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Abstract

This thesis develops strain and kinetic energy functions and a finite beam element

useful for analyzing curved beams which go through large deflections, such as

a hockey stick being swung and bent substantially as it hits the ice. The resulting

beam model is demonstrated to be rotation invariant and capable of computing the

correct strain energy and reaction forces for a specified deformation. A method is

also described by which the model could be used to perform static or dynamic

simulations of a beam.
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1

Introduction

Long, slender beams are commonly used in engineering applications, and it is

therefore valuable to understand how they deform when forces are applied to

them. For the common case of a straight beam that undergoes some small defor-

mation, the well-known Euler-Bernoulli beam model (see section 3.1) can be used

to efficiently simulate the behaviour of the beam.

In several cases, however, an Euler-Bernoulli model cannot be used; an object

such as a fishing rod goes through large rotations and deformations, and an ob-

ject such as a hockey stick does the same but has the added complexity of having

some initial curvature. In these cases, one can simulate the behaviour of the object

by converting it to a mesh of simple, generic ‘elements’ (e.g., trapezoidal shapes)

and applying a 3D finite element analysis. In this situation, however, a large set of

linear equations must be solved to simulate the behaviour of the beam (with the

number of variables and equations proportional to the number of elements used).

If properties of the shape of the object can be exploited somehow to use a small

number of specialized elements instead of a large number of generic ones, simula-

tion can be made much more efficient. Long, slender beams are common examples

of shapes that can be simulated efficiently using this approach.
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1.1 Beam models

A beam is a “slender structural member” [1] such as an I-beam used in building

construction, or a fishing rod or hockey stick as mentioned above. The shape of a

straight beam can be defined by a single reference line along with a description of

the shape of the beam at every point along that line (i.e., its cross-sectional shape

at that point). This reference line frequently coincides with the beam’s locus of

centroids (a line passing through the centroids of all of the beam’s cross-sections).

Similarly, curved beams can be described by a single reference curve and a descrip-

tion of the cross-sectional shape at every point on the curve; the reference curve

often coincides with the beam’s (curved) locus of centroids.

It is also usually possible to make simplifying assumptions about the behaviour

of beam cross-sections; for instance, a common assumption is that each cross-

section’s shape remains constant [1]. If this is true, then the deformation of the

beam’s reference curve is frequently all that is required to define the deformation

of the beam as a whole. In some cases (for an example see section 2.3) it may

be necessary to define other quantities along the reference curve, but in all cases

beam models are characterized by quantities that vary with respect to only one

variable. For instance, displacements of points along a parametric reference curve

~p(t) would be a function of t only. This can be contrasted to modelling the defor-

mation of a plate, where displacements of points within the plate might vary with

respect to two parameters such as the horizontal and vertical position within the

plate.

The goal of this work is to create an efficient beam model that can be used to

simulate curved and twisted beams which may go through large displacements.

One possible application would be to simulate the behaviour of a hockey stick as it

hits a puck. In dynamic simulations like this, it is important to have a very efficient

model since the deformation of the stick is different at every instant, so possibly

thousands of different analyses, each corresponding to a different point in time,

will have to be done. Similarly, while a single structural beam in a building may
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only require one static analysis to determine whether it is capable of withstanding

a given load, a more efficient beam model may allow for more interesting dynamic

simulations of the building.

1.2 Assumptions

There are several assumptions currently made about the motion of the beam to be

analyzed:

Small strain The strain at any point within the beam will always be small, i.e.,

the strain at any point on the beam remains in the linear elastic range. This

allows cases such as the fishing rod example above (where at any one point

on the rod, the strains are small) but rules out a case such as a rubber band

being stretched to twice its length.

Negligible shear When determining the overall deformation of the beam, trans-

verse shear is small compared to bending so that all cross-sections remain

perpendicular to the locus of centroids.

No in-plane deformation Any cross-section of the beam perpendicular to its locus

of centroids remains the same shape, i.e., the effects of Poisson’s ratio can be

ignored and there is no normal strain in the plane of the cross-section.

No warping Under torsion, the beam behaves like a circular beam, i.e., torsion

results only in shear and not in warping of the cross-section.

Although the assumption of zero warping for a non-circular beam is not accu-

rate, the effects of warping can be approximated for a given shape by adjusting

the values of the shear modulus G and polar moment of area J ; see for example

Timoshenko [2], pp. 289-290.

Note that it is not assumed that the beam is initially straight, or that it has a

constant cross-section. Also note that small displacements are not assumed, so

the beam may go through large displacements and rotations. This not only means
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that the beam as a whole may go through large motions (e.g., a helicopter blade

spinning), but that one end of the beam may have large displacements relative

to the other end (e.g., a fishing rod being bent into a semicircle). However, the

assumption of small strain disallows the possibility of large relative displacements

between nearby points in the beam.

1.3 Prior work

Although there exist many articles which discuss curved beams, many focus ex-

clusively on two-dimensional shapes, e.g., Noor et al. [3] who present a nonlinear

approach for planar arches.

There do exist several papers which discuss the deformation of three-dimensional

beams. Zupan and Saje [4] discuss a method for the deformations of arbitrar-

ily curved and twisted three-dimensional beams; however, the deformation is re-

stricted to be small, and so the method cannot be applied to beams which (as well

as pure rigid-body motion) may have large end-to-end deformation.

Tabarrok et al. [5] develop a model for three-dimensional, curved and twisted

beams which may go through moderate displacements. However, defining the

orientation of beam cross-sections is done case-by-case for specific beam shapes

(e.g., a twisted beam with a straight locus of centroids or a helical rod) which have

a ‘natural’, stable method of definining orientation. Similarly, Sandhu et al. [6]

derives a finite element for curved and twisted three-dimensional beams, but uses

the Frenet frame of the locus of centroids to define orientation; as discussed in

section 5.1, the Frenet frame can be an unstable reference for several interesting

beam shapes.

Much of the literature relevant to defining a generic, stable reference for cross-

section orientation can be found in the discipline of computer graphics instead of

engineeering, where the goal is to interpolate the orientation of an object or camera

during an animation. One very common approach is interpolating orientations by

representing them as quaternions [7, 8]. However, quaternion interpolation func-

4



tions are fairly complex, so they can be inefficient to evaluate. More importantly,

derivatives of these functions are quite complex [9], so several important opera-

tions from a solid mechanics viewpoint (such as attempting to enforce continuity

between finite elements or taking derivatives to compute strains) can be very dif-

ficult.

Chapter 5 describes how planar quadratic splines form a good reference for

measuring an angle of orientation, but interpolating angles is more complex than

positions because a given orientation can be described by an infinite number of

different angles (e.g., θ, θ + 2π, θ + 4π, θ − 2π. . . ). Park and Ravani [10] derive

a conceptually very elegant method of interpolating orientations using matrices

instead of angles. While several of their ideas were used when developing the

orientation interpolant of section 5.2, and in fact several intermediate steps use

matrices instead of angles, it was ultimately more efficient to interpolate the angle

directly.
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2

Shape Description

A common method for simulating the behaviour of deformable bodies is the finite

element method (see Kaliakin [11] or Shames & Dym [12]). This involves taking

the continuous body in question and defining its position and shape by a set of

smaller elements, each described by discrete nodes. For different types of body

shapes and different modes of deformation, different types of elements be used.

2.1 The Euler-Bernoulli model

The deformed shape of an initially straight, prismatic (i.e., constant cross-section)

beam may be defined by the vertical displacements wi of several points along a

suitably chosen reference line (usually the beam’s locus of centroids) as well as

the slope w′i of the locus of centroids at each point [12]. Given a suitable dis-

placement interpolation function between those points, the initial positions, the

displacements and the slope values at those points completely define the shape of

the deformed locus of centroids.

If the beam is assumed to act like an Euler-Bernoulli beam (cross-sections re-

main plane and normal to the locus of centroids, and the effects of Poisson’s ratio

can be ignored), then defining the shape of the locus of centroids completely de-

fines the shape of the beam, as illustrated in Figure 2.1. In this way, the continuous

shape of the beam is defined in terms of a discrete set of nodes along the beam,
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Figure 2.1: Euler-Bernoulli beam deformation.

with position and slope being defined at each node. Each section of the beam be-

tween two nodes is considered one element of the beam.

If the cross-sectional shape of the beam is not constant, then the shape param-

eters (e.g., height, width, radius) must also be interpolated along the beam. For

instance, in addition to definitions for the vertical displacement and slope of the

locus of centroids, the shape parameters and their derivatives could be specified at

each node and be interpolated between nodes in a similar way as for the displace-

ments and slopes.

2.2 Planar curved beams

Straight beams such as those described in the previous section can often be as-

sumed to deform only in a direction perpendicular to their initial reference curve

(e.g., vertically, if the beam is initially horizontal). In the case of a planar, curved

beam (such as a circular arch), each point on the beam must in general have two

deformation degrees of freedom instead of one (i.e., points can deform horizontally

as well as vertically, or in directions tangential and normal to the reference curve).

Also, the direction of the reference curve at each point may have to be specified by

a tangent vector instead of a slope (since, for example, the slope would be infinite

7



at any point where the beam was vertical).

Figure 2.2 shows one method of specifying the original and deformed shapes

of a planar, curved beam with constant cross-section by specifying positions and

tangent vectors at the nodes. There, a * superscript denotes position vectors and

tangents as they exist in the original, undeformed configuration of the beam. For

small displacements of the beam, it may be convenient to describe the deformation

by displacements of the geometric nodes and changes of the tangent vector at each

node

∆~pi = ~pi − ~p∗i (2.1)

∆~ti = ~ti − ~t∗i (2.2)

(·)∗ Value of a quantity (·) before deformation

and then derive some expression for the strain energy of each element in terms of

∆~pi and ∆~ti.

However, as will be discussed in Chapter 3, it can be more effective (especially

when displacements may be large) to not consider changes in ~p or ~t directly, but

instead consider changes in some derived quantities. For instance, if the geometric

interpolants between nodes in Figure 2.2 were circular arcs, it may be more effec-

tive to compute the change in curvature and arc length of each arc instead of the

changes of the arc endpoints ~pi directly. In this case, the actual displacement ∆~pi is

meaningless.

If necessary, more complex shapes could be created by using more nodes, as

illustrated in Figure 2.3.

2.3 Three-dimensional curved beams

The most complex beam case is that of one which may have an arbitrary shape and

deform in an arbitrary way in three dimensions. In the case of a hockey stick (or

similar cases), such complexity is unavoidable – a hockey stick curves in multiple

directions, and goes through both large rigid-body motions (swinging the stick)
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Figure 2.2: Planar curved beam deformation.
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Figure 2.3: Multiple planar sections joined together to create a complex beam

shape.
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and large deformations (the stick is bent substantially when it hits the ice, and to a

lesser extent when it hits the puck). To form a finite element model of such a beam,

several quantities must be defined:

Locus of centroids As in the previous cases, the locus of centroids can be defined

as some form of geometric interpolant between specified points. These points

are geometric nodes at which the local geometry of the locus of centroids is

specified. Here, however, the locus of centroids does not necessarily lie in a

plane, so describing and interpolating it is more difficult.

Cross-section shape Again as in previous cases, the shape of the cross-section

(width, height, radius, etc.) must be interpolated between the geometric

nodes.

Cross-section orientation Note that in the planar cases, the orientations of cross-

sections are completely defined by the requirement that they should be lo-

cally normal to the locus of centroids, since all deformation is assumed to be

in-plane. In the fully three-dimensional case, however, cross-sections may

also twist about the locus of centroids; this twist must also be somehow de-

fined at the geometric nodes and interpolated between them.

In general, motion of the beam is modelled by motion of individual cross-

sections, along with a displacement interpolation function between cross-sections;

each cross-section has six degrees of freedom (three translational and three rota-

tional) corresponding to rigid-body motion. To interpolate the beam geometry be-

tween cross-sections, a locus of centroids is first interpolated between cross-section

centroids.

Once the locus of centroids has been interpolated, it is necessary to interpolate

the shape and orientation of the cross-section at every point along it. Shape param-

eters (which are dependent on the shape chosen for the cross-section, e.g., width

and height for a rectangular cross-section or radius for a circular cross-section)

must be interpolated between cross-sections. The orientation of any cross-section
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is mostly defined (two out of three degrees of freedom) by the requirement that it

should be locally normal to the locus of centroids; the third degree of freedom cor-

responds to rotation about the local tangent to the locus of centroids. This rotation

must also be interpolated between given cross-sections.

Each portion of the beam between two successive cross-sections (correspond-

ing to two successive geometric nodes) forms one element of the beam for pur-

poses of finite element analysis. The geometric interpolation functions used be-

tween cross-sections (geometric nodes) must satisfy two requirements: continuity

and completeness [12]. It is important for the beam as a whole not to have any

sharp edges or discontinuities; the geometric interpolation functions must there-

fore be designed to have C1 continuity (continuity of the first derivative) between

elements. Also, the geometric interpolants must be complete: they must be able to

describe all of the desired behaviours of the beam. For instance, geometric interpo-

lation functions that did not take twist into account would not be able to accurately

simulate a case where, in reality, the beam would indeed twist.

Figures 2.4 and 2.5 show how the locus of centroids and intermediate cross-

section shapes and orientations are geometrically interpolated between given rect-

angular cross-sections; the details of the geometric interpolation are presented in

Chapter 5. Note that the facets seen in Figure 2.5 are rendering artifacts (the en-

tire shape shown is actually one continuous element), and the element is actually

solid (it is rendered as hollow for simplicity and to allow the reference curve to be

visible). Also note that the cross-section does indeed get larger and twist about the

reference curve over the length of the element.
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Figure 2.4: Sample geometric interpolation between given (bold) cross-sections.

Figure 2.5: Actual interpolated beam element between two cross-sections.
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3

Model Development

To be able to use a finite element approach in simulating the dynamics of a flexible

beam, it must be possible to find an expression for the strain energy of a beam

element given an original and a deformed shape. In general, the strain energy is

given by [13]

U =
1

2

∫
V

εTCε dV (3.1)

U Strain energy of a beam element

ε Column matrix of strains

C Material constitutive matrix

dV Differential volume element

However, in many cases, this expression for strain energy can be simplified

by making assumptions about the shape of the body and the sort of deforma-

tion it undergoes. The following sections will describe successively more com-

plex beam models, and finally introduce a model for three-dimensional, initially

curved beams going through large deformations which will be derived in detail in

Chapter 4.
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Figure 3.1: Euler-Bernoulli beam.

3.1 The Euler-Bernoulli model

A common example of a set of assumptions used to simplify equation (3.1) is that

of a prismatic Euler-Bernoulli beam [12] as shown in Figure 3.1. This model as-

sumes a straight beam where deformation is described by the cross-section cen-

troids being displaced vertically, with all cross-sections remaining planar and nor-

mal to the locus of centroids. This corresponds to the assumptions

xa(x
∗
a, y
∗
a, z
∗
a)− x∗a = ua(x

∗
a, y
∗
a, z
∗
a) = −z∗a

dwa
dx∗a

(3.2)

ya(x
∗
a, y
∗
a, z
∗
a)− y∗a = va(x

∗
a, y
∗
a, z
∗
a) = 0 (3.3)

za(x
∗
a, y
∗
a, z
∗
a)− z∗a = wa(x

∗
a, y
∗
a, z
∗
a) = wa(x

∗
a) (3.4)

~Fa Global, fixed, Cartesian frame

~a1, ~a2, ~a3 Unit basis vectors of ~Fa defining the coordinate axes

xa, ya, za Coordinates in the 1-, 2- and 3-directions of ~Fa respec-

tively

ua, va, wa Displacements in the 1-, 2- and 3-directions of ~Fa respec-

tively

i.e., the vertical displacement wa of a point is only a function of its undeformed

axial coordinate x∗a, there is no (out-of-plane) deformation (va = 0), and horizontal
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displacement ua occurs only due to the rotation of beam cross-sections (e.g., if the

beam is bent upwards, then points at the top of the beam will swing backwards

and points at the bottom of the beam will swing forwards). See Appendix A for an

overview of the ~Fa vectrix notation.

The normal strain (the only non-zero strain) is then

εxaxa =
dua
dx∗a

= −za
d2wa
dx∗a

2
(3.5)

This uses a linear method of computing strain, which is only valid if the displace-

ments wa are small [14]. In this case, equation (3.1) can be greatly simplified be-

cause ε = εT = εxaxa and C = E, so that

U =
1

2

∫
V

εTCε dV

=
1

2

∫
V

Eε2xaxadV

=
1

2

∫
V

E

(
−z∗a

d2wa
dx∗a

2

)2

dV

=
1

2

∫ L

x∗a=0

∫
A

Ez∗a
2

(
d2wa
dx∗a

2

)2

dA dx∗a

=
1

2

∫ L

x∗a=0

E

(∫
A

z∗a
2dA

)(
d2wa
dx∗a

2

)2

dx∗a

=
1

2

∫ L

x∗a=0

EI

(
d2wa
dx∗a

2

)2

dx∗a (3.6)

E Modulus of elasticity

By separating the integration into integration along the length of the beam and

integration over its cross-sectional area, this approach allows a three-dimensional

integral over the volume of the beam to be replaced by a one-dimensional integral

along the length of the beam. In this case, the integral over the cross-sectional area

can be replaced by I , the second moment of area of the beam cross-section about

an axis parallel to ~a2. The following sections will illustrate how to apply the same

concept to more complex deformation models and beam shapes.
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Figure 3.2: Euler-Bernoulli beam with rigid-body motion.

3.2 Rigid body motion

In a case such as that illustrated in Figure 3.2, the motion of the beam cannot be

approximated by small vertical displacements wa(x∗a), as the displacements with

respect to the fixed ~Fa frame are large. However, assuming that the motion of the

beam can be approximated as a single rigid-body motion (for which U = 0) plus

some small deformation (for which U 6= 0), equation (3.6) can be used if displace-

ments are expressed in a frame ~Fb attached to the beam:

U =
1

2

∫ L

x∗b=0

EI

(
d2wb
dx∗b

2

)2

dx∗b (3.7)

~Fb Cartesian frame, originally aligned with ~Fa, which is at-

tached to a specific cross-section of the beam and rotates

with that cross-section

Coordinates xb, yb, zb and displacements ub, vb, wb are defined similarly to their ~Fa
counterparts. Note that choosing to place the ~Fb frame at one end of the beam

is arbitrary; it could also be at the other end or at some point within the beam

(whichever is most convenient).
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Figure 3.3: Beam with large end-to-end deformation.

3.3 End-to-end deformation

In a case such as that illustrated in Figure 3.3, where a long slender beam has some

large relative displacement between its two ends, there is no single frame that can

be attached to the beam such that all beam displacements are small relative to that

frame. In this case, one approach is to use a strain measure that is valid for large

displacements, such as the Lagrangian strain tensor [14]:

εij = Lij =
1

2

(
∂ui
∂x∗j

+
∂uj
∂x∗i

+
3∑

k=1

∂uk
∂x∗i

∂uk
∂x∗j

)
(3.8)

where the x∗i are the global coordinates xa, ya, and za, and the ui are the global

displacements ua, va and wa. However, the nonlinearity in equation (3.8) makes

it expensive to compute and unwieldy to integrate, as well as conceptually more

difficult to visualize and reason about.

To develop a simpler approach, note that the second derivative d2wa/dx
∗
a
2 used

in equation (3.6) is only an approximation to the (negative of) beam curvature (and

is not applicable when displacements wa are large). More accurately, it is an ap-

proximation to the change in beam curvature; for the case of a straight beam with

zero initial curvature, the change in curvature is equal to the final (deformed) cur-

vature. Equation (3.6) can be written in terms of the final, deformed curvature

17



as:

U =
1

2

∫ L

s=0

EIκ2ds (3.9)

κ Curvature of the deformed locus of centroids

s Arc length along the locus of centroids

which is valid as long as the deformation curvature at any point is small. By re-

placing the second derivative d2wa/dx
∗
a
2 with curvature κ and position x∗a with arc

length s, the Euler-Bernoulli model can be adapted to beams with large end-to-end

deformation.

The problem now becomes that of determining κ at every point along the locus

of centroids, and of finding a way to integrate with respect to arc length; this is

dependent on what basis functions are used to interpolate the deformed shape of

the beam. A convenient choice for three-dimensional beams will be shown to be

quadratic splines, as covered in Chapter 5.

3.4 Multiple curvatures and twist

For a beam undergoing 3D deformation (i.e., not just in-plane deformation), a sin-

gle curvature value is not sufficient to describe the deformation at any point along

the beam; in general, the deformed beam may curve about two different axes and

may also twist. The overall approach, however, is the same as the previous section.

In this case, there exist two different curvatures κu and κv about the two princi-

pal axes of a cross-section, as well as a twist rate ψ in radians per unit length about

the locus of centroids. The strain energy equation (3.9) then becomes

U =
1

2

∫ L

s=0

EIuuκ
2
u + EIvvκ

2
v +GJψ2ds (3.10)

G Shear modulus

where instead of a single term involving curvature κ and second moment of area

I , there are three separate terms involving curvatures κu and κv and moments of
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Figure 3.4: Orientation of cross-section relative to locus of centroids.

area Iuu and Ivv about the two principal axes of the cross-section, as well as twist

rate ψ and the polar moment of area J of the cross-section. (The u and v subscripts

denoting the two cross-section principal axes are here somewhat arbitrary, but are

used in anticipation of the notation used in Chapter 4.)

Note that here a method of determining the cross-section orientation relative

to the locus of centroids is required as well as a description of the locus of cen-

troids itself. For example, this could take the form of an expression for the angle

between a principal axis vector ~v and the unit binormal~b to the locus of centroids,

as illustrated in Figure 3.4, in which case

κu = κ sin θ

κv = κ cos θ

ψ =
dθ

ds

~b Unit binormal vector to the locus of centroids
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Figure 3.5: Beam with initial curvature.

3.5 Initial curvature

Finally, the problem of finding the strain energy of a deformed beam becomes more

complex if the beam has some initial curvature, as shown in Figure 3.5. First, since

the beam may have non-zero initial curvatures and twists, the parameters in the

strain energy expression must be changes in curvatures and twists instead of actual

values.

Second, since a differential ’slice’ of the beam (corresponding to a differential

change in arc length s along the locus of centroids) no longer has constant thick-

ness, the calculation of strain energy becomes more complex. This initial beam

curvature leads to a coupling between bending and extension, so it can no longer

be assumed that the locus of centroids remains the same length and a new pa-

rameter ξ must be introduced which describes the rate of extension of the locus of

centroids. Finally, and most importantly, the initial curvature of the beam affects

its bending and torsional stiffnesses; it will be shown in Chapter 4 that the second

moments and polar moments of area in equation (3.10) are replaced by generalized

moments of area which depend on the initial curvatures.
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4

Model Derivation

4.1 Shape definition

As described in section 2.3, the description of a 3D curved beam element must take

into account the shape of the locus of centroids, the shape of each cross-section,

and the orientation of each cross-section. First, define the locus of centroids by a

parametric curve, as shown in Figure 4.1:

~̀(τ)

~Fa

~a3

~a2

~a1

Figure 4.1: The locus of centroids.
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~a1

Figure 4.2: Unit vectors defined along the locus of centroids

τ Parameter describing the locus of centroids, in the range

[0, 1]

~̀(τ) Position vector of a point along the locus of centroids

Next, define three unit vectors which specify the orientation of a cross-section

at any point along the locus of centroids, as shown in Figure 4.2:

~t Unit tangent vector to the locus of centroids

~u, ~v Unit normal vectors to the locus of centroids defining the

directions of the principal axes of a cross-section

Finally, the position vector of points within the beam can be defined in terms of

the locus of centroids parameter τ and two radial distances ru and rv, as shown in

Figure 4.3:

~ρ(τ, ru, rv) = ~̀(τ) + ru~u+ rv~v (4.1)

~ρ(τ, ru, rv) Position vector of a point within the beam

ru Distance within a beam cross-section from the cross-

section centroid, in the direction of ~u

rv Distance within a beam cross-section from the cross-

section centroid, in the direction of ~v
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Figure 4.3: Position of a point within the beam.

4.2 Cross-sectional coordinates

Strains within a cross-section can be calculated using a simple linear method if the

deformation is described as changes in point coordinates in a Cartesian frame [14].

A curvilinear coordinate system can also be used, but in this case the expressions

for strain become more complex [13].

If, for any point, the reference frame for the purposes of strain calculation is

chosen to be a cross-sectional frame ~Fc corresponding to the cross-section (to which

~t is normal) in which that point exists, then all displacements with respect to ~Fc can

be assumed to be small and a linear method of strain computation can be used.

Conceptually, for every beam cross-section, a frame ~Fc is formed, the displace-

ments of all neighbouring points are computed with respect to that frame, and a

simple linear strain calculation is performed to find the strain at every point on the

cross-section.

The key notion is that to use a linear method of computing strain, point dis-

placements with respect to the reference frame must be small; it does not matter
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Figure 4.4: Cross-sectional frame

if different reference frames are used for different points if all that is ultimately

required is an expression for total strain energy which is frame independent.

4.2.1 Cross-sectional frame

The unit vectors ~t, ~u and ~v introduced in the previous section define the orienta-

tion of the cross-section at any point; they can also be used to define a frame of

reference. At any point along the locus of centroids, the cross-sectional frame ~Fc is

attached to the cross-section at that point and its unit basis vectors are equal to the

unit vectors described above, as shown in Figure 4.4:
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~Fc A Cartesian frame attached to a specific beam cross-

section

~c1 First unit basis vector of ~Fc, equal to ~t of the cross-section

associated with ~Fc
~c2 Second unit basis vector of ~Fc, equal to ~u of the the cross-

section associated with ~Fc
~c3 Third unit basis vector of ~Fc, equal to ~v of the the cross-

section associated with ~Fc
xc, yc, zc Coordinates in the 1-, 2-, and 3-directions of ~Fc respec-

tively

The cross-sectional frame ~Fc is different from the previously discussed frames

~Fa and ~Fb in that there is a different frame ~Fc for every point along the beam’s

locus of centroids instead of one frame for the whole beam.

Note that at any cross-section, ~c1, ~c2 and ~c3 are equal to ~t, ~u and ~v, so in many

cases the two sets of vectors are interchangeable. However, when working with

points in the neighbourhood of a specific cross-section, ~c1, ~c2 and ~c3 are fixed while

~t, ~u and ~v change as the locus of centroids bends and as the beam twists about the

locus of centroids. Therefore, when discussing a certain point within the beam,

~t, ~u and ~v will always refer to the normal vectors of the cross-section in which

that point exists, while ~c1, ~c2 and ~c3 may refer to the normal vectors of a different,

pre-determined cross-section.

4.2.2 Computation

Note that the coordinates xc, yc, and zc of a point relative to the origin of the ~Fc
frame can be expressed as the dot product of the vector ~ρ(τ, ru, rv)− ~̀(τc) with the

basis vectors of ~Fc, as shown in Figure 4.5:

xc =
(
~ρ(τ, ru, rv)− ~̀(τc)

)
· ~c1 (4.2)

yc =
(
~ρ(τ, ru, rv)− ~̀(τc)

)
· ~c2 (4.3)

zc =
(
~ρ(τ, ru, rv)− ~̀(τc)

)
· ~c3 (4.4)
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Figure 4.5: Cross-sectional coordinates
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τc Value of parameter τ at a specific cross-section

Equation (4.1) can be substituted into equations (4.2)–(4.4) to obtain

xc =
(
~̀(τ)− ~̀(τc) + ru~u+ rv~v

)
· ~c1 (4.5)

yc =
(
~̀(τ)− ~̀(τc) + ru~u+ rv~v

)
· ~c2 (4.6)

zc =
(
~̀(τ)− ~̀(τc) + ru~u+ rv~v

)
· ~c3 (4.7)

4.2.3 Differentiation

Equations (4.5), (4.6) and (4.7) can be differentiated with respect to τ , ru and rv.

Note that since ~u and ~v are constant within any cross-section, they vary only with

respect to τ and not with ru or rv. Also, the only derivatives that will be of interest

will be those evaluated at points on the given cross-section, where {~c1,~c2,~c3} =

{~t, ~u,~v}:

dxc
dτ

=

(
d~̀

dτ
+ ru

d~u

dτ
+ rv

d~v

dτ

)
· ~c1 (4.8)

dxc
dru

= ~u · ~c1 = ~u · ~t = 0 (4.9)

dxc
drv

= ~v · ~c1 = ~v · ~t = 0 (4.10)

dyc
dτ

=

(
d~̀

dτ
+ ru

d~u

dτ
+ rv

d~v

dτ

)
· ~c2 (4.11)

dyc
dru

= ~u · ~c2 = ~u · ~u = 1 (4.12)

dyc
drv

= ~v · ~c2 = ~v · ~u = 0 (4.13)

dzc
dτ

=

(
d~̀

dτ
+ ru

d~u

dτ
+ rv

d~v

dτ

)
· ~c3 (4.14)

dzc
dru

= ~u · ~c3 = ~u · ~v = 0 (4.15)

dzc
drv

= ~v · ~c3 = ~v · ~v = 1 (4.16)

In order to form a rotation-invariant beam model equations (4.8), (4.11) and

(4.14) need to be expressed with respect to rotation-invariant parameters.
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4.2.4 Extension

Define ξ as the magnitude of d~̀/dτ , which is equal to the rate of change of arc

length along the locus of centroids:

ξ =

∣∣∣∣∣d~̀dτ

∣∣∣∣∣ =
ds

dτ
(4.17)

ξ Rate of extension along the locus of centroids

Note that since ~t is a unit vector tangent to the locus of centroids ~̀,

d~̀

dτ
=

ds

dτ

d~̀

ds
= ξ

d~̀

ds
= ξ~t (4.18)

4.2.5 Curvature and twist

To find the derivatives of ~u and ~v with respect to τ , define a curvature vector ~κ

which defines the change in orientation of cross-sections with respect to s:

~κ = ψ~t+ κu~u+ κv~v (4.19)

ψ Twist rate about the locus of centroids (radians per unit

length)

κu, κv Curvatures around the axes defined by ~u and ~v respec-

tively (radians per unit length)

Then for an arbitrary vector ~q attached to a cross-section the derivative of ~q with

respect to arc length s is
d~q

ds
= ~κ× ~q (4.20)

and, using equation (4.17), its derivative with respect to τ is

d~q

dτ
=

d~q

ds

ds

dτ

= ξ
d~q

ds

= ξ~κ× ~q

= ξ(ψ~t+ κu~u+ κv~v)× ~q (4.21)
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Therefore,

d~t

dτ
= ξ(ψ~t+ κu~u+ κv~v)× ~t

= ξ(κv~u− κu~v) (4.22)

d~u

dτ
= ξ(ψ~t+ κu~u+ κv~v)× ~u

= ξ(−κv~t+ ψ~v) (4.23)

d~v

dτ
= ξ(ψ~t+ κu~u+ κv~v)× ~v

= ξ(κu~t− ψ~u) (4.24)

4.2.6 Rotation invariance

By substituting equations (4.18), (4.23) and (4.24) into equations (4.8), (4.11), and

(4.14), the three derivatives with respect to τ can be expressed in a completely

rotation-invariant way:

dxc
dτ

=
(
ξ~t+ ruξ(−κv~t+ ψ~v) + rvξ(κu~t− ψ~u)

)
· ~c1

= ξ
(
(1− ruκv + rvκu)~t− rvψ~u+ ruψ~v

)
· ~c1

= ξ(1− ruκv + rvκu) (4.25)

dyc
dτ

=
(
ξ~t+ ruξ(−κv~t+ ψ~v) + rvξ(κu~t− ψ~u)

)
· ~c2

= ξ
(
(1− ruκv + rvκu)~t− rvψ~u+ ruψ~v

)
· ~c2

= −ξrvψ (4.26)

dzc
dτ

=
(
ξ~t+ ruξ(−κv~t+ ψ~v) + rvξ(κu~t− ψ~u)

)
· ~c3

= ξ
(
(1− ruκv + rvκu)~t− rvψ~u+ ruψ~v

)
· ~c3

= ξruψ (4.27)
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Therefore, 
dxc

dyc

dzc

 =


dxc
dτ

dxc
dru

dxc
drv

dyc
dτ

dyc
dru

dyc
drv

dzc
dτ

dzc
dru

dzc
drv




dτ

dru

drv




dxc

dyc

dzc

 =


ξ(1− ruκv + rvκu) 0 0

−ξrvψ 1 0

ξruψ 0 1




dτ

dru

drv

 (4.28)

Equation (4.28) relates changes in cross-sectional coordinates xc, yc and zc to

changes in curvilinear coordinates τ , ru and rv entirely by parameters that are ro-

tation invariant; if the beam goes through some arbitrary rigid body motion, its

extension rate ξ, curvatures κu and κv and twist rate ψ remain exactly the same.

4.3 Deformation

Positions of points within the original, undeformed beam are given by

~ρ∗(τ, ru, rv) = ~̀∗(τ) + ru~u
∗ + rv~v

∗ (4.29)

Similarly to (4.28), differential changes in the undeformed coordinates x∗c , y∗c

and z∗c with respect to the curvilinear coordinates τ , ru and rv are given by
dx∗c

dy∗c

dz∗c

 =


ξ∗(1− ruκ∗v + rvκ

∗
u) 0 0

−ξ∗rvψ∗ 1 0

ξ∗ruψ
∗ 0 1




dτ

dru

drv

 (4.30)

or inversely 
dτ

dru

drv

 =


1

ξ∗(1−ruκ∗v+rvκ∗u)
0 0

rvψ∗

(1−ruκ∗v+rvκ∗u)
1 0

− ruψ∗

(1−ruκ∗v+rvκ∗u)
0 1




dxc

dyc

dzc

 (4.31)

Strains within the beam can then be computed by comparing the local be-

haviour of the beam before and after deformation, described by equations (4.30)

and (4.28) respectively.
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4.3.1 Strains

For a linear computation of strain, it is first necessary to find the deformation gra-

dient F [14]: 
dxc

dyc

dzc

 = F


dx∗c

dy∗c

dz∗c

 (4.32)

F 3×3 deformation gradient giving derivatives of coordi-

nates xc, yc, zc with respect to undeformed (original) coor-

dinates x∗c , y∗c , z∗c

Substituting equations (4.30) and (4.28) into equation (4.32),
ξ(1− ruκv + rvκu) 0 0

−ξrvψ 1 0

ξruψ 0 1




dτ

dru

drv

 = F


ξ∗(1− ruκ∗v + rvκ

∗
u) 0 0

−ξ∗rvψ∗ 1 0

ξ∗ruψ
∗ 0 1




dτ

dru

drv

 (4.33)

This must be true for arbitrary dτ , dru, drv, so it can be concluded that
ξ(1− ruκv + rvκu) 0 0

−ξrvψ 1 0

ξruψ 0 1

 = F


ξ∗(1− ruκ∗v + rvκ

∗
u) 0 0

−ξ∗rvψ∗ 1 0

ξ∗ruψ
∗ 0 1

 (4.34)

and therefore

F =


ξ(1− ruκv + rvκu) 0 0

−ξrvψ 1 0

ξruψ 0 1



ξ∗(1− ruκ∗v + rvκ

∗
u) 0 0

−ξ∗rvψ∗ 1 0

ξ∗ruψ
∗ 0 1


−1

=


ξ(1− ruκv + rvκu) 0 0

−ξrvψ 1 0

ξruψ 0 1




1
ξ∗(1−ruκ∗v+rvκ∗u)

0 0

rvψ∗

1−ruκ∗v+rvκ∗u
1 0

−ruψ∗
1−ruκ∗v+rvκ∗u

0 1



=


ξ(1−ruκv+rvκu)
ξ∗(1−ruκ∗v+rvκ∗u)

0 0

−rv(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

1 0

ru(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

0 1

 (4.35)
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It is then possible to form the material displacement gradient [14]

F− I =


ξ(1−ruκv+rvκu)
ξ∗(1−ruκ∗v+rvκ∗u)

0 0

−rv(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

1 0

ru(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

0 1

−


1 0 0

0 1 0

0 0 1



=


ξ(1−ruκv+rvκu)−ξ∗(1−ruκ∗v+rvκ∗u)

ξ∗(1−ruκ∗v+rvκ∗u)
0 0

−rv(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

0 0

ru(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

0 0



=


(ξ−ξ∗)−ru(ξκv−ξ∗κ∗v)+rv(ξκu−ξ∗κ∗u)

ξ∗(1−ruκ∗v+rvκ∗u)
0 0

−rv(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

0 0

ru(ξψ−ξ∗ψ∗)
ξ∗(1−ruκ∗v+rvκ∗u)

0 0

 (4.36)

from which the three non-zero strains can be extracted:

εxcxc =
∆ξ − ru∆(ξκv) + rv∆(ξκu)

ξ∗(1− ruκ∗v + rvκ∗u)
(4.37)

γxcyc =
−rv∆(ξψ)

ξ∗(1− ruκ∗v + rvκ∗u)
(4.38)

γxczc =
ru∆(ξψ)

ξ∗(1− ruκ∗v + rvκ∗u)
(4.39)

εxcxc Strain normal to a cross-section

γxcyc , γxczc Shear strains on a cross-section

∆ξ Change in locus of centroids extension rate relative to the

undeformed configuration, ξ − ξ∗

∆(ξκu), ∆(ξκv) Changes in locus of centroids extension-curvature prod-

ucts, ξκu − ξ∗κ∗u and ξκv − ξ∗κ∗v
∆(ξψ) Change in locus of centroids extension-twist product,

ξψ − ξ∗ψ∗
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4.3.2 Strain energy integral

Given equations (4.37)–(4.39), it is possible to integrate over the volume of an ele-

ment to find the total strain energy [14]:

dU =
1

2

[
εxcxc γxcyc γxczc

]

E 0 0

0 G 0

0 0 G



εxcxc

γxcyc

γxczc

 dV

dU =
1

2
(Eε2xcxc +G(γ2

xcyc + γ2
xczc))dV

U =
1

2

∫
V

Eε2xcxc +G(γ2
xcyc + γ2

xczc) dV (4.40)

Using equation (4.30),

dV = dx∗cdy
∗
cdz

∗
c

=

∣∣∣∣∣∣∣∣∣
ξ∗(1− ruκ∗v + rvκ

∗
u) 0 0

−ξ∗rvψ∗ 1 0

ξ∗ruψ
∗ 0 1

∣∣∣∣∣∣∣∣∣ dτdrudrv

= ξ∗(1− ruκ∗v + rvκ
∗
u)dτdrudrv (4.41)

Substituting equations (4.37)–(4.39) and (4.41) into equation (4.40), and splitting

the integration through the volume of the element into integration along the locus

33



of centroids and integration over the cross-sectional area, yields

U =
1

2

∫ 1

τ=0

∫
A

(
E

(
∆ξ − ru∆(ξκv) + rv∆(ξκu)

ξ∗(1− ruκ∗v + rvκ∗u)

)2

+G

(( −rv∆(ξψ)

ξ∗(1− ruκ∗v + rvκ∗u)

)2

+
( ru∆(ξψ)

ξ∗(1− ruκ∗v + rvκ∗u)

)2
))

ξ∗(1− ruκ∗v + rvκ
∗
u) dru drv dτ (4.42)

=
1

2

∫ 1

τ=0

∫
A

(
E(∆ξ)2

ξ∗2(1− ruκ∗v + rvκ∗u)
2
− 2Eru∆ξ∆(ξκv)

ξ∗2(1− ruκ∗v + rvκ∗u)
2

+
2Erv∆ξ∆(ξκv)

ξ∗2(1− ruκ∗v + rvκ∗u)
2

+
Er2

u(∆(ξκv))
2

ξ∗2(1− ruκ∗v + rvκ∗u)
2

− 2Erurv∆(ξκv)∆(ξκu)

ξ∗2(1− ruκ∗v + rvκ∗u)
2

+
Er2

v(∆(ξκu))
2

ξ∗2(1− ruκ∗v + rvκ∗u)
2

+
G
(
r2
v(∆(ξψ))2 + r2

u(∆(ξψ))2
)

ξ∗2(1− ruκ∗v + rvκ∗u)
2

)

ξ∗(1− ruκ∗v + rvκ
∗
u) dru drv dτ (4.43)

Separating by powers of ru and rv, and bringing outside of the area integral any

terms that are constant over the cross-section,

U =
1

2

∫ 1

τ=0

(
(∆ξ)2

[
E

ξ∗

∫
A

1

1− ruκ∗v + rvκ∗u
drudrv

]
−∆ξ∆(ξκv)

[
2E

ξ∗

∫
A

ru
1− ruκ∗v + rvκ∗u

drudrv

]
+ ∆ξ∆(ξκu)

[
2E

ξ∗

∫
A

rv
1− ruκ∗v + rvκ∗u

drudrv

]
+ (∆(ξκv))

2

[
E

ξ∗

∫
A

r2
u

1− ruκ∗v + rvκ∗u
drudrv

]
−∆(ξκv)∆(ξκu)

[
2E

ξ∗

∫
A

rurv
1− ruκ∗v + rvκ∗u

drudrv

]
+ (∆(ξκu))

2

[
E

ξ∗

∫
A

r2
v

1− ruκ∗v + rvκ∗u
drudrv

]
+ (∆(ξψ))2

[
G

ξ∗

∫
A

r2
v

1− ruκ∗v + rvκ∗u
drudrv

]
+ (∆(ξψ))2

[
G

ξ∗

∫
A

r2
u

1− ruκ∗v + rvκ∗u
drudrv

])
dτ (4.44)
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Note that none of the terms enclosed in square brackets in equation (4.44) de-

pend on any post-deformation quantities, so they can be evaluated once and then

used throughout the course of a dynamic beam simulation. This is conceptually

similar to separating out an area integral to obtain the second moment of area I as

in section 3.1, although in this case the area integrals are more complex.

4.3.3 Generalized moments

In order to simplify equation (4.44), first define

Imn =

∫
A

rmu r
n
vdA =

∫
A

rmu r
n
vdrudrv (4.45)

Imn Indexed moment of area of a cross-section

Note that area, first moments of area, and second, product, and polar moments of

area can all be expressed as indexed moments of area:

A =

∫
A

dA = I00 (4.46)

Qu =

∫
A

rvdA = I01 (4.47)

Qv =

∫
A

rudA = I10 (4.48)

Iuu =

∫
A

r2
vdA = I02 (4.49)

Iuv =

∫
A

rvrudA = I11 (4.50)

Ivv =

∫
A

r2
udA = I20 (4.51)

J =

∫
A

(r2
u + r2

v)dA = I02 + I20 (4.52)

Next, define

χmn = χmn(τ) =

∫
A

rmu r
n
v

1− ruκ∗v + rvκ∗u
drudrv (4.53)

χmn Generalized moment of area of a cross-section

If the original beam curvatures κ∗u = κ∗v = 0,

χmn =

∫
A

rmu r
n
v

1− ru(0) + rv(0)
drudrv =

∫
A

rmu r
n
vdrudrv = Imn (4.54)
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so that the generalized moments χmn are equal to the indexed moments Imn for an

initially straight beam.

In order to evaluate the integral in equation (4.53), use a negative binomial

series [15]:

(1− (a− b))−1 =
∞∑
i=0

(−1)i(a− b)i (4.55)

(a− b)i =
i∑

k=0

(
i

k

)
(−1)kai−kbk (4.56)

(1− (a− b))−1 =
∞∑
i=0

(−1)i
( i∑
k=0

(
i

k

)
(−1)kai−kbk

)

=
∞∑
i=0

i∑
k=0

(−1)i+k
(
i

k

)
ai−kbk

=
∞∑
i=0

i∑
k=0

(−1)i−k
(

i

i− k

)
ai−kbk Since (−1)i−k = (−1)i+k

=
∞∑
i=0

i∑
j=0

(−1)j
(
i

j

)
ajbi−j Substituting j = i− k (4.57)

Using equation (4.57), equation (4.53) becomes

χmn =

∫
A

rmu r
n
v

1− ruκ∗v + rvκ∗u
drudrv

=

∫
A

rmu r
n
v

(
1− (ruκ

∗
v − rvκ∗u)

)−1
drudrv

=

∫
A

rmu r
n
v

( ∞∑
i=0

i∑
j=0

(−1)j
(
i

j

)
(ruκ

∗
v)
j(rvκ

∗
u)
i−j
)

drudrv

=
∞∑
i=0

i∑
j=0

(−1)j
(
i

j

)
κ∗
i−j
u κ∗

j

v

∫
A

rj+mu ri−j+nv drudrv (4.58)

=
∞∑
i=0

i∑
j=0

(−1)j
(
i

j

)
κ∗
i−j
u κ∗

j

v Ij+m,i−j+n (4.59)

Therefore, to evaluate a generalized moment of area of a cross-section, the only

requirement is that the indexed moments Imn are able to be evaluated over the

cross-section, and the generalized moments χmn can be computed from equation

(4.59).
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4.3.4 Strain energy

Using equation (4.53), equation (4.44) becomes

U =
1

2

∫ 1

τ=0

(
(∆ξ)2

[
E

ξ∗
χ00

]
−∆ξ∆(ξκv)

[
2E

ξ∗
χ10

]
+ ∆ξ∆(ξκu)

[
2E

ξ∗
χ01

]
+ (∆(ξκv))

2

[
E

ξ∗
χ20

]
−∆(ξκv)∆(ξκu)

[
2E

ξ∗
χ11

]
+ (∆(ξκu))

2

[
E

ξ∗
χ02

]
+ (∆(ξψ))2

[
G

ξ∗
(χ20 + χ02)

])
dτ (4.60)

where the generalized moments χmn are computed from equation (4.59). Although

this can be computationally expensive depending on how many terms of the infi-

nite series are evaluated, it only has to be performed once for a given beam instead

of having to be updated at every time step in a simulation.

4.3.5 Internal force

The internal force in the beam can be obtained by integrating the normal stress

σxcxc over the cross-sectional area [1]:

F =

∫
A

σxcxcdA

=

∫
A

EεxcxcdA

= E

∫
A

εxcxcdA (4.61)

F Internal axial force in the beam

σxcxc Normal stress to a beam cross-section

Using equation (4.37),

F = E

∫
A

∆ξ − ru∆(ξκv) + rv∆(ξκu)

ξ∗(1− ruκ∗v + rvκ∗u)
dA

=
E∆ξ

ξ∗

∫
A

1

1− ruκ∗v + rvκ∗u
dA− E∆(ξκv)

ξ∗

∫
A

ru
1− ruκ∗v + rvκ∗u

dA

+
E∆(ξκu)

ξ∗

∫
A

rv
1− ruκ∗v + rvκ∗u

dA

=
E

ξ∗

(
∆ξχ00 −∆(ξκv)χ10 + ∆(ξκu)χ01

)
(4.62)
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4.3.6 Internal bending moments

The internal bending moment in the beam about an axis aligned with ~u can be

obtained by integrating the product of normal stress σxcxc and cross-sectional co-

ordinate rv over the cross-sectional area [1]:

Mu =

∫
A

rvσxcxcdA

=

∫
A

ErvεxcxcdA

= E

∫
A

rvεxcxcdA (4.63)

Mu Internal bending moment in the beam about an axis

aligned with ~u

Once again substituting in equation (4.37),

Mu = E

∫
A

rv
∆ξ − ru∆(ξκv) + rv∆(ξκu)

ξ∗(1− ruκ∗v + rvκ∗u)
dA

=
E∆ξ

ξ∗

∫
A

rv
1− ruκ∗v + rvκ∗u

dA− E∆(ξκv)

ξ∗

∫
A

rurv
1− ruκ∗v + rvκ∗u

dA

+
E∆(ξκu)

ξ∗

∫
A

r2
v

1− ruκ∗v + rvκ∗u
dA

=
E

ξ∗

(
∆ξχ01 −∆(ξκv)χ11 + ∆(ξκu)χ02

)
(4.64)

Similarly,

Mv =
E

ξ∗

(
∆ξχ10 −∆(ξκv)χ20 + ∆(ξκu)χ11

)
(4.65)

Mv Internal bending moment in the beam about an axis

aligned with ~v
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4.3.7 Internal twisting moment

The internal twisting moment in the beam can be obtained by integrating the prod-

ucts of shear stresses and cross-sectional coordinates over the cross-section [1]:

Mt =

∫
A

ruσxczc − rvσxcycdA

=

∫
A

ruGγxczc − rvGγxcycdA

= G
(∫

A

ruγxczcdA−
∫
A

rvγxcycdA
)

(4.66)

Mt Internal twisting moment in the beam (about an axis

aligned with ~t

σxczc , σxcyc Shear stresses on a beam cross-section

Using equations (4.38) and (4.39),

Mt = G
(∫

A

ru
ru∆(ξψ)

ξ∗(1− ruκ∗v + rvκ∗u)
dA−

∫
A

rv
−rv∆(ξψ)

ξ∗(1− ruκ∗v + rvκ∗u)
dA
)

=
G∆(ξψ)

ξ∗

(∫
A

r2
u

1− ruκ∗v + rvκ∗u
dA+

∫
A

r2
v

1− ruκ∗v + rvκ∗u
dA
)

=
G∆(ξψ)

ξ∗
(χ20 + χ02) (4.67)

4.4 Motion

For a dynamic simulation where the inertia of the beam is significant, it is neces-

sary to compute the kinetic energy of the beam as well as its strain energy at any

instant. As with strain energy, the calculation of kinetic energy can be simplified

by making assumptions about the shape of the beam.

Specifically, since beams are very long compared to their width, their kinetic

energy can be closely approximated by assuming that all of the mass is distributed

only along the locus of centroids and not throughout the beam. For any cross-

section, this has the effect of ignoring the contribution to kinetic energy of that

cross-section’s angular velocity, i.e., ignoring the small variation in velocity across
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I = 1
12m(3r2 + L2)

r

L

(a) Thick cylinder (exact)

I = 1
12mL

2

L

(b) Thin rod (approximation)

Figure 4.6: Moment of inertia approximation

the cross-section and assuming that all points are concentrated at the cross-section

centroid.

For long, slender beams this contribution is small, the error being on the order

of the difference between calculating the moment of inertia for a thick cylinder and

thin rod, as illustrated in Figure 4.6. When L � r, the expression for moment of

inertia of the cylinder is very close to the rod approximation.

One situation where the assumption that all mass is concentrated along the

line of centroids breaks down is the case of a straight rod being spun about its own

axis; in this case the only contribution to kinetic energy is from the angular velocity

of cross-sections about the locus of centroids. In this case a more specialized rod

model should be used instead of the generic curved-beam model developed here.

4.4.1 Kinetic energy

The kinetic energy of a beam element is given by integrating along the locus of

centroids,

T =
1

2

∫ 1

τ=0

~ν · ~ν dm (4.68)
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T Kinetic energy of a beam element

~ν Velocity of a point along the locus of centroids

The mass of a differential slice of the beam element is obtained by integrating

across the cross-sectional area:

dm =

∫
A

%dV (4.69)

% Mass density per unit volume

Using equation (4.41),

dm =

∫
A

%ξ∗(1− ruκ∗v + rvκ
∗
u)dτdrudrv

= %ξ∗
(∫

A

drudrv − κ∗v
∫
A

rudrudrv + κ∗u

∫
A

rvdrudrv

)
dτ

= %ξ∗(A− κ∗vI10 + κ∗uI01)dτ (4.70)

A Cross-sectional area

But since ru and rv are measured from the cross-section centroid, I10 = I01 = 0 by

definition, so that

dm = %Aξ∗dτ (4.71)

Substituting equation (4.71) into equation (4.68),

T =
1

2

∫ 1

τ=0

%A(~ν · ~ν)ξ∗dτ (4.72)
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5

Finite Element Construction

Equations (4.60) and (4.72) define the strain and kinetic energies for an abstract

beam element; to use them, an element must be defined for which all the quanti-

ties in those expressions can be evaluated. To compute the strain energy, the locus

of centroid quantities ξ, κu, κv and ψ and generalized moments χmn must be eval-

uated; to compute the kinetic energy, the area A and velocity ~ν must be evaluated.

A convenient way of describing elements of a beam is by specifying the be-

haviour of specific cross-sections within the beam, and defining a geometric in-

terpolant that describes the shape of the beam in between those cross-sections, as

discussed in section 2.3. In this way, the first and second cross-sections define the

first element, the second and third cross-sections define the second element, and

so on, as illustrated in Figure 2.4. For the elements to be C1, all the behaviour up

to first order must be specified at each cross-section.

For a given cross-section A, the following quantities must be defined:
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~ρA Position vector of the centroid of cross-section A

~tA, ~uA, ~vA Cross-section normal (tangent to the locus of centroids)

and principal axis vectors of cross-section A, describing

its orientation

ξA Rate of extension along the locus of centroids at cross-

section A

ψA Rate of twist of cross-sections about the locus of centroids

at cross-section A

~νA Velocity of the centroid of cross-section A

~ωA Angular velocity of cross-section A

Shape parameters (e.g., radius of a circle or width and height of a rectangle) and

their derivatives must also be defined at each cross-section.

Each element of the beam is defined by two cross-sections A and B. From sec-

tion 2.3, an element for a three-dimensional curved beam is geometrically defined

by the locus of centroids, the orientation of cross-sections relative to the locus of

centroids, and the area properties of cross-sections along the locus of centroids.

5.1 Locus of centroids

For each element, a locus of centroids must be defined that starts and ends at the

centroids ~ρA and ~ρB of the element’s two defining cross-sections. The derivatives

at each end must also equal ξA~tA and ξB~tB; it is important to specify the rate of

extension along the locus of centroids since a change in the rate of extension is

what gives rise to extensional strain and, in turn, internal force, as discussed in

section 4.3. This geometric interpolation between cross-sections is illustrated in

Figure 5.1.

Ideally, it should be easy to evaluate position, extension rate, and curvature

along the locus of centroids; crucially, it must also be possible to effectively define

cross-section orientation relative to the locus of centroids.

One relatively straightforward approach to defining orientation would be to
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~ρB

~ρA

ξB~tB

ξA~tA

~Fa

~a3

~a2

~a1

Figure 5.1: Interpolation of the locus of centroids.

use the locus of centroid’s Frenet frame [16], which is composed of the unit tan-

gent, principal normal and binormal vectors. However, the Frenet frame can be,

numerically, a very unstable reference, as illustrated in Figure 5.2. There, the prin-

cipal normal to the measured locus of centroids of a hockey stick blade varies quite

significantly, as compared to a ‘progressive normal’ (which is defined to have zero

twist about the locus of centroids).

For a planar curve, this problem does not exist; the binormal is constant and

equal to the normal of the plane in which the curve lies, and the tangent and nor-

mal vectors always lie in the same plane. The Frenet frame can then form a stable

reference for measuring orientation (perhaps as shown earlier in Figure 3.4, where

the orientation of the cross-section is defined as an angle between the vector ~v and

the curve binormal~b).

Unfortunately, the interpolation illustrated in Figure 5.1 is impossible to per-

form in general with a planar curve, since it is not necessarily true that both points
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(a) Principal normal

(b) Progressive normal

Figure 5.2: Instability of the Frenet frame.
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~̀(τ)

~n

~b

~t

~d1

~d0

~p2~p1

~p0

~Fa

~a3

~a2

~a1

Figure 5.3: Quadratic spline

and both tangent vectors all lie in the same plane.

While constructing a single planar curve between two cross-sections is not gen-

erally possible, it is possible to construct a piecewise, C1 curve composed of two

sections, each of which are planar (but in different planes); this will be shown by

construction in section 5.1.2.

A convenient choice for the two curves are quadratic splines [16] (which are al-

ways planar) since their representation by polynomials allows efficient evaluation

and differentiation.
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5.1.1 Quadratic splines

A quadratic spline is formed from three control points, as shown in Figure 5.3.

Points on a quadratic spline are given by [16]

~̀(τ) = (1− τ)2~p0 + 2τ(1− τ)~p1 + (1− τ)2~p2 (5.1)

~p0, ~p1, ~p2 Quadratic spline control points

and its first derivative (with respect to τ ) is

d~̀

dτ
= 2
(
(1− τ)(~p1 − ~p0) + τ(~p2 − ~p1)

)
= 2
(
(1− τ)~d0 + τ ~d1

)
(5.2)

where

~d0 = ~p1 − ~p0 (5.3)

~d1 = ~p2 − ~p1 (5.4)

~d0, ~d1 Quadratic spline control legs

The magnitude of the first derivative is the rate of extension ξ, and is equal to

the rate of change of arc length s with respect to the parameter τ :

ξ =
ds

dτ
=

∣∣∣∣∣d~̀dτ

∣∣∣∣∣
=

√
d~̀

dτ
· d~̀

dτ

= 2

√(
(1− τ)~d0 + τ ~d1

)
·
(
(1− τ)~d0 + τ ~d1

)
= 2
√

(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11 (5.5)

where

d00 = ~d0 · ~d0 (5.6)

d01 = ~d0 · ~d1 (5.7)

d11 = ~d1 · ~d1 (5.8)
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d00, d01, d11 Dot products of spline control legs

The first derivative of ~̀with respect to s, i.e., the unit tangent vector ~t, is then

~t =
d~̀

ds

=
d~̀

dτ

dτ

ds

=
1

ξ

d~̀

dτ
(5.9)

the unit binormal to the spline is

~b =
~d0 × ~d1∣∣∣~d0 × ~d1

∣∣∣ (5.10)

(since ~d0 and ~d1 define the plane of the spline) and the unit normal vector can be

constructed from ~t and~b [16]:

~n = ~b× ~t (5.11)

~n Unit principal normal vector to the locus of centroids

From Appendix B, the curvature of the spline is

κ =
4
√
d00d11 − d2

01

ξ3

5.1.2 Locus construction

To construct a locus of centroids consisting of two planar quadratic splines, three

control points must be defined for each spline. The resulting piecewise curve must

satisfy the requirements of section 5.1, and must be C1 where the two halves meet.

The two halves will be referred to as ~̀A(τA) and ~̀B(τB) respectively:

τA, τB Parameters in the range [0, 1] describing the two splines

making up the locus of centroids between cross-sections

A and B

~̀
A(τA), ~̀B(τB) Position vectors of points on the two quadratic splines

making up the locus of centroids between cross-sections

A and B
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Note that τA = 0 at the cross-section A and τB = 1 at the cross-section B.

In order to start and end at the two cross-section centroids, the first control

point of the first spline ~̀A(τA) must be ~ρA and the last control point of the second

spline ~̀B(τB) must be ~ρB.

In order for ~̀A(τA) to have the required first derivative ξA~tA at the cross-section

A, note that from equation (5.2),

d~̀A
dτA

∣∣∣∣∣
τA=0

= 2(~cA − ~ρA) = ξA~tA (5.12)

~cA Second control point of ~̀A(τA)

Therefore,

~cA = ~ρA +
1

2
ξA~tA (5.13)

Similarly,
d~̀B
dτB

∣∣∣∣∣
τB=1

= 2(~ρB − ~cB) = ξB~tB (5.14)

~cB Second control point of ~̀B(τB)

and so

~cB = ~ρB −
1

2
ξB~tB (5.15)

In order for the two splines ~̀A(τA) and ~̀B(τB) to meet, the third control point of

~̀
A must be equal to the first control point of ~̀B:

~ρm Mid control point, equal to the third control point of ~̀A

and the first control point of ~̀B

To have C1 continuity between the two splines, the derivatives of each must be

equal where they meet:

d~̀A
dτA

∣∣∣∣∣
τA=1

=
d~̀B
dτB

∣∣∣∣∣
τB=0

2(~ρm − ~cA) = 2(~cB − ~ρm)

2~ρm = ~cA + ~cB

~ρm =
~cA + ~cB

2
(5.16)
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~dB1

~dB0

~dA1

~dA0

~ρm

~cB

~cA

~ρB

~ρA

B

A

~Fa

Figure 5.4: Quadratic spline construction.

The spline ~̀A(τA) can then be constructed from the control points ~ρA, ~cA, and

~ρm, and the spline ~̀B(τB) can then be constructed from the control points ~ρm, ~cB,

and ~ρB, as shown in Figure 5.4.
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θB

θA

~vB

~bB

~vA

~bA θoffset

~̀
B(τB)

~̀
A(τA)

B

A

Figure 5.5: Cross-section orientation measured from spline planes.
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5.2 Cross-section orientation

Having defined two quadratic splines ~̀A and ~̀
B, each defines a plane and a set

of Frenet frames ~Fα and ~Fβ from which to define the orientations of individual

cross-sections. The orientation can then be defined by measuring the angle of the

cross-sectional vector ~v from binormal~b of the appropriate Frenet frame, as shown

in Figure 5.5. Note that if the two planes were the same, then interpolating cross-

section orientation between the cross-sectionsA andB would be a straightforward

matter of interpolating between θA and θB with (for example) a scalar spline. How-

ever, since the two planes may have a (potentially large) offset angle θoffset between

them, a more sophisticated approach is needed.

~Fα Frenet frame of ~̀A
~Fβ Frenet frame of ~̀B
~bA Normal vector to the plane in which ~̀

A lies, or equiva-

lently the binormal vector of the Frenet frame ~Fα
~bB Normal vector to the plane in which ~̀

B lies, or equiva-

lently the binormal vector of the Frenet frame ~Fβ
θA Angle between ~vA and~bA

θB Angle between ~vB and~bB

Figure 5.6 shows the Frenet frames ~Fα and ~Fβ (omitting the tangent vector ~t) at

several points along both quadratic splines which make up the locus of centroids

for one element, as well as the cross-sectional frames ~FA0 and ~FB0 at each end.

Note that the curve binormal~b to each spline remains constant, while the principal

curve normal ~n varies but remains in the same plane.
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~nA0 Principal normal vector at the start of ~̀A (at the cross-

section A)

~nA1 Principal normal vector at the end of ~̀A (where it meets

~̀
B)

~nB0 Principal normal vector at the start of ~̀B (where it meets

~̀
A)

~nB1 Principal normal vector at the end of ~̀B (at the cross-

section B)

~tm Common tangent vector to both splines where they meet

in the middle of the element
~Fα0 Frenet frame at the start of ~̀A, made up of ~tA, ~nA0 , and~bA
~Fα1 Frenet frame at the end of ~̀A, made up of ~tm, ~nA1 , and~bA
~Fβ0 Frenet frame at the start of ~̀B, made up of ~tm, ~nB0 , and~bB
~Fβ0 Frenet frame at the end of ~̀B, made up of ~tB, ~nB1 , and~bB
~FA0 Frame of cross-section A, made up of ~tA, ~nA0 and~bA

~FB1 Frame of cross-section B, made up of ~tB, ~nB1 and~bB

Note that at any point, the orientation of the cross-sectional frame ~Fc can be

defined by a single rotation matrix about the local 1-axis (corresponding to ~t) of

~FFA or ~FFB . Also note that where the two splines meet, ~Fβ can also be expressed

as a single rotation about the 1-axis of ~Fα (or vice versa) since at that point the

tangents of both splines are equal to ~tm.

The rotation matrix giving the orientation of the cross-sectional frame ~FA0 with

respect to the Frenet frame ~Fα0 is (as discussed in Appendix A)

RA0 = ~FA0 · ~FTα0
=


~tA0

~uA0

~vA0

 · [~tA0 ~nA0
~bA] =


1 0 0

0 cos(θA) sin(θA)

0 − sin(θA) cos(θA)

 (5.17)

RA0 Rotation matrix giving the orientation of ~FA0 from the

Frenet frame ~Fα0
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~FB1 , ~Fβ0

~bB

~nB1

~tB

~bB

~nB0

~FA0 , ~Fα0

~nA0

~bA

~tA

~nA1

~bA

~vB

~uB

~vA

~uA

~tm

Figure 5.6: Frenet (gray) and cross-sectional frames on an element.
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Note that while RA0 is uniquely defined, the angle θA is not. However, given

a rotation matrix R (assumed to be about the 1-axis, i.e. having the same form as

RA0), a solution for the corresponding angle θ can be found. Noting that R23 =

sin(θ) and R32 = − sin(θ), one solution for θ is

θ = sin−1

(
R23 −R32

2

)
(5.18)

where the resulting value for θ will lie in the range −π
2
≤ θ ≤ π

2
.

A similar expression could be formed using an inverse cosine on the R22 and

R33 elements, resulting in a value for θ in the range 0 ≤ θ ≤ π; however, using

an inverse sine is the better choice because it distinguishes between small positive

and small negative angles (later on, this method will be used to calculate angles

which are likely to be small, but may be positive or negative). Also note that equa-

tion (5.18) could have been written to use either only R32 or only R23; however,

averaging both values will tend to minimize numerical noise.

Similarly to RA0 , the rotation matrix RB1 can also be calculated:

RB1 = ~FB1 · ~FTβ1
=


~tB1

~uB1

~vB1

 · [~tB1 ~nB1
~bB] =


1 0 0

0 cos(θB) sin(θB)

0 − sin(θB) cos(θB)

 (5.19)

RB1 Rotation matrix giving the orientation of ~FB1 from the

Frenet frame ~Fβ1

Finally, it is possible to find a rotation matrix giving the orientation of ~Fβ0 with

respect to ~Fα1 :

Rm = ~Fβ0 · ~FTα1


~tm

~nB0

~bB

 · [~tm ~nA1
~bA] =


1 0 0

0 cos(θm) sin(θm)

0 − sin(θm) cos(θm)

 (5.20)

Rm Rotation matrix giving the orientation of ~Fβ0 with respect

to ~Fα1

θm Angle between ~Fβ0 and ~Fα1
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θrel

~vB

~uB

~vA

~uA

Figure 5.7: Relative angle measured with respect to progressive frame ~Fp.
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Now, consider an imaginary ‘progressive’ frame ~Fp that starts aligned with the

frame of section A and progresses along the first spline ~̀A maintaining a constant

angle from ~Fα, then progresses along the second spline ~̀B maintaining a constant

angle from ~Fβ , as illustrated in Figure 5.7. That is, at any point along ~̀A the frame

~Fp is related to the Frenet frame ~Fα by a constant rotation matrix RpA , and similarly

for ~̀B:

~Fp =

RpA
~Fα along ~̀A

RpB
~Fβ along ~̀B

(5.21)

~Fp Progressive frame defined along both splines making up

the locus of centroids

RpA Rotation matrix defining the orientation of ~Fp relative to

~Fα
RpB Rotation matrix defining the orientation of ~Fp relative to

~Fβ

If all cross-section orienation angles were measured with respect to ~Fp, interpo-

lation would be a relatively straightforward matter of interpolating an angle from

zero (since ~Fp was defined to start oriented with the cross-section A), ending at the

relative angle θrel between ~Fp and ~FB1 , and having specific derivatives at each end

(specified by the values of ψ as described at the start of this chapter).

θrel Net relative angle between cross-sections over the length

of an element, measured with respect to the progressive

frame ~Fp.

Even if angles were to be measured from the Frenet frames ~Fα and ~Fβ of each

spline, this method can be used; since for both splines, the progressive frame is

at a constant angle from the Frenet frame, the cross-section angle can be interpo-

lated with respect to the progressive frame, then split into two separate functions,

each shifted up or down by some constant to give the correct angles θA and θB

(measured with respect to the Frenet frame) at the cross-sections A and B.
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To find the relative angle θrel, the relative rotation matrix Rrel (which describes

the orientation of ~FB1 relative to the progressive frame ~Fp at the cross-section B)

must first be found:

~FB1 = Rrel ~Fp (5.22)

First, note that at the cross-section A, the progressive frame ~Fp is defined to be

equal to the cross-sectional frame ~FA0 , so that (using equations (5.17) and (5.21))

~Fp = ~FA0

RpA
~Fα0 = RA0

~Fα0

RpA = RA0 (5.23)

Where the two splines ~̀A and ~̀B meet,

~Fp = RpA
~Fα1 (5.24)

but also

~Fp = RpB
~Fβ0 (5.25)

Therefore,

RpA
~Fα1 = RpB

~Fβ0

RpB = RpA
~Fα1 · ~FTβ0

RpB = RpA

(
~Fβ0 · ~FTα1

)T
and using equations (5.23) and (5.20),

RpB = RA0R
T
m (5.26)

Finally, at the cross-section B (using equations (5.22) and (5.19)),

~FB1 = Rrel ~Fp
RB1

~Fβ1 = RrelRpB
~Fβ1

RB1 = RrelRA0R
T
m

Rrel = RB1RmRT
A0

(5.27)
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The relative angle θrel can then be extracted from Rrel using equation (5.18). The

initial interpolation for θ can then be expressed as a piecewise quadratic spline in

the same way as the locus of centroids, by defining two control points based on

derivatives at the ends, and a mid control point chosen to ensure C1 continuity.

(A single cubic spline or similar interpolant could also be used, but using two

quadratic splines is convenient because they will have to be split up anyways.) To

find the control points, note that

dθ

dτA

∣∣∣∣
A

=
dθ

ds

∣∣∣∣
A

ds

dτA

∣∣∣∣
A

= ψAξA (5.28)

dθ

dτB

∣∣∣∣
B

=
dθ

ds

∣∣∣∣
B

ds

dτB

∣∣∣∣
B

= ψBξB (5.29)

and therefore, similar to equations (5.13) and (5.15),

θcA =
1

2
ψAξA (5.30)

θcB = θrel −
1

2
ψBξB (5.31)

noting that the initial control point is zero and the final control point is θrel. The

mid control point is then

θm =
θcA + θcB

2
(5.32)

The two quadratic splines just formed are then shifted by θA and θB − θrel re-

spectively so that the first control point of the first spline is θA and the last control

point of the second spline is θB, as required (so that the angles are now with respect

to each spline’s Frenet frame instead of the progressive frame). The control points

of the first spline are therefore

θA0 = θA (5.33)

θAm = θA + θcA (5.34)

θA1 = θA + θm (5.35)

θA0 , θAm , θA1 Control points for the scalar quadratic spline specifying

the angle of cross-sections relative to the Frenet frame of

first quadratic spline defining the locus of centroids
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and the control points of the second spline are

θB0 = θm + (θrel − θB) (5.36)

θBm = θcB + (θrel − θB) (5.37)

θB1 = θB (5.38)

θB0 , θBm , θB1 Control points for the scalar quadratic spline specifying

the angle of cross-sections relative to the Frenet frame of

second quadratic spline defining the locus of centroids

as illustrated in Figure 5.8. The angle θ at any point in the element is then given by

θ =

(1− τA)2θA0 + 2τA(1− τA)θAm + τ 2θA1 along ~̀A(τA)

(1− τB)2θB0 + 2τB(1− τB)θBm + τ 2θB1 along ~̀B(τB)

(5.39)

In this way, the expression for angle θ is discontinuous but the cross-section

orientations are geometrically continuous.

5.3 Shape properties

Just as with the orientation angle, any necessary shape parameters (radius, width,

height etc.) can be interpolated between cross-sections using pairs of quadratic

splines, without the added complexity of having to account for the offset angle

described in the previous section.

For instance, given radii rA and rB of circular cross-sections A and B, and

derivatives with respect to arc length r′A and r′B, it is possible to define

rcA = rA +
1

2
ξAr

′
A

rcB = rB −
1

2
ξBr

′
B

rm =
rcA + rcB

2

leading to an expression for radius over the element

r =

(1− τA)2rA + 2τA(1− τA)rcA + τ 2rm along ~̀A(τA)

(1− τB)2rm + 2τB(1− τB)rcB + τ 2rB along ~̀B(τB)

(5.40)
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θ

τ

θcA

θm

θcB

θrel

θ

τA τB

θA0 = θA

θB1 = θB
θA1 = θm + θA

θB0 = θm + (θB − θrel)

θAm = θcA
+ θA

θBm
= θcB

+ (θB − θrel)

Figure 5.8: Angle interpolant split into two halves.
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6

Finite Element Analysis

Chapter 4 introduced expressions for the strain and kinetic energies of an arbitrary

curved beam element, and Chapter 5 developed a specific element formed from

quadratic splines. By combining the two, the strain and kinetic energies of an ele-

ment derived in Chapter 4 can be evaluated in terms of the discrete cross-sectional

parameters described in Chapter 5.

The general approach to analyzing the beam as a whole is to construct the unde-

formed beam from cross-sections with the above parameters specified. The beam

is then allowed to deform, as shown in Figure 6.1. The strain energy of the de-

formed beam can be evaluated by computing the differences in ξ, κu, κv and ψ

along the deformed and undeformed beams; the kinetic energy of the beam can be

evaluated by computing the velocity ~ν along the deformed beam.

6.1 Strain energy

To evaluate the strain energy expression in equation (4.60), first note that the var-

ious χmn quantities are functions of the locus of centroids parameter τ , but they

do not change when the beam is deformed since they are functions of the area

properties and original curvatures only. One very efficient way of evaluating the

integral is therefore with weighted Gaussian integration [17], which can be used to
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(a) Original (dashed) and deformed (solid) cross-sections.

(b) Original (wireframe) and deformed (solid) beams.

Figure 6.1: Sample beam deformation using two elements (with cross-sections

shown at the ends and middle of each element).
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approximate integrals of the form
∫
χmn(τ)f(τ)dτ as∫ 1

τ=0

χmn(τ)f(τ)dτ ≈
∑
i

wif(τi) (6.1)

In this way, the integral is approximated by a discrete sum of weights wi mul-

tiplied by values of the function f(τ) evaluated at roots τi. For a given function

χmn(τ), the roots τi and weights wi must be calculated; a method for doing so is

given by Press et al. [18]. Although finding the roots and weights is computation-

ally intensive, it only has to be performed once, as a pre-processing step before

starting any actual simulation. By splitting the integral in equation (4.60) into sep-

arate integrals, each weighted by a different function χmn, each integral can be

approximated as in equation (6.1):

U =
1

2

∫ 1

τ=0

(
(∆ξ)2

[
E

ξ∗
χ00

]
−∆ξ∆(ξκv)

[
2E

ξ∗
χ10

]
+ ∆ξ∆(ξκu)

[
2E

ξ∗
χ01

]
+ (∆(ξκv))

2

[
E

ξ∗
χ20

]
−∆(ξκv)∆(ξκu)

[
2E

ξ∗
χ11

]
+ (∆(ξκu))

2

[
E

ξ∗
χ02

]
+ (∆(ξψ))2

[
G

ξ∗
(χ20 + χ02)

])
dτ

=

∫ 1

τ=0

Eχ00

2ξ∗
(∆ξ)2dτ −

∫ 1

τ=0

Eχ10

ξ∗
∆ξ∆(ξκv)dτ +

∫ 1

τ=0

Eχ01

ξ∗
∆ξ∆(ξκu)dτ

+

∫ 1

τ=0

Eχ20

2ξ∗
(∆(ξκv))

2dτ −
∫ 1

τ=0

Eχ11

ξ∗
∆(ξκv)∆(ξκu)dτ

+

∫ 1

τ=0

Eχ02

2ξ∗
(∆(ξκu))

2dτ +

∫ 1

τ=0

G(χ20 + χ02)

2ξ∗
(∆(ξψ))2dτ

≈
∑
i

w1i
(∆ξ|τ1i )

2 −
∑
i

w2i
∆ξ|τ2i ∆(ξκv)|τ2i +

∑
i

w3i
∆ξ|τ3i ∆(ξκu)|τ3i

+
∑
i

w4i
(∆(ξκv)|τ4i )

2 −
∑
i

w5i
∆(ξκv)|τ5i ∆(ξκu)|τ5i

+
∑
i

w6i
(∆(ξκu)|τ6i )

2 +
∑
i

w7i
(∆(ξψ)|τ7i )

2 (6.2)

Note that in general, the roots τi and weights wi are different for each summation

since the weighting functions are different.
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6.2 Kinetic energy

As with strain energy, the integral for kinetic energy in equation (4.72) can be ap-

proximated using weighted Gaussian integration:

W =
1

2

∫ 1

τ=0

%A(~ν · ~ν)ξ∗dτ

=

∫ 1

τ=0

%Aξ∗

2
(~ν · ~ν)dτ

≈
∑
i

w8i
(~ν · ~ν)|τ8i (6.3)

6.3 Simulation

To simulate the dynamic behaviour of a beam element using a variational finite el-

ement approach, it must be possible to find expressions for the derivatives of strain

and kinetic energies U and W with respect to independent scalar ‘generalized co-

ordinates’ qi [13] and their derivatives (with respect to time) q̇i,

qi Generalized coordinates describing one beam element

˙(·) Derivative of a quantity (·) with respect to time

and then solve the Lagrange equations of motion [12, 13]

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (6.4)

where

L = T − U (6.5)

Qi =
∂W

∂qi
(6.6)

L Lagrangian of one element

W Work done on the element by applied forces and moments

Qi Generalized force corresponding to coordinate qi, i.e. the

partial derivative of work W with respect to that coordi-

nate
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ξB , ψB

φzB

φyB

φxB

zB

yB

xB

ξA, ψA

φzA

φyA

φxA

zA

yA

xA

B

A

~Fa

~a3

~a2

~a1

Figure 6.2: Element generalized coordinates.
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The motion of each element between cross-sections A and B is defined by the

following generalized coordinates, as illustrated in Figure 6.2:

xA, yA, zA Coordinates of the centroid of cross-sectionAwith respect

to the global fixed Cartesian frame ~Fa
φxA , φyA , φzA Rotation angles of cross-section A about the axes of ~Fa

ξA, ψA discussed in Chapter 5

xB, yB, zB Coordinates of the centroid of cross-section B with re-

spect to the global fixed Cartesian frame ~Fa
φxB , φyB , φzB Rotation angles of cross-section B about the axes of ~Fa

ξB, ψB discussed in Chapter 5

These sixteen parameters and their derivatives with respect to time collectively

make up the qi and q̇i for the element.

Note that differential changes dxA, dyA, and dzA can be interpreted as a differ-

ential vector displacement d~ρA:

d~ρA = dxA~a1 + dyA~a2 + dzA~a3 (6.7)

d~ρA
dxA

= ~a1 (6.8)

d~ρA
dyA

= ~a2 (6.9)

d~ρA
dzA

= ~a3 (6.10)

Also, the differential changes dφxA , dφyA , and dφzA can be interpreted as a dif-

ferential rotation vector d~φA:

d~φA = dφxA~a1 + dφyA~a2 + dφzA~a3 (6.11)

d~φA
dφxA

= ~a1 (6.12)

d~φA
dφyA

= ~a2 (6.13)

d~φA
dφzA

= ~a3 (6.14)
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d~φA then acts like an angular velocity vector in determining the change in orienta-

tion of vectors attached to cross-section B, i.e.

d~tA = d~φA × ~tA (6.15)

d~uA = d~φA × ~uA (6.16)

d~vA = d~φA × ~vA (6.17)

It is convenient to consider each beam element as being composed of two half-

elements, each corresponding to one of the two cross-sections defining the element.

Each half-element is then defined by a single quadratic spline locus of centroids

(plus quadratic splines for angle and shape parameters) instead of a piecewise

pair of splines, and is described by its own set of generalized coordinates qAk and

their derivatives q̇Ak :

qAk Parameters describing the beam half element associated

with cross-section A

In this case, the element kinetic energy is T = TA + TB and the element strain

energy is U = UA + UB:

TA Kinetic energy of the half-element corresponding to cross-section A

TB Kinetic energy of the half-element corresponding to cross-section B

UA Strain energy of the half-element corresponding to cross-section A

UB Strain energy of the half-element corresponding to cross-section B

Each half-element is defined by the following twelve parameters which, along

with their derivatives with respect to time, collectively make up the qAk and ȧAk

for the half-element:

xA0 , yA0 , zA0 Coordinates of the first spline control point with respect

to the global fixed Cartesian frame ~Fa
xAm , yAm , zAm Coordinates of the middle spline control point with re-

spect to ~Fa
xA1 , yA1 , zA1 Coordinates of the last spline control point with respect to

~Fa
θA0 , θAm , θA1 Cross-section angles with respect to spline Frenet frame
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The Lagrange equations (6.4) then become (using the convention of summing

over repeated indices [14])

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi

d

dt

(
∂LA
∂q̇i

+
∂LB
∂q̇i

)
−
(
∂LA
∂qi

+
∂LB
∂qi

)
= Qi[

d

dt

(
∂LA
∂q̇i

)
− ∂LA

∂qi

]
+

[
d

dt

(
∂LB
∂q̇i

)
− ∂LB

∂qi

]
= Qi[

d

dt

(
∂LA
∂q̇Ak

∂q̇Ak
∂q̇i

)
− ∂LA
∂qAk

∂qAk
∂qi

]
+

[
d

dt

(
∂LB
∂q̇Bk

∂q̇Bk
∂q̇i

)
− ∂LB
∂qBk

∂qBk
∂qi

]
= Qi[

d

dt

(
∂LA
∂q̇Ak

)
∂q̇Ak
∂q̇i

+
∂LA
∂q̇Ak

d

dt

(
∂q̇Ak
∂q̇i

)
− ∂LA
∂qAk

∂qAk
∂qi

]
+[

d

dt

(
∂LB
∂q̇Bk

)
∂q̇Bk
∂q̇i

+
∂LB
∂q̇Bk

d

dt

(
∂q̇Bk
∂q̇i

)
− ∂LB
∂qBk

∂qBk
∂qi

]
= Qi (6.18)

Therefore, for each half-element, the following quantities must be evaluated:

∂LA
∂qAk

Derivatives of strain and kinetic energy of the half-element with

respect to the half-element generalized coordinates (e.g., deriva-

tive of half-element strain energy with respect to the control point

coordinate x1)
∂LA
∂q̇Ak

Derivatives of strain and kinetic energy of the half-element with

respect to time derivatives of the half-element generalized coordi-

nates (e.g., derivative of half-element kinetic energy with respect

to control point velocity component ẋ1)

∂qAk
∂qi

Derivatives of half-element generalized coordinates with respect

to element generalized coordinates (e.g., derivative of control

point coordinate xA1 with respect to cross-section centroid coor-

dinate xA); this can be thought of as a transformation matrix be-

tween the two sets of coordinates

d

dt

(
∂q̇Ak
∂q̇i

)
Derivative with respect to time of the above transformation matrix
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∂q̇Ak
∂q̇i

Derivatives of half-element generalized coordinate time deriva-

tives with respect to element generalized coordinate time deriva-

tives (e.g., derivative of control point velocity component ẋ1 with

respect to cross-section centroid velocity component ẋA); this can

be thought of as a transformation matrix between the two sets of

coordinate time derivatives

d

dt

(
∂LA
∂q̇Ak

)
Derivative with respect to time of the above transformation matrix

To simplify the current work, however, only the static case will be considered

where all derivatives with respect to time are zero and the kinetic energy T = 0. In

this case, the set of equations (6.18) become[
− ∂LA
∂qAk

∂qAk
∂qi

]
+

[
− ∂LB
∂qBk

∂qBk
∂qi

]
= Qi

− ∂LA
∂qAk

∂qAk
∂qi
− ∂LB
∂qBk

∂qBk
∂qi

= Qi

and since L = T − U = −U

∂UA
∂qAk

∂qAk
∂qi

+
∂UB
∂qBk

∂qBk
∂qi

= Qi (6.19)

To solve the static case, for each half-element it must be possible to evaluate the

12 derivatives ∂UA/∂qAk and the 12× 16 = 192 derivatives ∂qAk/∂qi. These can all

be found using the chain rule and the equations from Chapters 4 and 5, as well as

equations (6.8) – (6.10) and (6.12) – (6.14).

6.3.1 Derivative examples

Half-element coordinate with respect to element coordinate

As an example of one of the derivatives ∂qAk/∂qi that must be evaluated to perform

a static simulation, consider ∂yBm/∂φxB , the derivative of the y coordinate of the

middle control point of the second quadratic spline of an element with respect to
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φzB

φyB

φxB

zBm

yBm
xBm

~cB = xB1~a1 + yB1~a2 + zB1~a3)

B

A

~Fa

~a3

~a2

~a1

Figure 6.3: Example element and half-element coordinates.

71



the rotation angle φxB of the second cross-sectionB defining the element, as shown

in Figure 6.3. First, note that

yBm = ~cB · ~a2 (6.20)

so that
∂yBm
∂φxB

=
∂~cB
∂φxB

· ~a2 (6.21)

From equation (5.15),

~cB = ~ρB −
1

2
ξB~tB

so that
∂~cB
∂φxB

=
∂~ρB
∂φxB

− 1

2

(
∂ξB
∂φxB

~tB + ξB
∂~tB
∂φxB

)
(6.22)

However, ξB and φxB are independent generalized coordinates, so ∂ξB/∂φxB =

0; also, by inspection of equation (6.7), ∂~ρB/∂φxB = 0. Therefore,

∂yBm
∂φxB

= −1

2
ξB

∂~tB
∂φxB

· ~a2 (6.23)

Finally, using equations (6.15) and (6.11),

∂yBm
∂φxB

= −1

2
ξB

(
∂~φB
∂φxB

× ~tB
)
· ~a2

= −1

2
ξB(~a1 × ~tB) · ~a2

=
1

2
ξB(~tB × ~a1) · ~a2 (6.24)

Half-element strain energy with respect to half-element coordinate

As an example of one of the derivatives ∂UA/∂qAk , consider ∂UA/∂θA1 , the deriva-

tive of the strain energy of the first half-element with respect to the last cross-

sectional angle control point of the half-element. From equation (4.60),

UA =
1

2

∫ 1

τA=0

(
(∆ξ)2

[
E

ξ∗
χ00

]
−∆ξ∆(ξκv)

[
2E

ξ∗
χ10

]
+ ∆ξ∆(ξκu)

[
2E

ξ∗
χ01

]
+ (∆(ξκv))

2

[
E

ξ∗
χ20

]
−∆(ξκv)∆(ξκu)

[
2E

ξ∗
χ11

]
+ (∆(ξκu))

2

[
E

ξ∗
χ02

]
+ (∆(ξψ))2

[
G

ξ∗
(χ20 + χ02)

])
dτA
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so that

∂UA
∂θA1

=
1

2

∫ 1

τA=0

(
∂

∂θA1

(
(∆ξ)2

)[E
ξ∗
χ00

]
− ∂

∂θA1

(
∆ξ∆(ξκv)

)[2E

ξ∗
χ10

]
+

∂

∂θA1

(
∆ξ∆(ξκu)

)[2E

ξ∗
χ01

]
+

∂

∂θA1

(
(∆(ξκv))

2
)[E
ξ∗
χ20

]
− ∂

∂θA1

(
∆(ξκv)∆(ξκu)

)[2E

ξ∗
χ11

]
+

∂

∂θA1

(
(∆(ξκu))

2
)[E
ξ∗
χ02

]
+

∂

∂θA1

(
(∆(ξψ))2

)[G
ξ∗

(χ20 + χ02)

])
dτA (6.25)

However, ξ, κu, and κv all do not depend on the orientation angle, so

∂UA
∂θA1

=
1

2

∫ 1

τA=0

∂

∂θA1

(
(∆(ξψ))2

)[G
ξ∗

(χ20 + χ02)

]
dτA

=
1

2

∫ 1

τA=0

2∆(ξψ)
∂

∂θA1

(
∆(ξψ)

)[G
ξ∗

(χ20 + χ02)

]
dτA

using ∆(ξψ) = ξψ − ξ∗ψ∗,

∂UA
∂θA1

=
1

2

∫ 1

τA=0

2∆(ξψ)

(
∂ξ

∂θA1

ψ + ξ
∂ψ

∂θA1

)[
G

ξ∗
(χ20 + χ02)

]
dτA

but again ξ does not depend on θA1 , so

=
1

2

∫ 1

τA=0

2∆(ξψ)ξ
∂ψ

∂θA1

[
G

ξ∗
(χ20 + χ02)

]
dτA

and using equation (5.39),

∂UA
∂θA1

=
1

2

∫ 1

τA=0

2∆(ξψ)ξ
∂

∂θA1

(
(1− τA)2θA0 + 2τA(1− τA)θAm + τ 2θA1

)
[
G

ξ∗
(χ20 + χ02)

]
dτA

=
1

2

∫ 1

τA=0

2∆(ξψ)ξτ 2

[
G

ξ∗
(χ20 + χ02)

]
dτA

=

∫ 1

τA=0

[
G(χ20 + χ02)

2ξ∗

]
2∆(ξψ)ξτ 2dτA (6.26)

Note that since the weighting functionG(χ20+χ02)/2ξ
∗ is the same, this integral

can be evaluated using the same Gaussian integration roots τ7i and weights w7i
as

equation (6.2):
∂UA
∂θA1

≈
∑
i

w7i
2 ∆(ξψ)|τ7i ξ|τ7i τ

2
7i

(6.27)
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6.3.2 Solution

Equations (6.24) and (6.26) are two examples of the expressions that make up the

system of equations (6.19). This system of equations (for one element) is then com-

bined with those of every other element to form one large system of nonlinear

equations that must be solved. Note that the systems of equations for individual

elements are not independent, since the parameters defined at any interior cross-

section will appear in the Lagrange equations for the elements on both sides of that

cross-section.

Since the equations are nonlinear, they cannot be solved (as in the linear case)

by a simple matrix inversion. Instead, a method such as Newton-Raphson [17, 18]

must be used. For a system of nonlinear equations in the qi for each element,

the Newton-Raphson method requires that the derivatives of each equation with

respect to each of the qi are known; this means, for instance, that the derivatives

in equations (6.24) and (6.26) must be again differentiated with respect to qi. Then,

having formed a square matrix of second derivatives (n derivatives with respect

to each of the qi, of each of the n equations), this matrix is inverted and used to

increment the values of qi towards a solution. The implications of this approach

are discussed in Chapter 8; for simplicity, the simulation described in Chapter 7

used a numerical method to approximate the various second derivatives.
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7

Implementation and Results

A sample program was written in C++ [19] to compute the strain energy of a beam

given a specific deformation, to calculate the internal bending forces and moments,

and also to simulate the deformed shape of a beam under a given loading. Gaus-

sian integration with three nodes, as described in section 6.1, was used to evaluate

all of the quantities and their derivatives needed for the solution approach de-

scribed in section 6.3.2.

In all figures, the wire-frame version of the body denotes the original, unde-

formed configuration and the solid version denotes the deformed configuration.

When force/moment plots are shown, take care to note the scale on each; fre-

quently there will appear to be some insignificant numerical noise which may ap-

pear as large internal forces or moments since the plot scale is on the order of 10−6

or smaller.

The cross-sections at the ends of each element are highlighted, along with the

cross-sections at the middle of each element (where the two quadratic splines mak-

ing up the element meet). All numerical values given can be assumed to be in any

consistent system of units.

Where orientations of cross-sections are discussed, they are specified as rotation

matrices (which define the orientation of the cross-section’s frame, as discussed in

Appendix A). The shorthand notation R1(θ), R2(θ), R3(θ) is used for rotations
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Table 7.1: Symbolic Equivalents to Textual Labels

XA0 xA XB1 xB

YA0 yA YB1 yB

ZA0 zA ZB1 zB

PHXA0 φxA PHXB1 φxB

PHYA0 φyA PHYB1 φyB

PHZA0 φzA PHZB1 φzB

XIA0 ξA XIB1 ξB

PSA0 ψA PSB1 ψB

about the three coordinate axes:

R1(θ) =


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 (7.1)

R2(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (7.2)

R3(θ) =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (7.3)

If no orientation matrix is given, it is assumed to be the identity matrix, so that

the normal vector to the cross-section is aligned with the global x axis and the

cross-section principal axes are aligned with the global y and z axes.

Some of the screenshots in this chapter show numerical values for the deriva-

tives ∂U/∂qi; the labels used correspond to the symbols used in section 6.3, as

shown in Table 7.1.
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Figure 7.1: Rigid body motion.

7.1 Prescribed deformation

7.1.1 Rigid body motion

Figure 7.1 shows a single curved and twisted beam element with varying cross-

section being put through a rigid body motion. In this case, as summarized in

Table 7.2, the width and height of the cross-section increase over the length of the

element, and the cross-sections twist about the locus of centroids (since the second

cross-section is given an extra rotation about its own normal vector). The rigid

body motion is a simple rotation about a vertical axis. As expected, all internal

forces and moments are zero (within a small amount of numerical noise, on the

order of 10−12).
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Table 7.2: Rigid Body Motion Example Parameters

Parameter Value

Start position (-5, -2, -5)

Start width 1

Start height 2

Start extension ξ 5

Start twist ψ 0

End position (5, -2, 5)

End width 2

End height 3

End extension ξ 5

End twist ψ 0

End orientation R1(1)

Elastic modulus E 1000

Table 7.3: Simple Extension Example Parameters

(a) Undeformed

Parameter Value

Length L 10

Start position (-5, -0.6, 0)

Start extension ξ 5

End position (5, -0.6, 0)

End extension ξ 5

Width w 1

Height h 2

Elastic modulus E 1000

(b) Deformed

Parameter Value

Start position (-5.25, 0.6, 0)

Start extension ξ 5.25

End position (5.25, 0.6, 0)

End extension ξ 5.25
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(a) Force and moment plots

(b) Strain energy and derivatives

Figure 7.2: Simple extension.
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7.1.2 Extension

Figure 7.2 illustrates the simple case of a straight beam being stretched (a pre-

scribed axial displacement), combined with a rigid-body translation. Note that to

stretch the beam linearly, the cross-sections must be translated outwards and the

rate of extension ξ must be increased, as shown in Table 7.3.

As expected, all internal moments are zero and the the internal force has a mag-

nitude of 100, as expected from linear elasticity:

F = σA

= EεA

= E

(
∆L

L

)
A

= (1000)

(
0.5

10

)
(1)(2)

= 100

Also, the only non-zero derivatives ∂U/∂qi are those with respect to axial dis-

placements at the ends, which is correct since this type of deformation corresponds

to equal and opposite extensional forces at the ends of the beam.

Figure 7.3 shows the same case as illustrated in Figure 7.2, but adds a rigid

body rotation about both the y and z axes; again only the internal extensional force

is non-zero and has a magnitude of 100 as expected. Here, all three displacements

at both ends of the beam have non-zero corresponding ∂U/∂qi, as the force at each

end would in this case have components in all three coordinate directions.

7.1.3 Twist

Figure 7.4 shows an example of a beam going through a prescribed constant twist

of 0.1 radians per unit length; as expected, only the internal twisting moment and

the derivatives of strain energy with respect to twist angle at the two ends are non-

zero. The computed internal twisting moment has a magnitude of 83.333, which
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(a) Force and moment plots

(b) Strain energy and derivatives

Figure 7.3: Extension combined with rigid body motion.
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(a) Force and moment plots

(b) Strain energy and derivatives

Figure 7.4: Simple twist.
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Table 7.4: Simple Twist Example Parameters

(a) Undeformed

Parameter Value

Length L 10

Start position (-5, -0.6, 0)

Start extension ξ 5

Start twist rate ψ 0

End position (5, -0.6, 0)

End extension ξ 5

End twist rate ψ 0

Width w 1

Height h 2

Shear modulus G 1000

(b) Deformed

Parameter Value

Start twist rate ψ 0.1

End twist rate ψ 0.1

End orientation R1(1)

agrees with the expected result for the simple torsion model used [1]:

M =
GJ∆θ

L

=
G
(

1
12
wh(w2 + h2)

)
∆θ

L

=
Gwh(w2 + h2)∆θ

12L

=
(1000)(2)(1)

(
22 + 12

)
(1)

12(10)

= 83.3

Note that this uses the polar moment J directly in the computation of twisting

moment; to accommodate for warping, an adjusted value of J should be used, as

discussed in section 1.2.
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(a) Euler-Bernoulli model

(b) Arc approximation

Figure 7.5: Bending.
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Table 7.5: Bending Example Parameters (Undeformed)

Parameter Value

Length L 10

Start position (-5, 0, 0)

Start extension ξ 5

Start twist rate ψ 0

End position (5, 0, 0)

End extension ξ 5

End twist rate ψ 0

Width w 2

Height h 0.5

Elastic modulus E 10000

Applied bending moment M 1

7.1.4 Bending

Figure 7.5 compares an Euler-Bernoulli model of pure beam bending with equal

and opposite moments applied at each end (for which the solution is a quadratic

curve) to the analytical solution of a circular arc. For both cases, the original beam

and applied moment was as specified in Table 7.5.

The Euler-Bernoulli solution for simple beam bending predicts a purely vertical

tip deflection w, as well as a change in angle φ at the tip of the beam [1]:

w =
ML2

2EI

=
ML2

2E
(

1
12
wh3

)
=

6ML2

Ewh3

=
6(1)(102)

(10000)(2)(0.5)3

= 0.24
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Table 7.6: Bending Example Parameters (Deformed Euler-Bernoulli beam)

Parameter Value

End position (5, 0, 0.24)

End orientation R2(−0.048)

End extension ξ 5/ cos(0.048)

φ =
ML

EI

=
ML

E
(

1
12
wh3

)
=

12ML

Ewh3

=
12(1)(10)

(10000)(2)(0.5)3

= 0.048

The deformed Euler-Bernoulli beam is then as described in Table 7.6; note that

since the Euler-Bernoulli model assumes a constant rate of extension along the

horizontal x axis (as opposed to along the curved, deformed beam locus of cen-

troids), the end extension of the element must be adjusted slightly since the locus

of centroids is not horizontal at that point.

For large deformations such as the one shown, the fact that the Euler-Bernoulli

model in Figure 7.5(a) assumes zero deformation in the axial direction of points

along the locus of centroids leads to a large, spurious internal force. Also, since

a simple quadratic does not have constant curvature, the internal moment is not

quite constant. (Note that since the Euler-Bernoulli solution for a single applied

moment is a single quadratic curve, a single element formed of quadratic splines

is able to replicate the Euler-Bernoulli solution exactly.)

In contrast, taking large-deformation effects into consideration by approximat-

ing the analytical arc solution leads to much better results. Here, as illustrated in
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z

x
−L

2 = −5

R

φ

Figure 7.6: Deformed circular arc shape of locus of centroids.
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Figure 7.6 (not to scale), the deformed radius R is given by

M = EIκ

M =
EI

R

R =
E
(

1
12
wh3

)
M

=
Ewh3

12M

=
(10000)(2)(0.5)3

12(1)

= 208.3

the sweep angle φ (equal to the rotation of the tip cross-section) is

φ =
L

R

=
10

208.3

= 0.048

the deformed position of the tip of the beam is given by

x = −L
2

+R sinφ z = R(1− cosφ)

= −5 + (208.3) sin(0.048) = (208.3)
(
1− cos(0.048)

)
= 4.9962 = 0.23995

Although still not perfect (since quadratic splines cannot reproduce arcs ex-

actly) the resulting internal moment as shown in Figure 7.5(b) is nearly constant

and the spurious internal force is much lower.

7.1.5 Multiple Elements

Figure 7.7 demonstrates how multiple elements can be joined together to make

complex shapes, while still remaining strain-free (computed internal forces and

moments in the order of 10−12) under rigid body motion (in this case, a single ro-

tation about a vertical axis). Unsurprisingly, the first element (which is completely
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Figure 7.7: Multiple elements.

straight, and corresponds to the range 0-1 on the plots) has no numerical noise at

all while the second (curved and twisted) element does.

7.2 Simulation

All of the previous examples showed cases where the deformation of the beam

was prescribed and the resulting forces and moments were computed. Using the

approach described in Chapter 6, it is also possible to specify a particular force/-

moment loading and compute the resulting deformation. In all cases, for simplic-

ity, the beam is assumed to be fixed at one end and have a single load at the other

end.
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Figure 7.8: Simulated bending of a straight beam.

Table 7.7: Comparison of Tip Deflections

Beam Type x y z

Euler-Bernoulli 0 0 0.24

Arc −0.00383956 0 0.239954

Simulation −0.00384024 −5.92898× 10−10 0.239952

ANSYS 0.23714 (only total displacement given)
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7.2.1 Straight beam bending

Figure 7.8 illustrates a straight beam with a moment applied at the end, as in Figure

7.5 and with the same parameters as given in Table 7.5. In this case, four elements

are used, which allows the final shape to more closely approximate an arc; the

computed solution indeed has much lower spurious internal force than either of

the solutions described earlier. The simulated beam very closely approximates the

analytical solution of an arc.

Table 7.7 compares the tip deflections for the Euler-Bernoulli approximation,

the analytical arc solution, and the simulated beam, as well as the solution com-

puted by the Stress Analysis tool of Autodesk Inventor [20], which internally uses

ANSYS [21]. The latter result is also shown in Figure 7.9. Note that the beam sim-

ulation is much closer to the analytical solution than the solution computed using

ANSYS. Also note how the horizontal displacement predicted by the beam model

(-0.00384024) is almost exactly the same as the arc solution (-0.00383956); this illus-

trates how the curved beam model can effectively simulate the kinds of nonlinear

effects that are ignored by the Euler-Bernoulli model.

7.2.2 Curved beam bending

Figure 7.10 demonstrates how the beam model can be used to analyze beams with

large initial curvatures. The shape and loading are the same as those specified in

Table 7.5, except that the beam has initial curvature about its u axis with a radius of

curvature of 10 units. Note that as expected, the internal moment from Figure 7.10

is nearly constant, although as before there is some small spurious internal force.

Figure 7.11 shows the same case simulated in Inventor/ANSYS. This gave a

total tip displacement of 0.2346, while the beam simulation gave a total tip dis-

placement of 0.2310 (-0.1463 in the x direction and 0.1793 in the z direction). The

difference can be attributed largely to the discrepancy from theory of the ANSYS

solution noted in the previous section, as well as the fact that Autodesk Inven-

tor reports maximum deflection of any point on the beam, which in this case may

91



Figure 7.9: ANSYS simulation of straight beam bending.

Figure 7.10: Simulated bending of a beam in the shape of a circular arc.
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Figure 7.11: ANSYS simulation of curved beam bending.

be at some point along the outside edge of the tip cross-section instead of the tip

cross-section’s centroid.

7.2.3 Curved beam combined bending and torsion

Finally, Figure 7.12 illustrates a non-planar case of a beam in the shape of a circular

arc (initially in the global xy plane) with a downwards (−z direction) force acting

at the tip; the shape and loading parameters are given in Table 7.8. Poisson’s ratio

is used only to compute the shear modulus G, given by [1]:

G =
E

2(1 + ν)

=
10000

2(1 + 0.3)

= 3846

(Changes in cross-section shape due to Poisson’s effect are still ignored.)
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Figure 7.12: Simulated deformation of a beam in the shape of a circular arc.

Table 7.8: Combined Bending and Torsion Example Parameters

Parameter Value

Length L 10

Start extension ξ 5

End extension ξ 5

Cross-section radius r 1

Radius of curvature R 10

Elastic modulus E 10000

Poisson’s ratio ν 0.3

Applied force (0, 0, -1)
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Figure 7.13: ANSYS simulation of curved beam combined bending and torsion.
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As expected, the bending moments about the horizontal u-axis and the twisting

moment are both at a maximum at the base of the beam and are zero at the tip.

Figure 7.13 shows the same beam being simulated in Inventor/ANSYS; this gave a

tip deflection of 0.2201 as compared to the beam simulation result of 0.2094. (Note

that Inventor automatically applies scaling to the displayed deformations, so the

deformations in the two figures look slightly different.)
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8

Conclusions and Recommendations

As discussed in Chapters 1–3, forming a finite element model of a beam requires

that its strain energy be defined in terms of discrete nodal parameters. This was

then split into two independent problems: deriving an expression for the strain en-

ergy of an arbitrary curved and twisted beam, and then describing how to describe

a curved beam efficiently in terms of discrete parameters.

Chapter 4 derives a strain energy integral for an arbitrary curved and twisted

beam in terms of rotation-invariant quantities ξ (extension of the locus of cen-

troids), κu and κv (curvatures about cross-sectional principal axes) and ψ (twist).

As discussed in section 6.1, this integral lends itself well to being evaluated by

weighted Gaussian integration. As long as the four properties of the locus of cen-

troids could be evaluated, the strain energy integral in equation (4.60) could be

applied to any choice of parametric curve defining the beam’s locus of centroids.

Chapter 5 then presents a method for describing the shape of a curved and

twisted beam in terms of quadratic spline curves. Although quadratic splines are

a convenient choice due to their planar nature and their representation as poly-

nomials, for specialized beam shapes the strain energy integral described above

could easily be used with a different choice of curve. Chapter 6 shows how to

combine the curved beam model with the piecewise quadratic element to form a

finite element simulation of a curved and twisted beam.
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8.1 Future Work

As demonstrated in Chapter 7, the beam model that was developed can be used

to simulate a wide range of types of deformation involving large displacements

of curved and twisted beams, and could be used directly to simulate the static

behaviour of long and slender curved beams. The beam model is effective at simu-

lating nonlinear effects such as the beam contraction discussed in section 7.2.1, and

can be used in non-planar cases involving both bending and torsion, as shown in

section 7.2.3. As a result, the simulation program that was written could be used

directly to simulate the static deformation of isotropic beams where the nonlinear

behaviour due to large deformations is significant, e.g., a case where the horizontal

deflection of beam loaded vertically is important.

To fully simulate cases such as the hockey stick mentioned earlier, several re-

finements would have to be made to the simulation in order to support:

• Orthotropic materials (such as wood or fibre composites)

• Trapezoidal cross-sections

• Dynamic behaviour

• Greater efficiency

Currently, the beam model assumes an isotropic material; as a result, equation

(4.60) is based solely on modulus of elasticity E and shear modulus G. To allow

for orthotropic materials such as wood or fiberglass, equation (4.40) would have

to be modified to use a different constitutive matrix. The derivation of equation

(4.60) would then follow in exactly the same way, although the end result would

be more complex.

To simulate a beam with a given type of cross-section, the various indexed mo-

ments Imn defined by equation (4.45) must be calculated for that cross-sectional

shape. Currently, the simulation only supports rectangular and circular cross-

sections; to accurately simulate a hockey stick blade, where the cross-section is
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better approximated by a trapezoid, an expression for Imn for a trapezoid must be

derived. This would likely be most easily done by determining Imn for a single

triangle with one vertex at the origin, and then forming a trapezoid by a combina-

tion of four triangles. This approach would also have the advantage of allowing

Imn to be evaluated for any other polygonal cross-sectional shape, which would

in turn allow Imn to be approximated to arbitrary accuracy for other shapes by

approximating them with polygons.

By implementing the various derivatives described in section 6.3, the model

could be adapted to handle dynamic simulations of beams where the kinetic en-

ergy and momentum of the beam are significant. In this case, it would also be

important to improve the efficiency of the simulation; for simplicity, many of the

required derivatives are calculated numerically, so a method would have to be

developed to automatically and efficiently evaluate the various derivatives. How-

ever, note that the derivatives for any one element can be calculated completely

independently from all others. Therefore, efficiency gains could also be achieved

by modifying the simulation to take advantage of multi-processor systems. Fi-

nally, it would be valuable to optimize the solution of the large, sparse linear sys-

tem described in section 6.3.2; the current implementation simply calls a generic

third-party solver.

By implementing the four improvements just described, the model would be

effective at simulating the dynamic behaviour of curved beams which go through

large displacements. The strength of the model comes from its ability to correctly

compute strain under conditions of large displacement, as well as being able to

robustly and efficiently define the shape of a beam as it goes through arbitrarily

complex 3D motions.
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Appendix A

Vectrices

Vectrix notation provides a concise and convenient way of expressing the rela-

tionships between different frames of reference. A ‘vectrix’ represents a frame of

reference as a column matrix of unit vectors, i.e.,

~Fa =


~a1

~a2

~a3

 (A.1)

In this way, ~a1 defines the ‘1-axis’ or ‘1-direction’ of ~Fa, and similarly for the other

two vectors.

A vector can then be defined as the product of ~FTa and a column matrix of

components va = [va1 va2 va3 ]
T , following standard rules of matrix arithmetic:

~v = ~FTa va (A.2)

=
[
~a1 ~a2 ~a3

]
va1

va2

va3

 (A.3)

= va1~a1 + va2~a2 + va3~a3 (A.4)

where va1 , va2 and va3 are the components of vector ~v as expressed in the frame ~Fa.
Having defined frames this way, it becomes simple to define new frames with

specified orientation relative to existing frames. For example, consider multiplying
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~Fa (as defined above) by the standard rotation matrix describing a rotation by an

angle θ around the 1-axis, once again following standard rules of matrix arithmetic:
1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)



~a1

~a2

~a3

 =


~a1

~a2 cos θ + ~a3 sin θ

~a3 cos θ − ~a2 sin(θ)

 (A.5)

The result is a vectrix describing a second frame, rotated about the 1-axis of the

original frame ~Fa by an angle θ; call this new frame ~Fb:

~Fb = R ~Fa (A.6)

where in this case

R =


1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

 (A.7)

but in general R could by any rotation matrix. The rotation matrix R can also be

expressed as a dot product of the two frames. First, note that for any frame ~Fi,
~Fi · ~FTi = I where I is the 3×3 identity matrix:

~Fi · ~FTi =


~i1

~i2

~i3

 · [~i1 ~i2 ~i3

]
=


~i1 ·~i1 ~i1 ·~i2 ~i1 ·~i3
~i2 ·~i1 ~i2 ·~i2 ~i2 ·~i3
~i3 ·~i1 ~i3 ·~i2 ~i3 ·~i3

 =


1 0 0

0 1 0

0 0 1

 = I (A.8)

then

~Fb = R ~Fa
~Fb · ~FTa = R ~Fa · ~FTa
~Fb · ~FTa = RI

R = ~Fb · ~FTa (A.9)

It is now possible to determine the coefficients vb of ~v as expressed in ~Fb.

~v = ~FTa va (A.10)

~v = ~FTb vb (A.11)
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Therefore,

~FTa va = ~FTb vb

Using the matrix transpose property (AB)T = BTAT ,

vTa ~Fa = vTb ~Fb
vTa ~Fa · ~FTa = vTb ~Fb · ~FTa

vTa I = vTb R

va = RTvb

And since the transpose of any rotation matrix R is its own inverse,

vb = Rva (A.12)

For a more detailed description of vectrices, see Hughes [22].
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Appendix B

Spline Curvature

Differentiating equation (5.2), the second derivative of a quadratic spline (with

respect to τ ) is
d2~̀

dτ 2
= 2(~d1 − ~d0) (B.1)

The second derivative of a quadratic spline with respect to s is

d2~̀

ds2
=

d

ds

(
d~̀

ds

)

=
d

ds

(
d~̀

dτ

dτ

ds

)

=
d

ds

(
d~̀

dτ
ds
dτ

)

=
d

ds

 d~̀

dτ∣∣∣ d~̀dτ

∣∣∣


=

d
ds

(
d~̀

dτ

) ∣∣∣ d~̀dτ

∣∣∣− d~̀

dτ
d
ds

∣∣∣ d~̀dτ

∣∣∣∣∣∣ d~̀dτ

∣∣∣2
=

d
dτ

(
d~̀

dτ

)
dτ
ds

∣∣∣ d~̀dτ

∣∣∣− d~̀

dτ
d
ds

√
d~̀

dτ
· d~̀

dτ

d~̀

dτ
· d~̀

dτ

=

d2~̀

dτ2
dτ
ds

ds
dτ
− d~̀

dτ

(
1
2

(
d~̀

dτ
· d~̀

dτ

)−1/2 (
2
(

d
ds

d~̀

dτ

)
· d~̀

dτ

))
d~̀

dτ
· d~̀

dτ
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Simplifying,

d2~̀

ds2
=

d2~̀

dτ2 − d~̀

dτ

(
d
dτ

d~̀

dτ
dτ
ds
· d~̀
dτq

d~̀

dτ
· d~̀
dτ

)
d~̀

dτ
· d~̀

dτ

=

d2~̀

dτ2 − d~̀

dτ

(
d2~̀

dτ2
· d~̀
dτ

ds
dτ

q
d~̀

dτ
· d~̀
dτ

)
d~̀

dτ
· d~̀

dτ

=

d2~̀

dτ2 − d~̀

dτ

(
d2~̀

dτ2
· d~̀
dτ

d~̀

dτ
· d~̀
dτ

)
d~̀

dτ
· d~̀

dτ

=
d2~̀

dτ2

(
d~̀

dτ
· d~̀

dτ

)
− d~̀

dτ

(
d2~̀

dτ2 · d~̀

dτ

)(
d~̀

dτ
· d~̀

dτ

)2
Using (5.2) and (B.1),

d2~̀

ds2
=

(
8(~d1 − ~d0)

(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)
16
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
)

−
(

8((1− τ)~d0 + τ ~d1)
(
(~d1 − ~d0) · ((1− τ)~d0 + τ ~d1)

)
16
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
)

=

(
(~d1 − ~d0)

(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)
2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
)

−
((

(1− τ)~d0 + τ ~d1

)
(−(1− τ)d00 + (1− 2t)d01 − τd11)

2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
)

=
~d1

(
(1− τ)d00 + τd01

)
− ~d0

(
(1− τ)d01 + τd11

)
2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2 (B.2)
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The curvature κ of the spline is then equal to the magnitude of d2~̀

ds2
:

κ =

∣∣∣∣∣d2~̀

ds2

∣∣∣∣∣
=

√
d2~̀

ds2
· d2~̀

ds2

=

√√√√√√
(
~d1

(
(1− τ)d00 + τd01

)
− ~d0

(
(1− τ)d01 + τd11

))
·
(
~d1

(
(1− τ)d00 + τd01

)
− ~d0

(
(1− τ)d01 + τd11

))
2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2

=

√√√√√√√√√
(
(1− τ)d01 + τd11

)2
d00

− 2
(
(1− τ)d01 + τd11

)(
(1− τ)d00 + τd01

)
d01

+
(
(1− τ)d00 + τd01

)2
d11

2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
=

√
(1− τ)2(d2

00d11 − d2
01d00) + 2τ(1− τ)(d00d01d11 − d3

01) + τ 2(d2
00d11 − d11d2

01)

2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
=

√
(1− τ)2d00(d00d11 − d2

01) + 2τ(1− τ)d01(d00d11 − d2
01) + τ 2d11(d00d11 − d2

01)

2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
=

√(
d00d11 − d2

01

)(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)
2
(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)2
=

1

2

√
(d00d11 − d2

01)(
(1− τ)2d00 + 2τ(1− τ)d01 + τ 2d11

)3
Using equation (5.5),

κ =
4
√
d00d11 − d2

01

ξ3
(B.3)
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