{B-11}\\
\frac{d\left(V Q_{1}\right)}{d t}=k_{p}[M] Y_{0} V \tag{B-12}\\
\frac{d\left(V Q_{2}\right)}{d t}=k_{p}[M] Y_{0} V\left\{\begin{array}{c}
2\left(1+\frac{\left(k_{p}^{*}+k_{p}^{* *}\right) Q_{2}}{k_{p}[M]}\right)\left(\frac{1+\frac{k_{f p} Q_{2}+\left(k_{p}^{*}+k_{p}^{* *}\right) Q_{2}}{k_{p}[M]}}{\tau+\beta+\frac{k_{f p} Q_{1}}{k_{p}[M]}}\right) \\
+\beta\left(\frac{\left.1+\frac{k_{f p} Q_{2}+\left(k_{p}^{*}+k_{p}^{* *}\right) Q_{2}}{k_{p}[M]}\right)^{2}}{\left.\tau+\beta+\frac{k_{f p} Q_{1}}{k_{p}[M]}\right)}\right. \\
\frac{\overline{M_{n}}=M w_{e f f} \frac{Q_{1}}{Q_{0}}}{\overline{M_{w}}=M w_{e f f} \frac{Q_{2}}{Q_{1}}}
\end{array}\right\}\left\{\begin{array}{c}
\end{array}\right\} \tag{B-13}
\end{gather*}
$$

B. 3 Dubé et al. (1991)

The final equations for the moments of polymer molecule distribution are slightly different from the ones of Hamielec et al. (1987b), due to certain approximations and/or assumptions.

$$
\begin{equation*}
\frac{d\left(V Q_{0}\right)}{d t}=k_{p}[M] Y_{0} V\left(\tau+\frac{\beta}{2}-\frac{k_{p}^{* *} Q_{1}+k_{p}^{*} Q_{0}}{k_{p}[M]}\right) \tag{B-16}
\end{equation*}
$$

$$
\begin{gather*}
\frac{d\left(V Q_{1}\right)}{d t}=k_{p}[M] Y_{0} V\left(1+\tau-\frac{k_{t d} Y_{0}}{k_{p}[M]}\right) \\
 \tag{B-17}\\
=k_{p}[M] Y_{0} V\left(1+\frac{k_{f n}}{k_{p}}+\frac{k_{f S}[S]}{k_{p}[M]}+\frac{k_{f C T A}[C T A]}{k_{p}[M]}+\frac{k_{f z}[Z]}{k_{p}[M]}\right) \tag{B-18}\\
\frac{d\left(V Q_{2}\right)}{d t}=k_{p}[M] Y_{0} V\left\{\begin{array}{l}
(1+\tau+\beta)+2\left(1+\frac{k_{p}^{*} Q_{1}+k_{p}^{* *} Q_{2}}{k_{p}[M]}\right)\left(\frac{1+\tau+\beta+\frac{\left(k_{p}^{* *}+k_{f p}\right) Q_{2}+k_{p}^{*} Q_{1}}{k_{p}[M]}}{\tau+\beta+\frac{k_{f p} Q_{1}}{k_{p}[M]}}\right) \\
+\beta\left(\frac{\left.1+\tau+\beta+\frac{\left(k_{p}^{* *}+k_{f p}\right) Q_{2}+k_{p}^{*} Q_{1}}{k_{p}[M]}\right)^{2}}{\tau+\beta+\frac{k_{f p} Q_{1}}{k_{p}[M]}}\right. \\
\overline{M_{n}}=M w_{e f f} \frac{Q_{1}}{Q_{0}} \\
\overline{M_{w}}=M w_{e f f} \frac{Q_{2}}{Q_{1}}
\end{array}\right. \tag{B-19}
\end{gather*}
$$

B. 4 Xie and Hamielec (1993)

Unlike in Hamielec et al. (1987b) and Dubé et al. (1991), terminal and internal double bond polymerization rate constants are not considered in equations (B-21) to (B-23).

$$
\begin{gather*}
\frac{d Q_{0}}{d t}=k_{p}[M] Y_{0}\left(\tau+\frac{\beta}{2}\right) \tag{B-21}\\
\frac{d Q_{1}}{d t}=M w_{e f f} R_{p}=M w_{e f f} k_{p}[M] Y_{0} \tag{B-22}
\end{gather*}
$$

$\frac{d Q_{2}}{d t}=\left(M w_{\text {eff }}\right)^{2} k_{p}[M] Y_{0} \times$
$\times\left\{\frac{\left(\tau+\beta+\frac{k_{f p}[M]_{0} X}{k_{p}[M]}\right)\left[\tau+\beta+\frac{k_{f p}[M]_{0} X}{k_{p}[M]}+2\left(1+\frac{k_{f p} Q_{2}}{k_{p}[M] \overline{M w}_{e f f}^{2}}\right)\right]+\beta\left(1+\frac{k_{f p} Q_{2}}{k_{p}[M] \overline{M w}_{e f f}}\right)^{2}}{\left(\tau+\beta+\frac{k_{f p}[M]_{0} X}{k_{p}[M]}\right)^{2}}\right\}$

$$
\begin{align*}
& \overline{M_{n}}=\frac{Q_{1}}{Q_{0}} \tag{B-24}\\
& \overline{M_{w}}=\frac{Q_{2}}{Q_{1}} \tag{B-25}
\end{align*}
$$

In this derivation, $\overline{M w}_{e f f}=M w_{1} \bar{F}_{1}+M w_{2} \bar{F}_{2}$

B. 5 Simulation results and discussion

In order to compare the differences among the accumulated number/weight molecular weights calculated by integration of instantaneous ones and the four methods of moments models, hypothetical bulk co-polymerization simulations were performed. In addition, hypothetical kinetic parameters were assumed for comparing model predictions in linear, branched and network polymer cases, such as,

Case 1. $k_{f p}=0, k_{p}{ }^{*}=0$, and $k_{p}^{* *}=0$ (linear co-polymer)
Case 2. $k_{f p} \neq 0, k_{p}{ }^{*}=0$, and $k_{p}{ }^{* *}=0$ (branched co-polymer)
Case 3. $k_{f p} \neq 0, k_{p}{ }^{*} \neq 0$, and $k_{p}{ }^{* *}=0$ (branched co-polymer)
Case 4. $k_{f p} \neq 0, k_{p}{ }^{*} \neq 0$, and $k_{p}{ }^{* *} \neq 0$ (network co-polymer)
Therefore, the profiles in Figures B. 1 to B. 8 are for comparative calculations only and by no means represent expected profiles in a polymerization scenario.

Figures B. 1 and B. 2 represent simulation results for the number and weight average molecular weights in case 1 , respectively. The trends are almost identical, with only very slight differences. The results by Dubé et al. (1991) and Hamielec et al. (1987b) almost overlap each other. Dubé and Penlidis (1996) reported that typical experimental errors for number and weight average molecular weights are in the range $\pm 15,000-25,000(\mathrm{~g} / \mathrm{mol})$. Therefore, the differences between the linear and the method of moments model simulation results are insignificant because all differences are within $\pm 5,000(\mathrm{~g} / \mathrm{mol})$.

Figures B. 3 and B. 4 show results for case 2, where only transfer to polymer is active. Again, model differences are well within typical experimental errors. It is observed that there
is little difference between Dubé et al. (1991) and Hamielec et al. (1987b) over the entire conversion range.

When terminal/internal double bond polymerization rate constants are also active in cases 3 and 4, the models differ from one another more distinctively than in case 2 . The number average molecular weight trends (Figures B. 5 and B.7) predicted by Kuindersma (1992) and Gao (1992) decrease above 70% conversion, which is unusual. Note that the Hamielec et al. (1987b) calculations show very high weight average molecular weights $\left(10^{6} \mathrm{~g} / \mathrm{mol}\right)$ compared with the other models $\left(10^{5} \mathrm{~g} / \mathrm{mol}\right)$ at high conversion levels in Figures B. 6 and B.8. Moreover, the weight average values in case $4\left(k_{p}{ }^{* *} \neq 0\right.$, crosslinking $)$ are much greater than the ones in case $3\left(k_{p}^{* *}=0\right.$, branching), as expected. When performing weight average calculations by Hamielec et al. (1987b), we sometimes experienced unexpected numerical errors at high conversion levels due to the steepness of the profile curves. Of course, these are model predictions largely unverified in practice, since it is very difficult to even determine molecular weight averages experimentally in many situations under cases 3 and 4 .

Our model uses the moment equations of Dubé et al. (1991) as default for average molecular weight calculations for branched polymers. Of course, the other options are also available in the package.

Figure B.1. Accumulated number average molecular weights in case 1

Figure B.2. Accumulated weight average molecular weights in case 1

Figure B.3. Accumulated number average molecular weights in case 2

Figure B.4. Accumulated weight average molecular weights in case 2

Figure B.5. Accumulated number average molecular weights in case 3

Figure B.6. Accumulated weight average molecular weights in case 3

Figure B.7. Accumulated number average molecular weights in case 4

Figure B.8. Accumulated weight average molecular weights in case 4

Appendix C

Monomer Kinetic Database

The following tables cite information on physico-chemical/kinetic characteristics of the monomers (Sty, BA, BMA, HEA, and AA) used in our simulation model. These tables essentially form the database of the simulation model/package. The database, which is an extremely important and integral part of any model/simulator, was developed in a way similar to the database of the WATPOLY simulator (Gao and Penlidis, 1996, 1998, and 2000). Its reliability had already been verified over a wide range of recipes, operating conditions and modes of reactor operation. The current database was once more verified with additional experimental data in this thesis.

We also have tried to test our model as thoroughly as possible with other available kinetic parameters found in different literature sources. These literature sources have either been discussed in the thesis in more detail or simply cited in the various thesis tables as sources of information. In the following tables (Tables C. 1 to C.5), in some entries, several values are shown, but only one is indicated in bold font. The bold fond thus indicates the value chosen as the final one for "best" prediction results. Some of these "best" values were arrived at via simulation trials, others via extensive sensitivity analyses, and finally some via parameter estimation based on experimental data. Model prediction plots throughout this thesis were generated relying solely on the individual monomer database tables shown in the following pages and no parameters were adjusted further or selectively in order to obtain agreement with experimental data. In other words, the database entries in Tables C. 1 to C. 5 have generated all model prediction curves throughout the thesis. That is the only way to build confidence in one's database and hence, model. The database can be constantly
updated in the future, every time that new experimental observations become available (and also in parallel to any model modifications/extensions).

Notes: (1) In the following tables, the entry " $k_{t d}$ ratio" refers to $\frac{k_{t d}}{k_{t}}$.
(2) If sources of information are not indicated, then the values were based on the well tested WATPOLY database (see Gao and Penlidis, 1996, 1998, 2000)
(3) There is no database for HBA, since no data/information were located in the literature (see section 8.2.2).

Parameter	Value	Unit	Description
Mw	104.12	$\mathrm{g} / \mathrm{mol}$	Monomer molecular weight
$T_{\mathrm{g}, \mathrm{m}}$	185	K	Monomer glass transition temperature
$T_{\mathrm{g}, \mathrm{p}}$	378	K	Polymer glass transition temperature
$C p_{m}$	430	K	Monomer heat capacity
$C p_{p}$	400	K	Polymer heat capacity
ΔH	-1.7E4	$\mathrm{cal} / \mathrm{kg} / \mathrm{K}$	Heat of polymerization
ρ_{m}	0.924-9.18E-4(T-273.15)	kg/L	Monomer density
ρ_{p}	$1.084-6.05 \mathrm{E}-4(\mathrm{~T}-273.15)$	kg/L	Polymer density
k_{p}	$\begin{aligned} & \text { 1.302E9 exp(-7759.23/RT) }{ }^{1} \\ & 2.559 \mathrm{E} 9 \exp (-7740 / \mathrm{RT})^{2} \end{aligned}$	L/mol/min	Propagation rate constant
k_{t}	$\begin{aligned} & \text { 4.92E11 } \exp (-3471.29 / \mathrm{RT})^{3} \\ & 1.908 \mathrm{E} 11 \exp (-1903.54 / \mathrm{RT})^{4} \\ & \hline \end{aligned}$	L/mol/min	Termination rate constant
$k_{t d}$ ratio	0		Ratio of disproportionation termination
$k_{f m}$	$\begin{gathered} \hline \text { 6.579E8 } \exp (-13426.8 / \mathrm{RT})^{5} \\ 1.386 \mathrm{E} 8 \exp (-12671 / \mathrm{RT})^{6} \end{gathered}$	L/mol/min	Monomer transfer rate constant
$k_{f p}$	0	L/mol/min	Polymer transfer rate constant
$k_{p}{ }^{*}$	0	L/mol/min	Terminal double-bond polymerization
$k_{p}^{* *}$	0	L/mol/min	Internal double-bond polymerization
δ	0.001	L/g	Reaction radius for segmental diffusion
n_{s}	174		Average number of monomer units in a polymer chain
l_{0}	7.4	\AA	RMS length of monomer unit in a chain
$V_{\text {f.crit }}$	$3.11052 \mathrm{E}-1 \exp (-1671.76 / \mathrm{RT})$	volume	Critical free volume of diffusion-control of propagation
$V_{f, m}{ }^{0}$	0.025	volume	Monomer free volume at T_{g}
$V_{f, p}{ }^{0}$	0.025	volume	Polymer free volume at T_{g}
α_{m}	0.001	volume/K	Monomer thermal expansion coeff. above and below T_{g}
α_{p}	0.00048	volume/K	Polymer thermal expansion coeff. above and below T_{g}
B	1		Rate of decrease of k_{p}
m	0.5		Gel-effect model parameter
n	1.75		Gel-effect model parameter
A	$0.348{ }^{7}$		Rate of decrease of k_{t}
K_{3}	$9.44 \exp (3832.9 / \mathrm{RT})^{8}$		Onset point of translational diffusion-control
$k_{\text {th }}$	$1.35 \mathrm{E} 7 \exp (-27448.8 / \mathrm{RT})^{9}$	$\mathrm{L}^{2} / \mathrm{mol}^{2} / \mathrm{min}$	Thermal initiation rate constant

Table A.1. Kinetic database of Sty
${ }^{1}$ Mahabadi et al. (1977) $\quad{ }^{2}$ Buback (1995) $\quad{ }^{3}$ Mahabadi et al. (1977) $\quad{ }^{4}$ Buback (1995) ${ }^{5}$ Marten and Hamielec (1982)
${ }^{6}$ Hui and Hamielec (1972) $\quad{ }^{7}$ Marten and Hamielec (1982) $\quad{ }^{8}$ Marten and Hamielec (1982) $\quad{ }^{9}$ Hui and Hamielec (1972)

Parameter	Value	Unit	Description
Mw	128.17	$\mathrm{g} / \mathrm{mol}$	Monomer molecular weight
$T_{\mathrm{g}, \mathrm{m}}$	185.15	K	Monomer glass transition temperature
$T_{\text {g,p }}$	218	K	Polymer glass transition temperature
$C p_{m}$	430	K	Monomer heat capacity
$C p_{p}$	400	K	Polymer heat capacity
ΔH	-1.84E4	$\mathrm{cal} / \mathrm{kg} / \mathrm{K}$	Heat of polymerization
ρ_{m}	$0.919-0.001012(\mathrm{~T}-273.15)^{1}$	kg/L	Monomer density
ρ_{p}	$1.212-0.0008(\mathrm{~T}-273.15)$	kg/L	Polymer density
k_{p}	$1.02 \mathrm{E} 10 \exp (-7128.46 / \mathrm{RT})^{2}{ }^{2}$ 1.6646E11 $\exp (-9630 / \mathrm{RT})^{3}$ $1.344 \mathrm{E} 9 \exp (-4278 / \mathrm{RT})^{4}$ $1.08 \mathrm{E} 9 \exp (-4121 / \mathrm{RT})^{5}$	L/mol/min	Propagation rate constant
k_{t}	$\begin{gathered} \text { 6.937E13 } \exp (-7312.25 / \mathrm{RT})^{6} \\ \text { 4.67532E8 } \exp (-873 / \mathrm{RT})^{7} \\ 1.54 \mathrm{E} 10 \exp (-575.2 / \mathrm{RT})^{8} \\ \hline \end{gathered}$	L/mol/min	Termination rate constant
$k_{t d}$ ratio	0.7		Ratio of disproportionation termination
$k_{\text {fn }}$	$\begin{gathered} \text { 5.51E5 } \exp (-7128.46 / \mathrm{RT})^{9} \\ \text { 9.34E5 } \exp (-7475.06 / \mathrm{RT})^{\mathbf{1 0}} \\ 1.728 \mathrm{E} 7 \exp (-7793 / \mathrm{RT})^{11} \\ \hline \end{gathered}$	$\mathrm{L} / \mathrm{mol} / \mathrm{min}$	Monomer transfer rate constant
$k_{f p}$	35^{12}	$\mathrm{L} / \mathrm{mol} / \mathrm{min}$	Polymer transfer rate constant
$k_{p}{ }^{*}$	0	$\mathrm{L} / \mathrm{mol} / \mathrm{min}$	Terminal double-bond polymerization
$k_{p}^{* *}$	0	$\mathrm{L} / \mathrm{mol} / \mathrm{min}$	Internal double-bond polymerization
δ	0.001	L/g	Reaction radius for segmental diffusion
n_{s}	200		Average number of monomer units in a polymer chain
l_{0}	6.54	Å	RMS length of monomer unit in a chain
$V_{\text {f.crit }}$	$0.01 \exp (-1443.61 / \mathrm{RT})$	volume	Critical free volume of diffusion-control of propagation
$V_{f, m}{ }^{0}$	0.025	volume	Monomer free volume at T_{g}
$V_{f, p}{ }^{0}$	0.025	volume	Polymer free volume at T_{g}
α_{m}	0.001	volume/K	Monomer thermal expansion coeff. above and below T_{g}
α_{p}	0.00048	volume/K	Polymer thermal expansion coeff. above and below T_{g}
B	0.5		Rate of decrease of k_{p}
m	0.5		Gel-effect model parameter
n	1.75		Gel-effect model parameter
A	1.31		Rate of decrease of k_{t}
K_{3}	$0.02 \exp (12108.5 / \mathrm{RT})$		Onset point of translational diffusion-control
$k_{\text {th }}$	$2 \mathrm{e}-11$	$\mathrm{L}^{2} / \mathrm{mol}^{2} / \mathrm{min}$	Thermal initiation rate constant

Table A.2. Kinetic database of BA

[^0]| Parameter | Value | Unit | Description |
| :---: | :---: | :---: | :---: |
| Mw | 142.191 | $\mathrm{g} / \mathrm{mol}$ | Monomer molecular weight |
| $T_{\mathrm{g}, \mathrm{m}}$ | 224.2 | K | Monomer glass transition temperature |
| $T_{\mathrm{g}, \mathrm{p}}$ | 293 | K | Polymer glass transition temperature |
| $C p_{m}$ | 420 | K | Monomer heat capacity |
| $C p_{p}$ | 401.914 | K | Polymer heat capacity |
| ΔH | $-1.83732 \mathrm{E} 1$ | $\mathrm{cal} / \mathrm{kg} / \mathrm{K}$ | Heat of polymerization |
| ρ_{m} | 0.91096-0.00089(T-273.15) | kg/L | Monomer density |
| ρ_{p} | 1.041 | kg/L | Polymer density |
| k_{p} | $\begin{gathered} \text { 2.064E8 } \exp (-5574.16 / R T)^{1} \\ 2.281 \mathrm{E} 8 \exp (-5472.6 / \mathrm{RT})^{2} \\ 2.064 \mathrm{E} 8 \exp (-5568.6 / \mathrm{RT})^{3} \\ 1.087 \mathrm{E} 8 \exp (-4911.9 / \mathrm{RT}))^{4} \\ \hline \end{gathered}$ | L/mol/min | Propagation rate constant |
| k_{t} | $\begin{gathered} \hline \text { 2.352E9 } \exp (-701 / R T)^{5} \\ 4.26 \mathrm{E} 9 \exp (-1649.2 / \mathrm{RT})^{6} \\ \hline \end{gathered}$ | L/mol/min | Termination rate constant |
| $k_{t d}$ ratio | 0.255 | | Ratio of disproportionation termination |
| $k_{f m}$ | $\begin{gathered} \hline \text { 3.08E5 } \exp (-8322.47 / \mathrm{RT})^{7} \\ 9.36 \mathrm{E} 3 \exp (-5207.9 / \mathrm{RT})^{8} \end{gathered}$ | L/mol/min | Monomer transfer rate constant |
| $k_{f p}$ | 0 | L/mol/min | Polymer transfer rate constant |
| $k_{p}{ }^{*}$ | 0 | L/mol/min | Terminal double-bond polymerization |
| $k_{p}^{* *}$ | 0 | L/mol/min | Internal double-bond polymerization |
| δ | 0.001 | L/g | Reaction radius for segmental diffusion |
| n_{s} | 126 | | Average number of monomer units in a polymer chain |
| l_{0} | 6.2 | \AA | RMS length of monomer unit in a chain |
| $V_{\text {f.crit }}$ | 0.06 | volume | Critical free volume of diffusion-control of propagation |
| $V_{f, m}{ }^{0}$ | 0.025 | volume | Monomer free volume at T_{g} |
| $V_{f, p}{ }^{0}$ | 0.025 | volume | Polymer free volume at T_{g} |
| α_{m} | 0.001 | volume/K | Monomer thermal expansion coeff. above and below T_{g} |
| α_{p} | 0.00048 | volume/K | Polymer thermal expansion coeff. above and below T_{g} |
| B | 1 | | Rate of decrease of k_{p} |
| m | 0.5 | | Gel-effect model parameter |
| n | 1.75 | | Gel-effect model parameter |
| A | 1.02 | | Rate of decrease of k_{t} |
| K_{3} | 5.8E6 | | Onset point of translational diffusion-control |
| $k_{\text {th }}$ | 0 | $\mathrm{L}^{2} / \mathrm{mol}^{2} / \mathrm{min}$ | Thermal initiation rate constant |

Table A.3. Kinetic database of BMA

${ }^{1}$ WATPOLY	${ }^{2}$ Li et al. (2005)	${ }^{3}$ Davis et al. (1990)	${ }^{4}$ Hutchinson et al. (1995)
${ }^{5}$ WATPOLY	${ }^{6}$ Li et al. (2005)	${ }^{7}$ WATPOLY	${ }^{8}$ Li et al. (2005)

Parameter	Value	Unit	Description
Mw	116.116	$\mathrm{g} / \mathrm{mol}$	Monomer molecular weight
$T_{\mathrm{g}, \mathrm{m}}$	185.15	K	Monomer glass transition temperature
$T_{\text {g,p }}$	258	K	Polymer glass transition temperature
$C p_{m}$	429.397	K	Monomer heat capacity
$C p_{p}$	437.5	K	Polymer heat capacity
ΔH	-1.84E4	cal/kg/K	Heat of polymerization
ρ_{m}	$1.011-0.001012(\mathrm{~T}-273.15)$	kg/L	Monomer density
ρ_{p}	$1.041-0.000845(\mathrm{~T}-273.15)$	kg/L	Polymer density
k_{p}	$6.49 \mathrm{E} 8 \exp (-6706.22 / \mathrm{RT})^{1}$	L/mol/min	Propagation rate constant
k_{t}	$2.63 \mathrm{E} 11 \exp (-6639.48 / \mathrm{RT})^{2}$	L/mol/min	Termination rate constant
$k_{t d}$ ratio	$1.91607 \mathrm{E} 2 \exp (-3.81775 / \mathrm{RT})$		Ratio of disproportionation termination
$k_{f n}$	$9.34359 \mathrm{E} 5 \exp (-7475.06 / \mathrm{RT})$	L/mol/min	Monomer transfer rate constant
$k_{f p}$	0	L/mol/min	Polymer transfer rate constant
$k_{p}{ }^{*}$	0	L/mol/min	Terminal double-bond polymerization
$k_{p}^{* *}$	0	L/mol/min	Internal double-bond polymerization
δ	0.001	L/g	Reaction radius for segmental diffusion
n_{s}	126		Average number of monomer units in a polymer chain
l_{0}	6.2	A	RMS length of monomer unit in a chain
$V_{f, \text { crit }}$	$1 \exp (-2100 / \mathrm{RT})^{3}$	volume	Critical free volume of diffusion-control of propagation
$V_{f, m}{ }^{0}$	0.0275	volume	Monomer free volume at T_{g}
$V_{f, p}{ }^{0}$	0.0275	volume	Polymer free volume at T_{g}
α_{m}	0.0011	volume/K	Monomer thermal expansion coeff. above and below T_{g}
α_{p}	0.000528	volume/K	Polymer thermal expansion coeff. above and below T_{g}
B	1		Rate of decrease of k_{p}
m	0.5		Gel-effect model parameter
n	1.75		Gel-effect model parameter
A	3.5		Rate of decrease of k_{t}
K_{3}	$4.0 \mathrm{E}-5 \exp (14470.6 / \mathrm{RT})^{4}$		Onset point of translational diffusion-control
$k_{\text {th }}$	0	$\mathrm{L}^{2} / \mathrm{mol}^{2} / \mathrm{min}$	Thermal initiation rate constant

Table A.4. Kinetic database of HEA
${ }^{1,2,3,4}$ These parameters have been modified via sensitivity analysis based on the work by Kim (1994).

Parameter	Value	Unit	Description
Mw	72.06	$\mathrm{g} / \mathrm{mol}$	Monomer molecular weight
$T_{\mathrm{g}, \mathrm{m}}$	189.65	K	Monomer glass transition temperature
$T_{\text {g.p }}$	379	K	Polymer glass transition temperature
$C p_{m}$	502	K	Monomer heat capacity
$C p_{p}$	432.69	K	Polymer heat capacity
ΔH	-1.85E4	cal/kg/K	Heat of polymerization
ρ_{m}	$1.07764-0.00133(\mathrm{~T}-273.15)$	kg/L	Monomer density
ρ_{p}	1.442	kg/L	Polymer density
k_{p}	$3.72 \mathrm{E} 9 \exp (-5600 / \mathrm{RT})$	L/mol/min	Propagation rate constant
k_{t}	6.0 E 9	$\mathrm{L} / \mathrm{mol} / \mathrm{min}$	Termination rate constant
$k_{t d}$ ratio	0.2		Ratio of disproportionation termination
$k_{f m}$	$1.7172 \mathrm{E} 9 \exp (-11116.5 / \mathrm{RT})$	$\mathrm{L} / \mathrm{mol} / \mathrm{min}$	Monomer transfer rate constant
$k_{f p}$	0	L/mol/min	Polymer transfer rate constant
$k_{p}{ }^{*}$	0	$\mathrm{L} / \mathrm{mol} / \mathrm{min}$	Terminal double-bond polymerization
$k_{p}^{* *}$	0	L/mol/min	Internal double-bond polymerization
δ	0.001	L/g	Reaction radius for segmental diffusion
n_{s}	120		Average number of monomer units in a polymer chain
l_{0}	6.2	Å	RMS length of monomer unit in a chain
$V_{\text {f.crit }}$	$3.09563 \exp (-1683.2 / \mathrm{RT})$	volume	Critical free volume of diffusion-control of propagation
$V_{f, m}{ }^{0}$	0.025	volume	Monomer free volume at T_{g}
$V_{f, p}{ }^{0}$	0.025	volume	Polymer free volume at T_{g}
α_{m}	0.001	volume/K	Monomer thermal expansion coeff. above and below T_{g}
α_{p}	0.00048	volume/K	Polymer thermal expansion coeff. above and below T_{g}
B	1		Rate of decrease of k_{p}
m	0.5		Gel-effect model parameter
n	1.75		Gel-effect model parameter
A	1.75		Rate of decrease of k_{t}
K_{3}	5.0E6		Onset point of translational diffusion-control
$k_{\text {th }}$	0	$\mathrm{L}^{2} / \mathrm{mol}^{2} / \mathrm{min}$	Thermal initiation rate constant

Table A.5. Kinetic database of AA

Appendix D

Sty Thermal Polymerization

Sty monomer can polymerize thermally without an initiator. Hui and Hamielec (1972) investigated the kinetics and modeling of Sty thermal polymerization up to high conversion in the industrial temperature range of $100 \sim 200^{\circ} \mathrm{C}$. They proposed second and third-order initiation models based on a Diels-Alder mechanism. The third-order model could fit conversion and number/weight average molecular weight data in a satisfactory way. Husain and Hamielec (1978) extended the temperature range of kinetic studies up to $230^{\circ} \mathrm{C}$ using this model, which accepts that the rate of Sty thermal initiation is of order three in monomer concentration.

$$
\begin{equation*}
R_{t h}=2 k_{t h}[M]^{3} \tag{D-1}
\end{equation*}
$$

where $k_{t h}$ is a thermal initiation rate constant.
The model by Hui and Hamielec (1972) uses empirical gel effect corrections for transfer to monomer and termination by combination for Sty bulk thermal polymerization, as follows:

$$
\begin{gather*}
k_{f m}=k_{f m 0}-0.001013 k_{p}\left(\frac{S}{100}\right) \log \left(\frac{473.12-T}{202.5}\right) \tag{D-2}\\
k_{t c}=k_{t c 0} \exp \left[-2 g_{T 1}\left(\frac{S}{100}\right)-2 g_{T 2}\left(\frac{S}{100}\right)^{2}-2 g_{T 3}\left(\frac{S}{100}\right)^{2}\right] \tag{D-3}
\end{gather*}
$$

where:
$k_{f m 0}$ is the rate constant of chain transfer to monomer at zero conversion. k_{p} is the propagation rate constant.
S is the solids level and T is reaction temperature (K).
$k_{t c 0}$ is the rate constant of termination by combination at zero conversion.
$g_{T 1}=2.57-0.00505 T$
$g_{T 2}=9.56-0.01760 T$
$g_{T 3}=-3.03+0.00785 T$

Matthews et al. (2007) presented a new data set with an estimated experimental error of 2% for number/weight/z average molecular weights. They conducted ten bulk and solution experiments over the temperature range from 100 to $180^{\circ} \mathrm{C}$ using ethylbenzene as a solvent. First, Matthews et al. (2007) compared molecular weight experimental data in bulk polymerization with the original model predictions by Hui and Hamielec (1972) and observed some discrepancies, especially at temperature levels below $130^{\circ} \mathrm{C}$. In order to obtain better predictions and to include the solvent chain transfer effect, they kept equation (D-3) and modified the gel effect corrections for chain transfer rate constants to monomer and solvent, as follows.

$$
\begin{gather*}
k_{f m}=k_{f m 0}+0.00009 k_{p}\left(\frac{S}{S+\Phi_{m}(100-S)}\right) \exp \left[-\frac{12000}{R}\left(\frac{1}{T}-\frac{1}{373.15}\right)\right] \tag{D-4}\\
k_{f S}=k_{f 50}-0.0012 k_{p}\left(\frac{S}{S+\Phi_{S}(100-S)}\right) \tag{D-5}
\end{gather*}
$$

where:
$k_{f S 0}$ is the rate constant of chain transfer to solvent at zero conversion.
R is the universal gas constant.

$$
\begin{aligned}
& \Phi_{m}=0.25+\frac{0.75}{1+\exp (398.15-T)} \\
& \Phi_{S}=9-\frac{8}{1+\exp (398.15-T)}
\end{aligned}
$$

Using the modified model and based on the empirical gel correction factors shown above, Matthews et al. (2007) could obtain better prediction results. This case study was conducted
in order to check the reliability of our multi-component model by comparing our number/weight average molecular weight predictions with predictions by Hui and Hamielec (1972) and Matthews et al. (2007). The difference between our multi-component model and the other approaches is that ours uses the free volume theory for diffusion-controlled kinetics instead of the empirical correction functions (see the diffusion kinetics part in Chapter 3), and hence our model is more general.

The measured final number and weight average molecular weights were compared with the three model predictions through parity plots. Predictions by Hui and Hamielec (1972) and our model are presented in Figures D. 1 and D.2, while the ones by Matthews et al. (2007) and ours are depicted in Figures D. 3 and D.4. No experimental data on molecular weight averages over the entire conversion range but only the final values were available in Mattews et al. (2007). Therefore, our final number/weight average molecular weight predictions were compared with their measurements at the end of the polymerization.

Figures D. 1 and D. 2 represent parity plots for number and weight average molecular weights, respectively. The results show more variability as temperature becomes lower. At $100^{\circ} \mathrm{C}$, discrepancies between x and y values increases up to about $100,000 \mathrm{~g} / \mathrm{mol}$. Our multicomponent model predictions are marked with ' x ' symbols in both plots and show better agreement with the measurements over the temperature range.

Figures D. 3 and D. 4 are parity plots comparing the measured values of the number and weight average molecular weights with predictions using the modified model by Matthews et al. (2007) and our model. More predicted values lie on the diagonal line than the ones calculated by the original model (contrast with Figures D. 1 and D.2), especially at low temperatures, which means that the modified model predictions have been improved. Our multi-component model predictions are also added in the figures (see ' x ' symbols) and show satisfactory results as well over the temperature range. If Matthews et al. (2007) had provided full conversion range experimental data (molecular weight averages vs conversion), the model evaluation would have been clearer. This is the reason why all of our model predictions represented only the final number/weight average molecular weights at each temperature level in the parity plots.

Figure D.1. Number average molecular weight parity plot (predicted by Hui and Hamielec (1972) and our model (denoted as ' x '))

Figure D.2. Weight average molecular weight parity plot (predicted by Hui and Hamielec (1972) and our model (denoted as ' \mathbf{x} '))

Figure D.3. Number average molecular weight parity plot (predicted by Matthews et al. (2007) and our model (denoted as ' x '))

Figure D.4. Weight average molecular weight parity plot (predicted by Matthews et al. (2007) and our model (denoted as ' x '))

General Nomenclature

A	rate of decrease of termination rate constant in the free volume model
A_{i}	rate of decrease of termination rate constant of species i in the free volume model
$A_{i j k}$	probability of forming triad monomer sequence $i j k$
$A_{K, i}$	pre-exponential factor of gel effect model parameter for translational diffusioncontrolled termination
B	glass-transition effect model parameter
$\overline{B_{N 3}}$	average number of tri-functional branches
$\overline{B_{N 4}}$	average number of tetra-functional branches
C	model parameter for diffusion-controlled initiator efficiency
c	mass concentration of accumulated polymer (g / L)
[CTA]	chain transfer agent concentration (mol/L)
D	reaction diffusion coefficient (\AA^{2} / min)
$E_{K, i}$	activation energy for gel point parameter for translational diffusion-controlled termination ($\mathrm{cal} / \mathrm{mol}$)
F_{i}	instantaneous polymer composition of species i
$\overline{F_{i}}$	accumulated polymer composition of species i
$F_{C T A, \text { in }}$	molar inflow rate of chain transfer agent ($\mathrm{mol} / \mathrm{min}$)
$F_{\text {I, in }}$	molar inflow rate of initiator ($\mathrm{mol} / \mathrm{min}$)
$F_{i, i n}$	molar inflow rate of monomer species $i(\mathrm{~mol} / \mathrm{min})$
$F_{p i, i n}$	molar inflow rate of monomer species i bound as polymer ($\mathrm{mol} / \mathrm{min}$)
$F_{S, \text { in }}$	molar inflow rate of solvent ($\mathrm{mol} / \mathrm{min}$)
$F_{Z, \text { in }}$	molar inflow rate of impurity ($\mathrm{mol} / \mathrm{min}$)
f	initiator efficiency
f_{0}	initiator efficiency at zero conversion
f_{i}	residual mole fraction (feed ratio) of monomer species i
$f_{i 0}$	initial residual mole fraction (feed ratio) of monomer species i
$f_{e f f}$	initiator efficiency

$f_{\text {eff }, i}$	initiator efficiency related with monomer i
$f_{\text {eff, pseudo }}$	pseudo initiator efficiency
ΔG_{p}	Gibbs free energy ($\mathrm{cal} / \mathrm{mol}$)
$g_{\text {T1 }} \sim g_{\text {T3 }}$	gel effect parameters for termination by combination of Sty (Appendix D)
ΔH_{p}	enthalpy change upon propagation ($\mathrm{cal} / \mathrm{mol}$)
[1]	initiator concentration ($\mathrm{mol} / \mathrm{L}$)
i, j	monomer species
$K_{\text {eq }}$	equilibrium constant between propagation and depropagation (L/mol)
$K_{e q, i}$	equilibrium constant between propagation and depropagation of species $i(\mathrm{~L} / \mathrm{mol})$
K_{3}	gel point parameter for translational diffusion-controlled termination
$K_{3, i}$ termination	gel point parameter of species i for translational diffusion-controlled
$K_{3, p s e u d o}$	pseudo gel point parameter for translational diffusion-controlled termination
$K_{3, \text { test }}$	gel point test parameter for translational diffusion-controlled termination
k_{d}	rate constant of initiator decomposition ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{d, i}$	rate constant of initiator decomposition related with monomer $i(\mathrm{~L} / \mathrm{mol} / \mathrm{min})$
$k_{d, ~ p s e u d o}$	pseudo initiator decomposition rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f C T A}$	overall transfer rate constant to chain transfer agent ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{\text {fCTA0 }}$	overall initial transfer rate constant to chain transfer agent ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f C T A i}$	transfer rate constant from radical species i to chain transfer agent ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f m}$	overall transfer rate constant to monomer species j ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f m 0}$	transfer rate constant to monomer at zero conversion ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{\text {fmij }}$	transfer rate constant from radical species i to monomer species j ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f m, p s e u d o}$	pseudo transfer rate constant to monomer ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{\text {fp }}$	overall transfer rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{\text {fpij }}$	transfer rate constant from radical species i to monomer species $j(\mathrm{~L} / \mathrm{mol} / \mathrm{min})$
$k_{f S 0}$	transfer rate constant to solvent at zero conversion ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f S i}$	transfer rate constant from radical species i to solvent ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f S, p s e u d o}$	pseudo transfer rate constant to solvent ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f Z}$	overall transfer rate constant of to inhibitor ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)

$k_{f Z i}$	transfer rate constant from radical species i to impurity ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{f Z, ~ p s e u d o}$	pseudo transfer rate constant to impurity ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
k_{p}	overall propagation rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{p}^{\text {eff }}$	net propagation rate constant considering depropagation ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{p}{ }^{*}$	overall terminal double bond polymerization rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{p}{ }^{* *}$	overall internal double bond polymerization rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$\overline{k_{p}}$	overall depropagation rate constant (1/min)
$\overline{k_{p i j}}$	depropagation rate constant of penultimate species i and terminal species j ($1 / \mathrm{min}$)
$k_{p 0}$	chemically controlled initial propagation rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{p i j}$	propagation rate constant between radical species i and monomer species j
$k_{p, \text { pseudo }}$	pseudo propagation rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
k_{t}	overall termination rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t, p s e u d o}$	pseudo termination rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t c}$	termination rate constant by combination ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t c 0}$	termination rate constant by combination at zero conversion ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t, c r}$	overall termination rate constant at the onset point of translational diffusioncontrol ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t d}$	termination rate constant by disproportionation ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{\text {th }}$	thermal initiation rate constant ($\mathrm{L}^{2} / \mathrm{mol}^{2} / \mathrm{min}$)
$k_{t i j}$	termination rate constant between radical i and radical j
$k_{t, s e g}$	segmental diffusion-controlled termination rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t, t r a n s}$	translational diffusion-controlled termination rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t, r d}$	reaction diffusion-controlled termination rate constant ($\mathrm{L} / \mathrm{mol} / \mathrm{min}$)
$k_{t 0}$	chemically controlled initial termination rate constant
l_{0}	length of monomer unit in the chain (\AA)
[M]	total monomer concentration ($\mathrm{mol} / \mathrm{L}$)
[M $\left.{ }_{i}\right]$	concentration of monomer species $i(\mathrm{~mol} / \mathrm{L})$
$[M]_{\text {eq }}$	equilibrium monomer concentration ($\mathrm{mol} / \mathrm{L}$)

$[M]_{0}$	initial monomer concentration ($\mathrm{mol} / \mathrm{L}$)
M_{n}	instantaneous number average molecular weight ($\mathrm{g} / \mathrm{mol}$)
$\overline{M_{n}}$	cumulative number average molecular weight ($\mathrm{g} / \mathrm{mol}$)
M_{w}	instantaneous weight average molecular weight (g/mol)
$\overline{M_{w}}$	cumulative weight average molecular weight (g/mol)
$M w_{i}$	molecular weight of monomer species $i(\mathrm{~g} / \mathrm{mol})$
$M w_{\text {eff }}$	instantaneously effective pseudo molecular weight of monomers (g/mol)
$\overline{M w}_{\text {eff }}$	cumulatively effective pseudo molecular weight of monomers ($\mathrm{g} / \mathrm{mol}$)
$\overline{M_{w c r}}$	critical accumulated weight-average molecular weight of polymer ($\mathrm{g} / \mathrm{mol}$)
m	gel effect model parameter
n	gel effect model parameter
N	number of moles (mol)
$N_{\text {A }}$	Avogadro's number ($6.023 \cdot 10^{23} \mathrm{~mol}^{-1}$)
N_{I}	number of moles of initiator
$N_{\text {CTA }}$	number of moles of chain transfer agent
N_{S}	number of moles of solvent
$n_{\text {s }}$	average number of monomer units in one polymer chain
N_{Z}	number of moles of impurity
$N_{\text {in }}$	sequence probability of monomer i with length n
$\overline{N_{i n, R a y}}$	accumulated sequence probability of monomer i with length n (Ray)
$\overline{N_{i n, H M P}}$	accumulated sequence probability of monomer i with length n (HMP)
$\overline{N_{i, R a y}}$	accumulated number average sequence length of monomer i (Ray)
$\overline{N_{i, H M P}}$	accumulated number average sequence length of monomer i (HMP)
$\overline{n_{i}}$	instantaneous number average sequence length of monomer i
P_{i}	number of moles of monomer species i bound as polymer

$P_{i j}$ $p_{i j}$	probability of finding a primary radical species j attached to a penultimate unit probability of forming a dyad of monomers i and j
Q_{i}	i-th moment of dead polymer distribution
R	universal gas constant ($1.987 \mathrm{cal} / \mathrm{mol} / \mathrm{K}$)
$R_{i j}$	rate of reaction between radical species i and monomer species j
R_{I}	rate of initiation ($\mathrm{mol} / \mathrm{L} / \mathrm{min}$)
$R_{\text {I,total }}$	total rate of initiation ($\mathrm{mol} / \mathrm{L} / \mathrm{min}$)
$r_{i j}$	reactivity ratio
$R_{i j}$	propagation rate between radical species i and monomer species j ($\mathrm{mol} / \mathrm{L} / \mathrm{min}$)
R_{p}	total rate of polymerization (consumption rate) ($\mathrm{mol} / \mathrm{L} / \mathrm{min}$)
$R_{p i}$	rate of polymerization (consumption rate) of monomer species $i(\mathrm{~mol} / \mathrm{L} / \mathrm{min})$
$R_{t h}$	rate of thermal initiation ($\mathrm{mol} / \mathrm{L} / \mathrm{min}$)
R_{i}^{\prime}	cross-depropagation ratio
[R^{\bullet}]	total radical concentration ($\mathrm{mol} / \mathrm{L}$)
[R_{i}^{\bullet}]	radical concentration of species $i(\mathrm{~mol} / \mathrm{L})$
[$R_{i j}^{\bullet}$]	radical concentration of penultimate species i and terminal species $j(\mathrm{~mol} / \mathrm{L})$
r	chain length of polymer
$r_{i j}$	monomer reactivity ratio (monomer species i and j)
S	solids content level
[S]	solvent concentration ($\mathrm{mol} / \mathrm{L}$)
ΔS_{p}	entropy change upon propagation ($\mathrm{cal} / \mathrm{mol} / \mathrm{K}$)
s	chain length of polymer
T	reaction temperature (K)
T_{c}	ceiling temperature (K)
$T_{g i}$	glass transition temperature of homo-polymer species $i(\mathrm{~K})$
$T_{g p i j}$	glass transition temperature of alternating co-polymer from monomers i and j
$T_{\text {gpoly }}$	glass transition temperature of polymer
t	reaction time (min.)
V	total volume of reaction mixtures (L)

$V_{i} \quad$ volume for component $i(\mathrm{~L})$
$V_{f} \quad$ free volume of reaction mixtures
$V_{f, i}^{0} \quad$ free volume of component i at glass transition temperature
$V_{f, c r 1} \quad$ critical free-volume for translational diffusion-controlled termination
$V_{f, c r 2} \quad$ critical free-volume for diffusion-controlled propagation/transfer
$V_{f, c r 3} \quad$ critical free-volume for diffusion-controlled initiator efficiency
$V_{\mathrm{m}} \quad$ molar volume of monomer ($\mathrm{L} / \mathrm{mol}$)
$w_{i} \quad$ weight fraction of monomer specis i_{i} bound in the polymer
$w(r, X) \quad$ instantaneous weight fraction of polymer of chain length r at conversion X
$\overline{w(r, X)} \quad$ cumulative weight fraction of polymer of chain length r at conversion X
$\bar{w}_{i} \quad$ instantaneous weight average sequence length of monomer i
$\overline{W_{i, \text { Ray }}} \quad$ accumulated weight average sequence length of monomer i (Ray)
$\overline{W_{i, H M P}} \quad$ accumulated weight average sequence length of monomer i (HMP)
$X \quad$ overall molar conversion
$X_{i} \quad$ partial molar conversion of species i
$Y_{i} \quad i$-th moment of radical distribution
[Z] impurity concentration (mol/L)

Greek letters
$\alpha_{i} \quad$ thermal expansion coefficient above and below glass transition temperature
$\beta \quad$ parameter used for average molecular weight calculation
$\delta \quad$ reaction radius in reaction diffusion termination (\AA)
$\delta_{\mathrm{c}} \quad$ segmental diffusion parameter
$\rho_{i, \text { monomer }}$
$\rho_{\text {polymer }}$
τ
$\Phi_{j}^{\bullet} \quad$ fraction of radical species j
$\Phi_{\mathrm{m}} \quad$ gel effect parameter for transfer to monomer (in Appendix D)
$\Phi_{\mathrm{S}} \quad$ gel effect parameter for transfer to solvent (in Appendix D)
$\varphi \quad$ cross-termination factor, or Walling's φ factor

Bibliography

1. A. M. Alb, P. Enohnyaket, M. F. Drenski, A. Head, A. W. Reed, W. F. Reed, Online monitoring of co-polymerization involving co-monomers of similar spectral characteristics, Macromolecules, 39, 5705-5713 (2006)
2. T. Alfrey, G. Goldfinger, Co-polymerization of systems of three and more components, Journal of Chemical Physics, 12, 205-209, 322 (1944)
3. T. Alfrey, G. Goldfinger, Co-polymerization of systems containing three components, Journal of Chemical Physics, 14, 115-116 (1946)
4. K. Arai, S. Saito, Simulation model for the rate of bulk polymerization over the complete course of reaction, Journal of Chemical Engineering of Japan, 9(4), 302-313 (1976)
5. J. M. Asua, S. Beuermann, M. Buback, P. Castignolles, B. Charleux, R. G. Gilbert, R. A. Hutchinson, J. R. Leiza, A. N. Nikitin, JP Vairon. A. M. van Herk, Critically evaluated rate coefficients for free-radical polymerization, 5 Propagation rate coefficient for BA, Macromolecular Chemistry and Physics, 205, 2151-2160 (2004)
6. K. S. Balaraman, V. M. Nadkarni, R. A. Mashelkar, SAN bulk co-polymerization: some new insights in kinetics and microstructure, Chemical Engineering Science, 41(5), 1357-1368 (1986)
7. S. Beuermann, D. A. Paquet, J. H. McMinn, R. A. Hutchinson, Propagation kinetics of methacrylic acid studied by pulsed-laser polymerization, Macromolecules, 30, 194197 (1997)
8. J. K. Borchardt, Steric and electronic effects of alkyl substituents on reactivity ratios in co-polymerization reactions of acrylates and methacrylates, Polymer Preprients, 23(2), 209-211 (1982)
9. J. K. Borchardt, Calculation of reactivity ratios and sequence distributions in copolymers from monomers ${ }^{13} \mathbf{C}$-NMR data, Journal of Macromolecular Science. Chemistry, A22(12), 1711-1733 (1985)
10. H. Branson, R. Simha, On the kinetics of co-polymerization, Journal of Chemical Physics, 11(6), 297-298 (1943)
11. M. Buback, B. Degener, B. Huckestein, Conversion dependence of free-radical polymerization rate coefficients from laser-induced experiments. 1. BA, Die Makromolekulare Chemie, Rapid Communications, 10, 311-316 (1989)
12. M. Buback, Free-radical polymerization up to high conversion. A general kinetic treatment, Makromoleculare Chemie, 191, 1575-1587 (1990)
13. M. Buback, R. G. Gilbert, R. A. Hutchinson, B. Klumperman, FD Kuchta, B. G. Manders, K. F. O’Driscoll, G. T. Russell, J. Schweer, Critically evaluated rate coefficients for free-radical polymerization, 1. Propagation rate coefficient for Sty, Macromolecular Chemistry and Physics, 196, 3267-3280 (1995)
14. M. Buback, T. Junkers, Termination kinetics of tert-BMA and of \mathbf{n}-BMA free-radical bulk homo-polymerizations, Macromolecular Chemistry and Physics, 207, 1640-1650 (2006)
15. S. Bywater, Photosensitized polymerization of MMA in dilute solution above $100{ }^{\circ} \mathrm{C}$, Transactions of the Faraday Society, 51, 1267-1273 (1955)
16. G. G. Cameron, G. P. Kerr, The co-polymerization behaviour of alpha-substituted methyl acrylates, European Polymer Journal, 3, 1-4 (1967)
17. J. M. Catala, A. Nonn, J. M. Pujol, J. Brossas, Radical co-polymerization of HEA with Alkylacrylate - Determination of the reactivity ratios, Polymer Bulletin, 15, 311-315 (1986)
18. G. Chambard, B. Klumperman, A. L. German, Dependence of chemical composition of Sty/BA co-polymers on temperature and molecular weight, Polymer, 40, 4459-4463 (1999)
19. R. K. S. Chan, V. E. Meyer, Computer calculations of binary and ternary copolymerization behaviour, Journal of Polymer Science, Polymer Symposia, 25, 11-21 (1968)
20. S. Chen, T. Hu, Y. Tian, L. Chen, J. A. Pojman, Facile synthesis of PHEA by frontal free-radical polymerization, Journal of Polymer Science: Part A: Polymer Chemistry, 45, 873-881 (2007)
21. S. I. Cheong, A. Penlidis, Modeling of the co-polymerization, with depropagation, of AMS/MMA at an elevated temperature, Journal of Applied Polymer Science, 93, 261270 (2004)
22.C. D. Chow, Monomer reactivity ratio and Q-e Values for co-polymerization of hydroxyalkyl acrylates and 2-(1-aziridinyl)ethyl methacrylate with Sty, Journal of Polymer Science: Polymer Chemistry Edition, 13, 309-313 (1975)
23.T. P. Davis, K. F. O'Driscoll, M. C. Piton, M. A. Winnik, Co-polymerization propagation kinetics of Sty with alkyl methacrylates, Macromolecules, 23, 2113-2119 (1990)
22. R. Dhib, J. Gao, A. Penlidis, Simulation of free-radical bulk/solution homopolymerization using mono- and bi-functional initiators, Polymer Reaction Engineering, 8(4), 299-464 (2000)
23. J. M. Dionisio, K. F. O'Driscoll, High-conversion co-polymerization of Sty and MMA, Journal of Polymer Science: Polymer Letters Edition, 17, 701-707 (1979)
24. M. A. Dubé, Co-polymerization of Sty and BA experimental kinetics and mathematical modeling, PhD thesis, Department of Chemical Engineering, Univ. of Waterloo (1989)
25. M. A. Dubé, A. Penlidis, K. F. O’Driscoll, Mathematical modelling of Sty/BA copolymerization, Chemical Engineering Science, 45(8), 2785-2792 (1990)
26. M. A. Dubé, A. Penlidis, K. F. O'Driscoll, A kinetic investigation of Sty/BA copolymerization, Canadian Journal of Chemical Engineering, 68, 974-987 (1990)
27. M. A. Dubé, K. Rilling, A. Penlidis, A kinetic investigation of BA polymerization, Journal of Applied Polymer Science, 43, 2137-2145 (1991)
28. M. A. Dubé, R. A. Sanayei, A. Penlidis, K. F. O’Driscoll, P. M. Reilly, A microcomputer program for estimation of co-polymerization reactivity ratios, Journal of Polymer Science: Part A: Polymer Chemistry, 29, 703-708 (1991)
29. M. A. Dubé, A. Penlidis, A systematic approach to the study of multi-component polymerization kinetics: BA/MMA/VAc example, 1. Bulk co-polymerization, Polymer, 36(3), 587-598 (1995a)
30. M. A. Dubé, A. Penlidis, A systematic approach to the study of multi-component polymerization kinetics: BA/MMA/VAc example, 2. Bulk (and solution) terpolymerization, Macromolecular Chemistry and Physics, 196, 1102-1112 (1995b)
31. M. A. Dubé, A. Penlidis, Hierarchical data analysis of a replicate experiment in emulsion ter-polymerization, AIChE Journal, 42(7), 1985-1994 (1996)
32. M. A. Dubé, J. B. P. Soares, A. Penlidis, A. E. Hamielec, Mathematical modeling of multi-component chain-growth polymerizations in batch, semi-batch, and continuous reactors: A review, Industrial \& Engineering Chemistry Research, 36(4), 966-1015 (1997)
33. T. A. Duever, K. F. O'Driscoll, P. M. Reilly, The use of the Error-in-Variables Method in ter-polymerization, Journal of Polymer Science: Polymer Chemistry Edition, 21, 2003-2010 (1983)
34. U. Engelmann, G. Schmidt-Naake, Free-radical multi-component polymerization reactors and chemical composition distribution, Makromolekulare Chemie, Theory and Simulations, 2, 275-297 (1993)
35. M. Fernandez-Garcia, M. Fernandez-Sanz, E. L. Madruga, Free-radical copolymerization of Sty with BA. II. Elemental kinetic co-polymerization step predictions from homo-polymerization data, Journal of Polymer Science: Part A, 42, 130-136 (2003)
36. M. Fineman, S. D. Ross, Linear method for determining monomer reactivity ratios in co-polymerization, Journal of Polymer Science, 5(2), 259-265 (1950)
37. N. Friis, L. Nyhagen, A kinetic study of the emulsion polymerization of VAc, Journal of Applied Polymer Science, 17, 2311-2327 (1973)
38. T. Fujisawa, A. Penlidis, Co-polymer composition control policies: Characteristics and applications, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 45, 115-132 (2008)
39. M. N. Galbraith, G. Moad, D. H. Solomon, T. H. Spurling, Influences on the initiation and termination reactions on the MWD and compositional heterogeneity of functional co-polymers: An application of Monte Carlo Simulation, Macromolecules, 20, 675-679 (1987)
40. J. Gao, Mathematical modeling of homo-polymerizations: Simulation package and database extensions, MASc thesis, Department of Chemical Engineering, Univ. of Waterloo (1992)
41. J. Gao, A. Penlidis, A comprehensive simulator/database package for reviewing freeradical homo-polymerizations, Journal of Macromolecular Sciences - REV. Macromolecular Chemistry and Physics, C36(2), 199-404 (1996)
42. J. Gao, N. T. MaManus, A. Penlidis, Experimental and simulation studies on EA polymerization, Macromolecular Chemistry and Physics, 198, 843-859 (1997)
43. J. Gao, A. Penlidis, A comprehensive simulator/database package for bulk/solution free-radical co-polymerizations, Journal of Macromolecular Sciences - REV. Macromolecular Chemistry and Physics, C38(4), 651-780 (1998)
44. J. Gao, A. Penlidis, A comprehensive simulator/database package for bulk/solution free-radical ter-polymerizations, Macromolecular Chemistry Physics, 201, 1176-1184 (2000)
45. J. Gao, K. D. Hungenberg, A. Penlidis, Process modeling and optimization of Sty polymerization, Macromolecular Symposia, 206, 509-522 (2004)
46. L. H. Garcia-Rubio, A. E. Hamielec, J. F. MacGregor, Bulk polymerization of AN. II. Model development, Journal of Applied Polymer Science, 23, 1413-1429 (1979)
47. L. H. Garcia-Rubio, M. G. Lord, J. F. MacGregor, A. E. Hamielec, Bulk copolymerization of Sty and AN: Experimental kinetics and mathematical modeling, Polymer, 26, 2001-2013 (1985)
48. M. C. Grady, W. J. Simonsick, R. A. Hutchinson, Studies of higher temperature polymerization of BMA/BA, Macromolecular Symposia, 182, 149-168 (2002)
49. A. E. Hamielec, J. F. MacGregor, A. Penlidis, Comprehensive Polymer Science Encyclopedia, Chap. 2, Pergamon Press, 3, 17-31 (1987a)
50. A. E. Hamielec, J. F. MacGregor, A. Penlidis, Multi-component free-radical polymerization in batch, semi-batch and continuous reactors - modelling and control of chain composition, microstructure, molecular weight distribution, long chain branching and crosslinking in solution and emulsion polymerization, Makromolekulare Chemie, Macromolecular Symposia, 10-11, 521-570 (1987b)
51. H. J. Harwood, W. M. Ritchey, The characterization of sequence distribution in copolymers, Polymer letters, 2, 601-607 (1964)
52. H. J. Harwood, A FORTRAN II program for conducting sequence distribution calculations, Journal of Polymer Science. Part C, 25, 37-45 (1968)
53. D. J. T. Hill, J. H. O'Donnel, P. W. O'Sullivan, Analysis of the mechanism of copolymerization of Sty and AN, Macromolecules, 15, 960-966 (1982)
54. M. B. Hocking, K. A. Klimchuk, A refinement of the ter-polymer equation and its simple extension to two- and four-component systems, Journal of Polymer Science: Part A: Polymer Chemistry, 34, 2481-2497 (1996)
55. J. A. Howell, M. Izu, K. F. O’Driscoll, Co-polymerization with depropagation III. Composition and sequence distribution from probability considerations, Journal of Polymer Science: Part A-1, 8, 699-710 (1970)
56. A. W. Hui, A. E. Hamielec, Thermal polymerization of Sty at high conversions and temperatures: An experimental study, Journal of Applied Polymer Science, 16, 749769 (1972)
57. A. Husain, A. E. Hamielec, Thermal polymerization of Sty, Journal of Applied Polymer science, 22, 1207-1223 (1978)
58. R. A. Hutchinson, D. A. Paquet, Jr., J. H. McMinn, R. E. Fuller, Measurement of freeradical propagation rate coefficients for EMA, n-BMA, and iso-BMA by pulsedlaser Polymerization, Macromolecules, 28, 4023-4028 (1995)
59. R. A. Hutchinson, S. Beuermann, D. A. Paquet, J. H. McMinn, Determination of freeradical propagation rate coefficients for alkyl methacrylates by pulsed-laser polymerization, Macromolecules, 30, 3490-3493 (1997)
62.M. Izu, K. F. O'Driscoll, Co-polymerization with depropagation IV. Computer simulation of co-polymerization with reversibility, Journal of Polymer Science: Part A-1, 8, 1675-1685 (1970)
60. H. Jianying, C. Jiayan, Z. Jiaming, C. Yihong, D. Lizong, Z. Yousi, Some Monomer reactivity ratios of Sty and (meth)acrylates in the presence of TEMPO, Journal of Applied Polymer Science, 100, 3531-3535 (2006)
61. M. Johnson, T. S. Karmo, R. R. Smith, High conversion co-polymerization of Sty with MMA, European Polymer Journal, 14, 409-414 (1978)
62. N. W. Johnston, Sequence distribution - Glass transition effects III. AMS-AN copolymers, Macromolecules, 6(3), 453-456 (1973)
63. A. Keramopoulos, C. Kiparissides, Mathematical modeling of diffusion-controlled free-radical ter-polymerization reactions, Journal of Applied Polymer Science, 88, 161-176 (2003)
64. Y. Kim, H. J. Harwood, Analysis of sequence distribution in MMA/MA co-polymers by ${ }^{13}$ C NMR spectroscopy, Polymer, 43, 3229-3237 (2002)
65. J. D. Kim, A kinetic study of Sty/HEA co-polymerization, MASc thesis, Department of Chemical Engineering, Univ. of Waterloo (1994)
66. J. L. Koenig, Chemical Microstructure of Polymer Chains, Chap. 3, John Wiley \& Sons (1980)
67. H. Krüger, J. Bauer, J. Rübner, Ein Modell zur Beschreibung reversibler Copolymerisationen, Makromolekulare Chemie, 188, 2163-2175 (1987)
68. M. E. Kuindersma, On the modeling of free-radical polymerization reactions: Homopolymerization, MASc thesis, Department of Chemical Engineering, Univ. of Waterloo (1992)
69. V. R. Kumar, S. K. Gupta, Optimal parameter estimation for MMA polymerization, Polymer, 32(17), 3233-3243 (1991)
70. M. J. Leamen, Kinetic investigation and modeling of multi-component polymer systems with depropagation, PhD thesis, Department of Chemical Engineering, Univ. of Waterloo (2005a)
71. M. J. Leamen, N. T. McManus, A. Penlidis, Binary co-polymerization with full depropagation: A study of MMA/AMS co-polymerization, Journal of Polymer Science: Part A: Polymer Chemistry, 43, 3868-3877 (2005b)
72. M. J. Leamen, N. T. McManus, A. Penlidis, Ter-polymerization with depropagation: Modeling the co-polymer composition of the MMA/AMS/BA system, Chemical Engineering Science, 61, 7774-7785 (2006)
73. D. Li, M. C. Grady, R. A. Hutchinson, High-temperature semi-batch free-radical copolymerization of BMA/BA, Industrial and Engineering Chemistry Research, 44(8), 2506-2517 (2005)
74. D. Li, N. Li, R. A. Hutchinson, High temperature free-radical co-polymerization of Sty and BMA with depropagation and penultimate kinetic effects, Macromolecules, 39, 4366-4373 (2006)
75. D. Li, A. Hutchinson, Penultimate propagation kinetics of BMA/BA/Sty terpolymerization, Macromolucular Rapid Communications, 28, 1213-1218 (2007)
76. M. G. Lord, Computer modelling of Sty and AN bulk co-polymerization at high conversion, MEng. thesis, McMaster Univ. (1984)
77. G. G. Lowry, The effect of depropagation on co-polymer composition, I. General theory for one depropagating monomer, Journal of Polymer Science, 42, 463-477 (1960)
78. R. A. Lyons, J. Hutovic, M. C. Piton, D. I. Christie, P. A. Clay, B. G. Manders, S. H. Kable, R. G. Gilbert, Pulsed-laser polymerization measurements of the propagation rate coefficients for BA, Macromolecules, 29, 1918-1927 (1996)
79. P. Mallya, S. S. Plamthottam, Termination rate constant in BA emulsion polymerization, Polymer Bulletin, 21, 497-504 (1989)
80. F. L. Marten, A. E. Hamielec, High-conversion diffusion-controlled polymerization of Sty I, Journal of Applied Polymer Science, 27, 489-505 (1982)
81. F. Martinet, J. Guillot, Co-polymerization with depropagation: Prediction of kinetics and properties of AMS-MMA co-polymers. II. Bulk co-polymerization, Journal of Applied Polymer Science, 72, 1611-1625 (1999)
82. B. Matthews, C. Villa, P. Pierini, Model development in thermal Sty polymerization, Macromolecular Symposia, 259, 94-101 (2007)
83. F. R. Mayo, F. M. Lewis, A basis for comparing the behaviour of monomers in copolymerization; The co-polymerization of Sty and MMA, Journal of American Chemical Society, 66, 1594-1601 (1944)
84. F. R. Mayo, C. Walling, Co-polymerization, Chemical Reviews (Washington, DC, USA), 46, 191-287 (1950)
85. H. W. McCormick, Ceiling temperature of AMS, Journal of Polymer Science, 25(111), 488-490 (1957)
86. S. McIssac, MASc thesis, Department of Chemical Engineering, U of Waterloo (1994)
87. T. F. McKenna, A. Villanueva, A. M. Santos, Effect of solvent on the rate constants in solution polymerization. Part I. BA, Journal of Polymer Science: Part A: Polymer Chemistry, 37, 571-588 (1999)
88. N. T. McManus, A. Penlidis, A kinetic investigation of Sty/EA co-polymerization, Journal of Polymer Science: Part A, 34, 237-248 (1996)
89. N. T. McManus, J. D. Kim, A. Penlidis, Observations on Sty/HEA and Sty/HEA/EA polymerizations, Polymer Bulletin, 41, 661-668 (1998)
90. N. T. McManus, M. A. Dubé, A. Penlidis, High temperature bulk co-polymerization of BA/MMA reactivity ratio estimation, Polymer Reaction Engineering, 7(1), 131-145 (1999)
91. N. T. McManus, G. Hsieh, A. Penlidis, Free-radical ter-polymerization of BA/MMA/AMS at high temperature, Polymer, 45, 5837-5845 (2004)
92. E. Merz, T. Alfrey, G. Goldfinger, Intramolecular reactions in vinyl polymers as a means of investigation of the propagation step, Journal of Polymer Science, 1(2), 7582 (1946)
93. V. E. Meyer, G. G. Lowry, Integral and differential binary co-polymerization equations, Journal of Polymer Science: Part A: General Papers, 3(8), 2843-2851 (1965)
94. G. A. Mun, Z. S. Nurkeeva, A. B. Beissegul, A. V. Dubalazov, P. I. Urkimbaeva, K. Park, V. V. Khutoryanskiy, Temperature-responsive water-soluble co-polymers based on HEA and BA, Macromolecular Chemistry and Physics, 208, 979-987 (2007)
95. A. S. Nair, M. S. Muthana, Studies on the polymerization of methacrylic esters Part I. Polymerization of n-BMA and iso-BMA, Makromolekulare Chemie, 47, 114-127 (1961)
96. G. Odian, Principles of polymerization, McGraw-Hill, New York (1970)
97. K. F. O'Driscoll, J. Huang, The rate of co-polymerization of Sty and MMA I. Low conversion kinetics, European Polymer Journal, 25(7/8), 629-633 (1989)
98. K. F. O'Driscoll, J. Huang, The rate of co-polymerization of Sty and MMA II. The gel effect in co-polymerization, European Polymer Journal, 26(6), 643-647 (1990)
99. T. Otsu, T. Ito, M. Imoto, The reactivities of alkyl methacrylates in their radical polymerizations, Polymer Letters, 3, 113-117 (1965)
100. D. E. Palmer, N. T. McManus, A. Penlidis, Co-polymerization with depropagation: A study of AMS/MMA in bulk at elevated temperatures, Journal of Polymer Science: Part A: Polymer Chemistry, 38, 1981-1990 (2000)
101. D. E. Palmer, N. T. McManus, A. Penlidis, Co-polymerization with depropagation: A study of AMS/MMA in solution at elevated temperatures, Journal of Polymer Science: Part A: Polymer Chemistry, 39, 1753-1763 (2001)
102. H. Patino-Leal, P. M. Reilly, K. F. O’Driscoll, On the estimation of reactivity ratios, Journal of Polymer Science: Polymer Letters Edition, 18, 219-227 (1980)
103. A. N. F. Peck, R. A. Hutchinson, Secondary reactions in the high temperature freeradical polymerization of BA, Macromolecules, 37, 5944-5951 (2004)
104. A. L. Polic, T. A. Duever, A. Penlidis, Case studies and Literature review on the estimation of co-polymerization reactivity ratios, Journal of Polymer Science: Part A: Polymer Chemistry, 36, 813-822 (1998)
105. C. Quan, M. Soroush, M. C. Grady, J. E. Hansen, W. J. Simonsick, High temperature homo-polymerization of EA and BA: Polymer characterization, Macromolecules, 38, 7619-7628 (2005)
106. P. V. T. Raghuram, U. S. Nandi, Studies on the polymerization of EA. I. Kinetic studies, Journal of Polymer Science: Part A-1, 5, 2005-2012 (1967)
107. P. V. T. Raghuram, U. S. Nandi, Studies on the polymerization of EA. III. Effect of temperature on the solvent-transfer reaction, Journal of Polymer Science: Part $A-1$, 8, 3079-3088 (1970)
108. F. S. Rantow, M. Soroush, M. C. Grady, G. A. Kalfas, Spontaneous polymerization and chain microstructure evolution in high-temperature solution polymerization of BA, Polymer, 47, 1423-1435 (2006)
109. H. Ray, R. Laurence, Chemical Reactor Theory; A review, Chap. 9, Prentice-Hall (1977)
110. P. M. Reilly, H. Patino-Leal, A Bayesian study of the Error-in-Variables Model, Technometrics, 23(3), 221-231 (1981)
111. P. M. Reilly, H. V. Reilly, S. E. Keeler, Algorithm AS286: Parameter estimation in the Error-in-Variables Model, Applied Statistics, 42(4), 693-701 (1993)
112. P. J. Rossignoli, T. A. Duever, The estimation of co-polymer reactivity ratios: A review and case studies using the Error-in-Variables Model and nonlinear least squares, Polymer Reaction Engineering, 3(4), 361-395 (1995)
113. N. A. Sahloul, A Study of multi-component polymerization of Sty/EA/HEA/MAA, PhD thesis, Department of Chemical Engineering, U of Waterloo (2004)
114. N. A. Sahloul, A. Penlidis, High temperature co-polymerization of Sty/EA: Reactivity ratio estimation in bulk and solution, Advances in Polymer Technology, 23(3), 186-195 (2004)
115. N. A. Sahloul, A. Penlidis, Sty/MAA monomer reactivity ratio estimation in bulk and solution at high temperatures, Polymer-Plastics Technology and Engineering, 44, 771-782 (2005)
116. N. A. Sahloul, N. A. Emwas, W. Power, A. Penlidis, EA/HEA and HEA/MAA: Reactivity ratio estimation from crosslinked polymer using high resolution magnetic angle spinning spectroscopy, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 42, 1369-1385 (2005)
117. C. A. Scholtens, J. Meuldijk, A. A. H. Drinkenburg, Production of co-polymers with a predefined intermolecular chemical composition distribution by emulsion polymerization in a continuously operated reactor, Chemical Engineering Science, 56, 955-962 (2001)
118. R. Simha, H. Branson, Theory of chain co-polymerization reactions, Journal of Chemical Physics, 12(6), 253-267 (1944)
119. I. Skeist, Co-polymerization: the composition distribution curve, Journal of American Chemical Society, 68, 1781-1784 (1946)
120. M. Stickler, Free-radical polymerization kinetics of MMA at very high conversions, Makromolekulare Chemie, 184, 2563-2579 (1983)
121. M. Stickler, D. Panke, A. E. Hamielec, Polymerization of MMA up to high degrees of conversion: Experimental investigation of the diffusion-controlled polymerization, Journal of Polymer Science: Polymer Chemistry Edition, 22, 2243-2253 (1984)
122. W. H. Stockmayer, Distribution of chain lengths and compositions in co-polymers, Journal of Chemical Physics, 13(6), 199-207 (1945)
123. M. Switata-Zeliazkow, Microstructure of Sty-MAA and Sty-AA co-polymers, 6. Relation of the glass transition temperature to the microstructure of MAA-Sty copolymers, Makromolekulare Chemie, 194(5), 1505-1511 (1993)
124. J. C. J. F. Tacx, J. L. Ammerdorffer, A. L. German, Chemical composition distribution of Sty/EMA co-polymers studied by means of t.l.c./f.i.d.: effect of high conversion in various polymerization processes, Polymer, 29, 2087-2094 (1988)
125. S. Teramachi, A. Hasegawa, N. Uchiyama, The chemical composition distribution of a high conversion sample of co-poly(Sty-stat-MMA) prepared in bulk, Journal of Polymer Science: Polymer Letters Edition, 22, 71-76 (1984)
126. A. Valvassori, G. Sartori, Present status of multi-component co-polymerization theory, Advances in Polymer Science, 5(1), 28-58 (1967)
127. E. Vargün, A. Usanmaz, Polymerization of HEA in bulk and solution by chemical initiator and by ATRP method, Journal of Polymer Science: Part A: Polymer Chemistry, 43, 3957-3965 (2005)
128. E. Vivaldo-Lima, A. E. Hamielec, P. E. Wood, Batch reactor modelling of the freeradical co-polymerization kinetics of Sty/divinylbenzene up to high conversions, Polymer Reaction Engineering, 2(1\&2), 87-162 (1994)
129. F. T. Wall, The structure of co-polymers II, Journal of American Chemical Society, 66, 2050-2057 (1944)
130. C. Walling, E. R. Briggs, Co-polymerization. III Systems containing more than two monomers, Journal of the American Chemical Society, 67, 1774-1778 (1945)
131. C. Walling, Co-polymerization XIII. Overall rates in co-polymerization. Polar effects in chain initiation and termination, Journal of American Chemical Society, 71, 1930-1935 (1949)
132. W. Wang, R. A. Hutchinson, High temperature semi-batch free-radical copolymerization of Sty/DMA, Macromolecular Symposia, 261, 64-73 (2008)
133. P. Wittmer, Co-polymerization in the presence of depolymerization reactions, Advances in Chemistry Series, 99, 140-174 (1971)
134. T. Y. Xie, A. E. Hamielec, Modeling free-radical co-polymerization kinetics evaluation of the pseudo-kinetic rate constant method, 2 Molecular weight calculations for co-polymers with long chain branching, Makromolekulare Chemie, Theory and Simulations, 2(3), 455-483 (1993)

[^0]: ${ }^{1}$ Dubé (1989) $\quad{ }^{2}$ Dubé (1989) $\quad{ }^{3}$ WATPOLY Asua et al. (2004) $\quad{ }^{5}$ Li et al. (2005) $\quad{ }^{6}$ Dubé (1989)
 $\quad{ }^{7}$ WATPOLY $\quad{ }^{8}$ Li et al. (2005) $\quad{ }^{9}$ Kuindersma (1992)/Mallya and Plamthottam (1989)
 ${ }^{10}$ WATPOLY ${ }^{11}$ Li et al. (2005) ${ }^{12}$ Assumed by Dubé (1989)

