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Abstract

Computational devices built on and exploiting quantum phenomena have the

potential to revolutionize our understanding of computational complexity by being

able to solve certain problems faster than the best known classical algorithms.

Unfortunately, unlike the digital computers quantum information processing devices

hope to replace, quantum information is fragile by nature and lacks the inherent

robustness of digital logic. Indeed, for whatever we can do to control the evolution,

nature can also do in some random and unknown fashion ruining the computation.

This thesis explores the task of building the classical control architecture to control

a large quantum system and how to go about characterizing the behaviour of the

system to determine the level of control reached. Both these tasks appear to require

an exponential amount of resources as the size of the system grows. The inability

to efficiently control and characterize large scale quantum systems will certainly

militate against their potential computational usefulness making these important

problems to solve. The solutions presented in this thesis are all tested for their

practical usefulness by implementing them in either liquid- or solid-state nuclear

magnetic resonance.
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Chapter 1

Introduction

Quantum information processing can solve certain problems, probably most impor-

tantly simulation of quantum systems, exponentially faster than the best known

classical algorithms [1]. However, to realize the benefits of quantum information

processing, exquisite control over the evolution of the system is necessary. Other-

wise, the errors introduced by either imperfect control or unknown and unwanted

interactions with the environment surrounding the system, will quickly reduce the

potentially highly entangled coherent quantum state, full of superpositions of clas-

sical states, into a more mundane (and computationally less powerful) mixture of

classical states. Fortunately, things are not as bad as initially might be feared,

and quite surprisingly, arbitrarily good control is not needed for arbitrarily long

computation. It is possible to encode the quantum information into a non-local

state spread out over many qubits so that the original state can be recovered by

detecting and correcting local errors. Indeed, if the error rate is below a so-called

fault-tolerance threshold, then the encoding and correction procedure can be con-

catenated to suppress the error to arbitrarily low values with only a polynomial

resource overhead [2]. Thus, when exploring how to improve coherent control of

quantum systems we have a specific target to meet. Subject to the uncertainties

of architecture and error model assumptions, that number is around 10−4 com-

putationally relevant errors per gate. That doesn’t mean that once we reach a

fault-tolerant level of control our job is finished. The resource overheads near the

threshold are extreme and every improvement in control reduces that overhead to

a more manageable level and makes a large scale quantum information processor

(QIP) more of a possibility.

Although every proposed implementation must have a way of performing one

and two qubit gates, and nearly all of them should theoretically be able to achieve

fault-tolerant control levels when the many engineering and materials issues have

been overcome, often little attention is paid to the question of how the control
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schemes scale up with the size of the QIP. A particularly glaring example comes

from quantum optimal control where very high fidelity pulses, robust to many

experimental imperfections, are possible with a few qubits. This method has had

great success on the small toy systems currently explored in the lab including

nuclear magnetic resonance (NMR), ion traps and superconducting qubits. But the

scheme requires a full simulation of the quantum system on a classical computer,

and so is explicitly not efficient and in practice is limited to controlling less than 10

qubits. Clearly some form of modularization and sub-system approach is needed.

These control issues and techniques are discussed in Chapter 2.

In parallel with working on controlling a large QIP, we also need tools to charac-

terize and diagnose the evolution of the QIP. Unfortunately, even characterizing the

state of a quantum system, let alone its evolution, is an exponentially hard problem

that requires an exponential number of experiments. There are O (24n) number of

parameters to characterize a quantum process or map for n qubits. Protocols and

algorithms are needed which can coarse-grain this huge number of parameters down

to a more manageable number of average values which are experimentally feasible

to extract and are meaningful in terms of characterizing the level of control or some

other quantity of interest: for example, the spatial distribution or correlation of the

errors affecting the QIP. Three approaches to different facets of this problem are

discussed in Chapter 3.

Finally, one of the useful benefits of establishing high fidelity coherent control of

a quantum system is that the control can be leveraged to improve other operations

such as state preparation. So for example, while an error (the particulars of the

error, whether it is worst case or some average, depend on the particular assump-

tions of the threshold proof or simulation) rate of 10−4 is needed for gates, an error

rate on state preparation or measurement of 10−2 is reasonable for fault-tolerant

computation. This is particularly relevant to a NMR QIP where the highly mixed

thermal state gives us very noisy state preparation. With good control, many noisy

qubits can be combined to produce one less noisy qubit and with the ability to reset

a qubit to some heat bath polarization (or many qubits initialized at the beginning)

then the process can be repeated many times to reduce the state preparation error

even further in a process known as algorithmic cooling [3]. As discussed in Chapter

4 we were able to control our system well enough to implement this protocol in the

solid-state and purify one qubit above the Shannon bound - the polarization limit

for closed systems.

All of the presented protocols were tested in either liquid-state or solid-state

NMR QIP. Relying on the many decades of experience in controlling nuclei through

radio-frequency fields, and the fortunate availability of molecules with several cou-

pled spin-1
2

nuclei with long coherence times, high fidelity control with average error

rates of less than 1% is possible over several qubits. The commercially available

2



control hardware and software is at a sufficient level that attention can be concen-

trated on the high-level control software and algorithmic ideas rather than technical

details specific to a particular system. This makes NMR an ideal test-bed for ideas

of quantum control and characterization.
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Chapter 2

Quantum control in large Hilbert

Spaces

2.1 Motivation

It is usually relatively straightforward to establish control with only one or two

qubits. One qubit gates can be effected by turning on a control field and inducing

Rabi oscillations. For a two qubit gate letting a coupling Hamiltonian evolve for the

correct amount of time and potentially adding some one qubits gates is sufficient.

Indeed in most cases the control sequences for these small systems can be written

down by hand and optimized in a heuristic manner. However, as the number of

qubits grows the control schemes become more complicated, particularly in the

case of always on couplings which must be refocussed as in NMR QIP [4]. Even for

single qubit rotations there is usually an issue of addressability: it is not possible to

effect a rotation of a single qubit without having an effect on other qubits. In most

situations we have a good model for the system and apparatus so these unitary

errors coming from imperfect control could conceivably be simulated and corrected

at a later time. However, if we are to realize the reputed power of a QIP, the

effort and complexity of our classical control schemes used to drive the quantum

computation must not grow exponentially with the number of qubits. Thus it is

necessary to explore methods for scalable high fidelity quantum control in large

Hilbert spaces.

Nuclear magnetic resonance techniques have a long and illustrious history and

represent a paradigm for quantum control. Indeed much of the language from NMR

has been adopted for other spin and pseudo-spin systems. The availability of long

lasting coherence and a clean, well understood, system offers a test-bed for devel-

oping and benchmarking quantum control techniques. In this chapter I explore

methods for quantum control based in liquid-state NMR. However, the techniques
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developed should find application beyond magnetic resonance, as many other sys-

tems, such as electron dots and superconducting qubits, have similar Hamiltonians.

The work in this chapter was published in Ref. [5].

2.2 Establishing controllability

The time evolution of a closed quantum system can be described by the differen-

tial Schrödinger equation. In all cases I assume that the system is governed by a

time-independent natural Hamiltonian Hnat (known as the drift term in optimal

control) and the time-dependent control Hamiltonian HC (t) whose time depen-

dence is under the experimenter’s control. In theoretical work this is often assumed

to be arbitrary control, but in practice there are finite power and bandwidth limits

imposed on the control fields. Then, given a density matrix description of the state,

ρ (t), the time evolution is given by:

ρ̇ (t) = − i
~

[Hnat +HC (t) , ρ (t)] . (2.1)

The differential equation is integrated to give the unitary form of the dynamics,

ρ (t) = U (t) ρ (0)U † (t) . (2.2)

With the unitary time evolution operator calculated by integrating the instan-

taneous propagator,

U (t) = T exp

[−i
~

∫
(Hnat +HC (t))

]
. (2.3)

The Dyson time ordering operator T tells us that when we calculate the integral

in the exponential to be careful to get the order of the non-commuting terms right.

In practice, time is discretized at a suitable rate such that HC (t) is approximately

piecewise constant. Then the propagator for timestep j with length ∆t is,

Uj = exp

[−i
~

∆t (Hnat +HC (tj))

]
, (2.4)

and the total unitary is calculated by multiplying all the Uj together U (t) =
∏

j Uj.

Thus simulation of a quantum evolution reduces to calculating matrix exponentials

whose complexity and calculation time increases by a factor of approximately 8

for each qubit added. As an aside, we currently rely on Matlab’s built in expm

which in turn is using scaling and squaring and Pade’s approximant [6]. Other

groups [7] have reported for quantum simulations that other approximations such

as a Tchebychev series are faster and are worth exploring.
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The first relevant question in quantum control is whether it is even possible to

control the system: whether the full Hilbert space can be explored. This question

is answered in computer science with universal gate sets: a small set of, say, one

and two qubit gates which when put together appropriately can approximate, ar-

bitrarily accurately, any unitary [8]. For physical implementations the question is

more appropriately asked in the Hamiltonian language: whether the evolution un-

der the natural (or drift) Hamiltonian combined with the time dependent control

Hamiltonians can approximate any unitary (or average Hamiltonian) eventually.

Note that this will not tell us how long it might take or how strong a control field is

required to achieve the unitary; nevertheless, it is a starting point. The question is

formally answered by determining whether the control and natural Hamiltonians,

and commutators of them, generate the entire Lie algebra [9]. There are standard

numerical techniques for determining whether a system is fully controllable given a

set of natural and control Hamiltonians [10]. There are also intuitive results about

controllability. Any system where arbitrary single qubit rotations are possible (the

ability to generate rotations about two non-parallel axes) and a two body cou-

pling Hamiltonian of any form that connects all qubits will be sufficient to generate

complete control [11].

2.2.1 NMR Hamiltonians

For NMR in the liquid-state and solid-state the Hamiltonian may provide universal

control in certain situations. Since the majority of NMR QIP is performed on

the archetypal qubit, the spin-1
2

nucleus, this thesis will not consider quadrupolar

nuclei. Nuclei with greater than spin-1
2

have a quadrupolar moment which couples

the spin to electric field gradients. They tend to have fast decoherence rates as a

result and are usually unsuitable for QIP purposes. The magnetic dipole of the

nuclei interacts with the static magnetic field, which produces a Zeeman splitting

between the two energy levels (spin aligned or anti-aligned with the static field),

giving the Hamiltonian

HZeeman = γiBo(1 + δ)Z = ωiZ, (2.5)

where γi is the gyromagnetic ratio of nucleus i, Bo is the strength of the magnetic

field and Z is the Pauli operator σz. In a similar manner I will use X/Y for σx/σy
and I for the identity matrix. A subscript indicates that Pauli operator acting

on the subscripted spin with the identity operator acting on all other spins; for

example, in a three qubit system X2 = I ⊗ X ⊗ I = IXI. Furthermore, I will

always assume that the static magnetic field is along the z direction. This Pauli

operator notation will also be used to refer to quantum states in NMR experiments.

The thermal state in NMR is highly mixed and is mainly the maximally mixed state
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with a small deviation called the deviation density matrix. So, for example, the

thermal state for two spins is,

ρthermal =
1

4
11 + γ1εZI + γ2εIZ, (2.6)

where epsilon is some constant factor depending on the field and temperature and

is ≈ 10−5 in typical fields at room temperature. Because the identity term is

unobservable in NMR and unchanging under the dynamics it is typically dropped

from the description and only the second two terms, the deviation density matrix

is written down. This is known as the product-operator notation [12].

It is convenient to use a semi-classical picture of the spins precessing about the

magnetic field with an angular frequency ωi. The Larmor frequency is ωi/2π and is

on the order of tens to hundreds of megahertz in today’s superconducting magnets

where the field ranges from 2-20T. In the absence of symmetry of the molecule,

each nuclear site in the molecule experiences a different electronic environment.

The electron cloud partially shields the nuclei from the applied magnetic field so

that the local magnetic field experienced by each nucleus is slightly different. This

gives each nucleus a slightly different Larmor frequency called the chemical shift,

denoted by δ � 1 in Eq. 2.5. This separation in frequency space (of a few kilohertz)

is what allows different nuclei of the same nuclear species to be distinguished and

selectively addressed. Different nuclear species have different gyromagnetic ratios,

so their Larmor frequencies are usually widely separated by tens or hundreds of

megahertz in frequency in typical fields. The contrast between the homonuclear

and heteronuclear frequency ranges leads to huge differences in the timescales for

homonuclear and heteronuclear control. It is only when a purely heteronuclear

system is considered that single-qubit rotations are much faster (approximately

three orders of magnitude) than two-qubit coupling gates. It is commonly assumed

that the requirement of different chemical shifts will limit the number of qubits in

molecular system where the resonance frequencies cannot be engineered. However,

there are numerous schemes where the full power of computation can be realized

with global control [13]. These schemes do however rely on a unique addressable

qubit at the end of the chain. In practice there are few molecules which satisfy the

chemical and symmetry requirements to have sufficiently resolved peak groups to

define individual qubits and have long coherence times so that potential molecules

with more than 7 qubits are always of interest.

The nuclear spins interact with each other by two mechanisms: a direct spin-spin

coupling via the dipolar interaction, and an indirect electron-mediated interaction,

the J coupling. In a secular approximation, the dipolar coupling between spins i

and j takes the anisotropic form,

HD = Dij (2ZiZj −XiXj − YiYj) . (2.7)

7



The dipolar coupling constant depends on the orientation of the two molecules. If

θ is the angle between the static field and the vector joining i and j is rij then,

Dij = ~
(µ0

4π

) γiγj
r3
ij

(
3 cos2 θ − 1

)
. (2.8)

In the liquid state1, the rapid tumbling motion of the molecules averages to

zero the pseudo-dipolar or anisotropic portion of the J coupling and the dipolar

coupling, both within the same molecule and (to a good approximation) between

molecules [14]. This leaves only the weaker and isotropic J coupling. The coupling

Hamiltonian between spins i and j is of an exchange form,

HJ =
π

2
Jij (XiXj + YiYj + ZiZj) =

π

2
Jijσi · σj. (2.9)

Since this coupling is mediated by the electrons binding the two nuclei, there is no J

coupling between different molecules. If the difference in the resonant frequencies of

the two nuclei involved is much greater than the coupling strength, then a secular

approximation is valid. The off-diagonal terms can be ignored and the coupling

is reduced to the weak-coupling Ising form where the XiXj and YiYj terms are

dropped:

HJweak =
π

2
JijZiZj. (2.10)

This approximation is always valid for heteronuclear systems and for the ma-

jority of the homonuclear systems considered for a QIP. With this approximation,

all the terms in the internal Hamiltonian commute, and tracking the system during

periods of free evolution becomes particularly straightforward. This can be used to

greatly simplify the control schemes.

The internal Hamiltonian enables one-qubit rotations about the Z axis and two-

qubit controlled-Z gates. However, for universal control, one-qubit rotations about

another axis are needed. These are implemented by the control-field Hamiltonians.

By applying a radio-frequency (r.f.) field, we can induce transitions between energy

levels whose energy difference is resonant with the field. The applied field is lin-

early polarized perpendicular to the static field and it can be decomposed into two

components rotating in opposite directions at the r.f. frequency. Since the spin is

precessing about the static field at its Larmour frequency, only the component that

is rotating in the same direction as the spin and at a comparable frequency will

have an effect. Indeed it is convenient to move into a frame rotating at the pulsing

frequency: the so called rotating frame [14]. In the rotating frame the control field

Hamiltonian is a constant magnetic field and can be described as,

Hcontrol = ωnut(t) (cos(φ(t))X + sin(φ(t))Y ) . (2.11)

1Although there are quasi-liquid states such as liquid-crystals where the partial alignment of
the molecules with the external magnetic field leads to a residual dipolar coupling between spins
on the same molecule.
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Up to the hardware limitations of the spectrometer, it is possible to arbitrarily

control the amplitude (ωnut, the nutation or Rabi frequency) and phase (φ) as a

function of time. With a standard liquid-state probe, nutation frequencies of up

to 30 kHz are feasible and for solid state probes up to 300kHz is easily attainable.

This order of magnitude difference is due to the use of saddle coils in the liquid

state for easy top loading sample changing; whereas in the solid state, more efficient

solenoid coils are usually used. If the r.f. frequency is on resonance with the spins’

Larmor frequency, then in the rotating frame the contribution to the Hamiltonian

of the static magnetic field along Z vanishes and the r.f. field looks like a constant

field about an axis φ from the x-axis. Hence, the spins precess about this axis at

a frequency ωnut, and we can induce rotations about any axis in the X-Y plane in

the rotating frame. The counter-rotating component will look like a magnetic field

rotating at twice the pulsing frequency and its effect will quickly average to zero. In

the rotating reference frame at the r.f. frequency, spins whose transition frequencies

are off-resonant have an additional Z component in their Hamiltonian, and the

effective rotation axis will be the vector sum of the r.f. field and the off-resonant

Z field. If the spins are far off-resonance then this rotation axis will be close to

the z axis and the spins will not be rotated into the plane. The combination of the

internal Hamiltonian and the control fields gives universal control. The challenge

is to find the control fields as a function of time that drive the system through the

desired unitary evolution.

2.3 Quantum Optimal Control

Although somewhat surprising to traditional NMR spectroscopists, there is a very

powerful approach to control which relies on straightforward numerical optimiza-

tion. Traditionally, NMR has been used to probe an unknown system and so

pulse design focussed on designing a huge variety of pulses with different frequency

domain characteristics, say narrow band or broad band pulses [15]. Numerical op-

timization and optimal control was often used for this purpose [16]. In an NMR

QIP the situation is turned around. The system is already well known and so pulse

design can give pulses that effect the desired gates on the specific system. For

small systems, or under unrealistic assumptions about the control available, such

as instantaneously fast single qubit gates, it is possible to show analytical results

for the time-optimal evolution for certain quantum gates [17]. However, for larger

systems we resort to numerical methods. As above, the system is driven by a natu-

ral Hamiltonian and the control Hamiltonians. The control Hamiltonian is broken

up into a sum of all the control knobs we have,

HC (t) =
∑
k

uk (t)Hk. (2.12)
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In NMR the amplitude and phase (or the quadratures X and Y ) Hamiltonians are

controllable so that for example uk (t)Hk = uk (t)
∑

mXm where index m specifies

which spins are sensitive to the control field, e.g. all carbon nuclear spins. So, more

generally for NMR QIP,

HC (t) =
∑
k

(
xk (t)

∑
m

Xm + yk (t)
∑
m

Ym

)
, (2.13)

where k indexes the different isotopes (proton,carbon,nitrogen, etc.) and m indexes

the nuclear spins of each species.

The pulse is first discretized into suitable time steps so that the control param-

eters become a series ukj (see Figure 2.1). If the system is fully controllable then

we know given enough timesteps there is some sequence ukj that will create any

desired unitary. The question of optimal control then becomes how to find such a

sequence. If it is an optimal sequence then it should be the shortest, lowest power

etc. depending on what the metric for optimal is.

Co
nt

ro
l A

m
pl

itu
de

Time

Figure 2.1: A pulse is discretized into timesteps tj. The optimal control algorithm

then pushes the control parameters ukj in the correct direction such that the unitary

implemented by the pulse is as close to the desired unitary as possible.

Given the series ukj and a good model for the system and apparatus it is possible

to simulate the unitary on a classical computer as described above to obtain Usim.

This can then be compared to some desired target unitary Ugoal. Since global phases

do not matter (i.e. we do not have to create the exact unitary Ugoal but eiφUgoal is

sufficient), the global phase invariant Hilbert-Schmidt (HS) norm is a good choice

for the fidelity function,

FHS =

∣∣∣tr (U †goalUsim)∣∣∣2
N2

, (2.14)

where N is the dimension of the Hilbert space. This fidelity measure can be seen

as an imperfect motion reversal, and is linearly related to the average fidelity (the

10



squared state overlap between the desired and simulated output state averaged

(Haar measure) over all input states [18]). It is also equal to the average attenuated

correlation between ideal and simulated output density matrices [19].

With this fitness function the performance of any pulse can be calculated. The

most naive approach is then to start with some random pulse, calculate its fidelity

with the desired unitary and then to vary the controls such that the simulated

unitary has a greater overlap with the goal unitary. That, in essence, is quantum

optimal control, a numerical search for the best pulse. The clever part of optimal

control comes in applying standard optimization strategies to the problem. Unfor-

tunately, it is difficult to guarantee global optimality from any search method. It

may be that the best pulse found from the numerical search has a fidelity of 99.9%

and takes 1ms but without an exhaustive search that does not mean that there

is not another pulse that would give 99.99% fidelity and take only 900µs. This

makes the “optimal” part of optimal control a bit of a misnomer as the guarantee

of optimality is only as good as the search method is at finding global maxima. It

should be noted that there are suggestions that in the absence of constraints on

the controls, the fitness function landscape is relatively well behaved [20]: that it

has no local maximum. This may explain some of the success of quantum optimal

control.

The optimizer’s task is a difficult one because of the extreme cost of function

evaluations and the “credit assignment problem”. Because each function evaluation

requires simulating the quantum evolution (perhaps multiple times if the pulse has

to be robust against inhomogeneties in the system) it is intrinsically unscalable and

is limited to 10 qubits even with large cluster computers [21]. The credit assignment

problem is to decide how much the controlHk at timestep uj contributes to creating

the desired unitary and hence how to change it. This can be solved of course

by taking the derivative of the fitness function with respect to ukj . However, if

done naively numerically this requires an enormous number of function evaluations.

Parameter ukj is increased slightly, the entire simulated unitary is calculated and

the forward finite derivative of the fitness function calculated. For example, with

a pulse defined on 500 timesteps and four control parameters (X and Y for proton

and carbon say) then this will require 2001 simulations of the system. For seven

qubits each simulation will take approximately a minute on a standard desktop

computer (3GHz, 1GB RAM) so it will take over 30 hours just to make one move

in the parameter space. A standard solution to this problem is back-propagation.

The unitary is simulated both forwards starting from the identity and backwards

from the goal unitary and the unitaries at each point are stored in memory. From

these two sets, instantaneous derivatives of the fidelity function can be calculated

with a few matrix multiplications rather than simulation of the entire system.

11



The unitary for each timestep is,

Uj = exp

[
−i∆t

(
Hint +

∑
i

ui (j)Hi

)]
, (2.15)

where Hx =
∑

kXk for example and ∆t is the length of the timestep. To first order,

the derivative of the timestep’s unitary propagator with respect to the control fields

can be evaluated without finite differencing or another matrix exponential as,

δUj
δui (j)

≈ −i∆tHiUj (2.16)

where we require |∆tH| � 1 for the approximate derivative to be accurate. The

total unitary for the pulse can be calculated as the product of each timestep’s

unitary,

Utot = UMUM−1UM−2....U3U2U1. (2.17)

The gradient of the fitness function Eq. 2.14 can now be explicitly calculated as

δΦ

δui (j)
=

1

N2
×
[
tr

((
U †j+1...U

†
MUgoal

)† δUj
δui (j)

Uj−1...U1

)
+ c.c.

]
. (2.18)

On either side of the derivative are the partial propagators in the forward direction

in time (starting from 11) and backwards in time (starting from Ugoal). Thus by

storing the forwards and backwards propagation of the unitary and substituting

Eq. 2.16 into Eq. 2.18, gradient information about the fitness function can be

obtained without finite differencing or recalculation of the entire propagator. The

gradient information leads to a much more efficient search determining the direction

in which the control parameters should be moved to improve the fitness function.

This information can be used by a simple steepest-ascent hill-climbing algorithm

to optimize the pulse. For faster optimization, conjugate-gradient techniques dra-

matically speed up the convergence.

This application of standard optimal control to quantum pulse engineering was

codified in the GRadient Ascent Pulse Engineering algorithm [22]. The code I wrote

is closely based on the published algorithm with some modifications discussed below

that were important for high fidelity control experimentally. Further technical

details of the code can be found in Appendix B.

The numerically optimized sequences from optimal control techniques drive the

system through a potentially complicated and non-intuitive path where small errors

in the model of the system and apparatus might lead to a large drop in the fidelity

of the pulse. An optimal control pulse is fortuitously robust to some noise in the

pulse. At the point of convergence the pulse is at a local maximum in the parameter

space and so the derivative of the fidelity with respect to any control parameter

12



is zero. Thus any small fluctuations in the control parameter due to noise in the

pulse generation will have no effect to first order. However the pulse can be made

explicitly robust to known uncertainties by defining a new fidelity function which is

an average fidelity from the pulse simulated over a range of parameters in the model.

The two most relevant to NMR QIP are inhomogeneities across the sample in both

the r.f. field and the static field. In liquid-state NMR, good shimming can reduce

the static field variation to less than 1Hz. However, in the solid-state, susceptibility

mismatch between the sample and air in addition to imperfect crystals lead to much

larger static field inhomogeneties of up to 300Hz. In both the liquid and solid state

the r.f. field varies across the sample (see Figure 2.2 for a typical distribution).

The distribution plotted is for the proton coil in a TCI cryogenic probe. I expect

the proton coil to be the worst as it is the closest to the sample. The carbon coil

is further away and so is relatively more homogeneous over the sample volume. It

has also been noted that the inhomogeneity is particularly bad in cryogenic probe

heads [23]. An example of a 7 qubit pulse robust to r.f. and static field variation

is shown in Figure 2.3 and a pulse for the solid-state malonic acid system is shown

in Figure 2.4. It should be noted that the usefulness of the robust pulses extends

far beyond ensemble systems. They will be useful in other systems to improve the

fidelity of control against for example, control field miscalibration or slow drift in

the natural Hamiltonian.

Even with having to make only two simulations per step, finding pulses for large

systems is tediously slow - particularly when looking for robust pulses which must

be simulated over a range of parameters. The code implements a subsystem style

approach to speed up finding pulses. Although this does not directly address the

scalability issues with optimal control, it provides a practical method to find pulses

on larger spin systems. A similarly motivated approach has been used for typical

NMR experiments to allow the simulation of up to 200 spins [24]. If the system

can be decomposed into subsystems (possibly overlapping), such that for each sub-

system the desired unitary operator factors into one acting on the subsystem and

another acting on the complement, then we can find pulses by defining the fitness

function as a weighted sum of fitness functions for each subsystem. The subsys-

tems must be defined so that the dominant dynamics of the system is captured. In

particular, every strong coupling must be internal to at least one of the subsystems

and strongly coupled groups must be simulated together to capture multi-body

dynamics. We simulate each subsystem separately to reduce the simulation com-

plexity. The hope is that if the pulse performs the desired unitary on each of the

sub-systems then the pulse will most likely perform the desired unitary on the full

system because higher order coherences are unlikely to be excited during the pulse.

Take as an example the crotonic acid system with seven qubits (see Appendix A

for details of the molecule). Pulses implementing one-qubit rotations have the de-

13
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Figure 2.2: r.f. inhomogeneity profile on a Bruker TXI 700MHz cryogenic probe.

The profile is measured with a nutation experiment: the integrated intensity of

the NMR signal of a clean well isolated peak (in this case chloroform dissolved in

deuterated acetone) is measured as a function of pulse length. A nutation field of

approximately 12.5 kHZ was incremented in time by 5µs from 5µs to 2ms. The

integral of the NMR signal was evaluated at each point. For an ideal qubit we

would expect to see Rabi oscillations with perfect contrast. However, due to the

r.f. inhomogeneity, different parts of the sample experience different nutation rates

and the signal decays. Fourier transforming the signal reveals the distribution of

nutation frequencies. The ideal r.f. multiplier of unity is assumed to correspond to

the peak of the distribution. Assuming all spins are visible in the experiment then

the area under the curve must be normalized which allows us to scale the y-axis

appropriately. As intuitively expected, the distribution is skewed towards lower

fields. We would expect that the coils will create an volume of high homogeneity

field in center of the sample and then towards the edges of the sample the field

strength will drop off. Thus, there will be a larger volume at the edges of the

sample versus the centre giving a distribution skewed towards lower field. There

is also a substantial tail at lower fields which must be suppressed for high fidelity

control.
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sired factorization property with respect to any subsystem. To capture the strong

couplings, we use the following four overlapping subsystems: {M,C1}, {C1, C2},
{H1, C2, C3, H2}, and {C3, C4}. Qubit C1 is then covered by two subsystems cap-

turing its strongest couplings. If the pulse refocusses these strong couplings to M

and C2 it is likely to also refocus weaker couplings to say C4 without additional

optimization. In general though, even if the pulse performs the desired subsystem

unitaries with high fidelity, there is no guarantee that the smaller unconsidered cou-

plings and/or many-body effects will not give a much lower fidelity implementation

on the full system. Empirically however, we have found the constructed pulses work

well on the full system, both for short one-qubit gates and for longer coupling gates.

Furthermore, it substantially speeds up finding pulses for the seven-qubit crotonic

acid system. The pulse shown in Figure 2.3 was found with this method. It has

99.9 % fidelity averaged over the above subsystems and showed a 99.7 % fidelity on

the entire seven qubit system.

Up to this point it has been assumed that the controls can be varied arbitrarily

and that unlimited r.f. power is available: neither is true experimentally. R.F.

power limits are easily imposed by resetting the power when it exceeds a preset

value. This however, renders the conjugate gradient approach ineffective and more

elegant solutions are possible [25]. In practice it is found that enforcing lower power

constraints leads to longer pulses. Discontinuities in the amplitude and/or phase

of the r.f. will lead to switching transients due to the finite bandwidth of the probe

circuitry and pulse generation [26]. There are a few solutions to this problem.

Firstly the resonant probe circuit can be modeled with linear elements (capacitors,

inductors, resistors), an impulse response calculated, and the field seen by the

sample for a given input pulse calculated. Assuming a finite impulse response,

modified derivatives in the GRAPE algorithm can be calculated [27]. Intuitively

because of the transient effects, the level of the control amplitude at timestep tj
of the input pulse will affect the level seen at the sample at some later time-step

tj+l. Thus the derivative of the fitness function at time-step tj must take this into

account. Using the product rule, the derivative becomes a sum of as many terms

as are in the impulse response. This solution is elegant but requires an accurate

model of the system and will not capture transient effects with frequencies beyond

the sampling frequency dictated by the pulse timestep length. A second solution

[25], similar to the one for hard-limiting the r.f. power is to apply a low-pass filter

to the derivatives to filter out high frequency components outside the bandwidth

of the system. This however, may affect the direction of the derivatives and so

affect the very useful conjugate gradient techniques. The code implements a third

solution which has the side benefit of speeding up pulse finding. The idea is that

even though the spectrometer can discretize the points on a very fast timescale

(100ns), it is rare that that many points are actually needed to find a high fidelity

17



pulse. This leads to the following strategy:

1. Find a high-fidelity pulse using relatively long timesteps, e.g. 20 µs. The

length of the timestep is constrained so that approximate derivative (Eq.

2.16) is still accurate and so that there are sufficient number of timesteps to

find a high fidelity unitary.

2. Digitally smooth this pulse with shorter timesteps, e.g. 1 µs, making sure

that the pulse bandwidth is within the system limitations.

3. Use this smoothed version of the pulse as an initial guess for the numerical

optimization. There will be a small loss of fidelity from the smoothing. Nev-

ertheless, it will be a good starting point (usually in the 95-99% range) and

will not take long to re-optimize.

4. If necessary, repeat the smoothing and optimization procedure.

Empirically we have found that the re-optimization of the pulse in the third

step changes the pulse very little, and once the new optimized pulse is determined,

it is still sufficiently smooth. It is also necessary to ensure that the beginning and

end of the pulse go to zero to ensure a smooth experimental turn-on/off. This can

be achieved with a penalty function that penalizes high powers at the beginning

and the end.

Another improvement in our code is the addition of timestep derivatives. In

conventional GRAPE the length of each timestep and the total number of timesteps

is fixed. To determine the time optimal pulse an arbitrary pulse length is chosen

and many attempts to find a pulse are made. If one is found that has an acceptably

high fidelity, then the time is shortened. The process is iterated until it is no longer

possible find a high enough fidelity pulse and that point is considered time optimal.

This is a long process and given an arbitrary gate and molecule it is difficult to

determine a priori what a reasonable time is. Adding derivatives with respect

to the length of each timestep and allowing the timesteps to vary circumvents this

problem. A penalty function is used to prevent excessively long pulses or to squeeze

the time down to the time optimal point and once a timestep length drops below a

threshold that timestep is dropped from the pulse.

2.4 Scalable Quantum Control

In larger systems an alternative approach to control must be taken because the

classical cost of simulating the full quantum dynamics grows exponentially with the
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system size. This prohibits the application of optimal control techniques to the full

system. Some well-chosen simplifications and approximations must be made to the

model. The control sequence is constructed from simple predefined but imperfect

building blocks (for example standard frequency selective pulses). The blocks are

then systematically put together to form a pulse sequence ensuring that the errors

in the building blocks do not build up excessively as the sequence progresses. It

is possible to efficiently design such sequences only if we judiciously simplify the

model and take into account only the largest and first order errors in the blocks.

Typical building blocks are one-qubit unitaries that involve selectively rotating

one spin. If the spins have distinct resonant frequencies, this corresponds to fre-

quency selective pulses. The goal is to obtain a flat inversion or excitation profile

over the range of frequencies for the peak group corresponding to a particular spin,

while at the same time having negligible excitation effects outside this region. The

problem of obtaining such pulses has of course had much attention in the long his-

tory of NMR. The most successful approach has been to use shaped pulses, and a

huge variety of increasingly complicated shaped pulses have been developed with

various bandwidths, excitation profiles (tipping angles as a function of chemical

shift) and robustness to experimental imperfections [15]. In the linear regime the

excitation profile in frequency space of a pulse is related to the Fourier transform

of its time domain profile2. As one would expect, the longer the pulse, the more

selective it is in frequency space. Furthermore, one can tailor the excitation pro-

file by shaping the pulse. For example, a Gaussian shaped pulse has a Gaussian

shaped excitation profile. Thus, given the internal Hamiltonian of the molecule, it

is straightforward to design a set of pulses for single spin rotations. An example of

a pulse and its excitation profile is shown in Figure 2.5.

For many NMR spectroscopy experiments, it is sufficient to consider only the

excitation profile, but for quantum computing purposes we need to accurately keep

track of all the effects of the pulse. In particular there are off-resonant and coupling

effects. Although the resonant frequency of a particular spin may be far outside the

excitation bandwidth of a selective pulse intended for another spin (so that there is

no rotation about an axis in the plane), there still is a substantial phase evolution

from the off-resonant or transient Bloch-Siegert effect [29]. The original Bloch-

Siegert effect paper [30] dealt with the effect from the counter rotating component

of the linearly polarized r.f. field. For modern high-field spectrometers this effect

is negligible. However, the counter rotating field is simply an off-resonance field

(off-resonant by 2ωrf ) and so the same calculations apply to any off-resonant field.

The effect can be seen by calculation of the Magnus expansion of the average

Hamiltonian [31]. Average Hamiltonian theory states that the unitary propagator

2The linear regime applies only to small angle rotations but it still gives good intuition for
larger rotation angles.
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Figure 2.5: A portion of a single-scan carbon thermal spectrum of the fully labeled

molecule trans-crotonic acid [28] at 16.4T, showing three qubits, C2,C3 and C4. See

Appendix A for details of the molecule. By modulating the amplitude of a pulse

sent at a frequency resonant with the chemical shift of C2 we can selectively rotate

C2. Shown in the inset is a truncated inverse secant pulse of 700 µs. Overlain on

the spectrum is the excitation profile of a 90 degree pulse and the inversion profile

of a 180 degree pulse of this length. The profiles are determined from a simulation

of the spin dynamics of a single qubit as the resonance frequency is varied. The

qubit starts along the +Z axis of the Bloch sphere and the plots show the projection

onto the X − Y plane for the excitation profile and the −Z axis for the profile.

It is clear that the pulse affects C2 but does not significantly excite C3 or C4. As

discussed in the text, C3 and C4 experience a transient Bloch-Siegert effect, which

must be accounted for in a quantum computing experiment.
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for some time-dependent Hamiltonian can be represented as the time evolution of

some constant average Hamiltonian:

U(tc) = T exp

[
−i
∫ tc

0

H (t′) dt′
]

(definition)

= exp
[−iHtc] . (ansatz)

The Magnus expansion provides a way to calculate H:

H(0)
=

1

tc

∫ tc

0

dt1H (t1) ; (2.19)

H(1)
=
−i
2tc

∫ tc

0

dt2

∫ t2

0

dt1 [H (t2) ,H (t1)] ; (2.20)

H(2)
=
−1

6tc

∫ tc

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 {[H(t3), [H(t2),H(t1)]] + [H(t1), [H(t2),H(t3)]]} ;

(2.21)

In the frame rotating at the spin’s Larmor frequency, any off-resonant field will

have the time-dependent Hamiltonian:

HR = Ix cos (Ωt) + Iy sin (Ωt) , (2.22)

where Ω is the frequency difference between the rotating frame and the pulsing

frequency. We can now calculate the average Hamiltonian for any time multiple

of the period tc = 2π
Ω

. Clearly the zeroth order average Hamiltonian vanishes.

However, to first order, the effect of an off-resonant pulse is to shift the resonant

frequency of the spins. The commutator of X and Y is Z and in particular:

H(1)
=
−i
2tc

∫ tc

0

dt2

∫ t2

0

dt1 [H (t2) ,H (t1)]

=
−iω2

1

22π
Ω

∫ 2π
Ω

0

dt2

∫ t2

0

dt1
{

(Ix cos Ωt2 + Iy sin Ωt2) (Ix cos Ωt1 + Iy sin Ωt1)

− (Ix cos Ωt1 + Iy sin Ωt1) (Ix cos Ωt2 + Iy sin Ωt2)
}

=
ω2

1

22π
Ω

Iz

∫ 2π
Ω

0

dt2

∫ t2

0

dt1 (cos Ωt2 sin Ωt1 − cos Ωt1 sin Ωt2)

(IxIy = −IyIx = i
2
Iz)

=
ω2

1

22π
Ω

Iz

∫ 2π
Ω

0

dt2

(
cos Ωt2

(
− 1

Ω
cos Ωt1|t20

)
− sin Ωt2

(
1

Ω
sin Ωt2|t20

))
=

ω2
1

22π
Ω

Iz
1

Ω

∫ 2π
Ω

0

dt2
(− cos2 Ωt2 + cos Ωt2 − sin2 Ωt2

)
= − ω2

1

22π
Ω

Iz
1

Ω

2π

Ω

= −Iz 1

2

ω2
1

Ω
(2.23)
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where ω1 is the nutation frequency of the r.f. field and Ω is the offset. Obviously this

is a perturbative calculation and higher order terms from the Magnus expansion

are necessary when Ω < ω1. A few relevant examples are worth considering. For

example, a spin 3 kHz off-resonant from a 1 ms pulse that performs a 180 degree

rotation on an on-resonance spin will experience an additional phase shift of ∼ 15

degrees. This is roughly the situation for a selective pulse on C2/3/4 in crotonic

acid. This is non-negligible and must be accounted for. The original Bloch-Siegert

shift comes from the counter rotating component at 2ωrf . In solid state systems we

can achieve nutation frequencies of 300kHz at 300MHz Larmour frequency. This

will give a shift of 75Hz which is substantial, although in practice, the lines are

broadened by dipolar interactions much stronger than this so that linewidths of

10’s of kHz are common and the 75Hz is inconsequential. For the liquid-state

situation where nutation frequencies of 16.7kHz are possible at 175MHz carbon

Larmour frequencies, this gives a shift of approximately 0.5Hz. In practice, fields

of that strength are kept on for less than 100µs and so the effect is minimal. For

most optimal control pulses r.f. fields average approximately 10% of this and so

the effect is much smaller than the linewidth or other experimental uncertainties.

The second non-ideal effect occurring during a pulse is that the couplings still

evolve during the pulse (which may have a duration comparable to 1/2J), and

the coupling Hamiltonians do not commute with the r.f. Hamiltonian. Partic-

ularly for long pulses on spins that have strong couplings, there are substantial

deviations from the ideal action of the pulse. These can be partially countered by

self-refocussing pulses [15], such as the Hermite pulses (see Table 2.2).

Both the off-resonant and the coupling effects can be accounted for through a

decomposition scheme where the imperfections are unravelled from the simulated

pulse and represented as phase and coupling errors before and after the ideal pulse

[28]. These errors are then corrected as part of a larger pulse sequence. A similar

method with symmetric negative time evolution was presented in Ref. [32]. The

method used here is more accurate and general by not constraining the errors to

be of the form of natural Hamiltonian evolution, but requires more complicated

refocussing schemes. The effects of the pulse on the entire system is modeled by

the following decomposition:

Usim = e−i(Hrf+
P
i(ωiZi)+

P
i<j(JijZiZj))∆t

'
∏
i

e−iα
post
i Zi

∏
i<j

e−i(β
post
ij ZiZj)Uideal×∏

i

e−iα
pre
i Zi

∏
i<j

e−i(β
pre
ij ZiZj). (2.24)

This decomposition resolves the simulated pulse into the ideal unitary operator

sandwiched on either side by Z rotations (to account for the transient Bloch-Seigert
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shift and the chemical shift evolution during the pulse) and ZZ couplings to account

for the couplings that occurred during the pulse (see Fig. 2.6). This model for the

pre- and post-error terms does not work for arbitrary pulses, but in the relevant case

of spin selective pulses, it will capture most of the first order dynamics. All couplings

that do not involve the target qubit are trivial to extract and can be perfectly

reversed. For couplings involving the target qubit, the control fields modulate the

coupling necessitating a numerical optimization of the error terms. For 90 degree

pulses ZZ pre- and post-error terms can represent coupling evolution during the

pulse. However, for 180 degree pulses, because the ideal pulse should refocus the

couplings, ZZ error terms are not sufficient, and self-refocussing pulses are desirable.

Since the pre- and post-error terms do not commute with the control Hamiltonian,

the decomposition faithfully represents the true dynamics only when |∆tJ | � 1

where ∆t is the length of the pulse and J is the strongest coupling.

This efficient pre- and post-error term analysis requires two steps: the first is to

efficiently compute the relevant dynamics of the system under the r.f. pulse; the

second is to extract optimal pre- and post-error terms that are correctable and give

a good representation of the simulated pulse. Simulation of the full spin system

will of course reveal everything about the pulse and its associated unitary errors.

However, this is instrinsically unscalable and so a method that allows us to capture

the main dynamics of the pulse without simulating the full system must be used.

The errors must be represented in a way that is faithful to the true dynamics but

at the same time is amenable to compilation and correction of error terms.

Consider an illustrative three spin system. Spins 1 and 2 are of the same species,

whereas spin 3 is different. The propagator U of a pulse affecting spins 1 and 2 can

be written as

U = exp{−i∆t(ωnut (cosφ (X1 +X2) + sinφ (Y1 + Y2))

+ ω1Z1 + ω2Z2 + ω3Z3 + J12Z1Z2 + J23Z2Z3 + J13Z1Z3)}, (2.25)

where the control and internal Hamiltonian terms are defined as above. If the

control fields are functions of time, the pulse must be discretized and integrated

over many time steps.

The dynamics of the system can be expanded into contributions of different

coupling order. If coupling effects are ignored, then the zeroth-order U0 can be

computed by three independent single spin simulations as

U0 = e−i∆t(ωnut(cosφX1+sinφY1)+c1Z1)e−i∆t(ωnut(cosφX2+sinφY2)+c2Z2)e−i∆t(c3Z3). (2.26)

The effects of the coupling can then be added in a perturbative manner. The first

step is to consider the effect of the couplings between pairs of spins or subsystems:
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couplings 1-2, 2-3 and 1-3 are considered. By considering only pairs of spins,

coherent three-body coupling effects are lost. For example, there is an extra effect

on the dynamics of qubit 1 from the coupling to qubit 2 because qubit 2 is in

turn affected by the coupling to qubit 3. These higher order coupling effects can

be neglected when coupling effects during the pulse are small. Moreover, for soft

selective pulses in the weak coupling approximation, many of the second-order

contributions vanish because all the internal Hamiltonians of the off-resonant spins

commute with each other, so that in most cases, stopping at first order is sufficient

to encompass all the relevant dynamics. Indeed it is difficult to devise a situation

where these second order coupling effects are relevant. Under simple single spin

rotations they will have no effect. A pulse on spin 1 will rotate spin 1 about an

axis in the plane and may have a transient Bloch-Siegert effect on spins 2 and 3.

However, under a weak coupling ZZ approximation spin 3 will have no effect on

spin 1 through spin 2. It is only when one considers pulses which rotate all the

spins (hard pulses or optimal control pulses) that these indirect couplings matter.

For example, consider starting with polarization on spin 3 or the state IIZ using

the product operator notation of NMR [12]. During a “hard” pulse which affects

all the spins, this will be rotated into IIY which will then couple to spin 2 turning

into IZX but since spin 2 is also being rotated by the hard pulse this will turn into

IY X which will in turn couple to spin 1 turning into ZXX. This effect will not be

captured by pairwise simulations (or commuting pairwise error terms).

The simulation protocol is then to first simulate all single spins and then to

simulate all pairs of spins. Even this may be unnecessary if the couplings vanish

beyond a certain radius as might reasonably be expected in a physical architecture.

The simulations are of a fixed one or two qubit size and there will be O (n2) to

perform so the complexity of the simulations scales only polynomially with the

number of qubits. This of course could be extended to larger numbers of spins (say

consider all groups of three spins) in a cluster-state style expansion [33].

From the efficient simulations of the previous paragraph, we need to determine

the pre-and post-error terms surrounding the ideal operation. This is achieved

through a simple numerical search optimizing the following fitness function:

Φ = Real
{
tr
(
U †sim (UpostUidealUpre)

)}
/N. (2.27)

This compares the simulated unitary to its representation as the ideal unitary,

restricted to the relevant qubits, sandwiched between the pre- and post-error terms.

This fitness function is sensitive to global phase because we are considering only a

subsystem, and so to be consistent when representing the gates on the full system,

local phases matter. To extract the optimal error terms one can use a classical

search algorithm. Note that this search is performed on a relatively low-dimensional

parameter space. For pulses designed for one qubit, the single spin simulations
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require only two parameters for the Z error terms on this spin. In the pairwise

simulations there are six parameters for the Z and ZZ error terms on the coupled

spins.

For standard shaped pulses designed to act independently on one or more spins,

the following procedure allows one to compute error terms for the pulse represen-

tation.

1. Perform single spin simulations including the r.f. control fields for each spin

and optimize the Z error terms (with respect to the intended evolution on

the spin) to capture the effects of the chemical shift and the transient Bloch-

Siegert effect.

2. Perform simulations of each pair of spins, including the pairwise coupling and

the r.f. control fields. Optimize the Z and ZZ error terms with respect to

the intended evolution on both spins. Remove the contribution of the Z error

terms found in the first step from the ones found here (by dividing the terms

or subtracting the exponents) to account for the fact that the simulation also

accounts for the effects modeled in the first step. Call these the “incremental

Z error terms”.

3. Determine the Z error terms for each spin as the product of the terms found

in the first step and the incremental terms from each pair-wise simulation

involving this spin. The ZZ error terms are the ones found in the second step.

An example of the representation of 90 degree rotation on C2 is shown in Table

2.1. The representation has a fidelity of 99.96% with respect to a simulation of the

full system dynamics showing that pairwise simulations and Z and ZZ error terms

are a suitable representation.

The error-term representation of Z and ZZ is chosen both so that it faithfully

represents the dynamics of the spin system (dictated by the form of the natural

Hamiltonian) and so that error terms can be corrected as part of a larger sequence.

These pulse representations give us the building blocks for one-qubit gates. In

a pulse sequence, two-qubit gates are achieved by periods of free evolution dur-

ing which the coupling terms in the Hamiltonian evolve. If a J-coupling term is

allowed to evolve for a time 1/2J , then a controlled-Z gate (up to one-qubit Z

rotations) is implemented between the coupled spins. All undesired couplings must

be refocussed with 180 degree pulses [4]. The error terms can be corrected as part

of the sequence. Z error terms are corrected with Z rotations. Z rotations can

be considered a reference frame change and can be implemented instantaneously

and with high precision by suitably modifying the phase of subsequent pulses and

perhaps the observation phase. To be able to implement single spin Z rotations,
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M H1 H2 C1 C2 C3 C4

M 0.0 0.41 -0.04 7.95 -0.41 0.41 -0.06

H1 0.41 0.0 0.98 0.18 11.32 -0.11 0.41

H2 -0.04 0.98 0.0 0.34 0.0 10.07 0.24

C1 7.95 0.18 0.34 1.72 2.98 0.09 0.44

C2 -0.41 11.32 0.0 3.00 0.0 4.95 0.09

C3 0.41 -0.11 10.07 0.09 4.95 7.12 4.40

C4 -0.06 0.41 0.24 0.44 0.09 4.40 -6.92

Table 2.1: Table showing the decomposition of the single spin and pairwise sim-

ulations for the pulse performing a 90 degree rotation on C2 in the crotonic acid

molecule. The diagonal gives the Bloch-Seigert shift in degrees with respect to each

nucleus’ rotating frame, although in practice everything is calculated with respect

to a single reference frame. The off-diagonal elements give the pre- (above diag-

onal) and post- (below diagonal) ZZ error terms in degrees. Because the pulse is

symmetrical, so are the error terms, but the method is general enough to handle

arbitrary pulses.

abstract individual rotating frames are defined. Just as the rotating frame for

a single spin eliminates the Zeeman term in the Hamiltonian, individual rotat-

ing frames eliminate all chemical shift terms from the internal Hamiltonian. This

could be implemented by a transmitter dedicated to each spin and rotating at that

spin’s chemical shift, but this is experimentally and financially prohibitive. The

phase evolution caused by the chemical shift term in the Hamiltonian is simply a

Z rotation, and this evolution can be tracked with respect to some reference frame.

Similarly the evolution of the transmitter at its frequency can be tracked, and when

a pulse is required, the pulse phase is adjusted to obtain the correct phase in the

spin’s rotating frame. Similarly the observation phase must also be calculated and

adjusted. This tracking greatly simplifies the pulse sequences by eliminating the

need to refocus the chemical shift evolution. It is also worth noting that because Z

rotations are “free” and accurate it is beneficial to transform the quantum circuits

to use Z rotations preferentially. A drawback of individual reference frames is that

any given pulse has one phase and so it is not always possible to have the correct

phase in two different reference frames. Therefore, global pulses that nontrivially

affect multiple spins are not always feasible, and hence they must be decomposed

into a sequence of simpler pulses.

The ZZ error terms are absorbed into the coupling goals. So for example if

a ZZ evolution of 0.25 ( in units of 2
J

so that a ZZ evolution of 1 is the identity

operator), is desired but the pulses before and after the coupling delay have ZZ
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errors of 0.01 then a time delay that gives a ZZ evolution of 0.23 is necessary.

Similar calculations apply to refocussing unwanted couplings.

Any unitary can be decomposed into a series of single qubit rotation events and

ZZ coupling goals. The job then is to optimize the delays between the events to

minimize the distance between the desired and actual couplings. This task is han-

dled by a pulse sequence compiler. Refocussing pulses which change the direction

of the coupling events can be used to assist this task. There are standard efficient

algorithms for achieving this [4, 34]. However, it is not necessary to refocus all

unwanted couplings during every evolution period. It is sufficient to track the evo-

lution, and refocus it only when needed [35]. Single qubit gates and the Z and ZZ

error terms in their representation commute with the terms of the internal Hamil-

tonian, except those involving the target nucleus. Therefore, the couplings can be

let evolve through many gates and need to arrive at the goal coupling only when

a noncommuting pulse affects either member of the coupling pair. The refocussing

scheme can be made more efficient by the use of “virtual 180s”. Conventionally,

every time a refocussing pulse is used, a second refocussing pulse must be applied

at the end of the period to cancel the first one and ensure that all the spins return

to the their initial state, so that the computation is unaffected by the refocussing.

While the first refocussing pulse is needed to physically refocus the coupling, the

second one can be made virtual and not physically applied. The virtual180 can be

implemented by pushing it forwards or backwards (the virtual180 can be created

before or after the physically applied refocussing pulse which may help the refo-

cussing) through the pulse sequence until it can be merged with another pulse (see

Figure 2.7). If it is another refocussing pulse, then it can cancel with the virtual

180 created at that refocussing event. Or, if it is a computational pulse, the vir-

tual 180 can be absorbed by modifying the phase of the pulse and introducing a

frame change. Using the notation Rφ(θ) to denote a rotation of θ about the axis

an angle φ away from the x-axis in the x− y plane, the following rotations should

be equivalent:

Rα

(π
2

)
Rβ (π) = Rz (γ)Rδ

(π
2

)
(2.28)

using matrix multiplication and trigonometric identities it is easy to solve for γ and

δ so that:

γ = 2(α− β) (2.29)

δ = 2β − α− π (2.30)

Or in words: a 180 degree pulse at phase β followed by a 90 degree pulse at phase α

is equivalent to a 90 degree pulse at phase 2β −α− π followed by a rotation about

the z axis of 2(α − β). Since the Z rotation comes for free as a frame change we

have eliminated the need to do the second 180. The sequence compiler keeps track

of these virtual180s and it considerably simplifies writing pulse programs.
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(a)

(b)

Figure 2.7: (a) A conventional refocussing scheme for a fragment of a pulse se-

quence. Shaded rectangles are 180 degree refocussing pulses. Unshaded rectangles

are 90 degree rotations about an axis specified in the plane. To turn off the coupling

between the two qubits during the delay between the two computational pulses, a

refocussing 180 degree pulse is placed in the middle of the delay. A second 180

degree pulse is placed at the end of the period to cancel the refocussing pulse so

that the refocussing scheme does not affect the computational frame. (b) Figure

showing how the second 180 degree pulse can be made “virtual”. Rather than being

implemented it is pushed forward to the next pulse on that qubit. If for example the

next pulse is a 90 degree pulse, the virtual 180 can be combined to give a 90 degree

pulse at a different angle and a Z rotation (dashed rectangle) which is implemented

as a frame change (see text for details).
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The sequence compiler was built to automate, as much as possible, the design

of pulse sequences for an NMR QIP. The compiler takes as one input the fixed

information about the internal Hamiltonian, namely the chemical shifts and J cou-

pling values, and the error term information for the pulses obtained by optimal

control and implementing the set of one-qubit rotations needed. The second input

is a representation of a goal sequence of quantum evolutions that implements the

desired algorithm or quantum network. The sequence compiler then determines

delays between pulses so as to minimize the total error of the implementation com-

pared to the intended evolution. The goal sequence is described with a purpose

built language. Here is an example of such a sequence:

;pulse C190 0 @C1:X+

;zz 0.25 C1 C2

;refocus C3180 0.25

;pulse C290 0.75 @C2:0+

;z 0.5 C3

This sequence requests a 90 degree rotation about the x-axis on C1 followed by

a ZZ90 (equivalent to a controlled Z gate up to single qubit Z rotations) coupling

gate between C1 and C2 followed by a 90 degree one-qubit gate on C2 and a final

Z rotation on C3. During the coupling period a “floating” refocussing pulse of

180 degrees about the y-axis is executed on C3. The @ instructions specify state

assumptions that may simplify the optimization. The output of the compiler is a

pulse sequence that can be directly executed by the spectrometer. The compiler

automates a number of the tasks discussed above.

• Phase tracking: To avoid having to use one physical spectrometer channel

per qubit, the compiler tracks the evolution of the nuclear rotating frames

and the spectrometer channel frames throughout the computation. When a

pulse about a certain axis is required for a nucleus, a simple calculation of the

phase difference between the channel frame and the nuclear frame determines

the phase at which the pulse should be sent in the channel frame to achieve a

specific phase in the target nuclear frame. As noted above this freedom allows

us to avoid having to refocus the chemical shifts at every step. It also allows

free (pulse-less) implementation of Z rotations by executing a frame change

on the target nuclei and updating the phases of all subsequent pulses. In addi-

tion, the relative phase evolution of the nuclei and the observation channel are

tracked and the observation phase is adjusted appropriately. The frequency

changes can be implemented by either changing the transmitter frequency

or linearly ramping the phase of the pulse. The phase tracking calculations

assume that the frequency change is phase coherent, but experimentally this
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is not always the case (particularly for large frequency changes (> 5kHz) we

observe random phase errors), and we have achieved more consistent results

with phase ramping on our Bruker Avance spectrometers.

• State assumptions: In some algorithms the state of the system might be

known at certain steps. For example, at the beginning of the algorithm we

may know that a particular qubit is in the state |0〉 or the maximally mixed

state 11. This can simplify the refocussing and phase tracking calculations. For

example, if two spins are in the maximally mixed state, the coupling between

them has no effect and so does not need to be refocussed. If a qubit is in a

pseudo-pure state then its coupling effect with the other spins is reduced to

an additional Z rotation, which can be accounted for with the phase tracking

calculation. State assumptions are implemented by specifying the nuclear

states after pulse commands, as shown in the example. The compiler also

implements some elementary state update rules, e.g. a qubit in the state |0〉
will be updated to |1〉 after a 180 degree pulse.

• Cancellation of virtual180s : As described above the refocussing scheme is sim-

plified by absorbing some 180 degree pulses into 90 degree pulses or canceling

them with other 180 degree pulses.

• Modifying coupling goals: In some cases it may be expedient to modify the

coupling goals by 0.5 using the following identity:

exp
(
−iπ

2
Z ⊗ Z

)
' exp

(
−iπ

2
Z
)
⊗ exp

(
−iπ

2
Z
)

(2.31)

Or that a ZZ coupling of 0.5 is equivalent to single qubit Z flips on both

qubits (up to a global phase). For example, we may wish to have a coupling

of 0.25 between two spins. However, because of previous refocussing pulses

the coupling may be evolving in the negative direction and it might be easier

to achieve -0.25. This physical coupling can be made equivalent to the desired

coupling by performing phase flips on both qubits. In another situation with a

strong coupling it might be easier to achieve 0.75 than 0.25 and again the 0.75

can be made equivalent by adding two phase flips. The compiler can in some

instances recognize these situations and add the phase flips automatically.

• Optimization of delays: The pulse sequence can be considered as a sequence

of events (computation and refocussing pulses) with delays in between. The

delays between pulses serve the dual purposes of allowing desired coupling

gates to occur and also allowing time for refocussing unwanted coupling ef-

fects. The refocussing pulses change the direction in which the couplings are

evolving, which can help reach the coupling goals. At the beginning of each

event certain couplings must be at their goal values. In most cases, only
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those couplings that do not commute with the pulse’s intended effect have

a fixed goal target. Other couplings are simply tracked until a fixed goal is

required [35]. The coupling evolution for each pair of spins is calculated at

each event from both the coupling evolution during the delays and the cou-

pling errors terms in the pulse representations. For those pairs that have a

fixed target at this event the calculated coupling is compared to the goal. A

euclidian distance function is defined as the sum squared error between the

goal and actual couplings and is related to an estimate of fidelity loss for the

whole sequence. Optimizing the pulse sequence is now reduced to the task

of optimizing the delays between each period. This is handled by a simple

iterative optimization to minimize the total contribution to the distance func-

tion of the events bounding the delays. That is, the delays are individually

optimized one by one, starting at the last one. After the first one is opti-

mized, the sequential optimization starts again at the last one, repeating the

process until the improvement is smaller than a threshold, or a goal distance

is achieved. Although effective, this optimization strategy is simplistic and

easily gets trapped in local minima. It would be useful to develop strategies

that optimize all delays together with a non-linear least-squares optimization

and consider different distance functions such as maximal error.

The sequence compiler can optimize only the delays between events and it must

be given a suitable sequence of refocussing pulses to start with. Designing an exact

refocusing scheme may require many refocusing pulses, and each refocussing pulse

takes a finite duration and introduces its own errors. In some cases, the theoretical

control accuracy gained by bringing the calculated ZZ coupling evolution closer to

the goal is lost due to decoherence and pulse imperfections. There is therefore a

trade-off between the theoretical accuracy of the control scheme and its duration

and number of refocussing pulses. In practice this entails designing a good refo-

cussing scheme and optimizing it. The total error from unrefocussed ZZ couplings

is then calculated and judged whether it is acceptably low. If not, additional re-

focussing pulses are added to correct the errors and improve the optimization. In

addition, a penalty function prevents the optimization from using excessive time

for refocussing schemes.

2.5 Achieving scalable optimal control

Each method described above has its strengths and limitations. Optimal control

theory can give robust and time-optimal control sequences for strongly coupled

systems, where conventional pulse design fails. However, the method is intrinsi-

cally unscalable and is limited in the number of spins it can handle in practice.
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The number of qubits currently available in NMR already pushes these methods

to their limit. The pre- and post-error method with pairwise simulations provides

a scalable, efficient solution to the design of control sequences, but is limited by

the properties of the pre-defined pulses, particularly the fidelity of the error-term

representation. On long pulses targeting spins with strong couplings, the decom-

position of Eq. 2.24 may fail to give a high fidelity representation of the pulse,

and better pulse engineering is needed. Here we show how the two methods can

be combined to allow optimal control techniques to be applied to larger systems.

A more computer science based approach to scaling up optimal control techniques

also utilizing subsystems has also been considered in Ref. [7].

The idea is to consider only a subsystem of the QIP’s qubits in designing the

optimal control pulse. The subsystem should be chosen such that it encompasses

all the qubits affected by the control fields being optimized. In NMR, particularly

relevant subsystems consist of the spins of the same nuclear type, for example,

one subsystem is all protons and another, all carbons. A pulse that is designed

on the subsystem without consideration for the other spins does not implement

the desired unitary on the whole system. To determine the effect of the pulse

on the entire system, pair-wise simulations between the subsystem and the other

spins are performed. These simulations capture and track both the evolution of

the internal Hamiltonian on the other spins, and deviations due to couplings be-

tween the subsystems. The pulse on the full system can then be represented in the

same manner as described above by adding pre- and post-error terms, which can

be accounted for during the optimization of the refocusing scheme and the phase

tracking calculations as part of a larger sequence.

There is no guarantee that the pulse decomposition with the error terms will

give a high fidelity representation. The optimal control pulse drives the subsystem

through some complicated trajectory, and it may not be possible to extract the

effect of the couplings to other systems as simple ZZ errors before and after the

ideal gate. In general this decomposition works well for short one-qubit unitaries

but breaks down for two-qubit gates taking more time. However, whereas the pulse

is optimized considering only one subsystem, it can be made robust to the effect

of couplings to other subsystems by incoherently averaging over the states of the

other subsystems as described in Ref. [36]. This can also be seen as ensuring the

pulse decouples the considered spins from the rest of the system. This is equivalent

to making the pulse robust against Larmor frequency variations. Thus, averaging

over all possible states is not necessary, and making the pulse robust to frequency

shifts from the sum of the J couplings is sufficient. This will make the pulse more

difficult to find, but the resulting pulse will have a higher fidelity representation on

the full system.

To illustrate the basic ideas, consider a register of qubits organized into sub-
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system blocks, as illustrated in Figure 2.8. Take for example the first subsystem

of Fig. 2.8 consisting of three proton spins, where the other subsystems consist of

other nuclear types. It may be that to effect a one-qubit rotation on, say, qubit Q1

by a simple shaped pulse method requires a very long selective pulse, because the

chemical shift difference to the nearest spin is small. Then, the effect of the cou-

plings cannot be taken into account by only Z and ZZ pre-and post-error terms,

because ∆tJ is too large. However, one can find an optimal control pulse that

considers only subsystem 1 and that refocusses the intra-subsystem couplings while

implementing the ideal gate. Perturbations due to inter-subsystem couplings and

the internal evolution of the other subsystems during the pulse can then be taken

into account by pre- and post-error terms.

The utility of such a scheme can be demonstrated on the crotonic acid molecule

where the natural subsystems are the three proton qubits and the four carbon

qubits. Because of their refocussing properties, 180 degree rotations are more dif-

ficult to find and to represent. However, 180 degree rotations can be found easily

for all the spins by use of this subsystem technique and then represented through

subsystem pair-wise simulations. For example, a pulse on the methyl qubit is found

by considering only the proton subsystem, and then, to determine the dynamics on

the full system, simulations are performed on individual and pairs of the five sub-

ystems, {M,H1, H2}, {C1}; {C2}; {C3}; and {C4}. The results of the fidelities of

the representation to the full seven spin dynamics are summarized in Table 2.2 and

compared with the fidelities of the pulse representations of standard pulse designs.

The crotonic acid molecule is not ideally suited to this approach because of the

large couplings between subsystems; nevertheless, the subsystem GRAPE pulses

have similar or better fidelities than standard pulses of a similar or longer length.

In particular the GRAPE pulses have consistently high fidelities, even where other

pulses, such as selective pulses on H1 and H2, break down. Furthermore, since the

clock of decoherence is always ticking, shorter pulses usually perform better.

Finding an optimal control pulse on the entire system such as in Figure 2.3 may

give shorter, higher fidelity pulses than the subsystem with error term strategy

described above. This is because the full optimal control method is able to exploit

more control handles. However, optimization over the full system is too difficult for

large systems, whereas the methods used to find the pulses in Table 2.2 are scalable

if the subsystems used are kept small. The combination of optimal control and use

of pre- and post-error terms is therefore well suited for designing control sequences

for the class of QIPs made of subsystems with strong internal couplings but weaker

couplings between subystems.
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isech Hermite180 GRAPE

Length Fidelity Length Fidelity Length Fidelity

M 896 99.50 2000 99.96 750 99.92

H1 3300 91.71 7000 97.71 3000 99.79

H2 3300 97.42 7000 97.42 3000 99.79

C1 128 99.92 300 99.97 60 99.95

C2 700 99.45 1400 99.93 700 99.92

C3 700 99.39 1400 99.94 700 99.85

C4 700 99.86 1400 99.96 700 99.88

Table 2.2: Table comparing the performance of optimal control pulses constructed

and corrected by using the subsystem approach (last column) to more conventional

shaped pulses (first two columns). The pulse lengths are given in µs and the

percent fidelities are the Hilbert-Schmidt norm of the simulation of the pulse on

the full system including pre- and post-error terms compared to the ideal pulse (see

Eq. 2.24). All pulses implement one-qubit 180 degree rotations (see text). The

isech shape is an inverse secant and is gaussian like in shape. The Hermite180 is

designed to have more of a top hat inversion profile and is closer to a sinc shape

[15]. The crotonic acid molecule is not ideally suited to the subystem approach

because of the large couplings between subystems. This required the effects of the

other subsystems be suppressed through incoherent averaging over chemical shifts

of the J coupling strength (see text and Ref. [36]) in order to obtain high fidelities.
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2.6 Future Improvements

There are several logical improvement to our control schemes mainly of a prac-

tical nature. The successful numerical optimization of GRAPE pulses is highly

dependent on the initial starting point and it can take many tries to find a high

fidelity pulse which is experimentally feasible. Currently this requires an heuristic

approach relying on experience and anecdotal results, which is tedious and not al-

ways repeatable. Improvements to the code to allow multiple optimizations to be

tried in parallel would return a more definitive answer as to whether a certain com-

bination of pulse length and number of timesteps will work and make pulsefinding

a more systematic and foolproof process. In addition, the current code can handle

up to about 7 spins but parallelized code running on large clusters has been able

to find pulses for up to 10 spins [21] and presumably would make finding pulses for

seven qubits a much more routine task.

The optimization step in the sequence compiler could also be improved in a

number of areas:

1. Designing refocussing schemes is currently done by hand and is tedious. It

should be possible to automate this step. However, it would require a reason-

ably clever algorithm. The couplings are allowed to evolve over many events,

and because the refocussing pulses themselves take time and introduce errors,

it is a difficult optimization task.

2. The current optimization is local in the pulse sequence, i.e., it only considers

the effects of changing a delay on limited number of events whereas in longer

pulse sequences the length of a delay at the beginning of sequence may affect

the ability to reach coupling goals near the end of the sequence. In practice

this situation is rare because coupling events are usually terminated fairly

regularly by pulses.

3. The current optimization is unable to recognize the modular nature of J-

couplings in all situations. Because the J-coupling evolution is periodic a ZZ

coupling of 0.25 is equivalent to 1.25. Furthermore, as discussed above,

e−i
π
2
Z1e−i

π
2
Z2 = e−i

π
2
Z1Z2 (2.32)

or a ZZ coupling of 0.5 is equivalent to single qubit Z gates on both spins.

For example in some situations if the goal coupling is 0.25 it may give a

better optimization to let the coupling go to 0.75 and add two Z gates. Not

recognizing this make the optimization task unnecessarily difficult. However,

incorporating this into the optimization is difficult as it makes the distance

function non-linear and creates local minimum in the parameter space.
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I have rewritten the optimization sub-routine to use a non-linear least squares

solver which takes into account the modular nature of the goal couplings and im-

plements a penalty function to prevent excessively long sequences. However, it is

much slower to run and can become trapped in local minima and so in practice it

currently offers little benefit.
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Chapter 3

Characterizing quantum dynamics

3.1 The curse of dimensionality in characteriza-

tion

For many of the same reasons a QIP is reputedly so powerful, it is also difficult

to characterize and diagnose what is going wrong when the results are not as ex-

pected. The exponentially large Hilbert space in which the QIP operates implies

an exponentially large number of experiments are necessary to fully characterize

the system. Thus an important avenue of research is to be able to “coarse-grain” or

average the information and to efficiently extract fewer relevant parameters. This

is of course not an exclusively quantum phenomenon and it is similarly difficult to

characterize a large classical process.

The first task in characterizing a quantum system is to determine its state. The

quantum state of n qubits can be defined by a density operator: a positive operator

with trace equal to unity and of size 2n×2n. Any such operator can be decomposed

in a basis and a convenient basis is the Pauli basis: the tensor product of n single

qubit Pauli operators. Since there are 4 single qubit Pauli operators there are 4n

Pauli operators that need to be specified. Because of the trace constraint there are

actually only 4n−1 independent parameters: the identity component is always fixed

at 1
2n

. Quantum state tomography then becomes simply running all the experiments

necessary to measure the expectation values of all the n qubit Pauli operators. The

state can then be reconstructed through a maximum likelihood algorithm.

In NMR the measurement reveals the simple single minus 1 coherences [14].

Because of phase sensitive detection this can be thought of as measuring 〈σx〉
and 〈σy〉 for any one spin. Any other Pauli operator can be transformed into

one of these terms by a unitary gate and so in a series of experiments each Pauli

term can be measured. In some situations it may be possible to reduce the num-
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ber of experiments (although it will still grow exponentially with n). In partic-

ular for NMR, all homonuclear spins have sufficiently close enough resonant fre-

quencies so that they can all be observed in the same experiment (although if

using individual rotating frames appropriate phase correction must be applied).

Secondly, if couplings to other spins are resolvable then terms such as XZ as

well as XI can be measured in the same experiment. Obtaining more than one

term of the density matrix per experiment allows for substantially fewer experi-

ments. For example, with three homonuclear spins, the set of seven readout pulses

Y90II, IIY90, IIX90, Y90Y90I, Y90Y90Y90, X90X90X90 are sufficient to observe all the

terms of a three qubit density matrix, as opposed to the naive 63 experiments.

This can be generalized and an algorithm has been presented for determining the

necessary readout pulses [37].

To characterize a quantum process the situation is even worse. There is a pro-

scribed procedure for quantum process tomography [38] but it is obvious what the

task is. The quantum process can be characterized in its Liouville representation.

Given an orthonormal basis for n qubit density matrices, Pi (again the Pauli basis

is common), then the map Λ can be represented as a matrix Λαβ,

Λαβ = Tr
(
P †αΛ (Pβ)

)
. (3.1)

This representation can then be converted to any other desired [39]. The exper-

imental procedure then is to input all 4n density matrices into the process and

then perform state tomography on the output. The quantum process can then be

reconstructed through a maximum likelihood algorithm. This reconstruction can

be tricky in the presence of imperfect readout pulses and in many cases appears to

be numerically ill-conditioned [40]. Although there will be some constraints if the

process is limited to be completely positive (CP), there will still be O (24n) param-

eters to be determined. It should be noted that given other resources, such as a

perfect side channel to allow some qubits to be unaffected by the noise, a quadratic

reduction in the number of experiments is possible [41].

3.2 Characterizing complex quantum dynamics

One such coarse-grained measurement which is useful is the distinction between

chaotic and regular dynamics. Presumably it would make work unnecessarily diffi-

cult to try and build a QIP in a chaotic system. Of course there is no such thing

as chaotic evolution in a closed quantum system: the Schodinger equation gov-

erning its evolution perfectly preserves the distance between input states and so

there is no equivalent of the classical idea of two points in phase space being driven

exponentially far apart by chaotic evolution. Nevertheless, one can ask whether
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systems that are chaotic in their classical limit exhibit any signs of this behaviour

as a quantum system. This is the search for quantum chaos.

Fidelity decay under perturbation, initially proposed by Peres [42], is an impor-

tant analogue to the classical notion of instability, and has received much study.

Rather than considering the overlap of two nearby states evolving under the same

evolution, this method considers the overlap of the same initial state evolved under

two nearby unitary maps. If the discrete time evolution is given by the map U ,

then we also consider the map Up = UP where P = exp (−iV ) for some hermitian

matrix V . Then, the fidelity decay after n steps is given by,

Fn (ψ) =
∣∣∣〈ψ| (Un)† Un

p |ψ〉
∣∣∣2 . (3.2)

The analogy with classical mechanics suggests that chaotic systems might show

an exponential fidelity decay, while regular systems would decay at a slower (e.g.

polynomial) rate. However, numerical studies of small systems show a much more

complicated situation, with different behaviours depending on the form and strength

of the perturbation [43, 44, 45]. Yet, for a range of sufficiently strong perturba-

tions, chaotic systems show a universal exponential fidelity decay at an average rate

which is given by the Fermi Golden Rule (FGR) [45, 46]. The decay rate depends

on the statistics of the system eigenvectors in the eigenbasis of the perturbation,

or vice-versa how random the perturbation looks in the eigenbasis of the system.

For a random map, almost all perturbations will look random and thus the aver-

age decay is universal, in the sense that it is independent of the system dynamics

and depends only on the strength of the perturbation. Specifically, the rate of

the universal exponential decay depends only on the variance of the eigenvalues of

the perturbation (i.e., the 2-norm of the perturbation, ‖V ‖2) and the exponential

decay continues until a saturation level O( 1
N

), due to the finite system dimension

N . However, for a specific integrable system, a well-chosen perturbation will show

structure in the system’s eigenbasis, leading to large fluctuations and recurrences in

the fidelity decay. Hence, direct measurement of the fidelity decay under different

applied perturbations can provide important information about the complexity of

the system dynamics.

Given some dynamical system under study, the fidelity decay measured for any

one particular initial state will fluctuate from the average - an effect particularly

pronounced with small systems. Hence estimating the average decay can require

averaging over many different initial states. However, Poulin et al. [47] worked out

a quantum circuit (see Fig. 3.1) for directly measuring the average fidelity decay

within the deterministic quantum computation with a single bit (DQC1) model

[48]. Using the identity that,

〈A〉ψ 〈B〉ψ =
Tr (A)Tr (B) + Tr (AB)

N2 +N
, (3.3)
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where 〈A〉ψ denotes 〈ψ|A|ψ〉 and the overline an average (Haar measure) over states

|ψ〉. Then the fidelity decay after n steps, averaged over a uniform (Haar) measure

of the initial states |ψ〉 (see Eq. 3.2) for an arbitrary system of dimension N takes

the general form,

F (n) =

∣∣∣Tr{(Un)† (PU)n
}∣∣∣2 +N

N2 +N
. (3.4)

Therefore, experimental determination of the average fidelity decay for a par-

ticular U and P requires measuring the trace, for which there exists an efficient

DQC1 circuit [49].

...

...U P

Rx

P U

|0〉〈0|

U

n

〈σz〉Rk

1l
2K

Figure 3.1: Ideal quantum circuit for measuring fidelity decay after n steps. The

top qubit in a pure (or pseudo-pure) state can be considered either as a probe of

the bottom system of K qubits which starts in the maximally mixed state or as a

toy system being decohered by the maximally mixed environment below. Making

the final rotation about the x (y ) basis gives the real (imaginary) part of the trace

in Eq. 3.4. Taken from Ref. [47].

The circuit shown in Figure 3.1 gives the necessary steps. The circuit has been

simplified with a few steps that may not be obvious at first. Initially everything in

the trace of equation 3.4 is controlled on the state of the first qubit. However, the

controls on all the U gates (U and U †) can be removed because in the case that the

control is in the state |0〉 where we do not want anything executed on the bottom

registered, the still controlled P ’s will not run and the U ’s and U †’s will cancel each

other. In the case of a |1〉 on the first qubit everything will be executed as desired.

However, the final n U † gates are not necessary as they will have no effect on the

state of the first qubit.

For this project I implemented the fidelity decay measurement in liquid state

NMR. We used our liquid-state work-horse crotonic acid molecule. The solvent

was deuterated acetone. The spectrometer was a 700MHz Bruker Avance II system

with a TXI probe.

Since very good decoupling of the probe qubit from the rest of the system is

needed, I used the hetero-nuclear system with the methyl qubit as the probe and
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the four carbon backbone as the system being investigated. The probe could then

be refocussed with very good robust composite 180 pulses designed by Dr Knill.

Each 180 is replaced with five 180’s so that a 180 degree rotation about the X axis

is replaced with:

R0(180) = Rπ
6
(180)R0(180)Rπ

2
(180)R0(180)Rπ

6
(180). (3.5)

There is also an additional 60 degree Z rotation associated with the composite

pulse which can be handled with phase tracking. The pulse is somewhat robust

to calibration errors and is particularly robust to off-resonant errors so that it is

good for applying a high fidelity 180 degree pulse to all the protons simultaneously.

Comparisons of the performance of the pulse to simple rectangular pulse and the

BB1 composite pulse are shown in Figure 3.2. The other two protons H1 and H2

were placed in a pseudo pure state at the beginning of the computation so that

they had no effect on the rest of the molecule (besides an additional chemical shift

which can be tracked).

Because the natural Hamiltonian in NMR is simple and regular we had to simu-

late complex evolution using our universal control to generate arbitrary dynamics.

We investigated the difference in fidelity decay response for regular evolution (nat-

ural Hamiltonian) and complex evolution which is simulated by a pseudo-random

map. There is strong numerical evidence for the ability of random maps to match

the statistics of chaotic maps [50]. Generating a truly random map is exponentially

hard in the number of qubits, but pseudo-random operators are able to approximate

a fully random map well. We used a decomposition for pseudo-random operators

based on repeated applications of a two step process: (1) Individual random rota-

tions are applied to each qubit; (2) Simultaneous two-body interactions between

neighbours given by the unitary, U = exp
[
i
(
π
4

)∑n−1
j=1 σ

j
z ⊗ σj+1

z

]
[51]. For a finite

number of repetitions of these two steps, the resulting distribution of maps is bi-

ased with respect to the uniform measure; however, it converges exponentially to

the uniform measure [52]. For our experiments we used four rounds of this two

step process which numerically was found to generate a sufficiently random map

for seeing an average fidelity decay.

In practice performing individual single qubit rotations for the random maps

would require several long “soft” pulses and it would be difficult to refocus all

the other qubits. Fortunately, I found that becuase we are trying to implement

a random map, extra coupling dynamics are not an issue and the refocussing is

not necessary. Furthermore, exactly implementing the single qubit rotations is

not necessary. Because the carbon spectrum is so wide, a hard pulse of random

length between 10− 34µs followed by a short random delay of 1-3ms to introduce

a random Z rotation from the chemical shift followed by another random hard

pulse is sufficient to perform random single qubit rotations on all the carbons. The
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Figure 3.2: The robustness of the BB1 (dotted-green) and Dr Knill’s (dashed-

red) composite 180 pulses to both calibration errors (a) and off-resonance errors

(b). The plots show the average fidelity (HS norm) with the ideal operation (with

a 60 degree Z pulse correction for Dr Knill’s 180) from simulating the single spin

dynamics. Also shown is a simple hard rectangular pulse (solid-blue) for comparison

purposes. The off-resonance x-axis is plotted in units of the nutation frequency of

the pulse so it is independent of the pulse length. The simulations assume no delays

between the pulses of the composite pulses.
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couplings within the carbon sub-system are not refocussed but instead contribute

to the second step of the random map iteration. Secondly exactly implementing

a ZZ coupling of 0.25 between all nearest neighbours is too demanding and not

necessary. Instead, one of the pairs was chosen at random and a ZZ 0.25 coupling

implemented for that pair. The other couplings will still sufficiently entangle the

qubits to generate a random map.

The controlled perturbation was implemented using the natural Hamiltonian of

the molecule that provides a coupling between the probe and the system qubits

of the form:
∑4

j=1 JMCiσ
M
z ⊗ σCiz . By changing reference frames (or applying a

Z-rotation) to one of the qubits, this can been seen as a controlled rotation of

the system qubits about the z axis depending on the state of the probe qubit.

Therefore, a controlled operation on the system qubits can be implemented by

allowing the natural evolution for a time proportional to the desired strength of the

perturbation. This perturbation can be transformed into a rotation about another

axis, by sandwiching the evolution with two rotations of the target qubits. This

will allow us to test how the fidelity decay response depends on the relationship

between the system Hamiltonian and the perturbation.

Different pseudo-random maps can be generated by varying the parameters

of the random single qubit pulses and delay times which implement the coupling

gate. This allows an averaging over random maps which is important because of

the fluctuations in the fidelity decay due to the finite size of the system. The

average fidelity decay depends only on the relative randomness between the system

and perturbation. But, the fidelity decay for any particular map will fluctuate

(an effect independent of the initial state which is already averaged over by this

circuit implementation). These fluctuations disappear as the size of the system

increases beyond a few qubits, but for small systems, this effect is pronounced and

requires an averaging over different random maps to obtain good statistics. To

quantify the fluctuations, numerical simulations of the fidelity decay experiment

were performed over 1000 different random maps created assuming perfect control.

Averages and deviations were then calculated to compare with the experimental

results (see Figure 3.3). This allows us to say whether the deviation from the

average exponential decay we see is a signature of regular dynamics or is simply an

expected fluctuation.

The experiment started with polarization on the methyl qubit. The thermal

polarization on the other qubits was dephased using gradient pulses. The spin-1
2

subspace of the three equivalent protons was then selected using a specialized pulse

sequence [53]. A three qubit labelled pseudo-pure state was then created using

two repeats of the following steps to create a two-qubit labelled pseudo-pure state

between methyl and C1. Using the product operator notation and starting with

the polarization on the first qubit:
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Figure 3.3: Comparison of fidelity decay curves for regular (a) versus chaotic

(b) evolution under different forms of perturbation. The natural evolution of the

molecule provided the regular system and a pseudo-random map was used to model

chaotic evolution. The perturbation form was controlled by the presence or absence

of conjugate rotations on either side of the coupling interaction between the probe

and system. In the case of regular evolution, when the perturbation is a rotation

about the z-axis (N curves), which commutes with a system coordinate, the fidelity

decay shows substantial fluctuations away from the average. Changing the per-

turbation to a rotation about the x-axis (� curves) substantially alters the form

of the decay. In the chaotic case, the evolution looks random in the eigenbasis of

either perturbation and the decays exhibit the universality of the fidelity decay for

complex dynamics. The FGR result (solid curves) and standard deviations (dashed

lines) calculated from 1000 numerical simulations assuming perfect control are also

shown. The inset of figure (b) shows the experimental average fidelity decay from

twenty different random maps. The dotted line show the corresponding average

from the numerical simulations and we can see that deviation from the exponential

decay is also present in the numerical results and well explained by the finite size

saturation level.
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Figure 3.4: Pulse sequence for creating a two-qubit labelled pseudo-pure state. The

notation Rφ(θ)k specifies a rotation of angle θ about an axis φ from the x-axis on

qubit k.

After the pseudo-pure was created on C1, it was then moved out to either H1

or H2 using state specific swap gates. The fidelity decay protocol was then run and

the fidelity decay was measured from the real and imaginary part of the integral

of the methyl group peaks. The baseline for the integral is distorted from a large

impurity peak only a few hundred Hz away. This was somewhat suppressed by

phase cycling the experiment.

The results of Fig. 3.3 also show how the form of the perturbation effects the

decay. The pseudo-random map shows a universal response, in that the decays

are identical under different perturbations. On the other hand, the natural evolu-

tion’s decay varies wildly. This result demonstrates the necessity of choosing the

perturbation carefully in the context of distinguishing between regular and chaotic

evolution: fidelity decay will provide useful information only if the applied pertur-

bation commutes with the system’s coordinate [45] i.e. the dominant term in the

Hamiltonian.

These experiments also highlight the relevance of these techniques to decoher-

ence studies. For this purpose, we consider the pseudo-pure qubit to be the system

we are interested in and the maximally mixed bottom register, the environment.
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The decoherence rate of the system is typically governed by some macroscopic pa-

rameters of the environment, such as its temperature, cutoff frequency, etc., see

e.g. Refs. [54, 55]. Recently, the importance of the dynamics of the environment

has been expressed by a few authors [47, 56], and these experiments constitute a

direct demonstration of these effects because we can directly control the complexity

of the environment’s dynamics. This is because the environment is no longer an

uncontrolled degree of freedom but is rather the bottom register of qubits. We can

explicitly tune the dynamics of these qubits between regular and complex dynamics

using our universal control as demonstrated above.

The work in this section was published in Ref. [57].

3.3 Characterizing time suspension sequences in

solid-state NMR

Randomization has been proposed as a useful protocol in noise characterization

[51, 46]. Through appropriate randomizations the noise can be symmeterized and

coarse-grained quantities of the noise extracted. The protocols are based on the

ideas of twirling. The quantum process to be characterized is conjugated by a

random unitary. The original noise map maps a density matrix ρ to Λ (ρ). Under

a S-twirl, a unitary U from the group S is chosen, applied to ρ, then the noise map

is applied and then U is undone with U †:

ρ→
∫
S

U †Λ
(
UρU †

)
U. (3.6)

Λ can be written in a Kraus decomposition as Λ (ρ) =
∑

k AkρA
†
k. Then the twirled

map can be written as (also exchanging the order of integration and summation):

ρ→
∑
k

∫
S

U †AkUρU
†A†kU. (3.7)

The Ak can be decomposed in the Pauli basis,

ρ→
∑
i,j

αij

∫
S

U †PiUρU
†P †j U. (3.8)

The chi matrix αij describes the superoperator and the effect of the twirling depends

on what group S is and can be stated in terms of how it affects the chi matrix.

If S are fully Haar distributed random unitaries then the effect is to completely

depolarize the noise, i.e., all terms where i 6= j will vanish and all diagonal terms

for traceless Pauli’s will have equal weight. Because for any ρ, 1
4n

∑
j PjρPj = 1

2n
11,
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twirling with Haar random unitaries will turn any map into a depolarizing map

with a single parameter d describing the noise strength ρ → (1 − d)ρ + d
2n

11 [46].

Haar random unitaries are powerful depolarizers and gain from the concentration

of measure in large Hilbert spaces. However, they are also inefficient to create in

that it takes an exponential number of parameters to specify and thus create a

truly Haar random unitary. One work around is to use pseudo-random unitaries

from the previous section, where with a polynomial number of simple one and two

qubit gates, a distribution of unitaries exponentially close to the Haar measure

can be achieved [51]. Fortunately, decomposing the Ak as Pauli’s makes another

elegant solution clear. A random element from the n qubit Clifford group will map

any n qubit Pauli to another evenly distributed random n qubit Pauli. Thus it is

clear from Eq. 3.8 twirling with the full n qubit Clifford group will also depolarize

the noise map [58]. Full Clifford twirling is still difficult as the size of the Clifford

group grows exponentially with n. However, full Clifford twirling is not necessary

as a Chernoff-Hoeffding bound argument [59] shows that sampling from the Clifford

group is sufficient to efficiently estimate many parameters of the twirled map to

any desired accuracy.

Another interesting twirl is a C⊗n-twirl - a tensor product of n single qubit

Cliffords. The effect of this twirl [60] is to average αij to zero for i 6= j and

when combined with random qubit permutations to equalize all the αii of the same

Pauli weight, i.e., the terms which have the same number of non-identity Pauli’s.

Since this Pauli weight can be associated with the error weight (i.e. how many

qubits are affected by the error) it is an interesting and useful thing to measure

the probability of different error weights pw. For example, most quantum error

correction codes are formulated in the stabilizer formalism [61]. An important

metric is the distance of the code which determines up to what weight Pauli error

the code can correct. Thus measuring the probabilities of Pauli error weight would

in principle determine the failure probability of the code. If the code had distance

2t+1 so that it could correct errors of weight t, then the failure probability for that

code would be
∑

w>t pw. Furthermore, measuring the pw would allow some tests of

the independence of the errors. Under an independent error model we would expect

pw ∝ pw1 . Although confirming this proportionality experimentally does not confirm

this error model, deviations from it confirm the error model is not independent.

The twirling procedure performs the necessary coarse-graining of the map reduc-

ing the number of parameters depending on the form of the twirl. An experimental

procedure to measure these reduced number of parameters in the case of the C⊗n-

twirl is detailed below:

1. Prepare eigenstates of Pauli operators. Because of the Clifford gates used

for twirling, the particular direction of the Pauli chosen does not matter i.e.
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the states could all be eigenstates of σz. However, the weights of the Pauli

operators and the locations of the non-identity terms should be randomly

chosen.

2. Send these states through a C⊗n twirled version of the channel. That is

randomly choose a set of single qubit Cliffords, apply them, apply the channel

to be characterized, and then apply the inverse of the Cliffords. Every time

a state is sent through, a new set of random Cliffords is chosen.

3. Measure the correlation of the output state with the initial input state.

After repeating this procedure sufficiently many times, sufficient statistics can

be accumulated to get estimates of cw, where cw is the average correlation between

the input and output state for a Pauli operator of weight w. The accuracy of the

estimate can be determined from a Chernoff-Hoeffding bound but the number of

experiments necessary to estimate cw to an accuracy ε is only O (ε2). The pw are lin-

early related to the cw. The relationship can be worked out by exhaustively counting

the effects of all possible errors. As a relevant example consider a three qubit sys-

tem. When inputing a eigenstate of a weight 1 Pauli operator, say ZII, then to

work out c1 we have to work out which error terms commute and anti-commute

with the state. There are 9 weight 1 error terms {XII, Y II, ZII, IXI, . . . , IIZ}.
After the twirling they all have the same probability 1

9
p1. Only two of these errors

(XII, Y II) will invert the sign this input state (and indeed for any weight 1 input

state only two weight 1 errors will flip the sign of the state). Similarly, there are

27 error terms of weight 2, and 12 of them will flip the sign of the state ZII. And

finally of the 27 error terms of weight 3, 18 will flip the sign of ZII. Thus the

correlation of the output state with the input state for eigenstates of Pauli terms

of weight 1 will be,

c1 = p0 + p1
1

9
(−2 + 7) + p2

1

27
(−12 + 15) + p3

1

27
(−18 + 9)

= p0 +
5

9
p1 +

1

9
p2 − 1

3
p3.

(3.9)

The equations for c2 and c3 can be worked out in a similar manner. Under

unital dynamics (and the twirled map is always unital) the identity input state is

mapped to the identity by definition, so it is assumed that c0 = 1. Thus,
c0

c1

c2

c3

 =


1 1 1 1

1 5
9

1
9

−1
3

1 1
9
− 5

27
1
9

1 −1
3

1
9
− 1

27



p0

p1

p2

p3

 . (3.10)

This equation can be inverted to determine the p’s after measuring the c’s. Unfortu-

nately, the matrix relating the p’s and c’s is not well conditioned and uncertainties
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in the c’s from both the incomplete twirling and experimental uncertainty can blow

up into exponentially large errors in the p’s for large w. This limits the weight

of the Pauli errors which can be efficiently estimated. Nevertheless, on physical

grounds we expect high-weight errors to decay beyond some level.

The scheme is ideally suited to measuring the identity map or say a quantum

communication channel where nothing is supposed to happen. In NMR QIP the

Hamiltonian contains always-on couplings which need to be refocused or decoupled

during wait steps. In solid-state NMR these couplings are dominated by the dipolar

couplings which have the form HDD =
∑

i<j Dij (2ZiZj −XiXJ − YiYj). Because

of the asymmetry and different signs in this Hamiltonian, it can be averaged to zero

through an appropriate pulse sequence. A powerful body of techniques under the

terms average Hamiltonian theory and the Magnus expansion have been developed

to analyse such sequences [31, 62].

A family of sequences are known as time suspension sequences as they suppress

both the chemical shift and the dipolar terms and so aim for an average Hamilto-

nian of zero. Despite the impressive theoretical tools available, it is still difficult

to determine in a real experiment what the form of the errors will be in a given

time suspension sequence, and so it is useful to characterize these sequences exper-

imentally. Although finite pulse effects and some models of phase transients can be

compensated for, Figure 3.5 shows that the real pulse is far from an ideal rectangu-

lar shape. These deviations can somewhat be nulled out through standard tune-up

procedures to adjust the probe matching [63]. Even after doing this though devi-

ations remain. The phase transients are difficult to model as well. Furthermore,

the model for the system used in the average Hamiltonian calculation may not

capture the real dynamics due to an inaccurate model or parts explicitly ignored,

e.g. decoupled spins. In practical terms an NMR spectroscopist would ask ques-

tions like: “How much signal is left after the sequence?” or “How narrow is the line

under stroboscopic observation?” However, using the symmetrized characterization

approach more detailed and generalizable information is available than these state

to state fidelity measures.

The Cory48 sequence is a time suspension sequence with not surprisingly 48

pulses [64]. The sequence suppresses the dipolar term to second order in the Magnus

expansion, the chemical shift to zeroth order and the cross terms between the

dipolar and the chemical shift to first order. So, we would expect that it is quite

effective at suppressing weight two errors from dipolar couplings but may be less

effective at suppressing weight 1 errors from chemical shifts. The sequence consists

of 48 pulses separated by delays τ or 2τ as a series of two-pulse solid echos (see

Figure 3.6). The pulse spacing τ defines the averaging rate. Stronger couplings

must be averaged at a faster rate for effective suppression. Thus we would also

expect an error rate that depends on τ . For a given amount of time as τ decreases
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Figure 3.5: The envelope of a nominal 1.3µs, 75MHz pulse measured at the sam-

ple. The r.f. field at the sample is measured via a pickup coil and digitized on a

high-speed oscilloscope. The r.f. is then digitally demodulated and in-phase and

quadrature components determined. The phase is adjusted to maximize the inte-

gral of the in-phase component. The pulse was recorded on a home-built Q-spoiled

probe and the distortions would be worse on a higher-Q probe. The Q or quality

factor of the probe measures the losses in the resonant circuit. It can be interpreted

in a number of ways but a relevant measure is the resonant frequency divided by

full-width half-max (linewidth) of the resonance. The higher the Q the narrower

the linewidth and the narrower the bandwith of the probe which makes transient

effects worse. The probe was tuned and matched in a standard manner to minimize

the reflected power. However, different probe configurations have an effect on the

form and magnitude of the phase transients and the probe can be tuned to mini-

mize them by tuning to a point off-resonance (at the expense of coupling efficiency

and therefore nutation frequency).
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the error rate should decrease as the averaging improves, until these improvements

are overcome from the errors from finite pulse widths and pulse imperfections from

the increased number of pulses [65]. More interestingly, the error rate can increase

as τ decreases if another process on a faster time scale starts to interfere with the

averaging of the time suspension sequence.

Cory 48 pulse phases:

Figure 3.6: The first four pulses of the Cory48 time-suspension sequence. The

pulses are 90 degree pulses about the phase specified. The actual delays between

the pulses are reduced to take into account the finite width of the pulses. Also

shown are the phases of the full 48 pulses of the sequence.

The experiment is shown in circuit form in Figure 3.7. It was performed on

our three qubit solid-state molecule of choice - malonic acid (see Chapter 4 for

details of the typical Hamiltonian). The first step is to depolarize the carbons and

then apply a reset sequence which transfers polarization from the protons to one

of the carbons (see Chapter 4). The signal is then “cleaned-up” by rotating the

polarization on the other two carbons into the plane and allowing the undecoupled

protons dipolar fields to dephase them. This gives an approximate initial state

of IIZ (C1C2Cm). IIZ is not an eigenstate of the carbon Hamiltonian and the

dipolar flip-flop terms will also create small amounts of ZII and IZI. One of three

states {IIZ, IZZ, ZZZ} is then created at random via a state-to-state optimized

transformation. These are the eigenstates of Pauli operators of weights 1, 2 and

3. Then a random permutation of the qubits is applied via unitary SWAP gates

(the SWAP gate simply exchanges the state of two qubits; if followed by numbers it

specifies which qubits are exhchanged, e.g. SWAP13 exchanges the state of qubits

1 and 3). Then 3 randomly chosen single qubit Cliffords are applied in series.

This eases the experimental burden by requiring only 3 × 12 = 36 pulses, rather

than 123 = 1728 pulses, to be found and corrected for implementation errors (see

Appendix C). The expense is the additional errors from doing three gates versus

one parallel gate. The channel to be characterized is then applied. The inverse of

the Cliffords, SWAPs and state transformations are applied and finally a readout

pulse is applied to determine the fidelity of the output state by both scaling and

integration and comparison to a reference spectrum.
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Figure 3.7: The circuit for the symmetrized characterization of a quantum process.

The initial state is the weight one deviation density matrix IIZ. This is randomly

transformed into weight 2 (IZZ) or weight 3 (ZZZ) state. The location of the

non-identity terms in then randomized via a randomly chosen SWAP gate. Three

single qubit Cliffords (Crand) are applied in series. The channel to be characterized

Λ is then applied. Finally all the steps are reversed and the polarization is read

out on the first qubit.

The choice of the reference spectrum allows us to normalize out errors in the

state preparation and twirling sequences. There are two steps to the normalization

procedure. Preparing the weight 2 and 3 Pauli operators require different prepara-

tion sequences whereas the weight 1 IIZ requires no additional state preparation.

Therefore individual reference spectra are used for each Pauli weight by running the

state preparation and its inverse for each weight. Secondly, by running the twirling

protocol without any channel, we obtain three spectra for the different Pauli weight

input states. One can imagine commuting all the errors in the SWAP and Clifford

pulses into the middle which then becomes the channel being characterized. This

is not entirely accurate because the errors will be pulse dependent. However, this

gives us some information about the level of control and we can use the spectra

obtained as references for characterizing other channels. Indeed, the fact that the

protocol even works in NMR with its highly mixed input state (which can be inter-

preted as huge errors on the preparation step) shows how robust this normalization

feature is. The no-channel gave c’s of {c0 = 1; c1 = 0.96; c2 = 0.93; c3 = 0.92} which

corresponds to a channel with p’s of {p0 = 0.93; p1 = 0.04; p2 = 0.03; p3 = 0}. Since

there are 8 gates (2 SWAPS and 6 Clifford gates) it is reasonable to claim an error

per gate of approximately 1%. All subsequent experiments are then normalized

with respect to these spectra to determine the additional error coming from the

channel.

The SWAP and Clifford gates can be chosen at random. However, because the

input state is known, only certain Clifford combinations will have a useful impact

on the twirling for particular input states. There are 1728 possible Clifford gate

combinations which make exhaustive averaging too time consuming. It therefore

makes sense to choose the random gate combinations so that they implement the
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most effective twirl. Consider the weight 1 input state ZII. Only the SWAP12

and SWAP13 perform a non-trivial operation and are thus worth doing. The other

SWAP can be used as a dummy gate for when no SWAP is called for to keep the

number of gates consistent. If the polarization is left on the first qubit (state ZII)

then changing the Clifford gates of qubit 2 and 3 have no effect and so can safely

be left out of the averaging. Thus each of the possible weight 1 Pauli input states

(ZII, IZI, IIZ) have only 12 Clifford gate combinations to be averaged over for

a total of 36 experiments. Similarly the weight 2 Pauli inputs have 144 possible

combinations that may have an effect on the twirling. We choose rather arbitrarily

to perform 432 experiments, all 144 useful experiments for each of the three weight

two Pauli inputs.

I characterized three channels. Firstly, I engineered noise consisting of a single

phase flip on a random qubit by modifying the phase of subsequent pulses. This a

weight 1 error happening with 100% probability so that we expect the measurement

to return p’s {p0 = 0; p1 = 1; p2 = 0; p3 = 0}. Secondly we characterized two time

suspension sequences. The first was 48 pulses of the Cory48 sequence with a 10µs

pulse spacing. The second was 96 pulses of the Cory48 sequence with 5µs pulse

spacing. The total time of the two sequences is the same so that the comparison

reveals information about the performance of the sequence as a function of pulse

spacing. The results from all three experiments are summarized in Table 3.1 along

with results from simulations. The simulations are of the carbon sub-system only

and assume unitary evolution. They reveal expected deviations due to incomplete

twirling, imperfect time-suspension suppression of evolution or pulse dependent

unitary errors.

p0 p1 p2 p3

Map Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp.

Engineered 0 0.01+0.01
−0.01 1 0.99+0.01

−0.03 0 0.01+0.02
−0.01 0 0.00+0.01

Cory48 10µs 0.47 0.44+0.01
−0.02 0.42 0.45+0.03

−0.03 0.12 0.10+0.04
−0.08 0.00 0.01+0.03

−0.01

Cory48 5µs 0.92 0.84+0.01
−0.01 0.07 0.150.02

−0.03 0.01 0.01+0.03
−0.01 0.01 0.00+0.02

Table 3.1: Simulated and experimentally measured p values for the three maps

implemented. Uncertainties for the experimentally measured values come from a

maximum likelihood algorithm.

The experimental results match the simulations well for the engineered error

and the Cory48 sequence with 10µs spacing. There is a larger discrepancy though

between the simulated and experimental results for the Cory48 with 5µs pulse

spacing which warrants more explanation. Fortunately, because the input state for

each experiment is known a more detailed analysis of the location of the errors
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is possible. For the weight 1 Pauli input state the state is one of ZII, IZI, IIZ

after the SWAP gate. By adding up all the experiments corresponding to the

polarization being on each qubit separately we can determine the location of the

errors. In our case, the results for ZII and IZI were nearly perfect where as

the result for IIZ (polarization on the methyl carbon) was approximately 2/3 of

the expected amount. Similarly for the weight two Pauli inputs, when there was

polarization on Cm the signal was much less than expected. This suggested that

all the errors were occuring on the Cm qubit. The physical reason behind this is a

breakdown of the proton decoupling. Cm has approximately an order of magnitude

stronger coupling to the protons than the other two carbons (see Section 4 and

Figure 4.3 for details of the proton-carbon Hamiltonian) and so we would expect

it to be most adversely affected by any proton decoupling inadequacies. After the

initial polarization transfer from the reset step, the protons are decoupled with the

efficient SPINAL64 sequence [66]. The SPINAL64 is a windowless phase modulated

sequence which is a series of rotations of ≈ 165◦. With the available proton power

this corresponds to a pulse length of 1.5µs. With the 5µs pulse spacing there is

actually only 3.7µs between carbon pulses due to the finite pulse width. The proton

decoupling works by modulating the proton dipolar fields the carbons experience

at a rate much faster than the coupling to produce zero average Hamiltonian.

However, if the carbons themselves are being modulated at a comparable rate,

then the designed average Hamiltonian from the decoupling no longer works and

the decoupling breaks down. Further confirmation of this explanation is found from

the fact that the experiment improves p0 from 0.76 to 0.84 by decreasing the proton

pulse time for the ≈ 165◦ pulse from 2.4µs to the 1.5µs used in the final experiment.

Further increases in decoupling power are prevented because of the onset of arcing

in the probe capacitors.

These experiments confirm that symmetrized characterization techniques can

extract useful information about a quantum process. In such a small and well

characterized system the results are perhaps not terribly surprising and unexpected.

Nevertheless the technique provides a systematic approach which will scale to many

qubits. The work on this symmetrized characterization was published in Ref. [60].

3.4 Randomized benchmarking of quantum con-

trol sequences

The above protocol is very effective for characterizing the identity or do-nothing

gate; it is best suited to characterizing quantum channels where the ideal transfor-

mation is perfect unadulterated transmission rather than quantum gates where we

need something to happen. To overcome this one could imagine doing and then
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undoing the gate and then using the above protocol to characterize the combined

error. This will work well in the case of a pulse independent error, say in the case

where the errors are decoherence limited. However, in most realistic scenarios the

control fields themselves will introduce errors and the errors will be coherent uni-

tary rotations that depend on the gate being implemented. An obvious example

is a miscalibration error. If the power was consistently too high then doing and

undoing the gate will still do a perfect identity gate even though the fidelity of the

gates themselves is very low.

Benchmarking the level of control for gates is important for several reasons. It

is useful to establish whether fault-tolerant control can be achieved. Using the tools

of quantum error correction and certain assumptions about the resources available

and the error model, it is possible to show that if the error in the computation is

sufficiently low then arbitrarily long computation is possible [2]: that is the error

rate is low enough that the gain from performing error correction is not overcome

by the increased number of gates. The “error sufficiently low” is usually reported

as a error per gate and is reasonably thought to be around 10−4, although with

some perhaps unrealistic assumptions about the amount of resources available, it

could be as high as 10−2 [67]. An experimental protocol is needed to efficiently

determine whether a given device reaches that level of control.

Agreeing on a standard benchmarking of quantum control would allow a fair

comparison between different devices and different technologies. The protocol

should return a single (or very few) numbers which accurately represent the com-

putationally relevant error per gate and are useful in the context of fault-tolerant

computation. Additionally, an experimental procedure for measuring the relevant

error would be useful in optimizing the design of the control hardware and software.

It is easy to imagine a closed loop optimization procedure where the quantum com-

puter optimizes its own gates by running the benchmarking procedure as a fitness

function. One could start with reasonably good guesses for the pulses that imple-

ment the desired gates and then run the benchmarking protocol to obtain a number

for the error rate. Then, in a similar manner to the optimal control algorithms, the

pulse shapes could be varied by some optimization program to minimize the error

rate. This self-optimization procedure would have a couple key benefits. Firstly,

the simulation of the quantum system’s evolution, which is explicitly inefficient on

the classical computer, is now efficiently computed on the quantum computer itself.

This removes a barrier to finding control sequences for large systems. Secondly, be-

cause we are using the quantum system to simulate itself, we are sure to capture all

the dynamics, some of which might be missed in the model which is used to simu-

late the system on a classical computer. Work along this lines has previously been

reported where improvements have been seen by optimizing decoupling schemes on

the system itself versus simulation of a model on a classical computer [68]. Further-
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more, in the experiments reported below it was used to optimize the calibration for

the single-qubit pulses.

As seen in the above characterization protocols, randomization is a useful tool

for coarse graining the information needed. In the present task it has been proposed

that randomizing over computational gate sequences and measuring the fidelity

decay (overlap between the measured output state and ideal error free output state)

as a function of increasing number of gates would be a useful measure of control

[69]. It is important to carefully choose the gate set from which the randomized

sequence is chosen. It has to meet two criteria: it must depolarize the noise so that

the noise can be represented with one parameter; and it should also be possible to

efficiently track and measure the fidelity of the final output state. Depolarizing the

noise means that any channel should be turned into an average channel which is

a depolarizing channel: with probability d the maximally mixed identity state is

returned and with probability (1− d) the original density matrix is returned:

Λ (ρ) = (1− d) ρ+
d

D
11, (3.11)

where D is the dimension of the Hilbert space. The depolarizing parameter d then

gives some information about the strength of the noise and is related to the average

fidelity of the channel.

In the unrealistic scenario of pulse independent errors, then fully Haar random

unitaries are efficient depolarizers and a self-inverting sequence of l random unitaries

will give an exponential fidelity decay [46]. The density matrix after l applications

of the average noise (Eq. 3.11) is

ρl = (Λaverage)l (ρ) = (1− d)l ρ+
1− (1− d)l

D
11. (3.12)

And so the fidelity with the initial density matrix (Tr
(
ρ†lρ
)

) is

Fl = (1− d)l Tr
(
ρ2
)

+
1− (1− d)l

D
. (3.13)

Thus, by measuring the fidelity as a function of the number of gates, and fitting

the curve to an exponential, gives a measure of the strength of the noise.

Unfortunately, fully Haar random unitaries are exponentially hard to generate

and it would also be exponentially hard to track the state through the computation

to either determine the final fidelity or a recovery gate. Fortunately, gate fidelity

requires only a 2-design (gate fidelity is a polynomial function of order two in the

elements of the unitary) and there exist more accessible gate sets which satisfy the

2-design requirements. The n-qubit Clifford gate set is one such 2-design [70]. The
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Clifford gate set is attractive for a number of reasons. They are computationally

relevant. Many fault-tolerant constructions [67], rely on Clifford group gates. By

themselves, they are not a universal gate set, but they can be bootstrapped with

the preparation of so called “magic states” which furnish universality. Furthermore,

high-fidelity Clifford group operations can be used to boost the fidelity of other

operations such as state preparation, measurement and even to purify the magic

states [71]. Finally, certain relevant input states can be tracked efficiently (by

keeping track of the stabilizers of the state [61]) through the computation, allowing

the ideal output state or a recovery gate to be efficiently calculated.

3.4.1 Single-Qubit Benchmarking

This leads to the protocol introduced in Ref. [69] for randomized benchmarking of

quantum gates. The circuit implementing this protocol for a single qubit is shown

in Fig 3.8. A series of random computational gates is chosen from a generating

set for the Clifford group, for example, 90 degree rotations about the x and y axis.

The series is truncated at different lengths to measure the fidelity decay curve.

Random Pauli gates are inserted between every computational gate. These Pauli

gates do not advance the computation but rather change the Pauli frame which

helps to depolarize the noise. These gates would occur naturally in fault-tolerant

constructions based on teleportation [72]. A fiducial initial state is prepared, say

|0〉, and tracked through the computational gates. At each truncation a recovery

gate is chosen at random which will return the state to the initial fiducial state. For

example, if the state is in an eigenstate of σx, the recovery gate should be chosen

from Y90 or Y−90. Finally, many runs are made randomizing over different Pauli

frames and different computational gate sequences to induce and effective twirling

of the noise.

State
Preparation P G P G ..... P R P Measure

Figure 3.8: Quantum circuit implementing single qubit benchmarking. A fiducial

state is prepared and a sequence of computational gates G is applied. The recovery

gate R is chosen to return the state to fixed state. The Pauli gates P interleaved

with the computational gates induce a Pauli randomization.

This protocol was implemented in liquid state NMR. A single qubit molecule

was chosen to be ≈ 0.3% solution of unlabeled cholorform in a d6-acetone solvent
1. The sample was not freeze-pumped to avoid excessively long T1 recovery times.

1This is also the official Bruker lineshape sample to determine if the static magnetic field
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The measured T1 was 7 seconds and the T2 was measured to be 4.5 seconds with

a standard CPMG refocussing sequence. The unrefocussed T ∗2 was 0.45 seconds

measured from the linewidth.

The experiments were performed on a 700MHz Bruker Avance spectrometer

using a TCI cryogenic probe. The cryo-probe provides enhanced sensitivity and

associated improved signal to noise ratio but the high quality factor of the probe

resonant circuit leads to phase-transient and radiation damping effects [26]. To

address the amplitude and phase transient issues with the high Q cryoprobe, 24µs

gaussian shaped π
2

pulses were used. These avoid the unwanted effects due to their

more slowly varying amplitude profile. Radiation damping effects were suppressed

with a very low concentration sample. Since the errors are expected to be dominated

by pulse miscalibration, amplifier drift and r.f. inhomogeneity, composite pulses

robust to r.f. field variation were also tested. The BB1 family of pulses from

Wimperis et al. [73] are robust to pulse length (calibration) errors ε up to at

minimum order ε6 (see Figure 3.2) and are universally compensating in that they

are robust unitary operations rather than robust for a particular state to state

transformation. The pulses consist of a compensating block followed by the desired

pulse so that a rotation by an angle θ about the x axis can be replaced as follows:

Rx (θ) = (180)φ1
(360)φ2

(180)φ1
Rx (θ) , (3.14)

where, φ1 and φ2 depend on the pulse flip angle according to,

φ1 =
1

3
φ2 = arccos

(−θ
4π

)
. (3.15)

The location of the compensating block is not important and it can be placed before

or after the pulse. The pulse can even be symmeterized by placing the compensating

block between two halves of the pulse [74].

The results of the single qubit benchmarking with BB1 composite pulses are

shown in Figure 3.9. It is clear that the pulse fidelity is not good and furthermore

that the curve does not fit an exponential decay well indicating that the noise has

not been completely depolarized or that error per gate depends on the sequence

length. However, this can be understood from the fact that the r.f. field strength

varies across the sample and that this r.f. inhomogenietiy is particularly bad in

cryogenic probes [23]. Indeed, by measuring the r.f. inhomogenity profile and

simulating the experiment across that variation, we were able to reproduce both

quantitatively and qualitatively the result showing we understand well the error

model. The result intuitively makes sense: we would expect spins which see an r.f.

field very different to the ideal field to very quickly end up at some random point

homogeneity meets specifications.
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Figure 3.9: Experimental (�) fidelity as a function of number of randomized gates

for a single qubit using BB1 composite pulses plotted on a semi-log plot. The fidelity

decay is clearly non-exponential indicating coherent pulse dependent errors. This

effect is caused by the large distribution of r.f. field strengths across the sample.

Also shown are the results from simulations of the pulse sequence (O) averaged

over the measured r.f. profile. The simulations match the experimental results well

demonstrating the error model captures the problem.

on the Bloch sphere, whereas those close to the ideal field strength will closely track

the ideal evolution for many gates. Thus we expect the fidelity to quickly decay

(with large fluctuations) as the spins at the edge of the r.f. profile are depolarized

and then for the fidelity to level off and decay much more slowly. This intuitive

picture can be confirmed in a more detailed analytical analysis of the coherent pulse

dependent errors introduced by this model.

The issues arising from r.f. inhomogeneity can be largely eliminated by running

a r.f. selection sequence. This is a sequence of pulses and gradients that leaves

polarization on only a subset of ensemble of processors that experience an r.f. field

within a certain range, say ±2% of the ideal field strength[28]. For calibration

purposes and again to avoid the sharp transitions of hard pulses I developed an
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optimal control pulse which implemented the r.f. selection. The pulse was designed

to rotate spins outside the ±2% range of desired powers to the X − Y plane while

leaving the calibrated spins along the z-axis. The unwanted spins are then dephased

using gradient techniques. The pulse was found by modifying the GRAPE code to

have different goal states for different r.f. powers and then defining a global fitness

function as the average of the fitness function at each r.f. power from a range of

0.4 to 1.3 spaced every 0.02. The spacing had to be this tight otherwise the pulses

found would not behave as expected in between the defined points. For r.f. powers

outside the ±2% range the goal state was I+ which conveniently asks for the state

to be in the X − Y plane (but does not care where in the plane), whereas within

the ±2% range the goal state was Z. Two rounds of the r.f. selection sequence

were used to create an even sharper profile and reduced the signal by ≈ 70%. Using

the r.f. selection dramatically improves the results and gives an exponential decay

which we fit to give an error per randomized computation gate of 1.3± 0.1× 10−4

(see Figure 3.10).

Because the r.f. selection sequence is so selective, the amount of signal returned

after the sequence (or in other words the fraction of the sample seeing the correct

power) is very sensitive to the power calibration of the r.f. selection pulse. Small

fluctuations in this power (of less than 1%) due to random fluctuations in the signal

generation and/or amplification, or small fluctuations in the resonance frequency of

the high Q probe lead to large fluctuations (±5%) in the signal returned from the

r.f. selection sequence. These must be eliminated to measure an accurate fidelity

decay without excessive averaging. A solution is to use stroboscopic observation of

the signal after the r.f. selection sequence. Because the measurement in NMR only

very slightly affects the state of the ensemble system [75], it is possible to observe

the amount of signal returned from the r.f. selection sequence and then proceed

with the benchmarking experiment. The fidelity result after the benchmarking

sequence can then be normalized by the initial input signal. This requires more

post-processing and filtering of the signal: performing ourselves much of what is

normally done automatically by the spectrometer hardware and software. However,

the benefits are worthwhile because the normalized signal fluctuates less than 0.5%

between experiments.

There are other proton signals within the bandwidth of preamplifier and re-

ceiver. When looking at a narrow spectrum, these signals will be aliased into the

spectral window. In conventional digital NMR the spectrometer oversamples the

FID at a rate sufficient to encompass all these proton signals. The FID is then

digitally filtered to remove all signal outside the specified spectral window. This

filtering leads to a group delay or a transient effect at the start of the signal for

a number of points which depends on the length of the digital filter. When we

take a stroboscopic reference after the r.f. selection sequence there is an insufficient
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Figure 3.10: Semi-log plot of the average fidelity as a function of the number of

randomized gates for a single qubit using BB1 composite pulses after a r.f. se-

lection sequence. The error bars (68% confidence) indicate the uncertainty from

randomization (i.e. different computational sequences and Pauli randomizations

give different fidelities due to coherent errors). The uncertainty in each measure-

ment due to signal to noise and fluctuations in the amount of signal from the r.f.

selection sequence is less than 0.5%. The fidelity decay is a good fit to a single

exponential shown in red with 68% confidence fits.
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number of points for the standard spectrometer filtering so we must acquire the

data in analog mode and perform our own digital post-processing in MATLAB.

The pulse sequence commands for stroboscopic observation are not standard

for liquid-state NMR so I include some relevant parts here for reference. We use

the AvanceSolids.incl include file for some useful macros for spectrometer machine

level commands such as setfrtp7—1. When performing stroboscopic observation it

it important to set the dwell time and number of time domain points correctly on

the spectrometer because it is no longer handled automatically and it is easy to

overrun the receiver memory. In general it is easier to have slightly too many points.

It is also important to open up the spectrometer filter (FW Bruker parameter) to

the maximum allowed (1.25MHz). We used a dwell time of 20µs per complex point

to cover the entire proton spectrum.

;;; Pulse sequence for the single qubit benchmarking

#include <Avancesolids.incl>

#include <Grad.incl>

;;;Declarations:start

define pulse comp90

"comp90 = 235.2u"

define pulse comp180

"comp180 = 261.6u"

define pulse rfsel

"rfsel = 6250u"

define pulse gradpul

"gradpul = 2m"

define delay aqreal

"aqreal = aq-10m"

;;;Declarations:stop

1 ze

2 d1

10u reset:f1 reset:f2

50u UNBLKGRAD

;;;;;;;;;;; Water/Solvent signal suppression ;;;;;;;;;;
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;;; pulses not shown

100u reset:f1 reset:f2

;;;;;;; RF selection

( 6u rfsel:sp10 ph0 6u ):f2

gradpul:gp4

1m

;;;; Reference taking

;; Receiver start up

STARTADC ;prepare adc for sampling, set reference frequency

RESETPHASE ;reset reference phase

RGP_ADC_ON ;open ADC gate

10u REC_BLK ;blank the receiving path

;;Composite Y90 readout pulse

( 5u comp90:sp2 ph1 5u ):f2

25u REC_UNBLK ;unblank the reciever

10m DWELL_GEN ;10ms delay while generating dwell pulses

10u do:f1

10u REC_BLK

;; Flip back with final gradient cleaning

100u

( 5u comp90:sp2 ph3 5u ):f2

gradpul:gp6

1m

;;;; Main benchmarking sequence goes here

;;;Benchmarking control pulses......

;;Composite Y90 readout pulse

( 5u comp90:sp2 ph1 5u ):f2

;;;Pulses:stop

;; Final acquistion

25u REC_UNBLK
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aqreal DWELL_GEN

rcyc=2

100m mc #0 to 2 F0(zd)

20u BLKGRAD

exit

;;;Phase definitions....

ph0 = (4) 0

ph1 = (4) 1

The FID is loaded into MATLAB and split into the first 500 points and the

rest. The first 500 points are the reference which contains signal from the desired

chloroform signal as well as the other acetone/solvent signal. The first 500 points

are filtered with a fifth order Butterworth low-pass filter with a cut-off frequency at

1/32 of the sampling frequency. The second half of the filtered signal (points 250-

500) is then used as the reference value to avoid transient effects. The rest of the

FID is then decimated by a factor of 32 to return the standard FID with all other

signals filtered out. The effects of this stroboscopic referencing scheme can be seen

by comparing a series of the same experiment repeated many times and observing

the fluctuations in signal intensity. The experiment is simply the r.f. selection

sequence followed by a readout pulse. As shown in Figure 3.11, because of the r.f.

selection sequence, the signal intensity fluctuates in a bi-modal pattern between

1.04 and 0.96 giving an unacceptable variation for determining the state fidelity.

However, the intensity of the stroboscopic reference is almost perfectly correlated

with the signal intensity fluctuations and so when normalized the fluctuations are

suppressed to less than 0.2%.

An estimate of the expected error rate due to intrinsic decoherence can be made

from the measured T1 and T2 values. The combined time for a randomized com-

putational gate using BB1 composite pulses is 516.8µs (including delays between

pulses to avoid probe overheating). The measured T2 consists of contributions from

both the purely dephasing T2 and the dephasing induced by the T1 process:

1

Tmeasured2

=
1

T2

+
1

2T1

(3.16)

Knowing both the measured T1 and T2, the intrinsic value for T2 can be extracted.

Then, the Kraus operators for the a map consisting of purely T1 and T2 decoherence

acting for the gate time can be written down [76]:
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Figure 3.11: The integral of the signal (+) for 100 repeated experiments showing

the large fluctuations that the r.f. selection sequence introduces. For reference 80

experiments without the r.f. selection sequence are also plotted (circles). However,

the intensity of the stroboscopic reference (*) is perfectly correlated with the signal

intensity and can be used to normalize the integral to obtain less uncertainty in

the results. A series of 80 experiments with no r.f. selection sequence is also shown

for comparison to show that indeed it is the r.f. selection sequence causing the

variation.
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A0 =

(
1 0

0
√

1− λ− γ

)
; A1 =

(
0 0

0
√
γ

)
; A2 =

(
0
√
γ

0 0

)
(3.17)

where,

γ = 1− e−Γ1t (3.18)

λ = e−Γ1t
(
1− eΓ2t

)
(3.19)

and Γ1 = 1/T1 and Γ2 = 1/T2.

From the Krauss operators, the average fidelity can be calcuated [46]:

Fg (Λ) =

∑
k |Tr (Ak)|2 +D

D2 +D
(3.20)

Equation 3.20 also provides the relation between the HS fidelity quoted above and

the true average fidelity. The difference is small for larger systems. Finally, it also

provides the relation between the averaged fidelity decay rate and the average gate

fidelity. For the measured T1 and T2 this would imply an error per randomized

gate of 5 × 10−5. This represents a lower bound on the expected error rate which

we should be able to reach with hardware and software improvements. If the T ∗2 ,

rather than the T2, is used in the decoherence model, the estimated error per gate

climbs to 4× 10−4. We would expect the experimental value to fall between these

two numbers and indeed that is what we measured. The randomized gate sequence

will somewhat refocus the static field inhomogenities contributing to T ∗2 , but they

are not explicitly refocussed. The remaining impediments of incoherence across

the ensemble members and the fluctuations in power from the amplifier could be

overcome with even more robust and compensated pulses (although at some point

there is a tradeoff between more highly compensated pulses and the increased losses

due to instrinsic decoherence because of the longer pulse times).

For comparison purposes, we also tested other pulse types with the same proto-

col. Using only simple uncompensated pulses we obtain an error rate of 2.1± 0.2×
10−4 and using GRAPE numerically optimized pulses, an error rate of 1.8± 0.2×
10−4. The GRAPE pulses were numerically optimized to 99.999% fidelity (Hilbert-

Schmidt norm) over a range of r.f. powers ±3% from the ideal power. They were

100µs in length and discretized at 1µs. It is somewhat surprising that the numeri-

cally optimized pulses cannot match the performance of the BB1 pulses. However,

the BB1 pulses are well suited to compensating for systematic deviations from the

ideal pulse shape which manifest themselves as calibration errors. Numerically op-

timized pulses are somewhat robust to noise in the pulse generation: because the

controls are at a local maximum of fidelity, any deviation gives no change in the

fidelity to first order. However, numerically optimized pulses are still more sensitive
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to other imperfections in the implementation. For example, the optimization and

robustness assumes the control fields are constant at each time step. In the exper-

iment, finite bandwidth effects and noise prevent exact implementation of this and

lead to a loss of fidelity.

3.4.2 Multi-Qubit Benchmarking

When trying to benchmark the level of control in multi-qubit systems, it is much

more difficult to say what quantity the measured error per gate refers to, or even

what it should be. In order to make the quoted results relevant to fault-tolerance

threshold proofs and calcuations, it would be ideal to quantify the error per gate

for one and two qubit gates and also storage errors for wait steps. However, it is

difficult to isolate the errors for only these gates if the error model does not satisfy

the independent error model - that each gate’s errors are described by a quantum

operation acting only on qubits which the gate affects. In realistic situations it is

most likely that applying a gate to qubit a could induce an error on qubit b. The

gates should depolarize the noise but at the same time the error per gate should be

meaningful in relation to the fault-tolerant thresholds.

One possibility is to choose a generating gate set consisting of single qubit Clif-

ford generators (say the Hadamard and phase gates) and controlled-NOT gates

between pairs of qubits. This will generate the multi-qubit Clifford group and in-

deed after only a polynomial number of gates will approximate a 2-design necessary

for depolarizing the noise [77]. The multi-qubit protocol then becomes:

1. Choose a series of lengths of computational gates from a generating set for the

Clifford group which to measure the fidelity decay at. The number of random

gates necessary to achieve depolarization of the noise depends on the number

of qubits and may be large. Thus we only expect the asymptotic error rate

to be meaningful.

2. For each truncation length choose ng random sequences of computational

gates.

3. Pick a fiducial input state and track that state through the gate sequence.

Determine a recovery sequence which will return the state to one with a known

definite output upon measurement. Because the Clifford group operations can

be efficiently tracked this is possible to do efficiently on a classical computer

[78].

4. Apply some parallelization routine to the random sequence of gates to ensure

that the number of wait steps does not grow with the size of the computer.
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If only one computational gate is performed per time step the wait steps on

all the other qubits will come to dominate the errors as the size of the system

grows. Fault-tolerant proofs require some form of parallelization to overcome

this. In a similar manner some parallelization is needed in the benchmarking

to extract the relevant average error rate. This parallelization step allows

a fair comparison between different size qubit registers, say one with 5 and

one with 50 qubits. The error per time step may be larger in the 50 qubit

computer but many more gates are possible in each timestep.

5. Measure the fidelity decay as in the single qubit case. An exponential fit to

the fidelity decay will reveal the average error per one and two qubit gate. It

is possible that the average error could mask a distribution of error rates such

that for example all single qubit gates are perfect but the two qubit gates are

much worse. However, more detailed, but still coarse grained information is

available by doing more experiments (see below).

Numerical simulations have confirmed that this protocol will return the cor-

rect error rate for a variety of error models such as dephasing and pulse dependent

unitary errors. Not surprisingly, larger amounts of randomization are required com-

pared with the single qubit protocol. Even when averaged over many computational

gate sequences, each time the protocol is run a different error strength is calculated

due to varying degrees of twirling and the random nature of the protocol. The

protocol was tested by simulating 256 runs of the protocol with each run averaged

over 48 different computational sequences as would be performed in the actual ex-

periments. The error model tested is a qubit independent dephasing model but

similar results are obtained for other error models. There is a spectrum of errors

from fully depolarizing to fully random pulse-dependent unitaries. The closer the

error model is to pulse-dependent unitary, the more randomization is needed. The

error rate is then measured by fitting the asymptotic fidelity decay curve (beyond

30 gates). The measured error rate is then compared to the theoretical one and the

distribution plotted (see Figure 3.12). The distribution is reasonably tight, varying

only ±10% and so we claim that this protocol reveals the error per gate. Higher

accuracy can be obtained with further averaging or averaging a few runs of the

protocol.

More detailed information about the errors can be obtained by combining the

ideas of previous randomization protocols [60, 79] with the randomized computa-

tional sequences. The idea is to run localized versions of the benchmarking protocol

on different sub-systems in the QIP. The steps of the proposed protocol are as fol-

lows:

1. Perform the single qubit benchmarking procedure on each qubit individually.

These numbers will give an estimate of the error per gate for single qubit
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Figure 3.12: Distribution of measured error rates in multiqubit benchmarking

simulations as percent difference from theoretical error rate for 256 simulated ex-

periments. The error model is qubit-independent dephasing with an expected de-

polarizing parameter of 0.01 (see equation 3.11). The spread of measured error

rates is comparable to the statistical and experimental uncertainty in fitting any

one run.
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gates. Unfortunately, as discussed above, the error model is unlikely to follow

an independent error model and the possibility that performing the single

qubit gates induces errors on non-target qubits needs to be checked. This

can be achieved by measuring the fidelity of the identity operation on the

other n − 1 qubits. Efficient procedures exist for this measurement. For

example, as discussed in section 3.3, performing single qubit Clifford gates

at the beginning and their inverses at the end of the sequence, and then

randomizing, allows an estimation of the fidelity of the channel with a small

number of experiments [60]. A possible concern is that the error model on

either the single qubit or the remaining n − 1 qubits might be highly non-

Markovian. However, the benchmarking procedure should effectively act as

a randomized dynamical decoupling sequence [80] which should limit these

effects.

2. Perform two qubit benchamrking: the procedure described for multiple qubits

above can then be performed on all pairs of qubits (or at least on all pairs of

qubits that would have two qubit gates between them given the constraints

of the architecture). The other n− 2 qubits should be twirled as in the first

step to assess the fidelity of the wait steps.

3. This procedure can be iterated to all groups of 3 qubits and so on but because

most fault-tolerant constructions are specified in terms of one and two qubits

gates going as far as all pairs should be sufficient.

The multi-qubit benchmarking was performed experimentally in liquid-state

NMR on a 700MHz spectrometer with a TCI cryoprobe. A three qubit sample was

made from selectively labelled 13C tris-(trimethylsilyl)-silane-acetylene dissolved in

deuterated chloroform [81]. A table of the natural Hamiltonian parameters is shown

in Table A.2. All T1’s and T2’s are greater than 2 seconds.

The carbon sub-system is strongly coupled and the conventional NMR control

strategies of soft selective pulses and refocussing networks do not work well. Control

was instead achieved through the GRAPE optimal control technique [22]. Using

contained optimal control pulses also makes it easier to concatenate them together

in a pulse sequence as a new refocussing network does not need to be found for

every sequence. The pulses were optimized to above 99.95% average fidelity over

a range of r.f. powers ±3% from the ideal power. The pulses were discretized

at 2 µs as a balance between smoothness and limiting the number of points to

define due to finite spectrometer memory. Single qubit pulses were 1.2ms long;

CNOT gates between H and C1 (and any single qubit gate on C2) were 2.4ms;

and CNOT gates between C1 and C2 (with any single qubit gate on H) were

4ms. These pulses are not time-optimal but have low enough r.f. powers for

72



experimental implementation. Shorter pulses tended to require unfeasible high

power levels which led to probe heating during long computational sequences. Non-

linearities in the pulse generation and transient effects from the probe’s resonant

circuit lead to distortions in the implementation of shaped pulses. These can lead

to unexpected deviations from ideal performance. To avoid this, the r.f. field

at the sample was detected through a pickup coil and corrected through a simple

feedback loop. Technical details of this correction procedure are found in Appendix

C. This correction procedure was only applied to individual pulses and the longer

term power inverse droop we observed2 was not corrected but should instead be

handled by engineering robust pulses. Due to finite spectrometer memory we are

limited to 120 gates in a computational sequence. The same numerically optimized

GRAPE r.f. selection sequence as was used in the single qubit experiment was

applied before each experiment to the proton nuclei. Polarization on the carbon

nuclei was dephased with gradient techniques giving the starting deviation density

matrix ZII (HC1C2).

The sequence of random gates was chosen in the following manner [78]: with 1/3

probability each; a Hadamard gate on qubit a; a PHP gate (Hadamard conjugated

by a phase gates) on qubit a; and a CNOT with qubit a as control and qubit b

as target. For the CNOT gates, a and b are restricted to be nearest neighbours.

The resulting state was then tracked and a recovery sequence to return the state

to ZII calculated. The entire sequence was then parallelized with a simplistic

interative scheme of repeatedly checking whether gates in series could be compressed

into a single gate. For example, a CNOT gate between qubits 2 and 3 followed

by a Hadamard gate on qubit 1 would be compressed to a single timestep which

implements both gates in parallel. The fidelity of the state was then measured

through a readout pulse on the proton spin.

The results are shown in Figure 3.13. The results fit an exponential decay well

and give an error per gate of 4.7±0.3×10−3, approximately an order of magnitude

worse than the single qubit results. Again, an estimate of the lower bound on the

error rate can be obtained from the measured T1’s and T2’s. Assuming an inde-

pendent and uncorrelated error model (which is unlikely but does not significantly

affect the result) gives an average error per gate of 1.3× 10−3. Moreover, from the

design of the pulses, we would expect an error of 4.4 × 10−4, which is an order of

magnitude smaller than the experimentally measured error rate. This leads us to

suspect that there are still errors in the implementation of the pulses and/or knowl-

edge of the chemical properties of the molecule that are not currently handled by

2The r.f. power from our signal generation and amplifier combination increases several percent
over a timescale of 10’s of ms. This could also be due to the resonant condition of the probe
changing due to heating. See Ref. [82] for another observation of this effect in the context of
optimal control.
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Figure 3.13: Semi-log plot of the average fidelity as a function of the number

of randomized gates for 3 qubit benchmarking using GRAPE pulses after a r.f.

selection sequence. The error bars (68% confidence) indicate the uncertainty from

randomization (i.e. different computational sequences give different fidelities due

to coherent or biased errors). The fidelity decay is a good fit to a single exponential

shown with 68% confidence fits.

our pulse design.

The work in this section was published in Ref. [83]

3.4.3 Future Improvements

In both the single and multi-qubit setting we were unable to establish decoherence

limited control. The control was most likely limited by inhomogeneities across the

sample and imperfect implementation of the numerically optimized pulses. There

are two approaches to this problem: software and hardware. In the software the

pulses can be made more robust to inhomogeneities by improving the pulse opti-

mization. This will be mainly a brute force effort by parallelizing the code and

running it on large clusters. A more involved improvement to the software is to
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investigate the robustness of the pulses to noise, particularly noise on a timescale

less than the timestep. On the hardware side, further improvements to the pulse

generation (more memory and faster discretization) would require new spectrom-

eter purchases. A more useful and less expensive avenue would be to concentrate

on reducing the noise in the pulse feedback loop to improve the correction of the

pulses and be more certain about what fields the spins are seeing. This is partic-

ularly difficult at low pulse powers where the pickup coil signal-to-noise is worse.

Finally the ability to perform feedback on multiple pulses in a sequence would allow

the correction of slower noise in the signal generation and amplification.

Another line of further work is to explore some of the extensions to the multi-

qubit benchmarking. This would be useful not only for further development of the

protocols but also for us to better understand the noise and errors in our NMR

system. For example, are the errors localized to any one qubit? Or, is there a

difference in error rates between the one and two qubit gates?
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Chapter 4

Creating pure states out of mixed

ones: Algorithmic Cooling

4.1 Theory

Nearly all models of quantum computing (DQC1 is one clear exception - see Section

3.2 for an example implementation) require close to pure quantum states. These

are needed not only as an initial input state into the algorithm but also, and more

importantly, they are needed throughout the computation for error correction pur-

poses. Quantum error correction can be viewed in a thermodynamic view as follows.

The initial pure state has zero entropy and any errors during the computation due

to an interaction with an environment at some finite temperature cause the system

to become a mixed state and raise the entropy of the system. This entropy can be

pumped out of the system of interest into pre-cooled ancilla qubits via quantum

error correction but the ancillas themselves must continually be refreshed through

some cooling procedure or they would heat during the computation and be ineffec-

tive in their error correction role.

There are standard physical approaches to the problem of creating pure states.

For example, cooling the qubits’ environment to a temperature well below the

energy gap to the first excited state and simply waiting for thermal equilibrium to

cool the qubits into the ground state with high probability. This works well in qubits

that are already in cold environments such as quantum dots or superconducting

qubits. Another approach is to drive certain cycling transitions with radiation to

pump the population into a certain state. This approach works well on qubits with

an optical transition (and the right level structure) and is used with trapped ions

and nitrogen vacancy centres in diamond.

In all cases, the initialization is still imperfect. Polarization (the probability of

being in the ground state minus the probability of being in the excited state) on

76



the order of 99% sounds very impressive, but for fault-tolerant computation pur-

poses two or more orders of magnitude smaller deviation from perfect polarization

is needed without one of the cooling or purification techniques presented here. How-

ever, if the control techniques and technology are good enough to have achieved a

fault-tolerant level of control, then the control can be leveraged to algorithmically

cool the qubits beyond the physical initialization. The ideas behind algorithmic

cooling are very similar to the ideas of classical error correction and are intuitively

easy to understand.

There are two related classes of cooling schemes: closed and open system, de-

rived from their thermodynamical namesake. In a closed system qubits cannot be

reinitialized and the entropy of the system is fixed. The question is then: how to

best move the entropy around the system to maximize the polarization of certain

qubits, or in other words, how to compress the uncertainty in a portion of the sys-

tem making the state of another portion of qubits more certain? These steps will

always be limited by two physical bounds. Firstly, as stated above, the system is

closed and the entropy fixed. The uncertainty and entropy can be shuffled around

the system but cannot be reduced. This is known as the Shannon bound. For a

density matrix description of the state the Shannon bound implies that the sum

diagonal elements squared cannot change. For quantum systems there is a further

bound if the compression step is limited to a unitary transformation. This is the

Sørensen bound [84]. In the density matrix description this means that the eigen-

values (diagonal elements for a classical state) cannot be changed; they can only be

permuted. For the experimental implementation described below, a relevant situa-

tion is for three qubits. For all three qubits at the same polarization ε, the Shannon

and Sørensen bounds coincide and state that one qubit cannot be polarized to more

than 1.5ε.

In an open system further steps can be taken after the optimal compression step

because entropy can be pumped out of the system and qubits reinitialized. It is

convenient to frame the discussion in terms of a heat bath with a polarization bias

ε corresponding to its temperature. The qubits are initialized by bringing them in

contact with the heat bath. Initially all the qubits are brought to the heat bath

temperature with a bias ε. The optimal compression step is then applied which

will boost the polarization of some of the qubits and reduce the polarization on the

rest to below that of the heat bath. These hot qubits can then be brought back

in contact with the heat bath to re-cool them and pump the entropy out of the

system. These rounds of cooling and compression can then be repeated.

It is assumed that the qubit can be initialized to the thermal state (1− ε) |0〉〈0|+
ε|1〉〈1|, or in words it is initialized to the ground state with a polarization 2ε. If we

initialized three qubits and then took a majority vote with the output on one of the

qubits then the probability that the output qubit is in the wrong state (|1〉〈1|) is the
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probability that two (or three) of the qubits were initialized to the wrong state. This

will go as O (ε2) (or more precisely 3C2ε
2 + ε3). This process can be concatenated,

feeding the output qubits of three majority gates into another majority gate which

would suppress the error to ε4. The procedure can be repeated until the desired

level of purity is achieved.

An alternative approach is to bring more than three qubits up to the reset

polarization and then perform a more complicated multi-qubit gate to boost the

probability of the lower energy states. This has been codified for the situation

where there are many qubits and one resettable qubit. This is a physically relevant

situation for many electron-nuclear systems. A single electron, which can be reset

through its fast T1 and strong magnetic moment or perhaps through an optical

handle, is coupled to many nuclei with long T1’s to store the polarization and on

which to perform the compression gates. In this situation an optimal algorithm

has been worked out: the partner pairing algorithm (PPA) [85]. In the PPA at

each step the reset qubit is reset and then a gate is performed which permutes

the diagonal elements of the density matrix so that they are in non-increasing

order. The schemes do not polarize a single qubit. In particular in the case of

the PPA, the polarization is boosted in a conditional cascade. At each step, the

polarization of the first qubit is maximized. Given that has been achieved the next

qubit’s polarization is maximized, and so on. More specifically the probabilities

for the different states decrease in lexicocgraphical order after each refresh and

permutation step. |000 . . .〉〈000 . . . | has the highest probability |000 . . . 1〉〈000 . . . 1|
the next highest and so on till |111 . . .〉〈111 . . . | has the lowest probability.

Using the optimality of the algorithm, bounds on the purification possible can

be worked out. In particular there is a threshold result that if the heat bath or

reset polarization ε < 1
2n

then pure qubits are impossible to achieve. On the other

hand for reset polarizations above the threshold ε > 1
2n

arbitrarily pure qubits are

achievable.

In the low polarization regime, the maximum polarization achievable with n

qubits, including the reset qubit is 2n−2ε. This has been shown numerically in Ref.

[86] but it can also be shown analytically from the results of Ref [85]. There it

is claimed that the maximum achievable population (starting from the maximally

mixed state where all populations are 2−n) is: min(2−neε2
n−1
, 1). In the low polar-

ization regime we can approximate eε2
n−1 ≈ 1 + 2n−1ε and ignore all terms O(ε2)

and higher. The PPA algorithm will reach a steady state when all the terms in lex-

icographical order have decreasing probability and the reset step does not have any

effect (the polarization of the reset qubit is the same as the heat bath). In terms of

the density matrix this implies that the diagonal terms in the density matrix are

sorted and the difference between ith and (i+ 1)th diagonal elements is 2ε for odd i.

The differences do not have to all be the same for every i but on average they must
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be and so it does not affect the following argument. Thus, the diagonal elements

of the steady state density matrix can be written down as:

1

2n



1 + 2n−1ε

1 + 2n−1ε− 2ε

1 + 2n−1ε− 2ε

1 + 2n−1ε− 4ε

1 + 2n−1ε− (2n−1 − 2)ε
...

1

1
...

1− 2n−1ε+ 2ε

1− 2n−1ε



. (4.1)

The polarization of the first qubit, which is maximized in this case, is the sum

of the top half minus the sum of the bottom half. There are 2n−1 terms in each

half and the bottom and top half are symmetrical so:

P1 =
2

2n
(
2n−12n−1ε− 0ε− 2ε− 2ε− 4ε · · · − (2n−1 − 2

)
ε− 2n−1ε

)
= 2n−1ε− ε

2n−1

(
0 + 2 + 2 + 4 · · ·+ (2n−1 − 2

)
+
(
2n−1 − 2

)
+ 2n−1 + 2n−1 − 2n−1

)
= 2n−1ε− ε

2n−1

((
2

2n−2∑
k=1

2k

)
− 2n−1

)

= 2n−1ε− ε

2n−1

(
4

2n−2 (2n−2 + 1)

2
− 2n−1

)
= ε2n−2.

(4.2)

Thus the maximum polarization boost in the low polarization regime is 2n−2.

Note that this shows an error in Ref. [85] where it is claimed with 5 qubits a boost

of 16 times is achievable where in fact the maximum boost is 8.

Errors during the algorithmic cooling procedure limit the error level achievable

in an unsurprising way [87]. A straightforward error model is to assume a completely

depolarizing error after every gate. Even in the case of a biased error model it can

be transformed into a depolarizing model through randomization. Under errors

and without modifying the protocol the final polarization reached is limited by the

depolarization error rate. This is not surprising because one can consider the final
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compression gate producing a pure qubit but then being depolarized by the error in

the gate. In this situation with control errors, adding more qubits or more steps of

purification does not necessarily improve the purification level because more qubits

requires more gates. Thus the purification quickly saturates after only a few steps.

The behaviour of the cooling algorithm over a range of polarizations and for a

couple different depolarization rates is shown in Figure 4.1. The number of steps

required so that the improvement in polarization has dropped below an arbitrary

bound of 10−6 is shown in Figure 4.2. It shows that adding a depolarizing error

causes the purification to saturate at a fewer number of steps.

4.2 Experiment

Experimentally demonstrating algorithmic cooling is a demanding task requiring

high fidelity control and the ability to reset qubits. The protocol (and indeed any

purification protocol) relies on leveraging control quality for purification, much like

composite pulses can leverage high fidelity control over the phase of the pulse to

improve the performance with respect to another parameter. NMR QIP is probably

the only system where sufficient quantum control has thus far been realized. How-

ever, in liquid state NMR there is no known access to a dynamical reset step. The

only opportunity is to rely on differences in T1. We can imagine a molecule where

one nucleus has a very fast T1 and so the reset can be achieved simply by waiting:

for example waiting 5T1 to achieve 99% of the thermal polarization. However, a

very large difference in T1’s is needed because while waiting for the reset qubit the

polarization on the other qubits will decay at their T1 rate. Furthermore, the short

T1 on the reset qubit will limit its T2 and the fidelity of the control. Despite these

limitations, some improvement from algorithmic cooling was shown in a three qubit

liquid-state system [88].

Solid state NMR offers the requisite level of control and an approximation of

a reset step which does not require a relaxation process in the system of interest.

The reset step relies on the idea of a spin bath: a network of dipolar coupled spins

with a certain polarization leading to the concept of a spin temperature. Other

spins can be brought in thermal contact with the bath (vide infra) and will reach

thermal equilibrium at the spin bath temperature. If the number of spins in the

bath is large enough compared with the spins being reset (in other words, that

the processor molecules are a dilute fraction of the crystal, while the majority are

unlabelled molecules with no processor spins), then the bath temperature will be

negligibly affected by the exchange of polarization and the process can be repeated.

The experiment presented here used a single crystal of malonic acid. A schematic

of the molecule and the final parameters of the Hamiltonian are shown in Figure
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Figure 4.2: Number of steps to saturate the algorithmic cooling protocol (arbitrarily

defined to be improving the polarization of the first qubit less than 10−6 per step)

versus the reset polarization. The plots is shown for both three (lower curves) and

five qubits (upper curves) with no errors and a depolarization error of 1% per gate.

The depolarizing error causes the algorithm to saturate at a fewer number of steps.
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4.3. The three carbon nuclei will form the processor molecules. The Cm which has

a strong coupling to the two methylene protons will be the reset qubit through its

interaction with the proton spin bath.

The standard technique in solid-state NMR for achieving the thermal contact

between hetero-nuclear spin species is cross-polarization (CP) [89]. The driving

force behind the technique is the desire to transfer polarization from a more po-

larized (and usually abundant) spin species to a less polarized (and usually rare)

spin species. A typical situation would be to transfer polarization from proton to

natural abundance 13C. Ideally this should lead to a ≈ 4 (γH/γC) ≈ 3.98) times

boost in polarization of the carbon and reduction in experiment time by a factor of

16. The process is usually explained in thermodynamical terms. The off-diagonal

flip-flop terms in the heteronuclear dipolar Hamiltonian are suppressed because of

the energy mismatch between the Zeeman energies (assuming the nuclei have suf-

ficiently different gyromagnetic ratios. A way around this mismatch is to match

the energies in the doubly rotating frame. In the rotating frame, the energy of the

spins is set by the strength of the r.f. field and so by suitably adjusting the nutation

frequencies of the two spin species, their rotating frame energies can be made equal

and they can exchange energy. This point is called the Hartman-Hahn matching

condition. In the proton-carbon example, we would need to drive the carbons with

a r.f. field 4 times as strong so that they are both nutating at the same frequency.

This standard explanation is not very rigorous. However, it becomes clear when

applying average Hamiltonian theory to the situation that the dipolar Hamiltonian

is averaged to an exchange interaction for the relevant input states and so polar-

ization will be exchanged [90]. In the doubly rotating frame for a heteronuclear

system the dipolar Hamiltonian is reduced to a ZZ form by the large difference in

Zeeman energies and so under a driving field ω1 for species 1 and ω2 for species 2

the doubly-rotating frame Hamiltonian is:

H = ω1X1 + ω2X2 +D12Z1Z2. (4.3)

The average Hamiltonian can be worked out by moving to another frame induced

by the r.f. driving field:

H′ = exp [it (ω1X1 + ω2X2)]D12Z1Z2 exp [−it (ω1X1 + ω2X2)] (4.4)

= D12 [(cos (ω1t)Z1 + sin (ω1t)Y1) (cos (ω2t)Z2 + sin (ω2t)Y2)] (4.5)

At the Hartman-Hahn matching condition, ω1 = ω2 and the zeroth order average

Hamiltonian (see section 2.4) will be non-zero and the cos2 and sin2 terms average

to 1
2
:

H0
=

1

2
(Z1Z2 + Y1Y2) (4.6)

For cross-polarization the polarization is prepared along the direction of the CP

field or IX. For this input state the ZZ + Y Y average Hamiltonian acts as an
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exchange Hamiltonian and will swap the polarization back and forth between the

two spins.

Under the exchange interaction the polarization should oscillate back and forth

indefinitely between a carbon and a single proton spin. However, the carbon is most

likely coupled to many proton spins and the proton spins themselves are coupled

to each other so that the oscillations will quickly die away leading to a steady-state

polarization [90]. However, the initial transient oscillation can be used to achieve

close to a full polarization transfer on a much shorter time scale than conventional

CP. This is the method we choose to achieve the reset gate. The Hartman-Hahn

condition was established for a short time to achieve a polarization swap between

Cm and Hm1/2. Because this proton/carbon coupling is approximately an order of

magnitude stronger than any other, the swap is close to selective. After the swap

gate the proton field is returned to a high power spin-locking field which decouples

the protons yet allows the proton-proton dipolar couplings to refresh the Hm1/2 by

equalizing its polarization with the rest of the proton spins. One can intuitively see

that the dipolar couplings will still work under the spin-locking field by moving to

the rotating frame where the spin-locking field is a constant field along say the x

axis. If the spin-locking field is much larger than the dipolar couplings then this is

now analogous to the situation for the static field in the laboratory frame and so

we expect the same secular approximation to the homonuclear dipolar coupling to

hold (except in this case with the X axis being preferred) yielding

Hspin−lock
dipolar ∝ 2XX − ZZ − Y Y. (4.7)

This can be seen more formally, and the constant of proportionality determined,

by an application of average Hamiltonian theory similar to the one above. Again

moving to the frame defined by the spin locking field,

H′ = exp(itωX1 + ωX2)D12 (2Z1Z2 −X1X2 − Y1Y2) exp(−itωX1 + ωX2) (4.8)

= 2D12 [(cos (ωt)Z1 + sin (ωt)Y1) (cos (ωt)Z2 + sin (ωt)Y2)]− (4.9)

X1X2 −D12 [(cos (ωt)Y1 − sin (ωt)Z1) (cos (ωt)Y2 − sin (ωt)Z2)] . (4.10)

Again the cos2 and sin2 will survive the averaging to zeroth order leaving:

Hspin−lock
dipolar = −X1X2 +

1

2
(Z1Z2 + Y1Y2) . (4.11)

So that under a spin locking field the dipolar coupling is scaled by 1/2 but the

flip-flop terms remain to allow polarization to diffuse through the spin-system.

Other methods can be used to achieve an exchange interaction from a hetero-

nuclear dipolar Hamiltonian. Most notable are multiple pulse techniques. The same

sequence of pulses that averages a dipolar Hamiltonian to zero will also average a
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ZZ coupling to an isotropic exchange interaction XX + Y Y + ZZ. Thus if the

dipolar decoupling sequences are applied synchronously to both spins, this will lead

to a swap gate for any input state. This has the added advantage of suppressing

the homo-nuclear dipolar couplings which might otherwise lead to errors on the

processor spins. Almost any dipolar decoupling sequence will work. However,

for algorithmic cooling purposes, where the processor spins have unique non-zero

chemical shifts, the sequence must also suppress the chemical shift terms: a true

time-suspension sequence. Some possibilities are the Cory48 sequence (or a 12

pulse sub-sequence) [64] or heteronuclear mixing sequences designed to measure

heteronuclear dipolar couplings in the solid state such as the SHRIMP16 [91] or

WIM24 [92, 93].

Although the multiple pulse technique is probably the most elegant it suffers

from several experimental drawbacks for this specific situation. The proton-carbon

coupling we are using is quite strong - and we want it that way in order to perform

a selective swap gate. This implies that a full cycle of the multiple pulse sequence

must be completed in the exchange time. This demands very short pulse and delay

times and in some cases this is simply not feasible due to bandwidth and power

limitations. Furthermore, the dipolar coupling between the two protons is also quite

strong (although somewhat tunable via crystal orientation) which strains the ability

of the pulse sequences to suppress homonuclear dipolar interactions and interferes

with the heteronuclear exchange. Finally, the multiple pulse sequences require short

hard pulses which contain inevitable transient effects. Despite our best efforts to

tune these out [63] we were unable to obtain the high fidelity control needed for

algorithmic cooling. Specifically, although both the WIM24 and SHRIMP16 worked

well as the transfer sequences they were designed to be, they performed poorly at

preserving the proton polarization which was not their designed intention.

Optimizing the natural Hamiltonian of the malonic acid was crucial to the suc-

cess of this experiment. The ability to tune the Hamiltonian through the orientation

of the molecule is recognized as a benefit of solid-state NMR. The dipolar coupling

depends on the angle between the vector joining the nuclei and the static field

as a 2nd-order Legendre polynomical P2(θ) = 3 cos2 θ − 1, and the chemical shifts

have a tensorial dependence on the orientation of the crystal with respect to the

static field. However, given our limited ability to orient and rotate the crystal, and

the constraints of the molecular geometry, there is not complete freedom with every

term in the Hamiltonian. Furthermore, as with nearly all experimental parameters,

there are design tradeoffs which need to be optimized. Our goals and constraints

for the Hamiltonian can be listed:

1. Large chemical shift differences between the carbon processor qubits for faster

selective control. However, we want small chemical shift differences to make
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it easier to refocus the chemical shift terms during the transfer sequence and

to minimize the power requirements of the GRAPE pulses.

2. Small proton chemical shifts to improve the ability to preserve the heat-bath

(1H) polarization during the decoupling and the transfer sequence.

3. Small dipolar coupling between the methylene protons to make the proton

decoupling and transfer sequences more efficient. However, we do want the

methylene protons to have a strong dipolar coupling to the rest of the proton

spin bath so that they rethermalize quickly after a transfer sequence.

4. Large difference in proton-carbon dipolar coupling between the reset qubit

and the other ones to maximize the selectivity of the transfer sequence. Po-

larization leaking onto other processor qubits is irrelevant during the first

steps of the algorithm. However, after one of the qubits has been boosted

above the heat bath polarization by the compression step, any contact with

the heat bath during the refresh step will lead to a loss of polarization. For the

application of multiple pulse transfer sequences we do not want the proton-

carbon qubit coupling too large so that the transfer happens before one com-

plete sequence. Furthermore, a large proton-carbon coupling also makes the

proton-decoupling difficult and is one of the main factors reducing the fidelity

of our carbon control operations.

The Hamiltonian for the entire proton-carbon system is worked out in a two

step process. A carbon spectrum is taken after cross-polarization. A high quality

fit of the spectrum reveals the full carbon Hamiltonian including chemical shifts,

dipolar couplings and J-couplings. From other sources (see below) the positions

of the atoms in the unit cell should be known with high precision. These two

sets of information constrain the orientation of the crystal with respect to the

static magnetic field. The orientation can be further pinned down using additional

information such as the methylene proton dipolar coupling from the splitting in the

proton spectrum or proton-carbon coupling information from observing coherent

oscillations during the transfer sequence. This heteronuclear coupling data is less

accurate because the presence of two protons complicates the spin dynamics. Once

the orientation of the crystal is obtained, the rest of the proton-carbon and proton-

proton dipolar couplings can be determined from the structural data.

Unfortunately, there are inconsistencies with the available data on the molecular

structure. X-ray data [94] gives the distance between the two methylene protons as

1.52(1)Å and the distance between Cm and the methylene protons as 0.97(2)Å and

0.852Å. It should be noted this data was used in the original algorithmic cooling ex-

periment [95] where it was difficult to get a consistent Hamiltonian for the system.

This X-ray data is inconsistent with unpublished neutron scattering data reported
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in an ENDOR study of malonic acid [96], and with NMR data from Ref. [97] and

our own experimental work. The neutron scattering data gives the proton-proton

distance as 1.756(9)Å and the distance between Cm and the methylene protons as

1.084(6)Å and 1.084(9)Å. The X-ray and neutron scattering data agree on other in-

teratomic distances between carbons and oxygen nuclei to better than 1%. Because

of the r−3 dependance of the dipolar coupling these small differences in distances for

the methylene protons lead to large differences in coupling values. The NMR study

[97] and our own observations have found a maximum dipolar coupling between

the two methylene protons of 66 ± 1kHz. Since the dipolar splitting between two

equivalent nuclei is 3Dij this implies a maximum dipolar coupling of 22kHz. Indeed

a more careful analysis over a range of orientations gives proton-proton distance as

1.76 ± 0.02Å - consistent with the neutron scattering data. If isotope effects can

be ignored, then further confirmation is obtained from deuterium NMR work [98].

There the H1 − Cm − H2 bond angle is determined to be 108◦ (versus 112◦ from

X-ray) and the proton carbon distance as 1.09± 0.025Å. Given this overwhelming

evidence in favour of the neutron scattering data my work used that data for the

Hamiltonian determination and found more consistent reasonable results. Although

X-ray diffraction is not well suited to determining proton coordinates it is possible

that this discrepancy is related to the temperature the experiments were performed

at. Malonic acid undergoes a phase-transisiton from the room temperature phase

below 47-60K [99] and to another phase above 352K [100]. However, the X-ray data

was taken at room temperature where we performed our experiments. There is no

temperature reported for the neutron-scattering data as it is unpublished and was

only reported indirectly as a personal communication.

The spectral fitting software to determine the carbon Hamiltonian was contin-

ually improved as improvements in other areas of control revealed that for high

fidelity control a more accurate Hamiltonian was needed. The Hamiltonian is fit

by a model Hamiltonian with chemical shifts, dipolar couplings and isotropic J-

couplings.

Hfit =
∑
i

ωiZi +
∑
i<j

Dij (2ZiZj −XiXJ − YiYj) +
∑
i<j

Jij (ZiZj +XiXj + YiYj)

(4.12)

The electron mediated J-coupling is usually ignored in the solid state. It is

usually an order of magnitude or more weaker than the direct dipolar couplings and

to first order, the ZZ component can be somewhat absorbed in the dipolar term.

However, we found higher fidelity control by including it in the fit. It is manifested

in the different peak heights of the tented peaks. There is also an anisotropic

component to the J-coupling which is identical in form to the dipolar (and is in

fact sometimes called the pseudo-dipolar) and is absorbed by the dipolar term in

the fit. Note however, this will affect how well the dipolar couplings obtained from
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the fit match the geometry of the molecule. This correction was not taken into

account. Reasonable values for the J-couplings can be obtained easily from liquid

state experiments with the caveat that in the liquid state the two carboxyl carbons

are equivalent.

Given the model Hamiltonian an FID is then simulated. The FID is relatively

fast to create: the complete evolution is not simulated, rather only the amplitude of

the observable terms (in the eigenbasis) are calculated and the difference in eigen-

frequencies. Both Lorentzian and Gaussian line broadening are applied for each

nucleus, although it should be noted that defining a T2 for individual spins does

not make sense in a strongly coupled system where the eigenstates are superpo-

sitions of compuational basis states. A possible consequence of this was observed

in some orientations where different line-widths within a peak group were seen.

However, this may also be explained by incomplete proton decoupling as the pro-

ton decoupling power also affects the line-widths. Finally since the crystal also

contains 13C from natural abundance at ≈ 1% which is at a comparable level to

our dilution of processor molecules, natural abundance peaks were also added to

the FID with their own amplitudes and T2’s but constrained to the same ωi. The

parameters in the Hamiltonian, the amplitudes and the T2’s are then optimized

by a MATLAB non-linear least squares fitter using three possible fitness functions.

The best fits are obtained in the frequency domain by fourier transforming and

minimizing a least squares difference for the real part of the spectra. However,

this fitness function has many local minima and performs best with a good initial

guess. When one peak of the simulated spectrum lines up with the wrong peak of

the experimental spectrum it is difficult to move out of that local minimum with a

least-squares optimizer. The FID’s themselves can be compared and do not suffer

as badly from this issue. However, we obtained the best success for the initial fit

(and also for fitting the forest of peaks in liquid crystal spectra), with integral curve

methods [101]. In this approach a cumulative sum of the spectra is calculated and

used for a least-squares fit. Because with each peak the cumulative sum mono-

tonically increases, local minima are avoided. However, good baseline correction is

needed for this method. A final fit of a spectrum is shown in Figure 4.3.

Given our limited ability to orient the crystal in the probe it was difficult to

satisfy all the constraints on the Hamiltonian listed above. In the end a Goldilocks

orientation was found which had just the right balance of everything: carbons were

far enough apart in frequency space to be controllable, the coupling between Hm1,2

was large enough for the transfer to be selective, yet not too large as to prevent

efficient decoupling; the proton spectrum was sufficiently narrow to decouple, the

coupling between C2 and the protons sufficiently weak such that it could store

polarization. Many otherwise fine orientations were ruined by short carbon T2’s.

These were caused by either susceptiblilty mismatch at the air/crystal interface or
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Figure 4.3: A proton-decoupled 13C cross polarization spectrum and associated

fit of malonic acid in the orientation used for the algorithmic cooling experiment.

The field is 7.1T. The table gives the Hamiltonian values in kHz: Chemical shifts

along diagonal, dipolar couplings below and J-couplings above. The chemical shifts

are given with respect to the transmitter frequency chosen for the experiment:

75.438255MHz. To minimize the power requirements for the control we want the

pulsing frequency to be centered in the spectrum. The relative intensity of the

signal from the processor molecules and natural abundance peaks gives us a rough

measure of the dilution of the processor molecules by assuming that the natural

abundance is 1%. Since the processor molecules are split 4 times, the fact that they

are 75% of the natural abundance intensity mplies the processor molecules are 3%

of the crystal.
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dipolar interactions between processor molecules that were particularly strong at

that orientation. The first issue could be overcome by the difficult task of shaping

the crystal into a sphere [65]. The second leads to an intrinsic T2 and is overcome

by going to lower dilutions - limited by patience to overcome the reduced signal to

noise and finally the natural abundance nuclei.

A quantum circuit description of the experiment is shown in Figure 4.4. Up to

four rounds of cooling and compression could be run before the polarization of C2 no

longer increased. The carbons were initialized to infinite spin-temperature by rotat-

ing the carbon polarization into the plane and letting it dephase under the proton

dipolar fields. The proton polarization was then rotated into the plane and held in

place with a spin-locking pulse for the duration of the experiment. During carbon

control operations, the spin-locking pulse serves the dual-purpose of preserving the

proton magnetization and decoupling the protons. When a refresh sequence was

required the proton B1 field was smoothly reduced to the Hartman-Hahn match-

ing condition as the carbon B1 field was increased to the matching condition at a

nutation frequency of ≈ 80kHz. The matching condition was held for 30µs which

empirically gave the maximum polarization transfer for the experimental crystal ori-

entation. The amount of polarization transfered in the initial step determines the

effective heat bath polarization. It can be compared to a thermal carbon spectrum

to determine the amount transferred. The reset steps boosts the polarization by

3.3X which is less than the ideal 3.98X but the same as achieved with conventional

CP. After the transfer sequence the proton polarization is smoothly returned to the

high power spin-locking level of ωr.f. ≈ 250kHz. Although higher proton powers

are available and would improve the decoupling, they heat the probe changing the

resonance condition and periodically produce arcing and capacitor breakdown.

The carbon control sequences are GRAPE optimal control pulses optimized

numerically using the GRAPE code I wrote described in Appendix B. The most

difficult part of the control is to achieve high fidelity over the wide range of inho-

mogeneities in the solid state. Without the availability of r.f. selection sequences

(the protons are strongly coupled making r.f. selection sequences designed for a

single spin useless), the pulses must be robust to the range of r.f. powers over the

sample. Also, due to limited shimming ability and susceptibility mismatch due to a

non-spherical sample, the T ∗2 ’s (≈ 2ms) are approximately two orders of magnitude

shorter than the intrinsic T2’s (> 100ms) [102]. By making the pulses robust to

chemical shift variations, high fidelity control is available for times much longer

than the T ∗2 . After the reset sequences, carbon control is used to swap polarization

from Cm to C1 or C2 and perform the three bit compression gate to boost the

polarization on C2. The entire pulse sequence is shown in Figure 4.4.

The results of the experiment are shown in Figure 4.5. Because the CP reset

sequence produces polarization along the spin-locking field direction from the CP
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field it was easier to build up polarization along the X direction in the rotating

frame. This saved rotating the spins back and forth between the Z and X axes but

demanded more rigorous timing of the pulses because the state was always evolving

under the natural Hamiltonian. The unitary SWAP gates were used unchanged but

the three qubit compression gate had to be modified by conjugating it with global

90 degree rotations (incorporated into the GRAPE pulse). The results were then

easily obtained by simply switching the decoupling to the more efficient SPINAL64

sequence [66] and observing the proton-decoupled carbon spectrum. After the final

reset step, the heat-bath polarization no longer needs to be preserved and the pro-

ton decoupling can be switched to the much more effective SPINAL64 decoupling

sequence [66] for the final carbon compression control sequence. With the more

efficient decoupling it is possible to boost the polarization of C2 to 1.69±0.02X the

heat-bath polarization - far beyond the 1.5 Shannon bound limit. The full results

for each reset and boosting step of the protocol are shown in Table 4.1.
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Figure 4.5: The resulting spectrum after four rounds of the algorithmic cooling

protocol compared with the initial reset polarization spectrum. The initial reset is

shown after being swapped to C2 for comparison purposes. The polarizations in

the table are given with respect to the initial polarization transfer or effective heat

bath temperature. They were determined through a combination of integrals and

scaling and all results have an uncertainty of ±0.02. Because C1 and Cm have small

couplings to the proton spin bath, the natural abundance spins on these nuclei also

gain polarization during the transfer sequence. These natural abundance peaks

undergo some unspecified unitary during the carbon control sequences and so give

a randomly phased signal which interferes with the desired signal.
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Step C1 C2 Cm

1 0.10 0.04 1.00

2 0.11 0.98 0.05

3 0.21 0.98 0.98

4 0.96 0.94 0.22

5 0.97 0.93 0.98

6 0.47 1.39 0.49

7 0.51 1.37 0.97

8 0.96 1.34 0.50

9 0.96 1.32 0.97

10 0.68 1.56 0.71

11 0.70 1.53 0.97

12 0.95 1.53 0.72

13 0.97 1.50 0.97

14 0.76 1.64 0.79

15 0.78 1.63 0.96

16 0.92 1.62 0.79

17 0.94 1.57 0.95

18 0.78 1.67 0.85

Table 4.1: Table of polarization results from the three qubit algorithmic cooling

protocol for each step. Each step refers to a reset or carbon control operation. The

horizontal lines correspond to the “compression steps” which boost the polarization

on C2 The polarizations were determined from an average of scaling and integration

of the spectrum and comparison to the initial reset polarization and are uncertain to

±0.02. The result are shown for continuous spin-locking through the final step. As

noted in the text, the decoupling during the final boost can be improved using the

SPINAL64 sequence giving 1.67X boost for three rounds of cooling and compression

and 1.69X boost for four rounds.
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The protocol can now handily boost the polarization beyond the Shannon

bound; however, it is still limited by issues specific to the malonic-acid system

and not the control techniques or cooling algorithm. There are two main error

sources in malonic acid. The first is that incomplete proton decoupling during the

carbon control operations limits their fidelity. It is well-known that cw decoupling

(the spin-locking pulses) provides a poor bandwidth to power ratio. It is partic-

ularly bad when the decoupled spins have strong dipolar couplings, as is the case

here. Much more efficient decoupling sequences for the solid state such as TPPM

or SPINAL64 have been developed, but unfortunately do not preserve the proton

polarization. Without switching to SPINAL64 in the final compression step, C2 is

boosted to only 1.67X the heat-bath polarization. This is within the error of the

1.69X boost but is still indicative of the losses from incomplete decoupling. The

second limitation is the non-ideality of the heat-bath. The proton spin bath is a

finite size and so each polarization transfer reduces its polarization. This loss can

be initially estimated as the ratio of carbons to protons. Given the ≈ 3% triply

labeled concentration this loss is ≈ 1% per step. As the carbons are polarized this

loss will decrease. However, the heat bath is continually heating during the course

of the experiment due to relaxation under the spin-locking pulse from another re-

laxation process known as T1 in the rotating frame or T1ρ [103]. This leads to a loss

of heat-bath (1H) polarization. The combination of these effects in the experiment

means the final refresh returns only 95% of the first refresh step.

4.3 Future directions for algorithmic cooling

The future directions for algorithmic cooling are to more qubits and higher reset

polarizations. The increased polarization will almost certainly come from using

electron spins: either because of its larger magnetic moment or optical handle.

It is useful to consider the thermal polarization of an electron at different fields.

This is shown in Figure 4.6. Also shown on the plot is the minimum polarization

necessary to reach pure qubits (arbitrarily defined as 99% polarization from fault-

tolerant threshold expectations) with algorithmic cooling. It is clear that with only

3 qubits, high fields and/or low temperature will be required. Given that coherent

control becomes more difficult at these associated higher frequencies, it seems that

relying on thermal polarization in bulk ensemble systems is an unlikely route. By

increasing the number of qubits by only 2, to five, pure qubits are achievable with

much lower reset polarizations. With any number of qubits it would be useful to

investigate the possibility of a reset through optical pumping to potentially avoid

the difficulty of bulk magnetic resonance at cryogenic temperatures. In nitrogen

vacancy centers the ground state can be pumped to 80% probability through optical

means [104].
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Figure 4.6: Electron polarization at different fields for temperatures from 0-5K.

The fields are given in terms of typical ESR frequencies for g = 2 electrons. Also

shown as black horizontal lines are the minimum reset polarizations necessary to

achieve 99% polarization via algorithmic cooling assuming perfect control with 3

or 5 qubits. They give a sense of the reset polarization needed to achieve close to

pure qubits using algorithmic cooling. As expected, with 5 qubits a much lower

and more experimentally accessible polarization is possible.
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In all of these electron-nuclear systems the issue of control must also be ad-

dressed. An attractive route is to rely on the electron as a control actuator i.e.

control of the entire system will be found using only electron transitions. This

greatly simplifies the control hardware and also allows much faster gates [105, 106].

However, universal control over the full Hilbert space is possible only when the

nuclei have unique anisotropic hyperfine couplings to the electron. Furthermore,

because the electron is coupled to the nuclei the decoherence properties of the nuclei

are set by that of the electron. In particular, in the case of a weak ZZ coupling the

nuclear T2 will be set by the electron T1. Since any reset, optical or thermal is essen-

tially a T1 process, in this situation nuclear coherence cannot be preserved during

an electron reset. Nuclear polarization though can be preserved. However, when

the nuclei are controlled through the electron an anisotropic coupling is required

in which case neither coherence nor polarization of the nucleus can be preserved

perfectly under an electron T1 process. Thus, for algorithmic cooling purposes,

one may be forced into using both electron and nuclear control fields and a weak

coupling regime.
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Chapter 5

Conclusion

This thesis work has shown that in addition to the difficult technical and material

science issues surrounding building a large-scale QIP, there are also fundamental

and more abstract issues related to control and characterization that must be solved.

The work in this thesis has experimentally shown that there are potentially effi-

cient approaches to solving both the control and characterization problems. Ideas

from randomization will allow us to overcome some of the characterization issues

and extract relevant coarse-grained parameters from the system with a reasonable

number of experiments. In particular, we can twirl a channel with random gates to

obtain information about the probability of different Pauli weight errors occurring

in the channel. This was applied to characterizing time-suspension sequences in

solid-state NMR. Or, it was shown how applying random sequences of computa-

tional gates reveals the average error per gate and the highest fidelity control of

any QIP implementation was demonstrated in liquid-state NMR. It has also shown

in liquid-state NMR that by applying a subsystem style approach ideas from opti-

mal control theory may be applied to larger systems in a scalable manner. Finally

it was also shown that by obtaining high-fidelity control over a quantum system,

it may be used to implement ideas about quantum algorithms and in particular

one can use an algorithmic approach to overcome the state preparation problem

in NMR and boost the polarization of a qubit far beyond its thermal equilibrium

polarization.

The work in this thesis has also highlighted the immense technical challenge in

integrating the control technologies to build a large-scale QIP with high enough

fidelity control to demonstrate a quantum advantage. This is a large engineering

challenge which may not be best addressed by small-scale research groups in a

university setting. Nevertheless, seeing the great progress over the past five years,

particularly in solid state devices such as superconducting qubits, one can only be

optimistic that these challenges will be overcome in the near future.
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Appendix A

Molecular Hamiltonians

Throughout this work, I have used numerous different molecules for both liquid-

and solid-state NMR QIP. Below are two of the more important ones for liquid-

state NMR. In the solid state the Hamiltonian depends on the orientation of the

crystal so that situation is discussed in Chapter 4. In each case the Hamiltonian

was obtained via spectral fitting of thermal spectra using homebuilt software.

A.1 Crotonic acid

Offering up to 7 qubits, good coherence times and good couplings, crotonic acid is

our workhorse molecule for liquid state NMR experiments. There is a four chain

carbon backbone, two proton spins and a methyl group. The three proton spins

of the methyl group are magnetically equivalent and so form a spin 3
2

and a spin
1
2

subspace. Through an appropriate pulse sequence, the spin 1
2

portion can be

selected with high fidelity and the spin 3
2

portion dephased [53]. From that point

on the methyl group can be treated like another spin 1
2

nucleus. Although this

procedure gives another qubit it does constrain us to start with polarization on

the methyl spin. One caveat to note with this molecule is that the hydroxyl group

attached to C4 usually exchanges with the deuterated solvent. This will lead to a

different chemical shift and usually worse T2 for C4.

A.2 TMSS

For the benchmarking protocol we were looking for a three qubit molecule with long

T2’s but not too long T1’s and that would not require decoupling. This eliminated

many candidates with quadrupolar spins such as chloroform because the quadrapo-

lar’s rapid T1 tends to induce a rapid dephasing on nearby, coupled spins. However
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C1 C2 C3 C4 M H1 H2

C1 −3010

C2 41.6 −25630

C3 1.5 69.6 −21541

C4 7.0 1.2 72.3 −29552

M 127.2 −7.1 6.6 −0.9 −1317

H1 3.9 155.6 −1.8 6.5 6.8 −4897

H2 6.3 −0.7 161.5 3.3 −1.7 15.5 −4101

C 2

C 1

C 3

C 4H1

H2

M

Figure A.1: Hamiltonian parameters (Hz) for the crotonic acid molecule in a

700MHz spectrometer. Diagonal elements are chemical shifts with respect the base

frequency for that nuclear type (700.13MHz for proton and 176.047829MHz for

carbon) while off-digonal elements give the J-coupling constants. Note some of the

J-couplings are negative which is often ignored in the literature but is important for

high fidelity control. The yellow coloured nuclei are oxygen which have almost 100%

natural abundance spin 0 and so do not explicitly appear in the spin Hamiltonian.
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we fortunately found the molecule selectively labelled 13C tris(trimethylsilyl)silane-

acetylene from previous work in the Cory group [81]. The relevant part of the

molecule for us is the proton and two 13C-labelled carbons joined by a triple bond

which gives us three qubits. The rest of the molecule can essentially be ignored:

the methyl protons are too far away to have a resolvable coupling to the system

of interest. The natural abundance 29Si, occurring at about 4%, have a resolvable

coupling to the system. However, the parts that can be spectrally resolved can be

ignored by not measuring the integral in that region and the unresolved couplings

can be handled by treating the Si incoherently and ensuring the control pulses are

robust to small chemical shifts. One quirk of this molecule is that due to the large

size of the silicon section of the molecule it does not rotate and tumble freely. This,

combined with the large CSA of the ethylene group leads to a decoherence rate on

C1 which depends on the state of H. This gives different line-widths in the C1 peak

group depending on the state of H.

H C1 C2

H -0.1

C1 236.4 -1035.0

C2 42.2 132.5 1040.5

T1 2.4 5.3 5.3

T2 2.0 2.0 2.4

Si

Si(CH3)3

Si(CH3)3

Si(CH3)3 HC1C2

Figure A.2: Table of natural Hamiltonian parameters (Hz) obtained from spectral

fitting on a 700MHz magnet. The diagonal elements give the chemical shifts with

respect to the transmitter frequencies while the off-diagonal elements give the J-

couplings. The transmitter frequencies were chosen in the center of the spectrum

for control convenience and are -1630Hz and -15832Hz from the proton and carbon

transmitter base frequencies specified in Figure A.1. T1’s and T2’s (seconds) are

measured from standard inversion recovery and CPMG echo sequences respectively.
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Appendix B

GRAPE Optimal Control Code

An important component of implementing high fidelity control was the ability to

find robust high fidelity control pulses via optimal control theory. Our previous ap-

proach was borrowed from the strongly modulating composite pulses (SMP) tech-

nique [19]. The MATLAB code from MIT for finding SMP’s was improved in our

lab but had trouble finding high fidelity control pulses for systems larger than three

qubits and even for three qubits in the solid state it had difficulty finding pulses

above 99% fidelity. This was not due to a limitation of the strongly modulating

pulse model; indeed, for some purposes it is necessary to strongly modulate the

system to refocus unknown inohomogeneities and for high fidelity implementation.

However, the SMP code relied on finite differences to calculate gradients and a

simplex search. The application of standard optimal control ideas to the problem

of synthesizing quantum control operations in NMR from Khaneja et al. [22] was

a great advance and allowed us to expand our high fidelity control up seven qubits

with fidelities that are limited by experimental constraints on how well we can im-

plement the control field and natural decoherence rather than the control sequence

itself.

Numerical optimization has a few key steps:

1. Start with a random or well-chosen guess for the pulse shape.

2. Calculate the value of the fitness function (overlap of the simulated unitary

with the desired unitary) for the pulse shape.

3. Make a small change to the pulse shape that improves the fitness function.

4. Repeat steps 2 and 3 until no more improvements are possible.

5. If the best value of the fitness function found is good enough then the pulse

is accepted otherwise start again with a new guess at step 1.
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For numerical optimization of a pulse sequence the key information we need at

each step is which direction to push the control fields to improve the fidelity. This

could be answered with a finite difference gradient but, as discussed in the text (see

section 2.3), the GRAPE algorithm’s key improvement is to take advantage of the

fact that the simulated unitary is a product of the unitary for each timestep. Thus

the derivative can be moved inside the product. If the cumulative propagator is

then stored for each time step, then calculating the derivative for each time step

(with either the first-order approximate derivate discussed in the text or a simple

finite difference) does not require resimulating the entire quantum evolution.

As part of my thesis work I wrote an implementation of the GRAPE code in

MATLAB. The full code is available on request from the author (c4ryan@iqc.ca) or

author’s supervisor (laflamme@iqc.ca). MATLAB is an interpreted language and

therefore might not be ideally suited for numerical work. However, careful use of

vectorized code and MATLAB’s “Just-In-Time Compiler” which precompiles loops

of code (see MATLAB documentation for more information on both topics) makes

the MATLAB code fast enough for our current purposes. The code is closely based

on the algorithm presented in Ref. [22]. In this appendix I present some of the

extensions and improvements I made.

B.1 Usage

The code requires several auxiliary functions for setting up the Hamiltonian, taking

the partial trace, etc. These are either loaded as part the Laflamme group’s NMR

simulator package or can be separately loaded by adding the auxiliary files subfolder

to the MATLAB path. It is also useful to set two global variables pulses and

pulseguess. pulses is used to access the pulses found if the program is stopped before

it finishes and pulseguess is used to feed in initial starting points for the search. If no

starting point is known then pulseguess should be set to empty. The code is then

called with foundpulses = pulsefinder subsystem('paramsfile');.

The paramsfile is the name of a parameter file where all the options for the program

are specified (see below for an example). The program will return a cell array of

pulse structures which contain the following fields: initialguess is the starting point

for the search; params, the parameters for the search; pulse, the last pulse used in

the search; zangles, the pre and post single qubit Z rotations if the Zfreedom flag

is turned on (see below).
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B.2 Code Details

The params file is a separate .m file which sets all the necessary options for the

pulse finding program. It sets all the fields of a global variable params. The file is

evaluated in the main function and the global params variable is accessed to load

the options. An example file for the crotonic acid system is shown below:

global params pulseguess

%Reset the params structure
params = [];

%Location of the nuclei file (full path name)
params.nucleifile = '¬/Programs/pulsefinder/molecule.def';

%Number of timesteps in the pulse
params.plength = 100;

%Length of each time step in seconds
params.timestep = 1e−6;

%Initial stepsize (this is reasonably important − run some tries
%and choose a value which is close to what the program is choosing
%after 50 or so iterations)
params.stepsize = 1e−1;

%Desired unitary
%H1U
params.Uwant = expm(−i*(pi/2)*(full(mkstate('+1IXIIIII',0))));

params.subsystem{1} = [1 4 5];
params.subsystem{2} = [2 3 5 6];
params.subsystem{3} = [6 7];
params.subsys weight = [3 4 2];

%params.subsys weight = [1];
%params.subsystem{1} = [1 2 3 4 5 6 7];

%Desired fidelity for the unitary
% (this is the trace squared fidelity F = abs(Ugoalˆdagger*Usim)ˆ2/Nˆ2)
params.fidelity = 0.99925;

%RF distribution to optimize over
% (will slow down search and convergence dramatically)
%Two dimensional array
% first column is percentage of sample; second
%column is percentage of rf strength it sees.
params.rfdist = [0.3 0.97;0.4 1.00;0.3 1.03];

%params.rfdist = [1 1];

%Hamiltonian distribution to optimize over

params.Hamdist = [1];
params.Hammatts{1} = 0;

%params.Hamdist = (1/4)*ones(1,4);
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%Matrices for robustness to Hamiltonian distributions. These will be
%multiplied by 2PI and added to the natural Hamiltonian.
% params.Hammatts{1} = 75*(1/2)*full(mkstate('+0.8ZI+1IZ',0));
% params.Hammatts{2} = 75*(1/2)*full(mkstate('+0.8ZI−1IZ',0));
% params.Hammatts{3} = 75*(1/2)*full(mkstate('−0.8ZI+1IZ',0));
% params.Hammatts{4} = 75*(1/2)*full(mkstate('−0.8ZI−1IZ',0));

%Spins in nuclei file to ignore in search
params.spins ignore = {'RH','RC'};

%RF control fields (3D array of control Hamiltonians − as many as you like)
params.RFmatts(:,:,3) = ...
(1/2)*full(mkstate('+1IIIXIII+1IIIIXII+1IIIIIXI+1IIIIIIX',0));
params.RFmatts(:,:,4) = ...
(1/2)*full(mkstate('+1IIIYIII+1IIIIYII+1IIIIIYI+1IIIIIIY',0));
params.RFmatts(:,:,1) = (1/2)*full(mkstate('+1XIIIIII+1IXIIIII+1IIXIIII',0));
params.RFmatts(:,:,2) = (1/2)*full(mkstate('+1YIIIIII+1IYIIIII+1IIYIIII',0));

%The maximum rf power for each rf field in rad/s
params.rfmax = 2*pi*[25e3 25e3 16.7e3 16.7e3 16.7e3 20e3];

%Some parameters for the random guess
%Scale of the random guess for each RFmatt (between 0 and 1)
params.randscale = [0.05 0.05 0.05 0.05 0.1 0.2];

%Choose every randevery points at random (rest will be fit to cubic spline)
params.randevery = 25;

%Tolerance for improving
% i.e. if over 20 tries we are not improving by an average of at least this,
%we will try a new random starting point
params.improvechk = 1e−8;

%Minimum stepsize (if we're not moving anywhere we should stop searching)
params.minstepsize = 1e−8;

%Number of random guesses to try before giving up
params.numtry = 5;

%A vector of the pulsing frequency for each spin (this is defined
%with respect to the same frequency your nuclei file is)
params.pulsefreq = [−3000 −3000 −3000 −16000 −16000 −16000 −16000];

%Soft pulse buffering delay (delays required before and after soft pulses.
% (Since our time periods are usually greater than 350ns we could probably

%try to use fast shapes)
params.softpulsebuffer = 10e−6;

%If there is a starting guess for the pulse load it in here (should
%be a structure
params.pulseguess = [pulseguess];

%The type of pulse we are searching for (1 for unitary, 2 for state
%to state)
params.searchtype = 1;

%Input and goal states for state to state
params.rhoin = mkstate('+1XII',1);
params.rhogoal = mkstate('+1YII',1);

%Flag for whether you want to allow the time steps to vary
params.tstepflag = 0;
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%Maximum length of pulse (rather soft boundary)
params.tpulsemax = 20e−3;

%Allow Zfreedom or not
params.Zfreedomflag = 1;

%Flag to force beginning and end of pulse to zero
params.onofframps = 1;

% How many seconds to force a display output
params.dispevery = 60;

Most of the parameters are self-explanatory from the comments. There is very

little error checking or default values built into the program so nearly all the fields

have to be properly defined whether they are used or not.

• The subsystem field is a cell array denoting which nuclei belong to each sub-

system. The desired unitary will automatically be broken up into the sub-

system unitaries and a new fidelity function is defined as the sum of the

fidelities of the pulse on each sub-system weighted by the subsys weight field.

See below for implementation details.

• mkstate is a separate function which interprets a text string of Pauli matrices

in the product-operator notation and coverts it to a numerical matrix.

• The Hamiltonian distribution can be used for adding robustness to inhomo-

geneities or uncertainties in the natural Hamiltonian. For example in the solid

state it can be used to ensure robustness to static field inhomogeneities. The

commented out section shows using it to provide robustness to J-couplings

to other spins treated incoherently by averaging over all possible states of

the other two spins. The Hamiltonian distribution is evaluated for each r.f.

distribution point so when the two inhomogeneities are used in combination

it can substantially increase the search time.

• The softpuslebuffer is used to allow for the delays that the spectrometer re-

quires around shaped pulses to load and process the pulse. This delay is

approximately 4µs per pulse per channel before and after the pulses, i.e. for

parallel pulses at least 8µs is needed before and after. The spectrometer

will sometimes complain about this delay being missing but note that it will

also sometimes fail silently and simply not implement the pulse. Because the

timesteps of the pulses are usually greater than 1µs it should be possible to

use so-called ‘fast-shapes’ which do not require this delay. However, I have

found that there are timing issues with ‘fast-shapes’ and they are implemented

too quickly. For example, 1µs timesteps becomes 0.95µs timesteps.
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• The searchtype field is a flag specifying which fitness function to use: state

to state or unitary. Sometimes we know the initial state and desired final

state (for say state preparation sequences). In the case of state to state, it

is a much easier task to drive the system for only one input state then to

worry that all possible input states are correctly evolved as in the case of a

unitary goal. If using state to state then the fitness function maximizes the

absolute value of the correlation between the simulated output state and the

rhogoal field starting from the rhoin field input state. This can mean that

the negative of the state is achieved. For example, we may want ZII to go

to ZZZ but the code may find a pulse which gives −ZZZ.

• The tstepflag field is a flag specifying whether to allow the time for each time

step to vary. This can be useful when the total length of time needed for the

pulse is unknown. However, it slows down the search from the extra derivative

evaluation and larger search space. The maximum pulse time is set by the

tpulsemax field.

• The Zfreedomflag allows individual Z rotations to be applied for free before

and after the pulse. When working with the sequence compiler individual

Z rotations can be applied instantaneously and accurately with an abstract

frame change. Giving the search this freedom makes certain pulses much

easier to find because the chemical shifts do not have to be refocussed by the

control field, but instead can be tracked and accounted for by the Z rotations.

• The onofframps determines whether the beginning and end of the pulse are

forced to zero with a penalty function. This is useful for an accurate imple-

mentation because the control field cannot be turned on/off instantly.

The main file of the code is divided into several subfunctions as follows:

1. Main pulsefinder. This function evaluates the parameters file to load all the

options, sets up the initial guess, and runs the main optimization loop

• The system is broken down into its subsystems here. The natural Hamil-

tonian and control Hamiltonians for the subsystems are obtained by tak-

ing the partial trace over the complement of the subsystem spins. The

partial trace approach does not work for obtaining the subsystem uni-

taries as the traced over spins may have a traceless unitary. For example,

consider the desired unitary being a 180 degree pulse about the x-axis

on spin 1. For any subsystem that does not include spin 1 the partial

trace will return zero because X is traceless. A solution is apply ran-

dom single-qubit unitaries to all the spins that will be traced out. This
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ensures that it is very unlikely that the traced out spins have a traceless

unitary and the partial trace can then be taken. The answer must then

be normalized to return a valid unitary. The process does not employ

any error checking to ensure that the desired unitary is compatible with

the sub-system decomposition.

• The initial guess is either loaded from the pulseguess field of the params

input or is set to a random guess determined by the randscale and ran-

devery fields. To obtains smooth low-power pulses which are desirable

for experimental implementation it is important to start with a smooth

low-power guess. The guess is determined by choosing random points

between ±randscale ∗ rfmax. These are set at every randevery number

of points of the starting pulse along with 0 as the start and end points.

The rest of the points are interpolated using a cubic spline.

• The main optimization loop will keep running optimizations with new

random guesses until a pulse is found with fidelity greater than the fi-

delity field in params, or the number of optimizations tried exceeds the

numtry field.

• The main optimization loop calls the evalpulse subfunction which re-

turns the current value of the fitness function and derivatives of all the

control variables. The pulse is then moved in the direction of the gra-

dient. For fastest convergence and proper use of the conjugate gradi-

ents then the pulse should be moved to the highest fidelity point along

the search direction. This is a line search problem for which there are

standard solutions but it is difficult because each function evaluation

requires a simulation of the quantum system and so is expsensive. The

best move is determined from a quadratic interpolation of the fitness

function along the search direction. The fitness function is evaluated at

two further points: one times the current step size along the gradient and

twice the step size. A quadratic polynomial is fit to the three points and

the maximum of the quadratic is determined. If the maximum is beyond

two times the step size the fitness function is evaluated at four times the

stepsize and and a second quadratic fit to the points. If the maximum is

still beyond 4 times the step size then the pulse is moved to 4 times the

step size. If the quadratic produces a minimum instead of a maximum,

or the maximum step size is less than 0.1, then the pulse is moved by

0.1 times the step size. The step size is dynamically adjusted during the

search by updating it by stepsizenew =
√
currentmove × stepsizeold so

that the step size is adjusted slowly to the correct range but does not

wildly jump around.

• The best current direction of the search is not always simply the gradient
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and so the code employs the conjugate-gradient technique [107]. The

best direction is a linear combination of the gradient (steepest ascent)

and a linear sum of all the previous search directions. One can visually

imagine this as climbing a hill along a ridge. If one is not perfectly on

the crest of the ridge then the steepest ascent will lead to one to zig-zag

back and forth across the crest of the ridge, slowly making one’s way

to the top. However, by looking at all previous moves the climber will

quickly realize that the average direction is simply up along the ridge. In

general, the conjugate-gradient converges much more quickly around the

maximum where the fitness function surface is approximately quadratic.

Further away from the maximum if the surface is not quadractic, the

search method may lose conjugacy and break down, i.e. the previous

moves are not useful. In these cases the search must be restarted along

the gradient direction. The code implements a version of the Polak-

Ribiere formula. If λk is the search direction for step k and ∇k is the

gradient, then

λk = ∇k + βk ∗ λk−1. (B.1)

The Polak-Ribiere formula for βk is

βPRk =
∇T
k (∇k −∇k−1)

||∇k+1||2 (B.2)

The formula is modified if β is less than zero where it is assumed that

conjugacy has been lost and the algorithm is reset by setting β = 0. The

conjugate gradient technique provided approximately an order of mag-

nitude speed-up in convergence over a simple steepest ascent algorithm.

• Finally the main loop prints out information about the current value of

the fitness function, step size and improvement rate at a regular interval.

The interval is set but the dispevery field in params or when the difference

between the current fitness function and the goal has been reduced by

20% since the last information was printed.

• The current pulse is stored in the global variable pulses so that it can be

accessed even when the pulsefinding process is killed due to impatience

at the rate of convergence.

2. evalpulse. This subfunction evaluates the current fidelity of the pulse and

calls calcderivs to obtain the derivative information.

• The buffer delays for the soft pulse are handled by modifying the goal

and starting unitary (or goal and starting state) by applying negative

time evolution of the natural Hamiltonian for the soft pulse buffer time.

The ensures that the pulse itself will compensate for the evolution during
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that time so that the overall unitary (or state transfer) for the total time

is as desired.

• The fitness function and derivatives are evaluated in a double loop over

the r.f. and Hamiltonian distributions and the returned values are an

appropriately weighted sum.

• If activated in the params structure the penalty functions which limit

the total time of the pulse and the ensure the beginning and end of the

pulse are low power are implemented here. Both are implemented as

cosh functions with some heuristic parameters. The on/off ramps can

be further fine tuned with three hard-coded parameters: param1,param2

and numpts. The numpts specifies how many points at the beginning

and end of the pulse are affected by the penalty function. The effect of

the penalty function decreases exponentially away from the endpoints.

param1 sets the overall strength of the penalty function: values from

1e-4-1e-3 are reasonable. param2 sets how rapidly the penalty functions

decays away from the endpoints: values of 0.1-0.25 are reasonable.

3. calcderivs. This subfunction evaluates the derivatives of the control fields or

time step lengths for whichever fitness function is specified. Currently it uses

only the approximate derivative discussed in the text which limits the length

of the time steps such that the condition |H∆t| � 1 is satisfied. However, it

would be useful to add the ability to calculated finite difference derivatives.

This would be slightly slower (equivalent to doing three simulations versus

two per iteration) but would allow long time steps which would be useful for

longer pulses implementing coupling gates.

4. some extra stuff. This subfunction provides some extra code for debugging

purposes. In particular it calculates the derivatives via finite differencing so

that the approximate derivatives can be checked. It also plots the fitness

function along the search direction so that the quadratic interpolation and

step size can be checked.
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Appendix C

Pulse Implementation Correction

For high fidelity control and a good model for simulations of our NMR systems

it is important that the r.f. control fields at the sample match what we think

they are. Unfortunately, non-linearities in the pulse generation and amplification,

and bandwidth constraints of the probe-resonant circuit, mean that there can be

large discrepancies between the pulse sequence that we ask the spectrometer to

implement and the fields that the spins in the sample actually see. This is solved by

measuring the field at the sample and closing a feedback loop which will iteratively

adjust the control pulses so that the field at the sample matches the simulated pulse.

This appendix gives a few technical details of this unconventional experiment.

The field is detected with a pick-up coil placed close to the sample r.f. coils. A

wire is wound into a few (2-4) turn coil approximately 3mm in diameter. The ends

of the coil are connected to short the inner and outer conductor of a coaxial cable.

The coil has a flat transmission characteristic across the relevant r.f. frequencies.

In the solid state, the coaxial cable is then lowered into the bore of the magnet

and visually placed within a few centimeters of the sample coil. In the liquid state

we have to be more precise. We use a thin coaxial cable which will fit into a 5mm

sample tube and then use epoxy to hold the cable in place such that the pickup coil

is a few mm above the r.f. sample coils when the sample tube is loaded into the

probe via the normal pneumatic lift. The sample tube may be filled with solvent to

mimic the experimental conditions; however, I have found that the solvents degrade

the coaxial cable and electric tape and that having an empty tube is sufficient. In

either case, since the transmission between the r.f. coils and the pickup coil is

extremely sensitive to position, it may require some trial and error to find the ideal

position. Furthermore, for consistency, the cable should be fixed in place with tape

to ensure the coil does not move during the feedback process.

Once the pickup coil is in place we use the spectrometer to detect the r.f. pulse.

This avoids having to synchronize the spectrometer and a high-speed oscilloscope,
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but will hide certain timing and frequency issues because we are using the spec-

trometer to test itself. We are also relying on the linearity of the receiver train in

the spectrometer. A schematic of the experimental setup is shown in Figure C.1.

Because of some unexplained issues in the Bruker pulse generation and routing, the

behaviour of the of pulse depends strongly on which signal generation unit (SGU)

is used for the pulse and what other SGU’s are connected to the same amplifier.

Therefore, it is important to use the same SGU/router combination that will be

used in the experiment. For example, for proton pulses we can send the pulse via

logical channel :f2 through SGU1 and then the proton amplifier. We must then use

SGU1 for generating the proton pulses in the actual experiment. Unfortunately,

the dwell pulses from the SGU cause the pre-amplifier stage connected to the SGU

to switch to receive mode which will interfere with the forward power of the pulse.

To prevent this, the SGU generating the dwell pulses for the receiver should be con-

nected to a different pre-amplifier slice. This does not have to be one of the same

nuclear type. For example, on the 700, logical channel :f1 is set to proton to receive

using SGU4 for generating the dwell pulses and SGU4 is connected to the nitrogen

preamplifier slice. In the solid state, with specialized high speed preamplifiers made

for stroboscopic observation, this is not a concern.

Spectrometer

f1: 1H

f2: 1H

f3: 13C

SGU1

SGU2

SGU3

Receiver

Magnet

Probe
Preampil�er

1H
13C
15N

Proton Amp.

B.B. Amp.

B.B. Amp.

Figure C.1: Schematic of spectrometer setup for pulse correction of a proton pulse.

The offset frequencies should be set to the same value for the two proton channels.

The B.B. amplifiers are the broadband amplifiers.

The pick-up coil is connected directly to the r.f. input of the receiver. To avoid
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wear and tear on the SMA connector on the receiver we connect a short length of

SMA coaxial cable to the receiver and swap between the normal and pickup coil

connections on the cable rather than the receiver directly.

I have written Bruker AU software as well as MATLAB code to automate the

“pulsefixing” procedure. A dataset must be setup for stroboscopic observation of

the pulse and the pulse power and pulse program setup correctly. Since we are

feeding r.f. power directly into the receiver without protection it is important

to be careful and start with a low power and then slowly bring the power up to

the calibrated pulsing power. Since the pulse generation non-linearites depend

on pulse power, the pulses must be fixed at the correctly calibrated powers that

they will be used with in the experiment. The calibration may not be known in

advance, and so this may require several iterations of pulsefixing and calibration.

For calibration purposes I recommend pulsefixing a short (≈ 100−150µs low power

(≈ 20% maximum power) simple (e.g. truncated Gaussian) pulse shape that will

implement a 180 degree pulse when properly calibrated.

The Bruker AU program pulsefixer grape prompts the user for the pulse

name, the pulse time and the number of feedback loops to perform (usually 4-8

is sufficient). The pulse fixer AU program implements several steps:

1. It first runs a simple rectangular pulse as an amplitude and phase reference.

Ideally this means that all the pulses will be consistently fixed no matter how

the pick-up coil is setup. The FID is sent to a separate remote computer

which has MATLAB installed and a MATLAB program fitref.m fits the

middle portion of the pulse (to avoid transients) and saves the data so that

all future feedback iterations for this pulse are scaled and phased according

to this reference.

2. The pulse is then changed to the pulse to be corrected, the acquisition time

is set correctly and the pulse itself is then run.

3. The FID file is again sent to the remote computer where the MATLAB pro-

gram pulsefixer grape.m is run. The matlab code compares the scaled and

phased measured pulse with the desired one and creates a new pulse to try

and compensate for the pulse generation non-linearties. The new pulse can

be generated in one of two ways. A simple point to point comparison can

be made between the measured and ideal pulses and the new pulse is gen-

erated as the tried pulse minus some damping constant times the difference.

This method can lead to correction of noise and introduction of noise into the

pulse. However, this can be solved by smoothing the output pulse. Another

approach is to fit both the measured and ideal pulse to overlapping cubic

polynomials. The number of points to fit and the overlap are parameters that

112



can be set. The output pulse is then the tried pulse minus some damping

constant times a polynomial generated from the difference in the polynomial

parameters. The overlapping points are simply averaged. This method is

more robust to noise but is much slower. In either case the damping is some

constant less than one to ensure the feedback loop is stable (i.e. the pulses

do not oscillate around the ideal set point).

4. The AU program then retrieves the new pulse and runs it and then repeats

the feedback loop the set number of times.

For some systems we have observed strong signal at exactly the spectrometer

proton frequency (e.g. 700MHz or 600MHz). The signal appears to originate within

the spectrometer itself in the receive train because it appears when nothing is

connected to the receiver input port. Therefore it is filtered out with a notch filter

in the pulsefixer grape program.
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Appendix D

Papers with significant

contribution

This appendix contains papers to which I contributed significantly but were not

directly discussed in this thesis.

D.1 Benchmarking Quantum Control Methods on

a 12-Qubit System

This work was a collaboration between the Waterloo and MIT groups to explore

how far we could push our control techniques. Both groups applied the psuedo-

pure state benchmark [28] to the same molecule histidine, which offers 13 possible

qubits. The MIT group used an early form of numerically optimized pulses known

as strongly modulating pulses [19] whereas the Waterloo group used only simple

shaped pulses and the sequence compiler. The MIT group was able to create and

observe a twelve qubit pseudo pure state whereas we at Waterloo were only able

to achieve a 10 qubit pseudo pure state before control errors, decoherence and the

exponential signal loss overcame the signal. This would seem to validate the success

of numerically optimized pulses and was the instigation of our investigations of how

to combine the two control techniques. A solution to this was presented in Chapter

2 of the thesis.

My work involved accurately working out the natural Hamiltonian (J-coupling

signs) with a series of targeted small (2-4 qubits) pseudo-pure states. Because

each qubit in a pseudo-pure state reduces the number of peaks by a factor of two,

creating pseudo-pure state can dramatically clear up complicated spectra making

the Hamiltonian assignment problem easier. I helped work on optimizing pulse
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sequences for the pseudo-pure states. I also helped design the protocol for accu-

rate measurement of the signal recovered at each step (complicated by orders of

magnitude difference in signal intensity between the reference and final state) and

comparison to expected values. Furthermore, we were able to show that with a

simple independent dephasing model we could qualitatively explain how the signal

loss behaved with the number of qubits.
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In this Letter, we present an experimental benchmark of operational control methods in quantum
information processors extended up to 12 qubits. We implement universal control of this large Hilbert
space using two complementary approaches and discuss their accuracy and scalability. Despite decoher-
ence, we were able to reach a 12-coherence state (or a 12-qubit pseudopure cat state) and decode it into an
11 qubit plus one qutrit pseudopure state using liquid state nuclear magnetic resonance quantum
information processors.

DOI: 10.1103/PhysRevLett.96.170501 PACS numbers: 03.67.Lx, 76.60.Pc

Quantum mechanics promises information processors
that are more efficient than any known classical devices.
However, to bring this potential to reality, we must learn
how to control large quantum systems in a scalable fashion.
Scalability has at least two components: the complexity of
the methods used to obtain coherent control must grow
only polynomially with the number of qubits involved, and
the errors occurring during the implementation of the
control sequence must be small enough to be correctable.
These errors can be split in two classes: first, the opera-
tional errors due to imperfections in the control procedure
and, second, intrinsic errors due to decoherence and re-
laxation processes. Benchmarking small quantum informa-
tion processor (QIP) prototypes [1–4] is therefore crucial
to characterizing the errors in a physical system and devel-
oping general quantum control methods. In a physical
system well suited for implementing a QIP, once we have
reached an optimal operational control, we will need to
take care of intrinsic errors using quantum error correction
procedures [5].

Because they have the ability to run nontrivial quantum
algorithms, liquid state nuclear magnetic resonance
(NMR) based QIPs [6,7] can be used as benchmark sys-
tems [1,8,9]. In the present work, we are interested in
optimizing operational control strategies in terms of accu-
racy and the amount of required classical resources. To
do so, we have chosen to extend the benchmarking algo-
rithm previously used on a 7-qubit liquid state NMR
register [1] to 11 qubits plus one qutrit. This algorithm
consists of preparing mixtures of generalized Greenberger-
Horne-Zeilinger (GHZ) states of the form: �GHZ � I�n �
X�n (I is the identity matrix, X is the �x Pauli matrix, and
n is the number of qubits involved in the GHZ states). This
state preparation is very similar to the generation of stabil-
izer operators [10], which are building blocks for quantum
error correction codes. Furthermore, this algorithm takes
the state of the quantum system to the most fragile reaches
of the Hilbert space we are operating in and, therefore,

clearly demonstrates coherent control. Previous work has
demonstrated a 12-spin pseudocat state [11] and multiple
quantum coherences of much higher order [12]. However,
these exploited symmetries in the systems which limited
them to a much smaller symmetric subspace of the full
Hilbert space. In the present Letter, we benchmark univer-
sal control methods that allow us to access the full Hilbert
space of our system.

In a liquid state NMR QIP, universal control is achieved
through the application of a coordinated sequence of radio-
frequency (rf) pulses and periods of free evolution. The
resulting 1- and 2-qubit gates allow us, in principle, to
implement any unitary transformation [13]. The challenge
is to efficiently design such pulse sequences to be as short
as possible and robust against experimental imperfections
in order to minimize systematic error and decoherence
[14,15]. In a 3-qubit experiment [16], it is possible to write
the pulse sequences by hand and compensate for experi-
mental errors with a few optimization parameters. Moving
to larger registers [1,8] requires more complex control
schemes that necessitate systematic numerical optimiza-
tion in the design of the pulse sequence. Going to 12 qubits
represents a substantial step forward in the number of
quantum degrees of freedom that are controlled.

We will approach coherent control over this large
Hilbert space system from two complementary points of
view. First, to demonstrate that control methods of high
precision are available and experimentally realizable, we
build a detailed model of the experimental QIP and, for
each desired unitary operation, search for an optimal con-
trol sequence based on strongly modulating pulses [17].
Applied over the entire Hilbert space, this approach is not
scalable. The amount of classical resources required to
search for control sequences grows as the size of the
Hilbert space—i.e., exponentially with the number of
qubits. However, this approach returns control sequences
of high fidelity and with small, known errors, provided our
system model is accurate. Because of the exponential
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computing cost of determining a suitable pulse, when deal-
ing with a large Hilbert space, we have to lower the
dimension of the space over which we search. This can
be achieved by searching for pulses only on a subsystem of
the spins of the register (in the present case, the carbon
nuclear spins) and check that it leads to sufficiently high
fidelity control by simulating the effect of rest of the spins
as described in Ref. [18].

A second approach to control such a large Hilbert space
is to make a series of well-constructed simplifications to
the model, in order to permit control sequences to be
developed with a complexity that grows only polynomially
with the number of qubits. We therefore based the design
of our pulse sequences on the method developed in
Ref. [1]. Indeed, by using only simple pulses (broadband
rectangular hard pulses and selective soft Gaussian shaped
pulses) and performing a series of simulations on pairs of
spins with significant couplings for each pulse, it is pos-
sible to efficiently determine first-order deviations from the
ideal pulse. For each of the pulses, these control errors can
be represented as phase shifts and spin-spin coupling ef-
fects occurring before and after an ideal pulse. One can
then modify the phase of each pulse to correct for the phase
shifts. Assuming that long range couplings between the
spins vanish, the timing between pulses can be efficiently
numerically optimized in order to absorb the coupling
effects into the refocusing scheme [19]. This design does
not take higher-order coupling and off-resonant effects into
account and leaves some small couplings unrefocused to
minimize the pulse sequence length. These approximations
lead to errors in the control. A crucial point of this experi-
mental work was to verify that these approximations hold
for larger Hilbert spaces, i.e., that we could find a suitable
refocusing scheme that, once optimized, still provides
reliable control.

In liquid state NMR, the thermal equilibrium state is
almost completely mixed. Therefore, instead of preparing
�GHZ, we actually prepare the following state:

�cs ’
I�N

2N
� �X�nI��N�n�; (1)

N � 14 is the total number of spins-1=2 in the register, and
n is the number of qubits involved in the GHZ state. The
factor � ’ 10�5 is related to the thermal polarization of the
system. The second term of �cs, called the deviation den-
sity matrix, contains the n-coherence term j00 . . . 0i�
h11 . . . 1j � j11 . . . 1ih00 . . . 0j corresponding to a n-qubit
cat state j00 . . . 0i � j11 . . . 1i, as well as lower coherence
terms corresponding to the other n-qubit GHZ states. This
state preparation (called the encoding of the pseudocat
state) is done by propagating the polarization of the two
equivalent protons through the chain of nuclei by a se-
quence of 1- and 2-qubit quantum gates (see Fig. 1). In
NMR, only single coherence terms are observable [20].
Therefore, to see the signature of the GHZ state, we need to
transform the n-coherence term into a n-qubit labeled

pseudopure state of the form X00 . . . 0 [where 0 � �I�
Z�=2]. This step of the algorithm is called the decoding. To
average away the other lower coherence order terms
present in the X�n operator, we used two types of coher-
ence filters: gradient and phase cycling techniques. Proof
that we have actually created the pseudopure and accom-
panying pseudocat state by determining the final state
through tomography would require an impractically large
number of experiments (�412). Nevertheless, since the
averaging procedure filters out the signal coming from
every term but the desired one (i.e., the highest coherence
order term), a single observation of the ‘‘read out’’ nucleus
in the resulting NMR spectrum (see Fig. 2) indicates that
we have indeed reached the desired coherence.

We applied both methods to design two series of pulse
sequences that implement the encoding-decoding proce-
dure, with n going from 1 to 12, on a liquid state NMR QIP,
based on uniformly 13C; 15N labeled l-histidine (see
Fig. 2). Two different samples were used. The one used
for designing strongly modulating pulses was made of
16.7 mg of histidine and 15.9 mg of deuterated phosphoric
acid in 1 ml of deuterated water. To design simplified pulse
sequences, we prepared a second sample by dissolving
35.3 mg of histidine, 12.5 mg of glycine-2 —13C; 15N,
and 3.4 mg of deuterated phosphoric acid in 1 ml of
deuterated water. The labeled glycine molecule has a sim-
ple spectrum which allowed us to perform accurate cali-
brations of the selective pulses on isolated NMR peaks
in situ. The experiments based on the strongly modulating
pulses and the simplified design were, respectively, per-
formed on Avance-600 and Avance-700 Bruker spectrom-
eters at Massachusetts Institute of Technology and Institute
for Quantum Computing.
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C6

N2

H2

C5

C4

C3

C2

H3

C1
(b) (c)

ZZ 90 (−90) X 90 (−90) Y 90 (−90) Z rotation

(a)

FIG. 1 (color online). Sequence of gates for the 10-qubit
pseudocat-state preparation followed by its decoding into a
10-qubit pseudopure state. The initial preparation of the qutrit
into a pseudopure state, as well as the refocusing gates, are not
shown. Proper cycling of the Z rotations and the phase of
observation act as a coherence filter. The qubit names corre-
spond to the histidine molecule nuclei (see Fig. 2). (a) After the
qutrit pseudopure preparation, the state of the register is
0H4=5 IH1 IC6 IN2 IH2 IC5 IC4 ZC3 IC2 IH3 IC1 . At the end of the encod-
ing in (b), it is 0XXXXXXXXXX, and, after filtering, the
decoded state in (c) is 0000X000000.
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We based the design and the interpretation of the experi-
ments on a model of the system and the apparatus [18]
which includes the following attributes: (i) The Hamil-
tonian of the system in the static magnetic field of the

spectrometer. The chemical shifts as well as the scalar-
coupling strengths and relatives signs were experimentally
determined by fits of reference spectra and small targeted
multiple-coherence experiments. (ii) Knowledge of T2 and
T	2 [20] relaxation times of the system. (iii) rf field inho-
mogeneities were mapped and used in the design of the
strongly modulating pulses [21].

This type of experiment comes with a predicted expo-
nential decay of signal as we increase the number of
correlated qubits. We also expect high decoherence rates
[22,23] and therefore a strong signal attenuation, as it is
reasonable to assume that the relaxation rate for each spin
included in the multiple quantum coherence add. To
evaluate the quality of the control we could reach, the
relevant quantity to measure is the amount of signal ob-
tained experimentally with respect to the expected one
assuming perfect control. Figure 3 shows how much
signal we were able to retain after decoding the highest
coherence order cat state into a pseudopure state for
each experiment. We could reach a 12-coherence state
using strongly modulating pulses and a 10-coherence state
with selective pulses. Indeed, the sequences obtained
through the simplified design were slightly longer,
leading to more decoherence. Moreover, the transverse
relaxation times were not the same in both sets of
experiments. To distinguish between operational errors
and relaxation loss, both decay times (T	2 and T2) were
used to estimate the signal loss due to transversal re-
laxation during the pulse sequences (see Fig. 4). It
showed that decoherence is the main source of signal
loss and, therefore, indicates that we have good operational
control.
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is propagated through the nuclei chain to create the cat state. In the series of experiments using simple pulses, we first prepared the
qutrit made of the two equivalent protons into a pseudopure state 0 � �I� Z�=2 and left it as such for the rest of the experiments.
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FIG. 2 (color). This l-histidine molecule has 14 spin-1=2 nu-
clei: five 1H, six 13C, and three 15N. See Ref. [24] for a more
complete description of the molecule. The two protons H4 and
H5, are chemically equivalent and indistinguishable. As such,
they can be seen as a composite particle with a spin-1 and a spin-
0 part. We considered only the spin-1 subspace (qutrit) since the
spin-0 does not interact with the other spin-1=2. This molecule is
therefore a 12-qubits plus one qutrit quantum register. However,
the N3 nuclear spin has a particularly weak coupling with the rest
of the molecule; thus, we did not use it. On this plot, we have
shown a reference spectrum of H2 (gray plot) and of the pseu-
dopure state obtained after decoding a 10-qubit cat state onto
H2 (red line). They are arbitrarily scaled for clarity. The refer-
ence spectrum was obtained with 2 scans and the pseudopure,
with 4000 scans, in order to improve the signal to noise ratio. We
also show simulated spectra of the expected reference (yellow
plot) and pseudopure state (blue line) for which the amplitude is
matched to the experimental data to evaluate the signal loss.
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In summary, we have reported an algorithmic bench-
mark performed on the largest quantum information pro-
cessor to date. Despite the decoherence during the
computation, we have been able to demonstrate universal
control on up to 11 qubits and one qutrit. This work shows
that liquid state NMR allows us to develop operational
control methods that can be used to control a large number
of quantum degrees of freedom. These methods provide a
systematic and efficient way of programming liquid state
NMR QIPs. However, the approaches and control tech-
niques behind these methods could also be used to design
control sequences in more scalable implementations where
the intrinsic errors are smaller.

This work was supported by ARDA, ARO, LPS,
NSERC, and by the Cambridge-MIT Institute.
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FIG. 4 (color online). Expected decay of the pseudopure state
signal due to transversal relaxation for the series of experiments
done with simple pulses. Each point corresponds to a different
coherence experiment. The length of the pulse sequence in-
creases with the coherence order. Most experimental points are
above the estimates given by T	2 and even T2. Indeed, to predict
the transversal relaxation during the pulse sequence, we used
only a very simple model of decay for multiple coherences that
gives an upper bound of the signal loss. Nevertheless, the
experimental curve and predicted ones show the same decay
pattern. Thus, it is reasonable to say that most of the signal loss
comes from decoherence and, therefore, that we have a good
operational control over the system. For the coherences 8, 9, and
10 (last three points), the experimental curve goes below the T2

curve. It reflects a loss of accuracy in our operational control.
Indeed, for these experiments, we are controlling the nitrogen
nuclei through very small couplings. We are, therefore, using
long 2-qubits gates that are sensitive to any small inaccuracy in
the values of the Hamiltonian parameters.
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D.2 Low temperature probe for dynamic nuclear

polarization and multiple-pulse solid-state NMR.

A major goal of the Waterloo group was to achieve high polarization in bulk ensem-

ble NMR for implementing multiple rounds of error correction. Our initial work in

this direction focussed on dynamic nuclear polarization (DNP) again in collabora-

tion with the MIT group. Because the electron spin has a much larger magnetic

moment (≈ 660 times greater than proton), for any given field and temperature

the electrons will have a much greater polarization than the nuclei. Typical val-

ues of the polarization at cryogenic temperatures are shown in Figure 4.6. Using

microwaves, the electron polarization can be transferred to the nuclei by driving

forbidden flip-flop transitions of the hyperfine interaction. The goal was to use the

electrons to enhance the nuclear polarization via DNP and then to turn off the

microwaves and perform quantum information processing tasks on the polarized

nuclei using the same control techniques as in the room temperature experiments.

The probe was designed and built in collaboration with the MIT group. At Wa-

terloo we added a double resonance circuit to control both proton and carbon in a

field of 2.1T.

Performing high power NMR experiments at cryogenic temperatures proved to

be a challenge with the probe resonance conditions changing, tuning and matching

capacitors freezing up and arcing due to the helium gas environment. Nevertheless,

we were able to show DNP enhancement of the proton polarization in a frozen

glycerol/water solution with the TEMPO free radical. We were also able to take

stroboscopic observation of the signal under a dipolar decoupling sequence show-

ing line narrowing and control. Furthermore, we were able to transfer the DNP

enhanced proton polarization to the natural abundance carbon nuclei via cross-

polarization. Although this experiment achieved the initial goals, it highlighted the

difficulty of getting high polarization with bulk-ensemble systems and incoherent

polarization transfer. This provided the impetus to move systems where we can

coherently control the electron spin with pulsed ESR.
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Abstract

Here, we describe the design and performance characteristics of a low temperature probe for dynamic nuclear polarization (DNP)
experiments, which is compatible with demanding multiple-pulse experiments. The competing goals of a high-Q microwave cavity to
achieve large DNP enhancements and a high efficiency NMR circuit for multiple-pulse control lead to inevitable engineering tradeoffs.
We have designed two probes—one with a single-resonance RF circuit and a horn-mirror cavity configuration for the microwaves and a
second with a double-resonance RF circuit and a double-horn cavity configuration. The advantage of the design is that the sample is in
vacuum, the RF circuits are locally tuned, and the microwave resonator has a large internal volume that is compatible with the use of RF
and gradient coils.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Dynamic nuclear polarization; Multiple-pulse NMR; Coherent averaging; Low temperature NMR

1. Introduction

NMR approaches to quantum information processing
(QIP) have received much attention over the last decade.
Liquid state NMR studies have explored the limits to con-
trolling small quantum systems, and enabled the systematic
study of open quantum systems. Solid-state NMR QIP
approaches allow us to obtain control over a larger Hilbert
space [1–6], and hold promise for the study of many body
dynamics [7–11] and quantum simulations. Moreover, in
the solid-state, the spins can be highly polarized by
dynamic nuclear polarization techniques. The increased
polarization allows an exploration of systems with a larger
number of qubits, and also allows preparation of the sys-
tem close to a pure state.

A number of solid-state NMR QIP experiments have
recently been published [12–15], demonstrating that the
coherent control necessary for QIP can be implemented
in single crystal solids at room temperature. The next step
is to take advantage of the high polarizations that are
accessible in the solid-state. In order to reach high polari-
zation via dynamic nuclear polarization (DNP) it is neces-
sary to irradiate the system with microwaves, and to cool
the sample down to liquid helium temperatures. The chal-
lenge here is to engineer the NMR probe so that these can
be achieved without sacrificing high-fidelity control of the
spins. In this paper we describe the design and performance
characteristics of a low temperature probe for dynamic
nuclear polarization experiments, which is also compatible
with demanding multiple-pulse experiments.

Historically, DNP investigations have concentrated on
two main areas: increased detection sensitivity of rare
spins; and the creation of spin-polarized targets. The
groups of Wind and Yannoni have explored a number of
microwave resonator designs including horn-reflector [16],
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Fabry–Perot [17], and cylindrical resonators [18] for DNP
signal enhancement at room temperature. At lower temper-
atures Griffin and co-workers have implemented a novel
design in which the cylindrical walls of a high-Q microwave
cavity formed the RF coil for the NMR [19]. At even lower
temperatures, the highest absolute polarizations reported
were obtained using CW techniques in a multimode cavity
in a dilution refrigerator [20].

The probe discussed here is designed for a top-loading
continuous flow cryostat (spectrostatCF, Oxford Instru-
ments) that fits in the bore of a 2.35 T superconducting
magnet (89 mm bore diameter). The design specifications
comply with the dimensional and functional aspects of this
particular cryostat, but could easily be adapted to many

other cryostats used in low temperature NMR applica-
tions. This field corresponds to an electron Larmor fre-
quency of 66 GHz for g = 2. It is possible to obtain
relatively inexpensive solid-state microwave sources with
up to a Watt of power at this frequency. Fig. 1 shows a
three-dimensional solid model of the main section of the
probehead, as well as a cut-away view identifying the differ-
ent components.

2. RF design

There is a wealth of experience in low temperature
NMR [21–23]. There are two main challenges in the low
temperature design of the tuned RF probe:
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Fig. 1. Probe assembly: (A) cut-away view; and (B) three-dimensional CAD drawing.
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• Maintaining the ability to tune and match the resonant
circuit at low temperature.

• Ensuring that the sample remains at the desired operat-
ing temperature during the experiment.

As the probe is cooled down, the resonance invariably
shifts due to contraction of the probe materials, and the
Q increases as the coil resistance is reduced. It is therefore
necessary to re-tune and match the circuit once the operat-
ing temperature has been established. It is difficult to oper-
ate variable capacitors at low temperature as they have a
tendency to seize if they have not been thoroughly cleaned.
Although a simple approach to circuit tunability is to
locate the tuning and matching elements outside the cryo-
stat at room temperature, this entails a substantial loss of
efficiency since a lossy transmission line becomes part of
the resonant circuit [24–26]. An alternative approach that
requires no tuning parts uses a large diameter coaxial line
to reduce the losses [27]. However, space constraints and
the need to reduce thermal losses up the coax limit the
applicability of this solution, especially if multiple RF
channels are needed. Our approach is to keep the tuning
and matching capacitors at low temperature in close prox-
imity to the sample coil.

The next challenge is to cool the sample itself down to
the desired temperature. If the sample is in direct contact
with the helium gas or liquid, the only requirement is that
the sample temperature equilibrate to the bath. However, a
tuned circuit in a gaseous 4He environment at low temper-
ature is known to be susceptible to electric breakdown even
at modest power levels. Although this may not be trouble-
some for a one-pulse experiment, high duty-cycle excita-
tions such as spin-locking or multiple-pulse irradiation
are likely to cause breakdown. The alternative is to locate
the tuning circuit and RF coil, and usually the sample in
a vacuum can evacuated to �10�5 torr. The sample is then
mounted on a sapphire rod that is heat sunk at the other
end to a copper plate. In this configuration we have found
it difficult to cool the sample below about 6 K. The chal-
lenges are twofold. First we need to find a material that

has high thermal conductivity as well as good dielectric
properties at these temperatures. We used sapphire, which
is a very good thermal conductor at low temperatures,
though the conductivity peaks around 30 K and drops
sharply below that [28]. Secondly we need to be able to
place the sample in good thermal contact with this mate-
rial. In our experiments, the quartz tube containing the fro-
zen TEMPO solution was attached to the sapphire rod with
Dow Corning vacuum grease.

An alternative solution is to seal the tuning circuit and
the coil in a vacuum space, while the sample is immersed
in helium. While this design permits both high RF powers
and low sample temperatures, the tradeoff is a significantly
smaller filling factor, resulting in lower B1 fields compro-
mising the resultant control [22,29].

2.1. RF transmission

In order to minimize conductive heat losses down the
coaxial cables, we used UT-141C-SS semi-rigid coaxial
cable (Micro-Coax), which has a silver-plated copper inner
conductor and a stainless steel outer conductor with a
PTFE dielectric. A series of brass baffles were used to min-
imize radiative losses to the room temperature flange. We
have built two versions of the probe, a single-resonance
probe tuned to protons, and a double-resonance probe
tuned to protons and carbon. The standard circuit config-
urations used are shown in Fig. 2. We used standard tune-
up sequences to calibrate the probes for multiple-pulse
experiments. In order to minimize phase transients, we
reduced the Q of the circuits used. In the single-resonance
probe we overcoupled the circuit, and in the double-reso-
nance probe we added a 1.2 X metal oxide resistor, yielding
a Q of around 25.

A 3 mm diameter solenoidal RF coil was used in both
probes, a 7-turn coil in the single-resonance circuit and a
9-turn coil in the double-resonance circuit. The wire was
slightly flattened and then wound with a non-uniform pitch
so as to optimize RF inhomogeneity [30]. The free-standing
RF coil was supported by the leads as shown in Fig. 1.

 Single resonance coil circuit  Double resonance coil circuit

RF : H RF : H RF : C

: Variable capacitor (Sapphire-plunger assembly) : RF coil : Q-spoiling resistor

A B

Fig. 2. Circuit schematics for the single- and double-resonance probes.
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2.2. Tuning and matching

Fig. 3 shows a schematic diagram of the variable capacitor
assembly. In order to achieve variable tuning and matching
at low temperatures, we designed coaxial cylindrical capaci-
tors using copper-plated sapphire tubes (7.8 mm OD,
4.8 mm ID, 14 mm in length) with a piston mechanism to
obtain a capacitance range of 1–12 pF. The wall thickness
of the sapphire dielectric is 1.5 mm, giving us a breakdown
voltage of at least 25 kV. The capacitance range is obtained
using C ¼ �pR2

i l=d � 10l pF (using Ri = 4.8 mm (ID of the
sapphire tube), d = 1.5 mm (wall thickness of the tube),
and where l is the depth of the plunger in cm). The thickness
of the copper plating is 50 lm, which is more than five times
the skin depth of �7 lm for copper at 100 MHz. We used a
bellows mechanism (beryllium copper bellows, Mini-flex
Corporation) to couple the room temperature rotary motion
of the tuning rods to linear motion of the piston inside the
low temperature vacuum can. A retaining ring (Rotor Clip,
Inc.) was mounted inside the adapter on top of the bellows
so that the bellows can be either extended or contracted by
rotating a screw. Tuning rods made of G-10 extended to
the room temperature flange at the top of the cryostat, where
they passed through a set of Goddard quick-connect valves
(Rego Products).

2.3. Sample cooling and orientation

To ease sample insertion and positioning, we machined
a tapered conical seal (copper or brass) that doubles as a
sample mount. Dow Corning silicone grease applied to
the seal was found to be effective from room temperature
to below 4 K. The advantage of using this approach is that
one can easily change samples without opening a flange,
and the (single crystal) sample orientation can be systemat-
ically varied by rotating the conical seal with respect to the
vacuum can wall. A dial was inscribed onto the wall of the
vacuum can to facilitate reproducible sample orientation.
The conical seal also acts as a pressure release valve for
the vacuum can, in the event of helium getting trapped
inside the can. Fig. 4 shows a diagram of this conical seal.
The sapphire rod attached to the conical seal extends to the
center of the RF coil and the sample is mounted on the end
of this sapphire rod. Clearly, efficient cooling of the sample
by thermal contact is a critical issue for our vacuum can
approach. Special care must be taken to ensure good ther-
mal contact between the sample and the sapphire, and
between the sapphire and the conical seal into which it is
inserted. The external side of the conical seal makes contact
with the gaseous 4He environment providing a cooling
pathway for the sample.
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Fig. 3. (A) Schematic diagram of the variable capacitor assembly showing the copper-plated sapphire capacitors and the bellows arrangement that permits
low temperature tuning inside the vacuum can. Rotary motion outside the can is converted to linear motion inside the can. (B) Detail of a single copper-
plated sapphire capacitor.
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3. Microwave design

Microwave irradiation of the sample was achieved using
microwave horns. A horn-mirror configuration was used in
the single-resonance probe, and the double-horn configura-
tion [31,32] was used with the double-resonance probe
(Fig. 5). Although horn arrangements do not have particu-
larly good microwave quality factors (Q � 10–100), they
provide ample space to accommodate extra components
such as RF and gradient coils. In addition they do not need
any additional impedance matching arrangement. In the
double-horn arrangement, the distance between the two
horns was set equal to one wavelength of the microwave
source so that the 3k/4 point (shown in Fig. 5) would have
a minimum of the E-field on the horn surface. This allowed
us to drill holes in the walls of the horn at this location, and
pass the leads of the RF coil through the holes, without dis-
torting the microwave mode structure. The shorter leads
allow for greater RF efficiency.

Fig. 6 shows reflected power versus the relative distance
of the mirror from the horn at 66 GHz microwave fre-
quency, and similar data for the double-horn geometry
(gap between the two horns is set to 4.5 mm, one wave-
length at 66 GHz) as a function of a sliding shorting plug
that is placed within the neck of the end horn. In the
horn-mirror geometry, a loss of microwave power is
observed as the gap between the horn and the mirror
increases. The double-horn setup has a significantly higher
quality factor (Q � 100) and shows reduced loss compared
to the horn-mirror setup.

To effectively map out the H field profile in the horn-
mirror system, we performed HFSS (High Frequency

Structure Simulator, AnSoft) simulations with the different
horn configurations. Fig. 7 shows the simulated H field
profiles with the horn-mirror and double-horn geometries
and a 66 GHz microwave source. We found that the
horn-mirror and double-horn configurations have 4.5 dB
and 7 dB gains in H field strength, respectively, compared
to a single horn.

3.1. Experimental setup

Fig. 8 shows a schematic of the experimental setup and
the estimated insertion losses of the different components.
We used a standard fundamental mode (TE10) rectangular
WR-15 waveguide to transmit the microwaves from the
source to the cavity. The source used was a backshort-
tuned Gunn oscillator (Millitech, LLC) with an attached
isolator. Its center frequency is 66.2 ± 0.1 GHz with
mechanical tuning ability of ±2.0 GHz. The available out-
put power of this Gunn oscillator is 40–65 mW. We also
performed experiments with two other sources, a 60 mW
Gunn diode source from Millitech, LLC with a mechanical
tuning range of ±1.5 GHz, and a 1 W source from Quin-
star Technologies. The 1 W source was obtained by power
combining the output of two impatt diode sources that are
injection-locked with a Gunn to reduce phase noise. To
connect the probe assembly and microwave source while
maintaining vacuum inside the probe assembly, we used a
bulkhead flange unit (Aerowave, Inc.) as a vacuum window
on the top of low temperature NMR probe with mica and
rubber O-ring seals. A mica window serves as a vacuum
feed-through for microwave and has low insertion losses.
To reduce microwave losses while maintaining thermal iso-
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Fig. 4. (A) Side view of the wall of the vacuum can, showing the location where the conical seal sits, as well as the angular markings used to orient the
sample. (B) Front and side views of the conical seal.
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lation between the sample area and the waveguide, a 400 sec-
tion of stainless steel waveguide was brazed into a 4000 long
coin-silver waveguide. The stainless steel section acts as a
heat switch limiting conduction up the waveguide. The
total loss of microwave power was �10.6 dB, resulting in
�5 mW output microwave power at the horn input. We
do not always need to have the directional coupler in place,
so we can save the 1.43 dB loss associated there.

In the single-resonance probe, the proton p/2 pulse was
1 ls with using a 300 W Bruker BLAX amplifier with
0 dBm input power. For the double-resonance probe, the
measured p/2 pulses were 2 ls on both proton and carbon

channels, using 300 W Bruker amplifiers on both channels,
with 0 dBm input power.

4. Experimental results

DNP experiments were performed at 4 K and 2.35 T
(100 MHz 1H, 25 MHz 13C), using a BRUKER Avance
spectrometer and the home-built probes. A sample of
40 mM 4-amino-TEMPO radical (4-amino-2,2,6,6-tetram-
ethylpiperidine 1-oxyl) in a 60/40 glycerol/water solution
was used to test DNP. At this field strength and concentra-
tion, DNP is mediated by cross-relaxation between electron

Fig. 7. HFSS simulations showing the H field profiles in (A) the double-horn and (B) the horn-mirror cavity configurations.
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Fig. 8. A schematic drawing of the experimental setup. Estimated losses of microwave power due to waveguide sections and microwave elements are
indicated in dB.
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spins in the inhomogeneously broadened ESR line [33].
The sample volume was �2 mm3. The 40 mM TEMPO
solution is prepared by dissolving 0.05 g of 4-amino-
TEMPO with a solution of 4.38 ml glycerol and 2.92 ml
water. Fig. 9 shows the DNP enhancement obtained with
the two probes. It is seen that experimentally the two cav-
ities yield almost the same enhancement. This enhancement
corresponds to a proton polarization of about 1.7%. With
the double-resonance probe we were able to transfer this
enhanced proton polarization to the carbon spins using
Hartmann–Hahn cross-polarization. Fig. 10 shows the car-
bon signal enhancement following cross-polarization from
the protons at 100 K and 6 K without DNP, and with DNP
at 6 K.

Fig. 11 shows the proton spectra of the frozen gycerol/
water solution obtained using a one-pulse experiment and

an MREV-8 sequence [34]. It is seen that the single
70 kHz line seen in the one-pulse experiment is narrowed
significantly and is about a kilohertz wide in the MREV-
8 spectrum. The residual linewidth is most likely dominated
by the proton CSA. Protons in ice are known to have an
axially symmetric CSA (ri = 15 ± 2 ppm, r^ = �19 ±
2 ppm) [35]. The zero frequency peak in the MREV-8
spectrum corresponds to a residual spin-locking signal. In
running the multiple-pulse experiments, the probe was ini-
tially tuned up at room temperature using a liquid sample,
and the characteristic tuning curve of the probe measured.
Following cool down to liquid helium temperatures, the
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probe was re-tuned to try and match the measured room
temperature characteristics.

We have shown that these probes can be used success-
fully to dynamically polarize the nuclear spins, and to
implement both cross-polarization and multiple-pulse tech-
niques. Additional modifications are possible to improve
microwave performance, in particular by using overmoded
waveguide to minimize losses during transmission to the
cavity. Thermal losses could be minimized by using gold-
plated stainless-steel waveguide. The sample in vacuum
design ultimately limits the base sample temperatures
achievable. We were able to reach a temperature of approx-
imately 6 K. It is possible to lower this a little by improving
the design, but as the thermal conductivity of sapphire
drops sharply around 4 K, this design is unlikely to be use-
ful at lower temperatures. At lower temperatures, a sample
in helium design ensures that the sample reaches base tem-
perature. If the RF electronics is maintained in liquid
helium, arcing is prevented, and we are once again able
to run high duty-cycle multiple-pulse experiments.
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D.3 Experimental Implementation of a Quantum

Walk

One of the first projects in my thesis was to demonstrate a discrete-time quan-

tum walk on an NMR QIP. To achieve high-fidelity control we had to try several

molecules and control techniques. This allowed us to compare implementing the

same algorithm on two different systems. In a quantum walk the state starts on

one of the nodes of the graph. A quantum coin in this flipped (rotated to a super-

position state) and then conditioned on the state of the coin, the state is moved

to another node of the graph. We implemented this using three qubits: two qubits

denoted the state register and the other, the coin. The two qubit position register

corresponds to a square and the state of the coin determines whether the state

moves up/down or left/right on the square.

We implemented the algorithm on the three qubit molecule tri-chloro-ethylene

which has one proton and two carbons. However, one of the carbons is coupled

to quadrupolar chlorine nuclei which have a fast T1 and induce dephasing on the

carbon qubit. In addition, the carbon nuclei are strongly coupled and were difficult

to control as we did not yet have optimal control theory tools. As a contrast we also

used three carbon nuclei of the crotonic acid molecule where control is much easier

and decoherence much less of a problem. The classical random walk will rapidly

diffuse through the graph. The quantum version however will show interference

and recurrences. We were able to demonstrate the periodic nature of the quantum

walk in both molecules by applying quantum state tomography after each step and

reconstructing the density matrices. In addition, we were able to show that when

the coin is dephased, the quantum nature of the random walk is lost and it reverts

to a classical random walk.
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We present an experimental implementation of the coined discrete-time quantum walk on a square using a
three-qubit liquid-state nuclear-magnetic-resonance �NMR� quantum-information processor �QIP�. Contrary to
its classical counterpart, we observe complete interference after certain steps and a periodicity in the evolution.
Complete state tomography has been performed for each of the eight steps, making a full period. The results
have extremely high fidelity with the expected states and show clearly the effects of quantum interference in
the walk. We also show and discuss the importance of choosing a molecule with a natural Hamiltonian well
suited to a NMR QIP by implementing the same algorithm on a second molecule. Finally, we show experi-
mentally that decoherence after each step makes the statistics of the quantum walk tend to that of the classical
random walk.
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I. INTRODUCTION

The idea of exploiting the quantum-mechanical behavior
of a device to gain power in simulating quantum systems
was first introduced by Feynman �1�. The field of quantum
computing has since grown enormously with the discovery
of two algorithmic pillars: Shor’s factoring algorithm �2� and
Grover’s search algorithm �3�. Both of these demonstrate a
clear speedup over their classical counterparts. Following in
this path, many other quantum algorithms have been devel-
oped that provide a speedup �4–6�. A more recent addition to
the family of quantum algorithms which demonstrate an ex-
ponential speedup are those based on the quantum random
walk—the quantum version of the successful classical ran-
dom walk �7�.

There is, however, a need to explore more than the simple
computational properties of the algorithms. They must also
be experimentally tested in real devices and their relative
ease of implementation compared and considered. In particu-
lar, in quantum-information-processor �QIP� devices where
we are controlling the natural Hamiltonian, it is important to
choose a system where the Hamiltonian is amenable to au-
tomatic and systematic control. This can be explored by
implementing the same algorithm in different molecules and
contrasting the performance. Although many different imple-
mentation schemes have been proposed for the quantum-
random-walk algorithm, using, for example, trapped ions �8�,
an optical lattice �9�, cavity QED �10�, or an optical cavity
�11�, these have not been tested. The only experimental test
of a quantum walk is the continuous-time version of a quan-
tum walk on a square using a two-qubit nuclear magnetic
resonance �NMR� QIP �12�. This work showed the contrast
between a classical and quantum random walk and showed
the influence of entanglement on the probability distribution
of the quantum walk. Here, we present an experimental proof
of principal experiment of a discrete-time quantum walk on a

square. The effects of decoherence on the quantum random
walk has been investigated by several authors and, indeed, it
may offer some benefits �13,14�. Therefore, we also explored
the quantum to classical transition of our walk under the
addition of decoherence to the quantum register. Further-
more, we compared and contrasted two different control
schemes and molecules by implementing the algorithm on
two molecules.

II. QUANTUM RANDOM WALKS

In the development of deterministic classical randomized
algorithms, the methods of Markov chains and random walks
have played a fundamental role �15�. These algorithms can
be divided into two categories: continuous-time random
walks when the walker has a probability per unit time to
make a move and discrete-time random walks where the
walker moves at defined time steps. Since these processes are
stochastic, it is not surprising that they have quantum coun-
terparts. The quantum versions, however, show remarkable
differences with their classical analogs. The continuous-time
quantum walk �CTQW� �16� has been shown to provide an
exponential speedup in propagation through a graph �7,17�.
The discrete-time quantum walk �DTQW� �18� plays an im-
portant role in the speedup of a quantum algorithm design
for spatial searching �19–21�.

One step of a classical discrete-time random walk on a
circle with n nodes, denoted by �0, . . . ,n−1�, is performed
by repetition of the following two steps: �1� the walker first
flips a coin and then �2� moves either clockwise or counter-
clockwise depending on the outcome of the coin toss.

If we perform a quantum-mechanical treatment of the
situation, we can label the nodes with a mutually orthonor-
mal set of state vectors ��i��i=0

n−1. The coined DTQW on the
circle can be seen as “quantumly” flipping a coin degree of
freedom using a unitary operation and then coherently mov-
ing the walker position degree of freedom clockwise, or
counterclockwise, conditioned on the state of the coin �22�.*Electronic address: c4ryan@iqc.ca
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For a Hadamard walk, the coin flipping operation is simply
the Hadamard gate described by the matrix

Ĥ =
1
	2


1 1

1 − 1
� . �1�

Now the conditional shift operator is defined as

Ŝ�H��i� = �H��i � 1� , �2�

Ŝ�T��i� = �T��i � 1� , �3�

where � and � are understood to be addition and subtraction
modulo n and �H� and �T� describe the two basis states of the
coin. Therefore, if the walker is in position �i�, he will move
clockwise to the position �i � 1� if the coin is in the state �H�
or counterclockwise to �i � 1� if the coin in the state �T�. We
can write this operator as

Ŝ = �
i=0

n−1

��H�H� � �i � 1�i� + �T�T� � �i � 1�i�� . �4�

Then one step of the DTQW is defined as applying the op-
erator

Ŵ = Ŝ�Ĥ � 1� . �5�

On a circle, this type of algorithm shows destructive in-
terference effects and a probability distribution that is peri-
odic in time. The contrasting dynamics for the classical and
quantum random walks are shown in Fig. 1. As opposed to
the classical walk where the probability is always spread out,
the quantum walk has steps where the probability amplitudes
interfere such that all the probability comes back to one
node. Furthermore, this walk is periodic in that after eight
steps, the corresponding propagator is equal to the identity
and the system comes back to its original state.

In our experimental setup we have three qubits available,
which allows one qubit to describe the coin state and two for
the position state. Thus, we have n=4, and we are perform-
ing a discrete quantum walk on a square. The shift operator

defined in Eq. �4� would require a complicated quantum cir-
cuit involving a Toffoli gate. We can simplify the circuit
required by using a shifting operator that moves the walker
along a direction vector—i.e., horizontally or vertically �this
also is analogous to the random walk on the hypercube �23��.
Therefore, if we label the corners of the square as shown in
Fig. 2, the shift operator on the three qubit register becomes

Ŝ = P̂HX̂2 + P̂TX̂3 = �P̂HX̂2 + P̂T��P̂TX̂3 + P̂H�

= �X̂1CNOT1,2X̂1�CNOT1,3, �6�

where CNOT denotes controlled-NOT, X denotes the standard
�x Pauli matrix, PH/T are the projectors on the two coin
states, and the superscript indicates on which of the qubits
the action is performed. Here, it is understood that the first
qubit represents the coin and the second and third the posi-
tion register. The resulting probabilities for each step are
shown in Table I.

III. LIQUID-STATE NMR QUANTUM-INFORMATION
PROCESSING

A. Basic principles

A liquid-state NMR QIP consists of an ensemble of
roughly 1020 identical molecules dissolved in a liquid sol-

FIG. 1. Comparison of the dynamics of the classical �left� and quantum �right� random walk on a square for three steps. H or T represents
the state of the coin and the number the position of the walker at one of the four nodes of the square. p is the probability of each classical
state and A is the probability amplitude for the quantum state. Part �a� for each step is the coin flip and part �b� the movement around the
square. In both cases the walker starts at node 0 with the coin in the heads state. After one step he has a 50% probability of being at either
node 1 or 3. Then, in the second step he goes to either 0 or 2 with a 50% probability. In the third step, however, the two types of walk
diverge. The classical walk continues to oscillate and the probability remains spread out. In the quantum walk, on the other hand, the
probability amplitudes interfere and cancel out, leaving all the probability in one corner after three steps.

FIG. 2. Logical labeling of the nodes on which we implemented
the DTQW. With this labeling, flipping the first qubit corresponds to
a horizontal move and flipping the second qubit a vertical move.
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vent. Due to the fast tumbling motion of the molecules, they
are essentially decoupled from each other; ideally, all the
molecules have the same evolution. We can think of the
quantum register made of qubits that correspond to the spin-
1
2 nuclei within each molecule. The sample is placed in a
strong homogeneous magnetic field which provides the
quantization axis and causes the spins to precess around the
axis of the field. It is possible to implement single-qubit
gates using radio-frequency �rf� pulses resonant with the pre-
cession frequency, which can effect a rotation about any axis
orthogonal to the axis of the external field. Two-qubit gates
are effected through the coupling from the natural Hamil-
tonian, which produces a controlled phase gate �24�.

If the molecule used contains n distinguishable nuclei and
the magnetic field is aligned along the z axis, then the system
Hamiltonian is approximated by

Ĥ = ��
i=1

n

�iẐi +
�

2 �
i�j

JijẐi � Ẑj , �7�

where �i is the Larmor frequency of spin i in Hz. Jij is the
coupling strength between spin i and j in Hz and Z is the
conventional Pauli operator �z. The interaction part of the
Hamiltonian can be approximated to the above Ising form
�weak-coupling regime or secular approximation� only if the
difference between any two nuclei Larmor frequencies is
much greater than the coupling between the nuclei. We can
also turn off the coupling between any two spins as needed
by applying refocusing rf pulses.

B. Implementing dephasing in NMR

We can apply a controllable amount of decoherence to
selected spins using gradient techniques in NMR. Consider
only one nucleus with state �, and suppose we work in the
rotating frame of that spin. On a NMR spectrometer, it is
possible to apply a gradient to the external magnetic field.
During the time that the gradient is applied, the spins will
precess at different frequencies depending on their position
in the sample. The state of the ensemble will then be given
by an average over the observable sample,

�� =
1

2a
�

−a

a

e−i����tz/2�Ẑ�ei����tz/2�Ẑdz , �8�

where 2a is the length of the sample, t is the interval of time
the gradient is being applied, and ��=� /� and �=� /Bz, the
gyromagnetic ratio of the nucleus. If we compute the inte-
gral, it can be shown that

�� = �1 − p�� + pẐ�Ẑ ,

p =
1

2

1 −

1

���ta
sin����ta�� , �9�

which is the exact form of a z-dephasing decoherence. The
amount of dephasing can be controlled by the strength and
time of the gradient pulse. Particular spins can be protected
from the applied decoherence by applying a 180° rotation
and applying a second gradient of the same strength and
time. This second gradient will reverse the dephasing of the
rotated spins and double it on the spins that were not rotated.

IV. EXPERIMENT

We implemented the quantum walk algorithm on two
molecules: trans-crotonic acid and trichloroethylne �TCE�.
This allowed us to compare the quality of two different
methods of control and the merits of the two molecules.

A. Implementation on crotonic acid

The seven-qubit molecule trans-crotonic acid �four car-
bons, two hydrogens, and one methyl group� has been used
in experimental demonstrations of quantum algorithms, such
as quantum error correction �25,26� and quantum simulations
�27�. In this experiment, we used the carbon backbone of
labeled trans-crotonic acid in a solution of deuterated ac-
etone. The hydrogen nuclei were decoupled using standard
heteronuclear decoupling techniques �28�. We used C3 as the
coin and C2 and C4 as the position register �see Fig. 3�. C1
was used as a labeling spin to ease the creation of the initial
state. On a Bruker DRX Avance 600 NMR spectrometer, the
molecule has the Hamiltonian parameters shown in Fig. 3.

TABLE I. Probability to be in each of the corner states as denoted in Fig. 2. While in the classical random
walk the probability always remains spread out between two corners, in the quantum random walk all the
probability returns to one corner at certain time steps.

Corner

Classical Quantum

0 1 2 3 0 1 2 3

Step 0 1 1

Step 1 0.5 0.5 0.5 0.5

Step 2 0.5 0.5 0.5 0.5

Step 3 0.5 0.5 1

Step 4 0.5 0.5 1

Step 5 0.5 0.5 0.5 0.5

Step 6 0.5 0.5 0.5 0.5

Step 7 0.5 0.5 1

Step 8 0.5 0.5 1
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Since our system is homonuclear, the control of individual
qubits is achieved through soft Gaussian-like rf pulses at the
Larmor frequency of the target nucleus. The length of the
soft pulses is of the order of the inverse of the smallest
chemical shift difference with the other nuclei. In our experi-
ment the length of the selective pulses on C1 and C2, C3, C4
were 192 	s and 704 	s, respectively.

1. Initial-state preparation

The experiment required the initial state

�in = * � �000�000� = * �1 + Z��1 + Z��1 + Z� . �10�

We created the labeled pseudopure state Z000 �using the no-
tation C1C2C3C4� following the spatial averaging technique
elaborated in �29�.

2. Pulse sequence implementation

The unitary of one step of the DTQW from Eq. �6� was
translated to a sequence of pulses and coupling gates as
shown in Fig. 4. Although many pulse sequences are possible
through the use of commutation rules, this particular one was
designed to be the most efficient due to the cancellations
possible during multiple-step sequences. Moreover, the ZZ
gates are achieved simultaneously, which shortens the overall

pulse sequence, thus reducing decoherence effects; the slight
mismatch in coupling strengths was taken care of with a
refocusing pulse on C4 near the end of the coupling period
�30�. Commutation rules were also used to cancel pulses be-
tween the final step and the readout pulses.

The ideal pulse sequence of rotations and couplings was
then input into a pulse sequence compiler which numerically
optimized the timing and phases of the pulses. During the
selective excitations, the first-order deviations from the ideal
pulse are simply phase �the Bloch-Siegert shift� rotations on
the other qubits and ZZ couplings that occur during the
finite-length pulse. The compiler presimulates the selective rf
pulses using an efficient pairwise simulation and then de-
composes the simulated unitary into phase and coupling er-
rors sandwiching the ideal selective pulse. These errors can
then be taken into account by the refocusing scheme and
phase of the pulses, so that the overall unitary is as close to
the desired one as possible.

Since we are concerned with the final state of only three
qubits in this experiment, complete state tomography is still
feasible. On a three-qubit system in NMR, only seven differ-
ent readout pulses are required to rotate each term of the
density matrix into observable simple single coherences.1

And since we were operating on a homonuclear system, ob-
serving the signal from all spins in one experiment was pos-
sible, with some post-processing to adjust for the correct
phase of each individual rotating frame. The coupling be-
tween the labeling spin C1 and the other three qubits is re-
solvable, and so the presence of the labeling spin does not
interfere with the tomography of C2, C3, and C4.

3. Experimental results

For the state tomography each of the peaks in the spectra
were fitted using absorption and dispersion Lorentzian peaks.
The full density matrix was then reconstructed by appropri-
ately summing up the corresponding Pauli terms. Where two
experiments gave values for the same density matrix terms,
the values were simply averaged. As we observed only C2,
C3, and C4, the term ZIII could not be determined. A suitable
amount of that term was subsequently added to the density
matrix so as to make the initial state as close to Z000 as
possible. This amount was then kept constant for the density
matrix reconstruction in subsequent experiments.

To quantify the success of our experiments, we computed
the fidelity of the experimental density matrix to both the
ideal and simulated results. In NMR, all states are nearly
completely mixed and the fidelity measure introduced in �31�
is appropriate. We can compare one density matrix to another
using the formula

FA,B =
Tr��A�B�

	Tr���A�2�	Tr���B�2�
. �11�

We made two comparisons. First, we compare the experi-
mentally determined density matrix to the theoretically ex-
pected result. The theoretical result is achieved by
multiplying the ideal initial state by the ideal propagator. To

1Readout pulses yII,IIy,IIx,yyI,Ixx,yyy,xxx are sufficient.

FIG. 3. �Color online� Molecular structure of trans-crotonic acid
and its Hamiltonian parameters. The chemical shifts are given as the
diagonal elements and the coupling strength �Hz� by the off-
diagonal elements. Note that since the darkly shaded unlabeled nu-
clei are oxygen whose natural abundance of 16O with 0 spin is close
to 100%, the two oxygen nuclei do not couple with the rest of the
molecule and can be ignored. Lightly shaded unlabeled nuclei are
hydrogen which were decoupled during the experiment.

FIG. 4. NMR pulse sequence representing one step of DTQW.
The notation Ri


 means a rotation of an angle 
 around the axis i.
Refocusing pulses are not shown. Since each nucleus is tracked in
its own rotating frame, rotations about the z axis are implemented
instantaneously through a change of reference frame.
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investigate how well we understand our control of the sys-
tem, we also compare the fidelity of the results from a simu-
lation of the experiment to the theoretical result.

The fidelities of simulated and experimental results are
compared in Table II and Fig. 5 give a sample of the fully
reconstructed density matrices for C2, C3, and C4. The loss of
fidelity in our experiment, over and above that of the simu-
lated control errors, is explained from three sources which
are not taken into account by the simulation. We have losses
from T2 relaxation. Although our pulse sequence is short
compared with the T2 relaxation times, during the quantum-
walk algorithm, the state is often in high coherences, which
decay much faster than the simple T2 time. Inhomogeneities
in the strong magnetic field also cause extra relaxation and
dephasing. Further losses come from inhomogeneities of the
rf field used to implement rotations and pulse-angle miscali-
bration.

4. Addition of decoherence on the coin

In a subsequent experiment, we added dephasing decoher-
ence to the entire qubit register using the technique described
in Sec. III B. We expect that the behavior of the quantum
walk should converge to the classical walk as the decoher-
ence becomes complete after each step. To demonstrate this
claim experimentally, we implemented the quantum random
walk for four steps, adding decoherence of a certain strength
between each step of the walk. The differences between the
quantum and classical walks are manifested in the different
probabilities of being in each of the corners after each step.
The results are shown in Table III for gradient strengths cor-
responding to no, partial, and full decoherence.

The divergence between the classical and quantum walks
shows most clearly in steps 3 and 4. Whether the walk is

classical or quantum, steps 1 and 2 yield the same measure-
ment probabilities for the position �however, the quantum
version with decoherence will have coherent superposition
states�. Analyzing the data from steps 3 and 4, one can see
that the quantum interference, present so clearly in the quan-
tum walk with no decoherence, is less obvious as the amount
of decoherence increases. Instead of the probability all col-
lecting in one corner, it remains spread out between two
opposite corners—the same as in the classical walk. This can
also be seen in part �b� of Fig. 5 by the reduction of the
off-diagonal terms of the density matrix as the decoherence
becomes stronger and the appearance of diagonal terms
which were previously canceled by the quantum interfer-
ence.

The probabilities even with zero gradient strength do not
correspond perfectly to the ideal quantum walk. We believe
these errors come from two sources. Because the gradient
does not commute with any pulses, we were not able to use
commutation rules to reduce the number of pulses during
multiple-step experiments. Furthermore, gradient methods
are hampered by diffusion and multiple gradients may lead
to a return of signal that was “erased” by a previous gradient.

B. Comparison with the TCE molecule

For comparison purposes and to show the importance of
choosing a molecule with good characteristics in liquid-state
NMR quantum-information processing, we show our results
from our initial attempt to implement the quantum walk on
the molecule trichloroethylene—a molecule with which we
have much less control due to the presence of strong cou-
pling. The molecule has been used for some initial demon-
strations of quantum algorithms �32�. A diagram of the mol-
ecule and the parameters of its Hamiltonian are shown in
Fig. 6.

1. Pseudopure-state preparation

Since the TCE molecule contains only three qubits, we
are unable to create the labeled pseudopure state that we used
in the crotonic acid experiments. Instead, we chose to use
temporal averaging and add three separate experiments to
achieve the initial state �000�. The three different initial states
we used are

�1 = Z � �1 + Z� � �1 + Z� ,

�2 = 1 � Z � �1 + Z� ,

�3 = 1 � 1 � �1 + Z� . �12�

If we add the results of these three experiments, it is
equivalent to having performed the algorithm on the initial
state:

�in = �1 + �2 + �3 = �1 + Z� � �1 + Z� � �1 + Z� = �000�000� .

�13�

Since there is only one hydrogen nucleus in the molecule,
we can use broadband hard pulses to control it. One useful
property of the TCE molecule in a 600-Mhz spectrometer is
that the J coupling between the two carbons is almost exactly
10.5 times smaller than the difference in chemical shift ����.

TABLE II. Fidelities �in percent� of experimental and simulated
results. The first column gives the fidelity of the experimental den-
sity matrices determined from the tomography, with respect to the
theoretical expected density matrix. The second column gives the
fidelity of the simulation results. Errors are estimated from the fit-
ting procedure. Note that since computer simulation of the spatial
averaging that occurs during the pseudopure preparation is difficult
and inaccurate, the initial state for the simulation was the experi-
mental pseudopure state determined from the tomography. The fluc-
tuations observed in the fidelity come from uncertainties in the fit
and instabilities in the spectrometer over the course of the
experiment.

Experimental Simulated

Step 0 98±5 —

Step 1 97±5 98

Step 2 98±5 98

Step 3 92±5 98

Step 4 99±5 98

Step 5 94±5 97

Step 6 96±5 97

Step 7 96±5 97

Step 8 87±4 97
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Therefore, during the time for a �� /2�ẐẐ coupling gate be-
tween the two carbons ��t=1/2JC1C2

�, the relative chemical
shift evolution of C2 with respect to C1 will be 
=2����t
=��� /JC1C2

=−10.5�=−� /2 mod2�. Therefore, in the ref-
erence frame rotating at the Larmor frequency of C1, every
time there is a � /2 coupling between the carbons, an extra
Rz

−�/2 is naturally performed on C2.
The chemical shift difference between the two carbons is

small and the coupling between them large, so selective
pulses were impossible to achieve using the same technique
of Gaussian-shaped pulses used in the crotonic acid experi-
ments. These pulses would be very long �roughly 5 ms� and
the large coupling errors that would occur during the pulse
would be difficult to refocus. Instead, it was possible to per-
form selective pulses using hard pulses and the chemical

shift evolution. To illustrate the technique, we demonstrate
how to perform a selective � /2 rotation of C2. If we use a
reference frame rotating at the Larmor frequency of C1, then,
during a time �=1/4��, the spin C1 will not precess while
C2 will undergo a rotation of −� /2 around the z axis. Since
1/4�� is much less than the coupling time 1/2JC1C2

, we can
ignore the coupling between the two carbons and refocus
only the hydrogen. Using this selective z rotation combined
with hard pulses that rotate the two carbons together, we can
perform a � /2 rotation with phase  on only C2 as follows:

�R−�/2
�/2

� R−�/2
�/2 ��1 � Rz

−�/2��R+�/2
�/2

� R+�/2
�/2 �

= 1 � R−�/2
�/2 Rz

−�/2R+�/2
�/2 = 1 � R

�/2. �14�

Similar pulse sequences can be derived to perform a �
rotation on C2 and selective pulses on C1. Because of the

FIG. 5. Examples of the real part of reconstructed density matrices after �a� steps 0, 4, and 8 �left to right� of the quantum walk
implemented on crotonic acid; �b� step 3 with no, partial, and full decoherence applied after each step; and �c� steps 0, 4, and 8 of the
quantum walk implemented on TCE. The effects of the quantum interference returning all the probability to one corner is clearly evident in
steps 4 and 8; however, the fidelity in the TCE case is much worse. The density matrices from the decoherence experiments show how
destruction of the off-diagonal coherences prevents all the probability returning to one corner after three steps.
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different form of selective pulses used, the pulse sequences
were written and optimized by hand. This required a differ-
ent pulse-sequence implementation of the quantum-walk uni-
tary, which avoided as much as possible selective pulses and
z rotations where possible. The one z rotation used is a natu-
ral outcome of the C1-C2 coupling gate as described above.
This alternative pulse sequence is shown in Fig. 7.

2. Experimental results

Fidelity results, similar to those calculated for the crotonic
acid experiments, are shown in Table IV, and a sample of
reconstructed density matrices can be seen in Fig. 5�c�.
Clearly this experiment was not as successful as the imple-
mentation on the crotonic acid molecule. There are two main
reasons for this loss of fidelity. First, the chemical shift dif-
ference between the two carbons is very small. Because of
this, the secular approximation no longer holds and thus the
coupling between the two carbon spins can no longer be
approximated by the Ising form ZC1

� ZC2
. Indeed, it has to

take all the strong-coupling terms into account—i.e.,

S�C1
·S�C2

=XC1
� XC2

+YC1
� YC2

+ZC1
� ZC2

.

Unfortunately, this strong coupling renders our ideal ZZ
gates much less precise. Every coupling gate performed
added XX and YY error terms which we could not refocus.
This coupling also caused problems during our selective car-
bon rotations. Although the coupling is small, there is an
unrefocusable coupling of �JC1C2

/4���4.27°. Our only
way to minimize these errors was to optimize the delay times
analytically and from numerical simulations. However, these
did not correspond well to the experimentally determined
optimal values. This point also clearly demonstrates the sec-
ond reason for the less satisfactory results on TCE. We were
unable to use the numerical optimization of the pulse-
sequence compiler used for crotonic acid. The compiler pro-
vides a systematic and reliable way to produce pulse se-
quences that implement unitaries with high fidelity and is
clearly superior to writing and optimizing pulse sequences
by hand. These experiments also showed the limits of our
simulator. For the crotonic acid experiments, where only soft
pulses were used, the rf power applied changed slowly and
the simulator was faithful to what rf power the spins were
experiencing. In TCE, where control was achieved only
through short hard pulses, other effects such as phase tran-
sients enter and the spins might experience an rf field much
different from the ideal square pulse simulated. To fully un-
derstand the issues surrounding hard-pulse control a much
more detailed study of the probe response must be under-
taken. This underlines a key point: control of a more com-
plex and strongly coupled system could be obtained through
sophisticated control techniques such as strongly modulating

TABLE III. Estimate of quantum probability to be in each corner of the square for one through four steps �cf. Table I�. The results were
obtained for gradient strengths corresponding to no, partial, and full decoherence. The probabilities were obtained by reconstructing the
density matrix using the same fitting software used before and then applying the position measurement projectors to the reconstructed density
matrix.

Corner

Quantum walk with decoherence

None Partial Full

0 1 2 3 0 1 2 3 0 1 2 3

Step 0 100±8 0±1 4±1 −2±1 100±8 0±1 4±1 −2±1 100±8 0±1 4±1 −2±1

Step 1 2±1 57±4 −1±1 43±3 2±1 58±4 −2±1 44±3 0±1 59±4 −2±1 45±4

Step 2 57±4 1±1 44±3 −1±1 50±4 7±1 40±3 5±1 51±4 4±1 46±40 1±1

Step 3 7±1 14±1 3±1 78±6 2±1 14±1 1±1 84±6 −1±1 53±4 −3±1 53±4

Step 4 15±1 −1±1 84±6 3±1 19±2 1±1 78±6 4±1 50±4 0±1 53±4 −1±1

FIG. 6. Diagram of 13C labeled TCE. The chemical shifts and
couplings are given in the table. Note that since the chlorine nuclei
�unlabeled� have a spin of 3

2 , they have an electric-quadrupole mo-
ment which causes them to decohere quickly and they have a very
small coupling to the rest of the molecule which we can ignore in
the natural Hamiltonian of the molecule.

FIG. 7. Circuit used to implement one step of the DTQW on the
TCE. The z rotation on C2 occurs naturally during the coupling with
C1. Note also that the refocusing pulses are not shown in this pulse
sequence.
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pulses �31�; however, it seems prudent to invest the effort in
a wise choice of molecule.

V. CONCLUSION

We have presented the first experimental implementation
of a coined discrete-time quantum walk. It showed a clear
difference with the classical coined quantum walk, since the
DTQW possesses destructive interference and periodicity in
its evolution. A proof of principle like this lays down the
path to more elaborate experiments using discrete quantum
walks, such as the database searches, walks on a hypercube
or N-node circle, or a more profound study of the effect of
decoherence on the walk. This paper also demonstrates the
importance of choosing a natural Hamiltonian well suited to
automated control in the context of quantum-information
processing.
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