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Abstract 

This thesis describes a number of novel experiments contributing to the understanding of 

protein adsorption from both a fundamental and applied perspective. 

The first three papers involve the use of the localized surface plasmon resonance of 

gold nanospheres to measure protein conformational dependencies during heat and acid 

denaturation. Thermal denaturation of BSA is shown to proceed differently depending on 

the size of nanosphere to which it is conjugated. Activation energies are extracted for 

thermal denaturing on nanoparticles. These energies decrease with decreasing radius of 

curvature. Under pH perturbation in the acid region, the multiple transition states of bulk 

BSA are suppressed, and only one apparent transition around pH 4 is evident. Smaller 

spheres (diameter < 20nm) do not exhibit any transition. A significant finding of all three 

studies is that the state and stability of BSA depends strongly upon local curvature. 

The last two papers investigate protein adsorption relevant to the biomaterial field. 

Investigation of protein adsorption to polyHEMA hydrogels is carried out using a quartz 

crystal microbalance. Single and mixed protein adsorption kinetics for BSA, lysozyme and 

lactoferrin are extracted and interpreted. Selected commercial cleaning solutions are shown 

to be no more effective than simple buffer solution. 

Examination of commercial lenses indicates that the morphology of adsorption is 

material dependent and that siloxane-based hydrogels only deposit low levels of protein. A 

unique fibril-like morphology is identified on galyfilcon A. Protein morphology is 

discussed in terms of bare lens morphology, roughness, and surface composition.  
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1 

Introduction 

1.1 Overview 

The area of proteins at solid-liquid interfaces is an enormous field, both in impact and 

scope. Researh undertaken in this area can take a number of directions. A fundamental 

direction usually involves attempting to elucidate the forces, and general mechanisms 

responsible for protein adsorption. A more applied direction on the other hand involves 

attempting to improve, or understand a real world system, which in many cases is very 

difficult to reduce to simple fundamental components. To maintain an appreciation for the 

breadth of the topic, this thesis has strived to include both applied and fundamental aspects.  

The thesis takes the following form:  

 A general introduction to proteins and the general considerations involved in their 

behaviour 

 An overview of the current state of the field of proteins at interfaces, with special 

sections dedicated to its application to nanoparticles, and contact lenses 

 A methods section outlining some of the techniques, equations, and programs used 

in the published papers 

 Some concluding remarks pertaining to the papers 

 Appendices containing extended Mie theory calculations and Matlab code used 

during modeling of experimental data for the published papers 

 The original works, in a series of five papers, all of which are either published, or in 

press, and bound in the back of the thesis 

1.2 History 

Protein interaction with interfaces has been utilized for thousands of years. Anecdotally, as 

early as 2600B.C., Egyptians used egg whites and other materials as glue for making 
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furniture and paint. However, it wasn’t until the mid 1800’s that serious work began on 

investigating protein-containing materials. In 1839, a landmark paper by Gerrit Jan 

Mulder, entitled “On the Composition of Some Animal Substances” [1], was published. 

Mulder was able to measure the elemental compositions of several proteins, and showed 

their similarities. Throughout the 1800’s various units, of what would later be called amino 

acids, were discovered. Finally, in 1902 at the 74th Annual Meeting of The Society of 

German Naturalists and Physicians, the concept of protein as a polypeptide was created. 

Franz Hofmeister subsequently published a paper  “On the Structure and Grouping of the 

Protein Bodies”[2], in which he described the proper linkage, stating that amino acids 

could be linked by the amide bond. It wasn’t until around 1945-1955, however, that 

Frederick Sanger began publishing papers on the sequencing of proteins (winning the 

Nobel Prize in 1958 for the sequence of the insulin protein). This allowed the exact 

sequence of amino acids to be determined.  

Despite rudimentary understanding, proteins at interfaces were already being 

studied as early as 1905, just three years after the polypeptide theory was announced. In 

this remarkably innovative paper by Landsteiner and Uhliz [3], several different proteins 

were adsorbed onto inorganic powders such as clay and talc. Knowledge of how to 

precipitate and to purify protein was already present. Rudimentary measurements of the 

mass of adsorbed protein were made. While it appears that no conclusive results were 

found, they were clearly ahead of their time in attempting to relate adsorption to the 

physical and chemical nature of the particles, including electrostatic forces. In 1925, 

another landmark paper in adsorption was published, this time by David Hitchcock [4]. 

This paper investigated the adsorption of gelatin and egg albumin to collodion membranes. 

Beautiful adsorption isotherms were generated, and were fit by the Langmuir equation for 

adsorption. The effect of varying pH was also examined, and the maximum adsorption 

found to be at the isoelectric point of the protein. Salt was found to increase the total 

amount of protein adsorbed.  

Interfacial protein behaviour is a broad topic, but one which plays an incredibly 

important role. Cell adhesion occurs through glycoproteins such as fibronectin, and the 

ability of cells to organize into well-defined structures is a result of specific protein 

interactions [5, 6]. This is desirable for the organization of cells into high organisms. 
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Bacteria, however, may also use the same mechanism to adhere onto surfaces such as 

biomaterials. In addition, protein aggregation at biomaterial interfaces can elicit 

immunological responses. Hence, an understanding of both how to promote, as well as to 

prevent, protein adhesion, is desired. 

 

1.3 The Structure of Protein 

Proteins are really a special case of linear polymers. The 

monomers in this case are amino acids, linked together 

by peptide bonds. The general form of an amino acid is 

displayed in Figure 1. It consists of an amine group, and 

a carboxyl group, between which a side group is 

attached (labeled R). The α-carbon joins the three 

groups. Amino acids produced by nature are almost 

exclusively left-handed as depicted in Figure 2. There are 20 

main amino acids (Table 1.), with at least two other amino 

acids found in biological proteins, and many others not found 

in proteins. Generally amino acids are categorized by two 

categories, according to the hydrophilicity (or hydropathy) of 

the side group, and whether the group is acidic, basic, or 

neutral. These properties are also listed in Table 1. 

 
Figure 1. General form of amino acid. 

 
Figure 2. Left-handed amino 
acid. 
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Amino acid 
Short 
Form 

Chemical formula 

(side chain is highlighted in red) 
Polarity Acid/Base 

Alanine Ala A CH3-CH(NH2)-COOH NP N 

Arginine Arg R H2N-C(=NH)-NH-[CH2]3-CH(NH2)-COOH P B 

Asparagine Asn N H2N-CO-CH2-CH(NH2)-COOH P N 

Aspartic acid Asp D HOOC-CH2-CH(NH2)-COOH P A 

Cysteine Cys C HS-CH2-CH(NH2)-COOH P N 

Glutamine Gln Q H2N-CO-[CH2]2-CH(NH2)-COOH P N 

Glutamic acid Glu E HOOC-[CH2]2-CH(NH2)-COOH P A 

Glycine Gly G H-CH(NH2)-COOH NP N 

Histidine His H 

 

P WB 

Isoleucine Ile I C2H5-CH(CH3)-CH(NH2)-COOH NP N 

Leucine Leu L (CH3)2CH-CH2-CH(NH2)-COOH NP N 

Lysine Lys K H2N-[CH2]4-CH(NH2)-COOH P B 

Methionine Met M CH3-S-[CH2]2-CH(NH2)-COOH NP N 

Phenylalanine Phe F C6H5-CH2-CH(NH2)-COOH NP N 

Proline Pro P 
 

NP N 

Serine Ser S HO-CH2-CH(NH2)-COOH P N 

Threonine Thr T CH3-CH(OH)-CH(NH2)-COOH P N 

Tryptophan Trp W 

 

NP N 

Tyrosine Tyr Y 
 

P N 

Valine Val V (CH3)2CH-CH(NH2)-COOH NP N 

NHN

C H -C H(NH )-C O O H2 2

N
H

C O O H

C H -C H(NH )-C O O H2 2

NH

HO C H -C H(NH )-C O O H2 2

Table 1. List of major amino acids and their properties. NP—non-polar, P—polar, A—acid, B—base, N—
neutral, WB—weak base. 
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Amino acids are linked by peptide bonds formed between the amino, and carboxyl 

groups, generating a water molecule, and a polypeptide (Figure 3). A dipole moment is 

formed in the amide group between the carbonyl group which is electronegative, and the 

amine group which is electropositive (Figure 3). Regular ordering in secondary structures 

such as α-helices causes a 

summing of neighbouring 

dipoles to produce a large 

overall dipole moment. The 

inclusion of acidic/basic amino 

acids in a protein leads to a net 

pH dependent charge, which 

goes to zero at the isoelectric point of the protein. Rotations which change the relative 

orientation of one residue with respect to another can occur about the bonds, as shown in 

Figure 4. The π bond in the carbonyl group between the C’ carbon and oxygen becomes 

delocalized across the neighbouring nitrogen. This has the effect of preventing rotations, 

and making these groups coplanar as indicated by the shaded planes. Rotation can occur 

between the α-carbon and the nitrogen, labeled  , as well as between the α-carbon and C’ 

carbon, labeled ψ. Large residues will experience more steric hindrance, and thus have 

fewer acceptable  /ψ angles, especially if situated next to another large R group. Glycine, 

for instance, whose side chain consists of a single hydrogen atom has much more freedom 

in position. 

 
Figure 3. Polypeptide showing peptide bond, and dipole moment of 
bond. 

 

Figure 4. Polypeptide indicating coplanar bonds (shaded region) and rotation bonds φ and ψ. 

Life has evolved a simple space-saving blueprint so that complex three dimensional 

functional machines can be made. DNA encodes, in its nucleic acids, the information for 

the linear sequence of peptides. Residues on this peptide will experience differing forces, 
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depending on their hydropathy, charge, polarity, and steric constraints. It is through these 

forces, coupled with Brownian motion, that the peptide is able to spontaneously fold into a 

regular structure. The process of self-assembly is driven by the Brownian search for an 

energy minimum. However, a random sampling of states alone does not account for the 

speed at which proteins fold [7]. Intrachain forces cause a preferential folding, allowing the 

protein to fold on short timescales (generally ms, but can be μs to hours). Recent studies 

suggest that many proteins are not in their true energy minima, or that there may be more 

than one minimum with similar energy levels. The protein becomes trapped in a local 

minimum, and under certain circumstances will revert to a different conformational 

minimum. This mechanism has been implicated in a number of diseases such as 

Alzheimer’s and Bovine Spongiform Encephalopathy. 

Folding can be divided into several levels of hierarchy termed primary, secondary, 

tertiary, and quaternary. Intermediary between secondary and tertiary are the motifs, and 

domains. Primary structure is simply the linear sequence of amino acids, which in turn 

tends to determine all other levels. The most important secondary structures are the α-helix 

and β-sheet. Others include the α-sheet, γ-helix, left handed α-helix, 310-helix, π-helix, 27 

ribbon, polyproline helix, and “random” coil. The reason the α-helix, and β-sheet are so 

common is that they represent structures which allow unstrained hydrogen bonding to 

occur.  

In the α-helix (see Figure 7) there are 3.6 residues per turn, and hydrogen bonds are 

formed every 13 atoms between the C’ oxygen on a given residue, and the NH group four 

residues later (ie. n and n+4). ψ/  are around 120o, and 130o (or -60o, and -50o depending 

on convention) [8]. This is a particularly favourable structure, as the hydrogen bonds are 

optimized, and the side chains are rotated as far as possible from the sterically-hindering 

carbonyl groups. The π-helix has hydrogen bonds between the nth, and n+5th residues, 

while the 310 helix and 27 ribbon have hydrogen bonds between the nth and n+3rd, and n+2nd 

residues [8]. This leads to strain in the hydrogen bonds making these structures less 

favourable. 27 ribbons are very rare, and force the NH and C’=O groups much too close, 

greatly stressing the hydrogen bonds. 310 helices tend to occur at the ends of α-helices 

where the rules for a proper α-helix are not met as rigidly. Left handed helices are limited 

in the types of residues that can take part, since the side chains tend to point towards the 
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=C’=O group, making the residues sterically hindered. Amino acid sequence thus 

determines what structures will be made. Proline, and hydroxyproline, for example, can not 

be accommodated by a right handed α-helix, and must occur in turns, or in a left-handed 

helix such as those forming tropocollagen. Polyproline, and collagen helices cannot satisfy 

hydrogen bonding intrachain, and must form interchain bonds.  

β-sheets can be parallel or anti-parallel, or can include both [8]. Examples of a β-

sheets are given in Figure 5 and Figure 6. In the parallel case, the N-terminus to C-

terminus direction of adjacent strands making up the sheet are the same, and are opposite 

in the anti-parallel case. ψ/  

are around 315o and 40o. 

Hydrogen bonds are formed 

between adjacent strands, 

and side chains are oriented 

perpendicularly above and 

below the sheet. This allows 

β-sheets to pack with side 

chains interlocking, held together by van der Waals forces. Anti-parallel and parallel sheets 

both satisfy all hydrogen bonds internally (with the exception of the edge strands), with 

slightly different patterns.  

 
 

 
Figure 6.  Parallel beta sheet 
(dotted lines are hydrgoen bonds) 

 

 

Figure 5.  Antiparallel beta sheet 
(dotted lines are hydrogen bonds) 

Motifs are simple combinations of α-helices and β-sheets which are used on their 

own, or to build up larger domains [9]. There are numerous motifs such as the helix-turn-

helix, and greek key motif. The three main domain types are those built purely of α-helices, 

purely of β-sheets, and those that are a mix of α-helices, and β-sheets.  

Tertiary structure defines the three dimensional conformation of the overall protein. 

The tertiary structure of hen egg white lysozyme [10] and bovine lactoferrin [11], from the 

Protein Databank [12], are shown in Figure 8 and Figure 7 respectively. These ribbon 

models indicate the arrangement of the main secondary structures in a protein. For 

example, in lysozyme one can see the α-helices, as well as β-sheets (opposing arrows). It is 

the three dimensional structure which gives the protein its function [9]. This means that 

proteins may have the same function despite having differing primary sequence. That is to 
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say, that for a given sequence, the function will generally be unique, but a given function 

does not necessitate a unique sequence. Frequently the random coil sections contain the 

functional groups that are used for binding other molecules. Metal ions are also often 

bound to proteins, adding functionality. In hemoglobin, for instance, the heme pocket 

formed by the protein binds a heme group with an iron atom, which in turn can bind 

oxygen, and carbon dioxide, transporting them throughout the body [8]. In zinc fingers a 

zinc molecule stabilizes an alpha-helix and two anti-parallel beta strands, allowing them to 

bind to DNA [9]. 

 

Figure 7.  3D structure of bovine lactoferrin 
(ribbon model) 

 

Figure 8. 3D structure of Hen Egg 
White Lysozyme (ribbon model) 

 

Proteins with a single function may be built of more than one polypeptide chain. 

Examples of this include hemoglobin which is made of four associated subunit 

polypeptides. This level of organization is termed quaternary structure. 

 

1.4 Intra-protein Forces 

Most proteins carry multiple polar and non-polar groups, as well as multiple charged 

groups, making them amphiphilic polyelectrolyte molecules capable of refolding to suit a 

particular environment. Inter/intra-molecularly acting forces determine how proteins will 

act. These include: electrostatic interactions, Lifshitz-van der Waals interactions, hydrogen 

bonding, covalent bonds and thermal fluctuations [13]. These result in such effects as 
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intramolecular conformational entropy, hydrophobic bonding, and bond energy 

considerations. These forces are present in protein-protein, protein-self (residue-residue), 

protein-surface, and protein-solvent interactions, all of which are concerns for adsorption 

behaviour. 

There are a number of forces that act inter/intra-molecularly to dictate protein-

macromolecule, protein-substrate, and protein-solvent interactions. Most interactions 

between molecules arise from electromagnetic considerations. Other considerations are 

entropic in nature. The primary types of electric interactions are permanent ion-ion, ion-

dipole, dipole-dipole interactions, and those between induced dipoles and permanent ions, 

permanent dipoles, and other induced dipoles [13]. 

Assuming the molecule is small, and undergoes Brownian motion, the following 

can be said of the forces: The energy between ions simply follows the simple Coulomb 

dependence E α q1q2/r12 where qi is the charge on ion i, and rij is the distance between ion i 

and j. Permanent ion-dipole, dipole-dipole interactions will depend on the orientation of 

the dipoles, which is in turn a function of kBT—the thermal energy. In the absence of 

Brownian motion, the static ion-dipole, and dipole-dipole energies, would vary as 1/r2 and 

1/r3 respectively (and depend on the angle the dipole(s) make). However, the presence of 

Brownian motion causes the orientation of the permanent dipole to fluctuate randomly if 

the energy between it and the other ion/dipole is much less than kBT. This has the effect of 

reducing the time averaged ion-dipole and dipole-dipole interaction energies to r4, and r6 

dependence [13].  

Induced dipoles occur as a result of a molecule being placed in an electric field, 

causing a separation of charge within the molecule. This depends on the polarizability of 

the molecule α, so that the induced dipole moment is proportional to αE where E is the 

electric field. The energy for an ion-induced dipole, and a permanent dipole-induced dipole 

have 1/r4 and 1/r6 dependences. Induced dipole forces, better known as van der Waals 

forces, vary as 1/r6. If atoms come too close, the electron clouds will overlap. This overlap 

of charges causes a repulsive energy. The repulsion occurs over very short range and is 

usually given a repulsive 1/r12 dependence as in the Lennard-Jones potential. 
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One of the most important bonds is the hydrogen bond, which is very directional. A 

hydrogen bond is formed when one atom donates a proton to another atom. The donor 

group will be polar, and the acceptor group must be very electronegative due to electrons 

not occupied with covalent bonding. As with the van der Waals force, hydrogen bonding 

cannot be calculated purely from classical considerations, and requires a quantum 

treatment. A standardized model does not exist yet, and various functions are used to 

approximate the bond [13]. 

 

1.5 Forces Driving Protein Conformation 

To consider what will drive adsorption, we must first look at how the previous 

considerations stabilize a protein. Many amino acid residues contain charged groups (eg. 

Asp, Glu, Lys, Arg), which generally reside on the outside of the molecule to promote 

contact with the surrounding buffer solution. These charge groups are weak acids and 

bases, and thus have buffering capacity [14, 15]. Water tends to be a good solvent for 

proteins, when folded with their charge/polar groups facing out. Electrolytes, on the other 

hand, result in an ionic double layer, which reduces electrostatic interactions. This has the 

effect of expanding the protein (reduces ion-pair interactions). It is generally the case that 

ions buried inside a protein (and often on the surface) pair with opposite charges to 

stabilize the conformation (at least near the isoelectric point [16]. However, internal charge 

pairing tends not to be a driving force for conformation since contact with external water 

leads to similarly favourable hydration of the ion [17]. Interior non-ionized residues will 

tend to favour unfolding in order to become ionized [18]. Overall, it will depend on the pH, 

charge distribution, and electrolyte concentration as to whether charged residues will 

stabilize or destabilize the protein conformation. 

 Lifshitz-van der Waals interactions are unclear in their role, since much of the 

interaction with water is replaced with interaction internal to the protein upon folding. 

However, due to the high packing density of protein, it is generally assumed the 

interactions will be supportive of folding. The same is true of hydrogen bonds between 

water and hydrogen bonding residues, which are then satisfied internally by residue-
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residue hydrogen bonds. No major net change is generally evident, although slight 

differences in the bond energies due to non-ideal alignment (bending), may favour one 

over the other [16]. Albeit, once folding has occurred, it is then favourable to satisfy van 

der Waals interactions and broken hydrogen bonds as much as possible within the 

molecule. This leads to the general consensus that protein compaction is supported, but 

probably not driven by these two forces. That is not to say that charge, van der Waals, and 

residue-hydrogen bonding are irrelevant and cannot be major factors under certain 

conditions. 

Folding the molecule has the unfavourable tendency to strain bonds, especially in 

the functional regimes [19]. Additionally, the rotational constraints induced by folding 

vastly reduce the conformational entropy. Along with entropy loss, the folding also results 

in non-equilibrium bond angles and lengths, between adjacent residues. This will always 

favour unfolding. Hence it is generally believed that the major driving force for protein 

folding is hydrophobic bonding. This effect is due solely [20] to disruption of the hydrogen 

bond network in water. Apolar residues cause this disruption. Attraction can occur between 

apolar-apolar, as well as apolar-polar entities. Apolar entities do not form hydrogen bonds 

with the surrounding water molecules, and as a result, water must reorder to try and satisfy 

them. On small scales, this causes an ordering of the water into clathrate structures to 

preserve the bond network. On larger scales, water is unable to order over long ranges, and 

cannot satisfy hydrogen-bonding requirements, causing enthalpy increases [20]. The 

former effect causes a decrease in entropy, while the latter, an increase in energy of the 

system. Both are unfavourable situations. It is therefore much more favourable for the one 

protein to accept a loss in entropy by folding the apolar residues to its inside, than for many 

water molecules to re-order, losing many times the entropy.  

 

1.6 Protein-Surface Interactions 

For a protein interacting with a surface, adsorption will occur if the Gibbs free energy 

(G=H-TS) is lowered, that is, if the entropy (S) of the system is increased, and/or the 

enthalpy (H) decreased. Because a protein consists of many residues, a small lowering in 
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free energy/residue can generate extremely high affinities for surfaces. Strong 

intramolecular forces holding proteins together mean they generally have low entropy. 

Denaturation, in the case of proteins, refers to a change in conformation from the generally 

accepted protein form or “native” state. This is generally thought of as unfolding causing a 

loss of function, but as the root of the word implies, it is really any change in nature of the 

protein. It can thus be used to denote more subtle conformational changes from the 

“native” state. Proteins can undergo spreading, which is a form of denaturation, to contact 

more surface area. Adsorption to a surface may thus provide the protein an opportunity to 

unfold, leading to an increase in entropy, and a major driving force to adsorb [21]. The 

major forces driving adsorption are charge interactions, and the hydrophobic effect, with 

van der Waals forces playing a role. 

Hydrophobic surfaces may allow the protein to arrange its apolar residues close to 

the surface, leaving its polar residues exposed to solvent. Bonds broken internally are thus 

satisfied externally, while allowing an increase in entropy. Unlike polymers, protein 

spreading is much slower. Thus the rate of adsorption can exceed the spreading rate, 

causing the quantity of adsorbed protein to be strongly kinetically limited [22]. If either the 

surface, or protein, or both, are hydrophobic, water will be excluded between them. This 

dehydration creates a pressure from water molecules residing around, but not in-between 

them, driving adsorption [20]. This effect plays a large role in many adsorption processes, 

but because modeling water requires huge computational power, it is one of the lesser 

understood contributors to adsorption.  

Where present, charge plays a huge role in adsorption between a charged protein 

and/or surface. Counter-ions, in the form of an electrical double layer, normally surround 

both protein, as well as charged surface. These have the effect of screening charge on both 

protein, and surface, leading to an increase in attraction for like charged objects, and 

decrease in attraction for oppositely charged objects. It is these double layers that interact 

as the protein and surface near each other. When the protein adsorbs, some ions may be 

stuck between the protein, and the surface. Generally a protein will stop adsorbing close to 

the protein/sorbent isoelectric point. If the charge density per area coverage of the protein 

does not exactly match that of the surface, an electric potential arises. Low permittivity in 

the dehydrated space between protein and surface means large electric fields forcing 

 



Chapter 1: Introduction  13 

counter-ions to fill in around the protein to lower the field energy [23]. However, because 

protein does not solvate ions as well as water, there is a net reduction in attraction if ions 

reside in between protein and surface. Hence, the maximum attraction occurs, generally at 

the isoelectric point of the protein-sorbent complex, where no counter-ions are needed to 

balance charge. Static dipole moments not only lead to attraction, but tend to orient 

molecules on a surface. This may be an important factor in adsorption, determining the 

time it takes for a protein to seek out favourable interactions. 

Electrolytes also play other roles in adsorption such as protein-solvent effects. High 

salt concentrations generally lead to aggregation and precipitation of proteins. This occurs 

when an excess of salt out competes the protein for solvating water molecules. However, 

addition (to a point) of salt to a solution lacking electrolytes increases solubility lowering 

adsorption force. A small amount of salt will screen the protein charge, lower the protein 

electrostatic free energy, and thus decrease the protein activity coefficient, enhancing 

solubility. The former effect is termed salting-out, while the latter effect is termed salting-

in. 

Most of the above mentioned effects are on a microscopic scale. The following 

sections will give examples of some of the multitude of experiments, and models, which 

have been done in the area of proteins at interfaces. The importance of all of these effects 

at a microscopic level will be seen in many cases. This leads to a need to understand the 

microscopic heterogeneity of both protein and sorbent. Protein-protein interactions, and 

protein-solvent interactions, are in most cases just as important, and in some cases more 

important, than protein-surface interactions in determining adsorption. Protein deposition 

also has a strongly kinetically controlled component to it due to spreading, reorientation, 

and surface exclusion effects.
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Studies of Protein at Solid 
Interfaces 

There are many good reviews of proteins at interfaces: [21, 24-26]. An attempt will be 

made to discuss some of the major findings in this field, with particular emphasis on 

systems having at least some relation to our own. However, the field is so enormous that 

any one of the sub-topics in the following sections could be expanded into a book on its 

own, with many hundreds of references. As such the following is meant to act as a 

sampling overview of the field. 

 

2.1 Studies of Fundamental Properties of Adsorption 

2.1.1 Contributions to Adsorption 

The hydrophobic effect is one of the least understood contributions to adsorption. Because 

it arises from hydrogen bond interactions with water, it is difficult to study, both 

experimentally, and theoretically. This challenge has resulted in a large number of papers, 

which investigate this, either as a primary, or secondary concern in protein-surface 

interactions. Hydrophobic surfaces, in general, denature protein more than hydrophilic 

surfaces, and this is a major concern for biomaterial design [27].  

Wertz et al. [28] find that for albumin and fibrinogen adsorption to hydrophobic 

C16 self-assembled monolayers (SAMs), the initial adsorption rate is constant and is 

transport-limited. This is somewhat expected, since adsorption in this case would be 

largely due to hydrophobic effects, as opposed to being dominated by electrostatics. The 

final adsorbed quantity is found to be kinetically controlled, and is dominated by the rate of 

relaxation of the protein (as opposed to chemical potential). Relaxation, at least in this 

case, is shear rate independent. Wertz et al. [28] measure an approximately constant rate of 

0.12 nm2/s for albumin and 0.15nm2/s for fibrinogen (at least over about 15min), indicating 

lateral interaction effects. For slow relaxation, and quick adsorption, the molecules will not 



Chapter 2: Studies of Protein at Solid Interfaces 15 

have time to spread, and thus adsorb more. Quick relaxation times relative to the 

adsorption rate will allow the molecules to spread out, covering the free surface area 

quicker, and resulting in less total adsorbed protein (assuming only monolayer formation). 

Spreading increases the surface coverage by up to 5 times in the case of albumin, and 3 for 

fibrinogen. Indications are that the relaxation is due largely to interfacial denaturation, as 

well as reorientation of the molecule. A competitive study, with albumin deposited before 

fibrinogen is added, shows a decrease in fibrinogen adsorption with the amount of time 

albumin is on the surface by itself. This suggests that relaxation is key to preventing the 

fibrinogen adsorption, and that the albumin-surface affinity increases with relaxation, 

preventing fibrinogen from displacing it. Another study by Wertz and Santore [29] shows 

that spreading increases with hydrophobicity of the surface, by measuring albumin and 

fibrinogen on SAMs of varying hydrophobicity. Competitive studies also back this result, 

showing a decrease in the amount of time albumin requires to prevent fibrinogen 

deposition. Model calculations of this system, [30] indicate that past a certain spreading 

“footprint” size, a protein cannot be removed on hydrophobic surfaces, and any additional 

spreading will not change this. On the hydrophilic surface, however, Wertz and Santore 

find smaller “footprint” areas, suggesting that orientation effects are more important than 

denaturation. This is based on the number of equal “footprints” which correspond to the 

loosely bound protein energy value. Comparison to a kinetic model shows that the amount 

of loosely bound protein depends much more on history than on the tightly bound material. 

Loosely bound protein has approximately the same binding energy on both hydrophobic 

and hydrophilic substrates. Recently Wertz and Santore have performed similar 

experiments with lysozyme on hydrophobic surfaces [31]. As opposed to the albumin 

fibrinogen case, the total amount of lysozyme adsorbed does not exhibit flow, or bulk 

concentration dependence, but rather an overshoot appears during initial adsorption for 

high shear/concentration. The adsorption is irreversible and the kinetics strongly transport- 

limited. Furthermore, the change in footprint is due to a transition from end on to side-on 

(it is an ellipsoidal molecule), rather than spreading. This transition is compared to a model 

where the end-on molecules were replaced by side-on molecules, and a second model 

where the end-on molecules simply roll over, without coming off the surface. The roll-over 

model agrees with their data, and combining this model with a reversible end-on 
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adsorption model, they are able to predict quantitative results for various conditions. All of 

Wertz and Santore’s studies are performed using total internal reflectance fluorescence 

(TIRF) intensity measurements. 

Giacomelli et al. [32], in their attenuated total reflectance-fourier transform infrared 

spectrometry (ATR-FTIR) study of bovine serum albumin (BSA), and immunoglobulin 

IgG, see little change in native secondary structure upon adsorption to a hydrophilic silica 

surface. They repeated the study with a hydrophobic silica surface, but due to hydrophobic 

displacement of surface bound water were unable to generate a proper background IR 

spectrum, and are thus unable to interpret their results in this case. For a hydrophobic 

surface with a preadsorbed small triblock copolymer (PEO-PPO-PEO) in a brush 

formation, they see a decrease in the amount adsorbed, possibly due to steric hindrances. 

However, chain length is not long enough to prevent adsorption. IgG undergoes a change 

in its beta sheets, with BSA exhibiting a more ordered alpha helix. If the non-saturated 

polymer brush surface is considered as a non-aqueous solvent (similar to ethanol), and 

BSA is completely surrounded by this solvent, then it may be prevented from spreading as 

in Wertz, and Santore’s study. Unable to satisfy as many external hydrogen bonds in this 

new solvent, the internal bonds (in the alpha helix) may have a dominant effect. 

Neutron reflection measurements point to BSA adsorbing to hydrophilic silica side 

on, which would maximize its contact with the surface [33]. Even on the hydrophilic 

surface some spreading is evident. Increases in bulk concentration prevent the molecules 

from spreading very much, just like a hydrophobic surface. However, unlike a hydrophobic 

surface, the reversibility of changes with pH suggests that BSA is much less denatured 

[33]. 

Giacomelli and Norde [34] have also looked at a BSA-silica system. In particular 

they used calorimetry and circular dichroism to study BSA adsorbing, and desorbing from 

colloidal silica particles. Adsorbed BSA is conformationally changed, and more 

thermostable than native BSA. This adsorption is reversible, as is the conformation change 

induced by the surface. Aggregation was not possible, and this may explain its 

reversibility. Two regions are identified during the process of denaturation, the first of 

which is enthalpically driven and includes only a slight conformational change, but 

 



Chapter 2: Studies of Protein at Solid Interfaces 17 

intermolecular association. The second region contains the major unfolding events, and is 

somewhat reversible, refolding some of the alpha helices. Further denaturation, however 

results in aggregation, which removes the reversibility.  

A good way to study how various residues affect adsorption is to look at shorter 

chains of them, rather than trying to deconvolute their effect from massively complex 

proteins. For example, Read and Burkett [35] look at the adsorption of a small polypeptide 

which consists of a short chain of the alpha helix promoter alanine, capped on one end with 

a chain of anionic aspartate, and on the other end by cationic arginine. The surface under 

study is silica colloid, and alumina-capped silica colloid, investigated with circular 

dichroism and NMR. This provides both an anionic and cationic surface. The peptide end, 

with the opposite charge to the colloid, adsorbs due to electrostatic interactions. This 

causes a loss in the alpha helix structure, distinct from heat denaturation, which does not 

change as much. On both anionic and cationic colloids, the alpha helix loss is observed, in 

which the alpha helicity of aspartate is largely preserved, while the alanine and arginine 

lose their structure. One would not expect arginine to lose its favourable helical structure 

on the complementary anionic colloid. However, since arginine is not as strong an alpha 

helix former, it may be more favourable to increase contact with the surface, and maximize 

electrostatic and other interactions. This study shows the subtle differences in the residues, 

which lead to overall conformation change in protein-interfacial associations. 

A good review of the excellent opportunity SAM’s provide for studying the effects 

of various chemical groups in a controlled and ordered fashion is given by Mrksich et al. 

[36]. A particularly good study is conducted by Ostuni et al. [37], in which the effect on 

hydrophobic adsorption, of the density, size, and shape of hydrophobic groups in a SAM 

surface, is explored. One of their motivations for this more in-depth study, is that they tried 

to find correlation between the wetting properties of a surface, and how well that surface 

adsorbs protein [38]. They have discarded this idea for several reasons, including that both 

hydrophilic and hydrophobic surfaces will adsorb protein with intermediate surfaces being 

the most resistant. They now recognize that wetting is an average phenomenon, whereas 

adsorption is dependent on the local heterogeneity of both protein and surface. Some 

heterogeneity could be measured, however, if advancing and receding angles are compared 

[25]. Large hydrophobic groups capable of interacting with a single protein would be 
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desirable to de-convolute interactions. Despite lacking large groups, the data is interpreted 

for several proteins in terms of a hard sphere model. Density of groups seems to be the 

largest determining factor in denaturation. However, adsorption is seen to increase for a 

given density of groups with the size of the hydrophobic head-group on non-mixed SAMs. 

For mixed hydrophilic/hydrophobic SAMs, adsorption decreases with the size of head 

group. Smaller proteins act similar to the larger ones, at higher densities of hydrophobic 

groups. Concentration dependence of adsorbed amount is seen, as well as indications of 

spreading of the proteins once adsorbed. AFM/SPR studies of SAMs [39] also indicate that 

hydrophilic carboxylic acid-terminated SAMs adsorb more with increasing temperature. 

Hydrophobic methyl-terminated SAMs do not depend on temperature, and this is largely 

attributed to the fact that their interaction with water molecules is not changed much with 

temperature. The hydrophobic surfaces also adsorb more lysozyme and BSA than the 

hydrophilic surface, and appear to do so faster, and irreversibly. Li et al. [39] suggest that 

the proteins compete with water molecules for the hydrophilic carboxylic acid binding 

sites, lowering their affinity for adsorption. Defects in the SAM at lower temperatures, lead 

to more interpenetrating water, and thus less adsorption. 

Using tapping mode Atomic Force Microscpy (AFM) in liquid, it has been 

observed that deposition of Ferritin decreases with increasing pH, with a maximum around 

pH 5 [40] on trimethoxysilylpropyldiethylenetriamine, and transferred stearic acid methyl 

ester, stearyltrimethylammonium bromide films. More absorption occurs at higher ionic 

strengths, and agreement with the Random Sequential Adsorption (RSA) model is seen at 

low ionic strengths (see section 4.2.1). This suggests that there are competing protein-

protein, and protein-surface forces, which will cause a maximum in adsorption for a 

particular ionic strength. This maximum is indeed seen, and indicates the importance of 

protein-protein forces in surface interactions. 

Norde and Lyklema have systematically studied human plasma albumin (HPA) and 

bovine pancreas ribonuclease (RNase) adsorption using polystyrene colloids with negative 

surface charges [23, 41-46].  Using a battery of tests, they are able to separate the 

contributions from various effects such as pH, temperature, surface charge, and electrolyte 

concentration. It is found [41] that HPA plateau values peak at the isoelectric point, and are 

symmetrical about the isoelectric point. The slope of the adsorption isotherm depends on 
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temperature, and with the exception of the isoelectric point, increasing the concentration of 

KNO3 enhances adsorption, possibly due to a stabilizing/destabilizing effect on the protein 

conformation. Steps in HPA’s adsorption isotherm point to differing modes of adsorption 

at high and low concentration. RNase adsorption plateaus do not vary as much with pH, 

temperature or with salt concentration. Both proteins, however, exhibit an unexpected 

characteristic, in that they adsorb when both protein, and sorbent surface are negative. In 

fact the plateau adsorption increases with a more negative (and thus electrostatically 

repulsive) surface. This is suggested to be a hydrophobic effect compensating the 

electrostatic penalty. HPA is thus interpreted to be a “soft” molecule with low internal 

coherence which can change conformation easily on surfaces, while RNase is a “hard” 

protein with strong internal coherence and stability, preventing it from adapting its 

conformation to surfaces. It is also suggested that hydrophobic effects play a larger role in 

the internal stabilization of HPA, and hence, also in adsorption of HPA. Unfolding of HPA 

may provide favourably reduced rotational constraints. It is curious, however, that 

electrostatically unfavourable conditions are tolerated in the dehydration layer, where very 

high potentials would be generated. Titration experiments [42] help to answer this. It is 

known that proteins contain acidic, and basic groups which have buffering capabilities 

which can be modeled [14, 15]. A difference in buffering capacity between the adsorbed 

protein, and the combination of the bulk protein and sorbent, must be due to changes in 

protonation of buffer groups. Both HPA, and RNase are adsorbed irreversibly with respect 

to pH. Upon adsorption under electrostatically repulsive conditions, some ε-amino groups 

are prevented from deprotonation, allowing them to pair with sorbent groups, and reduce 

net charge in the dehydration layer. Carboxyl groups are located close to polystyrene 

surfaces upon adsorption. Their weak hydration compared to smaller groups may make 

them more favourable for dehydration. It is also likely, given the aforementioned results, 

that other ions besides protons may help to neutralize the charge difference. Using 

electrophoresis, the net charge in the adsorption complex can be measured [43]. Knowing 

the contribution of protons from the previous titration experiments [42], it is possible to 

determine approximately the number of other ions taking part in adsorbtion. RNase 

mobility differences between adsorbed and bulk states are much more significant than for 

HPA, suggesting that RNase incorporates more ions. The overall conclusion is that at low 
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pH where the protein is positive, a net uptake of negative ions helps to charge-match the 

sorbent surface, while at high pH, a net uptake of positive ions occurs. The system can be 

modeled as three regions [44]. Region 1 is the dehydration layer between protein and 

sorbent, and contains charge from the protein, sorbent, and any trapped ions. Region 2 is 

the protein bulk, and hydration layer. Region 2 is uncharged, as all ions occur in pairs. The 

third region is the protein surface and Stern layer, containing protein bound charge. When 

both protein and sorbent are negatively charged, positive ions will accumulate in region 1. 

Microcalorimetry adds the final information needed to decipher the enthalpic contributions 

to adsorption [45]. Positive values of enthalpy change are found in several situations. 

Clearly then, the entropy gain must drive adsorption in these cases. HPA adsorbs due to 

hydrophobic dehydration on weakly charged polystyrene at high pH, and due to an 

increase in rotational freedom at lower pH. On the more strongly negative polystyrene, 

which is less hydrophobic, dehydration is less favourable, but allowed by more structural 

freedom in the protein upon adsorption and the ionic medium effect (transfer of ions to the 

dehydration layer). RNase, on the other hand, does not experience hydrophobic 

dehydration, or entropic gains from conformational freedom as the major driving force for 

adsorption. Finally, a much more rigorous determination of the thermodynamic 

contributions is derived from modeling and proper irreversible thermodynamic 

considerations [46]. In particular, the enthalpic gain due to structural rearrangement is 

determined by subtracting all other contributions to enthalpy from the total enthalpy. The 

other enthalpic terms are considered to be proton, and ion adsorption/release, electrostatic 

attraction/repulsion, and van der Waals attraction.  

Using radiolabelled Na+, Ba2+, and Mn2+ ions, the concept of coadsorption of ions 

for charge balance was tested [47]. Adsorption is larger in solutions with divalent ions than 

monovalent ions, and is dependent on electrostatic considerations, and not the pH, or ionic 

concentration. The free energy of inserting a Ba2+ ion into region 1 is larger than Na+ 

because Ba2+ is larger, more polarizable, and more negative than Na+. 

Differences are found if hydrophobic polystyrene surfaces are replaced with 

hydrophilic hematite surfaces for RNase, and HPA adsorption [48]. Enthalpy of HPA 

adsorption is positive, suggesting the entropic considerations are dominant. At small 

surface coverages, the protein conformation is changed the most. Near the isoelectric point, 
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protein-protein repulsion is minimized. Away from the isoelectric point, lateral repulsion 

plays an increasingly central role in determination of the plateau. RNase adsorption, on the 

other hand, is mostly dominated by electrostatic considerations. Under charge repulsive 

conditions, RNase will not adsorb. Electrostatics play a much larger role in the case of the 

hydrophilic substrate, even in the case of HPA. Ion coadsorption occurs in this case as 

well.  

In the case of RNase, considerations are electrostatic, and quite simple, but the case 

of HPA is synergistic, requiring consideration of the interplay between a number of 

complex phenomena. A study, by Haynes et al., of lysozyme (LSZ) and α-lactalbumin 

(ALA) on polystyrene particles indicates many of these effects [49]. Protein adsorption can 

be enhanced by hydrophobic dehydration and decreased rotational constraints due to 

changes in protein conformation. It is undesirable generally to coadsorb ions, however, it is 

preferential in cases of electrostatic repulsion. Rigid proteins will have a hard time 

conforming to the surface, and expelling water in hydrophobic situations. They also 

experience a harder time matching charges on the sorbent, since ion-pairing cannot be 

satisfied. In addition, lateral repulsion between adsorbed proteins can affect plateau values. 

The example is given of lysozyme, which adsorbs only weakly to negative hematite. 

Because it cannot dehydrate the surface as strongly, the native conformation will be more 

stable, making ion-pairing less rigorous and preventing entropy-increasing rotational 

freedoms. Attributing its lack of adsorption simply to the fact that the particle is 

hydrophilic is thus only one effect in a host of contributions. 

Another study investigating RNase, lysozyme (LSZ), myoglobin (MGB), and α-

lactalbumin (ALA) [50] also found that “hard” proteins with a strong internal coherence 

(large native Gibbs energy of stabilization) behave differently than “soft” proteins with low 

Gibbs energies of stabilization. Differences in adsorption of these similarly sized proteins 

on polystyrene (PS), polyoxymehtylene (POM), and hematite were examined. All proteins 

adsorb to PS, but on POM which is intermediate in hydrophobicity, both soft proteins 

(MGB, and ALA) adsorb, but of the hard proteins, only the strongly positive LSZ adsorbs.  

On hematite, the hard proteins only adsorb under electrostatically favourable conditions, 

while again, the soft proteins adsorb under all conditions. In almost all cases adsorption 

lowers the overall charge of the system, even when both protein, and surface are negative. 
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Thus ions must be coadsorbed with the protein to help charge matching. Overall, as in the 

previous cases, hard proteins adsorb onto hydrophobic substrates even under electrostatic 

repulsion, but only adsorb to hydrophilic substrates during electrostatic attraction. Soft 

proteins can undergo conformational changes, providing enough Gibbs energy lowering to 

even dominate hydrophilic dehydration and electrostatic repulsion, allowing adsorption 

under all conditions. Competitive and sequential adsorption experiments have also been 

performed on these proteins [51]. As an example, on PS, after RNase has adsorbed, the 

positively charged protein LSZ can adsorb more, even on positively charged PS. Lysozyme 

contains a small hydrophobic patch which may account for this. On hydrophilic substrates, 

however, no adsorption occurs in repulsive conditions, and the most electrostatically 

attractive protein wins the competition. Thus, electrostatics mostly dominate which protein 

will win in sequential, and competitive tests. However, MGB and ALA can undergo 

additional conformational changes, and ALA always out-competes all other proteins, at all 

sorbent surfaces. ALA’s remarkable affinity for adsorption probably arises from its 

particularly low internal coherence. Except in the case of lysozyme which has a loosely 

bound part on PS, adsorption at hydrophobic surfaces is irreversible. Thus in mixtures of 

proteins, kinetics will determine, to a large extent, the composition of adsorbed layers on 

hydrophobic surfaces.   

Lysozyme, ribonuclease, beta-lactoglobulin, alpha-lactoglobulin, cytochrome c, 

myoglobin, and hemoglobin, were adsorbed to chemically modified silica particles with 

differing hydrophobicities [52]. Differential scanning calorimetry (DSC) on the various 

combinations showed decreases in the denaturation point of all proteins except cytochrome 

c upon adsorption. This suggests that in all cases adsorption decreased stability of the 

protein. Fluorescence measurements also indicated lowered stability upon adsorption. 

Examining lysozyme on silica using DSC, fluorescence, and Fourier transform infrared 

spectroscopy (FTIR), various hydrophobicities showed that the stability decreased with 

increasing hydrophobicity, and the conformation was changed. Additionally, the 

conformational heterogeneity was greatly increased upon adsorption. This is different than 

the previous studies, however, in that lysozyme is generally considered to be a hard 

protein, undergoing very little denaturing.   
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Infrared spectroscopy applied to the study of the blood proteins serum albumin, 

prothrombin, and fibrinogen, all on silica particles, supports the idea that proteins with 

strong internal stability do not change conformation during adsorption [53]. However, this 

is a hydrophilic substrate, and for hydrophilic protein it is not expected that gross 

conformational changes would take place.  

Normally, measurements of protein adsorption can only differentiate between 

adsorbed and desorbed protein totals. By labeling protein, such as BSA, with fluorescent 

compounds like rhodamine, it is possible to use total internal reflection fluorescence 

microscopy to measure the rate constants at equilibrium [54]. By photobleaching the 

adsorbed layer it is possible to measure recovery from exchange with unbleached 

molecules. In addition, by using varying laser beam widths it is possible to measure lateral 

diffusion at equilibrium. Results indicate that there may be multilayers bound, and that 

there are three rates of exchange: A very slow rate which is essentially due to the 

irreversibly adsorbed BSA, a medium rate which is due to a reversibly adsorbed second 

layer, and very rapid desorption due to very loosely bound reversible layers at the solution 

interface of the adsorbed layer. Reversibly bound amounts increase with increasing bulk 

concentration. In addition, lateral diffusion is observed to occur, presumably in the loosest 

bound layer. By attaching both a donor and acceptor fluorescent group, it is also possible to 

use total internal reflection fluorescence spectroscopy to monitor energy transfer. The 

energy transfer is sensitive to the distance between the donar and acceptor groups, which is 

dependant on BSA conformation [55]. Using this technique, BSA was found to be 

conformationally changed at the surface [55]. 

 

2.1.2 Protein Adsorption in Chromatography 

Many chromatography methods are popular for separating and identifying proteins. Their 

complex interactions with the proteins make them interesting tools for studying protein 

fundamentals. One such technique is hydrophobic interaction chromatography (HIC), 

which attaches hydrophobic groups to a hydrophilic cross-linked matrix. Proteins are 

separated on the bases of hydrophobic/hydrophilic interactions. α-lactalbumin is a 

structural homologue to lysozyme, and its partial denaturation during HIC shows similar 
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two peaks corresponding to similar denatured domains [56]. This suggests that there is a 

possible conversion back and forth between two conformations within the protein. One 

peak represents a native type state, which is not retained on the chromatographic column. 

The second peak corresponds to a denatured state, which retains only partial structure. The 

hydrophobic core appears to be a key protection factor, and appears to retain structure. 

Jones et al. [56] suggest this may mean that the regions of protein most in contact with the 

solvent are the first to be destabilized. Non-specific hydrophobic denaturation appears to 

always stabilize/destabilize the same structures. The protein is able to refold upon elution 

from the substrate.  

Bovine pancreatic trypsin inhibitor (BPTI) protein, studied on reversed-phase 

chromatography (RPC) and HIC, indicates that salt content plays a major role in 

preventing hydrophobic denaturation. What role this is, however, is not clear, and McNay 

et al. [57] have investigated this for RPC. They find that increasing salt content increases 

protein hydrogen exchange protection, and changes the kinetics of denaturation. They 

suggest that while the anionic charge content of the RPC surface may not destabilize a 

protein on its own, in conjunction with hydrophobic interactions, it may be a key factor. It 

is known, as well, that certain salts help to stabilize a protein’s overall structure. There is 

also a dependence on the type of salt as to which residues are protected.  Interestingly, no 

correlation can be found between the degree of unfolding and the degree of retention. In an 

earlier study by McNay et al. [58], they look at pore size influence, and discover that the 

largest hydrogen exchange is for a pore size that is approximately equal to the protein 

molecule. A pore of this size will be largely occupied by the carbon chains, which will 

surround the protein molecule. Such a pore will have the greatest interaction area with the 

protein. Unfolding of BPTI is found to occur in two steps, characterized by time constants 

on the order of five minutes for one, and up to two hours for the other. It is also noted that 

long times of contact with the RPC surface before elution resulted in more denaturation. 

This is consistent with a kinetically controlled unfolding process, such as that seen by 

Wertz and Santore [28-31]. McNay et al. [58]also observe that there is generally a 

preservation of the hydrophobic core much like the native state. This is consistent with the 

HIC observations of Jones et al. [56]. An investigation of protein on two 

chromatographically relevant surfaces showed that a protein which carries the same net 
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charge as a surface, can still bind [59]. For the one surface (butylated), salt effect on 

adsorbed concentration appeared to act through solubility effects (salting-in and out), while 

on the second surface (aminopropylated), electrostatic screening of the repulsive charge 

between the protein and surface seemed to dominate. Adsorption rate is contended to be a 

complex function, due to such factors as irreversibility, which make modeling difficult 

[60].  

 

2.1.3 Aggregation 

High salt concentrations increase the screening of charge, and decrease both attractive 

interactions, as well as repulsive interactions between proteins. This can lead to 

aggregation and precipitation [61]. AFM shows that lysozyme adsorbed to a hydrophilic 

SAM surface is randomly oriented, and distributed (based on heights), while lysozyme on a 

hydrophobic SAM surface is clumped together [39]. This would suggest possible 

hydrophobic aggregation on the hydrophobic surface. In contrast to heat denaturing free 

protein, interfacial denaturation and lateral interfacial aggregation of protein may occur 

approximately simultaneously under certain conditions [27]. 

Alzheimer’s disease and spongiform encephalopathy are now believed to be the 

result of protein aggregation in the brain and nervous system, forming amyloid β-sheets. 

Amyloid β protein is part of larger transmembrane proteins. Under certain conditions, these 

proteins can be changed into β-sheets, which promote aggregation, formation of more β-

sheet proteins, and formation of amyloid fibrils instigated in Alzheimer’s disease. To 

understand the factors that lead to this, Giacomelli and Norde [62] allowed amyloid-β 

proteins to contact hydrophobic Teflon, and to measure the result. In solution, monomers, 

dimers, small regular β oligomers, as well as large aggregations of twisted β sheets co-

exist. The largest degree of aggregation occurs around pH 7, which is the isoelectric point 

of the protein. Teflon, on the other hand, promoted α-helix formation for low coverage, and 

even appeared to convert some of the aggregates in α-helices. For higher concentrations, 

however, β-sheet formation was promoted, clearly as a result of lateral interactions.  

 

 



Chapter 2: Studies of Protein at Solid Interfaces 26 

2.1.4 Morphology of Adsorbed Protein 

Most studies that use averaging techniques will agree with mean field theories, which treat 

the lateral dependence of protein deposition as homogenous. It would be desirable, 

however, to have some idea of the two dimensional structure of deposits, in addition to 

their overall height. AFM presents the opportunity for such an investigation.  Jandt has 

written a good review of the uses of AFM for studying biomaterials and their interactions 

with biomolecules [63]. Radial distribution curves of the surface protein, measured by 

Johnson et al. [40], agree well with a random sequential adsorption (RSA) model of 

deposition (i.e. random placement). Ionic considerations indicate that this system will 

match an RSA jamming limit for low ionic strengths and that at intermediate strengths, 

equilibrium is reached. The equilibrium implies reversibility in adsorption, which is not 

allowed in the RSA model. Generally, short-range order is seen in the radial distribution of 

surface protein. However, long-range order is observed for adsorption at fluid (Langmuir-

Blodgett) films, but no true crystallization is observed. 

In another AFM study, submonolayer coverage of apparently irreversibly adsorbed 

lysozyme is observed on mica [64]. The images are able to show that for low 

concentration, adsorbed lysozyme diffuses on the surface with minute timescales, and 

forms five molecule clusters. At higher concentration, protein adsorption occurs uniformly 

over 2h until complete monolayer coverage is achieved, at which point a second layer is 

able to deposit. Conformational changes, upon adsorption to the surface, expose 

hydrophobic groups, and it is suggested that these hydrophobic groups drive the 

aggregation of the molecules at low concentrations. Additional groups are exposed that 

may assist in the formation of multilayers, although at a slower rate, since the adsorbed 

lysozyme presents a more hydrophilic surface. 

Haggerty and Lenhoff [65] have used STM to look at lysozyme on graphite. They 

are able to observe similar long-range order, and packing of the molecules on the surface 

into two-dimensional arrays, for both wet and dry imaging. A ring pattern is visible, but no 

definitive explanation can be given. Islands in the structures suggest that the growth may 

be the result of a nucleation process. Surface coverage decreases with increasing salt, and 

decreasing protein concentration. Since the surface itself is uncharged, the effect must be 

 



Chapter 2: Studies of Protein at Solid Interfaces 27 

due to intermolecular effects. One would expect charge repulsion between the molecules to 

decrease with increasing salt, and thus support a higher surface coverage. It may be that 

this does not happen due to the salting-in phenomenon, where protein is actually more 

soluble in the solution with increasing salt, reducing adsorption affinity. Salting-in and out 

is also observed in other adsorption experiments [59] which also exhibit a dependence of 

the rate of adsorption on ionic strength. A second view proposed [65] is that due to charge 

anisotropy, the molecules can pack better. This anisotropy is screened at higher ionic 

strengths, leading to a more uniform, and thus repulsive intermolecular field. 

 

2.1.5 Protein Alignment 

Control to selectively prevent, or promote adsorption of certain proteins onto surfaces is 

desired for both biomaterials, and biosensors. The ability to do this is, of course, directly 

connected with protein interactions at interfaces. Xia et al. [66] have attempted to create 

two surfaces: one which will adsorb protein, and one which will not. Both surfaces are gold 

with SAMs. The first polymer suggested for preventing adsorption is a copolysiloxane 

backbone with disulfide and poly(ethylene glycol) PEG side chains. The second polymer 

made to adsorb protein is a terpolysiloxane molecule with disulfide, PEG and ester-

terminated PEG side chains. Using surface plasmon resonance (SPR), they are able to 

show that the first polymer does indeed resist protein adsorption, while the second surface 

is able to bind IgG through its ester group as they predicted. If biosensors are to work, they 

must of course have a fairly specific orientation so that the pertinent functional group of an 

antibody will be exposed to a solution. Because proteins often contain very unique charge 

distributions, it may be possible to control orientation through careful tuning of electrolyte, 

surface charge, and pH. Chen et al. [67] find, using SPR and AFM, that between IgG1 and 

IgG2a, IgG1 can be oriented more strongly because of its larger dipole moment. In 

addition, increasing charge density in their SAM, combined with other selective forces 

(e.g. hydrophobic), should be able to improve orientation quite a bit. A more unique 

approach [68] makes use of the fact that most proteins have specific binding sites, which 

are used for coupling with other molecules and proteins to carry out a task, such as 

adhesion, catalysis of a reaction, etc. Certain bacteria bind to specific areas on fibronectin 
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through short peptide sequences. One such sequence was bound to streptavidin on glass 

coated with amine-terminated silane. Fibronectin, on this substrate, bound with its COOH 

end pointing away from the substrate. 

Crystal formation can be mediated by certain proteins, creating bone structure, teeth 

[69] and other hard biological structures, such as mollusc shells [70]. For example, it is 

demonstrated that certain proteins catalyze the formation of gold crystals, and alter their 

morphology [71]. Denaturation of the proteins results in their removal, and shows that they 

do not bind covalently with the gold during the process. It is proposed that it is the acidic 

nature of the protein used that results in acid catalysis of the crystal formation. The shape 

of the crystals is determined largely kinetically. Some proteins may have repeating units, 

which will bind with specific repeats in the crystal lattice [72]. This in turn can slow the 

growth of certain interfaces, and leads to new morphologies. Proteins in free solution may 

inhibit nucleation, and when adsorbed to certain surfaces, may facilitate nucleation through 

a lowering of the activation energy [72]. An initial layer of protein nucleates and orients 

crystal growth on mollusk shells [70]. This in turn orients a second layer, causing an abrupt 

transition between the two types of crystals. It is found that this is not the result of a new 

protein, but rather one protein. The interlamellar spacing of proteins controls the spacing 

between layers. This shows that orientation of proteins is sensitive to microscopic 

heterogeneities in inorganic materials, and that the protein, in turn, can generate oriented 

surfaces. 

 

2.2 Applied Studies of Proteins at Interfaces 

2.2.1 Blood Contacting Materials 

Blood contacting materials are perhaps the biomaterial demonstrating most acutely the 

need for understanding interfacial protein behaviour. It is critical that materials used for 

such things as heart stents, heart valves, and vasculature be well understood in the presence 

of protein. A failure in this case can result in thrombosis (clot formation) and death. There 

are many good overviews of concerns associated with blood contacting materials [73], and 

of methods applied to studying blood contacting biomaterials [25]. Thrombus formation is 
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activated by the adhesion of plasma protein (fibrinogen, and fibronectin in particular) to 

the biomaterial, which then promotes platelet adhesion [74, 75], and ultimately leads to 

clot formation.  

Even early ex-vivo studies with dog’s veins [75] suggested that 

fibrinogen/fibronectin deposition lead to thrombosis in a material dependent way. While no 

correlation between deposit morphology and deposition magnitude could be found, the 

study hinted that one could possibly find a material resistant to thrombosis. Many studies 

have searched for such a material. Fibronectin adsorption to hydrophilic and hydrophobic 

silica, studied using TIRF spectroscopy, indicates that hydrophobic substrates adsorb 

fibronectin faster, and have higher plateau values [76, 77]. Conformational changes were 

also noted on hydrophobic silica. By adding 2-methacryloyloxyethyl phosphorylcholine 

(MPC) to pulysulfone (a common biomaterial) protein adsorption, and denaturation can be 

minimized [78]. Phosphorylcholine is a polar phospholipid group, which helps to mimic 

the phospholipid heads on a cell’s surface to some extent. This technique has also been 

exploited with some success in contact lenses (omafilcon A in particular) [79, 80]. 

Attaching polyethyleneoxide (PEO) is another common technique, which exploits the 

steric repulsion abilities of this polymer to reduce fibrinogen adsorption [81, 82]. 

 In addition to clot promoters such as fibrinogen, blood contains substances capable 

of dissolving clots. Tissue plasminogen activator or tPA can activate plasminogen into a 

form capable of clot dissolution. Rather than search for a surface that simply does not 

adsorb fibrinogen, another approach is to promote the adsorption of desirable proteins such 

as tPA. A substrate such as this rich in ε-lysine has been created, allowing large amounts of 

tPA to be preadsorbed [83, 84]. In contact with blood plasma the surface is capable of 

dissolving clots, but loses about half of its tPA after approximately thirty minutes. This is 

due to another common effect, that of competitive adsorption, that in this case means 

plasminogen displaces some of the tPA. However, radiolabelled plasminogen indicates that 

up to 75% of the molecules can exchange with bulk. While tPA is better in terms of 

dissolving clots, plasminogen will still help prevent their formation, and exchange with the 

bulk may be desirable, allowing the surface to regenerate itself. 
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2.2.2  Contact Lenses 

2.2.2.1 Background 

One of the more commonly studied systems of biomaterials is the eye-contact lens system. 

This is largely due to the ease with which it allows the investigation of a biomaterial in 

contact with a bodily fluid (the tear film). The problem of protein adsorption at the solid 

liquid interface of the contact lens is of great relevance, since deposits can create a variety 

of problems. As well as clouding the lens, and possibly increasing friction, protein can also 

illicit immune responses (giant papillary conjunctivitis) and can promote bacterial 

adhesion.  

Early lenses were made of PMMA [85], and other polymers, which did not suit the 

oxygen, wettability, or nutrient transport demands of the eye. With the advent of hydrogel 

lenses, and more recently silicone hydrogels, these problems have been greatly minimized, 

leaving protein adsorption as one of the last hurtles to overcome for lenses to be used 

multiple times, or for extended wear times (eg. overnight). 

The Food and Drug Administration (FDA) classifies contact lens materials 

according to the ionicity, and equilibrium water content (EWC) of the lens. There are four 

groups categorized according to water content and ionicity as: Group I –low water, non-

ionic; Group II –high water, non-ionic; Group III –low water, ionic; and Group IV –high 

water ionic [86]. This simple grouping system is meant to give some indication of the 

chemical properties of the lenses. 

 

2.2.2.2 Food and Drug Aadministration Grouping vs. Protein Deposition 

Many studies have been performed to characterize, and quantify the protein and lipids 

according to group number. Protein can adsorb either to the surface, or into the matrix of 

the polymer, which will be seen to be important later. Minarik, and Rapp [86], in their in-

vivo patient studies, find that lenses, ordered in terms of most total protein adsorption, are 

Group IV, II, III, and I. From this fact, they draw the conclusion that water content is the 

dominant determining factor in protein adsorption. Minno et al. [87], on the contrary, find 

that total protein deposition followed the group number and thus Group III absorbed more 
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than Group II, leading to ionicity being the dominant factor. Prager et al. [88] find that 

Group II adsorbs more radiolabelled lysozyme than Group III. That this would be the case 

seems somewhat counterintuitive, since lysozyme in general, deposits more upon 

hydrophobic materials [39]. Keith et al. [89] also find the same order as Minarik, and 

suggest that lysozyme is the major component of the deposits, with albumin only adsorbing 

significantly to Group I, III, and to a lesser extent Group II lenses. Minarik, however, finds 

that when lysozyme alone is considered, Group III lenses adsorb more than Group II. 

These differing points of view are characteristic of studies which do not consider the type 

of protein, or the chemical nature of the lens in addition to ionicity and water content. 

One point studies generally agree on is that Group IV lenses deposit the most total 

protein [85, 86, 88, 90-101], with one study [102] finding up to 17x more protein than a 

Group II lens. Group I lenses deposit the least protein [91, 93, 100, 101]. Lin et al. [91] 

find that lysozyme is the major component causing this dramatic increase, and that on 

Group I lenses, almost no lysozyme is adsorbed. Other studies [93, 98, 101, 103] agree that 

lysozyme is the predominant component of deposits on Group IV lenses, along with 

PMFA, protein G [93], IgA, and IgG [104]. Tighe et al. [94] find that between two Group 

IV materials (etafilcon and Vifilcon), the most anionic of the two  (etafilcon) shows the 

greatest adsorption both surface and matrix bound, with Group II showing little surface, 

and no matrix bound protein. The negative charge arises from additives, generally used to 

increase water content. The fact that lysozyme is a very basic protein (carries net positive 

charge up to pH 11), suggests that electrostatics are the driving force for adsorption, at 

least to Group IV lenses for lysozyme. Group I (including polymacon) shows the lowest 

amounts, and will adsorb a submonolayer coverage of protein [96]. This is likely due to the 

lack of charge attraction for protein such as lysozyme. Albumin, however, deposits in 

greater amounts on polymacon (Group I) than on etafilcon (Group IV) [105]. 

Garret et al. [106] have tried to correlate the proportion of MAA (methacrylic acid) 

or NVP (N-vinyl pyrrolidone), to adsorption of lysozyme and human serum albumin 

(HSA). HEMA lenses are often made with either common additive: MAA, which increases 

anionicity and water content, or NVP, which increases water content without charge. Not 

surprisingly, lysozyme deposition onto the surface, and into the matrix, increases with 

MAA proportion, while HSA (isoelectric point pH 5) decreases. This matches with 
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electrostatic expectations for positive lysozyme, and negatively charged HSA. NVP 

increases both lysozyme and HSA, but less significantly. A combination of NVP and MAA 

shows that MAA dominates the effects. Garret notes that for hydrogels with similar water 

content, lysozyme adsorption varies largely, but HSA does not, again indicating that 

electrostatics dominate, at least for lysozyme. The suggested mechanism is an increase in 

anionicity and pore size for MAA content, and an increase in polar content for NVP. The 

increased polarity allows hydrogen bonding and increased hydrophilicity, which, it is noted 

is somewhat counterintuitive for lysozyme, which normally prefers hydrophobic surfaces. 

Soltys-Robitaille et al. [107] include a cationic group I material in their study with anionic, 

and non-ionic materials. They find that anionic HSA adsorbs significantly to the cationic 

lens, while lysozyme to the anionic lens. Even within RGP lenses, which adsorb little 

protein, Botempo et al. [108] find a greater deposition onto higher charged siloxanyl 

polymers. Other studies back up the importance of electrostatics [109, 110]. This 

demonstrates that electrostatic charge is a dominant effect in adsorption, but the increase 

with NVP shows it is not the only one. Interestingly, however, there appears to be a 

relationship between the oxygen permeability of the RGP lenses and the surface roughness 

[111], a fact which may lead to increased adsorption of pathogens. 

A study [112] of HSA finds that it adsorbs in the following order of decreasing 

adsorption vifilcon (polyvinylpyrrolidone (PVP) containing Group IV), tefilcon (Group I), 

etafilcon (non-PVP, MAA Group IV). This clearly shows the effect chemical makeup has, 

considering vifilcon is less ionic. Two Group IV materials, differing mainly in their 

additives, have completely different adsorption patterns for HSA. Decreasing pH increased 

adsorption, as the protein approached its isoelectric point. For purely electrostatic reasons, 

one might expect that etafilcon would thus become more favourable since charge repulsion 

is lowered. That this is not the case shows that PVP may be a major factor in adsorption. 

For tefilcon, hydrophobic dehydration may increase adsorption, or the fact that tefilcon is 

lathe-cut may increase surface porosity. Most lathe cut lenses are polished, however, 

leading to a smooth surface with small scratches. It is noted here [112] that the 

hydrophilicity of the bulk material does not necessarily correlate with the hydrophilicity of 

the surface.  
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One conventional lens worth mentioning, omafilcon, takes a unique approach to 

preventing adsorption by mimicking a cell surface to which little adsorbs. By incorporating 

phosphorylcholine, the surface of the hydrogel mimics the head groups of phospholipids. 

Investigations [79, 80] have shown that compared to Group IV etafilcon, and Group II 

atlafilcon, and permaflex lenses, omafilcon exhibits less protein deposition, and less lipid 

deposition than any other Groups I, II, IV lenses tested. This clearly demonstrates that 

chemical makeup is a significant factor in adsorption. In addition, patients find that 

omafilcon lenses are more comfortable to wear [80]. 

It is clear that the conditions of water content, and especially ionicity are important 

factors. For example, CSITM lenses, which had previously been found to adsorb much less 

protein than other lenses, were no more resistant to deposits when compared to lenses from 

the same group [113]. However, in another study comparing CSITM to PreferenceTM 

(Group I), they were found to be more protein resistant [114]. Etafilcon has twice the 

lysozyme uptake of vifilcon [110], both group IV materials. These, and the previously 

mentioned examples show that there is dependence upon chemical structure. This is 

consistent with some theoretical models, which have found the heterogeneity of a surface 

can play a large role in adsorption. 

 

2.2.2.3 The State and Type of Protein 

New lenses are being made which incorporate silicone in them to improve oxygen transfer 

to the non-vascularized cornea. These materials are low water content non-ionic lenses 

(Group I). Because the silicone makes the surfaces poorly wettable, surface treatments 

such as plasma oxidation, or plasma polymerization are carried out [115]. The surfaces of 

some of these have been characterized using XPS [116] and SEM [115]. Jones et al. [117] 

looked for differences between etafilcon (conventional group IV hydrogel) and balafilcon, 

and lotrafilcon (both silicone hydrogels). Conventional hydrogel deposition was much 

greater (not surprising for a Group IV material) than the silicone materials. It was 

significant, however, that the protein on silicone lenses had a much greater percentage of 

denaturation than conventional lenses (also seen in [118]), and that lipid deposition was 

increased (since silicone is hydrophobic). PurevisionTM (balafilcon)also exhibits a rather 
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unique structure, containing holes which are several hundred nanometers in size [115]. 

Pores of this size may help transport water and ions, but may also have a dramatic effect on 

protein adsorption. This brings up the question of whether it is simply the amount of 

protein, or the type and state of the protein, which is related to its pathogenicity. 

Ultimately, the words pellicle, biofilm and deposit are frequently interchanged, 

along with many other words in the discussion of protein adsorption to lenses. Hart et al. 

[99] have tried to prevent this sort of language ambiguity. After all, a certain amount of 

protein may be beneficial, and furthermore, necessary to make the lens biocompatible with 

the eye. The pellicle, referring to the normal coating, is found by Hart to be from 0.1 to 

8.6μm thick (thicker on group IV lenses). Deposits and biofilms, on the other hand, should 

be reserved for potentially pathological protein. They believe that it is not the pellicle, 

consisting mostly of loosely associated protein, which causes problems, but the matrix and 

denatured “abnormal” protein. Unfortunately, most studies detect overall protein, and do 

not differentiate. 

A significant finding on group IV lenses was a 30KDa previously unidentified 

protein [119], which turns out to be a lysozyme dimer [120]. It is determined [120] that this 

dimer appears within one hour of wear on the group IV lenses, but is not detectable in the 

tear film. The dimer is not present on group I, or II lenses, and is denatured, and 

irreversibly bound to the lenses. However, much of the lysozyme found on the group IV 

lenses is still biologically active, which may be of importance for bacteria adhering to the 

lenses [94, 109]. In contrast, lysozyme on non-ionic contact lenses is found to be 

predominantly inactive [109]. ATR-FTIR investigation has shown that γ-globulin protein 

denatures and orients itself during adsorption to PHEMA lenses and that binding affinity 

increases with the amount of denaturation.   

Much work is concentrated on lysozyme, and albumin, which may be responsible 

for pathogenicity. However, other proteins may be problematic as well. Lenses from 

patients with Giant Papillary Conjunctivitis show increased IgM protein deposition [121], 

and decreased IgA deposition [122] on their lenses [121]. Lysozyme, lactoferrin, and 

several other immunoglobin deposits show no difference between unaffected and affected 

patients [121]. It is not clear, however, whether this is the cause or result of the condition. 
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2.2.2.4 Kinetics 

The kinetics of deposition are also frequently studied on contact lenses. Many groups find 

that protein adsorption occurs rapidly at first, and then slowly for some time, often 

reaching a plateau. This is, however, dependent on the type of protein and lens. For 

example, Lin et al. [91] find that protein is present after as little as one minute, and 

plateaus after as little as 24 hours. Lysozyme continues depositing for over a week. This 

illustrates the downfall of total protein assays, which do not differentiate between particles. 

Leahy et al. [93] also find that most studies only look at long term deposition but that 

significant adsorption has occurred after only one minute of wear. Ionic lenses are often 

found to have long term adsorption, while non-ionic lens adsorption halts after the quick 

initial adsorption [98]. These results agree with the work of Lin, since lysozyme has little 

affinity for non-ionic lenses. Because proteins are capable of changing conformation upon 

adsorption, kinetics are not a mere problem of particle adsorption (as in colloidal models). 

Indeed Garret et al. [112] see total adsorption occurring very fast and reaching a plateau, 

while irreversible adsorption grows slowly with no plateau in sight. This suggests that 

irreversible deposit growth is time-limited by the kinetics of denaturation, a postulate 

supported by ATR findings [112]. Of course these averaging techniques say nothing about 

how these deposits are forming in three dimensions. It is found, for example using AFM, 

that deposits build up uniformly initially, and over longer times begin to form non-uniform 

deposits [123]. A “foundation” layer of mucin has been found beneath protein deposits 

during study of one hydrogel contact lens [124]. This may be beneficial, as mucin normally 

coats the eye, promoting wettability. 

 

2.2.2.5 Location of Protein Adsorption 

A few studies find differences in adsorption between different areas of the lens. Using 

immunofluorescence in one case, and antigen-conjugated gold in the other, it is observed 

[93, 125] that there is more protein deposited on the front surface of the lens than the back. 

Possible reasons for this are the effect of blinking, differences in posterior and anterior tear 
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film, a thinning or drying of the tear film on the front surface [93], or additional mucus on 

the front [125]. Heiler et al. [126] look at the adsorption difference between an inner 

portion and outer (rim) portion of the lens. Using ninhydrin assay, they find Groups III and 

IV hydrogels deposit more on the outer portion of the lens than the inner portion, while 

Groups I and II show no difference. They suggest that it may be related to a difference in 

how the lenses are cleaned (such as rubbing them) or that the differential thickness of the 

lens may be responsible. They also postulate that the lens may be macroscopically 

inhomogeneous, however, inhomonogeneity over lengths of many mm’s seems unlikely. 

The phenomenon of matrix bound protein is interesting in itself, and Jones et al. 

[95] find that while surface protein reaches a plateau after one day, total protein on Group 

IV lenses took longer (up to seven days), and Group II lenses did not reach a plateau. They 

conclude that chemical structure is a determining factor. Albumin and lactoferrin are 

suggested to be the contributers to the growth on Group II lenses due to their affinity for 

NVP (also [98]). Some studies have tried to quantify the matrix bound protein, and it has 

been found to be up to 33% in Group IV lenses [88]. Meadows and Paugh [97] find that in 

terms of surface protein quantity, Group I and IV lenses are similar, but that Group IV has 

a large amount of matrix bound protein. In general, there is more surface bound protein 

than matrix protein [98]. 

Lysozyme is predominantly the smallest most positively charged molecule studied, 

and thus is implicated as being the major component in most deposits. While it is by far the 

largest component of this group of proteins in the tear film, other proteins exist which are 

smaller, with greater positive charges. These should have even greater affinity for Group 

IV lenses, and the matrix. Major Basic Protein (MBP) is such a protein, which can cause 

vernal Keratoconjunctivitis. Using immunofluorescence, one study [96] is unable to find 

MBP on group I lenses, but it is contended that it may bind better to group IV lenses, 

which is undoubtedly true. There are also other small proteins, which are not normally 

studied [96]. 
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2.2.2.6 Dependence on Tear-Film Composition 

While all of this is very informative, the real tear film is a multi-component system, 

containing not only many proteins, but many types of lipids as well. For example, in a 

study by Botempo et al. [127], protein, lipid, and protein-lipid solutions are tested for the 

amount of protein and lipid deposited. They find that lipid presence decreases protein 

adsorption only to Group IV lenses, while protein decreases lipid deposition to all lenses, 

particularly Group II. Suggested reasons are that for Group IV lenses, once proteins 

adsorb, they decrease the hydrophilicity of the surface slightly, which allows lipids 

(especially polar lipids) to adsorb, increasing the hydrophobicity and preventing further 

protein adsorption. On Group II lenses the protein is able to out-compete the polar lipids 

for the limited polar binding sites. Thus, the overall effect is a reduction in the preferential 

adsorption of a lens for protein or lipid.  Botempo et al. [108] repeated this study on rigid 

gas permeable lenses which incorporate silicone and contain no water. They find that lipid 

deposition is greater than protein deposition when considered individually. When 

combined, however, protein deposition increases by four times, while lipid deposition is 

reduced on siloxanyl alkyl acrylate lenses. Silicone being hydrophobic, would naturally 

attract more lipid. Polar lipids will leave their hydrophilic head pointing away from the 

material. This makes the effective surface much more hydrophilic, allowing protein to 

deposit. The depositing protein, and polar lipid headgroups in turn, make an unfavourable 

surface for hydrophobic lipid parts to adsorb. Thus, the finding is consistent with their 

previous study, showing a reduction in preferential adsorption. A three-step adsorption 

process is therefore suggested for lipid-protein solutions. 

Ultimately patients would like to be able to wear contact lenses at night, but this 

has not been possible to achieve safely. One reason for this is that during eye closure there 

is less oxygen transport, but it is also known that the closed eye tear film differs from the 

open eye tear film. It has been found [128] that the loosely adsorbed protein mimics the 

open, or closed eye tear film composition. Closed eye tear film contains less lysozyme, and 

more of other proteins such as IgG, SigA, C3. The rate of adsorption is also found to be 

lower in closed eye rather than open eye. It is postulated, that because reflex tear flow is 

reduced by 90%, and lysozyme is reduced, bacterial growth may be favoured. 
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A problem with in-vivo studies is the patient-to-patient variation in tear film 

composition. Most studies have found this to have little effect on adsorption (eg. [93]). 

This suggests that adsorbed quantities of protein reach a maximum well below the tear film 

quantity. A study on tefilcon (Group I), and vifilcon (Group IV) [129] finds that lysozyme 

deposition on Group IV lenses exhibits subject dependence, but not on Group I. On low-

water non-ionic lenses, there are few binding sites, and little total protein adsorbed, 

allowing only those proteins with the highest affinity to adsorb. Group IV lenses, on the 

other hand, have an abundance of both polar, and apolar binding sites, allowing the 

proteins in highest concentration to initially bind, to be replaced later by higher affinity 

ones. This allows subject dependence, where protein concentrations will vary (Group IV 

dependence also found in [130]). Jones et al. [95], however find no dependence on 

variations of tear film protein for Group II, and IV lenses, as opposed to lipids. In-vitro 

studies by Prager et al. [88] find that different combinations of proteins yield different 

depositions, indicating that competition for binding sites may be non-negligible. Sack et al. 

[131] study only non-ionic lenses, and find that low water content lenses exhibit arbitrary 

selectivity, which can not be related to chemical makeup. This suggests patient 

dependence. High water content lenses, on the other hand, adsorb predominantly lysozyme. 

 

2.2.2.7 Experimental Methods 

Various methods have been used to study contact lens deposition. Since many methods 

focus on total protein adsorption, the data may not be as informative as once thought. The 

type and state of protein most likely have far more profound an effect upon the 

pathogenicity of a deposit. 

Optical microscopy has been frequently used to try and classify deposits. For 

example, Kurashige [132] makes the assumption that visible protein equates to the total 

amount of protein. Not only has this been shown to be quite unreliable [87, 133], but also 

does not allude to the state of protein. Minno et al. [87] have tried to find a correlation 

between visible deposition and quantitative methods. Normally a scale, such as the Rudko 

method, is used, which categorizes deposits according to their ability to be seen under 

various conditions (naked eye, 7x magnification etc). They compare their results to a 
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commonly used colorimetric quantitative method called the Ninhydrin assay. Not 

surprisingly, it is found that visible deposits increase with wear time, though heavier 

deposits are not correlated to increasing wear. They conclude that probably the state of the 

protein is more important than simply the amount. Protein is not normally visible, and thus 

visible protein deposits may represent denatured protein which scatters more.  

Scanning Electron Microscopy (SEM) has frequently been applied, but like optical 

microscopy is not easy to correlate to amounts of protein. The only measurement that can 

generally be made is the area of coverage after the lens is coated with gold, and this area 

does not include matrix bound protein, or homogenous layers of protein, and takes no 

account of the volume of deposits [113]. In addition, extensive preparation is required 

before imaging can begin. This often leaves deposits which can’t be distinguished from 

protein deposits [93, 134]. Thus, while SEM is important in characterizing the deposits, it 

cannot be correlated quantitatively with assay, or spectrophotometry methods. Because of 

this, many studies use optical microscopy and/or SEM only as a support to other more 

quantitative methods [87, 92, 93, 113, 133, 135]. 

Atomic Force Microscopy (AFM), when applicable, is probably a better method 

than SEM, or optical microscopy, due to its ability to carry out measurements in 

environmentally relevant situations such as buffer liquids, and its ability to measure 

volume [136]. Unlike area, volume can be related, at least somewhat, to the quantity of 

protein deposited. For single proteins, it is found that there is a direct correlation between 

protein volume and molecular weight [137]. Baguet et al. [136] used AFM in conjunction 

with sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) to quantify 

proteins. They found both uniform deposits, which appeared initially, and larger discrete 

“granules” which appeared after longer times. Baguet also attempted to find the thickness 

of deposits by scratching a hole in them, but because it was not possible to find the surface 

the usefulness of this method is questionable. It would have been difficult to tell if the 

bottom of the deposit had been reached, or if they were scratching through the lens surface 

itself. 

One of the most informative methods, especially for in-vivo studies is gel 

electrophoresis [105, 117, 120, 127, 129, 136], which is able to distinguish between 
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different types of proteins. It is not always possible to distinguish the exact protein, but at 

the very least, groups with proteins of similar mass/charge can be distinguished. Lin et al. 

[91] were able to distinguish that the continually increasing component on Group IV lenses 

is lysozyme, and that other proteins are more or less maximally adsorbed within 1minute. 

Leahy et al. [93] distinguished deposition anywhere from one minute to eight hours. 

Coomassie blue staining gels, in conjunction with absorbance measurements, has 

also been found to be an acceptable but tricky method, exhibiting linearity in the 14-100μg 

range [138]. Goldenberg and Beekman [139] find Coomassie blue R sensitive to 2μg/cm2 

lysozyme. A problem of many dyes is that they adsorb themselves onto, and into the 

hydrogel material, creating massive non-protein-specific staining. As a result, a de-staining 

procedure must take place in order to remove non-protein bound stain. Unfortunately, de-

staining is not easy, and possibly unachievable with many other dyes [139]. While 

Coomassie blue may not be the most sensitive method available, it has been shown to 

agree with the Ninhydrin method [130]. 

When using assay methods such as Lowry, Biuret, and BCA (bicinchonic acid), it 

is important to calibrate the data according to the protein being studied [87]. This is an 

important point, since the molecules that are used to bind to the proteins and “color” them, 

do not bind equally across different types of proteins. It is also likely that the state of 

protein may affect binding, leading to erroneous conclusions. Ninhydrin assay is used quite 

commonly [87, 126, 133, 140]. It, along with other assay methods, and gel electrophoresis, 

is subject to the efficiency with which the protein can be removed from the lens itself, and 

to an assumption that the protein is largely unchanged by the methods used to extract it. 

Trifluoroacetic acid (TFA) and acetonitrile are one method suggested by Keith et al. [89] to 

remove protein. They use HPLC, BCA, and SDS-PAGE to measure the extracted protein, 

concluding it is near 100% efficient. Hydrolysis of the proteins is found to be a better 

method than SDS extraction [100], which may remove as little as 25% of the bound 

protein. Polymer hydrolysis accounted for little of the measured values. An additional 

concern is adsorption to the container the protein is in, which has been seen to be up to 2/3 

of the removed protein [141]. The previously mentioned factors mean that these assay 

methods have detection limits, which make them useful only for large quantities, and thus 

longer adsorption times. Dark field, phase contrast, and polarization optical microscopy, 
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along with Coomassie blue, and oil red O staining are such methods [93]. Most assay 

methods such as BCA and Lowry can detect as low as 5μg of protein, which is acceptable 

in most circumstances.  

Confocal Microscopy [97, 106] in conjunction with fluorescence labeling, allows 

some measure of both surface and matrix bound protein. However, the protein content can 

only be measured with depth resolution of about 1μm. 

Xray Photoelectron Spectroscopy (XPS) [96, 142] can be used to quantify protein 

through nitrogen content, for polymer substrates that have little or no nitrogen. Ichijima et 

al. [142] applied this method to siloxanylpropylmethacrylate lenses, calculating relative 

protein adsorption through nitrogen content, to test the efficiency of cleaning solutions. 

XPS is also useful in characterizing the surface of the biomaterial itself. Attenuated total 

reflection fourier transform infrared spectroscopy (ATR-FTIR) could also be applied to 

characterize both protein content, and biomaterial composition, albeit very thin films are 

required [143]. Additionally, electron induced vibrational spectroscopy may find similar 

usefulness in the study of biomaterials [144]. It does not damage the sample, while 

allowing measurement of hydrogen content (unavailable in XPS), and the ability to 

discriminate aliphatic and aromatic molecules. 

Other common techniques include UltraViolet Spectroscopy   [95, 98, 102, 107, 

145], chromatography techniques [89, 114, 127, 141], and fluorescence techniques (either 

direct, or through labeling) [93-95, 97, 98, 104, 106, 146]. These normally yield good 

quantitative results, and some techniques, such as UV/fluorescence are quite easy to apply, 

often without having to remove the protein from the lens. Ellipsometry has also been 

attempted for the measurement of the thickness of protein films on hydrogels, with 

possible resolution of 30-40Ǻ [147]. MALDI [96, 107] is a relatively new technique 

capable of measuring submonolayer adsorption, and small protein <15KDa. Unlike XPS, it 

is capable of detecting different types of proteins. An interesting technique is suggested by 

Rebeix et al. [123], for estimating which surfactant cleaners will be efficient at removing 

protein. Maron’s method forms the basis for their estimates. This consists of measuring the 

delay in the appearance of the critical micellar concentration between a liquid surfactant 

solution, and the same solution containing a lens. The longer the delay, the more the 
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affinity is for the lens. Comparing the affinity to quantitative protein measurements using 

BCA colorimetric assay shows good correlation.  

 

2.2.2.8 Cleaning Methods 

Since protein cannot be prevented from depositing at this time, many contact lens 

companies have adopted various cleaning regimens meant to prolong lens life. Some of the 

methods include disinfection with chemicals such as hydrogen peroxide, surfactant 

cleaning, enzyme cleaners, and rubbing the lens while in solutions. The effectiveness of 

many of these methods is unclear, and consequently studies have tried to look at their 

efficiency. Two popular enzyme cleaners are papain, which removes only protein, and 

pancreatin, which can also remove lipase, and amylase. By examining lenses with optical 

microscopy Kurashige et al. [132] found that papain was better at removing protein. They 

found that cleaning efficiency also depended on the type of deposit. Light deposits could 

be removed after several cleanings, but heavy deposits could not, suggesting that the 

protein must be in a different state, giving it a higher affinity for the surface. Hence they 

stress that regular cleanings are better than one long occasional cleaning. Myers et al. [90], 

however, found that papain enzymatic cleaners did reduce visible protein (which is what 

Kurashige [132] looked at), but that the overall protein is not significantly reduced. This 

poses a problem, since as they suggest, the enzyme may remove the top unperturbed 

proteins, but leave behind the denatured and matrix bound protein. If this is indeed the 

case, the cleaner may be of no use, since it is the denatured protein that is most often 

implied to be problematic. There have also been indications that while papain removes 

some protein, that papain irreversibly adsorbs onto the surface [148]. Studies of three 

commercial cleaners [133] using optical microscopy and ninhydrin assay, found no 

significant difference between their cleaning efficiency, except on a Group II lens. The 

Group II lens indicated that Sensitive Eyes™ produced by Bausch and Lomb was more 

effective than Coopervisions Miraflow™. In addition, neither alcohol nor nylon particles 

appeared to have any significant advantage. A study of six commercial cleaning systems 

on the four FDA categories of lenses using high resolution gel electrophoresis, and protein 

assay, indicated that only 1/3 to ½ of protein is removed [149]. Lysozyme is the only 

 



Chapter 2: Studies of Protein at Solid Interfaces 43 

protein measured to be removed. Lactoferrin, albumin, and glycoprotein, are unable to be 

removed, which might be because these are fairly hydrophilic proteins. It is apparent that 

even the effective cleaners are not able to remove all the protein [86, 133]. In fact, 

Senchyna et al. [118] found an increase in lysozyme adsorption to etafilcon (group IV) 

after polyaminopropyl biguanide (PHMB) based regimen (ReNu Multiplus™) cleaning, 

however PolyQuad (PQ) based solution (Opti-Free Express™) resulted in less denatured 

protein. 

Different methods are used in cleaning solutions. Complete Comfort Plus™, for 

example, uses high ionic strength to disrupt the ionic bonding of lysozyme and other 

proteins, and to prevent re-deposition. ReNu™, on the other hand, strips calcium ions that 

stabilize lysozyme bonding. Simmons et al. [150] find that while Complete Comfort 

Plus™ removes the most protein, neither Complete™ nor ReNu Multiplus™ are able to 

remove all protein. They also believe that Complete™ removes more “less available” 

protein, which refers to matrix, or irreversibly bound protein. They base this on the fact 

that there is approximately the same surface protein left after cleaning, however, 

Complete™ removes more protein, which may have come from the matrix. Liu et al. [145] 

also find Complete™ to be more effective by up to two times in-vitro, and even more in-

vivo. One of their suggestions is that ReNu™ is more basic than Complete™, which would 

lower the cationic charge on lysozyme, and thus its affinity for contact lenses. 

An alternative to using chemicals to try and remove already deposited protein is to 

use chemicals to alter the proteins so that they do not want to deposit, or are reversibly 

adsorbed. Bendazac lysine, a non-steroidal anti-inflammatory drug (NSAID), is supposedly 

capable of preventing lysozyme denaturation, which has been implicated in irreversible 

adsorption. Missiroli et al. [135] state that there are indications that denaturation probably 

depends on the polymer used, rather than just equilibrium water content (EWC). Lysozyme 

adsorption is reduced to a quarter its original value in the presence of bendazac lysine, and 

is more easily removed. The reduction in deposition is also backed by several other studies 

[151, 152]. 

It has been noticed in several clinics that a hazing of contact lenses occasionally 

occurs, which reduces visibility, and Sack et al. have studied this phenomenon [103]. 

 



Chapter 2: Studies of Protein at Solid Interfaces 44 

Originally, because all patients experiencing the hazing had used hydrogen peroxide 

disinfection, a connection had been drawn. A detailed study of the lenses indicated that this 

was occurring only on Group IV lenses, and that lysozyme was the culprit protein. It was 

found that rather than hydrogen peroxide, stannate anion which is added to stabilize 

cleaning solutions, bound to the lysozyme, presumably causing it to denature, become 

opaque, and increased its affinity for the lens. Because lysozyme is so cationic, it allows 

itself to bind to the anionic Group IV hydrogel (due to MAA), and bind extra anionic 

species as well. Clearly, the components in some cleaning solutions are actually making 

the protein problem worse. 

Much more work must be done in the area of cleaners to elucidate their efficiency 

at removing protein, as well as to determine optimum cleaning times, and the type and state 

of protein they remove. Care must be taken to ensure that cleaning solutions are not 

making matters worse. For enzymatic cleaners, one would expect, in general, that the 

longer the cleaning time the better, and this is seen in at least one study [153]. Increased 

cleaning times (under 1minute) with surfactants has also been shown to improve the 

amount of protein removed [154]. Interestingly, beyond some point (30 to 72 hours), it 

appears that the removed protein may begin to redeposit [145]. An interesting approach to 

predicting the efficiency of a cleaner [123] is presented in the experimental methods 

section. 

 

2.2.2.9 Pathogen Relationship to Protein Deposits 

The pathogenicity of a lens is not only related to its protein content alone, but to unicellular 

organism deposition which is affected by the protein deposits. Foreign organisms such as 

bacteria, fungi, yeast, and amoeba are all present under normal conditions, but can create 

severe problems if an imbalance in the eye allows them to propagate. The complete 

removal of one species, for example bacteria, may not be a good thing, as this may allow 

yeast, or fungi, to be favoured.  

Acanthamoeba are responsible for Acanthamoeba keratitis infection. Simmons et 

al. [92] have studied whether or not this may be related to the amount of protein deposition 

on the four FDA lens groups. Interestingly, they find that the active form of amoeba 
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(trophozite) adsorbs more to all worn (protein covered) lenses except Perfilcon (group IV 

material). Cyst adsorption, however, is increased, but on etafilcon (group IV) mostly. A 

correlation between extent of deposit and Acanthamoeba adsorption is unable to be drawn. 

Similarly, bacterial infection and irritation may be promoted by adhesion to contact 

lenses. This has been examined in a number of studies [105, 152, 155-157]. Lysozyme is 

an antibacterial protein and its adsorption to group IV lenses may turn out to be beneficial. 

Thakur et al. [155], however, find that lysozyme greatly increases bacterial adhesion, but 

that it inhibits elastase activity, which may decrease the pathogenicity. Another study [157] 

finds that neither lysozyme nor lactoferrin inhibited growth of bacteria on soft contact 

lenses. 

 Increasing bacterial adsorption correlates with increasing albumin concentrations. 

Many bacteria, such as P. Aeruginosa adhere to the deposits themselves. Interestingly, it is 

noted that for Polymacon, the rate of bacterial adsorption decreases with increasing 

adsorbed albumin concentration, while the reverse is true for etafilcon. This may indicate 

differences in the conformation of the protein in the deposits [105]. This is all well and 

good for single bacterial species, but special polysaccharides and oligosaccharides on 

proteins carry out bacterial adhesion [101]. As we have seen, protein deposition is type 

dependent on both lens and protein, and we should thus expect some dependence in protein 

adhesion. This is, in fact, what has been observed [157]. 

 It has been documented [156] that 15-day Acuvue™ lenses show more protein 

deposition than 1-day lenses. This is not very surprising even given their daily cleaning 

regime, having seen in the previous section that most cleaning solutions are ineffective. 

What is notable in this particular study is that bacterial adhesion was worse on 1-day lenses 

than 15-day. The indication is that the cleaning solutions are residing in or on the lenses 

and altering the tear film, which may in turn generate resistance in bacteria. Another 

possibility not mentioned, is that the cleaning has altered the protein in some way as to 

prevent bacterial adhesion. 

Bendazac lysine, previously discussed for its ability to prevent protein denaturation, 

has also been found to help prevent bacterial adhesion. Pre-treating the lens with bendazac 
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lysine before wearing it, provides additional protection. This again indicates, that the state 

of protein is important, as previously mentioned [152]. 

 

2.3 Nanoparticle-Protein Interactions 

Colloidal nanoparticles can be made quite easily today in a variety of shapes. These small 

particles present unique ways to study protein adsorption. At present, nanoparticles can be 

made with various surface-to-volume ratios, and out of a host of materials. Recently 

nanoparticles have been investigated as candidates for use in selective cell destruction, 

imaging, and transporting drugs through the body [158-162]. This inevitably requires 

coating the nanoparticles to prevent immune recognition. Understanding their behaviour on 

surfaces, that in many cases have similar length scales as the adsorbed protein, is an 

essential problem. There have been some concerns as to the unique properties these 

particles possess, and whether or not they may present potentially harmful effects to 

humans [163-165].  

Fibrinogen adsorbed to silica particles appears to form aggregates [53], which 

would likely promote the formation of a clot if injected into the blood stream. As another 

example, the fibrillation of β2m protein has been found to increase its rate dramatically in 

the presence of N-isopropylacrylamide/N-tert-butylacrylamide (NIPAM/BAM) copolymer, 

cerium oxide, gold, quantum dot, and carbon nanotube nanoparticles [166]. These particles 

had a range of sizes, materials, and different affinities for water. While fibril formation was 

increased, the fibrils were not elongated faster, and thus it seems it is a nucleation 

phenomenon. It is possible that the enhancement is simply due to the fact that proteins 

associated with the surface are packed denser than in the bulk, and thus a nucleation event 

is more likely, or that the surface actually aids in folding to a fibrillar state. Fibrillar states 

such as amyloids are implicated in a number of diseases such as “mad cow” and 

Alzheimer’s disease [166]. However, a point is raised that the parameters were not within 

the biologically relevant window (pH 2.5, 37oC), and increased fibrillar formation may not 

be directly associated with proteins on the particle surface. Instead the surface may act as a 

more conventional catalyst [167]. It has been seen in other studies that proteins which have 
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been reversibly associated with nanoparticles may still sustain conformational changes 

upon desorption [168-170]. 

There are a number of studies investigating fundamental properties of adsorption to 

colloidal particles. Modified polystyrene nanoparticle surfaces with different acidic and 

basic groups have been studied with 2-D electrophoresis and bicinchoninic acid ( BCA ) 

assay [171-173]. In general, after classifying the surfaces, and proteins according to 

acidity/basidity, basic groups on latex (giving positive charge at pH 7) adsorbed proteins 

with pI <5 (and thus negative charge at pH 7) the most, and vice versa for acidic latex 

groups [171]. Changes in the charge groups on the sphere generally only affected the total 

amount of protein, and not the ratios of different types of protein [171, 172]. Fibrinogen 

exhibits particularly high affinity for adsorption [172]. Increases in adsorption of plasma 

proteins are also generally correlated with an increase in hydrophobicity [173]. However, 

the actual chemistry of groups used plays a strong role. For example, methylstyrene has 

relatively the same hydrophobicity as tert-butylstyrene, but adsorbs much more protein. 

Lysozyme and bovine serum albumin (BSA) both decrease in α-helix content after 

adsorption to silica particles [170]. By varying the protein:particle ratio, different amounts 

of protein adsorb to the silica. The α-helix content decreases more at low levels of 

adsorbed protein, especially for lysozyme, which exhibits some charge dependence. BSA 

still shows strong conformational changes even at plateau adsorption, and does not recover 

all its helicity when desorbed from the silica surface [170]. Magnetic relaxation studies of 

methaemoproteins adsorbed to latex particles also indicate conformational alterations 

[174]. The haem pocket is more open than its bulk form in the case of myoglobin, and 

more closed than its bulk form in haemoglobins case. 

Since protein will only congregate at an interface in relatively small numbers 

compared to bulk, calorimetric measurements are difficult to perform. Nanoparticles create 

a high surface to volume ratio, leading to a number of calorimetric studies exploiting this 

fact [175-177]. Larsericsdotter et al. [175] find that for low salt concentration, protein 

lysozyme, ribonuclease A (RNase) adsorbs strongly onto silica with up to 25% reduction in 

the denaturation enthalpy, and a decrease in the denaturation midpoint – Tm of up to 6o. 

This study does not use maximal adsorption values, as they want to decrease protein-
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protein interactions on the surface. Decreased enthalpy can be attributed to the high 

electrostatic attraction to the surface. No change in enthalpy is seen for higher ion 

concentrations, indicating less denaturation upon adsorption. A decrease in Tm is still 

present though, and suggests that the stability of the protein is reduced. An increase in 

width upon adsorption is seen for all the proteins. The increase in width is attributed to a 

greater range of conformations of adsorbed proteins, and disappears at high ionic strength. 

 Addition of calcium ions, which are known to stabilize proteins, decreases the 

width of the denaturing transition due to less distribution in conformation. Haynes et al. 

[176] have seen similar effects on negatively charged polystyrene colloid using titration 

microcalorimetry. The maximum amount of protein adsorbed (plateau value) for lysozyme 

and α-lactalbumin occurs at the isoelectric point of the protein-sorbent complex. This is 

somewhat expected, as this state represents an almost perfect match of charge density 

between the sphere and protein. This is consistent with an electrostatically driven 

adsorption process. Carboxyl groups lie close to the surface and a significant degree of 

denaturation is inferred from differences in titration between free and adsorbed states [176, 

177]. Dehydration force, denaturation, and charge regulation are identified as the main 

contributors to adsorption.  

In another study by Haynes et al. [177], entropic effects, such as hydrophobic 

dehydration, are identified as favourable occurrences for adsorption. An increase in 

rotational entropy may also be an entropic contributor. Haynes notes [177] that 

electrostatic and other energetic effects are also important. On the other hand, hydrophobic 

dehydration allows bonding in otherwise electrostatically repulsive situations as shown in 

an extensive series of experiments with RNase and HPA on polystyrene particles [23, 41-

46] (discussed in Contributions to Adsorption). These experiments exploit titration, 

electrophoresis, and radiolabelling measurements to show that re-protonation of charged 

groups, and ion coadsorption also play important roles in charge matching of the protein 

and sorbent surface [23, 41-47]. On hydrophilic hematite particles, hard proteins such as 

RNase will only adsorb if electrostatically favourable, while soft proteins can adsorb 

purely from entropic considerations, even under charge repulsion [48]. The “synergistic” 

contributions from the entropic and enthalpic terms are studied and discussed in a study of 

lysozyme and  α-lactalbumin on polystyrene particles [49]. Other studies show that 
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competitive and sequential adsorption onto colloidal particles is determined mostly by 

electrostatics, so long as the proteins have moderately similar internal stability [50, 51]. 

However, the competition will always be won by proteins with very low internal stability. 

Irreversibility on hydrophobic substrates means the adsorbed layer is kinetically 

determined. It has also been shown, using silica particles, that of seven proteins studied, all 

had their internal stability decreased upon adsorption [52]. 

A bit different approach is presented by Kandori et al. [178], who use colloidal 

calcium hydroxyapatite rods to show that there is an adsorption dependence on mean 

particle length. This indicates that there is a dependence on the ratio of C (calcium ions, 

positive charge), or P (not charged) sites which changes with the changing crystal 

dimensions. BSA apparently binds more strongly to C sites, whereas lysozyme does not. 

Electrostatically this makes sense, as lysozyme is positively charged and would require 

hydrophobic interactions to make adsorption favourable.  

HSA adsorbed onto TiO2 (titanium dioxide) nanoparticles reaches a steady state of 

coverage within a few minutes, even under electrostatically unfavourable conditions  [179]. 

This suggests conformational change plays an important role. By calculating the area each 

HSA molecule occupies in its adsorbed state vs. bulk, it is possible to deduce a number of 

details [179]. In particular, it appears that HSA adsorbs with a minimum at the isoelectric 

point (max. proteins/unit area), and that it is only weakly dependent on electrolyte 

concentration. At the isoelectric point, interprotein charge repulsion is minimized, allowing 

proteins to pack closely together. Independence on electrolyte concentration means HSA 

must act as a soft, deformable protein. Monitoring pH changes after addition of protein 

determines whether the act of adsorption elicits, or consumes H+ ions, allowing possible 

bonding mechanisms to be suggested. Below pH 6, ion-ion interactions, ligand reaction, 

and possibly hydrogen bonding involving carboxylate groups are responsible for 

adsorption, while between pH 6 and 7, a mix of amine and carboxylic groups are involved 

in ion-dipole, and ion-ion bonds. Above pH 7, hydrogen bonding due to amine groups is 

dominant. All of this information can be inferred with a UV spectrometer, centrifuge, and 

electrophoresis device, demonstrating the usefulness of a nanoparticle approach to general 

understanding of adsorption. 
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Bonding to nanoparticles, like other surfaces, can be reversible. HSA binds 

reversibly to TiO2, however, exchange with bulk leaves the protein in an altered state 

[168]. Human carbonic anhydrase I reaches a dynamic equilibrium between adsorbed and 

bulk protein. This equilibrium, however, shifts to longer residence times on the silica as 

time progresses, indicating that the protein denatures in a progressive state, never quite 

regaining its structure previous to adsorption [169]. On flat hydrophobic substrates, 

proteins are reversible at low spreading, and irreversible after they have had a chance to 

spread more [30]. Thus, while often true, conformational change does not necessitate 

irreversible adsorption. 

Metallic nanoparticles such as gold and silver exhibit a localized surface plasmon 

resonance (LSPR) that is size, shape, and material dependent (see section 3.1.3 Surface 

Plasmon Resonance). The shift in resonance depends strongly on the boundary conditions, 

in particular the surrounding indices of refraction, and can be used as a measure of the 

protein state [166] [180]. The LSPR of yeast iso-1-cytochrome c conjugated to gold 

nanoparticles, measured as a function of pH, could in principle determine conformational 

changes [180]. Unfortunately, in this case, the extremely large magnitude of the shift 

indicates it is simply particle aggregation occurring. During aggregation, coupling of 

modes between near, and joined particles leads to new and longer modes, which often 

continue to shift with time. This shifts the SPR peak to much longer wavelengths than are 

seen for thin coating (ie. protein conformational) changes, and broadens the peak. Cycling 

the pH has the effect of cycling the maximum absorbance (SPR peak). It returns to a 

slightly shifted position each time, however, suggesting that the protein undergoes 

irreversible denaturation, and that renaturation is prevented by protein aggregation, and 

thus, particle aggregation [180]. The results agree very well with planar SPR results, 

suggesting that this is a valuable method.  

The aggregation in the above study [180] indicates one of the major problems, in 

that nanoparticles must be either charge stabilized, or sterically stabilized. Charge 

stabilized nanoparticles will aggregate if high levels of electrolytes are present, screening 

their mutual repulsion. Polymers can sterically stabilize nanoparticles, but proteins can 

undergo conformational changes, rendering their steric repulsion null. Hence, while a 
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valuable tool, some caution is needed in interpretation of results, as there are extra 

complicating factors that arise with nanoparticle studies.  

The following study indicates the sometimes difficult nature of interpreting results. 

Shang et al. [181] perform a study which involves looking at pH effects on BSA 

conjugated to 15nm Au nanoparticles. Their method is unusual, in that they do not 

conjugate the protein to the Au before changing pH, or placing in buffer. Thus, even at pH 

2.7, aggregation takes place, presumably due to charge screening, forcing them to 

concentrate on higher pH’s. Comparing the plasmon resonances of their conjugates reveals 

the peak wavelength of those at pH 3.8 are much more red shifted than those at either pH 

7.0, or pH 9.0. This could suggest that more BSA packed onto the Au, especially since it is 

overall positively charged at pH 3.8 (and closer to isoelectric than at pH 7, or 9), leading to 

favourable attraction with the negative Au.  

An increasing blue shift in fluorescence may well demonstrate that a surface Trp 

residue is placed in a more hydrophobic environment, but does not necessitate a change in 

conformation as suggested by Shang et al. It can be accommodated by an orientation or 

packing change. If, on average, at positive charge, BSA orients itself away from the sphere 

and other BSA to face Trp, one would also expect in this electrostatic interpretation, for the 

strength order of the blue shift to be pH 3.8 < pH 7 < pH 9. A similar interpretation may be 

applied to their red edge excitation study.  

Circular dichroism (CD) studies performed by Shang et al. [181] are analyzed by 

calculating helicity from a single point on the CD curve vs. Au particle concentration. This 

greatly increases error, and it is not clear that CD fitting done in other studies of protein on 

nanoparticles is valid, since basis proteins (and thus secondary structures) are generally 

taken in their native, unperturbed state, and not associated with curved, field enhancing 

surfaces. The amount of error as quoted by Shang et al. precludes any conclusions about 

the slope of the CD helicity vs. concentration graph. However, in terms of absolute 

helicity, the pH 3.8 spheres are the most denatured for all concentrations used in the study. 

Further FTIR studies by Shang et al. indicate at best a decrease in unordered structures at 

pH 3.8 and 9.0 as compared to 7.0. The net results of Shang et al.’s multi-technique study 
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is that it can be interpreted in two opposing ways: BSA is more stable on 15nm Au at 

lower pH (as suggested by Shang et al.), or BSA is more stable on 15nm Au at higher pH. 

Not all nanoparticles are simple metallic crystallites, but can be more complex 

entities such as micelles, or liposomes. Understanding interaction with this type of 

biological particle is just as important as inorganic nanoparticles. Modified negatively 

charged liposomes adsorb more fibrinogen than neutral lipodsomes [182]. Adding PEG to 

the liposomes decreases adsorption to negatively charged liposomes, but does not affect 

adsorption to neutral ones. Neutral liposomes adsorb such small quantities of protein that 

any decrease probably can’t be detected. For PEG quantities high enough to form a 

polymer brush on the liposome, adsorption on negative liposomes is reduced to that on 

neutral ones. This suggests that polymer brushes are indeed a good way to prevent 

adsorption, and that they can completely counteract the effects of charge, presumably 

through steric hindrances. 

Apart from these studies, the availability of a range of sizes of nanoparticles also 

presents a chance to study the effect of physical constraints such as curvature. For 

example, adsorbed cytochrome c (cyt c) behaves differently on Au colloid of different 

sizes (2-4nm Au, and 16nm Au) [183]. Using a variety of techniques (UV-Vis 

spectroscopy, CD, FTIR), it was shown that conformational changes involve mainly 

conversion to β-sheets on 16nm Au, but involve some transition to α-helices on 2-4nm Au. 

Bonding is mainly electrostatic on 16nm Au, but hydrophobic bonding dominates on 2-

4nm Au on which cyt c forms a more compact, more active, protein [183]. 

Another study used CD, NMR, and analytical centrifugation, and a range of silica 

nanoparticles (6, 9, and 15nm). 15nm silica exhibits up to 6 times the effect on the 

secondary structure of human carbonic anhydrase I (HCAI) that 6nm particles do. This is 

mostly a curvature effect, as only 20% could be attributed to differences in zeta potential 

between sphere sizes. Small spheres (high curvature) may require too extensive a 

perturbation in protein structure to favourably denature the protein. Curiously though, CD 

suggests that the tertiary structure is similar between all three sizes of spheres, but the 

secondary is different. This may indicate an error in interpretation, or insensitivity in the 
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near-UV region, since the secondary structure is normally a defining force of tertiary 

structure.  

Lysozyme adsorbed to silica colloids from 4-100nm, shows size dependence as 

well  [184]. Lysozyme retains its most unperturbed conformation on small spheres, 

including more activity, and loses some of this on larger spheres. Multilayer adsorption is 

inferred on 100nm spheres. More α-helix content is lost on larger spheres, and it is 

suggested that at least some of this may be due to a larger electrostatic potential.  

Perhaps the most clear demonstration of the complicated nature of nanoparticle 

phenomena is a study that adsorbs BSA and fibrinogen adsorbed to a range of silica 

particles from 15-165nm [185]. Higher curvature (smaller particles) tends to denature 

fibrinogen more, while BSA denatures more on lower curvature particles under the same 

conditions [185]. This highlights the fact that curvature effects are not clear cut, and 

probably cannot be easily generalized. They will depend on the ratio of protein:particle 

size, and on the internal coherence, and thus nature of the protein adsorbing. Other effects 

are more general. For example in this same study both proteins denature more on 

hydrophobic particles, as compared to hydrophilic particles [185]. 

 

2.4 Multicomponent Systems 

Most studies look at only one component of adsorption at a time, due to the difficulty in 

separating effects. For more complicated systems, in which several proteins are present, it 

is difficult to distinguish adsorbed amounts of each protein. One approach [186], allowing 

for measurement of a mixture of several proteins, corroborates data from Electron 

Spectroscopy Chemical Analysis (ESCA) and Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF-SIMS) with radiolabeled protein. Radiolabeled protein allows one to 

distinguish each quantity of protein adsorbed in a mixture, by labeling one at a time. Using 

ESCA, the orientation of Fgn protein can be determined to be end-on [186]. ToF-SIMS can 

give information about the surface layer. It is stated [186] that the most biologically 

relevant layer is the surface layer, which may not be correct, as this layer is often the most 

native, and loosely bound. Because it is loosely bound, the top layer may be exchanged 
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with other proteins, allowing the bottom layer to interact. Unfortunately, for ToF-SIMS, 

the films must be dried. There are indications that drying alters the films, and may denature 

the proteins in some cases. To get around this, Xia et al. [187] soak protein films in a 

solution of the disaccharide Trehalose, which can prevent high temperature and drying 

denaturation in proteins. The Trehalose used in their study is able to protect the activity of 

the proteins, allowing them to still bind their antigens. 

 

 

 

2.5 Adsorption Modeling 

2.5.1 The Problem of Modeling Protein Adsorption 

A discussion of protein at interfaces is not complete without mentioning some theoretical 

work in the field. Ultimately, one would like to possess the ability to predict the affinity 

and state of an arbitrary protein, during interaction with an arbitrary surface. This would 

allow the determination of biocompatibility without expensive and time consuming 

experimental and clinical trials. Unfortunately, at this time, our capability does not even 

extend so far as to predict the folding of a residue sequence into a protein. There are 

several reasons for our current failure, including the following: 

1) Different residues in a protein may carry various charges, polar moments, as 

well as varying degrees of hydrophobicity. This variation between residues 

leads to heterogeneity in the protein molecule on length scales of a residue. If 

the surface is heterogeneous on similar length scales, which is almost always 

the case, then effects at this scale are generally non-negligible. Thus, for general 

solutions, detail on an atomic length scale, or at least a residue length scale 

must be included. 

2) Many proteins are macromolecules, made up of hundreds, and possibly 

thousands, of residues. Each amino acid is made up of tens of atoms. This 

amounts to possibly tens of thousands of atoms, whose interactions with every 
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other atom must be accounted for. An atomistic treatment thus requires 

enormous computational power that is prohibitive. 

3) Biologically relevant environments are aqueous, and must include water 

molecules. Water molecules account for the hydrophobic/hydrophilic residue 

effects, as well as solvation effects. These effects may extend several hydration 

layers deep, and require many water molecules to be present for each residue in 

a model. In addition, dissolved ions must be included to properly account for 

solvation and charge screening effects. This compounds the problem of 

computation, in principal requiring water-water, water-ion, water-residue, and 

ion-residue interactions to be calculated for all possible pairs.  

4) Proteins are flexible, and capable of large conformational changes. This 

destroys any hope of reducing the degrees of freedom by calculating 

interactions internal to the protein only once. In turn, the large conformational 

changes may lead to irreversible adsorption. Irreversible effects are hard to 

account for thermodynamically, due to lack of dynamic equilibrium [188]. 

5) Many biologically relevant surfaces being studied today are complex polymeric 

materials themselves, possessing many of the same modeling difficulties as 

proteins. 

The situation is far from hopeless, however, and many theoretical modeling 

attempts are being made, often in conjunction with complementary experiments. All 

approaches to date include varying degrees of approximation, but most still yield 

interesting, albeit mostly qualitative results. 

 

2.5.2 Colloidal Treatments 

One of the simplest ways to model protein is through colloidal approximations. These 

models ignore several of the complicating factors such as heterogeneity, hydrophobic 

effects, and complex flexibility. Colloidal methods treat the protein generally as if it were a 

rigid, solid object, possessing the main properties of the protein. Normally this means that 

net charge is the main quantity preserved. If conformational changes are included, it is 
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normally through the foreknowledge of what the final, and any intermediate states will be, 

and is not predicted based on the model itself. Since the protein contains no heterogeneity, 

the surface is treated as homogenous and uniform. 

To model ion chromatography, one model [189] considers both the protein and 

surface as flat planar surfaces of homogenous charge densities, which interact purely 

through electrostatic forces. As the planes come closer together, the influence of the charge 

on the surface plane causes a change in the charge on the protein plane. This mimics the 

effect of the phenomenon known as charge regulation in a protein, in which its charge 

distribution is rearranged in the presence of an electric field. Calculations with this model 

show that this additional factor should be considered, since it generates a higher affinity for 

the surface than would be seen with purely static charge. This helps to explain protein 

retention in ion-exchange chromatography. The model is extremely rudimentary, but 

highlights some important features of the underlying physics that should be considered in 

protein adsorption. 

The most common colloidal approaches are variations of the Random Sequential 

Adsorption, or RSA model. An extensive review of colloidal adsorption including the 

RSA, and several other models is presented by Adamczyk et al. [190]. The simplest form 

of RSA model works as follows: 

 Spherical particles are placed at random positions on a surface at a constant 

rate. 

 Particles that land on top of another particle's projected area are rejected. 

 Otherwise, the particle is irreversibly bound, with no lateral diffusion. 

The "jamming" coverage is defined as the point at which no more particles can be 

placed, without covering an already adsorbed particle. The model is good for low shear 

rates, and low to moderate surface coverages. The beauty of this model is its simplicity, 

and the fact that it can easily be extended, or combined with other models to enhance it. 

Solvent effects are generally not taken into account in colloidal models, since there are no 

residues with which hydrogen bonding patterns can be promoted or disrupted. Electrolyte 

effects are normally handled with a Debye parameter. RSA does not account for reversible 

adsorption of proteins with weaker affinities [188]. 
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An easy extension to the RSA model is to have the adsorption probability governed 

by the Boltzmann distribution, as opposed to a 100% adsorption probability to unoccupied 

surface. This allows the inclusion of an interaction energy with the local environment 

[190]. Another extension made by Adamczyk et al. [191] allows spheroidal particles of 

non-unity axis ratio (not perfect spheres). Additionally, random surface orientations are 

allowed, with the blocking area being the projected area of the spheroid onto the surface. It 

is suggested [191] that most globular proteins form prolate spheres, which adsorb 

irreversibly. To simplify matters, Adamczyk models both non-interacting and interacting 

hard spheroids according to the Effective Hard Particle Model (EHP). The EHP model 

replaces interacting spheres of a given size by hard, non-interacting spheres of a larger 

size, corresponding to the effective radius of interaction. They find that electrostatic 

interactions between the spheroids tend to decrease the jamming value, but increase the 

short-range order, orienting more spheroids perpendicular to the surface. In another paper 

using spheroids, Adamczyk et al. [192] find again that electrostatic interactions decrease 

adsorption.  

Since conformational changes often play such a big role in adsorption, it is 

desirable to have a model that includes this. Conformational changes tend to increase the 

affinity with which a protein is bound. Van Tassel et al. [193] propose a model, similar to 

the RSA model. Discs are randomly placed onto a surface at a given rate. If they overlap 

they are rejected, otherwise the disc sticks. Particles on the surface have the additional 

attribute that they will attempt to spread at a given rate, mimicking a conformational 

change. If the spreading causes overlap, the particle does not change. Van Tassel et al. 

[193] are able to solve this system by relating it to an equivalent RSA model. The model 

contains one type of disc with an effective diameter accounting for both spread, and 

unspread discs. They are able to correlate this data with fibronectin adsorption to silica-

titania quite nicely. Several parameters are again needed to fit the data, some of which may 

be difficult to obtain, and depend on the given protein, surface and conditions. A further 

improvement of this model is made by Brusatori et al. [194], which allows the discs to also 

desorb. Because RSA analogies will not permit this, they attempt to apply Scaled Particle 

Theory to the problem (SPT). This amounts to calculating the thermodynamic effects from 

the work required to create a region on the surface without any particles. It provides only 
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an approximate solution. The approach assumes thermodynamic equilibrium on the surface 

between adsorbates, which presumes quick lateral diffusion relative to adsorption and 

spreading rates. 

Adamczyk’s extensions still do not contain true particle surface interactions. The 

particles continue to be placed directly onto the surface with some probability, and while 

they can interact between adsorbates, they cannot diffuse on the surface. Additionally, 

there are still no interactions between free and adsorbed protein. For these reasons, 

Oberholzer et al. [195] use Brownian dynamics to drive the adsorption, considering both 

electrostatic, and van der Waals interactions. Desorption is allowed if the thermal force is 

great enough. The surface is homogeneous and uniformly charged. To mimic an infinite 

reservoir of protein at constant chemical potential, Monte Carlo method is used on the 

grand canonical ensemble. The Monte Carlo method is run periodically as particles are 

removed from the bulk solution onto the surface. Two cases are considered, one in which 

there is unrestricted diffusion on the surface, and another where diffusion is not allowed. 

Applying this model, Oberholzer et al. [195] find that for lysozyme, in the high salt region, 

the adsorbed amount depends on the protein concentration, while in the low salt region it is 

independent of protein concentration. At low salt concentrations, protein-protein 

interactions limit adsorption, and thus even at low protein concentrations, there is enough 

protein to achieve equilibrium coverage. As salt is added in the low salt regime, total 

adsorption increases. In contrast, in the high salt regime, an increasing electrolyte 

composition decreases coverage. The reason for this is interplay between the decreases in 

protein-protein repulsion in the low salt regime, and a decrease in protein-surface attraction 

in the high salt regime. The former effect will increase adsorption, and the latter decrease 

it. They suggest that a specific salt concentration for maximum adsorption exists. That this 

is not seen in experiment is recognized as a possible consequence of idealizations within 

the model. 

Oberholzer and Lenhoff [188] present a colloidal model, which adds interactions 

between particles that have adsorbed. Surface concentrations in this model are assumed to 

be directly proportional to the concentration of the bulk solution, which is rarely true for 

irreversibly adsorbable proteins [191]. Their attempt is to model reversible conditions, and 

so this assumption may be more easily made. Electrostatic and van der Waals interactions 
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are considered in the development of the isothermic adsorption, for adsorbate-adsorbate, 

and adsorbate-surface, but not protein-protein. They [188] assume that adsorbate-adsorbate 

interactions can be decoupled from protein-surface interactions, which is not generally 

true. Many proteins “spread” to increase surface contact, which results in a greater affinity, 

and this cannot occur if neighbouring molecules are too close. In addition, several 

parameters are introduced, being the equilibrium constant, a constant related to the strength 

of adsorbate-adsorbate interactions and the Debye parameter. At some point, if there are 

too many parameters, as in some models, one must practically perform the experiment to 

be able to predict the outcome.  

 

2.5.3 Atomistic Treatments 

Atomic level computer simulations would, of course, be the ideal for modeling, since the 

interaction potentials would be the only approximations, if any. Today, however, atomic 

level treatments are not computationally feasible. As a result, proteins are often still treated 

as rigid, and energies of attraction are calculated as the protein molecule is rotated 

sequentially through various angles and heights. This is better than rigid colloidal methods, 

but still does not represent the true situation. Water is often given a continuum treatment, 

as are electrolytes, in order to reduce the number of interactions. Simulations that do allow 

flexibility in the protein are extremely hard to model, and consequently, they typically 

simulate nanosecond timescales. 

Hen egg white lysozyme (HEWL) modeled atomistically, but as a rigid object 

yielded some interesting results [196]. Electrostatic and van der Waals interactions are 

used in a dielectric (screened) medium to account for water, and a 2D lattice of charges as 

the substrate. Ravichandran et al. start the protein in a random orientation above the 

surface, and using Brownian dynamics, track its adsorbtion. Lysozyme, being a positively 

charged molecule, would not be expected to adsorb to a positively charged homogeneous 

surface if just net charge is considered. However, they find that it does indeed adsorb, and 

that increasing ionic strength increases the amount of successful trajectories due to charge 

screening. They propose that the heterogeneity of charge distribution on proteins must play 
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an important role in adsorption, as opposed to just net charge, and even a single residue 

may be responsible for adsorption. 

In another rigid atomistic model, Noinville et al. [197] calculate HEWL, and alpha-

lactalbumin(ALC) interactions with poly(vinylimidazole) for multiple orientations, and for 

multiple heights above the surface. Electrostatic, and van der Waals effects are included, 

and solvent effects are included as a varying dielectric permittivity (but no dipole 

interactions). As in the previous study [196], they find dependence on the heterogeneous 

distribution of charge. This system models ion-exchange chromatography, and their results 

agree with predictions. 

A slightly more realistic model is presented by Asthagiri et al. [198]. The protein is 

treated almost atomistically, by accurately modeling almost its exact shape, and location of 

charges. They do not consider van der Waals interactions however, and consider the 

protein rigid. Their surfaces are modeled in three ways. First, they use a homogenous 

distribution of charge opposite to that of the protein. Second, they use a heterogeneous 

mixture of positive and negative charges, which yield a net positive charge. Third, they 

include 3D topography of the surface in addition to charge. They find that the 

homogeneous model is the least accurate and the 3D topography model is the most 

accurate. A heterogeneous model is best, because a protein can align its heterogeneous 

charge distribution in a favourable way with the surface. Residues, which may have been 

able to interact favourably with the substrate, are often stericly hindered from approaching 

the substrate. In the 3D topography, some steric hindrances can be overcome through 

orientation. It is suggested, that one reason colloidal and other simple methods are 

successful, is that they contain fitting parameters, which can be adjusted, and that they 

generally consider very straightforward phenomena. Asthagiri [198] suggests that the test 

of a model should be whether or not it describes the more exotic occurrences, one of which 

is the adsorption of a protein of net charge that matches the surface. 

In order to allow conformational changes, one method used by Raffaini et al. [199] 

to reduce calculations, models different domains separately. Albumin deposition onto 

graphite presents such an enormous task, Raffaini et al. opt to model two of the 

subdomains in albumin, with the assumption that all charge groups are neutral. They 
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minimize the structure, first with either an effective dielectric medium, or explicit water, 

above the substrate. Molecular dynamic simulations are then performed either with an 

effective dielectric to simulate water, or for much shorter times with explicit water. The 

longer runs in dielectric lasted for a maximum of 1ns. Runs which had occurred in 

dielectric were then re-run in explicit water to see if they would change further; however, 

this was not the case. The short runs in explicit water show little conformation change, 

while the runs in dielectric show large changes. Interestingly, the “final” conformations of 

the domains are monolayers on the surface, which create high affinity for the surface. They 

propose two stages of adsorption, one during which the molecule approaches the surface, 

losing little secondary structure, and a second stage during which the molecule changes 

orientation, and completely unfolds. This is the same spreading effect discussed previously 

in colloidal type models, and may not occur fully if other albumin molecules are present. A 

second layer depositing onto the first should not show as much rearrangement, since the 

first layer makes the surface more hydrophilic.  

 

2.5.4 Intermediate, Lattice, and Miscellaneous Approaches 

A number of approaches lie somewhere in between the full rigor of an atomistic treatment, 

and the simplicity of a colloidal treatment. In principle, these may offer the best, most 

constructive method of modeling adsorption, since they include some heterogeneity, but 

are still tractable numerically. Generally, either whole domains, or residues are modeled as 

being a single entity (often spheres), possessing the main properties of interaction of that 

domain or residue. This is not an implausible approximation since residues are generally 

not highly mobile away from the surface. Conformational changes are generally ignored, 

limiting the applications of this approach. 

An approximate domain model is presented by Sheng et al. [200], in which IgG is 

replaced with 12 spheres representing its domains. In this model, net charge has a stronger 

effect, since many residues are lumped into each sphere. However, because the overall 

shape will not be spherical, orientation effects can still occur. Orientation is dominated in 

the electrostatic regime by dipole interactions, which can cause the molecule to adsorb 
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vertically. In the van der Waals regime, however, the molecule prefers to lie flat, so as to 

bring all of its domains into contact with the surface. 

Since the area of protein folding is related to adsorption modeling, it is not 

surprising that many of the methods used for adsorption are adopted from the folding field. 

One method that shows promise is the residue or united-residue method [201]. In this 

method, interactions between all residues and surfaces are calculated atomistically. These 

values are then fed into a model of a protein, which can now consider just several hundred 

residues, rather than several thousand atoms. This is very desirable because individual 

residues are small enough that exact solvent and other effects can be included. With this in 

mind, many studies are devoted to calculating interaction energies for various residues, 

most commonly with self-assembled monolayer surfaces (SAM’s) [201-204]. 

Unfortunately, some of these models still only consider one hydration shell around a 

residue [202]. Residue-residue interactions could also be calculated. There is still an 

underlying assumption that residues are static entities, which are not affected chemically 

by the presence of other residues. However, this assumption is probably not a huge 

approximation, and the advantages of this approach outweigh its disadvantages. At the 

very least, knowledge of how the various forces drive residue adsorption, is gained. For 

example, it is confirmed computationally that hydrophobic residues bond favourably to 

hydrophobic surfaces, mostly through entropic effects. Adsorption to neutral hydrophilic 

surfaces is unfavourable and energetically driven, while adsorption to charged hydrophilic 

surfaces is energetically driven and either slightly favourable, or unfavourable [201, 203]. 

Zhou et al. [204] apply a residue model, in which each residue is replaced with a sphere 

having the equivalent properties at the alpha-carbon. They model IgG1 and IgG2a, finding 

that there is orientational preference at high charge density/low ionic strength due to 

electrostatic interactions. For low charge density/high ionic strength, there is less 

preference for orientation. IgG2a exhibits less orientation due to a smaller dipole moment. 

This agrees with the 12 sphere model of Sheng [200], and presents a much more accurate 

approach. 

Most simplification is directed at the number of objects present (residues, atoms, 

water molecules), and mean properties of these. An alternate method is to discretize space, 

so that we reduce the positional freedom. This approach is used in lattice models, of which 
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the HP (hydrophilic-polar) model is the most famous for folding problems. In this model, 

residues are replaced by a chain of connected hydrophilic or hydrophobic units (or any two 

generally opposing properties A and B). Continuum space is replaced by a three 

dimensional lattice of points that are either occupied or unoccupied. There can be given 

three energy-of-contact values (although usually just two), which correspond to H-H, P-P, 

or H-P occupying neighbouring lattice sites. Castells et al. [205] use A-B types, with an 

energy bonus for A-A or B-B sites, over A-B sites. Two surfaces are investigated. One in 

which both A and B interact equally with the surface, and another in which A interacts 

more strongly than B. The “protein” is 27 units long, and is chosen with contact energies 

that result in a unique “native” conformation of lowest energy. Minimization of the energy 

of native, and adsorbed states are carried out by Monte Carlo method. They find the chain 

unfolds into a low-internal-contact/100%-surface-contact chain, and then refolds into a 

new conformation. On the A-affinity surface, the refolding brings many of the units off the 

surface, and is a secondary maximum, showing a possible activation process. As 

temperature is raised, the equal affinity case decreases surface contact, and the A-affinity 

case increases surface contact. 

 

2.5.5 General Mean Field Approaches 

Once a protein has been modeled atomistically, or semi-atomistically, some parameters -

such as its net interaction potential as a function of height and orientation - will be known. 

At this point it is desirable to be able to predict the behaviour of a large ensemble of 

proteins (either of the same, or different types). Unfortunately, purely thermodynamic 

approaches are limited in their applications, as the entire adsorption system is rarely in 

equilibrium. However, if some part of it, such as the protein reservoir, is in approximate 

equilibrium, then thermodynamics may be used for this portion of the model. 

A generalized thermodynamic molecular approach is presented by Fang et al. [206]. 

The sudden appearance of a surface in a protein solution induces a non-uniform chemical 

potential. To obtain the kinetics of the system, the free energy is used to calculate the new 

chemical potential function, which in turn is used to drive a diffusion equation. Fang’s 

approach is very general, allowing as many configurational changes as desired. They are 
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able to derive a general expression for the equilibrium total deposit in terms of the potential 

of mean force, which is a function of the internal energy of conformation, protein-surface 

interactions, and the intermolecular repulsion and attraction. Lateral diffusion, and 

dynamics are assumed to be instantaneous because this is a mean field approach. Using 

values from atomistic calculations, they investigate two simplified systems. In one, there is 

a binary mixture of two spherical proteins which have a single conformation. In the 

second, there is a single type of protein, but it can undergo a change from sphere to “disc” 

on adsorption. For this model, however, many parameters are required, (eg. rate of 

conformation change, surface-protein and intermolecular interactions etc). These 

parameters must either be measured experimentally, or by numeric simulations. In 

addition, solvent rearrangement is assumed instantaneous, and the diffusion constant of the 

protein is the same for all conformations. Both systems yield informative results. The 

binary mixture exhibits the experimentally observed Vroman effect under certain 

conditions, in which smaller proteins adsorb first, to be replaced later by larger ones. 

One method proposed to prevent deposition of protein is to graft a polymer to a 

substrate. The idea is that the polymer will provide steric hindrances to prevent protein 

adsorbtion. Polymers can prevent adsorption through two effects: an entropic penalty as the 

polymer is confined to a smaller volume, and another possible penalty due to the exchange 

of polymer-water hydrogen bonds with less favourable polymer-protein hydrogen bonds. 

This effect has been modeled with some success by Satulovsky et al. [207]. They include 

two effects, the attraction of the protein to a surface, and its repulsion by grafted polymers. 

The free energy is calculated with all intramolecular and protein-surface interactions 

treated “exactly”, while intermolecular contributions are treated as a mean-field. By 

“exactly”, they mean that they have taken their protein-surface interaction potential (as a 

function of z only) from atomistic calculations for lysozyme approaching a hydrophobic 

substrate. The assumption is made that the polymers can rearrange much faster than the 

protein. They find two opposing effects. In a kinetically dominated regime, the most 

protein-resistant polymer is one that is long, densely packed, and not attracted to the 

substrate, causing large conformational penalties for protein adsorption. This is desirable 

for short-term prevention. For long term prevention in a thermodynamic regime, highly 

packed polymers with strong surface attractions are desired.

 



Experimental Techniques 

3.1 Measurement Techniques 

3.1.1 Atomic Force Microscopy 

3.1.1.1 General Background 

Atomic Force Microscopy (AFM) is a subtype of Scanning 

Probe Microscopy (SPM) that tracks surface topography 

using a sharp tip that interacts with surface forces. The main 

forces exerted on the AFM tip are the van der Waals forces, 

Pauli repulsion and electrostatic forces. Normally electrostatic 

charges on the sample are minimized, and the tip is kept in 

the attractive regime, making van der Waals the main forces 

of interest. A picture of the Explorer AFM head is given in 

Figure 9 and a schematic diagram of a generic AFM is given 

in Figure 10. Typically a laser diode is focused onto the back 

of a cantilever coated with a reflective material. The laser 

then reflects back onto a four quadrant photodiode. 

Piezoelectric crystals (either x, and y 

crystals or a tube scanner) are than used 

to move either the tip, or the surface, 

relative to each other.  

 

Figure 9. Atomic Force 
Microscope on translation stage 
with contact lens on glass 
sphere. 

The AFM can be operated in two 

modes: constant height mode in which 

the deflection of the tip is measured as 

the tip is scanned without adjusting 

height, or as is more commonly the case, 

constant deflection mode in which the tip height is adjusted to maintain a constant surface 

force. Maintaining a constant surface force does not maintain a perfectly constant height 

 

Figure 10. Schematic of A.F.M. operation. 
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above a sample, as different materials will present differing surfaces forces. However, for 

most purposes, it is acceptable to ignore these differences and take adjustments in the tip 

height to be representative of changes in the height of the surface. Another method of 

maintaining a constant height above the surface is by oscillating the tip at resonant 

frequency. The resonant frequency, being subject to varying surface force gradients, will 

change according to the height above the sample. A PID (proportional, integral, 

differential) circuit is typically used, which adjusts the piezo voltage according to the error 

signal from the resonant frequency at some small distance above the sample. This mode is 

often desirable since it avoids contact, and thus degradation of the surface in question. In 

practice, however, a purely non-contacting mode is often not achieved, and the tip will 

intermittently come into contact, or “tap” the sample. Hence this method is often referred 

to as tapping mode. 

By rastering the tip across the sample and recording the 

piezo extension in a grid of points, a topographic representation 

of the surface is generated. The resolution of this image can be 

far below the wavelength of light, with sub-nanometer precision 

possible in the z direction. The lateral resolution is limited by 

the physical size of the tip, of which typical dimensions are a 

length of 10μm, and tip radius of <20nm. The resulting image is 

thus a convolution of both the true topographical surface, and 

the shape of the tip as depicted in Figure 11. Deconvolution to 

regenerate the true surface image is possible only in a few circumstances. Simply keeping 

the effect of tip shape in mind during interpretation is usually sufficient for most 

applications. 

 

Figure 11. Example of 
convolution of tip and 
structure. 
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3.1.1.2 Measuring Contact Lenses with AFM 

Any sample to be measured should be approximately level, so 

that the tip does not need to adjust more than the maximum piezo 

extension on the scale of the image. Often samples are very 

small, or flattened to accommodate imaging. In the case of 

contact lenses, however, it was felt that too much handling of the 

soft lens material could damage its surface. To hold the lens, a 

glass sphere close to the radius of the cornea was attached to a 

substrate and placed on the AFM translation stage. The contact 

lens could then be placed directly onto the lens holder (Figure 

12), rinsed and allowed to dry. 

 

Figure 12. Contact lens on 
glass sphere. 

 

3.1.2 Extinction Spectroscopy 

Papers I through III were carried out using visible light extinction measurements. These are 

performed as shown in Figure 13. White unpolarized light is collimated through the sample 

cell, and refocused into a spectrometer. To measure extinction, our beam should be 

suitably narrow, however, for small particles, with less forward scattering, it is not as 

critical. For our experiments, extinction is plotted vs. wavelength, and the value, and 

wavelength of the peak extinction is extracted. The method through which this is 

accomplished is described in more detail in papers I-III. Qext of a single particle can be 

calculated from the overall extinction of a solution of spheres in a cuvette. 

 

Figure 13. Schematic of extinction experiment. Ii and It are incident and transmitted intensities.  

Spectrometer 

Ii It 
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The definition of extinction efficiency for a sphere of radius a is: 
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The following section will develop the theoretical value of Qext for coated and 

uncoated spheres, following the method of Bohren and Huffman. 
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3.1.3 Surface Plasmon Resonance 

The fairly extensive derivations of 

Mie theory results that are used in 

this section and in bound papers I-

III are included in Appendix A: 

Mie Theory. The derivations 

follow that of Bohren and Huffman 

[208] of a homogenous sphere 

made of a linear isotropic material 

and are exact. Definitions of 

variables are found in the 

appendix. If we assume that the 

sphere is much smaller than the 

wavelength, in otherwords if 

1m x  , we may gain some more 

intuitive understanding. Let 

x=ka=2πNa/λ, and m=k1/k=N1/N, where k and N are the wavevector and refractive index of the 

respective region denoted by the subscript. 

z 

r 

Es,Hs 

θ 

r=a E1,H1 

φ

E2,H2 

r=b 

y 

x 

 

Figure 14. Sphere of radius a, with coating thickness (b-a). The 

subscript I denotes incident fields, while the subscripts 1, 2, and 

s denote fields internal to the sphere, fields in the coating, and 

the scattered field respectively. 
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Expanding the extinction, scattering, and absorption efficiencies to order x4: 
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Which gives the fact that 
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These facts explain a number of phenomena of gold particles. Under transmitted light, 

small gold colloids in a bottle appear red due to strong absorption of small wavelengths. 

Viewing backscattered light, large (approaching 100nm) gold colloids will appear gold in 

color due to the dominance of scattering of yellow gold wavelengths. However, in viewing 

small colloids (<50nm) the backscattered light will tend to still look extremely reddish. 

This is due to the fact that the absorbance only goes down as the 1st power of the radius for 

a given wavelength, while scattering decreases as the 4th power of the radius. Absorbance 

is then dominant by several orders of magnitude for very small spheres. Since we usually 

have some stray light due to reflections absorbance will strongly dominate with a red color 

for gold, mixed with a small amount of greenish backscattered light. However, for large 

gold colloid (for which the relations no longer hold proper) scattering dominates with a 

yellow-gold color. 

 

3.1.3.1 Dielectric Constant Models 

Relationships between the various optical constants are given by the following set of 

equations. n and k are the real and imaginary parts of the index of refraction, and ε’ and ε’’ 

are the real and imaginary parts of the dielectric function. 
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Approximating the charge oscillations as simple harmonic oscillations we have the Lorentz 

model for bound charges: 
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  and γj is the damping constant 

Where Ncj, ej and mj the density, magnitude and mass of the jth type of charge oscillator. 

ωpj is the plasmon resonance of the jth oscillator type. A plasmon resonance is the 

collectively quantized oscillations of charge in the system. This generally involves 

quantized lattice charge, or free electron charge depending on the material. For a metal 

containing free electrons, ωj= ωe=0 since there is no effective “physical” restorative force 

as in ion oscillators. The restorative force comes from a displacement of the overall free 

electrons to one side of the fixed charges, which leads to a dipole moment, and thus a 

restoring force: 
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This is the Drude model for free electron metals. ωp in this case refers to the plasmon 

resonance of free electrons. In this case it arises from the free electrons being perturbed by 

the incident field. This perturbation sets up a dipole opposing the motion, and acts as a 

loose restoring force. The damping constant is due to electron collisions, and scattering by 

phonons. The plasmon resonance is a longitudinal mode in which ε goes to zero in the 

absence of damping.  

 

The combined result is then: 
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Where the first term is due to free 

electrons, and the second term 

includes lattice vibrations. Since the 

superposition principle holds we have 

obviously separated our dielectric 

function into free bound    . This is 

useful, because for an experimentally 

measured dielectric function we find 

that we need to correct for a number of 

effects in the free electron term (for 

example for finite size effects). We 

can easily subtract the free electron 

part with standard parameters from the experimental data, and add it back in with the 

corrected constants. The dielectric functions for bulk gold are given in Figure 15.  
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Figure 15.  Dielectric functions for bulk gold as a function 

of frequency. [209] 

 

3.1.3.2 Localized Surface Plasmon Resonance 

In Appendix A we solve for an and bn.. These are the coefficients of the various 

electromagnetic modes. If the denominator of an or bn go to zero the corresponding modes 

will become infinite. That is they will enter a plasmon resonance. In the case of a real 

system, the coefficient will not go to zero, but will approach it with varying rigor. 

 

For the uncoated sphere this means: 
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Where μ, j, and h(1) are the magnetic permeability, Bessel function of the first kind, and 

hankel function of the first kind respectively, corresponding to the region denoted by the 

subscript. 

So that the zero condition is: 
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For the coated sphere this means: 
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Consider the uncoated sphere. Inside the sphere we have jn, which to first order is 

proportional to ρn, so Ne1n-r α ρn-1 where ρ=kr. This means that in general, to the most 

dominant term in N, the radial component will be constant for n=1 (electrostatic 

approximation), and grow increasingly quickly towards the surface (r=a). Hence, for the 

infinite sum, the mode will predominantly localize at the surface of the particle, and is thus 

termed a localized surface plasmon resonance.  
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To gain more physical intuition it is useful to examine the limit of an infinitesimal sphere 

existing in a medium that is free space. 
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Where εm denotes the dielectric function of the medium. 

As an aside, no solution can be found 

for bn becoming large in the limiting 

case. This resonance condition defines 

the Fröhlich mode, and requires the 

refractive index to be purely imaginary. 

This is not satisfied in any real material, 

but is approached in certain regions. 

Consider for example gold nanoparticles 

in water. Water has a refractive index of 

approximately 1.33, giving an ε’ of 

about 1.78. So we need to find a region 

with ε’=-3.6, and ε’’~0. Examining the zoomed in region of the gold curve in Figure 15 it 
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Figure 16.  Dielectric functions for bulk gold as a 
function of wavelength. 
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is clear that ε’ is negative for a large range of values, which means we will be able to 

satisfy the conditions to various degrees of rigidity. ε’=-3.6 somewhere around 500-

520nm. 20nm gold spheres have a resonance peak somewhere around a wavelength of 

522nm. The accuracy of this result is especially impressive given that we have used the 

infinitely small sphere which is equivalent to the electrostatics approximation in which the 

field is uniform throughout the sphere. 

For the coated sphere the Fröhlich mode is given by: 
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 Adding more terms will improve these approximations, and the general equations 

must be calculated to find the precise position, and magnitude of the maximum. 

One last note must be made about very small metallic particles. Electrons normally 

have a mean free path which is dictated by the material and conditions. The distance 

between collisions is approximately given by: 
2

fmv
d

ne


  in bulk where σ is the 

conductivity, m the mass, vf the Fermi velocity, e the charge, and n the free electron 

density. The damping constant in Drude theory is
1


 , where τ is the lifetime before 

scattering from a phonon or defect. If scattering from different causes is assumed to be 

independent then _bulk size effect    .  The distance between collisions with the boundary 

of a sphere is given by L=4a/3 [210], where a is the radius of the sphere (the constant may 

vary). This means 
3

4
f
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v

a
   . 

A decrease in the mean free path increases the imaginary portion of the dielectric 

constant, which weakens the ability to meet the condition that the imaginary portion is 

zero, and consequently lowers the peak height, and broadens the resonance. 
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3.1.3.3 Computer Modelling of Mie Theory 

The computer modeling of coated and uncoated spheres was carried out using a Matlab 

routine by C. Mätzler [211], which were called through a custom Matlab routines to 

generate the peak height and position of resonance. Routines used to perform these 

calculations are given in Appendix B, Appendix C, and Appendix D. The Mätzler [211] 

routine provides an output of the extinction amplitude given the following parameters: 

incident wavelength, complex indices of nanosphere, coating, and surrounding medium, as 

well as the thickness of coating and size of nanosphere. We thus provide the complex 

indices of gold and water, as well as the size of gold from standard data for programs B, C, 

and D.  

In all cases, before the Mätzler routine is called, the dielectric function is split into 

free and bound parts ( free bound    ) using the Drude model to represent the contribution 

of free electrons. The free electron damping constant is then corrected for finite size effects 

(
3

4
f

bulk

v

a
   ). The corrected free electron dielectric contribution is now added back to 

the bound contribution. This is discussed in sections 3.1.3.2 and 3.1.3.3. Finite size effects, 

however, tend to red-shift the resonance away from that using bulk values. We found that, 

experimentally for small gold nanospheres (5-15nm), there was a blue shifting of the 

resonance, not predicted by the theory. The origin of this effect was not known. To correct 

for it, once the damping frequency had been adjusted, the bulk plasma frequency was also 

shifted in the free electron contribution to agree with the experimentally obtained peaks. 

Appendix B accomplishes this shift in wp through the following steps: 

1) The experimental wavelength is provided to the program.  

2) A guess value for wp can be provided to speed up the process. 

3) The Mätzler routine is called upon in a loop to generate the extinction amplitudes 

for a range of wavelengths (between 490 and 580 in our case of gold) for an 

uncoated sphere of desired size. The wavelength of the maximum extinction 

(corresponding to the plasmon peak) can then be determined. 

4) If this peak wavelength does not match the experimental peak within the provided 

bounds of accuracy, the plasma frequency wp is shifted accordingly. The program 
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returns to step 3 generating a new plasmon peak until it matches suitably with the 

experimental value. 

5) The correction to wp is recorded for use in further programs.   

 

Appendix C generates contour plots. This is accomplished through the following 

process: 

1) Experimental parameters (indices, size of particle, and wp shift from Appendix B 

program) are provided to the program. 

2)  The Mätzler routine is called upon in a loop to generate the extinction amplitudes 

for a range of wavelengths (between 490 and 580 in our case of gold) for the sphere 

size desired. The wavelength of the maximum extinction (corresponding to the 

plasmon peak) can then be determined. 

3) The routine then uses a nested loop to output the extinction peak and wavelength 

for a range of indices and thicknesses of coating (indices are forced to be real in 

this case). 

The net effect is the production of contours of extinction peak wavelength and amplitude. 

These are produced to allow the inversion of the general Mie solution. 

 

 Appendix D interpolates the contour grid to allow better resolution, and returns the 

index of refraction and thickness when given a peak extinction amplitude and wavelength. 

To accomplish this, the contour data from Appendix C is input into the program. 

 

Overall, the program in Appendix B is called upon to generate the wp shift, which is then 

fed into the program in Appendix C. The result of Appendix C is then fed into Appendix D 

in order to invert the information and extract the index of refraction and thickness given a 

particular extinction peak amplitude and wavelength. 

One problem is that while Mie theory is generally quite accurate in predicting the peak 

wavelength, it is not as accurate at predicting the peak amplitude. In seems sensible to 
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simply find a scaling factor that will cause the experimental bare sphere peak amplitude to 

match the theoretical one, and then use this scaling factor to shift all coated spheres. This 

procedure generated unrealistically high values for the refractive index in a number of 

cases. The cause of this must be related to the fact that the scaling factor for a coated 

sphere is not necessarily the same as an uncoated sphere. This presents a problem, as we 

have no apriori value for the theoretical protein coated sphere. To circumvent this problem 

we have made the assumption that the index of refraction upon conjugation at pH 7 is 1.57. 

This is taken from ellipsometry data done by Hans Arwin [212] of bovine serum albumin 

on Hg0.71Cd0.29Te for wavelengths between about 546nm and 632nm. To use this 

assumption, the programs in Appendices B, and C are used as usual. However, the value of 

extinction is determined which will reproduce the experimental peak wavelength 

(corresponding to the initially conjugated protein on Au nanospheres at pH 7), as well as 

an index of 1.57. The factor needed to scale the experimental extinction to the value just 

determined is then used to scale all extinctions for that particular sphere size. This 

assumption may seem very limiting; however, a choice of a different scaling value (within 

reason) will not drastically change the shape of the denaturing path (in index/thickness). 

 

3.1.4  Quartz Crystal Microbalance 

The quartz crystal microbalance (QCM) is a type of bulk acoustic wave sensor or BAW. 

The basis of its operation is that a resonating piezoelectric crystal has a resonant frequency 

which depends strongly on its thickness, and density. Even a minute change in mass effects 

a change in resonance frequency. Because modern electronics are capable of measuring 

very small changes in frequency, we can measure very small changes in mass. 

Gold or another metal is deposited on the faces 

of the crystal. The active area of the crystal is defined 

approximately by the overlap between metallic films, 

between which the electric field will be generated. 

Figure 17 illustrates characteristic operation of a crystal 

in shear mode. Figure 18 is an image of a typical AT-

cut crystal with gold electrodes. A voltage applied between the two electrodes creates a 

 

Figure 17. Side view schematic of 
quartz crystal in shear mode 
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stress in the non-centro-symmetric crystal, which is responded to by generating shear 

strain. An oscillating voltage will result in oscillating shear strain. At a particular frequency 

the crystal will oscillate in resonance.  

This resonance can depend quite strongly on temperature. 

Consequently, the piezoelectric materials of choice are specific cuts of 

quartz. SC and AT cut crystals both vibrate in a thickness shear mode, 

and both exhibit greatly reduced temperature dependence. In particular, 

AT-cut α-quartz is most commonly used due to cheaper manufacturing 

costs, and its temperature dependence having an inflection point near 

room temperature. The resonant frequency is also dependent on any 

mechanical stress on the crystal due to mounting, or pressures applied during injection of a 

sample. Careful preparation allows these effects to be considered negligible. The amplitude 

of the strain falls off approximately exponentially at the edges of the overlap of the top and 

bottom electrode. This allows the crystal to be mounted by its edges without damping the 

oscillations. The amplitude of shear displacement is typically of the order of a nanometer 

or less. 

 

Figure 18. 5MHz 
AT-cut quartz 
crystal with gold 
electrodes 

The Q-Sense QCM is a commercial device, and comes as a liquid cell for housing 

the crystal, and a “black-box” with all electronics to run the system. However, the basic 

components involved in the operation of a generalized QCM are illustrated in Figure 19. 

The steps of operation are generally as follows: 

1)  The computer will ask the oscilloscope to sweep the quartz crystal through a 

range of frequencies about the factory labeled fundamental frequency (eg. 4.95MHz +/-  

200KHz). At each frequency after the sinusoidal signal is sent, the signal relay is opened to 

stop the excitation, and the crystal response is then measured by the oscilloscope. This 

process allows the exact maximum where resonance fr occurs to be identified. 

2) The signal generator is then adjusted to frequency fr and the crystal is driven 

at resonance for a brief moment before the relay is opened, and the crystal allowed to 

oscillate “freely”. Because the decay of the signal is several orders of magnitude slower 

than the frequency itself, it is not efficient, or feasible to collect data at a rate fast enough 

to generate smooth peaks for the entire decay curve. Consequently the signal of the 
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undriven crystal is mixed with the inverted reference signal fr + Δ where Δ is normally of 

the order of KHz. The peaks in the signal now represent the beat frequency fr-(fr + Δ)=-Δ 

which is KHz and proportionally decays in a reasonable time. The mixed frequency is read 

by the oscilloscope, converted to a digital signal and sent to the computer. The computer 

can then fit the signal with a damped harmonic oscillator equation A(t)=A0e
-π(-Δ)Dtsin(2π(-

Δ)t + δ) where D is the dissipation value extracted and D=(Energy dissipated) / (2πEnergy 

stored). The resonance frequency is found to be –Δ+ Δ+ fr = fr. 

3) If the resonance conditions have changed slightly in the process of reading, the 

crystal will be driven at fr but will oscillate at fr + σ once the relay is opened. When the 

signal is mixed, the frequency that enters the oscilloscope will be (fr + σ) -(fr + Δ) = (σ – 

Δ), and the new fitted equation will read A(t)=A0e
-π(σ – Δ)Dtsin(2π(σ – Δ)t + δ) such that the 

new D can be determined and the new resonance frequency is now determined to be (σ – 

Δ) + (fr + Δ)  = σ + fr = fr‘. The resonance frequency is now set so that the new fr = fr‘, and 

the process is repeated, tracking the D, and fr values throughout the experiment. 

4) If it is desired that other harmonics should be tracked, then these are done in series. 

In other words f1, f3, f5… are measured one after another, followed by f1 and the process 

is repeated. 
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A photograph of the Q-Sense QCM used in the experiment is given in Figure 20. In 

a typical experiment buffer is warmed in a syringe case immersed in water in C, sitting 

atop the heater D. This will prevent temperature effects from altering the resonant 

frequency of the crystal, and prevent any degassing and bubble formation of the liquid. The 

temperature of the water bath is generally held 3-4 degrees warmer than the QCM cell. 

This is to account for temperature loss in traveling through the tubes to the heating loop in 

the QCM. After the buffer has equilibrated to the correct temperature, it is allowed to flow 

into the heating loop in the QCM cell until it runs out tube F. Flow is purely gravitational, 

and the lab-jack in Figure 20 is adjusted so as to minimize the flow rate. Even with the 

warmed buffer, a small temperature deviation will be present, and the solution is allowed 

to equilibrate further in the temperature loop to remove this. The buffer is then allowed to 

flow into the crystal chamber and out of tube E. Flow rate, and volume are kept to a 

minimum to prevent any pressure changes on the crystal. Once the system has equilibrated 

 

Figure 19.  Schematic of typical QCM setup. 
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and been measured, the old solution is pipetted out of the syringe case and the new solution 

added. The above steps are then repeated until the solution flows out of tube E again. 

 

  

Figure 20.  Actual QCM setup. A) QCM liquid cell, B) electronics that operate QCM, C) water bath and 
liquid introduction site, D) heater for water bath, F) temperature loop, E) crystal loop.  
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The frequency of the bare crystal is given approximately as 

00

0

0

0

00

0
0 222 Mh

n

h

n

h

nv
f





  where n is the overtone number, h the thickness, M the 

areal mass, v the velocity of sound, μ the elastic modulus, and ρ the density, all of quartz. 

In 1959 G. Sauerbrey [213] showed that the decrease in frequency was linearly 

proportional to the mass, giving the Sauerbrey equation:  
2

02

q q

f
f m

A  
     where f0 is 

the resonant frequency, A the active area, ρq the density of quartz, and μq the shear 

modulus of quartz. 

The amplitude of displacement of an AT-crystal with thickness T, and parallel 

plates of radius R, is )
2

(cos)sin(),( 2
0 R

r

T

y
AyrA


  for a crystal that has antinodes at both 

surfaces (y being measured from the center of the crystal so that a surface is at y=T/2). 
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This result depends on the exact wiring. For a crystal with one face grounded as is 

commonly the case, the grounded face will be a node, and the open face an antinode, 

giving rise to odd overtones (1, 3, 5…) being allowed. 

This equation had wide success, and is still frequently used today. It was limited 

generally to gaseous atmospheres, and rigid thin films. Operation in fluid, it was thought, 

would dissipate all of the energy of the crystal, and quench the oscillations. However, two 

decades later, in 1980, Nomura et al. showed that this was not the case and extended 

function of the QCM to viscous environs such as fluids [214]. This opened the door to new 

applications, such as protein deposition. Operation in fluids violated the assumptions of the 

Sauerbrey equation, and required more sophisticated methods of modeling [215, 216]. 

Voinova et al. [215] have approached the problem with continuum mechanics. Viscoelastic 

layers are modeled as Voigt elements in series. 

By measuring the dissipation as well as the frequency, measurements of 

viscoelastic properties can be made in addition to simple thickness. In general σik=G*εik 

where σ is the generalized stress tensor and ε is the generalized strain tensor, with G*(ω) 

the complex frequency dependent shear modulus. The QCM with homogenous layers on 

top can be represented mechanically as a series of Voigt 

elements. A Voigt element (Figure 21) involves a spring and 

dashpot connected in parallel, for which the stress is 

proportional to the sum of a viscous term and an elastic term 

( )x x
xy

u u

y y t
   

 
  

. The crystal and subsequent layers must 

obey Cauchy’s equations of motion 
2

2

xy xu

y t




 


 
. If, in 

addition, we assume that the motion is time harmonic, ie. ( , ) ( ) i t
xu y t A y e  , then putting 

these results together we have: 

  

Figure 21.  Voigt element. 
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where μ*(ω)=μ + iωη is the effective complex shear modulus for a Voigt element [217]. 

This is a wave equation which has the auxillary equation 
2

*




   . The full solution is 

then ( , ) y y
xu y t Ae Be e i t   

. 

, in which A and B are constants. All we require now for 

a particular solution is to apply the boundary conditions to this equation

A derivation of the solution form for n-layers is given in Paper IV. The solution 

uses no slip boundaries in which the stress, displacement (and thus velocity) across the 

boundary must be continuous. The Matlab code used to perform the calculation of ΔF and 

ΔD for n-layers in Paper IV is given in Appendix E: Homogeneous, No-Slip, N-Layer 

Voigt Model of QCM.
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Conclusion 
 
A complete understanding of the behaviour of proteins at interfaces cannot be gained 

through directed focus upon one aspect of the field. This thesis has strived to make 

advancements through experiment; both in fundamental aspects such as curvature 

dependence of protein stability, as well as applied aspects such as contact lens applications. 

However, it has also made a significant contribution to the advancement of nanoparticles 

as new tools for investigation of interfacial protein. Ultimately protein adsorption is an 

exceedingly complex phenomenon. Varying microscopic surface chemistries may lead to 

very different adsorption behaviour for a single type of protein. The unique morphologies 

on Galyfilcon A in paper V clearly demonstrate this. Alternately, protein may adsorb to the 

same surface in vastly different ways, depending on the type of protein. In paper IV, such 

behaviour ranges from concentration-independent monolayers, to complex, concentration-

dependent multilayer formation. Finally, even for similar surface chemistries, the same 

protein may be drastically affected by the radius of curvature of the surface, as in papers I-

III. The search for new ways to investigate protein behaviour led us to utilize new methods 

of measurement. In papers I-III, we exploited the LSPR of Au nanospheres to measure 

conformational changes during both thermal and pH perturbations, and in paper V we used 

nanosphere-protein conjugates to visualize adsorption. 

   



 

Appendix A: Mie Theory 

The following derivation follows that of Bohren and Huffman [208] of a homogenous 

sphere made of a linear isotropic material. 
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Because we are dealing with a 

sphere the solution will be easiest 

if we use spherical coordinates 

centered at the center of the sphere. 

We would like to rewrite the planar 

waves incident on the sphere in 

terms of spherical coordinates. 

While this is somewhat difficult, it 

makes the overall solution to the 

scattering and absorbance of a 

sphere quite easy. We start with a 

brief derivation following that of 

Bohren and Huffman for 

expanding a plane wave in 

spherical coordinates: 

y 

x 

 

Figure 22. Sphere of radius a, with coating thickness (b-a). The 

subscript I denotes incident fields, while the subscripts 1, 2, and 

s denote fields internal to the sphere, fields in the coating, and 

the scattered field respectively. 

Ei,Hi 

 

The full vector wave equation must satisfy:  

022  EkE


 and 022  HkH


 with   22 k 0 E


 and   0 H


(of course we only need to find one of E or H, and we have the other according to 

Maxwell’s equations HiE


 and EiH


 ) 

These assume that the field is time harmonic, ie. ti
full eEE 

 , which is no real sacrifice, 

since we can always build up any field we want by summing an infinite series of harmonic 

fields. 

86 
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

 

To reduce the problem to a scalar solution Bohren and Huffman now use the vector valued 

functions M, and N which are defined below, and will satisfy the wave equation, while 

ultimately making calculations easier. 

 

)( cM   and 
k

M
N

 
 , where c is a constant vector, and ψ will be a scalar wave 

function. We can show that these will satisfy the vector wave equation if the scalar wave 

equation is satisfied. 

0))((  cM


 since the divergence of the curl of a vector is always zero. 

Similarly, since N involves a curl, its divergence will also be zero. 

 

For any vector, the identity AAA


2)()(   holds true. If we apply this to M 

and N we produce two new wave equations. 
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Clearly, from the equation in M, since c is not in general the zero vector, if we satisfy the 

scalar wave equation 2 2k   =0 then the vector equations are zero, and satisfy the wave 

vector equation. 

 

The Laplacian in spherical coordinates is given by: 
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Hence the scalar wave equation  in spherical coordinates becomes: 022   k
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This equation is separable if we assume solutions of the form )()()(),,(   rRr . 

Substituting this assumption into the above equation yields the separated equations: 
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We can now write solutions for the separated equations. 

 

For equation 2 which is a simple second order linear D.E. having solutions: 

imAe  , however, for a real electromagnetic field we require real solutions, and thus 

choose: mcose   and mo sin  to be our linearly independent solutions, where e 

and o are even and odd m. The choice of A as 1 is arbitrary, but does not limit us, as the 

amplitude of the wave can be added in later. 
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ψ is required to be single valued in φ, which insists that m is an integer of zero. Equation 3 

has the solution of the associated Legendre functions of the first kind , and n=m, 

m+1 etc.  

)(cosm
nP

 

The final equation 4, has the solution of spherical Bessel functions when ρ=kr, and 

RZ   such that:  
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combination zn forming two independent solutions, where Jn and Yn are ordinary Bessel 

functions. 
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The combined general solution is given by: 
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where zn is a Bessel function of the first, second or third kind, and Am, and Bm can be 

determined once a particular arrangement is decided on. 

 

Then in terms of M, and N: 
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Where we have used the fact that in spherical coordinates the curl of a vector F is: 




 



e

F
Fr

rr
eFr

r

F

r
e

F
F

r
F rr

r





















































 )(
1

)(
sin

11
(sin

sin

1
 

 

The above equations can also be split into Modd, Meven, and Nodd, Neven where odd M/N 

involve the A coefficient, and even M/N involve the B coefficient. 

 

However, so far we have generated general solutions. We would like to have plane waves 

incident on the sphere. We can generate a plane wave solution in terms of an expansion in 

a series of M, and N, since any linear combination of the two will also be solution of the 

vector wave equation in spherical coordinates. 

 

Taking an x polarized wave in Cartesian coordinates: x
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To find coefficients A and B we will use orthogonality of the vector spherical harmonics. 

Clearly ijkijk MM
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 are not orthogonal, however: 

omnomn NM


= emnemn NM


= emnomn MM


= emnomn NN


=0 because these all involve 

in the inner product.   



2

0

0sincos dmm



Appendix A: Mie Theory  91 

 

Of course for m≠m’ so for the rest of the inner 

products we only need consider differences in n for the last orthogonality relationships. 
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The portion dependent on θ is: 
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and if m is zero, then the theta terms disappear in M, and the phi terms in N, so that the 

inner-product is zero. So emnomn NM


= omnemn NM


=0 

 

The last relations 'emnemn MM


, 'omnomn MM


, 'emnemn NN


, 'omnomn NN


 are zero, which 

follows because they all involve the integral: 
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But from the differential equation which generated the associated Legendre functions 
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So all vector spherical harmonics are orthogonal to each other. 
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To find the coefficients to the plane wave electric field written in spherical harmonics we 

can use the orthogonality of the harmonics and take the inner product with one harmonic at 

a time: 
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  is zero due to the   terms similarly to Bemn. 

Also, we can note that for any m not equal to 1 there will be different orders in  , and thus 

result in zero. So m is restricted to being 1. 
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After much algebra, Bohren and Huffman have the final results: 
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So that we have the final results for the plane wave in terms of the vector spherical 

harmonics: 
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, where the superscript 1 denotes Bessel 

functions of the first kind ie. jn(ρ), which remains finite at the origin unlike the other Bessel 

functions, and allows our wave to pass through the origin. 
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Using the fact that and MkN
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Now consider a sphere resting at the origin, which has a radius a. We have two regions –

the region inside the sphere, and the region outside the sphere. This generates three types 

of waves – namely those incident on the sphere, labeled i, those scattered by the sphere 

labeled s, and those internal to the sphere labeled 1. The boundary conditions of this 

system are the requirement that the tangential component of electric and H field must be 
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continuous at the boundary. Also we know that the field inside the sphere must remain 

finite, and therefore only involve Bessel functions of the first kind. As well, in the sphere, 

the wavenumber and permeability are labeled k1, and μ1. Outside the sphere the scattered 

field does not pass through the origin, and thus Bessel functions of both the first, and 

second kind are allowable. However, Bohren and Huffman make the choice to use of 
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of the first and second kind. It turns out that since these functions describe the wave 
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If we are very far from the sphere then Hankel functions of the first kind represent a wave 

traveling radially outward, and the second kind represent a wave traveling radially inward. 

Clearly we can only be traveling outwards at that point, and so functions of the first kind 

are what we want. 
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And we have boundary conditions: 
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We can now solve these for coefficients an, bn, cn, and dn. 

(1) (1) (1) (1) (3) (3)
1 1 1 1 1 1

1 1 1

(1) (1) (1) (1) (3) (3)
1 1 1 1 1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

n n o n n e n n o n e n n n o n n e n
n n n

n n o n n e n n o n e n n n o n n e n
n n n

E c M id N e E M iN e E b M ia N e

E c M id N e E M iN e E b M ia N

  

 

  

  

 

 

        

       

  

 

       

      
1

(1) (1) (1) (1) (3) (3)1
1 1 1 1 1 1

1 1 11

(1) (1) (1) (1)1
1 1 1 1

1 11

( ) ( ) (

( ) ( )

n n e n n o n n e n o n n n e n n o n
n n n

n n e n n o n n e n o n
n n

e

k k k
)E d M ic N e E M iN e E a M ib N e

k k
E d M ic N e E M iN e



  



  

 





  

  

 

 



        

      



  

 



      

    

 

(3) (3)
1 1

1

( )n n e n n o n
n

k
E a M ib N e 





  
  

 

1
1

1 1
1 1 1

1
1

1

1
1 (1) (1

(cos )1 1
( cos (cos ) ( ) cos ( ( )))

sin

(cos )1 1
(cos (cos ) ( ) cos ( ( )))

sin

(cos )1 1
( cos (cos ) ( ) cos (

sin

n
n n n n n n

n

n
n n n n

n

n
n n n n n n

dP d
E c P j id j

d d

dP d
E P j i j

d d

dP d
E b P h ia h

d d

     
  

     
   

    
  











 

  





1


)

1

1 1

1 1
1 1 1

1 1

1

1 1
(1)

( )))

(cos ) (cos ) 1
( ( 1)sin ( ) sin ( ( )))

sin

(cos ) (cos ) 1
(( 1)sin ( ) sin ( ( )))

sin

(cos ) (
( ( 1)sin ( ) sin

n

n n
n n n n n

n

n n
n n n

n

n n
n n n n

dP P d
E c j id j

d d

dP P d
E j i j

d d

dP P
E b h ia

d

1



     
   

     
   

  














 

  

   







(1)

1

cos ) 1
( ( )))

sin n
n

d
h

d

  
  






 

 



Appendix A: Mie Theory  97 

 

1
11

1 1
11 1 1

1
1

1

1 (1)

(cos )1 1
( ( 1)sin (cos ) ( ) sin ( ( )))

sin

(cos )1 1
(( 1)sin (cos ) ( ) sin ( ( )))

sin

1
( ( 1)sin (cos ) ( ) sin

sin

n
n n n n n n

n

n
n n n n

n

n n n n n

dPk d
E d P j ic j

d d

dPk d
E P j i j

d d

k
E a P h ib

    
    

     
    

  
 









  

   

  





1

1
(1)

1

1 1
1

1 1
11 1 1

1 1

1

(cos ) 1
( ( )))

(cos ) (cos ) 1
( ( 1)cos ( ) cos ( ( )))

sin

(cos ) (cos ) 1
(( 1)cos ( ) cos ( ( )))

sin

( ( 1)

n
n

n

n n
n n n n n

n

n n
n n n

n

n n

dP d
h

d d

dP Pk d
E d j ic j

d d

dP Pk d
E j i j

d d

k
E a

 
  

     
    

     
    















  

   

 







1



1 1
(1) (1)

1

(cos ) (cos ) 1
cos ( ) cos ( ( )))

sin
n n

n n n
n

dP P d
h ib h

d d

     
   







 

 

These reduce to: 
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( ( 1) ( ) ( ( )))

sin

n
n n

n

n n
n n n n n

n n
n n n n n

P d
i j

d

dP P d
E b h ia h

d d

dP P d
E c j id j

d d

  
  

  
   
  

   







   

  



1




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1
1

1

1
1 (1) (1)

1
11

1

(cos )1 1
0 ( (cos ) ( ) ( ( )))

sin

(cos )1 1
( (cos ) ( ) (

sin

(cos )1 1
( (cos ) ( ) ( (

sin

0 (

n
n n n n

n

n
n n n n n n

n
n n n n n n

n

dPk d
E P j i j

d d

dPk d
E a P h ib h

d d

dPk d
E d P j ic j

d d

dPk
E



( )))

)))

  
    





  
    

   
    







   

  

  

  





1 1

1

1 1
(1) (1)

1 1
1

1

(cos ) (cos ) 1
( ) ( ( )))

sin

(cos ) (cos ) 1
( ( ) ( (

sin

(cos ) (cos ) 1
( ( ) ( ( )

sin

n n
n n

n

n n
n n n n n

n n
n n n n n

P d
j i j

d d

dP Pk d
E a h ib h

d d

dP Pk d
E d j ic j

d d

  
   
  

    
  

    







  

  



)))

))







 

 

Now clearly we have two sums here, one of which is real, and the other imaginary. These 

sums must then satisfy condition of going to zero separately. For the electric part we have 

then: 

 

1 (1) 1 1
1

1

1 1 1
(1)

1
1

(1)

1 1 1
0 (cos ) ( ) (cos ) ( ) (cos ) ( )

sin sin sin

(cos ) (cos ) (cos )
0 ( ) ( ) ( )

(cos ) 1
0 ( (

n n n n n n n n n n n
n

n n n
n n n n n n n n

n

m
n

n n

real

E b P h E c P j E P j

dP dP dP
E j E b h E c j

d d d

imaginary

dP d
ia h

d d

     
  

    
  

  
  









   

   







1 1

1 1
1 1 1

1 1 1
(1)

1 1
1 1 1

(cos ) (cos )1 1
)) ( ( )) ( ( ))

(cos ) (cos ) (cos )1 1 1
0 ( ( )) ( ( )) (

sin sin sin

n n
n n

n

n n n
n n n n n

n

dP dPd d
id j i j

d d d d

P P Pd d d
i j ia h id j

d d d

 

( ))

n  
     

       
        









 

  







 

This allows us to cancel all dependence on theta except for the associated Legendre 

polynomials P1
n(cosθ).  
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1 (1) 1 1
1

1

1 1 1
(1)

1
1

1
(1)

1

0 (cos ) ( ) (cos ) ( ) (cos ) ( )

(cos ) (cos ) (cos )
0 ( ) ( ) ( )

(cos ) (c1
0 ( ( ))

n n n n n n n n n n n
n

n n n
n n n n n n n n

n

m
n n

n n n
n

real

E b P h E c P j E P j

dP dP dP
E j E b h E c j

d d d

imaginary

dP dPd
a h d

d d

     

    
  

  
  













   

   

 






1

1 1
1 1

1 1 (1) 1
1 1

1 1 1

os ) (cos )1 1
( ( )) ( ( ))

1 1 1
0 (cos ) ( ( )) (cos ) ( ( )) (cos ) ( ( ))

n
n n

n n n n n n n n
n

dPd d
j j

d d d d

d d d
P j a P h d P j

d d d

   
     

        
     







  



 

 

We know all that the associated Legendre polynomials form an orthogonal set, which 

means that these sums must satisfy the null condition term-wise, and we can just divide out 

the terms involving theta. 

(1)
1

(1)
1

(1)
1 1

1 1

(1)
1 1

1 1

0 ( ) ( ) ( )

0 ( ) ( ) ( )

1 1 1
0 ( ( )) ( ( )) ( ( ))

1 1 1
0 ( ( )) ( ( )) ( (

n n n n n

n n n n n

n n n n n

n n n n n

real

b h c j j

j b h c j

imaginary

d d d
a h d j j

d d d

d d d
j a h d j

d d d

  

  

))

    
     



    
     

   

   

  

   

]'

 

 

Of course this is only two unique solutions. The other two come from the H-field, and are 

found in the same manner. This gives us four linear independent equations in four 

variables. 

 
(1)

(1)
1 1

(1)
1 1

(1)

( ) ( ) ( )

( ) ( ) ( )

[ ( )]' [ ( )]' [ ( )

[ ( )]' [ ( )]' [ ( )] '

n n n n n

n n n n n

n n n n n

n n n n n

b h x c j mx j x

mj mx d h x a j x

mxj mx c xh x b xj x

mxj mx d m xh x a m xj x

  

  

 

 

 

 

 where x=ka=2πNa/λ,  and m=k1/k=N1/N 
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These can be easily solved: 

(1)

(1)
1 1

(1)
1 1(1)

(1) (1
1 1

( ) ( )

( )

Sub into second equation:

[ ( )]' [ ( )]' [ ( )]'

( ) ( )
[ ( )]' [ ( )]' [ ( )]'

( )

Solve for Cn:

( )[ ( )]' [

n n n
n

n

n n n n n

n n n
n n n n

n

n n n
n

j x c j mx
b

h x

mxj mx c xh x b xj x

j x c j mx
mxj mx c xh x xj x

h x

h x xj x xh
c

  

  

 




 


 




)

(1) (1)
1

( )] ' ( )

( )[ ( )]' [ ( )]' ( )
n

n n n n

x j x

h x mxj mx xh x j mx 

 

 

The other coefficients are solved similarly, giving the full set of coefficients: 

(1) (1)
1 1

(1) (1)
1

(1) (1)
1 1
(1) 2 (1)

1

Inside the particle

( )[ ( )]' [ ( )]' ( )

( )[ ( )]' [ ( )]' ( )

( )[ ( )]' [ ( )]' ( )

( )[ ( )]' [ ( )]' ( )

Scattered f

n n n n
n

n n n n

n n n n
n

n n n n

h x xj x xh x j x
c

h x mxj mx xh x j mx

mh x xj x xh x mj x
d

h x mxj mx m xh x j mx

 
 

 
 











2
1

2 (1) (1)
1

1
(1) (1)

1

ield coefficients

( )[ ( )]' ( )[ ( )]'

[ ( )]' ( ) ( )[ ( )

( )[ ( )]' ( )[ ( )]'

[ ( )]' ( ) ( )[ ( )] '

n n n n
n

n n n n

n n n n
n

n n n n

m j mx xj x j x mxj mx
a

m xh x j mx h x mxj mx

j mx xj x j x mxj mx
b

xh x j mx h x mxj mx

 
 
 

 










]'

 

 

 

Now, if the denominators in the coefficients go towards zero, the corresponding mode will 

become extremely large. This condition would be satisfied if: 

n

(1)

(1)
1

n

(1)
1

(1) 2

For c , :

[ ( )]' [ ( )]

( ) ( )

For a , :

[ ( )]' [ ( )]

( ) ( )

n

n n

n n

n

n n

n n

b

'

'

xh x mxj mx

h x j mx

d

xh x mxj mx

h x m j mx










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We can generate full scattering cross sections from the scattered and incident fields. The 

absorption cross section is given by the net rate at which electromagnetic energy crosses 

the surface of a virtual sphere that just surrounds our particle divided by the incident 

intensity. Ie. Wa/Ii. The time averaged Poynting vector *1
Re{ }

2
S E H
  

 gives the flux of 

energy at any point. This can be broken into three parts: 

* *

* * *

1
Re{( ) ( )}

2
1 1 1

Re{ } Re{ } Re{ }
2 2 2

i s i s

i i s s i s s i

i s ext

S E E H H

S E H E H E H E

S S S

   

       

  

    

        

  

*H  

Where i is the incident field, s the scattered, and ext denotes the interaction terms between 

the two (hence the mixed cross product). Radial flux does not penetrate the imaginary 

sphere, and thus would not contribute to the scattering flux. Thus, the total energy crossing 

the sphere is given by:   
A

rs

A A

rextsextra dAeSdAeSWWdAeSW


. 

And the extinction cross section is given by: ext
ext

i

W
C

I
 . 

 

For our case of spherical coordinates, the calculation of Cs and Cext are found in the 

following manner: 

2
* * * * 2

0 0

2
* * 2

0 0

1
Re{ ( ) sin }

2

1
Re{ ( ) sin }

2

ext i s i s s i s i

s s s s s

W E H E H E H E H a

W E H E H a d d

 

       

 

   

d d  

  

   

 

 

 
 

where we take the imaginary sphere to be the size of the particle r=a. 
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'

1

'

1

* *

1

* * '

1

'

Incident field

cos
( )

sin
( )

cos
tan tan ( )

sin
cot ( )

Scattered field

cos
(

i n n n n n
n

i n n n n n
n

i i n n n
n

i i n n n n n
n

s n n n

E E i

E E i

k k
H E E i

k k
H E E i

E E ia





 

 



    

    


 '

n n   
  

   
  

 


















 

 

  


  











 



1

'

1

* * * '* * *

1

* * * '* * *

1

)

sin
( )

sin
( )

cos
( )

n n n n
n

s n n n n n n n
n

s n n n n n n n
n

s n n n n n n n
n

b

E E b ia

k
H E ib a

k
H E ib a







  

    


    
 

    
 



















 


 


 








 

where we have used the notation substitutions of Bohren and Huffman in which: 

(1)

1

1

( ) ( )

( ) ( )

sin

n n

n n

n
n

n
n

h

j

dP

d

P

   
   













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The solution to Ws can be found in the following manner: 

22
' * * '* * *

1 10 0

2

' * * '* * * 2

1 1

1 cos
Re{ ( ( ) ( )

2

sin
( ) ( ) ) sin }

1 co
Re{ (

2

s n n n n n n n t t t t t t t
n t

n n n n n n n t t t t t t t
n t

k
W E ia b E ib a

k
E b ia E ib a a d d

          
 

           
 

 

 

 

 

    
      

    

    
      

    



  

 

22
* ' * '* * *

1 10 0

2

* ' * '* * * 2

1 1

s
( )( )

sin
( )( ) ) sin }

Switching the integration and summ

n t n n n n n n t t t t t t
t n

n t n n n n n n t t t t t t
t n

k
E E b ia ib a

k
E E b ia ib a a d d

          
 

           
 

 

 

 

 

   
    

  

   
     

  

 



22
* * '* * * * ' '* * ' * 2

1 1 0 0

*

ation so that we integrate termwise and throwing out imaginary terms

1 cos
Re{ ( ( ) sin

2

si

n t n t n t n t n t n t n t n t n t n t n t n t n t
t n

n t

k
E E ib b b a a b ia a a d d

k
E E

                     
 



 

 

 
    

 



  
22

* '* * * * ' '* * ' * 2

0 0

* *

n
( )

We can evaluate the  part, and =ka, and the remaining terms are repeats so that:

( Re{ (
2

n t n t n t n t n t n t n t n t n t n t n t n t

n t n t

ib b b a a b ia a a d d

E E ib b
k

                     


 




 
   

 



 

'* * ' * * * * ' '*

1 1 0

0

( ) ( ) 2 2 )sin

Using the following identities (which arise from the Legendre polynomials):

( )( )sin (

n t n t n t n t n t n t n t n t n t n t n t n t n t
t n

n n t t n t

ia a b a a b d

d





sin )}

}                     

       

 

 

    

  

 


2 2

0

0

2 2 2 2 2 2
* '* * ' *0

2 2
1

2 ( 1)
)sin

2 1

( )sin 0

So continuing the result:

(2 1) 2 ( 1) 2 ( 1)
Re{( )}

2 ( 1) 2 1 2 1

t n t n n t nm

n t n t

n n n n n n n n
n

n n
d

n

d

E n n n n n
ib b ia a

k n n n n





        

     

    







   



 

  
 

  






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2 * '* * ' *
0

1

(1)

*

'* ' ' ' ' ' '

' * ' ' '

(2 1) Re{( }

We can use the following result:

Re{ } Re{ } 1

Re{ } Re{

n n n n n n n n
n

n n n n

n n n

n n n n n n n n n n n n n n

n n n n n n n n n

E n ib b ia a
k

h i

i

i i i

i i i

    


   

  

             

         





  

  

 

      

   



' ' '

2
2 20

1

} 1

(2 1)( )
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The extinction and scattering efficiencies are then given by: 
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Coated Sphere 
 
Considering now the case of a coated sphere, much of the previous results can be altered. 

Since region 2 does not include the origin Bessel functions of both the first and second 

kind are permitted. The form of the equations follows similarly to the previous functions. 
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Boundary conditions are given by: 
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Giving linear coefficient equations from Bohren and Huffman (where again x=ka, and 

y=kb): 
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The solution to this system of equations, for the scattering coefficients an, and bn (we don’t 

care about the field in the coating), for non-magnetic situations in which μ=μ1=μ2, are 

given by: 
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Qext is found in the same way as the uncoated sphere, substituting our new E and H fields. 

This is the final result, that we know all fields everywhere and can calculate our Qext for 

any given wavelength for the coated sphere. 
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Appendix B: Bulk Plasma 
Frequency Shift 

Used to find the values of wp that will reproduce the bare wavelengths at an index of 

refraction of 1.33 and coating thickness of 0.  Requires Matlab routine by C. Mätzler [211] 

Miecoated routine to be present 

 

%----------------------Initial Setup-------------------------------------

--------------------------------------------- 

clear all 

fid=fopen('Wp_Shift_Factor.txt','wt');  

 

divlambda=.05e-9;       %spacing of wavelengths 

Startwavelength=490*10^-9;    %Starting wavelength 

Stopwavelength=580*10^-9;     %Ending wavelength 

numpoints=round((Stopwavelength-Startwavelength)/divlambda);    %Number 

of points that will be calculated between start and stop wavelength 

 

ExpPeakValue=[522.3917];                                        

%Experimental peak wavelength of bare sphere 

sizes=[20];                                                     %Sizes 

(diameter) corresponding to peak to calculate 

FlagValue=0;     

wpsizes=1*(10^16)*[0.005];                                      %Matrix 

of guess corrections to bulk plasmon resonance 

 

while(FlagValue==0) 
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%-------------Create an array with wavelengths and corresponding 

wavevectors------------------------------------------ 

for count=1:1:numpoints 

    wavelength(count)=Startwavelength + (count-1)*divlambda; 

end 

 

Nwat=1.33;                                                      

%Surrounding medium (water) 

k0=2*pi*Nwat./wavelength;                                       

%Wavevector in Ambient material 

     

%------------Start of Main Program---------------------------------------

--------------------------------------------- 

 

%*********************Gold Nanoparticle 

Constants****************************************************************

***** 

innercore=1; 

a=0.5*sizes(innercore)*10^-9;                     %Inner radius 

gbulk=1.64*10^14;                                 %Size independent 

damping constant 1.64*10^14 

vf=14.1*10^14;                                    %Fermi velocity 

1.41*10^14 

gamma=gbulk + 1*vf/(a*10^9);                      %Size dependent damping 

constant with finite size effects included 

wp=1.3*10^16;                                     %Bulk plasma frequency 

1.3*10^(16) 

wpnew=1.3*10^16 + wpsizes(innercore);             %New Bulk plasma 

frequency (0.135,0.5) 

%************************************************************************

********************************************* 
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%------------------Fitted Index of Refraction for Bulk Gold--------------

--------------------------------------------- 

eprime=31.4199 - 0.0679*wavelength*10^9; 

e2prime=-416.5513 + 703616.2145./((wavelength*10^9)) - 

396337158.8805./((wavelength*10^9).^2) + 

74793091592.0138./((wavelength*10^9).^3); 

 

%-------------Adjust Damping for Size Dependence, and Wp Correction------

--------------------------------------------- 

for count=1:length(wavelength) 

    w(count)=2*pi*3e8/(wavelength(count)); 

    eprime(count)=eprime(count) - ( 1-wp^2/(w(count)^2+gbulk^2) ) + ( 1-

wpnew^2/(w(count)^2+gamma^2) );  

    e2prime(count)=e2prime(count) - ( 

gbulk*wp^2/(w(count)*(w(count)^2+gbulk^2)) ) + 

(gamma*wpnew^2/(w(count)*(w(count)^2+gamma^2)) ); 

end 

 

%-------------Setup Index of Refraction Arrays---------------------------

--------------------------------------------- 

for j=1:numpoints 

    n(j)=(0.5*((eprime(j)^2 + e2prime(j)^2)^(0.5) + eprime(j)))^(0.5); 

    k(j)=(0.5*((eprime(j)^2 + e2prime(j)^2)^(0.5) - eprime(j)))^(0.5); 

end              

  

m1=(n+i*k)./Nwat;                   %Index of refraction of sphere 

relative to water array 

x=k0*a;                             %Wavenumber of sphere 
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%--------------------------Vary coating thickness and index of 

refraction--------------------------------------------- 

Ncoating=1.33;     %Sphere coating 

b=a;          %Outer radius 

y=k0*b;                             %Wavenumber of coating 

m2=(Ncoating + 0*k)./Nwat;          %Index of refraction of coating 

relative to water array 

 

%-----------------------Calculate Extinction Efficiency------------------

--------------------------------------------- 

for j=1:numpoints 

    Data=Miecoated(m1(j),m2(j),x(j),y(j),1); 

    Extinction(j)=Data(1); 

end 

 

%--------------------------Find wavelength of maximum--------------------

--------------------------------------------- 

[maxvalue,maxindex]=max(Extinction); 

Peak_wavelengths=wavelength(maxindex)*10^9; 

 

%---------------------------------------Adjust Wp by Some Small Amount to 

Fix Peak Position--------------------------- 

DifferenceValue=Peak_wavelengths-ExpPeakValue 

 

if (DifferenceValue>0.025) 

    wpsizes=wpsizes + 1*(10^16)*[0.00015];   %Matrix of corrections to 

bulk plasmon resonance 

elseif (DifferenceValue < -0.025) 

    wpsizes=wpsizes - 1*(10^16)*[0.00015];   %Matrix of corrections to 

bulk plasmon resonance 
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else 

    FlagValue=1;  %The value is within the tolerance so exit   

end 

         

end  %end of while loop (Wp has been found for particular value 

 

% ------------------------------Output Results---------------------------

---------------------------------------------- 

fprintf(fid, '%6.6f %6.6f %6.6f %6.6f \n', a*2*10^9, Peak_wavelengths, 

max(Extinction), wpsizes(innercore)/(10^16)); 

fclose(fid); 
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Appendix C: Refractive 
Index/Thickness Contour Plot 
Generator 

This program is the main routine which uses the Matlab routine by C. Mätzler [211] 

Miecoated to generate a contour plot data of the extinction peak value, and position for a 

graph of index of refraction vs. coating thickness (nm).  

%----------------------Initial Setup-------------------------------------

---------------- 

clear all 

fid=fopen('Contour_Data_For_Patricks_20nm_Wp_Vf_Shifted.txt','wt');  

 

divlambda=.05e-9;               %spacing of wavelengths 

Startwavelength=510*10^-9;      %Starting wavelength 

Stopwavelength=560*10^-9;       %Ending wavelength 

numpoints=round((Stopwavelength-Startwavelength)/divlambda);    %Number 

of points that will be calculated between start and stop wavelength 

 

%-------------Create an array with wavelengths and corresponding 

wavevectors------ 

for count=1:1:numpoints 

    wavelength(count)=Startwavelength + (count-1)*divlambda; 

end 

 

sizes=[20];                                         %Matrix of sizes to 

calculate    

wpsizes=1*(10^16)*[0.007550];                       %Matrix of 

corrections to bulk plasmon resonance 
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Nwat=1.33;                                          %Surrounding medium 

(water) 

k0=2*pi*Nwat./wavelength;                           %Wavevector in 

Ambient material 

 

 

 

 

for innercore=1:length(sizes) 

%------------Start of Main Program---------------------------------------

-------------------------- 

%Gold Constants 

a=0.5*sizes(innercore)*10^-9                      %Inner radius 

gbulk=1.64*10^14;                                 %Size independent 

damping constant 1.64*10^14 

vf=14.1*10^14;                                    %Fermi velocity 

1.41*10^14 

gamma=gbulk + 1*vf/(a*10^9);                      %Size dependent damping 

constant 

wp=1.3*10^16;                                     %Bulk plasma frequency 

1.3*10^(16) 

wpnew=1.3*10^16 + wpsizes(innercore)              %New Bulk plasma 

frequency (0.135,0.5) 

 

%------------------Gold Index of Refraction------------------------------

--------------------------- 

eprime=31.4199 - 0.0679*wavelength*10^9; 

e2prime=-416.5513 + 703616.2145./((wavelength*10^9)) - 

396337158.8805./((wavelength*10^9).^2) + 

74793091592.0138./((wavelength*10^9).^3); 
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%-------------Adjust for size dependence---------------------------------

--------- 

for count=1:length(wavelength) 

w(count)=2*pi*3e8/(wavelength(count)); 

eprime(count)=eprime(count) - ( 1-wp^2/(w(count)^2+gbulk^2) ) + ( 

1-wpnew^2/(w(count)^2+gamma^2) );  

e2prime(count)=e2prime(count) - ( 

gbulk*wp^2/(w(count)*(w(count)^2+gbulk^2)) ) + 

(gamma*wpnew^2/(w(count)*(w(count)^2+gamma^2)) ); 

end 

 

%-------------Interpolate Points and setup index of refraction arrays----

---------- 

for j=1:numpoints 

  n(j)=(0.5*((eprime(j)^2 + e2prime(j)^2)^(0.5) + eprime(j)))^(0.5); 

  k(j)=(0.5*((eprime(j)^2 + e2prime(j)^2)^(0.5) - eprime(j)))^(0.5); 

end              

  

m1=(n+i*k)./Nwat;                   %Index of refraction of sphere 

relative to water array 

x=k0*a;                             %Wavenumber of sphere 

 

%--------------------------Vary coating thickness and index of 

refraction---------------------* 

for outercoat=0:200 

for indexcoat=0:50 

 

Ncoating=1.30 + indexcoat*0.01;        %Sphere coating 

b=a + .05*outercoat*(10^-9);            %Outer radius 

y=k0*b;                                 %Wavenumber of coating 
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m2=(Ncoating*ones(1,length(wavelength)) + 

i*0*ones(1,length(wavelength)))./Nwat;          %Index of refraction of 

coating relative to water array 

 

%-----------------------Calculate Extinction Efficiency------------------

-------- 

for j=1:numpoints 

    Data=Miecoated(m1(j),m2(j),x(j),y(j),1); 

    Extinction(j)=Data(1); 

end 

 

 

% ------------------------------The results------------------------------

--- 

%Find wavelength of maximum 

[maxvalue,maxindex]=max(Extinction); 

%Find corresponding value of maximum 

Peak_wavelengths=wavelength(maxindex)*10^9; 

%Output the results 

fprintf(fid, '%6.3f %6.3f %6.3f %6.3f %6.5f \n', a*2*10^9, (b-a)*10^9, 

Ncoating, Peak_wavelengths, maxvalue); 

 

end 

end 

 

end 

fclose(fid); 
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Appendix D: Contour Plot 
Search Algortihm for Inversion 
of Mie Calculation 

The following program searches through the generated contour plot for the best 

approximation to the experimentally measured peak wavelength and value, returning the 

associated index of refraction, and thickness. 

clear all 

fid=fopen('Output1.txt','wt');    %File in which to output results. 

 

 

%*****************Start of 

Data*********************************************************************

************* 

%5nm 

Peak(1,:)=[...values of peak extinction from contour generation 

program...]; 

Extinction(1,:)=[...values of extinction wavelength from contour 

generation program...]; 

ExpPeak(1,:)=[522.1437 521.9367 522.0878 521.5365 521.8626

 521.1002 521.5224 521.8450 521.8343]; 

ExpExt(1,:)=[0.1185 0.1170 0.1181 0.1217 0.1201

 0.1191 0.1200 0.1223 0.1163]; 

Length=length(Thickness(1,:)); 

%************************************************************************

**** 

 

 

count2=1; 
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%Distribution from contour generation program used to produce the arrays 

Peak and Extinciton 

Thickness2=0:0.05:10;   %Values of thickness used to produce peak and 

extinction values 

Index2=1.3:0.01:1.8;    %Values of index of refraction used to produce 

peak and extinction values 

 

outercoat=201   %Number of coating thickness values 

indexcoat=51    %Number of index of refraction values 

 

for count=0:(outercoat-1) 

    Peak2(count+1,:)=Peak(count2, (1 + indexcoat*count):(indexcoat + 

indexcoat*count)); 

    Extinction2(count+1,:)=Extinction(count2, (1 + 

indexcoat*count):(indexcoat + indexcoat*count)); 

end 

 

%The following represent the grid spacing we'd like to have  

Division1=1800; 

Division2=1000; 

 

%New coating thickness distribution 

for count=1:Division1 

  Thicknew(count)=0 + count*0.005; 

end 

 

%New index of refraction distribution 

for count=1:Division2 

  Indexnew(count)=1.4 + count*0.0005; 
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end 

 

%Produce the actual Grid 

[x,y]=meshgrid(Indexnew,Thicknew); 

InterPeaks= interp2(Index2, Thickness2, Peak2, x, y, 'linear'); 

InterExtinction= interp2(Index2, Thickness2, Extinction2, x, y, 

'linear'); 

 

 

clear Peak2; 

clear Extinction2; 

clear Thickness2; 

 

 

 

    %Reshape the arrays so they can be used by dsearch and for outputting 

to file 

    TheorData= cat(2,reshape(InterPeaks,Division1*Division2,1), 

reshape(InterExtinction, Division1*Division2,1)); 

    clear InterPeaks; 

    clear InterExtinction; 

    clear IndexofRefraction; 

     

    IndexofRefraction=reshape(x,Division1*Division2,1); 

    CoatingThickness=reshape(y,Division1*Division2,1); 

     

    clear x; 

    clear y; 

 

%Setup an array to be used by dsearchn with experimental data 



Appendix D: Contour Plot Search Algortihm for Inversion of Mie Calculation 119 

 

for count=1:length(ExpExt(count2,:)) 

    ExpData(count,2)=ExpExt(count2,count); 

    ExpData(count,1)=ExpPeak(count2,count); 

end 

 

%Perform a search for the first point, and adjust the initial extinction, 

until the index of refraction of the first point is a specific value (eg. 

1.57) 

 

clear k; 

k = dsearchn(TheorData,ExpData); 

 

 

%Output the scaling factor for the data so that the first point will 

produce an N value of __ (eg. 1.57) 

fprintf(fid, '%6.6f \n', count2); 

 

%fprintf(fid, '%6.6f \n', count2);  

for count=1:length(ExpExt(count2,:)) 

    fprintf(fid, '%6.6f %6.6f %6.6f %6.6f  \n', TheorData(k(count),1), 

TheorData(k(count),2), IndexofRefraction(k(count)), 

CoatingThickness(k(count)) ); 

end     
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Appendix E: Homogeneous, No-
Slip, N-Layer Voigt Model of 
QCM 

The following program is used to calculate the frequency and dissipation for any number 

of overtones caused by depositing any number of layers for a QCM crystal. This is based 

on the solution of Voinova et al. [215]. 

 

clear all 

fid=fopen('ProteinOnPHEMA.txt','wt'); 

 

 

%************************************************************************

************************** 

%User Defined Layer Parameters. Each layer is a separate column. Any 

number of layers can be added 

mu=             [1.208*10^9,    2.5531e+006,     1*10^9,     0]; 

eta=            [0,             0.4497,          0,          0.0007]; 

rho=            [1050,          1098.7,          1330,       1000]; 

h=              [95*10^(-9),    379.95*10^(-9),  90*10^(-9), 5000*10^(-

9)]; 

 

%User Defined Bare Crystal Parameters 

%Voinova Paper values 

rho0=2648; 

f0= 4.96*10^6; 

fr=3*f0; 

h0=3340/(2*f0); 
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%************************************************************************

************************** 

%Perform calculation for fundamental frequency and first two overtones. 

for freqcount=1:2:5 

fr=freqcount*f0; 

 

 

%Calculated parameters 

NLayers=length(mu); 

 

w=2*pi*fr; 

 

for count=2:NLayers 

    H(count-1)=h(count); 

end 

 

for count=1:NLayers 

    zeta(count)=( -(rho(count)*(w^2))/(mu(count) + i*w*eta(count)) )^0.5; 

    K(count)=(eta(count) - i*mu(count)/w); 

end 

 

A(NLayers)=1; 

for count=(NLayers-1):-1:1 

    A(count)=(K(count)*zeta(count)*(1 + 

A(count+1)*exp(2*zeta(count+1)*H(count))) - K(count+1)*zeta(count+1)*(1 - 

A(count+1)*exp(2*zeta(count+1)*H(count)))) / (K(count)*zeta(count)*(1 + 

A(count+1)*exp(2*zeta(count+1)*H(count))) + K(count+1)*zeta(count+1)*(1 - 

A(count+1)*exp(2*zeta(count+1)*H(count)))); 

end 
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BetaFunction=K(1)*zeta(1)*( (1 - A(1)*exp(2*zeta(1)*h(1))) / (1 + 

A(1)*exp(2*zeta(1)*h(1))) ); 

DeltaFrequency(freqcount)=sensitivity(freqcount)*imag(BetaFunction/(2*pi*

rho0*h0))-shiftF(freqcount); 

DeltaDissipation(freqcount)=-real(BetaFunction/(pi*fr*rho0*h0))-

shiftD(freqcount); 

 

 

end 

 

fprintf(fid, '%6.2f %6.6f %6.6f %6.6f %6.6f %6.6f %6.6f \n', h(3)*10^9, 

DeltaFrequency(1), DeltaDissipation(1)*10^6, DeltaFrequency(3), 

DeltaDissipation(3)*10^6, DeltaFrequency(5), DeltaDissipation(5)*10^6); 
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Summary of Papers 

Papers I, II, and III involve the application of gold nanospheres to examining 

protein conformational dependencies during heat and acid denaturation. Thin planar gold 

films have been used for some time to extract the optical thickness and refractive index 

from the angle and amplitude shift of their plasmon resonance in the presence of protein. 

Small gold particles exhibit localized surface plasmon resonance which depends strongly 

on the local index of refraction surrounding the sphere. We use analogous techniques to 

planar SPR to extract index of refraction and thickness of bovine serum albumin (BSA) 

protein conjugated to various sizes of gold nanospheres. By monitoring amplitude and 

wavelength shifts in the peak plasmon resonance as we subject the samples to denaturing 

conditions, we can infer what may be happening to the protein from Mie theory (page 69).  

The first paper involves heat denaturation over a ramp cycle, looking at curvature 

dependence of the cycle. The second paper investigates isothermal heating, and derives 

curvature dependent activation energies. Lastly, the curvature dependence of pH 

denaturation is examined in the third paper. 

Papers IV, and V examine protein deposition in the applied situation of 

biomaterials, in particular contact lenses. Paper IV examines adsorption of hen egg white 

lysozyme, BSA, bovine lactoferrin and combinations of these onto crosslinked polyHEMA 

hydrogels deposited onto a quartz crystal microbalance. Lastly, Paper V examines 

deposition onto commercial contact lenses using atomic force microscopy and protein 

conjugated nanospheres. The conjugated nanospheres provide a labeling for the protein, 

allowing lateral resolution of protein deposition that would otherwise be obscured by the 

morphology of the lens. Structures resembling fibril-type protein are found on one lens 

type. 
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Paper I 

Anomalous thermal denaturing 
of proteins adsorbed to 
nanoparticles.1 

Protein adsorbtion is greatly affected by the surface onto which it deposits. One aspect of 

the surface that is generally overlooked is the effect of curvature upon adsorbtion. In 

particular, if the size of the roughness approaches the dimensions of the molecule, what 

effect will this have upon adsorption? Even more peculiar may be to ask how the behaviour 

of a protein will differ on a surface that is smaller than the protein dimensions. The ease 

with which a range of nanoparticle sizes can be made makes them ideal candidates for 

examining curvature effects. Additionally, due to their strong localized surface plasmon 

resonance, they can be used as a measurement tool with extreme sensitivity to their local 

surroundings. This translates into excellent resolution for monitoring layer changes. This 

paper seeks to demonstrate the effect of Au nanosphere curvature upon the thermal 

stability, and denaturing path (in index/thickness space) of bovine serum albumin. It also 

shows the usefulness of Au nanospheres as measurement tools. Extremely useful 

information can be extracted from even basic modeling of the system. 

 

 

 

 

1Reproduced with kind permission of Springer Science+Business Media [EPJ E vol 21, 

(2006) p 19-24.] 
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Paper II 

Size dependent denaturing 
kinetics of proteins adsorbed 
onto nanospheres.2 

In paper I, the curvature dependence of the denaturing path in index/thickness space was 

extracted for BSA on Au nanospheres. This path was a convolution of time and 

temperature data. Hence, paper II looks at isothermal denaturing in order to isolate the time 

dependence. It was apparent in paper I that certain assumptions had to be made in order to 

extract the desired index/thickness data. In paper II, we find a measure of the denaturing 

rate and extract activation energies from an Arrhenius plot without having to resort to the 

previous model. These energies are extracted for a series of nanosphere sizes, once again 

displaying dependence of denaturing on curvature. 

 

 

 

 

 

 

2Reproduced with kind permission of Springer Science+Business Media, The European 

Physical Journal E - Soft Matter, J. H. Teichroeb, J. A. Forrest and L. W. Jones, Size-

dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres, 

2008 
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Paper III 

Influence of nanoparticle size on 
the pH dependent structure of 
adsorbed proteins studied with 
quantitative localized surface 
plasmon spectroscopy3 

Heat is not the only way to perturb a protein in order to examine its stability and 

conformational changes. Changes in pH will also alter a protein’s conformation through 

bond breaking, as well as shifting the charge. In this paper we seek to address the effect of 

curvature upon the conformation of conjugated BSA under subjection to acid perturbation. 

Transitions that occur in bulk protein may not occur once adsorbed. Additionally, 

transitions that are reversible under the relatively dilute conditions of a bulk solution, may 

become irreversible when confined to the high protein density situation of adsorption.  

 

 

 

 

 

 

 

3Submitted to the European Physical Journal E – Soft Matter. 
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Figure 1
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Figure 2

 



  181 

 
Figure 3
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Figure 4
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Figure 6
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Figure 7
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Paper IV 

Quartz Crystal Microbalance 
Study of Protein Adsorption 
Kinetics on Poly(2-hydroxyethyl 
methacrylate)4 

The previous three papers concentrated on curvature effects, and how they influence 

adsorbed protein. One feature of all the previous papers was that adsorption had already 

occurred. In the field of biomaterials, however, it is also of great concern as to the 

mechanisms by which proteins become adsorbed. This paper examines the kinetics of 

adsorbtion taking place on crosslinked polyHEMA surfaces. PolyHEMA is chosen as a 

model biomaterial for its wide application in various protheses, in particular contact lenses. 

The quartz crystal microbalance (QCM) provides a unique opportunity to study protein 

adsorption. QCM has both extreme mass sensitivity (ng/cm2) as well as a fast response 

time. Viscoelastic measurements provided by the QCM are shown to be informative with 

respect to dehydration of the swelled polyHEMA film. Lastly, because protein adsorption 

can depend strongly on protein-protein interactions in the bulk solution and on the surface, 

single protein adsorption results do not translate easily into multicomponent adsorption 

experiments. This is shown explicitly in measurements involving combinations of the 

studied proteins and comparison to their individual adsorption behaviour. 

 
4Reprinted from Journal of Colloid and Interface Science, J.H. Teichroeb, J.A. Forrest, 
L.W. Jones, J. Chan and K. Dalton, Quartz crystal microbalance study of protein 
adsorption kinetics on poly(2-hydroxyethyl methacrylate), Pages 1-8 , 2008, with 
permission from Elsevier. 



  188 

  
License Number 1994271461393 

License date Jul 22, 2008   
Licensed content publisher Elsevier Limited 

Licensed content publication Journal of Colloid and Interface Science 

Licensed content title Quartz crystal microbalance study of protein adsorption kinetics on poly(2-hydroxyethyl 
methacrylate) 

Licensed content author J.H. Teichroeb, J.A. Forrest, L.W. Jones, J. Chan and K. Dalton 

Licensed content date 4 June 2008 

   

Volume number n/a 

Issue number n/a 

Pages 1-8 

Type of Use Thesis / Dissertation 

Portion Full article 

Format  Print 

You are the author of this 
Elsevier article 

Yes 

Are you translating? No 

Purchase order number  
Expected publication date  Sep 2008 

Elsevier VAT number GB 494 6272 12 

Permissions price 0.00 USD 

Value added tax 0.0% 0.00 USD 

Total 0.00 USD 

 



  189 

 



  190 

 



  191 

 



  192 

 



  193 

 



  194 

 



  195 

 



  196 

 



 

197 

Paper V 

Imaging Protein Deposits on 
Contact Lens Materials5 

This final paper looks at protein adsorption in a real world system – the contact lens. In 

particular, silicone hydrogels, which offer higher oxygen transmissibility, are examined. 

Controlling the kinetics, and amount of adsorption may be desirable, however, the state of 

protein is perhaps more important in terms of pathogenicity. Generally, amounts of protein 

adsorption are measured on contact lenses. A large amount of protein does not necessarily 

represent a problem if that protein maintains its native state and function, and remains 

exchangeable with the bulk. We have opted to look at the morphology of the protein 

deposits in this paper. This is something that is rarely examined, but may offer clues as to 

why these deposits form. Additionally, measurements of roughness, surface composition, 

and bare lens morphology were made, all of which may correlate with protein adsorption. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
4Reprinted from Optometry and Vision Science, J.H. Teichroeb, J.A. Forrest, V. Ngai, J.W. 
Martin, L. Jones, J. Medley and K. Dalton, Imaging Protein Deposits on Contact Lens 
Materials. 
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