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Abstract

Quota-share and stop-loss/excess-of-loss reinsurances are two important reinsur-

ance strategies. An important question, both in theory and in application, is to de-

termine optimal retentions for these reinsurances. In this thesis, we study the optimal

retentions of quota-share and stop-loss/excess-of-loss reinsurances under ruin-related

optimization criteria.

We attempt to balance the interest for a ceding company and a reinsurance com-

pany and employ an optimization criterion that considers the interests of both a

cedent and a reinsurer. We also examine the influence of interest, dividend, commis-

sion, expense, and diffusion on reinsurance retentions.
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Chapter 1

Introduction

Quota-share and stop-loss/excess-of-loss reinsurances are two significant reinsurance

strategies. An imperative question both in theory and in application is determining

optimal retentions for each. Earlier studies involving the optimality of reinsurance

contracts include Gerber (1979), Waters (1979, 1983), Goovaerts et al. (1989, 1990),

Daykin et al. (1994), Buhlmann (1996), Bowers et al. (1997), Rolski et al. (1999),

Schmitter (2001), Gollier (2003), Verlaak and Beirlant (2003), and references therein.

To a large extent, early literature focused on the position of a ceding company. Fur-

ther, few early models accounted for both the interests of a cedent and a reinsurer.

Also, existing studies regarding optimal retentions in the collective risk model are

based mainly on the classical compound Poisson risk model.

The thesis further develops risk models given the reinsurance precondition, with

special consideration to the optimal reinsurance treaty under various criteria. The

attempt to balance the interests of a ceding company and a reinsurance company, and

to employ an optimization criterion that considers the interests of both a cedent and
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a reinsurer are undertaken. Additionally, the impact of economic and financial factors

on the optimal retentions are examined. The factors included in this examination are

the influence of interest, dividend, commission, expense, and diffusion. First, a brief

historical background of reinsurance is helpful.

1.1 Reinsurance

Reinsurance is best thought of as “insurance for insurance companies,” a protection

for primary insurers against unforeseen or extraordinary losses. Reinsurance serves

to limit liability on specific risks, to increase individual insurer’s capacity to share

liability when losses overwhelm the primary insurer’s resources, and to aid insurers in

stabilizing financial concerns due to wide swings in profit and loss margins inherent

to the insurance business. The company transferring the risk is called the ceding

company or direct writer while the company adopting the risk is called the assuming

company or reinsurer. Reinsurance contracts may cover a specific risk or a broad

class of business. The reinsurer charges the reinsurance premium as the adequate

compensation for assuming transferred risk from the cedent. There are two basic

forms of reinsurance: proportional (pro-rata) and non-proportional (excess).

Proportional is a form of reinsurance where the amount ceded is defined at the

point at which the risk is transferred, not at the point of claim. The amount of

risk may vary with time. Proportional reinsurance contains two sub-forms, quota-

share and surplus-share. For the purpose of the thesis, quota-share reinsurance is

the sole focus. Under quota-share, premiums and losses are shared proportionately

between the ceding company and the reinsurer, and the same percentage applies to

all reinsurance policies in a given area of business.
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Non-proportional is a form of reinsurance where the reinsurer’s liability is not

fixed in advance, but rather is dependent on the number or amount of claims in-

curred in a given period. Non-proportional reinsurance includes three sub-forms:

catastrophe, stop-loss, and spread-loss. The main examination here with regards to

non-proportional reinsurance is stop-loss reinsurance. Stop-loss dictates that the rein-

surer pays some or all of the aggregate retained losses of a ceding company in excess

of a predetermined dollar amount, or in excess of a percentage of the premium.

In most practical cases, the reinsurance protection of an insurance portfolio is

not limited to one reinsurance type, rather it is organized through a combination of

several methods of protection, or a so-called reinsurance program.

To achieve a balance between practical application and theoretical neatness, the

thesis focuses on a quota-share and stop-loss/excess-of-loss combination. This form of

reinsurance has been discussed by Centeno (1985, 1986, 2002(a), 2002(b)), Kaluszka

(2001), Schmitter (2001), Cai and Tan (2007), Cai et al. (2008), and many others.

Simply speaking, with the reinsurance, there exists a retention limit M and a quota-

share level a. When a claim of size X arises, the cedent pays the amount of aX or

M , whichever is less, and the reinsurer pays the remaining sum.

The premium principle attaches a premium to a risk for purposes of insurance,

for example, Kaluszka (2005). Here, the expected value principle is employed as a

default. The expected value principle determines that the premium paid is charged at

a certain percentage of expected payout. Both direct writing insurance companies and

reinsurers may use reinsurance to enter new markets, to try out new products, and

to gain valuable underwriting experience. As previously stated, the ceding company

benefits from reinsurance because it helps to manage financial risk, increase capacity,

and achieve marketing goals. The obvious disadvantage is that the premiums paid
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reduce the amount of money available for other purposes and the cedent insurer’s

chance of earning unexpected profits is removed. Conversely, although reinsurers

have the opportunity to invest income from premiums, and thus increase profitability,

reinsurance also emphasizes certain problems, such as surplus strains on financial

resources.

For insurance customers, and the insurance industry in general, reinsurance presents

genuine advantages. Reinsurance aids customers by making certain that necessary

coverage is available and affordable. Due to reinsurance, insurers are able to provide

the amount of coverage requested, even if the amount is beyond the single insurer’s

retention limit.

For industry, reinsurance provides a greater spread of risk and the wider the

spread of risk, the less the likelihood that any single insurer will suffer catastrophic

financial loss from unexpectedly high claims. If each company has less exposure

to catastrophic loss, the industry as a whole is better protected. This reinsurance

makes the insurance industry stronger financially and provides a more stable and

reliable marketplace for customers, investors and insurance companies. Balancing

the interests between the cedent company and the reinsurer, and considerations of

the effects of interest, dividends, commissions, expenses, and diffusion on reinsurance

retentions are discussed in the thesis.

1.2 Outline of Thesis

As previously stated, a reinsurance contract involves two parties, an insurer and a

reinsurer. In most existing reinsurance literature, optimal retentions only consider the

interest of one party, what is optimal only for an insurer or for a reinsurer. However,
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it is worth questioning and determining optimal retentions that are, in some sense,

fair to both parties. Chapters 2 and 3 derive the optimal retentions, considering the

interests of both parties, to maximize the joint survival probability of an insurer and

a reinsurer.

In particular, Chapter 2 presents the explicit solution for optimal retentions for

quota-share and stop-loss in combined reinsurance treaties, which is derived based on

the idea proposed by Ignatov et al. (2004) and Kaishev et al. (2006) for the single

period claim model. It is very difficult to attain the explicit expression for the joint

survival probability in a collective risk model with excess-of-loss reinsurance. Even for

the exponential claim case, the explicit expression is not available. It is impossible to

determine the optimal retentions by maximizing the joint survival probability directly.

Hence, in Chapter 3, two methods are developed to manage the optimal retentions

in the aggregate claim model. First, we prove a lower bound for the joint survival

probability by using the association property of the aggregate claims of an insurer

and a reinsurer, and then optimize the treaty by maximizing the lower bound. The

second method develops a bivariate gamma approximation for the joint distribution

of the surpluses of an insurer and a reinsurer. This bivariate gamma approximation

itself is significant and is also utilized to approximate the joint distribution of two

dependent nonnegative random variables. Using the bivariate gamma approximation

in multi-period claim models, optimal retentions for quota-share and stop-loss in a

combined reinsurance treaty can be determined. Note, for equity on both sides, the

initial surplus is not considered in Chapters 2 and 3.

Conversely, most existing literature regarding optimal retentions in a collective

risk model has basis in the classical compound Poisson risk model. These optimal

retentions do not consider the effect of economic or financial factors on optimal reten-

tions. Chapters 4 through 6 consider optimal retentions in risk models with interest
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rates, dividends, commissions, expenses, and diffusions. Determining optimal reten-

tions in risk models, which include interest and dividends, presents quite a complex

inquiry. Chapter 4 attempts to generalize De Vylder’s approximation and presents the

development of a De Vylder-type approximation for an interest-included compound

Poisson risk model. The De Vylder-type approximation is also itself noteworthy and

is useful in studying additional inquiries into the interest-included compound Pois-

son risk model. This approximation is utilized in determining optimal retentions

for quota-share and excess-of-loss in combined reinsurance treaties. The influence of

interest rates on the optimal retentions is illustrated numerically.

Chapter 5 explores the criterion of maximizing the expected total discounted div-

idends disbursed up to ruin to derive the optimal retention of a quota-share rein-

surance in the compound Poisson risk model with dividends. Based on Gerber and

Shiu (2006), the model is generated to include the reinsurance factor for the Erlang

claim and is compared to the exponential claim. This chapter illustrates the effects

of dividends on the optimal retentions by studying both exponential and Erlang (2)

claims.

It is difficult to determine the explicit formulas for the infinite-time and finite-time

ruin probabilities, which means it is not possible to obtain the optimal retention levels

by minimizing the ruin probabilities directly. However, when certain conditions are

applied, the upper bounds of the ruin probabilities exist. By discovering the minimum

upper bounds, we can determine the optimal retention levels and the ruin probabilities

are limited so that the risk does exceed a certain limit.

Considering the uncertain economic events in the surplus process, Chapter 6 ex-

tends Centeno’s (1985-2002) work to a jump-diffusion risk model; it also includes

the commission and expenses in determining the net premium for a ceding company.
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Using the criterion of maximizing the adjustment coefficient, there exists a simple

explicit formula to determine the reinsurance retention level. First, Chapter 6 de-

rives the optimal retention limit by minimizing the Lundberg upper bound for the

infinite-time ruin probability. Second, we derive the upper bound for the finite-time

ruin probability in the jump-diffusion risk model by the martingale approach. We

then study the excess-of-loss reinsurance and the optimal retentions of reinsurance

by minimizing the upper bound.

Finally, concluding remarks and questions for further research are offered in Chap-

ter 7. Some other literature we used in this thesis are Grandell (1991), Klugman et

al. (1998), Willmot and Lin (2001).

1.3 Notations and Definitions

The following notations and definitions are used throughout the thesis.

Shown first is the notation set for the claim frequency.

• {Yi}∞i=1 are independent and identically distributed non-negative random vari-

ables with the common distribution as Y and Yi is the time between the (i−1)th

claim and the ith claim. The common distribution function is H(y) = Pr{Y ≤

y} with mean of E(Y ) = 1
λ
.

• Tn denotes the time of the nth claim, which equals to Tn = Y1 + Y2 + · · · + Yn

with T0 = 0.

• {N(t)}t≥0 is an ordinary renewal process andN(t) denotes the number of claims,

which occur in a certain time interval (0, t], it can be written as N(t) = sup{n :
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Tn ≤ t}.

The foundational assumption of the work set forth here is the reinsurance treaty.

The assumption is made that an insurer first sets a quota-share retention level of

a, then sets a stop-loss retention limit of M such that the insurer retains XI =

min(aX,M) = (aX ∧ M) when a claim of size X occurs. The remaining claim

XR = X −XI is designated for the reinsurance company. The expressed objective is

to seek the quota-share level a and the retention limit M to minimize the insurer’s

risk in different risk models.

When the retention limit of M is infinite, the treaty then becomes a pure quota-

share reinsurance. When the quota-share level a is one, the treaty becomes a pure

stop-loss reinsurance. These two scenarios, as special cases, will receive further dis-

cussion in the following chapters. When retention limit M or quota-share level entire

insurance business to the reinsurer. Because of the well-established fact that the

insurance company does not profit from this action, this situation is not considered.

Hereafter, the subscript “I” represents the aspect from a ceding insurance com-

pany and the subscript “R” represents the aspect from a reinsurer.

Secondly, the notation set for the claim size is as noted below.

• {Xi}∞i=1 is a sequence of independent and identically distributed non-negative

random variables, which are independent of {Yi}∞i=1. The random variable Xi

is the claim amount of the ith claim with a common distribution function of

F (x) = Pr{X ≤ x} and an average claim size of E(X) = µ.

• XIi = min(aXi,M) is the amount of the ith claim paid by the insurance com-

pany, and XRi = Xi−XIi is the amount of the ith claim paid by the reinsurance
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company.

In the single period case, for simplicity, XI is used instead of XIi and XR is used

instead of XRi.

In the multi-period case, the sum of all claims up to a time of t is considered. The

total amounts paid by the cedent and reinsurer are represented as follows SI(t) =
∑N(t)

i=1 XIi and SR(t) =
∑N(t)

i=1 XRi , respectively.

Thirdly, the notation set for the insurance company and the corresponding rein-

surance company is as follows:

• θI and θR are the security loading factors for the insurer and reinsurer, respec-

tively. Here θI < θR, which means the insurer cannot reinsure the whole risk

with a certain profit.

• PI and PR are the premiums received by the insurer and reinsurer, respectively.

They follow the expected value principle. This principle discussed further in

later chapters.

• uI and uR are the non-negative initial surpluses for both companies respectively.

• The company surplus is equal to the initial surplus plus the net premium re-

ceived, minus the net claim paid out. The respective surplus processes {UI(t)}

and {UR(t)} are written as UI(t) = uI +PIt−SI(t) and UR(t) = uR+PRt−SR(t).
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Chapter 2

A Fair Optimal Retention for

Insurers and Reinsurers: Explicit

Solutions

Let us first consider single contract, one period insurance. In the reinsurance con-

tract, the two parties, cedent and reinsurer, have conflicting interests. Each party

strives to minimize risk for a higher proportion of originally occurring premium in-

come. The optimal contract must appear as a reasonable compromise between the

two interests. Conversely, because both companies have common objectives in man-

aging their shared risk, the insurer and the reinsurer have common interests and can

be considered as partners.

One vital condition of achieving solvency and financial stability lies in maximiz-

ing survival probability; in reality maximizing the likelihood of survival is the top

priority for each partner. As natural approach, considering total premium income
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and aggregated claims are shared between the ceding company and the reinsurer, as

a method of maximizing the joint survival probability, this chapter will concentrate

on defining the conditions of such a contract, optimal with respect to the interests of

both parties.

Similar to previous assumptions, for a claim with size X, the insurance company

pays

XI = aX ∧M,

and the reinsurance pays the remaining, which is

XR = X − (aX ∧M) .

This chapter will attempt to determine the maximum of joint survival or solvency

probability under different reinsurance treaties, namely quota-share, stop-loss, and

combination reinsurance.

Let us consider the premiums agreement between an insurance company and a

reinsurance company. According to the expected value principle, the net premium

received by the reinsurance company should be

PR = (1 + θR)E (XR) ,

and the premium received by the insurance company should be

PI = (1 + θI)E (X) − PR.

The joint survival or solvency probability is the probability that both companies

will survive, i.e., the claims paid out are less than or equal to the premium received

for both parties. It is written as Pr{XI ≤ PI ,XR ≤ PR}.
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2.1 Quota-share Reinsurance

When we consider quota-share reinsurance, the retention level M goes to infinity.

The quota-share level a is the only variable to be considered. This implies that the

reinsurance amount of a claim with size X is (1 − a)X, and the expected loss of the

reinsurer is E(XR) = (1 − a)E(X), where a is any percentage between 0% to 100%.

Hence, the premium received by the reinsurance company should be

PR = (1 + θR)(1 − a)E (X) .

Recall that the insurance premium after reinsurance should be greater than zero,

which means

PI = (1 + θI)E(X) − (1 + θR) (1 − a)E(X) > 0,

or

a >
θR − θI

1 + θR
.

Hence the joint solvency probability of the insurance company and the reinsurance

company, Prjoint(a), is expressed as

Prjoint(a)

= Pr{XI ≤ PI ,XR ≤ PR}

= Pr
{
aX ≤ (1 + θI)E (X) − (1 + θR)(1 − a)E (X) ,

(1 − a)X ≤ (1 + θR)(1 − a)E (X)
}

= Pr{X ≤ θI − θR

a
E (X) + (1 + θR)E (X) , X ≤ (1 + θR)E (X)}

= Pr{X ≤ (1 + θR)E (X) − θR − θI

a
E (X)}

= F
(
(1 + θR)E (X) − θR − θI

a
E (X)

)
. (2.1)
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Since θR > θI , the joint solvency probability Prjoint(a) is increasing in a. Thus,

the maximum of the joint solvency probability is

F ((1 + θI)E(X)),

which means the optimal quota-share level a is one and the ceding company retains

all business and does not use any reinsurer. In other words, optimal reinsurance does

not exist if an insurer only uses quota-share reinsurance.

2.2 Stop-loss Reinsurance

Under the stop-loss reinsurance treaty the quota-share a is equal to one. The reten-

tion limit M (M > 0) is the only variable that considered. The problem becomes

finding the optimal M necessary to maximize the joint survival probability for both

companies.

The expected reinsurance claim amount is equal to

E(XR)

= E (X) − E (X ∧M)

=

∫ ∞

0

xdF (x)−
∫ M

0

xdF (x)−
∫ ∞

M

MdF (x)

=

∫ ∞

M

xdF (x)−
∫ ∞

M

MdF (x)

=

∫ ∞

M

(x−M) dF (x).

Hence, the premium received by the reinsurance company is

PR = (1 + θR)

∫ ∞

M

(x−M)dF (x),

13



and the net premium received by the ceding company is

PI = (1 + θI)E(X) − (1 + θR)

∫ ∞

M

(x−M)dF (x).

Under this treaty, the joint solvency probability of the insurance company and

the reinsurance company Prjoint(M) is expressed as

Prjoint(M)

= Pr{XI ≤ PI ,XR ≤ PR}

= Pr{(X ∧M) ≤ PI ,X − (X ∧M) ≤ PR}

= Pr{X ≤M}Pr{X ∧M ≤ PI ,X − (X ∧M) ≤ PR|X ≤M}

+Pr{X > M}Pr{X ∧M ≤ PI ,X − (X ∧M) ≤ PR|X > M}

= Pr{X ≤M}Pr{X ≤ PI |X ≤M}

+Pr{X > M}Pr{M ≤ PI ,X − M ≤ PR|X > M}

= Pr{X ≤ PI ,X ≤M} + Pr{M ≤ PI}Pr{X ≤M + PR,X > M}

= I{M≤PI} (Pr{X ≤M} + Pr{M < X ≤M + PR}) + I{M>PI} Pr{X ≤ PI}

= I{M≤PI} Pr{X ≤M + PR}+ I{M>PI} Pr{X ≤ (1 + θI)E (X) − PR}

=





F (M + PR) when M + PR ≤ (1 + θI)E (X) ,

F ((1 + θI)E (X) − PR) when M + PR > (1 + θI)E (X) .
(2.2)

Here I{·} is the indicator function, i.e., I{A} = 1 if A is true and 0 otherwise.

Since

∂(M + PR)

∂M
= 1 + (1 + θR)

∂

∂M

∫ ∞

M

(x−M) dF (x) = (1 + θR)F (M)− θR,

and
∂2(M + PR)

∂M2
= (1 + θR)f(M) > 0,

14



we can conclude that M +PR is a convex function with respect to M and attains its

minimum at

M = F−1

(
θR

1 + θR

)
.

On the other hand, because

∂((1 + θI)E(X) − PR)

∂M
= (1 + θR) (1 − F (M)) > 0,

and
∂2((1 + θI)E(X) − PR)

∂M2
= −(1 + θR)f(M) < 0,

we can conclude that ((1+ θI )E(X)−PR) is a monotone increasing concave function

with respect to M .

Therefore, the relationships among lines M + PR, (1 + θI)E(X) − PR, and (1 +

θI)E(X) are expressed as identified in Figure 2.1 and Figure 2.2, based on different

cases and parameters.

Case I: In this scenario, as shown in Figure 2.1, the joint survival function is

defined on the dark brown line. It implies that the maximum survival probability is

F ((1 + θI)E(X))

and it has two qualified retention levels, which should satisfy:

M + (1 + θR)

∫ ∞

M

(x−M) dF (x) = (1 + θI)E(X).

Case II: In this scenario, as shown in Figure 2.2, the joint survival function is

defined on the line

(1 + θI)E(X) − PR.

15



Figure 2.1: Stop-loss Reinsurance: Case I

To maximize the joint survival probability, the retention limit should be infinite.

This implies that the insurance company will not use reinsurance, or the optimal

reinsurance does not exist in this case.

Obviously, as M goes to infinity, the criteria M > (1 + θI)E(X) − PR will be

satisfied, and the maximum joint solvency probability will be F ((1 + θI)E(X)).

The above discussion establishes that when the claim amount distribution and the

insurance loading satisfy the criteria presented in Case I, the optimal M to maximize

the joint survival probability is achievable and the optimal M is the solution to the

equation

M + (1 + θR)

∫ ∞

M

(x−M) dF (x) = (1 + θI)E(X).

Otherwise, the ceding company simply does not acquire any reinsurance and the

optimal stop-loss reinsurance does not exist.
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Figure 2.2: Stop-loss Reinsurance: Case II

2.3 Combination of Quota-share and Stop-loss Rein-

surances

2.3.1 Joint Survival Probability

With the two special scenarios in Sections 2.1 and 2.2 receiving note, the focus shifts

to the general scenario with both the retention limit M and the quota-share level a

in the treaty. Here, 0 < a ≤ 1 and M > 0.

17



Lemma 2.3.1 The joint solvency probability of the insurance company and the

reinsurance company Prjoint(a,M) is expressed as

Prjoint(a,M)

= Pr{XI ≤ PI ,XR ≤ PR}

= I{M≤PI} Pr{X ≤M + PR} + I{M>PI} Pr{X ≤ PI

a
}, (2.3)

where the premium received for the cedent and reinsurer are respectively

PR = (1 + θR)

(
(1 − a)E(X) +

∫ ∞

M
a

(ax−M) dF (x)

)
, (2.4)

and

PI = (1 + θI)E (X) − PR. (2.5)

Here M is the retention limit, a is the quota-share level, and F (x) is the claim

distribution function. The parameters θI and θR represent the security loading factors

for the insurance company and reinsurance company respectively with θI < θR.

Proof: First, note that

E(XR)

= E [X − (aX ∧M)]

= E (X) − E (aX ∧M)

=

∫ ∞

0

xdF (x)−
∫ M

a

0

axdF (x)−
∫ ∞

M
a

MdF (x)

= (1 − a)

∫ ∞

0

xdF (x) + a

∫ ∞

0

xdF (x)−
∫ M

a

0

axdF (x)−
∫ ∞

M
a

MdF (x)

= (1 − a)

∫ ∞

0

xdF (x) +

∫ ∞

M
a

axdF (x)−
∫ ∞

M
a

MdF (x)

= (1 − a)E(X) +

∫ ∞

M
a

(ax−M) dF (x). (2.6)
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Hence, according to the expected value principle, we can conclude that the rein-

surance premium is

PR = (1 + θR)E (XR) = (1 + θR)

(
(1 − a)E(X) +

∫ ∞

M
a

(ax−M) dF (x)

)
,

and the insurance premium is equal to

PI = (1 + θI)E (X) − PR.

The underlying insurance concept is that the total premium from both the ceding

company and the reinsurance company should equal the total expected loss with a

certain margin. This is also known as the expected value principle.

Additionally, note that

PI

a

=
(1 + θI)E (X) − (1 + θR)

(
(1 − a)E(X) +

∫∞
M
a

(ax−M) dF (x)
)

a

= (1 + θR)E(X) −
(θR − θI)E(X) + (1 + θR)

∫∞
M
a

(ax−M) dF (x)

a
,

and

PR

1 − a

=
(1 + θR)

(
(1 − a)E(X) +

∫∞
M
a

(ax−M) dF (x)
)

1 − a

= (1 + θR)E(X) +
(1 + θR)

∫∞
M
a

(ax−M) dF (x)

1 − a
.

Because the reinsurance loading is greater than the insurance loading, θR > θI,

we conclude that
PI

a
<

PR

1 − a
.
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Hence, the joint survival probably of both parties, Prjoint(a,M), is expressed as

Prjoint(a,M)

= Pr{XI ≤ PI ,XR ≤ PR}

= Pr{aX ∧M ≤ PI ,X − (aX ∧M) ≤ PR}

= Pr{aX ≤M}Pr{aX ∧M ≤ PI ,X − (aX ∧M) ≤ PR|aX ≤M}

+Pr{aX > M}Pr{aX ∧M ≤ PI ,X − (aX ∧M) ≤ PR|aX > M}

= Pr{aX ≤M}Pr{aX ≤ PI , (1 − a)X ≤ PR|aX ≤M}

+Pr{aX > M}Pr{M ≤ PI ,X − M ≤ PR|aX > M}

= Pr{aX ≤M}Pr{X ≤ PI

a
,X ≤ PR

1 − a
|aX ≤M}

+Pr{aX > M}Pr{M ≤ PI ,X ≤ M + PR|aX > M}

= Pr{aX ≤M}Pr{X ≤ PI

a
|aX ≤M}

+Pr{aX > M}Pr{M ≤ PI}Pr{X ≤ M + PR|aX > M}

= Pr{X ≤ PI

a
, aX ≤M} + Pr{M ≤ PI}Pr{X ≤M + PR, aX > M}

= Pr{X ≤ PI

a
,X ≤ M

a
} + Pr{M ≤ PI}Pr{M

a
< X ≤M + PR}

= I{M≤PI}

(
Pr{X ≤ M

a
} + Pr{M

a
< X ≤M + PR}

)
+ I{M>PI} Pr{X ≤ PI

a
}

= I{M≤PI} Pr{X ≤M + PR} + I{M>PI} Pr{X ≤ PI

a
}. (2.7)

It can be rewritten as

Prjoint(a,M) =





F (M + PR) when M ≤ PI ,

F
(

PI

a

)
when M > PI .

�
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2.3.2 Optimal Quota-share and Retention Limits

Prior to the determination of the optimal quota-share a and retention limit M to

maximize the joint survival probability of both companies, various properties of the

extremum are worthy of review.

Lemma 2.3.2 If f(x, y) is a two-dimensional function with a relative extremum at a

point (x0, y0), and has continuous partial derivatives at this point, then f ′
x(x0, y0) = 0

and f ′
y(x0, y0) = 0. The second partial derivatives test classifies the point as a local

maximum or relative minimum.

Let A = f ′′
xx(x0, y0), B = f ′′

xy(x0, y0), C = f ′′
yy(x0, y0) and ∆ = B2 −AC. Then,

(1) If ∆ < 0 and A > 0, the point is a relative minimum.

(2) If ∆ < 0 and A < 0, the point is a relative maximum.

(3) If ∆ > 0, the point is a saddle point.

(4) If ∆ = 0, higher order tests must be used. �

Lemma 2.3.3 The formula set for the partial derivatives of the integral part in the

premium is
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∂
∫∞

M
a

(ax−M) dF (x)

∂M
=

∫ ∞

M
a

−1dF (x) − 1

a
(ax−M) f(x)|x=M

a

= −
(

1 − F (
M

a
)

)
,

∂2
∫∞

M
a

(ax−M) dF (x)

∂M2
=

∂F (M
a

)

∂M
=

1

a
f(
M

a
),

∂2
∫∞

M
a

(ax−M) dF (x)

∂a∂M
=

∂F (M
a

)

∂a
= −M

a2
f(
M

a
),

∂
∫∞

M
a

(ax−M) dF (x)

∂a
=

∫ ∞

M
a

xdF (X) +
M

a2
(ax−M) f(x)|x=M

a
=

∫ ∞

M
a

xdF (X),

∂2
∫∞

M
a

(ax−M) dF (x)

∂a2
=

∂

∂a

∫ ∞

M
a

xdF (X) =
M

a2
xf(x)|x=M

a
=
M2

a3
f(
M

a
).

�

These formulas will be used in subsequent chapters.

Lemma 2.3.4 Let f(a,M) be a general continuous bivariate function with a ∈ R+

and M ∈ R+. If for any fixed M , f(a,M) is a unimodal function with respect to

a and f(â,M) = maxa f(a,M); and for any fixed a, f(a,M) is a unimodal function

with respect to M and f(a, M̂) = maxM f(a,M); then f(â, M̂ ) = maxa,M f(a,M).

Proof: For ∀a,∀M , there is

f(a,M) ≤ f(a, M̂) ≤ f(â, M̂) and f(a,M) ≤ f(â,M) ≤ f(â, M̂ ),

hence f(a,M) ≤ f(â, M̂).

�
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Given the above three lemmas, the optimization of the retention level and quota-

share by derivation to get the extremum follows. However, due to the specialty of

premium relationship, there exists a resourceful way to achieve the goals.

Theorem 2.3.1 If the condition

min
a
G1

(
a, aF−1

(
θR

1 + θR

))
< (1 + θI)E (X) (2.8)

holds, then the maximum of the joint survival probability of the ceding company and

the reinsurance company can be achieved when the quota-share level a and retention

limit M satisfy

M + PR = (1 + θI)E (X) , (2.9)

where

G1(a,M) = M + PR.

If condition (2.8) does not hold, the maximum of the joint survival probability is

achieved for the largest possible M satisfying

(θR − θI)E (X) = (1 + θR)M

(
1 − F (

M

a
)

)
. (2.10)

This set of (â, M̂) also satisfies

1 − F (
M

a
) − 2

M

a
f(
M

a
) < 0,

and

0 < PI < M.

Proof: From Lemma 2.3.1, recalling the expected value principle,

PI + PR = (1 + θI)E(X),
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the following exists

Prjoint(a,M) =





F (M + PR) when M ≤ PI

F
(

PI

a

)
when M > PI

=





F (M + PR) when M ≤ (1 + θI)E (X) − PR

F
(

(1+θI)E(X)−PR

a

)
when M > (1 + θI)E (X) − PR

=





F (M + PR) when M + PR ≤ (1 + θI)E (X)

F
(

(1+θI)E(X)−PR

a

)
when (1 + θI)E (X) − PR < M.

Since the cumulative distribution function is monotone-increasing and right-continuous,

we can conclude that the maximum of joint survival probability exists. The maxi-

mum value is less than or equal to F ((1 + θI)E (X)) or F
(

M
a

)
, whichever is greater.

It depends on the relationship of M + PR and (1 + θI)E (X). A further detailed

discussion follows.

Let G1(a,M) = M + PR. From Lemma 2.3.3, recalling lemma 2.3.2, we have the

following equations

∂G1(a,M)

∂M
= 1 − (1 + θR)

(
1 − F (

M

a
)

)
= (1 + θR)F (

M

a
) − θR,

∂G1(a,M)

∂a
= (1 + θR)

(∫ ∞

M
a

xdF (X) − E(X)

)
= −(1 + θR)

∫ M
a

0

xdF (X) < 0,

A =
∂2G1(a,M)

∂M2
= (1 + θR)

1

a
f(
M

a
) > 0,

B =
∂2G1(a,M)

∂a∂M
= −(1 + θR)

M

a2
f(
M

a
) < 0,

C =
∂2G1(a,M)

∂a2
= (1 + θR)

M2

a3
f(
M

a
) > 0,

and

∆ = B2 −AC = 0.
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Hence, with respect to a, the function G1(a,M) is a monotonically-decreasing

convex function. When a has its smallest possible value, the functionG1(a,M) attains

its maximum. With respect to M , G1(a,M) is a convex function, which attains its

minimum when

F (
M

a
) =

θR

1 + θR
.

The global maximum requires further discussion.

Given that (1 + θI)E(X) is not related to a and M , the relationship of G1(a,M)

and (1 + θI)E(X) has two cases, which can be expressed as provided in Figure 2.3.

Figure 2.3: Function G1(a,M)

Let

G2(a,M) =
(1 + θI)E (X) − PR

a

=
(θI − θR)E (X) − (1 + θR)

∫∞
M
a

(ax−M) dF (x)

a
+ (1 + θR)E(X).
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Similarly, from Lemma 2.3.3, recalling Lemma 2.3.2, the following equations are

presented

∂G2(a,M)

∂M
=

(1 + θR)

a

(
1 − F (

M

a
)

)
> 0,

∂G2(a,M)

∂a
=

−(1 + θR)
∫∞

M
a
xdF (X)

a

−
(θI − θR)E (X) − (1 + θR)

∫∞
M
a

(ax−M) dF (x)

a2

=
(θR − θI)E (X) − (1 + θR)M

(
1 − F (M

a
)
)

a2
,

A =
∂2G2(a,M)

∂M2
= −(1 + θR)

a2
f(
M

a
) < 0,

B =
∂2G2(a,M)

∂a∂M
=

(1 + θR)M

a3
f(
M

a
) − (1 + θR)

a2

(
1 − F (

M

a
)

)
,

C =
∂2G2(a,M)

∂a2

= 2
(1 + θR)M

(
1 − F (M

a
)
)
− (θR − θI)E (X)

a3
−

(1 + θR)M2f(M
a

)

a4
,
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and the extremum indicator is

∆ = B2 −AC

=

(
(1 + θR)M

a3
f(
M

a
) − (1 + θR)

a2

(
1 − F (

M

a
)

))2

+2
(1 + θR)

a2
f(
M

a
)
(1 + θR)M

(
1 − F (M

a
)
)
− (θR − θI)E (X)

a3

−(1 + θR)

a2
f(
M

a
)
(1 + θR)M2f(M

a
)

a4

=
(1 + θR)2M2

a6
f2(

M

a
) − 2

(1 + θR)2M

a5
f(
M

a
)

(
1 − F (

M

a
)

)

+
(1 + θR)2

a4

(
1 − F (

M

a
)

)2

+2
(1 + θR)2M

(
1 − F (M

a
)
)

a5
f(
M

a
) − 2

(1 + θR)

a2
f(
M

a
)
(θR − θI)E (X)

a3

−(1 + θR)2M2

a6
f2(

M

a
)

=
(1 + θR)2

a4

(
1 − F (

M

a
)

)2

− 2
(1 + θR)(θR − θI)E (X)

a5
f(
M

a
).

Hence, with respect to M , the function G2(a,M) is a monotonically-increasing

concave function. The maximum G2(a,M) attains when M has the largest possible

value. With respect to a, the function G2(a,M) is a concave function, which attains

its maximum when

(θR − θI)E (X) = (1 + θR)M

(
1 − F (

M

a
)

)
.

When the above condition is satisfied, the second derivative with respect to a is

negative because

C = −
(1 + θR)M2f(M

a
)

a4
< 0.
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The premium after reinsurance is

PI = (1 + θI)E (X) − (1 + θR)

(
(1 − a)E(X) +

∫ ∞

M
a

(ax−M) dF (x)

)

= (θI − θR + a(1 + θR))E(X) − (1 + θR)a

∫ ∞

M
a

xdF (x)

+M(1 + θR)

(
1 − F (

M

a
)

)

= a(1 + θR)E(X) − (1 + θR)a

∫ ∞

M
a

xdF (x)

= a(1 + θR)

∫ M
a

0

xdF (x)

> 0,

which indicates that the net premium for the ceding company is always positive.

The extremum indicator is

∆ =
(1 + θR)2

a4

(
1 − F (

M

a
)

)2

− 2
(1 + θR)(1 + θR)M

(
1 − F (M

a
)
)

a5
f(
M

a
)

=
(1 + θR)2

a4

(
1 − F (

M

a
)

)(
1 − F (

M

a
) − 2

M

a
f(
M

a
)

)
,

and

G2(a,M) =
(θI − θR)E (X) − (1 + θR)

∫∞
M
a

(ax−M) dF (x)

a
+ (1 + θR)E(X)

=
(θI − θR)E (X) − (1 + θR)a

∫∞
M
a
xdF (x) +M(1 + θR)

∫∞
M
a
dF (x)

a

+(1 + θR)E(X)

= (1 + θR)E(X) − (1 + θR)

∫ ∞

M
a

xdF (x)

= (1 + θR)

∫ M
a

0

xdF (x).
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Now a discussion of the two situations is given case-by-case.

Case I: If the distribution of the specific claim amount satisfies Case I, which

implies that

minG1

(
a, aF−1

(
θR

1 + θR

))
< (1 + θI)E (X) ,

the answer to the maximum of the joint survival probability is fairly simple. It is

necessary to find a and M that satisfy

M + PR = (1 + θI)E (X) .

Under this condition, G1(a,M) = (1 + θI)E(X). Also, recall that the cedent does

not profit from ceding all the losses, which means θR > θI , and thus G2(a,M) is

always less than G1(a,M).

The maximum of joint survival probability for both companies is

F (G1(a,M)) = F ((1 + θI)E (X)) .

This condition is equal to PI = M , i.e., the insurance premium after reinsurance will

always be positive and equal to the retention limit.

Case II: In this situation, to achieve the maximum of the joint survival probability

of two companies, the largest possible M must satisfy

(θR − θI)E (X) = (1 + θR)M

(
1 − F (

M

a
)

)

according to the specified claim distribution.

Since 0 < PI = (1+θI)E(X)−PR < M , the retention limitM and the quota-share

a should satisfy

M > a(1 + θR)

∫ M
a

0

xdF (x).
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On the other hand, since ∆ < 0, the retention limit M and the quota-share a should

also satisfy

1 − F (
M

a
) − 2

M

a
f(
M

a
) < 0.

When the above-referenced criteria can be satisfied, the maximum joint survival

probability is F (G2(a,M)) . �

2.4 Examples

As the optimal quota-share level a and retention limitM are dependent of the specific

claim size distributions, exponential and Pareto claims are utilized here as examples.

This section first discusses the properties of each claim size distribution. Because these

distributions are employed throughout later chapters, this endeavor is significant.

Using these properties, the special models are constructed according to the claim

distribution, and finally the numbers are inserted into the model to indicate the

numerical results. The results are illustrated to display the intuitive view.

2.4.1 Optimal Retention with Exponential Claims

Let us begin with the exponential distribution. Supposing the average claim size is

β, we have the following expressions:
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f(x) =
1

β
e−

x
β ,

1 − F (
M

a
) = e−

M
aβ ,

1 − F (
M

a
) − 2

M

a
f(
M

a
) = e−

M
aβ (1 − 2M

aβ
),

∫ ∞

M
a

(ax−M)
1

β
e−

x
β dx = aβe−

M
aβ ,

E(X) =

∫ ∞

0

x
1

β
e−

x
β dx = β,

F ((1 + θI)E (X)) = 1 − e−(1+θI),

PR = (1 + θR)β
(
1 − a(1 − e−

M
aβ )
)
,

PI = β
(
θI − θR + a

(
1 − e−

M
aβ

)
(1 + θR)

)
,

G1(a,M) = M + (1 + θR)β
(
1 − a(1 − e−

M
aβ )
)
,

G2(a,M) = β (1 + θR)
(
1 − e−

M
aβ

)
− β (θR − θI)

a
.

From Figure 2.3, the minimum G1(a,M) is achieved when

1 − F (
M

a
) =

1

1 + θR
,

which is

e−
M
aβ =

1

1 + θR
.

The function G1(a,M) can be rewritten as

G1(a,M)

= M + (1 + θR)β
(
1 − a(1 − e−

M
aβ )
)

= aβ ln(1 + θR) + (1 + θR)β

(
1 − a

θR

1 + θR

)

= β (ln(1 + θR) − θR) a+ (1 + θR)β.
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For Case I to be true, it implies

min(G1(a)) < (1 + θI)E(X).

Note that in this case

ln(1 + θR) − θR < 0,

and also recall that when the quota-share a falls between 0 and 1, we should take

a = 1. With future calculations, the loading factors of cedent and reinsurer should

satisfy that

ln(1 + θR) < θI < θR.

Here, the quota-share a and retention limit M should satisfy PI = M , which is

aβ
(
1 − e−

M
aβ

)
(1 + θR) −M = (θR − θI) β,

to maximize the joint survival probability for both companies.

Let claims have average sizes of 100 and let the reinsurance loading be 20%.

Since ln(1.2) = 0.182, for Case I, we take insurance security loading as 19%. The

combinations of all qualified quota-share a and retention levelM are shown in Figure

2.4.
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Figure 2.4: Combination of Qualified a and M for Exponential Claims

Any combination of the quota-share a and stop-loss M in the curve yields the

same maximized joint survival probability. This line is identified as the “indifference

line”. The maximum joint survival probability for both companies is

F ((1 + θI)E (X)) = 1 − e−(1+θI) = 69.58%.

From Figure 2.4, note that, for a given quota-share level a, there exists two re-

tention limits of M . We might ask:“which one is better?” Both Ms are indifferent to

the counterparts as a whole. However, the ceding company tends to choose a smaller

M to avoid potential losses, while the reinsurer tends to choose a higher M to avoid

potential losses.

Take a = 0.8 for example. The corresponding retention level M can be 22.87 or

6.58 as noted in Table 2.1.
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Table 2.1: “Indifference Line” Comparison for Exponential Claims

M PI PR Pr (XI < PI ) Pr (XR < PR)

22.87 22.87 96.13 81.32% 76.94%

6.58 6.58 112.42 92.73% 71.95%

Case II provides the scenario of ln(1 + θR) > θI. In the following equation, M is

the largest value that satisfies

(θR − θI)E(X) = (1 + θR)M(1 − F (
M

a
)),

which can be rewritten as

(θR − θI)β = (1 + θR)Me−
M
aβ .

Also to make 1 − F (M
a

) − 2M
a
f(M

a
) < 0, it requires that a < 2M

β
; and

0 < PI = (1 + θI)E(X) − PR < M

can be rewritten as

0 <
(θR − θI)M

(1 + θR)M − (θR − θI)β
< a <

M2 + (θR − θI)Mβ

(1 + θR)Mβ − (θR − θI)β2
< 1.
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See below Figure 2.5 with θI = 18% .

Figure 2.5: Exponential Distribution - Case II

The red line is

a =
(θR − θI)M

(1 + θR)M − (θR − θI)β
;

the green line is

a =
M2 + (θR − θI)Mβ

(1 + θR)Mβ − (θR − θI)β2
;

the black line is

a =
2M

β
;

and the yellow line is

a =
M

β ln (1+θR)M
(θR−θI)β

.

Hence, the optimal quota-share level is a = 0.054957 and the optimal retention

level is M = 2.74787. �
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2.4.2 Optimal Retention with Pareto Claims

A heavy-tailed claim is next for consideration — a Pareto distribution with parameters

k and β. The assumption is that the claim amount distribution has a finite mean,

variance, skewness, and excess kurtosis, which results in k > 4.

The following is the results for the Pareto distribution.

f(x) =
kβk

(x+ β)
k+1

,

1 − F (
M

a
) =

(
aβ

M + aβ

)k

,

1 − F (
M

a
) − 2

M

a
f(
M

a
) =

(
aβ

M + aβ

)k

− 2

(
aβ

M + aβ

)k
kM

(M + aβ)
,

∫ ∞

M
a

(ax−M)
kβk

(x+ β)k+1
dx =

aβ

k − 1

(
aβ

M + aβ

)k−1

,

E(X) =
β

k − 1
,

F ((1 + θI)E(X)) = 1 −
(
k − 1

θI + k

)k

,

and

PR = (1 + θR)
β

k − 1
− (1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)
,

PI = (θI − θR)
β

k − 1
+ (1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)
,

G1(a,M) = M + (1 + θR)
β

k − 1
− (1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)
,

G2(a,M) = (θI − θR)
β

a (k − 1)
+ (1 + θR)

β

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)
.
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From Figure 2.3, the minimum of G1(a,M) is attained when

1 − F (
M

a
) =

1

1 + θR
,

or (
aβ

M + aβ

)k

=
1

1 + θR
.

G1(a,M) is rewritten as

G1(a,M)

= M + (1 + θR)
β

k − 1
− (1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)

= aβ (1 + θR)
1
k − aβ + (1 + θR)

β

k − 1
− (1 + θR)

aβ

k − 1
+ (1 + θR)

aβ

k − 1
(1 + θR)−1+ 1

k

= aβ (1 + θR)
1
k (1 +

1

k − 1
) − aβ + (1 + θR)

β

k − 1
− (1 + θR)

aβ

k − 1

=
β

k − 1
ka (1 + θR)

1
k +

β

k − 1
(1 − ak) +

β

k − 1
(1 − a) θR

= β
1 + θR

k − 1
+

β

k − 1

(
k (1 + θR)

1
k − k − θR

)
a.

Because the quota-share a is between 0 and 1, recall that k > 1, we have

k (1 + θR)
1
k − k − θR < 0.

In order to qualify for Case I criteria which implies min(G1(a)) < (1 + θI)E(X), the

loading factors of the cedent and reinsurer should satisfy

k (1 + θR)
1
k − k < θI < θR.

In this case, the quota-share level a and retention limit M should satisfy PI = M ,

which is

(θI − θR)
β

k − 1
+ (1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)

= M,
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to maximize the joint survival probability for both companies.

To further study this Pareto distribution, a numerical example is helpful. To

compare it to the above-referenced, exponentially distributed claim, requires the as-

sumption that both share an identical mean, i.e., the average of the claim size is equal

under both distributions. Additionally, the security loadings are assumed to be equal.

Let the claim have an average size of 100, k = 5, β = 400, and the reinsurance

loading be 20%. Since 5 (1 + 0.2)
1
5 − 5 = 0.186, for Case I, we also take insurance

security loading to be 19%. The maximum joint survival probability for both com-

panies is 72.8%. Figure 2.6 illustrates the combinations of all qualified quota-share a

and retention level M for both Pareto and exponential claim distributions.

Figure 2.6: Exponential Distribution Vs. Pareto Distribution
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From Figure 2.6, we can see that for any given retention level M , exponential

distribution tends to select the smaller quota share a, i.e., it uses less reinsurance

than Pareto distribution. It is given that both claim distributions have the same

expected value. Consider a mixed exponential distribution and the 2-exponential

distribution to explain this situation further.

Here, the density function of the mixed exponential distribution is

f(x) = qµ1e
− x

µ1 + (1 − q)µ2e
− x

µ2

where q is the weight. For a mixed exponential claim with the mean as 100, the

equation (2.9) becomes

(1 + θI)100 − (1 + θR)
(
(1 − a)100 + qaµ1e

− M
aµ1 + (1 − q)aµ2e

− M
aµ2

)
= M,

where qµ1 + (1 − q)µ2 = 100.

The hypoexponential distribution is the sum of two independent exponential dis-

tributed random variables with different parameters (X = X1 + X2). The density

function is

f(x) =

∫ x

0

f1(x− y)f2(y)dy =

∫ x

0

1

µ1
e−(x−y)/µ1

1

µ2
e−y/µ2dy =

e
− x

µ1 − e
− 1

µ2
x

µ1 − µ2
,

where µ1 and µ2 are the average sizes of the two exponential distributions X1 and

X2 respectively, and µ1 6= µ2. This distribution has the mean of µ1 + µ2, and the

variance is µ2
1 + µ2

2. Note that if µ1 = µ2, this distribution is a gamma distribution

with density function f(x) = x
µ2

1
e
− x

µ1 . For a mixed exponential claim with the mean

as 100, the equation (2.9) becomes

(1 + θI)100 = M + (1 + θR)

(
(1 − a)100 +

a

µ1 − µ2

(
µ2

1e
− M

aµ1 − µ2
2e

− M
aµ2

))
,

where µ1 + µ2 = 100.
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Figure 2.7: Mixed Exponential Distribution Vs. Pareto Distribution

As the standard deviation increases, the claim volatility increases, and there is a

higher probability of incurring the higher amount claim, which affects the reinsurance

company. To reduce the liability of the reinsurer and to ensure both companies

survive, the optimal treaty should shift the claim to the ceding company to lower the

larger claims that have to be absorbed by the reinsurer. This is indicated in Figure

2.7 and Table 2.2.

Table 2.2: Means and Standard Deviations of the Distributions

Color Distribution Mean Stand Deviation

purple hypoexponential 90 + 10 = 100 91

black Exponential 1 × 100 = 100 100

green Mixed Exp 1 0.3 × 170 + 0.7 × 70 = 100 119

red Pareto 100 129

blue Mixed Exp 2 0.4 × 175 + 0.6 × 50 = 100 132
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If k (1 + θR)
1
k − k > θI, we will consider this scenario as Case II.

Now, M is the largest one that satisfies

(θR − θI)E(X) = (1 + θR)M(1 − F (
M

a
)),

which can be rewritten as

(θR − θI)
β

k − 1
= (1 + θR)M

(
aβ

M + aβ

)k

.

To ensure 1 − F (M
a

) − 2M
a
f(M

a
) < 0, we need to have M + aβ < 2kM and

0 < PI = (1 + θI)E(X) − PR < M

can be rewritten as

(θR − θI)

(1 + θR)
< a

(
1 −

(
aβ

M + aβ

)k−1
)
<

k − 1

(1 + θR)β
M +

(θR − θI)

(1 + θR)
.

Figure 2.8 employs θI = 18% as the exponential distribution discussed previously

.

The red line is
(θR − θI)

(1 + θR)
= a

(
1 −

(
aβ

M + aβ

)k−1
)

;

the black line is

M + aβ = 2kM ;

and the yellow line is

(θR − θI)
β

k − 1
= (1 + θR)M

(
aβ

M + aβ

)k

.

Here, PI is strictly less than M , so not present is line

a

(
1 −

(
aβ

M + aβ

)k−1
)

=
k − 1

(1 + θR)β
M +

(θR − θI)

(1 + θR)
.
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Figure 2.8: Pareto Distribution - Case II

The optimal quota-share level is a = 0.063507 and the retention level is M =

2.8225. �
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Chapter 3

A Fair Optimal Retention for

Insurers and Reinsurers by

Maximizing the Lower Bound of

the Joint Survival Probability and

the Bivariate Translated Gamma

Approximation

3.1 Motivations

Chapter 2 discusses properties of the reinsurance treaty for the ceding company and

the reinsurance company under the single period case. Chapter 3 expands the research
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to the multi-period aggregate claims. Here we consider

SI =
N∑

i=1

XIi =
N∑

i=1

min(aXi,M),

as the claims retained by the ceding company, and

SR =

N∑

j=1

XRj =

N∑

j=1

(Xj − min(aXj,M)) ,

as the claims ceded to the reinsurer.

Using the previous notations, the premiums PI and PR in the joint survival prob-

ability

Pr {SI ≤ PI , SR ≤ PR} ,

are expressed as

PR = E(N)(1 + θR)E [X − (aX ∧M)]

= E(N)(1 + θR)

(
(1 − a)E(X) +

∫ ∞

M
a

(ax−M) dF (x)

)

which is the reinsurance premium, and

PI = E(N) ((1 + θI)E (X) − (1 + θR)E [X − (aX ∧M)])

= E(N)(1 + θI)E (X) −E(N)(1 + θR)

(
(1 − a)E(X) +

∫ ∞

M
a

(ax−M) dF (x)

)

which is the premium after reinsurance.

It is a challenge to calculate the joint survival probability of SI and SR. Thus, it

is not feasible to determine the optimal a and M by maximizing the joint survival

probability directly. However, using the properties of associated random variables, a

lower bound L(a,M) is derived for the joint survival probability, namely

Pr {SI ≤ PI , SR ≤ PR} ≥ L(a,M).
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Then we can determine the optimal a and M by maximizing the lower bound. This

idea is equivalent to minimizing the upper bound of the corresponding ruin probabil-

ity. This method is considered in sections 3.2 and 3.3 of this chapter.

Another commonly used method for the study of distribution functions is approx-

imation. As for the distribution of SI or SR, a simple method is to use the normal

approximation to the distribution of SI or SR. However, because the normal distri-

bution is symmetric and the distribution of aggregate claims is often skewed, it is

well known in actuarial literature that an efficient approximation to the distribution

of SI or SR is the translated gamma distribution, which has a positive third central

moment, as do the compound Poisson distributions with positive claim amounts. A

more difficult question than calculating the distribution of SI or SR is to calculate

the joint distribution of SI and SR. We may use a simple bivariate normal distribu-

tion approximation to the joint distribution of SI and SR. However, similar to the

univariate case, the bivariate normal distribution approximation is not sound for the

joint distribution of SI and SR.

In sections 3.4 through to 3.6 of this chapter, we will develop a translated bivariate

gamma approximation to the joint distribution of SI and SR. The distribution param-

eters are selected by equating the covariance, first moment, second and third central

moments of (SI , SR) with the corresponding characteristics of the translated bivariate

gamma distributions. Then, we use the translated bivariate gamma approximation

to determine the optimal retention levels a and M .
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3.2 Association of Aggregate Claims of Cedent and

Reinsurer

To derive a lower bound for the joint survival probability, we first recall the definitions

and properties of associated random variables. In this chapter, increasing is defined

as non-decreasing and a multivariate function is said to be increasing if the function

is increasing in each argument.

Definition: Random variables T1, ..., Tn are said to be associated if

Cov[f(T1, ..., Tn), g(T1, ..., Tn)] ≥ 0

for all increasing functions f and g for which E[f(T1, ..., Tn)], E[g(T1, ..., Tn)], and

E[f(T1, ..., Tn)g(T1, ..., Tn)] exist.

This concept of association is introduced in Esary, et al (1967). The concept

is executed in many applied probability and statistics studies. In particular, many

interesting probability inequalities or bounds for distribution functions are derived

for associated random variables.

The following Lemma identifies several important properties of associated ran-

dom variables, which will be used to derive the lower bound for the joint survival

probability.

Lemma 3.2.1 Association has the following properties:

1. Any subset of associated random variables is associated.

2. If two sets of associated random variables are independent of one another, then

their union is a set of associated random variables.
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3. The set consisting of a single random variable is associated.

4. Increasing functions of associated random variables are associated.

5. Independent random variables are associated.

Proof: The proofs of (1)-(4) are given in (P1)-(P4) of Esary, et al (1967), and the

proof of (5) is proved in Theorem 2.1 of Esary, et al (1967). �

The following lemma identifies lower bounds for the joint distribution function

and joint survival function of associated random variables.

Lemma 3.2.2 Let T1, ..., Tn be associated random variables and fi, i = 1, ..., k, be

increasing functions. Then,

Pr{f1(T1, ..., Tn) ≤ t1, ..., fk(T1, ..., Tn) ≤ tk} ≥
k∏

i=1

Pr{fi(T1, ..., Tn) ≤ ti}

and

Pr{f1(T1, ..., Tn) > t1, ..., fk(T1, ..., Tn) > tk} ≥
k∏

i=1

Pr{fi(T1, ..., Tn) > ti}

for all t1, ..., tk.

Proof: The proof is given in Theorem 5.1 of Esary, et al (1967). �

At this point, we are ready to derive the lower bound for the joint survival prob-

ability Pr{SI ≤ PI , SR ≤ PR}.

Theorem 3.1.1 For any 0 < a ≤ 1 and M > 0, the random sums SI and SR are

associated. Thus, the joint survival probability Pr{SI ≤ PI , SR ≤ PR} satisfies

Pr{SI ≤ PI , SR ≤ PR} ≥ Pr{SI ≤ PI}Pr{SR ≤ PR}.
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Proof: First, we notice that for any n = 1, 2, ..., the functions h(x1, ..., xn) =
∑n

i=1 min(axi,M) and l(x1, ..., xn) =
∑n

i=1(xi − min(axi,M)) are nondecreasing.

Thus,
∑n

i=1 min(aXi,M) and
∑n

j=1 (Xj −min(aXj,M)) are associated sinceX1, ...,Xn

are independent and Lemma 3.2.1 (4) and (5). Then, for any nondecreasing function

f and g, we have

E[f(SI)g(SR)]

=
∞∑

n=0

E
[
f
( n∑

i=1

min(aXi,M)
)
g
( n∑

j=1

(Xj − min(aXj ,M))
)]

Pr{N = n}

≥
∞∑

n=0

E
[
f
( n∑

i=1

min(aXi,M)
)]
E
[
g
( n∑

j=1

(Xj − min(aXj ,M))
)]

Pr{N = n}

= E
[
f1(N)g1(N)

]
,

where the inequality follows from the association of
∑n

i=1 min(aXi,M) and
∑n

j=1 (Xj − min(aXj,M)), the sequences f1 and g1 are defined as

f1(n) = E
[
f
( n∑

i=1

min(aXi,M)
)]
,

and

g1(n) = E
[
g
( n∑

j=1

(Xj − min(aXj,M))
)]
.

Clearly, both f1(n) and g1(n) are nondecreasing in n. Thus, by Lemma 3.2.1(3),

we get

E
[
f1(N)g1(N)

]
≥ E

[
f1(N)

]
E
[
g1(N)

]
.
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Note that

E
[
f1(N)

]

=
∞∑

n=0

E
[
f
( n∑

i=1

min(aXi,M)
)]

Pr{N = n}

= E
[
f
( N∑

i=1

min(aXi,M)
)]

= E[f(SI)],

and

E
[
g1(N)

]

= E
[
g
( n∑

j=1

(Xj − min(aXj,M))
)]

Pr{N = n}

= E
[
g
( N∑

j=1

(Xj − min(aXj,M))
)]

= E[g(SR)].

Hence,

E[f(SI)g(SR)] ≥ E[f(SI)]E[g(SR)],

which implies that SI and SR are associated. Thus, the lower bound for the joint

survival probability follows from Lemma 3.2.2. �
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3.3 The Fair Optimal Retention by Maximizing

Lower Bound of Joint Survival Probability

In the previous section, we derived the lower bound for the joint survival probability.

We denote the lower bound by L(a,M), namely,

L(a,M)

= Pr{SI ≤ PI}Pr{SR ≤ PR}

= Pr
{ N∑

i=1

min(aXi,M) ≤ PI

}
Pr
{ N∑

j=1

(Xj − min(aXj,M)) ≤ PR

}
.

Thus, we can determine the optimal a and M by maximizing the lower bound, which

is to find â and M̂ so that

L(â, M̂) = max
a,M

L(a,M).

One of the advantages of using this optimization criterion is that we can use the

available computational methods to compute the distributions of SI and SR, both of

which are compound distributions. In particular, when the claim sizes are integer-

valued and the distribution of the claim numberN belongs to the (a, b, 0) class, noting

that the parameter a here is different from the retention level a, Panjer recursion

formula is used to calculate the distributions of SI and SR for all possible retention

levels of a and M ; the optimal a and M is then selected from the calculations. This

procedure is illustrated in the following subsections by considering the excess-of-loss

reinsurance, namely the retention level a = 1.

In doing so, we assume that the claim size distribution F is defined on 0, 1, 2, ...,m

representing a multiple of a convenient monetary unit, namely, X, which has the
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following probability function

f(k) = Pr{X = k}, k = 0, 1, 2, ...,m

with
∑m

k=0 f(k) = 1.

We are interested in the retentions levels M satisfying 0 < M < m, meaning an

excess-of-loss reinsurance is employed and the insurer can not cede all the loss to the

reinsurer. Note that X ∧M is defined on 0, 1, 2, ...,M and its probability function is

p(k) = Pr{X ∧M = k} = Pr{X = k} = f(k), k = 0, 1, ...,M − 1,

and

p(M) = Pr{X ∧M = M} = Pr{X ≥M} = f(M) + · · · + f(m).

Furthermore, X − X ∧ M = (X − M)+ is defined on 0, 1, ...,m − M and its

probability function is

q(0) = Pr{(X −M)+ = 0} = Pr{X ≤M} = f(0) + · · · + f(M),

and

q(k) = Pr{(X −M)+ = k} = Pr{X = M + k} = f(M + k), k = 1, ...,m−M.

Thus, when the distribution of N belongs to the (a, b, 0) class, we can apply the

Panjer recursion formula to the probability functions of

Pr
{ N∑

i=1

min(Xi,M) ≤ PI

}
,

and

Pr
{ N∑

j=1

(Xj − min(Xj ,M)) ≤ PR

}
= Pr

{ N∑

j=1

(Xj −M)+ ≤ PR

}
,
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respectively, for all 0 < M < m and then find the optimal M which maximizes the

lower bound

L(1,M) = Pr
{ N∑

i=1

min(Xi,M) ≤ PI

}
Pr
{ N∑

j=1

(Xj −M)+ ≤ PR

}
.

As illustrations, we consider compound Poisson, compound binomial, and com-

pound negative binomial cases, respectively. Let us review the Panjer recursion for-

mula first.

Lemma 3.3.1 Consider a random sum of

S = X1 +X2 + · · · +XN ,

where X1,X2, ... are i.i.d. integer-valued nonnegative random variables with the same

probability function as X, and N is a counting random variable independent of

{X1,X2, ...}. Denote the probability functions of S, N , and X by

g(k) = Pr {S = k} , k = 0, 1, 2, · · · ,

h(k) = Pr {N = k} , k = 0, 1, 2, · · · ,

f(k) = Pr {X = k} , k = 0, 1, 2, · · · .

If the distribution of N is in the (a, b, 0) class, namely

h(k)

h(k − 1)
= a+ b

1

k
,

holds for k = 1, 2, ..., then the Panjer recursion formula is expressed as

g(k) =
1

1 − af(0)

k∑

j=1

(
a+

bj

k

)
f(j)g(k − j), k = 1, 2, 3, · · · , (3.1)

with

g(0) =
∞∑

n=0

fn(0) Pr(N = n) = P (f(0)), (3.2)
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where P (z) is the probability generating function of N . �

Thus, using Lemma 3.3.1, we can apply the Panjer recursive formula to calcu-

late Pr{SI ≤ PI} and Pr{SR ≤ PR}, respectively, and hence to obtain the value

L(1,M) = Pr{SI ≤ PI}Pr{SR ≤ PR} for all possible M . Finally, the optimal M can

be determined from these values.

Let us review several statistical properties of compound Poisson (CP), compound

binomial (CB), and compound negative binomial (CNB) distributions. The proba-

bility function of a Poisson random variable is

h(k) =
e−λλk

k!
,

where λ > 0 and k = 0, 1, 2, ....

The probability function of a binomial random variable is

h(k) =

(
n

k

)
ηk(1 − η)n−k,

where 0 < η < 1 and k = 0, 1, ..., n.

The probability function of a negative binomial random variable is

h(k) =
Γ(r + k)

k!Γ(r)
ηr(1 − η)k,

where k = 0, 1, 2, · · · ; r = 1, 2, 3, · · · ; and 0 < η < 1.

Table 3.1 further summarizes other statistical properties for the three compound

models.
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Table 3.1: Summary of Compound Poisson (CP), Compound Binomial (CB) and

Compound Negative Binomial (CNB) Models

CP CB CNB

h(k) e−λλk

k!

(
n
k

)
ηk(1 − η)n−k Γ(r+k)

k!Γ(r)
ηr(1 − η)k

h(k)
h(k−1)

0 + λ 1
k

− η
1−η

+ (n+1)η
1−η

1
k

(1 − η) + (r − 1)(1 − η) 1
k

a 0 − η
1−η

(1 − η)

b λ (n+1)η
1−η

b = (r − 1)(1 − η)

P (z) eλ(z−1) (1 − η + ηz)
n

(
η

1−(1−η)z

)r

E(N) λ nη r(1−η)
η

var(N) λ nη(1 − η) r(1−η)
η2

3.3.1 Bounded Claims

The first example considers a discrete uniform distribution claim. Let the probability

function of X satisfy,

f(k) =
1

m+ 1
, k = 0, 1, ...,m.

Thus, the probability functions of X ∧M and (X −M)+ can be expressed as

p(k) =
1

m+ 1
, k = 0, 1, · · · ,M − 1,

with

p(M) =
m+ 1 −M

m+ 1
;

and

q(k) =
1

m+ 1
, k = 1, · · · ,m−M,

with

q(0) =
M + 1

m+ 1
.
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In conclusion,

E [X] =
m

2
,

and

E [X − (X ∧M)] =
(m+ 1 −M)(m−M)

2(m+ 1)
.

Further, the premiums for the cedent and reinsurer are

PR = E[N ](1 + θR)E [X − (X ∧M)] ,

and

PI = E[N ](1 + θI)E [X] − PR.

The lower bound for the joint survival probability for the excess-of-loss reinsurance

is

L(1,M) = Pr{SI ≤ PI}Pr{SR ≤ PR} =

int(PI)∑

k=0

gI(k)

int(PR)∑

k=0

gR(k),

where int() rounds a number down to the nearest integer.

With respect to the numerical examples, select the same security loadings of θI =

0.1 for the ceding company and θR = 0.2 for the reinsurer as in the previous examples.

Moreover, let the claim frequency be 100, i.e., λ = 100 for the compound Poisson

model; n = 200, η = 0.5 for the compound binomial model; and r = 100, η = 0.5 for

the compound negative binomial model.

Table 3.2 provides the maximum of the lower bound of joint survival probability

with respect to different values of m. From the table, we can see that the compound

negative binomial model has the largest optimal retention level, the compound bino-

mial model has the smallest retention level, and the retention level for the compound

Poisson model is between the compound negative binomial model and the compound

binomial model. This suggests that for heavier tails, to maximize the lower bound
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Table 3.2: Optimal Excess-of-loss Retentions with Discrete Uniform Distribution

Claims

CB CP CNB

m = 99 E[X] = 49.5

maxL 72.967% 66.413% 59.636%

Optimal M 59 60 64

m = 149 E[X] = 74.5

maxL 72.982% 66.414% 59.641%

Optimal M 89 90 94

m = 199 E[X] = 99.5

maxL 72.990% 66.415% 59.646%

Optimal M 115 120 125

of the joint survival probability, the optimal retention levels should be higher. The

ceding company assumes more responsibility and the reinsurer accepts less responsi-

bility. The claim volatility increases as the standard deviation increases, and there

is a higher probability of incurring the high amount claim affecting the reinsurance

company. To reduce the liability of the reinsurer and to ensure both companies sur-

vive, the optimal treaty should shift the claim to the ceding company to lower the

large claims that must be absorbed by the reinsurer. The same reason is found is the

examples provided in Chapter 2. Alternatively, compound negative binomial distri-

bution yields the severest claim, because it has the largest volatility. For this reason

it has the smallest lower bound for the joint survival probability.
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3.3.2 Unbounded Claims

Geometric Distribution

Unbounded claims are examined in this section. The first example we consider is

geometric distribution with parameter g. The probability function of claim size X

satisfies

f(k) = g(1 − g)k, k = 0, 1, 2, · · · .

Thus, the probability functions of X ∧M and (X −M)+ is expressed as

p(k) = g(1 − g)k, k = 0, 1, · · · ,M − 1,

with

p(M) = (1 − g)M ;

and

q(k) = g(1 − g)M+k, k = 1, 2, 3, · · ·

with

q(0) = 1 − (1 − g)M+1.

We can conclude that

E [X] =
1 − g

g
,

and

E [X − (X ∧M)] =
(1 − g)M+1

g
.
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Note that the claim sizes are unbounded in this case. The retention limit M can

be any level, namely M = 1, 2, ..... When we search for the optimal limit, we have

to calculate the lower bound of the joint survival probability for all possible limits

of M . However, it is not feasible to do such computations with an infinite number

of limits of M . Furthermore, if the retention limit M goes to infinity, the premium

received by the reinsurer is going to be zero, which is not interesting to the reinsurer.

Hence, for the unbounded claims, we are interested in all the possible limits of M so

that the reinsurance premium PR(M) is at least greater than a certain level. Thus,

the possible limits of M are finite and the computations are feasible.

To do so, we assume that the reinsurance premium satisfies PR(M) ≥ αPR(0)

for some 0 < α < 1, which is equivalent to assume E[(X −M)+] ≥ αE[X]. This

assumption means that the reinsurance premium should be greater than a certain

percentage of the expected total claims. In the following examples and computations,

we set α = 10%. In a geometric claim case, it implies M ≤ ln 0.1/ ln(1 − g). Thus,

using the same method for the discrete uniform distribution, we obtain the optimized

treaties under different scenarios in table 3.3. If the same constraint is applied on

the retention limit to the discrete uniform distribution, the information in table 3.2

is still valid.

Discrete Pareto Distribution

Krishna and Pundira (2008) introduced a discrete Pareto distribution and assumed

that the probability function of the discrete Pareto random variable X is defined as

Pr(X = x) =

(
β

x+ β

)k

−
(

β

x+ 1 + β

)k

, x = 0, 1, 2, · · · .
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Table 3.3: Optimal Excess-of-loss Retentions with Geometric Distribution Claims

CB CP CNB

g = 2/101 E[X] = 49.5

maxL 58.631% 55.180% 51.494%

Optimal M 72 74 76

g = 2/151 E[X] = 74.5

maxL 58.697% 55.225% 51.518%

Optimal M 108 112 114

g = 2/201 E[X] = 99.5

maxL 58.716% 55.235% 51.522%

Optimal M 144 150 155

Thus, the probability functions of X ∧M and (X −M)+ are expressed as

p(x) =

(
β

x+ β

)k

−
(

β

x+ 1 + β

)k

, x = 0, 1, · · · ,M − 1,

with

p(M) =

(
β

M + β

)k

;

and

q(x) =

(
β

M + x+ β

)k

−
(

β

M + 1 + x+ β

)k

, x = 1, 2, 3, · · ·

with

q(0) = 1 −
(

β

M + 1 + β

)k

.
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We can conclude that

E(X) =

(
β

1 + β

)k

−
(

β

1 + 1 + β

)k

+ 2

(
β

2 + β

)k

− 2

(
β

2 + 1 + β

)k

+ 3

(
β

3 + β

)k

− · · ·

=

(
β

1 + β

)k

+

(
β

2 + β

)k

+

(
β

3 + β

)k

+ ·

=

∞∑

n=1

(
β

n+ β

)k

= (−1)k 1

(k − 1)!
βkPsi (k − 1, 1 + β) ,

and

E [X − (X ∧M)] = (−1)
k 1

(k − 1)!
βkPsi (k − 1,M + 1 + β) .

Here Psi(n, x) is nth derivative of Psi function ψ (x) = d
dx

ln Γ (x), and gamma func-

tion is Γ(x) =
∫∞
0
e−ttx−1dt.

Using the pervious method, and let k = 5, we list the optimized treaties under

different scenarios in table 3.4.

60



Table 3.4: Optimal Excess-of-loss Retentions with Discrete Pareto Distribution

Claims

CB CP CNB

β = 200 E[X] = 49.5028

maxL 54.413% 54.266% 53.478%

Optimal M 94 136 226

β = 300 E[X] = 74.5014

maxL 54.266% 51.761% 48.967%

Optimal M 136 157 161

β = 400 E[X] = 99.5010

maxL 53.478% 51.232% 48.723%

Optimal M 226 305 307

Table 3.4 indicates that the ceding company must assume more responsibility

for heavy-tailed claims and that the lower bound of the joint survival probability

decreases as the claim severity increases.
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3.4 Bivariate Translated Gamma Distributions

From this section, we will develop a translated bivariate gamma approximation to

the joint distribution of (SI , SR).

Several forms of bivariate gamma distributions and their properties have received

extensive study. See Nadarajah et al. (2006(a), 2006(b)), Chou et al. (2005), Zhou

et al. (2005), and references therein.

This thesis uses the form promoted by Mathai and Moschopoulos (1991).

Definition: Let Vi ∼ G(αi, βi), i = 0, 1, 2, αi > 0, βi > 0, where Vi’s are

mutually independent, with density function being

g(x;αi, βi) =
xαi−1e−x/βi

βαi
i Γ(αi)

.

Let Zi = βi

β0
V0 + Vi, i = 1, 2. The density of (Z1, Z2) is a bivariate gamma density.

Note here, if Z1 represents the ceding company and Z2 represents the reinsurer,

V0 can be thought of as the common interest part between the partners.

Properties: The joint moment generating function of (Z1, Z2) is

M(t1, t2) = (1 − β1t1 − β2t2)
−α0(1 − β1t1)

−α1(1 − β2t2)
−α2.

The following properties can be obtained directly from the moment generating
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function:

E(Z1) =
∂M(t1, t2)

∂t1
|t1=t2=0 = β1 (α0 + α1) ;

E(Z2
1) =

∂2M(t1, t2)

∂t21
|t1=t2=0 = β2

1 (α0 + α1) (α0 + α1 + 1) ;

E(Z1Z2) =
∂2M(t1, t2)

∂t2∂t1
|t1=t2=0 = β1β2

(
α0 + α2

0 + α0α2 + α0α1 + α1α2

)
;

E(Z3
1) =

∂3M(t1, t2)

∂3t1
|t1=t2=0 = β3

1 (α0 + α1) (α0 + α1 + 1) (α0 + α1 + 2) .

Hence for i = 1, 2, we have the following equations

E(Zi) = βi (α0 + αi) ;

V ar(Zi) = E(Z2
i ) − E2(Zi) = β2

i (α0 + αi) ;

Cov(Z1, Z2) = E(Z1, Z2) − E(Z1)E(Z2) = α0β1β2;

µ3(Zi) = E(Z3
i ) − 3E(Z2

i )E(Zi) + 2E3(Zi) = 2β3
i (α0 + αi) .

Here, µ3(Zi) is the third central moment of Zi. Since Vi > 0 and Vi = Zi − βi

β0
V0, we

have V0 <
β0

βi
Zi.

Density: From the definitions and above discussions, the joint density of V0,

Z1, and Z2 can be expressed as

g(v0, z1, z2) =
(v0)

α0−1 exp(−v0/β0)

βα0
0 Γ(α0)

×

(
z1 − β1

β0
v0

)α1−1

exp(−
(
z1 − β1

β0
v0

)
/β1)

βα1
1 Γ(α1)

×

(
z2 − β2

β0
v0

)α2−1

exp(−
(
z2 − β2

β0
v0

)
/β2)

βα2
2 Γ(α2)

.
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Hence, the joint density of Z1 and Z2 is

g(z1, z2)

=

∫

v0

g(v0, z1, z2)dv0

=

∫

v0

(v0)
α0−1 exp(−v0/β0)

βα0
0 Γ(α0)

(
z1 − β1

β0
v0

)α1−1

exp(−
(
z1 − β1

β0
v0

)
/β1)

βα1
1 Γ(α1)

×

(
z2 − β2

β0
v0

)α2−1

exp(−
(
z2 − β2

β0
v0

)
/β2)

βα2
2 Γ(α2)

dv0

=
e
− z1

β1 e
− z2

β2

Γ(α0)β
α1
1 Γ(α1)β

α2
2 Γ(α2)

×
∫ min(

β0
β1

z1 ,
β0
β2

z2)

v0=0

(
v0

β0

)α0−1(
z1 − β1

v0

β0

)α1−1(
z2 − β2

v0

β0

)α2−1

exp(
v0

β0
)d
v0

β0
(
let v =

v0

β0

)

=
e
− z1

β1 e
− z2

β2

Γ(α0)β
α1
1 Γ(α1)β

α2
2 Γ(α2)

∫ min(
z1
β1

,
z2
β2

)

v=0

(v)α0−1 (z1 − β1v)
α1−1 (z2 − β2v)

α2−1 evdv.

Lemma 3.4.1 (Joint Distribution Function) : The cumulative distribution func-

tion of the bivariate gamma distribution is

G(y1, y2) =





G1(y1, y2) when y2

β2
< y1

β1

G2(y1, y2) when y1

β1
< y2

β2

,

where
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G1(y1, y2)

=

∫ y2
β2

0

∫ y1
β1

x2

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x2

0

(v)α0−1

(
1 − v

x1

)α1−1

×
(

1 − v

x2

)α2−1

evdvdx1dx2

+

∫ y2
β2

0

∫ x2

0

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ =x1

0

(v)α0−1

(
1 − v

x1

)α1−1

×
(

1 − v

x2

)α2−1

evdvdx1dx2 (3.3)

and

G2(y1, y2)

=

∫ y2
β2

y1
β1

∫ y1
β1

0

e−x1e−x2 (x1)
α1−1

(x2)
α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x1

0

(v)α0−1

(
1 − v

x1

)α1−1

×
(

1 − v

x2

)α2−1

evdvdx1dx2

+

∫ y1
β1

0

∫ x2

0

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x1

0

(v)α0−1

(
1 − v

x1

)α1−1

×
(

1 − v

x2

)α2−1

evdvdx1dx2

+

∫ y1
β1

0

∫ y1
β1

x2

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x2

0

(v)α0−1

×
(

1 − v

x1

)α1−1(
1 − v

x2

)α2−1

evdvdx1dx2. (3.4)

Here, parameters αi > 0 and βi > 0, for i = 0, 1, 2.
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Proof: The cumulative distribution function is

G(y1, y2)

=

∫ y2

0

∫ y1

0

g(z1, z2)dz1dz2

=

∫ y2

0

∫ y1

0

e
− z1

β1 e
− z2

β2 zα1−1
1 zα2−1

2

Γ(α0)β
α1
1 Γ(α1)β

α2
2 Γ(α2)

∫ min(
z1
β1

,
z2
β2

)

v=0

(v)α0−1

(
1 − β1

z1
v

)α1−1

×
(

1 − β2

z2
v

)α2−1

evdvdz1dz2

let
z1

β1
= x1 and

z2

β2
= x2

=

∫ y2
β2

0

∫ y1
β1

0

e−x1e−x2 (β1x1)
α1−1 (β2x2)

α2−1

Γ(α0)β
α1
1 Γ(α1)β

α2
2 Γ(α2)

×
∫ min(x1,x2)

v=0

(v)α0−1

(
1 − v

x1

)α1−1(
1 − v

x2

)α2−1

evdvdβ1x1dβ2x2

=

∫ y2
β2

0

∫ y1
β1

0

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ min(x1,x2)

v=0

(v)α0−1

×
(

1 − v

x1

)α1−1(
1 − v

x2

)α2−1

evdvdx1dx2.

Note for any f(x) > 0, if x1 < x2, we have
∫ x1

0
f(v)dv <

∫ x2

0
f(v)dv.

Let Ξ(α0, y) =
∫ y

0
(v)α0−1

(
1 − v

x1

)α1−1 (
1 − v

x2

)α2−1

evdv.

1. When y2

β2
< y1

β1
, where 0 < x1 <

y1

β1
and 0 < x2 <

y2

β2
, there are three cases:

1.1. x2 <
y2

β2
< x1 <

y1

β1
, here Ξ(α0, x2) < Ξ(α0, x1);

1.2. x2 < x1 <
y2

β2
< y1

β1
, here Ξ(α0, x2) < Ξ(α0, x1);

1.3. x1 < x2 <
y2

β2
< y1

β1
, here Ξ(α0, x1) < Ξ(α0, x2).
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Hence, the joint cumulative distribution function is

G(y1, y2)

=

∫ y2
β2

0

∫ y1
β1

x2

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x2

0

(v)α0−1

(
1 − v

x1

)α1−1

×
(

1 − v

x2

)α2−1

evdvdx1dx2

+

∫ y2
β2

0

∫ x2

0

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x1

0

(v)α0−1

(
1 − v

x1

)α1−1

×
(

1 − v

x2

)α2−1

evdvdx1dx2.

2. When y1

β1
< y2

β2
, where 0 < x1 <

y1

β1
and 0 < x2 <

y2

β2
, there are three cases:

2.1. x1 <
y1

β1
< x2 <

y2

β2
, here Ξ(α0, x1) < Ξ(α0, x2);

2.2. x1 < x2 <
y1

β1
< y2

β2
, here Ξ(α0, x1) < Ξ(α0, x2);

2.3. x2 < x1 <
y1

β1
< y2

β2
, here Ξ(α0, x2) < Ξ(α0, x1).
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Hence, the joint cumulative distribution function is

G(y1, y2)

=

∫ y2
β2

y1
β1

∫ y1
β1

0

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x1

0

(v)α0−1

×
(

1 − v

x1

)α1−1(
1 − v

x2

)α2−1

evdvdx1dx2

+

∫ y1
β1

0

∫ x2

0

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x1

0

(v)α0−1

(
1 − v

x1

)α1−1

×
(

1 − v

x2

)α2−1

evdvdx1dx2

+

∫ y1
β1

0

∫ y1
β1

x2

e−x1e−x2 (x1)
α1−1 (x2)

α2−1

Γ(α0)Γ(α1)Γ(α2)

∫ x2

0

(v)
α0−1

×
(

1 − v

x1

)α1−1(
1 − v

x2

)α2−1

evdvdx1dx2.

�

3.5 Approximation to Aggregate Claims for Insur-

ers and Reinsurers

Let us consider an aggregate claim model where S =
∑N

i=1Xi and where Xi’s are

i.i.d. random variables, and independent of random variable N .
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The law of total variance provides

E(S) = E(N)E(X);

V ar(S) = E(N)V ar(X) + V ar(N)E2(X);

µ3(S) = E(µ3(S|N)) + µ3(E(S|N)) + 3Cov(E(S|N), var(S|N))

= E(N)µ3(Xi) + µ3(NE(Xi)) + 3Cov(NE(Xi), NV ar(Xi))

= E(N)µ3(X) + E3(X)µ3(N) + 3E(X)V ar(X)V ar(N).

Similarly, use the conditional expectation,

E(SISR) = E(
N∑

i=1

XIi

N∑

j=1

XRj )

= E(E(

N∑

i=1

XIi

N∑

j=1

XRj |N))

= E(NE(XIiXRi) +
(
N2 −N

)
E(XIiXRj ))

= E(XIXR)E(N) + E
(
N2 −N

)
E(XI)E(XR).

Hence,

Cov(SI, SR) = E(SISR) − E(SI)E(SR)

= E(XIXR)E(N) + E(N2)E(XI)E(XR)

−E(N)E(XI)E(XR) − E(N)E(XI )E(N)E(XR)

= E(XIXR)E(N) −E(N)E(XI )E(XR)

+E(N2)E(XI )E(XR) − E(N)E(XI )E(N)E(XR)

= E(N)Cov(XI,XR) + V ar(N)E(XI )E(XR).

The translated Gamma approximation for the joint survival probabilities of both

parties under the aggregate claim is the next procedural stage. In order to obtain
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the approximation distribution parameters, we need to match the moments of the

original claim to the corresponding characteristics of the translated bivariate gamma

distribution.

Because there are seven parameters in the model, namely, α0, α1, α2, β1, β2, ω1, ω2,

the intuitive approach is to use the first three moments and the covariance of SI and

SR. Theorem 3.5.1 provides the approximation parameters.

Theorem 3.5.1 Under the bivariate translated gamma approximation, the joint

survival probability of the cedent and reinsurer can be approximated as

Pr{SI ≤ PI , SR ≤ PR} ≈ G(PI − ω1, PR − ω2). (3.5)

Here G(y1, y2) is the bivariate gamma CDF from Lemma (3.4.1), and the corre-

sponding bivariate gamma parameters are

β1 =
µ3(SI)

2V ar(SI)
;

β2 =
µ3(SR)

2V ar(SR)
;

α0 =
4V ar(SI)V ar(SR)cov(SI , SR)

µ3(SI)µ3(SR)
;

α1 =
4V ar3(SI)

µ2
3(SI)

− 4V ar(SI)V ar(SR)cov(SI , SR)

µ3(SI)µ3(SR)
;

α2 =
4V ar3(SR)

µ2
3(SR)

− 4V ar(SI)V ar(SR)cov(SI , SR)

µ3(SI)µ3(SR)
;

ω1 = E(SI) −
2V ar2(SI)

µ3(SI)
;

ω2 = E(SR) − 2V ar2(SR)

µ3(SR)
. (3.6)

Proof: Using a similar idea from Bowers et al. (1997), it is possible to approximate
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the joint distribution of aggregate claims (SI , SR) using a joint translated gamma

distribution that matches the moments.

Let SI = Z1 + ω1 and SR = Z2 + ω2, where ω1 > 0 and ω2 > 0.

The joint survival probability of both companies is

Pr{SI ≤ PI , SR ≤ PR}

= Pr {Z1 ≤ PI − ω1, Z2 ≤ PR − ω2}

= G(PI − ω1, PR − ω2),

if the first three moments, as well as the covariance of the insurance and reinsurance

aggregate claim amount can be matched by the translated gamma.

Because central moments of the translated gamma are the same as ones of the

gamma distribution, this procedure imposes the following requirements

Cov(SI, SR) = α0β1β2;

E(SI) = (α0 + α1) β1 + ω1;

E(SR) = (α0 + α2) β2 + ω2;

V ar(SI) = (α0 + α1) β
2
1;

V ar(SR) = (α0 + α2) β
2
2;

µ3(SI) = 2 (α0 + α1)β
3
1;

µ3(SR) = 2 (α0 + α2)β
3
2. (3.7)

From the above discussion, the bivariate gamma parameter set of (3.6) can be

matched and the theorem is proven.

�
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Recall that in the bivariate gamma parameter, all αi’s and βi’s should be greater

than zero. However, for α1 and α2, these criteria may not be satisfied under certain

distributions. In this case, we will force α1 = α2 = 1 and use the covariance with the

first two moments to do the five parameter match, which is stated as Theorem 3.5.2.

Theorem 3.5.2 Under the bivariate translated gamma approximation, the joint

survival probability of the cedent and reinsurer is expressed as

Pr{SI ≤ PI , SR ≤ PR} ≈ G(PI − ω1, PR − ω2). (3.8)

Here G(y1, y2) is the bivariate gamma CDF from Lemma 3.4.1, and the corre-

sponding bivariate gamma parameters are

α0 =
cov(SI , SR)√

var(SR)var(SI) − cov(SI , SR)
;

β1 =

√√√√var(SI)

(
1 − cov(SI , SR)√

var(SR)var(SI)

)
;

β2 =

√√√√var(SR)

(
1 − cov(SI , SR)√

var(SR)var(SI)

)
;

ω1 = E(SI) −

√
var(SI)

√
var(SR)var(SI)√

var(SR)var(SI) − cov(SI , SR)
;

ω2 = E(SR) −

√
var(SR)

√
var(SR)var(SI)√

var(SR)var(SI) − cov(SI, SR)
. (3.9)

Proof: Similar to Theorem 3.5.1, only the first two central moments and the co-

variance are matched, i.e. only the first five equations in the equation array (3.7) are

matched. Here, α1 = α2 = 1 . �
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As stated above, the goal is to find the optimal retention levelM and quota-share

a required to maximize the joint survival probability of the ceding company and the

reinsurer. The question can be reformulated as:

max
a,M

Pr{SI ≤ PI , SR ≤ PR} = max
a,M

G(PI − ω1, PR − ω2). (3.10)

Because there is no explicit form for the integral,

∫ min(x1,x2)

v=0

(v)α0−1

(
1 − v

x1

)α1−1(
1 − v

x2

)α2−1

evdv,

equation (3.10) must be solved numerically.

3.6 Approximation of Fair Optimal Retention and

Numerical Examples

Here, we will consider three compound distributions, compound Poisson, compound

binomial and compound negative binomial as in section 3.3. The claim we consider

will be exponential claim and Pareto claim. As stated previously, the ceding company

cannot profit from reinsurance, i.e., for insurance loads θI < θR. Also, the premium

after reinsurance PI is positive.

For an exponential distribution with p.d.f. f(x) = 1
µ
e−

x
µ , we have the following

73



expressions

E(X) = µ;

PR = (1 + θR)(1 − a)µ+ (1 + θR)aµe−
M
aµ ;

PI = (1 + θI)µ − (1 + θR)(1 − a)µ− (1 + θR)aµe−
M
aµ ;

E(XI) = −e−
M
aµaµ+ aµ;

E(X2
I ) = −2Me−

M
aµaµ− 2e−

M
aµa2µ2 + 2a2µ2;

E(X3
I ) = −3e−

M
aµM2aµ− 6e−

M
aµMa2µ2 − 6e−

M
aµa3µ3 + 6a3µ3;

E(XR) = µ
(
1 + e−

M
aµa− a

)
;

E(X2
R) = 2µe−

M
aµM(1 − a) − 2aµ2 (2 − a)

(
1 − e−

M
aµ

)
+ 2µ2;

E(X3
R) = 3µe−

M
aµM2 (1 − a)2

a

+6µ3 (1 − a)3 (1 − e−
M
aµ ) + 6µ2e−

M
aµ
(
µ+ 2M − 3Ma+Ma2

)
;

E(XI XR ) = µ
(
e−

M
aµM (2a− 1) + 2aµ (1 − a)

(
1 − e−

M
aµ

))
.

Consider the compound Poisson model first. When N is Poisson distributed with

the expected value λ, we have E(N) = V ar(N) = µ3(N) = λ.
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It implies

V ar(S) = E(N)V ar(X) + V ar(N)E2(X) = λE(X2);

µ3(S) = E(N)µ3(X) + E3(X)µ3(N) + 3E(X)V ar(X)V ar(N)

= λ
(
µ3(X) + E3(X) + 3E(X)V ar(X)

)

= λ
(
µ3(X) + E3(X) + 3E(X)E(X2) − 3E3(X)

)

= λE(X3);

Cov(SI, SR) = E(N)Cov(XI ,XR) + V ar(N)E(XI)E(XR)

= λCov(XI ,XR) + λE(XI )E(XR)

= λE(XI ,XR).

In the seven parameter model, equation (3.6) becomes

β1 =
E(X3

I )

2E(X2
I )

;

β2 =
E(X3

R)

2E(X2
R)

;

α0 =
4λE(XI ,XR)E(X2

R)E(X2
I )

E(X3
R)E(X3

I )
;

α1 = 4λ
E(X2

I )

E(X3
I )

(
E(X2

I )E(X2
I )

E(X3
I )

− E(XI ,XR)E(X2
R)

E(X3
R)

)
;

α2 =
4λE(X2

R)

E(X3
R)

(
E(X2

R)E(X2
R)

E(X3
R)

− E(XI ,XR)E(X2
I )

E(X3
I )

)
;

ω1 = λE(XI ) −
2λE2(X2

I )

E(X3
I )

;

ω2 = λE(XR) − 2λE2(X2
R)

E(X3
R)

. (3.11)

Recall the assumption in the model is that β1, β2, α0, α1, and α2 should all be

greater than zero. In the above equation array, β1, β2 and α0 will always be greater

than zero. However, for α1 and α2 this certainty is not presented, especially for α2 in

the exponential case, as the maximum value of α2 is zero.
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The results indicates that the seven-parameter translated bivariate gamma dis-

tribution may not be a good approximation for the compound Poisson distribution

when the distributed claim size is exponential. Hence, a five-parameter translated

bivariate gamma distribution is used to approximate the distribution of joint survival

probability.

We have α1 = α2 = 1 , and the other five parameters are

α0 =
E(XIXR)√

E(X2
I )E(X2

R) − E(XIXR)
;

β1 =

√√√√λE(X2
I )

(√
E(X2

I )E(X2
R) −E(XIXR)√

E(X2
I )E(X2

R)

)
;

β2 =

√√√√λE(X2
R)

(√
E(X2

I )E(X2
R) − E(XIXR)√

E(X2
I )E(X2

R)

)
;

ω1 = λE(XI ) −

√
λE(X2

I )

√
E(X2

I )E(X2
R)√

E(X2
I )E(X2

R) − E(XIXR)
;

ω2 = λE(XR) −

√
λE(X2

R)

√
E(X2

I )E(X2
R)√

E(X2
I )E(X2

R) − E(XIXR)
. (3.12)

For Pareto distribution claim with probability density function

f(x) =
kβk

(x+ β)k+1
,

to compare it to the exponential claim on the same page, we need to use the five-

parameter bivariate gamma model instead of the seven-parameter bivariate gamma

model. Several statistical properties are listed as the follows:
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E(X) =
β

k − 1
;

PR = (1 + θR)
β

k − 1
− (1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)

;

PI = (θI − θR)
β

k − 1
+ (1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)

;

E(XI) = a
β

k − 1
− M + aβ

k − 1

(
aβ

M + aβ

)k

;

E(X2
I ) =

2a2β2

(k − 1)(k − 2)
− 2 (aβ +Mk −M)

(k − 2)

(M + aβ)

(k − 1)

(
aβ

M + aβ

)k

;

E(XR) =
aβ +M

k − 1

(
aβ

M + aβ

)k

+ β
1 − a

k − 1
;

E(X2
R) =

2 (1 − a)2 β2

(k − 1) (k − 2)

+2
2aβ − a2β −Mka+Ma+Mk

a (k − 2)

(M + aβ)

(k − 1)

(
aβ

M + aβ

)k

;

E(XI XR ) =
2a (1 − a)β2

(k − 1) (k − 2)

+

(
aβ

M + aβ

)k
(M + aβ)

(k − 1)

(2a2β − 2aβ + 2aMk − 2aM −Mk)

a (k − 2)
.

We are now ready to address the numerical examples. The security loading factors

are θI = 0.1 and θR = 0.2 for the cedent and reinsurer respectively. Let the mean of

the inter claim time be 1 (E(N) = 1), i.e., λ = 100 for the compound Poisson model;

n = 200, η = 0.5 for the compound binomial model; and r = 100, η = 0.5 for the

compound negative binomial model. Let the original claim size has a mean of 100

(E(X) = 100), i.e., µ = 100 for the exponential claim, and k = 5, β = 400 for the

Pareto claim.
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Table 3.5: Optimal Retentions via Bivariate Gamma Approximation

Claim Size Claim Frequency a M G(PI − ω1, PR − ω2)

Exponential CB 0.93 900 54%

CP 0.96 970 53%

CNB 1 1000 52%

Pareto CB 0.46 980 50%

CP 0.49 980 49%

CNB 0.52 1000 48%

Using MATLAB to code the program, the optimal reinsurance treaties are summa-

rized in Table 3.5 for the six scenarios. In programming, we use researching method.

The parameter a changes from 0 to 100% by incremental of 1%, and M changes from

1 to 1000 by incremental 10.

Table 3.5 indicates that the claim size distribution has a greater influence on the

optimal treaties than does the claim frequency distribution. The Pareto distribution

has a lower quota-share a and a higher retention level M compared to the exponen-

tial claims with the same mean. This implies that for the heavier tail distributed

claim, the ceding company should seek greater reinsurance to maximize joint survival

probability for both companies.

3.6.1 Comparison of Bivariate Translated Gamma Approxi-

mation with the Method of Maximizing Lower Bound

We can discretize a continuous distribution function and use the corresponding dis-

cretization distribution function to approximate the continuous distribution function.
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Thus, we can apply the method of maximizing the lower bound of the joint survival

probability discussed in Section 3.3 to find the optimal retentions for the continuous

distribution function. We will compare the results from the discretization distribution

function with those from the bivariate translated gamma approximation.

To do so, let us consider the excess-loss treaty with a = 1. We are going to

compare the bivariate translated approximation with the lower bound method. Note

that for the exponential distribution in Section 3.6, the corresponding discretization

exponential distribution is a geometrical distribution with the probability function

Pr(X = x) = e−
x
µ − e−

x+1
µ =

(
1 − e−

1
µ

)
e−

x
µ , x = 0, 1, 2, ...,

where g = 1 − e−
1
µ . For the Pareto distribution in Section 3.6, the corresponding

discretization Pareto distribution is a discrete Pareto with the probability function

Pr(X = x) =

(
β

x+ β

)k

−
(

β

x+ 1 + β

)k

, x = 0, 1, 2, ....

Using the method in Section 3.3, we obtain the optimal retentions based on the

discretization exponential and Pareto distributions, which are presented in Table 3.6.

The table indicates that the optimal retentions using the bivariate gamma approx-

imation are slightly larger than those from maximizing the lower bound. However,

the joint survival probabilities estimated from the bivariate gamma approximation

are less than the lower bound of the joint survival probabilities. This means that the

bivariate gamma approximation underestimates the joint survival probabilities. In

this sense, the approach of maximizing the lower bound in Section 3.3 is better than

the bivariate gamma approximation.
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Table 3.6: Approach Comparison

Discretization Exponential Discretization Pareto

g = 1 − e−
1
β β = 400, k = 5

Optimal M maxL Optimal M maxL

CB 142 59% 226 53%

CP 148 55% 305 51%

CNB 156 52% 307 49%

Bivariate Gamma Approximation with a = 1

Optimal M maxL Optimal M maxL

CB 146 54% 230 49%

CP 165 53% 310 48%

CNB 194 52% 311 48%
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Chapter 4

Optimal Retentions with Interest:

A De Vylder-Type Approximation

In insurance business, many interest included models have been suggested and stud-

ied. See, for example, Cai and Dickson (2003, 2004), Cai (2004)and Capasso and

Bakstein (2005). This chapter considers the compound Poisson risk model modified

by the inclusion of interest, as well as reinsurance. The assumption is that the insurer

receives interest on its surplus at a constant continuously compounding interest δ > 0.

Let Uδ(t) be the surplus of the cedent company at time t with Uδ(0) = uI after

reinsurance. Then, Uδ(t) can be expressed as

Uδ(t) = uIe
δt +

PI (e
δt − 1)

δ
−

N(t)∑

k=1

XIk
eδ(t−Tk), (4.1)

where Tk is the time of the kth claim.

The time of ruin is expressed as τδ = inf{t : Uδ(t) < 0}, and the ultimate ruin
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probability with the inclusion of interest δ is

ψδ(uI) = Pr{τδ <∞} = Pr{∪t≥0 (Uδ(t) < 0)}.

4.1 Objectives

In this chapter, we want to find the optimal retention levels a and M by minimizing

the ruin probability ψδ(uI). However, the explicit formula for ψδ(uI) is available only

for a few special cases. It is very difficult to minimize the ruin probability ψδ(uI)

directly for general cases.

De Vylder (1978) utilized a simple, yet ingenious method to replace a compound

Poisson risk process with general claims by a compound Poisson risk process with

exponential claims, which makes the first three moments of the risk process with

general claims equal to the ones of the risk process with exponential claims. Thus,

the ruin probability in the risk process with general claims is approximated by the

ruin probability in the risk process with exponential claims, which has a closed and

explicit form.

In this chapter, we extend De Vylder’s approximation to the compound Poisson

risk model with interest. With the De Vylder-type approximation, we can determine

the optimal retention levels a and M and consider the effect of the interest on the

retentions.

The idea is as follows. We replace the risk process Uδ(t) in (4.1) by Ũδ(t), a new

compound Poisson risk process with the same initial surplus uI and the same interest
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force δ, but a new Poisson process Ñ (t) and exponential claims, which is defined as

Ũδ(t) = uIe
δt +

P̃I(e
δt − 1)

δ
−

Ñ(t)∑

k=1

X̃ke
δ (t−T̃k), (4.2)

where Ñ(t) is a Poisson process with rate λ̃, T̃k is the kth claim time, P̃I is the

premium rate, X̃k has an exponential distribution with mean µ̃.

The parameters λ̃, P̃I and µ̃I are chosen, so that

E
[
Uk

δ (t)
]

= E
[
Ũk

δ (t)
]

for k = 1, 2, 3; t ≥ 0.

Then, the probability of ultimate ruin in the initial process is approximated by

the probability of ruin in the new process.

Denote the ruin probability in the risk process Ũδ by ψ̃δ(uI). The closed and

explicit formula is given by

ψ̃δ(uI) =
Γ( λ̃

δ̃
, P̃I

δ̃µ̃
+ uI

µ̃
)

Γ( λ̃
δ̃
, P̃I

δ̃µ̃
) + δ̃

λ̃

(
P̃I

λ̃µ̃

)λ̃/δ̃

e
− P̃I

δ̃µ̃

, (4.3)

where Γ (a, b) =
∫∞

b
xa−1e−xdx, a > 0, b ≥ 0, is the incomplete gamma function. See,

for example, Segerdahl (1942) or Gerber (1979).

Therefore, the ruin probability ψδ(uI) can be approximated by ψ̃δ(uI), which is

employed here to determine the optimal reinsurance quota-share a and stop-loss limit

M in this multi-period claim process. To determine the De Vylder approximation, we

need to calculate the first three moments of Uδ(uI), which are given in the following

section.
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4.2 Moments of Surplus Process with Interest

Lemma 4.2.1 For the surplus process defined in equation (4.1), the first three

moments of Uδ(t) are provided by

E [Uδ(t)] = uIe
δt + (PI − λµ1)

eδt − 1

δ
, (4.4)

E
[
U2

δ (t)
]

=
(
uIe

δt
)2

+ 2uI (PI − λµ1) e
δte

δt − 1

δ

+(PI − λµ1)
2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ
, (4.5)

E
[
U3

δ (t)
]

=
(
uIe

δt
)3

+ 3u2
I (PI − λµ1) e

2δte
δt − 1

δ
+ 3uIλµ2e

δte
2δt − 1

2δ

+3uI (PI − λµ1)
2 eδt

(
eδt − 1

δ

)2

+ (PI − λµ1)
3

(
eδt − 1

δ

)3

+3λµ2 (PI − λµ1)
eδt − 1

δ

e2δt − 1

2δ
− λµ3

e3δt − 1

3δ
, (4.6)

where µ1, µ2, and µ3 are the first three moments of the random variable XI .

Proof: Let

Xδ(t) =

N(t)∑

k=1

XIk
e−δTk =

N(t)∑

k=1

h(Tk,XIk
),

where h(t, x) = xe−δt.

Recall that N(t) is a Poisson process with rate λ > 0; {XIk
, k ≥ 1} are i.i.d.

jump size independent of N(t) and Tk is the time of jump k with k ≥ 1. Further,

assume that the random variable XIk
, the claim paid by the ceding company, has a

distribution function of G(x).

According to Lemma 2.2(ii) of Rosinski (1990),

E
[
eizXδ(t)

]
= eλ

∫ t
0

∫ ∞
0 (eizxe−δv−1)dG(x)dv.
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Letting s = −zi results in the Laplace transform of Xδ(t)

E
[
e−sXδ(t)

]
= eλ

∫ t
0

∫ ∞
0 (e−sxe−δv−1)dG(x)dv = eλ

∫ t
0 (ĝ(se−δv)−1)dv,

where ĝ(s) =
∫∞

0
e−sxdG(x).

Thus, the Laplace transform of
∑N(t)

k=1 XIk
eδ(t−Tk) is given as

ϕ(s) = E
[
e−seδtXδ(t)

]

= eλ
∫ t
0 (ĝ(seδte−δv)−1)dv = eλ

∫ t
0 (ĝ(seδ(t−v))−1)dv

= eλ
∫ t
0 (ĝ(seδx)−1)dx. (4.7)

Note that ϕ(s) = E
[
e−sX

]
and ϕ(k)(s) = E

[
(−X)ke−sX

]
, which indicates that

ϕ(0) = 1 and ϕ(k)(0) = (−1)kµk, for k = 1, 2, 3, ....

Hence, for ϕ(s) defined as (4.7),

ϕ′(s) = ϕ(s)λ

∫ t

0

ĝ′(seδx)eδxdx;

ϕ′′(s) = ϕ′(s)λ

∫ t

0

ĝ′(seδx)eδxdx+ ϕ(s)λ

∫ t

0

ĝ′′(seδx)e2δxdx;

ϕ′′′(s) = ϕ′′(s)λ

∫ t

0

ĝ′(seδx)eδxdx+ ϕ′(s)λ

∫ t

0

ĝ′′(seδx)e2δxdx

+ϕ′(s)λ

∫ t

0

ĝ′′(seδx)e2δxdx+ ϕ(s)λ

∫ t

0

ĝ′′′(seδx)e3δxdx.
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It implies

ϕ′(0) = λ

∫ t

0

ĝ′(0)eδxdx = −λµ1

∫ t

0

eδxdx = −λµ1
eδt − 1

δ

= −E




N(t)∑

k=1

XIk
eδ(t−Tk)


 ;

ϕ′′(0) = ϕ′(0)λ

∫ t

0

ĝ′(0)eδxdx+ ϕ(0)λ

∫ t

0

ĝ′′(0)e2δxdx

= −λµ1
eδt − 1

δ
λ (−µ1)

eδt − 1

δ
+ λµ2

e2δt − 1

2δ

= (λµ1)
2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ

= E






N(t)∑

k=1

XIk
eδ(t−Tk)




2
 ;

ϕ′′′(0) =

(
(λµ1)

2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ

)
λ

∫ t

0

ĝ′(0)eδxdx

+

(
−λµ1

eδt − 1

δ

)
λ

∫ t

0

ĝ′′(0)e2δxdx

+

(
−λµ1

eδt − 1

δ

)
λ

∫ t

0

ĝ′′(0)e2δxdx+ λ

∫ t

0

ĝ′′′(0)e3δxdx

=

(
(λµ1)

2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ

)
λ (−µ1)

eδt − 1

δ

+

(
−λµ1

eδt − 1

δ

)
λµ2

e2δt − 1

2δ

+

(
−λµ1

eδt − 1

δ

)
λµ2

e2δt − 1

2δ
+ λ (−µ3)

e3δt − 1

3δ

= − (λµ1)
3

(
eδt − 1

δ

)3

− 3λ2µ1µ2
e2δt − 1

2δ

eδt − 1

δ
− λµ3

e3δt − 1

3δ

= −E






N(t)∑

k=1

XIk
eδ(t−Tk)




3
 .
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Hence, the first three moments of Uδ(t), defined as (4.1), are as follows

E [Uδ(t)] = uIe
δt + PI

eδt − 1

δ
− λµ1

eδt − 1

δ

= uIe
δt + (PI − λµ1)

eδt − 1

δ
;

E
[
U2

δ (t)
]

=

(
uIe

δt + PI
eδt − 1

δ

)2

− 2

(
uIe

δt + PI
eδt − 1

δ

)
λµ1

eδt − 1

δ

+(λµ1)
2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ

=
(
uIe

δt
)2

+ 2uI (PI − λµ1) e
δte

δt − 1

δ

+(PI − λµ1)
2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ
;

E
[
U3

δ (t)
]

=

(
uIe

δt + PI
eδt − 1

δ

)3

− 3

(
uIe

δt + PI
eδt − 1

δ

)2

λµ1
eδt − 1

δ

+3

(
uIe

δt + PI
eδt − 1

δ

)(
(λµ1)

2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ

)

− (λµ1)
3

(
eδt − 1

δ

)3

− 3λ2µ1µ2
e2δt − 1

2δ

eδt − 1

δ
− λµ3

e3δt − 1

3δ

=
(
uIe

δt
)3

+ 3u2
I (PI − λµ1) e

2δte
δt − 1

δ
+ 3uIλµ2e

δte
2δt − 1

2δ

+3uI (PI − λµ1)
2 eδt

(
eδt − 1

δ

)2

+ (PI − λµ1)
3

(
eδt − 1

δ

)3

+3λµ2 (PI − λµ1)
eδt − 1

δ

e2δt − 1

2δ
− λµ3

e3δt − 1

3δ
.

�
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4.3 A De Vylder-Type Approximation to Surplus

Process with Interest

The idea of the De Vylder approximation is to replace a general claim surplus process

Uδ(t) with a new exponential claim surplus process Ũδ(t) in a compound Poisson

model. These two surplus processes hold the same initial values and interest rates.

By matching the first three moments, the new premium P̃I , the new inter-claim time

Poisson parameter λ̃, and the claim size exponential parameter µ̃ may be determined.

Theorem 4.3.1 Assume that the first three moments of the retained claim XI are

µ1, µ2, and µ3, respectively. To approximate the risk process Uδ(t) by the risk process

Ũδ(t), the parameters µ̃, λ̃, and P̃I must satisfy

µ̃ =
µ3

2µ2
, (4.8)

λ̃ =
4µ3

2

µ2
3

λ, (4.9)

P̃I = PI − λµ1 + λ
2µ2

2

µ3
. (4.10)

Proof: We use Lemma 4.2.1 to match the first three moments of Uδ(t) and Ũδ(t).

For the first moment match of E [Uδ(t)] = E
[
Ũδ(t)

]
, we have

uIe
δt + (PI − λµ1)

eδt − 1

δ
= uIe

δt +
(
P̃I − λ̃µ̃

) eδt − 1

δ
,

which results in

PI − λµ1 = P̃I − λ̃µ̃. (4.11)
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For the second moment match or E [U2
δ (t)] = E

[
Ũ2

δ (t)
]
, we have

(
uIe

δt
)2

+ 2uI (PI − λµ1) e
δt e

δt − 1

δ
+ (PI − λµ1)

2

(
eδt − 1

δ

)2

+ λµ2
e2δt − 1

2δ

=
(
uIe

δt
)2

+ 2uI

(
P̃I − λ̃µ̃

)
eδte

δt − 1

δ
+
(
P̃I − λ̃µ̃

)2
(
eδt − 1

δ

)2

+ λ̃µ̃2 e
2δt − 1

2δ
,

which results in

λµ2 = λ̃µ̃2. (4.12)

For the third moment match or E [U3
δ (t)] = E

[
Ũ3

δ (t)
]
, we have

(
uIe

δt
)3

+ 3u2
I (PI − λµ1) e

2δte
δt − 1

δ
+ 3uIλµ2e

δte
2δt − 1

2δ

+3uI (PI − λµ1)
2 eδt

(
eδt − 1

δ

)2

+ (PI − λµ1)
3

(
eδt − 1

δ

)3

+3λµ2 (PI − λµ1)
eδt − 1

δ

e2δt − 1

2δ
− λµ3

e3δt − 1

3δ

=
(
uIe

δt
)3

+ 3u2
I

(
P̃I − λ̃µ̃

)
e2δte

δt − 1

δ
+ 3uI λ̃µ̃

2eδt e
2δt − 1

2δ

+3uI

(
P̃I − λ̃µ̃

)2

eδt

(
eδt − 1

δ

)2

+
(
P̃I − λ̃µ̃

)3
(
eδt − 1

δ

)3

+3λ̃µ̃2
(
P̃I − λ̃µ̃

) eδt − 1

δ

e2δt − 1

2δ
− 2λ̃µ̃3 e

3δt − 1

3δ
,

which results in

λµ3 = 2λ̃µ̃3. (4.13)

Therefore, equations (4.12) and (4.13) imply

µ̃ =
µ3

2µ2
,
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equation (4.12) suggests

λ̃ =
λµ2

µ̃2
=

λµ2
µ3

2µ2

µ3

2µ2

=
4µ3

2

µ2
3

λ,

and equation (4.11) implies

P̃I = PI − λµ1 + λ̃µ̃ = PI − λµ1 + λ
2µ2

2

µ3
.

�

4.4 Approximation of the Optimal Retentions with

Interest

The goal is to determine the optimal retention level M and the quota-share a to

minimize the ruin probability (4.3)

ψ̃δ(uI) =
Γ( λ̃

δ
, P̃I

δµ̃
+ uI

µ̃
)

Γ( λ̃
δ
, P̃I

δµ̃
) + δ

λ̃

(
P̃I

λ̃µ̃

)λ̃/δ

e−
P̃I
δµ̃

,

where µ̃, λ̃, and P̃I are as indicated in Theorem 4.3.1, i.e.,

µ̃ =
µ3

2µ2
;

λ̃ =
4µ3

2

µ2
3

λ;

P̃I = PI − λµ1 + λ
2µ2

2

µ3
;

and

Γ (a, b) =

∫ ∞

b

xa−1e−xdx.
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Here, the exponential claim and the Pareto claim for numerical illustrations are

used again. As in previous chapters, both of them have the unchanged average claim

sizes of 100 and average inter-claim times of 1. The security loadings for the cedent

and reinsurer are θI = 0.1 and θR = 0.2, respectively.

In particular, for the exponential claim, we have

PI = λµ
(
(1 + θI) − (1 + θR)(1 − a)− (1 + θR)ae−

M
aµ

)
;

µ1 = −e−
M
aµaµ+ aµ;

µ2 = −2Me−
M
aµaµ− 2e−

M
aµa2µ2 + 2a2µ2;

µ3 = −3e−
M
aµM2aµ− 6e−

M
aµMa2µ2 − 6e−

M
aµa3µ3 + 6a3µ3;

µ = 100;

θI = 0.1;

θR = 0.2;

For the Pareto claim, we have
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PI = λ(θI − θR)
β

k − 1
+ λ(1 + θR)

aβ

k − 1

(
1 −

(
aβ

M + aβ

)k−1
)

;

µ1 =
aβ

k − 1
− M + aβ

k − 1

(
aβ

M + aβ

)k

;

µ2 =
2a2β2

(k − 1)(k − 2)
− 2 (aβ +Mk −M)

(k − 2)

(M + aβ)

(k − 1)

(
aβ

M + aβ

)k

;

µ3 =
6a3β3

(k − 1) (k − 2) (k − 3)

−3
(2a2β2 + 2βaMk − 2βaM − 3kM2 + k2M2 + 2M2)

(k − 2) (k − 3)

(M + aβ)

(k − 1)

(
aβ

M + aβ

)k

;

β = 400;

k = 5;

θI = 0.1;

θR = 0.2;

For interest rate δ, we consider three scenarios δ = 1%, δ = 5%, and δ = 10%.

For the initial surplus uI , we consider seven scenarios from uI = 100 up to uI = 400.

Hence, there are 21 scenario combinations for each claim distribution, which are

listed as follows. Here, for each scenario, the optimal reinsurance treaties and the

corresponding ruin probability were derived with MATLAB. We also compared the

ruin probability when there is no reinsurance.
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Table 4.1: Exponential Claim with Interest Rate δ = 1%

uI a M ψ∗
δ(uI) ψδ(uI) without Reinsurance

100 58.8% 125 87.31% 91.41%

150 57.4% 122 81.14% 87.30%

200 55.5% 118 75.09% 83.31%

250 54.1% 115 69.18% 79.44%

300 52.7% 112 63.42% 75.69%

350 50.8% 108 57.83% 72.06%

400 49.4% 105 52.42% 68.56%

Table 4.2: Exponential Claim with Interest Rate δ = 5%

uI a M ψ∗
δ (uI) ψδ(uI) without Reinsurance

100 100% 30 60.36% 84.74%

150 100% 24 39.55% 77.65%

200 100% 9 18.64% 70.94%

250 57.8% 9 1.98% 64.62%

300 57.8% 9 8.40E − 04 58.69%

350 57.8% 9 1.64E − 05 53.16%

400 57.8% 9 1.68E − 07 48.01%
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Table 4.3: Exponential Claim with Interest Rate δ = 10%

uI a M ψ∗
δ (uI) ψδ(uI) without Reinsurance

100 100% 9 25.57% 79.69%

150 57.8% 9 1.23% 70.59%

200 57.8% 9 1.40E − 04 62.23%

250 57.8% 9 5.58E − 07 54.60%

300 57.8% 9 1.03E − 09 47.68%

350 57.8% 9 1.04E − 12 41.47%

400 57.8% 9 6.66E − 16 35.91%

Table 4.4: Pareto Claim with Interest Rate δ = 1%

uI a M ψ∗
δ(uI) ψδ(uI) without Reinsurance

100 65.5% 120 87.41% 93.01%

150 64.4% 118 81.28% 89.64%

200 61.7% 113 75.27% 86.34%

250 60.6% 111 69.39% 83.13%

300 58.4% 107 63.66% 79.99%

350 57.3% 105 58.09% 76.94%

400 54.6% 100 52.69% 73.97%
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Table 4.5: Pareto Claim with Interest Rate δ = 5%

uI a M ψ∗
δ (uI) ψδ(uI) without Reinsurance

100 100% 31 60.58% 87.01%

150 100% 24 39.77% 80.95%

200 100% 9 18.72% 75.2%

250 71.5% 9 1.98% 69.75%

300 71.5% 9 8.40E − 04 64.6%

350 71.5% 9 1.64E − 05 59.74%

400 71.5% 9 1.68E − 07 55.16%

Table 4.6: Pareto Claim with Interest Rate δ = 10%

uI a M ψ∗
δ (uI) ψδ(uI) without Reinsurance

100 100% 9 25.63% 80.39%

150 71.5% 9 1.23% 72.73%

200 71.5% 9 1.40E − 04 65.67%

250 71.5% 9 5.59E − 07 59.17%

300 71.5% 9 1.03E − 09 53.22%

350 71.5% 9 1.05E − 12 47.78%

400 71.5% 9 6.66E − 16 42.82%
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Without reinsurance, because of the heavier tail, the Pareto claim possesses the

higher ruin probability given the same conditions.

The tables above demonstrate that the ruin probability decreases dramatically

when both the initial value and interest rate increased. The ruin probability difference

between the two claim distributions is significantly smaller due to the reinsurance.

The Pareto claim demonstrates a higher quota-share level, which is consistent with

the conclusion in Chapter 2. With the optimal reinsurance treaty, the ruin probability

is effectively controlled, given the proper initial value and interest rate. Figure 4.1

gives the demonstration.

Figure 4.1: Ruin Probabilities with Reinsurance v.s. without Reinsurance
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Chapter 5

Optimal Retentions with Dividends

In this chapter, the influence of dividends on optimal reinsurance retentions is con-

sidered. The assumption is that the ceding insurance company pays dividends to

shareholders according to a dividend strategy.

Bruno De Finetti (1957) first suggested that a company would seek to maximize

the expectation of the present value of all dividends before possible ruin. When the

surplus of the company is a discrete process with steps of size plus or minus only one,

the optimal dividend payment strategy is a barrier strategy. This means, any surplus

above a certain level would be paid as dividends to the shareholders of the company.

Jeanblanc-Picqu and Shiryaev (1995) and Asmussen and Taksar (1997) further

proved that in the Brownian motion model with a dividend ceiling the optimal div-

idend strategy is a threshold strategy, which is, dividends should be paid out at the

highest admissible rate as soon as the surplus exceeds a certain threshold.

Gerber and Shiu (2006) generalized the model to a compound Poisson process
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and provided the explicit formula of the expected dividend value for exponential

claim amount distribution.

Recent research includes the works by Dickson and Drekic (2006); and Cheung,

Dickson and Drekic (2008). The first paper demonstrates a method to approximate

the expected dividend before the possible ruin and the latter paper presents the gen-

eral formula for Erlang family when an initial surplus is less than a certain threshold

level.

Based on the aforementioned theories, this chapter extends the model to the

reinsurance aspect. The objective is to maximize the expectation of the present value

of all dividends prior to possible ruin by determining the optimal reinsurance treaties.

Here, only quota-share reinsurance receives consideration, with excess-of-loss rein-

surance reserved for future research. The optimal quota-share reinsurance treaty for

the exponential claim amount case is first discussed, followed by Erlang(2) claim with

numerical examples provided.

5.1 Assumptions

Using the previous notations, let a be the quota-share retention level and M be the

stop-loss limit. uI is the initial surplus, µ is the expected claim size and λ is the claim

frequency in a compound Poisson process. The definition sets for this chapter are as

follows.

• XI = min(aX,M): the ceding company claim payment with original claim size

of X.

98



• PI : net premium rate of the ceding company after reinsurance.

• {Sa,M(t)}: aggregate claim process after the reinsurance, i.e.,

Sa,M(t) =

N(t)∑

i=1

min(aXi,M).

• {Ua,M(t)}: surplus process after the reinsurance, i.e.,

Ua,M(t) = uI + PI t− Sa,M(t).

• D(t): the discounted aggregate dividends paid between time 0 and t.

• Za,M(t): company’s net surplus at time t, after reinsurance and dividend pay-

ment, i.e.,

Za,M (t) = Ua,M(t) −D(t).

• T : the time of ruin, i.e.,

T = inf{t ≥ 0|Za,M(t) < 0}.

• δ: the force of interest for valuation. Here, we only consider the dividends

accumulated from the interest and we do not consider the interest effectiveness

for received premium, nor the paid out claim.

• D: present value of all dividends until ruin, i.e.,

D =

∫ T

0

e−δtdD(t).

Note that, under the threshold model, we further have

D = Dc

∫ T

0

e−δtI{Ua,M(t)≥b}dt.
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• Dc ∈ (0, PI ): the dividend-rate ceiling. Here, the problem is considered under

the constraint that only dividend strategies with the dividend rate bounded

by a ceiling are admissible and the ceiling is less than the premium rate, i.e.,

dD(t) ≤ Dcdt.

For the threshold strategy, threshold level b is used and the dividend payments

comply with the following rules:

• Ua,M(t) < b: no dividends are paid;

• Ua,M(t) > b: dividends are paid at the maximal rate Dc.

To denote the expectation of the present value of all dividends until ruin, Va,M (uI; b)

is used where the initial surplus is uI and threshold level is b. The objective is to

maximize Va,M (u; b) by determining the optimal a and M . Here, let M go to infinity

and consider quota-share reinsurance only.

5.2 Expected Discounted Dividends until Ruin with

Quota-share Reinsurance and Exponential Claims

Under the quota-share reinsurance, similar to the discussions in Chapter 2, the in-

surance premium after the reinsurance is

PI = (a (1 + θR) − (θR − θI))λµ.

The claim after reinsurance is XI = aX, with the c.d.f.

FXI
(x) = P (XI < x) = P (X <

x

a
) = F (

x

a
),
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and the p.d.f. is

fXI
(x) =

1

a
f(
x

a
).

For the original exponential claim distribution with p.d.f.

f(x) = βe−βx,

the claim payment of the ceding company is

fXI
(x) =

β

a
e−

β
a

x,

which is an exponential distribution with the new parameter β
a
. Hence, the formula

(6.14) and (6.15) from Hans U Gerber and Shiu (2006) may be directly applied to

calculate Va(uI ; b), which is the expectation of the present value of all dividends before

possible ruin.

Case I: Initial surplus is less than the constant threshold, i.e., 0 ≤ uI ≤ b

Va(uI; b) =
−ξ3
β/a

Dc

δ

(β/a+ ξ1) e
ξ1uI − (β/a+ ξ2) e

ξ2uI

(ξ1 − ξ3) eξ1b − (ξ2 − ξ3) eξ2b
. (5.1)

Case II: Initial surplus is greater than the constant threshold, i.e., uI ≥ b

Va(uI ; b) =
Dc

δ

[
1 − eξ3(uI−b)

]
+ Va(b; b)e

ξ3(uI−b), (5.2)

and we have

Va(0; 0) =
−ξ3
β/a

Dc

δ
. (5.3)

Here ξ1 > 0, ξ2 < 0 are the roots of the characteristic equation

PIξ
2 + (

β

a
PI − λ − δ)ξ − β

a
δ = 0,
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and ξ3 < 0 is the negative solution to

(PI −Dc) ξ
2 + (

β

a
(PI −Dc) − λ − δ)ξ − β

a
δ = 0.

It implies

ξ1 =
−(β

a
PI − λ− δ) +

√
(β

a
PI − λ − δ)2 + 4PI

β
a
δ

2PI
, (5.4)

ξ2 =
−(β

a
PI − λ− δ) −

√
(β

a
PI − λ − δ)2 + 4PI

β
a
δ

2PI
, (5.5)

ξ3 =
−(β

a
(PI −Dc) − λ− δ)

2 (PI −Dc)

−

√
(β

a
(PI −Dc) − λ− δ)2 + 4 (PI −Dc)

β
a
δ

2 (PI −Dc)
, (5.6)

The optimal quota-share level a should satisfy ∂
∂a
Va(uI , b) = 0.

Now, our task is to seek the optimal quota-share level a to maximize the expected

dividend before the possible ruin. The initial method is to set the partial derivation

of (5.1) and (5.2) with respect to a to 0. However, there is no such simple explicit

formula for the desired quota-share. Thus, MATLAB programming is chosen as an

alternative solution.

The base scenario has the following parameters: let interest rate be δ = 5%, claim

size be 100 (β = 0.01), reinsurance security loading be θR = 0.2, insurance security

loading be θI = 0.1, claim frequency λ = 1, initial value uI = 100, and dividend rate

ceiling Dc = 5. Table 5.1 offers the results.
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Table 5.1: Optimal Quota-Share Level for Exponential Claims – Baseline

Threshold Level b Optimal Quota-share a Largest Expected Dividend Va(uI ; b)

10 41% 40.45

20 43% 40.27

30 45% 39.98

40 47% 39.62

50 50% 39.19

60 53% 38.72

70 56% 38.22

80 60% 37.71

90 64% 37.19

100 68% 37.67

110 76% 35.68

120 83% 34.82

130 90% 34.08

140 98% 33.42

150 100% 32.81

160 100% 32.22

170 100% 31.64

180 100% 31.07

190 100% 30.51

200 100% 29.95
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Table 5.1 notes the optimal quota-share level, a, increased, and the maximum of

the expected dividend before ruin, Va(uI; b), decreased as the threshold level b in-

creases. The insurance meaning is that when the start point of dividend payment

increases, the ceding company tends to use less reinsurance to generate a larger ex-

pected dividend before the possible ruin.

For practical study, the following six scenarios are examined:

Scenario 1: increase dividend ceiling Dc from 5 to 10. Both the optimal quota-

share level a, and the largest expected dividend before ruin, Va(uI ; b) increases when

the dividend ceiling Dc increases. Because more dividends are paid out, the ceding

company tends to use less reinsurance to obtain the larger expected dividend before

the possible ruin.

Scenario 2: increase the ceding company security loading θI from 10% to 19%.

The optimal quota-share level, a, decreases and the largest expected dividend before

ruin, Va(uI ; b), increases. When additional security loading is added to the ceding

company, it uses more reinsurance. Because the difference between both companies

is less, the maximum expected dividend for the cedent is more.

Scenario 3: increase interest rate δ from 5% to 10%. The largest expected dividend

before ruin, Va(uI ; b), decreases when the interest rate δ increases. The optimal quota-

share level, a, increased much faster along with the threshold level also increasing.

Because a higher interest rate will generate higher dividends, the ceding company

chooses the optimal reinsurance strategy according to the relationship between the

threshold and initial surplus.

Scenario 4: increase claim frequency λ from 1% to 5%.The optimal quota-share

level, a, increases while the largest expected dividend before ruin, Va(uI ; b), decreases.
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When more claims occur, the ceding company chooses less reinsurance to maximize

the expected dividend.

Scenario 5: decrease claim size from 100(= 1/0.01) to 50(= 1/0.02). Both the

optimal quota-share level, a, and the largest expected dividend before ruin, Va(uI ; b),

increase. When there is a smaller claim, the ceding company chooses reduced rein-

surance to maximize the expected dividend.

Scenario 6: increase initial surplus uI from 100 to 200. The optimal quota-share

level, a, decreases while the largest expected dividend before ruin, Va(uI ; b), increases.

When the initial surplus is higher, the ceding company chooses more reinsurance to

maximize the expected dividend.

The following figures indicate the relationship between the optimal quota-share

level and the corresponding largest expected dividend before ruin, with respect to

the different parameters. The exact numerical results can be found on the attached

Excel spreadsheet.

Note, all the quota-share levels, a, should be greater than θR−θI

1+θR
to ensure the

ceding premium after reinsurance, PI , is greater than zero. Additionally, the dividend

ceiling, DC , is less than the premium received.

�
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Figure 5.1: Optimal Quota-share Level in the Compound Poisson Process with Ex-

ponential Claims

5.3 Expected Discounted Dividends until Ruin with

the Quota-share Reinsurance and Erlang (2)

Claims

For an exponential claim, one of the special Erlang distributed claims, the formula

provided by Gerber and Shiu (2006), is used to derive the optimal quota-share level.

However, for a standard Erlang distributed claim, no such shortcut exists to calculate

the expected dividend value after reinsurance. Hence, this generalized model must

be constructed from scratch.
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Figure 5.2: Maximum of Expected Discounted Dividend before Ruin in the Com-

pound Poisson Process with Exponential Claims

The Erlang distribution we considered can be written as

f(x; k, β) =
βkxk−1e−βx

(k − 1)!
, k ≥ 1.

Note, when k = 1, it becomes an exponential distribution.

To be more specific, only the Erlang(2) distribution receives consideration, i.e.,

k = 2, and

f(x; 2, β) = β2xe−βx.

The average claim is µ = 2
β
. The claim after reinsurance can be written as

fXa(x) =

(
β

a

)2

xe−
β
a

x,

which is also an Erlang distribution where the parameter is β
a
.
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5.3.1 Characteristics of a Standard Cubic Function

Before we begin our discussion, a review of some characteristics of a standard cubic

function

ax3 + bx2 + cx+ d = 0, (5.7)

is necessary, where a, b, c, d are any real numbers.

Lemma 5.3.1 Let u1, u2 and u3 be the three roots of the cubic function (5.7), and

let

A =
1

u1 (3au2
1 + 2bu1 + c)

+
1

u2 (3au2
2 + 2bu2 + c)

+
1

u3 (3au2
3 + 2bu3 + c)

.

We have

A = −1

d
.

Proof: First note that, if u1, u2, and u3 are the three roots of the cubic function

(5.7), equation (5.7) can be re-written as

0 = (x− u1)(x− u2)(x− u3)

= x3 − x2(u1 + u2 + u3) + x(u1u2 + u1u3 + u2u3)x− u1u2u3.

This indicates

u1 + u2 + u3 = − b
a
,

and

u1u2 + u1u3 + u2u3 =
c

a
.

Hence, u2 and u3 is expressed as
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u2 =
−
(

b
a

+ u1

)
+
√(

b
a

+ u1

)2 − 4u1

(
b
a

+ u1

)
− 4 c

a

2
;

u3 =
−
(

b
a

+ u1

)
−
√(

b
a

+ u1

)2 − 4u1

(
b
a

+ u1

)
− 4 c

a

2
.

Thus, A can also be rewritten as

A

=
1

u1 (3au2
1 + 2bu1 + c)

+
1

u2 (3au2
2 + 2bu2 + c)

+
1

u3 (3au2
3 + 2bu3 + c)

=
1

−bu2
1 − 2cu1 − 3d

+
1

−bu2
2 − 2cu2 − 3d

+
1

−bu2
3 − 2cu3 − 3d

= −
(

1

bu2
1 + 2cu1 + 3d

+
1

bu+ 2cu2 + 3d
+

1

bu2
3 + 2cu3 + 3d

)
.

Substituting u2 and u3 to the above equation, after some tedious yet simple alge-

bra, we have

1

bu2
2 + 2cu2 + 3d

+
1

bu2
3 + 2cu3 + 3d

=
b3 − bu2

1a
2 − 4bca− 2cu1a

2 + 6da2

B

and

1

bu2
1 + 2cu1 + 3d

+
1

bu+ 2cu2 + 3d
+

1

bu2
3 + 2cu3 + 3d

= − −27a2d2 + 18bcda− 4ac3 − 4b3d+ b2c2

d (27a2d2 − 18abcd + 4ac3 + 4b3d − b2c2)

=
1

d
,

where

B = −ab2cu2
1 + 4a2c2u2

1 − 3a2bdu2
1 − ab2du1 − b3cu1

+4abc2u1 − 6a2cdu1 + 9a2d2 + 4ac3 − b2c2 + 2b3d − 10abcd.

Hence, A = −1
d
. �
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Lemma 5.3.2 For the cubic function (5.7), all the roots are real when the discrim-

inant of the cubic polynomial

∆ = 4ac3 − b2c2 + 4b3d + 27a2d2 − 18abcd

is non-negative. All the roots are different when ∆ is strictly positive.

�

5.3.2 Integro-differential Equations for Erlang(2) Claims

As with the exponential case for an Erlang(2) distributed claim with parameter β,

let V (uI ; b) denote the expectation of the present value of all dividends until ruin,

where uI is the initial surplus and b is the threshold. The function V (uI ; b) satisfies

the following integro-differential equations:

For 0 < u < b,

PIV
′(uI ; b)− (λ+ δ)V (uI ; b) + λ

∫ uI

0

V (uI − x; b)f(x)dx = 0; (5.8)

and for u > b,

Dc + (PI −Dc)V
′(uI ; b) − (λ + δ)V (uI; b) + λ

∫ uI

0

V (uI − x; b)f(x)dx = 0. (5.9)

Following is an examination of some characteristics for integro-differential equa-

tions of an Erlang(2) distribution.

Lemma 5.3.3 In an Erlang(2) distribution f(x) with parameter β, the integro-

differential equation (5.8) is converted into a linear differential equation with constant
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coefficients,

PIV
(3)(uI ; b) + (2βPI − λ− δ)V ′′(uI ; b)

+
(
PIβ

2 − 2β(λ+ δ)
)
V ′(uI ; b) − δβ2V (uI ; b) = 0; (5.10)

and equation (5.9) is converted to

(PI −Dc)V
(3)(uI ; b) + (2β(PI −Dc) − (λ+ δ))V ′′(uI ; b)

+
(
(PI −Dc)β

2 − 2β(λ+ δ)
)
V ′(uI; b) − β2δV (uI; b) + β2Dc = 0. (5.11)

Here, PI is the net received premium, λ is claim frequency, δ is dividend accumu-

lation interest rate, and Dc is dividend ceiling. All of these are constants with respect

to the initial surplus uI .

Proof: First, note that f(0; 2, β) = 0,

f ′(x; 2, β) = β2e−βx − β3xe−βx = β2e−βx − βf(x; 2, β),

and ∫ uI

0

V (uI − x; b)f(x)dx =

∫ uI

0

V (x; b)f(uI − x)dx.

Hence, for
∫ uI

0
V (x; b)f(uI − x)dx, with respect to uI, the first partial derivatives

of the equations are
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∂

∂uI

∫ uI

0

V (x; b)f(uI − x)dx = V (uI; b)f(0) +

∫ uI

0

V (x; b)f ′(uI − x)dx

= β2

∫ uI

0

V (x; b)e−β(uI−x)dx − β

∫ uI

0

V (x; b)f(uI − x)dx;

∂

∂uI

∫ uI

0

V (x; b)β2e−β(uI−x)dx = V (uI ; b)β
2e−β(uI−uI ) − β

∫ uI

0

V (x; b)β2e−β(uI−x)dx

= β2V (uI ; b)− β3

∫ uI

0

V (x; b)e−β(uI−x)dx;

∂

∂uI

∫ uI

0

V (x; b)βf(uI − x)dx

= β3

∫ uI

0

V (x; b)e−β(uI−x)dx − β2

∫ uI

0

V (x; b)f(uI − x)dx;

and the second partial derivative of the equation is

∂2

∂u2
I

∫ uI

0

V (uI − x; b)f(x)dx

= β2V (uI ; b) − 2β3

∫ uI

0

V (x; b)e−β(uI−x)dx+ β2

∫ uI

0

V (x; b)f(uI − x)dx.

Applying operator β2 to equation (5.8), we have

β2PIV
′(uI ; b)− β2(λ+ δ)V (uI ; b) + λβ2

∫ uI

0

V (uI − x; b)f(x)dx = 0.

Applying 2β ∂
∂uI

, we have

2βPIV
′′(uI; b) − 2β(λ+ δ)V ′(uI ; b)

+ 2λβ3

∫ uI

0

V (x; b)e−β(uI−x)dx− 2λβ2

∫ uI

0

V (x; b)f(uI − x)dx = 0.

Applying operator ∂2

∂u2
I
, we have

PIV
(3)(uI ; b)− (λ + δ)V ′′(uI; b) + λβ2V (uI; b)

− 2λβ3

∫ uI

0

V (x; b)e−β(uI−x)dx+ λβ2

∫ uI

0

V (x; b)f(uI − x)dx = 0.
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Hence, equation (5.8) can be written as (5.10).

Similarly, equation (5.9) can be written as (5.11) after applying operator

∂2

∂u2
I

+ 2β
∂

∂uI

+ β2.

�

5.3.3 Expected Discounted Dividend until Ruin for Erlang(2)

Claims

Theorem 5.3.1 For an Erlang(2) claim with parameter β, threshold level b, and

initial surplus uI , the formula for the expected dividend before the possible ruin is as

follows:

for 0 ≤ uI ≤ b,

V (uI ; b) = K

(
eξ1uI +

(β + ξ2)
2 (ξ3 − ξ1)

(β + ξ1)2(ξ2 − ξ3)
eξ2uI +

(β + ξ3)
2 (ξ1 − ξ2)

(β + ξ1)2(ξ2 − ξ3)
eξ3uI

)
; (5.12)

and for uI ≥ b,

V (uI ; b) = C4e
ξ4uI + C5e

ξ5uI +
Dc

δ
. (5.13)

Here, ξ3 < ξ2 < 0 < ξ1 are the roots of the characteristic equation

PIx
3 + (2βPI − λ− δ)x2 + (PIβ

2 − 2β(λ + δ))x− β2δ = 0; (5.14)

and ξ5 < ξ4 < 0 are the negative roots of the characteristic equation

(PI −Dc)x
3 + (2β(PI −Dc) − (λ + δ))x2

+
(
(PI −Dc)β

2 − 2β(λ+ δ)
)
x− β2δ = 0, (5.15)
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Here

K =
Dcξ4ξ5(β + ξ1)

2(ξ2 − ξ3)

δβ2Υ
, (5.16)

C4 =
Dcξ5 (ξ4 + β)

2
e−ξ4bC̃4

δβ2 (ξ5 − ξ4)Υ
, (5.17)

C5 =
Dcξ4 (ξ5 + β)2 e−ξ5bC̃5

δβ2 (ξ4 − ξ5)Υ
, (5.18)

where

C̃4 = ξ1 (ξ5 − ξ1) (ξ2 − ξ3) e
ξ1b + ξ2 (ξ5 − ξ2) (ξ3 − ξ1) e

ξ2b + ξ3 (ξ5 − ξ3) (ξ1 − ξ2) e
ξ3b,

C̃5 = ξ1 (ξ4 − ξ1) (ξ2 − ξ3) e
ξ1b + ξ2 (ξ4 − ξ2) (ξ3 − ξ1) e

ξ2b + ξ3 (ξ4 − ξ3) (ξ1 − ξ2) e
ξ3b,

Υ = (ξ5 − ξ1) (ξ4 − ξ1) (ξ2 − ξ3) e
ξ1b + (ξ5 − ξ2) (ξ4 − ξ2) (ξ3 − ξ1) e

ξ2b

+(ξ5 − ξ3) (ξ4 − ξ3) (ξ1 − ξ2) e
ξ3b.

Here, Dc is the dividend ceiling, δ is the interest rate at which the dividend

accumulated, λ is claim frequency, and PI is the net premium received.

Proof:

Case I: the initial surplus is less than the threshold.

For the linear differential equation (5.10), the general solution is

h(uI) = C1e
ξ1uI + C2e

ξ2uI + C3e
ξ3uI , (5.19)

where ξ1, ξ2, ξ3 are the roots of the characteristic equation (5.14), and C1, C2, C3 are

constants. V (uI ; b) = Kh(uI), where K does not depend on uI.
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For equation (5.14), the discriminant

∆ = 15β4P 2
I λ

2 − 4λ4β2 − 12β3PIλ
3 − 4β5P 3

I λ

−12β3PIλδ
2 − 24β3PIλ

2δ − 2β4P 2
I λδ − 12λ3β2δ − 12λ2β2δ2 − 4λδ3β2

= −β2λ (4βPI + λ) (−2λ + βPI)
2

−4β2λδ
(
3βPIδ + 6βPIλ+ 3β2P 2

I + 3λ2 + 3λδ + δ2
)
,

is always less than 0. From Lemma 5.3.2, the equation has three different real roots.

Moreover, for this equation, the roots have two situations, either all roots are

positive or there are two negative roots and one positive root. Under the first scenario,

there should be: 2βPI < λ + δ and βPI > β(λ+ δ), which is impossible. Hence, the

equation (5.14) must have three real roots, two of them are negative and the remaining

one is positive. Here assume that ξ3 < ξ2 < 0 < ξ1.

Putting equation (5.19) back to the equation (5.8), we have

PI

(
ξ1C1e

ξ1uI + ξ2C2e
ξ2uI + ξ3C3e

ξ3uI
)
− (λ+ δ)

(
C1e

ξ1uI + C2e
ξ2uI + C3e

ξ3uI
)

+
λC1β

2

(β + ξ1)
2 (1 − βuIe

−βuI − ξ1uIe
−βuI − e−βuI )

+
λC2β

2

(β + ξ2)
2 (1 − βuIe

−βuI − ξ2uIe
−βuI − e−βuI )

+
λC3β

2

(β + ξ3)
2 (1 − βuIe

−βuI − ξ3uIe
−βuI − e−βuI ) = 0.

Equating the coefficient of e−βuI with 0, we have

C1

(β + ξ1)
2 +

C2

(β + ξ2)
2 +

C3

(β + ξ3)
2 = 0;

and equating the coefficient of uIe
−βuI with 0, we have

C1

β + ξ1
+

C2

β + ξ2
+

C3

β + ξ3
= 0.
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After calculation, there is

C2 = −(β + ξ2)
2 (ξ1 − ξ3)

(β + ξ1)2(ξ2 − ξ3)
C1,

and

C3 =
(β + ξ3)

2 (ξ1 − ξ2)

(β + ξ1)2(ξ2 − ξ3)
C1.

Hence, for u ≤ b,

V (uI ; b) = K

(
eξ1uI +

(β + ξ2)
2 (ξ3 − ξ1)

(β + ξ1)2(ξ2 − ξ3)
eξ2uI +

(β + ξ3)
2 (ξ1 − ξ2)

(β + ξ1)2(ξ2 − ξ3)
eξ3uI

)
.

Note, in the limiting case Dc = PI , we have V ′(b−; b) = 1 and the result is

V (uI; b) =
V

V
, (5.20)

where

V = (β + ξ1)
2(ξ2 − ξ3)e

ξ1uI + (β + ξ2)
2 (ξ3 − ξ1)e

ξ2uI + (β + ξ3)
2 (ξ1 − ξ2) e

ξ3uI ,

V = ξ1(β + ξ1)
2(ξ2 − ξ3)e

ξ1uI + ξ2 (β + ξ2)
2
(ξ3 − ξ1)e

ξ2uI + ξ3 (β + ξ3)
2
(ξ1 − ξ2) e

ξ3uI .

Case II: the initial surplus is greater than the threshold.

The general solution for (5.11) is

V (uI; b) =

6∑

i=4

Cie
ξiuI +

6∑

i=4

eξiuI

P ′(ξi)

∫
β2Dce

−ξiuIduI ,

where

P (x) = (PI−Dc)x
3+(2β(PI −Dc) − (λ + δ))x2+

(
(PI −Dc)β

2 − 2β(λ+ δ)
)
x−β2δ.

ξ4, ξ5, and ξ6 are the real roots of the character equation P (x) = 0. Let ξ5 < ξ4 < 0

be the two negative roots and ξ6 be the positive root.
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Lemma 5.3.1 provides
6∑

i=4

eξiuI

P ′(ξi)

∫
β2Dce

−ξiuIdu =
β2Dc

β2δ
=
Dc

δ
.

Since limuI→∞ V (uI; b) = Dc

δ
, the coefficient for ξ6, can not be greater than zero,

which means C6 = 0.

Hence, for uI > b,

V (uI; b) = C4e
ξ4uI + C5e

ξ5uI +
Dc

δ
.

From the continuity condition, V (b−; b) = V (b+; b), we have

K

(
eξ1b +

(β + ξ2)
2 (ξ3 − ξ1)

(β + ξ1)2(ξ2 − ξ3)
eξ2b +

(β + ξ3)
2 (ξ1 − ξ2)

(β + ξ1)2(ξ2 − ξ3)
eξ3b

)

= C4e
ξ4b + C5e

ξ5b +
Dc

δ
. (5.21)

For the convolution integral in equation (5.9), i.e., the integration part can be

expressed as

∫ uI

0

V (x; b)f(uI − x)dx

= K

∫ b

0

(
eξ1x +

(β + ξ2)
2 (ξ3 − ξ1)

(β + ξ1)2(ξ2 − ξ3)
eξ2x +

(β + ξ3)
2 (ξ1 − ξ2)

(β + ξ1)2(ξ2 − ξ3)
eξ3x

)

×β2(uI − x)e−β(uI−x)dx

+

∫ uI

b

(
C4e

ξ4x + C5e
ξ5x +

Dc

δ

)
β2(uI − x)e−β(uI−x)dx.

By setting the coefficients of uIe
−βuI and e−βuI to zero, we have

K

(
β

β + ξ1
eξ1b +

β (β + ξ2) (ξ3 − ξ1)

(β + ξ1)2(ξ2 − ξ3)
eξ2b +

β (β + ξ3) (ξ1 − ξ2)

(β + ξ1)2(ξ2 − ξ3)
eξ3b

)

= C4β
eξ4b

ξ4 + β
+ C5β

eξ5b

ξ5 + β
+
Dc

δ
, (5.22)
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and

K
(β2 (bβ + bξ1 − 1) eξ1b

(β + ξ1)
2 +

β2(ξ3 − ξ1) (bβ + bξ2 − 1) eξ2b

(β + ξ1)2(ξ2 − ξ3)

+
β2 (ξ1 − ξ2) (bβ + bξ3 − 1) eξ3b

(β + ξ1)2(ξ2 − ξ3)

)

= C4
β2 (bξ4 + bβ − 1) eξ4b

(ξ4 + β)2
+ C5

β2 (bξ5 + bβ − 1) eξ5b

(ξ5 + β)2
+
Dc

δ
(bβ − 1) ; (5.23)

since

∫ b

0

eξ1xβ2(uI − x)e−β(uI−x)dx

= β2
(uI(β + ξ1)e

bβ+ξ1b−βuI − uI (β + ξ1) e
−βuI

(β + ξ1)
2

+
−b(β + ξ1)e

bβ+ξ1b−βuI + ebβ+ξ1b−βuI − e−βuI

(β + ξ1)
2

)
;

∫ uI

b

eξ4xβ2(uI − x)e−β(uI−x)dx

= β2
(−uIe

ξ4b+bβ−βuI (ξ4 + β) + beξ4b+bβ−βuI (ξ4 + β)

(ξ4 + β)2

+
−eξ4b+bβ−βuI + euIξ4

(ξ4 + β)2

)
;

and

∫ uI

b

β2(uI − x)e−β(uI−x)dx = 1 − βuIe
bβ−uIβ + bβebβ−uIβ − ebβ−uIβ.

Note that the relationship

1 +
(ξ3 − ξ1)

(ξ2 − ξ3)
+

(ξ1 − ξ2)

(ξ2 − ξ3)
= 0,
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and

1 +
(β + ξ2) (ξ3 − ξ1)

(β + ξ1)(ξ2 − ξ3)
+

(β + ξ3) (ξ1 − ξ2)

(β + ξ1)(ξ2 − ξ3)
= 0,

is used in the above calculations.

From (5.21), (5.22) and (5.23), K, C4, C5 are the solutions of A−1B, where A is

a 3 × 3 matrix with

A11 =

(
ebξ1 +

(β + ξ2)
2
(ξ3 − ξ1)

(β + ξ1)2(ξ2 − ξ3)
ebξ2 +

(β + ξ3)
2
(ξ1 − ξ2)

(β + ξ1)2(ξ2 − ξ3)
ebξ3

)
,

A21 =
β

β + ξ1

(
ebξ1 +

(β + ξ2) (ξ3 − ξ1)

(β + ξ1) (ξ2 − ξ3)
ebξ2 +

(β + ξ3) (ξ1 − ξ2)

(β + ξ1) (ξ2 − ξ3)
ebξ3

)
,

A31 =
β2

(β + ξ1)
2

×
(

(bβ + bξ1 − 1) ebξ1 +
(ξ3 − ξ1) (bβ + bξ2 − 1)

(ξ2 − ξ3)
ebξ2 +

(ξ1 − ξ2) (bβ + bξ3 − 1)

(ξ2 − ξ3)
ebξ3

)
,

A∗2 =




−ebξ4

− β
β+ξ4

ebξ4

−β2(bβ+bξ4−1)

(β+ξ4)
2 ebξ4


 ,

A∗3 =




−eξ5b

− β
β+ξ5

ebξ5

−β2(bβ+bξ5−1)

(β+ξ5)
2 ebξ5


 ,

and

B =




Dc

δ

Dc

δ

Dc(βb−1)
δ


 .

After tedious calculation, the results for K, C4, and C5 as (5.16), (5.17), and

(5.18) are produced.
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When uI = b = 0, we have

V (0; 0) =
Dcξ4ξ5
δβ2

.

Hence, the theory set forth here is proven. Note that, if the formula 4.3 of Cheung

et al. (2008) is simplified, the identical results occur through these two different

approaches. �

With the Erlang(2) distribution, the claim after quota-share reinsurance is still

an Erlang(2) distribution. To calculate the expected claim after reinsurance, we can

simply use Va(uI ; b) to replace V (uI ; b); and β
a

to replace β—all the results follow.

5.3.4 Optimal Quota-Share Limit for Erlang (2) Claims

Assume Erlang (2) has the same average claim as the exponential example that is

used in the previous section, using the average claim size 100, which denotes β = 0.02.

In the base scenario, all parameters are the same: interest rate δ = 5%, reinsurance

loading θR = 0.2, insurance loading θI = 0.1, claim frequency λ = 1, initial surplus

uI = 100, and dividend ceiling Dc = 5.

Using MATLAB to program the problem for the base scenario as well as the other

six scenarios described for an exponential distribution, it is not surprising that both

distributions have the same pattern. An exponential distribution is considered as an

Erlang (1) distribution, and hence the two claim distributions belong to the same

family. All the explanations used for the exponential claim are applied to Erlang (2),

and they have the same underlying reinsurance meaning.

Table 5.2 provides the base line scenario, and Figure 5.3 and Figure 5.4 demon-

strate the optimal quota-share level a and the largest expected dividend under differ-
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ent scenarios respectively. See attached Excel sheets for complete numerical results.

Figure 5.3: Optimal Quota-share Level in the Compound Poisson Process with Er-

lang(2) Claim
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Table 5.2: Optimal Quota-Share Level for Erlang (2) Claims – Baseline

Threshold Level b Optimal Quota-share a Largest Expected Dividend Va(uI ; b)

10 44% 40.32

20 45% 40.11

30 47% 39.78

40 49% 39.36

50 52% 38.87

60 55% 38.32

70 58% 37.74

80 62% 37.14

90 66% 36.53

100 70% 35.94

110 76% 34.90

120 82% 33.99

130 89% 33.19

140 95% 32.47

150 100% 31.82

160 100% 31.20

170 100% 30.59

180 100% 29.99

190 100% 29.40

200 100% 28.82
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Figure 5.4: Maximum of Expected Discounted Dividend before Ruin in the Com-

pound Poisson Process with Erlang(2) Claims
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Chapter 6

Optimal Retentions with

Commissions, Expenses, and

Diffusion

The last part of this thesis focuses on a compound Poisson model with a diffusion

process included, which represents the effects of business uncertainty in the surplus

process. This chapter also includes commissions and expenses in an effort to mirror

the real business world.

6.1 Jump-diffusion Risk Model with Commissions

and Expenses

The risk model considered in this chapter is described as follows.
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1. The distribution function of claim amount, F (X), satisfies the following:

• F (0) = 0; 0 ≤ F (x) < 1 for 0 < x < +∞;

• dF (x)
dx

exists and is continuous;

• MX(r) (moment generating function of X) exists for r ∈ (−∞, τ ) for some

0 < τ ≤ +∞ and limr→τ MX(r) = limr→τ E[erX] = +∞.

2. The number of claims is given by the Poisson process with parameter λ, which

indicates that the inter claim time T has an exponential distribution and the

claim frequency is λ.

3. The reinsurance treaty can be written as follows:

• P – the insurer’s gross premium income per unit of time.

• α – positive loading coefficient.

• e – insurer’s expense rate.

• c – commission payment rate. The reinsurer will pay the commission back

to the insurer according to the business volume, which is c(1− a)P . Here,

we assume that the insurer cannot reinsure the whole risk with a certain

profit, i.e.,

e > c

and

(1 − e)P − (1 + α)λµ < 0.

Relative safety loading can be written as

ρ =
(1 − e)P

λµ
− 1,

which is positive.
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• The premium paid to the reinsurer is

PR = (1 − c)(1 − a)P + (1 + α)λ

∫ ∞

M/a

(ax−M)dF (x).

• The net premium remaining for the ceding company is

PI = (1 − e)P − PR.

4. The surplus process is affected by a diffusion process {W (t)}, which is a Wiener

process with infinitesimal drift of 0 and infinitesimal variance of 2D > 0. It is

independent of claim time and claim size. Further, W (t) ∼ N(0, 2Dt) for any

t > 0. The surplus process in the reinsurance with the commissions, expenses,

and diffusion is expressed as

Ua,M (t) = u+ PIt−
N(t)∑

i=1

min(aXi,M) +W (t), (6.1)

where u > 0 is the initial surplus of the insurer.

Note, for W ∼ N(µ, σ2), the moment generating function is

M(r) = E[erW ] = eµr+σ2r2/2.

5. Let J(a,M) be the insurer’s net profit after the reinsurance and recall

XI = min(aX,M).

The insurer’s expected net profit per period of time (after reinsurance and

expenses) is expressed as

E[J(a,M)] = PI − λE[XI ].
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The infinite-time ruin probability in the model (6.1) is defined as

ψa,M(u) = Pr{Ua,M(t) < 0 for some t > 0},

which is the probability that the surplus of the insurer will be negative eventually.

The finite-time ruin probability in the model (6.1) is defined as

ψa,M(u, t) = Pr{Ua,M(s) < 0 for some 0 < s ≤ t},

which is the probability that the surplus of the insurer will be negative in the time

period (0, t].

It is difficult to determine the explicit formulas for the infinite-time and finite-time

ruin probabilities, which means that it is not possible to find the optimal retention

levels a and M by minimizing the ruin probabilities directly. However, when certain

conditions are applied, the upper bounds of the ruin probabilities exist. By discovering

the minimum upper bounds, we can determine the optimal retention levels a and M

and the ruin probabilities can be limited so that the risk does not exceed a certain

limit.

Centeno (2002(a), 2002(b)) studied the optimal retention levels a and M in the

compound Poisson risk model. In this chapter, we extend the model and results of

Centeno (2002(a), 2002(b)) to the jump-diffusion risk model or the compound Poisson

risk model with diffusion as described in (6.1).
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6.2 Optimal Retentions by Minimizing Lundberg

Upper Bound for Infinite-Time Ruin Proba-

bility

Motivated by Dufresne and Gerber’s model (1991), in the risk model (6.1), for the

given (a,M), the adjustment coefficient denoted by Ra,M is the unique positive root

of

λE[erXI ] +Dr2 = λ+ PIr,

when such a root exists, or zero otherwise.

Here, the goal is for M and a to maximize the Ra,M , so that the Lundberg upper

bound for the infinite-time ruin probability, which is

ψa,M(u) ≤ e−Ra,Mu,

is minimized.

Because commission, expense and business uncertainty are included in the model,

it is complicated to maximize Ra,M . We have to introduce a new set of definitions

and preliminaries in this section about the properties of the adjustment coefficient

Ra,M and the other parameters.

Let us review some useful results before proceeding to the next step. To obtain

the optimal quota-share and retention levels, the process involves numerous derivative

calculations. The following formulas will be used in the work. Some are fairly tedious

and for this reason, details are omitted.
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6.2.1 Preliminaries

Lemma 6.2.1 The formula set for the partial derivatives of the reinsurance pre-

mium is

∂PR

∂M
= −(1 + α)λ(1 − F (

M

a
)) = −∂PI

∂M
;

∂2PR

∂M2
=

1

a
(1 + α)λf(

M

a
) = −∂

2PI

∂M2
;

∂PR

∂a
= −(1 − c)P + (1 + α)λ

∫ ∞

M/a

xdF (x) = −∂PI

∂a
;

∂2PR

∂a2
= (1 + α)λ

M2

a3
f(
M

a
) = −∂

2PI

∂a2
;

∂2PR

∂a∂M
= −(1 + α)λ

M

a2
f(
M

a
) = − ∂2PI

∂a∂M
.

Since the moment generating function of XI can be written as

E[erXI] =

∫ M/a

0

eraxdF (x) +

∫ ∞

M/a

erMdF (x)

=

∫ M/a

0

eraxdF (x) + erM [1 − F (
M

a
)],

the partial derivative set for E[erXI ] is

∂E[erXI ]

∂M
= rerM [1 − F (

M

a
)];

∂2E[erXI ]

∂M2
= r2erM [1 − F (

M

a
)]− 1

a
rerMf(

M

a
);

∂E[erXI ]

∂a
= r

∫ M/a

0

xeraxdF (x);

∂2E[erXI ]

∂a2
= −rM

2

a3
erMf(

M

a
) + r2

∫ M/a

0

x2eraxdF (x);

∂2E[erXI ]

∂a∂M
=

rM

a2
erMf(

M

a
).

�
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Centeno (1985) has proven the following lemma:

Lemma 6.2.2 Let A = {a : 0 < a ≤ 1 } and suppose that there exists an M such

that E[J(a,M)] = 0} and a0 = (e−c)P
(1−c)P−λE(X)

. Then the following results hold:

1. A = (a0, 1];

2. For each a ∈ A, there exists a unique M such that E[J(a,M)] = 0, i.e. there is

a function Φ mapping A into (0,∞), such that M = Φ(a) is equivalent to

E[J(a,M)] = 0;

3. Φ(a) is convex;

4. lima→a0 Φ(a) = +∞.

Lemma 6.2.3 Ra,M is the one and the only one positive solution of

λE[erXI ] +Dr2 = λ + PIr. (6.2)

Proof: The function can be rewritten as

λE[erXI ] = −Dr2 + PIr + λ.

Note, with respect to r, using the results of Lemma 1 from Centeno (2002), E[erXI]

is a non-decreasing convex function, and the left side of the function is equal to λ at

r = 0. On the other hand, the right side of the function is a concave function which

is equal to λ at r = 0, which implies that the equation holds when r = 0. Figure

6.1 demonstrates that the two lines have one, and the only one, positive intersection

point.

�
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Figure 6.1: Unique Positive Solution of r

Lemma 6.2.4 The adjustment coefficientRa,M is positive if and only if (a,M) ∈ L,

where L is the set of points for which the insurer’s net expected profit is positive, i.e.,

L = {(a,M) : 0 ≤ a ≤ 1,M ≥ 0 and E[J(a,M)] > 0}.

And for any (a,M) ∈ L, H ′
a,M (r) is positive at r = Ra,M , where

Ha,M (r) = λE[erXI ] +Dr2 − PIr − λ.

Proof: Let

ξ =





+∞ if M < +∞

τ for M = +∞
,

where M = +∞ means no excess-of-loss reinsurance.
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From the discussion in Lemma 6.2.3, Ha,M(r) is a convex function. Note,





Ha,M(0) = 0,

limHa,M(r)r→ξ = +∞.
,

implies that the adjustment coefficient is positive if and only if H ′
a,M(0) < 0.

Moreover, note that

∂Ha,M(r)

∂r
|r=0 = λE[XIe

rXI ] + 2Dr − PI |r=0

= E[XI ] − PIE[T ] < 0,

hence,

E[J(a,M)] = PI − λE[XI ] = −∂Ha,M(r)

∂r
|r=0 > 0

is proved.

Furthermore, for any (a,M) ∈ L, H ′
a,M (r) is positive at r = Ra,M .

Figure 6.2 illustrates the proof.

�
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Figure 6.2: Illustration for Proof of Lemma 6.2.4

Given Lemma 6.2.2, it is equivalent to say that the adjustment coefficient is pos-

itive if and only if a > a0 and M > Φ(a).

6.2.2 Adjustment Coefficient as a Function of Retention

Theorem 6.2.1 For a fixed value of a ∈ (a0, 1], Ra,M is a unimodal function of M ,

attaining its maximum value at the only point satisfying

M =
1

Ra,M
ln(1 + α), (6.3)

where Ra,M is the only positive solution of (6.2).

Proof: Recall, in the implicit function theorem, if y is an implicit function of x in

the form F (x, y) = 0, the general formula holds:

dy

dx
= −∂F/∂x

∂F/∂y
.
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Hence, we have
∂Ra,M

∂M
= −(∂/∂M)Ha,M(r)

(∂/∂r)Ha,M(r)
|r=Ra,M

and
∂2Ra,M

∂M2
| ∂Ra,M

∂M
=0

= −(∂2/∂M2)Ha,M (r)

(∂/∂r)Ha,M(r)
|
r=Ra,M ,

∂Ra,M
∂M

=0
.

Note,
∂Ha,M (r)

∂r
|r=Ra,M

> 0, from Lemma 6.2.4. We want to find out M such that

∂Ra,M

∂M
= 0,

where
∂2Ra,M

∂M2
| ∂Ra,M

∂M
=0
< 0.

It is equivalent to ascertain M satisfying

∂Ha,M(r)

∂M
|r=Ra,M

= 0

and
∂2Ha,M (r)

∂M2
|
r=Ra,M ,

∂Ra,M
∂M

=0
> 0.

For the first partial derivative with respect to M , we have

∂Ha,M(r)

∂M

= λ
∂E
[
erXI

]

∂M
− r

∂PI

∂M

= λrerM

(
1 − F (

M

a
)

)
− (1 + α)λr

(
1 − F (

M

a
)

)

= λr

(
1 − F (

M

a
)

)(
erM − (1 + α)

)
.

If
∂Ra,M

∂M
= −(∂/∂M)HM(r)

(∂/∂r)HM(r)
|r=RM

= 0,
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then M should satisfy

M =
1

Ra,M
ln(1 + α),

which is (6.3). There must be such a point, because:

(i) When r → 0, i.e., when the net profit is zero,

lim
r→0

{
erM − (1 + α)

}
= −α.

(ii) When r → ∞, i.e., the adjustment coefficient before the excess-of-loss reinsurance

takes place

lim
r→∞

{
erM − (1 + α)

}
= ∞.

Also, for the second derivative with respect to M ,

∂2Ha,M(r)

∂M2

= λ
∂2E

[
erXI

]

∂M2
− r

∂2PI

∂M2

= λ

(
r2erM

(
1 − F (

M

a
)

)
− 1

a
rerMf(

M

a
)

)
+
r

a
(1 + α)λf(

M

a
)

= λr2erM

(
1 − F (

M

a
)

)
+
λr

a
f(
M

a
)
(
(1 + α) − erM

)
.

When M satisfies (6.3), we have

∂2Ha,M (r)

∂M2
|
r=Ra,M ,

∂Ra,M
∂M

=0
= λr2erM

(
1 − F (

M

a
)

)
> 0.

This indicates

∂2Ra,M

∂M2
| ∂RM

∂M
=0

= −(∂2/∂M2)Ha,M (r)

(∂/∂r)Ha,M(r)
|
r=Ra,M ,

∂Ra,M
∂M

=0
< 0.

Hence, the second derivative with respect to M of Ra,M is negative when the

first derivative is zero, which implies that for fixed a ∈ (a0, 1], Ra,M has at most one
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turning point, and when such a point exists, it is a maximum. The maximum will

exist and be finite at the only point satisfying

M =
1

Ra,M
ln(1 + α).

�

Theorem 6.2.2 When the equation
∂Ha,M (r)

∂M
= 0 holds, M can be defined as a

function of a, let it be Υ(a). Let

R̂a = max
M

(Ra,M) = Ra,Υ(a),

then R̂a is a unimodal function of a for a ∈ (a0, 1], and it attains its maximum at

a = 1, if and only if lima→1−
d
da
R̂a ≥ 0.

Proof: First we have

dR̂a

da
= −(∂/∂a)Ha,M(r)

(∂/∂r)Ha,M(r)
|M=Υ(a),r=R̂a

,

and

d2R̂a

da2
| dR̂a

da
=0

= −(∂2/∂a2)Ha,M(r) × (∂2/∂M2)Ha,M(r) − [(∂2/∂a∂M)Ha,M(r)]2

(∂/∂r)Ha,M(r) × (∂2/∂M2)Ha,M (r)
|
M=Υ(a),r=R̂a, dR̂a

da
=0
.

It has been previously proven that

∂2Ha,M (r)

∂M2
|M=Υ(a),r=R̂a

> 0,

and
∂Ha,M(r)

∂r
|M=Υ(a),r=R̂a

> 0.
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Similarly, the partial derivation with respect to a produces

∂Ha,M(r)

∂a
= λr

∫ M/a

0

xeraxdF (x) + (1 + α)λr

∫ ∞

M/a

xdF (x)− (1 − c)rP > 0;

∂2Ha,M (r)

∂a2
= λr2

∫ M/a

0

x2eraxdF (x) +
λrM2

a3
f(
M

a
)
(
(1 + α) − erM

)
;

∂2Ha,M (r)

∂a∂M
=

λrM

a2
f(
M

a
)
(
erM − (1 + α)

)
.

Since M satisfies (6.3), this results in

(∂2/∂a2)Ha,M(r) × (∂2/∂M2)Ha,M(r)|r=Ra,M ; ∂
∂a

Ha,M (r)=0; ∂
∂a

Ha,M(r)=0

− [(∂2/∂a∂M)Ha,M(r)]2|r=Ra,M ; ∂
∂a

Ha,M (r)=0; ∂
∂a

Ha,M (r)=0

= λ2r4erM

(
1 − F (

M

a
)

)∫ M/a

0

x2eraxdF (x) > 0,

which indicates
d2R̂a

da2
| dR̂a

da
=0
< 0.

Conversely, when a → a0, R̂a goes to zero and we can demonstrate that the

maximum of R̂a is 1, if and only if lima→1−
d
da
R̂a ≥ 0. Hence, the result is proven. �

6.2.3 Optimal Retentions with Exponential Claims

Let the individual claim amount distribution be exponential with mean 1/β, i.e.,

F (x) = 1 − e−βx

and

f(x) = βe−βx.

Here µ = 1/β.
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Let α = 0.8, c = 0.2, e = 0.3, P = 1.6, β = 1, λ = 1, and D = 0.02. The

parameters satisfy e > c and

ρ =
(1 − e)P

λµ
− 1 = 0.12 < α.

In this case, we have

E[erXI ] =

∫ M/a

0

eraxdF (x) + erM [1 − F (
M

a
)]

=

∫ M/a

0

βeraxe−βxdx+ erMe−β M
a

=
ra

ra− β
erM−β M

a − β

ra− β
,

and

PI = (1 − e)P − PR

= (1 − e)P − (1 − c)(1 − a)P − (1 + α)λ

∫ ∞

M/a

(ax−M)βe−βxdx

= (a+ c − ca− e)P − (1 + α)λ
a

β
e−β M

a .

Hence (6.2) becomes

λ(
ra

ra− β
erM−β M

a − β

ra− β
) +Dr2 = λ+ [(a+ c− ca− e)P − (1 + α)λ

a

β
e−β M

a ]r.

For

M =
1

Ra,M
ln(1 + α),

the above equation after simplification becomes

λra2

(ra− β)β
(1 + α)1− β

ar =
λa

ra− β
+ (a+ c− ca− e)P −Dr,

When a = 1, the adjustment coefficient Ra,M attains its maximum value when it

satisfies {
λr

(r − β)β
(1 + α)1−β

r =
λ

r − β
+ (1 − e)P −Dr

}
|r=Ra,M

.
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Using MATLAB, the optimal retention level is M = 5.54 and the maximum of

the adjustment coefficient is Ra,M = 0.10612. With the initial surplus u = 2, the

Lundberg’s upper bound is 80.88%.

Compare this to the classical model without diffusion process, i.e., D = 0, the

optimal retention level is M = 5.45 and the maximum of the adjustment coefficient is

Ra,M = 0.10789. With the initial surplus u = 2, Lundberg’s upper bound is 80.59%.

It means that the upper bound of the ruin probability increases due to business

uncertainty. �

6.3 Optimal Retentions by Minimizing the Upper

Bound for Finite-Time Ruin Probability

In this section, we consider the excess-of-loss reinsurance in the model (6.1) or when

a = 1 in the model (6.1). We denote the finite-time ruin probability in this case by

ψM(u, t), namely ψM (u, t) = ψ1,M(u, t).

Let us review the definition of martingales first.

Definition Let (Xt)t∈R+ be a real-values family of random variables defined on the

probability space (Ω,F, P ) and let (Ft)t∈R+ be a filtration. The stochastic process

(Xt)t∈R+ is said to be adapted to the family (Ft)t∈R+ if, for all t ∈ R+, Xt is Ft-

measurable. The stochastic process (Xt)t∈R+ , adapted to the filtration (Ft)t∈R+, is a

martingale with respect to this filtration, provided the following conditions hold:

1. Xt is P -integrable, for all t ∈ R+;

2. for all (s, t) ∈ R+ × R+, s < t: E[Xt|Fs] = Xs almost surely.
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Gerber (1979) derived the upper bound for the finite-time ruin probability in the

compound Poisson risk model. Using the similar idea, we derive the upper bound for

the finite-time ruin probability in the jump-diffusion risk model in this section.

Lemma 6.3.1 In the diffusion-included ruin process, the upper bound for the finite-

time ruin probability after reinsurance is

ψM(u, t) ≤ exp

(
min

r≥RM

fM (r;u, t)

)
, (6.4)

where

fM(r;u, t) = −ur + tθM(r), (6.5)

with

θM(r) = λE[erXI ] +Dr2 − PIr − λ. (6.6)

Proof: Using the similar argument from Gerber (1973) or Gerber (1979), first note

that
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E


exp


−r


−

N(t)∑

i=1

min(Xi, M) + W (t)





 |F(s)




= E

[
exp

(
−r


−

N(t)∑

i=1

min(Xi, M) + W (t)


 + r


−

N(s)∑

i=1

min(Xi, M) + W (s)




−r


−

N(s)∑

i=1

min(Xi, M) + W (s)




)
|F(s)

]

= E


exp


−r


−

N(t−s)∑

i=1

min(Xi, M) + W (t − s)


 − r


−

N(s)∑

i=1

min(Xi, M) + W (s)





 |F(s)




= E


exp


−r


−

N(t−s)∑

i=1

min(Xi, M) + W (t − s)










×E


exp


−r


−

N(s)∑

i=1

min(Xi, M) + W (s)





 |F(s)




= exp
(
λ(t − s)

(
E[erXI ] − 1

))
e(t−s)Dr2

exp


−r


−

N(s)∑

i=1

min(Xi, M) + W (s)





 .

Here F(s) is a filtration, which contains all information up to time s.

Hence it is known that

{
exp

(
−t
(
−rPI + λ

(
E[erXI ]− 1

)
+Dr2

))
exp (−rUM (t))

}
(6.7)

is a martingale because
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E
[{

exp
(
−t

(
−rPI + λ

(
E[erXI ] − 1

)
+ Dr2

))
exp (−rUM (t))

}
|F(s)

]

= E

[
exp

(
−t

(
−rPI + λ

(
E[erXI ] − 1

)
+ Dr2

)

−r


u + PI t −

N(t)∑

i=1

min(Xi, M) + W (t)




)
|F(s)

]

= exp
(
−t

(
λ

(
E

[
erXI ]− 1

)
+ Dr2

)
− ru

)
E[exp


−r


−

N(t)∑

i=1

min(Xi, M) + W (t)





 |F(s)

]

= exp
(
−t

(
λ

(
E[erXI ] − 1

)
+ Dr2

)
− ru

)
exp

(
λ(t − s)

(
E[erXI ] − 1

))
e(t−s)Dr2

× exp


−r


−

N(s)∑

i=1

min(Xi, M) + W (s)







= exp
(
−s

(
λ

(
E[erXI ]− 1

)
+ Dr2

))
exp


−ru − r


−

N(s)∑

i=1

min(Xi, M) + W (s)







= exp
(
−s

(
−rPI + λ

(
E[erXI ]− 1

)
+ Dr2

))

× exp


−ru − srPI − r


−

N(s)∑

i=1

min(Xi, M) + W (s)







= exp
(
−s

(
−rPI + λ

(
E[erXI ]− 1

)
+ Dr2

))
exp (−rUM (s)) .

We then have

E
[
exp

(
−T

(
−rPI + λ

(
E[erXI ] − 1

)
+Dr2

))
exp (−rUM (T ))

]
= e−ru,

where T is the time of ruin.

We can further conclude that, for r ≥ RM ,

e−ru ≥ E
[
exp

(
−T

(
−rPI + λ

(
E[erXI] − 1

)
+Dr2

))
|T ≤ t

]
ψM(u, t)

≥ exp
(
−t
(
−rPI + λ

(
E[erXI ]− 1

)
+Dr2

))
ψM(u, t).
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Thus

ψM(u, t) ≤ min
r≥RM

exp
(
−ur + t

(
−PIr + λ

(
E[erXI ]− 1

)
+Dr2

))
,

and the lemma is proved. �

Note here,

• For a given M , the adjustment coefficient RM is the unique positive root of

λE[erXI ] +Dr2 = λ+ PIr,

when such a root exists, or zero otherwise.

• Equation (6.6) implies that θM(r) is the only root of

λE[erXI ] +Dr2 = λ + PIr + θM(r). (6.8)

• Because it is an excess-of-loss only reinsurance, the net premium received by

the ceding company after reinsurance is

PI = (1 − e)P − (1 + α)λµ + (1 + α)λE(XI ),

where XI = min(X,M).

6.3.1 Preliminaries

After studying the insurer’s adjustment coefficient as a function of retention levels in

the compound Poisson model with diffusion process, the research is confined to an

excess-of-loss reinsurance. We can minimize the upper bound with reinsurance by

proper retention level M .

Let us study some properties of θM (r) first

143



Lemma 6.3.2 For any M > 0,

(i) θM(0) = θM(RM ) = 0;

(ii) limr→∞ θM(r) = +∞ and limr→∞
θM (r)

r
= +∞;

(iii) PI + θM (r) ≥ 0 when r ≥ 0;

(iv) ∂θM(0)
∂r

= λE[XM ] − PI , which is negative;

(v) θM(r) is a convex function of r.

Proof:

(i), (ii) and (iii) come from equation (6.6) directly.

(iv) Differentiating (6.6) with respect to r, we have

∂

∂r
θM(r) = λE[XIe

rXI ] + 2Dr − PI .

It implies for r = 0, ∂θM (0)
∂r

= λE[XI ] − PI , which is negative.

(v) The second derivative with respect to r is

∂2

∂r2
θM(r) = λE[X2

I e
rXI ] + 2D,

which is greater than zero. Hence, θM(r) is a convex function of r.

The relationship between θM (r) and r is illustrated in Figure 6.3.

�
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Figure 6.3: Relationship between θM(r) and r

Lemma 6.3.3 For each M > 0 and r > 0, fM (r;u, t) = −ur + tθM(r) has a local

minimum if and only if the expected surplus at time t is positive. In this case the

minimizer is unique. Let it be r̂M .

Proof: Because

fM(r;u, t) = −ur + tθM(r),

from Lemma 6.3.2, we have

lim
r→0

fM (r;u, t) = 0,

lim
r→∞

fM (r;u, t) = +∞,

lim
r→0

∂

∂r
fM (r;u, t) = −u+ t

∂

∂r
θM(0) < 0,

and
∂2

∂r2
fM(r;u, t) = t

∂2

∂r2
θM (r) > 0.
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First it may be concluded that with respect to r, fM (r;u, t) is a convex function

for r > 0. Note, the expected surplus at time t can be rewritten as

u+ (PI − λE[XI ]) t = − lim
r→0

∂

∂r
fM(r;u, t).

Because fM(r;u, t) has a minimum in r, if and only if,

lim
r→0

[
∂

∂r
fM (r;u, t)

]
< 0,

which means the expected surplus at time t is positive. Let it be r̂M . �

Because the insurer cannot reinsure the whole risk with a certain profit, there

exists a positive M0 such that M ∈ L if and only if M > M0.

Lemma 6.3.4 Suppose that the expected surplus at time t is positive. Then r̂M >

RM , if and only if
u

t
> λE[XIe

RMXI ] + 2DRM − PI .

Here RM is the unique positive root of equation (6.2) if M > M0 or zero otherwise.

Proof: From the proof of Lemma 6.3.2 (iv), we have

∂

∂r
fM (r;u, t) = −u+

(
λE[XIe

rXI ] + 2Dr − PI

)
t.

Since r̂M is the solution of ∂
∂r
fM(r;u, t) = 0, it is clear from Figure 6.4 that

r̂M > RM

if and only if
∂

∂r
fM(r;u, t)|r=RM

< 0.

Hence, the results follow. �
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Figure 6.4: Function fM (r;u, t)

Let M1 be the minimum value of M for which the expected surplus at time t is

non-negative, i.e.,

M1 = min{M : M ≥ 0 and u+ (PI − λE [XI ]) t ≥ 0}.

Note that

λE[XI ]− PI

= λE[XI ]− ((1 − e)P − (1 + α)λµ + (1 + α)λE(XI ))

= (1 + α)λµ − (1 − e)P − αλE(XI )

= (1 + α)λµ − λµ (1 + ρ) − αλE(XI )

= (α − ρ)λµ − αλE(XI ),

which means that M1 = 0 if and only if u
t
≥ λµ(α − ρ).
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Note, when retention level M equals to 0, it implies that the ceding company

surrenders all the business to the reinsurer, with PI = (ρ− α)λµ and XI = 0.

The corollary below follows from the previous proof.

Corollary 6.3.1 For each M >M1, if

u

t
> λE[XIe

RMXI ] + 2DRM − PI ,

then

ψM(u, t) ≤ efM (u,t,r̂M);

and if
u

t
≤ λE[XIe

RMXI ] + 2DRM − PI ,

then

ψM (u, t) ≤ efM(u,t,RM).

Here RM is the unique positive root of the equation (6.2) if M > M0 or zero

otherwise, and r̂M is the solution to

λE[XIe
rXI ] + 2Dr − PI =

u

t
.

Hence, we can conclude that for certain values of M , it is possible to improve

Lundberg’s inequality (infinite time). In some cases, the value of M that minimizes

the upper bound provided by the inequality of Lemma 6.3.1 (finite time) is different

from the value of M that maximizes the Lundberg’s adjustment coefficient. That will

be the case if
u

t
> λE[XIe

RMXI ] + 2DRM − PI ,
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where
(
M̂, R̂M̂

)
is the solution of

λE[erXI ] +Dr2 = λ+ PIr,

and

erM = (1 + α).

�

6.3.2 Upper Bound as a Function of Retention

With the previous proof, the upper bound can be expressed as a function of the

retention.

Theorem 6.3.1 In the compound Poisson model with a diffusion process, to min-

imize the upper bound for the probability of ruin before time t, the stop-loss reinsur-

ance retention level M satisfies the following.

(i) If u
t
≥ λµ(α− ρ), then the upper bound for the probability of ruin before time

t attains its minimum at M = 0.

(ii) If u
t
< λµ(α − ρ), then the upper bound, considered as a function of M , has

an absolute minimum which is attained at the unique point satisfying

M =
1

r∗
ln(1 + α),

with r∗ = max(r̂, R̂).

Here, r̂ is the solution to

u

t
= λE[XIe

r̂XI ] + 2Dr̂ − PI ,
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and R̂ is the adjustment coefficient which satisfies

λE[eR̂XI ] +DR̂2 = λ + PIR̂.

Here, u is the initial surplus, λ is the average claim frequency, µ is the average

claim size and F (x) is the claim size distribution. The net premium for the ceding

company after reinsurance, PI , is greater than zero. The relative safety loading

ρ =
(1 − e)P

λµ
− 1

is less than the positive loading coefficient α.

Proof: Note

min
M≥M1

ψM(u, t) ≤ exp

(
min

M≥M1

min
r≥R(M)

fM (r;u, t)

)
= exp

(
min

M≥M1

min
r≥R(M)

fM (r;u, t)

)
,

with

fM (r;u, t) = −ur + tθM(r)

= −ur + t
(
λE[erXI ] +Dr2 − PIr − λ

)
.

Calculating the derivative with respect to M with the results from Lemma 6.2.1,

we get

∂

∂M
fM (r;u, t) = t

∂

∂M
θM(r)

=

(
λ
∂

∂M
E[erXI ] − r

∂PI

∂M

)
t

=
(
λrerM (1 − F (M)) − r(1 + α)λ(1 − F (M))

)
t

=
(
erM − (1 + α)

)
λr (1 − F (M)) t;
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and

∂2

∂M2
fM(r;u, t) = t

∂2

∂M2
θM(r)

=

(
λ
∂2

∂M2
E[erXI ]− r

∂2PI

∂M2

)
t

=
(
λ
(
r2erM (1 − F (M)) − rerMf(M)

)
+ r(1 + α)λf(M)

)
t

= λr2erM (1 − F (M)) t+
(
(1 + α) − erM

)
λrf(M)t.

We can conclude that ∂
∂M
fM(r;u, t) = 0 if and only if

M =
1

r
ln(1 + α), (6.9)

and
∂2

∂M2
fM (r;u, t)| ∂

∂M
fM (r;u,t)=0 = λtr2erM (1 − F (M))

is always positive. Hence, for fixed r, u and t, fM(r;u, t) has a local minimum which

is uniquely attained at the point M̂(r) such that M̂(r) is the solution to (6.9).

Recall Lemma 6.3.2, we have

∂

∂r
θM(r) = λE[XIe

rXI ] + 2Dr − PI ,

∂2

∂r2
θM(r) = λE[X2

I e
rXI ] + 2D;

and

∂2θM(r)

∂r∂M
=

∂
(
erM − (1 + α)

)
λr (1 − F (M))

∂r

= MerMλr (1 − F (M)) +
(
erM − (1 + α)

)
λ (1 − F (M)) .

Furthermore, recall that

E
[
X2

I e
rXI
]

=

∫ M

0

x2erxdF (x) +M2erM (1 − F (M)) ,
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resulting in

∂2θM(r)

∂r2

∂2θM(r)

∂M2
−
(
∂2θM(r)

∂r∂M

)2

| ∂
∂M

fM (r;u,t)=0

=
(
λE[X2

I e
rXI ] + 2D

)
λr2erM (1 − F (M)) −M2λ2r2e2rM (1 − F (M))2

=

(
λ

∫ M

0

x2erxdF (x) + 2D

)
λr2erM (1 − F (M)) ,

which is always positive.

Let us now study the function fM̂(r)(r;u, t), using the implicit function theorem,

we can see that

d

dr
fM̂(r)(r;u, t) = −u+ t

∂θM(r)

∂r
| ∂

∂M
fM(r;u,t)=0,

and

d2

dr2
fM̂(r)(r;u, t) = t

∂2θM (r)
∂r2

∂2θM (r)
∂M2 −

(
∂2θM (r)
∂r∂M

)2

∂2θM (r)
∂M2

| ∂
∂M

fM(r;u,t)=0.

This implies that fM̂(r)(r;u, t) is a convex function of r, since d2

dr2 fM̂(r)(r;u, t)

is always positive. Hence, we can conclude that there is at most one solution to

d
dr
fM̂(r)(r;u, t) = 0 and when it exists, it is the global minimum of fM̂(r)(r;u, t).

From definitions and Lemma 6.3.3, we have

lim
r→0

fM̂(r)(r;u, t) = 0,

and

lim
r→0

d

dr
f

M̂(r)
(r;u, t) < 0.

If u
t
≥ λµ(α − ρ), then M1 is zero. This implies that the upper bound for the

probability of ruin before time t attains its minimum at M = 0. Hence, part (i) is

proven.
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(ii) For d
dr
fM̂(r)(r;u, t) = 0,

u

t
= λE[XIe

rXI ] + 2Dr − PI .

For u
t
< λµ(α − ρ), let the solution to (6.9) be r1 for M = M1, which is finite.

Also recall Jensen’s inequality

E[XM1e
r1XM1 ] ≥ E(XM1)E[er1XM1 ],

we have

lim
r→r1

d

dr
fM̂(r)(r;u, t)

= −u+ t
(
λE[XIe

rXI ] + 2Dr − PI

)
|M=M1

= −λE[XI ]t+ tλE[XIe
rXI ] + 2Drt|M=M1

≥ 0.

Hence r̂ exists and it is smaller than r1. The proof is complete.

�

6.3.3 Optimal Retentions with Exponential Claims

Using the same exponential claim example, and further assume that u = 2 and t = 10,

we have
u

t
= 0.2 < 0.66 = λµ(α − ρ).

M = 1
r∗ ln(1 + α), where r∗ = max(r̂, R̂).

Here, r̂ is the solution to

u

t
= λE[XIe

r̂XI ] + 2Dr̂ − PI ,
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Table 6.1: Optimal Retentions with Diffusion

D Upper Bound Max r Optimal M

0 Infinite 80.59% 0.10789 5.45

Finite 79.75% 0.13815 4.25

0.02 Infinite 80.88% 0.10612 5.54

Finite 80.05% 0.13571 4.33

0.2 Infinite 83.12% 0.09242 6.36

Finite 82.38% 0.11767 5.00

and R̂ is the adjustment coefficient satisfies

λE[eR̂XI ] +DR̂2 = λ + PIR̂.

Note that

PI = (1 − e)P − (1 + α)λ
1

β
e−Mβ;

E[erXI ] =
β − re−M(β−r)

β − r
;

E[XIe
rXI ] =

β

(β − r)2 − βrM + β −Mr2

(β − r)2 e−(β−r)M .

Using MATLAB, we optimal retention level is M = 4.33 with r∗ = 0.1357, and

the upper bound for finite time is 80.05% with fM (r;u, t) = −0.2225 .

From Table 6.1, we can conclude that the upper bound for finite time is lower than

the upper bound for infinite time, which is an improvement. The ceding company

decreases the retention level for the lower upper bound of ruin probability. As the

business uncertainty increases, the upper bound of ruin probability increases along

with the optimal retention level M .
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Chapter 7

Conclusions

7.1 Summary

The main purpose of the thesis is to derive a “fair”, optimal reinsurance retention

between a ceding company and a reinsurer and to study the effects of financial and

economic factors including interest, dividend, commissions, expenses, and diffusion

on optimal reinsurance retentions.

Chapter 2 illustrates the optimal retentions for a single period claim. The explicit

expression for the probability of the joint survival of the cedent and the reinsurer is

modeled. The relationships among the retention level, quota-share and maximums

of the joint survival probability are derived. An optimal split of the total premium

income, maximizing the joint survival is obtained. We illustrate the results using the

exponential distribution claim and compare it to the Pareto claim case. The extreme

cases, the quota-share only reinsurance and stop-loss only reinsurance, are discussed

as well.
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Following the discussion of the single period claim, the multi-period aggregate

claim is examined. It is parallel to the case found in Chapter 2, but far more complex.

It is very difficult to calculate the joint survival probability in the multi-period case,

and thus it is not feasible to determine the optimal treaty directly. First, Chapter

3 uses the properties of associated random variables to derive a lower bound for

the joint survival probability. Then, we can determine the optimal a and M by

maximizing the lower bound. Second, Chapter 3 uses bivariate gamma distribution to

approximate the joint survival probability of the cedent and the reinsurer. We derive

the joint survival probability under the aggregate claim. However because there is no

explicit analytical form of the optimal retention level, even for the simple compound

Poisson model, the numerical results are used to compare the compound Poisson,

compound binomial, and compound negative binomial for both the exponential and

Pareto claims.

For the continuous time risk model, which is studied in Chapter 4 through 6, we

focus on the ceding company’s interests and consequently add more realistic aspects

of the reinsurance business into the model.

The first element examined is the effect of interest rate. Chapter 4 advocates for

a new exponential claim compound Poisson process by De Vylder’s approximation,

while including the interest rate in the surplus process. The explicit formulas are

provided for the new parameter set and the exponential and Pareto distributions are

analyzed as examples. The optimal reinsurance quota-share level and retention limit

are derived, along with the minimum ultimate ruin probability. Note, the ruin prob-

ability decreases dramatically when the initial surplus and the interest rate increase.

In order to minimize ruin probability, both quota-share level a and retention level M

need to decrease as the initial surplus increases.
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The second real insurance element used is dividend. Chapter 5 considers a com-

pound Poisson process with the dividends accumulated at a constant rate. It uncovers

the optimal reinsurance treaty necessary to maximize the expectation of the present

value of all dividends before possible ruin. The discussion focuses on quota-share rein-

surance treaties and derives optimal quota-share levels by varying the dividend ceiling,

insurance loadings, claim frequency, claim size and initial surplus for both exponen-

tial claim and Erlang (2) claim. When the threshold level increases, the quota-share

level also increases to achieve the maximal possible accumulated dividends.

In Chapter 6, special attention is given to a compound Poisson model with dif-

fusion included. We add a diffusion process to the surplus process in the classical

ruin model to present the uncertain events that affect the insurance industry on a

day-to-day basis. Also, commissions and expenses are included. This chapter first

focuses on the optimal reinsurance treaty necessary to maximize adjustment coeffi-

cient in the Lundberg upper bound for the infinite-time ruin probability. We give a

simple explicit formula to determine the reinsurance retention level. Further, Chapter

6 uncovers the optimal treaty which is necessary to minimize the upper bound for the

finite-time ruin probability. We derive such an upper bound by using the martingale

approach.

7.2 Future Research

The thesis presents the optimal reinsurance treaty under different criteria. It considers

the compromise interests of both parties in the treaty and expands the classical models

to include additional business factors in an effort to mirror the real business world.

We can extend the study to a much larger scale analysis of optimal criteria.
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Take a single period contract as an example; ensuring maximization of joint sur-

vival probability is not the sole measurement to judge the optimal reinsurance treaty.

There are numerous other quantitative metrics to consider in optimizing the interests

for both the ceding company and the reinsurer.

In Chapter 2, we choose initial surpluses as zero to place both parties at a com-

parable starting level. Considered from another point of view, as the cedent and

reinsurer usually have different initial surpluses, it is an interesting question to ob-

tain the optimal treaty while the nonzero initial surpluses are included in the ruin

process. We can ascertain the joint survival probability of both companies using a

similar method, described in Chapter 2. We do possess the optimal treaties for any

pure stop-loss reinsurance or pure quota-share reinsurance. However, when the treaty

becomes a combination case, there is no explicit formula to obtain the answer.

In a stop-loss reinsurance scenario, the ceding company, in the interests of avoid-

ing bankruptcy, can always set the retention levels such that the total claim pays

out less than the initial surplus. From the cedent’s perspective, it is important to

maximize the expected return, while the reinsurer’s obvious goal is to maximize the

survival probability. This idea inspires the introduction of another measurement for

the optimal reinsurance treaty. Minimize the ruin probability for the reinsurer while

maximizing the expected return for the ceding company is desired. This, however, is

outside of the scope of the research presented here.

In addition to the ruin probability, Value at Risk (VaR) or Conditional Tail Ex-

pectation (CTE) is used as a risk measure as well. Some studies are Wang et al.

(2005) and Jorion (2001). VaR represents the loss amount under a given probability

while integrating diversification effects and risk properties of a particular portfolio;

hence, risk constraints at all levels of a hierarchical organization can be utilized coher-
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ently. VaR is a simple tool for the selection of strategic risk and provides a common

language for risk management. CTE, also called Expected Shortfall or Tail-VaR, is

defined as the average outcome that exceeds a specified percentile. CTE is calculated

as the weighted average of the worst results of the stochastic simulation. From a

prudent risk management perspective, the risk measure associated with loss must be

as minimal as possible. The optimal retention level M and quota-share a is deter-

mined to minimize the corresponding VaR or CTE. It is another meaningful optimal

criterion.

Simply stated, a set of measurements exist to define optimal conditions. Dis-

cussing several other optimal criteria from different perspectives aids the understand-

ing of optimal quota-share and retention limit. Several optimal results do not exist in

the current research. Discovering a close formula may be a significant challenge. The

meaningful economic underlying factor must be balanced with maintaining math-

ematical solvability. This riveting topic has implications in the field of actuarial

science and for the world-wide business community. Further research will, and no

doubt, prove prosperous.
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