Nonlinear Optimal Power Flow by

Interior and Non-Interior Point Methods

Geraldo Leite Torres

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Electrical Engineering
Waterloo, Ontario, Canada, 1998

© Geraldo Leite Torres 1998



i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Ottawa ON K1A ON4

services bibliographiques

Your fle Votre référence

Our fle Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protege cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent €tre imprimés
ou autrement reproduits sans son
autorisation.

0-612-38274-5

Canada



The University of Waterloo requires the signatures of all persons using or photocopying this
thesis. Please sign below, and give address and date.



Abstract

Optimization of power systems is one of the areas where interior-point (IP) methods are
being applied extensively; due to the size and special features of these problems, IP methods
have computationally proven to be a viable alternative for their solution. In this thesis, we
propose and investigate a number of IP methods for solving large nonlinear programming
(NLP) problems. The IP method that we study belongs to the class of infeasible primal-
dual path-following methods. Four higher-order variants of this IP method are considered
as well: (i) the predictor-corrector method, (ii) the perturbed composite Newton method,
(iii) the multiple predictor-corrector method, and (iv) the multiple centrality corrections
method. The proposed IP algorithms are then applied to specialized optimal power flow
(OPF) problems that use voltages either in polar or in rectangular coordinates. When
formulated in rectangular coordinates, some OPF variants have quadratic objective and
quadratic constraints. Such quadratic features allow for ease of matrix setup and inexpensive
incorporation of second-order information in higher-order variants of the IP method.

A non-interior-point (NIP) method for solving nonlinear OPF problems is also proposed
in this thesis. Unlike IP methods, the NIP method handles the complementarity conditions
for optimality in such a way that the strict positivity conditions are not required to be
satisfied at every iterate. This approach derives from reformulations of complementarity
problems as nonlinear systems of equations, and allows for a Newton-type method to be
used. To reformulate the OPF problem as a nonlinear system of equations, we handle the
complementarity conditions by means of an NCP-function, which is a function ¢, : IR? — IR
that satisfies the property: ¥,(a,b) =0 < a > 0, b > 0 and ab = y, for any g > 0. Since
the non-negativity of any limit point is automatically assured by NCP-functions, without
imposing additional conditions, the initial point and the iterates do not necessarily have to
stay in the positive orthant.

In this thesis, we have derived the proposed IP and NIP algorithms based on an NLP
problem form that is suitable to express most OPF problems. Many imporiant issues for
the efficient implementation of these algorithms, as related to nonlinear OPF solution, are
discussed in detail. Numerical results illustrate the viability of the proposed algorithms as
applied to several power networks that range in size from 14 to 2098 buses.
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Glossary

We summarize here, for convenience of reference, some of the notation and terminology

used in this thesis.

mﬂ.
Ry

13
RL,

- ll2, -1l

In

u

I,

Scalars:

3

QN3

Y

: n-dimensional Euclidean space.

: nonnegative orthant of IR". If z € IR}, then z; > 0 for i =

1,...,n.

: strictly positive orthant of IR®. If z € IR}, then z; > 0 for

i=1,...,n.

: Euclidean norm. If z € IR", then [|lz|j; = (3°%, z2)V/2.

: lo-norm. If z € IR™, then ||z|lo = max;|z;].

: natural logarithm: log,.

: vectors of ones of appropriate dimension: v = (1,1,...,1)7.
: zero vector or zero matrix.

: identity matrix in IR®*"™.

: iteration index: k = 1,2,3,....

: number of equality constraints.

: number of primal variables z;.

: number of nonlinear functional bound constraints.
: number of simple bound constraints.

: number of primal and dual variables: » = 4p + 49 + n + m.



Index sets:

£

Functions and vectors:

z € IR

z € IR?
f:R*"— IR
Vef : IR" — IR"
g : IR" — IR™
h:IR" — IR?P

s1, 82 € IR%,

s3, 84 € IRY

z, € IR, z, € IRP
z3 € IR, z4 € IR?
y e R™

: set of indices (with |£] elements) of load buses eligible for shunt

var control.

: set of indices (with |F| elements) of load buses with fixed var

sources.

: set of indices (with |G| elements) of generator buses.
: set of indices (with |V elements) of all buses in the system.

: set of indices (with [J\~f | elements) of all buses in the system but

the slack bus.

: set of indices (with [A;| elements) of all buses directly connected

to bus 1.

: set of ordered index pairs (7, j) (with |B| elements) of sending-end

and receiving-end buses of all branches in the system (transmission
lines and transformers): B := {(i,7) |1 € N,7 € N; and 7 > i}

: set of ordered index pairs (%,7) (with |7] elements) of sending-end

and receiving-end buses of all transformers with LTC: 7 C B.

: vector of primal variables.

: vector of primal variables that have finite bounds: z < Z < 7.
: scalar objective function.

: gradient vector of f(z).

: nonlinear function-vector of equality constraints.

: nonlinear function-vector of functional variables, that have lower

bound h and upper bound h.

: primal slack vectors: h + s; = h(z) and h(z) + 32 = h.
: primal slack vectors: z + 83 =T and T + 84 = Z.

: Lagrange multiplier vectors related to k < h(z) < h.

: Lagrange multiplier vectors related to z <Z < 7.

: Lagrange multiplier vector related to g(z) = 0.

XV



w e IR

L,:IR"— IR
VL, : IR — IR"
VL, : IR — IR"

Matrices:

B € RVIXIN
Ge BIJVIXIJV[
Veg : IR* — IR™*™

Vzh : IR® — IR™*P

V2.f : R® — IR™™"

Vieg; : [R" = ™"
V2.h; : [R™ s R™"
V2.L,: R~ R™"

V%’wL# IR — IRTXT .

511521 53154

Z1,29,23,24

Acronyms:

IP
KKT
LCP
LP
LTC
MCC

: vector of all primal and dual variables:

— T
w := (81, 82, 83, 84, 21, 22, 23, 24, T, Y)* .

: Lagrangian function parameterized by u.
: gradient vector of L, (w; ) with respect to z.

: gradient vector of L, (w; p) with respect to w.

: bus susceptance matrix.
: bus conductance matrix.

: transposed Jacobian matrix of g(z):

Vzg(x) = [Vzg,(x), Vega(z), -- - , Vg ()]

: transposed Jacobian matrix of h(zx):

Vzh(z) := [Vzh (x), Vzhy(2), ... , Vah,(z)]-

: Hessian matrix of f(z).
: Hessian matrix of the component g;(z) of g(z).
: Hessian matrix of the component h;(z) of h(z).

: Hessian matrix of L, (w; *) with respect to =.

Hessian matrix of L, (w; u*) with respect to w.

: diagonal matrices constructed from the vectors sy, s2, 83 and s,

respectively. For example, S := diag(s1,, 1,,--- »51,)-

: diagonal matrices constructed from the vectors z;, z; + 22, z3 and

z3 + z4, respectively.

: Interior-Point.

: Karush-Kuhn-Tucker.

: Linear Complementarity Problem.
: Linear Programming.

: under Load Tap Changer.

: Multiple Centrality Corrections.
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ML

MLS
MPC
NCP

NLP
OPF
QP

PCN

SLP
SQP

. Maximum Loadability.

: Minimum Load Shedding.

: Multiple Predictor-Corrector.

: Nonlinear Complementarity Problem.
: Non-Interior-Point.

: NonLinear Programming.

: Optimal Power Flow.

: Quadratic Programming.

: Perturbed Composite Newton.

: Reactive Power Dispatch.

: Sequential Linear Programming.

: Sequential Quadratic Programming.



Chapter 1

Introduction

The main purpose of a power system is to provide its consumers of electricity with power
above a certain level of quality, and as economically as possible. Loosely speaking, qual-
ity of power supply is measured in terms of constancy of frequency and of voltage, and
level of reliability. Frequency control is closely related to active power control, whereas
voltage control is closely related to reactive power control [50]. Incidentally, the constantly
changing load demand for active and reactive powers, and unforeseen changes in network
configuration, can result in voltage levels that are well outside tolerable limits and, most

likely, violate utility and consumers equipment operation restrictions.

To correct undesirable operation conditions, power system operators are required to
constantly control the production, absorption, and flow of power at all levels in the system.
This is done by adjusting system control variables such as generator outputs, transformer
tap settings, shunt var sources, and so forth. Deciding on an optimal control action, aiming
at the secure and economic operation of a power system, is an extremely difficult task,
which is best performed by the optimal power flow (OPF) tool at power system control
centers [73]. The OPF tool is a sophisticated computational procedure that uses mathe-
matical programming techniques to find an optimal setting of the system control variables,
subject to a reasonably large set of specified physical and operational constraints.

The OPF problem is inevitably a very large non-convex nonlinear programming (NLP)
problem, that is complicated in realistic applications by the presence of a large number
of discrete variables such as transformer tap ratios, shunt capacitor susceptances, and so
forth. Given its significance in power system planning and operation activities, OPF has
been the subject of intensive research for nearly four decades [38,65]. Gradient techniques
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were the first approaches used to solve an OPF problem [18], which was mathematically
formulated for the first time by Carpentier in 1962. Since then, improvements in OPF
procedures have been achieved in two main ways: (i) more efficient problem formulation,
and (ii) improved mathematical techniques. The main techniques for solving the OPF prob-
lem include reduced gradient methods, methods based on augmented Lagrangian and exact
penalty functions, and, mainly, local approximation-based approaches such as sequential
linear programming (SLP) and sequential quadratic programming (SQP).

The SLP and SQP approaches have been widely used in power system optimization.
Nowadays, they can take advantage of efficient inferior-point (IP) methods for solving the
LP and QP subproblems {72,79]. However, the convergence success of SLP and SQP is,
among other things, highly dependent on the existence of a good initial operating point,
which not always does occur. Incidentally, as we explain below, there has been a growing
need to solve the OPF problem in a nonlinear manner. An acclaimed algorithm to solve
the OPF in a nonlinear manner was proposed by Sun et al. [66, 1984]. It combines together
the Newton’s method (for unconstrained optimization) with a Lagrange multiplier method
(for optimization with equalities) and penalty functions (for handling inequalities). Well
designed data structures, which allow for block-factorization, and efficient use of sparsity
techniques made such an algorithm very attractive and successful at the time. Its com-
putational efficiency, however, greatly relies on the efficient identification of the binding

constraints.

In the new scenario of a deregulated electricity market, the trend is for power systems
to be operated closer to ultimate limits. Competition in a deregulated market, with utilities
eager for better profits, likely involve large power transactions that may lead the systems
to heavily loading conditions. Also, load growth, coupled with financial and regulatory
constraints that often severely limit the expansion of generation and transmission facilities,
have led power systems to operate closer to their transfer limit. Power systems should
then be carefully monitored and controlled in order to avoid voltage, electromechanical,
and control stability problems. Towards this purpose, an OPF procedure at power system
control centers plays a major role. From the above, an OPF is now required to deal with
strong nonlinearities in power system behavior; local approximation-based optimization
techniques will be less attractive to cope with stressed operation conditions [36].

In the emerging deregulated electricity market, with numerous sellers of electric energy
in the same area, new challenges are being imposed to the OPF procedure. For example,
the following applications are listed in [22]:
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o To calculate the maximum load at a subset of buses, for voltage collapse analysis, or

calculate the minimum load shedding to avoid voltage collapse.

o To calculate the maximum load that can safely be delivered at a given bus, or set of

buses, in order to define contracts with large power consumers.

e To calculate the maximum active power that can safely be transferred from one area
of the network to another, to define inter-utility transactions.

o To calculate the maximum active power between any pair of buses in order to define

maximum wheeling transaction capability.
These OPF variants are highly nonlinear problems, and solving them can be very difficult.

Various conditions under which an OPF algorithm may fail to converge are discussed in [2].

1.1 Research Motivation

In this research, we strive for the efficient numerical solution of large-scale NLP problems
(with thousands of variables and constraints) that can be expressed in the standard form:

minimize f(z)

subject to g(z) = 0, (11)
h < h(z) < h, '
< Iz <7,

motivated by the fact that the structure of most OPF problems is essentially contained in

such a form, where

oz cR" : is a vector of explicit decision variables, including the control and
nonfunctional dependent (state) variables. (A control variable is one
which can be manipulated, whereas a dependent variable depends on
other variables and cannot be directly manipulated.)

o f:IR" — IR : is a scalar function that represents the power system’s planning or
operation optimization goal such as generation cost, power losses in
the transmission system, load shedding, and so forth.

e g : [R" — IR™: is a nonlinear vector that contains conventional power balance equa-
tions, occasionally augmented by a few special equality constraints
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such as power balances across boundaries as in a pool operation, or

flows that are set to a given value, and so forth.

e h:IR™+— IR? : is a nonlinear vector of functional variables, with lower bound h and
upper bound h, corresponding to physical and specified operational
limits on the system.

e T IR? : (implicit as I x) is a vector with the components of « that have finite
bounds, with lower bound z and upper bound Z, corresponding to

physical and specified operational limits on the system.

e T RT*™ : is an incidence matrix to obtain T from z, formed by the rows of
I, € IR™ ™ that have the indices of the bounded variables.

To solve the NLP problem (1.1), we will employ interior-point (IP) and non-interior-point
(NIP) methods for large-scale NLP.

Over the past fifteen years, research on IP methods has experienced an awesome ex-
pansion, both in theory and computational practice. The first known IP method is usually
attributed to Frisch [26, 1955], which is a logarithmic barrier method that was later (1960s)
extensively studied by Fiacco and McCormick [21, 1968] to solve nonlinearly inequality
constrained problems. Interestingly enough, it was in the LP research area, in 1984, that
the superb computational efficiency of IP methods was first demonstrated in practice [47],
with initial reluctant acceptance and later with enthusiastic recognition by the research
community. In 1979, Khachiyan [48] presented an ellipsoid method that would solve an LP
problem in polynomial time, meaning that the number of operations to obtain the optimum
is bounded by a polynomial in the problem dimension. Unfortunately, his method proved,
in practice, to be computationally inferior to the simplex method.

As mentioned above, the greatest breakthrough in the IP research field took place in
1984 when Karmarkar [47] came up with a new IP method for LP, reporting solution
times up to 50 times faster than the simplex method. Since then, several IP methods
have been proposed and implemented. IP methods are usually classified into three main
categories: (i) projective methods [47], (i) affine-scaling methods [53], and (iii) primal-
dual methods [32,76]. Projective methods include Karmarkar's original algorithm, and
are responsible for the great interest established to the IP research area. Soon after 1984,
affine-scaling methods were obtained as simplifications of projective methods. Their reduced
computational complexity and simplicity made them very popular at the time. They were
also among the most effective in practice. Primal-dual methods can be subdivided into:
(i) path-following methods [30] and (ii) potential reduction methods [58]-
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The first theoretical results for primal-dual path-following methods are due to Megiddo
[56, 1986], who proposed to apply a logarithmic barrier method to the primal and dual
problems simultaneously. His primal-dual path-following algorithm performs better than
earlier IP algorithms. The primal-dual algorithms that incorporate predictor and corrector
steps, such as Mehrotra’s predictor-corrector technique [57, 1992}, are currently accepted as
the computationally most effective variants. Further improvements to Mehrotra’s technique
were later achieved through the use of multiple corrector steps [10,31]. Nowadays, IP
method variants are being extended to solve all kind of programs: from linear to nonlinear,
and from convex to non-convex. Recently, the development of IP methods to directly solve
NLP problems [19,64,71,78] has been motivated by the superb performance of IP methods
for LP and QP.

Optimization of power system operations is one of the areas where IP methods are
being applied extensively [13, 33,40, 54, 55, 69, 77]; due to the size and special features of
these problems, IP methods have computationally proven to be a viable alternative for
their solution. Among the various applications of IP methods in power systems are the
solution of the minimum load shedding [34] and maximum loadability [40] problems; these
are highly nonlinear variants of the OPF problem that very uhlikely can be solved by an
LP-based approach. An attractive feature of the primal-dual IP approach is that feasibility
is usually attained during the iterative process, as optimality is approached; this means
that the power balance equations need not be satisfied at the initial point. This feature
is particularly important to solving minimum load shedding problems, where power flow

unsolvability is an issue.

Previously proposed OPF algorithms have mostly used voltages in polar coordinates,
possibly due to the excellent performance and widespread use of decoupled power flow
programs which use voltage polar coordinates. Polar coordinates are more intuitive because
voltage magnitudes and phase angles are usually taken as state variables, and these have a
physical meaning. Rectangular coordinates, on the contrary, have been totally neglected in
OPF studies. In this thesis, we study the advantages and disadvantages of using the polar
and rectangular coordinates in nonlinear OPF solution by primal-dual IP methods.

We have observed that some OPF variants when formulated in rectangular form have
quadratic objective and quadratic constraints. Desirable properties of a quadratic function
are: (i) its Hessian is constant, (ii) its Taylor-series expansion terminates at the second-
order term without truncation error, and (iii) the second-order term of its Taylor-series is
easily evaluated. Such quadratic features allow for ease of matrix setup and inexpensive



CHAPTER 1. INTRODUCTION 6

incorporation of second-order information in higher-order IP method variants. With the
polar coordinates, on the other hand, we find that voltage-magnitude bounds are handled
in a more straightforward manner. These issues have not been studied in great detail in

previous works; we address them in the current thesis research.

The OPF optimality conditions can be regarded as a particular case of the nonlinear
complementarity problem (NCP). In the last few years, growing attention has been paid to
approaches that reformulate complementarity problems as nonlinear systems of equations [6,
11,16,20,23,44-46], so that a Newton-type method can be used in their solution. There are
several possibilities to redefine an NCP as a system of equations. Recently, reformulations
that handle the complementarity conditions by means of NCP-functions have attracted a

lot of attention from researchers.

A function % : IR? — IR is said to be an NCP-function if it satisfies the property:
Y(a,b) =0 <= a>0, b>0 and ab=0.

Since the non-negativity of any limit point is automatically assured by an NCP-function (as
long as the iterative process converges to a stationary point of the Lagrangian function),
without imposing additional conditions, the initial point and the iterates do not necessarily
have to stay in the positive orthant, unlike IP methods. Recently developed techniques for
solving compiementarity problems have not been applied to OPF solution. As we employ
these techniques, we further expand the state-of-the-art of OPF solution procedures.

1.2 Research Objectives
We define as the main objectives underlying the current thesis research, the following:

e To formulate OPF problems by using voltages in rectangular and in polar coordinates,
and to identify, afterwards, the major computational advantages and disadvantages

of both voltage representations.

e To develop a primal-dual IP algorithm for solving OPF problems in a nonlinear man-
ner. As in previous works, this IP algorithm development is a direct extension of its
similar for LP. However, we aim to study different step length schemes and updating
formulae of the barrier parameter, study the influence of various parameters in the
algorithm convergence, elaborate on different analytical procedures to compute the
Newton directions, and propose initialization heuristics suitable for the OPF solution.
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e To develop extensions to NLP of several successful higher-order IP methods for LP.
The higher-order IP variants studied are: (i) the predictor-corrector method [57],
(ii) the perturbed composite Newton method [67], (iii) the multiple predictor-corrector
method [10], and (iv) the multiple centrality corrections method [31]. The approach
(i) was previously extended to nonlinear OPF solution by Wu, Debs and Marsten [77,
1994], whereas the approaches (ii), (iii) and (iv) have not been extended at all to

power systems optimization.

o To develop the first OPF approach that handles the complementarity conditions for
optimality by means of an NCP-function. This is an original OPF algorithm, where we
take advantage of recent mathematical development to solve complementarity prob-
lems. We use an NCP-function to transform the whole Karush-Kuhn-Tucker (KKT)
conditions into a system of nonlinear equations; such a nonlinear system is solved
afterwards by a Newton-type method, which we describe in detail.

The research carried out under this topic is the major contribution of this thesis.

o To discuss many issues that are related to the efficient implementation of IP and NIP
algorithms for NLP, in connection with the solution of OPF problems. Particularly,
to discuss heuristics for initialization of the algorithms; to discuss the assembling of
matrices in rectangular and in polar coordinates; to discuss data structures; and to

discuss the solution of the linear systems.

e To implement the proposed algorithms in Fortran 77 and perform computational
experiments to gain insight into the various methods; to compare competing methods;
to tune parameters in the algorithms; and to compare the polar and the rectangular
“versions” of the OPF algorithm.

1.3 Owutline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we describe formulations
of three variants of the OPF problem, namely, (i) the minimum transmission power losses,
(ii) the maximum loadability, and (iii) the minimum load shedding problems. Problem (i)
is formulated both in rectangular and in polar coordinates.

In Chapters 3 and 4, we deal with primal-dual IP algorithms suitable for solving the
NLP problem (1.1). Specifically, in Chapter 3, a primal-dual IP method is developed in
detail. We describe two analytical approaches to compute the Newton directions, three
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schemes to compute the step lengths, two updating formulae of the barrier parameter, and
describe the convergence test. In Chapter 4, we describe various higher-order variants of the
[P method presented in Chapter 3, namely, (i) the predictor-corrector method, (ii) the com-
posite Newton method, (iii) the multiple predictor-corrector method, and (iv) the multiple

centrality corrections method.

In Chapter 5, a new NIP continuation method for solving the nonlinear OPF problem
is proposed. This algorithm development is based on a recently proposed NCP-function to
solve complementarity problems. We propose a reformulation of the KKT conditions as a
nonlinear system of equations and then describe a Newton-type algorithm that is used to

solve such a nonlinear system.

In Chapter 6, we discuss many points and issues that are directly related to efficient
implementations of the IP and NIP algorithms that are described in Chapters 3, 4 and 5.
The emphasis, however, is on implementations for solving the OPF problems that are
described in Chapter 2. Particularly, we propose four heuristics for initialization of the
algorithms, describe the assembling of matrices for the rectangular and the polar “versions”
of the OPF problem, discuss data structures and some code fragments, and discuss the

solution of the linear systems.

In Chapter 7, we discuss extensive numerical results obtained with implementations of
the IP and NIP algorithms to solve the reactive power dispatch OPF variant. The main
purposes of the computational tests are: (i) to gain insight into the various methods, (ii) to
compare competing methods, (iii) to tune parameters in the algorithms, and (iv) to compare
the rectangular and the polar “versions” of the OPF problem. In these numerical tests, we
employ eleven power systems that range in size from 14 to 2098 buses.

Finally, a summary and conclusions are presented in Chapter 8. We highlight the main
contributions of this thesis and provide a list of potential research directions that, we believe,
could further expand the state-of-the-art of OPF solution procedures.



Chapter 2

Optimal Power Flow Problem

For efficient, reliable and economic operation of a power system, several levels of controls
that involve a complex array of devices have to be selected and properly coordinated.
In the operation of a power system, the load demand for active and reactive powers is
continuously changing and often results in voltage levels that are well outside tolerable limits
and, most likely, violate utility and consumers equipment operation restrictions. To repair
unacceptable operating conditions, power system operators are required to continuously
control the production, absorption, and flow of power at all levels in the system, by adjusting
system control variables such as generation outputs, transformer tap settings, phase shifter
angles, shunt capacitor susceptances, shunt reactor suceptances, and so forth.

Due to the fact that a power system is fed by many generating units, and supplies
power to a vast number of loads that are dispersed over large geographical areas, the task
of maintaining voltages within the required limits is a difficult one. Voltage control is
recognized as closely related to reactive power control; the proper selection and coordination
of equipment for controlling reactive power and voltage are among the major challenges of
power engineering [50]. This task can be efficiently performed by the optimal power flow
(OPF) procedure at power system control centers. The OPF is an elaborated computational
tool that uses optimization techniques to find the state of a power system that optimizes a
given performance index while satisfying a set of physical and operational constraints.

An OPF problem can be posed in various different forms [65]. This chapter deals with
the formulation of three variants of the OPF class, namely, (i) the reactive power dispatch
(RPD) problem, (ii) the mazimum loadability (ML) problem, and (iii) the minimum load
shedding (MLS) problem. The objective of the RPD problem, as formulated in this thesis,
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is to minimize the active power losses in the transmission system subject to the power flow
balance equations, the operating limits on voltages and reactive power output of generators,

and the physical limits on shunt susceptances and transformer tap settings.

The ML problem aims at determining the maximum load increase a power system can
withstand while satisfying utility and consumers device operation restrictions [40]. In many
situations in the operation of a power system, load shedding schemes are utilized to reduce
the actual load to a level that can be safely supplied by available generation. The MLS
problem is to determine the minimum load shedding necessary for restoring feasibility of
operation, or even for restoring solvability of the power flow equations, otherwise unsolvable
[34]. Such a situation occurs, for instance, as the system undergoes a severe contingency.
From the above, the ML and MLS procedures are, therefore, valuable tools in voltage
collapse studies. As such, they deal with highly nonlinear problems.

Previously proposed OPF formulations have mostly used voltages expressed in polar
coordinates, possibly due to the excellent performance and widespread use of decoupled
power flow programs that employ polar coordinates. Polar coordinates are more intuitive
because voltage magnitudes and phase angles are usually taken as state variables, and these
have a direct physical meaning. Although voltages expressed in rectangular coordinates has
provided some sort of numerical advantage in several applications, no substantial attention
has been paid to this voltage representation form in OPF studies.

The rectangular coordinates space has been utilized, among others, by Iwamoto and
Tamura [42, 1981] in power flow studies, by Iwamoto, Kusano and Quintana [41, 198g] in
state estimation studies, by Galiana and Zeng [27, 1992] in the study of load flow behavior
in the proximity of a Jacobian singularity, and by Overbye and Klump [60, 1996] in the
calculation of power system low-voltage solutions. In this thesis, we study the advantages
and disadvantages of using the rectangular and the polar variable spaces in nonlinear OPF
solution by primal-dual IP methods. Rectangular coordinates was first utilized in OPF
solution by IP methods by Torres, Quintana and Lambert-Torres [70, 1996].

This chapter is organized as follows. In the next section, we present some notation,
definitions and power equations used in the OPF formulations. In Section 2.2, the RPD
problem is formulated in rectangular and in polar coordinates. We show that the constraint
functions in the rectangular coordinates “version” are quadratic functions of the voltage
components. In Sections 2.3 and 2.4, we describe fairly simple formulations of the ML and
MLS problems. We include these problems to emphasize the current need for solving OPF
problems in a nonlinear manner. Final remarks in Section 2.5 close the chapter.
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2.1 Some Definitions and Power Equations

The following sets of indices are utilized throughout this thesis. We denote by N the set of
all buses (nodes) in the system, by N the set of all buses but the slack bus, by G the set of
generator buses, by F the set of load buses with fized shunt var sources, and by £ the set
of load buses eligible for shunt var control. Furthermore, the following inter-sets relations
hold: N =GUFUEand GNF=GNE =FNE =0. We denote by N; the set of all buses
directly connected to bus :. We define the set of ordered index pairs

B:={{i,7)|i€eN, j€EN;and j > i}

as the set of sending-end (¢) and receiving-end (j) buses of all branches (transmission lines
and transformers) in the system. We let 7 C B be the set of sending-end (7) and receiving-
end () buses of the transformers with under load tap changer (LTC) device. By |N| we
denote the size (cardinality) of the set A/, by |J\7 | the size of the set A, and so forth.

We express the (complex) bus-voltage at bus 2 (T;;) in rectangular coordinates as
f/i::ei‘i'jfi, fora.llzeN

where e; and f; are the real and imaginary components of V;, respectively, and j here is the
imaginary unity (v/—1). Without loss of generality, we assign the index 1 to the slack bus,
and assume that this bus provides the system angular reference with e; := V; and f; :=0.
The net active power (P;) and reactive power (Q;) injections into bus 7 are defined as

P;:=Pg, - Pp,, foralli e N/
Qi :=Qg; — QL:» forallie N

where Pg,, Pr,, Q¢, and Qr, are the active power generation, active power load, reactive
power generation and reactive power load at bus 7, respectively. For a given voltage profile
and network topology, the net power injections into bus 2 € N are computed from

Pi(e, f,t) = Gu(e} + f2) + e Y _ (Gijej — Bijf) + f: D, (Giif; + Bijes), (2.1)

JEN; JEN;
Qile, f,t) = Bu(e? + f2) + fi Y (Gije; — Bijfi) — e Y (Gijfi + Bijej), (2:2)
JEN; JEN;

where e € IRW! and f € IRW! are vectors with the voltage components, G;; is the ¢jth
element of the bus conductance matrix G € IRWIXW H B;; is the ijth element of the bus
susceptance matrix B € IR™VIXW1 and ¢ € IRIT! is the vector of transformer tap settings,
which are implicit in some elements of G and B.
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The active (P;;) and reactive (Q;;) power flows in the branches are computed from

Pij(e, £1t) = t49;;(eF + f7) — tijgij(esej + fif;) — tijbij(eifi — eifi), (2.3)
Qijle, £, t) = —t(b; + 652)(ef + f7) + tijgij(eifs — ejfi) + tijbij(eie; + fif;),  (24)
where g;;, b;; and bf;‘ are the series conductance, the series susceptance and the shunt
susceptance of the branch (z, j) € B, respectively. In (2.3) and (2.4), we have ¢;; = 1 if the
branch (%, 7) is a transmission line, and b} = 0 if the branch (%,5) is a transformer. The
tap setting representation used is shown in Figure 2.1. As shown in [70], the active power

losses in the transmission system can be expressed in the form
Boss(e, £,t) = e Ge + fTG¥. (2.5)

REMARK 2.1 The Equations (2.1) through (2.5) are quadratic functions of the bus-voltage

rectangular coordinates e and f.

1 7
t J

o

tij(ti; — 1)(gi5 + 7biz)

(1 — ti5)(gi5 + 7b:5)

Figure 2.1: Tap setting representation and the transformer IT-model.

In power system studies, the most common representation of (complex) bus-voltages is
the polar coordinates,

-~

Vi .= V; exp (56:), forall ie N
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where V; = (e? + f2)1/2 and ; = arctan(f;/e;) are the voltage magnitude and phase angle
of V;, respectively. We assume that the system angular reference is defined as 8; := 0°. For
a given voltage profile and network configuration, the net power injections into bus i € N

are computed from

Pi(v,0,t) = G;V2+ Vi > V;[Gijcos(8; — 6;) + Bijsin(6; — 65)], (2.6)
JEN:
Qi(v,8,t) = —B; V2 +V; Y V;[Gissin(8; — 6;) — Byj cos(6; — 65)], (2.7)
JEN;

where v € IR and 6 € IR are the vectors of bus-voltage magnitudes and voltage phase

angles, respectively. The active and reactive power flows in the branches are computed from
Pij(v,0,t) = t5g,; Vi — t:;ViV;[gij cos(8; — 6;) + by; sin(6; — 65)], (2.8)
Q,‘j('v, 6,t) = —t?j (bij + bf;’)V,z — tijViI/j[gij sin(6; — 9_7') — bij cos(6; — 9_1')] . (2.9)
The active power losses in the transmission system can be obtained from

Ploss(v,0,8) = > > g, [V? + V? — 2V;V;cos(6; — 6;)] - (2.10)
ieN jEN;

Whether in rectangular or polar coordinates, the branch apparent power flow is given by

Sij(+8) = P2 (2 8) + Q%(-, -, t) (2.11)

where (-, -) stands for either (e, f) or (v, 8). The complete definition of power flow requires
knowledge of four variables at each bus 7 in the system: P;, Q;, V; and 6;. In the standard
(non-optimal) power flow problem, two of these four variables are known a priori and the

aim of the power flow is to solve for the remaining two variables.

2.2 Minimum Transmission Power Losses

In this section, a particular case of the nonlinear OPF problem—the reactive power dispatch
(RPD) problem—is formulated both in rectangular and in polar coordinates. As usual, it
is assumed that the active power injections in all buses but the slack bus are known and
remain fixed at the economic dispatch (ED) scheduled values. The RPD problem is to
determine the reactive power controls, such as generator outputs, shunt susceptances and
transformer taps, that minimize the transmission active power losses while satisfying the
power balance equations, the operating limits on voltages and reactive power generations,
and the physical limits on shunt susceptances and transformer tap settings.
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2.2.1 Rectangular Coordinates

The RPD problem in rectangular coordinates is derived from the NLP problem (1.1) as

s z € IR"

e f:IR"— IR

e g:IR" — IR™:

e h:IR"w— IRP :

: includes the voltage rectangular coordinates e and f but f; (f1 := 0),

and the transformer tap settings t.

: can be the transmission active power losses, as given by Pigs(e, f,t)

in (2.5), or the active power injection into the slack bus, as given by
Pl(ev f: t) in (2’1)
includes the bus active and reactive power balance constraints
P(e, f,t) + P2 — PED, for all i € N, (2.12a)
Qi(er f7 t) + Q([),, - Qg,Da forall 7€ -7:1 (2'12b)
occasionally augmented by a few special equality constraints. The
superscript (£P) stands for the economic dispatch scheduling, and

the superscript (°) here stands for the base-case load level.

includes the bus voltage and reactive power functional variables

Qi(er fa t)v forall 1 € gv (2133-)
Qq(e, £, 1), forall : €&, (2.13b)
e+ f2,  forall i€N, (2.13¢)

with the lower operating limits

[ Q, forallieg )
h = 1@, forallieé (2.14a)
\ V2, forallie N |
and the upper operating limits

(Q, forallieg )
h = | Q;, forallie& |. (2.14b)
\ Vi, forallie N )
The reactive power limits in (2.14) are defined as follows:

-Q° if i€
Q, = 95, ~ QLo i€g, (2.152)
- b;— Q% +QEP, if ick.
— Qs — QY if 1€,
g = {26 %L teg (2.15b)
b;— QY +QEP, if iek.
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where b; and b; denote the allowable minimum and maximum shunt

susceptances at bus 2, respectively.

o Iz € R? : includes the variables in = that have finite bounds, that is, Z = ¢,

withz =tand T =¢.

Branch flow constraints can be appropriately incorporated into h(z) in one of three
forms: (i) in terms of the branch active power flows (P;;), (ii) in terms of the branch reactive
power flows (Q;j), or (iii) in terms of the square of the moduli of the branch current flows,

(e, f.8) = (63 + 2b;) (e + f2) — 205565 (fif; + ese;)

h 2 2 2 2 (2.16)
+ 2657 g5 (e; f; — ecfj) + (95 + b%;) [(e; — €5)* + (i — £)°]-

A properly chosen (small) subset of branches {(¢,7)} C B most likely will account for
all branch flow violations. Notice that the right-hand sides of (2.3), (2.4) and (2.16) are
quadratic functions of the voltage components e and f.

Also, notice that the reactive power injections from shunt capacitors and shunt reactors
(b;) are handled as implicit variables in (2.13b). Shunt susceptances can be modeled as
explicit variables too (the usual way indeed). To do so, we express the inequality constraint
(2.13b) in A{x) as the equality constraint

Qile. f,t) —b;+ Q2, —QEP =0, forall ic€ (2.17)
which is, afterwards, incorporated into g(z) = 0. The following redefinitions are required:
z = (e, f,t,0)T, = (,0)T and T = (£,5)".

In compact form, the RPD problem in rectangular coordinates can be mathematically

stated as follows:

minimize  Bgs(e, f,t)

subject to:
P(e,f,t)+ P} —PEP = o, for all i€ N,
Qi(e, £,t) + Q3. —QEP = 0, for all i€ F,
Q = Qie, f.t) < Q, foralieg,
Q; =< Qile, f.t) < Q; forall i€é, (2.18)
Vi< 2 + f2 < V2, forall i€EN,
’_Q—ij < Qij(e, f,t) < @j. for a {(4,5)} C B,
lfij < ti; < Eij, forall (i,5) €T.
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REMARK 2.2 Ezcept for the few terms involving the tap settings t, which are implicit in
some elements of G and B, all nonlinear functions in the RPD problem (2.18) are quadratic.
Other OPF variants with quadratic objective and constraints are the minimization of reactive
power losses in the transmission system, fI Bf + el Be, and the minimization of cost of

power generations with quadratic cost curves, > ;cs(a; +b;Pg, + ciPéi).

REMARK 2.3 Compared with more highly nonlinear functions, numerical advantages that
stem from the quadratic OPF formulation are: (i) the Taylor-series ezpansion of a quadratic

function f(z) = -il;a:TA:c terminates at the second-order term without fruncation error,
1
f(zF + Az) = f(zF) + («F)T AAz + 5.A::,-TAzxa:, (2.19)

(i1) the Hessian matriz of f(x) is constant (V2 f(z) = A), and (iii) the higher-order term
win (2.19) is eastly computed as f(Azx). Such features allow for ease of matriz setup and

inexpensive incorporation of second-order information in higher-order IP methods.

2.2.2 Polar Coordinates

The RPD problem in polar coordinates can be similarly derived from the NLP problem (1.1),

as follows:

ez c [R" : includes the voltage magnitudes v and the voltage phase-angles 8 but
8, (6, := 0°), and the transformer tap settings ¢.

e f:IR" — IR : can be the transmission active power losses, as given by Piess(v, 0, )
in (2.10), or the active power injection into the slack bus, as given by
Py (v,0,t) in (2.6).

e g: IR" — IR™: includes the bus active and reactive power balance constraints
P,(v,0,t) + P, — FED, for all i€ N, (2.202)
Qi(v,0,t) + Q}. — QEP, for all i€ F, (2.20b)
occasionally augmented by a few special equality constraints.

® h: IR" — IRP : includes the bus reactive power functional variables

Qi(v, 0,1), forall i€g, (2.21a)
Qi(v, 0,1), for all i €€, (2.21b)
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with the lower operating limits
R = Q, forallieg ’ (2.222)
Qi, forallze &

and the upper operating limits

R o= (O foralicg) (2.22b)
Q; forallie &

The lower (Q;) and the upper (Q;) reactive power limits in (2.22) are
as defined in (2.15).

e Iz € IRY : includes the variables in  that have finite bounds, that is, & = (v, £)T,
with z = (z,8)7 and T = (7, 7)7.

Branch flow limits can be incorporated into h(z) in one of three ways: (i) in terms of
the branch active power flows (F;;), (ii) in terms of the branch reactive power flows (Qy;),

or (iii) in terms of the branch apparent power flows (Sj;).

In compact form, the RPD problem in polar coordinates can be mathematically stated

as follows:

minimize Boss(v, 0, t)

subject to:
P(v,6,t)+ P — PEP = o, foralli e N,
Q;(v,6,t) + PP —QEP = o, for all i € F,
Q, < Qi(v,6,¢t) < Q; forallieg,
Q, < Q:i(v,8,t) < Q; foralieé, (2.23)
-Q; < Qij(v,6,1) < Qi fora{(34)} CB,
Vv, < Vi <V forallieWN,
t; < ti; < fij, for all (¢,7) € T.

REMARK 2.4 The nonlinear OPF, whether in rectangular or polar coordinates, is non-
convez since nonlinear equality constraints and nonlinear functional bounds of the form
h < h(z) < h (for the shape of the functions hi(x) of the OPF problem) cannot define a

COTUET TeGion.

2.3 Maximum Loadability

In this section, the mazimum loadability (ML) problem is formulated as an optimization
problem. Our interest in this problem is twofold: (i) to provide another example of an OPF
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problem with quadratic functions, and (ii) to emphasize the current need for solving OPF

problems in a nonlinear manner.

For a given feasible operating state of a power system, the ML problem is to determine
the maximum load increase the power system can withstand (either total system load, or
the load in a given area of the system, or the load at a particular bus, or the load at a set
of buses) while satisfying utility and consumers equipment operation restrictions. As such,
the ML procedure is a valuable tool in voltage collapse studies [40]. Depending on how an
ML problem is formulated, its solution can be used to define contracts with large power
consumers, to define inter-utility transactions, and so forth. A particular formulation of the
ML problem, that uses voltage in rectangular coordinates, is mathematically stated as

minimize —X
subject to:
Pfe,f.t) + PR (L+XN) —PEP =0, forallieN,
Qie. f,t) +Q.(1+A) -QEP =0, forallieF,
Q; < Qile, f,t) + Q1A < Q; foralieg,
Q; < Qile, f,t) + Q2. A < Q;, foralli€é, (2.24)
Vv < e? + f2 < V2, forallie N,
I < IZ(e, f.t) < Ty, fora{(i,5)} CB,
t; < ti; < &, forall(4,7) €T,

where ) is the load parameter. The decision vector is defined in (2.24) as = := (e, f, £, A\)T.
The formulation (2.24) is rather simple; however, it complies with our objectives. Notice
that,

e all nonlinear functions in (2.24) are quadratic functions of the voltage components e
and f; and

e to solve (2.24), we start from a feasible operating state—by this we mean that the
constraints in (2.24) can be satisfied for A = 0—and then increase the load parameter
A until the feasible set of (2.24) in the space defined by (e, f,t) € IRW! x RWI x RITI
ceases to exist, at least locally, for the new load level: (14 A)P.. and (1 + X)Q}..
Therefore, the ML problem deals with highly nonlinear operating conditions.

Yet in connection with the ML formulation (2.24), also notice that,

e the load parameter A appears in the power equations only, and load increase is allowed
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for all buses. However, many applications are concerned with load increase in a subset
of buses only or even with load increase at a particular bus;

¢ a single parameter A is used for the active (PLO.;) and the reactive (Q%t_) power loads.
This means that the power factor of the loads will remain constant. Yet the loads
have been modeled as constant power; load modeling, however, plays an important

role in voltage collapse analysis [9].

2.4 Minimum Load Shedding

In many situations in the operation of a power system, load shedding schemes are utilized
to reduce the actual load to a level that can be safely supplied by available generation
and network topology. This kind of situation may happen, for instance, when a heavily
loading system undergoes the outage of a major facility such as an important transmission
line, transformer, or generation unit. Some situations might be so severe that the power
flow equations have no real solution [34]. Load curtailment becomes necessary to restore
solvability of the power flow equations and feasibility of operation as well. The minimum

load shedding (MLS) problem appropriately deals with these situations.

A particular formulation of the MLS problem, that uses voltage in rectangular coordi-

nates, is mathematically stated as

minimize A

subject to:
P(e,f.t)+PR.(1—~A\)—PEP =0, foralli€N,
Qile, f,t) +Q1.(1-2) —QEP = 0, for all i € F,
Q; < Qile, f,t) — QYA < Q; forallieg,
Q, < Qi(e, £,£) — QLA < Q; forallieé, (2.25)
Vi < e? + f2 < Vf, foralli e N,
I < IZ(e, f.t) < Tf] for a {(i,7)} C B,
t; < tij < %j, forall(3,7) €T,

where A is the load shedding parameter. The decision vector is defined as = := (e, f, £, A)T.
Notice that,

e all nonlinear functions in (2.25) are quadratic functions of the voltage components e
and f;
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e a single load shedding parameter A is used for the active and the reactive power loads
of all buses. Individual load shedding parameter for each bus, say, A;, should be used
instead, in order to the utility service be able to distinguish the importance of one

consumer from the other;

o if the power balance equations are the only constraints in (2.25), then the MLS is
only concerned with restoring solvability of the power flow equations. In such a case,
a solution always exist. However, if operational limits are included, and, in addition,
a single parameter A is considered, then a solution can no longer be guaranteed; the

feasible region could be empty for all A.

2.5 Final Remarks

In this chapter, three variants of the broad class of OPF problems have been described,
namely, (i) the reactive power dispatch problem, (ii) the maximum loadability problem, and
(iii) the minimum load shedding problem. The RPD problem has been formulated both in
rectangular and in polar coordinates. The major differences between the formulations in

rectangular and in polar coordinates have been identified, so far, as

e voltage-magnitude bounds are handled as functional bounds in rectangular coordi-

nates,
—2 N
Vi<e+fI<Vy, for all i €N,

and as simple bounds in polar coordinates,

V. <V; <V, forall i €N.
e the nonlinear functions (objective function and constraints) of the formulations in
rectangular coordinates are quadratic functions of the voltage components e and f.
Such a quadratic feature allows for ease of matrix setup and inexpensive incorporation

of second-order information in higher-order IP methods.

Analytical and numerical comparisons of the formulations (2.18) and (2.23) are presented
in Chapters 6 and 7.



Chapter 3

An Interior-Point Method for

Nonlinear Programming

In this chapter, we describe in great detail the mathematical development of an infeasi-
ble primal-dual interior-point (IP) method for solving the nonlineer programming (NLP)
problem (1.1). Thus, the described IP method is suitable for solving the optimal power
flow (OPF) problems presented in Chapter 2. In the next section, we describe the basic
ideas behind the Fiacco and McCormick’s (classical) logarithmic barrier method, so that
we can point out some differences between the classical approach and the “modern” ones.
A short survey of recently developed IP methods for NLP is also presented. In Sections 3.2
through 3.6, we proceed with a detailed derivation of our infeasible primal-dual IP method
for NLP.

Specifically, in Section 3.2, we describe a transformed problem on which the IP algorithm
operates, establish the first-order optimality conditions for the original and the transformed
problems, and present some definitions and considerations. In Section 3.3, we discuss two
different analytical approaches for computing the Newton directions: (i) the augmented
(natural) equation system, and (ii) a reduced equation system. In Section 3.4, we discuss
a number of procedures to compute the step sizes in the Newton directions. This is an
important issue in non-convex optimization that is further discussed in Chapter 5. In
Section 3.5, we show how the barrier parameter is reduced. Two updating formulae of u are
discussed. In Section 3.6, we describe the convergence test. An outline of the primal-dual
IP algorithm is presented in Section 3.7. Finally, in Section 3.8, we make some remarks on
the described IP algorithm and highlight some of the contributions.

21
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3.1 Classical and “Modern” Logarithmic Barrier Methods

The logarithmic barrier function approach is usually attributed to Frisch [26, 1955], and was
developed by Fiacco and McCormick in the 1960s [21, 1968] for solving general inequality
constrained problems of the form

minimize f(xz) subjectto h(xz) >0, (3.1)

where the scalar function f : IR™ — IR and the nonlinear vector-function h : IR™ + IRP are
twice continuously differentiable in 2 := {z € IR" | h(z) > 0}. It is assumed that at least
one point =0 exists for which h(z?) > 0. That is, the region {2 has a nonempty interior.

Fiacco and McCormick’s (classical) logarithmic barrier function approach to solve (3.1)
incorporates the inequality constraints into the objective function by means of a logarithmic
barrier function, to transform the constrained problem into a sequence of unconstrained

problems of the form
p
minimize {f.u(a:; u) = fl@) —p* > lnhi(w)} ; (3.2)
=1

where u* is a positive barrier parameter that is monotonically decreased to zero as iterations
progress, that is, u® > p! > --- > p¥ > ... > 4 = 0. An outline of the classical logarithmic

barrier algorithm for solving (3.1) is presented below.

Algorithm 3.1 Fiacco and McCormick’s Logarithmic Barrier Algorithm

STEP 0: Choose u® > 0 and an initial point z° such that h(z?) > 0; set &k « 0.

STEP 1: Check whether =¥ qualifies as an approximate local minimizer for (3.1). If so,

stop with z* as the solution.
STEP 2: Compute the unconstrained minimum z(u*) < min f,(z; u*). Let 2F+! = z(uk).

STEP 3: Choose u**! < uF, set k < k + 1 and return to STEP 1.

Fiacco and McCormick show in [21] that under certain conditions and sufficiently
small p*, by letting pu* decrease to zero (u* | 0), the sequence {x(u*)} of minimizers
of fu(x; u*) forms a continuously differentiable path converging to x*, where z* is a local
minimizer of (3.1). The path defined by {z(u*)} is known as the barrier trajectory.

Several major difficulties were quickly noted with using the classical logarithmic barrier
approach to solve (3.1), as discussed in [75] and elsewhere. Initially, a major problem was
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the need to determine an initial feasible point, which can be as difficult as solving the
actual problem. A second major problem relates to severe numerical difficulties (with the
numerical techniques available at the time), even if the constrained problem (3.1) is well~
conditioned. The estimates of the Lagrange multipliers for the active constraints (h:(z) = 0)
are calculated by taking ratios of two quantities tending to zero, which is numerically
unstable. Along the trajectory that approaches the solution, the Hessian matrix of f,(z; uF)
becomes increasingly ill-conditioned, and, in the limit (1 | 0), is singular. Other major
difficulties are the need for a very careful line search algorithm, the choice of the initial 0,
and the subsequent scheme for reducing u* at each step. Several modified barrier functions

were proposed to remedy these difficulties; see [3] for a survey.

After Karmarkar’s announcement, in 1984, of a fast polynomial-time IP method for
LP [47], this optimization area received much attention from researchers around the worid
and, accordingly, experienced an awesome progress both in theory and in practice. We shall
not attempt to list these research efforts, which has been done in [32,76] and elsewhere, and
restrict our attention to IP methods for general NLP. Recently, the development of primal-
dual IP methods for general NLP (see [1,19,64,71,78]) has been motivated by the superb
computational performance of primal-dual [P methods for LP and QP. Wright in {74, 1991]
discusses the structure of several IP methods for LP and their extensions to NLP.

Breitfeld and Shanno in [4, 1994], and Shanno, Breitfeld and Samantiraki in [64, 1995]
and elsewhere describe several IP algorithms for NLP and present computational results as
well. Yamashita and Yabe in [78, 1996] propose a class of primal-dual IP algorithms for
nonlinearly constrained problems. They provide proofs of local, superlinear and quadratic
convergence of these algorithms, and include some computational results. El-Bakry et al.
in [19, 1996] discuss a primal-dual IP method for LP and its extension to general NLP. They
claim that their algorithm can be implemented so that it is locally and g-quadratically
convergent under only the standard Newton method assumptions. A global convergence
theory and some computational experiments are presented too.

Akrotirianakis and Rustem in [1, 1997] also describe an IP method for general NLP.
They claim global convergence of the algorithm based on a monotonic decrease of a merit
function; computational results are not reported. Byrd, Gilbert and Nocedal in [7, 1996]
and Byrd, Hribar and Nocedal in [8, 1997] have developed IP methods for NLP within a
trust region framework. Vanderbei and Shanro in [71, 1997] describe an IP method for NLP
that has shown, in practice, to be robust and efficient. Major modifications, as compared
with its like for LP and QP, are the consideration of a merit function and an altered search
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direction to assure that a descent direction for the merit function is obtained. Gay, Overton
and Wright in [28, 1997] address issues such as merit functions, line search procedures,
adjusting the barrier parameter, etc, in implementing a specific primal-dual IP method.

The infeasible primal-dual IP algorithm for NLP that we describe in this chapter shares
many similarities with the IP algorithms developed by Wu, Debs and Marsten [77, 1994],
Granville [33, 1994], and Martinez, Gémez and Quintana {54, 1996}; all of them are direct
extensions from IP methods for LP, and have proven to be computationally efficient when
solving large nonlinear OPF problems, despite OPF non-convexity.

3.2 Transformed Problem and Optimality Conditions

The first step in the derivation of our infeasible IP algorithm to solve the NLP problem (1.1)
is to add the nonnegative slack variables (51, 93, 33, 34) € IR}, x IR%, x IRY x IR to (1.1),
in order to transform all inequalities into equalities, as follows:

minimize f(x)

subject to: g(z) =0,
—s1—s2+h—-h =0,
— (3-3)
—h(z) —s2+h =0,

—83—84+T—2 =0,
—Izx—s4+Z=0, 8, >0, 5>0, 33>0, 84> 0.
The logarithmic barrier approach handles the remaining inequalities in (3.3) implicitly,

by incorporating them into logarithmic barrier terms that are appended to the objective

function, yielding the following transformed problem:

P q
minimize f(x) —ka(lnsli +1Insy;) —,u.kZ (Inss, +Insy,)

i=1 i=1
subject to: g(z) =0,
—si—s;+Rh~h=0, (3.4)

—fa:—s4+§=0, 81>0, s50>0, 83>0, 34 >0,

where p* > 0 is the barrier parameter that is forced to monotonically decrease to zero.
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The strict positivity conditions (s1, 82, 83,84) € IRf , x IR% | x IRY . x IR% | which are
imposed to define the logarithmic terms, are handled implicitly. The sequence of parameters
p® > ul > --- > p™ =0 generates a sequence of subproblems that are defined by (3.4), with
k as the subproblem index. Under certain conditions (see [21]), that include the regularity
assumptions, as p* approaches zero, the sequence {x(u*)} that can be generated by solving
the transformed problem (3.4) approaches z*, where z* is a local minimizer of (3.3) and,
therefore, a local minimizer of the original problem (1.1). The sequence of points {z(u*)}
is said to define the barrier trajectory for the subproblem (3.4).

Necessary optimality conditions for the equality-constrained problem (3.4), with p*
fixed, can be derived from the Lagrangian function L,(w;u*), which is defined as

P q
Lu(w;iF) :=f(z) —p* Y (Insy, +1Insy,) — uF Y (Inss, + Insy,) ~ yTg(z)

i=1 i=1
_zf(—31—32+ﬁ—ﬁ)-—z’{(—-h(:c)-sz-l-ﬁ) (3.5)
—zi(—s3—84+F—z) -2l (-Ix—s, + ),
where (y, 21, 22, 23,24) € IR™ x IRP x IRP x IR? x IR are vectors of Lagrange multipliers,
commonly called dual variables, and w := (s1, 89, 83, 84, 21, 22, 23, 24, Z,y) € IR".
A local minimizer of (3.4) is characterized by a stationary point of L, (w;u*), which
must satisfy the Karush-Kuhn-Tucker (KKT) first-order necessary conditions [24,76],

Ve ly,= —pukST e + 2, =0, (3.6a)
Ve ly= —pkSTlu + 2z, + 2z, =0, (3.6b)
Vs Ly = —puk ST u 4 2, =0, (3.6¢)
Veely = kST MU+ 23+ 2, =0, " (3.6d)
Vely = s1+s2~h+h =0, (3.6e)
Vo Ly = h(z)+s; —h =0, (3.6f)
VL, = 83+84—T+zx =0, (3.6g)
Vel = Iz+s,~% =0, (3.6h)

Vely= Vgf(x) —Vzg(x)y + Veh(z)ze + [Tz =0, (3.61)

VyL, = —g(z) =0, (3.6j)

where Vf : IR™ — IR" is the gradient of f(z), Vg : IR® — IR™ ™ is the transposed
Jacobian of g(z), Vzh : IR™ — IR™ P is the transposed Jacobian of h(z), S; := diag(s1,),
82 := diag(sy,), S3 := diag(ss;), S4 := diag(ss,), and u := (1,1,... ,1)T stands for vectors
of appropriate dimensions whose elements are all equal to one.
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An interpretation to the KKT equations (3.6) is as follows. The Equations (3.5j) and
(3.6e)—(3.6h), together with the implicit conditions (s1, s2,83,8s) € IR, x IRE x IR? x
IR? , ensure primal feasibility. The Equation (3.6i), together with the implicit conditions
(21,21 + 22,23, 23 + z4) € IR, x IR%, x IR? x IR, are referred to as dual feasibility. The
Equations (3.6a)—(3.6d) are usually called the u-complementarity conditions, perturbations
of the standard complementarity conditions for (3.3). The u-complementarity conditions

can be represented in various mathematically equivalent forms. Of these, the form

Sz —pfu = 0, (3.72)
So(z1 + 22) — pFu 0, (3.7b)
Sazz —pFu = 0, (3.7c)
Su(zs + z4) — pFu = 0, (3.7d)

is the “least nonlinear” in the sense that the Hessian matrix V2, L, (defined below) is
independent of u* and asymptotically reflects the condition of the original problem—({1.1)—
as u* | 0. As we let u* approach zero in the barrier subproblems, the perturbed KKT
conditions (3.6) closely approximate the KKT conditions for the NLP problem (3.3).

The complementarity conditions state that none of the complementarity pairs, (1,5 21,)s
(s3,, 2], + 23,), (s3,,23;) and (s}, 23, + 21;), can have both of their arguments nonzero, or,
equivalently, that inactive constraints (s* # 0) must have a zero multiplier (z* = 0). If
there is no i such that s7, = 2], =0 or 3, = 27, + 23, = 0, and no j such that s53; =23, =0
or sy, = z3. + 23, = 0, then strict complementarity is said to hold. A case where both
values are zero is an intermediate state between a constraint being strongly active and
being inactive. These three conditions are illustrated in Figure 3.1. The total residual of
the complementarity conditions, defined by

p =81z + 8 (z, + 2,) + 83 23 + 51 (23 + 24), (3.8)

is called the complementarity gap. If w is both primal and dual feasible, then p is usually
called the duality gap.

A strictly feasible starting point is not mandatory for the primal-dual IP method, but
the strict positivity conditions (3;, 82, 83,84} > 0 and (21,21 + 22, 23,23 + 24) > 0 must
be satisfied at every point. The IP iterates start from a point w® that satisfy the strict
positivity conditions; in order to preserve this condition, subsequent IP iterations follow a
trajectory in the positive orthant of the space of complementarity products (s;z;). Feasibility
is attained during the iterative process, as optimality is approached or reached.
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Figure 3.1: Complementarity for min.{f(z) | A(z) > 0}. Inequality constraint is (a) strongly
active when z* > 0 and h(z*) =0, (b) weakly active when z* = h(z*) = 0, and (c) inactive
when 2" = 0 and hA(z*) > 0 (Figure 9.1.2 from [24], slightly modified.)

Primal-dual IP iterates invariably apply one step of Newton’s method for nonlinear
equations to the KKT system (3.6), compute a step size in the Newton direction, update
the variables, and reduce u*. The algorithm terminates when primal infeasibility, dual
infeasibility and the complementarity gap fall below predetermined tolerances.

We explain below, in very simple terms, a role played by the barrier parameter p* in
most primal-dual IP algorithms. Let the KKT conditions for the NLP problem (3.3) be

given by

( S1z; \
Sa(z1 + z2)
5323
S4(z3 + z4)
si+ss—h+h
h(x) + 87 — h
S3+s4—~T+zx

Vwl(w) = =0, (3.9)

f:c + 84—
Vzf(z) — Veg(z)y + Vh(z)z2 + fl‘z4

\ —g(z) )

(81,82,83,84) > 0 and (21,21 + 22,23,23 + z4) > 0. A new estimate for w* can be
computed using one step of the Newton’s method to find zeros of nonlinear functions, as
applied to (3.9). The iterates have the general form

wht! = w* — oF[V2  L(w*)] 7'V, L(wh), (3.10)
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where V2, L(w*) is the Jacobian of V,L(w), and o € (0,1] is a damping factor to
enhance convergence and keep the nonnegative variables strictly positive instead of just
nonnegative. Zhang’s approach [80] to explain this necessity is followed closely here.

Consider any of the complementarity equations in the KKT system (3.9), say, s1,21;, =0.
The Newton equation for s1,2;; =0, at a given point (s’fi, z{‘i), is

k k — k _k
sl‘.Azli +z1iAsli == —-s]_l.zli.

If one of the variables, say, Zlfe is zero, then the Newton equation becomes s’fiAzl‘, =0,
leading to a zero update, Az;, = 0. Consequently, z{‘i will remain zero all the time once it
becomes zero, which is fatal because the algorithm will never be able to recover once it sets

a variable to zero by “mistake.”

Next, consider that the perturbed KKT system (3.6) is expressed in the form

( Sz, \ /,u.ku\

Sa(z) + 22) pEu

S3z3 pFu

S4(z3 + 2z4) uFu

Ve Ly (w; p¥) = 3;;;: Zhjﬁﬁ - g =0. (3.11)

83+84—T+zx 0
Iz +84—T 0
Vzf(z) - Vzg(z)y + Vzh(z)zo + Tz, 0

\ ~9(=) /) \©o)
Even if we keep the nonnegative variables strictly positive, we would still expect difficulty
in recovering from a situation where a variable is adversely set to too small a value. Notice
that the perturbed complementarity conditions in (3.11) reduce the chances of such mistakes
at early stages by driving all the complementarity pairs to zero at the same pace, say,
skzk = pF — 0 as k — oo for every index i. If we express the iterates generated by (3.11)
in terms of V,,L(w*) and V2, L(w*), similar to (3.10), we obtain

w*tl = wk — o [V2,, L(wk)] v, L(w*) — pFa], (3.12)

where % = (u,0), with v € IR?*% and 0 € IR"~2P~24. Notice that the search direction
in (3.12) has two components: (i) the “pure” Newton direction, — [V2,,, L(w*)] ~lv L(wk),
known as the affine-scaiing direction, and (ii) the centering direction, [V?qu(w")] _l(p.k'fi),
a component that is not seen in (3.10), which drives the nonnegative variables away from

the boundary.
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3.3 Computing the Newton Directions

Although the KKT system (3.6) is a nonlinear equation system, its solution is usually
approximated by a single iteration of Newton’s method—the Newton direction is only a
means to follow the path of minimizers parameterized by p*. Such an approximate solution
can be obtained either by solving all equations together or by solving an equivalent reduced
system. This reduced system is obtained by eliminating variables by substitution. Both

solution approaches are described in this section.

3.3.1 Solving the Augmented System

As we take the first-order terms in a Taylor-series approximation of the KKT system (3.6),
around the point w*, we obtain the following symmetric indefinite system:

(as) —pk(8%) "+ 24 )
Asy —p*(85)u + 25 + 25
Ass —p*(S5) "ty + 2%
Asy —puk(SE)Ylu + 25 + 2%
k kE_ %
Vo Ly (w") 32 =— :;;1 s;jﬁﬁ . (3.13)
Azg 8§ + sf -4z
Azy Izk + sk — =
Az Vo f(ak) — Vaog(zk)yk + Veh(zk)z§ + T7 25
\ay) ~g(a") /
where, as we drop most superscripts k,
uEST2 0 0 o I, o 0 0 0O 0 |
0 upks;%2 o o I, I, 0 o 0 (]
0 0 832 0o o0 o0 I, 0 0
0 0 0 us;20 o0 I, I, O ]
0 I I 0 6 0 0 0 O 0 0
VewwLu(w) = op I: . o 0 0 0 o VAT o (3.14)
0 0 I, I, o0 0o o0 O 0 0
0 0 0 I, 0 0 0 O T 0
0 0 0 0 0 Vzh 0 IT V2L, —V.g
| 0 0 0 0 0 0 0 0 -Vyg© 0
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and

™m P
V2 Lu(w) = V2, f(zF) = Y vfV2g:(zF) + D 25 Vi hi(F). (3.15)
=1 =1

The symmetric matrices V2, f(z), V2,g;(z) and VZ h () are Hessians of the objective
function f(z), the constraint function g;(z), and the constraint function h;(z), respectively.
To form the Newton system (3.13), computing V2L, (w*) demands the greatest effort. In
an OPF solution, evaluating (3.15) is more efficiently done if we use voltage in rectangular

coordinates; in which case, the Hessians V2, f(z), V259;(z) and V3 h;(z) are constant.

3.3.2 Solving a Reduced System

Let us now consider the solution of the KKT system (3.6) as the solution of an equivalent

reduced system of equations in terms of  and y. Such a reduced system can be written as

diz,y;4*) = 0, (3.16a)
-g(z) = 0, (3.16b)

where d(z, y; 1) is defined below. To transform the KKT system (3.6) into (3.16), we need
to eliminate, by substitution, the variable vectors z; and z4 from the KKT equation (3.6i).
These variables are eliminated in the process as we define the Newton system. By taking

the first-order terms in a Taylor-series approximation of (3.6i) around w*, we obtain
V2, L, (wF) Az — V_g(zF) Ay + V h(zF) Az, + IT Az,
= “‘va:f(zk) + ng(mk),ylc - Vzh(zk)zg - szff- (3.17)

To eliminate Az, from (3.17), first we consider the linear approximations that are obtained
from the KKT equations (3.6e), (3.6f), (3.62) and (3.6b), which are

Asy = —Vh(z*)T Az, (3.182)
Asy = —Asy, (3.18b)
Az, = —u®(8%)24s, (3.18c)
Azy = —pF(S5)2As8; — Az, (3.18d)

Then, by manipulating the incremental equations (3.18), we express Az3 in terms of Az,

as follows:

Azy = p*[(85)72 + (55) 2|V h(zF)T Az. (3.19)
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To eliminate Az4 from (3.17), first we consider the linear approximations that are obtained
from the KKT equations (3.6g), (3.6h), (3.6c) and (3.6d), which are

Asy = —IAz, (3.20a)
Asz = —Asy, (3.20b)
Azz = —uF(S5)2As;, (3.20c)
Azy = —p*(8K)2Asy — Az;. (3.20d)

Then, by manipulating the incremental equations (3.20), we express Az, in terms of Az,
as follows:
Azg = p*[(S5) 72 + (8%)?] I Az (3.21)
By substituting the linear approximations (3.19) and (3.21) into (3.17), we obtain
[VaeLu(@w") + 15V h(F) ((ST)72 + (S5)2) Voh(zF)T + I ((S5)72 + (S5) )] Az
—V.9(z*)Ay = -V f(z*) + V g(zF)y* — V h(zF)25 — TT2E
(3.22)

Finally, the reduced linear system can be expressed as
[ Vod(wk)T —Vzg(:ck)] (A:z:) _ (—d(w’“)) , (3.23)
—Vzg(z*)T 0 Ay g(z*)
where V,d : IR" — IR™*" is the transposed Jacobian matrix of the reduced function vector
d(z,y; u*), that is evaluated at the current point by
Vzd(w®)T =VZ, L, (w*) + 1V h(c*) [(85)72 + (85) 2]V h(=F)T
+u*IT[(85)72 + (8571, (3.24)
and
d(wF) := VL, (w*) = V f(z*) — V,g(zF)y* + V_h(zF)z5 + TT2E.  (3.25)

The coefficient matrix of the reduced system (3.23) is also symmetric indefinite since the
three terms in the right-hand side of (3.24) are symmetric matrices. We use the reduced
system (3.23) to examine, in Chapter 7, the handling of voltage bounds in the rectangular
and the polar “versions” of the OPF problem..

To compute the Newton direction through the reduced system approach, we first solve
for Az and Ay in (3.23); then, we solve for Asy, As;, Az; and Az; using (3.18); and solve
for Asy, Asz, Az3 and Az, using (3.20). The numerical solution of the linear indefinite
systems (3.13) and (3.23) is discussed in Chapter 6.
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3.4 Computing Step Lengths and Updating Variables

New values of the primal and the dual variables are computed froin

Fl = 2F + b Az, (3.262)
st = $Frabas, (3.26b)
sl = % +abAs,, (3.26¢)
5l = sk 4 abAs,, (3.264)
sl = gk abAs,, (3.26e)
and
y* 1 = of 1ok Ay, (3.27a)
z'f“ = z’f + a’f)Azl, (3.27b)
z'2c+1 = z'{ + a%AzQ, (3.27¢)
2 = 2F 4ok Az, (3.27d)
zf‘“ = zF+ a’f-,Az4, (3.27e)

where the scalars of, € (0,1] and &% € (0,1] are step lengths in the Newton direction in
the primal and the dual spaces, respectively.

Desirable features of a step towards a local minimizer are that it simultaneously holds
the strict positivity conditions and provides a sufficient decrease in both complementarity
gap and infeasibility. However, to properly balance these three goals (generally competing
among them) we need to set an appropriate merit function and perform a line search along
the Newton direction, aiming at minimizing this merit function. We discuss merit functions
and some line search procedures in Chapter 5. Three computationally inexpensive, however,

rather simple, procedures to obtain the step lengths are considered below.

3.4.1 Scheme—A: Separate Primal and Dual Steps

This is the simplest step length procedure and, by far, the most commonly used procedure
in implementations of primal-dual IP methods for LP. It considers separate step lengths in
the primal and dual spaces, and its primary and only goal is holding the strict positivity
conditions. The primal step length of and the dual step length of, are both calculated
by finding the smallest of the maximum step lengths of all variables with strict positivity
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conditions, as follows:

k k
max __ . —S1; . —59; A
%s _—'mln{z;nil‘:np{Asl Asli <0 ! izzrli.LPp A32 '52,~ <0 ’
w {78 a5 <o) min { %% a5, <0 3.28
"i:lnq Asst 33‘- < 3 i=1:q A54i 341' < ? ( - )
—zf —25
aé““:mm{ min { : Az1,<0}, mm{ — A’z}<0},
i=l:p Azh * i=l:p Azzi -
iw { 7% 4z <0V, min { a2, <0 3.29
i;milinq AZ3‘ zsi < ! i=1: q A24 Z‘h < ! ( i )
o = min {1, o>}, (3.30)
ok, = min {1, agal>}, (3.31)

where Zo 1= z| + 22, Z4 1= 23 + 24, and g € (0,1) is a step reduction factor to ensure that
the next point will satisfy the strict positivity conditions, that is, (s;, 32,83,84) > 0 and
(z1: Z2,23,24) > 0. A commonly used value is ap = 0.99995; see [52].

3.4.2 Scheme—B: Single Common Step

Separate step lengths in the primal and the dual spaces is an advantage of primal-dual
IP methods for LP, and has proven highly efficient in practice, reducing the number of
iterations to convergence by 10%-20% on typical problems (see [52]). For general NLP,
however, the interdependence of primal and dual variables—as clearly shown in the dual
feasibility condition (3.6i)—does not rigorously allows for separate step lengths in the primal
and dual spaces. In such a case, a single common step length to update the primal and
dual variables shall be computed from

o = of) « min {af, of}. (3.32)

In spite of the above mentioned coupling between primal and dual variables in the dual
feasibility conditions, a single common step length (see [77]) and separate step lengths
(see [33]) have both performed well in nonlinear OPF solution.

3.4.3 Scheme—C: Dual Box Constraint

This step length procedure is derived from the IP method proposed by Yamashita and
Yabe [78, 1996]. The primal step length o in (3.26) is obtained by the Scheme A above
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whereas the dual step length of, in (3.27) is obtained by a different procedure. Following
Yamashita and Yabe’s method, the dual step length is the largest step a’,‘) < 1 that satisfies

mjni ut y 21 } < z1 +aDAz1 Smax{—ﬂk—k—, ’f}, t=1:p
oF(sk +akbAs ) sk +ofds,
(3.33a)
p* =% <k k 9Euk ok
, < z5 +ab Az, < max , 2 }, i=1:
{cp“(s2 +aPA32) 2‘} % b= % {52 +aPA32 % P
(3.33b)
k & k f 95k
min . < 25 +aphAz max ; , 1=1:
{ 33 +aPAs3) z3‘} - b3 15’3“-{-&".433 3’} 7
(3-33c)
p* =k ok k 9*uk
min 2 < zZ§r + a5 Az, < max } 1=1:
{cp"(s4 +aPAs4) 4‘} 4 b= {34 +aPAs4 Z
(3.33d)

where ¢* and 9% are positive numbers that satisfy

k 2u*

¢ >m‘”‘{ (1= o) min { min{SK25), min{ 5525, min(S5=5), min(S} !:}}}
(3.34)

3max { max{S%¥2z%}, max{S52}, max{S52z%}, max{b{j?f{}}} (3.35)

9% > max{ 3, A
n
Yamashita and Yabe consider their procedure to compute of, as a box constraint for the

dual variables.

3.5 Reducing the Barrier Parameter

For general non-convex NLP problems, the choice of a good strategy to reduce uf is a
very complex issue, often recognized as heuristic and problem dependent [51,64]. Some
procedures simply decrease u* by a fixed factor—usually p*t! = p*/10—up to a given
lower bound. Researchers experience has shown that u* should not be decreased too fast

because this may result in non-convergence.

When a primal-dual IP method is applied to a convex program, the deviation of f(z(u*))
from optimality is always bounded by puf (p is the number of inequality constraints). That
is, f(z(u*)) — f(z*) < pu*, independent of the particular problem functions [74]. Although
the duality properties of convex programming cannot be fully extended to general NLP,
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it is natural to ask whether successful schemes used for reducing x* in LP or convex QP
could be extended to NLP. Such an extension has successfully been considered in [33,77]

and elsewhere, and is considered in this thesis as well.

3.5.1 Standard Procedure to Update p

We may recall that the complementarity gap is computed at the current iterate from
pE = (1) 2t + (s3)725 + (s§)T25 + ()T 2L (3-36)

If the iterates converge to an optimum, then the sequence {p"} must converge to zero. The
relationship between p* and u¥, that is implicit in the y-complementarity equations (3.6a)-
(3.6d) and in (3.36), suggests that u* could be reduced based on a predicted decrease of
the complementarity gap. Most implementations of IP algorithms choose p**! from

k
k+1 __ kP

pT =0 z(p'—_{_q)a (3.37)

where oF is the expected, but not necessarily realized, decrease in the average (normalized)

complementarity.

The parameter o* € [0,1] is usually called a centering parameter and can be interpreted
as follows [76, Chapter 1]. If o* = 1, the KKT system (3.6) defines a centering direction, a
Newton step towards a point at the barrier trajectory—the central path in LP—a smooth
trajectory converging to * as u* continuously goes to zero. Centering directions are usually
biased strongly toward the interior of the nonnegative orthant and make little, if any,
progress in reducing p*. However, by moving closer to the barrier trajectory, they set the
scene for substantial progress in the next iteration. At the other extreme, the value o =0

gives the pure Newton step, sometimes known as the affine-scaling direction.

In computational practice, IP algorithms use intermediate values of ¢* from the open
interval (0, 1) to trade off between the twin goals of reducing ¥ and improving centrality.
We dynamically choose o as ¢* = max{0.990%~, 0.1}, with ¢® = 0.2.

3.5.2 Vanderbei-Shanno’s Procedure to Update u

Vanderbei and Shanno have proposed in [71] a scheme to update u that takes into account
the centrality of the current point. It is well known from theoretical analysis of IP methods
that if the trajectory is close to the central path, a small 4 may be chosen, whereas when
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one is further away from the central path, a larger u is preferable. Vanderbei and Shanno
measure the distance from centrality by computing
f _ min{min{Slz1}, min{ngg}, min{S3z3}, mm{S424}}
p/(2p + 2q) '
Clearly, 0 < £ <1, and £ = 1 if and only if the complementarity products s;z; are a constant
over all indices . Consequently, they propose the following heuristic to update u:
3
g . 1— fk pk
k+1
=(min< (1 — ag) ——, 2} —_, 3.39
1 = i { = s (3.39)
where 0 < ag < 1 denotes the step reduction factor described above, which, in [71], defaults
to 0.95, and ( is a settable scale factor, which defaults to 0.1.

(3.38)

3.6 Testing for Convergence

We consider the IP iterates terminated whenever an approximate local minimum has been

obtained, in which case

o< e, (3.40a)
vk < e, (3.40b)
vE < e, (3.40c)
vi < e, (3.40d)

or they are stuck at some point other than a local minimum (a possibility), in which case

pF < e, (3-41a)
Azl < e, (3.41b)
lg(@®)leo < e, (3.41c)
vf < e, (3.41d)
where
vF =max {||g(a:’°)||°o, max {h — h(:z:k)}, max {h(a:") —h}, max {z — Ek}, max {53" - 5}},
(3.42)
& NV2f @) = Vag(z¥)y* + Voh(zh)2E + T2 (3.43)
2 L+ (k]| + [lykl + 250 + 1251 ’ '
Y
V3 —m, (3.44)
Uf =lf($k) - f(mk—l)l‘ (3_45)

1+ |f(F)]
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If the criteria V{‘ < €, vf < € and z/:’f < €7 are satisfied, then the primal feasibility
conditions (3.6e)—(3.6h) and (3.6j), the (scaled) dual feasibility condition (3.6i), and the
(scaled) complementarity conditions (3.6a)—(3.6d), respectively, are satisfied. When the

condition (3.40) is satisfied, the current iterate is a KKT point of accuracy e;.

When numerical problems prevent verifying the condition (3.40), the algorithm stops as
soon as feasibility of the equality constraints is (hopefully) achieved, along with very small
fractional change in the objective function value and negligible changes in the variables.
That is, the undesirable condition (3.41) is verified.

Yet, the iterates should terminate if neither the condition (3.40) nor the condition (3.41)
has been verified, and then either condition k& > £™** (used maximum number of iterations)

or condition max{a%, ok} < 10712 (cannot progress further from w*) does occur.

Typical convergence tolerance values are €; = 107, e = 1072¢;, and ¢, = 10712,

3.7 Outline of the Primal-Dual IP Algorithm

An outline of the primal-dual IP algorithm that is described in this chapter is shown below.
It remains to describe the algorithm initialization in STEP 0. Initialization heuristics are

described in Chapter 6, along with various important implementation issues.

Algorithm 3.2 Primal-Dual Interior-Point Algorithm.

STEP 0: (Initialization)
Choose 1% > 0, and a point w?® that satisfy the strict positivity conditions

0 0
(s9,39,53,5%,29,29,23,29) > 0; set k 0.

STEP 1: (Compute the Newton Direction)

Form the Newton system (3.13) (or the reduced system (3.23)) at the current
point w* and solve for the Newton direction Aw.

STEP 2: (Compute Step Length and Update Variables)
Compute the step length of in the direction Aw, and update primal and dual
variables: w*+t! « w* + of Aw.

STEP 3: (Test Convergence and Update the Barrier Parameter)
If the new point w**1! satisfies the convergence criteria, stop. Otherwise, compute
the barrier parameter p*+! < ¥ set k « k + 1, and return to STEP 1.
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3.8 Final Remarks

In this chapter, the mathematical development of a primal-dual IP algorithm for NLP has
been described in detail. This IP algorithm is a direct extension of the IP method for LP
that is described in [52]. Similar extensions have been proposed by Clements et al. [13],
Wu et al. [77], Granville [33], Martinez et al. [54], and Irisarri et al. [39]. Although the
OPF problem is non-convex and there is no guarantee regarding the convergence of these
IP algorithms (as they are implemented) in solving non-convex problems, the successful
results described in [13, 33, 39, 54, 77] have to some extent encouraged the current thesis
research. In this thesis research, we have conducted the following studies:

e We have developed our primal-dual [P algorithm for NLP based on the NLP problem
(1.1), which we consider as the standard form. Application of this IP algorithm to the
OPF problems that are described in Chapter 2 is, therefore, straightforward. Towards

this purpose, various issues in implementation are discussed in Chapter 6.

e We have studied the computational performance of the primal-dual IP algorithm as
it employs different initialization heuristics, different schemes to compute the step
lengths, and different updating formulae of the barrier parameter. Also, we have
studied the influence of various parameters of the algorithm in the convergence process,

as concerned with nonlinear OPF solution.

¢ We have thoroughly studied the performance of the primal-dual IP algorithm as it
solves the RPD problem formulated both in rectangular and in polar coordinates.
Such an analysis—rectangular coordinates versus polar coordinates—has not been
performed in previous works. We have observed, among other particulars, that volt-
age bounds are more easily handled in polar coordinates, whereas the assembling of

matrices is more efficiently done in rectangular coordinates.

e We have thoroughly described an alternative approach to obtain the Newton direction,
called the reduced system approach. From such a reduced system, the implications of
handling the voltage bounds as nonlinear functional bounds (voltages in rectangular
coordinates) can be easily examined as we look at the extent the matrix V d(w)T
differs from V2_L,(w). Such an analysis is presented in Chapter 7.

Concerning future work with the IP algorithm that is described in this chapter, a study
of the usefulness of inexact search directions sounds interesting to study. The idea is to
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reduce overall computational time by reducing the effort of a single iteration, even at the
expense of some increase in the iteration count. By an inexact search direction we mean

that the vector Aw satisfies

V2, Lu(wF) Aw = =V, L, (wF) + rF. (3.46)

for some suitable residual vector r*. As usual in inexact Newton methods, the vector 7%

is not fixed beforehand. Instead an iterative solver, such as a preconditioned conjugate
gradient method, is used to solve the linear system (3.13); this method is stopped when the
norm of the residual is smaller than a prefixed accuracy, that is, ||7¥|l2 < €* .

Another possibility of reducing the overall computational time is reducing the number
of iterations, even at the expense of some increase in the cost of a single iteration. This is
the approach followed by the higher-order IP variants for LP and convex QP. In the next
chapter, we describe extensions to NLP of several higher-order IP methods for LP.



Chapter 4

Higher-Order Primal-Dual

Interior-Point Algorithms

Evaluation of the Newton direction is usually the computationally most expensive task
in a single iteration of a primal-dual IP algorithm. Concerning the computation of Aw
in the IP algorithm that is described in Chapter 3, factorization of the coefficient matrix
V2 wLu(w*) in (3.13) is much more expensive than the forward and backward solutions
that follow factorization. Thus, we have reasons to think that is possible to improve the
performance of the IP algorithm if we reduce the number of matrix factorizations to a

necessary minimum, even at the expense of some increase in the cost of a single iteration.

It is likely that a reduction in the number of IP iterations will be accomplished through
the incorporation of higher-order information into (3.13) to improve the order of accuracy to
which the Newton direction approximates the nonlinear KKT equations. This is the central
idea behind the higher-order IP variants, such as the predictor-corrector method introduced
by Kojima, Mizuno and Yoshise (49, 1989g] and later developed by Mehrotra [57, 1992]. What
makes Mehrotra’s method computationally very efficient is that a more successful search
direction is obtained by solving two systems of linear equations in each iteration, in a way
that allows for a higher-order approximation to the central path.

The two linear system solutions, known as the predictor and corrector steps, involve
a single coefficient matrix with two different right-hand sides; therefore, only one matrix
factorization is required. Accordingly, the direction Aw is decomposed into two parts:
Aw = Aw,g + Aweee, Where Aw,g is called the affine-scaling (predictor) direction, and
Awe is called the centering (corrector) direction. There is little additional work required

40
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to compute the corrector step, if we reuse the matrix factorization required to compute the

predictor step.

In LP and QP, additional savings in overall computational time also have been obtained
by applying multiple corrector steps, as in the perturbed composite Newton (PCN) method
of Tapia et al. [67, 1996], in the multiple predictor-corrector (MPC) method of Carpenter et
al. [10, 1993], and in the multiple centrality corrections (MCC) method of Gondzio [31, 1996].
The basic idea behind Tapia’s PCN method and Carpenter’s MPC method is to perform
more solves within each iteration with the intent of performing fewer IP iterations and,
accordingly, fewer derivative evaluations and matrix factorizations overall. Gondzio’s MCC
method also attempts to reduce the number of iterations for convergence by adaptively
adding one or more corrector steps to the predictor step; the MCC technique has been
included as an option in various state-of-the-art IP software codes [62]. The predictor step
used in the PCN, MPC and MCC approaches is the same predictor step used in Mehrotra’s
method. The use of multiple corrector steps, the engine behind these higher-order IP
variants, is advantageous only if it reduces the overall number of derivative evaluations and

matrix factorizations without performing an unreasonable number of extra solves.

In this chapter, we explore the usefulness of Mehrotra’s predictor-corrector method [57],
Tapia’s PCN method [67], Carpenter’s MPC method [10] and Gondzio’s MCC method [31],
in the context of nonlinear OPF solution. While the first approach was extended by Wu
et al. [T7, 1994] to an OPF algorithm in polar coordinates, the last two approaches have
not been extended at all to nonlinear OPF solutions. In the next section, we describe an
extension of the predictor-corrector method suitable for the OPF in rectangular coordinates.
In Section 4.2, we describe extensions of the PCN and MPC methods for nonlinear OPF
solution as well. In Section 4.3, we describe an extension of the MCC method. Final

remarks and a summary of the contributions close the chapter in Section 4.4.

4.1 Predictor-Corrector Interior-Point Algorithm

To incorporate predictor and corrector steps into the (standard) primal-dual IP algorithm
that is described in Chapter 3, we consider the perturbed KKT system (3.6) expressed in the
form of (3.11). Such an arrangement provides us with a Newton system whose coefficient
matrix is independent of u*. Consequently, the predictor and corrector steps involve the
same coefficient matrix, thus requiring a single matrix factorization in each iteration. Next,
rather than applying Newton’s method to (3.11) to generate correction terms to the current
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estimate, we substitute the new point w**! = w* 4+ Aw directly into (3.11), to obtain the

second-order approximation

( Skzk \ (yku\ [ AS1Az; \
Skzk pfu AS,AZ,
S§z§ pku AS;_),AZ3
Skzk pku ASLAZ
sf+sk—R+h 0 1]
Vf,,wLu(wk)Aw - h.l(a:k)z-{- sk — H_ M o | h1(Az)
s+sk-z+2 0 0
Izk + sk -z 0 0
Ve L, (wk) 0 —Vzg(Azx)Ay + Voh(Az)Az,y
\ e ) N )\ ~g(42) /
(4.1)
where, as we drop most superscripts k,
(Z, 0 0 0 S, 0 0 O 0 0 ]
0 Z, 0 0 S, S, © 0 0
0 0 Z; 0 0 0O S3 O 0 0
0 0 0 Zy 0 0 S84 S¢ O 0
I, I, 6 0 0 O 0 O 0 0
Vi Lu(w) = op I: 0 0 0 0 0 0 VT o0 |’
0o o I, I, 0 O 0 O 0 0
0 06 0 I, 0 0 O O T 0
0 o 0 0 Vgsh 0 IT V2L, —V.g
0 0 0 0 0 0 0 0 -VgT 0 ]

Z, = diag(zy,), 2, = diag(%,), Z3 = diag(zs,), Z¢ = diag(Zy,), AS; = diag(Asy,),
AS, = diag(Asy;), AS; = diag(As;3;), ASy := diag(Asy,), and g%(-) € IR™ and hI(-) €
IRP denote the quadratic terms of g(-) and h(-), respectively; we assume here that g(z) and
h(z) are quadratic. The coefficient matrix in (4.1) can be made symmetric if we scale the
linearized complementarity equations by §7%, S5, §3! and S;1.

REMARK 4.1 The major difference between the Newton systems (4.1) and (3.13) is the
presence of the nonlinear “delta terms” AS 1Az, AS3AZy, AS3Az3, AS;AZ4, gi(Ax),
hi(Ax), Veg(Azx)Ay and Vih(Ax)Azs, that appear on the right-hand side of (4.1), and
cannot be solved directly. Moreover, the coefficient matriz in.(4.1) is independent of p*.
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REMARK 4.2 The second-order terms h%(Az), g9(Ax), Vog(Az)Ay and V h(Ax)Azy
are included only if h(z) and g(x) are quadratic, as occur in the rectangular coordinates
OPF. Otherwise, it might be computationally ezpensive to include second-order terms. Al-
though the computation of the incremental matrices Vog(Ax) and Vo h(Ax) cost each the

equivelent to a sparse matriz-vector product, we do not include the associated correction

terms.

Notice that the search direction obtained from the Newton system (4.1) consists of three

components, say
Aw = Aw,g + AWeen + Aweor, (4.2)

where each of them is defined by one of the three terms on the right-hand side of (4.1). We
can interpret these search direction components as follows [76, Chapter 10]:

o Aw,g is an affine-scaling direction, the pure Newton direction that is obtained when
we set u* = 0 in the Newton systems (3.13) and (4.1). The affine-scaling direction is
responsible for “optimization”, that is, for reducing primal and dual infeasibility, and
the complementarity gap; Aw,g is provided by the first term on the right-hand side
of (4.1).

o Aweey is a centering direction, whose size is governed by the adaptively chosen barrier
parameter u*. The centering direction attempts to keep the current iterate away
from the boundary of the feasible region and ideally close to the barrier trajectory,
to improve the chances for a long step to be made in the next iteration; Awecen is
provided by the second term on the right-hand side of (4.1).

o Awc,, is a corrector direction that attempts to compensate for some of the nonlinearity
in the affine-scaling direction; Awco, is provided by the last term on the right-hand
side of (4.1).

The first two components—the affine-scaling direction and centering direction—combine to
make up the standard direction computed from (3.13). In Mehrotra’s algorithm [57], the
affine-scaling direction is computed separately from, and prior to, the centering direction.
This arrangement in computation provides us with the ability to choose pF+! adaptively
rather than a priori, and to approximate the second-order delta terms. The “full” Newton
direction is then computed as the combination of two directions: Aw = Aw,g + Awcce,

where Aweee = AWeen + AWeor is the combined centering-corrector direction.
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4.1.1 The Predictor Step

To determine a step that approximately satisfies (4.1), we first drop the y terms and the
delta terms on the right-hand side of (4.1), and compute the affine-scaling direction from

/ S]_Zl \
Skzk
Sk2%
Skzk

sF+sk—h+h 3

h(z*) + sk —h

+sk-z+z

vtzqu#(wk)Awaﬂ’ = -

Ik +sk—%
Vo f (&) = Vog(z*)y* + V h(zF)z5 + IT 2§
\ —g(z*) )

The affine-scaling direction obtained from (4.3) is then used in two distinct ways [52]:

® {0 approximate the nonlinear delta terms on the right-hand side of (4.1); and

® to adaptively estimate the barrier parameter pf+!

If, on one hand, the affine-scaling direction makes good progress in reducing the barrier
parameter u* while holding the strict positivity conditions, we conclude that little centering
is needed at this iteration, so we assign a small value to o* (the centering parameter in
(3.37)). If, on the other hand, we can move only a short distance along the affine-scaling
direction before violating the strict positivity conditions, we conclude that a significant

amount of centering is needed, so we choose ¢* closer to 1.

An estimate to p**! is computed as follows. First, we perform the standard ratio test
(3-32) to determine the step length oz (we employ the step length Scheme-B) that would
actually be taken if the affine-scaling direction given by (4.3) were used:

£
aff _ . . 51, aff
= min {i=1[lll:np{ a& Asli < 0}, =l:p {Aszl ASz‘ < 0}
igjllznq{/_‘\s3 Asg? <0}’ i=l1g As4 As‘h <0}}

a'}ﬁ = min {1, Qg }, (4.4)
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o =min4g min -
- { i=l:p {Azf‘ﬁ

)

%
aff — 2
Azy, <0}, lg_lllnp{A lA <0},

k
A —Z 4;
igllznq{AzS Az3‘ < 0}, s q{Az Az4 <0}}
o3 = min {1, aoaig}, (4.5)
oy = min {off, a3}, (45)

Second, an estimate of the complementarity gap is obtained from

p{acﬁ' (31 + aa.ffAsl T (25 + aaﬁ'Azl )+ (s5 + aa.ffAsz )T(zz + afﬁfﬂ?éﬁ)

+ (33 + aaﬁ-As3 )T(Z3 + O!aﬁAZ:; ) -+ (84 + aaﬁ-As4 )T(24 + aa_&-AZ4 ). (4.7)

Finally, an estimate of p**1, which we call u¥¢, is obtained from

where oF is given by (3.36). This scheme chooses pfg to be small when Aw_g produces a
large decrease in complementarity, pfﬁ <& p¥, and chooses ufﬁ to be large otherwise.

4.1.2 The Corrector Step

Rather than computing the combined centering corrector direction Awe, and adding it to
Aw,g, we compute the “full” Newton direction Aw at once from

[ Skzk — pk oy + ASPE A \

Skzk — p’;ﬂ-u + ASEAZE

Skzk — aff“ + ASFEAZ3E

Skt — pkeu + ASFEAZSE
sf+sk—h+h

h(z*) + sk — h + hI(Az>E)
sk+sk-z+z

V2 L) Aw = — (4.9)

Iz* + sf -
Vo f(2F) — Vog(z*)y* + V h(zF)2h + IT 2k
\ —g(z) - g%(Az>T) J

REMARK 4.3 The variables are not actually updated between the predictor and corrector
steps and, therefore, the linear systems (4.3) and (4.9) have the same coefficient matriz.



CHAPTER 4. HIGHER-ORDER PRIMAL-DUAL INTERIOR-POINT ALGORITHMS 46

4.1.3 Outline of the Predictor-Corrector IP Algorithm

The remaining steps in the predictor-corrector algorithm are the same as in the standard
primal-dual IP algorithm. That is, we update variables, reduce the barrier parameter, and
test for convergence precisely as described in Sections 3.4 through 3.6. An outline of the
described predictor-corrector IP algorithm for NLP is shown below.

Algorithm 4.1 Predictor-Corrector Interior-Point Algorithm.

STEP 0: (Initialization)
Choose ©° > 0, and a point w® that satisfy the strict positivity cornditions
(89, 59,53, 89,29, 29,23, 29) > 0; set k + 0.

STEP 1: (Compute the Newton Direction)
Compute the coefficient matrix in (4.1) and obtain its factorization. Then,

STEP 1.1: (Predictor Step)
a) compute the right-hand side vector of (4.3);
b) solve (4.3) for the affine-scaling direction Aw.,g;
c) compute ¥z and obtain the estimate p5.
STEP 1.2: (Corrector Step)
a) compute the right-hand side vector of (4.9) by adding the estimated
pXz terms and the delta terms to the vector computed in STEP 1.1a;
b) solve (4.9) for the Newton direction Aw.

STEP 2: (Compute Step Length and Update Variables)
Compute the step length o in the direction Aw, and update primal and dual
variables: w*t! « wk + of Aw.

STEP 3: (Test Convergence and Update the Barrier Parameter)
If the new point w**! satisfies the convergence criteria, stop. Otherwise, compute
the barrier parameter p*+1 < u*, set k « k + 1, and return to STEP 1.

The two linear system solutions in STEP 1.1b and STEP 1.2b of Algorithm 4.1 use
the same matrix factorization. Therefore, the extra effort in the predictor-corrector IP
algorithm, as compared with the standard primal-dual IP algorithm that is described in
Chapter 3, is in the extra linear system solution to compute the affine-scaling direction
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and the extra ratio test used to compute ,uiﬁ. What is gained from this extra work—the
additional forward and backward solution steps—is approximate second-order information
concerning the trajectory from the current estimate to the optimal point as u* is varied
continuously. This usually results in reduction in the number of iterations that, in general,

translates into overall computational time savings.

The higher-order terms h(Az) and g(Az), which differ this procedure from that in [77]
to solve the OPF in polar coordinates, are incorporated only in the case h(z) and g(z) are
quadratic. Also, we have taken a full step in the delta terms of the corrector step but the
damped step when predicting uXg.

4.2 Perturbed Composite Newton and Multiple Predictor-
Corrector Algorithms

We may recall that Mehrotra’s predictor-corrector method performs only one corrector step
in obtaining the search direction in each iteration. The PCN method and the MPC method
that we describe in this section perform one or more corrector steps within each iteration
with the intent of performing less iterations than Mehrotra's method does. That is, the
PCN and the MPC methods aim at exploiting the derivatives and the factorization that
are required in the predictor step further in a sequence of solves of systems like (4.9) with
different right-hand sides. As show in {10], the MPC method for LP and QP is equivalent
to a perturbed level-M PCN method, where M is the number of corrector steps. The
MPC and PCN algorithms for LP and QP are equivalents in the sense that they yield the
same sequence of iterates when started from the same initial point. Such an equivalence of
algorithms, however, is not observed for general NLP.

We begin this section describing the fundamental ideas behind the standard composite

Newton method for solving nonlinear equations.

4.2.1 The Composite Newton Method: Fundamentals
Consider a nonlinear system of equations (such as the KKT equations) expressed as
F(z) =0, (4.10)

where F' : IR® — IR™ is a vector of continuously differentiable functions. By a damped
Newton’s method we mean an iterative procedure that at each iteration solves the linear
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system
Vo F(c®)T Az = —F(zF) (4.11)
for the direction Az, and then moves to a new point
F! = zF + oF Az, (4.12)

where Vo F : IR™ — IR™™" is the transposed Jacobian of F(z), and a € (0, 1] is the step
length parameter. When the choice of step length is o = 1 we drop the qualifier damped.

Since the computation and factorization of the Jacobian matrix V. F(z¥)T demand the
greatest computational effort within an iteration, it may be advantageous to use the same
derivative evaluation and matrix factorization in several solves. This is the idea behind
the composite Newton method. At each iteration, the damped level-M composite Newton

method first solves the system

Ve F(zF)T Az® = —F(z¥) (4.13)
for the direction Az?. Afterwards, for mg = 1,2,... , M, it solves the systems
me—1 )
Vo F(z*)T Ac™ = —F (:z:k + Y Aﬂ) (4.14)
j=0
for the directions Az™*, and only then takes the step
M -
!l = ok 4 oF Z Az, (4.15)
j=0

Notice that the Jacobian matrix Vo F(z*)T is employed M + 1 times to iteratively obtain
the search direction, before a step is actually taken.

4.2.2 The Perturbed Composite Newton Interior-Point Algorithm

The above procedure can easily be incorporated into the solution of the perturbed KKT
equations (3.11). Let us assume that the predictor direction Aw,g and the estimate of the
barrier parameter pf_&- have been computed as in the predictor step of Mehrotra’s method;

let Aw® = Aw,g. Then, for my = 1,2,... , M, solve the systems
mk—l i
V2 o Lu(w®)Aw™ = -V L, (wk + > AwJ) + pkza (4.16)
=0

for the directions Aw™*, where & = (u,0) with u € IR??*% and 0 € IR"~%~24. Finally,
define Aw = Z;'V_L_O Aw7 and move to a new point, computing the step length and updating
the variables precisely as in the primal-dual IP method and in Mehrotra’s method.
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4.2.3 Outline of the Perturbed Composite Newton IP Algorithm

An outline of the perturbed composite Newton IP algorithm for NLP is shown below. The
outlined PCN algorithm considers the possibility of taking a varied number of composite
Newton steps within the outer iterations. Defining how much correcting is advantageous is
a critical issue. Below, we describe a procedure for dynamically choosing the maximum m;
in the MPC method, which may be used in the PCN method as well.

Algorithm 4.2 Perturbed Composite Newton Interior-Point Algorithm.

STEP 0: (Initialization)
Choose 1% > 0, and a point w® that satisfy the strict positivity conditions
(s9, 89, sg, sg,z?,fg,zg,éfl) > 0; set k « 0.

STEP 1: (Compute the Search Direction)
Compute the coefficient matrix in (4.1) and obtain its factorization. Then,

STEP 1.1: (Predictor Step)
a) compute the right-hand side of (4.3);
b) solve (4.3) for the predictor direction Aw,g;
c) compute 0";& and obtain the estimate p’;&-;
d) set the corrections counter m; < 0, and let Aw® = Aw,q.
STEP 1.2: (Composite Newton Steps)
a) compute the right-hand side of (4.16);
b) solve (4.16) for the corrector direction Aw™k;
¢) test for improvement. If suitable, set mg < mg + 1 and return to

STEP 1.2a. Otherwise, set Aw « 3 7% Aw?.

STEP 2: (Compute Step Length and Update Variables)
Compute the step length o in the direction Aw, and update primal and dual
variables: w*ft! «— w* 4+ ofAw.

STEP 3: (Test Convergence and Update the Barrier Parameter)
If the new point w*+! satisfies the convergence criteria, stop. Otherwise, compute
the barrier parameter p*+! < u*, set k « & + 1, and return to STEP 1.
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Notice that we have used the same value of the predicted barrier parameter, u;‘ﬂ-, in all
corrector steps. Alternatively, as suggested by Tapia et al. in [67], the barrier parameter

could be reset at every corrector step. In such a case, we would solve the systems

mk—l
V2 o Lu(wF)Aw™ = -V L, (wk + Y Awf) + pmr G, (4.17)
7=0

formg =1,2,... ,M.

4.2.4 The Multiple Predictor-Corrector Interior-Point Algorithm

The predictor step in the MPC method computes Aw,g and P"lacff in the same way as in the
predictor step of Mehrotra’s predictor-corrector method. Then, we let Aw® = Aw,g and

compute the myth corrector term as follows:

( Skzk uaﬁu+Asmk LAagmet \
SkZE — pkeu + ASTE T AZTET
Skzk — u’;ﬁu + ASTET Az
Skzk _ affu + AS’”k“A*’"k‘l
s*+sk—-h+h
h(z*) + sk - B + RI(Az™*)
s§ + s"f -T+z
Izk + sk — %
Vo f(z*) — Vog(zF)y* + V h(cF)zk + T2k
\ —g(z*) — g*(Az™) /

V2 oL (wF) Aw™ = — (4.18)

We allow for the number of corrections my to vary at each iteration by dynamically
choosing my, as in Carpenter’s MPC algorithm. Notice that when m; = 1 for all %k, the
MPC method is the predictor-corrector method described above. Determining how much
correcting is advantageous is a critical issue of the MPC algorithm. To address this issue in
the context of LP and QP, Carpenter investigated two distinct and complementary cases:
the feasible case and the infeasible ones.

In the feasible case, the sole motivation behind performing corrections from a feasible
point is reducing complementarity. In such a case, Carpenter et al. consider performing the
(myg + 1)st correction only if p™ < p™+~! and my is less than some maximum number of
corrections (a prespecified parameter). If it is true that p™* > p™* 1, they stop correcting
and use the search direction Aw = Aw™* ™!, In the infeasible case, determining m; must
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integrate reducing complementarity with reducing infeasibility. In this case, an (m + 1)st
correction is attempted only if my is less than the allowable maximum and G™ < G™+~1,
where G is the norm of the residual of the KKT conditions.

4.2.5 Outline of the Multiple Predictor-Corrector IP Algorithm

An outline of the multiple predictor-corrector IP algorithm for NLP is shown below.

Algorithm 4.3 Multiple Predictor-Corrector Interior-Point Algorithm.

STEP 0:

STEP 1:

STEP 2:

STEP 3:

(Initialization)

Choose p® > 0, and a point w? that satisfy the strict positivity conditions
(9,89, 53,%,29,29,29,23) > 0; set k « 0.

(Compute the Search Direction)

Compute the coefficient matrix in (4.1) and obtain its factorization. Then,

STEP 1.1: (Predictor Step)

a) compute the right-hand side of (4.3);

b) solve (4.3) for the predictor direction Aw,g;

¢) compute o and obtain the estimate pkg;

d) set the corrections counter my « 0, and let Aw? = Aw,g.
STEP 1.2: (Multiple Corrector Steps)

a) compute the right-hand side of (4.18);

b) solve (4.18) for the corrector direction Aw™*;

c) compute the step length for the direction Aw™*;

d) test for improvement. If suitable, set my < mg + 1 and return to

STEP 1.2a. Otherwise, set Aw +— Aw™k,

(Compute Step Length and Update Variables)
Compute the step length o in the direction Aw, and update primal and dual
variables: w**t! « wk + of Aw.

(Test Convergence and Update the Barrier Parameter)
If the new point w*+! satisfies the convergence criteria, stop. Otherwise, compute
the barrier parameter u**! < p¥, set k « k + 1, and return to STEP 1.
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4.3 Multiple Centrality Corrections Algorithm

Gondzio’s MCC primal-dual IP algorithm for LP [31] uses the predictor direction that is
obtained in Mehrotra’s predictor-corrector method and then looks for one or more correc-
tor terms aiming at two main goals: (i) improving the centrality of the next iterate, and
(ii) increasing step lengths in the primal and dual spaces. The motivation for the first goal
is to increase the chances for a long step to be taken in the next iteration, and, for the
second goal, to obtain a faster reduction of primal and dual infeasibility; all together, to

obtain acceleration of the convergence.

To achieve the goals (i} and (ii), the MCC method first enlarges the step lengths in both
spaces—&’p = min {af+4,, 1} and & = min {¥ +J,, 1}—and then makes a hypothetical
further move along the predictor direction to the so-called #rial point. This move shall
violate, in general, the non-negativity conditions (81, 82, 33,84) € IR%, x IRE x IRY x IRY
and (z1,Z2,23,24) € IR x IRE x IR% x IR%. Then, a corrector direction is defined to
drive from this trial point towards some better centered target. This target is some point
in a large neighborhood of the central path that is expected to be easier to reach and that
allows for a long step to be made in the Newton direction.

The idea of following a sequence of traceable targets, called weighted analytic centers, as
means of improving the centrality of subsequent iterates, was first proposed by Jansen et
al. [43, 1993], and later translated into a successful computational practice by Gondzio [31,
1996] through his MCC technique. Below, we describe an extension to NLP of Gondzio’s
MCC technique for LP.

4.3.1 The Centrality Corrections

Gondzio discusses in [31] that, in theory, only the perfectly centered points allow for long
steps to be made in the Newton direction, but, in practice, long steps are observed also
for points that belong to a large neighborhood of the central path. Gondzio also observes,
based on extensive computational experience, that what really reduces the efficiency of a
primal-dual IP algorithm is a large discrepancy among the complementarity products s;z;.
That is, we have s;2; << s;2; for some indices ¢ and j.

Complementarity products that are either too small or too large compared with their
average lave = p/2(p+q) are undesirable, with the former usually being more disastrous. An
explanation for that is as follows. The step Aw of (4.1) aims at driving all complementarity
products to the same value p*. However, to reduce the complementarity gap we need
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¥ < pave. Thus, if the current iterate is badly centered, that is, the complementarity
products differ in orders of magnitude, then the right-hand side of system (4.1) is very
badly scaled. The Newton direction concentrates on reducing large products, but, due to
the presence of smaller ones, only short steps are allowed, which slow down the convergence.

To define the centrality corrections, we first assume that the predictor direction Aw,g
has been determined and that the step length a’;ﬁ- that would be taken if Aw,g were used
has been computed, as described in Section 4.2.1. Then, we look for a corrector direction
Awe,, such that a step length & larger than ofg,

&* := min {ofs +6,, 1}, (4.19)
and a composite direction
A’UJ == Awa&' =+ chor, (4.20)

can be taken without violating the non-negativity conditions. To make this possible, some
requirements have to be imposed on Awco,- Notice from the definition of a"aﬁ» that, whenever
akfz < 1, the trial point

B = wk + & Aw (4.21)

may have components that violate the non-negativity conditions. Then, the corrector term
Awcor shall compensate for those negative components and drive the trial point w back to
the vicinity of the barrier trajectory (the central path in LP).

In the MCC approach, the effort of multiple corrections does not primarily concentrates
on reducing the complementarity gap, that hopefully will be sufficiently reduced if a long
step along the Newton direction is made. Nevertheless, to allow for long steps in the Newton
direction the current point should be as close as possible to the central path. Towards
this purpose, Gondzio suggests to define a sequence of fraceable fargets that goes from an
arbitrary point such as @ to a point close to the central path; Jansen et al. [43] suggest
that these targets be defined in the space of complementarity products.

Below, we describe how the targets are defined. Given a small increase of step length
0a; we define the enlarged step length &@F in (4.19), obtain the trial point @ in (4.21), and
then compute the complementarity products for this trial point,

¢ = 5%, for every 1. (4.22)

Next, we identify the components ¢; that do not belong to the interval (B 1Xs, Bmaxtie)-
These components are called the outliers complementarity products, and Bmin and Bmax
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are given relative threshold values to define these outliers products. The effort is focused
on correcting only outliers complementarity products. To this end, the components ¢; are
projected on a hypercube H := [Bpit5s, Bmaxtis]?PT2 to define the target

‘Bminﬂlacff’ if -El < ﬂminﬂ{:ﬁﬁ
Ci i= S Brmaxkhg: I & > Bmaxply, (4.23)

i, otherwise.

Then, a corrector term Aw™* is obtained as the solution to the linear equations system

(Cl - E]_\
c2 —C2
c3—¢C3
C4 — E4

0
V2 L. (wF) Aw™ = . (4.24)

QO O O O ©

\ o )

The right-hand side vector of (4.24) has nonzero elements only in a subset of positions of
¢; —¢; that refer to the complementarity products that do not belong to (,Bminp’;g, 46maxu§ﬁ~).
Furthermore, such a defined right-hand side vector can still remain badly scaled if there
are very large complementarity products in ¢;. To prevent the undesirable effect of this
bad scaling, all components of ¢; — ¢; smaller than —ﬂmup‘:ﬁ are, in Gondzio’s MCC
implementation for LP, replaced with this value, which corresponds to limiting the expected
decrease of very large complementarity products.

The modified centering direction Aw™* that solves (4.24) is used to correct the predictor

direction, as follows:
Aw = Aw,g + Aw™x. (4.25)

A new step length in the direction Aw is determined, and new values for the primal and
dual variables are computed, as previously described for the standard primal-dual and the
predictor-corrector IP algorithms.

The correcting process can be repeated a desirable number of times. The direction Aw
in (4.25) becomes in such a case a new predictor, Aw,g +— Aw, for which a new trial poiat
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is computed from (4.21). The point (4.22) in the complementarity product space is then
used to define the new target (4.23). Next, a new modified centering direction Aw™* that
solves (4.24) is computed and added to the predictor term, as in (4.25). In such a case, the

corrector term added to Mehrotra’s predictor direction is given by Awcec = ka Aw™k,

4.3.2 How Many Correction Steps Are Ideal?

Use of multiple centrality correction steps is of practical interest only if reduction in the
iteration count translates into overall computational time savings. Then, it is essential to
moritor the improvement resulting from the use of the modified centering directions Aw™*
in (4.24). In Gondzio’s MCC implementation to LP, correcting terminates when the step
lengths in the primal and dual spaces—&p and @p—determined for a composite direction
Aw in (4.25) do not increase sufficiently compared with the step lengths found earlier for
a predictor dir:ect:ion——fi?;ff and (’Fbﬁ . Following this procedure, we stop correcting if

aP < a%ﬁ. + 7601 or aD < aabff + 76av (4'26)

where <y is some prescribed tolerance.

Since multiple corrector steps reduce the number of iterations at the expense of extra
effort per iteration, savings in overall computational time is influenced by two important
factors: (i) decrease of the iterations count (matrix factorizations!), and (ii) the ratio of the
costs of factorization and solution of the KKT system. Then, besides condition (4.26) it is

necessary to limit the number of centrality corrections (M) per iteration.

Gondzio developed a heuristic to define M based on extensive computational experi-
ments. He computes the ratio of the factorization effort to solve effort, Tf/s, and allows
one centrality corrector if rp/, > 10. If rg/, < 10, then no centrality corrector is added,
so the method reduces to the Mehrotra’s predictor-corrector method. Due to the smaller
expected savings with subsequent corrections, the use of the second centrality corrector is
allowed only if s/, > 30. The third correction is allowed if rrss > 50. More than three
correctors are allowed only for problems with very expensive factorizations, and M is never
allowed to exceed 10.

We have not thoroughly addressed the choice of M in this research. In defining M,
we should consider that forming and solving the KKT system in NLP demand much more
effort than in LP; besides the computation of Jacobians and Hessians, the KKT system
to be solved is indefinite. In order to define rf/, using actual computational times we
could apply the predictor-corrector method in the first iteration and, then, proceed with
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the MCC approach thereafter. In this way we would be able to consider other issues, such
as intermediate matrix and vector computations, indirectly and directly accessed data,

particularities of computer architecture, and so forth.

4.3.3 Outline of the Multiple Centrality Corrections IP Algorithm

An outline of the multiple centrality corrections IP algorithm for NLP is shown below.

Algorithm 4.4 Multiple Centrality Corrections Interior-Point Algorithm.

STEP 0:

STEP 1:

STEP 2:

STEP 3:

(Initialization)

Choose p? > 0, and a point w® that satisfy the strict positivity conditions
(59,53, 59,59, 29,29,23,23) > 0; set k « 0.

(Compute the Search Direction)

Compute the coefficient matrix in (4.1) and obtain its factorization. Then,

STEP 1.1: (Predictor Step)

a) compute the right-hand side of (4.3);

b) solve (4.3) for the predictor direction Aw,g;

c) compute afy and obtain the estimate pXg;

d) set the counter my < 0. If k = 1, measure r¢/; and define M.
STEP 1.2: (Multiple Corrector Steps)

a) compute the trial point (4.21) and the right-hand side of (4.24);

b) solve (4.24) for the corrector direction Aw™*;

c) compute the step length for a composite direction (4.25);

d) test for improvement. If suitable, set Aw,g « Aw, mg + mg + 1,
and return to STEP 1.2a. Otherwise, set Aw + Aw,g.

(Compute Step Length and Update Variables)
Compute the step length of in the direction Aw, and update primal and dual

variables: w**1 « w* + of Aw.
(Test Convergence and Update the Barrier Parameter)
If the new point w**! satisfies the convergence criteria, stop. Otherwise, compute

the barrier parameter p*+! < ¥, set k « k + 1, and return to STEP 1.
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4.4 Final Remarks

In this chapter, we have presented extensions to NLP of four successful higher-order IP
methods for LP and QP, namely, (i) the predictor-corrector method developed by Mehrotra
[57, 1992], (ii) the perturbed composite Newton method described by Tapia et al. [67, 1996],
(iii) the multiple predictor-corrector method proposed by Carpenter et al. [10, 19g3], and
(iv) the multiple centrality corrections method developed by Gondzio [31, 1996]. The central
idea behind all these techniques is to reduce the number of derivative evaluations and matrix
factorizations to a necessary minimum, even at the expense of some increase in the cost of

a single iteration.

The predictor-corrector technique was previously extended to nonlinear OPF solution
by Wu et al. [77, 1994]. As far as we know, the PCN, MPC and MCC techniques have not
been extended to power systems optimization. We have made a contribution by addressing
the computational efficiency of these techniques in the context of nonlinear OPF solution.

We make the following remarks:

e The corrector step of the predictor-corrector method that is described in {77] employs
second-order terms (“delta terms”) in the complementarity equations only. In our
predictor-corrector method for solving the nonlinear OPF in rectangular coordinates,

we are able to incorporate second-order terms in all KKT equations.

e We have extended to nomnlinear OPF solution the perturbed composite Newton IP
method for LP and QP, as developed by Tapia et al. [67]. This technique has not
been considered in previous OPF algorithms.

e We have extended to nonlinear OPF solution the multiple predictor-corrector IP
method for LP and QP, as developed by Carpenter et al. [10]. This technique has not
been considered in previous OPF algorithms. '

o Also, we have extended to nonlinear OPF solution the multiple centrality corrections
technique for LP developed by Gondzio [31].

Extensive numerical experiments with the above higher-order IP methods are discussed in
Chapter 7. Concerning future work with these higher-order IP variants, an issue deserving
further research is how to dynamically choose the appropriate number of corrector steps
within each iteration.



Chapter 5

Non-Interior Continuation Method

for Nonlinear Programming

5.1 Introduction

We may recall that each point in a primal-dual IP algorithm is obtained by applying a single
iteration of 2 damped Newton’s method to a fixed set of nonlinear equations, parameterized
by u* > 0. Furthermore, the iterates start from a point w? that satisfies the strict positivity
conditions, and follow a trajectory in the positive orthant of the complementarity product

space in order to avoid spurious solutions, that is, points that satisfy

( S1z; \

3222
3323
54z
—h+h
81 + 89 +__ -0 (5.1)
h(z) +s2 —h

S3+84—T+2x
Iz + 84—

Vo f(z) — Vaeg(z)y + Vzh(z)z2 + I 24

\ -g(z) J

but do not satisfy (sy, 82, 3,84) > 0 and (21, 22, 23,24) > 0.

In this chapter, we present a new approach to solve the NLP problem (1.1), that handles
the complementarity conditions, s;z; = 0, s; > 0 and z; > 0, without requiring that

58
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the strict positivity conditions be satisfied at every iterate. Such a method originates
from a reformulation of linear complementarity problems (LCP) as nonlinear systems of
equations, which was developed by Chen and Harker [11, 1993}, and Kanzow [46, 1996].
Given M € IR™*™ and q € Ix"®, the LCP problem is to find z € IR" and y € IR" so that

Mz+g=y, >0, y>0, z'y=0. (5.2)

Henceforth, we will refer to the LCP problem (5.2) simply as LCP(q, M).

Chen-Harker and Kanzow’s reformulations of LCP(g, M) handle each complementarity
condition, z; > 0, y; > 0 and z;y; = 0, by means of a function 9 : IR> — IR which is defined

by the following characterization of its zeros:
P(a,b) =0 < a2>0, b=>20, ab=0. (5.3)

Any function % : IR?> — IR that have the property (5.3) is called an NCP-function, where
the acronym NCP stands for nonlinear complementarity problem. In the last few years,
various NCP-functions have been proposed. For example, the functions

¥(a,b) := ~min*{a, b}, (5.4)
(a,b) := = ((ab )% +min?{0, a} + min?{0,6}) , (5.5)

¥(a,b) :=ab+ :21—0.' (max?{0,a — ab} — a? + max?{0,b — aa} — b2) , a>1  (5.6)

¥(a,b) := Va2 + b2 — (a +b), (5.7)
Yu(a,b) :=/(a—b)2+pab—a—b, pe(0,4), (5.8)
VYu(a,b) :=a+b—/(a—b2+4u, p—0, (5.9)
Yula,b) :=a+b— Va? + b2 + 2y, o —>0, (5.10)

are NCP-functions [45]. We refer the interested reader to the works of Chen and Harker [11,
1993], Kanzow [44-46], Burke and Xu [6, 1996], and Hotta and Yoshise [37, 1996] for surveys
on NCP-functions and their applications. Growing attention has been paid to the NCP-
function (5.7) which was first introduced by Fischer [23] and further employed by several
researchers. The NCP-functions (5.9) and (5.10) are of particular interest to our studies.
They satisfy the property

Yula,b) =0 <= a>0, >0, ab=y, (5.11)

for any p > 0. Based on the NCP-functions (5.9) and (5.10), the Chen—Harker [11, 1993],
and Kanzow (46, 1996] algorithms solve LCP(q, M) by approzimately solving a sequence of
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nonlinear systems of equations of the form

Mz+q—y
wp.(xlayl)
@, (z) = | Wulz2,12) | =0, (5.12)

1!’;1(3"111 yﬂ)

where u > 0 is a continuation parameter that is forced to monotonically decrease to zero,

as does the barrier parameter in an IP setting.

The most attractive feature of Chen-Harker and Kanzow algorithms for LCP is that
they are non-interior-point (NIP) methods, in the sense that the attraction domain of the
feasible path is all of IR" instead of the positive orthant IRZ. Since the non-negativity of
any limit point is automatically assured by NCP-functions, without imposing additional
conditions, the initial point and the iterates do not necessarily have to stay in the positive
orthant, providing us with the freedom of choosing a starting point (z°, ¢°) that satisfy the
condition Mz? + q = y°.

A similar procedure has been used in the solution of the noniinear complementarity
problem (NCP) as well (see [16,37,44,45]), which is to find an z € IR"™ so that

z>0, F(z)>0, zTF(z)=0, (5.13)

where F' : IR" — IR" is a vector of continuously differentiable functions. The reformulation
of NCP(F'), as a parametrized sequence of nonlinear systems of equations, has the form

Yu (1, Fi(e))

Yu(z2, Fo(x))

T, () = =o0. (5.14)

Yy (Zn, Fr(x))

The systems of equations (5.12) .nd (5.14) are usually solved by Newton-type methods,
which, however, are in general only locally convergent. In order to globalize the local
method, an Armijo-type line search is performed to minimize a merit function, usually

1
&, (z) == 5 u(@) T, (z). (5.15)
The global minimizer of &,(x) is a solution to ¥,(x) = 0.

In this chapter, we consider the KKT conditions for optimality of the OPF problem
as a mixed NCP problem and, taking into consideration the NCP-function applications
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mentioned above, propose a Newton-type method for its solution. The attractive feature of
the proposed approach is the freedom of choosing a starting point with reduced primal and
dual infeasibility. This freedom is possible because the initial point and subsequent iterates
do not necessarily have to stay in the positive orthant of the complementarity product
space, unlike IP methods. In the proposed procedure, the non-negativity conditions of any
limit point are automatically assured by NCP-functions. To the best of our knowledge, the
approach described in this chapter is the first application of NCP-functions to the solution

of nonlinear OPF problems, which we see as an important contribution of this thesis.

The remainder of this chapter is organized as follows. In the next section, we present
some properties of the NCP-functions (5.9) and (5.10) which will be used in the development
of the proposed NIP algorithm for NLP. In Section 5.3, we describe in detail our NIP
continuation method for solving nonlinear OPF problems. More specifically, we describe the
reformulation of the KKT equations and related Newton system, describe an unconstrained
minimization reformulation, discuss line search procedures to compute suitable step lengths
along the search directions, describe a procedure to reduce the continuation parameter pu,
and discuss the convergence test. An outline of the algorithm is presented in Section 5.4.
Final remarks close the chapter in Section 5.5.

5.2 Some Properties of ¥,(a,b)

In this section, we present some properties of the NCP-functions (5.9) and (5.10) which will
be used in the development of our NIP continuation algorithm for solving problem (1.1).

LEMMA 5.1 (Kanzow (46, Lemma 2.1]) The function (5.9) has the property (5.11).

Proof. First assume that ¢ > 0, b > 0, and ab = u. Then, we obtain
¥,(a,b) =a+b— Va2 —2ab+ b2 + 4ab
=a+b—+/(a+b)?
=a+b—|a+b
=0.

To prove the converse result, assume that 1, (a,b) = 0, that is,

a+b=+/(a—562+4u>0. (5.16)

Squaring both sides of the equation in (5.16), we get ab = u. Therefore, sign(a) = sign(b).
Consequently, it follows from the inequality in (5.16) that a > 0 and b > 0. a
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LEMMA 5.2 (Kanzow [46, Lemma 2.2]) The function (5.10) has the property (5.11).

Proof. If a > 0, b > 0, and ab = p, we get

Yula,b) =a+b—/(a +b)?
=a+b—la+0b
=0.

On the other hand, the condition %, (a, ) = 0 can be rewritten as
a+b=+va2+b2+2u>0, (5.17)

from which @ > 0, b > 0, and ab = u follows in a similar way as in the proof of Lemma 5.1.
a

LEMMA 5.3 (Burke and Xu [6, Lemma 4.5]) Let € > 0. If [¢,(a,b)| < €, then

lab — u

a>—€ b>—-e and —————<e
- lal + 16} + /i

Proof. If 14,(a,b)] <€, then

0<VaZ+b2+2u<e+a+b. (5.18)
Ife+a <0, then

e+a+b<b< \/a—z-l-bz—-i-2u,

which is a contradiction to (5.18). Hence, a > —e. Similarly, b > —e. Also
l(a +b)% — (a® + b7 + 2p)|

a,b)| =
(e, 5)] (@ + ) + /(aZ + b2 +2p)]|
> 2|ab —
= (la] +18]) + (la] + 18] +2p)’
which yields the result. O
Burke and Xu [6] also show that, if 4* < € and ||, (zF, ¥¥)[l2 < Bu¥, then
ko k _ .k
k 3 |z5y; —#”)
z; 2 —V/Be, yi 2 —/Pe, < VB, (5-19)
' ' |z§] + 1yl + Vi
for i =1,2,... ,n. Furthermore, if u* < € and |9, (z*, y*}||eo < ¢, then
k k leyzk -#kl

<s (5.20)

T; > —€, y; >—€ and

| =] + [yl + ik
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for ¢ = 1,2,... ,n. The properties (5.19) and (5.20) are valuable in keeping track of the
convergence; they induce termination when the relative error in the complementarity is

small.

REMARK 5.1 Lett, denote the function defined in (5.9) or (5.10). Then 3, is continuously
differentiable for all (a,b) € IR?, and the partial derivatives have the property

O € (0,2) and Oy € (0,2) for all a,b€IR.
9a |(a,) 96 |(4,6)

For example, if we consider ,(a,b) as defined in (5.10), we get

By 1@

5 @b =1 me(o,z), (5.21a)
and

%‘-‘-(a,b) = 1- b € (0,2). (5.21b)

ob

Va2 + 6% +2u

LEMMA 5.4 (Burke and Xu [6, Lemma 2.1]) The function (5.10) has the following proper-

ties:

o For every p > 0, the function 1/}31 is continuously differentiable on IR>.

& For all (a,b) € IR? when u > 0, and for all (a,b) € IR?\{(0,0)} when u =0, it follows
that

V247 (a, Il < 4(5 + V2). (5.22)

® For pu; >0, po > 0 and (a,b) € IR?, we have

02, (a,8) — 92, (a, )| < (2 +2V2)|p; — pol- (5.23)

Proof. See [6]. a

5.3 The Non-Interior-Point Continuation Algorithm

The approach for handling the complementarity conditions in the solution of nonlinear
OPF problems by means of NCP-functions has recently been considered by Quintana and
Torres [61, 1998]. As far as we know, the OPF algorithm introduced in [61] and described
in detail below is the first one that uses NCP-functions. For the sake of presentation, we
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assume that the complementarity conditions (3.6a)—(3.6d) are handled by means of the
NCP-function (5.9). The following reformulation of the KKT system (3.6) is considered in
the proposed method:

/ 1.0#(31, z1) \
Yu(s2, 22)
Yu(83,23)
1!’#(347 Z4)
81 + 89 — h+ h
h(z)+ s, —h
83+84—T+x
Iz +84—T
Vaf(@) = Vag(®)y + Vah(z)zs + IT 24

\ —g(z) )

A damped Newton-type method is used to solve (5.24), using the local approximation

@, (w) = = 0. (5.24)

Vol (w5l Aw = -, (wF), (5.25)

where, as we drop the superscripts %,

Vo 0 0 0 V,$ 0 0 0 0 0
0 Ve 0 0 Vith Vip O 0 0 0
0 0 Vg 0 0 0 Viup O 0 0
0 0 0 Vi O 0 V.9 Vop 0 0
Vo (w)T = I, I, 0 0 0 0 0 0 0 0
0 I, 0 0 0 0 0 VT 0
0 o I, I, o© 0 0 0 0 0
0 0 o I, 0 0 0 0 T 0
0 0 0 0 0 Veh 0 IT V2.L, —V.g
|0 0 0 0 0 0 0 0 -Vzg© 0 |

The coefficient matrix V,,%,(w)T has the same nonzero pattern of V2,,,L,(w). The
way to compute some of its diagonal matrices is the only change. The modified diagonal

madtrices are computed as follows:

OPu(s1,z1) _ .. 51 51
v = PulSL2U S N -] )
" p = diog (1- 21, 1= 22 ), (5.262)
— 0pu(s1,21) s 21y %1,
Vatp = T =diag{1— E, B a, , (5.26Db)

where a;, = (s3, + 22, + 2uF)1/2,
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0. (s2,22) . ( S2, 52 )
= us222) (1o 1 5% 5.26
VB21/) 832 ag az, as, ( C)
Vo, = %Zﬁz_) = diag (1 — iQ_l_’ R zﬁ) ’ (5.26d)
Z] az, a2p
0t (s2,22)
— IFru vervel .26
B2, (5.26e)
where a, = (s3. + 23 + 2u%)'/2,

a¢#(837 23) -

= = = - - — 5.26f
Vsa 1!’ 833 dlag 1 as . a3q b ( )
Vat = %p(ss, z3) _ diag (1 — Z3 _ B 7 (5.26g)

dz3
where a3, = (s3, + 23, + 2uFVL/2,

( )
( )

Voo = Pl _ g0 (1 L U f“i) : (5.26h)
( )

0s4 a4, aq,
0, (84,24) . Zy, Za, .
L = - _ ~ 2 5.26
V¥ 92s diag | 1 aa, aa, ( i)
31,&,;(34,34) s
= —— 5.26
v (5.267)

where a,, = (s}, + 72, + 2p*)1/2. Notice from Remark 5.1 that these diagonal matrices are
positive definite since all diagonal elements are in the interval (0,2). The coefficient matrix
in (5.25) can be made symimnetric if the linearized complementarity equations are properly
scaled by the diagonal matrices V2,97, Va9t V97!, and VL.

5.3.1 Unconstrained Minimization Reformulation

New estimates for the primal and dual variables are computed from
wrtl .= wk 4 of Aw, (5.27)
where Aw is the search direction
Aw = — [V &, (wF)T] '@, (wF), (5.28)

and o is the step length along Aw. A suitable step length o should be computed by
performing a line search along the direction Aw, aiming at achieving a “sufficient” decrease
in a merit function that is defined to measure progress towards a solution to (5.24). That
is, the idea of a merit function is to assure that joint progress is made both towards a local

minimizer and towards feasibility.
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It is well known that for general non-convex NLP, the Newton’s method may diverge for
a poor initial estimate [24]. However, merit functions can be used to guide us in deciding
on how much to shorten the step lengths so as to assure convergence. Since our intent is to

find a solution of ¥, (w) = 0, an obvious merit function would be
1 T
S, (w) == 5 w(w)' &, (w), (5-29)
which is known as the natural merit function. Thus, when solving the nonlinear equation
system (5.24), we indeed turn our attention to an unconstrained minimization problem of
the form

wné%n D, (w). (5.30)

Solving the nonlinear system (5.24) is clearly equivalent to finding a global minimum point
w* of @, (w), that gives $,{w*) =0.

Ideally, a suitable merit function has the property that an unconstrained minimizer of
the merit function is a solution of the desired problem. However, while every solution to
(5.24) is a solution to (5.30), there may be local minimizers of (5.30) that are not solutions
to (5.24). Such a possibility is illustrated in Figure 5.1. Then, it only interests us to obtain
a global minimum of (5.30). Furthermore, since the NLP problem (1.1) is non-convex, a
solution of ¥, (w) = 0 is not necessarily a minimizer of (1.1) (maximizers and saddle points
also satisfy this condition). Thus, reducing ¢, (w) does not necessarily ensure minimization
with respect to the original problem. On the other hand, Newton’s method for solving the
reformulation (5.24) can be combined with global methods for unconstrained optimization
to produce global methods for solving (1.1), giving rise to a class of quasi-Newton methods.

We refer the interested reader to the Dennis Jr. and Schnabel’s book [17] for a detailed
treatment of the solution of nonlinear equation systems by unconstrained minimization
techniques.

5.3.2 Backtracking Line Search Procedure

As discussed in [59] and elsewhere, in the early years of line search methods for unconstrained
optimization, most implementations included an “accurate” line search. That is, o was
chosen as a close approximate solution to min,em @,‘(wk + aAw). Nowadays, however, it
is customary to perform an “inexdct” iine search. An inexact line search that is frequently
used in the solution of LCP and NCP problems [6,11], and in unconstrained minimization

is the following Armijo-type procedure:
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&(x) D(z) = %W(:z:)rﬂl?(x)

\

[ = :

Figure 5.1: The nonlinear equations and a corresponding minimization problem, in one
dimension [17, Figure 6.5.1].

e Given o1 € (0,1] and oy € (0,1), find the smallest mg € {0,1,2,...} that satisfies

&, (wk + o Aw) < &, (w*) + a7 Vo, (wF)T Aw (5.31a)

or, equivalently,
45,‘(10" +al*Aw) < (1-— ala'ln")sﬁu(wk). (5.31b)

o Then, let of = o™ and set w*! = wk + oFAw.

The “inexactness” of this procedure is typified by a small value of oy and a large value
of a;. Typical parameter values considered in [6,11] are oy = 10~ and a; = 0.99. The
amount of work associated with each trial point o]** is the evaluation of &,(w* + o™ Aw).
That is, the evaluation of ¥, (w* + o]** Aw) followed by the inner-product with itself.

As we try to solve (5.30) using the direction Aw in the line search as computed from
(5.25), we are taking advantage of the “structure” of the original problem, which is a
desirable feature; see [17, Chapter 6]. The conditional tests in (5.31) can be satisfied for
some my only if Aw is a descent direction for (5.30). A descent direction for (5.30) is any
direction p* for which V,,&,(wF)Tp* < 0. Notice that,

Vuwdu(wF) = Vo, (w®) &, (wF). (5.32)

Hence, the steepest-descent direction for (5.30), —V, &, (wF), is along — V., &, (wF) ¥, (w).
Consequently, the direction Aw from (5.28) is a descent direction for (5.30) since

VwPu(w)T Aw = —F ,(w)T [V (0)T] [V u(w)T] 7 &, (w) = -, (w) T, (w) <0,
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as long as &, (w*) # 0, and Vwé,‘(w") and Aw are not orthogonal. We can also infer from
the above analysis that the procedures (5.312) and (5.31b) are alike.

De Luca et al. in [16] comment that it has been often observed in the field of NCP
algorithms that line search tests like (5.31) can lead to very small step lengths; in turn
this can lead to very slow convergence and even to a numerical failure of the algorithm.
To circumvent this problem many non-monotone line search tests have been used [6]. The

non-monotone line search that we have implemented is as follows:

e Given o € (0,1] and oy € (0,1), find the smallest my € {0,1,2,...} that satisfies

P, (w* + o™ Aw) < ioax B, (w?) — oyl P, (wF). (5.33)

® Then, let &* = o' and set w**! = w* + oF Aw.

The parameter ! is typically given as | = min{5, k}.

5.3.3 Reducing the Continuation Parameter

To reduce the parameter u*, some algorithms for LCP (see [6]) use the following procedure:

® If B (wr) > S,k (wF), let p**+ = p*. Otherwise, given o3 € (0,1] and & € (0, 1),
find the smallest my € {0,1,2,... } that satisfies

Pl1oyak )k (w**1) < B(1 — g0l )", (5.34)
e Then, let pF+! = (1 — g0l ) p*.

The parameters used in (5.34) are typically o2 = 0.9999, a = 0.99, and B := &,0(w"®)/pu°.

Notice that the complementarity equations in (5.24) are the only ones directly affected
by . Then, to reduce computational effort, we could redefine the test (5.34) as

5(1-—0’201'2"")“" (wk+1) <B(1- Uzaglk)ﬂka (5.35)
where

Bu(w) = [[$uls1, 20 + (o2, 22)I% + 19p(s3, z3)I” + (s, 2% (5.36)
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We observed, in computational practice, that the conditional test (5.34) highly relies on the
monotonicity of the line search to compute the step length o*. Then, we propose to reduce
u* in a way quite similar to that used in the IP method. First, we compute the measure

eF = [stI"|z}| + |sSIT 18] + |s§1" |5 + |o3|T I2E], (5.37)

which “mimics” the complementarity gap g in the IP method. If the iterates converge to

an optimum, then {o¥} must converge to zero. Then, we propose to compute pF*! from
k+1 k oF k
7 =min{o*——, 0.9u }, (5.38)
{ 2(p+q)
where o* is as defined in the IP algorithm. This formula to update y* is computationally

inexpensive and fairly effective in practice, as shown in Chapter 7.

5.3.4 Testing for Convergence

The converge test for the NIP algorithm differs only slightly from the convergence test for
the IP algorithms, namely in the definition of criteria v3. We consider the NIP iterations
terminated whenever an approximate local minimum has been obtained, in which case

< e, (5.39a)

vk < e, (5.39b)

vE < e, (5.39¢)

vF < e, (5.39d)

or they are stuck at some point other than a local minimum (a possibility), in which case
eF < e (5.40a)

Azl < e (5.40b)

lg(@*)lleo < e, (5.40c)

v < e, (5.404)

where

V¥ =max {“g(a:k)lloo, max {h — h(z*)}, max {h(z*) — R}, max {z — Z¥}, max {Z* — E}},
(5.41)

s IVaf (@) = Vo9(@h)y* + Voh(zh)zh + Tafos (5.42)

L+ [lF]| + [ly*l + [[=5] + [12%]] ’

v3 =max {| min {s%, 25}|, | min {s§,25}|, | min {s§, 25}, | min {s%,25}[}, (5.43)
v,f =|f(-'5k) — fz* 1) ) (5.44)

1+ |f(z*)]
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Typical convergence tolerance values are e; = 107%, eo = 107 2¢; and ¢, = 10710.

5.4 Outline of the Non-Interior-Point Algorithm

An outline of the NIP algorithm for NLP described in this chapter is shown below.

Algorithm 5.1 Non-Interior-Point Continuation Algorithm.

STEP 0: (Initialization)
Let z% > 0, o1 € (0, 1}, a1 € (0,1), and w? be given so that w? satisfies at least
the primal feasibility equations. Set k& « 0.

STEP 1: (Compute the Newton Direction)
Given the current point w*, let Aw be the solution to the Newton system

Vw ”(wk)TAw = —!Z"#(wk).
STEP 2: (Compute Step Length and Update Variables)

Find the smallest my € {0,1,2,...} that satisfies

&, (w* + o Aw) < j=l£1?f1: . P, (w?) - o™ @p(wk).

Let of = of** and set w*+! = w* + of Aw.

STeEP 3: (Update the Continuation Parameter)
If the new point w**! satisfies the convergence criteria, stop. Otherwise, compute

3
k+1 : k@ k
= min §o" ———, 0.9 ,
# { 2o+aq) }

set £ «+ k + 1, and return to STEP 1.

5.5 Final Remarks

In this chapter, a new algorithm for solving nonlinear OPF problems has been proposed. It
is a NIP algorithm that handles the complementarity conditions by a recently introduced
NCP-function. As far as we are aware, the proposed OPF algorithm is the first one based
on NCP-functions. Distinctive features of this approach, as compared with IP methods, are
that it can start from arbitrary points, and the iterates are not required to stay inside the
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positive orthant of the complementarity product space. That is, the non-negativity condi-
tions need be satisfied only at the solution point. By considering the optimality conditions
for the OPF problem as a mixed nonlinear complementarity problem, we take advantage of
recent mathematical development to solve complementarity problems. Particularly, we have
used an NCP-function to transform entirely the KKT conditions into a system of nonlinear
equations, that is solved afterwards by a Newton-type method.

Tognola and Bacher recently proposed an OPF algorithm [68, 1997] that also eliminates
the need for the iterates to stay within the positive orthant of the complementarity product
space. This is the reason why they call their approach an unlimited point algorithm. Their
unlimited point algorithm, which is based on a transformation of the nonnegative variables,
share many similarities with IP algorithms, as does our technique, but is quite different
from the NIP approach proposed in this chapter; no transformation of variables is involved

in our NIP approach.

Concerning future work with the approach proposed in this chapter, we consider as

potential directions for research the following topics:

e Since the NIP algorithm can start from arbitrary points and all matrices in the IP
and NIP algorithms have the same nonzero pattern, an improved OPF algorithm
most likely can be developed if we combine together the two algorithms. Notice that
switching from one algorithm to the other demands no changes of the linear algebra
kernel, the core of both techniques.

e The robustness of the NIP algorithm likely will be improved if we consider a Levenberg-
Marguardt-type method for the solution of (5.25). Instead of solving (5.28) for the
direction Aw, this method computes a search direction d* as the solution of the

modified linear system
[V (w®)T +o*I]d* = —&,(wF) (5.45)

where ¥ > 0 here is the Levenberg-Marquardt parameter. If the direction generated
by (5.45) is not a “good” descent direction, according to the test

VuPu(w*)Td* < —plld*IIP, p>0, p>2 (5.46)
we resort to the steepest descent direction, that is, let df = —V,,&,(w*).

¢ As suggested for the primal-dual IP algorithm, an issue worthy of investigation is the .
usefulness of inexact search directions. By this we mean that the vector Aw satisfies

Vo, (w*)T Aw = —F ,(w) + rF. (5.47)
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where r* here is the vector of residuals and measures how inexactly system (5.28) is
solved. An iterative solver is used to solve the linear system (5.28), and this method
is stopped when the norm of the residual is smaller than a prefixed accuracy, that
is, ||r*ll2 < €. Facchinei and Kanzow [20] have proposed an inezact Levenberg-
Marguardt-type algorithm to solve large NCP problems that employs a test of the
form [[r¥]| < (0.1/(k + 1))|6,(w*)]|.

e Since the computation and factorization of matrix V., % ,(w*)T demand the greatest
computational effort within an iteration of the NIP algorithm, it may be advantageous
to use the same derivative evaluation and matrix factorization in several solves. Then,
the composite Newton method that is described in Chapter 4 could be extended to
the NIP algorithm as well.

e The implementation of other NCP-functions is another interesting topic of research.
For instance, many recently developed algorithms to solve complementarity problems
(see [16, 20]) employ non-smooth reformulations, involving the computation of the
generalized Jacobian of Clarke [12] within a Newton-type algorithm.

In the next chapter, we describe many issues that are directly related to the efficient
implementation of the IP and NIP algorithms that we have described so far.



Chapter 6

Practical Implementation Issues

In this chapter, we discuss many points and issues that are directly related to an efficient
implementation of the standard primal-dual IP algorithm, the higher-order primal-dual IP
algorithms, and the NIP algorithm for NLP previously described in Chapters 3, 4 and 5.
Empbhasis, however, is on the solution of the OPF problems that are described in Chapter 2.
In the next section, we describe procedures for starting point choices in all algorithms. In
Section 6.2, we describe the assembling of matrices for the OPF in rectangular coordinates.
We derive explicit formulae for cheap computation of the Hessian V2, L,(w*) through a
proposed map of Lagrange multipliers—(y, z2) — (AP, A%, A¥). In Section 6.3, we present a
similar analysis for the OPF in polar coordinates. In Section 6.4, we discuss data structures
and present some important code fragments. In Section 6.5, we discuss how the linear

systems are solved. Final remarks in Section 6.6 close the chapter.

6.1 Initialization of Algorithms

We may recall that neither a starting point nor subsequent iterates are mandatory to be
feasible points for primal-dual IP methods. Since feasibility is attained during the iterative
process, as optimality is reached, the denomination infeasible primal-dual IP method is
quite common in the literature; the strict positivity conditions, however, must be satisfied
at every point. Cases where such a single initialization criterion—strict positivity—perform
poorly are very common. For initial points that yield inequality constraints close to binding,
it is advantageous tc sacrifice initial feasibility of those inequalities to avoid too small slack
values; too small initial slacks may result in too small step lengths at early stages, seriously
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slowing down global improvement of the variables and hence the convergence. Besides the
strict positivity conditions, a good starting point should also satisfy two other conditions
(see [76]). First, the point should be well centered, that is, the perturbed complementarity
conditions (3.6a)-(3.6d) should hold at k£ = 0 so that the complementarity products sjz?
are similar for every index i. Second, the point should not be too infeasible, that is, the
ratio of the infeasibility to complementarity gap, (v? + ¢4)/13, should not be too large.

Below, we describe four initialization heuristics; only the first two conform to the IP
algorithms, whereas all of them conform to the proposed NIP algorithm.

6.1.1 Heuristic—A: IP and NIP Algorithms

e Estimate the primal variables % by one of the following four approaches (listed in
preference order): (i) as given by a converged ac load flow solution, (ii) as given by
the first 2 or 3 iterations of a Gauss-Seidel’s method that is applied to the load flow
equations, (iii) as given by a dc load flow solution, or (iv) as a flat start using the
middle point between the upper and lower limits for the bounded variables.

o Then, the primal slack variables are initialized as

s} = min{max {(h - h), h(z°) —h}, (L -7)(R - h)}, (6.12)
s = h—-h—3s?, (6.1b)
3 = min{max {7z -gz), & -z}, 1 -NE-)}, (6.1c)
s = T—z -3, (6.1d)

where 7 is the relative distance of the slacks to the boundary of the positive orthant.
In our implementations v defaults to 0.35.

& Assuming that x > 0 is given, the dual variables 29, 29, 2z and 2§ are obtained

from
2} = p%(SY) v, (6.2a)
z3 = p'(S9)tu -2, (6.2b)
2} = p(89) v, (6-2¢)
zy = p(SPu—23. (6.2d)

® The dual variable 2 is set to —1 if it is related to the active power balance constraint
(2.12a), and set to zero if it is related to the reactive power balance constraint (2.12b).
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6.1.2 Heuristic—B: IP and NIP Algorithms
e Choose z°, 59, 53, 59, s§ and y° in the same way as in the Heuristic-A above.

e Then, obtain the remaining dual variables from

(11—, if 9, =B —hy),

Z, = J1/2, if 9 = hy(z®) — Ay, (6.3a)
LY otherwise.

z, = 1-20, (6.3b)
(1—7, if s§ =@ —2),

A, = {1/2, if 9 =20—z,, (6.3¢)
LY otherwise.

= 1-23. (6.3d)

e Finally, obtain the initial barrier parameter from

0 _ 0 (T2 + (7 + (T2 + (sYTH (6.4)
2(p +9)
6.1.3 Heuristic—C: NIP Algorithm

e Choose z° and y° in the same way as in the Heuristic—A above, and then obtain the

primal slacks from

s = Rm(z® -h, {6.5a)
sy = h—h(z%), (6.5b)
s = 3% —g, (6.5¢)
s = z-70 (6.5d)

e Then, obtain the remaining dual variables from

2! = u, (6.62)
2z = o, (6.6b)
2] = u, (6.6¢)

2! = 0. (6.6d)
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6.1.4 Heuristic—D: NIP Algorithm

e Choose £° and ¢° in the same way as in the Heuristic—-A above, and then obtain the
primal slacks from

s? = min{max{0, h(z°) -}, A — R}, (6.7a)
s = h—h-—3s), (6.7b)
s3 = min{max {0, 2° -z}, T -z}, (6.7c)
89 = T-z ). (6.7d)

e Then, obtain the remaining dual variables from

r'y, if s§ =0,

2 = Q2 i sY =hi(2%) — A (6-82)
L 0, otherwise.

A = y-d, (6.8b)
f'y, if sg‘_ =0,

B = {~/2, if s3. =2 —z;, (6.8c)
\0, otherwise.

= v—23. (6.8d)

The following comments are pertinent to the above initialization heuristics:

e It is well known that a Lagrange multiplier at an optimal solution measures the
sensitivity of the objective function with respect to small perturbations in the related
constraint; see [24]. Thus, in the transmission power losses minimization problem,
the Lagrange multipliers related to constraints (2.12a) and (2.12b) are expected to be
about —1 and zero, respectively. This justifies the proposed choice of y°.

e In the Heuristic-A, we first choose u® > 0 and then compute 29, 23, 2} and 2? so
that all complementarity products s7z? have the same value x°. In Heuristic-B, on
the contrary, we first estimate z?, 23, 23 and 2§ and, afterwards, use these estimates
to define 4% > 0. The centrality of w? as obtained by Heuristic-B may be poor.

e The Heuristic—-C for the NIP algorithm relaxes the non-negativity conditions, whereas
the Heuristic-D relaxes the strict positivity conditions; the non-negativity of any limit
point will be automatically ensured by the NCP-functions.
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6.2 Gradients and Hessians: Rectangular Coordinates

The gradient vector V() and the Jacobian matrices V,g(z)? and V h(z)T are obtained
from Equations (A.l) through (A.14) in Appendix A.

The Hessian matrix of the term P;(e, f,t) that appears in the constraint (2.12a), has

the form

VieP: V3.PF ViFPl
VicPi(z) = |V3 P, Vi,.P, VIPT|. (6.9)
VP, ViB ViP

e

The Hessian sub-matrices V2, P;, V4, F; and V% P; are given by (A.15), (A.16) and (A.17),
respectively. For each (¢,-) € 7, two non-zeros of V2, P; are computed from (A.21) and
(A.25), two non-zeros of foPi are computed from (A.29) and (A.33), and one nonzero of
V34 P; is computed from (A.37). For each (-,i) € T, two non-zeros of VP, are computed
from (A.22) and (A.26), and two non-zeros of V'fsz— are computed from (A.30) and (A.34).

The Hessian matrix of the term Q;(e, f,¢) that appears in the constraints (2.12b),
(2.13a) and (2.13b), has the form

vzeQi V%eQ? vgeQzT
VzeQi(z) = vzfeQi V.szQi V%ng‘ . (6.10)
Vi.Q: V%fQi ViQ;

The Hessian sub-matrices V2.Q;, V%.Q; and V%,Q; are given by (A.18), (A.19) and (A.20),
respectively. For each (i,-) € T, two non-zeros of V2,Q; are computed from (A.23) and
(A.27), two non-zeros of ngQi are computed from (A.31) and (A.35), and one nonzero of
V2,Q; is computed from (A.38). For each (-,i) € T, two non-zeros of V2,Q; are computed
from (A.24) and (A.28), and two non-zeros of ngQi are computed from (A.32) and (A.36).

The Hessian of the voltage bound constraint (2.13c) has two non-zeros only; the two
non-zeros are diagonal elements, and have value 2.

REMARK 6.1 The Hessian sub-matrices (A.15) through (A.20) are constant and can be
computed by direct reference to Gij and Bij, for all j € Nj. Moreover, if V2, P; (V2.Q;) is
known then V?,fPi (V_foQi) is readily available. In practice, none of these Hessians need
be individually formed; the Hessian matriz V2, L,(w) can be directly obtained.
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6.2.1 Lagrangian Hessian

Notice from (3.15) that each bus contributes with three Hessians in the composition of
V2,.L,(w): (i) the Hessian (6.9) that is associated with the constraint (2.12a); (ii) the
Hessian (6.10) that is associated with one of the constraints (2.12b), (2.13a) or (2.13b); and
(iii) the Hessian V2_(V;?) that is associated with the constraint (2.13c). Given the special
structure of these constraint Hessians, the Lagrangian Hessian V2_L,(w) can be computed
by direct reference to the nonzero elements of G and B. The computation is as follows:

e For j =1,2,...,|N/|, compute the elements
VieLu= 2(G;\ — B A +)Y), (6.11a)
Vie,Lu= Gyu(M!+X) —B;(M + %), forieNj, withi> j, (6.11b)
Ve, Lu= Byi(M —X0) + G;;(M — AY), for i € Nj, with i > j, (6.12a)
VieLu= —V%. . Ly, for i € Nj, with 7 < 7, (6.12b)
VigLu= Vi.L, if j #£1, (6.13a)
VinLe= Vie Ly, fori € Nj, withi >j > 1. (6.13b)

These formulae are displayed in Tables 6.1, 6.2 and 6.3.
e For each transformer (7, 7) € T, compute the elements

Vigekn = M(VE e P) +M(VE e Py) + M (VE,,Q:) + XU(VE,..Q;), (6.14a)
VigerLu = (Vi P) + X (VE  P) + M(VE,,Q) + M(VE,,Q)), (6.14b)
ViinLle = M(VE i P)+ N(VE. 1. P;) + M(VE f,Q,)+x1(v £Q5), (6.14c)
VZ L, = NV g, .)+A§(v P;) + M(VE fJQ,)+,\‘1(vtvaQj), (6.144d)

‘J 7
V2, L, = ,\f(vt{jtijp,.)+,\§(vfﬁtﬁcgi), (6.14e)

tijtiy

where )\;3 is the negative of the Lagrange multiplier y.,) related to bus j’s constraint in
(2.12a) (\f :=1); )\;{ is either the negative of the Lagrange multiplier y(.) related to bus j’s
constraint in (2.12b), or the Lagrange multiplier 23, related to bus j’s constraint in (2.13a)
or (2.13b); and A} is the Lagrange multiplier 23, related to bus j’s constraint in (2.13c).

Making a mapping from constraint multipliers to bus multipliers, the bus multipliers
AP, A% and AY are obtained: (y, z2) — (AP, X2, \?). This mapping plays an important role
in the efficient implementation of the OPF algorithm; it not only considerably reduces the
number of logical operations in the evaluation of V,L,(w*) and V2_L,(w*) but also allows

for efficient data structure and reduced computer memory usage, as shown below.
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Table 6.1: Computation of V2, L, (w), using the Equations (6.11) and symmetry.

€1

€2

€1 €2 €n
Gy (NB + NP G, (A5 + A?
2(G A] = By AT +AY) il 3 ;) ! : ;)
—B5; (A3 + A{) ~Bp(An + A{)

Gar(X + A7)

2(G 9o X5 — ByoAd + A3)

Gra(Xa + M)

—By (A + A])

~Bry(Mt + A9)

Gri(A2 + A7)
— nl(’\;l1 + )‘l{)

Gn2()\?l + '\‘27)
— B (M + M)

Table 6.2: Computation of V%eLu(w), using the Equations (6.11) and

“some symmetry”.

f2

f3

fn

€1

€2 €3

€n

By (A +4)
+Gy (A3 — M)

0

—B3(\ — %)
—G32(M — X))

_Bn2()‘g— - )‘g)
—Gn2(’\$l - ’\g)

B3 (AF + X))
+G3 (A — X))

By (A ~ %)
+G3(A] — AJ)

0

_Bn3 (’\?I- - ’\g)
—Go3(M — X))

Bnl(’\fl + ’\;1,)
+GnI(A$'- — XD

Bn2 (Ag - ’\12))
+Gn2(’\$l - )‘g)

+G, (A%

Bo3(M: — 25)
—X9)

Table 6.3: Computation of V?,fL,, (w), discarding the row/column one from Table 6.1.

f2 f3 fn
G32(AF + A3) Gra(AR + M)
fo | 2(GooX2 — BooAd + A2
wB TR ) | Bud+ ) =By + X9
G3(A5 + AB) Gnz(AR + A%)
P __ q U
Ga(Ah + AB) G3(M + A3)
fn e e 2Gnnl — Banhd + A¥)
Bo(A% + M) Bo(A% 4+ A3)
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REMARK 6.2 The Hessian V2, L,(w) is symmetric and highly sparse, with a (block) sparse
structure that is stmilar to thet of the load flow Jacobian. The areas ©, ®, and @ in
the Figure 6.1 are locations of the elements evaluated by (6.1la), (6.11b) and (6.12a),
respectively; and the area ®, location of the elements evaluated by (6.14). The number of
elements in ©, @ and @ is [N| + 2|B|, the same number of elements in the matriz B. The

number of elements in ® is 5[T|.

Figure 6.1: Locations of the computed non-zeros to obtain the Hessian VizLu(w).

REMARK 6.3 The number of floating point operations (flops) to compute VZ_L,(w) can
be easily estimated as a function of the number of buses |[N|, number of branches |B|, and
number of transformers |T| in the system. We need to compute |N| non-zeros in @, {B|
non-zeros in @, |B| non-zeros in @, and 5|T| non-zeros in ®. The cost to compute each
of the |N'| + 2|B| non-zeros in ®, @ and ® is 5 flops. The cost to compute each set of 5
non-zeros in @ is 96 flops. The total number of flops is, therefore, 5|N| + 10|B| + 96|7].
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In the derivation of the above formulae for estimating the number of flops to compute
V2 _.L,.(w) we assume that for each pair of connected buses i and j there corresponds a
single element (z,j) € B. Therefore, we have [B| = % JeN |NG|. The above formulae for
estimating the number of flops can be generalized if we simply take |B| as the number of

elements below the diagonal of the susceptance matrix B.

6.3 Gradients and Hessians: Polar Coordinates

In this section, we deal with the polar representation of (complex) voltages. The gradi-
ent vector Vzf(z) and the Jacobian matrices Vg(z)T and Vzh(z)T are computed from
Equations (A.39) through (A.50) in Appendix A.

The Hessian of the term P;(v, 8, t) that appears in the constraint (2.20a), has the form

ViP: Vi, Pl Vi, P
ViaPi(@) = |V5,P; VgeP: ViPT|. (6.15)
VLP, VP, VAP,

The Hessian sub-matrices V2, P,, V3_P; and V3, P; are given by (A.51), (A.52) and (A.53),
respectively. For each (i,-) € T, two non-zeros of V32,P; are computed from (A.57) and
(A.61), two non-zeros of V2, P; are computed from (A.65) and (A.69), and one nonzero of
V2P, is computed from (A.73). For each (-,i) € T, two non-zeros of V,P; are computed
from (A.58) and (A.62), and two non-zeros of V2, F; are computed from (A.66) and (A.70)
(with proper switch of index i by index j, and vice versa).

The Hessian of the term Q;(v, 8,t) that appears in the constraints (2.20b), (2.21a) and
(2.21b), has the form

V?,.v Qi Vqu;‘r v%v QT
V2.Qi(x) = | V2,Q; V3,Q; V3,QT|. (6.16)
ViQ: ViQ: ViQ;

The Hessian sub-matrices V2,Q;, V3,Q; and V2,Q,; are given by (A.54), (A.55) and (A.56),
respectively. For each (z,-) € 7, two non-zeros of V2,Q; are computed from (A.59) and
(A.63), two non-zeros of V%,Q; are computed from (A.67) and (A.71), and one nonzero of
V%Q; is computed from (A.74). For each (-,4) € T, two non-zeros of V,Q; are computed
from (A.60) and (A.64), and two non-zeros of V2,Q; are computed from (A.68) and (A.72).
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6.3.1 Lagrangian Hessian

Each bus now contributes with two Hessians in the composition of V2, L,(w): (i) the
Hessian (6.15) that is associated with the constraint (2.20a); and (ii) the Hessian (6.16)
that is associated with one of the constraints (2.20b), {2.21a) or (2.21b). The evaluation
of V2_L,(w) is computationally less expensive if we use information from the Jacobian
matrices Vzg(z)T and Vzh(x)T, that is, if we compute the Hessian elements in terms of
the elements Hj;, L;;, M;;j and IV;; of the load flow Jacobian, which are defined by Equations
(A.39) through (A.46). The computation of V2, L,(w) is as follows:

e For 7 =1,2,... ,|N]|, compute the elements

Vi Ly = 2(GjN — Bj;A9), (6.17a)
NP+ L A7 NP+ L0

Vi Lly= —2 ‘V_ 7t = JV_ £ for i € Nj, i > j, (6.17b)

T 7

H AP+ MAT+ 57 o (H N + MA])

ngijuz J373 3373 7 AN J L ifj#£1, (6.18a)

‘Hi 'A? + Ali')\? - H.:Ap - M"Aq
VivLpy= ——1= J‘V_ L for i € Nj, i > j, (6.18b)
J
Vi, Lu= —MjAE + H M+ > (M — Hi A, ifj#1, (6.192)
[eN;
Vg Ly = —Mg? + HyA? — M2 + H)d, for i € Nj, i > j. (6.19b)

These formulae are displayed in Tables 6.4, 6.5 and 6.6.

e For each transformer (%,j) € 7, compute the elements
Vigvile = N(ViwP)+N(VivF) + M(VE3Q) + X(VE,4Q;), (6.20a)
Vil = X(VEuP) + N (Vi By + M(Vi,yQ + X(VE,1Q;), (6.20b)
v?{jaiLﬁ = A?(v%,jatljl) + A?(v?{JG;PJ) + Ag(vgueg Qi) + )\?(V%J&Qj), (6'20(:)
VieLe = MN(VE,6,P) + A?(Vg,-,-ejf}') +AX(VE,6,@Q:) + AH(VE 5,Q;), (6.20d)

she }
v?"j‘if Ly = Ag(v%ijtij F) + )‘g(vgﬁt‘-j Qs)- (6.20e)
REMARK 6.4 The block sparse structures of VizLu (w) for the polar and rectangular voltage

representations are alike. Area @ in Figure 6.1 indicates locations of the elements evaluated
by (6.17a); area ®, the elements evaluated by (6.17b); area ®, the elements evaluated by
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Table 6.4: Computation of V2,L,(w), using the Equations (6.17) and symmetry.

83

Vi Ve Vn
v, 2Gyy N — B AT) (N1 A5 + Loy M)/ Ve (Ny Mo + Ly A/ Ve
1o ! +(Np ML + LipA{) V2 +(Ny M+ Ly M)/
v (N2 X + LipAT) /W %Gy )2 — By D) (Npa Al + Lo M\i) [ Va
T |+ (N X5 + Loy A9) Vs 272 2 +(Nop A + Lo, M) / V2
N AL+ LAY /v Ny, Ab + Ly, A3) V5
V;-; ( iIn pl 1 ;)/ 1 ( 2n p2 2n 2)/ 2 2(GnnAg—Bnn/\$;)
+(Np1An + L1 An)/ Vi | +(Npadn + Losdn)/Va
Table 6.5: Computation of V3,L,(w), using the Equations (6.17).
Wi Va Va
6, (HA + MM — | e, (HpA + MpA]) (HpoAh + MM —
Hy Xy — My A /Vi | +HppXS + My A]) [ Vo Hy M — Moy AJ) [V
6, (Hi3A, + MzA]— (HyzAj + Moz AJ— (Hpz Mo + M3 A~
Hy My — M A\J)/Va HypA§ ~ M3p23)/Va H3, 5 — M3, A3)/Va
6 (Hln)‘ll’ + M‘m’\({_ (H2n.)\g + MZn)‘gh (EIEJ’V',;(Hrln.’\llJ + Al(n)‘?)
i Hn{.)\?‘ - MnlAg)/Vi Hn.2’\12) - an/\g)/Vé ""ﬂ'd’rm,)‘g + Mnn’\gl)/vn

Table 6.6: Computation of V3L, (w), using the Equations (6.18) and symmetry.

8o 03 On
6, —~ M5 + Hpp A3+ ~M3p X5 + Hypp )] ~M 2 M5 + Hpo i
Doten, (M X, — Hjp ) —MsNy + Hpz A3 =M, A5 + Hy A3
8 —My3 5 + Hj3)3 —M;3 )] + Hpa A+ —M3 AR + HyaAh
~M3, M} + H3p)3 Doten, (MpAl — Hiz M) ~M3, )5 + Hz A
q. My, N + Hy, M —M3 X5 + Hy A] —M, M5+ H A2+
—Mpa X5 + Hipp )% —M 3 2% + Hys M Dten, (M X, — Hi M)
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(6.17c); areas @ and ©, the elements evaluated by (6.18b); area @, the elements evaluated
by (6.18c); and area ®, the elements evaluated by (6.19b). The number of elements in areas
D, 9,0,0,0,d, and ® is 3|N|+4|B|—2|N| -2, that is, 2(|N]+|B| —|N1| —1) additional
elements evaluated in comparison with the number of elements for the rectangular voltage
representation. Area @ indicates locations of the elements that are evaluated by (6.20); the

number of these elements is 5{T]|.

REMARK 6.5 The number of flops to compute V2, L,(w) with the polar representation can
also be easily estimated. Besides the non-zeros in common with the rectangular represen-
tation, we need to compute |N| — 1 non-zeros in ®, |B| — |N1| non-zeros in ®, |[N| —1
non-zeros in @, and |B| — |Ni| non-zeros in ®. The cost to compute each nonzero in @
is 4 flops, in @ is 9 flops, in @ is 8 flops, in @ is 4Nj| + 4 flops, in © is 2 flops (using
terms from @), in @ is 4|Nj| +3 flops, and in ® is 7 flops. Each set of five non-zeros in ®
requires 61 flops. The total number of flops is, therefore, 11|N'| +42|B|+61|T| —17|Nq|—T7.

6.4 Data Structures and Major Code Fragments

In this section, we describe data structures suitable for holding the sparse Jacobian and
Hessian matrices; we assume that the voltages are given in rectangular coordinates. To
take advantage of the mapping (y, z2) — (AP, A%, A?), we rewrite the Lagrangian Hessian

m P
VaeLup(w) = Vi f(®) = > 4;Viz0;(x) + Y 25, Vazhi(z)
j=1 =1
in the form

V1|
VieLu(w) = Y [NVEP(x) + NV2,Qi(e) + W V3, VE(z)]- (6.21)

=1

Similarly, we rewrite the Lagrangian gradient
VzL,(w) =V, f(z) — Veg(z)y + Voh(z)z2 + sz4
in the form
VoL (w) = Vep(Z)AP + Vogq(z) A + Vo (z)A? + IT 24, (6.22)
where

Vap(®@) = [VoPi(2), VaPy(@),. .. , Va Py (a)] (6.23)
Vzg(z) == [szl(z): VzQa(z),-.. , sz[NI (:Z:)] . (6.24)
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The last two terms in the right-hand side of (6.22) yield the vector

2eA?
2F Y
Z4
The vector products eA? and fAY are to be interpreted componentwise.

The Jacobian of the active power balance constraints, Vop(z)7, and the Jacobian of the
reactive power balance constraints, Vzq(z)7, have the same nonzero pattern. Therefore,
they share the same pointers (adjacency structure) in the compact storage. The single

common data structure for Vzp(z)T and Vzq(z)T is as follows:

IR0J(I) : pointer to the beginning of the non-zeros in the row I of Vop(z)T and V,q(z)T.
NCOJ(X) : column number of the nonzero stored at the position K.
PJAC(K) : value of the nonzero element Vz; P; stored at the position K.

QJAC(K) : value of the nonzero element V.;Q); stored at the position K.

A single data structure (adjacency structure) is considered for the bus-conductance and

bus-susceptance matrices as well, as follows:

IROY(I) : pointer to the beginning of the non-zeros in the row I of B and G.
NCOY(K) : column number of the nonzero stored at the position K.
BBUS(K) : value of the nonzero element B;; stored at the position K.

GBUS(K) : value of the nonzero element G;; stored at the position K.

The adjacency structures (IROY, NCOY) and (IROJ, NCOJ) are defined only once, before
the iterative process starts. The following relations are considered in the Fortran 77 code

fragments presented below:

Fortran | Formulae Fortran | Formulae
NBUS i ZFOU(I) 2y,
NTAP (7] PLAM(TI) AP
EVOL (1) € QLAM(I) Al
FVOL(I) fi ACD V2 oLy
ZTWO(I> 22; B(.) VL,
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The Fortran 77 code fragment that implements the Hessian equations (6.11a) through
(6.12a) is displayed below. The line g: implements (6.11a), the line k: implements (6.11b),
the line m: implements (6.12a), and the empty line n: stands for the implementation of
(6.12b) tLrough (6.13b).

a: DO 1010 J = 1 , NBUS
b: PMUL = PLAM(J)

c: QMUL = QLAM(J)

d: KBEG = IROD(J)

e: KEND = TROY(J+1) - 1

f: L =L +1

g: A(L) = 2.0 * (PMUL * GBUS(KBEG) - QMUL * BBUS(KBEG) + ZTWO(J))

h: DO 1000 K = KBEG + 1 , KEND

i: I = NCOY(K)

j: L =L+ 1

k: A(L) = GBUS(K) * (PMUL + PLAM(I)) - BBUS(K) * (QMUL + QLAM(I))
1: L =L+ 1

m: A(L) = BBUS(K) = (PMUL - PLAM(I)) + GBUS(K) * (QMUL - QLAM(I))
n: cee

o: 1000 CONTINUE

p: 1010 CONTINUE

The code fragment that implements the Lagrangian gradient equation (6.22) is displayed
below. The line j: implements the first two terms in (6.22), whereas the lines m:, n: and

r: implement the last two terms in (6.22).

a L = NBUS - 1
b KEND = 0
c DO 1010 I = 1 , NBUS

d = PLAM(D)

e QMUL = QLAM(I)

£ KBEG = KEND + 1

g KEND = IROJ(I+1) - 1

h DO 1000 K = KBEG , KEND

i: J NCOJ (K)

j: B(J) = B(J) + PMUL * PJAC(K) + QMUL * QJAC(X)
k

1

m

n

o

P

q

r

s

: 1000 CONTINUE
: L L+1

B(I) = B(I) + 2.0 * ZTWO(I) * EVOL(I)
B(L) + 2.0 * ZTWO(I) * FVOL(I)

nonn

: B(L)
: 1010 CONTINUE
DO 1020 I = 1 , NTAP
L L+1
B(L) + ZFOU(I)

: B(L)
: 1020 CONTINUE
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6.4.1 A Block-Data Structure

The primal variables z have been, so far, arranged in one of two forms: = = (e, f,t)% or
z = (v,0,£)T. In computational practice, the variables associated with the sub-matrix
0 VzhT 0
R:= |V h V2L, —V.g (6.25)
0 -V o0

should be arranged in a way to form 5 x 5 blocks, when using rectangular coordinates

A2 AT E fi ej AoA N fi e
A7 O 0 0 2f; 2e; 0 0 0 0 0
Al 0 0 l‘f}'j Ejj 0 0 0 ﬂfii -Eii
¥lo o o B Ny; o 0 0 Hy Ny
fi|2f; My Hy VgL 0 0 M Hyj VipLp VieLs

2
e |2 Lj N 0 VL. Ly 0 Lij Ny VieLw VeeLs
A2 O 0 0 0 0 0 0 2f; 2¢e;
)\g 0 0 0 Mij Lij 0 0 0 i Lii
Xlo o 0o By Nj |--|0o o o @ H N
fol 0 My Hy Virle Ve Lu 2fi My Hy Vi rLlu 0
e; 0 i Nig V 7 e,-LI-‘ V; e; L, 2¢; Ly i 0 Vgie‘-L#
and to form 4 x 4 blocks, when using polar coordinates
AN 6 Vi NoOX 6 2

Al 0 M;; Lyj; 0 0 M;; Ly

Ajp 00 Hy Nj |--| 0 o Hg Ny

0; | Mj; Hjj v%,-a,- Ly, V%,—v;- Ly Mi; Hij Vg,-a,- Ly Vg;t/,-Lu

Vil Lis Ny VivLy ViyLy Li Ny ViyLu VL,

/\g 0 0 Mi' Lij 0 0 Alﬁ Lii

XNl o o H;j Nyj 00 Hj Nii

6; | My Hy V%.—a,-L# Vg,-v,- L, Mz Hy V%;G;Lu VSMLH

Vil La Ny ViyL, Vi L, Li  Ni ViyLus V4yLyu

The idea of arranging the OPF variables in blocks was first proposed in [66], in the context
of a Newton’s OPF. This arrangement allows for efficient ordering and block factorization.
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Rather than examining fill ins in the elimination of 12|5|+6|N| elements below the diagonal
of R, we examine block fill ins in the elimination of |B| off-diagonal blocks.

6.5 Solving the Linear Systems

Primal-dual codes devote the greatest part of their computational effort to solving large,

sparse, structured linear equation systems of the form

2 e0)-()

For instance, the reduced system (3.23) defines D? = V.dT and A = —V.gT. The
linear system (6.26) is usually solved in one of two forms: (i) the normal-equations form,
involving the symmetric positive definite matrix AD2?AT | or (ii) the augmented-system
form, exploiting the specially structured symmetric indefinite matrix in (6.26).

A major advantage of the normal-equations form is that all elimination pivot orders for
finding the LU factors L;; are stable [29]. Unfortunately, in NLP, the diagonal block matrix
D? is a general sparse symmetric matrix rather than a diagonal matrix, and, despite D? and
A being sparse, the matrix AD?AT is generally dense. Sparsity preserving requirements
make the augmented-system approach the natural choice to solving (6.26), as concerned
with IP methods for NLP. The major difficulty, in this case, is that it cannot be guaranteed
that all pivoting orders are numerically stable. An ordering/symbolic factorization phase
attempts to choose a pivot ordering based on sparsity that will lead to low fill-ins. When
the factorization is computed with the actual numerical values, interchanges that alter the

predicted pivot sequence may be required to retain numerical stability.

6.5.1 Factorization of Symmetric Indefinite Matrices

Most factorizations of a symmetric indefinite matrix T' have the form [25, 76]
pPrPT =LDIL", (6.27)

where P is a permutation matrix, L is a unit lower triangular matrix, and D is a block
diagonal matrix in which each block is either 1 x 1 or symmetric 2 x 2. A stable elimination
procedure is due to Bunch and Parlett [5], known as the Bunch-Parlett procedure. The
Bunch-Parlett procedure eliminate either one or two columns and rows of the matrix at
a time. Each elimination step is performed with a diagonal pivot block selected from
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the remaining matrix T—either a single diagonal element of f, or a 2 x 2 pivot block
whose diagonal entries are also diagonal elements of T. A row/column permutation is then

performed to move the pivot block to the upper left of the remaining matrix, to obtain

e o T
PTPT = [1.'7. CA] . (6.28)
cC T

where E is the 1 x 1 or 2x 2 pivot block. Performing the actual numerical operations yields

~ T
~~~ I 0| |E o I o
PTPT =| P e . 6.29

[CE‘I I] [0 T -CE™'CT } [cue-1 I] (6.29)
The algorithm includes the column(s) CE™! in the L factor, includes the pivot block E
in the D factor, and updates the matrix T « T — CE~'CT. The entire process is now

repeated on the remaining matrix T — CE~1C7.

The key criterion for choosing the pivot block E is that the growth of elements in the
remaining matrix T —CE~'CT is not too great. The Bunch-Parlett procedure examines all
elements in the remaining matrix and identifies the largest diagonal and largest off-diagonal
elements, whose magnitudes are denoted by xgiag 2nd xoff, respectively. The ratio Xog/Xdiag
indicates the growth that we can expect in the remaining matrix if the largest diagonal is
selected as a 1 x 1 pivot. If the ratio is not too large, this diagonal element is selected as

the pivot. Otherwise, a 2 x 2 pivot of the form

A L (6.30)
Ty Ty

is chosen, where ﬁj is the oft-diagonal element that achieves the largest magnitude yog-.

For sparse matrices, a second criterion is used in selecting a pivot: the update step
T « T — CE~'CT should not create too much fill-in. Fourer and Mehrotra (25] describe a
modification of the Bunch-Parlett strategy that combines stability and sparsity considera-
tion. Their strategy determines the number of non-zeros in the update matrices CE-CT ,
where E is the set of all possible 1 x 1 and 2 x 2 pivots in the remaining matrix. It first
examines all pivots for which the update matrices have the minimum number of non-zeros
and checks to see whether any of them satisfies a stability condition that prevents excessive
growth. For a prospective 1 x 1 pivot, this condition is

1T | T uilloo <671, (6.31)
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whereas the 2 x 2 stability condition is

T, IT villoo <[5—1} (6.32)
Tij Ty -

-1
[ui]—uw 51

where § is a small parameter—according to experiments in [25], values of § in the range of
16~* to 1675 give consistently good factorization. If any of the eligible pivots satisfy one
of these conditions, they are selected, with a preference given to 1 x 1 pivots. Otherwise,
the procedure examines pivots for which the update matrix CE-'CT is successively more

dense, stopping when it finds a pivot that satisfies one of the stability conditions above.

In contrast to the positive definite case, there is no general way to find a numerically
stable pivot order for an indefinite matrix using only symbolic information—the ordering
process cannot be dissociated from the numerical factorization. However, once a stable pivot
order has been determined, we can reuse it at subsequent iterations as long as it continues
to give satisfactory factorizations and solutions. For each system of the form T'z = r that

is solved using that factorization, the solution is deemed satisfactory if
1Tz — 7l < 1075. (6.33)

If a reused pivot order is found to give an unsatisfactory factorization or solution then
we perform another dynamic ordering/factorization step and saves the new pivot order for

reuse on subsequent iterations.

6.5.2 UMFPACK: A Public Domain Linear System Solver

In our algorithms implementations, we have utilized the public domain linear system solver
UMFPACK Version 2.2, of Timothy Davis and [ain Duff, University of Florida. The acronym
UMFPACK stands for Unsymmetric-pattern MultiFrontal PACKage. The source code and
technical reports describing UMFPACK are available via the World Wide Web at http://www.
cise.ufl.edu/"davis, or by anonymous ftp at ftp.cise.ufl.edu:pub/faculty/davis.
About features of UMFPACK, we quote the following from the code documentation:

UMFPACK Version 2.2 is a package for solving systems of sparse linear systems,
Az = b, where A is sparse and can be unsymmetric. It is written in ANSI
Fortran 77. There are options for choosing a good pivot order, factorizing a
subsequent matrix with the same pivot order and nonzero pattern as a previ-
ously factorized matrix, and solving systems of linear equations with the fac-
tors (with A, L, or U; or with their transposes in the single/double precision
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versions). Iterative refinement, with sparse backward error estimates, can be
performed. Single and double precision, complex, and complex double precision

(complex*16) routines are available.

About the method implemented in UMFPACK, we quote the following from the code docu-

mentation:

The multifrontal method factorizes a large sparse matrix using a sequence of
small dense frontal matrices. The square frontal matrices are factorized ef-
ficiently using dense matrix kernels. Classical multifrontal methods assume
a symmetric nonzero pattern. The unsymmetric-pattern multifrontal method
(UMFPACK), relaxes this assumption by using rectangular frontal matrices. High
performance is achieved by using dense matrix kernels to factorize these rect-
angular frontal matrices, and also through an approximate degree update algo-
rithm that is much faster (asymptoticaily and in practice) than computing the
exact degrees. Since a general sparse code must select pivots based on both nu-
merical and symbolic (fill-reducing) criteria, the analysis phase (pivot selection
and symbolic factorization) and the numerical factorization are combined. The
rectangular frontal matrices are constructed dynamically, since the structure is

not known prior to factorization.

Version 2.2 of UMFPACK combines features of both unifrontal and muitifrontal
methods. In the multifrontal method, in contrast with a (uni-)frontal method,
several frontal matrices are used. Each is used for one or more pivot steps, and
the resulting Schur complement is summed with other Schur complements to
generate another frontal matrix. Although this means that arbitrary sparsity
patterns can be handled efficiently, extra work is required to add the Schur
complements together and can be costly because indirect addressing is required.
The frontal method avoids this extra work by factorizing the matrix with a single
frontal matrix. Rows and columns are added to the frontal matrix, and pivot
rows and columns are removed. Data movement is simpler, but higher fill-in can
result if the matrix cannot be permuted into a variable-band form with small
profile. UMFPACK Version 2.2 is based on a combined unifrontal/multifrontal
algorithm that enables a general fill-in reduction ordering to be applied but
avoiding the data movement of previous multifrontal approaches.

For more information on UMFPACK, see [14, 15].
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6.6 Final Remarks

In this chapter, we have discussed many issues that are directly related to an effective
implementation of the algorithms proposed in this thesis. A few remarks are as follows:

e We have presented four initialization heuristics. Two of the heuristics conform with
the whole set of IP algorithms, and the four of them conform with the NIP algorithm.
The numerical performance of each initialization heuristic has been numerically tested,

as discussed in Chapter 7.

e We have derived explicit formulae to efficiently assemble the Hessian matrices, both
in rectangular and in polar coordinates. We show that this task is more efficiently

done in rectangular coordinates, where the functions Hessians are constant.

e We have proposed a mapping from constraint multipliers to bus multipliers: (y, z2) —
(AP, A9, A%). Such a mapping considerably reduces the number of logical operations
in the evaluation of the Lagrangian gradient and Hessian, and allows for efficient
data structure and savings in computer memory usage. An efficient evaluation of
the Lagrangian gradient is crucial for the line search procedure wherein this task is

repeatedly performed.

e We have derived explicit formulae to estimate the number of flops required to obtain
the Lagrangian Hessian—the major effort in forming the Newton system—both in
rectangular and in polar coordinates.

e We have presented two code fragments that emphasize some of the advantages of the
propcsed mapping of Lagrange multipliers.

e We also have discussed a block-data structure and the solution of symmetric indefinite
systems. However, such a block-data structure have not been implemented in our
computer codes; we have used a public domain indefinite system solver that does not
take advantage of block-data structures.



Chapter 7

Computational Experiments

In this chapter, we present numerical experiments with the IP and NIP algorithms for
NLP previously described in Chapters 3, 4 and 5. These experiments relate to the solution
of the nonlinear reactive power dispatch (RPD) problems (2.18) and (2.23). The main
purposes of the computational tests are: (i) to gain insight into the various methods, (ii) to
compare competing methods, (iii) to tune parameters in the algorithms, and (iv) to compare
the performance of the proposed algorithms in the solution of the rectangular and polar
“versions” of the RPD problem. To this end, we have initially developed prototype codes
under the MATLAB® (The MathWorks, Inc.) environment and tested on the well known
IEEE test systems with 6, 30, 57, 118 and 300 buses. To be able to solve larger problems,
and fairly compare competing methods, we also have coded all algorithms in Fortran 77 (in
double precision arithmetic) and compiled with the -02 option. All the numerical results
presented have been produced on a Pentium Pro 200 MHz with 64 MBytes of RAM, running

the Linux operating system.

This chapter is organized as follows. In the next section, we display the names and
the main features of the developed codes. In Section 7.2, we describe the set of test power
systems. Several statistics are given related to the dimension of these problems and an
indication of the degree of difficulty (the number of binding constraints) to solve them. In
Section 7.3, we discuss numerical results with the set of IP algorithms. A default set of
parameters, initialization heuristic, step length scheme, and updating formula of the barrier
parameter has been defined and effects of changing this set in different ways are examined.
In Section 7.4, we discuss numerical results with the NIP algorithm. In Section 7.5, we
make some further comparisons of the rectangular and polar variants of the RPD problem.

Final remarks in Section 7.6 close the chapter.

93
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7.1 The Developed OPF Codes

We have written a set of twelve computer codes in ANSI Fortran 77. The compiler used is
the GNU Fortran 77 compiler that is included in common Linux distributions. The set of
twelve OPF codes associates a variant of the OPF problem—minimum transmission active
power losses—that is formulated either in rectangular (R) or in polar (P) coordinates, with
the five IP algorithms that are described in Chapters 3 and 4, and the NIP algorithm that
is described in Chapter 5. The name of the codes, as we address them in the discussions in
this chapter, along with their major distinguishing features are displayed in Table 7.1.

Table 7.1: The names and some distinguishing features of the developed OPF codes.

Code Name | Coordinates Optimization Technique Description
R-IPD Rectangular
P-IPD Polar Infeasible Primal-Dual IP Method Algorithm 3.2
R-PCM Rectangular
Predictor-Corrector IP Method Algorithm 4.1

P-PCM Polar
R-PCN Rectangular
P-PCN Polar
R-MPC Rectangular
P-MPC Polar
R-MCC Rectangular
P-MCC Polar
R-NIP Rectangular
P-NIP Polar

Perturbed Composite Newton [P Method | Algorithm 4.2

Multiple Predictor-Corrector IP Method Algorithm 4.3

Multiple Centrality Corrections IP Method | Algorithm 4.4

Non-Interior-Point Continuation Method | Algorithm 5.1

7.2 The Test Power Systems

The performance of the OPF codes is tested on a set of eleven power systems that range
in size from 14 to 2098 buses. Some statistics for the test power systems are displayed
in Table 7.2, where, for each power system, we give the total number of buses (|N]), the
number of generator buses (}G|), the number of load buses eligible for shunt var control
(I€]), the number of load buses with fized var sources (|F|), the total number of branches
(IB[), and the number of transformers with LTC device (|7]). Table 7.2 also displays the
initial active power losses in MW and in percentage of the total system load.



CHAPTER 7. COMPUTATIONAL EXPERIMENTS 95

Table 7.2: Statistics for the test power systems.

Test § Number of Buses and Branches Initial Bgs
t Syst
SESYSII N 16l el 1A 1Bl 1T MW) (%)

IEEE-14 14 S 1 8 20 3 13.38 5.16
IEEE-24 24 11 1 12 38 5 51.55 1.95
IEEE-30 30 6 3 19 41 4 17.62 6.22
IEEE-57 57 7 5 45 80 10 27.99 224
IEEE-118 118 54 12 52 186 9 129.88 3.54

IEEE-300 300 69 23 208 411 35| 408.43 1.76
MEXI-256 256 58 23 175 376 50| 210.18 2.02
IEMX-555 555 126 46 383 787 8 { 617.79 1.84
BRAS-340 340 359 52 229 684 12 | 1802.91 4.25
BRAS-810 810 114 185 511 1340 166 | 1767.43 4.89
BRAS-2098 | 2098 169 426 1503 3283 239 | 1173.61 6.00

The basic load flow data for the IEEE test systems is available by anonymous ftp at
wahoo.ee.uwashington.edu. The basic load flow data for the MEXI-256 test system, a
longitudinal system that is derived from the Mexican power network, is obtained from [63].
The test system IEMX-555 has been obtained as a combination of the IEEE-300 and MEXI-
256 test systems. The power systems BRAS-340, BRAS-810 and BRAS-2098 are modified
reduced systems derived from the actual Brazilian power network.

The physical and the operational limits for MEXI-256, IEMX-555 and the set of IEEE
test systems have been defined as +5% off nominal value for the load bus voltages (V;, for
i € FUE), as £2% off specified values for the generator bus voltages (V;, for i € G), and as
+10% off nominal value for the transformer tap settings (£;;). To test algorithm efficiency
and robustness, solution difficulty has been increased by choosing small sets of buses eligible
for shunt var control (a small set £) and setting fairly narrow limits for the reactive power
outputs of generators. Such a specification of the OPF problem shrinks its feasible region
and, therefore, increases the chances of a large number of binding constraints to occur in

its solution.

Some statistics for the solved NLP problems are displayed in Table 7.3, where, for each
problem, we give the number of primal variables (n), the number of equality constraints (m),
the number of nonlinear functional inequalities (p), and the number of simple bound con-
straints (g). Notice that the number of nonlinear functional inequality constraints and of
simple bound constraints are indeed double the figures displayed in Table 7.3 since each
inequality is subject to both lower and upper bounds. Also displa.yed in Table 7.3 are the
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final active power losses in MW and in percentage of the total load, as well as the number
of reactive power limits (Q), of voltage limits (V') and of transformer tap setting limits (£)

that are activated in the optimal point.

Table 7.3: Sizes of the NLP problem (1.1), final losses and number of active limits.

NLP Problem Sizes Final Boss Active Limits

Problem | Test System n m o 7 (MW) (%) v 0 s
1 IEEE-14 30 21 20 3 13.13 5.07 3 5 0
2 IEEE-24 52 35 36 5 49.05 1.72 9 3 0
3 IEEE-30 63 48 41 4 17.78 6.27 3 2 1
4 IEEE-57 123 101 69 10 26.56 2.12 9 2 1
5 IEEE-118 244 169 184 9 119.23 3.25 14 23 0
6 IEEE-300 634 507 392 35| 378.51 163§ 62 28 1
7 MEXI-256 561 430 337 50 198.24 191 52 13 O
8 IEMX-553 1194 937 727 85 577.80 1.72 | 110 45 1
9 BRAS-340 691 568 451 12 | 173460 4.09| 55 40 O
10 BRAS-810 1785 1320 1109 166 | 1667.91 461 | 145 163 6
11 BRAS-2098 | 4434 3600 2693 239 | 1110.00 567 | 176 329 24

7.3 Experiments with the Interior-Point Algorithms

In this section, we describe extensive computational experiments with the IP algorithms.
To avoid testing an unreasonable large number of combinations of parameters, initialization
heuristics, step length computation schemes, and updating formulae of the barrier parame-
ter, a “reference” set of parameters and formulae has been defined and the effect of changing
this set in different ways is examined. Initially, we employ the initialization Heuristic—A
(see Section 6.1.1), the computation of the step lengths by Scheme-B (see Section 3.4.2),
and the computation of the barrier parameter by the standard procedure (see Section 3.5.1).

The parameters default to

Parameter [ ut o0 ap Y Bmin Bmax M € € €u
Value | 1.0 0.2 099995 0.35 0.1 100 1 10~¢ 1076 10°12

For the test runs in which the OPF algorithms have converged, the tables below mostly
display the number of iterations (iters) and the elapsed CPU times (time). All reported
CPU times are defined in seconds, and do not include the time for data I/O. In the case
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an algorithm has failed to converge, we then give an indication of the main reason for that
failure. For example, by o® we mean that after the 8th iteration the step lengths are nearly
zero and, consequently, the algorithm fails to progress further. By v3° we mean that the
convergence criteria v, has not been satisfied after 50 iterations. At the bottom of each
table, we display the total number of iterations and CPU time to solve the whole set of

eleven problems.

7.3.1 Performance with Default Parameters

The results of experiments carried out with the default algorithms settings (parameters and
formulae) are displayed in Table 7.4 (voltages in rectangular coordinates) and Table 7.5
(voltages in polar coordinates). In these experiments, the IP algorithms have employed
the same settings for all problems. That is, the IP algorithms have not been “tuned” to
particular problems. In doing so, it is likely that for some problems some algorithms will
fail to converge to an optimal solution. Nevertheless, we consider instructive to present
and discuss non-converged cases, and, whenever possible, to identify modifications of the
algorithms that might restore convergence of the iterative process. As a result, we expect

to identify some strength and weakness of the proposed algorithms.

The numerical results reported in Table 7.4 show that the R-IPD code has failed to solve
the Problems 6, 8, 9 and 10. Similar convergence difficulty has been observed with the
P-IPD code, as shown in Table 7.5. The iterative process for Problem 6, up to iteration 9,
is illustrated in Table 7.6. We can infer from Table 7.6 that the R-IPD code using the
default parameters and formulae has failed to solve Problem 6 because the step length of
prematurely becomes too small (nearly zero). Since o® & 0, the variables remain practically
unchanged after the 9th iteration. Consequently, the primal-dual IP algorithm fails to
progress further in reducing the primal and dual infeasibility, and the complementarity
gap-.

It is clear from the ratio tests (3.28) and (3.29) that the step lengths may adversely
be set to very small values whenever one or more variable with strict positivity conditions
prematurely approaches zero. This may happen for a number of reasons such as the starting
point w® being a badly centered one, the barrier parameter ;F being reduced too fast, and
so forth. In the case of Problem 6, we manage to restore convergence of the primal-dual IP
iterations in two simple ways: (i) reducing the step length safety factor from og = 0.99995
to ag = 0.9 (in which case iters = 19 and time = 6.84), and (ii) increasing the centering
parameter from o0 = 0.2 to 0® = 0.7 (in which case iters = 31 and time = 11.40).
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Table 7.4: Runs with default parameters: IP codes using Rectangular Coordinates.

R-IPD R-PCH R-PCN R-MPC R-HCC
Problem iters time | iters time | iters time | iters timne | iters time
1 14 168| 13 158 8 095| 15 178] 11  1.32
2 15 192 & 105 9 16| 8 L11| 11 141
3 14 18| 9 120 8 105 9 L17{ 10 131
4 17 256 | 10 154 | 10 154 10 156| 12  1.84
5 18 361| 11 230 | 10 211| 11 229| 14 290
6 a® 11 425 | 11 430) 11 423| 16 623
7 19 581 | 11 348 | 11 350 | 11 346 | 14 446
8 a® 13 866 | 12 808| 13 863 | 17 1132
9 a® 11 477 | 11 481 | 11 477| 16 690
10 o’ 12 1189 | 13 1336 | 12 11.88| 21 20.98
11 26 6119 | 25 6157 | 21 5257 | 19 4776 | 27  66.56
| Total — 134 10229 124 9343 130 8864 169 125.23 |

Table 7.5: Runs with default parameters: IP codes using Polar Coordinates.

P-IPD P-PCM P-PCN P-MPC P-MCC
Problem | . . . . . . . . . "

iters time | iters time | iters time | iters time | iters time
1 14 1.70 13 1.56 8 0.95 15 1.76 11 1.27
2 15 1.94 8 1.06 9 1.14 8 1.03 11 1.44
3 13 1.72 9 1.19 8 1.06 9 1.15 10 1.29
4 16 241 10 1.51 10 1.57 10 1.54 12 1.84
5 17 3.42 11 2.28 11 2.29 11 2.31 15 3.05
6 ot? 11 4.09 12 4.53 11 4.11 15 5.63
7 17 5.21 11 341 11 349 i1 3.49 14 4.43
8 a® 13 8.44 13 8.53 13 8.42 17 11.15
9 a8 11 4.67 11 4.69 11 4.66 15 6.37
10 af 13 12.22 13 1246 13 12.28 19 17.77
11 24 54.00 24 57.67 26 62.81 22 5407 28 66.83

| Total — 134  98.10 132 10352 134 9482 167 12107 |

As we reduce the safety factor oy we aim at keeping the variables with non-negativity
conditions a bit further away from the boundary of the positive orthant. As we increase
the centering parameter ¢° we aim at decreasing the barrier parameter u* at more modest
rates. By means of these two simple algorithm modifications, we also are able to restore
convergence for the other cases displayed in Tables 7.4 and 7.5 in which the R-IPD and
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Table 7.6: Non-converged iterative process for Problem 6: R-IPD code.

k aF vF vk vk vk

0 — 0.330 x 107® 0.133 x 102 0.854 x 10%3 —

1 0.61825 0.218 x 107° 0.648 x 10¥! 0.217 x 102 0.207 x 10!
2 0.59557 0.869 x 10~! 0.323 x 10" 0.112x 102 0.814 x 1073
3 0.77363 0.196 x 10! 0.848 x 10*® 0.417 x 10*! 0.767 x 103
4 1.00000 0.462 x 10~2 0.361 x 10~2 0.800 x 10*® 0.315 x 10~2
5 1.00000 0.422 x 107! 0.538 x 10~ 0.150 x 10 0.142 x 10!
6 0.54681 0.189 x10~! 0.367 x 10~% 0.817x10"! 0993 x 1072
7 0.75333 0.109 x 10~! 0.155x 10~3 0.308 x 107! 0.467 x 10~2
8 0.00011 0.109 x 10~! 0.155 x10~3 0.308 x 10~! 0.390 x 10~§
9 0.00000 0.109 x 10~! 0.155 x 103 0.308 x 10! 0.227 x 1010

P-IPD codes have failed to solve.

The numerical results displayed in Tables 7.4 and 7.5 suggest that the IP algorithms
are practically insensitive to the dimension of the NLP problems, as far as concerned with
the number of iterations, which is a typical feature of Newton-type methods. If we define
the size of the NLP problem (1.1) as n +m + p + ¢, then we can infer from Tables 7.3, 7.4
and 7.5 that while the NLP problem sizes have increased from 74 to 10566 (factor of 142),
the number of iterations have increased from 8 to 28 (factor of 3.5).

The results displayed in Tables 7.4 and 7.5 also suggest the superiority of the higher-
order IP variants over the plain primal-dual IP method (R-IPD and P-IPD), not only in
terms of number of iterations and CPU times but also in terms of robustness; all eleven
problems have been solved by the higher-order IP methods using the default parameters.
As far as concerned with the total number of iterations to solve the eleven problems, the
best computational performance has been that of the R-PCN code, with 124 iterations. As
far as concerned with the total CPU time, the best performance has been that of the R-MPC
code, with 88.64 seconds. Apparently, the worse performance has been that of the R-MCC
and P-MCC codes. We show below that these MCC codes indeed perform very well when
they use other parameter settings.

The higher-order IP variants employ predictor and corrector steps to improve the order
of accuracy to which the Newton directions approximate the nonlinear KKT equations. In
these IP variants, the centrality of the iterates are improved by solving two or more linear
systems within each iteration. This allows for larger steps to be taken towards a solution,
as illustrated in Figures 7.1 and 7.2, such as better convergence rates are usually achieved.
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Figure 7.1: Increase of the step lengths through predictor-corrector steps: Problem 6 solved
by R-PCM code using the default parameters and formulae.
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Figure 7.2: Increase of the step lengths through centrality correction steps: Problem 6
solved by R-MCC code using the default parameters and formulae.
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In Table 7.7, we display the CPU times (in seconds and in percentage of the total
solution time) elapsed in the major steps of the predictor-corrector IP algorithm, when it
solves Problem 11. The first three lines in Table 7.7 relate to set up of the data structures
to hold the matrices, and the numerical evaluation of the bus admittance matrices G and
B; these tasks need to be performed only once, before the iterative process begins. Notice
that the symbolic/numerical factorization of the coefficient matrix V2,,,L,(w) demands
much more computational effort than the linear system solutions that use this factorization
(85.46% versus 3.90%). As the higher-order [P methods aim at reducing the number of
matrix factorizations to a necessary minimum, they usually requires less CPU times than
the plain primal-dual IP method.

Table 7.7: Elapsed CPU times in each major step of the R-PCM code: Problem 11.

Set the nonzero structure and compute the bus matrices G and B : 0.77 1.25
Set the nonzero structure for the Jacobians Vgp(z)T and Voq(z)7 : 0.03 0.05
Set the nonzero structure for the Hessian matrix V2, L,(w) : 0.04 0.07

Form the Newton system V2, L,(w*)Aw = —V,L,(wF): 335 544

Perform the symbolic/numerical factorization of V2, L,(w¥) : 52.62  85.46
Linear system solutions : 2.40 3.90

Compute the primal and dual step lengths : 0.12 0.20

Update the primal and dual variables : 0.22 0.36

Evaluate the nonlinear function-vectors g(z*) and h(z¥) : 0.12 0.20
Compute the Jacobian matrices Vzp(z¥)T and Voq(=z*)T : 020  0.32
Test for convergence : 0.25 0.41

Update the barrier parameter p* : 0.04 0.07

Other : 1.40 2.27

Total (secs and %) : 61.57 100.00

7.3.2 Influence of Initialization Heuristics

In Tables 7.8 and 7.9, we display the results of experiments performed with the IP algorithms
using the initialization Heuristic-B (see Section 6.1.2). The results for the initialization
Heuristic—A are displayed in Tables 7.4 and 7.5. We may infer from Tables 7.8 and 7.9 that
the numerical performance for the initialization Heuristic—B is also good; however, such a
performance is inferior to the performance for the initialization Heuristic-A.

We remark that the most aggravated performance relates to the MCC method. This is
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Table 7.8: Influence of initialization heuristics: Heuristic—B, Rectangular Coordinates.

R-IPD R-PCM R-PCN R-MPC R-MCC

Problem iters time | iters time | iters time | iters time | iters time
1 13 1.54 11 1.33 8 0.96 13 1.54 11 1.33

2 14 1.81 8 1.04 9 1.17 8 1.03 12 1.59

3 11 1.42 8 1.03 8 1.03 9 1.15 9 1.16

4 15 2.23 9 1.36 9 1.32 9 1.34 12 1.82

3 17 3.36 11 2.23 11 2.24 11 2.21 19 3.75

6 a!to 12 450 12 4.53 12 4.50 20 7.42

7 18 5.44 11 341 12 3.72 11 3.45 16 5.00

8 alf 13 8.39 13 8435 13 8.51 23 14.88

9 17 6.78 13 546 13 5.54 13 5.44 26 10.66

10 a’ 13 12.21 13 1246 15 14.12 27  25.28

11 alt 25 59.89 v30 22 51.60 41 9703

[ Total — 134 100.85 — 136 94.89 216 169.92

Table 7.9: Influence of initialization heuristics: Heuristic—B, Polar Coordinates.

P-IPD P-PCM P-PCN P-MPC P-MCC
Problem | . . . . . . . . . .

1ters time | 1iters time | iters time | iters time | iters time
1 12 1.40 10 1.20 9 1.07 10 1.23 11 1.30
2 14 1.76 8 1.06 9 1.19 8 1.03 12 1.52
3 11 1.39 8 1.04 7 0.90 8 1.02 10 1.30
4 13 1.92 10 1.49 11 1.63 10 1.46 12 1.79
5 17 3.36 11 2.22 11 2.23 11 2.19 19 3.78
6 of 13 4.73 13 474 14 5.06 23 8.31
7 o® 13 3.98 13 4.03 13 4.03 18 5.51
8 o’ 14 8.77 14 8.86 16 9.93 25 15.66
9 17 6.85 13 5.32 13 5.27 14 5.67 29 11.65
10 a® 17 15.25 15 13.85 34 29.56 36 32.14
11 ald 26 59.81 28 66.04 20 46.10 49 111.13

[Eota.l — 143 104.87 143 109.81 158 107.28 244 194.09 I

due, in part, to the fact that the starting points obtained by Heuristic—A are usually better
centered than the starting points obtained by Heuristic-B. We may recall from Section 6.1
that, in the Heuristic-A, we first choose x? > 0 and then compute 2}, 23, 2J and z§;
hence, all complementarity products s?z? have the same value %, which is beneficial for

the MCC algorithm. In the Heuristic-B, on the contrary, we first estimate 2%, 23, z§ and



CHAPTER 7. COMPUTATIONAL EXPERIMENTS 103

2} and, afterwards, we use these estimates to define a p% > 0. Thus, there may be large
discrepancies between the complementarity products; since only one centrality correction
has been allowed within each IP iteration (M = 1) the MCC algorithm has been unable to
properly correct the centrality of the iterates.

Once more, the R-IPD and P-IPD codes have failed to solve the most significant problems,
for the same reason they have failed to solve these problems using the Heuristic-A. Among
the higher-order IP algorithms, the only failure that is reported has occurred with the
R-PCN code, which has failed to satisfy the primal feasibility condition for the Problem 11
(BRAS-2098) after 50 iterations. In spite of such a failure, on the whole the codes using
rectangular coordinates (R-) have shown a computational performance slightly superior to

the performance of the codes using polar coordinates (P-).

7.3.3 Influence of Step Length Procedures

The results displayed in Tables 7.10 through 7.15 relate to performance evaluation of the step
length rules. More specifically, in Tables 7.10 and 7.11, we display the results of experiments
performed with the IP algorithms using the step length Scheme—A (see Section 3.4.1). The
results for the Scheme-B are displayed in Tables 7.4 and 7.5. In Tables 7.12 and 7.13, we
display the results for the step length Scheme-C (see Section 3.4.3). Finally, in Tables 7.14
and 7.15, we display the results of experiments with the R-PCM and P-PCM codes using
Scheme-B with different values of the safety factor ap.

With respect to the results for the Scheme—A, we observe that the higher-order IP meth-
ods have once more performed well. Their performance with Scheme-A indeed has been
slightly superior to their performance with Scheme-B, as far as concerned with the number
of iterations and CPU times. All the higher-order IP algorithms have solved the eleven
problems. We remark, however, that the R-PCM code required a reasonable large number of
iterations to solve Problem 11, as compared with the number of iterations required by the
other IP codes as well as by the same code using the Scheme-B. In such a case, we have
observed that for several iterations of the R-PCM code using Scheme—A either the primal step
length or the dual step length has been set too close to zero; consequently, the convergence
of the primal and the dual feasibility has occurred to be quite slow.

Still related to the Scheme—A, we observe that the R-IPD and P-IPD codes using this
step length rule have been able to solve most of the problems which they had failed to
solve using the Scheme-B (see Tables 7.4 and 7.5). We may recall that the Scheme-A
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Table 7.10: Influence of step length procedures: Scheme—A, Rectangular Coordinates.

R-IPD R-PCM R-PCN R-MPC R-MCC
Problem | . . . . . . . . . .
1ters time | iters time | iters tume | iters time | iters time
1 19 2.24 9 1.07 8 0.95 9 1.09 9 1.07
2 28 3.57 8 1.02 8 1.04 8 1.04 8 0.99
3 20 2.55 8 1.05 8 1.04 8 1.06 10 1.32
4 25 3.71 9 141 9 1.38 9 1.38 10 1.49
3 33 6.56 10 2.08 10 2.09 10 2.08 14 2.88
6 23 8.49 10 3.88 11 4.32 10 3.88 13 5.02
7 32 9.88 10 3.14 10 3.18 11 3.2 13 415
8 35 22.23 11 7.37 11 7.34 11 7.35 15 9.90
9 29 1193 11 4.67 11 4.75 11 4.84 16 6.85
10 ufo 11 11.00 12 12.19 11 10.99 19 19.00
11 u§° 50 126.70 25 62.65 19 47.05 28 68.67
Total — 147 163.39 123 100.93 117 84.28 155 121.34 |

Table 7.11: Influence of step length procedures: Scheme-A, Polar Coordinates.

P-IPD P-PCM P-PCN P-MPC P-MCC
Problem | . . . . . . . . . .

iters time | iters time | iters time | iters time | iters time

1 18 2.10 9 1.10 8 0.95 9 1.11 9 1.09

2 29 3.64 8 1.01 8 1.01 8 1.01 8 1.05

3 21 2.71 8 1.00 8 1.04 8 1.04 10 1.24

4 25 3.69 10 1.51 9 1.37 10 1.49 10 1.49

5 34 6.70 11 2.28 10 2.09 11 2.20 14 2.85

6 22 7.77 10 3.76 11 4.22 10 3.83 13 4.93

7 33 10.03 11 3.41 10 3.18 11 3.42 14 443

8 37 22.86 11 7.17 12 7.95 11 7.16 15 9.75

9 17 6.61 10 4.22 10 4.26 10 4.21 16 6.66

10 ufo 11  10.65 12 11.69 11 10.61 17 15.99

11 50 110.70 24 57.13 26 62.81 20 47.17 23 54.31

I Total — 123 93.24 124 100.57 119 83.25 149 103.79

takes separate step lengths in the primal and dual spaces. Since in these experiments it
has never occurred to both the primal and the dual step lengths being set close to zero, the
primal-dual IP algorithm has been able to recover from adverse situations in which one of

the steps has been set close to zero.

We remark that, among the various IP algorithms, the best numerical performance
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Table 7.12: Influence of step length procedures: Scheme-C, Rectangular Coordinates.

R-IPD R-PCM R-PCN R-MPC R-MCC
Problem iters time | iters time | iters time | iters time | iters time
1 24 289 9 1.07 8 0.98 9 1.09 49 5.87
2 21 2.68 8 1.02 8 1.04 8 1.04 39 3.04
3 20 2.57 8 1.05 8 1.04 8 1.06 41 5.30
4 25 3.71 9 1.35 11 1.66 9 1.38 38 5.61
1 33 6.58 10 2.08 10 2.09 10 2.08 v3°
6 23 8.49 10 3.88 11 4.32 10 3.88 38 14.34
7 22 6.75 10 3.21 10 3.18 10 3.14 v3°, 130
8 36 22.75 11 7.44 12 8.03 11 7.46 40 26.32
9 18 7.14 10 4.33 10 4.28 10 4.36 43 18.18
10 23 21.73 11 11.00 11 1140 11  10.88 48 48.46
11 30, 150, 150 V50, 150, 50 Vfo1 V0, u§° 30, 150, 50 30, z/§°, Vgo
Total — — — — —

Table 7.13: Influence of step length procedures: Scheme-C, Polar Coordinates.

P-IPD P-PCM P-PCN P-MPC P-MCC
Problem | . . . . . - . . . .
iters time | 1ters time | iters time | iters time | iters time
1 16 1.88 9 1.07 8 0.98 11 1.28 V30
2 29 3.66 8 1.02 8 1.04 10 1.22 37 4.58
3 21 2.69 8 1.05 8 1.04 v3° 40 5.06
4 25  3.67 9 141 9 138 10 1.48 139,030
b} 34 6.73 11 2.25 10 2.09 v30. 30 130,130
6 22 782 | 159,u50 11 427 | 099,080,080 | 59,050,050
7 v3° v$0, 130, 150 11 3.51 | 439,058,050 v3°
8 37  22.79 12 783 13 858 | v§9,13°, 050 | 450,030,050
9 17 6.82 11 4.67 10 426 | 179,03°, 050 47 19.35
10 V30, 30 11 1053 | 11 1069 | 59,559,050 | u5°, 080,450
11 vi% 150, v30 24 56.79 v30, 30 v30, 130, 130 130,130
| Total — — : — — —_ I

with the Scheme-A has been that of the MPC algorithm, both in rectangular and in polar

coordinates.

With respect to the results for the Scheme—C, we can observe from Tables 7.12 and 7.13
that none of the IP codes have performed satisfactorily with this step length rule, mainly the
“versions” in polar coordinates (Table 7.13). For instance, all codes but P-PCM have failed to
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Table 7.14: Influence of the size of safety factor ap: R-PCM code.

ag = 0.95 ag = 0.97 ag = 0.98 ap = 0.995 ag = 0.9995

Problem iters time | iters time | iters time | iters time | iters time
1 10 1.19 10 1.19 10 1.19 10 1.19 10 1.19

2 10 1.28 9 1.16 9 1.16 8 1.03 8 1.03

3 10 1.30 9 1.16 9 1.16 9 1.16 9 1.16

4 11 1.66 11 1.66 11 1.66 10 1.51 10 1.51

5 11 2.26 11 2.26 11 2.29 11 2.29 11 2.27
6 12 4.67 12 4.65 11 4.21 12 4.59 11 4.27
7 12 3.75 12 3.79 11 3.43 11 3.47 11 3.47
8 13 8.63 13 8.61 13 8.67 13 8.63 13 8.70
9 12 5.11 12 5.16 12 5.18 13 5.60 11 4.77

10 12 1189 | 12 1205 | 12 1189 | 11 1086 | 11 10.86
11 25 6184 | 24 5909 | 22 5342 | 23 57.26| 24 5859
| Total 138 10358 135 100.78 131 9426 131 97.59 129 97.82 |

Table 7.15: Influence of the size of safety factor cg: P-PCM code.

ag = 0.95 ag =097 ag = 0.98 ag = 0.995 ag = 0.9995
Problem | . . 3 . . . . . . .

iters time | iters time | iters time | iters time ] iters time

1 11 1.33 10 1.21 10 1.21 9 1.09 10 1.19

2 10 1.28 9 1.16 9 1.16 9 1.16 9 1.16

3 10 1.30 9 1.16 9 1.16 9 1.16 9 1.16

4 11 1.66 11 1.66 11 1.66 10 1.51 10 1.51

5 12 248 11 2.26 11 2.29 11 2.29 11 2.27

6 12 4.65 12 4.65 12 4.55 11 4.15 11 4.27

T 13 4.14 12 3.80 12 3.75 11 3.47 11 347

8 14 9.20 13 8.57 13 8.57 13 8.51 13 8.50

9 12 3.19 12 5.16 11 4.71 12 5.14 11 4.75

10 13 12.46 12 11.50 12 1143 12 11.40 12 11.36

11 27  65.05 26 63.40 24 58.38 35 79.75 25 60.28
Total 145 108.74 137 104.53 134 9887 142 119.63 132 99.92 I

solve the largest problem (at least in the case we allow them to perform only one corrector
step per iteration). The reason is that in most of the iterations the dual step length is set
too close to zero; consequently, the primal and dual feasibility, and the complementarity
conditions simultaneously fail to be satisfied, as can be inferred from Tables 7.12 and 7.13.

We remark, however, that our IP algorithms do not incorporate other major features of
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the Yamashita—Yabe IP algorithm, for which the step length Scheme-C has been designed;
the lack of these features may have deteriorated the practical performance of the step length
Scheme-C as this step length rule is implemented in our [P algorithms.

In Tables 7.14 and 7.15, we display the results of experiments performed with several
values of the step length safety factor ag. We have carried out such an analysis only in
the context of the predictor-corrector IP method; we believe that the conclusions drawn for
the predictor-corrector IP method may be extended to the other higher-order IP methods.
Notice from Tables 7.14 and 7.15 that the best performance has been obtained with safety
factors in the interval 0.98 < ag < 0.9995. We also can observe that the closer aq is to
unit the lower is the number of IP iterations. On the other hand, as we have discussed
above, a safety factor of oy = 0.9, or even lower, may be required as a means of restoring

convergence for non-converged runs with the plain primal-dual IP method.

With respect to the high number of iterations to solve Problem 11, that is required by
the P-PCM code using ag = 0.995, we remark that in four IP iterations the algorithm made
steps o < 107%, such that convergence of the equality constraints turned to be very slow.

7.3.4 Influence of x° and Updating Formulae of u*

In Tables 7.16 through 7.19, we deal with the influence of u® in the convergence process
of the plain primal-dual IP algorithm and the predictor-corrector IP algorithm. We begin
our analysis with a discussion of the non-converged cases with the plain primal-dual IP
algorithm. We infer from Table 7.17 that the iterative process for Problem 3 (IEEE-30) has
failed to converge with u® = 0.001 because the step lengths are prematurely (iteration 5) set
too close to zero. However, we have observed that the P~IPD code solves this problem with
©? = 0.001 if we simply reduce the safety factor from ag = 0.99995 to ag = 0.9 (in which
case iters = 12 and time = 1.60). Similarly, the iterative process for Problem 4 (IEEE-57),
which has failed to converge with u® = 0.001, converges if we set ag = 0.9 (in which case
iters = 18 and time = 2.70). -

With reference to Table 7.16, the iterative process for Problem 6 (IEEE-300), which has
failed to converge with ;0 = 10, converges if we set o = 0.9 (iters = 20 and time = 7.38) or
increase the centering parameter from ¢® = 0.2 to ¢® = 0.7 (iters = 35 and time = 13.04).
The iterative process for Problem 6, which has failed to converge with u® = 1, converges if
we set ag = 0.9 (iters = 19 and time = 6.84) or set ¢® = 0.7 (iters = 31 and time = 11.40);
and converges with 4% = 0.1 and 0 = 0.001 if we set 0® = 0.7 (iters = 21 and time = 7.72).



CHAPTER 7. COMPUTATIONAL EXPERIMENTS 108

Table 7.16: Influence of 10 in the plain primal-dual IP method: R-IPD code.

u? =10 w=1 wl =0.1 u =0.01 u® =0.001

Problem iters time | iters time | iters time | iters time | iters time
1 15 1.82 14 1.68 12 1.44 11 1.32 12 1.44
2 15 1.92 15 1.92 13 1.69 12 1.57 11 1.43
3 15 1.98 14 1.82 11 1435 10 1.30 11 1.44
4 16 243 17 2.56 15 2.23 13 1.97 o®
5 18 3.87 18 3.61 18 3.61 15 3.00 14 2.82
6 al? o’ ad 14 513 ab
7 20 6.19 19 5.81 17 520 16 4.89 o’
8 all o’ o’ 16 10.05 o®
9 atf a® 18 7.21 a’ all
10 o’ a® ot 15 13.95 alf
11 28 68.89 25 58.71 22 50.12 ab a’

| Total — — — — — |

Table 7.17: Influence of 10 in the plain primal-dual IP method: P-IPD code.

u =10 =1 2% =0.1 u#° = 0.01 p® = 0.001
Problem iters time | iters time | iters time | iters time | iters time
1 15 181 14 L70 13 1.59 11 1.34 12 146
2 17 219 15 194 13 171 11 147 12 1.56
3 15 197 13 172 11 142 10 131 a’
4 17 258 16 241 15 228 13 1.95 ot
5 18  3.67 17 342 17 3.40 15  3.03 15  3.00
6 al? alf of 14 509 a’
7 20 6.19 17 521 17  5.19 16 4.88 b
8 al? a’ a® 16 9.89 of
9 oto a8 17  6.82 a’ a®
10 a’ ab at ab ot
11 29  69.50 24 55.19 22  49.06 23  50.07 a8
| Total — — — — —

Except for minor changes in the number of iterations and CPU times, the same has been
observed for Problem 6 in Table 7.17. We also have observed that the convergence process
with higher values of ¢¥ has been characterized by slow decrease of the complementarity
gap (criterion v3) and by step lengths close to unit.

Still related to Tables 7.16 and 7.17, the iterative process for Problem 7 (MEXI-256),
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which has failed to converge with x® = 0.001, converges if we set ¢ = 0.8 (iters = 29 and
time = 8.85).

The iterative process for Problem 8 (TEST-555), which has failed to converge with
u® = 10, converges if we set ¢® = 0.7 (iters = 35 and time = 22.53). It converges with
p® =1 if we set ag = 0.9 (iters = 20 and time = 12.78) or set ¢¥ = 0.7 (iters = 32 and
time = 20.44); it converges with x® = 0.1 if we set ag = 0.9 (iters = 18 and time = 11.24)
or set 0¥ = 0.7 (iters = 35 and time = 21.86); and it converges with p? = 0.001 if we set
ag = 0.9 (iters = 20 and time = 12.78) or set ¢® = 0.7 (iters = 27 and time = 16.99).

The iterative process for Problem 9 (BRAS-340), which has failed to converge with
p® = 10.0, converges if we set ag = 0.9 (iters = 22 and time = 9.29) or set ¢ = 0.7
(iters = 34 and time = 14.71); it converges with u® = 1.0 if we set ag = 0.9 (iters = 20 and
time = 8.10) or set 6® = 0.7 (iters = 31 and time = 12.81); and it converges with u® = 0.01
if we set og = 0.7 (iters = 24 and time = 10.15). The same has been observed for the
non-converged tests with the P-IPD code.

The iterative process for Problem 10 (BRAS-810), which has failed to converge with
©® = 10, converges if we set ¢® = 0.4 (iters = 21 and time = 20.42); converges with x0 =1
if we set 0% = 0.4 (iters = 18 and time = 17.06); converges with p® = 0.1 if we set 0¥ = 0.4
(iters = 15 and time = 14.02); and converges with u® = 0.001 if we set both ap = 0.9 and
oo = 0.8 (iters = 24 and time = 22.70). The same has been observed for the non-converged
tests with the P-IPD code.

The iterative process for Problem 11 (BRAS-2098), which has failed to converge with
p® = 0.01, converges if we set ap = 0.9 and ¢® = 0.6 (iters = 35 and time = 78.92).
Convergence with 1% = 0.001 could not be restored by means of such a simple modification
of parameters. The same has been observed for the non-converged tests with the P-IPD

code.

In Table 7.18, the iterative process for Problem 9, which has failed to converge with
©® = 0.001, involves very small affine steps (s <« 1) and the convergence is very slow.

In summary, the presented numerical results recommend choosing u® € [1072,1.0] with
the best choice for this test set being u® = 10~2. The convergence range for the barrier
parameter is relatively large, as long as the centering parameter o is properly chosen. The
major limitation in the choice of u® is that it should not be chosen too small. From the
above analysis for the non-converged cases, we can conclude that the plain primal-dual TP
method is also capable of solving all the eleven problems, as long as we properly set the



CHAPTER 7. COMPUTATIONAL EXPERIMENTS 110

Table 7.18: Influence of x° in the predictor-corrector IP method: R-PCM code.

ul =10 w=1 u® =01 u® =0.01 p° = 0.001
Problem | . . . . . . . . . .
iters time | iters time | iters  time | iters  time | iters  time
1 10 1.23 13 1.58 12 1.46 8 0.97 7 0.87
2 9 1.19 8 1.05 8 1.05 6 0.79 6 0.80
3 9 1.23 9 1.16 8 1.07 7 0.93 6 0.80
4 10 1.55 10 1.57 9 1.40 8 1.25 10 1.51
5 11 2.35 11 2.30 10 2.09 9 1.83 8 1.66
6 12 481 11 4.26 10 3.80 9 3.34 10 3.81
7 12 3.86 11 3.48 10 3.16 9 2.80 10 3.16
8 13 8.82 13 8.70 11 7.26 10 6.53 10 6.65
9 12 5.34 11 4.82 12 5.05 14 5.76 21 8.82
10 12 12.27 11 11.06 10 9.77 9 8.54 10 9.49
11 26 66.89 25 61.77 23  55.22 19  45.13 20 48.13
Total 136 109.54 133 101.75 123 91.33 108 77.87 118 85.70—|

Table 7.19: Influence of x° in the predictor-corrector IP method: P-PCM code.

w0 =10 w=1 w® =0.1 u® =0.01 ©° = 0.001
Problem | . . . . . . . . . .

iters time iters time iters time 1ters time 1ters time

1 7 0.86 13 1.61 12 1.42 8 096 7 086

2 10 1.30 8 103 8 1.05 7 090 6 0.78

3 9 1.22 9 117 8 1.04 7 095 6 081

4 10 1.55 10 156 9 138 8 122 10 1.49

5 11 2.33 11 2.33 10 2.02 9 185 8 1.62

6 12 4.67 11 4.20 10 3.70 9  3.33 10 3.62

7 12 3.85 11 3.48 11 3.43 10 3.16 10 3.07

8 14 9.37 13 8.55 12 7.76 11 7.01 11 695

9 12 5.40 11 471 12 491 14 574 21 851

10 12 11.98 11  10.60 10 946 9 835 11 10.40

11 24  62.13 24  59.09 22 51.21 22 50.11 22  49.50

[ Total 133 10466 132 9833 124 8738 114 8358 122 8761

safety factor o and the centering parameter 9.

In Tables 7.20 and 7.21, we display the results of experiments in which we have updated
pF using the standard procedure (see Section 3.5.1) and have chosen p° = 0.01. We may
recall that in Tables 7.4 and 7.5 we have used u® = 1. We may infer from Tables 7.20 and 7.21
that, on the whole, the IP codes have shown their best performance so far. Surprisingly,
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Table 7.20: Influence of updating formula of u: Standard Procedure, Rectangular Form.

R-IPD R-PCM R-PCN R-MPC R-MCC
Problem | . . . . . . . . . .
iters time | iters time | 1ters time | iters time | iters time
1 11 1.32 8 0.97 7 0.83 8 0.95 8 0.98
2 12 1.57 6 0.79 7 0.93 6 0.80 7 0.89
3 10 1.30 T 0.93 7 0.97 7 0.94 8 1.06
4 13 1.97 8 1.25 8 1.21 8 1.21 10 1.51
5 15 3.00 9 1.83 9 1.84 10 2.02 12 2.47
6 14 3.13 9 3.34 9 3.40 9 3.40 12 4.59
7 16 4.89 9 2.80 10 3.21 10 3.16 12 3.77
8 16 10.05 10 6.93 10 6.59 11 7.10 14 9.10
9 a’ 14 5.76 14 5.87 18 7.40 22 9.13
10 15 13.95 9 8.54 9 8.55 10 9.51 14 13.18
11 a® 19 45.13 14 33.07 19 4476 | 22 51.66
Total — 108 7787 104 6647 116 81.25 141 98.34 l

Table 7.21: Influence of updating formula of u: Standard Procedure, Polar Form.

P-IPD P-PCM P-PCN P-MPC P-MCC
Problem | . . . . . . . . . .
ers time | iters time | iters time | 1ters time | 1iters time
1 11 1.34 8 0.96 7 0.84 8 0.97 8 0.96
2 11 1.47 7 0.90 7 0.90 7 0.93 8 1.04
3 10 1.31 7 0.95 7 0.93 7 0.90 8 1.03
4 13 1.95 8 1.22 8 1.20 8 1.23 10 1.51
5 15 3.03 9 1.85 9 1.86 10 2.04 12 2.44
6 14 5.09 9 3.33 9 3.31 9 3.32 12 444
7 16 4.88 10 3.16 10 3.19 10 3.13 12 3.77
8 16 9.89 11 7.01 10 6.40 11 7.01 15 9.61
9 o’ 14 5.74 14 5.92 17 6.86 23 9.30
10 a® 9 8.35 10 9.50 10 944 14 13.01
11 23  50.07 22  50.11 20 46.08 17 3829 22 49.81
| Total — 114 8358 111 8013 114 7412 144 96.92 |

the R-PCN code have solved the largest problem in 14 iterations and 33.07 seconds. We also
can observe a significant improvement in the performance of the R-MCC and P-MCC codes.

The results of experiments performed with the Vanderbei-Shanno’s procedure to up-
date u* are displayed in Tables 7.22 and 7.23. Once more, the higher-order IP methods
have performed very well. We remark, however, that the computational performance with
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the Standard Procedure to update g is slightly superior to the performance with the

Vanderbei—-Shanno’s prc.icedure.

Table 7.22: Influence of updating formula of x: Vanderbei-Shanno, Rectangular Form.

R-IPD R-PCM R-PCN R-MPC R-MCC
Problem | . . . . . . . . . .
iters time 1ters time 1ters time tters time tters time
1 16 1.93 8 097 7 0.83 8 095 9 1.10
2 17 2.23 7 091 8 105 7 0.90 9 1.16
3 13 1.69 8 106 7 091 8 1.08 9 1.22
4 18  2.70 9 1.38 9 1.40 9 133 11 1.68
5 19 3.86 9 1.81 9 1.84 10 202 13 2.69
6 20 7.26 10 3.77 10 3.78 10 3.75 13 491
7 20 6.19 10 3.14 11 3.50 10 3.16 13 4.13
8 o8 11 7.06 11 7.12 11 7.04 15 9.72
9 al? 14  5.75 14  5.80 18 751 25  10.29
10 ol? 10 9.4 10 9.60 10 941 15 14.14
11 all 21 50.07 19 45.87 18 4249 24  56.39
Total — 117 85.36 115 81.70 119 79.64 143 107.43

Table 7.23: Influence of updating formula of u: Vanderbei-Shanno, Polar Form.

P-IPD P-PCM P-PCN P-MPC P-MCC

Problem iters time | iters time | iters time | iters time | iters time
1 15 1.78 8 0.97 7 0.83 8 0.97 9 1.15

2 17 2.17 8 1.01 8 1.03 8 1.06 9 1.14

3 13 1.69 8 1.06 7 0.93 8 1.10 9 1.20

4 18 2.65 9 1.34 9 1.40 9 1.36 11 1.66

S 19 3.80 9 1.83 9 1.89 10 2.04 13 2.65

6 17 5.97 10 3.64 10 3.74 10 3.70 13 4.74

7 21 6.43 10 3.14 11 3.50 10 3.11 13 407

8 24 14.69 12 7.75 11 7.12 12 7.69 16 10.26

9 al? 14 5.65 15 6.16 21 8.56 25 10.15

10 33 2040 10 9.28 10 9.55 11 10.28 15 13.75

11 o® 21  47.26 19 43.73 19 43.14 26  58.02

| Total — 119 8293 116 79.88 126 8301 159 108.79
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7.3.5 Influence of the Maximum Number of Corrector Steps

In Tables 7.24 and 7.25, we report on numerical results of experiments in which we allow
the MCC algorithm to perform more than one centrality correction step per iteration.
We have considered the cases where the MCC algorithm performs exactly 2 centrality
corrections (2-Fixed), 3 centrality corrections (3-Fixed), 4 centrality corrections (4-Fixed),
5 centrality corrections (5-Fixed), and a variable number of centrality corrections within
each IP iteration, limited by a maximum of 5 centrality corrections (M = 5).

The MCC technique has shown its best performance as it performs exactly 5 centrality
corrections (in rectangular coordinates) and 4 centrality corrections (in polar coordinates)
per iteration. However, we believe that if an efficient heuristic to dynamically define the
number of corrections per iteration is implemented the MCC technique with variable number
of centrality corrections per iteration may outperform any of the IP algorithms.

Table 7.24: Performance of R-MCC code using Scheme-B and x° = 0.01.

2-Fixed 2-Fixed 4-Fixed 5-Fixed M=35
iters time | iters time | iters time | iters time | iters time
5 10 2.09 9 1.90 9 1.96 9 2.00 9 2.00
6 10 3.88 9 3.68 9 3.78 9 3.87 9 3.87
7 11 3.57 10 3.36 10 3.43 10 3.48 10 3.53
8
9

Problem

11 7.47 10 6.97 9 6.50 10 7.52 10 7.67
12 5.35 10 4.54 9 4.32 9 4.55 10 4.76

10 11 10.88 10 10.29 10 10.88 10 11.14 10 1132
11 19 46.34 17 43.30 17 44.97 14 37.83 14 36.46
Total 84 79.58 75 74.04 73 75.84 71  70.39 72 69.61

Table 7.25: Performance of P-MCC code using Scheme-B and p® = 0.01.

2-Fixed 3-Fixed 4-Fixed 5-Fixed M=5
Problem | . . . . . . . . . .
iters time | iters fime | iters time | iters time | iters time
3 10 2.05 9 1.94 9 1.97 9 2.00 9 2.01
6 10 3.90 9 3.55 9 3.64 9 3.79 9 3.84
7 11 3.64 10 3.33 10 3.44 10 3.55 10 3.50
8 12 8.12 11 7.53 10 720 10 7.21 10 7.69
9 13 5.54 10 4.40 10 4.55 9 424 10 4.65
10 11 10.76 12 1208 9 9.41 10 10.92 10 10.78
11 19  44.24 17 4140 15 37.75 15 38.66 15 37.24

Total 86 78.25 78 7423 72 67.96 72 70.37 73 69.71
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In Tables 7.26 and 7.27, we report on numerical results of experiments in which we
allow the MPC algorithm to perform more than one corrector step per iteration. We have
considered the cases where the MPC algorithm performs a maximum of 2 corrector steps
(M = 2), a maximum of 3 corrector steps (M = 3), a maximum of 4 corrector steps (M = 4),
a maximum of 5 corrector steps (M = §), or a fixed number of exactly 3 corrector steps
within each IP iteration. We can observe that the P-MPC code has performed considerably
better than the R-MPC code.

The PCN method have shown some convergence instability when it performs more then
one corrector step per iteration in the solution of the larger problems. Such an instability
is related to the step lengths being adversely set to too small values for more than one
corrector steps, despite the outstanding performance shown by this algorithm when we

consider one corrector step.

Table 7.26: Performance of R-MPC code using Scheme-B and u° = 0.01.

M=2 M=3 M=4 M=5 3-Fixed
Problem | . . . ; . . . . . .
iters time | iters time | iters time | iters time | iters time
5 9 1.86 9 1.90 8 1.70 8 1.76 7 1.54
6 8 3.08 9 3.55 9 3.58 9 3.58 8 3.26
7 9 291 9 2.91 9 2.97 9 3.03 7 2.41
8 10 6.64 10 6.70 9 6.21 9 6.15 8 5.68
9 10 4.40 9 4.06 9 4.26 8 3.72 8 3.68
10 10 9.83 10 9.92 10 9.95 10 9.97 7 7.44
11 19 45.38 19 4538 19 45.38 19 4538 o?
I Total 75  T4.10 75 7442 73 74.05 72 73.59 —

Table 7.27: Performance of P-MPC code using Scheme-B and x® = 0.01.

M=2 M=3 M=4 M=5 3-Fixed
Problem | . . . . . . . . . 3
1ters time | iters time | iters time | iters time | 1ters time
5 9 1.89 8 1.70 8 1.70 8 1.73 7 1.50
6 9 3.43 8 3.11 7 2.76 7 2.75 8 3.16
7 10 3.23 9 2.93 9 297 9 3.01 9 2.96
8 10 6.53 10 6.76 9 6.10 9 6.24 9 6.23
9 10 4.34 10 4.29 9 4.04 8 3.67 8 3.53
10 10 9.74 10 9.74 10 9.74 10 9.74 7 7.28
11 16 36.79 16 36.88 16 36.88 16 36.88 a?

Total 74 65.95 71 65.41 68 64.19 67 64.02 —
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CHAPTER 7.
7.4 Experiments with the Non-Interior-Point Algorithm

In this section, we discuss the numerical results of experiments performed with the proposed
NIP algorithm, as related to nonlinear OPF solution both in rectangular and in polar
coordinates. Initially, in Tables 7.28, 7.29 and 7.30, we present some preliminary results
that we have been obtained with a simplified implementation of the NIP algorithm that
we coded in MATLAB®. In this MATLAB® prototype implementation, we have used a
fixed step length of of = 0.95, and have chosen p° = 0.01, with the simple updating rule
p**l = max{0.14*, 10-19}. We have chosen the starting points as follows:

s = h(z’) — b,
33 =h — hr(z?),
4=z
f=5-2",
2=,

zo =2,
z=u,

zg =Z.

The convergence processes that are displayed in Tables 7.28 through 7.30 show that the
NIP algorithm have performed extremely well using the initialization heuristic described

above.

Table 7.28: The convergence process for Problem 3 solved by R-NIP code.

7 Y 3, ()

© OO RN - Oy

=t
o

1.462 x 10~1
2.638 x 103
1.638 x 10~3
5.467 x 10~*
5.962 x 10—2
4.719 x 102
1.287 x 102
9.833 x 102
5.912 x 10~3
3.138 x 10—
1.671 x 10~5

8.115 x 10~2
8.839 x 102
6.476 x 102
2.742 x 1073
8.844 x 104
2.441 x 10~4
5.811 x 10~5
1.261 x 10~4
4.753 x 10~5
3.182 x 106
2.292 x 10~7

8.041 x 10~
5.798 x 10+°
3.497 x 10~
6.449 ;. 10—2
5.852 x 102
4,528 x 10~2
6.219 x 10~2
9.827 x 102
1.001 x 102
2.281 x 103
5.879 x 104

1.340 x 10+°
1.407 x 10+t
1.003 x 10+°
1.765 x 10!
3.340 x 102
4.556 x 103
1.483 x 103
4.397 x 104
2.339 x 104
2.670 x 10~
3.121 x 10~

1.488 x 1010
5.377 x 10+3
1.530 x 10*!
2.404 x 10!
3.634 x 10~2
1.381 x 10—2
1.663 x 10~2
5.950 x 102
2.893 x 10~
7.313 x 10~
4.856 x 10~7
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Table 7.29: The convergence process for Problem 4 solved by R-NIP code.

COMPUTATIONAL EXPERIMENTS

k vf vE v3 Z] &, (w*)

0 7.064x10"! 1.246x10~! 1.000 x 109 1.249 x 10+® 4.819 x 1070
1 3235x107! 2326x10~! 6.064 x 10t® 1622 x 107! 9.049 x 10+3
2 1620x10"2 1624 x10~! 4222 x10~! 1.171 x 1079 2.641 x 10*!
3 1.267Tx10"2 7913x10~3 9.031x10"% 2057x 10! 4.558 x 10~!
4 2109x1072 1.743x10~% 2096 x 10~2 3.140 x 10~2 1.135 x 10~2
5 9.684x10"2 4381 x10~% 9294 x10"2 3.118 x10~3 1.057x 10~!
6 4.350x1072 1419x10~% 7.499x 10> 2994 x 103 3.256 x 10~2
7 1.502x10~2 1.206x 10~* 7.424x10~2 1.848x 103 2.419x10~2
8 3.845x10"% 6489 x10~5 1962 x10~2 5591 x10~* 8.300x 104
9 4.852x10~* 1.009x10~5 3.985x 10~ 8.975x 10~% 2.700 x 10~5
10 3289 x10°% 7.957x10"7 6.663 x10~% 7484 x10~% 8.774 x 107

Table 7.30: The convergence process for Problem 5 solved by R-NIP code.

k vk vk vE vk &, (wk)

0 4494x107! 2218x10"! 1.000x 10*® 1.084 x 10t°® 1.499 x 10!
1 2840x 1072 4.304x10"2 5.808x 10t° 3.108 x 10! 1.726 x 10*¢
2 3672x107%2 8.817x10~* 3.793 x 10~! 2534 x 10+® 5.196 x 10*!
3 8.029x1072 1.766x 102 8.928x 102 4.672x10~! 9.464 x 10!
4 1.034x10"! 8768x10~3 9949 x 10~2 8.750 x 10~2 2.268 x 10~!
5 2821x10~! 7.703x10~% 2875x 10! 1371x10~2 9.424x 10!
6 1.732x10"! 1.699 x10~* 1.737x10"! 4.283 x 10~% 3.685 x 10!
7 1.298x10"%2 1.145x10~% 2.288x10~2 7.737x10~* 3.787 x 1073
8 7.688x10% 1.117x10~° 4.717x10~3® 1.505x 10~* 1.102x 104
9 3563x10"2 5.085x10"% 3.567x 1072 2054 x 10~ 5.085x 1073
10 1.825x107% 1.459x1075 1.832x 10~ 4.307x10~% 1.292x 10°°
11 1.370x 10~% 9.536 x 10~7 1.373 x 10~* 8.556 x 10~7 4.400 x 10~8
12 2.808x10~° 5.131x10~% 2.809x10~° 3993x10~% 1.253 x 10~°

116

In Table 7.31, we display the numerical results of experiments performed with a more
elaborated implementation in Fortran 77 of the NIP algorithm. For each test run, we give
the number of iterations (iters), the total number of merit function evaluations ($-eval), the
total number of full/damped Newton steps taken (full/damp), and the CPU times (time). In
these simulations, for performance evaluation and comparison purposes, the NIP algorithm
use the initialization Heuristic-A of the IP algorithm, the non-monotone line search test
to obtain the step length, and the proposed scheme to update the continuation parameter.
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We remark that while the merit function used for the NIP method—the natural merit
function & = ¥, (w)T¥,(w)—only guarantees convergence to a stationary point of the
Lagrangian function, not necessarily a local minimizer of the NLP problem, in all test runs
the documented minimizer was obtained. Moreover, the R-NIP code have outperformed all

IP codes in the solution of the largest problem.

Table 7.31: Non-interior-point method using initialization Heuristic-A.

R-NIP P-NIP

Problem iters &-eval full/damp  time | iters @J-eval full/damp  time
1 9 9 9/0 1.09 8 8 8/0 097
2 7 7 7/0 0.92 8 8 8/0 1.04
3 9 9 9/0 1.18 8 8 8/0 1.04
4 9 g 9/0 1.34 10 10 10/0 1.50
5 10 10 10/0 2.01 12 12 12/0 241
6 11 11 11/0 4.06 12 12 12/0 4.36
7 13 13 13/0 4.05 17 31 16/1 5.27
8 12 12 12/0 7.80 17 17 17/0 10.65
9 16 20  14/2 6.68 | 18 32 17/1 7.27
10 13 13 13/0 12.64 16 33 14/2 15.18
11 13 13 13/0 31.75 20 50 18/2 48.40

B
£,

122 126 120/2 73.52 146 270 140/6 98.09

7.5 Polar vs. Rectangular: The Voltage Bound Issue

In Table 7.32, we display the number of flops required to compute the Lagrangian Hessian
V2zLu(w), the number of non-zeros in V2L, (w), and the number of non-zeros in the ma-
trix Vod(w)T of the reduced system, when using rectangular and polar coordinates. Even
though the computation of V2_L,(w) in polar coordinates profits from the computation
of the Jacobians V,g(x)T and V h(z)T, this computation still requires nearly double the
flops ‘the computation in rectangular coordinates requires. Therefore, the assembling of
matrices is more efficiently done in rectangular coordinates.

A pitfall of the OPF formulation in rectangular coordinates is the necessity to handle
the voltage bounds as nonlinear functional bounds; in polar coordinates, voltage bounds
are simple variable bounds. The computational implications can be easily examined in
the reduced system (3.24), as we look at the extent the matrix V d(z)T differs from the
Hessian V2_L,(w). The expression for these matrices are repeated below for convenience
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Table 7.32: Number of non-zeros and flops.

flops to obtain VZ,L, | Non-zeros in V2_L, | Non-zeros in VodT
Problem Rectangular Polar | Rectangular Polar | Rectangular Polar
IEEE-30 944 1823 415 613 467 661
IEEE-57 2525 3973 856 1278 968 1392
IEEE-118 3314 7590 1718 4572 1952 5592
IEEE-300 10410 19154 4315 6301 4913 7455

of reference:

m P
VieLu(w) = V2. f() = Y y;V2,9;(®) + ) 2, Vizhi(z), (7.1)
Jj=1 Jj=1

and

Ved(w)T = V2 L,(w) + u*Vh(z)(ST2 + §52)Vh(z)T + 1 I7(S72 + S7H)I.
(7.2)

Notice that the voltage bounds in polar coordinates, being part of Z, simply affect the
diagonal of V2_L,(w) through the third term in the right-hand side of (7.2), whereas
the voltage bounds in rectangular coordinates, being part of Vzh(z)%, contribute with
new non-zeros to Vzd(z)T whenever two connected buses have neighbor buses in common.
Nevertheless, some of the fill ins that are caused by the voltage functional bounds co-occur
with fill ins caused by the reactive power constraints. Hence, on the whole, functional
voltage bounds have little effect on the factorization cost, as evidenced in Table 7.32.

The handling of branch flow constraints in rectangular and in polar coordinates are alike
since the related Hessian matrices have exactly the same nonzero structure.

7.6 Final Remarks

In this chapter, we have discussed the results of extensive experiments performed with
the IP and NIP algorithms that are proposed in Chapters 3 through 5. To evaluate the
effectiveness of the proposed algorithms, we have performed over one thousand experiments
based on a test set of eleven problems, including actual power networks of up to 2098 buses.
In these experiments, the algorithms have not been tuned to particular problems; the same
parameter setting is used for all problems. Initially, we tested the performance of the IP
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algorithms as they use the default parameters and formulae. The higher-order IP algorithms
were able to solve the whole set of problems, whereas the plain primal-dual IP algorithm
failed to solve the larger problems. However, by means of simple adjustment of parameters

this algorithm was able to solve the whole set of problems too.

With respect to initialization of the algorithms, we have observed that the higher-order
IP algorithms are less sensitive to the choice of the initial point than the plain primal-dual
IP algorithm. Nevertheless, a slightly better performance is achieved with the initialization
Heuristic—A, as the points obtained by this heuristic are, in general, better centered than
the points obtained by Heuristic-B.

With respect to the step length rules, we have observed that the higher-order IP al-
gorithms perform well with the Scheme—A (separate step lengths in the primal and dual
spaces) and the Scheme-B (single common step length}, and poorly with the Scheme~C (box
constraint on the dual step). The plain primal-dual IP algorithm has performed better with
the Scheme—A. With respect to the choice of the safety factor ag, the best performance has
been obtained with safety factors in the interval 0.98 < o < 0.9995. However, a safety
factor of ap = 0.9, or even lower, may be used as a means of restoring convergence for

non-converged runs with the plain primal-dual IP method.

With respect to the choice of u%, we have observed that the convergence range for the
barrier parameter is relatively large, as long as the centering parameter ¢® is properly
chosen. The major limitation in the choice of x® is that it should not be chosen too small;
the numerical results recommend choosing x° € [1072, 1], with the best choice for the test
set considered being u® = 10~2. We believe that the proper choice of x® is directly related
to the initialization heuristic used. With respect to the updating formula of u*, the IP
algorithms have performed well with both formulae.

With respect to the number of corrector steps in the higher-order IP algorithms, we
have observed that the MPC and MCC techniques may outperform the predictor-corrector
IP method if they are allowed to perform more than one corrector step per iteration. The
MCC technique, in particular, has great potential and is our favorite.

The computational experiments with the NIP algorithm, though not quite extensive
as the experiments with the IP algorithms, have shown that this new approach is very
promising. We can observe that the best performance overall in the solution of the largest
problem was achieved by the R-NIP code.
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Conclusions

8.1 Summary and Contributions

In the daily operation of a power system, deciding on an optimal control action, aiming at
the economic and reliable operation of a system, is an extremely difficult task. However,
such a task has been successfully performed by OPF procedures at power system control
centers. The OPF problem is inevitably a very large non-convex NLP problem. Although
local approximation-based optimization techniques such as SLP and SQP have been widely
used to solve OPF problems, recently there has been an increasing need to speed up solutions
which can be accomplished by solving the OPF problems in a nonlinear manner. Due to
the size and special feature of these problems, IP methods have computationally proven
to be a viable alternative for their solution. This thesis research has concentrated on the
solution of large-scale OPF problems, in a nonlinear manner, by IP and NIP methods.

In Chapter 2, three variants of the broad class of OPF problems are described, namely,
(i) the reactive power dispatch problem, (ii) the maximum loadability problem, and (iii) the
minimum load shedding problem. The OPF problem (i) has been formulated, in this the-
sis, using voltages either in rectangular or in polar coordinates. Advantages of using bus
voltages in rectangular coordinates, as explored in the thesis, are ease of matrix setup and
incorporation of second-order information in higher-order IP methods; a minor difficulty
related to the rectangular coordinates, as compared with the polar coordinates, is the need
to handle simple voltage bounds as (simple) functional bounds. Mainly through the OPF
formulations (ii) and (iii), we emphasize the increasing need to solve OPF problems in a

nonlinear manner.

120
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In Chapter 3, the mathematical development of a primal-dual IP algorithm for NLP is
described in details. This IP algorithm development is a direct extension of the IP method
for LP that is described in [52]. In this thesis research, we have conducted the following

studies:

e We have developed in detail our infeasible primal-dual IP algorithm for NLP based
on the NLP problem (1.1), which is a suitable form to formulate most OPF problems.

e We have studied the performance of the primal-dual IP algorithm as it employs several
initialization heuristics, schemes to compute the step lengths, and updating formulae
of the barrier parameter. Also, we have studied the influence of various parameters of

the algorithm in the convergence process, as concerned with nonlinear OPF solution.

e We have thoroughly studied the performance of the primal-dual IP algorithm as
it solves the RPD problem formulated in both rectangular and polar coordinates.
Such an analysis—rectangular coordinates versus polar coordinates—has not been

performed in previous works.

e We have described an alternative approach to compute the Newton direction, called
the reduced system approach. From such a reduced system, the implications of han-
dling the voltage bounds as functional bounds (in rectangular coordinates) instead of
simple bounds (in polar coordinates) can be easily examined as we look at the extent
the matrix V,d(w)T differs from the matrix V2_,L,(w). Such an analysis has been
presented in Chapter 7.

In Chapter 4, we present extensions to NLP of four successful higher-order IP methods
for LP and QP, namely, (i) the predictor-corrector method, (ii) the perturbed composite
Newton method, (iii) the multiple predictor-corrector method, and (iv) the multiple cen-
trality corrections method. The central idea behind all these techniques is to reduce the
number of derivative evaluations and matrix factorizations to a necessary minimum, even
at the expense of some increase in the cost of a single iteration. The approach (i) was first
extended to nonlinear OPF solution in [77]. Concerning the higher-order IP methods, the
contributions made in this thesis are as follows:

e We have extended to nonlinear OPF solution the perturbed composite Newton IP
method for LP and QP, as developed by Tapia et al. {67].

e We have extended to nonlinear OPF solution the multiple predictor-corrector IP
method for LP and QP, as developed by Carpenter et al. [10].
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e Also, we have extended to nonlinear OPF solution the multiple centrality corrections
technique for LP developed by Gondzio [31].

None of the techniques (ii), (iii) and (iv) was previously considered for nonlinear OPF

solution.

In Chapter 5, a new algorithm to solve nonlinear OPF problems is proposed. It is a
NIP algorithm that handles the complementarity conditions by a recently introduced NCP-
function. As far as we are aware, the proposed OPF algorithm is the first one based on
NCP-functions. Distinctive features of this approach, as compared with IP methods, are
that it can start from arbitrary points, and the iterates are not required to stay inside
the positive orthant of the complementarity product space. That is, the non-negativity
conditions need be satisfied only at the solution point.

In Chapter 6, we discuss many issues that are directly related to the efficient imple-
mentation of the IP and NIP algorithms, as concerned with nonlinear OPF solution. The
contributions made in this chapter are as follows:

e We have presented four initialization heuristics. Two of the heuristics conform with
the whole set of IP algorithms whereas all four conform with the NIP algorithm. The
numerical performance of each initialization heuristic is discussed in Chapter 7.

e We have derived explicit formulae to efficiently assemble the Hessian matrices, both in
rectangular and in polar coordinates. We have shown that this task is more efficiently
done in rectangular coordinates, where the function Hessians are constant.

e We have proposed a mapping from constraint multipliers to bus multipliers: (y, z2) —
(AP, A9, AY). Such a mapping considerably reduces the number of logical operations
in the evaluation of the Lagrangian gradient and Hessian, and allows for efficient data

structure and savings in computer memory usage.

e We have derived explicit formulae to estimate the number of flops required to obtain
the Lagrangian Hessian—the major effort in forming the Newton system—both in
rectangular and in polar coordinates.

e We have presented some code fragments to emphasize the advantages of the proposed
mapping of Lagrange multipliers. Also, we have discussed a block-data structure and
the solution of symmetric indefinite systems.
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In Chapter 7, for performance evaluation and comparison purposes, we discuss extensive
computational experiments with the IP and NIP algorithms. Results of over one thousand

tests are presented. The conclusions derived from this chapter are as follows:

e Initially, we tested the performance of the IP algorithms for the default parameters
and formulae. The higher-order IP algorithms were able to solve all the problems,
whereas the plain primal-dual IP algorithm failed to solve the larger ones. By means
of parameter adjustments, this algorithm solved all the problems too.

e With respect to initialization of the algorithms, we have observed that the higher-order
IP algorithms are less sensitive to the choice of the initial pcint than the plain primal-
dual IP algorithm. However, better performance is achieved with the initialization
Heuristic—A, as the points obtained by this heuristic are, in general, better centered

than the points obtained by Heuristic-B.

e With respect to the step length rules, we have observed that the higher-order IP
algorithms perform satisfactorily with the Scheme—-A (separate step lengths in the
primal and dual spaces) and the Scheme-B (single common step length), and poorly
with the Scheme-C (box constraint on the dual step).

e With respect to the choice of the safety factor ¢q, the best performance has been
obtained with safety factors in the interval 0.98 < ap < 0.9995. However, a safety
factor of ag = 0.9, or even lower, may be used as a means of restoring convergence

for non-converged runs with the plain primal-dual IP method.

e With respect to the choice of ;°, we have observed that the convergence range for the
barrier parameter is relatively large, as long as the centering parameter ¢9 is properly
chosen. The major limitation in the choice of x9 is that it should not be chosen too
small; the numerical results recommend choosing ul € [10‘2, 1], with the best choice

for the test set considered being u® = 10~2.

e With respect to the updating formula of x*, the IP algorithms have performed satis-
factorily with both formulae.

e With respect to the number of corrector step in the higher-order IP algorithms, we
have observed that the MPC and MCC techniques may outperform the predictor-
corrector IP method if they are allowed to perform more than one corrector step per

iteration.
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o The computational experiments with the NIP algorithm, though not quite extensive
as the experiments with the IP algorithms, have shown that this new approach is very
promising. We have observed that the best performance overall in the solution of the
largest problem has been achieved by the R-NIP code.

¢ Related to the issue Rectangular Coordinates versus Polar Coordinates, the computa-
tional experiments have revealed that their performance are alike, as far as concerned

with the number of iterations and CPU times.

o Interestingly enough, despite the non-convexity of the nonlinear OPF problem and
the reasonable large number of experiments performed, using different initialization,
parameters, formulae, and so forth, the IP and NIP algorithms have obtained the

same local optimum for the problems.

On the whole, the results discussed in Chapter 7 have illustrated the viability of the proposed
IP and NIP algorithms to solve large scale OPF problems in a nonlinear manner.

8.2 Directions for Future Research

Concerning future work with the infeasible primal-dual IP algorithm that is described in
Chapter 3, a study of the usefulness of inexact search directions sounds interesting. The
idea is to reduce the overall computational time by reducing the effort of a single iteration,
even at the expense of some increase in the iteration count. By an inexact search direction

we mean that the vector Aw satisfies
V2 o Lu(w®)Aw = -V, L, (w*) + rF. (8.1)

for some suitable residual vector r*. An iterative solver, such as a preconditioned conjugate
gradient method, can be used to solve the linear system (3.13); this method is stopped when
the norm of the residual is smaller than a prefixed accuracy, that is, ||r’°[|2 < ek

Concerning future work with the higher-order IP methods described in Chapter 4, an
issue deserving further research, in our most immediate vision, is how to dynamically choose
the appropriate number of corrector steps within each iteration of the higher-order IP
methods. Also, it sounds interesting to study a combination of the various methods in a

single algorithm.

Concerning future work with the NIP approach described in Chapter 5, we consider as
potential directions for research the following topics:
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o Since the NIP algorithm can start from arbitrary points and all matrices in the IP
and NIP algorithms have the same nonzero pattern, an improved OPF algorithm
most likely can be developed if we combine together the two algorithms. Notice that
switching from one algorithm to the other demands no changes of the linear algebra
kernel, the core of both techniques.

o The robustness of the NIP algorithm can be improved if we consider a Levenberg-
Marquardt-type method for the solution of (5.25). Instead of solving (5.28) for the
direction Aw, this method computes a search direction d* as the solution of the

modified linear system
[V (w*)T +d*I]d* = —@, (w*) (8.2)

where ¥ > 0 here is the Levenberg-Marquardt parameter. If the direction generated
by (5.45) is not a “good” descent direction, according to the test

Vu@,(w)Td® < —plldIP, p>0, p>2, (8:3)
we resort to the steepest descent direction, that is, let df = ~Vud, (w*).

» As suggested for the primal-dual IP algorithm, an issue worth of investigation is the
usefulness of inexact search directions. By this we mean that the vector Aw satisfies

V& (wF)T Aw = -, (w*) + r¥. (8.4)

where % here is the vector of residuals and measures how inexactly system (5.28)
is solved. An iterative solver is used to solve the linear system (5.28); this method
is stopped when the norm of the residual is smaller than a prefixed accuracy, that
is, lr*|lz < €. Facchinei and Kanzow [20] have proposed an inezact Levenberg-

Marquardt-type algorithm to solve large NCP problems that uses a test like |[7¥] <
(0.1/(k + 1)) D (w")]l..

» Since the computation and factorization of matrix V,,%,(w*)T demand the greatest
computational effort within an iteration of the NIP algorithm, it may be advantageous
to use the same derivative evaluation and matrix factorization in several solves. Then,
the composite Newton method could be extended to the NIP algorithm.

» The implementation of other NCP-functions is another interesting topic of research.
For instance, many recently developed algorithms to solve complementarity problems
(see [16,20]) employ non-smooth reformulation, involving the computation of the
generalized Jacobian of Clarke [12] within a Newton-type algorithm.
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Derivatives: Rectangular and Polar

Coordinates

A.1 First-Order Derivatives: Rectangular Coordinates
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DERIVATIVES: RECTANGULAR AND POLAR COORDINATES
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Rectangular Coordinates
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DERIVATIVES: RECTANGULAR AND POLAR COORDINATES
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%P,
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A.3 First-Order Derivatives: Polar Coordinates
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A.4 Second-Order Derivatives: Polar Coordinates
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