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Abstract

The online and data stream models of computation have recently attracted

considerable research attention due to many real-world applications in various areas

such as data mining, machine learning, distributed computing, and robotics. In

both these models, input items arrive one at a time, and the algorithms must

decide based on the partial data received so far, without any secure information

about the data that will arrive in the future.

In this thesis, we investigate efficient algorithms for a number of fundamental

geometric optimization problems in the online and data stream models. The prob-

lems studied in this thesis can be divided into two major categories: geometric

clustering and computing various extent measures of a set of points.

In the online setting, we show that the basic unit clustering problem admits

non-trivial algorithms even in the simplest one-dimensional case: we show that the

näıve upper bounds on the competitive ratio of algorithms for this problem can be

beaten using randomization. In the data stream model, we propose a new streaming

algorithm for maintaining coresets of a set of points in fixed dimensions, and also,

introduce a new simple framework for transforming a class of offline algorithms to

their equivalents in the data stream model. These results together lead to improved

(1 + ε)-approximation streaming algorithms for a wide variety of geometric opti-

mization problems in fixed dimensions, including diameter, width, k-center, small-

est enclosing ball, minimum-volume bounding box, minimum enclosing cylinder,

minimum-width enclosing spherical shell/annulus, etc. In high-dimensional data

streams, where the dimension is not a constant, we propose a simple streaming

algorithm for the minimum enclosing ball (the 1-center) problem with an improved

approximation factor.
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Chapter 1

Introduction

In this thesis, we study a number of geometric optimization problems in the online

and data stream models of computation. The problems studied are mainly related

to geometric clustering and computing various extent measures of a set of points.

In the following section, we provide basic definitions and concepts of the online and

data stream models. Sections 1.2 and 1.3 describe two types of problems studied

in this thesis, namely geometric clustering and computing extent measures of a set

of points. In Section 1.4, we give a brief overview on the coreset framework which

is a central tool used in Chapters 4 and 5. Section 1.5 outlines the results obtained

in this thesis.

1.1 Online and Streaming Algorithms

Over the past two decades, online algorithms have received tremendous research

attention. While in traditional design and analysis of algorithms we usually as-

sume that the entire input is available to the algorithm before starting to generate

the output, online algorithms have only access to a partial set of the input, and

must generate their output based on that partial data available at present, with-

out having a secure information about the relevant data that will arrive in the

future. Online algorithms naturally arise in many areas such as computer science,

operations research, distributed computing, and robotics.

Many problems are inherently online in the sense that they need immediate

output for the input (requests) arrived so far in real time. Paging is one of the

most well-known problems in this category. There is also a huge body of recent
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work on designing online algorithms for problems that have been originally studied

in the traditional computational model.

In this thesis, we study online algorithms in terms of competitive analysis , i.e.,

we compare an online algorithm to an optimal offline algorithm that has access to

the whole input in advance. An online algorithm A is called c-competitive, if for

every input sequence σ, A(σ) ≤ c · opt(σ), where A(σ) is the cost of the online

algorithm A on the input sequence σ, and opt(σ) is the cost of the optimal offline

algorithm on σ. In the above definition, c is referred to as the competitive ratio

of A. If A is a randomized algorithm, then the expected competitive ratio of A is

defined as maxσ
E[A(σ)]

opt(σ)
, where the expectation is taken over the randomized choices

of the online algorithm. See the book by Borodin and El-Yaniv [15] for an in-depth

study of competitive analysis through a wide range of examples.

The data stream model is another related model of computation that has re-

cently attracted considerable attention. In this model, only one pass over the

input is allowed and the algorithm has only a limited amount of working storage.

This one-pass streaming model is attractive both in theory and in practice due to

emerging applications involving massive data sets, since the entire input need not

be stored and can be processed as elements arrive one at a time. See the survey by

Muthukrishnan [84] on the growing literature on streaming algorithms.

The data stream and online models of computation have one important property

in common: in both these two models input is given as a sequence over time

and the algorithm must decide based on the partial information available, without

having access to the whole data in advance. However, the main focus in these two

models are different. In the online model, the solution must be constructed as each

input arrive and decisions made to construct the solution in each step cannot be

subsequently revoked. In the data stream model, however, the main concern is the

amount of working space; as data items arrive, the streaming algorithm must decide

which items should be kept in memory1. Since in the data stream model the entire

input cannot be stored in the memory, streaming algorithms are restricted to use

“sublinear” storage. On the other hand, online algorithms have no such restriction

and can store all the data received so far. Moreover, streaming algorithms—unlike

online algorithms— do not require immediate output; they should only keep enough

information in memory to be able to produce an (approximate) solution on the items

received so far upon request.

1 Alternatively, a streaming algorithm may decide to keep some statistics about the data
instead of a subset of the data items.
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Some other related models have been considered in the literature, including the

dynamic streaming model, in which both insertions and deletions are allowed using

sublinear working storage (e.g., [46, 47, 67]), and the sliding window model, in

which both insertions and deletions are allowed, but input items must be deleted

in the same order as they are inserted (e.g., [23, 44]).

1.2 Clustering Problems

Clustering problems are fundamental and arise in a wide variety of applications such

as information retrieval, data mining, unsupervised learning, and image analysis. In

this thesis, we investigate two of the most basic and popular versions of clustering,

namely, k-center and unit covering.

k-Center. The k-center problem is defined as follows: given a set of n points and

a parameter k, partition the points into k clusters so as to minimize the maximum

cluster radius. In one-dimensional Euclidean space, the k-center problem can be

solved in O(n log n) time using dynamic programming [16, 83]. For d ≥ 2 dimen-

sions, the problem is well-known to be NP-hard [45, 82]. Moreover, it is NP-hard

to approximate the two-dimensional k-center problem to within a factor smaller

than 1.822 in the Euclidean metric, or smaller than 2 in the rectilinear metric [43].

Gonzalez [51] proposed a simple furthest point greedy algorithm that gives

a 2-approximation to the k-center in any metric space. The algorithm repeat-

edly picks the point furthest away from the current selected set of centers as the

next center to be added. Hochbaum and Shmoys [64, 65] obtained the same 2-

factor approximation using a different approach. Gonzalez’s algorithm can be

implemented in O(n log k) deterministic time [43], or O(n) expected time for all

k = O(n1/3/ log n) [57].

Charikar et al. [25] introduced an online version of the k-center problem, called

incremental clustering , in which every new point is either added to an existing

cluster or placed in a new singleton cluster upon arrival. To prevent the number of

clusters to exceed k, the algorithm is allowed to merge existing clusters at any point

of time. Note that in this setting, clustering decisions are irrevocable because once

formed, clusters cannot be broken up. Under this incremental setting, Charikar

et al. proposed a greedy doubling algorithm that achieves competitive ratio 8 in

any metric space, using O(k) space and O(k log k) amortized time per update.
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The above incremental algorithm can be viewed as a streaming algorithm for

the k-center problem as well. Very recently, McCutchen and Khuller [80] gave a

(2 + ε)-approximation algorithm for the streaming k-center in any metric space

based on a parallelization of Gonzalez’s algorithm. In fixed-dimensional geometric

space, a (1 + ε)-approximation to the k-center can be maintained efficiently using

the notion of coresets [57, 58].

Unit Covering. The unit covering problem is defined as follows: given a set of n

points, cover the points by balls of unit radius, so as to minimize the number of balls

used. For d ≥ 2 dimensions, the problems is NP-hard even in the rectilinear space

[45]. In one dimension, the problem is equivalent to covering a set of points using a

minimum number of unit intervals, and can be solved by a simple greedy algorithm

in O(n log n) time [53]. While there is a lower bound of Ω(n log n) on the running

time of the algorithms for the one-dimensional unit covering problem [53], several

output-sensitive algorithms with optimal O(n log k) running time are available for

this problem [43, 85, 86, 91], where k is the size of the optimal solution.

Hochbaum and Maass [63] gave a polynomial-time approximation scheme (PTAS)

for the unit covering problem under the L∞ metric, using a simple shifted grid

strategy. More precisely, for any fixed integer l ≥ 1, their PTAS gives a factor

(1 + 1/l)d approximation algorithm with running time O(ldndld+1) for covering a

set of points using d-dimensional axis-parallel unit boxes. Faster algorithms with

constant approximation factors are provided in [43, 86]. Moreover, the problem is

further studied under the L2 metric in some recent work [20, 38, 48].

In the online setting, a sequence of points in Rd arrive over time and the online

algorithm must cover each point using a unit d-dimensional ball upon arrival so

as to minimize the total number of balls used. Charikar et al. [25] presented a

simple online algorithm with competitive ratio O(2dd log d) based on a geometric

theorem due to Rogers [89], which states that Rd can be covered by any con-

vex shape with covering density O(d log d). They also provided a lower bound of

Ω(log d/ log log log d) on the competitive ratio of any deterministic online algorithm

for the unit covering problem in d dimensions.

1.3 Extent Measures and Shape Fitting

Another major type of problems studied in this thesis involves computing various

extent measures of a set of points. In general, an extent measure of a point set
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P ⊆ Rd either computes some statistics about P (such as diameter and the k-th

largest distance between pairs of points in P ), or computes some statistics of a

shape enclosing P (such as width, radius of the smallest enclosing ball, and volume

of the smallest bounding hyperbox). Some of the extent measures studied in this

thesis are listed below.

Diameter. The diameter of a point set is the maximum distance over all pairs of

points. Given an n-point set P ⊆ Rd, the diameter of P can be computed in

O(dn2) time using a brute-force algorithm. For d = 2, 3, there are algorithms

that compute the diameter in optimal O(n log n) time [31, 88]. For d ≥ 4,

the current best running time is O(n2−2/(dd/2e+1) logO(1) n) due to Agarwal,

Matoušek and Suri [7].

Width. The width of a point set P is the minimum distance between two parallel

hyperplanes enclosing P . In two dimensions, the width can be computed

in O(n log n) time by a simple scan over the convex hull of P . In three

dimensions, Agarwal and Sharir [10] gave a randomized algorithm that runs

in O(n3/2+δ) expected time for any constant δ > 0. For d ≥ 4, the current

best algorithm has O(ndd/2e) running time [19].

Smallest Enclosing Cylinder. This problem asks for finding a cylinder of the

minimum radius that encloses P . In two dimensions, this problem is identical

to the width problem. For d = 3, Agarwal et al. [2] achieved an algorithm with

running time O(n3+δ). In higher dimensions, a running time of O(n2d−1+δ) is

attainable as noted in [19].

While exact computation of the extent measures is usually expensive, it has

recently been established that a (1 + ε)-factor approximation for many of these

extent-related problems can be computed efficiently in O(n + 1/εc) time for some

constant c (depending on the problem and the dimension) using the general coreset

framework [4, 21]. A brief introduction to this framework is provided in the next

section.

Shape fitting is another well-studied problem which is closely related to com-

puting extent measures of points. In this problem, one is asked to find a shape that

best “fits” a given point set under some fitting criterion. A typical criterion which

is usually used to measure how well a shape S fits the point set P is the maximum

distance between a point of P and its nearest point in S. For example, if the shape

to fit is a line, the corresponding shape-fitting problem is equivalent to finding the
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Table 1.1: Some basic shape-fitting problems.

Shape Corresponding Shape-Fitting Problem

point smallest enclosing ball

line minimum-radius enclosing cylinder

hyperplane width

sphere/circle minimum-width enclosing spherical shell/annulus

cylinder minimum-width enclosing cylindrical shell

minimum-radius cylinder enclosing P . Some basic shape-fitting problems are listed

in Table 1.1. In this table, an annulus refers to the region between two concentric

circles, with its width being the difference between the two circles radii. Similarly, a

spherical shell is the region between two concentric spheres, and a cylindrical shell

is the region between two coaxial cylinders.

Note that the k-center problem can be viewed as a shape-fitting problem as

well in which the shape to fit is a set of k points. Similarly, for a set of k lines and

k hyperplanes, the corresponding shape-fitting problems are referred to as k-line-

center and k-hyperplane-center respectively in the literature [9, 5].

1.4 The Coreset Framework

The coreset framework has recently emerged as a powerful tool for approximating

various measures of a geometric data set. In this framework, a small subset of

the input point set, called a coreset , is extracted in such a way that solving the

optimization problem on the coreset yields an approximate solution to the entire

set.

The main idea behind the coreset framework is simple: suppose we have an

optimization problem for which a slow (exact or approximation) algorithm A is

available that runs in O(nc) time, where n is the size of the input. Suppose we

have a mechanism to extract a subset of the input (i.e., the coreset) of size (1/ε)c′

so that the optimal solution on the coreset is within (1 + ε) factor of the optimal

solution on the entire set. If the algorithm for extracting the coreset is fast enough

(typically linear in n), then, we can run the slow algorithm A on the coreset in-

stead of the entire set to achieve a (1 + ε)-approximate solution to the entire set

6



in time O(n + (1/ε)c′′), where c′′ = c + c′. This immediately leads to a linear-time

approximation scheme (LTAS) for our optimization problem. This linear-time ap-

proximation scheme is of particular interest considering that the exact algorithms

for many geometric problems are generally expensive (see for example the current

best known exact algorithms mentioned in Section 1.3 for computing extent mea-

sures).

The main assumption made in the coreset framework is the existence of a core-

set whose size is independent of the input size. Fortunately, it has been shown over

the past years that for a wide range of geometric optimization problems, such a

small-size coreset exists and can be extracted efficiently. One of the major improve-

ments in this area is the unified approach introduced by Agarwal et al. [4]. They

showed that computing coresets for many geometric problems reduces to computing

a specific coreset which they call an ε-kernel. Roughly speaking, a subset Q ⊆ P is

called an ε-kernel of P if for every slab S containing Q, the (1 + ε)-expansion of S

contains P . Agarwal et al. showd that for any point set in d dimensions, an ε-kernel

of size O(1/ε(d−1)/2) exists and can be extracted in linear time. The ε-kernel notion

is extremely fundamental as it immediately yields coresets for many optimization

problems such as diameter, width, smallest enclosing ball, minimum-volume en-

closing box, and minimum-radius enclosing cylinder. Combined with the lifting

technique proposed by Agarwal et al. [4], the ε-kernel notion also yields coresets for

some other non-convex shape-fitting problems such as minimum-width enclosing

spherical shell/annulus and minimum-width enclosing cylindrical shell.

The coreset framework is a fundamental tool for designing algorithms in the

data stream model as well, as it allows to compute a measure approximately over

the data stream by keeping only a small-size “sketch” of the input. See [4, 21, 12, 47,

60] on the growing literature of streaming algorithms developed using the notion

of coresets. The coreset notion has been also proved to be useful for clustering

problems such as k-center, k-median, k-mean, k-line center, etc. [60, 59, 58, 37, 61].

Other types of coresets have been studied in the literature, including coresets for

moving points [3, 57], dynamic coresets [22, 47], coresets dealing with outliers [62, 6],

and coresets for problems in higher (non-constant) dimensions [17, 18].

1.5 Results in This Thesis

In this thesis, we obtain new online and streaming algorithms for several geometric

problems. An outline of our results is as follows. In Chapter 2, we began investigat-
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ing an online clustering problem we call online unit clustering , which is extremely

simple to state but turns out to be surprisingly nontrivial. The problem in one

dimension is as follows: given a sequence of n points on the real line, partition the

points into clusters (subsets), each enclosable by a unit interval, with the objective

of minimizing the number of clusters used.

In Chapter 2, we show that the näıve upper bound of 2 on the competitive ratio

of the algorithms for online unit clustering in one dimension can be beaten using

randomization. In particular, we present a randomized algorithm with expected

competitive ratio 15/8 = 1.875 using only two random bits. This is an interesting

result, considering that ratio 2 is known to be tight (among both deterministic

and randomized algorithms) for the related online unit covering problem where

the position of each enclosing unit interval is fixed upon its creation. We further

improve the competitive ratio of our algorithm to 11/6 = 1.833 by adding an extra

level of randomization. Our one-dimensional results can be extended to higher

dimensions using a “dimension-reduction” approach, yielding a competitive ratio

of (11
12

) · 2d for the d-dimensional problem under the L∞ metric.

The one-dimensional unit clustering problem is theoretically appealing because

of its utter simplicity and its connection to some other well-known problems. In

Chapter 3, we consider a closely-related problem of coloring co-interval graphs, and

prove some lower bounds on the competitive ratio of algorithms for this problem.

In particular, we show that no deterministic online algorithm for coloring unit

co-interval graphs can be better than 3/2-competitive. Moreover, we show a lower

bound of 4/3 on the competitive ratio of any randomized algorithm for coloring unit

co-interval graphs. Both these two lower bounds hold for the online unit clustering

problem as well. We also prove that for the class of (arbitrary rather than unit)

co-interval graphs no randomized algorithm has competitive ratio better than 3/2.

In Chapter 4, we switch to the data stream model and employ the idea of coresets

to develop efficient streaming algorithm for approximating various descriptors of the

extent of a point set in fixed dimensions. The key tool that we use is the ε-kernel

notion introduced by Agarwal et al. [4] as described in Section 1.4. We present

a new streaming algorithm for maintaining an ε-kernel of a point set in Rd using

O((1/ε(d−1)/2) log(1/ε)) space. The space used by our algorithm is optimal up to

a small logarithmic factor. This substantially improves (for any fixed dimension

d ≥ 3) the best previous algorithm for this problem that uses O(1/εd−(3/2)) space,

presented by Agarwal and Yu [12]. Our algorithm immediately improves the space

complexity of the best previous streaming algorithms for a number of fundamental

geometric optimization problems in fixed dimensions, including width, minimum
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enclosing cylinder, minimum-width enclosing annulus, minimum-width enclosing

cylindrical shell, etc.

In Chapter 5, we define a new class of core-preserving algorithms and present a

simple framework for converting each algorithm in this class to an efficient algorithm

with the same space complexity in the data stream model. As an application of

this framework, we show that for a set of points in fixed dimensions, additive and

multiplicative ε-coresets for the k-center problem can be maintained in O(1) and

O(k) time respectively, using a data structure whose size is independent of the

size of the input. This independence on the input size is of particular interest

as the input size in the data streams is typically huge. We also provide a faster

streaming algorithm for maintaining ε-coresets for fat extent-related problems such

as diameter and minimum enclosing ball in fixed dimensions.

In Chapter 6, we focus on the minimum enclosing ball (the 1-center) problem

in high-dimensional data streams, where the dimension d may be arbitrarily large.

Though our results in Chapters 4 and 5 provide efficient streaming algorithms for

this problem in any d dimensions, the dependency of their space complexity on

d is exponential (i.e., O(1/εO(d))). Therefore, our main concern here is to obtain

approximation algorithms that avoid the exponential (or superpolynomial) depen-

dency on the dimension. The only previous known result for this problem was

a näıve 2-approximation algorithm. We improve this constant factor to 3/2 by

a simple one-pass algorithm that uses O(d) time per point and just O(d) space.

Chapter 7 concludes with some open problems and directions for future research.

Remark. Results of this thesis have been published in the proceedings of the

following conferences: ESA 2008 [99], CCCG 2008 [100], COCOON 2007 [102],

CSICC 2007 [98], WAOA 2006 [24], and CCCG 2006 [101].
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Chapter 2

Online Unit Clustering

In this chapter, we consider the online unit clustering problem and show that in

the one-dimensional case, the näıve upper bound of 2 on the competitive ratio can

be beaten using randomization. We present two new randomized algorithms for

this problem: the first algorithm achieves a competitive ratio of 15/8 using only

2 random bits, and the second one yields an improved competitive ratio of 11/6

using k random bits, where k is the size of the optimal solution. We also show how

our algorithm can be extended to two and higher dimensions.

2.1 Introduction

Clustering problems—dividing a set of points into groups to optimize various ob-

jective functions—are fundamental and arise in a wide variety of applications such

as information retrieval, data mining, and facility location. The followings are two

of the most basic and popular versions of clustering:

Problem 1 (k-Center) Given a set of n points and a parameter k, cover the set

by k congruent balls, so as to minimize the radius of the balls.

Problem 2 (Unit Covering) Given a set of n points, cover the set by balls of

unit radius, so as to minimize the number of balls used.

Extended abstracts of this chapter have been previously presented at WAOA 2006 [24] and
COCOON 2007 [102]. The full versions are to appear in special issues of Theory of Computing
Systems and Algorithmica.
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Both problems are NP-hard in the Euclidean plane [45, 82]. Factor-2 algorithms

are known for the k-center problem [43, 51] in any dimension, while polynomial-

time approximation schemes are known for the unit covering problem [63] in fixed

dimensions. A more detailed background study of these two problems has been

provided in Section 1.2.

Recently, many researchers have considered clustering problems in the online

and data stream models [25, 26, 52], where the input is given as a sequence of

points over time. In the online model, the solution must be constructed as points

arrive and decisions made cannot be subsequently revoked; for example, in the unit

covering problem, after a ball is opened to cover an incoming point, the ball cannot

be removed later. The online version of the unit covering problem is one of the

problems addressed in the paper by Charikar et al. [25]. They have given an upper

bound of O(2dd log d) and a lower bound of Ω(log d/ log log log d) on the competitive

ratio of deterministic online algorithms in d dimensions; for d = 1 and 2, the lower

bounds are 2 and 4 respectively.

In this chapter, we address the online version of the following variant:

Problem 3 (Unit Clustering) Given a set of n points, partition the set into

clusters (subsets), each of radius at most one, so as to minimize the number of

clusters used. Here, the radius of a cluster refers to the radius of its smallest

enclosing ball.

At first glance, Problem 3 might look eerily similar to Problem 2; in fact, in the

usual offline setting, they are identical. However, in the online setting, there is one

important difference: as a point p arrives, the unit clustering problem only requires

us to decide on the choice of the cluster containing p, not the ball covering the

cluster; the point cannot subsequently be reassigned to another cluster, but the

position of the ball may be shifted.

We show that it is possible to get better results for Problem 3 than Problem 2.

Interestingly we show that even in one dimension, the unit clustering problem

admits a nontrivial algorithm with competitive ratio better than 2, albeit by using

randomization. In contrast, we show that such a result is not possible for unit

covering. To be precise, we present an online algorithm for one-dimensional unit

clustering that achieves expected competitive ratio 15/8 = 1.875 against oblivious

adversaries. Our algorithm is not complicated but does require a combination

of ideas and a careful case analysis. We further improve our result and obtain

a randomized online algorithm with expected competitive ratio at most 11/6 ≈
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1.8333, using an extra level of randomization. We also extend our algorithm for

the problem in higher dimensions under the L∞ metric.

We believe that the one-dimensional unit clustering problem itself is theoret-

ically appealing because of its utter simplicity and its connection to well-known

problems. For example, in the exact offline setting, one-dimensional unit cluster-

ing/covering is known to be equivalent to the dual problem of finding a largest sub-

set of disjoint intervals among a given set of unit intervals—i.e., finding maximum

independent sets in unit interval graphs. Higher-dimensional generalizations of this

dual independent set problem have been explored in the map labeling and compu-

tational geometry literature [11, 20, 42], and online algorithms for various problems

about geometric intersection graphs have been considered (such as [77]). The one-

dimensional independent set problem can also be viewed as a simple scheduling

problem (dubbed “activity selection” by Cormen et al. [32]), and various online

algorithms about intervals and interval graphs (such as [1, 40, 71, 74]) have been

addressed in the literature on scheduling and resource allocation. In the online

setting, one-dimensional unit clustering is equivalent to clique partitioning in unit

interval graphs, and thus equivalent to coloring unit co-interval graphs. More de-

tails on this related coloring problem will be provided in Chapter 3.

2.2 Näıve Algorithms

In this section, we begin our study of the unit clustering problem in one dimension

by pointing out the deficiencies of some natural strategies.

Recall that the goal is to assign points to clusters so that each cluster has

length at most 1, where the length of a cluster refers to the length of its smallest

enclosing interval. (Note that we have switched to using lengths instead of radii

in one dimension; all intervals are closed.) We say that a point lies in a cluster if

inserting it to the cluster would not increase the length of the cluster. We say that

a point fits in a cluster if inserting it to the cluster would not cause the length to

exceed 1. The following are three simple online algorithms, all easily provable to

have competitive ratio at most 2:

Algorithm 1 (Centered) For each new point p, if it is covered by an existing

interval, put p in the corresponding cluster, else open a new cluster for the unit

interval centered at p.
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Algorithm 2 (Grid) Build a uniform unit grid on the line (where cells are in-

tervals of the form [i, i + 1)). For each new point p, if the grid cell containing p is

nonempty, put p in the corresponding cluster, else open a new cluster for the grid

cell.

Algorithm 3 (Greedy) For each new point p, if p fits in some existing cluster,

put p in such a cluster, else open a new cluster for p.

The first two algorithms actually solve the stronger unit covering problem (Prob-

lem 2). No such algorithms can break the 2 bound, as we can easily prove:

Theorem 2.1 There is a lower bound of 2 on the competitive ratio of any ran-

domized (and deterministic) algorithm for the online unit covering problem in one

dimension.

Proof. To show the lower bound for randomized algorithms, we use Yao’s tech-

nique [96] and provide a probability distribution on the input sequences such that

the resulting expected competitive ratio for any deterministic online algorithm is at

least 2. The adversary provides a sequence of 3 points at position 1, x, and 1 + x,

where x is uniformly distributed in [0, 1]. The probability that a deterministic al-

gorithm produces the optimal solution (of size 1 instead of 2 or more) is 0. Thus,

the expected value of the competitive ratio is at least 2. �

The 2 bound on the competitive ratio is also tight for Algorithm 3: just consider the

sequence
〈

1
2
, 3

2
, . . . , 2k − 1

2

〉
followed by 〈0, 2, . . . , 2k〉 (where the greedy algorithm

uses 2k +1 clusters and the optimal solution needs only k +1 clusters). No random

combination of Algorithms 1–3 can lead to a better competitive ratio, as we can

easily see by the same bad example. New ideas are needed to beat 2.

2.3 The New Algorithm

In this section, we present a new randomized algorithm for the online unit clustering

problem. While the competitive ratio of this algorithm is not necessarily less than

2, the algorithm is designed so that when combined with Algorithm 2 we get a

competitive ratio strictly less than 2.

Our algorithm builds upon the simple grid strategy (Algorithm 2). To guard

against a bad example like
〈

1
2
, 3

2
, . . .

〉
, the idea is to allow two points in different grid
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cells to be put in a common cluster “occasionally” (as controlled by randomization).

Doing so might actually hurt, not help, in many cases, but fortunately we can still

show that there is a net benefit (in expectation), at least in the most critical case.

To implement this idea, we form windows each consisting of two grid cells and

permit clusters crossing the two cells within a window but try to “discourage”

clusters crossing two windows. There are two ways to form windows over the grid;

we choose which according to an initial random bit. The details of the algorithm

are delicate and are described below1.

Algorithm 4 (RandWindow) Partition the line into windows each of the form

[2i, 2i + 2). With probability 1/2, shift all windows one unit to the right. For each

new point p, find the window w containing p, and do the following:

1: if p fits in a cluster intersecting w then

2: put p in the “closest” such cluster

3: else if p fits in a cluster u inside a neighboring window w′ then

4: if w contains at least 1 cluster and w′ contains at least 2 clusters then

5: put p in u

6: if p is not put in any cluster then

7: open a new cluster for p

The algorithm is greedy-like and opens a new cluster only if no existing cluster

fits. The main exception arises from the (seemingly mysterious) condition in line 4.

When more than one cluster fits in line 1, we put the point in the “closest” such

cluster, specified by the following two preference rules:

• Rule I. If p lies in a cluster u, then u is the closest cluster to p.

• Rule II. If p lies in a cell c, then any cluster intersecting c is closer to p

than any cluster contained in a neighboring cell.

The first preference rule prevents clusters from overlapping each other, and the sec-

ond rule prevents clusters from unnecessarily crossing the boundary of two neigh-

boring cells. (In the second rule, if more than one intersecting cluster exists, any

1 The pseudocode provided here is slightly different from the original one presented in [24].
Here, we have tried to make our algorithm compatible with the algorithm presented in the next
section, in order to make proofs presented here reusable in the next section.
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B1 B2

Figure 2.1: Two blocks of sizes 2 and 3.

of them can be arbitrarily chosen as the closest.) These exceptional cases and

preference rules are vital to the analysis.

2.3.1 Preliminaries for the Analysis

Let σ be the input sequence. We denote by opt(σ) the optimal offline solution

obtained by the following greedy algorithm: sort all points in σ from left to right;

cover the leftmost point p and all points within unit distance of it by a unit in-

terval started at p; and repeat the procedure for the remaining uncovered points.

Obviously, the unit intervals obtained by this algorithm are disjoint.

We refer to a cluster as a crossing cluster if it intersects two adjacent grid cells,

or as a whole cluster if it is contained completely in a grid cell.

For any real interval x (e.g., a grid cell or a group of consecutive cells), let

µh(x) denote the number of whole clusters contained in x, and let µc(x) denote the

number of clusters crossing the boundaries of x, in the solution produced by our

algorithm. The cost of x, denoted by µ(x), is then defined as

µ(x) = µh(x) +
1

2
µc(x).

We note that µ is additive, i.e., for two adjacent intervals x and y, µ(x ∪ y) =

µ(x) + µ(y).

A set of k consecutive grid cells containing k− 1 intervals from opt(σ) is called

a block of size k (see Fig. 2.1). We define ρ(k) to be the expected competitive ratio

of the RandWindow algorithm within a block of size k. In other words, ρ(k)

upper-bounds the expected value of µ(B)/(k − 1) over all blocks B of size k.

In the following, a list of objects (e.g., grid cells or clusters) denoted by 〈xi, . . . , xj〉
is always implicitly assumed to be ordered from left to right on the line. Moreover,

p1 � p2 denotes the fact that point p1 arrives before point p2 in the input sequence.

We now establish some observations concerning the behavior of our randomized

algorithm that will be used multiple times in the analysis in this and the next

section.
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Observation 2.2

(i) The enclosing intervals of the clusters are disjoint.

(ii) Any grid cell c can contain at most one whole cluster. Thus, we always have

µ(c) ≤ 1 + 1
2

+ 1
2

= 2.

(iii) If a grid cell c intersects a crossing cluster u1 and a whole cluster u2, then u2

must be opened after u1 has been opened, and after u1 has become a crossing

cluster.

Proof. (i) holds because of preference Rule I. (ii) Let u1 and u2 be two whole clusters

contained in the grid cell c and suppose that u1 is opened before u2. Then all points

of u2 would be assigned to u1, because line 2 precedes line 7.

For (iii), let p1 be the first point of u1 in c and p′1 be the first point of u1 in a

cell adjacent to c. Let p2 be the first point of u2. Among these three points, p1

cannot be the last to arrive: otherwise, p1 would be assigned to the whole cluster

u2 instead of u1, because of Rule II. Furthermore, p′1 cannot be the last to arrive:

otherwise, p1 would be assigned to u2 instead. So, p2 must be the last to arrive. �

Observation 2.3 Let u1 be a whole cluster contained in a grid cell c, and let u2

and u3 be two clusters crossing the boundaries of c. Then

(i) u1 and u2 cannot be entirely contained in the same interval from opt(σ).

(ii) there are no two intervals I1 and I2 in opt(σ) such that u1∪u2∪u3 ⊆ I1∪ I2.

Proof. (i) Suppose by way of contradiction that u1 and u2 are entirely contained

in an interval I from opt(σ). Then by Observation 2.2(iii), u1 is opened after u2

has become a crossing cluster, but then the points of u1 would be assigned to u2

instead: a contradiction.

(ii) Suppose that u1 ∪ u2 ∪ u3 ⊆ I1 ∪ I2, where I1 and I2 are the two intervals

from opt(σ) intersecting c. We now proceed as in part (i). By Observation 2.2(iii),

u1 is opened after u2 and u3 have become crossing clusters, but then the points of

u1 would be assigned to u2 or u3 instead: a contradiction. �

Lemma 2.4 Let B = 〈c1, . . . , ck〉 be a block of size k ≥ 2, and S be the set of all

odd-indexed (or even-indexed) cells in B. Then there exists a cell c ∈ S such that

µ(c) < 2.
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Proof. Let 〈I1, . . . , Ik−1〉 be the k−1 intervals from opt(σ) in B, where each interval

Ii intersects two cells ci and ci+1 (1 ≤ i ≤ k− 1). Let O represent the set of all odd

integers between 1 and k. We first prove the lemma for the odd-indexed cells.

Suppose by way of contradiction that for each i ∈ O, µ(ci) = 2. It means that

for each i ∈ O, ci intersects three clusters
〈
u`

i , ui, u
r
i

〉
, where ui is a whole cluster,

and u`
i and ur

i are two crossing clusters. We prove inductively that for each i ∈ O,

ui ∩ Ii 6= ∅ and ur
i ∩ Ii+1 6= ∅.

Base Case: u1 ∩ I1 6= ∅ and ur
1 ∩ I2 6= ∅.

The first part is trivial, because c1 intersects just I1, and hence, u1 ⊆ I1. The

second part is implied by Observation 2.3(i), because u1 and ur
1 cannot be

entirely contained in I1.

Inductive Step: ui∩ Ii 6= ∅ ∧ ur
i ∩ Ii+1 6= ∅ ⇒ ui+2∩ Ii+2 6= ∅ ∧ ur

i+2∩ Ii+3 6= ∅.
Suppose by contradiction that ui+2 ∩ Ii+2 = ∅. Therefore, ui+2 must be

entirely contained in Ii+1. On the other hand, ur
i ∩ Ii+1 6= ∅ implies that u`

i+2

is entirely contained in Ii+1. But this is a contradiction, because ui+2 and u`
i+2

are contained in the same interval, which is impossible by Observation 2.3(i).

Now, suppose that ur
i+2 ∩ Ii+3 = ∅. Since ur

i ∩ Ii+1 6= ∅, and clusters do

not overlap, u`
i+2, ui+2, and ur

i+2 should be contained in Ii+1 ∪ Ii+2, which is

impossible by Observation 2.3(ii).

Repeating the inductive step zero or more times, we end up at either i = k or

i = k − 1. If i = k, then uk ∩ Ik 6= ∅ which is a contradiction, because there is no

Ik. If i = k− 1, then ur
k−1 ∩ Ik 6= ∅ which is again a contradiction, because we have

no Ik.

Both cases lead to contradiction. It means that there exists some i ∈ O such that

µ(ci) < 2. The proof for the even-indexed cells is similar. The only difference is that

we need to prove the base case for i = 2, which is easy to do with Observations 2.3(i)

and 2.3(ii). �

Lemma 2.5 If B is a block of size k ≥ 2, then µ(B) ≤ 2k − 1.

Proof. This is a direct corollary of Lemma 2.4, because there are at least two cells

in B (one odd-indexed and one even-indexed) that have cost at most 3/2, and the

other cells have cost at most 2. �
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I

B

u1 u2 u3

Figure 2.2: Impossibility of Subcase 1.1.

2.3.2 Analysis

We are now ready to analyze the expected competitive ratio of our algorithm within

a block of size k ≥ 2. The required case analysis is delicate and is described in

detail below. The main case to watch out for is k = 2: any bound for ρ(2) strictly

smaller than 2 will lead to a competitive ratio strictly smaller than 2 for the final

algorithm (as we will see in Section 2.3.3), although bounds for ρ(3), ρ(4), . . . will

affect the final constant.

Theorem 2.6 ρ(2) = 7/4.

Proof. Consider a block B of size 2, consisting of cells 〈c1, c2〉. Let I be the single

unit interval in B in opt(σ). There are two possibilities:

• Lucky Case: B falls completely in one window w. After a cluster u has

been opened for the new point (by line 7), all subsequent points in I are put in

the same cluster u (by line 2). Note that the condition put in line 4 prevents

points from the neighboring windows to join u and make crossing clusters.

So, u is the only cluster in B, and hence, µ(B) = 1.

• Unlucky Case: B is split between two neighboring windows. We first rule

out some subcases:

– Subcase 1.1: µ(c1) = 2. Here, c1 intersects three clusters 〈u1, u2, u3〉
(from left to right), where u1 and u3 are crossing clusters and u2 is a

whole cluster (see Fig. 2.2). By Observation 2.2(iii), u2 is opened after

u3 has become a crossing cluster, but then the points of u2 would be

assigned to u3 instead (because line 2 precedes line 7 and u2 ∪ u3 ⊂ I

has length at most 1): a contradiction.

– Subcase 1.2: µ(c2) = 2. Similarly impossible.

– Subcase 1.3: µ(c1) = µ(c2) = 3/2. We have only two scenarios:
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Figure 2.3: Impossibility of Subsubcase 1.3.2.

∗ Subsubcase 1.3.1: B intersects three clusters 〈u1, u2, u3〉, where

u2 is a crossing cluster, and u1 and u3 are whole clusters. By Obser-

vation 2.2(iii), u1 is opened after u2 has become a crossing cluster,

but then the points of u1 would be assigned to u2 instead (because

of line 2 and u1 ∪ u2 ⊂ I): a contradiction.

∗ Subsubcase 1.3.2: B intersects four clusters 〈u1, u2, u3, u4〉, where

u1 and u4 are crossing clusters and u2 and u3 are whole clusters (see

Fig. 2.3). W.l.o.g., say u2 is opened after u3. By Observation 2.2(iii),

u2 is the last to be opened after u1, u3, u4, but then u2 would not

be opened as points in u2 may be assigned to u3 (because lines 3–5

precede line 7, u2∪u3 ⊂ I, and c2 intersects more than one cluster):

a contradiction.

In all remaining subcases, µ(B) = µ(c1) + µ(c2) ≤ 3
2

+ 1 = 5
2
.

Since the lucky case occurs with probability exactly 1/2, we conclude that ρ(2) ≤
1
2
· 1 + 1

2
· 5

2
= 7

4
. This bound is tight: to see this just consider the block B = [1, 3)

and the sequence of points 〈0.5, 1.5, 2.5, 1.8〉. �

Theorem 2.7 ρ(3) = 9/4.

Proof. Consider a block B of size 3, consisting of cells 〈c1, c2, c3〉. We assume w.l.o.g.

that c1 and c2 fall in the same window (the other scenario is symmetric).

• Subcase 1.1: µ(c2) = 2. Impossible by Lemma 2.4.

• Subcase 1.2: µ(c1) = µ(c3) = 2. Impossible by Lemma 2.4.

• Subcase 1.3: µ(c1) = 2 and µ(c2) = µ(c3) = 3/2. Here, B intersects

six clusters 〈u1, . . . , u6〉, where u1, u3, u6 are crossing clusters and u2, u4, u5

are whole clusters. Let 〈I1, I2〉 be the two unit intervals in B in opt(σ).

By Observation 2.3(i), u3 cannot be entirely contained in I1. This implies

that u4 ∪ u5 ⊂ I2. Now suppose w.l.o.g. that u4 is opened after u5. By

20



Observation 2.2(iii), u4 is the last to be opened after u3, u5, u6. Consider the

first point p in u4. Upon arrival of p, the window containing p contains at

least one cluster, u3, and the neighboring window contains two clusters u5

and u6. Therefore, by the condition in line 4, the algorithm would assign p

to u5 instead of u4, which is a contradiction.

• Subcase 1.4: µ(c1) = µ(c2) = 3/2 and µ(c3) = 2. Similarly impossible.

In all remaining subcases, µ(B) = µ(c1)+µ(c2)+µ(c3) is at most 2+ 3
2
+1 = 9

2

or 3
2

+ 3
2

+ 3
2

= 9
2
. We conclude that ρ(3) ≤ 9/4. This bound is tight: to see this

just consider the block B = [2, 5), and the sequence of points

σ = 〈0.2, 6.8, 2.6, 3.4, 3.6, 2.4, 3.8, 4.4, 3.2, 1.4, 4.6, 5.6, 2.5, 4.5〉

that realizes µ(B) = 9/2 regardless of the windowing selected. �

Theorem 2.8 ρ(k) ≤ (2k − 1)/(k − 1) for all k ≥ 4.

Proof. This is a direct corollary of Lemma 2.5. �

While RandWindow is better than 2-competitive on blocks of size two, its com-

petitive ratio exceeds 2 for larger block sizes. In the next subsection we utilize a

combination strategy to overcome this deficiency.

2.3.3 The Combined Algorithm

We combine the RandWindow algorithm (Algorithm 4) with the Grid algo-

rithm (Algorithm 2) to obtain a randomized online algorithm with competitive

ratio strictly less than 2. Note that only two random bits in total are used at the

beginning.

Algorithm 5 (Combo) With probability 1/2, run RandWindow, else run Grid.

Theorem 2.9 Combo is 15/8-competitive (against oblivious adversaries).

Proof. The Grid algorithm uses exactly k clusters on a block of size k. Therefore,

the competitive ratio of this algorithm within a block of size k is k/(k − 1).
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Table 2.1: Upper bounds on the competitive ratio of Grid, RandWindow, and

Combo within a block.

Block Size 2 3 k ≥ 4

Grid 2 3/2 k/(k − 1)

RandWindow 7/4 9/4 (2k − 1)/(k − 1)

Combo 15/8 15/8 (3k − 1)/(2k − 2)

Table 2.1 shows the competitive ratio of the RandWindow, Grid, and Combo

algorithms, for all possible block sizes.

As we can see, the competitive ratio of Combo within a block is always at most

15/8. By summing over all blocks and exploiting the additivity of our cost function

µ, we see that expected total cost of the solution produced by Combo is at most

15/8 times the size of opt(σ) for every input sequence σ. �

2.4 Using More Randomization

In the previous section, we showed that it is possible to obtain an online algorithm

for one-dimensional unit clustering with expected competitive ratio strictly less

than 2 using randomization. In this section, we improve our previous result further

and obtain a randomized online algorithm with expected competitive ratio at most

11/6 ≈ 1.8333, improving the previous ratio of 15/8 = 1.875.

The new algorithm is built upon the RandWindow algorithm presented in

the previous section. The key difference here is to make more use of randomization

(the previous algorithm requires only 2 random bits). In the previous algorithm,

clusters crossing two adjacent windows are “discouraged”; in the new algorithm,

crossings of adjacent windows are discouraged to a “lesser” extent, as controlled

by randomization. This calls for a subtle change in the algorithm, as well as a

lengthier case analysis.
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2.4.1 The Improved Algorithm

In this section, we modify the RandWindow algorithm form the previous section.

The competitive ratio of the algorithm is still not less than 2, but will become less

than 2 when combined with the näıve grid strategy as described in Section 2.4.2.

In the previous algorithm (RandWindow), clusters crossing two adjacent win-

dows were not strictly forbidden but were discouraged in some sense. In the new

algorithm, the idea, roughly speaking, is to permit more clusters crossing windows.

More specifically, call the grid point lying between two adjacent windows a border ;

generate a random bit for every border, where a 1 bit indicates an open border

and a 0 bit indicates a closed border. Clusters crossing closed borders are still

discouraged, but not clusters crossing open borders. (As it turns out, setting the

probability of border opening/closing to 1/2 is the best choice.)

The new algorithm is given below. In this pseudocode, b(w, w′) refers to the

border indicator between windows w and w′.

Algorithm 6 (RandBorder) Partition the line into windows each of the form

[2i, 2i + 2). With probability 1/2, shift all windows one unit to the right. For each

two neighboring windows w and w′ set b(w, w′) to a number uniformly drawn at

random from {0, 1}. For each new point p, find the window w containing p, and do

the following:

1: if p fits in a cluster intersecting w then

2: put p in the “closest” such cluster

3: else if p fits in a cluster u inside a neighboring window w′ then

4: if b(w,w′) = 1 then put p in u

5: if w contains at least 1 cluster and w′ contains at least 2 clusters then

6: put p in u

7: if p is not put in any cluster then open a new cluster for p

Thus, a cluster is allowed to cross the boundary of two grid cells within a

window freely, but it can cross the boundary of two adjacent windows only in two

exceptional cases: when the corresponding border indicator is set to 1, or when

the condition specified in line 5 arises. We will see the rationale for this condition

during the analysis.

Like in the previous algorithm, the “closest” cluster in line 2 is specified by the
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following two preference rules:

• Rule I. If p lies in a cluster u, then u is the closest cluster to p.

• Rule II. If p lies in a cell c, then any cluster intersecting c is closer to p

than any cluster contained in a neighboring cell.

Note that the random bits used for the border indicators can be easily generated

on the fly, upon inspecting each border in line 4. It is easy to observe that the

number of random bits used in this way is at most the number of intervals in the

optimal solution.

2.4.2 Analysis

In the RandBorder algorithm, if all border indicators are set to 0, the algorithm

simply becomes identical to RandWindow. This enables us to reuse most of

the analysis presented in the previous section. In particular, it is easy to verify

that all observations and lemmas provided in Section 2.3.1 are still valid for the

RandBorder algorithm.

We now establish some new observations concerning the behavior of the Rand-

Border algorithm.

Observation 2.10 Any interval in opt(σ) that does not cross a closed border can

contain at most one whole cluster.

Proof. Let u1 and u2 be two whole clusters contained in the said interval and

suppose that u1 is opened before u2. Then all points of u2 would be assigned to u1,

because lines 2 and 4 precede line 7. �

Lemma 2.11 Let B be a block of size k ≥ 2. If all borders strictly inside B are

open, then µ(B) ≤ 2(k − 1).

Proof. This is immediate from the fact that each block of size k ≥ 2 contains

exactly k− 1 intervals from opt(σ), and that each of these k− 1 intervals has cost

at most 2 by Observation 2.10. �

In the rest of this section, we define ρ(k) to be the expected competitive ratio

of the RandBorder algorithm within a block of size k. In other words, ρ(k)

upper-bounds the expected value of µ(B)/(k − 1) over all blocks B of size k.

24



c1 c2

I

B
b2b1

u1 u2 u3

Figure 2.4: Illustration of Subcase 1.3.

Theorem 2.12 ρ(2) = 27/16.

Proof. Consider a block B of size 2, consisting of two cells 〈c1, c2〉 (see Fig. 2.4).

Let I be the single unit interval in B in opt(σ). There are two possibilities.

Case 1: B falls completely in one window w. Let 〈b1, b2〉 be the two border

indicators at the boundaries of w. Let p0 be the first point to arrive in I. W.l.o.g.,

assume p0 is in c2 (the other case is symmetric). We consider four subcases.

• Subcase 1.1: 〈b1, b2〉 = 〈0, 0〉. Here, both boundaries of B are closed. Thus,

after a cluster u has been opened for p0 (by Line 7), all subsequent points in

I are put in the same cluster u. Note that the condition in Line 5 prevents

points from the neighboring windows from joining u and making crossing

clusters. So, u is the only cluster in B, and hence, µ(B) = 1.

• Subcase 1.2: 〈b1, b2〉 = 〈1, 0〉. When p0 arrives, a new cluster u is opened,

since p0 is in c2, the right border is closed, and w contains < 1 cluster at the

time so that the condition in line 5 fails. Again, all subsequent points in I

are put in the same cluster, and points from the neighboring windows cannot

join u and make crossing clusters. Hence, µ(B) = 1.

• Subcase 1.3: 〈b1, b2〉 = 〈0, 1〉. We show that µ(B) < 2. Suppose by contra-

diction that µ(B) = 2. By Observation 2.10, I cannot contain two clusters

entirely. Therefore, the only way to get µ(B) = 2 is that I intersects three

clusters 〈u1, u2, u3〉 (from left to right, as always), where u1 and u3 are cross-

ing clusters, and u2 is entirely contained in I (see Fig. 2.4). By a similar

argument as in the proof of Observation 2.2(iii), u2 is opened after u1 and u3

have become crossing clusters. Let p1 be the first point of u1 in w, and p2 be

the first point of u1 in the neighboring window. We have two scenarios:

– Subsubcase 1.3.1: p1 � p2. In this case, cluster u1 is opened for p1.

But p2 cannot be put in u1, because upon arrival of p2, w contains < 2

clusters, and thus, the condition in line 5 does not hold.
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– Subsubcase 1.3.2: p2 � p1. Here, cluster u1 is opened for p2. But p1

cannot be put in u1, because upon arrival of p1, w contains < 1 cluster,

and hence, the condition in line 5 does not hold.

Both scenarios lead to contradiction. Therefore, µ(B) ≤ 3/2.

• Subcase 1.4: 〈b1, b2〉 = 〈1, 1〉. Here, Lemma 2.11 implies that µ(B) ≤ 2.

Since each of the four subcases occurs with probability 1/4, we conclude that

the expected value of µ(B) in Case 1 is at most 1
4
(1 + 1 + 3

2
+ 2) = 11

8
.

Case 2: B is split between two neighboring windows. Let b be the single border

indicator inside B. Let µ0(B) and µ1(B) represent the value of µ(B) for the case

that b is set to 0 and 1, respectively. It is clear by Lemma 2.11 that µ1(B) ≤ 2.

We rule out two possibilities:

• Subcase 2.1: µ0(B) = 3. Since I cannot contain both a whole cluster and

a crossing cluster by Observation 2.3(i), the only possible scenario is that c1

intersects two clusters 〈u1, u2〉, and c2 intersects two clusters 〈u3, u4〉, where

u1 and u4 are crossing clusters, and u2 and u3 are whole clusters. Let p1

be the first point in u2 and p2 be the first point in u3. Suppose w.l.o.g.

that p1 � p2. By Observation 2.2(iii), p1 arrives after u1 has been opened,

and p2 arrives after u4 has been opened. But when p2 arrives, the window

containing it contains one cluster, u4, and the neighboring window contains

two clusters u1 and u2. Therefore, p2 would be assigned to u2 by line 5 instead:

a contradiction.

• Subcase 2.2: µ0(B) = 5/2 and µ1(B) = 2. Suppose that µ1(B) = 2. Then

I intersects three clusters 〈u1, u2, u3〉, where u1 and u3 are crossing clusters,

and u2 is completely contained in I. Let t be the time at which u1 becomes a

crossing cluster, and let σ(t) be the subset of input points coming up to time

t. By a similar argument as in the proof of Observation 2.2(iii), any point

in I ∩ c1 not contained in u1 arrives after time t. Therefore, upon receiving

the input sequence σ(t), u1 becomes a crossing cluster no matter whether the

border between c1 and c2 is open or closed. Using the same argument we

conclude that u3 becomes a crossing cluster regardless of the value of b. Now

consider the case where b = 0. Since both u1 and u3 remain crossing clusters,

µ0(B) must be an integer (1, 2, or 3) and cannot equal 5/2.
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Ruling out these two subcases, we have µ0(B) + µ1(B) ≤ 4 in all remaining

subcases, and therefore, the expected value of µ(B) in this case is at most 2.

Since each of Cases 1 and 2 occurs with probability 1/2, we conclude that

ρ(2) ≤ 1
2
(11

8
) + 1

2
(2) = 27

16
. This bound is tight: to see this just consider the block

B = [2, 4), and the sequence of 8 points 〈4.5, 3.5, 5.5, 2.5, 1.5, 3.2, 2.7, 0.5〉. If B

falls in one window, then the value of µ(B) in Subcases 1.1 to 1.4 is 1, 1, 3/2

and 2 respectively. If B split between two windows, then the value of µ(B) is 2,

regardless of the value of the border indicator inside B. Therefore, E[µ(B)] =
1
2
[1
4
(1 + 1 + 3

2
+ 2)] + 1

2
(2) = 27

16
. �

Theorem 2.13 ρ(3) ≤ 17/8.

Proof. Consider a block B of size 3, consisting of cells 〈c1, c2, c3〉, and let b be the

single border indicator strictly inside B. We assume w.l.o.g. that c1 and c2 fall in

the same window (the other scenario is symmetric). We consider two cases.

• Case 1: b = 0. In this case, µ(B) ≤ 9/2 by the same argument used in the

proof of Theorem 2.7 in Section 2.3.

• Case 2: b = 1. Here, Lemma 2.11 implies that µ(B) ≤ 4.

Each of Cases 1 and 2 occurs with probability 1/2, therefore ρ(3) ≤ 1
2
(4 + 9

2
)/2 =

17/8. �

Theorem 2.14 ρ(4) ≤ 53/24.

Proof. Consider a block B of size 4. We consider two easy cases.

• Case 1: B falls completely in two windows. Let b be the single border

indicator strictly inside B. Now, if b = 1, µ(B) ≤ 6 by Lemma 2.11, otherwise,

µ(B) ≤ 7 by Lemma 2.5. Therefore, the expected cost in this case is at most
1
2
(6 + 7) = 13

2
.

• Case 2: B is split between three consecutive windows. Let 〈b1, b2〉 be the

two border indicators inside B. For the subcase where 〈b1, b2〉 = 〈1, 1〉 the

cost is at most 6 by Lemma 2.11, and for the remaining 3 subcases, the cost

of B is at most 7 by Lemma 2.5. Thus, the expected cost in this case is at

most 1
4
(6) + 3

4
(7) = 27

4
.
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Since each of Cases 1 and 2 occurs with probability exactly 1/2, we conclude

that ρ(4) ≤ 1
2
(13

2
+ 27

4
)/3 = 53

24
. �

Theorem 2.15 ρ(k) ≤ (2k − 1)/(k − 1) for all k ≥ 5.

Proof. This is a direct implication of Lemma 2.5. �

The Combined Algorithm

We are now ready to combine the RandBorder algorithm with the simple Grid

algorithm (Algorithm 2) to obtain a randomized online algorithm with competitive

ratio strictly less than 2.

Algorithm 7 (Combined) With probability 8/15 run RandBorder, and with

probability 7/15 run Grid.

Theorem 2.16 The competitive ratio of Combined is at most 11/6 against obliv-

ious adversaries.

Proof. The competitive ratios of RandBorder and Grid within blocks of size

2 are 27/16 and 2, respectively. Therefore, the expected competitive ratio of the

Combined algorithm is 8
15

(27
16

) + 7
15

(2) = 11
6

within a block of size 2. For larger

block sizes, the expected competitive ratio of Combined is always at most 11/6,

as shown in Table 2.2. By summing over all blocks and exploiting the additivity of

our cost function µ(·), we see that the expected total cost of the solution produced

by Combined is at most 11/6 times the size of opt(σ) for every input sequence

σ. �

Table 2.2: Upper bounds on the competitive ratio of Grid, RandBorder, and

Combined within a block.

Block Size 2 3 4 k ≥ 5

Grid 2 3/2 4/3 k/(k − 1)

RandBorder 27/16 17/8 53/24 (2k − 1)/(k − 1)

Combined 11/6 11/6 9/5 (23k − 8)/(15k − 15)
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2.5 Beyond One Dimension

In the two-dimensional L∞-metric case, we want to partition the given point set

into subsets, each of L∞-diameter at most 1 (i.e., each enclosable by a unit square),

so as to minimize the number of subsets used. (See Fig. 2.5.)

Figure 2.5: Unit clustering in the L∞ plane.

All the näıve algorithms mentioned in Section 2.2, when extended to two dimen-

sions, provide 4-competitive solutions to the optimal solution. Theorem 2.1 can be

generalized to a deterministic lower bound of 4 on the competitive ratio for the unit

covering problem. We show how to extend Theorem 2.16 to obtain a competitive

ratio strictly less than 4 for unit clustering.

Theorem 2.17 There is a 11/3-competitive algorithm for the online unit clustering

problem in the L∞ plane.

Proof. Our online algorithm is simple: just use Combined to find a unit clustering

Ci for the points inside each horizontal strip i ≤ y < i + 1. (Computing each Ci is

indeed a one-dimensional problem.)

Let σ be the input sequence. We denote by σi the set of points from σ that lie

in the strip i ≤ y < i + 1. Let Zi be an optimal unit covering for σi. Let O be an

optimal unit covering for σ, and Oi be the set of unit squares in O that intersect

the grid line y = i. Since all squares in Oi lie in the strip i− 1 ≤ y < i+1, we have

|Zi| ≤ |Oi−1|+ |Oi|. Therefore
∑

i |Zi| ≤ 2|O|, so
∑

i |Ci| ≤ 15
8

∑
i |Zi| ≤ 15

4
|O|. �
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The above theorem can be easily extended to dimension d > 2, with ratio (11
12

) · 2d.

2.6 Conclusions

We have shown that determining the best competitive ratio for the online unit

clustering problem is nontrivial even in the simplest one-dimensional case. In par-

ticular, we have obtained an online algorithm for this one-dimensional problem that

achieves a competitive ratio of 11/6 using randomization.

An intriguing possibility that we have not ruled out is whether a nontrivial

result can be obtained without randomization at all. After the appearance of the

conference versions of this work, Epstein and van Stee [41] succeeded to obtain

a deterministic algorithm for the one-dimensional unit clustering problem with a

competitive ratio of 7/4. It is still open what is the best competitive ratio for this

problem in one dimension. We will provide some complementary lower bounds in

the next section.

In a recent work, Epstein, Levin and van Stee [39] have investigated several vari-

ations of the unit clustering problem. Examples of these variants include clustering

with temporary requests in which request points are not permanent, but arrive and

leave over time, and max clustering in which each point has a weight and the cost

of a cluster is the maximum weight of any point assigned to it, with the objective

of minimizing the total cost of the clusters. Epstein et al. [39] have shown that our

simple Grid algorithm yields a competitive ratio of 2 for the above two variants,

and that the 2 bound is the best possible.
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Chapter 3

Online Coloring Co-interval

Graphs

In this chapter, we study a problem closely related to online unit clustering, namely,

the problem of online coloring co-interval graphs. In this problem, a set of intervals

on the real line is presented to the algorithm one at a time, and upon receiving

each interval I, the algorithm must assign I a color different from the colors of all

previously presented intervals not intersecting I. The objective is to use as few

colors as possible. It is known that the competitive ratio of the simple First-Fit

algorithm on the class of co-interval graphs is at most 2. We show that for the

class of unit co-interval graphs, where all intervals have equal length, the 2-bound

on the competitive ratio of First-Fit is tight. On the other hand, we show that

no deterministic online algorithm for coloring unit co-interval graphs can be better

than 3/2-competitive. We then study the effect of randomization on our problem,

and show a lower bound of 4/3 on the competitive ratio of any randomized algorithm

for the unit co-interval coloring problem. We also prove that for the class of general

co-interval graphs no randomized algorithm has competitive ratio better than 3/2.

3.1 Introduction

A variety of optimization problems in scheduling, partitioning and resource allo-

cation can be modeled as graph coloring problems. The graph coloring problem

An extended abstract of this chapter has been published as: H. Zarrabi-Zadeh. Online
coloring co-interval graphs. In Proc. 12th International CSI Computer Conference, pages 1328–
1332, 2007.
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involves assigning colors to the vertices of a graph so that adjacent vertices are

assigned different colors, with the objective of minimizing the number of colors

used. It is well-known that the problem is NP-hard, even for graphs with a fixed

chromatic number k ≥ 3 [69]. Furthermore, it is intractable to approximate the

problem to within a factor of nc for some constant c > 0 unless P = NP [76].

In the online graph coloring problem, vertices of the graph are presented one

at a time. When a vertex is presented, all the edges from it to vertices presented

earlier are given. An online coloring algorithm assigns a color to the current vertex

before the next vertex is presented, and once a color is assigned to a vertex, the

algorithm is not allowed to change its color at a future time.

The online graph coloring problem has been widely studied. Lovász, Saks,

and Trotter [75] gave an online algorithm that achieves a competitive ratio of

O(n/ log∗ n) on all graphs. Vishwanathan [94] gave a randomized algorithm which,

as improved in [55], obtains a competitive ratio of O(n/ log n) against an oblivi-

ous adversary. A close lower bound of Ω(n/ log2 n) is proved by Halldórsson and

Szegedy [56] for both deterministic and randomized algorithms.

Due to the inherent complexity of the online coloring problem on general graphs,

many researchers have focused their study on special classes of graphs [33, 40, 68,

71, 78]. For example, Kierstead and Trotter [71] constructed an optimum online

algorithm for coloring interval graphs. Their algorithm uses at most 3ω− 2 colors,

where ω is the maximum clique size of the graph. Since interval graphs are perfect,

their chromatic numbers are equal to their clique numbers (see [50] for the defi-

nition of graph theory terms used throughout this chapter). This means that the

algorithm of Kierstead and Trotter is 3-competitive for interval graphs. A matching

randomized lower bound of 3 is presented in [73].

Another line of research has been on analyzing the performance of the simple

First-Fit algorithm, i.e., the algorithm that simply assigns the smallest available

color to each new vertex. For example, it is known that for the class of interval

graphs the competitive ratio of First-Fit is at least 4.4 [29] and at most 10 [87].

In this chapter, we study the online coloring problem for the class of co-interval

graphs. Gyárfás and Lehel [54] have shown that First-Fit uses at most 2ω − 1

colors on any co-chordal graph. Since interval graphs are chordal [50], this bound

also applies to co-interval graphs. Kierstead and Qin [70] have shown that no online

deterministic algorithm can beat this 2-bound on co-interval graphs. We present

the first lower bound, up to our best knowledge, for randomized online coloring of

co-interval graphs. We show that any randomized algorithm for the problem has
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Table 3.1: Lower and upper bounds on the competitive ratio of online algorithms

for coloring co-interval graphs. Entries shown in bold are proved in this chapter.

Deterministic Randomized

LB UB LB UB

Coloring co-interval graphs 2 [70] 2 [54] 3/2 2 [54]

Coloring unit co-interval graphs 3/2 2 [54] 4/3 11/6 [Chap. 2]

an expected competitive ratio at least 3/2.

For the class of unit co-interval graphs, where all intervals have equal (unit)

length, we show that the competitive ratio of First-Fit is still 2. We then show

that no deterministic algorithm for this problem can be better than 3/2-competitive.

We also prove a lower bound of 4/3 on the competitive ratio of any randomized

algorithm for coloring unit co-interval graphs. Both these lower bounds also apply

to the online unit clustering problem due to the close connection between these two

problems which will be addressed in Section 3.2. A summary of the lower and upper

bounds provided in this chapter and the previous works is presented in Table 3.1.

3.2 Coloring Unit Co-interval Graphs

All comparability and co-comparability graphs are perfect, so their chromatic num-

bers are equal to their clique numbers. Gyárfás and Lehel [54] have shown that for

any deterministic online coloring algorithm A and any positive integer k, there is

a tree T such that A uses at least k colors on T . Since trees are special cases of

comparability graphs with clique number two, it means that in general the number

of colors used by First-Fit on comparability graphs cannot be bounded in terms

of their clique number.

On the other hand, for the class of co-interval graphs, which are a subclass

of comparability graphs, we can obtain better bounds on the competitive ratio of

the First-Fit algorithm. The result of [54] shows that First-Fit needs at most

2ω − 1 colors on the class of co-chordal graphs, where ω is the clique number of

the graph. Since co-interval graphs are a subclass of co-chordal graphs, this bound

also applies to (unit) co-interval graphs.

In the following, we show that the above upper bound on the number of colors

used by First-Fit is indeed tight, even on the class of unit co-interval graphs.
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Theorem 3.1 First-Fit has a competitive ratio of 2 on the class of unit co-

interval graphs.

Proof. This is analogous to what is proved in Section 2.2. The adversary provides

a sequence of 2k − 2 intervals of the form [i, i + 1] (2 ≤ i < 2k), followed by k unit

intervals of the form [2i − 1
2
, 2i + 1

2
] (1 ≤ i ≤ k). First-Fit uses 2k − 1 colors to

color this sequence, while the co-interval graph represented by this set of intervals

has chromatic number k. �

3.2.1 Lower Bounds

As mentioned in the previous section, First-Fit has a competitive ratio of 2 on

the class of unit co-interval graphs. An immediate question is whether one can

obtain a better deterministic algorithms for this problem. The following theorem

shows that no such algorithm can be better than 3/2-competitive.

Theorem 3.2 There is a lower bound of 3/2 on the competitive ratio of any de-

terministic online algorithm for coloring unit co-interval graphs.

Proof. Let Ii = [i, i + 1], for i ∈ {1, . . . , 4}. Consider two input sequences σ1 =

〈I2, I3〉 and σ2 = 〈I2, I3, I1, I4〉. The adversary chooses one of the two sequences as

input. Let A be any deterministic algorithm for the problem. No matter which

sequence is chosen by the adversary, A receives I2 and I3 as the first two intervals.

If A decides to color I2 and I3 with two different colors, then A is 2-competitive

on σ1. If A decides to color I2 and I3 with the same color, then it needs two more

colors to color I1 and I4. It means that A needs three colors on σ2, while the

chromatic number of σ2 is 2. Thus, A is at least 3/2-competitive on these two

input sequences. �

A randomized lower bound for online coloring unit co-interval graphs is provided

in the following theorem.

Theorem 3.3 Any randomized algorithm for online coloring unit co-interval graphs

is at least 4/3-competitive.

Proof. Let A be an arbitrary randomized algorithm for the problem, and let ρA(σ)

be the expected competitive ratio of A on an input sequence σ. As in the previous
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theorem, define Ii = [i, i + 1] for i ∈ {1, . . . , 4}, and consider two input sequences

σ1 = 〈I2, I3〉 and σ2 = 〈I2, I3, I1, I4〉. No matter which of these two sequences is

chosen by the adversary, A receives I2 and I3 as the first two intervals. Let E be

the event that A assigns two different colors to I2 and I3. If E occurs, then A uses

2 colors on each of the input sequences σ1 and σ2. If E doesn’t occur, then A uses

one color on σ1 and 3 colors on σ2. Let p = Pr[E]. Then it is clear that

ρA(σ1) = 2p + (1− p) = p + 1,

and

ρA(σ2) =
1

2
(2p + 3(1− p)) = (3− p)/2 .

If p > 1/3 then ρA(σ1) = p + 1 > 4/3, and hence, A is not 4/3-competitive on

σ1. Thus we can assume that p ≤ 1/3. But then A cannot be better than 4/3-

competitive, because ρA(σ2) = (3− p)/2 ≥ 4/3. �

3.2.2 Connection to Unit Clustering

The problem of online coloring unit co-interval graphs has a close connection to

the online unit clustering problem in one dimension, as stated in the following

observation.

Observation 3.4 The unit clustering problem in one dimension is equivalent to

the problem of coloring unit co-interval graphs.

Proof. It is clear from elementary graph theory that coloring co-interval graphs is

equivalent to clique partitioning interval graphs, i.e., partitioning a set of intervals

into minimum number of subsets such that intervals in each subset have a common

intersection point. In other words, given a set I of unit intervals, we want to find

a minimum cardinality set of points P such that each interval in I is “pierced” by

at least one of the points in P .

Now, we define the following “point-interval” duality: For a given point p, we

define p∗ to be the unit interval centered at p. For a unit interval I, we define I∗

to be its center. It is easy to observe that

p ∈ I ⇔ I∗ ∈ p∗ .

Given an instance of the unit interval piercing problem, we can map each unit

interval to its dual point, and hence, come up with the following equivalent “dual”
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problem: given a set P of points on the line, find a minimum cardinality set I of

unit intervals such that each point in P is contained in at least one interval of I.

This is equivalent to the online unit clustering problem in one dimension. �

As a direct corollary of Observation 3.4, the lower bounds proved in Theorems 3.2

and 3.3 can be applied to the online unit clustering problem as well.

Corollary 3.5 There is a lower bound of 3/2 (respectively, 4/3) on the competitive

ratio of any deterministic (respectively, randomized) algorithm for the online unit

clustering problem in one dimension.

3.3 Coloring Co-interval Graphs

In this section, we consider the class of general co-interval graphs. Obviously, the

4/3 lower bound proved in the previous section also applies to the general co-interval

graphs. In this section, we obtain a stronger result by proving that no randomized

algorithm for coloring co-interval graphs can be better than 3/2-competitive.

Theorem 3.6 There is a lower bound of 3/2 on the competitive ratio of any ran-

domized algorithm for online coloring co-interval graphs.

Proof. By Yao’s minimax principle [96], the expected competitive ratio of the op-

timal deterministic algorithm for an arbitrarily chosen input distribution is a lower

bound on the expected competitive ratio of every randomized algorithm. Thus, to

show the lower bound, we only need to provide a probability distribution on a set

of input sequences such that the expected competitive ratio of any deterministic

online algorithm on that distribution is at least 3/2.

Let k ≥ 1 be a fixed integer. For 1 ≤ i ≤ k, we define three types of intervals

ai, bi, and ci on the real line as follows:

ai = [3i− 3, 3i− 2],

bi = [3i + 1, 3i + 2],

ci = [3i + 2, +∞].

Consider k blocks of intervals B1, . . . , Bk, where each block is a sequence of two

or three intervals defined as follows:

Bi =


〈b1, c1〉 i = 1,

〈ai, bi, ci〉 2 ≤ i < k,

〈ak, bk〉 i = k.
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We construct a set I of k input sequences σ1 to σk, where each σi is obtained

by concatenating the first i blocks B1 to Bi, in order from left to right. It is easy

to observe that the co-interval graph represented by each σi has chromatic number

equal to i.

Now, we define a probability distribution P over the input set I. Let pi be the

probability that σi is chosen as input. We define

pi =


2k−1

2k−1
· i

2i 1 ≤ i ≤ k − 1,

k
2k−1

i = k.

Note that our probability distribution is properly defined, as
∑k

i=1 pi = 1.

First-Fit uses exactly 2i − 1 colors to color each σi (it opens a new color on

every bj (1 ≤ j ≤ i) and a new color on every aj (1 < j ≤ i)). Thus, the expected

competitive ratio of First-Fit on the input distribution P is

ρFF =
k∑

i=1

pi

(
2i− 1

i

)
=

3

2
− 1

2(2k − 1)
.

Our aim is to show that the expected competitive ratio of any other deterministic

online algorithm is at least ρFF on the input distribution P.

Let A be an arbitrary deterministic online algorithm. Since all sequences in

I are prefixes of σk, A makes the same decision on any specific interval in all

input sequences. Let di be the decision made by A upon receiving the interval ci

(1 ≤ i < k). We set di = 0, if A colors ci with the same color assigned to bi, and set

di = 1, otherwise. Note that A can always color ci with the same color assigned to

its preceding bi. This is because bi has no intersection with the intervals of types a

and b presented before it, and has intersection with all intervals of type c presented

thus far.

We call the sequence of decisions 〈d1, . . . , dk−1〉 the characteristic sequence of

A. The claim is that knowing the characteristic sequence of an algorithm A, we

can determine the minimum number of colors that A needs on each input sequence,

regardless of decisions it makes on intervals of types a and b.

Suppose that a sequence δ = 〈d1, . . . , dk−1〉 of k − 1 bits is given, where each

di ∈ {0, 1}. We define a deterministic online algorithm FF(δ) as follows. Upon

receiving an interval of type c, say ci, the algorithm checks the corresponding bit

di in the bit sequence δ and opens a new color for the interval or colors it using
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the same color assigned to its preceding bi, depending on whether di is 1 or 0,

respectively. On the other hand, when FF(δ) receives an interval of type a or b, it

just behaves like the First-Fit algorithm, i.e., assigns the first available color to

the given interval, or opens a new color for the interval provided no previous color

is available.

Claim 1 Among all deterministic online algorithms with characteristic sequence δ,

FF(δ) uses the minimum number of colors on every input sequence in I.

Claim 2 For any arbitrary sequence δ of k − 1 bits, the expected competitive ratio

of FF(δ) on the input distribution P is equal to ρFF.

Claim 1 is easy to prove. Here, we provide a proof for Claim 2. Let m be the

number of bits which are equal to 1 in the given sequence δ. We prove the claim

by induction on m. The base case m = 0 is trivial, because in this case all entries

in δ are 0, and hence FF(δ) is the same as the First-Fit algorithm.

Now, suppose that the claim is true for all sequences with less than m bits equal

to 1, and consider a sequence δ in which m bits are 1. Let j (1 ≤ j ≤ k− 1) be the

position of the last 1-bit in δ. Changing the j-th bit in δ from 1 to 0, we obtain

a new sequence which we call δ̄. Since the number of 1-bits in δ̄ is m − 1, by the

induction hypothesis

ρFF(δ̄) = ρFF,

where ρFF(δ̄) is the expected competitive ratio of FF(δ̄). Since the first j− 1 bits of

δ and δ̄ are the same, the competitive ratio of FF(δ) is equal to that of FF(δ̄) on

all input sequences smaller than σj in I. For σj, FF(δ) uses one color more than

FF(δ̄), because FF(δ) assigns two different colors to two intervals bj and cj, while

FF(δ̄) colors these two intervals with the same color. On the other hand, FF(δ)

uses one color less than FF(δ̄) on any input sequence σi for all j < i ≤ k. This is

because FF(δ̄) needs to open two new colors for aj+1 and bj+1, while FF(δ) does

not open any new color for these two intervals: it colors aj+1 with the same color

assigned to bj and colors bj+1 with the same color assigned to cj. Thus,

ρFF(δ) = ρFF(δ̄) + pj

(
1

j

)
−

k∑
i=j+1

pi

(
1

i

)
.
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But, we know that

k∑
i=j+1

pi

(
1

i

)
=

k−1∑
i=j+1

2k−1

2k − 1
· 1

2i
+

1

2k − 1

=
2k−1

2k − 1

(
1

2j
− 1

2k−1

)
+

1

2k − 1

=
2k−1

2k − 1

(
1

2j

)
= pj

(
1

j

)
.

Therefore

ρFF(δ) = ρFF(δ̄) = ρFF,

and the proof of Claim 2 is complete.

Claims 1 and 2 together show that the expected competitive ratio of any deter-

ministic online algorithm on the input distribution P is at least ρFF. If k is chosen

arbitrarily large, ρFF tends to 3/2 and the theorem statement follows. �

3.4 Conclusions

In this chapter, we proved several lower bounds on the competitive ratio of de-

terministic and randomized algorithms for online coloring co-interval graphs. Our

work raises many open questions concerning the gap between the upper and lower

bounds presented in Table 3.1. Very recently, Epstein and van Stee have succeeded

to improve the deterministic and randomized lower bounds for coloring unit co-

interval graphs to 8/5 and 3/2, respectively [41].

For the class of general co-interval graphs, it is known that no deterministic

online coloring algorithm can be better than 2-competitive [70], but we do not

see any simple argument that achieves a similar randomized lower bound. An

interesting question that remains open is whether one can obtain an online coloring

algorithm for general co-interval graphs with a competitive ratio strictly less than

2 using randomization.
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Chapter 4

Streaming Algorithms for

Coresets

In this chapter, we switch to the data stream model of computation and present

a new streaming algorithm for maintaining an ε-kernel of a point set in Rd using

O((1/ε(d−1)/2) log(1/ε)) space. The space used by our algorithm is optimal up to a

small logarithmic factor. Our algorithm immediately improves the space complexity

of the best previous streaming algorithms for a number of fundamental geometric

optimization problems in fixed dimensions, including width, minimum enclosing

cylinder, minimum-width enclosing annulus, minimum-width enclosing cylindrical

shell, etc.

4.1 Introduction

The coreset framework has recently emerged as a powerful tool for approximating

various measures of a geometric data set. Agarwal et al. [4] developed a generic

method for computing coresets for various optimization problems by introducing

the notion of ε-kernel. Roughly speaking, a subset Q ⊆ P is called an ε-kernel of

P if for every slab S containing Q, the (1 + ε)-expansion of S contains P . The

technique of Agarwal et al. yields approximation algorithms for a wide range of

shape-fitting problems, as noted in Section 1.4.

An extended abstract of this chapter has been published as: H. Zarrabi-Zadeh. An almost
space-optimal streaming algorithm for coresets in fixed dimensions. In Proc. 16th European
Symposium on Algorithms, LNCS 5193, pages 817-829, 2008.
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Table 4.1: Space complexity of various streaming algorithms for maintaining ε-

kernels in Rd.

Algorithm Space Bound Ref

Agarwal, Har-Peled, and Varadarajan ’04 O((1/ε
d−1
2 ) logd n) [4]

Chan ’06 O((1/εd−(3/2)) logd(1/ε)) [21]

Agarwal and Yu ’07 O(1/εd−(3/2)) [12]

This work O((1/ε
d−1
2 ) log(1/ε)) Here

In this chapter, we are interested in space-efficient streaming algorithms for

maintaining ε-kernels in Rd. Here, the input is given to the algorithm as a stream

over time, and the algorithm has to process the input elements as they arrive

in only one pass, using a limited amount of working storage. Using the gen-

eral dynamization technique of Bentley and Saxe [14], Agarwal et al. [4] gave a

streaming algorithm for maintaining an ε-kernel of a stream of points in Rd using

O((1/ε(d−1)/2) logd n) space and O(1/εd−1) time per update, where n is the number

of points in the stream. Chan [21] succeeded to remove the dependency of the

space bound to n and provide the first constant-space streaming algorithm that

uses only O([(1/ε) log(1/ε)]d−1) space and needs O(1) amortized time for process-

ing each new point. He also showed how the space bound can be improved to

O((1/εd−(3/2)) logd(1/ε)) at the expense of increasing the update time to O(1/
√

ε).

Later on, Agarwal and Yu [12] removed the extra logarithmic factors and slightly

improved the space complexity to O(1/εd−(3/2)), with O(log(1/ε)) update time per

input point. Agarwal and Yu’s algorithm is indeed space-optimal in two dimensions,

but is still far from optimal in dimensions higher than two.

Our Results. Chan [21] left this question open whether the space bound for the

problem of maintaining ε-kernels in Rd can be brought down to near O(1/ε(d−1)/2).

In this chapter, we answer Chan’s question in the affirmative by providing a stream-

ing algorithm that uses a near optimal space. More precisely, our algorithm main-

tains an ε-kernel in Rd using only O((1/ε(d−1)/2) log(1/ε)) space and (1/ε)O(d) up-

date time per insertion. The space bound of our algorithm is optimal up to a

logarithmic factor, as one can easily verify that any ε-kernel for sufficiently many

points uniformly distributed on the surface of a d-dimensional hypersphere has size

Ω(1/ε(d−1)/2) [5].
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Our algorithm differs from its predecessors [12, 21] in that the high level struc-

ture of our algorithm is not dimensionality-reduction (which ultimately exploits

efficient techniques in two dimensions), but rather a high-dimensional partition of

the input stream into d-dimensional “fat substreams” for which ε-kernels can be

maintained efficiently by a kind of bucketing scheme. Our algorithm can be viewed

as a generalization of the algorithm proposed by Chan [21] in two dimensions, which

also employs a version of the compression technique used in [12]. See Table 4.1 for

a comparison between the space complexity of our algorithm and the previous ones.

Our algorithm immediately improves the space complexity of the best previous

streaming algorithms for a wide range of geometric problems in fixed dimensions, in-

cluding width, minimum-volume bounding box, minimum-radius enclosing cylinder,

minimum-width enclosing cylindrical shell, etc. The improvement obtained by our

algorithm is substantial when the problem’s dimension is large. However, the algo-

rithm improves several previous results in lower dimensions as well. For example, for

the two-dimensional minimum-width enclosing annulus problem, combined with the

lifting technique of Agarwal et al. [4], our algorithm requires only O((1/ε) log(1/ε))

space, while the best previous space bound for this problem was O(1/ε3/2). As a

byproduct of our algorithm, we also show how to maintain an ε-kernel of a stream

of points in Rd in an optimal time of O(1) using O((1/εd−(3/2)) log(1/ε)) space,

which improves the best previously known time-optimal algorithm by Chan [21]

that requires O([(1/ε) log(1/ε)]d−1) space.

4.2 Preliminaries

We first introduce the notation used in this chapter. For a point set P ⊆ Rd and

a direction u ∈ Sd−1, the directional width of P along u is defined by w(P, u) =

maxp,q∈P 〈p− q, u〉, where 〈·, ·〉 denotes the inner product function. A subset Q ⊆ P

is called an ε-kernel of P , if for all u ∈ Sd−1,

w(Q, u) ≥ (1− ε)w(P, u).

We will use the following result from Chan throughout this chapter:

Theorem 4.1 (Chan [21]) Given a set P of n points in Rd, an ε-kernel of P

of size O(1/ε(d−1)/2) can be computed in O(n + 1/εd−(3/2)) time for d ≥ 2, or in

O((n + 1/εd−2) log(1/ε)) time for d ≥ 3.
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Let S = {p1, . . . , pk} be a set of k points in Rd (k ≤ d + 1). We denote by F(S)

the flat spanned by S, i.e., F(S) =
{∑k

i=1 aipi | a1, . . . , ak ∈ R and
∑k

i=1 ai = 1
}

.

Given a point p ∈ Rd and a flat F ∈ Rd, the orthogonal projection of p onto F is

defined as proj(F, p) = arg minp′∈F ‖pp′‖. The Euclidean distance between p and

its projection onto F is denoted by dF(p). Throughout this chapter, we simply use

dS(p) instead of dF(S)(p) to refer to the distance of p to a flat defined by the point

set S. If S = ∅, then dS(p) = 0 by definition.

Let X = 〈x0, x1, . . . , xk〉 be a sequence of k + 1 points in Rd (k ≤ d). We say

that a point p ∈ Rd is X-respecting , if for every 0 ≤ i < k,

dXi
(p) ≤ 2 · dXi

(xi+1),

where Xi = {x0, x1, . . . , xi}. If |X| ≤ 1, then every point is X-respecting by

definition. The sequence X is called self-respecting , if for every 1 ≤ j ≤ k, xj

is 〈x0, . . . , xj−1〉-respecting. Moreover, a point set P is called X-respecting, if for

every point p ∈ P , p is X-respecting.

4.3 Algorithm for Fat Substreams

In this section, we present a simple efficient algorithm for maintaining ε-kernels of

fat substreams to be used as a subroutine of our main algorithm in Section 4.4. Let

B be a hyperbox in Rd. A point set P ⊆ Rd is called fat with respect to B, if there

exist a positive constant α ≤ 1 and two points v and v′ so that v+αB ⊆ conv(P ) ⊆
v′ + B. If P is fat with respect to some hyperbox B, then an ε-kernel of P of

size O(1/ε(d−1)/2) can be computed efficiently using a simple grid-rounding method

proposed in [21, 97] based on Dudley’s construction [34]. Dudley’s method actually

works for the case where B is a hypercube. However, we can easily transform B to

a hypercube by an affine transform τ , and then compute an ε-kernel Q of the set

τ(P ). The set τ−1(Q) is then an ε-kernel of P , as proved in [4]. In the following,

we show how this idea can be used for X-respecting substreams.

Let X = 〈x0, x1, . . . , xd〉 be a sequence of d+1 points in Rd. For each 1 ≤ i ≤ d,

we denote by x̂i the projection of xi onto F(Xi−1), where Xi = {x0, x1, . . . , xi}. Let

wi = ‖x̂ixi‖ and ui = (1/wi)
−−→
x̂ixi. We denote by BX the d-dimensional box centered

at x0, whose i-th side has length 4wi in direction ui (1 ≤ i ≤ d). The following

lemma (which is analogous to what is proved in [13] for three dimensions) provides

a connection between X-respecting and fat sets.
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Figure 4.1: On Lemma 4.2.

Lemma 4.2 Let X be a self-respecting sequence of d + 1 points in Rd. Given a

point set P ∈ Rd, if P is X-respecting, then P ∪X is fat with respect to BX .

Proof. Obviously, BX contains all the points of P ∪X. In the following, we show

that conv(X) (and therefore, conv(P ∪X)) contains a translated copy of (1/4)dBX .

Suppose by induction that conv(Xi−1) contains an (i − 1)-dimensional box Bi−1,

whose j-th side has length wj/4
i−1 in direction uj (1 ≤ j < i). Now, consider an

i-dimensional pyramid Pi obtained by connecting xi to all facets of Bi−1. Clearly,

Pi ⊆ conv(Xi). We only need to show that Pi contains an i-dimensional box Bi,

whose j-th side has length at least wj/4
i in direction uj (1 ≤ j ≤ i).

Fix a k (1 ≤ k < i), and consider the plane H through xix̂i parallel to uk (see

Figure 4.1). The projection of Bi−1 onto H is a line segment ab of length wk/4
i−1.

Let o be the orthogonal projection of x0 onto H. Then we have ‖oa‖, ‖ob‖ ≤ wk

(because Bi−1 ⊂ conv(Xi−1)), and ‖ox̂i‖ ≤ ‖x0xi‖ ≤ 2wk (because X is self-

respecting).

Let a′ (respectively, b′) be a point on
←→
ab whose vertical distance (in direction ui)

from xia (respectively, from xib) is equal to wi/4
i. We have ‖aa′‖, ‖bb′‖ ≤ 3wk/4

i,

due to similarity of triangles, and because ‖ax̂i‖, ‖bx̂i‖ ≤ 3wk. Let sk = ab− (aa′ ∪
bb′). If one of the two angles ∠abxi and ∠baxi is obtuse, then one of the segments

aa′ and bb′ falls completely outside ab, and therefore ‖sk‖ ≥ wk/4
i. If both ∠abxi

and ∠baxi are at most π/2, then ‖aa′‖ + ‖bb′‖ = ‖ab‖/4 = wk/4
i, and therefore,

‖sk‖ = 3wk/4
i ≥ wk/4

i. Now, we cut that portion of Bi−1 whose projection onto

H lies inside sk, and repeat this procedure for every 1 ≤ k < i. The remaining box,

B′
i−1, has length at least wk/4

i in each direction uk. If we expand B′
i−1 by wi/4

i

units in direction ui, we obtain the desired i-dimensional box Bi which completely

remains inside Pi. �
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R

PB

r
pr

Figure 4.2: Constructing an ε-kernel of a fat point set.

Note that the fatness parameter α in Lemma 4.2 is exponential in d, but is a

constant in any fixed dimension.

Algorithm for Fat Sets. Let P be a point set in Rd which is fat with respect to

some hyperbox B. By a translation, we may assume that B is centered at origin.

Moreover, we may assume that B = [−1, 1]d by an affine transform. According to

Chan [21] and Yu et al. [97], one can easily compute an ε-kernel of P using a simple

grid method as follows: Let R be the set of points of a
√

ε-grid over the boundary

of the cube [−2, 2]d, and let pr denote the nearest neighbor of a point r ∈ R in the

set P . Then the set Q = {pr | r ∈ R} is an ε-kernel of P (see Fig. 4.2). Obviously,

|Q| ≤ |R| = O(1/ε(d−1)/2). It just remains to show how we can efficiently maintain

Q when new points are inserted into P , while P remains fat with respect to B.

Let Kernel(P ) = {pr ∈ P | r ∈ R}. The function Insert-Box described be-

low inserts a point p into the fat stream P (enclosed by B) and returns an ε-kernel

of P . The algorithm maintains two subsets Q0 and Q1 at each time, which are

initially empty.

B.Insert-Box(p):

1: Q1 ← Q1 ∪ {p}

2: if |Q1| > 1/ε(d−1)/2 then

3: Q0 ← Kernel(Q0 ∪Q1)

4: Q1 ← ∅

5: return Q0 ∪Q1
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The algorithm divides the stream P into substreams of size
⌊
1/ε(d−1)/2

⌋
. When-

ever a substream is completely received, it is merged to the kernel maintained for

the previous substreams in order to obtain a single kernel for the whole stream

received so far. The correctness of the algorithm immediately follows from the

following two facts: (i) Kernel(P ∪ Q) ⊆ Kernel(P ) ∪ Kernel(Q), and (ii)

Kernel(Kernel(P )) = Kernel(P ). The kernel in line 3 can be computed

using Theorem 4.1 in O(n + 1/εd−(3/2)) or O((n + 1/εd−2) log(1/ε)) time, where

n = |Q0 ∪ Q1| = Θ(1/ε(d−1)/2). Therefore, the amortized update time charged to

each input point is max {O(1), O((1/ε(d−3)/2) log(1/ε))}. We conclude:

Theorem 4.3 Given a stream of points P in Rd which is fat with respect to a

fixed hyperbox, an ε-kernel of P can be maintained using O(1/ε(d−1)/2) space and

max {O(1), O((1/ε(d−3)/2) log(1/ε))} amortized time per input point.

Remark. In two dimensions, Agarwal and Yu [12] used a balanced binary search

tree to maintain an ε-kernel of a fat stream in O(log(1/ε)) time. Theorem 4.3

immediately improves their method by providing an algorithm that requires only

O(1) amortized time. Meanwhile, our method is more direct and does not require

any extra data structure.

We will show in the next chapter that a generalized version of the bucketing

scheme utilized here can lead to improved algorithms for several other geometric

problems.

Corollary 4.4 Let X be a self-respecting sequence of d + 1 points in Rd. Given

an X-respecting stream P in Rd, an ε-kernel of P ∪ X can be maintained using

O(1/ε(d−1)/2) space and max{O(1), O((1/ε(d−3)/2) log(1/ε))} amortized update time.

Proof. By Lemma 4.2, P ∪ X is fat with respect to BX . Therefore, we can use

the Insert-Box function on BX with the only exception that Q0 is initially set to

X. �

4.4 The Main Algorithm

In this section, we describe the main algorithm for maintaining an ε-kernel of a

data stream P ⊆ Rd. The Insert function presented below inserts a point p into

an X-respecting stream P and returns an ε-kernel Q of it. Each new point p is
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inserted into the stream by calling P .Insert(p, 〈〉), where 〈〉 denotes the empty

sequence. In the following, b = dlog(1/ε)e, and φi (used in line 15) is a function to

be defined precisely at the end of this section.

P .Insert(p, X):

1: if p is the first point of P then

2: i← 1, v1 ← p

3: if |X| = d + 1 then

4: return Q = BX .Insert-Box(p)

5: if dX(p) ≤ 2 · dX(vi) then

6: Qi ← Pi .Insert(p, X + 〈vi〉)

7: else

8: if |Qi| > 1/ε(d−1)/2 then

9: Qi ← ε-Kernel(Qi)

10: Pi .Free()

11: i← i + 1, vi ← p

12: Qi ← Pi .Insert(p, X + 〈vi〉)

13: if i− b > 0 then

14: for each q ∈ Qi−b do

15: q′ ← φ1 ◦ · · · ◦ φi(q)

16: Q′ ← P ′.Insert(q′, 〈〉)

17: Q0 ← {q | q′ ∈ Q′}

18: Pi−b .Free(), Qi−b ← ∅

19: return Q = ∪i
j=0Qj

The algorithm divides the input X-respecting stream P into substreams P1 to

Pi. Each substream Pi is (X + 〈vi〉)-respecting, where v1 is the first point of P ,

and each subsequent vi is chosen by the algorithm as the first point for which

dX(vi) > 2 · dX(vi−1).

If the new input point p is (X + 〈vi〉)-respecting, we add p to the current sub-

stream Pi by recursively calling the Insert function in line 6. When the recursion

in the size of X reaches |X| = d + 1 (line 3), the stream P is fat with respect to
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Figure 4.3: An example of the execution of the algorithm. The new inserted

point, p, is not 〈x0, x1, v4〉-respecting. As a result, the coreset maintained for the

substream started at v4 is compressed and stored in Q4, the subtree rooted at v4 is

discarded, and a new substream is created with p as its first point.

BX , and therefore, we can use the Insert-Box function described in Section 4.3

(Corollary 4.4) to compute an ε-kernel of P of size O(1/ε(d−1)/2).

If the new point p is not (X + 〈vi〉)-respecting, then we need to open a new

substream Pi+1 for p. But before that, we check the size of the ε-kernel Qi cur-

rently maintained for Pi, and if |Qi| > 1/ε(d−1)/2, we reduce it to O(1/ε(d−1)/2)

(in line 9) using Theorem 4.1. After this compression step, all kernels previously

maintained for Pi and its substreams are discarded by calling function Free in line

10. Lines 11–12 increment i and create a new substream Pi initialized with {p}.
(See Figure 4.3.)

Lines 13–18 ensure that only b coresets Qi−b+1, . . . , Qi are active; earlier ones are

mapped into a (d−1)-dimensional substream P ′ whose coreset is maintained in Q′.

The mapping φ1◦· · ·◦φi used in line 15 is defined as follows: let v̂i = proj(F(X), vi),

and let ui =
−→
v̂ivi. We denote by H0 an arbitrary hyperplane through X, and for 1 ≤

i ≤ d, denote by Hi the hyperplane through X perpendicular to ui. The function

φi denotes the projection to Hi−1 parallel to the direction ui (see Figure 4.4). We

keep the mapping function φ1 ◦ · · · ◦ φi in a single matrix and update it only once

whenever i is increased.
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Figure 4.4: Mapping functions πi and φi.

4.4.1 Analysis

In this section we prove the correctness of our algorithm, and analyze its space and

time complexity. The notation used here closely follows the one used in [21]. Let

πi denote the orthogonal projection onto Hi. Note that πi is a weak inverse of φi

in the sense that πi ◦ · · · ◦ π1 ◦ φ1 ◦ · · · ◦ φi = πi (see Figure 4.4). In the following,

f denotes the final value of i, and ξ = πf ◦ · · · ◦ π1. We first prove two technical

lemmas.

Lemma 4.5 For every i ≤ f and every direction u ∈ Sd−1, 〈vi − πi(vi), u〉 ≤
4dw(P ∪X, u).

Proof. Let X be a sequence of d+1 points obtained as follows: starting from X = X,

we repeatedly add to X a point from P which is farthest from F(X), until X has

d+1 points. Obviously, P is X-respecting and P ∪X = P ∪X. Thus, by Lemma 4.2,

conv(P ∪X) is sandwiched between BX and a translated copy of (1/4)dBX. Both

vi and πi(vi) lie inside BX. Therefore, for each direction u ∈ Sd−1,

〈vi − πi(vi), u〉 ≤ w(BX, u) = 4dw((1/4)dBX, u) ≤ 4dw(P ∪X, u).

�

Lemma 4.6 Let q ∈ Qj−b for some b < j ≤ f , and let q′ = φ1 ◦ · · · ◦ φj(q). Then

for every direction u ∈ Sd−1, 〈q − ξ(q′), u〉 ≤ 4d+1εw(P ∪X, u).
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Proof. By the doubling property we have dX(q) ≤ 2dX(vj−b) ≤ 21−bdX(vj). More-

over, 〈q − πi(q), u〉 /d(q, Hi) = 〈vi − πi(vi), u〉 /d(vi, Hi). Since dX(vi) = d(vi, Hi)

and dX(q) ≥ d(q, Hi), we have

〈q − πi(q), u〉 ≤
dX(q)

dX(vi)
〈vi − πi(vi), u〉 ≤

dX(q)

dX(vi)
· 4dw(P ∪X, u), (4.1)

where the last inequality holds by Lemma 4.5. Now, define qj = q, and qt =

πt−1 ◦ · · · ◦ πj(q) for all t > j. It is clear that πi(qi) = qi+1. Therefore,

f∑
i=j

〈qi − πi(qi), u〉 =

f∑
i=j

〈qi − qi+1, u〉 ≥ 〈qj − qf+1, u〉 . (4.2)

Furthermore,

f∑
i=j

dX(qi)

dX(vi)
≤

f∑
i=j

1

2(j−i)
· dX(qi)

dX(vj)
≤ 2 · dX(q)

dX(vj)
≤ 2(21−b) ≤ 4ε.

Therefore, if we replace q by qi in (4.1) and sum up the inequality over i from j to

f , we get

f∑
i=j

〈qi − πi(qi), u〉 ≤
f∑

i=j

dX(qi)

dX(vi)
· 4dw(P ∪X, u) ≤ 4d+1εw(P ∪X, u). (4.3)

The lemma statement follows by (4.2) and (4.3) and the fact that qf+1 = πf ◦ · · · ◦
πj(q) = ξ(q′), due to the weak-inverse relationship between πi’s and φi’s. �

Theorem 4.7 Given a stream of points P in Rd, an ε-kernel of P can be main-

tained using O((1/ε(d−1)/2) log(1/ε)) space and max {O(1), O((1/ε(d−3)/2) log(1/ε))}
update time.

Proof. We show that for every X-respecting stream P , the set Q returned by our

algorithm is an ε-kernel of P ∪ X. If |X| = d + 1, then the set Q computed in

line 4 is an ε-kernel of P ∪X by Corollary 4.4. Otherwise, |X| ≤ d. Consider an

arbitrary point p ∈ P . The algorithm inserts p into a substream Pi (1 ≤ i ≤ f)

upon its arrival. If i = f , then the set Qi is an ε-kernel of Pi ∪ X by induction.

If f − b < i < f , then Qi has passed the compression step in lines 8–9, but it is

still active, i.e., is not merged into Q0. Therefore, Qi is a (2ε)-kernel of Pi ∪X due

to the fact that an ε-kernel of an ε′-kernel of a set is an (ε + ε′)-kernel of that set.

The only remaining case is when i ≤ f − b. In this case, Qi is merged into Q0 in

lines 13–18. Since Qi is a (2ε)-kernel of Pi ∪X before merging, there exists a point
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q ∈ Qi such that for every direction u ∈ Sd−1, 〈q, u〉 ≥ 〈p, u〉 − 2εw(Pi ∪X, u). The

mapped point of q, q′, is inserted into P ′ in line 16. Since Q′ is an ε-kernel of P ′,

ξ(Q′) is an ε-kernel of ξ(P ′). Moreover, there exists a point r ∈ Q0 with r′ ∈ Q′,

such that 〈r′, u〉 ≥ 〈q′, u〉 − εw(P ′, u), and hence

〈ξ(r′), u〉 ≥ 〈ξ(q′), u〉 − εw(ξ(P ′), u). (4.4)

Let ρ = 4d+1. By Lemma 4.6, for every q ∈ Q1 ∪ · · · ∪Qf−b and its corresponding

q′ ∈ P ′,

〈q, u〉 − ρεw(P ∪X, u) ≤ 〈ξ(q′), u〉 ≤ 〈q, u〉+ ρεw(P ∪X, u),

which implies that w(ξ(P ′), u) ≤ w(Q1 ∪ · · · ∪ Qf−b, u) + 2ρεw(P ∪ X, u) ≤ (1 +

2ρε)w(P ∪X, u). Furthermore, by Lemma 4.6 we have 〈ξ(r′), u〉 ≤ 〈r, u〉+ρεw(P ∪
X, u) and 〈ξ(q′), u〉 ≥ 〈q, u〉 − ρεw(P ∪X, u). Replacing in (4.4), we get

〈r, u〉+ ρεw(P ∪X, u) ≥ 〈q, u〉 − ρεw(P ∪X, u)− ε[(1 + 2ρε)w(P ∪X, u)],

and hence, 〈r, u〉 ≥ 〈q, u〉−O(ε)w(P ∪X, u). Since 〈q, u〉 ≥ 〈p, u〉− 2εw(P ∪X, u),

we have 〈r, u〉 ≥ 〈p, u〉 − O(ε)w(P ∪ X, u). Therefore, in any of the above cases,

there exists a point in ∪f
i=0Qi whose projected length along direction u differs from

that of p by at most O(ε)w(P ∪ X, u), and hence, Q = ∪f
i=0Qi is an O(ε)-kernel

of P ∪ X. (Note that in our proof, the algorithm returns an O(ε)-kernel rather

than an ε-kernel; but this is not a problem as the depth of the recursion tree of our

algorithm is d + 1, and therefore, we can adjust ε at the beginning by a constant,

depending only on d.)

Space Complexity. Let S(d, k) denote the space used by the algorithm to com-

pute an ε-kernel of the d-dimensional X-respecting stream P , where |X| = k. Then,

|Q0| = |Q′| = S(d− 1, 0), |Q1|, . . . , |Qf−b| = 0 by the merging step, |Qf−b+1|, . . . ,
|Qf−1| = O(1/ε(d−1)/2) by the compression step, and |Qf | = S(d, k + 1). Therefore,

S(d, k) is upper-bounded by the following recurrence:

S(d, k) =


S(d, k + 1) + S(d− 1, 0) + log(1/ε)O(1/ε(d−1)/2) 0 ≤ k ≤ d,

O(1/ε(d−1)/2) k = d + 1,

O(1) d = 1,

which solves to S(d, k) = O((1/ε(d−1)/2) log(1/ε)), for every 0 ≤ k ≤ d.
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Update Time. The compression step in line 9 can be done using Theorem 4.1 in

O(|Qi|+1/εd−(3/2)) or O((|Qi|+1/εd−2) log(1/ε)) time. Since |Qi| = Θ(1/ε(d−1)/2)),

we can charge an amortized time of max {O(1), O((1/ε(d−3)/2) log(1/ε))} to each

point of Qi. In lines 14–16, each point is inserted into P ′ at most once. Therefore,

the cost of insertion into the (d− 1)-dimensional stream P ′ can be charged to each

point upon its insertion to a Pi, which at most doubles its total insertion cost. The

main cost incurred by each point is therefore the time needed to insert the point into

a fat subset, which is max {O(1), O((1/ε(d−3)/2) log(1/ε))} by Corollary 4.4. �

4.4.2 Reducing Update Time

While the main focus in designing streaming algorithms is to optimize the working

storage, the time needed to process each element is also of particular interest,

especially in applications where a huge amount of data arrives in a short period

of time. For the problem of maintaining ε-kernels in Rd, Chan [21] proposed a

streaming algorithm that processes each input point in O(1) time using a data

structure of size O([(1/ε) log(1/ε)]d−1). Here, we show how to improve the space

complexity of Chan’s algorithm for all fixed dimensions, while the optimal update

time, O(1), is preserved.

We provide a general framework to trade-off between time and space complexity

in our algorithm as follows: Let λ(ε) = Ω(1/ε(d−1)/2) be a function of ε. We replace

1/ε(d−1)/2 by λ(ε) in line 2 of the Insert-box function and in line 9 of the main

Insert function. It is easy to verify that the amortized update time of the new al-

gorithm is O([1/εd−(3/2)]/λ(ε)) for d ≥ 2, and O(log(1/ε)+[(1/εd−2) log(1/ε)]/λ(ε))

for d ≥ 3. Furthermore, the space complexity of the algorithm is upper-bounded

by the recurrence S(d, k) = S(d, k + 1) + S(d − 1, 0) + log(1/ε)O(λ(ε)), with the

base cases S(d, d + 1) = O(λ(ε)) and S(1, k) = O(1). The recurrence solves to

S(d, k) = O(λ(ε) log(1/ε)). Setting λ(ε) = 1/εd−(3/2), we immediately get the

following result:

Theorem 4.8 Given a stream of points P in Rd, an ε-kernel of P can be main-

tained using O((1/εd−(3/2)) log(1/ε)) space and O(1) amortized update time.

Note that the above theorem improves the best previous time-optimal stream-

ing algorithm of Chan without using the common dimension-reduction approach

used in [21] and [12]. Moreover, by setting λ(ε) = 1/εd−2, we obtain a stream-

ing algorithm with space complexity O((1/εd−2) log(1/ε)) and amortized update
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time O(log(1/ε)), which for all d ≥ 3, improves over the algorithm of Agarwal and

Yu [12] without increasing their update time.

4.5 Applications

In this section, we briefly review some of the implications of our result. Consider a

measure µ so that for any point set P ⊆ Rd, an ε-kernel of P is an O(ε)-coreset for

P with respect to µ. Examples of such measures include diameter, width, radius

of the smallest enclosing ball, and volume of the smallest bounding box. Theo-

rem 4.7 provides space-efficient streaming algorithms to maintain ε-approximations

to all these measures using near O(1/ε(d−1)/2) space. Note that O(1/ε(d−1)/2)-space

streaming algorithms were previously known only for diameter [7], while the best

space bound for other measures was O(1/εd−(3/2)) [12]. Using the general technique

described in [4], our result implies improved streaming algorithms for various other

shape-fitting problems like minimum-width spherical shell/annulus and minimum-

width cylindrical shell. Improved results for kinetic versions of the above problems

(where input is a stream of moving points) are implied as well. In these kinetic

versions, the trajectory of each moving point is assumed to be a fixed algebraic

function determined upon arriving the point, and the objective is to maintain an

approximation at any time for the points received up to that time.

Our streaming algorithm can be also used in noisy environments, using the

“robust kernel” paradigm proposed in [62, 6]. Roughly speaking, a subset Q ⊆ P

is called a (k, ε)-kernel of P , if Q ε-approximates the directional width of P , for

any direction, when k outliers can be ignored in that direction. According to [6], a

(k, ε)-kernel of a point set P can be obtained as follows. Let P1 = P , and Q1 be

an ε-kernel of P1. For 2 ≤ i ≤ 2k + 1, let Pi = Pi−1\Qi−1, and Qi be an ε-kernel

of Pi. Then the set Q = ∪2k+1
i=1 Qi is a (k, ε)-kernel of P [6]. As noted in [12],

this idea can be easily imported to the data stream model as well: we run 2k + 1

instances A1, . . . ,A2k+1 of our ε-kernel algorithm in parallel, where each algorithm

Ai maintains an ε-kernel Qi of its input stream Pi (1 ≤ i ≤ 2k + 1). Each new

point of the input stream P is first inserted into P1. If p is not added by A1 into

Q1, we insert it into P2 and proceed recursively. Moreover, any point removed from

Qi (1 ≤ i ≤ 2k) at each step is inserted into the next substream Pi+1. It is easy

to verify that at any time, Pi = Pi−1 \Qi−1, and Qi is an ε-kernel of Pi. Thus,

Theorem 4.7 immediately implies the following result:
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Corollary 4.9 Given a stream P of points in Rd and a parameter k ≥ 0, a (k, ε)-

kernel of P can be maintained using O((k/ε(d−1)/2) log(1/ε)) space.

The kernel size obtained by Corollary 4.9 substantially improves over the pre-

vious known upper bound O(k/εd−(3/2)) [12], and is very close to the lower bound

which is proved to be O(k/ε(d−1)/2) in the worst case [62].

4.6 Conclusions

In this chapter, we presented a streaming algorithm for maintaining an ε-kernel

of a stream of points in Rd using O((1/ε(d−1)/2) log(1/ε)) space. The space com-

plexity of our algorithm is optimal up to a log(1/ε) factor. In the special case

of two dimensions, Agarwal and Yu [12] proposed a rather involved technique to

remove this extra log factor at the expense of increasing update time from O(1) to

O(log(1/ε)). It remains open whether this small log factor can be removed in any

fixed dimension.
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Chapter 5

Core-Preserving Algorithms

In this chapter, we define a class of algorithms for constructing coresets of (geomet-

ric) data sets, and show that algorithms in this class can be dynamized efficiently

in the insertion-only (data stream) model. As a result, we show that for a set of

points in fixed dimensions, additive and multiplicative ε-coresets for the k-center

problem can be maintained in O(1) and O(k) time respectively, using a data struc-

ture whose size is independent of the size of the input. We also provide a faster

streaming algorithm for maintaining ε-coresets for fat extent-related problems such

as diameter and minimum enclosing ball.

5.1 Introduction

In the previous chapter, we have shown that an ε-kernel of a point set in fixed

dimensions can be maintained efficiently using near optimal space. The main idea

behind our algorithm was to decompose the given stream into d-dimensional fat

substreams, where each substream is fat with respect to a fixed hyperbox. In this

chapter, we show that a simpler partitioning framework similar to what is used in

Section 4.3 can be employed to obtain still better results for a number of problems

in the data stream model.

As noted in Section 1.4, several streaming algorithms have been developed over

the past few years for various geometric problems using the notion of coresets [21,

An extended abstract of this chapter has been published as: H. Zarrabi-Zadeh. Core-
preserving algorithms. In Proc. 20th Canadian Conference on Computational Geometry, pages
159–162, 2008.
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12, 47, 60]. For all these problems, the coresets defined satisfy the following two

properties:

a) If Q is an ε-coreset of P and Q′ is an ε-coreset of P ′, then Q ∪ Q′ is an

ε-coreset of P ∪ P ′;

b) If Q is an ε-coreset of S and S is a δ-coreset of P , then Q is an (ε+ δ)-coreset

of P .

Using the above two properties and based on the general dynamization technique

of Bentley and Saxe [14], Agarwal et al. [4] obtained the following result in the

data stream model: If there is an (offline) algorithm that constructs an ε-coreset of

size f(ε) for an optimization problem, then the problem can be solved in the data

stream model using O(f(ε/ log2 n) log n) overall space, where n is the number of

elements received so far in the stream.

In this chapter, we show that for a special class of algorithms which we call

core-preserving, the space complexity of the streaming algorithm can be reduced

to f(ε), using a simple bucketing scheme. The importance of this result is that

the dependency on the space complexity to the input size n is removed. (Such

a result was previously known only for the ε-coresets with respect to the extent

measure [21, 12].) This independence on the input size is very important as the

input size in data streams is generally huge.

Our framework leads to improved algorithms for a number of problems in the

data stream model, some of which are listed below. In the following, the input is

assumed to be a stream of points in Rd, where d is a constant.

• (Additive) coreset for k-center: We show that an additive ε-coreset for

the k-center problem (as defined in Section 5.2) can be maintained in O(k/εd)

space and O(1) amortized update time, improving the previous algorithm

attributed to Har-peled [57] which requires O(poly(k, 1/ε, log n)) space and

similar time. This is indeed the first streaming algorithm maintaining an

ε-coreset for this problem using a total space independent of n.

• Multiplicative coreset for k-center: For the k-center problem, we show

that a multiplicative ε-coreset (as defined in Section 5.2) can be maintained

in O(k!/εkd) space and O(k) amortized update time. This is again the first

streaming algorithm for this problem whose space is independent of the input

size. This result immediately extends to a variant of the k-clustering problem

in which the objective is to minimize the sum of the clusters radii [27, 49].
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• Coreset for fat measures: For “fat” measures such as diameter and radius

of the minimum enclosing ball, one can easily maintain an ε-coreset by just

keeping the extreme points along O(1/ε(d−1)/2) directions. The time and space

complexity of this näıve algorithm is O(1/ε(d−1)/2). In two-dimensions, using

the recent algorithm of Agarwal and Yu [12], one can improve the update time

from O(
√

1/ε) to O(log(1/ε)). We show that the update time in 2D can be

further reduced to O(1) using our framework. Moreover, the update time in

three dimensions is reduced from O(1/ε) to O(log(1/ε)) using our algorithm.

A slight improvement in higher dimensions is implied as well.

5.2 Preliminaries

Let P be a set of points in Rd. A k-clustering of P is a set B of k balls that

completely cover P . We denote by rad(b) the radius of a ball b, and define rad(B) =

maxb∈B rad(b). A δ-expansion of B is obtained by increasing the radius of each ball

of B by an additive factor of δ.

Definition 5.1 A set Q ⊆ P is called an additive ε-coreset of P for the k-center

problem, if for every k-clustering B of Q, P is covered by an (ε · rad(B))-expansion

of B.

We denote by (1 + ε)B a clustering obtained from B by expanding each ball

b ∈ B by a factor of ε · rad(b).

Definition 5.2 A set Q ⊆ P is called a multiplicative ε-coreset of P for the k-

center problem, if for every k-clustering B of Q, P is covered by (1 + ε)B.

Note that by definition, a multiplicative ε-coreset for k-center is also an additive

ε-coreset. In the special case of the minimum enclosing ball (the 1-center) problem,

both coreset definitions coincide.

Given two points p, q ∈ Rd, we say that p is smaller than q, if p lies before q in

the lexicographical order of their coordinates. Throughout this chapter, we denote

by bxc2 the largest (integer) power of 2 which is less than or equal to x.
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5.3 Core-Preserving Algorithms

In this section, we formally define the concept of core-preserving algorithms, and

show how it can be used to efficiently maintain coresets in data streams.

Definition 5.3 Let A be an (offline) algorithm that for every input set P , computes

an ε-coreset A(P ) of P . We call A core-preserving, if for every two sets R and S,

A(R ∪A(S)) is an ε-coreset of R ∪ S.

For R = ∅, the above condition implies that A(A(S)) is an ε-coreset of S. It

means that repeated calls to a core-preserving algorithm on a set S always returns

an ε-coreset of S. This is why the algorithm is called “core-preserving”.

Theorem 5.1 Let A be a core-preserving algorithm that for any set S, computes

an ε-kernel of S of size O(SA(ε)) in time O(α|S|+ TA(ε)). Then for every stream

P , we can maintain an ε-coreset of P of size O(SA(ε)) using O(SA(ε)) total space

and O(α + TA(ε)/SA(ε)) amortized time per update.

Proof. The function Insert described below inserts a data item p into the stream

P and returns an ε-kernel of P . Initially, Q and R are empty sets.

Insert(p):

1: R← R ∪ {p}

2: if |R| > SA(ε) then

3: Q← A(R ∪Q)

4: R← ∅

5: return R ∪Q

The algorithm divides the input stream P into buckets of size bSA(ε)c. At any

time, only the last bucket is active which is maintained in the set R. Let S = P\R.

The algorithm maintains an ε-coreset of S in Q. Upon arrival of a new item p,

it is first added to the active bucket R, and if R is full, algorithm A is invoked

to compute an ε-coreset of R ∪ Q. The correctness of the algorithm immediately

follows from the facts that A is core-preserving and Q is an ε-coreset of S; thus,

A(R ∪Q) is an ε-coreset of R ∪ S = P .
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The total space used by the algorithm is bounded by |Q|+|R| = O(SA(ε)). Algo-

rithm A is invoked once per dSA(ε)e inserts. Since each call to A requires O(α|S|+
TA(ε)) time, the amortized update time per input is O(α + TA(ε)/SA(ε)). �

Theorem 5.1 yields two improvements over the general Bentley-Saxe method

used in [4]: First of all, the total space required is reduced from O(SA(ε/ log2 n) log n)

to O(SA(ε)), which is independent of n. Secondly, the running time in the worst case

is reduced from O([αSA(ε/ log2 n) + TA(ε/ log2 n)] log n) to only O(α|P | + TA(ε)),

again independent of n.

5.4 Coresets for the k-Center Problem

In this section, we provide efficient streaming algorithms for maintaining ε-coresets

for the k-center problem in both additive and multiplicative forms.

5.4.1 Additive Coreset

The following lemma is the main ingredient of our streaming algorithm for main-

taining an additive ε-coreset for the k-center problem in fixed dimensions.

Lemma 5.2 There is a core-preserving algorithm that for any given point set P ⊆
Rd, computes an additive ε-coreset for the k-center problem of size O(k/εd) in time

O(|P |+ k/εd).

Proof. Let r∗(P ) be the radius of an optimal k-clustering of P , and let r̃(P ) be

a 2-approximation of r∗(P ), i.e., r∗(P ) ≤ r̃(P ) ≤ 2r∗(P ) (note that r̃(P ) can be

computed using Gonzalez’s 2-approximation algorithm for k-center [51]).

We first define some notation: Let Gα be a uniform grid of side length α, and

Xα(P ) be the set of all p ∈ P , such that p is the smallest point in a non-empty

grid cell of Gα. Let δ(P ) =
⌊
εr̃(P )/(4d1/2)

⌋
2
. Our core-preserving algorithm is as

follows: given a point set P , we first compute δ = δ(P ), and return Xδ(P ) as the

output. It is easy to observe that any k-clustering of Xδ(P ), when expanded by a

factor of εr∗(P ), covers all the grid cells containing at least one point from P , and

therefore, Xδ(P ) is an ε-coreset of P [8, 58].

Let R and S be two arbitrary point sets in Rd, and let Q be an ε-coreset of

S computed by our algorithm. To show that our algorithm is core-preserving, we
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σ = ρδ

Figure 5.1: Additive coreset for k-center. The points of Q, S\Q, and R are shown

in black, white, and crossed, respectively.

need to prove that for any input of the form P = R ∪Q, the algorithm returns an

ε-coreset of R ∪ S.

Let δ = δ(P ), σ = δ(S), and ρ = max{δ(P ), δ(S)}. Obviously, Xρ(R ∪ S) is

an ε-coreset of R ∪ S, because both P and S are subsets of R ∪ S, and hence,

max{r̃(P ), r̃(S)} ≤ 2r∗(R ∪ S). We claim that Xρ(R ∪ S) ⊆ Xδ(R ∪ Q). Since

ρ/δ (resp., ρ/σ) is a non-negative power of 2, every grid cell of Gδ (resp., Gσ) is

completely contained in a grid cell of Gρ (see Figure 5.1). Let p be the smallest

point of R ∪ S in a grid cell c of Gρ. Two cases arise:

• p ∈ R: in this case, p is the smallest point of a cell c′ ∈ Gδ (otherwise, there

is a point p′ smaller than p in c′, which is smaller than p in c as well, a

contradiction). Therefore, p ∈ Xδ(R ∪Q).

• p ∈ S: here, p is simultaneously the smallest point of a cell c′ ∈ Gσ and a cell

c′′ ∈ Gδ (otherwise, if there is a smaller point p′ in either c′ or c′′, it would be

picked instead of p as the smallest point of c, a contradiction). Since p is the

smallest point in c′, we have p ∈ Q, and since p is the smallest point of c′′, we

conclude that p ∈ Xδ(R ∪Q).

Therefore, any p ∈ Xρ(R∪S) is contained in Xδ(R∪Q) = Xδ(P ), which completes

the proof.

For the space complexity, note that every ball of an optimal k-clustering of P

intersects O(1/εd) grid cells of Gδ. Therefore, the size of the resulting ε-coreset

is O(k/εd). We can use a linear-time implementation of Gonzalez’s algorithm [51,

62



57] to compute a 2-approximation of r∗(P ), and therefore, the total running time

required is O(|P |+ k/εd). �

Plugging Lemma 5.2 into the general framework provided in Theorem 5.1, we im-

mediately get the following result.

Theorem 5.3 Given a stream of points P in Rd, an additive ε-coreset for the k-

center problem of size O(k/εd) can be maintained using O(k/εd) total space and

O(1) amortized time per update.

The above results also hold for any Lp metric: it just suffices to replace d1/2 by

d1/p in the definition of δ(P ).

5.4.2 Multiplicative Coreset

Here, we provide an efficient streaming algorithm to maintain a multiplicative ε-

coreset for the k-center problem in fixed dimensions.

Lemma 5.4 There is a core-preserving algorithm that for any given point set P ⊆
Rd, computes a multiplicative ε-coreset for the k-center problem of size O(k!/εkd)

in time O(k|P |+ k!/εkd).

Proof. It is known that constructing a multiplicative ε-coreset for the k-center

problem reduces to the problem of finding additive ε-coresets for k-center [9, 58].

Let r∗(P ), r̃(P ), δ(P ), Gδ, and Xδ(P ) be as defined in the Section 5.4.1. The

algorithm for computing multiplicative ε-coreset is as follows: We first compute

δ = δ(P ), build a uniform grid Gδ, and extract an additive ε-coreset Xδ(P ) just

like in Section 5.4.1. Let C be the set of non-empty grid cells in Gδ. For every cell

c ∈ C, we recursively compute a multiplicative ε-coreset Q(c) of P ∩ c with respect

to (k− 1)-center. The set Q(P ) = Xδ(P )∪ (∪c∈CQ(c)) is a multiplicative ε-coreset

of P with the following simple argument.

Let B be a k-clustering of Q(P ), and let b be the largest ball in B. Consider

a non-empty cell c in C. If b intersects c, then an ε-expansion of b by a factor of

ε · rad(b) = εr∗(P ) completely covers c. If b ∩ c = ∅, then at most k − 1 balls of

B intersect c, and since Q(c) is a multiplicative ε-coreset of P ∩ c with respect to

(k−1)-center, expanding each of the k−1 balls by a factor of ε will cover the whole

points in c by induction.
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Now, we show that our algorithm is core-preserving. Consider two arbitrary

point sets R and S in Rd, and let Q be a multiplicative ε-coreset of S computed by

our algorithm. We prove that for any input of the form P = R ∪Q, the algorithm

returns a multiplicative ε-coreset of R ∪ S.

Our algorithm computes the coreset in k layers. In the topmost layer (layer k),

an additive ε-coreset for k-center is computed, and in any other layer j (1 ≤ j < k),

the algorithm computes O(Πk
i=j+1i/ε

d) additive ε-coresets with respect to j-center,

each of size O(j/εd). LetQj(P ) denote the union of all additive ε-coresets computed

in the jth layer. Obviously, Q(P ) = ∪k
j=1Qj(P ).

Let r∗j (P ), r̃j(P ), δj(P ) be the j-center analogous of the notations defined before

(if P = ∅, we define δj(P ) to be 0). Let δ = δk(P ), σ = δk(S), and ρ = max{δ, σ}.
As shown in Lemma 5.2, Xρ(R∪S) is an additive ε-coreset of R∪S, and Xρ(R∪S) ⊆
Xδ(R ∪ Q) = Qk(P ). Suppose w.l.o.g. that δ ≥ σ (the other case is analogous).

Suppose that there are n non-empty cells c1, . . . , cn in Gδ. Fix one of these cells, say

ci. There are m = (ρ/σ)d cells of side length σ in ci which we denote by ci1, . . . , cim.

Define δi = δk−1(P ∩ ci), and σij = δk−1(S ∩ cij) for 1 ≤ j ≤ m (see Figure 5.2).

σ

δ = ρ

ci

σi4

σi1

δi

σi2 = 0

σi3 = 0

Figure 5.2: Multiplicative coreset for k-center. The points of Q, S\Q, and R are

shown in black, white, and crossed, respectively.

Let ρi = max{δi, σi1, . . . , σim}. It is easy to verify that Xρi
((R ∪ S) ∩ ci) is an

additive ε-coreset of (R ∪ S) ∩ ci. Moreover, we can show that Xρi
((R ∪ S) ∩ ci) ⊆

Xδi
((R∪Q)∩ci) = Xδi

(P∩ci), by an argument similar to what is used in Lemma 5.2.

Let Q′
k−1(R ∪ S) = ∪n

i=1Xρi
((R ∪ S) ∩ ci). Since Qk−1(P ) = ∪n

i=1Xδi
(P ∩ ci), we

have Q′
k−1(R ∪ S) ⊆ Qk−1(P ). We define Q′

j(R ∪ S) in a similar manner for all

1 ≤ j ≤ k, and set Q′(R ∪ S) = ∪k
j=1Q′

j(R ∪ S). Obviously, Q′(R ∪ S) is a
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multiplicative ε-coreset of R ∪ S. Moreover, Q′(R ∪ S) ⊆ Q(P ), which completes

the proof.

Clearly, the resulting coreset has size O(k!/εkd). In each level j, we need to

compute a 2-approximation of the j-center clustering for the points lying in each

non-empty cell separately. Since the total number of points in each layer is |P |,
and the approximation algorithm used is linear, the total time needed for this step

in each layer is O(|P |). Therefore, the total running time is O(k|P |+ k!/εkd). �

Note that in the above construction, Qi(P ) is a subset of Qi−1(P ) for all 1 < i ≤ k.

Therefore, we can just extract the additive ε-coresets in layer 1, and discard any

other additive coresets computed in the intermediate layers.

Theorem 5.5 Given a stream of points P in Rd, a multiplicative ε-coreset for the

k-center problem can be maintained using O(k!/εkd) total space and O(k) amortized

time per update.

Proof. This is a direct corollary of Lemma 5.4 and Theorem 5.1. �

Remark. Some researchers have recently considered a variant of the k-clustering

problem in which the objective is to minimize the sum of the clusters radii [27, 49].

Theorem 5.5 immediately yields an efficient streaming algorithm to maintain an

ε-coreset with respect to this clustering problem as well.

5.5 Coreset for Fat Extent-Related Problems

Given a point set P ⊆ Rd, let B(P ) denote the minimum axis-parallel hyperbox

enclosing P . We denote by `(P ) the length of the longest side of B(P ). A subset

Q ⊆ P is called an additive ε-kernel of P , if for all u ∈ Sd−1,

w(Q, u) ≥ w(P, u)− ε`(P ),

where w(P, u) = maxp,q∈P 〈p− q, u〉.

A function µ(·) defined over subsets of Rd is called a fat measure, if there exists

a constant α > 0 such that for any additive ε-kernel Q of P , αµ(P ) ≤ µ(Q) ≤ µ(P ).

Examples of fat measures are diameter, radius of the minimum enclosing ball, and

width of the smallest enclosing hypercube. Obviously, if Q is an additive ε-kernel

of P and µ is a fat measure, then Q is an (ε/α)-coreset of P with respect to µ.
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R

PB

r
pr

Figure 5.3: Construction of an additive ε-kernel.

Given a point set P ⊆ Rd, an additive ε-kernel of P can be computed efficiently

using an adaptation of the simple grid-rounding method proposed in [21, 97] based

on Dudley’s construction [34]. The algorithm is described in the following lemma.

Lemma 5.6 There is a core-preserving algorithm that for every point set P ⊆ Rd,

computes an additive ε-kernel of P of size O(1/ε(d−1)/2) in O(|P |+1/εd−(3/2)) time

for d ≥ 2, or in O((|P |+ 1/εd−2) log(1/ε)) time for d ≥ 3.

Proof. We assume w.l.o.g. that conv(P ) contains the origin. Let B(P ) be the

smallest hypercube centered at the origin containing P . If `′(P ) denotes the side

length of B(P ), then we have `(P ) ≤ `′(P ) ≤ 2`(P ).

Let B = B(P ). By a simple scaling, we may assume that B = [−1, 1]d. Let

R be the set of points of a
√

ε-grid over the boundary of the cube [−2, 2]d, and

let pr denote the nearest neighbor of a point r ∈ R in the set P (see Figure 5.3).

Let Q = {pr | r ∈ R}. Obviously, |Q| ≤ |R| = O(1/ε(d−1)/2). Moreover, Q is

an additive ε-kernel of P with the argument provided below. The running time

follows immediately from the fast implementation of Chan using the discrete nearest

neighbor queries [21].

Consider two arbitrary point sets R and S in Rd, and let Q be an additive

ε-kernel of S computed by our algorithm. In order for our algorithm to be core-

preserving, we need to show that for any input of the form P = R∪Q, the algorithm

returns an additive ε-kernel of R ∪ S.

We adapt the proof from [21]. Fix a unit vector u ∈ Sd−1 and a point p ∈
R ∪ S. There is a point r ∈ R such that ∠(r − p, u) ≤ arccos(1 − ε/8) (See [21],

Observation 2.3). If pr ∈ S, then by our construction there is a point q ∈ Q such
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that ‖r − q‖ ≤ (1 + cε)‖r − pr‖. If pr ∈ R, we simply set q = pr. Therefore,

‖r − q‖ ≤ (1 + cε)‖r − p‖
⇒ (1− ε/8) 〈r − q, u〉 ≤ (1 + cε) 〈r − p, u〉
⇒ 〈r − q, u〉 − 3

√
dε/8 ≤ 〈r − p, u〉+ 3c

√
dε

(since ‖r − p‖ and ‖r − q‖ are at most 3
√

d)

⇒ 〈p, u〉 ≤ 〈q, u〉+ 3
√

d(c + 1/8).

It means that the projections of p and q in direction u differ by at most O(ε).

Since `(P ) ≥ 1/2, we conclude that 〈p− q, u〉 = O(ε)`(P ) in every direction u,

which completes the proof. �

Combining Lemma 5.6 with Theorem 5.1, we get the following result:

Theorem 5.7 Given a stream of points P in Rd and a fat measure µ, an ε-

coreset of P with respect to µ can be maintained using O(1/ε(d−1)/2) total space

and max {O(1), O((1/ε(d−3)/2) log(1/ε))} amortized time per update.

Theorem 5.7 surprisingly shows that the natural approach taken by previous

streaming algorithms [21, 12] to maintain coresets in different directions is not

necessarily the best for fat measures. For example, the best previous streaming

algorithm for diamater and minimum enclosing ball in the plane due to Agarwal

and Yu [12] requires O(
√

1/ε) space and O(log(1/ε)) update time, while Theo-

rem 5.7 implies an algorithm with the same space complexity and only O(1) update

time. Theorem 5.7 also improves our previous result in Theorem 4.7 by removing

the extra log(1/ε) factor from the space complexity of the algorithm (i.e., acheiv-

ing O(1/ε(d−1)/2) space) without increasing the update time for fat extent-related

problems.

5.6 Conclusions

In this chapter, we have introduced the notion of core-preserving algorithms, and

presented a general framework based on this notion to efficiently maintain ε-coresets

for a number of fundamental geometric problems, including k-center (in both ad-

ditive and multiplicative forms), diameter, and minimum enclosing ball.

We believe that our framework will easily find applications in other geometric

(and non-geometric) problems. It can be also used to simplify some of the previously
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known results. For example, Agarwal and Yu [12] have shown that an ε-kernel

of a stream of points within a fixed two-dimensional slab (which they called an

epoch) can be maintained using O(
√

1/ε) space and O(log(1/ε)) update time. They

have employed an involved compression technique along with a balanced binary

search tree to achieve this result. However, observing that the simple grid-rounding

method described in Lemma 5.6 is core-preserving within a fixed slab, one can

immediately get an even better result using O(
√

1/ε) space and an improved O(1)

update time, without using any extra data structure.
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Chapter 6

Minimum Enclosing Ball in High

Dimensions

As shown in the previous two chapters, a (1 + ε)-approximation to the minimum

enclosing ball can be maintained efficiently in fixed dimensions. However, the algo-

rithms presented in those sectoins are not suitable in high-dimensional data streams,

due to exponential dependency of their space complexity to the dimension. In this

chapter, we analyze an extremely simple approximation algorithm for computing

the minimum enclosing ball (or the 1-center) of a set of points in high dimen-

sions. We prove that this algorithm computes a 3/2-factor approximation in any

dimension using a minimum amount of space.

6.1 Introduction

The minimum enclosing ball problem, which is equivalent to Euclidean 1-center,

is the problem of covering a set of n points in d dimensions using the smallest

ball possible. This is one of the most fundamental and well-known problems in

computational geometry, having many applications.

The 2-dimensional version of the problem was originally posed in 1857 by

Sylvester [92] who proposed the first algorithm for computing the smallest circle

enclosing a finite set of points in the plane [93]. Megiddo [81] showed that in any

An extended abstract of this chapter has been published as: H. Zarrabi-Zadeh and T. M.
Chan. A simple streaming algorithm for minimum enclosing balls. In Proc. 18th Canadian
Conference on Computational Geometry, pages 139–142, 2006.
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fixed dimension, the Euclidean 1-center problem can be solved in linear time us-

ing linear programming techniques. Dyer [35] extended this result to the weighted

1-center problem. Sharir and Welzl [90, 95] showed that in any dimension d the

minimum enclosing ball problem is an LP-type problem with combinatorial dimen-

sion d + 1, and can thus be solved exactly in O(dO(d)n) deterministic time [28], or

O(d2n + 2O(
√

d log d)) expected time [30, 79].

In this chapter, we focus on the high-dimensional version of the problem, where

d may be arbitrarily large. We are interested in faster approximation algorithms

that avoid the exponential (or superpolynomial) dependency on the dimension.

Furthermore, we are interested in algorithms that operate under the data stream

model, where only one pass over the input is allowed and the algorithm has only

a limited amount of working storage. We assume here that one unit of space can

hold one coordinate of a point.

In high dimensions, several approximation algorithms have been proposed based

on the notion of coresets. Bădoiu et al. [18] showed that for any point set in

d dimensions there exists a coreset of size O(1/ε2) (whose size is independent of

the dimension) such that the minimum enclosing ball of the coreset is a (1 + ε)-

approximation to the minimum enclosing ball of the original point set. Bădoiu

and Clarkson [17] (and independently, Kumar et al. [72]) improved the size of the

coreset to O(1/ε), leading to a (1 + ε)-approximation algorithm for the minimum

enclosing ball problem in O(nd/ε + (1/ε)5) time.

Although Bădoiu and Clarkson’s algorithm requires only O(1/ε) working space,

when viewed in the streaming model, it requires more than one pass—specifically,

d2/εe passes. In fixed dimensions, there is a simple (one-pass) streaming algo-

rithm that computes a (1 + ε)-approximation to the minimum enclosing ball using

O(1/ε(d−1)/2) space (in O(1/ε(d−1)/2) time). Namely, the algorithm just keeps track

of the extreme points along O(1/ε(d−1)/2) directions.

In high dimensions, there is a trivial 2-approximation streaming algorithm for

the simpler diameter problem, using O(d) space. For this problem, Indyk [66] has

improved the approximation factor to any constant c >
√

2, using O(dn1/(c2−1) log n)

space with high probability. His technique does not seem to yield a result for

minimum enclosing ball though; in any case, a “constant” space bound independent

of n would be much more desirable than sublinear space. For the minimum enclosing

cylinder problem in high dimensions, Chan [21] has given a streaming algorithm

with any fixed approximation factor c > 5 using O(d) space.

For minimum enclosing ball in high-dimensional data streams, the only known
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result we are aware of is the trivial 2-approximation algorithm that picks an arbi-

trary input point c as the center of the ball and sets the radius of the ball to be the

distance of the farthest point from c. In this chapter, we show how to improve this

constant factor. We analyze a simple one-pass streaming algorithm for minimum

enclosing ball and prove that it achieves approximation factor 3/2. Our algorithm

uses O(d) time per point and just O(d) space. In fact, it uses the “minimum”

amount of space possible—at any time, it maintains a single ball, and nothing else.

Our algorithm is arguably the simplest algorithm that uses the minimum amount

of space.

6.2 A Simple Streaming Algorithm

Here is our algorithm in its entirety, which returns a ball B enclosing P :

1: B ← ∅

2: for each point p in the input stream P do

3: if p is outside B then

4: B ← the smallest ball enclosing B and p

Despite the utter simplicity of this algorithm, the analysis of its approximation

factor seems nonobvious and, to our knowledge, has not been studied before.

To aid in the analysis (and implementation), we mention exactly how the coor-

dinates of the ball B can be calculated in line 4. Let p0 be the first input point, pi

be the input point causing the i-th update to B, and let Bi be the value of B after

its i-th update (see Figure 6.1). We denote the center point and the radius of Bi

by ci and ri, respectively.

Initially, we set r0 = 0 and c0 = p0. Letting δi = 1
2
(‖pi − ci−1‖ − ri−1) (i.e., half

the distance of pi to Bi−1), we have

ri = ri−1 + δi and ‖ci − ci−1‖ = δi.

As ci lies on the line segment from ci−1 to pi, the second equation implies that

ci = ci−1 + δi

‖pi−ci−1‖(pi − ci−1).
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p2p3
p4

p1p0

c1

c2

c4

c3

Figure 6.1: An example of the execution of the MEB algorithm.

Remark. The above equations imply the following interesting property concerning

the trajectory of the center points c0, . . . , ci (the path shown in dashed lines in

Figure 6.1): the total length of this trajectory is exactly equal to the last radius ri.

6.2.1 Analysis

In this section, we prove an upper bound of 3/2 on the approximation factor of our

algorithm. The proof is not long but is tricky and involves a nice invariant. We

first recall one known geometric fact.

Lemma 6.1 If two chords intersect inside a circle, then the product of the segments

of one chord equals the product of the segments of the other chord.

O

D

B

C

A

Figure 6.2: On Lemma 6.1.
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Proof. Let O be the intersection point of the two chords AB and CD (see Fig-

ure 6.2). The two angles ∠ADC and ∠ABC are equal, since both are inscribed

angles of the same arc AC. Moreover, ∠AOD = ∠BOC. Therefore, the two

triangles 4AOD and 4BOC are similar. Therefore |AO|
|CO| = |DO|

|BO| , and hence

|AO||BO| = |CO||DO|. �

Theorem 6.2 Given a set P of n points in d dimensions, the algorithm in Sec-

tion 6.2 computes a 3/2-approximation to the minimum enclosing ball of P in O(dn)

time and O(d) space.

Proof. Let B∗ be the minimum enclosing ball of P , of radius r∗. Let pi, ci, and

ri be as defined in Section 6.2. The pi’s lie inside B∗, and so are the ci’s (as one

can see easily by induction, due to the convexity of B∗). For each i > 0, consider

the chord of B∗ which passes through ci−1 and pi (which passes through ci as well).

The point ci splits this chord into two segments, one containing ci−1 and the other

containing pi. Let ai be the length of the former segment and bi be the length of

the latter segment (see Figure 6.3). The key to the whole proof lies in finding the

right invariant, which turns out to be the following:

bi−1

ai−1

ci

pi

ri

ai

bi

ci−1

δi

Figure 6.3: From step i− 1 to step i.

Claim r2
i < 3aibi for all i > 0.

Proof. We prove by induction on i. The base case follows immediately because

a1, b1 ≥ r1 (since c1 is the midpoint of p0 and p1, which are both in B∗).

Now, suppose that r2
i−1 < 3ai−1bi−1. By applying Lemma 6.1 (to the intersection

of B∗ with the plane through ci−1, pi−1, and pi), we have

ai−1bi−1 = (ai − δi)(bi + δi). (6.1)

73



A chain of algebraic manipulations then yields the claim:

3aibi = 3

(
ai−1bi−1

bi + δi

+ δi

)
bi (by (6.1))

>

(
r2
i−1

bi + δi

+ 3δi

)
bi (by hypothesis)

≥
(

r2
i−1

ri + δi

+ 3δi

)
ri

(as bi ≥ ri and x/(x + δi) is increasing for x ≥ 0)

=

(
(ri − δi)

2

ri + δi

+ 3δi

)
ri

=

(
r2
i + δiri + 4δ2

i

ri + δi

)
ri

> r2
i .

�

The proof of the theorem is now straightforward. W.l.o.g., assume that ri ≥ r∗.

Clearly, ai + bi ≤ 2r∗. So,

r2
i < 3aibi ≤ 3(2r∗ − bi)bi ≤ 3(2r∗ − ri)ri,

as bi ≥ ri and (2r∗ − x)x is decreasing for x ≥ r∗. Thus ri < 3(2r∗ − ri), which

means that ri < 3
2
r∗ for all i > 0. �

6.2.2 Lower Bound

In this section we show that the analysis from Section 6.2.1 is essentially tight by

providing a lower bound example for which our algorithm produces an enclosing

ball with a radius close to 3/2 times the radius of the minimum enclosing ball.

Our example composed of n points equally spaced on the boundary of a unit

circle. Obviously, the radius of the minimum enclosing ball for this point set is 1.

As n goes to infinity, the trajectory path produced by the algorithm approaches a

curve (like what is shown in Figure 6.4 for n = 6 and n = 12), whose length can

be described using some differential integral equation. This curve seems interesting

in its own right, though we are unable to find any previous work or information

about it. The resulting function is quite complicated and solving it seems to be

very hard. We have numerically calculated the length of this curve (as a discrete
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Figure 6.4: A lower bound example and an interesting curve.

point set size trajectory length

10 1.39426

100 1.48955

1000 1.49895

10000 1.49989

100000 1.49998

Table 6.1: The lower bound example for the MEB algorithm.

path) for different values of n. The numerical results, presented in Table 6.1, shows

that for large values of n, the length of the path becomes very close to 1.5.

We can also prove the following lower bound on the approximation factor of any

algorithm that uses the same amount of space as our algorithm does.

Theorem 6.3 There is a lower bound of (1+
√

2)/2 ≈ 1.207 on the approximation

factor of any deterministic algorithm for the minimum enclosing ball problem that

at any time stores only one enclosing ball and nothing more.

Proof. Let A be such an approximation algorithm. The adversary gives a sequence

of points in the plane. Let p1 = (0, 1) and p2 = (0,−1) be the first two points

provided by the adversary, and let B be the ball produced by A to enclose {p1, p2}.
It is clear that B contains at least one of the points q1 = (−1, 0) and q2 = (1, 0).

Suppose w.l.o.g. that B contains q1. The adversary then gives the point p3 =

(1 +
√

2, 0). Now, A knows that all points given so far are enclosed by B, but for

all points enclosed by B, it cannot remember which ones (in particular, q1 ∈ B)

have been parts of the input. Therefore, the updated ball after receiving p3 must
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also enclose q1. So, the radius of the ball must be at least 1
2
||p3− q1|| = 1

2
(2 +

√
2).

However, the point set {p1, p2, p3} can be optimally enclosed by a ball of radius
√

2.

Hence, the approximation factor of A is at least 1
2
√

2
(2 +

√
2) = 1

2
(1 +

√
2). �

6.3 Conclusions

In this chapter, we have provided a very simple (and thus highly practical) one-pass

algorithm that computes a 3/2-approximation to the minimum enclosing ball of a

set of points in any dimension. Our algorithm is simple enough to easily replace the

well-known näıve 2-approximation algorithm, which is the only previously known

one-pass algorithm working in high dimensions. Our algorithm can be regarded as

a solution to a restricted online version of the minimum enclosing ball problem;

Section 6.2.1 can be viewed as a competitive analysis of an online algorithm.

Many open problems remain. For example, is 3/2 the best possible approxima-

tion factor among one-pass algorithms that use the “minimum” amount of space

(i.e., can Theorem 6.3 be strengthened)? What is the best approximation factor

among one-pass algorithms that use O(d) space, or more generally, dO(1) space?

Can we get still better factors for minimum enclosing ball using sublinear (o(n))

space, perhaps by adapting Indyk’s technique for the diameter problem [66]?

The same questions can also be asked for algorithms with two passes, three

passes, and so on. For example, we can consider the following two-pass strategy

that invokes our algorithm twice. Let cf and rf be the center and the radius of

the enclosing ball after terminating the first pass. We then use the same algorithm

for the second pass, except that we start with a ball centered at cf with radius
1
3
rf . Experimental results suggest that the approximation factor obtained by this

two-pass algorithm is at most 1.37, at least for the bad example from Section 6.2.2.
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Chapter 7

Concluding Remarks

In this thesis, we have proposed new algorithms in the online and data stream mod-

els of computation for several fundamental optimization problems in computational

geometry ranging from clustering to shape fitting.

In the online setting, we have shown that determining the best competitive

ratio for the basic unit clustering problem is nontrivial even in the simplest one-

dimensional case. We used randomization to beat the näıve upper bound of 2 on

the one-dimensional problem and complement our results with some lower bounds.

The obvious open problem is to close the gap between the current upper and lower

bounds shown in Table 3.1 (some improvements have been recently announced

in [41]). Another major problem for future research is to develop better algo-

rithms for online unit clustering in two and higher dimensions. Apparently, our

one-dimensional results can be extended to higher dimensions using a “dimension-

reduction” approach. However, we wonder if ideas that are more “geometric” may

lead to still better results than Theorem 2.17. Our work certainly raises countless

questions concerning the best competitive ratio in higher-dimensional cases, for

other metrics besides L∞, and for other geometric measures of cluster sizes besides

radius or diameter.

In the data stream model, we have obtained better streaming algorithms for

a number of fundamental geometric optimization problems in fixed dimensions,

including width, smallest enclosing box, minimum enclosing cylinder, minimum-

width enclosing annulus, etc. The main idea behind all these improvements is a new

improved algorithm for maintaining an ε-kernel of a point set in fixed dimensions

using a data structure whose size is almost optimal. More precisely, our algorithm

uses O(1/ε(d−1)/2 log(1/ε)) space, while the optimal space required is known to

be Ω(1/ε(d−1)/2). We leave this question open whether this small log factor can be
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removed to achieve the optimal space in any fixed dimension (this question has been

answered in affirmative by Agarwal and Yu [12] in two-dimensions only). Another

possibility is to reduce the update time while keeping the space (near) optimal. It

is also interesting to see if our approach can be extended to other related models

like sliding window [23, 44] and dynamic streaming model [67, 47, 46].

We have also defined the class of core-preserving algorithms, and have shown

that algorithms in this class can be efficiently dynamized in the data stream model.

Our framework leads to improved streaming algorithms for a number of geometric

problems in fixed dimensions such as diameter, minimum enclosing ball, and k-

center (in both additive and multiplicative forms). In particular, we showed that

ε-coresets for diameter and minimum enclosing ball in the plane can be maintained

in O(
√

1/ε) space and O(1) update time. An intriguing question is whether such a

result can be obtained for the width problem as well. The current best record for

this problem in 2-d is the algorithm of Agarwal and Yu [12] that requires optimal

O(
√

1/ε) space and O(log(1/ε)) update time. It is also interesting to explore more

application of our framework to other geometric (and non-geometric) problems.

In high-dimensional data streams, we have proposed a simple streaming algo-

rithm that computes a 3/2-approximation to the minimum enclosing ball in any

dimension using only O(d) space. There are a quite few streaming results for

other geometric problems in high dimensions, including a (
√

2 + ε)-approximation

algorithm for diameter [66], a (2+ε)-approximation for k-center [80], and a (5+ε)-

approximation for minimum enclosing cylinder [21]. An interesting thread for future

research is to explore the existence of (better) streaming algorithms for other basic

geometric problems such as width, minimum bounding box, etc.

Many interesting problems arise when we relax the one-pass restriction slightly,

and allow algorithm to have a few passes over the input. For the minimum enclosing

ball problem, for instance, our work shows that Bădoiu and Clarkson’s d2/εe-pass

algorithm [17] is not necessarily the best possible result. Similar questions are open

even for the diameter problem. For example, there is a simple two-pass diameter

algorithm [36] that gives
√

3 factor with O(d) space. We do not know if this is the

best two-pass algorithm with O(d) space, or what is the best three-pass algorithm.
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[29] M. Chrobak and M. Ślusarek. On some packing problems relating to Dynam-

ical Storage Allocation. RAIRO Theoretical Informatics and Applications,

22:487–499, 1988. 32

[30] K. L. Clarkson. Las Vegas algorithms for linear and integer programming.

Journal of the ACM, 42(2):488–499, 1995. 70

81



[31] K. L. Clarkson and P. W. Shor. Applications of random sampling in compu-

tational geometry, II. Discrete and Computational Geometry, 4(1):387–421,

1989. 5

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001. 13

[33] R. G. Downey and C. McCartin. Online problems, pathwidth, and persis-

tence. In Proceedings of the 1st International Workshop on Parameterized

and Exact Computation, pages 13–24, 2004. 32

[34] R. M. Dudley. Metric entropy of some classes of sets with differentiable

boundaries. Journal of Approximation Theory, 10:227–236, 1974. 44, 66

[35] M. E. Dyer. On a multidimensional search technique and its application to

the Euclidean one-centre problem. SIAM Journal on Computing, 15:725–738,

1986. 70

[36] O. Eg̃eciog̃lu and B. Kalantari. Approximating the diameter of a set of points

in the Euclidean space. Information Processing Letters, 32:205–211, 1989. 78

[37] M. Edwards and K. Varadarajan. No coreset, no cry: Ii. In Proceedings of

the 25th Conference on Foundations of Software Technology and Theoretical

Computer Science, pages 107–115, 2005. 7

[38] A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir. Dynamic data structures

for fat objects and their applications. Computational Geometry: Theory and

Applications, 15:215–227, 2000. 4

[39] L. Epstein, A. Levin, and R. van Stee. Online unit clustering: variations on

a theme. Theoretical Computer Science, to appear. 30

[40] L. Epstein and M. Levy. Online interval coloring and variants. In Proceedings

of the 32nd International Colloquium on Automata, Languages, and Program-

ming, pages 602–613, 2005. 13, 32

[41] L. Epstein and R. van Stee. On the online unit clustering problem. In

Proceedings of the 5th Workshop on Approximation and Online Algorithms,

volume 4927 of Lecture Notes in Computer Science, pages 193–206, 2007. 30,

39, 77

82



[42] T. Erlebach, K. Jansen, and E. Seidel. Polynomial-time approximation

schemes for geometric intersection graphs. SIAM Journal on Computing,

34:1302–1323, 2005. 13

[43] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering.

In Proceedings of the 20th ACM Symposium on Theory of Computing, pages

434–444, 1988. 3, 4, 12

[44] J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the stream-

ing and sliding-window models. Algorithmica, 41(1):25–41, 2004. 3, 78

[45] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and cover-

ing in the plane are NP-complete. Information Processing Letters, 12(3):133–

137, 1981. 3, 4, 12

[46] G. Frahling, P. Indyk, and C. Sohler. Sampling in dynamic data streams and

applications. International Journal of Computational Geometry and Applica-

tions, 18(1-2):3–28, 2008. 3, 78

[47] G. Frahling and C. Sohler. Coresets in dynamic geometric data streams. In

Proceedings of the 37th ACM Symposium on Theory of Computing, pages

209–217, 2005. 3, 7, 58, 78

[48] M. Franceschetti, M. Cook, and J. Bruck. A geometric theorem for network

design. IEEE Transactions on Computers, 53(4):483–489, 2004. 4

[49] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and K. Varadarajan. On

clustering to minimize the sum of radii. In Proceedings of the 19th ACM-SIAM

Symposium on Discrete Algorithms, pages 819–825, 2008. 58, 65

[50] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier,

2nd edition, 2004. 32

[51] T. Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoretical Computer Science, 38:293–306, 1985. 3, 12, 61, 63

[52] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data

streams. In Proceedings of the 41st IEEE Symposium on Foundations of

Computer Science, pages 359–366, 2000. 12

[53] U. Gupta, D. T. Lee, and Y. T. Leung. Efficient algorithms for interval graphs

and circular-arc graphs. Networks, 12(2):45967, 1982. 4

83
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