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Abstract 

Optimization of power systems is one of the areas where interior-point (IF) methods are 

being applied extensively; due to the size and special features of these problems, IF methods 

have computationaUy proven to be a viable alternative for their solution. In this thesis, we 

propose and investigate a number of IP methods for solving Iarge nonlinear programming 

(NLP) problems. The P method that we study belongs to the class of infeasible prinaal- 

dual path-fallowing methods. Four higher-order variants of this IF' method are considered 

as  well: (i) the predictor-corrector met hod, (ii) the perturbed composite Newton method, 

(iii) the multiple predict or-correct or met hod, and (iv) the multiple centrality corrections 

method. The proposed IP algorithms are then applïed to specialized optimal power flow 

(OPF) problems that use voltages either in polar or in rectangular coordinates. When 

formdated in rectangular coordinates, some OPF variants have quadratic objective and 

quadratic constraints. S uch quadrat ic features allow for ease of matrix setup and inexpensive 

incorporation of second-order information in higher-order variants of the IF method. 

A non-interior-point ( N P )  method for solving nonlinear OPF problems is also proposed 

in this thesis. Unlike IP methods, the NIP method handles the complernentarity conditions 

for optimality in such a way that the strict positivity conditions are not required to be 

satisfied at  every it erat e. This approach derives from reformulations of complemen tarit y 

problems as n o ~ e a r  systems of equations, and allows for a Newton-type method to be 

used. To r e f o d a t e  the OPF probIem as a nonlinear system of equations, we handle the 

complementarity conditions by means of an NCP-function, which is a function 11,, : Di2 ct lR 
that satisfies the propers: $p(a, b) = O a > O, b > O and ab = p, for any C( > O. Since 

the non-negativity of any Iimit point is automatically assured by NCP-functions, without 

imposing additional conditioris, the initial point and the iterates do not necessarily have to 

stay in the positive orthant. 

In this thesis, we have derived the proposed IP and NLP dgorithms based on an NLP 
problem form that is suitable to express most OPF problems. Many important issues for 

the efficient implementation of these algorithms, as related to nonLinear OPF solution, are 

discussed in detail. Numerical results illustrate the viability of the proposed algorithms as 

applied to several power networks that range in size fiom 14 to 2098 buses. 
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Glossary 

We sirmmarize here, for convenience of reference, some of the notation and terminology 

used in this thesis. 

: n-dimensional Euclidean space. 

: nonnegative orthant of Rn. If 3: E BI;, then xi çi O for i = 

I,.. .  ,n. 

: strictly positive orthant of B*. If x E Dl:+? then xi > O for 

i = l,... ,n- 

: Euclidean nom. If s E IRn, then = x:)~/~. 

: lm-nom. If x E Rn, then 1 1 ~ 1 1 ,  = maxiIxil. 

: natural Iogarithm: log,. 

: vectors of ones of appropriate dimension: u = (1,1,. . . , I ) ~ .  

: zero vector or zero matrix. 

: identity matrix in IRnXn. 

e 

: iteration index: k = 1,2,3, . . . . 
: nwnber of equality constraints. 

: number of primd variables xi. 

: number of nodinear functional bound constraints. 

: number of simple bound constraints. 

: number of primal and dud variables: r = 4p + 4q + n + m. 

xiv 



Index sets: 

Functions and vectors: 

: set of indices (with I&I  elements) of load buses eligible for shunt 

var control. 

: set of indices (with (Fi elements) of Ioad buses with hxed var 

sources. 

: set of indiens (witb IÇI elernents) O£ generator buses. 

: set of indices (with IN[ elements) of ail buses in the system. 

: set of indices (with [NI elements) of all buses in the system but 

the slack bus. 

: set of indices (with [Nil elements) of a.U buses directly connected 

to bus i. 

: set of ordered index pairs (i, j )  (with IL31 elements) of sending-end 

and receiving-end buses of al1 branches in the system (transmission 

lines and transformers): B := {(i, j )  1 i E N ,  j E Ni and j > i) 

: set of ordered index pairs (i, j) (with ITl elements) of sending-end 

and receiving-end buses of all transformers with LTC: T c B. 

: vector of prirnd variables. 

: vector of primal variables that have f i t e  bounds: x I ii5 5 35. 

: scdar objective function. 

: gradient vector of f (x). 

: nodïnear function-vector of equaLity constraints. 

: nonlinear function-vector of functional variables, that have Iower 

bound h and upper bound h. 
- 

: prima1 slack vectors: h + s r  = h(x) and h(x) + 9 2  = h. 

: primal slack vectors: - + 233 = 2 and i3 + s4 = E. 

: Lagrange multiplier vectors related to h I h(x) 5 h 

: Lagrange multiplier vectors related to x 5 Z _< E. 

: Lagrange multiplier vector related to g (2) = 0. 



Matrices: 

: vector of al l  prima1 and d u d  miables: 
T w := ( s i ,  s2, s3i ~ 4 ,  Z I , ~ Z Y ~ ~ Y  2 4 1  1 ,  Y )  - 

: Lagrangian function parameterized by p. 

: gradient vector of Lp ( w  ; p )  with respect to X. 

: gradient vector of L,(w; p )  with respect to W .  

: bus susceptance matrix. 

: bus conductance matrix. 

: transposed Jacobian mat* of g(x ) :  

V Z d 4  := [V,g1(41 V,g*(x),  - , Vzgm(41- 

: transposed Jacobian mat& of h(r):  

VZh(4 := [v&(x), ~ x h , ( 4 ,  - - - , ~ , h , ( x ) ]  

: Hessian matrix of f (x). 

: Hessian matrix of the component gi(x) of g(x ) .  

: Hessian matrix of the cornponent hi (x) of h ( x ) .  

: Hessian matrix of L , ( W ; ~ ~ )  with respect to 2. 

: Hessian matrix of Lp (w; pk)  with respect to W .  

s1, s27 s3, s4 : diagonal matrices constructed fiom the vectors s i ,  s2, s3 and ~ 4 ,  

respectively. For example, Si := diag(sl, ,sl, ,  . . . ,si,). 
Z L Z ~ , ~ , ,  z4 : diagonal matrices constructed from the vectors zl, i l  t z 2 ,  2 3  and 

2 3  + 2 4 ,  respectively. 

Acronyms: 

KKT 

LCP 

LTC 

MCC 

: Interior-Point. 

: Karus h-Kuhn-Tucker . 
: Linear Complementarity Problem. 

: Linear Programming. 

: under Load Tap Chaoger. 

: Multiple Centrality Corrections. 



ML 

MLS 

MPC 

NCP 

ME' 

NLP 

OPF 

QP 

PCN 

RPD 

SLP 

S v '  

: Mauimum Loadability. 

: Minimum Load Shedding. 

: Multiple Predictor-Corrector. 

: Nonlinear Complementarity Problem. 

: Non-Interior-Point. 

: NonLinea. Programming- 

: Optimal Power ~low: 

: Quadratic Progrxmming. 

: Perturbed Composite Newton. 

: Reactive Power Dispatch. 

: Sequent i d  Linear Programrning- 

: Sequentid Quadratic Programming. 



Chapter 1 

Introduction 

The main purpose of a power system is to provide its consumers of electricity with power 

above a certain level of quality, and as economicaUy as possible. Loosely speaking, quai- 

ity of power supply is measured in terms of constancy of fkequency and of voltage, and 

level of reliability. Frequency control is closely related to active power control, whereas 

voltage control is closely related to reactive p m r  control [50]. Incidentdy, the constantly 

changing load demand for active and reactive powers, and unforeseen changes in network 

configuration, can resdt in voltage levels that are well outside tolerable limits and, most 

likely, violate utility and consumers equiprnent operat ion restrictions. 

To correct undesirable operation conditions, power system operators are required to 

constantly control the production, absorption, and flow of power at ail levels in the system. 

This is done by adjusting system control variables such as generator outputs, transformer 

tap setthgs, shunt var sources, and so forth. Deciding on an optimal control action, aiming 

at the secure and economic operation of a power system, is an extremely difficult task, 

which is best performed by the optimal power flaw (OPF) tool at power system control 

centers [73]. The OPF tool is a sophisticated computational procedure that uses math* 

matical p r o g r d g  techniques to h d  an optimal setting of the system control variables, 

subject to a reasonably large set of specified physicai and operational constraints. 

The OPF problem is inevitably a very large non-convex nonlinear prograrnming (NLP) 
problem, that is complicated in realistic applications by the presence of a large number 

of discrete variables such as transformer tap ratios, shunt capacitor susceptances, and so 

forth. Given its si@cance in power system planning and operation activities, OPF has 
been the subject of intensive research for nearly four decades [38,65]. Gradient techniques 



were the &st approaches used to solve an OPF problem [18], which was mathematically 

formulated for the fmt time by Carpentier in 1962. Since then, improvements in OPF 
procedures have been achieved in two main ways: (i) more efficient problem formulation, 

and (ii) improved mathematical techniques. The main techniques for solving the OPF prob- 

lem include reduced gradient methods, methods based on augmented Lagraugian and exact 

penalty functions, and, mainly, local approximation-based approaches such as sequential 

Iinear prograrnming (SLP) and sequen tial quadratic programrning ( S  Q P )  . 

The SLP and SQP approaches have been widely used in power system o p t ~ a t i o n .  

Nowadays, they can take advantage of efficient interior-point (IP) methods for soIving the 

LP  and QP subproblems [72,79]. However, the convergence success of SLP and SQP is, 

among other things, highly dependent on the existence of a good initial operating point, 

which not aiways does occur. IncidentaUy, as we explain below, there has been a growing 

need to solve the OPF problem in a nonlinear manner. An acclairned algorithm to solve 

the OPF in a nonlinear rnanner was proposed by Sun et al. [66, 1984 It combines together 

the Newton's met hod (for uncons trained op timization) with a Lagraage multiplier me thod 

(for op timization wit h equalities) and penalty functions (for handling inequalities) . WeU 

designed data structures, which allow for block-factor kation, and efficient use of sparsity 

techniques made such an algorithm very attractive and successfid at the time. Its com- 

putational efficiency, however, greatly relies on the efficient identification of the binding 

constraints. 

In the new scenario of a deregulated electricity market, the trend is for power systems 

to be operated closer to ultimate limits. Cornpetition in a deregulated market, with utilities 

eager for better profits, likely involve large power transactions that may lead the systems 

to heavily loading condit ions. Also, load growth, coupled wit h financial and regdatory 

constraints that often severely lunit the expansion of generation and transmission facilities, 

have led power systems to operate closer to their transfer lirnit. Power systems should 

then be carefully monitored and controlled in order to avoid voltage, electromechanical, 

and control stabiliw problerns. Towards this purpose, an OPF procedure at power system 

control centers plays a major role. Fkom the above, an OPF is now required to deal with 

strong nonlinearities in power system behavior; local approximation-based optimization 

techniques will be Iess attractive to cope with stressed operation conditions [36]. 

Ln the ernerging deregulated electricity market, with numerous sellers of electric energy 

in the same area, new challenges are being imposed to the OPF procedure. For example, 

the following applications are h t e d  in [22]: 



To calculate the maximum load at  a subset of buses, for voltage collapse analysis, or 

calculate the mfnimum load shedding to avoid voltage collapse. 

To calculate the maximum load that can safely be delivered at a given bus, or set of 

buses, in order to dehne contracts with large power consumers. 

To calculate the maximum active power that c m  safely be transferred fiom one area 

of the network to another, to define inter-utility transactions. 

To caictdate the maximum active power between any pair of buses in order to defbe 

maximum wheeling transaction capability. 

These OPF variants are highly nonlinear problems, and solvhg them c m  be very dEcult. 

Various conditions under which an OPF algorithm may fail to converge are discussed in [2]. 

1.1 Research Motivation 

In this research, we strive for the efficient numerical solution of large-scale NLP problems 

(with thousands of variables and constraints) that can be expressed in the standard form: 

motivated by the fact that the structure of most OPF problems is essentidy contained in 

such a form, where 

x E B n  : is a vector of explicit decision variables, including the control and 

nonfunctional dependent (state) variables. (A control variable is one 

which can be manipulated, whereas a dependent variable depends on 

O t her variables and cannot be directly manipulated.) 

f : lRn ct lR : is a scalar function that represents the power system's planning or 

operation optirnization goal such as generation cost, power losses in 
the transmission systern, load shedding, and so forth. 

g : lRn ct Rm: is a nonlinear vector that contains conventional power balance equa- 

tions, occasionally augmented by a few specid equality constraints 



such as power balances across boundaries as in a pool operation, or 

flows that are set to a given value, and so forth. 

is a nonIinear vector of functional variables, with lower bound S and 
upper bound h, corresponduig to physical and specified operat ional 

limits on the system. 

(implicit as Fz) is a vector with the cornponents of s that have h i t e  

bounds, with lower bound - and upper bound E, corresponding to 

physical and specified operat ional lunits on the system. 

is an incidence matrix to obtain Z fkom x ,  formed by the rows of 

In lRnxn that have the indices of the bounded ~Aables .  

To solve the NLP problem (LI), we will employ interior-point (IP) and non-interior-point 

(NP) methods for large-scak NLP. 

Over the past fifteen years, research on IF' methods has experienced an awesome ex- 

pansion, both in theory and computational practice. The tirst known IP method is usually 
attributed to Frisch [26, 19551, whïch is a logarithmic b u m e r  method that was later (1960s) 

extensively studied by Fiacco and McCormick [21, 19681 to solve nonlineady inequality 

constrained problems. Interestingly enough, it was in the LP research area, in 1984, that 

the superb computational efficiency of IP methods was first demonstrated in practice [47], 

with initial reluctant acceptance and later with enthusiastic recognition by the research 

communïty. In 1979, Khachiyan [48] presented an ellipsoid method that would solve an LP 

problem in polynomial tirne, meaning that the number of operations to obtain the optimum 

is bounded by a polynomial in the problem dimension. Unfortunately, his method proved, 

in practice, to be cornputationally inferior to the simplex method. 

As mentioned above, the greatest breakthrough in the IP research field took place in 

1984 when Karmit~kar [47] came up with a new IP method for LP, reporting solution 

times up to 50 times faster than the simplex method. Since then, several IP methods 

have been proposed and implemented. IP methods are usu+ classxed into three main 

cat egories: (i) projective methods [47], (ii) afine-scaling methods [53], and (iii) primal- 

dual methods [32, 761. Projective methods uiclude Kamiarkar's original algorithm, and 

are responsible for the great interest established to the IP research area. Soon after 1984, 

&ne-scaling methods were obtained as simpWcations of projective methods. Their reduced 

computational complexity and simpliciSf made them very popular at the time. They were 

also among the most effective in practice. Primal-dual methods can be subdivided into: 
(i) path-following methods [30] and (ii) potential reduction methods [58]. 



The first theoretical results for primal-dual path-foUowing methods are due to Megiddo 

[56, 19861, who proposed to apply a logarithmic barrier method to the primd and duai 

pro blems simultaneousIy. His primal-dual pat h-following algorit hm performs bet ter t han 

earlier IP algorithms. The primal-dual algorithms that incorporate predictor and corrector 

s teps, such as Mehrotra's predictor-corrector technique [57, iggz] , are currently accep ted as 

the computat ionally most effective variants. Further improvements to Mehro tra7s technique 

were later achieved through the use of multiple corrector steps [IO, 311. Nowadays, IP 
method variants are being extended to solve aL1 kind of programs: fkom linear to nonlinear, 

and fkom convex to non-convex. Recently, the development of IP methods to directly solve 

NLP problems [19,64,71,78] has been motivated by the superb performance of IP methods 

for LP and QP. 

Optùnization of power system operations is one of the areas where IP methods are 

being applied extensively [13,33,40,54,55,69,77]; due to the size and special features of 

these problems, IP methods have computationally proven to be a viable alternative for 

their solution. Among the various applications of Il? methods in power systems are the 

solution of the minimum load shedding [34] and maximum loadability [40] problems; these 

are highly noalLnear variants of the OPF problem that very unlikely can be solved by an 

LP-based approach. An attractive feature of the primal-dual IP approach is that feasibility 

is usually attained during the iterative process, as optimality is approached; this means 

that the power balance equations need not be satisfied at the initial point. This feature 

is particularly important to solving minimum load shedding problems, where power flow 

unsolvability is an issue. 

Previously proposed OPF algorit hms have mostly used voltages in polar coordinates, 

possibly due to the excellent performance and widespread use of decoupIed power flow 

programs which use voltage polar coordinat es. Polar coordinat es are more intuitive because 

voltage magnitudes and phase angles are u s u d y  taken as state variables, and these have a 

physical meaning. Rectangular coc~rdinates, on the contrary, have been totdIy neglected in 

OPF studies. In this thesis, we study the advantages and disadvantages of using the polar 

and rectangular coordinates in noniinear OPE' solution by primal-dual IP methods. 

We have observed that some OPF variants when f o d a t e d  in rectangulaz form have 

quadratic objective and quadratic constraints. Desir able properties of a quadratic fimction 

are: (i) its Hessian is constant, (ü) its Saylor-series expansion terminates at  the second- 

order term without truncation error, and (iii) the second-order term of its Taylor-series is 

easiIy evaluated. Such quadratic features d o w  for ease of matrix setup and inexpensive 



incorporation of second-order information in higher-order IP method variants. With the 

polar coordinates, on the other hand, we find that voltagemagnitude bounds are handled 

in a more straightfomard manner- These issues have not been studied in great detail in 

previous works; we address them in the current thesis research. 

The OPF optimality conditions can be regarded as a particular case of the nonlinear 

complementarity pro blem (NCP) .  In the last few years, growing attention has been paid to 

approaches that reformulate compiernentarity probzems as nonhear systems of equations [6, 

11,16,20,23,44-461, so that a Newton-type method can be used in their solution. There are 

several possibilities to redefhe an NCP as  a system of equations. Recently, reformdations 

that handle the complementarity conditions by means of NCP-fitnctions have attracted a 

lot of attention from researchers. 

A hinction 1/1 :  lR2 I+ H is said to be an NCP-fiinction if it satisfies the property: 

$(ad)  = O (=> a 2 O, b 2 0 and ab = O .  

Since the non-negativity of any limit point is automaticdy assured by an NCP-function (as 

long as the iterative process converges to a stationary point of the Lagrangian function), 

without imposing additional conditions, the initiai point and the iterates do not necessarily 

have to stay in the positive orthant, unlike IP methods. Recently developed techniques for 

solving compiementarity problems have not been applied to OPF solution. As we employ 

these techniques, we fiu-ther expand the state-of-the-art of OPF solution procedures. 

1.2 Research Objectives 

We define as  the main objectives underlying the current thesis research, the following: 

To formulate OPF problems by using voltages in rectangular and in polar coordinates, 

and to identiS., afterwards, the major computat ional advantages and disadvant ages 

of both voltage representations. 

To develop a primal-dual IP algorithm for solving OPF problems in a nonlinear man- 

ner. As in previous works, this IP dgorithm development is a direct extension of its 

similar for LP. However, we aim to study dinerent step length schemes and updating 

formulae of the barrier parameter, study the S u e n c e  of various parameters in the 

algorithm convergence, elaborate on difkrent analytical procedures to compute the 

Newton directions, and propose initialization heuristics suitable for the OPF solution. 



To develop extensions to NLP of several successfd higher-order IP methods for LP. 

The higher-order IP variants st udied are: (i) the prechctor-corrector met hod [57], 

(ii) the perturbed composite Newton method [67], (fi) the multiple predictor-corrector 

method [IO], and (iv) the multiple centrality corrections method [31]. The approach 

(i) was previously extended to nonlinear OPF solution by Wu, Debs and Marsten [77, 

1994, whereas the approaches (ii), (iii) and (iv) have not been extended at ail to 

power systems opt imizat ion. 

To develop the first OPF approach that handes the complementarity conditions for 

optimality by means of an NCP-function. This is an original OPF algori th ,  where we 

take advantage of recent mathematical developrnent to solve complementarity prob- 

lems. We use an NCP-function to transform the whole Kamsh-Kzthn-Tucker (KKT) 
conditions into a system of nonlinear equations; such a nonhear system is solved 

afterwards by a Newton-type rnethod: which we describe in detail. 

The research carried out mder this topic is the major contribution of this thesis. 

To discuss many issues that are related to the efficient Mplementation of IP and NIP 
algorithms for NLP, in comection with the solution of OPF problems. Particularly, 

to discuss heuristics for initialization of the algorithms; to discuss the assembling of 

matrices in rectangular and in polar coordinates; to discuss data structures; and to 

discuss the solution of the linear systerns. 

To implement the proposed algorithms in Fortran 77 and perforrn computational 

experiments to gain insight into the various met hods; to compare competing met hods; 

to tune parameters in the a i g o r i t h ;  and to compare the polar and the rectangdar 

"versions" of the OPF algorithm. 

1.3 Outline of the Thesis 

The remainder of this thesis is organized as folIows. In Chapter 2, we describe formulations 

of three variants of the OPF problem, namely, (i) the miriimum transmission power losses, 

(ii) the mâXiZI1um loadability, and (iii) the minimum load shedding problems. Problem (i) 
is formulated both in rectangular and in polar coordinates. 

IR Chapters 3 and 4, we deal with primal-dual IP algorithms suitable for solving the 

NLP problem (1.1). SpecScdy, in Chapter 3, a prirnal-dual IP method is developed in 

detail. We describe two analytical approaches to cornpute the Newton directions, three 



schemes to compute the step lengths, h o  updating fonnulae of the barrier parameter, and 

describe the convergence test. Ln Chapter 4, we describe various higher-order variants of the 

Il? method presented in Chapter 3, namely, (i) the predictor-corrector method, (ii) the com- 

posite Newton nethod, (üi) the multiple predictor-corrector method, and (iv) the multiple 

centraiity corrections method. 

In Chapter 5, a new NIP continuation method for solving the nonhear OPF problem 

is proposed. This algorithm development is based on a recently proposed NCP-finction to 

solve cornplernentarity problems. We propose a reformulation of the KKT conditions as a 

nonlinear system of equations and then describe a Newton-type algorithm that is used to 

solve such a nonlinear system. 

In Chapter 6, we discuss many points and issues that axe directly related to efficient 

implementations of the P and NIP algorithms that are described in Chapters 3, 4 and 5. 

The emphasis, however, is on implementations for solving the OPF problems that are 

described in Chapter 2. Particularly, we propose four heuristics for initialization of the 

algorithms, describe the assembling of matrices for the rectangular and the polar 'tersions7' 

of the OPF problem, discuss data structures and some code fkagments, and discuss the 

solution of the linear systems. 

In Chapter 7, we discuss extensive numericd resdts ob tained with implementations of 

the IP and NZP algorithxm to solve the reactiue power dispatch OPF variant. The main 

purposes of the computational tests are: (i) to gain insight into the various methods, (ii) to 

compare cornpethg methods, (üi) to tune parameters in the algorithms, and (iv) to compare 

the rectangdar and the polar "versions" of the OPF problem. In these numerical tests, we 

ernploy eleven power systems that range in size kom 14 to 2098 buses. 

Finally, a s r i m m q  and conclusions are presented in Chapter 8. We highlight the main 
contributions of this thesis and provide a List of potential research directions that, we believe, 

codd further expand the state-of-t he-art of OPF solution procedures. 



Chapter 2 

Optimal Power Flow Problem 

For efficient, reliable and economic operation of a power system, several leveis of controls 

that involve a cornplex array of devices have to be selected and properly coordinated. 

In the operation of a power system, the load demand for active and reactive powers is 

continuously changing and often resdts in voltage levels that are well outside tolerable liniits 

and, most likely, violate utility and consumers equipment operation restrictions. To repair 

unaccep table operat ing conditions, power system operators are required to continuously 

control the production, absorption, and flow of power at all levels in the system, by adjusting 

system control variables such as generation outputs, transformer tap settings, phase shifter 

angles, shunt capacitor susceptances, shunt reactor suceptances, and so forth. 

Due to the fact that a power system is fed by many generating units, and supplies 

power to a vast number of loads that are dispersed over large geographical areas, the task 

of maintainirig voltages within the required limits is a difficult one. Voltage control is 

recognized as closely related to reactive power control; the proper selection and coordination 

of equipment for controlling reactive power and voltage are among the major challenges of 

power engineering [50]. This task can be efficiently performed by the optimal power pow 

(OPF) procedure at power system control centers. The OPF is an elaborated computational 

tool that uses optirnination techniques to h d  the state of a power system that o p t f i e s  a 

given performance index while satiseing a set of physical and operational constraints. 

An OPF problem can be posed in Mnous difFerent fonns [65]. This chapter deals with 

the formulation of three variants of the OPF class, namely, (i) the reactive power dispatch 

(RPD) problem, (ii) the maximum loadabila'ty (ML) probIem, and (Ei) the minimum laad 

shedding (MLS) problem. The objective of the RPD problem, as formulated in this thesis, 



is to minimiire the active power Iosses in the transmission system sub ject to the power flow 

balance equations, the operat ing limits on voltages and reactive power output of generators, 

and the physical limits on shunt susceptances and transformer tap settings. 

The ML problem =tims at determining the maximum load increase a power system can 

withstand while s a t i s w g  utility and consumers device operation restrictions [40]. In many 

situations in the operation of a power system, load shedding schemes are utilized to reduce 

the actual load to a level that can be safely supplied by available generation. The MLS 

problem is to detennine the minimum load shedding necessary for restoring feasibility of 

operation, or even for restoring solvability of the power flow equations, ot herwise unsolvable 

[34]. Such a situation occurs: for instance, as the system undergoes a severe contingency. 

From the above, the ML and MLS procedures are, therefore, valuable tools in voltage 

collapse studies. As such, they deal with highly nonlùlear problems. 

Previously proposed OPF formulations have mostly used voltages expressed in polar 

coordinat es, possibly due to the excellent performance and widespread use of decoupled 

power flow programs that employ polar coordinates. Polar coordinates are more intuitive 

because voltage magnitudes and phase angles are usually taken as state variables, and these 

have a direct physical meaning. Although voltages expressed in rectangular coordinates has 

provided some sort of numericd advantage in several applications, no substaatial attention 

has been paid to this voltage representation form in OPF studies. 

The rectangular coordinates space has been utilized, among others, by Iwamoto and 

Tamura [42, 19811 in power flow studies, by Iwamoto, Kusano and Quintana [41, 19891 in 

state estimation studies, by Galiana and Zeng [27, 19921 in the study of load %ow behavior 

in the proximity of a Jacobian singularity, and by Overbye and Klump [60, 19961 in the 

calculation of power system low-voltage solutions. In this thesis, we study the advantages 

and disadvantages of using the rectangular and the polar variable spaces in nonlinear OPF 

solution by primal-dual IP methods. Rectangular coordinates was fkst utilized in OPF 
solution by IP methods by Torres, Quintana and Lambert-Torres [70, 19961. 

This chapter is organized as follows. In the next section, we present some notation, 

definitions and power equations used in the OFF formulations. In Section 2.2, the RPD 
problem is formulated in rectangular and in polar coordinates. We show that the constraint 

fimctions in the rectangular coordinates "version" are quadratic functiom of the voltage 

components. In Sections 2.3 and 2.4, we describe fairly simple formulations of the ML and 
MLS problems. We include these problems to emphasize the current need for solving OPF 
problems in a nonlinear manner. Final remarks in Section 2.5 close the chapter. 



2.1 Some Definitions and Power Equations 

The following sets of indices are utilized throughout this thesis. We denote by N the set of 

al1 buses (nodes) in the system, by 3 the set of al1 buses but the slack bus, by Ç the set of 

generator buses, by F the set of load buses with fixed shunt var sources, and by E the set 

of load buses eligible for shunt var control. Furthermore, the following inter-sets relations 

hold: N = Ç u 3 u E a n d Ç n F = Ç n E = F n E = 0 .  Wedenote byNi theset ofallbuses 

directly connected to bus i. We d e h e  the set of ordered index pairs 

as the set of sending-end (i) and receiving-end ( j )  buses of all branches (transmission lines 

and transformers) in the system. We let 7 c B be the set of sending-end (i) and receiving- 

end (j) buses of the transformers with under load tap changer (LTC) device. By IN1 we 

denote the size (cardinality) of the set N ,  by (31 the size of the set #, and so forth. 

We express the (complex) bus-voltage at bus i (G) in rectangular coordinates as 

where Q and fi are the real and imaginary components of E, respectively, and j here is the 

imaginary unity (a)). Without loss of generality, we assign the index 1 to the slack bus, 

and assume that this bus provides the systern angular reference with el := VL and f := 0. 

The net active power (Pi) and reactive power (Q;) injections into bus i are defined as 

Pi := PG~ - PLii for all i E N 

Qi := QG; - Q L ~ ,  for a.U i E N 

where PGi, PLi, QGi and QLi axe the active power generation, active power load, reactive 

power generation and reactive power load at bus i, respectively. For a given voltage profile 

and network topology, the net power injections into bus i E N are computed from 

where e E IRNI and f E dN[ are vectors with the voltage components, Gu is the ijth 

element of the bus conductance matrix G E lRlNlxlN17 Bq is the ijth element of the bus 

susceptance matrix B E EdNlxWI, and t E IRIV is the vector of transformer tap settings, 

which are implicit in some elements of G and B. 



The active (Pij) and reactive (Qi j )  power flows in the branches are computed fkorn 

a-here gij, 6 ,  and b$ are the series conductance, the series susceptance and the shuot 

susceptance of the branch (i, j) E B, respectively. In (2.3) and (2.4), we have t, = 1 if the 

branch (i, j) is a transmission h e ,  and 6$ = O if the branch (i, j) is a transformer. The 

tap setting representation used is shown in Figure 2.1. As shown in [70], the active power 

losses in the transmission system can be expressed in the form 

REUFUS 2. I The Eqzsations (2.1) through (2.5) are padratic fvnctions of the bus-voltage 

rectangular coordinates e and f. 

Figure 2.1: Tap set t ing represent ation and the transformer Iïr-model. . 
In power system studies, the most common representation of (cornplex) bus-voltages is 

the polar coordinates, 

:= exp ( jei) ,  for ail i E N 



where = (e: + f:)'l2 and Bi = uctm(fi/ei) a.re the voltage magnitude and phase angle 

of fi, respectively. We assume that the system angular reference is dehed  as Bi := OO. For 

a given voltage profile and network configuration, the net power injections into bus i E N 
are computed from 

where v E l22lNl and 9 E mlNI are the vectors of bus-voltage magnitudes and voltage phase 

angles, respectively. The active and reactive power flows in the branches are cornputed from 

The active power losses in the transmission system can be obtained kom 

Whether in rectangular or po1a.r coordinates, the branch apparent power flow is given by 

where (-, -) stands for eit her (e, f ) or (v , O ) .  The complete defkition of power flow requires 

knowledge of four variables at each bus i in the system: Pi, Qi, V;: and Bi. In the standard 

(non-optimal) power flow problem, two of these four variables are known a priori and the 

aim of the power flow is to solve for the rem;Lining two variables. 

2.2 Minimum Transmission Power Losses 

In this section, a particular case of the nonlinear OPF problem-the resctiue power dispatch 

(RPD) problem-is formulated both in rectangular and in polar coordinates. As usual, it 

is assumed that the active power injections in ali buses but the slack bus are known and 
remain k e d  at the economic dispatch (ED) scheduled values. The RPD problem is to 

determine the reactive power controls, such as generator outputs, shunt susceptances and 

transformer taps, t hat minimize the transmission active power Iosses while satiseing the 

power balance equations, the operating Limits on voltages and reactive sower generations, 

and the physical limits on shunt susceptances and transformer tap settings. 



2.2.1 Rectangular Coordinates 

The RPD problem in rectangular coordinates is derived Tom the NLP problem (1.1) as 

X E ~ P  : indudes the voltage rectangular coordinates e and f but fi (fi := O), 

and the transformer tap settings t. 

f : Rn * IR : can be the transmission active power losses, as given by &,(e, f ,  t) 

in (2.5), or the active power injection into the slack bus, as given by 

Pi (e, f ,  t) in (2.1). 

0 g : Rn c, lRm : includes the bus active and reactive power balance constraints 

Pi(e, f, t)  + pii - pgD1 for a~ i E fl, (2.12a) 

~ ~ ( e ,  f t) + &Li - &::y for alI i E 3, (2.12b) 

occasiondy augmented by a few special equality constratnts. The 

superscript (ED) stands for the economic dispatch scheduling, and 

the superscript (O) here stands for the base-case load level. 

h : Rn c, IRP : includes the bus voltage and reactive power functional variables 

with the Iower operating limits 

Q., for alli E Ç 

h = (., for di E E  ) - (2. 14a) 
V* for all i E N  -2 2 

and the upper operating limits 

Qi, for all i € Ç 

(2.14b) 

7 ,  for di E N  

The reactive power limits in (2.14) are dehed  as follows: 



where di and bi denote the dowable minimum and maximum shunt 

susceptances at bus i, respectively- 

: includes the variables in x that have finite bounds, that is, Z = t ,  
- 

with g = and E = t. 

Branch flow constraints can be appropriateiy incorporated into h(x) in one of three 

forms: (i) in terms of the branch active power flows (Pij), (ii) in terms of the branch reactive 

power flows (Qij), or (i") in terms of the square of the moduli of the branch curent flows, 

A properly chosen (small) subset of branches {(i, j ) )  c B most likeIy WU account for 

ail branch flow violations. Notice that the right-hand sides of (2.3), (2.4) and (2.16) are 

quadratic functions of the voltage components e and f . 

Also, notice that the reactive power injections £rom shunt capacitors and shunt reactors 

(bi) are handled as  implicit variables in (2.13b). Shunt susceptances can be modeled as 

explicit variables too (the usud way indeed). To do so, we express the inequality constra.int 

(2.13b) in h(x) as the equality constra..int 

which is, afterwards, incorporated into g ( x )  = O. The following redehïtions are required: 

z = (el f , t, b)T, g = (g, @)* and E = 

In compact form, the RPD problem in rectangular coordinates can be mathematicdy 

for aU i E JV, 
for all i E F, 
for all i E G, 
for all i E E, 
f o r a  i EN, 
for a {(i,j)) E 6 
for all (i, j) € 7. 



REMARK 2.2 Except for the few terms involving the tap settings t ,  which are irnplicit in 

some elements of G and B, al1 nonlinear functions in the RPD problem (2.18) are qaadratic. 

Other OPF variants with quadratic objective and constraints are the minimization of reactive 

power losses in the transmission systern, f * ~  f + e T ~ e ,  and the minimitation of cost of 

power generations with quadratic cost Cumes, xiEG (ai + bi PGi + C,P& ) . 

REMARK 2.3 Compared with more highly nonlinear finctions, numerical advantages that 

stem R o m  the quadratic OPF formulation are: (i) the Taylor-series expansion of a quadratic 
1 T fimction f (x) = 31 Ax terminates at the second-order term without truncation error, 

(ii) the Hessian mat* o f f  ( x )  is constant (v:, f (x) = A), and (iii) the higher-order t e m  

in (2-19) i s  easily compzlted as f (Ax). Such features allow for ease of matrix setup and 

inexpensive incorporation of second-order information in higher-order IP methods. 

2.2.2 Polar Coordinates 

The RPD problem in polar coordinates can be similady derived Tom the NLP problem (LI), 

as follows: 

x d R n  : includes the voltage magnitudes v and the voltage phase-angles 8 but 

(O1 := O*), and the transformer tap settings t. 

f : Bin H IR : can be the transmission active power losses, as given by 8, (u, 0, t) 

in (2.10), or the active power injection into the slack bus, as given by 

Pi(v,8,t) in (2.6). 

g : ZRn I+ lRm : includes the bus active and reactive power balance constraints 

O, t) + P& - 1.gD, for ôii i E X, (2.20a) 

Qi(u, 0, t) + Q ; ~  - QG:, for d i E F, (2.20b) 

occasionally augmented by a few specid equality constraints. 

h : IRn I+ IRp : includes the bus reactive power functional variables 



with the lower operating Limits 

f o r a l l i E Ç  

Q., f o r a l l i ~ E  
-2 

and the upper operating limits - - 
- Qi, f o r a l l i E Ç  
h = (- 

Qi, for all i E E 

The Iower (Q .) and the upper (Qi) reactive power limits in (2.22) are 
-2 

as defined in (2.15). 

: includes the variables in x that have finite bounds, that is, Î = (v, t)T, 
with g = ( t ~ , t ) ~  and I = (ü,gT. 

Branch flow Illnits can be incorporated into h(x) in one of three ways: (i) in terxns of 

the branch active power flows (Pij), (ii) in terms of the branch reactive power flows (Qij), 

or (iii) in terms of the branch apparent power flows (S,). 

In compact form, the RPD problem in polar coordinates can be mathematically stated 

for ~II i E N, 
for al1 i E F, 
for all i E Ç, 

for iill i E E ,  (2.23) 

for a {(i, j )  ) G & 
for all i E N ,  
for all (i, j) E 7. 

REMARK 2.4 The nonlinear OPF, whether in rectangular or polar coordinates, is non- 

convex since nonlinear equality constraints and nonlinear finctional bounds of the form 

h 5 h ( x )  5 h (for the shape of the funetions hi(=) of the OPF  problem) cannot define a - 
conuex region. 

2.3 Maximum Loadability 

In this section, the maximum loadability (ML) problem is formulated as an optimization 

problem. Our interest in this problem is twofold: (i) to provide another example of an OPF 



problem with quadratic functions, and (ii) to ernphasize the current need for solving OPF 

problerns in a nodinea. marner. 

For a given feasible operating state of a power system, the ML problem is to determine 

the maximum load increase the power system can witbstand (either total system load, or 

the load in a given area of the system, or the load at a particular bus, or the l ~ a d  at a set 

of buses) while satiseing utility and consumers equipment operation restrictions. As such, 

the ML procedure is a valuable tool in voltage collapse studies [40]. Depending on how an 

ML problem is formulated, its solution can be used to define contracts with large power 

consumers, to define inter-utility transactions, and so forth. A particular formulation of the 

LML problem, that uses voltage in rectangular coordinates, is mathematic* stated as 

subject to: 

where X is the load parameter. The decision vector is defined in (2.24) as x := (e, f , t, XIT. 
The formulation (2.24) is rather simple; however, it complies with our objectives. Notice 

that, 

all  nonlinear functions in (2.24) are quadratic functions of the voltage components e 

and f; and 

to solve (2.24), we start fkom a feasible operating state-by this we mean that the 

constraints in (2.24) can be satisfied for X = b a n d  then increase the load parameter 

X until the feasible set of (2.24) in the space d e h e d  by (e, f ,  t )  E ldNI x IRINI x 

ceases to exist, at least locally, for the new load level: (1 + x ) P ~ ~  and (1 + x)Q$. 
Therefore, the M L  problem de& with highly nonlinear operating conditions. 

Yet in connection with the ML formulation (2.24), &O notice that, 

the load parameter X appears in the power equations only, and load increase is aUowed 



for al1 buses. However, many applications are concerned with load increase in a subset 

of buses o d y  or even with load increase at a particular bus; 

rn a single parameter X is used for the active (P!,) and the reactive (Qii) power loads. 

This means that the power factor of the loads will remain constant. Yet the loads 

have been modeled as constant power; load modeling, however, plays an important 

role in voltage coLlapse analysis [9]. 

2.4 Minimum Load Shedding 

In many situations in the operation of a power system, load shedding schemes are utilized 

to reduce the actual load to a level that can be safely supplied by available generation 

and network topology. This kind of situation may happen, for instance, when a heaviiy 

loading system undergoes the outage of a major facility such as an important transmission 

line, transformer, or generation unit. Some situations might be so severe that the power 

flom equations have no real solution [34]. Load curtaiLment becomes necessary to restore 

solvability of the power flow equations and feasibility of operation as well. The minimum 

load shedding (MLS) probIem appropriately deals with these situations. 

A particular f o r d a t i o n  of the MLS problem, that uses voltage in rectangdar coordi- 

nates, is mathematically stated as 

for 

for 

for 

for 

for 

for 

for 

where X is the load shedding parameter. The decision vector is d&ed as  x := (e, f , t, x)~. 
Notice that, 

all non1inea.r functions in (2.25) are quadratic functions of the voltage components e 

and f; 



a singLe load shedding parameter X is used for the active and the reactive power ioads 

of all buses. Individual load shedding parameter for each bus, Say, &, should be used 

instead, in order to the utility service be able to distinguish the importance of one 

consumer fkom the other; 

if the power balance equations are the only constraints in (2.25), then the MIS  is 

only concerned with restoring solvability of the power flow equations. In such a case, 

a solution aiways exist. However, if operational limits are included, and, in addition, 

a single parameter X is considered, then a solution can no longer be guaranteed; the 

feasible region could be ernpty for d A. 

2.5 Final Remarks 

In this chapter, three variants of the broad class of OFF problerns have been described, 

namely, (i) the reactive power dispatch problem, (ii) the maximum loadability problem, and 

(iii) the minimum load shedding problem. The RPD problem has been formdated both in 

rectangular and in polar coordinates. The major clifferences between the formulations in 

rectangular and in polar coordinates have been identsed, so far, as 

voltage-magnitude bounds are handled as funct ional bounds in rectangular coordi- 

and as simple bounds in polar coordinates, 

the nonlinear functions (objective function and constraints) of the formulations in 

rectangular coordinates are quadratic functions of the voltage components e and f . 
Such a quadratic feature allows for ease of matrix setup and inexpensive incorporation 

of second-order information in higher-order IP methods. 

Analyt ical and numerical cornparisons of the formulations (2.18) and (2.23) are presented 

in Chapters 6 and 7. 



Chapter 3 

An Interior-Point Met hod for 
Nonlinear Programming 

In this chapter, we describe in great detail the mathematical development of an infeasi- 

ble primal-dual interior-point (IP) method for solving the nonlinear programming (NLP) 

problem (1-1). Thus, the described IP method is suitable for solving the optimal power 

fEow (OPF) problems presented in Chapter 2. In the next section, we describe the basic 

ideas behind the Fiacco and McCormickls (classical) logarithmic barrier method, so that 

we can point out some differences between the classical approach and the "modern" ones. 

A short sunrey of recently developed IP methods for NLP is also presented. In Sections 3.2 

through 3.6, we proceed with a detailed derivation of our infeasible primal-dual IP method 

for NLP. 

Specifically, in Section 3.2, we describe a trarisformed problem on which the IP algorit hm 

operates, establish the &st-order optimality conditions for the original and the transformed 

problems, and present some definitions and considerations. In Section 3.3, we discuss two 

different analytical approaches for computing the Newton directions: (i) the augmented 

(natural) equation system, and (ii) a reduced equation system. In Section 3.4, we discuss 

a number of procedures to compute the step sizes in the Newton directions. This is an 

important issue in non-convex optimization that is further discussed in Chapter 5. In 

Section 3.5, we show how the barrier parameter is reduced. Two updating formulae of p are 

discussed. In Section 3.6, we describe the convergence test. An outline of the primal-dual 

IP dgorithm is presented in Section 3.7. Fin*, in Section 3.8, we make some remarks on 

the described IP algorithm and highlight some of the contributions. 
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3.1 Classical and "Modern" Logarithmic Barrier Methods 

The logarithmic barrier function approach is usually attributed to Frisch [26, rg551, and was 

developed by Fiacco and McCormick in the 1960s [21, 19681 for solving general inequality 

constrained problems of the form 

minimize f (x) subject to h(x) > O, (3-1) 

where the scalar function f : Rn t+ IR and the nonlinear vector-function h : lRn ++ I R P  are 

twice continuously differentiable in J2 := {x E IRn 1 h(x)  2 O). It is assumed that at leâst 

one point xo exists for which h(xo) > O. That is, the region 0 has a nonempty interior. 

Fiacco and McCormkk's (classical) logarithmic barrier function approach to solve (3.1) 

incorporates the inequality constraints into the objective function by means of a logarithmic 

barrier function, to transform 

probIerns of the form 

minimize 

the constrained problem into a sequence of unconstrained 

where pk is a positive barn-er parameter that is monotonicalLy decreased to zero as iterations 

progress, that is, p0 > > - - > pk > - - - > pm = O. An o u t h e  of the classical logarithmic 

bamier algon'thm for solving (3.1) is presented below. 

STEP O : Choose > O and an initial point xo such that h(xo) > 0; set k t O. 

STEP 1 : Check whether xk quaEes as an approximate local minimizer for (3.1). If so, 

stop with xk  as the solution. 

STEP 2 : Cornpute the unconstrained minimum x ( p )  t min f, (x; Let xkfl = x(~") .  

STEP 3 : Choose pki' < pk, set k c k + 1 and return to STEP 1. 

Fiacco and McCorrnick show in [21] that under certain conditions and sufficiently 

small pk, by letting decrease to zero 4 O), the sequence {x(~")} of minimiaers 

of f,(x; ,d) forms a continuousiy differentiable path converging to x*, where x* is a local 

minimizer of (3.1). The path defhed by {x ( p k ) }  is known as the bamier tra@tory. 

Several major difEculties were quickly noted with using the classical logarithmic barrier 

approach to solve (3.1), as discussed in [75] and elsewhere. Initially, a major problem was 
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the need to determine an initial feasible point, which can be as difficdt as solving the 

actual problem. A second major problem relates to severe numerical difficulties (with the 

numerical techniques available at the time), even if the constrained problem (3.1) is well- 

conditioned. The estimates of t he Lagrange multipliers for the active constraints (hi (x) = 0) 

are calculated by taking ratios of two quantities tending to zero, which is numerically 

unstable. Along the trajectory that approaches the solution, the Hessian rnatrix of f, (x; pk) 

becornes increasingly iIl-conditioned, and, in the M t  (pk J. O), is singular. Other major 

difficulties are the need for a very careful h a  search algorithm, the choice of the initial PO,  

and the subsequent scheme for reducing pk at each step. Several moditied barrier functions 

were proposed to remedy these difEculties; see [3] for a survey. 

After Karmarkar's announcement, in 1984, of a fast polynomial-time IP method for 

LP [47], this optimization area received much attention fi-om reseatchers around the world 

and, accordingly, experienced an awesome progress both in theory and in practice. We shall 

not attempt to list these research efforts, which has been done in [32,76] and elsewhere, and 

restrict out attention to IP methods for general NLP. Recently, the development of primal- 

dual IP met hods for general NLP (see [l, 19,64,71,78]) has bem motivated by the superb 

cornputational performance of primal-dual IP methods for LP and QP. Wright in p, 19911 
discusses the structure of several IP methods for L P  and their extensions to NLP. 

Breitfeld and Shanno in [4, i g g d 7  and Shanno, Breitfeld and Samantiraki in [64, 19951 

and elsewhere describe several IP algorithms for NLP and present computational results as 

well. Yamashita and Yabe in [78, 19961 propose a class of primal-dual IP a l g o r i t h  for 

nonlinearly constrained problems. They provide proofs of local, superlinear and quadratic 

convergence of these algorithms, and include some computational results. El-Bakry et al. 

in [19, 19961 discuss a primal-dud IP rnethod for LP  and its extension to general NLP. They 

clairn that their algorithm can  be Mplemented so that it is locally and q-quadratically 

convergent under only the standard Newton method assumptions. A global convergence 

theory and some computational experiments are presented too. 

Akrotirianakis and Rustem in [l, 19971 &O describe an IP method for general NLP. 

They claim global convergence of the algorithm based on a monotonie decrease of a merit 

funetion; computational results are not reported. Byrd, Gilbert and Nocedal in [7, 19961 

and Byrd, Hribar and Nocedal in [8, 19971 have developed IP methods for NLP within a 

trust region framework. Vanderbei and Shanno in [71, 19971 describe an IP method for NLP 

that has shown, in practice, to be robust and efficient. Major modifications, as compared 

with its like for LP  and QP, are the consideration of a merit function and an altered search 
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direction to assure that a descent direction for the merit function is obtauied. Gay, Overton 

and Wright in [28, i g g ~ ]  address issues such as merit functions, line seaxh procedures, 

adjusthg the barrier parameter, etc, in irnplementing a specific primal-dual P method- 

The infeasible primal-dual IP algorithm for NLP that we describe in this chapter shares 

many similarities with the IP algorithms developed by Wu, Debs and Marsten [77, rgg4], 

Granville [33, 1994, and Martinez, G k e z  and Quintana [54, 19961; ail of them are direct 

extensions fkom IP methods for LP, and have proven to be computationally efficient when 

solving large nonlineai- OPF problems, despit e OPF non-convexity- 

3.2 Transformed Problem and Optimality Conditions 

The f is t  step in the derivation of our infeasible IP algorithm to solve the NLP problem (1.1) 

is to add the nonnegative slack variables (si, s 2 ,  s3, s4) E lR: x IR: x IR: x lR$ to (LI),  

in order to transform all inequalities into equalities, as follows: 

minimiee f (x) 

subject to: dx) = 0, 

The logarithmic barrier approach handles the remaining inequalities in ( 33 )  implicitly, 

by incorporating them into logarithmic barrier terms that are appended to the objective 

function, yielding the following transfonned problem: 

subject to: 9(4 =O,  

where pk > O is the lamier parameter that is forced to monotonicdy decrease to zero. 
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The strict positivity conditions (si, s2, s3, s4) E IR?+ x lR:+ x B:+ x IR:,, which are 

imposed to defke the logarithmic terms, are handled impiicitly. The sequence of parameters 

> ,ul > - - - > pm = O generates a sequence of subproblems that are defhed by (3.4), with 

k as the subproblem index. Under certain conditions (see [21]), that include the regulaxiw 

assumptions, as pk approaches zero, the sequence {x(,uk) } that can be generated by solving 

the transformed problem (3.4) approaches x*, where x* is a local m i n k k e r  of (3.3) and, 

therefore, a local minimizer of the original problem (1.1). The sequence of points {x(~")} 

is said to d e h e  the barier trajectory for the subproblem (3.4). 

Necessary op t imality condit ions for the equality-constrained pro blem (3.4), wit h ,uk 

Gxed, can be derived from the Lagrangian function L, (w ; ,uk) , which is defined as 

P Q 

ILk) :=f (4 - pk C (In sli + hs2J - pç C (In ~3~ + insc,) - yTg(x) 
i=1 i = L  

where (y, zl, i 2 ,  r 3  , z4) E mm x l R P  x lRp x DP x Bq are vectors of Lagrange multipliers, 

cornmonly called dual variables, and w := (si, s2, s3, s 4 ,  ri, rp, ~ 3 ~ 1 4 ,  x, y) E IRr- 

A local minimizer of (3.4) is characterized by a stationary point of &,(w;,uk), which 

must satisq the Karush-Kuhn-Tucker (KKT) first-order necessary conditions [24,76], 

where V, f : Bn r-t lRn is the gradient of f (x), V,g : lRn H Dlnxm is the transposed 

Jacobian of g(x), V,h : IRn J+ Elnxp is the transposed Jacobian of h(x), Si := diag(sli), 

Sz := d i a g ( ~ ~ , ) ~  S3 := diag(ssi), S4 := diag(s4<), and u := (1,1,. . . ,1)= stands for vectors 

of appropriate dimensions whose elements are all equal to one. 
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An interpretation to the KKT equations (3.6) is as foilows. The Equations (3.5j) and 

(3.6e)-(3.6h), fcgether with the implicit conditions (sl, s2, s3, s4) E lRc x x IR: x 

lR5, ensure prima1 feasibility. The Equation (3.6i), together with the implicit conditions 

(ri, zl + 1 2 ,  ~ 3 ,  ~3 + z4) E IR: x lR: x IR: x IR$, are referred to as dual feasibility. The 

Equations (3.6a) -(3.6d) are usudy called the p-complemen tan'ty conditions, perturbations 

of the standard complementarity conditions for (3.3). The p-complementarity conditions 

can be represented in various mathematically equivalent forms. Of these, the form 

is the "least nonlineai' in the sense that the Hessian matrix v&, L, (defined below) is 

independent of ,uk and asymp toticaily reflects the condition of the original problem-(1.1)- 

as 4 O. As we let pk approach zero in the barrier subproblems, the perturbed KKT 

conditions (3-6) closely approximate the KKT conditions for the NLP problem (3.3). 

The complementarity conditions state that none of the complementarity pairs, (sIi, z i ) ,  

(sZi ,  z i  + zgi), (s;, , zs,) and (s;, , zzj + z;,), can have both of their arguments nonzero, or, 

equivalently, that inactive constraints (s* # O) must have a zero multiplier (r* = O). If 

there is no i such that sIi = zTi = O or ~5~ = + 2% = 0, and no j such that s;, = 2% = O 

or s t  = 2% + rzj = O, then strict complementarity is said to hold. A case where both 

values are zero is an intermediate state between a constraint being strongly active and 

being inactive. These three conditions are illustrated in Figure 3.1. The total residual of 

the complementarity conditions, defined by 

is called the complementarity gap. If w is both primal and dual feasibIe, then p is usually 
called the duality gap. 

A strictly feasible starting point is not mandatory for the primal-dual IP method, but 

the strict positivity conditions (si, s2,s3, s4) > O and (ri, x i  + za ,  z3, xs + xc)  > O must 

be satisfied at every point. The IP iterates start fkom a point wO that satisfy the strict 

positivity conditions; in order to preserve this condition, subsequent TP iterations follow a 

trajectory in the positive ort hant of the space of complementarity pmducts (si&). Feasibility 

is attained during the iterative process, as optimality is approached or reached. 
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Figure 3.1: Complernentarity for min,{ f ( x )  1 h(x)  2 O}. Inequality constra.int is (a) stTongly 

active when t* > O and h(xr) = O, (b) weakly active when a* = h(xr) = O, and (c) inactive 

when z* = O and h(x*) > O (Figure 9.1.2 fkum [24], slightly modXed.) 

Primal-dual IP iterates invariably apply one step of Newton's method for nonlinear 

equations to the KKT system (3 .6) ,  compute a step size in the Newton direction, update 

the variables, and reduce pk. The algorithm terminates when primai infeasibility, dual 

infeasibility and the complementarity gap fall below predetermined tolerances. 

We explain below, in very simple terms, a role played by the banier parameter f l  in 
most primal-dual IP algorithms. Let the KKT conditions for the NLP problem (3.3) be 

given by 

V,L(w) := 

(SI, s*, SS, sq) 2 O and (zl, zl + z2, z3,z3 + z4) 2 O. A new estimate for wk can be 
computed using one step of the Newton's method to h d  zeros of nonlinear functions, as 

applied to (3.9) - The iterates have the general form 
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where v Y w ~ ( w k )  is the Jacobian of V,L(w), and a' E (O ,  11 is a damping factor to 

enhance convergence and keep the nonnegative variables strictly positive instead of just 

nonnegative. Zhang's approach [SOI to explain this necessity is followed closely here. 

Consider any of the complementarity equations in the KKT system (3.9), Say, slizl, = 0. 

The Newton equation for s 1 , q  = O, at a given point (sFi ,  % f i )  , is 
k k  sk dzl i  + zfi dsli = -slizli. 

If one of the variables, Say, .fi is zero, then the Newton equation becomes sfidrli = 0, 

Ieading to a zero update, Alli  = O. Consequently, .fi WU remain zero all the tirne once it 

becomes zero, which is fatal because the algorithm will never be able to recover once it sets 

a variable to zero by "mistake." 

Next, consider that the perturbed KKT system (3.6) is expressed in the form 

Even if we keep the nonnegative variables strictly positive, we would still expect d3Eculty 

in recovering fkom a situation where a variable is adversely set to too srnall a value. Notice 

that the perturbed complementarity conditions in (3.11) reduce the chances of such mktakes 

at early stages by driving aU the complementarity pairs to zero at the same pace, Say, 

sfzf = -t O as k + m for every index 8. If we express the iterates generated by (3.11) 
in terrns of v ,L(wk)  and T7&,L(wk), sirnilar to ( X l O ) ,  we obtain 

w k f l  = wk - a k [ ~ ~ , ~ ( w k ) ) 1 - ' [ ~ , ~ ( w k )  - p k ~ ] ,  (3.12) 

where G = (u, O), with u E m 2 p f  2q and O E lRr-2J'-24. Notice that the search direction 

in (3.12) has two components: (i) the "pure" Newton direction, - [v, L ( u k ) ]  -IV, ~ ( w " ) ,  
-1 k-. known as the afine-scaling direction, and (ii) the centering direction, [v:, L(wk)] (p u) , 

a component that is not seen in (3.10) ,  which drives the nonnegative miables away fkom 

the boundary. 
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3.3 Computing the Newton Directions 

Although the KKT system (3.6) is a nonlinear equation system, its solution is usuxlly 

approximated by a single iteration of Newton's method-the Newton direction is only a 

means to follow the path of minim;lers parameterized by pk. Such an approxirnate solution 

can be obtained either by solving d equations together or by solving an equivalent reduced 

system. This reduced system is obtained by eliminating variables by substitution. Both 

solution approaches are described in this section. 

3.3.1 Solving the Augmented System 

As we take the first-order terrns in a Taylor-series approximation of the KKT system (3.6), 

around the point wk, we obtain the following symmetric indefinite system: 

where, as we drop most superscripts k, 
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and 

The symmetric matrices v:, f (x), v:,~~(x) and v:,hj(x) are Hessians of the objective 

function f (x), the constraint function gj(x), and the constraint function hj(x), respectively. 

To form the Newton system (3.13), computing V;,L,(W~) demands the greatest effort. In 

an OPF solution, evaluating (3.15) is more efficiently done if we use voltage in rectangdar 

coordinates; in which case, the Hessians v:, f (x), and v;,hj (x) are constant. 

3.3.2 Solving a Reduced System 

Let us now consider the solution of the KKT system (3.6) as the solution of an equivalent 

reduced system of equations in terms of x and y. Such a reduced system can be written as 

where d(x ,  y; is defined below. To transform the KKT system (3.6) into (3.16), we need 

to eliminate, by substitution, the variable vectors x:! and z 4  kom the KKT equation (3.6i). 

These variables are eliminated in the process as we d e h e  the Newton system. By taking 

the &st-order terms in a Taylor-series approximation of (3.6i) around wk, we obtain 

To eliminate Az2 kom (3.17), first we consider the linear approximations that are obtained 

fkom the KKT equations (3.6e), (3.6f), (3.6a) and (3.6b) which axe 

Then, by manipulating the incremental equations (3.18), we express Az2 in terms of Ax, 

as follows: 
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To eliminate An4 from (3.17): frst we consider the Linear approximations that are obtained 

from the KKT equations (3.6g), (3.6h), (3 .6~)  and (3.6d), which are 

Then, by manipuiating the incremental equations (3.20), we express A24 in terms of A x ,  

as follows: 

k 2 k 2 -  dz4 = ,!L'[(s~)- + (S4)-  ] IAX.  (3.21) 

By substituting the iinear approximations (3.19) and (3.21) into (3.17), we obtain 

k -2 k 2 k T  k 2 
[v2&p(wk) + pkv&(xk) ((SI) + (S2)- )v2h(xk)*  f p I ((s$)-~ t (S4)-  )q AZ 

k k - - T  k -v ,g (xk)dy  r;. -v, f (xk) + V , ~ ( X ~ ) ~ "  - V,h(x )z, I x4 

(3.22) 

FinaJly, the reduced linear system can be expressed as 

where V,d : IRr c, lRnXn is the transposed Jacobian matrix of the reduced function vector 

d(x, y; pk), that is evaluated at the current point by 

k k  k k ' T k  d(wk) := V , L ~ ( W ~ )  = vzf (zk)  - Vxg(x )y + V,h(z )z2 + I z4. (3.25) 

The coefficient matrix of the reduced system (3.23) is also symmetric indefinite since the 

three t e m  in the right-hand side of (3.24) are symmetric matrices. We use the reduced 

system (3.23) to examine, in Chapter 7, the handling of voltage bounds in the rectangulax 

and the polar "versions" of the OPF problem.. 

To compute the Newton direction through the reduced system approach, we first solve 

for Ax and A y in (3.23); then, we solve for As2, Asl,  Arl and Ar2 using (3.18); and solve 

for As4, As3, Az3 and Ar4 using (3.20). The numericd solution of the linear indefinite 

systems (3.13) and (3.23) is discussed in Chapter 6. 
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3.4 Comput ing Step Lengths and Updating Variables 

New values of the prima1 and the dual variables are computud froin 

and 

where the scalars a5 E (O, 11 and a5 E (0,1] are step lengths in the Newton direction in 

the primal and the dual spaces, respectively. 

Desirable features of a step towards a locd rninimizer are that it simultaaeously holcls 

the strict positivity conditions and provides a sufEcient decrease in both complementarity 

gap and infeasibility. However, to properly balance t hese three goals (generdy compet ing 

arnong them) we need to set an appropriate m e n t  function and perform a fine search dong 

the Newton direction, aiming at minimizing this merit function. We discuss merit functions 

and some line search procedures in Chap t er 5. Three comput at ionaily inexpensive, however, 

rather simple, procedures to obtain the step lengths are considered below. 

3.4.1 Scheme-A: Separate Primaland Dual Steps 

This is the simplest step Iength procedure and, by far, the most comriionly used procedure 

in implementations of primai-dual IP methods for LP. It considers separate step Iengths in 

the primal and dual spaces, and its primazy and only goal is holding the strict positivity 

conditions. The prima[ step Zength 4 and the dual step length ai are both caiculated 

by finding the smallest of the maximum step lengths of all variables with strict positivity 
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conditions, as follows: 

4i 

= { i=i: p { A  Arli O i=i: min p { 2 1 d î 2 i  Ai2; <O), 

where Z2 := z1+ z2, 24 := 23 + 84, and a0 E (O, 1) is a step redvction factor to ensure that 

the next point will satisfy the strict positivity conditions, that is, (sl, s2, s3, s4) > O and 

(zl,Z2,~3,Z4) > O. A commonly used value is cro = 0.99995; see [52]. 

3.4.2 Scheme-B: Single Cornmon Step 

Separate step lengths in the primal and the dual spaces is an advantage of primal-dual 

IP methods for LP, and has proven highly efficient in practice, reducing the number of 

iterations to convergence by 10%-20% on typical problerns (see [52]). For general NLP, 

however, the interdependence of prima1 and dual variables-as clearly shown in the dual 

feasibility condition (3.6i)-does not rigorously allows for separate step lengths in the primal 

and dual spaces. In such a case, a single common step length to update the primal and 

dual variables shall be computed fkom 

In spite of the above mentioned coupling between primal and dual variables in the dual 

feasibility conditions, a single common step length (see [77]) and separate step lengths 

(see [33]) have both perforrned well in nonlinear OPF solution. 

3-4.3 Scheme-C: Dual Box Constraint 

This step length procedure is derived fiom the IP method proposed by Yamashita and 

Yabe [78, 1996] The primal step length a$ in (3.26) is obtained by the Scheme A above 
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whereas the dud step length 4 in (3.27) is obtained by a different procedure. FoIlowing 

Yamashita and Yabe's method, the d u d  step Iength is the largest step a$ 5 1 that satisfies 

f 
min , } z ,  + a i  < max { 29kPk 

sfi + akpdsti 

where vk and dk are positive numbers that satisfy 

Yamashita and Yabe consider their procedure to compute a; as a box constra.int for the 

dual variables. 

3.5 Reducing the Barrier Parameter 

For general non-convex NLP problems, the choice of a good strategy to reduce f l  is a 

very complex issue, often recognized as heuristic and problern dependent [51,64]. Same 

procedures simply decrease pk by a ftced factor-usually pk+' = pk/lO-up to a given 

Iower bound. Researchers experience has shown that pk should not be decreased too fast 

because t his may result in non-convergence. 

When a primal-dual IP rnethod is applied to a convex program, the deviation off ( ~ ( ~ ~ 1 )  
fiom optimality is dways bounded by ppk @ is the number of inequality constraints). That 

is, f ( x ( p k ) )  - f (x*) 5 ppk, independent of the particular problem functions [74]. Although 

the duality properties of convex programming cannot be fdly extended to general NLP, 
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it is natural to ask whether successful schemes used for reducing ,xk in LP  or convex QP 
could be extended to NLP. Such an extension has successfully been considered in [33,77] 

and elsewhere, and is considered in this thesis as weii. 

3.5.1 Standard Procedure to Update p 

We may recall that the complementarity gap is computed at the current iterate from 

If the iterates converge to an optimum, then the sequence {d )  must converge to zero. The 

relationship between ,ok and pk, that is implicit in the p-complementarity equat ions (3 -6a)- 

(3.6d) and in (3.36), suggests that pk could be reduced based on a predicted decrease of 

the complementarity gap. Most implementations of IP algorithms choose pkC1 from 

where uk is the expected, but not necessarily realized, decrease in the average (normalized) 

complement arity. 

The parameter o' E [O, 11 is usually called a centering parameter and c m  be interpreted 

as follows [76, Chapter 11. If ok = 1, the KKT system (3.6) defines a centering direction, a 

Newton step towards a point at the bamier trajectory-the central path in LP-a smooth 

trajectory converging to x* as pk conthuously goes to zero. Centering directions are usuaily 

biased strongly toward the kterior of the nonnegative orthant and make Little, if any, 

progress in reducing pk. However, by moving closer to the bmier  trajectory, they set the 

scene for substantial progress in the next iteration. At the other extreme, the value ok = O 

gives the pure Newton step, sometimes known as the afine-scaling direction. 

In computational practice, IP algorithrns use intermediate values of ok fkom the open 

interval (0 , l )  to trade off between the twin goals of reducing pk and improving centrality. 

We dynamically choose ok as ok = max{0.99ds-', 0.1), with oo = 0.2. 

3.5.2 Vanderbei-Shanno's Procedure to Update p 

Vanderbei and Shanno have proposed in [71] a scheme to update p that takes into account 

the centrality of the current point. It is weli known fiom theoretical andysis of IF' methods 

that if the trajectory is close to the central path, a srnall p may be chosen, whereas when 
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one is further away from the central path, a Iarger p is preferable. Vanderbei and Shanno 

measure the distance from centrality by computing 

Clearly, O < 5 1, and = 1 if and o d y  if the complementarity products sizj are a constant 

over all indices i. Consequently, they propose the following heuristic to update p: 

where O < a0 < 1 denotes the step reduction factor described above, which, in [71], defadts 

to 0.95, and is a settable scale factor, which defaults to 0.1. 

3.6 Testing for Convergence 

We consider the IP iterates terminated whenever an approximate local minimum has been 

obtained, in which case 

k 
Pl I €1, (3 .40a) 

4 5 €1, (3 -40b) 

4 5 62, (3 AOC) 

4 5 € 2 ~  (3 -40d) 

or they are stuck at some point other than a local minimum (a possibility), in which case 

pk 5 Ep, (3 -41a) 

k w o o  5 E2, (3.41b) 

I I S ( X ~ ) I I C ~  5 €13 (3.41~) 

4 5 €2, (3 -41d) 

where 
- 

=max{llg(rk)llm,max{h- h(ok)), max {h(xk) - h), max{-- zk), max{iEk - z}}, 
(3 -42) 
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If the criteria vf 5 el, v[ 5 €1 and v$ 5 c2 are satisfied, then the primal feasibility 

conditions (3.6e) -(3.6h) and (3.6j), the (scaled) dual feasibility condition (3.6i), and the 

(scaled) complementarity condit ions (3 -6a) -(3.6d), respectively, are satisfied. When the 

condition (3.40) is satisfied, the current iterate is a KKT point of acclxacy €1. 

When numerical problems prevent verfiing the condition (3.401, the algorit hm stops as 

soon as feasibility of the equality constraints is (hopefdly) achieved, dong with very small 

fiactional change in the objective function value and negligible changes in the variables. 

That is, the undesirable condition (3.41) is verified. 

Yet, the iterates should terminate if neither the condition (3.40) nor the condition (3.41) 

has been verified, and then either condition k > km= (used maximum number of iterations) 

or condition max{<r$, O&) < lodl* (cannot progress further fkom wk)  does occur. 

Typical convergence tolerance values are E I  =  IO-^, ~2 = 1 0 - ~ a ~ ,  and c, = 10-". 

3.7 Outline of the Primal-Dual lP Algorithm 

An o u t h e  of the primal-dual IP algorithm that is described in this chapter is shown below. 

It remains to describe the algorithm initialization in STEP O. Initialization heuristics are 

described in Chap ter 6, along wit h various important implementation issues. 

Algorithm 3.2 Pri~al-Dual Interior-Point Algorit hm. 

(Init ializa t ion) 

Choose > 0, and a point wo that satisfy the strict positivity conditions 
O O O O 0 - 0  O c 0  (si, S2, S3, s4, q i  z2, z3i 4 > 0 ;  set k + O- 

(Compute the Newton Direction) 

Form the Newton system (3.13) (or the reduced systern (3.23)) at the current 

point utk and solve for the Newton direction Aw. 

(Compute S tep Length and Update Variables) 

Compute the step length ak in the direction Aw, and update primal and dual 

variables: vrkf l t wk + C Y ~ A W .  

(Test Convergence and Update the Barrier Parameter) 

If the new point wkf' satides the convergence criteria, stop. Otherwise, compute 

the barrier parameter #+' < pk, set k t k + 1, and retuni to STEP 1. 
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3.8 Final Rernarks 

In this chapter, the mathematical development of a primal-dual IP algorithm for NLP has 
been described in detail. This IF' algorithm is a direct extension of the IP method for LP 
that is described in [52]. Similar extensions have been propose3 hy Clements et al. [13], 

WU et al. [77], Granville [33], Martinez et al. [54], and lrisarri et al. [39]. Although the 

OPF problem is non-convex and there is no guarantee regarding the convergence of these 

LP algorithms (as they are implemented) in solving non-convex probIems, the successful 

results described in [13,33,39,54,77] have to some extent encouraged the curent thesis 

research. In this thesis research, we have conducted the following studies: 

We have developed our primal-dual If algorithm for NLP based on the NLP problem 

(1-l), wbich we consider as the standard form. Application of this IP algorithm to the 

OPF problems that are described in Chapter 2 is, therefore, straightforward. Towards 

this purpose, various issues in implernentation are discussed in Chapter 6 .  

We have studied the computational performance cf the primal-dual IP algorithm as 

it employs different init iaiization heuristics, different schemes to compte the step 

lengths, and different updating formulae of the barrier parameter. h o ,  we have 

studied the infiuence of various parameters of the algorithm in the convergence process, 

as concemed with noniinear OPF solution. 

We have thoroughly studied the performance of the primal-dual IP algorithm as it 

solves the RPD problem fomdated both in rectangular and in polar coordinates. 

Such an analysis-rectangular coordinat es versus polar coordinat es-has not been 

performed in previous works. We have observed, among other particulars, that volt- 

age bounds are more easily handed in polar coordinates, whereas the assembling of 

matrices is more efficientiy done in rectangular coordinates. 

We have thoroughly described an alternative approach to obtain the Newton direction, 

called the reduced system approach. Rom such a reduced system, the implications of 

handling the voltage bounds as nonlinear functional bounds (voltages in rectangular 

coordinates) can be easily examined as we look at the extent the matrix ~ , d ( w ) *  

differs fiom V ~ ~ L ~ ( W ) .  Such an analysis is presented in Chapter 7. 

Concerning future work with the IP algorithm that is described in this chapter, a study 

of the usefidness of inexact search directions sounds interesting to study. The idea is to 
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reduce overd computational tirne by reducing the effort of a single iteration, even at the 

expense of some increase in the iteration count. By an inexact search direction we mean 

that the vector Aw satisfies 

for some suitable residual vector rk. As usual in inexact Newton methods, the vector rk  

is not fked beforehand. Instead an iterative solver, such as a preconditioned conjugate 

gradient rnethod, is used to solve the linear system (3-13); this method is stopped when the 

norm of the residual is smaller thao a pretixed accuracy, that is, 1lrkll2 $ ek . 

Ano t her p ossibility of reducing the overd comput at ional time is reducing the nirmber 

of iterations, even at the expense of some increase in the cost of a single iteration. This is 
the approach folIowed by the higher-order IP variants for LP and convex QP. IR the next 

chapter, we describe extensions to NLP of several higher-order IP methods for LP. 



Chapter 4 

Higher-Order 

Int erior-Point 

Primal-Dual 
Algorit hms 

Evaluation of the Newton direction is usually the computationally most expensive task 

in a single iteration of a primal-dual IP algorithm. Concerning the computation of Aw 
in the IF dgorithm that is described in Chapter 3, factorization of the coefficient matrix 

v&, L ~ ( w ~ )  in (3.13) is much more expensive than the fornard and backward solutions 

that follow factorization. Thus, we have reasons to think that is possible to improve the 

performance of the If aigorithm if we reduce the number of matrix factorizations to a 

necessary minimum, even at the expense of some increzse in the cost of a single iteration. 

It is likely that a reduction in the number of IP iterations will be accomplished through 

the incorporation of higher-order information into (3.13) to improve the order of accuracy to 

which the Newton direction approximates the nonlinear KKT equations. This is the central 

idea behind the higher-order IP variants, such as the predz'ctor-corrector met hod introduced 

by Ko jirna, Mïzuno and Yoshise [49,1989] and later developed by Mehrotra [57,1992]. What 

makes Mehrotra's method computationally very efficient is that a more successful search 

direction is obtained by solving two systems of h e a r  equations in each iteration, in a way 

that allows for a higher-order approximation to the central path. 

The two linear system solutions, knom as the predictor and corrector steps, involve 

a single coefficient rnatrix with two different right-hand sides; therefore, only one matrix 

factorization is required. Accordingly, the direction Aw is decomposed into two parts: 

Aw = Awa + Awccc, where Aw& is c d e d  the asne-scaling (predictor) direction, and 

Aw, is called the centering (corrector) direction. There is Little additional work required 



to compute the corrector step, if we reuse the matrix factorization required to compute the 

predictor step. 

In LP and QP, additional savings in overd computational t h e  also have been obtained 

by applying multiple corrector steps, as in the pertwbed composite Newton (PCN) method 

of Tapia et ai. [67, 19961; in the multiple predictor-corrector (MPC) method of Carpenter et 

al. [IO, 19931, and in the multiple centrality corrections (MCC) method of Gonhio [31, 19961. 

The basic idea behind Tapia's PCN method and Carpenter's MPC method is to perform 

more solves within each iteration with the intent of performing fewer IP iterations and, 

accordingly, fewer derivat ive evaluations and matrix factorizations overall. Gondzio's MCC 

method also attempts to reduce the number of iterations for convergence by adaptively 

adding one or more corrector steps to the predictor step; the MCC technique has been 

included as an option in various state-of-theart IP software codes [62]. The predictor step 

used in the PCN, MPC and MCC approaches is the same predictor step used in Mehrotra's 

method. The use of multiple corrector steps, the engine behind these higher-order IP 
variants, is advantageous only if it reduces the overall number of derivative evaluations and 

matrix factorizations without performing an unreasonable number of extra solves. 

In this chapter, we explore the use f i e s s  of Mehrotra's predictor-corrector met hod [57], 

Tapia's PCN method [67], Carpenter's MPC method [IO] and Gondzio's MCC method [31], 

in the context of nonlinear OPF solution. While the first approach was extended by Wu 

et al. [77, 1994 to an OPF algorithm in polar coordinates, the last two approaches have 

not been extended at ail to nonlinear OPF solutions- In the next section, we describe an 

extension of the predictor-corrector method suitable for the OPF in rectangular coordinates. 

In Section 4.2, we describe extensions of the PCN and MPC methods for nonlinear OPF 
solution as weU. In Section 4.3, we describe an extension of the MCC method. Final 

remarks and a s u m m q  of the contributions close the chapter in Section 4.4. 

4.1 Predictor-correct or Interior-Point Algorithm 

To incorporate predictor and corrector steps into the (standard) primal-dud IF algorithm 

that is described in Chapter 3, we consider the perturbed KKT system (3.6) expressed in the 

form of (3.11). Such an arrangement provides us with a Newton system whose coefficient 

matrix is independent of pk. Consequently, the predictor and corrector steps involve the 

same coefficient matrix, thus requiring a single matrix factorization in each iteration. Next, 
rather than applying Newton's method to (3.11) to generate correction terms to the curent 
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estimate, we substitute the new point wkc' = wk + d w  directly into @.Il), to obtain the 

second-order approximation 

where, as we drop most superscripts k, 

A h 

Z1 := diag(q,),  Z2 := diag@), Z3 = d i a g ( ~ ~ ~ ) ,  Z4 := diag(gi),  ASl := diag(Asl,), 

AS2 := diag(Asli), AS3 := diag(As3,), AS4 := diag(As4,), and gq(-) E lRm and h g ( - )  E 

IRP denote the quadratic terms of g (-) and h(-) , respectively; we assume here that g (x) and 
h(x)  are quadratic. The coefficient matrix in (4.1) can be made symmetric if we scale the 

Luiearized cornplementarity equations by s;', SC', SC' and ST'. 

REMARK 4.1 The major ddlfference between the Newton systems (4.1) and (3.13) is the 

presence of the nonlinear Velta terms" AS15ziJ AS2AS2 AS3Az3, AS4AT&, g q ( A x ) ,  
hq(Ax), V , g ( A x ) A y  and V , h ( d ~ ) A z ~ ,  that appear on the right-hand side of (4.1), and 

cannot be solved directly. Moreover, the c o e f i e n t  matriz in.  (4.1) is  independent of pk. 



REMARK 4.2 The second-order terms hq(Ax),  gq(Ax), V,g(Ax)Ay and V,h(Ax)Ax2 

are included only if h(x) and g(x)  are quadratic, as occur in the rectrtngular coordinates 

OPF. Othenuise, it might be computationally expensiue tu i n c h d e  second-order terms. Al- 

though the computation of the incremental matrices V,g(Ax) and V,h(Ax) cost each the 

eqvivalent to a sparse matm'x-uector product, we do not include the associated correction 

tenns. 

Notice that the search direction obtained fkom the Newton system (4.1) consists of three 

components, Say 

where each of them is defmed by one of the three terms on the right-hand side of (4.1). We 

can interpret these search direction components as follows [76, Chapter 101: 

dutaff is an afine-scaling direction, the pure Newton direction that is obtained when 

we set pk = O in the Newton systerns (3.13) and (4.1). The saine-scaling direction is 

responsible for "optimization", that is, for reducing prima1 and dual infeasibility, and 

the complementarity gap; A W ~  is provided by the fkst term on the right-hand side 

of (4.1). 

Aw,,, is a centering direction, whose size is governed by the adaptively chosen barrier 

parameter pk. The centering direction attempts to keep the current iterate away 

from the boundary of the feasible region and idedy close to the barrier trajectory, 

to improve the chances for a long step to be made in the next iteration; dw,,, is 

provided by the second term on the right-hand side of (4.1). 

AwCor is a corrector direction that attempts to compensate for some of the nonlinearity 

in the affine-scaling direction; AwCor is provided by the last term on the right-hand 

side of (4.1). 

The first two components-the &e-sc&g direction and centering direction-combine to 

make up the standard direction computed fkom (3.13). In Mehrotra's algorithm [57], the 

fie-scaling direction is computed separately from, and prior to, the centering direction. 

This arrangement in computation provides us with the ability to choose pk+l adaptively 

rather than a priori, and to approximate the second-order delta terms. The "full" Newton 

direction is then computed as the combination of two directions: Aw = A w a ~  + Awccc, 

where AwcCc = Aw,,, + AutCor is the combined centering-corrector direction. 



4.1.1 The Predictor Step 

To deteniaine a step that approximately satisfies (4.1), we e s t  drop the ,u t e m s  and the 

delta Lems on the right-hand side of (4.1), and cornpute the afine-scaling direction tiom 

The ;Iffine-scaling direction obtained korn (4.3) is then used in two distinct ways 1521: 

to approximate the nonlinear delta t e m s  on the right-hand side of (4.1); and 

to adaptively estimate the bmier parameter pk+L. 

If, on one hand, the &e-scaling direction makes good progress in reducing the barrier 

parameter pk while holding the strict positivity conditions, we conclude that lit tle centering 

is needed at this iteration, so we assign a srnall value to ok (the centering parameter in 

(3.37)). If, on the other hand, we can move only a short distance dong the affine-scaling 

direction before violating the strict positivity conditions, we conclude that a significant 

amount of centering is needed, so we choose ok c10ser to 1. 

An estimate to ,ukf' is computed as foliows. First, we perforrn the standard ratio test 

(3.32) to determine the step length (we employ the step length SchemeB) that would 

actually be taken if the &e-scaling direction given by (4.3) were used: 

-SE -SB 
,Y = min{ i=i: min p {-1~s;: dgr <O), i=i: min p ( - 1 ~ s ~   AS^ < O), 



k It: 
-z2* 

a? = min( i=i: min p { ~ I A ~ ?  A Z ~  < O}, i=l: min p {+~e < O}, 
A22i 

-k 

_i, { - $ i A c  < O), min {%[A* <O)) ,  
i= l :  q Ar,, i = ~ :  q Az4i 

Second, an estimate of the complementarity gap is obtained from 

FinaIly, an estimate of pk'L, which we ca l& ,  is obtained from 

where pk is given by (3.36). This scheme chooses to be s m d  when Aw, produces a 

large decrease in complementarity, << pk, and chooses to be large otherwise. 

4.1.2 The Corrector Step 

Rather than computing the combined centering corrector direction Aw,,, and adding it to 

A w ~ ,  we compute the W" Newton direction Aw at once kom 

REMARK 4.3 The  variables are not  actually vpdated between the predictor and corrector 

steps and, therefore, the linear systems (4.3) and (4.9) have the same c o e f i e n t  matriz. 



4.1.3 Outline of the Predictor-Corrector IP Algorithm 

The remaining steps in the predictor-corrector algorithm are the same as in the standard 

primal-dual P algorithm. That is, we update variables, reduce the barrier parameter, and 

test for convergence precisely aç described in Sections 3.4 through 3.6. An outlule of the 

described predictor-corrector IP dgorit hm for NLP is shown below. 

Algorithm 4.1 Predktor-Corrector Interior-Point Algorithrn- 

STEP O: (Initialization) 

Choose ,uo > 0, and a point wo that satise the strict positivity conditions 

(sy, s2, s!, s:, zf, g, 4,4) > a; set k t O. 

STEP 1: (Compute the Newton Direction) 

Compute the coefficient matrix in (4.1) and obtain its factorization. Then, 

STEP 1.1: (Predictor Step) 

a) compute the right-hand side vector of (4.3) ; 

b) solve (4.3) for the &ne-scaling direction A W ~ ;  

c) compute a% and obtain the estimate &. 
STEP 1.2: (Corrector Step) 

a) compute the right-hand side vector of (4.9) by adding the estimated 

& terrns and the delta terms to the vector computed in STEP l.la; 

b) solve (4.9) for the Newton direction Aw. 

STEP 2: (Cornpute Step Length and Update Variables) 

Compute the step length ak in the direction Aw, and update prima1 and dual 

variables: wk+I + wk + ak4w.  

STEP 3: (Test Convergence and Update the Barrier Parameter) 

If the new point wkf' satisfies the convergence criteria, stop. Otherwise, compute 

the banier parameter pk+l < set k c k + 1, and return to STEP 1. 

The two linear system solutions in STEP 1- lb  and STEP 1.2b of Algorithm 4.1 use 

the same matrk factorization. Therefore, the extra effort in the predictor-corrector IP 
algorithm, as compared with the standard primal-dual IP algorithm that is described in 

Chapter 3, is in the extra linear system solution to compute the dhe-scaling direction 



and the extra ratio test used to compute What is gained fiom this extra work-the 

addit ional forward and backward solut ion s t eps-is approximate second-order informat ion 

concerning the trajectory fkom the current estimate to the optimal point as pk is varied 

continuously. This usually results in reduction in the number of iterations that, in general, 

translates into overd computational time savings. 

The higher-order terms h(Az)  and g (Ax) , which cliffer this procedure fkom that in [77] 

to solve the OPF in polar coordinates, are Uicorporated only in the case h(x) and g (x) are 

quadratic. AIso, we have taken a full step in the delta terms of the corrector step but the 

damped step when predicting &. 

4.2 Perturbed Composite Newton and Multiple Predictor- 

Corrector Algorithms 

We may recall t hat Mehrotra's predictor-corrector method performs only one corrector step 

in obtaining the search direction in each iteration. The PCN method and the MPC method 

that we describe in this section perform one or more corrector steps within each iteration 

with the intent of performing Iess iterations than Mehrotra's method does. That is, the 

PCN and the MPC methods aim at exploiting the derivatives and the factorization that 

are required in the predictor step frrrther in a sequence of solves of systems like (4.9) with 

difFerent right-hand sides. As show in [IO], the MPC method for L P  and QP is equivalent 

to a perturbed level-M PCN method, where M is the number of corrector steps. The 

MPC and PCN algorithms for LP and QP are equivalents in the sense that they yield the 

same sequence of iterates when started from the same initial point. Such an equidence of 

algorithms, however, is not observed for general NLP. 

We begin this section describing the fundamental ideas behind the standad composite 

Newton me thod for solving nonlinear equations. 

4.2.1 The Composite Newton Method: Fundamentals 

Consider a nonlinear system of equations (such as the KKT equations) expressed as 

where F : iRn + Bn is a vector of continuously differentiable functioxis. By a damped 

Newton's rnethod we mean an iterative procedure that at each iteration solves the linear 
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syst em 

for the direction Ax,  and then moves to a new point 

where V,F : IRn + RnXn is the transposed Jacobian of F (x ) ,  and CY E (O, 11 is the step 

length parameter. m e n  the choice of step length is d6 = 1 we drop the qualifier damped. 

Since the computation and factorizat ion of the Jacobian mat rk  V, F ( x ~ ) ~  demand the 

greatest computational effort within an iteration, it may be advantageous to use the same 

derivative evaluation and matrix factorization in several solves. This is the idea behind 

the composite Newton method. At each iteration, the damped level-M composite Newton 

method first solves the system 

for the direction dxO. Aftemards, for m k  = 1,2, .  . . , M ,  it solves the systems 

for the directions Axmk , and only then takes the step 

Notice that the Jacobian matrix v , F ( x ~ ) ~  is employed M + 1 times to iteratively obtain 

the search direction, before a step is actually taken. 

4.2.2 The Perturbed Composite Newton Interior-Point Algorithm 

The above procedure can easily be incorporated into the solution of the perturbed KKT 
equations (3.11). Let us assume that the predictor direction A w d  and the estimate of the 

barrier parameter & have been computed as in the predictor step of Mehrotra's method; 

let dw0 = Awm. Then, for m k  = 1,2,. . . , M, solve the systems 

for the directions Aum', where û = ( 7 4  O) with u E lR2pf2q and O E 1 ~ ~ - ~ p - ~ ?  FinaJly, 

define Aw = xgO A w ~  and move to a new point, computing the step length and updating 

the variables precisely as in the primal-dual IP method and in Mehrotra's method. 



4.2.3 Outline of the Perturbed Composite Newton IP Algorithm 

An outline of the perturbed composite Newton IP algorithm for NLP is shown below. The 

outhed  PCN algorithm considers the possibility of taking a varied number of composite 

Newton steps within the outer iterations. Defining how much correcting is advantageous is 

a critical issue. Below, we describe a procedure for dynamicdy choosing the maximum m k  

in the MPC method, which may be used in the PCN method as well. 

Algorit hm 4.2 Perturbed Composite Newton Interior-Point Algorithm. 

STEP O: (Inïtialization) 

Choose > 0, and a point wo that satisfy the strict positivity conditions 
O O O O O *  0 - 4  (si? s2? s3, s4>zLt  z2: z3, z4) > 0; set k t O. 

STEP 1: (Compute the Search Direction) 

Compute the coefficient matrix in (4.1) and obtain its factorization. Then, 

STEP 1.1: (Predictor Step) 

a) compute the right-hand side of (4.3); 

b) solve (4.3) for the predictor direction A w ~ ;  

c) compute ak and obtain the estimate &; 
d) set the corrections counter m k  t 0, and let dw0 = A W ~ .  

STEP 1.2 : (Composite Newton Steps) 

a) compute the right-hand side of (4.16) ; 

b) solve (4.16) for the corrector direction dwmk ; 

c) test for improvernent. If suitable, set m k  t m k  4- 1 and return to 

STEP 1.28. Otherwise, set Aw t xzo Awj. 

STEP 2: (Compute S tep Length and Update Variables) 

Compute the step length c 8  in the direction Au, and update prima1 and dual 

variables: wk+l t w k  + akAw. 

STEP 3: (Test Convergence and Update the Barrier Parameter) 

If the new point w "+' satisfies the convergence criteria, stop. O therwise, compute 

the barrier parameter ,uk+' < pk, set k c k + 1, and return to STEP 1. 



Notice that we have used the same value of the predicted barrier parameter, & in all 

corrector steps. Alternatively, as suggested by Tapia et al. in [67], the barrier parameter 

could be reset at every corrector step. In such a case, we would solve the systems 

4.2.4 The Multiple Predictor-Corrector Interior-Point Algorithm 

The predictor step in the MPC method computes AWS and & in the same way as in the 

predictor step of Mehrotra's predictor-corrector method. Then, we let Aw0 = d w d  and 

compute the mkth corrector term as foUows: 

We d o w  for the number of corrections m k  to vary at each iteration by dynamically 

choosing mk, as in Carpenter's MPC algorithm. Notice that when rnk = 1 for all k, the 

MPC metho d is the predictor-corrector method described above. Determining how much 

correcting is advantageous is a critical issue of the MPC algorithin. To address this issue in 

the context of LP and QP, Carpenter investigated two distinct and complernentary cases: 

the feasible case and the infeasible ones. 

In the feasible case, the sole motivation behind performing corrections fiom a feasible 

point is reducing complementarity. In such a case, Carpenter et al. consider performuig the 

(mk + 1)st correction only if pmk < pmk-L and m k  is less than some maximm number of 

corrections (a prespecified parameter). If it is tme that pmk 2 pmk-l, they stop correcting 

and use the search direction Au = Awmk-'. In the infeasible case, determining m k  must 



integrate reducing complementarity with reducing infeasibility. In this case, an (mk + 1)st 

correction is attempted only if m k  is less than the allowable maximum and Gmk < Gmk-l, 
where G is the norm of the residual of the KKT conditions. 

4.2.5 Outline of the Multiple Predictor-Corrector IP Algorithm 

A n  o u t h e  of the multiple predictor-corrector IP algorithm for NLP is shown below. 

Algorit hm 4.3 Multiple Predictor-Conec tor Interior-Point Algori t hm. 

STEP 0: (hitialization) 

Choose > 0, and a point w0 that sa&@ the strict positivity conditions 
O O O O 0 3  O *  (s,, 9 2 ,  S3,  s q >  Z l r  Z2,  Z 3 , 4  > 0; set k + O. 

STEP 1 : (Compute the Search Direction) 

Compute the coeEcient matrix in (4.1) and obtain its factorization. Then, 

STEP 1.1: (Predictor Step) 

a) compute the right-hand side of (4.3); 

b) solve (4.3) for the predictor direction A W ~ ;  

c) compute a& and obtain the estimate p&; 

d) set the corrections counter rnk  t 0, and let d w 0  = Au&. 

STEP 1.2: (Multiple Corrector Steps) 

a) compute the right-hand side of (4.18); 

b) solve (4.18) for the corrector direction Awmk; 

c) compute the step length for the direction dumk; 

d) test for improvement. If suitable, set m k  t m k  + 1 and retuni to 

STEP 1.2a. Otherwise, set Aw t. Awmk. 

STEP 2: (Compute Step Length and Update Variables) 

Compute the step length c8 in the direction Aw, and update prima1 and dual 

variables: wk+l t wk + akdw. 

STEF 3 : (Test Convergence and Update the Barrier Parameter) 

If the new point w k f l  satisfies the convergence criteria, stop. Otherwise, cornpute 

the barrier parameter jxkçl c pky set k t k + 1, and return to STEP 1. 



4.3 Multiple Centrality Corrections Algorithm 

Gondzio's MCC primal-dud IP alg0nth.m for LP  [31] uses the predictor direction that is 

ob tained in Mehrotra's predictor-corrector method and then looks for one or more correc- 

tor terms aiming at two main goals: (i) improving the centrality of the next iterate, and 

(u) increasing step lengths in the prima1 and dual spaces. The motivation for the first goal 

is to increase the chances for a long step to be taken in the next iteration, and, for the 

second goal, to obtain a faster reduction of primai and dual infeasibility; all together, to 

obtain acceleration of the convergence. 

To achïeve the goals (i) and (ii) , the MCC met hod first edarges the step lengt hs in bot h 

spaces-5; = min {a; +6,, 1) and 6; = min {(a; +a,, 1)-and then makes a hypothetical 

further move along the predictor direction to the so-cded trial point. This move s h d  

violate, in general, the non-negativity conditions (si, sn, s3, s4) E lRc x lR: x lR: x lRc 

and (zl, L 2 ,  23, Z4) E LR: x lRc x Di$ x lR$. Then, a corrector direction is defined to 

drive from this trial point towards some better centered target. This target is some point 

in a large neighborhood of the central path that is expected to be easier to ïeach and that 

allows for a long step to be made in the Newton direction. 

The idea of following a sequence of traceable targets, called weighted analytic centers, as 

means of improving the centrality of subsequent iterates, was Erst proposed by Jansen et 

al. [43, rgg3j, and later translated into a successful computatiûnal practice by Gondzio [31, 
qg6] through his MCC technique. Below, we describe an extension to NLP of Gondzio's 

MCC technique for LP. 

4.3.1 The Centraüty Corrections 

Gondzio discusses in [31] that, in theory, only the perfectly centered points d o w  for long 

steps to be made in the Newton direction, but, in practice, long steps are observed also 

for points that belong to a large neighborhood of the central path. Gondzio also observes, 

based on extensive computational experience, that what r e d y  reduces the efficiency of a 

primal-dual IP algorithm is a large discrepancy among the complernentarity products si%. 

That is, we have sizi << sjzj for some indices i and j .  

Complementarity products that arc either too small or too large cornpared with their 

average pa\#,,, = p/2 (p+q) are undesirable, with the former usually being more disastrous. An 
exphnation for that is as follows. The step Aw of (4.1) aimç at driving all complementarity 

products to the same value pk. However, to reduce the complementarity gap we need 



k 
p < p,,. Thus, if the current iterate is badly centered, that is, the complementarity 

products m e r  in orders of magnitude, then the right-hand side of system (4.1) is very 

badly scaled. The Newton direction concentrates on reducing large products, but, due to 

the presence of smaIler ones, only short steps aee allowed, which slow d o m  the convergence. 

To define the centrality corrections, we first assume that the predictor direction A W ~  

has been determined and that the step length a& that would be taken if Aua were used 

has been computed, as described in Section 4.2.1. Then, we look for a corrector direction 

AwCor such that a step length $ larger than a&, 

and a composite direction 

can be taken without violating the non-negativity conditions. To make this possible, some 

requirements have to be imposed on Au;,,. Notice &om the definition of a!& that, whenever 

a& < 1, the trial point 

may have components that violate the non-negativity conditions. Then, the corrector term 

Au,, shall compensate for those negative components and drive the trial point 6 back to 

the vicinity of the barrier trajectory (the central path in LP). 

In the MCC approach, the effort of multiple corrections does not primarily concentrates 

on reducing the complernentarity gap, that hopehlly will be sufüciently reduced if a long 

step dong the Newton direction is made. Nevertheless, to allow for long steps in the Newton 

direction the current point should be as close as possible to the central path. Towards 

this purpose, Gondzio suggests to define a sequence of traceable targets that goes fiom an 
arbitrary point such as 2o to a point close to the central path; Jansen et al. [43] suggest 

that these targets be defined in the space of cornplementarity products. 

Below, we describe how the targets are defined. Given a small increase of step tength 

6 ~ ,  we define the enlarged step length ô% in (4.19), obtain the trial point 6 in (4.21), and 

then compute the complenentarity products for this trial point, 

LI LI- 

Q : = S ~ % ,  foreveryi. (4.22) 

Next, we ident* the components 6 that do not belong to the interval (&,&, 
These components are called the outliers complementarity products, and P- and P,, 



are given relative threshold values to define these outliers products- The effort is focused 

on correcting only outliers complementarity products. To this end, the components ci are 
k projected on a hypercube H := kinp, ,  & a x p ~ ] 2 p + 2 q  to d e h e  the iarget 

Then, a corrector terrn Awmk is obtained as the solution to the linear equations system 

The right-hand side vector of (4.24) has nonzero elernents o d y  in a subset of positions of 

-6 that refer to the complementarity products that do not belong to &&&). 
Furthermore, such a defmed right-hand side vector can still remain badly scaled if there 

are very large cornplementarity products in 6. To prevent the undesÏrabIe effect of this 

bad scaling, all components of î - 5 smder  than -&,& are, in Gondzio's MCC 

implementation for LP, replaced with this value, which corresponds to limiting the expected 

decrease of very large complementarity products. 

The rnodified centering direction Awmk that solves (4.24) is used to correct the predictor 

direction, as follows: 

A new step length in the direction Aw is determined, and new values for the prima1 and 

dual variables are computed, as previously described for the standard primal-dual and the 

predictor-correct or IP dgorit hms. 

The correcting process can be repeated a desirable number of times. The direction Aw 

in (4.25) becomes in such a case a new predictor, A w ~  c Aw, for which a new trial poht 



is computed fiom (4.21). The point (4-22) in the complementarity product space is then 

used to d e h e  the new target (4.23). Next, a new modSed centering direction Awmk that 

solves (4.24) is computed and added to the predictor t em,  as in (4.25). In such a case, the 

corrector term added to Mehrotra's predictor direction is given by AwcCc = Cmk Awmk. 

4.3.2 How Many Correction Steps Are Ided? 

Use of muitiple centrality correction steps is of practical interest only if reduction in the 

iteration count translates into overd computational time savings. Then, it is essential to 

monitor the improvement resulting fkom the use of the modXed centering directions Awmk 

in (4.24). In Gondzio's MCC implementation to LP, correcting terminates when the step 

lengths in the prima1 and dual spaces-âp and ZD-determined for a composite direction 

4 w  in (4.25) do not increase s&ciently compared with the step lengths found earlier for 

a predictor direction-CF and ary. Following this procedure, we stop correcting if 

where y is some prescribed tolerance. 

Since multiple corrector steps reduce the number of iterations at the expense of extra 

effort per iteration, savings in overali computational time is ïduenced by two important 

factors: (i) decrease of the iterations count (matrix factorizations!), and (ii) the ratio of the 

costs of factorization and solution of the KKT system. Then, besides condition (4.26) it is 

necessary to limit the number of centrality corrections (M) per iteration. 

Gondzio developed a heuristic to define M based on extensive computational experi- 

ments. He computes the ratio of the factorization effort to solve effort, r ~ / , ,  and allows 

one centrality corrector if rf,, > 10. If rf / ,  < 10, then no centraüty corrector is added, 

so the method reduces to the Mehrotra's predictor-corrector method. Due to the smaller 

expected savings with subsequent corrections, the use of the second centrality corrector is 

allowed only if r ~ / ,  > 30. The third correction is allowed if rf,, > 50. More than three 

correctors are dowed only for problems with very expensive factorizations, and M is never 

allowed to exceed 10. 

We have not thoroughly addressed the choice of M in this research. In d e m g  M, 
we should consider that forming and solving the KKT system in NLP demand much more 

effort than in LP; besides the computation of Jacobians and Hessians, the KKT system 

to be solved is indefinite. In order to define rf,, using actual computational times we 

codd apply the predictor-corrector method in the fkst iteration and, then, proceed with 



the MCC approach thereafter. In this way we woulcl be able to consider other issues, such 

as intermediate mat rix and vector computations, indirectly and directly accessed data, 

particularities of computer architecture, and so forth. 

4.3.3 Outline of the Multiple Centrali* Corrections IP Algorithm 

An o u t h e  of the multiple centrality corrections IP algorithm for NLP is shown below. 

Alnorit hm 4.4 Multiple Centra& Corrections InteriorPoint Algorithm. 

STEP O: (Initialization) 

Choose > 0, and a point w o  that satisfy the strict positivity conditions 

(sy, sg, s:, 54, x:, 22, 4, 2) > O; set k c O. 

STEP l: (Cornpute the Search Direction) 

Compute the coefficient matrix in (4.1) and obtain its factorization. Then, 

STEP 1-1: (Predictor Step) 

a) compute the right-hand side of (4.3); 

b) solve (4.3) for the predictor direction A W ~ ;  

c) compute a& and obtain the estimate &; 
d) set the counter m k  c O. If k = 1, measure rj,, and define M. 

STEP 1.2: (Multiple Corrector Steps) 

a) compute the trial point (4.21) and the right-hand side of (4.24); 

b) solve (4.24) for the corrector direction Awmk; 

c) compute the step length for a composite direction (4.25); 

d) test for improvement. If suitable, set Aws t Aw, rnk t m k  + 1, 

and return to STEP 1.2a. Otherwise, set Aw t Awd.  

STEP 2 : (Compute Step Length and Update Variables) 

Compute the step Iength a" in the direction Aw, and update prima1 and dual 
variables: wkiL + wk + ~ A W .  

STEP 3 : (Test Convergence and Update the Barrier Parameter) 

If the new point wkcl satisfies the convergence criteria, stop. Otherwise, compute 

the b&er parameter pk+l < pk, set k t k + 1, and return to STEP 1. 



4.4 Final Rernarks 

In this chapter, we have presented extensions to NLP of four successfur higher-order IP 

methods for LP and QP, namely, (i) the predictor-corrector method developed by Mehrotra 

[57, 19921, (ii) the pertvrbed composite Newton method described by Tapia et al. [67, 19961, 

(iii) the multiple predirtw-cwrector method proposed by Carpenter et al. [IO, 19931, and 

(iv) the multiple centrality corrections method developed by Gondzio [3l, i996b The central 

idea behind al l  these techniques is to reduce the number of derivative evaluations and matrix 

factorizations to a necessary minimiim, even at the expense of some increase in the cost of 

a single iteration. 

The predictor-corrector technique was previously extended to nonlinear OPF solution 

by Wu et al. [77, rggqj. As far as  we know, the PCN, MPC and MCC techniques have not 

been extended to power systems optimization. We have made a contribution by addressing 

the computational eEciency of these techniques in the context of nonlinear OPF solution. 

We make the following remarks: 

The corrector step of the predictor-corrector method that is described in [77] employs 

second-order terms ("delta terms") in the cornplementarity equations only. In our 

predictor-corrector met hod for solving the nonlinear OPF in rectangular coordinates, 

we are able to incorporate second-order terms in all KKT equations. 

We have extended to nonlinear: OPF solution the perturbed composite Newton IP 

method for LP and QP, as developed by Tapia et al. [67]. This technique has not 

been considered in previous OPF algorithms. 

We have extended to nonlinear OPF solution the multiple predictor-corrector IP 

method for LP and QP, as developed by Carpenter et al. [IO]. This technique has not 

been considered in previous OPF algorithms. 

A~so, we have extended to nonlinear OPF solution the multiple centrality corrections 

technique for L P  developed by Gondzio [31]. 

Extensive numerical experiments with the above higher-order IF' methods are discussed in 

Chapter 7. Concerning future work with these higher-order IP variants, an issue desenring 

further research is how to dynamically choose the appropriate number of corrector steps 

within each iteration. 



Chapter 5 

Non-Int erior Continuation Met hod 
for Nonlinear Programming 

Introduction 

We may recall t hat each point in a primal-dual IF' algorithm is obtained by applying a singie 

iteration of a damped Newton's met hod to a hxed set of nonlinear equations, parameterized 

by Cck > 0. Furthermore, the iterates start fiom a point wo that satidies the strict positivity 

conditions, and follow a trajectory in the positive orthant of the complementarity product 

space in order to avoid spurious solutions, that is, points that satisfy 

In this chapter, we present a new approach to solve the NLP problem (1.1), that handles 

the complementaity conditions, si& = O, si 2 O and 2 O, without requiring that 
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the strict positivity conditions be satisfied at every iterate. Such a method originates 

from a reformulation of heur  complementarity problems (LCP) as nonlinear systems of 

equations, which was developed by Chen and Harker [Il, 19931, and Kanzow [46, 19961. 

Given M E IRnXn and q E ItCn, the LCP problem is to h d  x E IRn and y E IRn so that 

Henceforth, we will refer to the LCP problem (5.2) simply as LCP(q, M). 

C hen-Harker and Kanzow7s reformulat ions of LCP (q, M) handle each complementarity 

condition, xi 2 O, gi 2 O and ziyi = O, by means of a function + : IR2 -t IR which is dehed  

by the foIiowing characterization of its zeros: 

Any function 3 : lR2 4 lR that have the property (5.3) is c d e d  an NCP-funetion, where 

the acronym NCP stands for nonlinear complementcrrity problem. I n  the Iast few years, 

various NCP-functions have been proposed. For example, the functions 

1 
$(a, 6 )  := -min2{a, b), 

2 
1 

+(a, 6 )  := ((ab)2 f min2{0, a )  + &{O, b)) , (5.5) 

$(a, 6)  := da2 + b2 - (a + b), (5.7) 

are NCP-functions 1451. We refer the interested reader to the works of Chen and Harker [Il, 

19931, Kanzow [44-461, Burke and Xu [6,1996], and Hotta and Yoshise [37,igg6] for sunreys 

on NCP-functions and their applications. Growing attention has been paid to the NCP- 

function (5.7) which was fùst introduced by Fischer [23] and M h e r  employed by several 

researchers. The NCP-functions (5.9) and (5.10) are of particular interest to our studies. 

They satis@ the property 

for any p > O. Based on the NCP-functions (5.9) and (5.lO), the Chen-Harker [Il, 19931, 

and Kanzow [46, 199 61 algorithms solve LCP (q, M) by approximately solving a sequence of 



CHAPTER 5. NON-INTERIOR CONTINUATION METHOD FOR NLP 

nonlinear systems of equations of the form 

where p > O is a continuation parameter that is forced to monotonicaUy decrease to zero, 

as  does the barrier parameter in an IP setting. 

The  most attractive feature of Chen-Harker and Kanzow algorithms for LCP is that 

they are non-interior-point (NIP) methods, in the sense that the attraction domain of the 

feasible path is al l  of 1R" instead of the positive orthant IR:. Since the non-negativity of 

any limit point is automatically assured by NCP-functions, wit hout imposing additional 

conditions, the initial point and the iterates do not necessady have to stay in the positive 

ort hant, providing us wit h the &eedorn of choosing a starting point (xo, that satisfy the 

condition M X O  + q = yo. 

A similar procedure has been used in the solution of the nonlinear complementarity 

problem ( N C P )  as well (see [16,37? 44,45]), which is to fhd  an x E En so that 

where F : lRn + lRn is a vector of continuously differentiable functions. The reformdation 

of NCP(F), as a parametrized sequence of nonlinear systems of equations, has the form 

The systems of equations (5.12) .-md (5.14) are usually solved by Newton-me methods, 

which, however, are in general only locally convergent. In order to gIobalize the local 

method, an Armijo-type line search is performed to minimize a merét function, usuaIly 

The global rninimizer of @,(x) is a solution to B,(x) = 0. 

In this chapter, we consider the KKT conditions for optimaiiQ of the OPF problem 

as a mixed NCP problem and, taking Ïnto consideration the NCP-function applications 
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mentioned above, propose a Newton-type method for its solution. The attractive feature of 

the proposed approach is the freedorn of choosing a starting point with reduced primal and 

dual infeasibility. This fieedom is possible because the initial point and subsequent iterates 

do not necessarily have to stay in the positive orthant of the complementarity product 

space, unlike IP methods. In the proposed procedure, the non-negativity conditions of any 

huit  point are automatically assured by NCP-functions. To the best of our knowledge, the 

approach described in this chapter is the first application of NCP-functions to the solution 

of nonlInear OPF problems, which we see as an important contribution of this thesis. 

The remainder of this chapter is organized as follows. In the next section, we present 

some properties of the NCP-functions (5.9) and (5.10) which WU be used in the development 

of the proposed NIP algorithm for NLP. In Section 5.3, we describe in detail our NIP 
continuation rnethod for solving nonlinear OPF problems. More specifically, we describe the 

reformulation of the KKT equations and related Newton system, describe an unconstrained 

minimization reformulation, discuss line search procedures to compute suitable step lengths 

dong the search directions, describe a procedure to reduce the continuation parameter p, 

and discuss the convergence test. An outline of the algorithm is presented in Section 5.4. 

Final remarks close the chapter in Section 5.5. 

5.2 Some Properties of &(a, b )  

In this section, we present some properties of the NCP-functions (5.9) and (5.10) which wiil 

be used in the developrnent of our NIP continuation algorithm for solving problem (1.1). 

LEMMA 5.1 (Kanzow 146, Lernma 2-11) The fvnction (5.9) has the property (5.11). 

Proof. First assume that a > 0: b > 0 ,  and ab = p. Then, we obtain 

+p(a,b)  = a + b -  Ja2 - 2ab+b2+4ab  

= a + b -  Jm 
= a t b - l a + b l  

= O- 

To prove the converse result, assume that & (a, b) = O ,  that is, 

a + b =  J ( a - b ) 2 + 4 p > ~ .  

Squaring both sides of the equation in (5.16), we get ab = p. Therefore, sign(a) = si&). 

Consequently, it follows kom the inequaliw in (5.16) that a > O and b > 0. O 
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LEMMA 5.2 (Kanzow [46, Lemma 2.21) The function (5.10) has the property (5.11). 

Proof. I f  a  > O ,  b > 0, and ab = p, we get 

On the other band‘ the condition +,(a, b) = O can be rewritten as 

a + b =  J a 2 + 6 2 + 2 ~  > 0, 

Eiom which a  > O, b > 0, and ab = p follows in a similar way as in the proof of Lemma 5.1. 
O 

LEMMA 5 -3  (Burke and Xu [6, Lemma 4.51) Let É > O. If I $ ,  (a ,  6 )  1 5 c, then 

a > - € ,  6 2 - E ,  and b b  - PI 5 ,. 
lal + lbl + J7i 

which is a contradiction to (5.18). Hence, a  2 - E .  SimilarIy, b 2 -E. Alsn 

which yields the result . 
k k  Burke and Xu [6] also show that, if pk 5 e and I l @ r  ( X  , y ) 112 5 Ppk,  then 

k k  for i = 1,2,. . . ,n. Furthemore, i f p k  5 c and IIq5Ci,(x ,y  )II, 5 e, then 

k  xi - -y: 2-6, and 1.i~: - $ 1  < €3 

1xtI + Ivfl + 0 
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for i = 1.2, . . . , n. The properties (5.19) and (5.20) are valuable in keeping track of the 

convergence; they induce termination when the relative error in the complementarity is 

srnall. 

REMARK 5.1 Let $p denote the function dejîned i n  (5.9) or (5.10). Then II>, i s  continuously 

diflerentiable for al1 (a,  b) E IR2, and the partial derivatives have the property 

*l E (0.2) and 1 E (0,2) for d l  a, b E W. 
,a,,, ab (a&) 

For example, i f  we consider &(a, b) as defined i n  (5.10), we get 

and 

LEMMA 5 -4  (Burke and Xu [6, Lemma 2.11) The fvnction (5.10) has the following proper- 

ties: 

For every p 2 0, the function $; is continuously diperentiable on IR2. 

For al1 (a, b) E IR2 when p > 0, and for al1 (a, b) E lR2\{(0, 0)) when p = 0, it follows 

that 

For pl 2 0, pz 1 0  and (a$) E IR2, we have 

Proof. See [6]. O 

5.3 The Non-Int erior-Point Continuation Algorit hm 

The approach for handling the complernentarity condit ions in the solution of nonlineaz 

OPE' problems by means of NCP-functions has recently been considered by Quintana and 

Torres [61, 19981. As far as we know, the OPF algorithm introduced in [61] and described 

in detail below is the first one that uses NCP-functions. For the sake of presentation, we 
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assume that the complementarity conditions (3.6a)-(3.6d) are handled by means of the 

NCP-function (5.9). The following reformulation of the KKT system (3.6) is considered in 

the proposed method: 

A damped Newton-type method is used to solve (5.24), using the local approximation 

v,I,(w~)~Aw = - G ~ ( W ~ ) *  (5.25) 

where, as we drop the superscripts k, 

The coefficient rnatrix v,~E,(w)~ has the same nonzero pattern of v$,L, (w).  The 

way to compute some of its diagonal matrices is the only change. The modified diagonal 

matrices are computed as follows: 

k 1/2 where ali = (s:, + z;i + 2p ) , 
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where adi = (4, + $ + 2pk) Il2. Notice kom Remark 5.1 that these diagonal matrices are 

positive definite since ail diagonal elements are in the interval (0,2). The coefficient rnatrix 

in (5.25) can be made syminetric if the linearized complementarity equations are properly 

scaled by the diagonal matrices V,, Q-' , v,,@-~, v,, s>-', and V,, +-' . 

5 -3.1 Unconstrained Minimization Reformulation 

New estirnates for the prima1 and dual variables are computed fkorn 

where Aw is the search direction 

and c8 is the step length dong Aw. A suitable step length clk should be computed by 

performing a line search dong the direction Aw, aiming at achieving a cLsufEcientn decrease 

in a mellt function that is defined to measure progress towards a solution to (5.24). That 

is, the idea of a merit function is to assure that joint progress is made both towards a local 

minimizer and towards feasibility. 
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I t  is weil known that for general non-convex NLP, the Newton's method may diverge for 

a poor initial estimate [24]. However, merit functions can be used to guide us in deciding 

on how much to shorten the step lengths so as  to assure convergence. Since our intent is to 

find a solution of P, (w) = O, an  obvious merit function would be 

which is known as the natural merit finction. Thus, when solving the nonlùiear equation 

system (5-24), we indeed turn our attention to an unconstrained minimization problem of 

the form 

min @,(w). 
wELR" 

Solving the nonlinear system (5.24) is cIearly equivalent to h d i n g  a global minimum point 

w' of QP(w), that gives @,(w*) = 0. 

Ideally, a suitable merit function has the property that an unconstrained minimixer of 

the merit function is a solution of the desired problem. However, while every solution to 

(5.24) is a solution to (5.30), there may be local minimizers of (5.30) that are not solutions 

to (5.24). Such a possibility is illustrated in Figure 5.1. Then, it only interests us to obtain 

a global minimum of (5.30). Furtherrnore, since the NLP problern (1.1) is non-convex, a 

solution of !Pp(w) = O is not necessarily a minimizer of (1.1) (maximizers and saddle points 

aIso satisQ t his condition). Thus, reducing b, (w ) does not necesszcily ensure minimization 

with respect to the original problem. On the other hand, Newton's method for solving the 

reformulation (5.24) c m  be combined with global met hods for unconstrained optimization 

to produce global methods for solving (1.1), giving rise to a class of quasi-Newton methods. 

We refer the interested reader to the Dennis Jr. and Schnabel's book [17] for a detailed 

treatment of the solution of noniineu equation systems by unconstrained miuimization 

t ethniques. 

5.3.2 Backtracking Line Search Procedure 

As discussed in [59] and elsewhere, in the early years of line seuch methods for unconstrained 

optimization, most impiementations included an 'caccurate" line search. That is, d was 
chosen as a close approximate solution to mirhem ~ ~ ( u > "  + aAw). Nowadays, however, it 

is customay to perform Iin c c k ~ i 2 r ; c "  Une search. h inexact line search that is fiequently 

used in the solution of LCP and NCP problems [6,11], and in unconstrained minimization 

is the following Armijo-type procedure: 
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Figure 5.1: The nonlinear equations and a correspondhg minimization problem, in one 

dimension [17, Figure 6-5-11. 

Given 01 E (0,1] and <YI E (0, l ) ,  find the smdest  mk E {O, 1 ,2 , .  . . ) that satisfies 

@p(wk + a r k A w )  5 mP(wk) + o , a y k ~ , l , ( w k ) T ~ w  (5.31a) 

or, equidently, 

djp(wk + aykAw) 5 (1 - c ~ ~ a ~ ~ ) @ ~ ( w ~ ) .  (5.31b) 

Then, let ak = a? and set wk+' = wk + a k d w .  

The "inexactness" of this procedure is typified by a s m d  value of cl and a large value 

of ai. Typicd parameter values considered in [6,11] are 01 = IO-* and ai = 0.99. The 

amount of work associated with each trial point ayk is the evaluation of @,(zuk + aykAw).  

That is, the evaluation of !Pp(wk + aak Aw) followed by the inner-product with itself. 

As we try to solve (5.30) using the direction Aw in the line search as computed from 

(5.25), we are taking advantage of the "str~cture'~ of the original problem, which is a 

desirable feature; see [17, Chapter 61. The conditional tests in (5.31) can be satisfied for 

some mk only if d w  is a descent direction for (5.30). A descent direction for (5.30) is any 

direction pk for which V ,@,(W' )~~~  < O. Notice that, 

Hence, the steepest-descent direction for (5.30), -V,@~(ZU~), is along -vW!Fp (wk)!P,(wk). 

Consequently, the direction Aw from (5.28) is a descent direction for (5.30) since 



CHAPTER 5. NON-INTERIOR CONTINUATION METHOD FOR NLP 68 

as long as @,(wk) # 0, and v,@,(w~) and Aw m not orthogonal. We can also infer kom 

the above analysis that the procedures (5.31a) and (5.31b) are alike. 

De Luca et al. in [16] comment that it has been often observed in the field of NCP 

algorithms that line search tests like (5.31) can lead to very small step lengths; in turn 

this can lead to very slow convergence and even to a numericd failure of the algorithm. 

To circurnvent this problem many non-monotone line search tests have been used [6]. The 

non-monotone line search that we have implemented is as follows: 

Given 01 E (O, 11 and ai E (O, l), fùid the smdest rnk E {O, 1,2,. . . ) that satisfies 

@ p ( ~ k f q k ~ ~ )  5 j=k-l+l: max k G ~ ( U I ~ )  - O ~ C X ~ ~ @ , ( W ~ ) .  (5.33) 

Then, let crk = a?* and set wkf l = wk + d d w .  

The parameter 1 is typically given as 1 = min{5, k). 

5 -3 -3 Reducing the Continuation Parameter 

To reduce the parameter pk, some algorithms for LCP (see [6]) use the following procedure: 

If @,k(wk+') 2 QjPk(wk), let pkf' = Otherwise, given E (0,1] and a2 E (O, l ) ,  
h d  the smallest mk E {O, 1,2,. . . ) that satisfies 

Then, let pkfl = (1 - o,ayk)pk. 

The parameters used in (5.34) are typically 02 = 0.9999, a* = 0.99, and /3 := @ , O ( W ~ ) / ~ ~ .  

Notice that the complementarity equations in (5.24) are the only ones directly aEected 

by p. Then, to reduce computational effort, we could redehe the test (5.34) as  

where 

&(w) := IlTb(si, zd1I2 f bbp(~2, %)Il2 + ll@&3, %3)1l2 + II$p(~l, %)Il 2  (5.36) 
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We observed, in computational practice, that the conditionai test (5.34) highly relies on the 

monotonicity of the line search to compute the step length a". Then, we propose to reduce 

pk in a way quite similu to that used in the IP method. First, we compute the measure 

which "mimics" the complementarity gap 8 in the IP method. If the iterates converge to 

an optimum, then {ek) m u t  converge to zero. Shen, we propose to compute pk+' fiom 

where crk is as defined in the IP algorithm. This formula to update pk is computationally 

inexpensive and fairly effective in practice, as show in Chapter 7. 

5.3.4 Testing for Convergence 

The converge test for the N P  aigorithm difkrs only slightly Erom the convergence test for 

the IP algorithms, namely in the definition of criteria u3. We consider the NIP iterations 

terminated whenever an approximate local minimum has been obtained, in which case 

4 i €1, (5 -39a) 

4 5 el, (5.39b) 

4 i €2, (5.39~) 

$ 5 E2> (5.3911) 

or they are stuck at  some point other than a local minimum (a possibïlity), in which case 

pk I €pl (5 .40a) 

IIA& 5 €2, (5 -40 b) 

I1g(xk)Hm 5 €1, (5.40~) 

4 5 €2, (5 -40d) 

where 
- 

vf =max{11g(~~)[1~~max{&-  h(zk)),max{h(rk) - h } , m a ~ { ~ -  Bk),max{Zk - E } } ,  

(5.41) 
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Typical convergence tolerance values are €1 = 10-', ~2 = 1 0 - * ~ ~  and E, = 10-'O. 

5.4 Outline of the Non-Interior-Point Algorithm 

An outline of the NIP algorithm for NLP described in this chapter is shown belonr. 

Akorit hm 5 -1 Non-hterior-Point Continuation Maorithm. 

STEP O: (Initialization) 

Let > O, ol E (0,1], al E (O, l), and w o  be given so that wo satisfies a t  least 

the prima1 feasibility equations. Set k t O. 

STEP 1: (Compute the Newton Direction) 

Given the current point wk, let A u  be the solution to the Newton system 

STEP 2: (Compute Step Length and Update Variables) 

Find the smallest m k  E {O, 1,2,. . . ) that satisfies 

Let ak = ayk and set wk+l = wk + akAw. 

STEP 3: (Update the Continuation Parameter) 

If the new point tukf' satisfies the convergence criteria, stop. Otherwise, compute 

set k t k + 1, and return to STEP 1. 

5.5 Final Rernarks 

In this chapter, a new algorithm for solving nonlinear OPF problems has been proposed. It 
is a NIP algorithm that handles the complementarity conditions 'by a recently introduced 

NCP-function. As far as we are aware, the proposed OPF algorithm is the f i s t  one based 

on NCP-functions. Distinctive features of this approach, as compared with IP methods, are 

that it can st& fkom arbitrary points, and the iterates are not required to stay inside the 
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positive orthant of the complementarity product space. That is, the non-negativity condi- 

tions need be satisfied ody  at the solution point. By considering the optimality conditions 

for the O P F  problem as a mixed nonlinear complementarity problem, we take advantage of 

recent mathematical development to solve complementarity problems. Particularly, we have 

used an NCP-function to transform entirely the KKT conditions into a system of nonhear 

equations, that is solved afterwards by a Newton-type method. 

Tognola and Bacher recently proposed an OFF algorithm [68, igg7] that &O eliminates 

the need for the iterates to stay within the positive orthant of the complementanty product 

space. This is the reason why t hey c d  their approach an unlimited point algorithm. Their 

udimited point algorithm, mhich is based on a transformation of the nomegative variables, 

share mmy simiiarities with IP algorithms, as does our technique, but is quite different 

from the ND? approach proposed in this chapter; no transformation of variables is involved 

in our NTP approach. 

Concerning future work with the approach proposed in this chapter, we consider as 

potential directions for research the following topics: 

Since the NP algorithm can start fkom arbitrary points and ail matrices in the IP 
and NIP algorithms have the same nonzero pattern, an improved OFF algorithm 

most likely can be developed if we combine together the two algorithms. Notice that 

switching from one algorithm to the other demands no changes of the Linear dgebra 

kernel, the core of both techniques. 

The robustness of the MP algorithm likely WU be improved if we consider a Leuenberg- 

Marquardt-type method for the solution of (5.25). Instead of solving (5.28) for the 

direction Aw, this method computes a search direction dk as the solution of the 

rnodiEed linear system 

where ok 1 O here is the Levenberg-Marquardt parameter. If the direction generated 

by (5.45) is not a "goodn descent direction, according to the test 

we resort to the steepest descent direction, that is, let dk = -v,@,(w~). 

c As suggested for the primal-dual IP algorithm, an issue worthy of investigation is the . 

usefulness of inexact search directions. By this we mean that the vector Aw satides 
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where rk  here is the vector of residuals and measures how inexactly system (5.28) is 

solved. An iterative solver is used to solve the h e a r  system (5.28), and this method 

is stopped when the norm of the residual is smaiIer than a prefked accuracy, that 

is, T . Facchinei and Kanzow [20] have proposed an inexact Levenberg- 

Marquardt-type algorithm to soive large NCP problems that employs a test of the 

foml Ilrkll 5 (0-il(k + l))ll@rr(wk)ll. 

Since the cornputation and factorization of matrix v , P ~ ( w ~ ) ~  demand the greatest 

computational effort within an iteration of the NIP algorithm, it may be advantageous 

to use the same derivative evaluation and rnatrix factorization in several solves- Then, 

the composite Newton method that is described in Chapter 4 could be extended to 

the N P  algorithm as well. 

The implernentation of other NCP-functions is another interesthg topic of research. 

For instance, many recently developed algorithms to solve cornplementarity problems 

(see [16,20]) employ non-smoot h reformulations, involving the computation of the 

generalized Jacobian of Clarke (121 within a Newton-type algorithm. 

In the next chapter, we describe many issues that are directly related to the efficient 

implementation of the IP and NIP algorithms that we have described so far. 



Chapter 6 

Pract ical Implement at ion Issues 

In this chapter, we discuss many points and issues that are directly related to an efficient 

implementation of the standard primal-dual TP dgorithm, the higher-order primal-dual IP 
algorithms, and the NIP algorithm for NLP previously described in Chapters 3, 4 and 5. 

Emphasis, however, is on the solution of the OPF problems that are described in Chapter 2. 

In the next section, we describe procedures for starting point choices in ail algorithms. In 
Section 6.2, we describe the assembling of matrices for the OPF in rectangdar coordinates. 

We derive explicit formulae for cheap computation of the Hessian v:= L ~ ( W ~ )  through a 

proposed map of Lagrange multipliers-(y, z2) G- ((X, Aq, Au). In Section 6.3, we present a 

similar analysis for the OPF in polar coordinates. In Section 6.4, we discuss data structures 

and present some important code fkagments. In Section 6.5, we discuss how the linear 

systems are solved. Final remarks in Section 6.6 close the chapter. 

6.1 Initialization of Algorithms 

We may recall that neither a starting point nor subsequent iterates are mandatory to be 

feasible points for primal-dual IP methods. Since feasibility is attained during the iterative 

process, as optimality is reached, the denomination infeass'ble primal-dual IP rnethod is 

quite common in the fiterature; the strict positivity conditions, however, must be satided 

at  every point. Cases where such a single initialization criterion-strict positivity-perform 

poorly are very common. For initial points that yield inequality constraints close to binding, 

it is advantageous t c  sacrifke initial feasibility of those inequalities to avoid too small slack 
values; too s m d  initiai slacks may result in too srnall step lengths at  early stages, seriously 



slowing down global improvement of the variables and hence the convergence. Besides the 

strict positivity conditions, a good starting point shouid also sat ise  two other conditions 

(see [76]). First, the point should be well centered, that is, the perturbed compiementarity 

conditions (3.6a)-(3.6d) should hold at k = O so that the complementarity products sPz: 

are similar for every index i. Second, the point should not be too infeasible, that is, the 

ratio of the infeasibility to cornplementarity gap, (vf + v!) lu:, should not be too large. 

Below, we describe four initialkation heuristics; only the fkst two conform to the IP 
algorithrns, whereas all  of them conform to the proposed NI. algorithm. 

6.1.1 Heuristic-A: IP and NIP Algorithms 

Estimate the prima1 variables xo by one of the following four approaches (listed in 

preference order): (i) as given by a converged ac load flow solution, (ii) as given by 

the fbst 2 or 3 iterations of a Gauss-Seidel's method that is applied to the load flow 

equations, (iii) as given by a dc load flow solution, or (iv) as a flat start using the 

rniddle point between the upper and lower limits for the bounded variables. 

Then, the primai slack variables are initialized as 

s l  = min{max{y(h-h), h(x") -hl, (1 - y ) ( h - k ) } ,  (6.ia) 
O - 

sz = h - h - s : ,  (6.lb) 

s3 = min{max{y(~-g) ,  9 - g ) ,  (1-y)@-z)}, (6. lc) 
O - 

S4 = O x -g- 53, (6.ld) 

where y is the relative distance of the slacks to the boundary of the positive orthant. 

In our implementations y defaults to 0.35. 

Assuming that r O is given, the duai variables z l ,  zq, z! and 24 are obtained 

fkom 

The dual variable is set to - 1 if it is related to the active power balance constraint 

(2.12a), and set to zero if it is related to the reactive power balance constra.int (2.12b). 



6.1.2 Heuristic-B: Il? and NIP Algorithms 

Choose xo, s l ,  sg, 93, s t  and in the same way as in the Heuristic-A above. 

Then, obtain the remaining dual variables from 

1 - 7, if sYi = y(hi - hi), 
O zli = 1/2, if sqi = hi(x0)  -hi, 

Y7 O t herw ise. 
O 

Z2i = 1-*pi? 

{ 
1 -7, if s3; -g i ) ,  

O 
~3~ = 1/2? if S & = X ? -  Zi 

Y, O therwise. 
O O qi = 1 - Z$. 

Finally, obtain the initial barrier parameter f?om 

6.1.3 Heuristic-C: NI[P Algorithm 

Choose xo and yo in the same way as in the Heuristic-A above, and then obtaia the 

prima1 slacks £rom 

Then, obtain the remaining dual variables £rom 



6.1.4 Heuristic-D: NTP Algorithm 

0 Choose x0 and yo in the same way as in the Heuristic-A above, and then obtain the 

prima1 slacks fkom 

s: = min{max{o, h(xO) -h), h-h), 
O - 

s2 = h - 1 - s l ,  

sf = nin{max(~,  9 -i}, Z-g), 
- 

S4 = O O x - a - s , .  

Then, obtain the rernaining dual variables kom 

The fou owing 

(0, otherwise. 
O O 

= Y - q i 1  

1 7, if 83, = O, 
O 

Zji = 2 if s3,=x:-3, 

0, O t herwise. 
O O qi = y - z3;. 

comments are pertinent to the above initialization heuristics: 

It is well known that a Lagrange multiplier at an optimal solution measures the 

sensitivity of the objective function with respect to small perturbations in the related 

constraint; see [24]. Thus, in the transmission power losses mhhization problem, 

the Lagrange multipliers related to constraints (2.12a) and (2.12b) are expected to be 

about - 1 and zero, respectively. This justifies the proposed choice of 

In the Heuristic-A, we &st choose > O and then cornpute z!, a:, a! and 24 so 

that al l  comp1ementa.rit-y products spzf have the same value In Heuristic-B, on 

the contraq, we first estirnate II, zg, zg and zt and, afterwards, use these estimates 

to deftie > O. The centra&@ of wo as obtained by Heuristic-B may be poor. 

The Heuris tic-C for the NIP algorithm relaxes the non-negativity conditions, whereas 

the Heuristic-D relaxes the strict positivity conditions; the non-negativity of any limit 

point wiU be automatically ensured by the NCP-functions. 



6 -2 Gradients and Hessians: Rectangular Coordinates 

The gradient vector V, f (z) and the Jacobian matrices v , ~ ( x ) ~  and V, h ( ~ ) ~  are obtained 

f?om Equations (A.1) through (A.14) in Appendix A. 

The Hessian matrix of the term Pi(e, f ,t) that appears in the constra..int (2.12a), has 

the form 

The Hessian sub-matrices V:,P,, v;,P~ and v ; ~  Pi are given by (A.l5), (A.16) and (A.17) , 
respectively. For each (i, -) E 7, two non-zeros of vgepi axe computed fiom (A.21) and 
(A.%), two non-zeros of vZf Pi are computed fiom (A.29) and (A.33), and one nonzero of 

V&P, is computed kom (A.37). For each (-, i )  E 7, two non-zeros of vgepi are computed 

Erom (A.22) and (A.26), and two non-zeros of V G ~  are computed fiom (8.30) and (A.34). 

The Hessian matrix of the term 

(2.13a) and (2.13b), has the form 

Qi(e, f , t )  that appears in the constraints (2.12b), 

The Hessian sub-matrices v;,Qi, vf ,Qi and V$ Qi are given by (A.l8), (A. 19) and (A.20), 
respectively. For each (i, -) E 7, two non-zeros of V&Qi are computed Bom (A.23) and 

(A.27), two non-zeros of v : ~  Qi are computed fiom (A.31) and (A.35), and one nonzero of 

vtf Qi is computed from (A.38). For each (., 8) E 7, two non-zeros of v;=Qi are computed 

from (A.24) and (A.28), and two non-zeros of vzf Qi are computed from (A.32) and (A.36). 

The Hessian of the voitage bound constraint (2.13~) has two non-zeros only; the two 

non-zeros are diagonal eiements, and have value 2. 

REMARK 6.1 The Hessiun sub-matrices (A.15) through (A.20) are constant and can be 

computed by di~ect reference to Gij and Bij, for all j E Ni. Moreouer, if v:, pi (v:,Qi) is 

known then vffpi (vIfQi)  is readdy auailable. In practice, none of these Hessians need 
be individually formed; the Hessian mutriz V Z ~ L ,  (w ) can Be directly O btained. 



6.2.1 Lagrangian Hessian 

Notice from (3.15) that each bus contributes with three Hessians in the composition of 

V;,L,(W): (i) the Hessian (6.9) that is associated with the constraint (2.12a); (ii) the 

Hessian (6.10) that is associated with one of the constraints (2.12b), (2.13a) or (2.13b); and 

(üi) the Hessian v&.(V) that is associated with the constraint (2.13~). Given the special 

structure of these constra.int Hessians, the Lagrangian Hessian V;, L, (w ) can be computed 

by direct teference to the nonzero elements of G and B. Tne computation is as follows: 

For j = 1,2,. . . , IN[, compute the elements 

vkej L, = 2(GjjAT - BjjA; + A;), (6.11a) 

vZiej L, = G,(xf + A;) - Bij(X: + A;), for i E Nj, with i > j, (6.11b) 

vYiejLr = Bij(A: - A;) + Gij(A: - A;), for i € Nj, with i > j,  (6.12a) 

qiej L, = -qjei LP, for i E Ni, with i < j, (6.12b) 

v t f j L p  = V:,ej~p,  ifj # 1, (6.13a) 

qifj LP = eiq LW f o r i € N j ,  withi > j > 1. (6.13b) 

These formulae are displayed in Tables 6.1, 6.2 and 6.3. 

For each transformer (i, j) E 7, compute the elements 

where A; is the negative of the Lagrange multiplier y(.) related to bus j ' s  constraint in 

(2.12a) (A'; := 1); AT is either the negative of the Lagrange multiplier y(.) related to bus j ' s  

constraint in (2.12b), or the Lagrange multiplier z2(*, related to bus j 's constraint in (2. Ba)  

or (2.13b); and A: is the Lagrange multiplier zz(-, related to bus j's comtra.int in (2.13~). 

Making a mapping fiom constrain t multipliers to bus multipliers, the bus multipliers 

XP, Aq and XV are obtained: (y, zz) ct (A*, Aq, Au) - This mapping plays an important role 

in the efficient implementation of the OPF algorithm; it not only considerably reduces the 

number of logical operations in the evaluation of v,L,(u") and ~ f , & ( w ~ )  but also allows 

for efficient data structure and reduced cornputer mernory usage, as shown below. 



Table 6.1: Computation of V~,L,(W), using the Equations (6.11) and symmetry. 
1 

..- G n d X  + A;) 
-Bnl (A!, + A l )  

..- G** (A: + Ag) 
-B&Z + A;) 

Table 6.2: Computation of v~~,L,(w), using the Equations (6.11) and %orne symmetry". 

Table 6.3: Computation of V ? ~ L , ( W ) ,  discarding the row/column one fiom Table 6.1. 



REMARK 6.2 The Hessian v~,L,(w) is symmetric and highly sparse, with a (block) sparse 

structure that is  sirnililar to that of the Zoad fIow Jacobian. The areas O, 0, and O in 

the Figure 6.1 are locations of the elements eualuated by (6.11a), (6.11b) and (6.12a), 

respectiuely; and the area @, location of the elements eualuated by (6.14). The number of 

elements in  O,  Q and O is IN1 + 2lB1, the same number of elements i n  the matriz B. The 

number of elements in @ iS 51TI. 

Figure 6.1: Locations of the computed non-zeros to obtain the Hessian v:,L,(w). 

REMARK 6 -3 The number of floating point operations (flops) to wmpute V&L, (w)  can 

be easily estimated as a fùnction of the number of buses INI, number of branches IBI, and 

number of transfomers 171 i n  the sysfem. W e  need to wmpute IN1 non-zeros in Q, IBI 
non-zeros in 8, Il31 non-zeros in (3, and 5171 non-zeros in 0. The cost to compute each 
of the IN1 + 21BI non-zeros in O, Q and @ is 5 flops. The  cost to compute each set of 5 

non-zeros in  6 is  96 f lops. The total nurnber of f lops is, therefore, 51NI + 101B1 + 961'7-1. 



In the derivation of the above formuiae for estimating the number of flops to compute 

V;~L,(W) we assume that for each pair of connected buses i and j there corresponds a 

single elernent (i, j )  E B. Therefore, we have [B 1 = $ jUv INj 1 - The above formuiae for 

estimating the number of fiops can be generalized if we simply take 1131 as the number of 

elernents below the diagonal of the susceptance matrix B. 

6.3 Gradients and Hessians: Polar Coordinates 

In this section, we deal with the polar representation of (complex) voltages. The gradi- 

ent vector Vz f (r) and the Jacobian matrices V , ~ ( X ) ~  and ~ , h ( x ) ~  are computed fkom 

Equations (A.39) through (A.50) in Appendix A. 

The Hessian of the term Pi(v, 8, t) 

v S , q ( x )  = 

that appears in the constrauit (2.20a), has the form 

The Hessian sub-matrices v&,pi, V;,P, and vgepi are given by (A.52), (A.52) and (A.53), 

respectively- For each (i, -) E 7, two non-zeros of v Z , ~  are computed fiom (A.57) and 

(A.61), two non-zeros of V $ P ~  are computed from (A.65) and (A.69), and one nonzero of 

v&pi is computed from (A.73). For each (-, i) E 7, two non-zeros of v;,,Pi are computed 

from (A.58) and (A.62), and two non-zeros of V;*Pi me computed fkom (A.66) and (A.70) 

(with proper switch of index i by index j, and vice versa). 

The Hessian of the term Qi(v, 8 ,  t )  that appears in the constraints (2.2Ob), (2.21a) and 

(2.21b), has the form 

The Hessian sub-matrices Qi, v;,Q~ and O&, Qi are given by (A.54), (A.55) and (A.56), 
respectively. For each (i, -) E T, h o  non-zeros of v$Qi are computed fiom ( A S )  and 
(A.63), two non-zeros of are computed h m  (A.67) and (A.71), and one nonzero of 

v&Qi is computed fkom (A.74). For each (-, i) E 7, two non-zeros of v&,Qi are computed 

from (A.60) and (A.64), and two non-zeros of v&Qi are computed fkom (6 .68)  and (A.72). 



6.3.1 Lagrangian Hessian 

Each bus now contributes with two Hessians in the composition of V;.L,(W): (i) the 

Hessian (6.15) that is associated with the constra.int (2.20a); and (ii) the Hessian (6.16) 

that is associated with one of the constraints (2.20b), (2.21a) or (2.21b). The evaluation 

of v:,L,(w) is computationdy less expensive if we use information fcom the Jacobian 

matrices V , ~ ( X ) ~  and V, h(x)*, that is, if we compute the Hessian elements in terms of 

the elements KI,, L,, M&- and Nij of the load flow Jacobian, which are dehed  by Equations 

(A.39) through (A.46). The computation of v$,L,(w) is as foLlows: 

For j = 1,2, . . . , ]NI, compute the elements 

2(GjjA7 - BjjA;), (6.17a) 

NiiA:+L,Af ATjiA;+LjiX; 
4- 7 for i E Ni, i > j ,  (6.17b) 

K Y- 
HjjAT + MjjA: + CIEN;. (HljAf> + -MljAy) 

y u#lY (6.18a) 5- 
H ~ ~ A ;  + M ~ ~ A ;  - H ~ ~ A ;  - M.-A? - 32 3 

3 O i E N i > j (6.18b) vi 
-MjjX7 + HjjA; + ( M ~ ~ A ~  - XljA:), if j # 1, (6.19a) 

[EN;. 

-M. -AP + H -  -A? - Mji$ + H--x? 
23 23 3* 3 '  for i E Nj, i > j. (6.19b) 

These f o d a e  are displayed in Tables 6.4, 6.5 and 6.6. 

For each transformer (i, j )  E T, compute the elements 

REMARK 6 -4 The block sparse structures of v~,L, (w) for  the polar and rectangular voltage 

representations are alike. Area O in Figure 6.1 indicutes locations of the elements evaluated 

by (6.17a) ; area @, the elements evaluoted by  (6.17%) ; area 0, Me elements evaluated by 



Table 6.4: Computation of v&L,(w), using the Equations (6.17) and symmetry. 

Table 6.5: Computation of VI, L,(w) , using the Equations (6.17). 

Table 6.6: Computation of V& L,(W), using the Equations (6.18) and symmetry. 



(6.17~); areas O and @, the elements eualuated by (6.18b); area 8, the elements eualuated 

by (6.18~); and area 0, the elernents eualuated by (6.Hb). The  number of elements in areas 

a, @, O,@, @,O, and 0 i s  31NI t41l.31 -21N1 1 -2? that is, 2(INI + Il31 -INi 1 - 1) additional 

elements eualuated i n  cornparison with the number of elements for the rectangular voltage 

representation. Area @ indicates locations of the elemen t s  that are eualua ted b y (6.20) ; the 

number of these elements i s  517-1. 

REMARK 6.5 The number of fiops to cornpute v:%L,(w) with the polar representation can 

also be easily estimated. Besides the non-zeros in common with the rectangular represen- 

tation, we need to cornpute [NI - 1 non-zeros in O, 181 - INil non-zeros in Q, - 1 

non-zeros i n  8, and 101 - lNll non-reros in GD. The cost to compute each nonzem in @ 

is 4 flops, i n  Q i s  9 flops, in O i s  8 fIops, in Q is 41Njl + 4 pops, in @ is 2 Jops (using 

terms /rom O), in @ i s  41Njl + 3  fiops, and in @ is 7jiops. Each set of fiue non-zeros in @ 

requïres 61  jiops. The total nvrnber of Pops is, therefore, lllNl+ 42181 + 61171 - l71NlI - 7. 

6.4 Data Structures and Major Code Fragments 

In this section, we describe data structures suitable for holding the sparse Jacobian and 

Hessian matrices; we assume that the voltages are given in rectangular coordinates. To 

take advantage of the mapping (y, r2) c, (Xp, Xq7 Au), we rewrite the Lagrangian Hessian 

in the form 

Similarly, we rewrite the Lagrangian gradient 

in the form 

where 



The last two terms in the right-band side of (6.22) yield the vector 

('pi) - 

The vector products eXU and f A" are to be interpreted componentwise. 

The Jacobian of the active power balance constraints, V , ~ ( X ) * ,  and the Jacobian of the 

reactive power balance cons traints, v , ~ ( x ) ~ ,  have the same nonzero pattern. Therefore, 

they share the same pointers (adjacency structure) in the compact storage. The single 

common data structure for V , ~ ( X ) ~  and v Z q ( x ) *  is as follows: 

IRO J (1) : pointer to the beginning of the non-zeros in the row 1 of V , ~ ( X ) ~  and v , ~ ( x ) ~ .  

NCOJ(K) : coliimn number of the nonzero stored at the position K. 

PJAC(K) : value of the nonzero element VzjPi stored at the position K. 

QJAC(K) : value of the nonzero element VzjQi stored at the position K. 

A single data structure (adjacency structure) is considered for the bus-conductance and 

bus-susceptance matrices as well, as folIows: 

IROY (1) : pointer to the beginning of the non-zeros in the row 1 of B and G. 

NCOY (K) : column number of the nonzero stored at the position K. 

BBUS (KI : value of the nonzero element Bij stored at  the position K. 

GBUS (K) : value of the nonzero element Gij stored at the position K. 

The adjacency structures (IROY, NCOY) and ( I R 0  J, NCO J) are defined only once, before 

the iterative process starts. The following relations are considered in the Fortran 77 code 

fragments presented below: 

Fortran 

NBUS 

NTAP 

EVOL (1) 

FVOL (1) 

ZTWO (I) 



The Fortran 77 code fragment t hat implernents the Hessian equations (6 M a )  through 

(6.12a) is displayed below. The iine g: implements (6.11a), the iine k: implements (6.11b): 

the Line m: implements (6.12a), and the empty h e  n: stands for the implementation of 

a: DO 1010 J = 1 , NBUS 
b: PMUL = PLAMCJ) 
c: QMüL = QLAM(J) 
d: KBEG = IROD (JI 
e: KEND = IROY(J+I)  - 1 
f :  L = L + 1  

g : A(L) = 2 .O * (PMUL * GBUS (KBEG) - QMm. * BBUSCKBEG) + ZTWO (JI ) 
h: DO 1000 K = KBEG + 1 , KEND 
i: 1 = NCOY(K) 
j : L = L + l  
k: A(L) = GBUSCK) * ( P m  + PLAM(1)) - BBUS(K) * (QMUL + QLAM(I)) 
1: L = L + l  
m: A(L) = BBUS(K) * ( P m  - PLAMCI)) + GBUSCK) * (ClMm. - QLAM(1) ) 
n: ... 
0 :  1000 CONTINUE 
p: 1010 CONTINUE 

The code kagrnent that implements the Lagrangian gradient equation (6.22) is displayed 

below. The h e  j: implements the first two terms in (6.22), whereas the Iines m:, n: and 

r : irnplement the Iast two terms in (6.22). 

a: L = N B U S - 1  
b: K m  = O 
c: DO 1010 1 = 1 , NBUS 
d: PMUL = PLAM(1) 
e: QMUL = QLAM(1) 
f: KBEG = KEND + 1 

g 2 KEND = I R O J ( I + l )  - 1 
h: DO 1000 K = KBEG , KEND 
i: 3 = NCOJ(K) 
j: B(J)  = B (JI + P m  * PJAC(K) + QMUL * QJAC(K) 
k: 1000 CONTINUE 
1: L = L + I  
m: B(1)  = B ( I )  + 2.0 * ZTüOCI)  * EVOL(1) 
n: B(L) = B(L) + 2.0 * ZTWO (1) * FVOL(1) 
0 :  1010 COPTINUE 

P: DO 1020 1 = 1 , NTAP 
9: L = L + l  
r: B(L) = B(L) + ZFOU(1) 
s: 1020 CONTINUE 



6.4.1 A Block-Data Structure 

The primal miables z have been, so far, arranged in one of two forms: x = (e, f ,  t)T or 

x = (v, 8,  t)*. In computational practice, the variables associated with the sub-matrix 

O v,hT 

v$,L,, -V,g (6.25) 

should be manged in a way to form 5 x 5 blocks, when using recta.nguiar coordinates 

and to form 4 x 4 blocks, when using polar coordinates 

The idea of arranging the OPF Mnables in blocks was k s t  proposed in [66], in the context 

of a Newton's OPF. This arrangement allows for efficient ordering and block factorization. 



Rather than exnmining fiIl ins in the elimination of 12181 +61N1 elements below the diagonal 

of R, we examine block fil1 ins in the eIimination of Il31 off-diagonal blocks. 

6.5 Solving the Linear Systems 

Primal-dual codes devote the greatest part of their computational effort to solving large, 

sparse, structured linear equation systems of the form 

For instance, 

h e a r  system 

involving the 

the reduced system (3.23) defines 132 = v z d T  and A = -vZST. The 

(6.26) is usually solved in one of two forms: (i) the normal-equations form, 

symmetric positive definite matrix A D ~ A ~ ,  or (ii) the augmented-s ystern 

form, exploithg the specially structured symmetric indefinite matrix in (6 .26) .  

A major advantage of the normal-equations form is that al1 eIimination pivot orders for 

finding the LU factors Lij are stable [29]. Unfortunately, in NLP, the diagonal block matrix 

D* is a general sparse symmetric matrix rather than a diagonal matrix, and, despi te D2 and 

A being sparse, the matrix A D ~ A ~  is generalLy dense. Sparsity preserving requirements 

make the augmented-system approach the natural choice to solving (6 .S6), as concerned 

with IP methods for NLP. The major B c u l t y ,  in this case, is that it cannot be guaranteed 

t hat all pivot h g  orders are numerically stable. An ordering/symboiic factorizat ion phase 

attempts to choose a pivot ordering based on sparsity that will lead to low fa-ins. When 

the factorizat ion is comput ed with the actual numerical values, interchanges t hat alter the 

predicted pivot sequence may be required to retain numerical stability. 

6.5.1 Factorization of S ymmetric Indefinite Matrices 

Most factorizations of a symmetric indefinite matrix T have the form [25,76] 

where P is a permutation matrix, L is a unit lower trimgular matrix, and 5 is a block 

diagonal matrix in which each block is either 1 x 1 or symmetric 2 x 2. A stable elimination 

procedure is due to Bunch and Parlett [5], known as the Bunch-Parlett pmcedure. The 

Bunch-ParIett procedure eLiminate either one or two colllmn~ and rows of the matrix at  

a tirne. Each elimination step is pedormed with a diagonal pivot block selected fkom 



the remaining matrix F-e i ther  a single diagonal element of T I ,  or a 2 x 2 pivot block 

whose diagonal entries are also diagonal elements of p. A row/column permutation is then 

performed to move the pivot block to the upper left of the remaining matrix, to obtain 

where E is the 1 x 1 or 2 x 2 pivot block. Performing the actual numerical operations yields 

The algorithm Uicludes the column(s) CE-' in the L factor, includes the pivot block 

in the 6 factor, and updates the rnatrix ? c ? - C E - ' e -  The entire process is no* 

repeated on the remaining matrix T^ - Ci-'$. 
The key criterion for choosing the pivot block Z is that the growth of elements in the 

remaining matrix - cÉ-'ET is not too great. The Bunch-Parlett procedure examines all 

elements in the remaining matrix and identifies the largest diagonal and Iargest off-diagonal 

elements, whose magnitudes are denoted by xdiag and x,~, respectively. The ratio xoff/xdiag 
indicates the growth that we can expect in the remaining matrix if the largest diagonal is 

selected as a 1 x 1 pivot. If the ratio is not too large, this diagonal element is selected as 

the pivot. O therwise, a 2 x 2 pivot of the form 

is chosen, where Ej is the off-diagonal element that achieves the largest magnitude xon 

For sparse matrices, a second criterion is used in selecting a pivot: the update step 

t 5 - (%-leT should not create too much fill-in. Fourer and Mehrotra [25] describe a 
m o ~ c a t i o n  of the Bunch-Parlett strategy t hat combines stability and sparsity considera- 

tion. Their strategy determines the number of non-zeros in the update matfices CE-'*, 
where É is the set of dl possible 1 x 1 and 2 x 2 pivots in the remaining rnatrix. It fmst 

examines aU pivots for which the update matrices have the minimum number of non-zeros 

and checks to see whether any of them satides a stability condition that prevents excessive 

growth. For a prospective 1 x 1 pivot, this condition is 



whereas the 2 x 2 stabiiity condition is 

where 6 is a small parameter-according to experiments in [25], values of 6 in the range of 

16-4 to 16-6 give consistently good factorization. If any of the eiigible pivots satisfy one 

of these conditions, they are selected, with a preference given to 1 x 1 pivots. Otherwise, 

the procedure examines pivots for which the update rnatrix EE-'CT is successively more 

dense, stopping when it finds a pivot that satisfies one of the stability conditions above. 

In contrast to the positive definite case, there is no general way to End a numerically 

stable pivot order for an indefinite matrix using oniy syrnbolic information-the ordering 

process cannot be dissociated kom the numerical factorization. However, once a stable pivot 

order has been deterrnined, we can reuse it a t  subsequent iterations as long as it continues 

to give satisfactory factorkations and solutions. For each system of the form T r  = r that 

is solved using that factorization, the solution is deemed satisfactory if 

If a reused pivot order is found to give an unsatisfactory factorization or solution then 

we perform another dynamic ordering/factorization step and saves the new pivot order for 

reuse on subsequent iterations. 

6.5.2 UMFPACK: A Public Domain Linear System Solver 

In our algorithms implementations, we have utilized the public domain linear system solver 

UMFPACK Version 2.2, of Timothy Davis and Iain D a  University of Florida. The acronym 

UMFPACK stands for Unsyrnmetric-pattern Multil+ontal PACKage. The source code and 

technical reports describing W P A C K  are available via the World Wide Web at http : //m. 

cise .ufl. edu/-davis, or by anonymous ftp at f t p .  cise .uf 1. edu:pub/f aculty/davis. 

About features of W P A C K ,  we quote the following kom the code documentation: 

UMFPACK Version 2.2 is a package for solving systems of sparse h e a r  systems, 

Ax = O, where A is sparse and can be unsyrnmetric. It is written in ANS1 

Fortran 77. There are options for choosing a good pivot order, factorizing a 

subsequent matrix with the same pivot order and nonzero pattern as a previ- 

ously factorized matrùc, and solving systems of linear equations with the fac- 

tors (with A, L, or U; or with their transposes in the single/double precision 



versions). Iterative refinement, wit h sparse backward error estimates, can be 

performed. Single and double precision, complex, and complex double precision 

(coniplex'l6) routines are availabie- 

About the method implemented in UMFPACK, we quote the following fkom the code docu- 

mentation: 

The multifkontal method factorizes a large sparse matrix using a sequence of 

small dense frontal matrices. The square &ontal matrices are factorized ef- 

ficiently using dense matrix kernels. Classical multifrontal methods assume 

a symrnetric nonzero pattern. The unsymmetric-pat tern multïf?ontd met hod 

(UMFPACK), relaxes this assumption by using rectangular frontal matrices. High 

performance is achieved by using dense matrix kernels to factorize these rect- 

angdar front al matrices, and also t hrough an approximate degree update a@- 

rithm that is much faster (asymptoticaIly and in practice) than computing the 

exact degrees. Since a general sparse code m a t  select pivots based on both nu- 

merical and symbolic (fill-reducing) criteria, the analysis phase (pivot selection 

and symbolic factorization) and the numerical factorization are cornbined. The 

rectangular kontal matrices are constructed dynamically, since the structure is 

not known prior to factorization. 

Version 2.2 of UMFPACK combines features of both unifiontal and mdtf iontd  

methods. In the multifrontal method, in contrast with a (uni-)frontal method, 

several fiontal matrices are used. Each is used for one or more pivot steps, and 

the resulting Schur complement is summed with other Schur complements to 

generate another frontal matrix. Although this means that arbitrary spaxsity 

patterns can be handled efEcientIy, extra work is required to add the Schur 
complements toge t her and can be cos t ly because indirect addressing is required. 

The &ont al method avoids this extra work by factorizing the mat& wit h a single 

fiontal matrix. Rows and columns are added to the frontal matrix, and pivot 

rows and columns are removed. Data movement is simpler, but higher fill-in can 
result if the matrix cannot be permuted into a variable-band form with smal  

profde. üMFPACK Version 2.2 is based on a combined unifrontal/mdtïfkontal 

algonthm that enables a general W-in reduction ordering to be appiied but 

avoiding the data movement of previous multiîiontal approaches. 

For more information on UMFPACK, see [14,15]. 



6.6 Final Rernarks 

In this chapter, we have discussed many issues that are directly related to an effective 

implementation of the dgorithms proposed in this thesiç. A few remarks are as foIlows: 

We have presented four hitialization heuristics. Two of the heuristics conform with 

the whole set of IP dgorithms, and the four of them conform with the NIP aigorithm. 

The numerical performance of each initiaikat ion heuristic has been numerically tested, 

as discussed in Chap ter 7. 

We have derived explicit formdae to efficiently assemble the Hessian matrices, both 

in rectangular and in polar coordinates. We show that this task is more efficiently 

done in rectangular coordinates, where the functions Hessians are constant. 

We have proposed a mapping fkom constra.int multipliers to bus multipliers: (y, z2) c, 

(Xp, Xq, XV). Such a mapping considerably reduces the number of logical operations 

in the evaluation of the Lagrangian gradient and Hessian, and d o w s  for efficient 

data structure and savings in computer memory usage. An efficient evaluation of 

the Lagrangian gradient is crucial for the line search procedure wherein this task is 

repeatedly performed. 

We have derived explicit formulae to estimate the number of flops required to obtain 

the Lagrangian Hessian-the major effort in forming the Newton system-both in 

rectangular and in polar coordinates. 

We have presented two code fragments that emphasize some of the advantages of the 

prop~sed mapping of Lagrange mdtipliers. 

We also have discussed a block-data structure and the solution of symmetric indehite 

systems. However, such a block-data structure have not been implemented in our 

computer codes; we have used a public domain indefinite system solver that does not 

take advantage of block-data structures. 



Chapter 7 

Comput at ional Experiment s 

In this chapter, we present numerical experiments with the IP and NIP algorithms for 

NLP previously described in Chapters 3, 4 and 5. These experiments relate to the solution 

of the nonlinear reactive power dispatch (RPD) problems (2.18) and (2.23). The main 

purposes of the computationd tests are: (i) to gain insight into the various methods, (ii) to 

compare competing met ho&, (iii) to tune parameters in the algorithms, and (iv) to compare 

the performance of the proposed algorithrns in the solution of the rectangular and polar 

"versions" of the RPD problem. To this end, we have initidy developed prototype codes 

under the MATLAB" (The MathWorks, Inc.) environment and tested on the well known 

IEEE test systems with 6, 30, 57, 118 and 300 buses. To be able to solve larger problems, 

and fairly compare cornpeting methods, we &O have coded ail algorithms in Fortran 77 (in 

double precision arithmetic) and cornpiled with the -02 option. AU the numerical results 

presented have been produced on a Pentium Pro 200 MHz with 64 MBytes of RAM, rurining 

the L k  operating system. 

This chapter is organized as follows. In the next section, we display the names and 

the main features of the developed codes. In Section 7.2, we describe the set of test power 

systems. Several statistics are given related to the dimension of these problems and an 

indication of the degree of difEcuIty (the number of binding constraints) to solve them. In 

Section 7.3, we discuss numerical results with the set of IF' algorithms. A defauIt set of 

parameters, initializat ion heuris tic, s t ep lengt h scheme, and updat ing formula of the barrier 

parameter has been defined and effects of changing this set in different ways are ex;miined. 

In Section 7.4, we discuss numerical results with the NIP algorithm. In Section 7.5, we 

make some further cornparisons of the rectangdar and polar variants of the RPD problem. 

Final rem& in Section 7.6 close the chapter. 



7.1 The Developed OPF Codes 

PVe have written a set of twelve computer codes in ANSI Fortran 77. The compiler used is 

the GNU Fortran 77 compiler that is included in cornmon Linux distributions. The set of 

twelve OPF codes associates a variant of the OPE' problem-minimum transmission active 

power losses-that is formulated either in rectangular (R) or in polar (P) coordinates, with 

the five IF' dgorithms that are described in Chapters 3 and 4, and the NIP algorithm that 

is described in Chap ter 5. The name of the codes, as we address them in the discussions in 

th% chapter, dong with th& major distinguishing features are displayed in Table 7.1. 

Table 7.1: The names and some distinguishing features of the developed OPF codes. 

1 Code Name 1 Coordinates 

R-IPD Rectangdar 

P-IPD 1 Polar 

P-PCM 

P-PCN 

Rect angular I MC I 
R-MCC Rectangular 

P-MCC / Polar 

R-NIP Rectangular 

P-NIP 1 Polar 

Infeasible Primal-Dual IP Method 1 Algonthm 3.2 

Op t ïmkzation Technique Description 

Predictor-Corrector TP Method Algorit hm 4.1 

Perturbed Composite Newton IP Method Mgorithm 4.2 

Multiple Predictor-correct or IP Method Algorit hm 4.3 

Multiple Centrality Corrections IP Method 

7.2 The Test Power Systems 

Algorithm 4.4 

Non-Interior-Point Continuation Method 

The performance of the OPF codes is tested on a set of eleven power systems that range 

in size from 14 to 2098 buses. Some statistics for the test power systems are displayed 

in Table 7.2, where, for each power system, we give the total number of buses (INI), the 

number of generator buses (IÇl), the number of load buses eligible for shunt var control 

(IE I ) ,  the number of load buses with fized vaz sources (IFI), the total number of branches 

(IBI) , and the nurnber of transformers with LTC device (171). Table 7.2 also displays the 

initia! active power 16sses in MW and in percentage of the &al system load. 

Algorithm 5.1 



COMPUTATIONAL EXPERIMENTS 

Table 7.2: Statistics for the test power systems. 

Test System 
Number of Buses and Branches 

lJvl Pl IEI I l  Pl ITI 
14 5 1 8 20 3 
24 11 1 12 38 5 
30 6 5 19 41 4 

57 7 5 45 80 10 

118 54 12 52 186 9 
300 69 23 208 411 35 

256 58 23 175 376 50 

555 126 46 383 787 85 
340 59 52 229 684 12 

810 114 185 511 1340 166 

2098 169 426 1503 3283 239 

The basic load flow data for the IEEE test systems is available by anonymous ftp at 

wahoo .ee .uuashington. edu. The basic load flow data for the MEXI-256 test system, a 

longitudinal system that is derived from the Mexican power network, is obtained fiom [63]. 
The test sys tem TEMX-555 has been obtained as a combination of the IEEESOO and MIEXI- 
256 test systems. The power systems BRAS-340, BRAS-810 and BRAS-2098 are modified 

reduced systems derived from the actual Brazilian power network. 

The physical and the operational limits for MEXI-256, IEMX-555 and the set of LEEE 
test systems have been defined as &5% off nominal value for the load bus voltages (V;:, for 

i E F U  E ) ,  as &2% off speczed values for the generator bus voltages (K, for i E Ç), and as 

&IO% off nominal value for the transformer tap settings (t,). To test algorithm efficiency 

and robustness, solution difEcdty has been increased by choosing small sets of buses eLigible 

for shunt var control (a smaU set E )  and setting fairly narrow limits for the reactive power 

outputs of generators. Such a speciiication of the OPF problem shrinks its feasible region 

and, therefore, increases the chances of a large number of binding constraints to occur in 

its solution. 

Some statistics for the solved NLP problerns are displayed in Table 7.3, where, for each 

problem, we give the number of primal variables (n) , the number of equaIity constraints (m) , 
the number of nonlineâr functional inequalities (p), and the number of simple bound con- 

straints (q). Notice that the number of nonlinear functional inequality constraints and of 

simple bound constraints are indeed double the figures dispiayed in Table 7.3 since each 

inequality is subject to both lower and upper bounds. Also displayed in Table 7.3 are the 



final active power Iosses in MW and in percentage of the total Ioad, as weU as the number 

of reactive power limits (Q), of voltage limits (V) and of transformer tap setting b i t s  (t) 
that are activated in the optimal point. 

Table 7.3: Sizes of the NLP problem (LI), final losses and number of active limits. 

Problem Test System 
NLP Problem Sizes 
n rn P 4 

30 21 20 3 

52 35 36 5 

63 48 41 4 

123 101 69 10 
244 169 184 9 

634 507 392 35 

562 430 337 50 

1194 937 727 85 
691 568 451 12 

1785 1320 1109 166 

4434 3600 2693 239 

Active Limits 

V Q t  

7.3 Experiments with the Interior-Point Algorithms 

In this section, we describe extensive computational experiments with the IP algorithms. 

Tu avoid testing an unreasonable large number of combinations of parameters, initialization 

heuristics, step length computation schemes, and updating formdae of the barrier parame- 

ter, a "reference" set of parameters and formulae has been defined and the effect of changing 

this set in difEerent ways is exarnined. Initially, we employ the initialization Heuristic-A 

(see Section 6.1.1), the computation of the step lengths by Scheme-B (see Section 3-4.21, 

and the computation of the barrier parameter by the standard procedure (see Section 3.5.1)- 

The parameters default to 

For the test runs in which the OPF algorithms have converged, the tables below mostly 

display the number of iterations (iters) and the elapsed CPU times ( t h e ) .  AU reported 

CPU times are d e h e d  in seconds, and do not include the t h e  for data I/O. In the case 



an algorithm has failed to converge, we then give an indication of the main reason for that 

failure. For example, by as we mean that after the 8th iteration the step Iengths are nearly 

zero and, consequently, the algorithm fails to progress M h e r .  By ugO we mean that the 

convergence criteria y has not been satisfied after 50 iterations. At the bottom of each 

table, we display the total number of iterations and CPU t h e  to solve the whole set of 

eleven problems. 

7.3.1 Performance with Default Parameters 

The results of experiments carried out with the default algorithms settings (parameters and 

formulae) are displayed in Table 7.4 (voltages in rectangular coordinates) and Table 7.5 

(voltages in polar coordinates). In these experiments, the IP algorithms have employed 

the same settings for aU problems. That is, the IP dgorithms have not been '%tuned" to 

particular problems. In doing so, it is likely that for some problems some algorithms will 

fail to converge to an optimal solution. Nevertheless, we consider instructive to present 

and discuss non-converged cases, and, whenever possible, to identiS. modifications of the 

dgorithms that might restore convergence of the iterative process. As a result, we expect 

to i d e n t e  some strength and weakness of the proposed algorithms. 

The numerical results reported in Table 7.4 show that the R-IPD code has failed to solve 

the Problems 6,  8, 9 and 10. Similar convergence dXculty has been observed with the 

P-IPD code, as shown in Table 7.5. The iterative process for Problem 6, up to iteration 9, 

is îllustrated in Table 7.6. We can infer fkom Table 7.6 that the R-IPD code using the 

default parameters and formulae has failed to solve Problem 6 because the step length ak 

prematurely becomes too small (nearly zero). Since a9 I= 0, the variables remain practically 

unchanged after the 9th iteration. Consequently, the primal-dual IP algorithm fails to 

progress furt her in reducing the prima1 and dual infeasibility, and the complernentarity 

gap 

It is clear from the ratio tests (3.28) and (3.29) that the step lengths may adversely 

be set to very small values whenever one or more variable with strict positivity conditions 

prematurely approaches zero. This rnay happen for a number of reasons such as  the starting 

point wo being a badly centered one, the ba,rrier parameter pk being reduced too fast, and 

so fort h. In the case of Problem 6, we manage to restoze convergence of the primal-dual Il? 
iterations in two simple ways: (i) reducing the step length safety factor fkom cro = 0.99995 

ta a0 = 0.9 (in which case iters = 19 and time = 6.84), and (ii) increasing the centering 

parameter from go = 0.2 to oo = 0.7 (in which case iters = 31 and t h e  = 11.40). 
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Table 7.4: Runs with default parameters: P codes using Rectangular Coordinates. 
- - -- 

R-IPD 

iters tirne 

14 1.68 
15 1-92 
14 1.82 

17 2.56 

18 3.61 

a9 

19 5.81 
a9 

as 

as 

26 61.19 

Problem 

1 
2 
3 
4 
5 
6 
7 

8 
9 
10 
11 

1 Total 

R-PCM 

iters tirne 
R-PCN 

iters thne 
R-MPC 

iters tirne 
R-MCC 

iters time 

Table 7.5: Runs with default parameters: IP codes using Polar Coordinates. 

P-IPD 

iters time 
P-PCM 

iters time 

-- 

P-PCN 

iters time 
P-MPC 

iters time 

P-MCC 

iters thne 
Problem 

As we reduce the safety factor au we aim at keeping the variables with non-negativity 

conditions a bit further away from the boundary of the positive orthant. As we increase 

the centering parameter o0 we aim at decreasing the barrier parameter at more modest 
rates. By means of these two simple algorithm modifications, we also are able to restore 

convergence for the other cases displayed in Tables 7.4 and 7.5 in which the R-IPD and 



Table 7.6: Non-converged iterative process for Problem 6: R-IPD code. 

P-IPD codes have failed to solve. 

The numerical results displayed in Tables 7.4 and 7.5 suggest that the Il? algorithms 

are practically insensitive to the dimension of the NLP problems, as far as concerned with 

the nuniber of iterations, which is a typical feature of Newton-type methods. If we d e h e  

the size of the NLP problem (1.1) as n + m + p  + q, then we can infer from Tables 7.3, 7.4 

and 7.5 that while the NLP problem sizes have uicreased from 74 to 10566 (factor of 142), 

the number of iterations have increased fiom 8 to 28 (factor of 3.5). 

The results displayed in Tables 7.4 and 7.5 also suggest the superiority of the higher- 

order IP variants over the plain primal-dual IP method (R-IPD and P-IPD), not only in 

terms of nurnber of iterations and CPU times but also in terms of robustness; all eIeven 

problems have been solved by the higher-order IP methods using the default parameters. 

As far as concerned with the total number of iterations to solve the eleven problems, the 

best computational performance has been that of the R-PCN code, with 124 iterations. As 
far as concerned with the total CPU time, the best performance has been that of the R-WC 

code, with 88.64 seconds. Apparently, the worse performance has been that of the R-MCC 

and P-MCC codes. We show below that these MCC codes indeed perform very well when 

they use other parameter settings. 

The higher-order IP variants employ predictor and corrector steps to improve the order 

of accuracy to which the Newton directions approximate the nonlinear KKT equations. In 

these IP variants, the centrality of the iterates are improved by solving two or more linear 

systerns within each iteration. This ailows for larger steps to be takea towards a solution, 

as illustrated in Figures 7.1 and 7.2, such as better convergence rates are usually achieved. 



Figure 7.1: hcrease of the step lengths through predictor-corrector steps: Problern 6 solved 

Figure 7.2: Increase of the step lengths through centrality correction steps: Problem 6 

solved by R-MCC code using the defadt parameters and formulae. 



In Table 7.7, we display the CPU times (in seconds and in percentage of the total 

solution time) elapsed in the major steps of the predictor-corrector IP algorithm, when it 

solves Problem II- The first three lines in Table 7.7 relate to set up of the data structures 

to hold the matrices, and the numericd evaluation of the bus admittance matrices G and 
B; these tasks need to be performed only once, before the iterative process begins. Notice 

t hat the symbolic/numericaI factorizat ion of the coefficient matrix v&, Lp (w ) demands 

much more computational effort than the linear systern solutions that use this factorization 

(85.46% versus 3.90%). As the higher-order IP methods aim at reducing the number of 

matrix factorizations to a necessary minimum, they usudy  requires less CPU times than 

the plain primal-dual IP method. 

Table 7.7: Elapsed CPU times in each major step of the R-PCM code: Problem 11. 

Set the nonzero structure and compute the bus matrices G and B : 0.77 1.25 

Set the nonzero structure for the Jacobians V , ~ ( Z ) ~  and v,Q(x)~ : 0.03 0-05 

Set the nonzero structure for the Hessian rnatrix v;, L,(w) : 0.04 0.07 

Form the Newton system V,L~(W~)AW = -v ,L~(u~)  : 3.35 

Perform the symbolic/numerical factorization of v&, L, (wk) : 52 -62 

Linear system solutions : 2.40 

Compute the primal and dual step lengths : 0.12 

Update the primal and dual variables : 0.22 

Evaiuate the nonlinear function-vectors g(xk) and h(xk) : 0.12 

Compute the Jacobian matrices V , ~ ( X ~ ) ~  and v , ~ ( z ~ ) ~  : 0.20 

Test for convergence : 0.25 

Update the barrier parameter 4 : 0.04 

Other: 1.40 

~Zal (secs and%) : 61.57 100.00 

7.3.2 Muence of Initialization Heuristics 

In Tables 7.8 and 7.9, we display the results of experiments performed with the IF algorithms 

using the initialization Heuristic-B (see Section 6.1.2). The results for the initialization 

Heuristic-A are displayed in Tables 7.4 and 7.5. We may infer £iom Tables 7.8 and 7.9 that 

the numerical performance for the initialization Heuristic-B is &O good; however, such a 

performance is inferior t O the performance for the initialization Heurist ic-A. 

We remark that the most aggravated performance relates to the MCC method. This is 
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TabIe 7.8: Influence of initialization heuristics: Heurist ic-B, Rectangular Coordinates. 

Problem 

I 

2 
3 
4 

5 
6 
7 

8 

9 
10 

Il 

R-IPD 

iters time 

R-PCM 

iters time 

R-PCN 

iters time I iters time 

R-MCC 

iters t ime 

I 

Table 7.9: Muence of initialization heuristics: Heuristic-B, Polar Coordinates. 

* I I 

Problem 

Tot al - 134 100.85 - 136 94.89 216 169.92 

P-IPD 

iters time 

P-PCM 

iters time 

10 1.20 

8 1.06 

8 1.04 

10 1.49 

11 2.22 

13 4.73 

13 3.98 

14 8.77 

13 5.32 
17 15.25 

26 59.81 

P-PCN 

iters time 

P-MPC 

iters t h e  

10 1.23 

8 1.03 

8 1.02 

10 1-46 

11 2.19 

14 5.06 

13 4.03 

16 9.93 

14 5.67 

34 29.56 

20 46.10 

158 107.28 

P-MCC 

iters time 

due, in part, to the fact that the starting points obtained by Heuristic-A are usually better 

centered than the starting points obtained by Heuristic-B. We may recall fiom Section 6.1 

that, in the Heuristic-A, we fmt  choose > O and then compute a:, 22, za and rf; 

hence, al1 complementarity products ~4%: have the same value which is beneficial for 

the MCC algorithm. In the Heuristic-B, on the contrary, we first estimate z!, z:, ZQ and 



24 and, afterwards, we use these estimates to define a ,u0 > O. Thus, there may be large 

discrepancies between the complementarity products; since only one centrality correction 

has been allowed within each P iteration (M = 1) the MCC algorithm has been unable to 

properly correct the centrality of the iterates, 

Once more, the R-IPD and P-IPD codes have failed to solve the most significant problems, 

for the same reason t hey have failed to solve these problems using the Heuristic-A. Among 

the higher-order IP algorithms, the only failure that is reported h a .  occurred with the 

R-PCN code, which has failed to satis@ the primal feasibility condition for the Problem Il 

(BRAS-2098) after 50 iterations. In spite of such a failure, on the whole the codes using 

rectanguiar coordinates (R-) have shown a computational performance slightly superior to 

the performance of the codes using polar coordinates (P-) . 

7.3.3 Influence of Step Length Procedures 

The results displayed in Tables 7-10 through 7.15 relate to performance evaluation of the step 

length rules. More specifkally, in Tables 7.10 and 7.1 1, we dispIay the results of experiments 

performed with the IP dgorithms using the step length Scheme-A (see Section 3.4.1)- The 

results for the Scheme-B are displayed in Tables 7.4 and 7.5. ln Tables 7.12 and 7.13, we 

display the results for the step length Scheme-C (see Section 3.4.3). Finally, in Tables 7.14 

and 7.15, we display the results of experiments with the R-PCM and P-PCM codes using 

Scheme-B with different values of the safety factor 00. 

With respect to the resdts for the Scheme-A, we observe that the higher-order IP meth- 

ods have once more performed well. Their performance with Scheme-A indeed has been 

slightly superior to thek performance with SchemeB, as far as concerned with the number 

of iterations and CPU times. AU the higher-order IP a l g o r i t h  have solved the eleven 

problems. We remark, however, that the R-PCM code required a reasonable Iarge nrunber of 

iterations to solve Problem II, as compared with the number of iterations required by the 

other IP codes as well as by the same code using the SchemeB. In such a case, we have 

observed t hat for several iterations of the R-PCM code using SchemeA either the p d  step 

length or the dual step length has been set too close to zero; consequently, the convergence 

of the primal and the dual feasibility has occmed to be quite slow. 

Still related to the Scheme-A, we observe that the R-IPD and P-IPD codes using this 

step length d e  have been able to solve most of the problems which they had failed to 

solve using the SchemeB (see Tables 7.4 and 7.5). We rnay recall that the SchemeA 
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Table 7.12: Muence of step lengt h procedures: SchemeC, Rectangular Coordinates. 

Problem 

1 

2 

3 

4 
5 

6 
-7 

8 

9 

10 

11 

I r  

R-IPD 

iters tirne 

R-PCM 

iters time 

R-PCN R-MPC 

iters time iters time 

8 0.98 9 1.09 

8 1.04 8 1.04 

8 1.04 8 1.06 

11 1.66 9 1.38 
10 2.09 10 2.08 

11 4.32 10 3.88 
10 3.18 10 3.14 

12 8-03 11 7.46 

10 4.28 10 4.36 

11 11.40 11 10.88 

R-MCC 

iters time 

Table 7.13: Influence of step length procedures: Scheme-C, Polar Coordinat es. 

Problem 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

P-IPD 

iters time 

P-PCM 

iters t h e  

P-PCN 

iters t h e  

P-MPC 

item time 

11 1.28 

10 1.22 

,go 
10 1.48 
u;O. uiO 

ufO, ,go y 4 0  

v y ,  uZ0 y y35O 

ufoY Go, 4 0  

ufoY y Z O ,  y3O 
.so $0 ,so 
1 9  2 3  3 

vfo1 go3 4 0  

- 

P-MCC 

iters t h e  

with the Scheme-A has been that of the MPC algorithm, both in rectangdar and in polar 

coordinat es. 

With respect to the results for the SchemeC, we can observe fkom Tables 7.12 and 7.13 

t hat none of the IP codes have performed satisfactorily with this step length rule, rnainly the 

"versions" in polar coordinates (Table 7.13). For instaace, all codes but P-PCM have f d e d  to 



Table 7.14: Muence of the size of safety factor cro: R-PCM code. 

a 0  = 0.95 
iters t h e  

a 0  = 0.97 
iters thne 

00 = 0.98 
iters time 

ai0 = 0.995 
iters t h e  

00 = 0.9995 
iters t h e  

Problem 

Tot al 138 103.58 135 100.78 131 94.26 131 97-59 

Table 7.15: Influence of the size of sakty factor CQ: P-PCM code. 

00 = 0.95 
iters time 

a0 = 0.97 
iters t h e  

a0 = 0.98 
iters tirne 

a0 = 0-995 
iters t h e  

a 0  = 0.9995 
iters t h e  

Problem 

solve the largest problern (at least in the case we allow them to perform only one corrector 

step per iteration) . The reason is that in most of the iterations the dual step length is set 

too close to zero; consequently, the primai and dual feasibility, and the complementarity 

conditions shultaneously fail to be satisfied, as c m  be inferred fkom Tables 7.12 and 7.13. 

We remark, however, that our IP a l g o r i t h  do not incorporate other major features of 



the Yamashita-Yabe IP a lgor i th ,  for which the step length Scherne-C has been designed; 

the lack of these features may have deteriorated the practicd performance of the step length 

Scherne-C as this step length rule is implemented in our IP dgorithms. 

In Tables 7.14 and 7.15, we display the results of experiments performed with several 

values of the step length safety factor ao. We have carried out such an analysis o d y  in 

the context of the predictor-corrector IP method; we believe that the conclusions drawn for 

the predictor-corrector IP method may be extended to the other higher-order IP methods. 

Notice from Tables 7.14 and 7.15 that the best performance has been obtained with safety 

factors in the interval 0.98 5 a0 5 0-9995. We aIso can observe that the closer a0 is to 

unit the Iower is the number of IF' iterations- O n  the other hand, as we have discussed 

above, a safety factor of cro = 0.9, or even lower, may be required as a means of restoring 

convergence for non-converged runs with the plain primal-dual IP method. 

With respect to the high number of iterations to solve Problem 11, that is required by 

the P-PCM code using a0 = 0.995, we remark that in four IP iterations the algorithm made 

steps crk < 1 0 - ~ ,  such that convergence of the equality constraints turned to be very slow. 

7.3.4 Influence of ,u0 and Updating Formulae of pk 

In Tables 7.16 through 7.19, we deal with the infiuence of in the convergence process 

of the plain primal-dual IP algorit hm and the predictor-corrector IP algorit hm. We begin 

out analysis with a discussion of the non-converged cases with the plain primal-dual IP 
algorithm. We infer from Table 7.17 that the iterative process for Problem 3 (IEEE3O) has 

failed to converge wit h = 0.00 1 because the step lengths are prematurely (iteration 5) set 

too close to zero. However, we have observed that the P-IPD code solves this problem with 

= 0.001 if we simply reduce the safety factor fkom cro = 0-99995 to a0 = 0.9 (in which 

case iters = 12 and time = 1-60). SimiIarly, the iterative process for Problem 4 (IEEE57), 

which has failed to converge with = 0.001, converges if we set OQ = 0.9 (in which case 

iters = 18 and time = 2.70). . 

With reference to Table 7.16, the iterative process for Problem 6 (IEEE300), which has 

failed to converge with = 10, converges if we set a0 = 0.9 (iters = 20 and time = 7.38) or 

increase the centering parameter £rom oo = 0.2 to oo = 0.7 (iters = 35 and tirne = 13.04). 

The iterative process for Problem 6 ,  which has failed to converge with = 1, converges if 

we set a0 = 0.9 (iters = 19 and time = 6.84) or set 8 = 0.7 (iters = 31 and time = 11.40); 

and converges with = 0.1 and = 0.001 if we set oo = 0.7 (iters = 21 and t h e  = 7.72). 



Table 7.16: Muence of in the plain primal-dual IP method: R-IPD code. 

Problem 
Po = 10 

iters time 

15 1.82 

15 1.92 

15 1.98 

16 2.43 

18 3.87 
a 12 

20 6.19 

al1 

Cri0 

as 

28 68.89 

Tot al - 

iters t h e  

p0 = 1 
iters time 

14 1.68 

15 1.92 

14 1.82 

17 2.56 

18 3.61 

a9 

19 5.81 

CY9 

us 

Ct5 

23 58.71 

iters time 

jLO = 0.1 
item time 

12 1.44 

13 1.69 

11 1.45 

15 2.23 
18 3.61 

a8 

17 5-20 

a7 

18 7.21 

a4 

22 50-12 

Table 7.17: Muence of in the plain primal-dual IP method: P-IPD code. 

- - 

-- 

Problem 
= 10 

iters time 

p0 = 1 
iters time iters t h e  1 iters time 1 iters time 

Except for minor changes in the number of iterations and CPU times, the same has been 

observed for Problem 6 in Table 7.17. We also have observed that the convergence process 

with higher values of oo has been characterized by slow decrease of the complementanty 

gap (criterion a) and by step lengths close to unit. 

StU related to Tables 7.16 and 7.17, the iterative process for Problem 7 (MEXI-256), 



which has failed to converge with = 0.001, converges if we set oo = 0.8 (iters = 29 and 

time = 8.85)- 

The iterative process for Problem 8 (TEST-555), which has f d e d  to converge with 

= 10, converges if we set 2 = 0.7 (iters = 35 and time = 22.53). It converges with 

= 1 if we set a0 = 0.9 (iters = 20 and time = 12.78) or set oo = 0.7 (iters = 32 and 

time = 20.44); it converges with = 0.1 if we set a0 = 0.9 (iters = 18 and t h e  = 11.24) 

or set oo = 0.7 (iters = 35 and time = 21.86); and it converges with = 0.001 if we set 

a0 = 0.9 (iters = 20 and time = 12-78) or set oo = 0.7 (iters = 27 and t h e  = 16.99). 

The iterative process for ProbIem 9 (BRAS-340), which has failed to converge with 

= 10.0, converges if we set cro = 0.9 (iters = 22 and time = 9.29) or set ao = 0.7 

(iters = 34 and time = 14.71); it  converges with = 1.0 if we set a0 = 0.9 (iters = 20 and 

time = 8.10) or set oo = 0.7 (iters = 31 and time = 12.81); and it converges with = 0.01 

if we set oo = 0.7 (iters = 24 and time = 10.15) - The same has been observed for the 

non-converged tests with the P-IPD code. 

The iterative process for Problem 10 (BRAS-810), which has failed to converge with 

= 10, converges if we set oo = 0.4 (iters = 21 and time = 20.42); converges with = 1 

if we set oo = 0.4 (iters = 18 and time = 17.06); converges with = 0.1 if we set ao = 0.4 

(iters = 15 and time = 14.02); and converges with = 0.001 if we set both a0 = 0.9 and 

00 = 0.8 (iters = 24 and time = 22-70). The same has been observed for the non-converged 

tests with the P-IPD code. 

The iterative process for Problem Il (BRAS-2098), which has failed to converge with 

= 0.01, converges if we set cuo = 0.9 and oo = 0.6 (iters = 35 and time = 78.92). 

Convergence with = 0.001 could not be restored by means of such a simple modification 

of parameters. The same has been observed for the non-converged tests with the P-IPD 

code. 

In Table 7.18, the iterative process for Problem 9, which haç fded to converge with 

= 0.001, involves very smdl a£Ene steps (ak << 1) and the convergence is very slow. 

In sllmmâry, the presented numerical results recommend choosing E [10-~, 1.01 with 

the best choice for this test set being = 10-~. The convergence range for the barrier 

parameter is relatively large, as long as the centering parameter o is properly chosen. The 

major limitation in the choice of is that it should not be chosen too s m d .  From the 

above analysis for the non-converged cases, we can conclude that the plain primal-dual If 
method is also capabIe of solving ail the eleven problems, as long as we properly set the 
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Table 7.18: Ineuence of in the predictor-corrector IP method: R-PCM code. 
r 

Pro bIem 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

I l  

lzz- 

p" = 10 /Lo = 1 

iters time iters time 

10 1.23 13 1.58 
9 1.19 8 1.05 

9 1.23 9 1.16 

10 1.55 10 1.57 

11 2.35 11 2.30 
12 4.81 11 4.26 
12 3.86 11 3.48 

13 8.82 13 8.70 
12 5.34 11 4.82 
12 12.27 11 11-06 

26 66.89 25 61-77 

p0 = 0-1 

item time 

12 1.46 

8 1.05 

8 1.07 
9 1.40 

10 2.09 
10 3.80 

10 3.16 

11 7.26 

12 5.05 

10 9.77 
23 55.22 

p0 = 0.01 

iters time 

= 0.001 

iters t h e  

Table 7.19: Influence of in the predictor-corrector IP method: P-PCM code. 

/La = 10 p0 = I /'O = 0-1 p0 = 0.01 
iters time iters time iters time iters time 

/LO = 0.001 
iters t h e  

7 0.86 

6 0.78 

6 0.81 

10 1.49 

8 1.62 

10 3.62 

10 3.07 

11 6.95 

21 8.51 

11 10.40 

22 49.50 

1 Total 133 104.66 132 98.33 124 87.38 114 83.58 122 87.61 

safety factor a0 and the centering parameter oO. 

In Tables 7.20 and 7.21, we display the results of experiments in which we have updated 

pk using the standard procedure (see Section 3.5.1) and have chosen = 0.01. We may 
recall that in Tables 7.4 and 7.5 we have used p0 = 1. We may infer fkom Tables 7.20 and 7.21 

that, on the whole, the IF' codes have shown their best performance so far. Surprisingly, 



Table 7.20: Muence of updating formula of p: Standard Procedure, Rectangular Fom- 

Problem 
R-IPD 

iters time 

R-PCM 

iters t h e  

R-PCN 

iters time 

R-WC 

iters t h e  

R-MCC 

iters time 

Table 7.21: Muence of updating formula of p: Standard Procedure, Polar Form. 

Problem 
P-IPD 

iters time 
11 1.34 

11 1.47 
10 1.31 

13 1.95 

15 3.03 
14 5.09 

16 4.88 
16 9.89 

Q' 

a6 

23 50.07 

- 

P-PCM 

iters tirne 

P-PCN 

item time I iters P-HPC tirne 

P-MCC 

iters time 

the R-PCN code have solved the largest problem in 14 iterations and 33.07 seconds. We a h  

c m  observe a significant Mprovement in the performance of the R-MCC and P-MCC codes. 

The results of experiments performed with the Vanderbei-Shanno's procedure to up- 

date f l  are displayed in Tables 7.22 and 7.23. Once more, the higher-order IF methods 

have performed very weIl. We remark, however, that the computational performance with 
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the Standard Pmcedure to update pk is slightly superior to the performance with the 

Vanderb ei-S hanno's procedure. 

Table '7.22: Muence of updating formula of p: Vanderbei-Shanno, Rectangular Form. 

Problem 
-- - 

1 

2 
3 

4 

5 

6 

7 

8 
9 

10 
Il 

Total 

R-IPD 

iters time 

16 1-93 

17 2.23 

13 1.69 

18 2-70 

19 3.86 

20 7.26 

20 6.19 
a28 

al2 
&! 

al1 

- 

R-PCM 

iters time 

8 0.97 

7 0.91 

8 1.06 

9 1.38 
9 1.81 

10 3-77 
10 3.14 

11 7.06 
14 5.75 

10 9.44 

21 50-07 

117 85.36 

R-PCN 

iters time 

R-MPC 

iters tirne 

R-MCC 

iters tirne 

Table 7.23: Influence of updating formula of p: Vderbei-Shanno, Polar Form. 

Problem 

1 

2 

3 
4 

5 
6 

7 

8 
9 

10 

11 

Total 

P-IPD 

iters tirne 

15 1.78 

17 2.17 

13 1.69 

18 2.65 

19 3.80 

17 5.97 

21 6.43 

24 14.69 

al0 

33 20.40 

a9 

- 

P-PCM 

iters tirne 

8 0.97 

8 1.01 

8 1-06 

9 1.34 

9 1.83 

10 3.64 

10 3.14 
12 7-75 

14 5.65 

10 9.28 
21 47.26 

119 82.93 

P-MCC 

iters time 

P-PCN 

iters t h e  

7 0.83 

8 1.03 

7 0.93 

9 1.40 

9 1.89 
10 3.74 

11 3.50 

11 7.12 

15 6.16 

10 9.55 

19 43.73 

P-MPC 

iters time 

8 0.97 

8 1.06 

8 1.10 

9 1.36 

10 2.04 

10 3.70 

10 3.11 

12 7.69 

21 8.56 

11 10.28 

19 43.14 

116 79.88 126 83.01 



7.3.5 Influence of the Maximum Number of Corrector Steps 

In TabIes 7.24 and 7.25, we report on numerical results of experiments in which we d o w  

the MCC algorithm to perform more than one centrality correction step per iteration. 

We have considered the cases where the MCC algorithm pedorms exactly 2 centrality 

corrections (ZFixed) , 3 centrality corrections (3-Fixed) , 4 centrality corrections (4-Fixed), 

5 centrality corrections (5-Fixed), and a variable number of centrality corrections within 

each IP iteration, limited by a maximum of 5 centrality corrections (M = 5). 

The MCC techique has shown its best performance as it performs exactly 5 centrality 

corrections (in rectangdar coordinates) and 4 centraliw corrections (in polar coordinates) 

per iteration. However, we believe that if an efficient heuristic to dynamica,lly define the 

number of corrections per iteration is Mplemented the MCC technique with variable number 

of centrality corrections per iteration may outperform any of the IP algorithms. 

Table 7.24: Performance of R-MCC code using Scheme-B and = 0.01. 

Problem I 2-Fixed 2-Fbced 

item t h e  iters t h e  
4-Fixed 

iters t h e  

5-Fiued 

iters time 
M = 5  

iters time 

9 2.00 
9 3.87 
10 3.53 

10 7.67 
10 4.76 
10 11.32 

14 36.46 

72 69.61 

Table 7.25: Performance of P-MCC code using Schemd3 and = 0.01. 

Problem 

Tot al 

5-Fixed 
iters time 

' 2-Fixed ~ 
iters t h e  

M - 5  
iters time 

3-Fixed 

iters time 
4Fixed 

iters tirne 



In Tables 7.26 and 7.27, we report on numerical results of experiments in which we 

allow the MPC algorithm to perforrn more than one corrector step per iteration. We have 

considered the cases where the MPC algorithm perforrns a maximum of 2 corrector steps 

( M  = 2), a maximum of 3 corrector steps ( M  = 3), a maximum of 4 corrector steps ( M  = 4), 

a maximum of 5 corrector steps (M = 5), or a fked number of exactly 3 corrector steps 

within each IP iteration. We can observe that the P-WC code bas performed considerably 

better than the R-WC code. 

The PCN rnethod have shown some convergence instability when it performs more then 

one corrector step per iteration in the solution of the laqer problems. Such an instabiliQ 

is related to the step lengths being adversely set to too small values for more than one 

corrector steps, despite the outstanding performance shown by this algorithm when we 

consider one correct or s tep. 

Table 7.26: Performance of R-MPC code using SchemeB and = 0.01. 

Problem 

5 

6 

7 

8 
9 

10 

Il 

M = 2  
iters time 

A!! = 3 
iters time 

A!! = 4 
iters t h e  

M = 5  
iters t h e  

3-Fiued 

item t h e  

Table 7.27: Performance of P-WC code using SchemeB and = 0.01. 

I 1 I 

l ~ 
Problern 

1 1 

5 
6 

7 
8 

9 

10 

11 

Total 

Total 75 74.10 75 74.42 73 74.05 72 73.59 - 

M = 2  
item time I iters M = 3  t h e  I iters M = 4  time iters M = 5  t h e  I iters bFUed time 



7.4 Experiment s with the Non-Int erior-Point Algorit hm 

In t his section, we discuss the numericd results of experiments performed wit h the proposed 

NIP algorith,  as related to nonlinear OPF solution both in rectangdar and in polar 

coordinates. Initia.Uy, in Tables 7.28, 7.29 and 7.30, we present some preliminary results 

that we have been obtained with a simplified implementation of the NZP aigorithm that 

we coded in MATLAB? In this M A T L A B ~  prototype implementation, we have used a 

fked step length of ak = 0.95, and have chosen = 0.01, with the simple updating rule 

pk+L = rnax{O.lpk,  IO-^^). We have chosen the starting points as  folIows: 

The convergence processes tbat are displayed in Tables 7.28 through 7.30 show that the 

NIP algorithm have performed extremely well using the initialization heuristic described 

above. 

Table 7.28: The convergence process for Problem 3 solved by R-NIP code. 



Table 7.29: The convergence process for Problem 4 solved by R-NIP code. 

Table 7.30: The convergence process for ProbIem 5 solved by R-NIP code. 

In Table 7.31, we display the numerical results of experiments performed with a more 

elaborated implementation in Fortran 77 of the NIP algorithm. For each test run, we give 

the number of iterations (iters) , the total number of merit function evaluations (@-evd) , the 

t O t al number of full/damped Newton s t eps taken (full/damp) , and the CPU t imes (time). In 

these simulations, for performance evaluation and cornparison purposes, the NIP algorithm 

use the initiakation Heuristic-A of the R? algorithm, the non-monotone line search test 

to obtain the step length, and the proposed scherne to update the continuation parameter. 



We remark that while the merit b c t i o n  used for the MP method-the naturd merit 

function Q = $Pp(w)T!Pp(w)-only guarantees convergence to a stationary point of the 

Lagrangian function, not necessarily a local minimizer of the NLP problem, in all test runs 

the documented mïnimizer was obtained- Moreover, the R-NIP code have outperformed a l  

IP codes in the solution of the largest problem. 

Table 7.31: Non-interior-point method using initialization Heuristic-A. 

Problem 
R-NIP 

iters @-eval full/damp t h e  

P-NIP 
iters @-eval full/damp time 

7.5 Polar vs. Rectangular: The Voltage Bound Issue 

In Table 7.32, we display the number of flops required to compute the Lagrangian Hessiau 

vZ,L, (W) ,  the number of non-zeros in V:=L~(W) ,  and the number of non-zeros in the ma- 

trix ~ , d ( w ) ~  of the reduced system, when using rectangular and polar coordinates. Even 

though the computation of v&(w) in polar coordinates profits fkom the computation 

of the Jacobians v , ~ ( x ) ~  and ~ & h ( x ) ~ ,  this cornputation still requires nearly double the 

flops the computation in rectangular coordinates requires. Therefore, the assembling of 

matrices is more efficiently done in rectangular coordinates. 

A pitfdl of the OPE' formulation in rectangular coordinates is the necessity to handle 

the voltage bounds as nonlinear functional bounds; in polar coordinates, voltage bounds 

are simple variable bounds. The computationd implications can be easily examined in 

the reduced system (3.24), as we look at the extent the matrix ~ , d ( x ) ~  M e r s  60m the 

Hessian VI, Lp (w ) . The expression for these matrices are repeated below for convenience 



Table 7.32: Number of non-zeros and flops. 

of reference: 

and 

Non-zeros in v,dr 
RectanguIar Polar Problem 

Notice that the voltage bounds in polar coordinates, being part of z, simply affect the 

diagonal of v ~ L , ( w )  through the third term in the right-hand side of (7.2), whereas 

the voltage bounds in rectangular coordinates, being part of ~ , h  ( x ) ~ ,  contribute with 

new non-zeros to ~ , d ( r ) *  whenever two connected buses have neighbor buses in common. 

Nevertheless, some of the f2I ins that are caused by the voltage functional bounds CO-occur 

with fiIl ins caused by the reactive power constraints. Hence, on the whole, functional 

voltage bounds have Little effect on the factorization cost, as evidenced in Table 7.32. 

The handling of branch fiow constrahts in rectangular and in polar coordinates are alike 
since the related Hessian matrices have exactly the same nonzero structure. 

flops to obtain v&Lp 
Rectangu1a.r Polar 

7.6 Final Remarks 

Non-zeros in v:,L, 
Rectangular Polar 

In this chapter, we have discussed the results of extensive experiments performed with 

the IP and NIP aigorithms that are proposed in Chapters 3 through 5. To evaluate the 

effectiveness of the proposed algonthms, we have perfomed over one thousand experiments 

based on a test set of eleven problems, including actual power networks of up to 2098 buses. 

In these experiments, the algorithms have not been tuned to particular problems; the same 

parameter setting is used for ail problems. Initidy, we tested the performance of the IP 



algorithms as they use the default parameters and formulae. The higher-order IP algorithms 

were able to solve the whole set of problems, whereas the plain prirnal-dud IP algorithm 

failed to solve the larger problems. However, by means of simple adjustment of parameters 

this algorithm was able to solve the whole set of probkms too- 

With respect to initialization of the algorithms, we have observed that the higher-order 

IP algorithms are less sensitive to the choice of the initial point than the plain primal-dual 

ZP algorithm- Nevertheless, a slightly bet ter performance is achieved with the initiahation 

Heuristic-A, as the points obtained by this heuristic are, in generd, better centered than 

the points obtained by Heuristic-B. 

With respect to the step length rules, we have observed that the higher-order IP al- 
g o r i t b  perform weli with the Scheme-A (separate step Iengths in the primal and d u d  

spaces) and the Scheme-B (single common step length), and poorly with the Scheme-C (box 

constra.int on the d u d  step). The plain primal-dual IP algorithm has performed better with 

the Scheme-A. With respect to the choice of the safety factor ao, the best performance has 

been obtained with safety factors in the interval 0.98 5 a 0  5 0.9995. However, a safety 

factor of a0 = 0.9, or even lower, may be used as a means of restoring convergence for 

non-converged runs with the plain primal-dual IP method. 

With respect to the choice of we have observed that the convergence range for the 

barrier parameter is relatively large, as long as the centering parameter ao is properly 

chosen. The major limitation in the choice of ,uo is that it should not be chosen too small; 

the numerical results recommend choosing E [IO-*, 11, with the best choice for the test 

set considered being = IO-*. We believe that the proper choice of is directly related 

to the initialization heuristic used. With respect to the updating formula of the IP 
algorit hrns have performed well wit h bot h formulae. 

With respect to the number of corrector steps in the higher-order LP algorithms, we 

have observed that the MPC and MCC techniques may outperform the predictor-corrector 

IP rnethod if they are allowed to perform more than one corrector step per iteration. The 

MCC technique, in particular, has great potential and is our favorite. 

The computational experiments with the NIP algorit hm, t hough not quite extensive 

as the experiments with the IP algorithms, have shown that this new approach is very 

promising. We can observe that the best performance overall in the solution of the largest 

problem was achieved by the R-NIP code. 



Chapter 8 

Conclusions 

8.1 Summary and Contributions 

In the d d y  operation of a power system, deciding on an optimal control action, aiming at 

the economic and reliable operation of a system, is an extremely f icu l t  task. However, 

such a task has been successfully performed by OPF procedures at power system control 

centers. The OPF problem is inevitably a very large non-convex NLP problem. Although 

local approximation-based optimization techniques such as SLP and SQP have been widely 

used to solve OPF problems, recently there has been an increasing need to speed up solutions 

which can be accomplished by solving the OPF problems in a nonluiear manner. Due to 

the size and special feature of these problems, IP methods have computationaUy proven 

to be a viable alternative for their solution. This thesis research has concentrated on the 

solution of Iarge-scde OPF problems, in a nonhear rnanner, by IP and NIP methods. 

In Chapter 2, three variants of the broad class of OPF problems are described, namely, 

(i) the reactive pouTer dispatch problem, (ii) the maximum luadabil* problem, and (E) the 

minimum load shedding problem. The OPF problem (i) has been formulated, in this the- 

sis, using voltages either in rectangular or in polar coordinates. Advantages of using bus 

voltages in rectangular coordinates, as explored in the thesis, are ease of matrix setup and 

incorporation of second-order information in higher-order IP methods; a minor difEculty 

related to the rectangular coordinates, as cornpared with the polar coordinates, is the need 

to handle simple voltage bounds as (simple) functional bounds. Mainly through the OPF 
formulations (ii) and (Li), we emphasize the increasing need to solve OPF problems in a 

nonlineât mamer. 



In Chapter 3, the mathematical development of a primal-dual IP algorithm for NLP is 

described in details. This IP algorithm development is a direct extension of the IP method 

for LP that is described in [52]. In this thesis reseaich, we have conducted the following 

st udies: 

We have developed in detail our infeasible primal-dual IF algorithm for NLP based 

on the NLP problem (1-l), which is a suitable form to formulate most OPF problems. 

We have studied the performance of the primal-dual IP algorithm as it employs several 

initializat ion heuris t ics, schemes to compute the step Iengths, and updating formulae 

of the barrier parameter. Also, we have studied the influence of various parameters of 

the algorithm in the convergence process, as concerned with nonlinear OPF solution. 

We have thoroughly studied the pedormance of the prima.-dual IP algorithm as 

it solves the RPD problem formulated in both rectangular and polar coordinates. 

Such an analysis-rectangular coordinat es versus polar coordinat es-has not been 

performed in previous works. 

We have described an alternative approach to compute the Newton direction, called 

the reduced system approach. F'rom such a reduced system, the implications of han- 

dling the voltage bounds as functiond bounds (in rectangdar coordinates) instead of 

simple bounds (in polar coordinates) can be easily examined as we look at  the extent 

the matrk v,d(w)* differs fkom the matrix ~r,L,(w). Such an analysis has been 

presented in Chapter 7. 

Tn Chapter 4, we present extensions to  NI;P of four successful higher-order IP methods 

for LP and QP, namely, (i) the predictor-corrector method, (ü) the perturbed composite 

Newton method, (iii) the multiple p~edictor-corrector method, and (iv) the multiple cen- 

trality corrections method. The central idea behind all these techniques is to reduce the 

number of derivat ive evaluat ions and matrix fact orizat ions to a necessary minimum, even 

at the expense of some increase in the cost of a single iteration. The approach (i) was fist 

extended to nonlinear OFF solution in [77]. Concerning the higher-order IP methods, the 

contribxtions made in this thesis are as follows: 

We have extended to nonlinear OPF solution the perturbed composite Newton IP 

method for LP and QP, as developed by Tapia et al. [67]. 

We have extended to nonlinear OPF solution the multiple predictor-corrector Il? 
method for LP and QP, as developed by Carpenter et al. [IO]. 



Also, we have extended to nodinear OPF solution the multiple centrality corrections 

technique for LP developed by Gondzio [31]. 

None of the techniques (ii), (iü) and (iv) was previously considered for nonlinear OPF 
solut ion. 

In Chapter 5, a new algorithm to solve nonlinear OPF problems is proposed- It is a 

LW algorit hm that handles the complementarity conditions by a recently introduced NCP- 

function. As far as we are aware, the proposed OPF algorithm is the first one based on 

NCP-functions. Distinctive features of this approach, as compared with IP methods, are 

that it can start fiom arbitrary points, and the iterates are not required to stay inside 

the positive orthant of the complernentarity product space. Shat is, the non-negativity 

conditions need be satisfied ody at the solution point. 

In Chapter 6, we discuss many issues that are directly related to the efkient imple- 

mentation of the IP and N P  algorithms, as concerned with nonlinear OPF solution. The 

contributions made in this chapter are as follows: 

We have presented four initialzation heuristics. Two of the heuristics conform with 

the whole set of IP algorithms whereas ail four conform with the NIP algorithm. The 

numerical performance of each initialkation heuristic is discussed in Chapter 7. 

We have derived explicit formulae to efficiently assemble the Hessian matrices, both in 

rectangular and in polar coordinates. We have shown that this task is more efficiently 

done in rectangular coordinates, where the h c t i o n  Hessians are constant. 

We have proposed a mapping fiom constraint multipliers to bus mdtipliers: (y, r2) 

(X P  , Xq, Au). Such a mapping considerably reduces the number of Iogical operations 

in the evaluation of the Lagrangian gradient and Hessian, and allows for efficient data 

structure and savings in computer rnemory usage. 

We have derived explicit formulae to estimate the number of flops required to obtain 

the Lagrangian Hessian-the major effort in forming the Newton system-both in 

rectangular and in polar coordinates. 

We have presented some code fkagments to emphasize the advantages of the proposed 

mapping of Lagrange multipliers. Also, we have discussed a block-data structure and 

the solutioii of symmetric indehite systems. 



In Chapter 7, for performance evaluation and cornparison purposes, we discuss extensive 

computatioid experiments with the IP and NIP algorithms. Results of over one thousand 

tests are presented. The conclusions derived korn this chapter are as follows: 

InitialIy, we tested the performance of the IP algorithms for the default parameters 

and f o d a e .  The higher-order IP algorithms were able to solve all the problems, 

whereas the plain primd-dual IP algorithm failed to solve the larger ones. By means 

of parameter adjustments, this algorithm solved al l  the problems too. 

With respect to initialization of the dgorithms, we have observed that the higher-order 

IP a l g o r i t h  are less sensitive to the choice of the initial point than the plain prhal-  

dual IP algorithm. However, better performance is achieved with the initiahation 

Heuristic-A, as the points obtained by this heuristic are, in general, better centered 

than the points obtained by Heuristic-B. 

With respect to the step length d e s ,  we have observed that the higher-order Il? 
algorit hms perform satisfactorily with the Scheme-A (separate step Iengths in the 

prima1 and dual spaces) and the Scheme-B (single common step length) , and poorly 

with the SchemeC (box constraint on the dual step). 

With respect to the choice of the safety factor cro, the best performance has been 

obtained with safety factors in the intemal 0.98 < QQ 5 0.9995. However, a safety 

factor of cro = 0.9, or even Iower, may be used as a means of restoring convergence 

for non-converged runs with the plain primal-dual IF method. 

With respect to the choice of ,$, we have observed that the convergence range for the 

barrier parameter is relatively large, as long as the centering parameter oo is properly 

chosen. The major limitation in the choice of is that it should not be chosen too 

small; the numericd results recommend choosing E [10-~, 11, with the best choice 

for the test set considered being = 10-~. 

+ With respect to the updating formula of #, the IP algorithms have performed satis- 

factorily with both forinulae. 

+ With respect to the number of corrector step in the higher-order IP algorithms, we 

have observed that the MPC and MCC techniques may outperform the predictor- 

corrector IF' method if they are dowed to perform more than one corrector step per 

iteration. 



The computational experiments with the NIP algorithm, though not quite extensive 

as the experiments with the IF' algorithms, have shown that this new approach is very 

promising. We have observed that the best performance overall in the solution of the 

Iargest problem has been achieved by the R-NIP code. 

r Related to the issue Rectangular Coordinates versus Polar Coordinates, the computa- 

tional experiments have reveded that their performance are alike, as far as concerned 

with the number of iterations and CPU times. 

Interestingly enough, despite the non-convexity of the nodïnear OPF problem and 

the reasonable Iarge number of experiments performed, using different initialization, 

parameters, formulae, and so forth, the IF' and MP algorithms have obtained the 

same local optimum for the problems. 

On the whole, the resdts discussed in Chapter 7 have illustrated the viability of the proposed 

IP and NIP algorithms to solve large scale OPF problems in a noniinear manner. 

8.2 Directions for Future Research 

Concerning future work with the infeasible primal-dual TP algorithm that is described in 

Chapter 3, a study of the usehiloess of inexact search directions sounds interesting. The 

idea is to reduce the overall computational time by reducing the effort of a single iteration, 

even at the expense of some increase in the iteration count. By an inexact search direction 

we mean that the vector Aw satisfies 

for some suitable residual vector rk. An iterative solver, such as a preconditioned conjugate 

gradient method, can be used to solve the 1inea.r system (3.13); this method is stopped when 

the norm of the residual is s m d e r  than a prefixed accuracy, that is, llrkllz 5 ek . 

Concerning future work with the higher-order IP methods described in Chapter 4, an 

issue deserving further research, in our xmst immediate vision, is how to dynamicdy choose 

the appropriate number of corrector steps within each iteration of the higher-order IP 
methods. Also, it sounds interesting to study a combination of the various methods in a 

single algorit hm. 

Concerning future work with the NIP approach described in Chapter 5, we consider as 

potential directions for research the following topics: 



Since the NIP dgorithm can start kom arbitraq points and ail matrices in the IP 
and NIP algorithms have the same nonzero pattern, an improved OPF dgorithm 

most likely can be developed if we combine together the two dgorithms. Notice that 

switching from one dgorithm to the other demands no changes of the linear dgebra 

kernel, the core of both techniques. 

The robustness of the NIP aIgorithm can be improved if we consider a Levenberg- 

Marquurdt-type method for the solution of (5.25). Instead of solving (5.28) for the 

direction Aw, this method cornputes a search direction dk as the solution of the 

modified linear sys tem 

where ak 2 O here is the Levenberg-Marquardt parameter. If the direction generated 

by (5.45) is not a "good" descent direction, according to the test 

we resort to the steepest descent direction, that is, let dk = - V , @ ~ ( W ~ ) .  

As suggested for the primd-dual IP dgorithm, an issue worth of investigation is the 

usefihess of inexact search directions. By this we mean that the vector A w  satisfies 

where rk here is the vector of residuals and measures how inexactly system (5.28) 

is solved. An iterative solver is used to solve the linear system (5.28); this method 

is stopped when the n o m  of the residual is smder  than a prefixed accuracy, that 

is, ~ l ~ ' l l a  5 h. Facchinei and K w o w  [20] have proposed an inexact Levenberg- 

Marquardt-type aigorithm to solve large NCP pmblems that uses a test Like Ilrkll 5 

(O.l/(k + 1)) I l %  (wk) I l  
Since the computation and factorization of matrix V , P , ( W ~ ) ~  demand the greatest 

computational effort wikhh an iteration of the NIP algorithm, it may be advantageous 

to use the same derivative evaiuation and matrix factorization in several solves. Then, 

the composite Newton method could be extended to the NIP dgorithm. 

The implementation of other NCP-functions is another interest ing topic of research. 

For instance, many recently developed algorithms to solve complementarity problems 

(see [16,20]) employ non-smooth reformulation, involving the computation of the 

generalized Jacobian of Clarke [12] within a Newton-type algorithm. 



Appendix A 

Derivat ives: Rectangular and Polar 

Coordinat es 

A. 1 First-Order Derivatives: Rectangular Coordinates 



(A.11) 

(A. 12) 

(A. 13) 

(A. 14) 

Rect angular Co ordinates A.2 Second-Order Derivatives: 

(A. 15) 

(A. 16) 

(A. 17) 



(A. 18) 



A.3 First-Order Derivatives: Polar Coordinates 

aPi -- - 6 (G, cos(Bi - O j )  + Bij sin(& - B i ) )  =: Nij (A-40) 
8 5  



spi - = - v-v-( .- 
at, 2 J gq cos(ei - 0,) + 6 ,  sh(Oi - O j ) )  + 2 t i j g i j ~ '  

A.4 Second-Order Derivatives: Polar Coordinates 
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(A.58) 

(A.59) 

(A.60) 

(A.61) 

(A.62 j 

(11.63) 

(A.64) 

(A.65) 

(A.66) 

(A.67) 

(A.68) 

(A.69) 

(A.70) 

(A.71) 

(A.72) 

(A.73) 

(A. 74) 
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