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Abstract 

System design, parameter design, and tolerance design are the three stages of product or process 

development advocated by Genichi Taguchi. Parameter design, or robust parameter design (RPD), is 

the method to determine nominal parameter values of controllable variables such that the quality 

characteristics can meet the specifications and the variability transmitted from uncontrollable or noise 

variables is minimized for the process or product. Tolerance design is used to determine the best 

limits for the parameters to meet the variation and economical requirements of the design.  

In this thesis, response surface methodology (RSM) and nonlinear programming methods are 

adopted to integrate the parameter and tolerance design. The joint optimization method that conducts 

parameter design and tolerance design simultaneously is more effective than the traditional sequential 

process. While Taguchi proposed the crossed array design, the combined array design approach is 

more flexible and efficient since it combines controllable factors, internal noise factors, and external 

noise factors in a single array design. A combined array design and the dual response surface method 

can provide detailed information of the process through process mean and process variance obtained 

from the response model. Among a variety of cuboidal designs and spherical designs, standard or 

modified central composite designs (CCD) or face-centered cube (FCC) designs are ideal for fitting 

second-order response surface models, which are widely applied in manufacturing processes. Box-

Behnken design (BBD), mixed resolution design (MRD), and small composite design (SCD) are also 

discussed as alternatives. After modeling the system, nonlinear programming can be used to solve the 

constrained optimization problem. Dual RSM, mean square error (MSE) loss criterion, generalized 

linear model, and desirability function approach can be selected to work with quality loss function 

and production cost function to formulate the object function for optimization. This research also 

extends robust design and RSM from single response to the study of multiple responses. 

It was shown that the RSM is superior to Taguchi approach and is a natural fit for robust design 

problems. Based on our study, we can conclude that dual RSM can work very well with ordinary least 

squares method or generalized linear model (GLM) to solve robust parameter design problems. In 

addition, desirability function approach is a good selection for multiple-response parameter design 

problems. It was confirmed that considering the internal noise factors (standard deviations of the 

control factors) will improve the regression model and have a more appropriate optimal solution. In 

addition, simulating the internal noise factors as control variables in the combined array design is an 
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attractive alternative to the traditional method that models the internal noise factors as part of the 

noise variables. 

The purpose of this research is to develop the framework for robust design and the strategies for 

RSM. The practical objective is to obtain the optimal parameters and tolerances of the design 

variables in a system with single or multiple quality characteristics, and thereby achieve the goal of 

improving the quality of products and processes in a cost effective manner. It was demonstrated that 

the proposed methodology is appropriate for solving complex design problems in industry 

applications.    
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Chapter 1 
Introduction 

1.1 Robust Design and Response Surface Methodology 

Among the various applications of industry statistics, two of the most successful developments over 

the last 60 years are: response surface methodology (RSM) originating from the chemical industries 

in the 1950s and 1960s, and robust design, particularly robust parameter design (RPD), originating 

from manufacturing quality improvement initiatives in the 1980s (Steinberg 2008). RSM is a natural 

fit for the robust design problems in various industrial applications and academic researches. 

In the 1980s, Genichi Taguchi (Taguchi and Wu (1985), and Taguchi (1986, 1987)) introduced 

robust design on quality engineering through the statistical design of experiments. The concepts of 

robust design and its realization methods are significant contributions to modern quality and process 

improvement. Taguchi defines three stages in product or process development: system design, 

parameter design, and tolerance design. In this thesis, we will work on robust parameter design, 

tolerance design, as well as their combination, called integrated robust design. 

System design is the conceptual design, which proposes the principal system configuration based 

on existing knowledge and resources. Good system design can guarantee that the subsequent 

parameter and tolerance design stage are feasible and going in the right direction. Robust parameter 

design, or process robustness study in a manufacturing process, aims to achieve the requirements for 

the quality characteristics through determining nominal parameter values of controllable factors (or 

control variables) while minimizing the variability transmitted from uncontrollable factors (or noise 

variables). Control variables, which are denoted by x, are easily controlled and manipulated, while 

noise variables, which are denoted by z, are uncontrollable or difficult to control. It is desirable to 

make the responses, which are denoted by y, robust or insensitive to the noise variables, while 

meeting the specification requirements. Tolerance design is employed to determine the best 

specification limits for the parameters with economic consideration. Due to the need for more 

resources to realize the tighter tolerance, the production cost usually increases as the tolerances of the 

control variables are reduced. In tolerance design, control variables with significant effects on the 

performance of the system should be identified, and their specification limits should be optimized in a 

yield-cost scenario. On the other hand, the insignificant control variables can be specified with wider 

variability to save the limited resources. 
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In this thesis, we focus on reducing variation of a process or product, which is referred to as a 

system, through proactive robust design methods. Statistical experiments based response surface 

methodology (RSM) is presented to solve the robust design problem and nonlinear programming 

methods are used for the constrained optimization. Figure 1-1 presents a framework using response 

surface methodology for the integrated robust design of a system with single or multiple quality 

characteristics. Though most of the processes are standard or generic, some new methods and 

comparisons will be discussed in this thesis.  

 
Figure 1-1 Robust design framework 
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1.2 Statement of Problem 

Different kinds of variation exist everywhere and anytime in a production process. Reducing variation 

is one of the most important tasks for an engineer. We can improve the system performance through 

identifying the causes of variation and then taking actions to control them to meet our goal. 

Specifically, such kind of reactive method is one of the major problem solving techniques in 

manufacturing industry. However, robust design, as a proactive solution, is more effective and 

efficient than the traditional quality control methods. The philosophy of robust design is design for 

quality and reliability.  

In general, we refer to Taguchi’s robust design methodology as a two-stage sequential design 

approach. First, the designer invokes parameter design to determine the nominal values of the control 

variables and meet the target of the response. And then, tolerance design is performed to find the 

optimal tolerances around the parameters. Some engineers argue that the parameters and tolerances of 

design variables are affecting each other and competing in the total cost. A more competitive strategy 

is to optimize them simultaneously. We call the joint method integrated parameter and tolerance 

design, or robust design, and will study it intensely in this thesis.  

Robust design is a very important concept for quality improvement and is widely adopted by 

scientists and engineers to improve the quality of a system and satisfy the customers. However, 

regarding the methodology of robust design, we have far more work to do to standardize the methods 

under different conditions and requirements, and to narrow the gap between the research and industry 

applications. Gremyr et al. (2003) conducted surveys to study the status of robust design methodology 

in the Swedish manufacturing industry. They revealed that only 17% out of the 105 sampled 

companies applied robust design methodology, though a majority of the companies were trying to 

minimize variation. In addition, their study shows that robust design is used mainly in large 

companies.  

Taguchi laid a strong emphasis on variability reduction. His method includes two important parts: 

crossed array designs as the experimental strategy and signal-to-noise ratios (SNR) as the analysis 

method. One should be aware that despite criticisms put forward by Western statisticians concerning 

his approach, the methods advocated by Taguchi have been successfully applied to many real-life 

situations even it has unavoidable weaknesses (Nair et al. 1992, Myers and Montgomery 2002, 

Montgomery 2005). Response surface methodology (RSM) is one of the statistical approaches 

employed for robust design. RSM has become an important technique in the industrial world, 
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particularly in process and product development. RSM is a collection of statistical and mathematical 

techniques useful for designing the statistical experiments, developing the regression models, and 

optimizing a process or product. The designer can apply RSM on new products or processes, as well 

as on existing ones. 

RSM is an ideal approach to solve the robust design problem and optimize a product or process. It 

has many advantages over Taguchi’s methods of experimental design and data analysis. However, 

many companies or engineers in the industry world do not fully understand the better approaches 

coming from the academic field and are still using Taguchi’s methods, even though academia has 

discussed and reviewed robust design for over 20 years and statisticians have repeatedly compared 

Taguchi’s methods with other new approaches (including RSM). The statisticians should focus on 

training people working in industry to clarify the misunderstanding and close the gap between 

academia and industry.  

The dual response surface approach estimates two response models, one for the process mean, and 

another one for the process variance. The combined array design combines the design and noise 

variables into one single design, while Taguchi’s crossed array includes two designs: one is inner 

array design consisting of the control variables, and the other is outer array design containing the 

noise variables. Dual RSM and combined array design are the most important RSM tools used for 

robust design. In this thesis, we apply dual RSM approach to construct the constrained optimization, 

and employ a variety of combined array designs, such as central composite design (CCD), Box-

Behnken design (BBD), and face-centered cube (FCC), to fit the second-order regression models. 

Furthermore, we investigate functionality of the noise factors, consisting of external noise factors and 

internal noise factors. Whereas the external noise factors are the environmental variables that we 

cannot control, the internal noise factors represent the random variation of control variables due to the 

deviations of different components or manufacturing processes.  

Parameter design is a major part of robust design, but the importance of tolerance design should not 

be ignored. Tolerance design allocates reasonable limits for the optimal parameters to balance the 

design and manufacturing applications. The goal is to optimize the parameters and tolerances of the 

control variables simultaneously. In general, the optimization is formulated as minimizing the total 

cost that includes two competing parts: the so called loss-of-quality cost and production cost. We can 

also use response mean, response variance, loss-of-quality cost, or production cost as objective 

function and others as constraints. 
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1.3 Objectives of Research 

In this thesis, the following objectives will be fulfilled: 

• The primary objective of this research is to determine appropriate statistical design of 

experiments for the combined array design to solve a robust design problem. The possible 

designs include factorial design ( k2 ) or fractional factorial design ( pk−2 ), central 

composite design (CCD), Box-Behnken design (BBD), face-centered cube (FCC), and 

mixed resolution design (MRD).   

• The second objective is to develop regression models of the responses in terms of the 

design variables (control and noise variables). The models of process mean and variance 

are very important for data analysis.  

• The third objective is the development of design optimization to obtain the optimal 

parameters and tolerances while improving conformance of the responses and reducing the 

total cost. 

• After a general robust design framework is developed to apply the response surface 

methodology and constrained optimization method to solve practical robust design 

problems, we discuss some advanced topics on robust design. 

1.4 Summary and Overview of Research 

This chapter introduces the importance of robust design and response surface methodology to reduce 

variation and identifies the objectives of the research. Chapter 2 presents the literature review of the 

techniques and the application of robust design. The review covers the area of response surface 

methodology, statistical design of experiments, robust parameter design, robust tolerance design, and 

nonlinear programming. In Chapter 3, response surface methodology and statistical design of 

experiments are discussed in detail. Particularly, two important approaches of RSM, dual RSM and 

combined array design, are presented with practical examples. Generalized linear model (GLM) 

approach and design construction methods are discussed as well. In Chapters 4 some advanced topics 

are investigated, such as the functionality of the noise factors (external noise factors and internal 

noise factors), quality loss functions for single- and multiple-response, and nonlinear programming 

method for multiple responses. Chapter 5 presents two cases study to solve robust design problems. 

Summary of the research and plan for future research are provided in Chapter 6. 
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Chapter 2  
Literature Review 

Robust design, e.g. robust parameter design (RPD) and robust tolerance design, was pioneered by 

Genichi Taguchi in the 1980s (Taguchi and Wu (1985), and Taguchi (1986, 1987)). As an efficient 

and cost-effective engineering approach, it draws tremendous interest and attention among scientists 

and engineers. After three decades of development, robust design, particularly robust parameter 

design, has become a useful collection of tools to improve quality in diversified research areas and 

industrial applications. In this chapter, background information and literature review will be presented 

on Taguchi’s philosophy and techniques, modern statistical design of experiments (SDE), response 

surface methodology (RSM), robust parameter design and tolerance design, and constrained 

optimization through nonlinear programming methods.  

2.1 Taguchi’s Philosophy and Techniques 

After being introduced to the United States in the 1980s and having successful application in industry, 

Taguchi’s techniques laid foundations and provided a philosophical basis for robust design. Many 

Western statisticians have reviewed and criticized Taguchi’s approach to identify its weaknesses and 

limitations (Box 1988, Nair et al. 1992, Myers and Montgomery 2002, Montgomery 2005). Taguchi 

proposes three stages of robust design: system design, parameter design, and tolerance design. The 

goals of Taguchi’s experimental design can be summarized as designing robust products or processes 

that are insensitive to environmental conditions (external noise factors), developing robust products 

that are insensitive to component variation (internal noise factors), and minimizing variation around a 

target value. The most important parts of Taguchi's philosophy are the reduction of variability and 

minimization of nonconformance cost. They are consistent with the modern continuous quality 

improvement philosophy. 

Taguchi’s design strategies include crossed or orthogonal arrays where the inner array that consists 

of the control variables x, is crossed with the outer array that contains the noise variables z. The inner 

or outer array is a factorial or fractional factorial design, and the outer array is crossed with every 

combination of the inner array. The orthogonal arrays are denoted by )( k
r mL , where r represents the 
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number of runs in the array, k is the number of variables, and m is the number of levels of each 

variable.  

Consider a pull-off force experiment of a connector described by Byrne and Taguchi (1987) and 

Myers and Montgomery (2002). The experiment is a standard Taguchi parameter design that consists 

of four control factors (A, B, C, and D) and three noise factors (E, F, and G). The control factors are 

at three levels and the noise factors are at two levels. Since the inner array is a )3( 4
9L design and the 

outer array is a )2( 3
8L design, the total number of runs is 7289 =× . Table 2-1 presents the inner 

and outer array for the Taguchi parameter design. The inner array is a 243 −
 fractional factorial design 

and the outer array is a 32  factorial design.  

Table 2-1 Taguchi Parameter Design 

Outer Array )2( 3
8L  

E -1 -1 -1 -1 +1 +1 +1 +1 Inner Array )3( 4
9L  

F -1 -1 +1 +1 -1 -1 +1 +1 

Responses 
run 

A B C D G -1 +1 -1 +1 -1 +1 -1 +1 y  SNR 

1 -1 -1 -1 -1 11y  12y  13y 14y 15y 16y 17y  18y  1y  1SNR  

2 -1 0 0 0 21y 22y 23y 28y  
2y  2SNR

3 -1 +1 +1 +1 31y 32y  33y 38y  
3y  3SNR  

4 0 -1 0 +1 41y 42y 43y 48y  
4y  4SNR

5 0 0 +1 -1 51y 52y  53y 58y  
5y  5SNR  

6 0 +1 -1 0 61y 62y  63y 68y  
6y  6SNR

7 +1 -1 +1 0 71y 72y  73y 78y  
7y  7SNR

8 +1 0 -1 +1 81y 82y  83y 88y  
8y  8SNR  

9 +1 +1 0 -1 

 

91y 92y  93y

… 

98y  
9y  9SNR  
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The inner array design 243 −
 can accommodate linear and quadratic terms in each control variable, 

but there are no degrees of freedom left for estimating interactions between the control variables. 

Taguchi claims that it is possible to eliminate the control-by-control interactions either by correctly 

specifying the response and design factors or by using a sliding setting approach to choose factor 

levels. However, it is difficult to implement these two approaches unless we have a high level of 

process knowledge, which is unlikely (Montgomery 2005). The lack of consideration for the possible 

interactions between the control factors is a major drawback of Taguchi’s method. Another concern 

of the Taguchi approach for parameter design is that the crossed array structure usually leads to a very 

large experiment as the number of design variables increases. In our example, 72 tests should be 

carried out by the cross array design. However, the combined array design, if we run all design 

variables at two levels, only needs 32 runs to conduct the experiment, and main effects and two-factor 

interactions between the control factors can be estimated without aliasing with any other main effects 

and two-factor interactions. This design meets the general requirement to consider the important 

control-by-control interactions in the regression model. The combined array design is 272 −
IV , and the 

design generators are ABCDF = and ABDEG = . All the first-order main effects and two-factor 

interactions can be estimated, except that the control-by-noise interactions CE, CF, and CG are 

aliased with noise-by-noise interactions FG, EG, and EF, but in actual applications we often do not 

consider the interactions between the noise factors.  

In addition, Taguchi suggests that we summarize the result of a response with the signal-to-noise 

ratio (SNR). In the analysis we treat the SNR as the response of the system. SNR is derived from a 

quadratic loss function and defined in three metrics: target-is-best, the-larger-the-better, or the-

smaller-the-better. The goals of the three types of SNR are the same as their names: to achieve the 

nominal value, to maximize the response, and to minimize the response. 

1. Target-is-best  

)log(10 2

2

S
ySNRT =  

2. The-larger-the-better 

)11log(10
1

2∑
=

−=
n

i i
L yn

SNR  



 

 9 

3. The-smaller-the-better 

)1log(10
1

2∑
=

−=
n

i
iS y

n
SNR

 

Box (1988) and Nair et al. (1992) present excellent discussions on the limitations of the signal-to-

noise ratios (SNR) and the analysis of these responses. Taguchi tries to use the SNRs as performance 

criteria while considering the process mean and variance. However, the SNRs usually confound 

location and dispersion, so the mean and variance contributions to the SNRs are confounded and we 

cannot analyze and evaluate them separately. We will illustrate in Chapter 3 that separate models for 

the process mean and variance, which are achieved through dual response surface approach, will 

provide a better understanding of the process. 

Taguchi advocates the main-effects-only analysis through marginal means graphs, which plot SNR 

and y  against the levels of the control factors. The decision can be made by “pick the winner” 

analysis. However, the approach of main effect means is appropriate only under the assumption that 

there are no interactions among the control variables. Obviously, in many cases, this assumption is 

not correct and the marginal means plots are misleading. Therefore, optimum solution cannot be 

guaranteed, even though a confirmation experiment, which is recommended by Taguchi, is run under 

inappropriate conditions. 

Although Taguchi’s methodology generated much discussion and debate, no one can deny the 

importance of his philosophy and his significant contributions to quality engineering. He advocates 

the robust design and extends the application of industrial statistics successfully to more industrial 

and manufacturing areas. However, his methods of experimental design and data analysis have 

critical weaknesses, and should be replaced with better approaches, such as the response surface 

methodology, in different research areas and industry applications. 

2.2 Statistical Design of Experiments (SDE) 

Statistical design of experiment (SDE), as a basis for response surface methodology, is an important 

engineering approach for robust design. It uses statistical techniques to plan the experimental strategy, 

decide the data analysis methods, and draw objective conclusions. According to Montgomery (2005), 

there have been four eras in its modern development. The first era, agricultural era, was led by Sir 

Ronald A. Fisher in the 1920s and early 1930s. He developed the three basic principles of 
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experimental design: randomization, replication, and blocking. His major contributions include the 

factorial design concept and the analysis of variance (ANOVA), though they were particularly 

applied in the agricultural area. 

The second era, namely industrial era, was pioneered and led by George Box through the 

development of response surface methodology (RSM). The origin of RSM is often attributed to the 

research done by Box and Wilson (1951). Over the next 30 years, RSM was widely used in research 

and development work in the chemical and process industries. However, the researchers did not 

realize that the statistical design of experiments could be applied in many other industries, such as in 

engineering and manufacturing processes. 

In the 1980s, Genichi Taguchi advocated the robust design philosophy to make products or 

processes insensitive to the environmental noise factors and components deviation, determine the 

optimal values of the control factors, and minimize the variation of the responses. Robust design and 

statistical experimentation became essential tools for quality improvement in modern society, and 

were widely used in various industries, such as electronics, semiconductors, automotive, and 

aerospace manufacturing. 

We are now in the fourth era of the statistical design of experiments. Many new approaches that are 

more effective and efficient than Taguchi’s methods, have developed and applied successfully in the 

industrial world that includes almost all science and engineering areas, and even in financial and 

service fields. 

The most widely used experimental designs for process optimization and improvement are two-

level factorial and fractional factorial designs and other response surface designs, e.g. spherical 

designs or cuboidal designs. Montgomery (2005), Myers and Montgomery (2002), and Box and 

Draper (1987) present detailed information on the experimental designs. 

2.3 Response Surface Methodology (RSM) 

Montgomery (2005) defines RSM as “a collection of mathematical and statistical techniques useful 

for the modeling and analysis of problems in which a response of interest is influenced by several 

variables and the objective is to optimize this response”. The origin of RSM is often attributed to the 

research by Box and Wilson (1951), which changed dramatically the way that engineers, scientists, 

and statisticians approached industrial experimentation (Myers et al. 2004). A thorough discussion of 

response surface methodology (RSM) and its application is provided by Myers and Montgomery 
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(2002).  There have been four extensive reviews of response surface methodology given 

chronologically as: Hill and Hunter (1966), Mead and Pike (1975), Myers, Khuri, and Carter (1989), 

and Myers et al. (2004). 

The response surface approach is based on the assumption that 

 ε+= ),...,,( 21 kxxxfy  (2-1) 

where  

y - response 

f - unknown true response function 

x1, x2, …, xk - controllable input variables 

ε - statistical error 

For robust design problem, we can assume the response model involving control and noise factors as 

 ε++= )() zx,(x hfy  (2-2) 

where )(xf  consists of the control factors and )( zx,h  involves noise factors and the interactions 

between noise and control factors. 

RSM is a sequential experimental process that includes three design phases. The first phase is 

called a screening experiment that is designed to find the important factors and reduce the number of 

design variables. It is the preliminary step to make the subsequent experiments more applicable and 

efficient. The second phase uses the steepest ascent method mainly on first-order response surface 

models to optimize the process. The goal is to move the response toward the optimum by adjusting 

the important control variables. When the process is near the optimum, we can start the third phrase 

design to determine the optimum conditions for the process. Second-order response surface models 

will be used in the third phase to introduce curvature into the response function and obtain accurate 

approximations.  

Myers and Montgomery (2002) summarized that RSM can solve three categories of industrial 

problems: fitting a response surface model over the region of interest, optimizing the quality 

characteristics and the process, and selecting operating conditions to meet specifications or customer 

requirements. RSM is applied in various areas, such as the semiconductor, electronic, automotive, 

chemical, pharmaceutical, financial, and service industries. Particularly, manufacturing has been 
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achieving extensive quality improvement through the development of RSM and robust design. Two 

important RSM approaches for robust design are combined array designs and dual response surface 

approach, which will be explained next. 

2.3.1 Combined Array Approach 

The combined array approach is an efficient and widely used alternative to Taguchi’s crossed array 

design. A combined array design introduces one array design that considers both control factors x and 

noise factors z. The combined array approach will vastly reduce the number of runs and can increase 

design accuracy by considering every interaction between the control factors. It deals with a single 

response model and is the basis for other response surface approaches, such as the dual RSM and 

generalized linear model. Welch et al. (1990) demonstrated the efficiency of the combined array 

approach for robust design. Myers, Khuri, and Vining (1992) illustrated that the single array design 

could be used for determining dual response surfaces.  

The following example, which is taken from Myers and Montgomery (2002), illustrates the 

superiority of the combined array design over the crossed array design. Suppose there are four control 

factors 1x , 2x , 3x , and 4x , and two noise factors 1z  and 2z . One potential crossed array gives a 

total of 32 runs: 

 214 22 ×−
IV    (crossed array design) 

For a first-order regression model, the total 31 degrees of freedom include six main effects ( 1x , 2x , 

3x , 4x , 1z , and 2z ), 12 two-factor interactions (control-by-control 21xx , 31xx , 41xx , control-by-

noise 11zx , 12 zx , 13 zx , 14 zx , 21zx , 22 zx , 23 zx , 24 zx , and noise-by-noise 21zz ), and 13 high-

order control-by-noise interactions. Notice that other three control-by-control interactions 32xx , 

42xx , and 43xx  cannot be considered in the design. 

An alternative combined array design is 162 −
VI  with 32 runs, and the defining relation is  

214321 zzxxxxI =    (combined array design) 

This combined array design estimates all six main effects and all 15 two-factor interactions for a first-

order regression model. (The quadratic terms of control variables can also be easily included if we 
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assume a second-order regression model.) Therefore, we have three important control-by-control 

interactions at the expense of three usually less important high-order control-by-noise interactions. 

The combined array design is more flexible and appropriate, particularly when the control-by-control 

interactions are important for the design, and this is the major drawback of Taguchi’s crossed array 

design.  

2.3.2 Experimental Designs for Combined Array 

While two-level factorial and fractional factorial designs are the basis for the RSM and robust design, 

there are many other attractive experimental designs used in combined array design to fit both first-

order and second-order models: for example, Plackett-Burman design, central composite design 

(CCD), Box-Behnken design (BBD), small composite design (SCD), face-centered cube (FCC), 

hybrid designs, mixed resolution designs (MRD), and other computer generated designs. 

Box and Wilson introduced the concept of central composite design (CCD) in 1951. It is the most 

popular design of second-order models (Myers and Montgomery, 2002). In general, CCD consists of 

three parts: a two-level factorial ( k2 ) or fractional factorial design (resolution V), 2k axial or star 

points, and cn  center runs. Being the same as other RSM tools, CCD can be used as part of sequential 

design experiments. The factorial points contribute toward the estimation of linear and two-factor 

interaction terms, while the axial points are chosen based on the region of interest and region of 

operability and are mainly used to estimate quadratic terms (but not interaction terms). The center 

points provide information about the existence of curvature, and are used to estimate the pure error 

and quadratic terms of the model. 

Mixed resolution design (MRD) is a relatively new kind of design. Borror (1998) proved that the 

mixed resolution design is the most efficient design with desirable variance properties and appears to 

be a very promising design strategy for problems that involve a large number of variables. Borkowski 

and Lucas (1997) discussed the optimality properties of mixed resolution design and provided a 

catalog of design construction. Borror and Montgomery (2000) compared the mixed resolution design 

with a typical inner/outer array design and concluded that the mixed resolution design is efficient and 

can lead to a useful prediction model involving both control and noise factors. 
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2.3.3 Dual Response Surface Approach 

The dual response surface approach, which examines two response surfaces, one for the process mean 

and another one for the process variance, was first introduced by Myers and Carter (1973). Vining 

and Myers (1990) applied the dual response surface approach to robust design. They present robust 

design problems as constrained optimization problems that optimize the primary response under the 

constraint of the secondary response. The variance and mean can be formulated as primary and 

secondary response, respectively, or in another way, variance as secondary and mean as primary. 

Myers, Khuri, and Vining (1992) obtained the process mean and variance model by applying 

unconditional expectation and variance operator to the response model. Myers and Montgomery 

(2002) introduced another method to estimate the process variance: the slope of the response surface 

in the direction of the noise variables. It is obvious that the larger the vector of slope, the larger the 

process variance. A third method to develop variance model, the delta method, is given by Rice 

(1995) and Myers and Montgomery (2002). The delta method is useful for complex models. It can be 

expressed by the so-called transmission-of-error formula: 

 2
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which is found by expanding y(x, z) as a first-order Taylor series about z = 0 and applying the 

variance operator. In the transmission-of-error formula, 2
zσ  is the variance of noise variables and 2σ  

is the variance of residuals. 

Lin and Tu (1995) proposed an alternative to the standard optimization of the dual response 

approach. Instead of optimizing the primary response while subject to a constraint of the secondary 

response, they use the mean square error (MSE) to combine the primary response and secondary 

response as a single objective function 

 22 ˆ)ˆ()( yy TyMSE σμ +−=  (2-4) 

where yμ̂  and 2ˆ yσ  are the estimated mean and variance, and T is the target value of the response. As 

this method allows bias in the response, Copeland and Nelson (1996) improved it by adding a 

constraint on the mean value of the response to restrict the bias. 
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Giovagnoli and Romano (2008) introduced a modified dual response surface approach, which 

stochastically simulates the noise factors when their probabilistic behaviour is known. External noise 

variables are totally out of the designer’s control, but internal noise variables, which represent random 

deviation in design parameters due to part-to-part variation induced by uncontrollable manufacturing 

errors, are partially controllable through specifying the tolerances of the control factor. Therefore, 

they use the standard deviations of internal noise factors as additional control factors in the 

experiment and simulated them accordingly. In this thesis, we will discuss the functionality of the 

noise factors in the following chapters. 

Kim and Lin (1998) proposed a fuzzy model for dual response surface optimization. A membership 

function in fuzzy set theory is used to measure the experimenter’s degree of satisfaction concerning 

the mean and standard deviation responses.  

In many robust design problems, the noise variables are assumed to be continuous. Brenneman and 

Myers (2003) considered robust design problems where the noise factors are categorical, for example, 

different suppliers. They proposed the use of a multinomial distribution, and discussed the impact that 

the assumptions for continuous and categorical noise variables have on the robust settings and on the 

overall process variance estimate. 

In summary, the combined array approach and the dual response approach are superior to 

Taguchi’s methods for addressing the robust design problems in three areas: less experiment runs are 

needed, important control-by-control interactions are considered and other unimportant terms are 

ruled out, and the summary measures are more practical than signal-to-noise ratios. 

2.3.4 Generalized Linear Models 

Nelder and Lee (1991) and Myers, Khuri and Vining (1992) were the first to suggest applying 

generalized linear models (GLM) to analyzing Taguchi’s types of experiments and modeling the 

variance in robust design. GLM is very useful in the dual RSM modeling for robust design. Myers 

and Montgomery (2002) defined GLMs as a unified collection of models that accommodate response 

distributions that follow the exponential family, such as the normal, Poisson, binomial, exponential, 

and gamma distribution. They point out that even if the basic response is normal, the modeling 

variance, either from replication or from non-replication experiments, is important to use with the 

GLM. In robust design, in which nonhomogeneous variance is common, GLM is used as an important 
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tool for variance modeling. Lee and Nelder (2003) discussed the connections between robust 

parameter design and GLM, and illustrated the advantages of using GLM versus data transformation.  

2.4 Robust Tolerance Design 

Tolerance design specifies limits on the parameters of the control variables. When researchers 

conduct robust design on their systems, they mainly focus on parameter design, partially because the 

cost information for tolerance design is not straightforward. However, tolerance design is an 

important portion of robust design and its results will affect the target values of the parameters. 

Therefore, more studies are needed to generalize the design method. 

Meng (2006) studied the drawback of the traditional robust design that carries out two-stage 

sequential parameter and tolerance design. It is assumed that the nominal values of the control factors 

obtained from the parameter design remain optimum for the subsequent tolerance design. However, if 

the magnitudes of the variation of the internal noise factors change in the tolerance design stage, the 

interactions between the control factors and noise factors most likely will change accordingly. As a 

result, the parameter setting will also most likely be different. Therefore, Meng proposed to conduct 

sequential parameter and tolerance design in the first round, and then another round, or even more 

rounds, of parameter design should be done based on the optimal parameter setting and variability 

setting from the first round design. He showed this method can achieve better optimum settings for 

the parameters. This is a modified Taguchi approach and extra resources are required. 

Li and Wu (1999) proposed the single-stage integrated parameter and tolerance design and 

suggested this new approach is superior to Taguchi’s two-stage sequential approach. They also point 

out a modified Taguchi approach, which performed the two-stage design iteratively until the tolerance 

value stops change, requires extra time and material. The new method is flexible enough to 

accommodate different cost structures for the component tolerances. Assuming that control factors x 

follow normal distribution ),0( 2σN , it is common to define the tolerance t of control factors x to be 

  σ3±=t  (2-5) 

The relationship between ),( yy μσ  and ),( 0 ii tx , where 0ix  and it  are the mean and tolerance for 

each control variable, is obtained by a first-order and second-order Taylor series expansion 
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Romano et al. (2004) presented a general framework for the multiple response robust design 

problem when data are collected from a combined array design. Within their framework, both robust 

parameter design and tolerance design are handled in an integrated way. The optimization criterion is 

based on a single value in terms of a quadratic quality loss and producer loss, and it is selected in 

order to consider both statistical information and economic information related to the product or 

process. 

2.5 Data Analysis and Optimization 

Contour plots provide one of the most straightforward and effective ways to illustrate and analyze the 

response surface system. While response surface plot shows the relationship between the response 

and the design variables, contour plot is a two-dimensional or three-dimensional graph that shows the 

contours of constant response versus the design variables. The response surface plot and contour plot 

can be used together in the robust design analysis. We must bear in mind that contour plots are only 

used for estimation when two or three design variables exist. The more accurate nonlinear 

programming methods are available for performing formal optimization. Particularly, when there are 

more than three design variables, the contour plot method becomes awkward, as we could only select 

two variables in the two-dimensional plot and other variables must be held constant.  

Giovannitti-Jensen and Myers (1989) and Myers et al. (1992) developed the variance dispersion 

graph (VDG), which plots the prediction variance information for the entire design region on a two-

dimensional graph. From the VDG of a RSM design, a researcher has a “snapshot” regarding the 
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stability of the prediction variance and has an alternative criterion to select the designs (Myers and 

Montgomery, 2002). The VDG illustrates a spherical design, such as a center composite design 

(CCD) and Box-Behnken design (BBD), with three graphic portions: 

1. The spherical average prediction variance  

 dxxyVarNV
rU

r )]([2
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 (2-9) 

where rU  implies integration over the surface of a sphere of a radius r, )(ˆ xy  is the estimated 

response, and 1)( −∫= dx
rUψ . 

2. Maximum prediction variance 
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3. Minimum prediction variance 
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VDG has been extended to other design scenarios, such as cuboidal designs. Myers et al. (1992), 

Borror (1998), and Myers and Montgomery (2002) illustrated how one can construct the plots and use 

VDGs to compare and evaluate response surface designs. Borror, Montgomery, and Myers (2002) 

developed a VDG methodology for designs for robust parameter designs that incorporate both control 

and noise variables. They produce VDGs for both the mean and the slope of the response surface 

model. 

Vining and Myers (1990) first presented robust parameter design problems as constrained 

optimization problems. They used the dual response optimization technique, which optimizes the 

primary response under the constraint of the secondary response, to solve the problem. Del Castillo 

and Montgomery (1993) pointed out that the technique of Vining and Myers (1990) does not always 

produce local optima and therefore proposed the use of standard nonlinear programming techniques, 

specifically, the generalized reduced gradient (GRG) algorithm, to determine the optimal operating 

conditions. It is shown that this method can be more flexible and give better solution within the 
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region of interest. There are many ways to use nonlinear programming techniques to formulate and 

solve single- or multiple-response optimization problems. Many software packages are available to 

accommodate a constrained optimization problem.  

Fathi (1991) also used nonlinear programming techniques to solve the parameter design problem, 

but assumed that the functional relationship between the input parameters and the performance 

characteristic of interest is either known or could be well approximated. The specific implementation 

of the algorithmic strategy is based on conventional optimization techniques. 

To simplify the robust design problem, many researchers usually deal with a single important 

response or quality characteristic. In many practical instances, however, multiple responses should be 

optimized simultaneously. Because the responses might be correlated, trade-offs among multiple 

responses should be studied to obtain the overall optimum setting of parameters where all responses 

are optimized or at least in desired ranges. Similar to single response optimization, contour plots can 

be used to estimate an optimum. Lind, Goldin, and Hickman (1960) illustrated this approach when 

examining the overlay of the contour plots for the responses. In general, different combinations of the 

design variables can result in different optimum conditions of the process, so the experimenter should 

choose the appropriate operating conditions from feasible possibilities using qualitative criterion. 

Since the graphical approach is limited to two or perhaps three dimensions, more formal 

optimization methods should be developed for multiple quality characteristics. Derringer and Suich 

(1980) proposed the desirability function approach to simultaneously optimize multiple responses. 

This optimization technique uses direct search methods to find the optimum solutions and will obtain 

multiple optimum results. Another popular approach is to formulate the multi-response problem as a 

constrained optimization problem: 
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where one response is the objective function and others are constraints. Two classes of nonlinear 

programming methods available in many software packages can be used to solve this kind of 

problem: direct search methods and mathematical optimization algorithms (such as the generalized 

reduced gradient method). 
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The optimization problem can be formulated in many other ways. Del Castillo (1996) presented a 

methodology for analyzing multi-response experiments that allows one to obtain optimal solutions 

that simultaneously satisfy confidence region constraints for all responses. The methodology consists 

of computing confidence regions for stationary points of quadratic responses and confidence cones 

for the direction of maximum improvement for linear responses. The stationary points are constrained 

to lie within the experimental region. The author showed that the confidence region is dependent 

upon the value of the Lagrange multiplier of the region’s constraint. The value of the Lagrange 

multiplier is found by solving the Karush-Kuhn-Tucker (KKT) optimality conditions.  

Another method to formulating the multiple-response optimization problem is the weighted sum 

method, which simultaneously optimizes all the responses 
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where the iw  are weight coefficients. The drawback for this method is the difficulty in selecting the 

appropriate iw . 

All the methods we have discussed so far assume that the responses are independent or 

uncorrelated. When this assumption is inappropriate, other methods should be considered to solve the 

optimization problems. Vining (1998) extended the univariate quadratic loss function to a 

multivariate form based on the square error loss approaches. His loss function is  

 ]ˆ[]ˆ[ T(x)yCT(x)y −′−=L  (2-14) 

This method allows the experimenter to specify the directions of economic importance for the 

compromise optimum, when the variance-covariance structure of the responses is considered. Papers 

discussing the squared error loss approach include those by Khuri and Conlon (1981), Pignatiello 

(1993) and Ames et al. (1997). 

When the objective function is discontinuous, stochastic, or highly nonlinear, standard optimization 

algorithms might not be appropriate to solve the problem, particularly for the multi-response problem. 

Genetic algorithms (GA) do not impose any continuity or smoothness demands on the objective 

function, nor are they deterred by discontinuities in the feasible space or the type of decision variables 
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involved. Genetic algorithms put together dissimilar blocks of a solution until a combination satisfies 

the imposed requirements. The methods are based on natural selection, the process that drives 

biological evolution, to solve constrained and unconstrained optimization problems. The genetic 

algorithms use three main types of rules at each step to create the next generation from the current 

population: selection, crossover and mutation. Heredia-Langer (2004) discussed the use of genetic 

algorithms for the construction of model-robust experimental designs. 

2.6 Reliability-Based Robust Design (RBRD) 

The data driven method of robust design that we have discussed is a model-based approach that 

creates a mathematical model of the product or process such that the responses are functions of the 

design variables. While we focus on the response surface methodology and statistical design of 

experiment in this thesis, an alternative model-based approach is to use the reliability-based robust 

design (RBRD). RBRD is an integration of reliability-based design optimization (RBDO) and robust 

design to deal with uncertainties and optimize a process or product. The goal of RBRD is same as the 

statistical approaches we discussed before, and RBDO is a reliability-based (or conformance-based) 

design, which usually uses the reliability index β to express the probability of conformance. While we 

use RSM to optimize parameters and tolerances, reliability-based design optimization (RBDO) can 

also be used to as an effective alternative after the mechanistic or empirical model of the system is 

available. The RSM-based RBRD is a relatively new method to solve robust design problems through 

integration of RSM and RBRD. 

Due to the inherent uncertainty and variability of the system (a product or process), the traditional 

deterministic optimal design cannot lead to effective and reliable results if we assume zero variability 

and do not consider uncertainty. Probabilistic uncertainty analysis has become an essential part of 

design and decision making process under uncertainty and risk. Uncertainties are unavoidable in a 

process or product, so variability and performance of the responses should be considered to ensure 

reliability and quality. Uncertainty can be classified into reducible and irreducible types. Irreducible 

uncertainty is a property of the system itself and describes the inherent randomness (variation) 

associated with a physical system or environment. It cannot be reduced even we have more 

knowledge or information about the system. Probabilistic uncertainty analysis is used to obtain the 

distribution of a response Y or the probability of yY ≤  given the distributions of random inputs 

[ ]′= nXXXX ,...,, 21  and )(XgY = . On the other hand, reducible uncertainty results from some 
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level of ignorance or incomplete information about a system, and can be modeled by probability 

theory, or other theories such as evidence theory, possibility theory, and fuzzy sets. (Huang and Du, 

2008). 

 Reliability-based design optimization can be integrated with RSM to perform optimization. There 

are three types of simulation methods to analyze probabilistic uncertainty: (1) sampling-based 

methods, such as Monte Carlo simulation that makes use of samples of random numbers; (2) second 

moment methods, like first-order second moment (FOSM), and (3) most probable point (MPP) 

reliability-based methods, such as the first-order reliability method (FORM). Huang and Du (2008) 

pointed out that the reliability-based design methods, such as the first-order reliability method 

(FORM), have the advantages of satisfactory accuracy and moderate computational cost compared 

with the other two kinds of simulation and approximate method. The total cost of the product or 

process can be used as the objective function of RBRD and it consists of two kinds of competing 

costs: the production cost and the so called lost-of-quality cost. RBDO includes two optimization 

processes: reliability (probabilistic uncertainty) analysis in the independent and standard normal 

random U-space, and design optimization in the original random V-space (Youn and Choi, 2004).  
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Chapter 3 
Response Surface Methodology and 

Optimum Design 

3.1 Introduction 

Response surface methodology (RSM) is a superior alternative to Taguchi technique, and it works 

successfully to solve robust design problems. Two important approaches that contribute most to 

robust design are combined array designs for design construction and dual response surface approach 

for modeling and optimization formulation. RSM places both control and noise variables in a single 

experiment to avoid the disadvantages of the inner and outer array structure. We call this kind of 

design a combined array design, which results in smaller experiment comparing to crossed array 

design, and we can accommodate the important control-by-control and control-by-noise interactions 

conveniently in the response surface model. The dual response surface approach is a natural link 

between robust parameter design and constrained optimization. It provides an estimate of the mean 

and variance in two models. The mean model and variance model for the response can be chosen 

either as the primary or secondary response, respectively, and the goal is to optimize the primary 

response under some constraints on the secondary response. Thus, we have a variety of constrained 

optimization formulations in different scenarios, such as “the target is best”, “the larger the better”, 

and “the smaller the better” for the response. 

3.2 System Design 

Robust design is very useful for designing a product or process. The goal of a design is to develop 

high quality products or processes with low cost, so the product performance is insensitive to the 

variation of raw materials, manufacturing process, and external environment. Commonly we refer to 

products or processes as a system. System design is the conceptual design phrase, which proposes the 

principal system configuration based on existing knowledge, experience, and resources, to 

accomplish the desired functions and reliability of the system. A good system design is necessary for 

the success of subsequent design stages. In system design, the input (such as components or 

materials), process, control and noise factors, and output (one or more response variables) should be 
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determined and planned. Their mechanistic relationship and realization methods should also be 

decided. 

Consider an example to design a temperature controller described by Phadke (1989). McCaskey 

and Tsui (1997) and Savage (2008) discussed the functioning of the circuit in detail. Figure 3-1 shows 

the proposed temperature controller circuit. The circuit has four components: power supply, 

Wheatstone bridge, comparator, and relay. The relay switch turns the heater on and off and this action 

is operated by the comparator that sets its output voltage to either ground or E0 according to the input 

voltage difference at points 1 and 2. This input voltage difference is established by the Wheatstone 

bridge comprising the thermistor RT - that follows the room temperature - and the remaining three 

resistors (R1, R2, R3) that set the desired temperature.  

E0

RT

R3

Ez

R2

R1

1
2

R4

RelayE0

 

Figure 3-1 Temperature controller circuit 

As the heater operates, the room temperature increases. When the temperature rises above a certain 

level, TR  drops below a threshold value OFFTR − , so that the difference in the voltages between 

terminals 1 and 2 of the amplifier becomes negative. The relay is then actuated to turn the heater off. 

With no heat input, the temperature of the room begins to decrease if we assume it is colder outside, 

and the value of TR  increases. At a second threshold value ONTR −  the difference in the voltages 

between terminals 1 and 2 becomes positive, and the relay is actuated to turn the heater on. The actual 

values of ONTR −  and OFFTR −  can change due to variation in the values of various circuit components 

and the effects of noises.  

The robust design problem is to make sure that the heater turns on or off when the environment 

temperature is as close as possible to set temperature around the target even though there is 

uncertainty in all of the components in the circuit. To formulate the robust system design problem, we 
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classify resistor 3R  as the signal factor to achieve a desired value for TR , and ONTR −  and OFFTR −  are 

the output responses. The potential control factors are the nominal values of 1R , 2R , 4R , diode 

voltage ZE , and power supply voltage 0E . Ideally, the four resistors and voltage inputs (EZ and E0) 

are deterministic. However, the components do have variability and this affects the output voltage and 

its ability to maintain the proper room temperature. The noise factors are the manufacturing variations 

(tolerances) of the control factors. Recall that this kind of noise factor is the internal noise factor. 

After the system design, the problem is identified and the system configuration is clear. In the 

subsequent robust parameter and tolerance design, the (ideally linear) relationship between the 

responses, control factors, and noise factors can be obtained and used to solve the problem.  

3.3 Linear Regression Model 

In the practical application areas, such as manufacturing systems, it is highly unlikely that enough 

knowledge of physical mechanism is available. It is more often that an empirical model is used as an 

approximation. An empirical model is built using the multiple regression method based on 

observations from the product or process. The linear regression model between response y and design 

variables X is describe as 

 εXβy +=  (3-1) 

where 
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The least squares estimation of β  is 

 yXX)X(β 1 ′′= −ˆ  (3-2) 
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Thus the fitted regression model and the fitted residuals can be denoted as   

 βXy ˆˆ =  (3-3) 

 yyε ˆˆ −=  (3-4) 

The coefficient of multiple determination can be used to measure the performance of competing 

response surface models 

 
T

E

T

R

SS
SS

SS
SSR −== 12  (3-5) 

where ESS  is the residual (error) sum of squares, RSS  is the regression sum of squares, and TSS  is 

the total sum of squares. From the definition we can see that 10 2 ≤≤ R . A rule of thumb is that any 
2R  value above 75% indicates an adequate RSM fit. However, it is possible for models that have 

large values of 2R  to yield poor predictions of new observations or estimates of the mean response; 

on the other hand, models with a low 2R  may fit the data reasonable well. It is unwise to place too 

much emphasis on 2R  alone, or to consider it without residual analysis. The residual from the least 

square fit, defined by yyε ˆˆ −= , is also very important for model adequacy checking. Residual plot 

can help decide whether the model assumptions are valid. In general, a normal probability plot of the 

residuals is used to check the normality assumption. If the residuals plot approximately along a 

straight line, there is no apparent problem with normality. If the plot indicates problem with the 

normality assumption, there may be mistakes of the data or model construction, or we should 

transform the response as a remedial measure. 

In multiple linear regression, the tests of hypotheses about the model parameters are important to 

evaluate the model. The analysis of variance (ANOVA) is very helpful to test the significance of 

regression. It presents the results of a regression analysis in an ANOVA table, which contains various 

summary statistics of the data (such as the composition of the total variability for the response) to 

formulate the F-test. 

3.4 Screening Experiment 

Figure 3-2 shows the general process of the screening experiment. After system design, we usually 

have a long list of design variables that could be potentially important to affect the performance of the 
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system. This leads to a screening experiment that studies the factors and aims to eliminate the 

insignificant ones. According to sparsity of effects principle, most systems are normally controlled by 

a few main effects and low-order interactions, and most high-order interactions are negligible without 

affecting the experiment results. Therefore, the experimenter can focus on the important factors with 

fewer tests in the subsequent experimental steps. A screening experiment is a necessary step to 

conduct robust design effectively and efficiently with limited resources. 

 

Figure 3-2 Process of screening experiment 

Two-level factorial designs ( k2 ) or fractional factorial designs ( pk−2 ), particularly the latter, are 

very useful in screening experiments. As the number of design factors is large in the screening stage, 

the total number of treatments in a factorial design, even for only a single replicate, exceeds the 

available resources. For example, a full factorial 72  design requires 128 runs, which include 7 

degrees of freedom to estimate the main effects and 21 degrees of freedom to estimate the two-factor 

interactions. The remaining 99 degrees of freedom are used for interactions of higher order, which are 
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negligible based on sparsity of effects principle. Therefore, fractional factorial designs are more 

practical and widely used in industry. 

A two-level fractional factorial design ( pk−2 ) contains k factors of interest and p independent 

design generators, which are also called words. The defining relation of the design includes the p 

generators and their 12 −− pp
 generalized interactions. The design generators should be selected to 

have the highest possible resolution for the design. A design is of resolution R if no p-factor effect is 

aliased with another effect containing less than pR −  factors. In general, the design resolution of 

pk−2  is equal to the smallest number of letters in any design generator (word) in the defining relation. 

While degree of fractionation is satisfied, the higher resolution should be adopted. Design resolution 

III, IV, and V are very important, and Myers and Montgomery (2002) present a detailed selection on 

the two-level fractional factorial designs for 11≤k  factors and up to 128≤n  runs.   

For example, consider a 272 −  design. If we select I = ABCDF and I = ABDEG as the independent 

design generators, the generalized interaction is I = (ABCDF) (ABDEG) = CEFG, the complete 

defining relation is  

I = ABCDF = ABDEG = CEFG 

As the smallest number of letters in any design generator in the defining relation is four, we can 

conclude the design is of resolution IV ( 272 −
IV ). The aliases of any effect are gained by multiplying the 

effect by each design generator (word) in the defining relation, and each effect has 12 −p  aliases. 

For A and AB in our example, their aliases are 

A = BCDF = BDEG = ACEFG 

AB = ACDF= ADEG = ABCEFG 

Example: Screening Experiment for Filtration Rate Experiment  

Consider an example from Myers and Montgomery (2002) to study the filtration rate of a chemical 

product. The three control factors are pressure ( 1x ), concentration of formaldehyde ( 2x ), and stirring 

rate ( 3x ), and the noise factor is temperature ( 1z ). Each factor is present at two levels. The filtration 

rate is denoted as response y. We study the problem with a two-level fractional factorial design 142 −
IV . 
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Table 3-1 shows the 142 −
IV  design with defining relation I = ABCD. The alias structure for the design 

is shown in Table 3-2.  

Table 3-1 Filtration Rate Experiment with 142 −
IV  Design (I = ABCD) 

Run A )( 1z  B )( 1x  C )( 2x  
D )( 3x  

= ABC 
Treatment Filtration 

Rate 

1 - - - - (1) 45 

2 + - - + ad 100 

3 - + - + bd 45 

4 + + - - ab 65 

5 - - + + cd 75 

6 + - + - ac 60 

7 - + + - bc 80 

8 + + + + abcd 96 

 

Table 3-2 Alias Structure for the 142 −
IV Design with I = ABCD 

A = BCD 

B = ACD 

C = ABD 

D = ABC 

AB = CD 

AC = BD 

BC = AD 

The estimates of main effects and two-factor interactions are 19=Al , 5.1=Bl , 14=cl , 

5.16=Dl , 1−=ABl , 5.18−=ACl , 19=BCl . It is clear that A, C, D, AC, and BC are significant. 

As B is not significant, we may drop it as the main effect and replace the significant interaction BC 

with AD. The first-order regression model is 

13123211 5.925.925.875.975.70),(ˆ zxzxxxzzy +−+++=x  

Table 3-3 summarizes the analysis of variance (ANOVA) for this experiment and confirms that the 

effects of A, C, D, AC, and AD are significant. The model sum of squares is  

3065=++++= ADACDCAR SSSSSSSSSSSS  
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and the coefficient of multiple determination is  

%8.992 ==
T

R

SS
SSR  

Therefore, the regression model contributes most of the variability of the response. After the 

screening experiment, the model is simplified that only important control and noise variables and 

their interactions are kept for further optimization. Comparing with the first-order model obtained 

from the full replicate design in Section 3.6, the half fraction design has nearly identical estimate of 

the model. 

Table 3-3 Analysis of Variance for Filtration Rate Experiment 

Source of 
Variation Sum of Squares Degree of 

Freedom Mean Square 0F  

A 722 1 722 222.15 

C 392 1 392 120.62 

D 544.5 1 544.5 167.54 

AC 684.5 1 684.5 210.62 

AD 722 1 722 222.15 

Error 6.5 2 3.25  

Total 3071.5 7   

3.5 Steepest Ascent Optimization 

After the screening experiment, a first-order regression model is used to optimize the significant 

variables to satisfy the response requirement. The steepest ascent (or descent) method aims to find an 

optimal region of the response and leave the job for finding the optimal points to the further stages. It 

should be emphasized that quality improvement through analysis of designed experiments is usually 

an iterative experience. This is illustrated quite well in dealing with the strategy of steepest ascent. 

Example: Steepest Descent Optimization of a Molded Die 

We take an example from Myers and Montgomery (2002) to illustrate the process of steepest ascent 

method. The problem is to minimize shrinkage of a molded die (so it is steepest descent) by 
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optimizing the setting of four factors: injection velocity ( 1x ), mold temperature ( 2x ), mold pressure 

( 3x ), and back pressure ( 4x ). Table 3-4 shows the factor levels in natural and design units. 

Table 3-4 Factor Levels in Natural and Design Units 

Design Units 
Design Factors 

-1 +1 

1x  1.0 2.0 

2x  100 150 

3x  500 1000 

4x  75 120 

Assume we have the first-order regression model 

4321 07.121.122.628.580ˆ xxxxy −−−−=  

As all of the signs of the regression coefficients are minus, we will move the factors along the path of 

steepest descent in proportional to the magnitude of the regression coefficients. The regression 

coefficients of 1x and 2x  are bigger than the ones of 3x  and 4x , so 1x and 2x will contribute more to 

the movement and one of them, say 1x , can be used to define the step size 11 =Δx , which is 

arbitrarily chosen to correspond to 0.5 in natural 1x  value. We define the step size in other k-1 

variables as  

 jikj
xb

b
x

ii

j
j ≠−=

Δ
=Δ ,1,...,2,1,

/
 (3-6) 

Then we have other step sizes in design unit and natural unit 
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)(57.45.22*203.0

)(203.0
/ 11

4
2

unitnatural

unitdesign
xb

b
x

==

=
Δ

=Δ
 

Table 3-5 presents the path of steepest descent in terms of design unit. After Base+6Δ , the 

experiment should be stopped as no further improvement can be achieved. After knowing the 

approximate optimal regions of the parameters, we can start the robust parameter design and tolerance 

design. 

Table 3-5 Path of Steepest Descent 

Step 1x  2x  3x  4x  ŷ  

Base 0 0 0 0 80.00 

Base+Δ  1 1.178 0.23 0.203 66.90 

Base+2Δ  2 2.356 0.46 0.406 53.79 

Base+3Δ  3 3.534 0.69 0.609 40.69 

Base+4Δ  4 4.712 0.92 0.812 27.59 

Base+5Δ  5 5.89 1.15 1.015 14.49 

Base+6Δ  6 7.068 1.38 1.218 1.38 

Base+7Δ  7 8.246 1.31 1.421 -11.72 

3.6 Dual Response Surface Approach in Combined Array Designs 

The response model containing control and noise variables can be expressed as 

 ε++= )()()( zx,xzx, hfy  (3-7) 

where 

 f (x) - the terms involving control variables only 

 h (x, z) - the terms involving noise variables and control-by-noise interactions 

If we assume the noise variables have mean zero, variance 2
zσ , and covariance zero, the process 

mean is 

  )()]([ xzx, fyEz =  (3-8) 
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and we can use Taylor series expansion or apply variance operator to obtain the transmission-of-error 

formula for the variance as: 

 2
2

1

2 )()]([ σσ +⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
= ∑

=

r

i i
zz z

yyVar zx,zx,  (3-9) 

The mean and variance formulas indicate that the levels of the control variables will decide the 

process mean and variance, and we may solve the robust design problems by setting control variables 

only. The noise variables influence the response through the regression coefficients of the interactions 

between the control and noise variables. 

In general, data from robust design experiment can be fitted by a quadratic or second-order model 

that would include all main linear effects of control and noise variables, control-by-control 

interactions, control-by-noise interactions, and pure quadratic effects of control variables. Thus the 

regression model can be  

 εΔzxγzBxxβxzx, +′+′+′+′+= 0)( βy  (3-10) 

where  

y (x, z) – Response 

 x - 1×xr  Vector of control variables, [ ]
xr

xxxx ,...,, 21=′  

 z - 1×zr  Vector of noise variables, [ ]
zr

zzzz ,...,, 21=′  

 0β - Intercept 

 β - 1×xr  Vector of coefficients of first-order control factors 

B - xx rr ×  Matrix of coefficients of second-order control variables and control-by-control 

interactions 

 γ  - 1×zr  Vector of coefficients of first-order noise factors 

Δ  - zx rr × Matrix of coefficients of control-by-noise interactions 

ε - ),0( 2σN  independent and identically distributed (i.i.d.) random errors 



 

 34 

In many real-life applications, it is reasonable to assume the noise-by-noise interactions and 

second-order terms of noise variables are not significant, so they are not considered in the response 

model and the noise variables are assumed to be uncorrelated. Since noise factors are random 

variables, we can assume that the expected noise variables E (z) = 0 and the variance-covariance matrix of 

noise factors Iz 2)( zVar σ= . If we further assume the noise variables are centered at zero and scaled 

at 1±  for zσ±  in coded form, we can get 1=zσ . From the second-order model we can have the 

response surface model of the process mean and variance as 

 Bxxβxzx, ′+′+= 0)]([ βyEz  (3-11) 
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zz yVar
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where xΔγl(x) ′+= , 2
zσ  is variance of noise factors, and 2σ  is variance of residual errors. We 

notice that the noise factors are not contained in the model of process variance; however, coefficients 

of first-order noise factors and control-by-noise interactions play important roles in the variance 

model.  

Notice l(x)  is just the vector of partial derivatives of y(x, z), or the slope of the response surface in 

the direction of the noise variables 
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And the larger the vector of the slope, the larger the process variance is. In addition, Δ, the matrix of 

coefficients of first-order control-by-noise interactions, should not be zero, so we have robust design 

problem.  

We can use constrained optimization to find optimum operating condition in the formulation that 

the process mean is the constraint and the objective function is the process variance  
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where m is the specific target value ( or a specified range) of the mean response. This optimization of 

separate models (process mean and variance) can obtain better understanding of the process and is a 

superior alternative to Taguchi’s data analysis approach, in which signal-to-noise ratios (SNR) are 

used as response variables and the experimenter seeks to maximize them. Three of SNRs are 

considered to be “standard” and widely applicable: 

1. The target is best ( TSNR ). The experimenter attempts to achieve a specific target value for 

the response and reduce the variability around the target value. TSNR  is to be maximized. 

For example, part dimension or component properties. 

2. The larger the better ( LSNR ). The experimenter attempts to maximize the response while 

maximize LSNR . For example, durability measure. 

3. The smaller the better ( SSNR ). The experimenter attempts to minimize the response while 

maximize SSNR . For example, cycle time and number of defects. 

Table 3-6 presents a comparison for the different optimizing scenarios using Taguchi method and 

dual RSM to formulate the objective function and constraints. It is clear that dual RSM approach is 

more effective and efficient. 

Another formulation of nonlinear programming is to minimize the estimated mean squared error 

(MSE) loss function as the objective function: 

kR
tosubject

MSEMin

∈x
 

where MSE can be expressed as 

)]([})]([{])([ 22 zx,zx,zx, yVarTyETyE zz +−=−  

This method simplifies the problem by admitting a little bias in the response mean and minimizing 

the response variability and MSE jointly. It is not an appropriate method when we want to keep the 

mean on target. We can improve this method by adding a constraint on the range of the response 

mean. 
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Table 3-6 Optimization Formulations with SNR and Dual RSM 

Dual RSM 
 SNR 

Method 1 Method 2 
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(Mean target m is a 

maximum value) 

Example – Parameter Design Using Dual RSM and MSE  

Retake the example to study the filtration rate of a chemical product from Myers and Montgomery 

(2002) to show the parameter design using dual response approach and mean square error loss 

function. We studied the problem with a two-level fractional factorial design 142 −
IV  in Section 3.4. 

Recall that the three control factors are pressure ( 1x ), concentration of formaldehyde ( 2x ), and 

stirring rate ( 3x ), and the noise factor is temperature ( 1z ). Each factor is present at two levels. The 

filtration rate is denoted as response y. To compare the factorial design and fractional factorial design, 

we now use single replicate of a combined array 42  factorial design and the response data are 

provided in Table 3-7. The single response model is given by 
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Table 3-7 Filtration Rate Experiment 

Run 
Number Factor Filtration Rate 

(gal/hr) 
 z1 (A) x1 (B) x2 (C) x3 (D)  

1 - - - - 45 

2 + - - - 71 

3 - + - - 48 

4 + + - - 65 

5 - - + - 68 

6 + - + - 60 

7 - + + - 80 

8 + + + - 65 

9 - - - + 43 

10 + - - + 100 

11 - + - + 45 

12 + + - + 104 

13 - - + + 75 

14 + - + + 86 

15 - + + + 70 

16 + + + + 96 

Appendix A shows the contrast constants and the 15 factorial effect estimates for the 42  factorial 

designs. Based on these effects we can draw the normal probability plot as shown in Figure 3-3. From 

the normal probability plot we can find that the main effects of A (z1), C (x2), and D (x3), and two-

factor interactions AC (x2z1) and AD (x3z1) are significant. This can also be verified by ANOVA as 

Table 3-8. The coefficient of multiple determination 2R  is 

%6.9612 =−==
T

E

T

R

SS
SS

SS
SSR  

That is, the regression model explains about 96.6% of the observed variability. 
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Figure 3-3 Normal probability plot of effects 

Table 3-8 ANOVA of the Filtration Rate Experiment 

Source of 

Variation 

Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
0F  

A 1870.563 1 1870.563 95.86 

C 390.062 1 390.062 19.99 

D 855.562 1 855.562 43.85 

AC 1314.062 1 1314.062 67.34 

AD 1105.563 1 1105.563 56.66 

Error 195.125 10 19.513  

Total 5730.937 15   

As the average response y  = 70.06, and the significant effects A = 21.625, C = 9.875, D = 14.625, 

AC = -18.125, and AD = 16.625, we can obtain the regression model of the response 
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Figure 3-4 is the normal probability plot of the residuals. It shows all the points are close to the 

straight line and the analysis of the model is satisfactory. 
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Figure 3-4 Normal probability plot of residuals 

Suppose the noise factor z1 is a random variable with mean zero and known variance 12 =zσ . We 

also assume random residual term ε  is NID (0, 2σ ). From above ANOVA, we know the residual 

variance 2σ̂ =19.51. If we assume that the fitted model above is adequate, and as 0)( 1 =zE  and 

0)( =εE , the process mean model is 

321 31.794.406.70)),(( xxzxyEz ++=
∧

 

And the process variance is 

22 ))(()]([ σσ +′+′+′= xΔγΔxγzx, zz yVar  
        = 22

32
2 )31.806.981.10( σσ ++− xxz  

         = 2
2
3

2
2 88.19506.6908.8242.136 xxx −++  

                   323 58.15066.179 xxx −+  
We want to keep the mean at 75 and minimize the variance. The standard deviation (square root of 

the variance) of the response in the terms of the control variables is also called propagation of error 

(POE). Contour plots were used to analyze and estimate the robust design solution. Figure 3-5 to 

Figure 3-8 show the contour plots and response surface plots of the mean and standard deviation 

versus control variables 2x  and 3x . From the plots of response mean we find that the mean increases 



 

 40 

as either 2x  or 3x  increases. Furthermore we notice from the plots that the standard deviation 

increases as 2x  decreases or 3x  increases. Figure 3-9 illustrates the overlay plot of the mean and 

standard deviation of the response. We can estimate from the overlay plot that 2x  should be at high 

level and 3x  should be around the middle level (coded value 0).  
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Figure 3-5 Contour plot of mean for filtration rate 
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Figure 3-6 Response surface plot of mean for filtration rate 



 

 41 

5

55

10

10

10

10

15

15

15

15

20

20
25

x3

x2

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

Figure 3-7 Contour plot of standard deviation for filtration rate 
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Figure 3-8 Response surface plot of standard deviation for filtration rate 
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Figure 3-9 Overlay plot of mean and standard deviation contours 

We must bear in mind that contour plots are used as informal estimation only. The more accurate 

nonlinear programming methods are available for performing formal optimization. Suppose we want 

to maintain the target filtration rate about m = 75 and minimize the variability around this value 

(target is best scenario), following two methods with different problem formulations were used to find 

optimal operating conditions. 

First, we formulated process variance as objective function to optimize the target-is-best scenario. 

“fmincon” of Matlab was used to solve the following constrained optimization: 
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Second, we formulated estimated mean squared error (MSE) loss function as objective function in 

which the bias and variance are optimized together. Again, “fmincon” of Matlab was used to solve 

the following constrained optimization: 
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We obtained the optimal operating conditions as Table 3-9. The second method admits a little bias 

in the response mean, but reduces the response variability and MSE at the same time. Notice the 

nominal values of 2x  and 3x  from the two methods are very close. 

Table 3-9 Optimal Operating Conditions of Filtration Rate Experiment 

 2x  3x  )]([ zx,yEz  )]([ zx,yVarz  MSE 

Min Var 1 0 75 22.62 22.62 

Min MSE 1 -0.1187 74.1323 20.1413 20.8941 

3.7 Generalized Linear Models (GLM)  

The residuals from the least squares fit iii yy ˆ−=ε  are very important to judge model adequacy. It is 

common to assume the residual variance to be constant 2σ  in regression model. However, it is not 

always true in practical problems. If the response variable is not normal, the residual variance is 

possibly nonconstant and ordinary least squares (OLS) approach is not appropriate to estimate the 

regression model. Recall the previous case study of the filtration rate of a chemical problem from 

Myers and Montgomery (2002) and plot the residuals from the regression model versus 2x , 3x , and 

ŷ  (Figure 3-10 to Figure 3-12). The funnel-shaped patterns imply possible inequality of residual 

variance.  

-1 1
-8

-6

-4

-2

0

2

4

6

x2

R
es

id
ua

ls

 
Figure 3-10 Residuals versus x2  
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Figure 3-11 Residuals versus x3 
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Figure 3-12 Residuals versus ŷ  

While transformation of the response variables can be used to stabilize response variance and make 

the distribution of the response variable closer to the normal distribution, the generalized linear model 

(GLM) is a better tool in variance modeling and so in robust design. It helps solve problems involving 

exponential responses, such as responses with normal, gamma, exponential, Poisson, and binomial 

distributions. Even if the response is normal, the modeling variance, either from replication or from 

non-replication experiments, is important to use the GLM. The dual response models of process mean 

and variance can be achieved iteratively by GLM method. 

The model of the residual variance can be expressed as 
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 )exp()()( 22
σiσβxx ′== ii E εσ  (3-14) 

where i is the run number, and variance regression model σiσβx′  is opposed to βxi′  that is used in 

ordinary regression model of the response to allow for possible difference between the model of 

variance and response. The iteratively reweighted least squares (IRLS) algorithm can be used for 

fitting the response model in the case of unreplicated experiments. The details of the IRLS algorithm 

are as follows: 

1. Use ordinary least squares (OLS) with assumption of constant residual variation to obtain an 

initial fit to the regression model. The coefficient estimator for mean model iiy ε+′= βxi  is β̂ .  

2. Use the squared residuals from step 1, 222 )ˆ()ˆ( βxi′−=−= iiii yyyε , to estimate the 

parameters, σβ , of the variance model using GLM methodology. 

3. Use )ˆexp( σiσβx′=iv  as weights to compute ),...,,( 21 dvvvdiag=V . The weighted least 

squares estimator is used as new coefficient estimator β̂  and  

yVXX)VX(β 111 −−− ′′=ˆ
 

4. Go back to step 2 with the new coefficient estimator and residuals, and re-fit the variance model. 

5. Continue to re-estimate the mean and variance until convergence to the maximum likelihood 

estimator for the coefficient vector, or a specified maximum number of iterations is reached.  

Example: Filtration Rate Experiment with GLM Approach 

We would now work on the previous filtration rate problem (Myers and Montgomery, 2002) with 

GLM method. To solve the residual variance, with the data from the initial fit, we used “glmfit” from 

Matlab while setting a gamma distribution with log link for the variance, and assumed a normal 

distribution with identity link for the mean. The link function links the variance or mean to the linear 

predictor. After five iterations of IRLS we can achieve convergence. The coefficient estimator σβ̂  for 

the model of residual variance and the weighted least squares estimator β̂  for the response model are 

shown in Table 3-10 and Table 3-11. 
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Table 3-10 Coefficient Estimator of Residual Variance Model 

Iteration 0
ˆ
σβ  )(ˆ

2xσβ  )(ˆ
3xσβ  

1 2.2636 0.6929 -0.2319 

2 2.2 0.8334 -0.2975 

3 2.1986 0.8474 -0.3081 

4 2.1986 0.8487 -0.3097 

5 2.1986 0.8488 -0.3099 

6 2.1986 0.8488 -0.31 

 

Table 3-11 Coefficient Estimator of Response Model 

Iteration 0β̂  )(ˆ
1zβ  )(ˆ

2xβ  )(ˆ
3xβ  )(ˆ

12 zxβ )(ˆ
13zxβ  

1 69.9856 10.7015 4.8094 7.6499 -9.2476 8.7999 

2 69.9516 10.6523 4.7749 7.6963 -9.2973 8.8668 

3 69.9466 10.6451 4.7695 7.7005 -9.3052 8.8729 

4 69.9459 10.6441 4.7686 7.7008 -9.3064 8.8734 

5 69.9458 10.644 4.7685 7.7009 -9.3066 8.8735 

6 69.9458 10.644 4.7685 7.7009 -9.3066 8.8735 

 

Therefore, the model of the residual variance is  

)31.08488.01986.2exp()exp(),( 3232
2 xxxxi −+=′= σiσβxσ  

Assuming the variance of noise variable 1z  is 12 =zσ , the new regression model and process mean 

and variance model can be obtained as 

1312321 8735.83066.97009.77685.4644.109458.69)(ˆ zxzxxxzy +−+++=zx,  
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32 7009.77685.49458.69)]([ˆ xxyE ++=zx,  
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The problem has same goal as before: keep the mean at 75 and minimize the variance. Contour 

plots can be used for estimation before further formal optimization. Figure 3-13 and Figure 3-14 show 

response surface plot of the process mean and standard deviation. From the plot of process mean we 

find that the mean increases as either x2 or x3 increases. Next, we notice in the plot of the standard 

deviation that the square root of the variance increases as 2x  decreases or 3x  increases, and the 

process is more sensitive to change in 3x  than to change in 2x . Figure 3-15 illustrates the overlay 

plot of the mean and standard deviation of the response. We can estimate from the plot that 2x  should 

be at high level and 3x  should be around the middle level (coded value 0). The contour and response 

surface plots indicate the two methods, the ordinary linear regression model (OLS) method and the 

generalized linear model (GLM) method, have similar optimal conditions for 2x  and 3x  regarding 

the mean and standard deviation model. Nonlinear programming was performed next as formal 

constrained optimization. 
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Figure 3-13 Response surface plot of mean filtration rate 
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Figure 3-14 Response surface plot of standard deviation 
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Figure 3-15 Overlay plot of mean and standard deviation contours 
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Same as before, suppose we want to maintain the target filtration rate about m = 75 and minimize 

the variability around this value (target is best scenario); following two methods with different 

problem formulations were used to find optimal operating conditions. First, we formulated process 

variance as objective function to optimize the target-is-best scenario. Matlab was used to solve the 

following constrained optimization: 

1111
75)]([

)]([

32 ≤≤−≤≤−
=

xandx
yE

tosubject
yVarMin

z

z

zx,

zx,

 

Second, we formulated estimated mean squared error (MSE) loss function as objective function in 

which the bias and variance are optimized together. Again, Matlab was used to solve the following 

constrained optimization: 
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)]([})]([{])([
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yVarTyETyEMin zz zx,zx,zx,
 

We obtained the optimal operating conditions as Table 3-12, where 2
residualσ  is the non-constant 

residual variance at the optimal conditions of the control variables. As before, the second method 

admits a little bias in the response mean, but at the same time reduces the response variability and 

MSE. 

Table 3-12 Optimal Operating Conditions of Filtration Rate Experiment (GLM) 

 2x  3x  )]([ zx,yEz )]([ zx,yVarz MSE 2
residualσ  

Min Var 1 0.0371 75 23.5971 23.5971 20.8197 

Min MSE 1 -0.046 74.3597 22.226 22.636 21.3633 

 

Table 3-13 presents the comparison of the optimal solutions from the two different variance 

modeling strategies (ordinary least squares method for constant residual variation, and generalized 

linear model method for non-constant residual variation) using two different optimizing formulations 

(dual RSM approach to minimizing process variance and MSE loss function).  
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Table 3-13 Optimal Operating Conditions by OLS and GLM 

Optimizing 
formulation Optimal Conditions OLS GLM 

(x2, x3) (1, 0) (1, 0.0371) 

Mean 75 75 

Variance 22.62 23.5973 

MSE 22.62 23.5973 

Min Variance 

2
residualσ  19.513 20.8197 

(x2, x3) (1, -0.1187) (1, -0.046) 

Mean 74.1323 74.3597 

Variance 20.1413 22.226 

MSE 20.8941 22.636 

Min MSE loss 
function 

2
residualσ  19.513 21.3633 

 

Based on the comparison of the solutions, it is clear we obtained different regression models and 

optimal settings from GLM and OLS, and that means the assumption of constant residual variance 

does affect the accuracy of response modeling. While the residual variance is non-constant and 

changing along with the design variables (in this example 2x  and 3x ), at the optimal operating 

conditions from GLM approach, the residual variation is different from (in this case higher than) the 

estimated constant residual variation obtained from the OLS approach. And this results in different 

process variance and MSE.  In summary, when the residual variance is non-constant, we can use 

generalized linear model and dual RSM approach to obtain the regression model and formulate the 

constrained optimization for nonlinear programming. 

3.8 Designs for Fitting Response Surfaces  

As discussed before, Taguchi’s cross array or product array designs, which use separate designs for 

control and noise factors, can be greatly improved with combined array designs, which put the control 
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factors and noise factors in a single design. In this section, combined array designs are discussed for 

both spherical regions of interest and cuboidal regions of interest. Region of operability is the region 

in which the system (a product or process) can operate for the experiment. Region of interest or 

experimentation is a smaller region within the region of operability, as we may not explore the entire 

region of operability with a single or only a few experiments. Region of interest confines the ranges 

on the design variables, and may change from experiment to experiment.  

When the region of interest and the region of operability are identical, cuboidal region of interest or 

a cuboidal design is appropriate. While the most popular cuboidal design is face-centered cube (FCC), 

other cuboidal designs, particularly computer-generated D-optimal or G-optimal designs are also 

useful in RSM. On the other hand, if we are interested in the variables with levels that are beyond the 

ranges given, which means the design variables are beyond the region of interest and within the 

region of operability, spherical region of interest or a spherical design is used. Central composite 

designs (CCD) and Box–Behnken designs (BBD) are standard choices for fitting a second-order 

response surface model in a spherical region of interest. Other spherical designs include small 

composite designs (SCD), mixed resolution designs (MRD), hybrid designs, and so on. 

Myers and Montgomery (2002) listed ten desirable properties of response surface designs that the 

experimenters should take into account when they select the appropriate designs for robust design 

problem: 

1. Result in a good fit of the model to the data. 

2. Give sufficient information to allow a test for lack of fit. 

3. Allow models of increasing order to be constructed sequentially. 

4. Provide an estimate of pure experimental error. 

5. Be insensitive (robust) to the presence of outliers in the data. 

6. Be robust to error in control of design levels. 

7. Be cost-effective. 

8. Allow for experiments to be done in blocks. 

9. Provide a check on the homogeneous variance assumption. 

10. Provide a good distribution of 2/)](ˆ[ σxyVar . 
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Obviously, we cannot construct a single RSM design that satisfies all of these properties, and not all 

of the properties are required in every application. Therefore, design evaluation should be performed 

and trade-offs should be studied. 

3.8.1 Design Construction and Analysis—Spherical Designs 

A central composite designs (CCD) involves a two-level factorial ( k2 ) or fractional factorial ( pk−2 ) 

design, 2k axial points (denoted by α± ),  and cn center points. k represents the number of design 

variables in the model and p is the number of independent design generators. In general, a pk−2  

fractional factorial design can be used rather than a  k2  design to save limited resources. The 

estimation of linear terms and two-factor interactions is relied on the fractional factorial design, so a 

resolution V design, in which no main effect or two-factor interaction is aliased with any other main 

effects or two-factor interactions, is the best choice. Axial points lie on the axis. Note that in the axial 

portion of the design the factors are not varying simultaneously but rather in a one-factor-at-a-time 

array. As a result, no information regarding the interaction is provided by this portion of the design. 

However, the axial portion allows for efficient estimation of pure quadratic terms. 

 To make the design flexible, CCDs have two important parameters: the axial distance α  and the 

number of center points cn . The axial distance α  is chosen based on the region of interest and region 

of operability, whereas the choice of the number of center point cn  influences prediction variance 

2/)](ˆ[ σxyVar  in the region of interest. Axial distance α  usually varies from 1 to k  . When α  = 

1, all axial points are on the face of the cube or hypercube (cuboidal region), and such kind of design 

is called face-centered cube (FCC) design, which will be discussed later. When k=α , all axial 

points will be placed on a common sphere (spherical region). While it is common to define axial 

distance k=α  in a spherical design, we can also choose 4 F=α , where F is the number of 

factorial points in the design. As the spherical design is rotatable, the value of the scaled prediction 

variance 2/)](ˆ[ σxyVar  for a second-order model is the same at all points that are equidistant from 

the design center. 

Consider an example of a CCD with five variables, 236.2== kα , 3=cn , and the fractional 

factorial portion is 152 −
V . The standard CCD with 29 runs is shown in left portion of Table 3-14.  



 

 53 

Table 3-14 Standard and Modified CCD with Five Variables 

Run 
number Standard CCD with 5 variables Modified CCD  

with 2 control and 3 noise variables 
 x1 x2 x3 x4 x5 x1 x2 z1 z2 z3 

1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 
2 1 -1 -1 -1 -1 1 -1 -1 -1 -1 
3 -1 1 -1 -1 -1 -1 1 -1 -1 -1 
4 1 1 -1 -1 1 1 1 -1 -1 1 
5 -1 -1 1 -1 -1 -1 -1 1 -1 -1 
6 1 -1 1 -1 1 1 -1 1 -1 1 
7 -1 1 1 -1 1 -1 1 1 -1 1 
8 1 1 1 -1 -1 1 1 1 -1 -1 
9 -1 -1 -1 1 -1 -1 -1 -1 1 -1 

10 1 -1 -1 1 1 1 -1 -1 1 1 
11 -1 1 -1 1 1 -1 1 -1 1 1 
12 1 1 -1 1 -1 1 1 -1 1 -1 
13 -1 -1 1 1 1 -1 -1 1 1 1 
14 1 -1 1 1 -1 1 -1 1 1 -1 
15 -1 1 1 1 -1 -1 1 1 1 -1 
16 1 1 1 1 1 1 1 1 1 1 
17 -2.236 0 0 0 0 -2.236 0 0 0 0 
18 2.236 0 0 0 0 2.236 0 0 0 0 
19 0 -2.236 0 0 0 0 -2.236 0 0 0 
20 0 2.236 0 0 0 0 2.236 0 0 0 
21 0 0 -2.236 0 0 0 0 0 0 0 
22 0 0 2.236 0 0 0 0 0 0 0 
23 0 0 0 -2.236 0 0 0 0 0 0 
24 0 0 0 2.236 0      
25 0 0 0 0 -2.236      
26 0 0 0 0 2.236      
27 0 0 0 0 0      
28 0 0 0 0 0      
29 0 0 0 0 0      

Since the axial points primarily contribute to the estimation of the quadratic terms, and generally in 

robust design problems we ignore the pure quadratic terms of the noise variables, we can modify the 

standard CCD by eliminating the axial points corresponding to noise variables. The right portion of 

this table illustrates the modified CCD with two control variables and three noise variables. The 

modified CCD is appropriate for estimation of the response surface and will also reduce the overall 
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size of the design (from 29 to 23 runs in this example). The disadvantage of CCD or modified CCD is 

that as the number of variables increases, the experimental design becomes very large. 

Box-Behnken designs (BBD) are developed to fit second-order models where it is essential to keep 

all factors at three levels and simultaneously preserve approximate rotatability. However, Borror 

(1998) pointed out that BBD is not an effective alternative to the CCD for robust design problems. 

This family of designs is based on balanced incomplete block designs where the variables are all at 

three levels. BBDs are strictly spherical and do not contain axial points. Therefore we cannot easily 

modify the BBD to accommodate the noise variables as is done in the modified CCD. However, BBD 

has the same design as long as the number of total variables is not changed. Table 3-15 presents the 

BBD with k = 5. The design consists of 40 factorial points and 3 centers point. BBD is same as CCD 

on the point that three to five center runs are recommended. 

Table 3-15 BBD with Five Variables 

Run 
number BBD with 5 variables 

 x1 x2 x3 x4 x5 
1-4 ±1 ±1 0 0 0 
5-8 ±1 0 ±1 0 0 

9-12 ±1 0 0 ±1 0 
13-16 ±1 0 0 0 ±1 
17-20 0 ±1 ±1 0 0 
21-24 0 ±1 0 ±1 0 
25-28 0 ±1 0 0 ±1 
29-32 0 0 ±1 ±1 0 
33-36 0 0 ±1 0 ±1 
37-40 0 0 0 ±1 ±1 
41-43 0 0 0 0 0 

Standard or modified CCD and BBD work very well to meet the desirable criteria of second-order 

responses surface designs. However, if cost prohibits the use of one of the standard designs with 

required number of experiment, saturated and near-saturated design can be used, such as small 

composite design (SCD). SCD is a smaller alternative to the CCD and is developed from the ideas of 

CCD. It will not become very large with an increase of the number of variables, because the factorial 

portion of SCD is neither a complete k2  nor a resolution V fraction as in the CCD but is a resolution 
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III* fraction, which is a special pk
III
−2  design without a four-letter word among the defining relations 

(Myers and Montgomery, 2002). 

The number of parameters in a second-order model, which contains first- and second-order design 

variables and their interactions, is  

 
2

)1(21 −
++=

kkkP  (3-15) 

We may use the SCD design that contains no less than P design points to fit this model. In the same 

example as in the CCD with five variables (k = 5), we have P = 21. This is a special case where we 

cannot use a resolution III* fraction: because the total of 82 25 =−
III  points of fractional factorial 

portion, 10 axial points, and 3 center points, are 21 points, which are the same as the number of 

design parameters (P = 21) and will result in no degree of freedom for estimating lack of fit. As a 

result, we can use 152 −
V  design with defining relation I = ABCDE. The design has 29 design points: 16 

factorial points, 10 axial points, and 3 center points, and the degrees of freedom for lack of fit are 8. 

We notice that in the case of five design variables or two control variables and three noise variables, 

the SCD or modified SCD is exactly same as the CCD or modified CCD. For other numbers of design 

factors, particularly as the number of variables increases, the SCD will be significantly smaller than 

the CCD. The SCD is a very sound alternative to the CCD based on the number of runs. However, the 

standard or modified SCD has a potential problem that there is not always enough runs available to 

accommodate all the terms of interest in the response model of the robust design problem. SCD is not 

recommended if resources allow us to use either a CCD or BBD design.  

Myers and Montgomery (2002) illustrated the differences between a CCD and SCD with a simple 

example. For k = 3, the standard CCD has 15 runs: 32  factorial points, 6 axial points, and 1 center 

point, whereas the SCD has 11 runs: 132 −  factorial points (I = -ABC), 6 axial points, and 1 center 

point. Table 3-16 shows their design constructions. We may compare the efficiencies of model 

coefficients for CCD and SCD. From the matrix of SCDXX ′  and CCDXX ′  (Equation 3-16 and 3-17) of 

a second-order model we can see that in the CCD all linear main effects and two-factor interactions 

are mutually orthogonal, while in the SCD the main effects and two-factor interactions are not 

orthogonal ( 1x  with 32 xx , 2x  with 31xx , and 3x  with 21xx ). These correlations will certainly affect 

the variances of the related regression coefficients.  
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Table 3-16 Standard CCD versus SCD with Three Variables 

Run Number Standard CCD SCD 

 x1 x2 x3 x1 x2 x3 

1 -1 -1 -1 -1 -1 -1 

2 1 -1 -1 1 1 -1 

3 -1 1 -1 1 -1 1 

4 1 1 -1 -1 1 1 

5 -1 -1 1 -α 0 0 

6 1 -1 1 α 0 0 

7 -1 1 1 0 -α 0 

8 1 1 1 0 α 0 

9 -α 0 0 0 0 -α 

10 α 0 0 0 0 α 

11 0 -α 0 0 0 0 

12 0 α 0    

13 0 0 -α    

14 0 0 α    

15 0 0 0    

Table 3-17 shows the scaled coefficient variances 2/)( σbVarN  taken from appropriate diagonals 

of the matrix 1)( −′XXN  ( )33 == cnandα . The designs have close results for estimation of 

second-order coefficients ( iib ), but the results for estimation of linear and two-factor interactions are 

quite different ( 0b , ib , and ijb ). Therefore, we can conclude that the SCD is not a competitive design 

considering the efficiency for estimation of linear and two-factor interaction coefficients in the 

second-order models. 

Table 3-17 Scaled Variances of Model Coefficients for CCD and SCD 

 0b  ib  iib  ijb  

CCD (N = 17) 5.6666 1.2143 1.3942 2.1250 
SCD (N = 13) 4.3333 2.1666 1.1074 5.4166 



 

 57 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
−+

−+
−+

+++

=′

4
04
004
00024
000024
0000024
00400024
040000024
4000000024

000242424000

2

2

2

2

2

2

222
323121

2
3

2
2

2
1321

α
α

α
α

α
α

ααα
xxxxxxxxxxxx

XX SCD

(3-16) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

+
+

+++

=′

8
08
008
00028
000828
0008828
00000028
000000028
0000000028
000282828000

2

2

2

2

2

2

222
323121

2
3

2
2

2
1321

α
α

α
α

α
α

ααα
xxxxxxxxxxxx

XX CCD
(3-17) 

3.8.2 Mixed Resolution Design (MRD) 

A mixed resolution design (MRD) is a very competitive alternative to any of the standard or modified 

CCDs or SCDs. Same as the CCD, the mixed resolution design includes three portions: a two-level  

factorial ( k2 ) or fractional factorial ( pk−2 ) design, axial points, and center points. Borkowski and 

Lucas (1997) define the mixed-resolution fractional factorial design ( pk−2 ) as at least resolution V 

design in terms of the control factors, at least resolution III design among the noise factors, and none 

of the important control-by-noise interactions are aliased with any main effect or other two-factor 

interaction. The definition is reasonable since among the control factors, no main effects or two-factor 

interactions are aliased with any other main-effects or two-factor interactions. Meanwhile, among the 

noise factors, no noise main factors are aliased with other noise main factors, and the noise-by-noise 
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interactions, which are not important to us, are aliased with each other and with main noise effects. 

Therefore, the terms of interest are not confounded with each other, and the mixed resolution designs 

select the defining relation for the fractional factorial portion of the design based on the factors and 

interactions that are important to estimate (Robinson et al. 2004). The axial and center points can be 

designed in the same way as the standard or modified CCD.  

Consider a situation with three control variables and three noise variables. Myers and Montgomery 

(2002) used a 262 −
 mixed resolution design with defining relations 

323213211321 zzxxxzzzzxxxI ===  

The design is resolution III with regard to noise-by-noise interactions and resolution IV with regard to 

the control-by-control interactions. The design consists of 25 runs, which includes 16 runs in 

fractional factorial portion, six axial points (eliminating the axial points corresponding to noise 

variables as the modified CCD), and three center points. However, since some control-by-control 

interactions are aliased with control-by-noise interactions ( 1321 zxxx = , 1231 zxxx = , and 

1132 zxxx = ), this design construction is inappropriate for the robust design. If the practitioner is 

interested in estimating all the two-factor interactions, Borror (1998) presented a very efficient 

method to dealias the control-by-control interactions and control-by-noise interactions by augmenting 

the fractional factorial design with additional runs. A full foldover of the original design is not 

necessary. Adding a set of runs 17 to 22 can dealias the two-factor interactions. The set of runs are 

duplicates of runs 9 to 14 in the original factorial portion with the sign changed on only 2x , one of 

the four variables that involved in the two-factor interactions. Thus, all two-factor interactions can be 

estimated without alias with other two-factor interactions. This design requires 22 runs in fractional 

factorial portion, six axial points (eliminate the axial points of noise variables as the modified CCD), 

and three center points. 

An alternative design is suggested by Borkowski and Lucas (1997) for three control variables and 

three noise variables. The design is 6A based on their design category. The design consists of 41 runs, 

which include 32 runs in fractional factorial portion, six axial points (eliminate the axial points of 

noise variables as the modified CCD), and three center points (assumed). The 162 −  design is set up in 

five factors A, B, C, D, and E. The remaining one factor is F = ABCDE. Table 3-18 shows the mixed 

resolution designs from Borror (1998) and Borkowski and Lucas (1997). 
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Table 3-18 Comparison of Two MRDs (Three Control Variables and Three Noise Variables) 

Borror (1998) MRD Borkowski and Lucas (1997) MRD 
Run 

1x  2x  3x  1z  2z  3z  1x  2x  3x  1z  2z  3z  
1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 
2 1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 1 
3 -1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 
4 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 
5 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 
6 1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 
7 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 
8 1 1 1 1 -1 -1 1 1 1 -1 -1 1 
9 -1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 1 

10 1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 
11 -1 1 -1 1 1 1 -1 1 -1 1 -1 -1 
12 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 
13 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 
14 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 
15 -1 1 1 -1 1 -1 -1 1 1 1 -1 1 
16 1 1 1 1 1 1 1 1 1 1 -1 -1 
17 -1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1 
18 1 1 -1 1 1 1 1 -1 -1 -1 1 -1 
19 -1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 
20 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 
21 -1 1 1 1 1 1 -1 -1 1 -1 1 -1 
22 1 1 1 -1 1 -1 1 -1 1 -1 1 1 
23 -2.38 0 0 0 0 0 -1 1 1 -1 1 1 
24 2.38 0 0 0 0 0 1 1 1 -1 1 -1 
25 0 -2.38 0 0 0 0 -1 -1 -1 1 1 -1 
26 0 2.38 0 0 0 0 1 -1 -1 1 1 1 
27 0 0 -2.38 0 0 0 -1 1 -1 1 1 1 
28 0 0 2.38 0 0 0 1 1 -1 1 1 -1 
29 0 0 0 0 0 0 -1 -1 1 1 1 1 
30 0 0 0 0 0 0 1 -1 1 1 1 -1 
31 0 0 0 0 0 0 -1 1 1 1 1 -1 
32       1 1 1 1 1 1 
33       -2.38 0 0 0 0 0 
34       2.38 0 0 0 0 0 
35       0 -2.38 0 0 0 0 
36       0 2.38 0 0 0 0 
37       0 0 -2.38 0 0 0 
38       0 0 2.38 0 0 0 
39       0 0 0 0 0 0 
40       0 0 0 0 0 0 
41       0 0 0 0 0 0 
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3.8.3 Design Construction and Analysis—Cuboidal Designs 

Axial distance α  usually varies from 1 to k  . When k=α , all axial points will be place on a 

common sphere (spherical region). On the other hand, when 1=α , all axial points are on the face of 

the cube or hypercube (cuboidal region). The most popular cuboidal design is face-centered cube 

(FCC), which has the same advantages and disadvantages as the CCD. We also have a modified FCC 

to accommodate robust design problems in the same manner as the modified CCD. Therefore, as the 

number of variables increases, FCC or modified FCC becomes very large and costly. Another 

difference between cuboidal design and spherical design is the requirement for center runs. Myers and 

Montgomery (2002) studied the sensitivity of 2/)](ˆ[ σxyVarN  to the number of center runs and 

concluded that spherical designs need three to five center runs ( cn = 3 to 5) to produce stable results, 

but cn =1 is sufficient to achieve stability in cuboidal designs, though cn = 2 is slightly preferable. 

3.8.4 Methods for Evaluating Response Surface Designs 

While RSM can predict the response or estimate the mean response at a particular point, the variance 

of the prediction or prediction variance, which is a direct measure of the error resulted from the model 

at the point, is an important characteristic to study. The prediction variance is given as 

 2)()'()](ˆ[ σmmyVar xX)X(xx 1−′=  (3-18) 

where 2σ  is error variance, the vector )(mx  is a function of the location in the design variables at 

which one predicts the response, and the (m) reflects the nature of the model as X does and indicates 

that )(mx  is just x expanded to model space. For example, for k = 2 design variables and the model 

contains first-order 1x  and 2x  only, we have 

],,1[ 21
)'1( xx=x  

For k = 2 design variables and a second-order model, we have 

 ],,,,,1[ 21
2
2

2
121

)'2( xxxxxx=x  

The scaled prediction variance is  

 )()'(
2

)](ˆ[)( mmNyVarNv xX)X(xxx 1−′==
σ

 (3-19) 
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where N is the design size. It is clear that the scaled prediction variance depends on the experimental 

design ( 1−′ )( XX ), the model, and the particular location ( )(mx ). For a rotatable design, the scaled 

prediction variance is the same for all points of )(mx  that have the same distance from the center 

point of the design. Therefore, the scaled prediction variance is constant at the axial points or on the 

spheres.  Myers and Montgomery (2002) emphasized the importance of the idea of design rotatability 

to impose stability on 2/)](ˆ[ σxyVarN . They point out that rotatability or near-rotatability is often 

very easy to achieve without the sacrifice of other important design properties. However, it is not 

necessary to have exact rotatability in the second-order design. In other words, near-rotatable design 

is also acceptable. For example, the k = 3 CCD may have 682.1=α  for the axial points. To stabilize 

the scaled prediction variance, the spherical or near-spherical designs need three to five center runs to 

avoid a severe imbalance through the design region. On the other hand, rotatability or near-

rotatability is not important when the design region is cuboidal. The cuboidal design is suitable for 

the problems that have strict ranges for the design variables. Such kind of design has the same region 

of interest and region of operability, and the region is called a cube.  

In addition to comparing the design size, design optimality criteria that are characterized by letters 

of the alphabet are often used in design evaluation and construction. Evaluation and comparison of 

RSM designs are based on the theoretical works of Kiefer (1961) and Kiefer and Wolfowitz (1959) 

that discuss design optimality in a measure theoretic approach. They provide the basis for much of the 

design optimality criteria that are used for design selection. Among the optimality criteria, D-

optimality and G-optimality are the most commonly used.  

Define the determinant as pN/XXM ′= , where N is the number of experimental runs and p is 

the number of parameters in the model. A D-optimality design will maximize M  over all designs ξ . 

Therefore, the D-efficiency of a particular design *ξ can be defined as 

 p
eff MMax

M
D /1

*

)
)(

)(
(

ξ
ξ

ξ

=  (3-20) 

G-optimality and the corresponding G-efficiency are associated with scaled prediction variance 

)(xv . The G-efficiency for a design is  
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p
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pG

xX)X(xx 1−

∈∈
′

==  (3-21) 

where p is the number of parameters in the model. 

3.9 Conclusions 

In this chapter, response surface methodology (RSM) and statistical design of experiment (SDE) are 

discussed to solve robust design problems. The RSM framework can lead to the solution of robust 

design naturally. The dual response surface approach and generalized linear models are growing 

extensively as modeling and analysis tools. To fit the response surface models, combined array 

designs are discussed for both spherical regions of interest and cuboidal regions of interest. The 

modified (or standard) central composite designs (CCD) and face-centered cubes (FCC) are 

appropriate for robust design and in general have attractive variance properties. 
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Chapter 4 
Advanced Robust Design Topics 

4.1 Internal and External Noise Factors 

Robust design is an engineering methodology that determines the levels of control factors under 

consideration of noise factors. Taguchi defines and uses two kinds of noise factors in the 

experimental design: external noise factors and internal noise factors. The external noise factors are 

the uncontrollable environmental variables, such as temperature and humidity during manufacture, 

applied pressure or force, etc. Though they cannot be controlled in the process, we can set them at fix 

values in the experiments (particularly it is convenient to fix them in the computer experiments). The 

internal noise factors represent the random variation of control variables due to the deviations of 

different components or processes, for example, manufacturing error for each part or each batch of 

parts, deviations from nominal processing conditions (like ambient temperature), etc. They vary 

around the nominal values of the control variables and transmit the variability to the response. 

It is understandable that the variation of the system can be greatly reduced if both external and 

internal noises are included in the parameter design. Thus, the optimum nominal settings from the 

parameter design will make the system robust (or less sensitive) to not only external noise factors, but 

also to internal noise factors. As a result, the response variance can be reduced. In each experimental 

design, the experimenter should evaluate the overall benefits and the restricted resources to determine 

the selection of the noise factors. If some sources of variability, such as the internal noise factors, are 

not included in the experiment, the design result may be inaccurate or even potentially lead to a 

wrong solution. Most researchers are focusing on the external noises factors and in many cases the 

internal noises are not included in the experimental design. Such kind of design will result in robust 

products or processes against external noises only. One of the major reasons for inadequate attention 

to internal noises is the assumption that external noises dominate the effects to the system; however, 

this assumption is not always true. For example, in the chemical or manufacturing industry, some 

control variables (environmental temperature, humidity, etc.) will certainly vary within the upper and 

lower limits, and the unavoidable deviations will produce variability in the response. In such kind of 

experimental design, the standard deviations of the control factors are the internal noise factors and 

contribute much to the variability of the response. 
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The practitioner could think it is expensive or hard to plan a design that includes variation of each 

control factor in the design. The concern should be clarified that commonly the number of significant 

control factors is not large in the final design stage (after the screening experiment) and not all 

internal noises should be considered. Li and Wu (1999) divided the components or variables into two 

groups: those with tolerance requirement and those without tolerance requirement. Both the nominal 

values and tolerances are of interest for the first type of variables, whereas the second type of 

variables, such as qualitative variables, bake time, and spin speed, do not have tolerance requirement 

since they do not change after the nominal values are set. Moreover, the internal noises from the same 

source, for example, supplier, manufacturing, and lot of materials, may share the same distribution or 

effect to the system, so the internal noise factors can be combined into one or few variables in the real 

design. Finally, computer simulation may make the experiments possible to perform without doing 

any physical experiments.       

In the combined array design approach, control factors, internal noise factors (standard deviations 

or tolerances), and external noise factors are combined in one array. The internal noise factors are 

hard to control; however, they are partially controllable through controlling the components or 

subassemblies manufacturing. We can put a limit on the random variability of a control variable by 

specifying its tolerance. Therefore, in a combined array design, the internal noises can be combined 

with control factors and external noise factors as part of the noise factors, or even as part of control 

factors in the response surface model or dual response model, and the optimal parameters and 

variations (or tolerances) can be achieved through integrated optimization. If we use the internal noise 

factors ( xz ) as part of noise factors, the new response model is 

 εβ +′+′+′+′+= ),(),(),,( 0 zzΔxγzzBxxβxzzx xxxy  (4-1) 

If we use the internal noise factors ( xz ) as part of control factors, the response model changes to 

 εβ +′+′+′+′+= ΔzxγzzxBzxβzxzzx ),(),(),(),,( 0 xxxxy  (4-2) 

The models of process mean and variance will also change based on the different roles of the internal 

noise factors. In the second model we can get more information for the internal noise factors (second 

order terms and the interactions between internal and external noise factors). We will illustrate the 

roles of the internal noise factors with the following example.  
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4.1.1 Example: Robust Design for a Diesel Fuel Injector 

Consider the following example taken from Meng (2006). The product under study is a diesel fuel 

injector, and the fuel injection system is a high pressure common rail system. It is instructive to 

examine a simple case, so only one performance (response) and six design variables are selected. The 

response is the injected fuel at a specific engine operating condition and the objective of the robust 

design is to adjust the control variables to minimize the injected fuel variation. We have two control 

variables: pilot valve seat diameter ( 1x ) and pilot valve minimum air gap ( 2x ), two internal noise 

factors: variation of pilot valve seat diameter ( 1z ) and pilot valve minimum air gap ( 2z ), and two 

external noise factors: temperature of fuel ( 3z ) and supply pressure ( 4z ). Table 4-1 lists their initial 

nominal values and tolerances. Recall that the internal noises result from variation in the control 

variables originating from the manufacturing process. In general, we assign the statistical tolerance of 

each design variable as three times of its standard deviation ( iitol σ3±= ). 

Table 4-1 Initial Settings of the Control and Noise Factors 

Variable Nominal Tolerance 

1x  (mm) 0.550 0.05 

2x (mm) 0.080 ±0.005 

3z (degree) 25 ±10 

4z (bar) 1800 ±5 

The data of the experimental design is shown in Appendix B. The combined array design is a face-

centered cube (FCC) design for a cuboidal design region. It consists of three distinct portions: 

fractional factorial design, axial points, and one center point.  In this case the fractional factorial 

design is a resolution VI design 162 −
VI  with defining relation I = 432121 zzzzxx  and the external noise 

factor supply pressure is 4z = 32121 zzzxx . Since the axial points primarily contribute to the estimation 

of the quadratic terms and generally in robust design problems the pure quadratic terms of the noise 

variables are not significant, we used the modified FCC design by eliminating the axial points of the 

external noise factors ( 3z  and 4z ). However, we kept the axial points of internal noise factors ( 1z  

and 2z ) as ±1 in the four experimental runs, to fit the model when we treat the internal noise factors 
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as control factors. In FCC design, though two center runs are slightly preferable, one center run is 

quite sufficient for design stability.   

We conducted the robust design in three situations with response surface approach:  

Case a) No internal noises are considered. The control factors consist of 1x  and 2x , while the 

noise factors consist of 3z  and 4z . 

Case b) Consider the internal noise factors as noise factors, as they are hard to control. This is the 

traditional way to construct the parameter design. The control factors include 1x  and 2x , while 

the noise factors consist of 1z , 2z , 3z , and 4z .  

Case c) Consider the internal noise factors as control factors as an alternative for the parameter 

design. We define 1x , 2x , 1z , and 2z  as control factors , and 3z  and 4z  as noise factors. 

Case a) No Internal Noises Considered in the Parameter Design 

The design variables consist of 1x , 2x , 3z , and 4z . The second-order regression model is 
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The sum of squares of the residuals ( ESS ) and the total sum of squares ( TSS ) are 
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In this case, the coefficient of multiple determination is  

0.871112 =−=
T

E

SS
SSR  

The model explains the variability reasonable well. The normal probability plot Figure 4-1 reveals no 

apparent problem with normality. 

The process mean model is 
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2
2

2
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Figure 4-1 Normal probability of residuals for the response 

The slopes in the direction of noise variables 3z  and 4z  are 
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The estimated response variance is 4455.02 =
−
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SSEσ  and we assumed 1
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then the process variance model is 
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A relatively straightforward approach to optimizing the dual response models of the fuel injection 

system is to use the contour plot, response surface plot, and the overlay plot. Figure 4-2 and Figure 

4-3 present the response surface plots of the mean model and standard deviation model (square root 

of the variance). Notice from these plots that the mean increases as 1x  increases and the mean does 

not change much as 2x  changes. It is clear that the standard deviation decreases as 2x  increases and 
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the standard deviation does not change much as 1x  changes. In this problem it is required to keep the 

process mean between 91.7 and 92.1. Figure 4-4 shows an overlay plot of the contours of the mean 

and standard deviation. The tradeoffs can be seen from the overlay plot for better understanding of the 

process. To achieve the desired objective and satisfy the constraints, it is necessary to hold 2x  at the 

high level and 1x  around 0.5. 
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Figure 4-2 Response surface plot of the mean model 
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Figure 4-3 Response surface plot of the standard deviation model 
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Figure 4-4 Overlay plot of mean and standard deviation contour 

Constrained optimization was conducted to find the optimal operating conditions of the design 

variables 1x  and 2x . Recall that dual RSM and MSE loss function can be used to construct the 

optimization. In this case study, we used the dual RSM to formulate the objective function and 

constraint as following: 
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We used Matlab to solve the optimization problem. The optimal settings are  

5339.01 =x , 12 =x , 1.92)]([ =zx,yEz , 4701.0)]([ =zx,yVarz  

Case b) Consider Internal Noises as Noise Factors 

In the second case, the control variables consist of 1x  and 2x , and the noise variables consists of 1z , 

2z , 3z , and 4z . The second-order regression model is 
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The sum of squares of the residuals ( ESS ) and the total sum of squares ( TSS ) are 
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The coefficient of multiple determination is 

0.958712 =−=
T

E

SS
SSR  

The model explains the variability better (95.87% of the variability) than the first case. The normal 

probability plot Figure 4-5 reveals no apparent problem with normality. 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0.01 

0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 

0.99 

P
ro

ba
bi

lit
y

 

Figure 4-5 Normal probability of residuals for the response 

The process mean model is 
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The slopes in the direction of noise variables 1z , 2z , 3z , and 4z  are 
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Figure 4-6 and Figure 4-7 present the response surface plot of the mean model and the model of 

square root of the variance (standard deviation). Notice from these plots that the mean increases as 1x  

increases and the mean does not change much as 2x  changes. It is clear that the standard deviation 

decreases as either 1x or 2x  decreases. Again it is required to keep the process mean between 91.7 

and 92.1. Figure 4-8 shows an overlay plot of the contours of the mean and standard deviation. The 

tradeoffs can be seen from the overlay plot for better understanding of the process. To achieve the 

desired objective and satisfy the constraints, it is necessary to hold 2x  at the low level and 1x  around 

-0.5. 
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Figure 4-6 Response surface plot of the mean model 



 

 72 

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
0.5

0.6

0.7

0.8

0.9

x1
x2

st
de

v

 

Figure 4-7 Response surface plot of the standard deviation model 
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Figure 4-8 Overlay plot of mean and standard deviation contours 

We conducted optimization to find the optimal setting of the design variables 1x and 2x  through 

minimizing the process variance 
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Matlab was used to solve the optimization problem. The optimal settings are  

6614.01 −=x , 12 −=x , 7.91)]([ =zx,yEz , 2606.0)]([ =zx,yVarz   

Case c) Consider Internal Noises as Control Factors 

In the third experiment, we try a new method by using the internal noise factors as control factors, so 

the model of mean and variance become the function of control factors and their tolerances. The 

control variables consists of 1x , 2x , 1z , and 2z , and the noise variables consists of 3z  and 4z . The 

second-order regression model is 
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The sum of squares of the residuals ( ESS ) and the total sum of squares ( TSS ) are 
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The coefficient of multiple determination is 

0.967712 =−=
T

E

SS
SSR  

This model contains more terms, and it explains the variability better than other two methods. The 

normal probability plot (Figure 4-9) reveals no apparent problem with normality. 

The process mean model is 
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Figure 4-9 Normal probability of residuals for the response 

The slopes in the direction of noise variables 3z  and 4z  are 
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then the process variance model is 
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Figure 4-10 and Figure 4-11 present the response surface plot of the mean model and the model of 

square root of the variance (the standard deviation). To construct these plots, we held the two internal 

noise factors 1z  and 2z  at -1. Notice from these plots that the mean increases as 1x  increases and the 

mean does not change much as 2x  changes. It is clear that the standard deviation decreases as 2x  
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increases and the standard deviation does not change much as 1x  changes. Again in this problem it is 

required to keep the process mean between 91.7 and 92.1. Figure 4-12 shows an overlay plot of the 

contours of the mean and standard deviation. There are tradeoffs between the mean and variance. To 

achieve the desired objective and satisfy the constraints, it is necessary to hold 2x  at the high level 

and 1x  around 0.3. 
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Figure 4-10 Response surface plot of the mean model 
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Figure 4-11 Response surface plot of the standard deviation model 
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Figure 4-12 Overlay plot of mean and standard deviation contour 

We constructed optimization as following to find the optimal settings of the design variables 1x  
and 2x  through minimizing the process variance. 
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Matlab was used again to solve the optimization problem. The optimal settings are  

2871.01 =x , 12 =x , 1.92)]([ =zx,yEz , 237.0)]([ =zx,yVarz  

 Table 4-2 shows the results from the above three cases. The comparison of the initial settings 

(control factors 1x  = 0 and 2x  = 0) and the different optimal operating conditions confirms that all of 

the three methods reduce the variability of the response through design optimization. When the 

internal noise factors are considered, as in the second and third case, the models are more adequate to 

express the response and the response variance can be reduced further. Consideration of the internal 

noise factors will increase the complex of the robust design problem and the simulation work can be 

time consuming. However, the accuracy is improved as illustrated in the case study. We can conclude 

that considering the internal noise factors as part of control variables in the combined array design is 
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an attractive alternative to the traditional method that models the internal noise factors as part of the 

noise variables.  

Table 4-2 Comparison of the Three Cases 

 
Case a) 

Ignore internal noises 
(no z1 and z2) 

Case b) 
z1 and z2  as noise 

factors 

Case c) 
z1 and z2  as control 

factors 

x1 0.5339 -0.6614 0.2871 

x2 1 -1 1 
2R  87.11% 95.87% 96.77% 

)]([ zx,yVarz  (initial) 0.476 0.3738 0.2534 

)]([ zx,yVarz  (optimal) 0.4701 0.2606 0.237 

)]([ zx,yEz  92.1 91.7 92.1 

In the third case where the internal noise factors are used as control factors, though we may obtain 

the optimal setting of 1z  and 2z  (the variation of 1x  and 2x ) from the optimization, we can not 

simply use them to compute the tolerance of  1x  and 2x . In this example, the optimal values of 1z  

and 2z  are only optimization results without weighing the manufacturing cost and loss-of-quality cost. 

To decide the accurate tolerance range, economic information and cost study should be integrated 

with the parameter design. 

4.2 Tolerance Design 

Robust tolerance design is used to determine the best limits for the parameters to meet the variation 

requirement of the design. The ideal tolerances would be zero in a deterministic design if we do not 

consider the economical and physical constraints. In general we perform constrained optimization to 

minimize the objective function - total system cost (CT), which is the sum of tolerance cost or 

production cost (CP) and the so-called loss-of-quality cost (Q), with respect to the parameter 

constraints to find the optimal tolerances. We can also formulate the optimization in other ways, such 

as using response mean, response variance, or any one of the cost measures as the objective function 

under the constraints of others. If the variation (standard deviation) for a design variable is σ , it is 

common to assign the tolerance to be σ3± . 
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The integrated robust parameter and robust design, which performs parameter design and tolerance 

design simultaneously, is a superior alternative to the traditional two-stage sequential parameter and 

tolerance design. However, it is still very popular to design parameters and tolerances separately, or 

in many cases, only parameter design is done. There might be three major reasons: 

1. It is assumed that tolerance design does not affect the nominal values of control variables. This 

assumption will affect the accuracy of robust design, since the deviations of the control 

variables do influence the selection of the nominal values, even though the influence might be 

small.  

2. It might be assumed that parameter design contributes mainly to the design of a system, so 

researchers focus on parameter design and have developed a systemic framework. There is 

much less research works have been done on tolerance design.    

3. Tolerance design needs the information of cost that is difficult or impossible to obtain (such as 

the coefficients of the production cost and loss-of-quality cost). Because it is difficult to collect 

or quantify the data of cost related to different stages of the whole life cycle, only inaccurate or 

assumed values could be used. Therefore, tolerance design is more complex than parameter 

design, and the final decision should be made by experienced researchers and engineers based 

on practical conditions. 

4.2.1 Total Cost 

The total cost is the sum of loss-of-quality cost and production cost: 

 pPT CCQC ++−=+= ])[( 2 2
yy σTμK  (4-3) 

The production cost and the loss-of-quality cost are competing costs. Figure 4-13 is a simple example 

from Savage (2008) to show the relationship between cost and quality. We can see the trade-off 

between them clearly. In general, tight tolerance is preferred at the design stage but that leads to 

higher cost and more difficulties in the manufacturing stage. Therefore, the total cost provides a 

single objective function in terms of the means and tolerances of the control variables and 

optimization should be performed to find the minimum cost within acceptable quality level. This is a 

typical yield-cost scenario. 
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Figure 4-13 Production cost and loss-of-quality cost 

4.2.2 Loss-of-Quality Cost 

Taguchi (1986) contended that a loss-of-quality cost increases when product quality characteristics 

(responses) differ from the nominal. He creates a univariate quadratic loss function of the form  

 2)()( TykyL −=  (4-4) 

where k is the cost coefficient, y is the response, and T is the nominal of the response. When the 

response is right on the target T, the loss will be zero. The smaller the deviation, the smaller the loss 

will be. In traditional quality thinking, there is no additional cost when y is within the upper and 

lower limits. Taguchi’s loss function, however, suggests that even a small deviation of the response y 

will lead to a loss, so it is consistent with the continuous improvement philosophy of modern quality 

engineering. Figure 4-14 shows Taguchi’s quadratic loss function. 
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Figure 4-14 Taguchi’s quadratic loss function 
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From the loss function, we can determine the expected loss function 

 ])[()]([ 22
yy TkyLEQ σμ +−==  (4-5) 

where yμ  and 2
yσ  are the mean and variance of the response y. The cost coefficient k can be 

evaluated as 

   
2
0

0

Δ
=

Ak
 (4-6) 

where  

0A  - the cost of a response exceeding the critical levels. It includes the cost for rework, 

repair, scrap, market loss, and all other financial losses. 

20
LSLUSL −

=Δ  - the response tolerance 

In addition to the dual RSM approach, Taylor’s series expansion can be used as an alternative to 

approximate the process mean and variance in terms of control variables and their standard deviations 

(or tolerances). Taylor approximation is useful to formulate the cost function for the constrained 

optimization, particularly when the internal noise factors (tolerances of the control variables) are not 

included in the experimental designs. Consider )(xgy =  and we have the mean and variance of 

random variable x, μ=)(xE  and 2)( σ=xVar , the Taylor’s approximation is  

μμ

μμμ 2

2
2 )()(

2
1)()()(

dx
xgdx

dx
xdgxgy −+−+≈  

Thus, the process mean and variance can be obtained as 

μ

σμ 2

2
2 )(

2
1)()(

dx
xgdgyE +≈  

22 ])([)(
μ

σ
dx

xdgyVar ≈  
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 Next, extend the above approximations to the case where )(xgy =  and x is a vector of random 

variables, ),...,,( 21 ′= nxxxx . The Taylor’s approximation is 
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Therefore the process mean and variance can be obtained as 
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Vining (1998) extended the univariate quadratic loss function to multivariate form based on square 

error loss approach. His loss function is  

 ]ˆ[]ˆ[ T(x)yCT(x)y −′−=L  (4-7) 

where  

 (x)ŷ  - vector of estimated responses 

C - positive definite matrix of weight or costs  

T - vector of target values of the responses.  

The expected loss function (Vining 1998) is given by 

 ][}]ˆ[{}]ˆ[{)( ˆ(x)yCT(x)yCT(x)y ∑+−′−= TraceEELE  (4-8) 

And the estimated expected loss function is 

 ][]ˆ[]ˆ[)(ˆ
ˆ(x)yCT(x)yCT(x)y ∑+−′−= TraceLE   (4-9) 

where 

]ˆ[]ˆ[ T(x)yCT(x)y −′− -- loss for any predict value away from target 

][ ˆ(x)yC∑Trace -- loss generated from the quality of the prediction 
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 (x)ŷ∑ -- variance-covariance matrix for the estimated responses 

Let variance-covariance matrix for the responses be [ ]2ˆ ijσ=∑ , which is known in advance or can 

be obtained through maximum likelihood estimation based on the experimental data. Recall from 

Section 3.8.4 the prediction variance is given as 

 2)(1)'( )(]ˆ[ σxXXx(x)y mmVar −′=   

where X is the model matrix for the response, the vector )(mx  is a function of the location in the 

design variables at which one predicts the response, and the (m) reflects the model as X does. In the 

case of multiple responses, the prediction variance-covariance matrix for the estimated responses is  

 ∑′=∑ − )(1)'(
ˆ )( mm xXXx(x)y  (4-10) 

The object of the optimization is to find the nominal values which minimize expected loss function 

E(L). The loss-of-quality cost is determined by the cost coefficient 1ˆ −∑= KC , where K is a matrix 

with the diagonal elements reflecting the economic importance of each response and the off-diagonal 

elements measuring the correlation of the responses. The estimated expected loss function can be 

given as 

 [ ]}ˆ)({]ˆ[]ˆ[

][]ˆ[]ˆ[)(ˆ
2)(1)'(

ˆ

ij
mmTrace

TraceLE

σxXXCxT(x)yCT(x)y

CT(x)yCT(x)y (x)y

−′+−′−=

∑+−′−=
 (4-11) 

or 
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 (4-12) 

The optimization problem for the expected loss will consider quality of the responses and model 

prediction. It can be solved through nonlinear programming method in following form: 

 
R

tosubject
LEMin
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)(ˆ

 (4-13) 
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Example: Multivariate Loss Approach for Multi-response Optimization 

We take an example from Myers and Montgomery (2002) to show the squared error loss approach 

for multi-response optimization. The goal of the polymer experiment is to find the parameters of three 

variables in a chemical process to meet the requirements for two responses. The design variables are 

time ( 1x ), reaction temperature ( 2x ), and amount of catalyst ( 3x ). The responses are conversion of a 

polymer ( 1y ) and thermal activity ( 2y ). 

Table 4-3 shows the experimental results. The acceptable range for 1y  is 80 to 100 and that for 2y  

is 55 to 60. As the experimenters want to maximize 1y  and achieve a target value of 2y  (57.5), the 

target value for 1y  is at upper limit ( 1001 =T ), and nominal for 2y  is at the midpoint ( 5.572 =T ). 

Table 4-3 Experimental Results of Polymer Experiment 

Run 
number 

1x  
Time 

2x  
Temperature 

3x  
Catalyst 

1y  
Conversion 

2y  
Activity 

1 -1 -1 -1 74 53.20 
2 1 -1 -1 51 62.90 
3 -1 1 -1 88 53.40 
4 1 1 -1 70 62.60 
5 -1 -1 1 71 57.30 
6 1 -1 1 90 67.90 
7 -1 1 1 66 59.80 
8 1 1 1 97 67.80 
9 -1.682 0 0 76 59.10 

10 1.682 0 0 79 65.90 
11 0 -1.682 0 85 60.00 
12 0 1.682 0 97 60.70 
13 0 0 -1.682 55 57.40 
14 0 0 1.682 81 63.20 
15 0 0 0 81 59.20 
16 0 0 0 75 60.40 
17 0 0 0 76 59.10 
18 0 0 0 83 60.60 
19 0 0 0 80 60.80 
20 0 0 0 91 58.90 
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This experiment uses standard CCD design, which has 822 3 ==k  factorial points, 6 axial points 

( 682.1844 === Fα ), and 6 center points, to fit the second-order models. We used regression 

model to obtain the estimated response Xβ(x)y =ˆ , where the least squares estimator β  is 

yXXXβ ′′= −1)(ˆ . The prediction equations for conversion ( 1y ) and thermal activity ( 2y ) are 

323121

2
3

2
2

2
13211

88.338.1113.2
19.594.283.120.604.403.109.81

xxxxxx
xxxxxxy

−++
−+−+++=

∧

 

312 23.258.351.60 xxy ++=
∧

 

The graphic methods were used to estimate the optimal operating conditions. Figure 4-15 and 

Figure 4-16 present the response surface plots of the two responses, and Figure 4-17 shows the 

overlay contour plot of the two responses. Since the model of 1ŷ  includes three design variables and 

2ŷ  includes two design variables, we fixed 2x  (at 1.68) to plot the response surfaces of 1ŷ  or 2ŷ  

versus 1x  and 3x . From the plot of 1ŷ  we find that 1x  and 3x  are competing: as 1x  increases 1ŷ  

increases, while as 2x  increases 1ŷ  decreases. The overlay plot shows 1ŷ  and 2ŷ  are also 

competing. We can reach an approximate solution from these plots. The formal nonlinear 

programming can decide the trade-offs.  
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Figure 4-15 Response surface plot of conversion 1y  
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Figure 4-16 Response surface plot of activity 2y  

75
80 85

85

85

90

90

90

90

95

95
95

95

95

95

10
0

100

55

56 57

57

58

58

58

59

59

59

60

60

60

61

61

61

62

62

62

63

63

63

64

64
65

66

x1

x3

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

Figure 4-17 Overlay contour plot of conversion 1y  and activity 2y  

As Njiij /ˆˆˆ εεσ ′′= , where ε̂  is the residual vector from the ordinary least squares (OLS) 

estimation of each response, we can estimate the variance-covariance matrix of the responses as 
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2012.25450.0
5450.01240.11

  

In this example, we assume K = I, so cost efficient C is 

 ⎥
⎦

⎤
⎢
⎣

⎡
=∑=

∧
−

4599.00225.0
0225.00910.01C   

Next, we can perform the constrained optimization within experimental region to find the optimal 

values of the design variables: 

68.1,,68.1
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xxx
tosubject

TraceLEMin mm KxXXxT(x)yCT(x)y
 

The optimal conditions of the design variables and responses are 

1x  2x  3x  1y  2y  

-0.4041 1.682 -0.4863 95.2077 57.9789 

And the loss for any value that is out of specification is 2.0921, loss generated from the quality of the 

prediction is 0.7593, and the total loss is 2.8514. 

The settings of the two responses show that while both of 1y  and 2y  are close to their target values, 

1y  obtains relatively better result than 2y . This means our choice of C gives more weight to 1y  than 

to 2y . If we assume that it is necessary to make the thermal activity ( 2y ) as close to the target as 

possible, more weight should be put on 2y  than on 1y . For example, suppose we assume the 

covariance of the responses is zero and select matrix of K and C as 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

12.2205.54
545.0124.11

K  and ⎥
⎦

⎤
⎢
⎣

⎡
=

1000
01

C  

The optimal conditions of the design variables and responses are obtained as 

1x  2x  3x  1y  2y  

-0.5218 1.4535 -0.4552 91.8952 57.627 
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The loss for any value that is out of specification is 67.3014, loss generated from the quality of the 

prediction is 122.07, and the total loss is 189.3713. 

Change K and C to put much more weight on 2y , for example, let 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

24.440109
545.0124.11

K  and ⎥
⎦

⎤
⎢
⎣

⎡
=

2000
01

C  

The optimal conditions of the design variables and responses are obtained as 

1x  2x  3x  1y  2y  

-0.5484 1.2225 -0.4227 88.9769 57.5929 

The loss for any value that is out of specification is 123.2338, loss generated from the quality of the 

prediction is 161.5993, and the total loss is 284.8331. 

Notice that after increasing the weight on 2y , 2y  becomes closer to the target but 1y  is decreased 

and away from the target. Additionally, from the cost data we can see the non-conformance penalty 

and the loss generated from the quality of the prediction will be increased after we increase the weight 

on 2y . Therefore, the experimenter should determine the trade-offs carefully based on overall 

consideration of the relative weights, variability, and costs.  

4.2.3 Production Cost (Tolerance Cost) 

Tolerance design suggests that the nominal values of the control variables are deterministic and their 

limits or variances should be allocated. This is a necessary step for robust design, because the 

parameter design, as we have presented so far, would obtain the optimum parameters without giving 

acceptable deviations. Even with consideration of loss-of-quality cost from previous subsection, the 

tolerances (or variances) would go to zero to achieve minimum quality loss if we do not consider the 

tolerance cost. This is not possible in real applications. Therefore, the tolerance cost should be added 

in the objective function for optimization to balance the robust design. In general, tolerance cost is 

just the cost involving the manufacturing process. 

From experience we can conclude that a smaller tolerance value (tighter tolerance) leads to higher 

cost, due to the need for more manpower and energy to manufacture the product with low variability. 

Table 4-4 shows various functions proposed to describe the cost-tolerance relationship (Chase et al. 
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1990). The two constants (a and b) are cost coefficients determined by the particular manufacturing 

process. 

Table 4-4 Proposed Cost-Tolerance Models 

Model Name Cost Model 

Linear Tolba ×−  

Reciprocal Tolba /+  

Reciprocal Squared 2/ Tolba +  

Reciprocal Power kTolba /+  

Exponential Tolmeb ×−×  

Exponential / Reciprocal Power kTolm Toleb /×−×  

Piecewise Linear iii Tolba ×−  

4.3 Multiple Response Optimization – Desirability Function Approach 

The two-stage sequential robust design optimizes the response over the parameters of control 

variables with fixed tolerances and then optimizes the response over the tolerances of control 

variables with optimal parameters found in the previous stage, whereas the one-stage integrated 

robust design conducts optimization of the response over the parameters and tolerances of control 

variables simultaneously. The superiority of the joint method is obvious: the optimization will lead to 

the solution of integrated robust design with higher accuracy and less time and energy.   

To simplify the robust design problem, the researcher usually works on robust design problem with 

single important response or quality characteristic. In many practical instances, however, multiple 

competing responses should be optimized simultaneously. For example, in some industrial settings, 

such as semiconductor manufacturing, more than ten response variables are not unusual in a process. 

Because the responses might be correlated, trade-offs among multiple responses should be studied to 

obtain overall optimum setting of the parameters that all responses are optimized or at least in desired 

ranges. 

While graphic methods are very popular to determine an initial estimate, the nonlinear 

programming method is the formal approach to solve the constrained optimization problem. In 

general, desirability function approach and loss function approach are two of the most important 

methods to formulate the optimization criteria. We have introduced the loss function approach for 
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both single and multiple response optimization problems, and in the next subsection, the desirability 

function approach will be discussed.  

Derringer and Suich (1980) proposed the desirability function approach to simultaneously optimize 

multiple responses. This optimization technique weights the responses in accordance with their 

deviations to the target, upper, and lower specifications. Each response is converted into an individual 

desirability function id  that varies between 0 and 1, where 0=id  if the response is in an 

unacceptable range, 1=id  if the response is on target, and 10 << id  otherwise, such that id  

increases as the individual response is moving close to the target. The optimization objective is to 

maximize the overall desirability 

 m
mdddD /1

21 )...(=  (4-14) 

where m is the number of responses. The constraint is the experimental region of the control 

variables. 

In the scenario of “the target is best”, 
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In the scenario of “the smaller the better”, 
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In the scenario of “the larger the better”, 
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In the above desirability functions, T is the target, U and L are upper and lower specification, and r , 

1r , and 2r  are weights. In general the weights are assumed as 1 to get linear desirability functions. 

Figure 4-18 shows the two-sided desirability functions with different weights r . We can see the 

weighting shapes are in the form of tents that peak at the target with value 1 and flattens to zero 

beyond the upper and lower specifications. 
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Figure 4-18 Desirability functions (the target is best) 

Multiple response optimization will always involve comprise between individual responses. In 

general, direct search methods are used to maximize the overall desirability. Therefore, we may find 

multiple optimal values with different starting points. Final selection can be made based on practical 

and overall considerations. 

Example: Desirability Function Approach for Multi-response Optimization 

We retake the example from Myers and Montgomery (2002) to optimize the chemical process with 

two responses: polymer ( 1y ) and thermal activity ( 2y ). Recall from Section 4.2.2 the regression 

models are 
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We assumed the weights 121 === rrr . The desirability function of response 1y  (the larger the 

better) is 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

<≤
−
−

<

=

1001

10080
80100
80

800

1

1
1

1

1

y

yy
y

d   

The desirability function of response 2y  (the target is best) is 
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The overall desirability function is  

 2/1
21 )( ddD ×=   

Optimization was formulated to find the optimal conditions of the control variables 1x , 2x , and 3x  
as 
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We used Matlab to solve the optimization problem. Using different starting points we can obtain 

different local optima. It should be noted that the multiple responses optimization cannot guarantee to 

find the global optimum. In general we simply this problem by changing the starting points of the 

search to find the local optima and making decision through overall consideration. 

Considering the overall requirements for this problem, we selected the optimal setting as:  

1x  2x  2x  1y  2y  1d  2d  D  

-0.4887 1.682 -0.5653 95.1813 57.5 0.7591 1 0.8712 
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With this solution, 1y  is close to the upper limit and 2y  is on target, whereas the overall desirability 

is the highest. One should bear in mind that the trade-offs are always there, thus, we can not improve 

any criterion without deteriorating a value of at least one other. 
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Chapter 5 
Case Study  

5.1 Case Study 1 – Grating Spectroscope 

We take an example from Savage and Seshadri (2003) that outlines a design of a mechanism for 

controlling a grating diffraction spectroscope. In the multi-link mechanism, a wavelength λ  is related 

to the displacement S that is set by a stepping motor subsystem. To calibrate the mechanism, we need 

two wavelengths 1λ  and 2λ  as the responses in the robust design and they are corresponding to the 

two step positions 1S  and 2S . In addition to step position ( 1S  or 2S ), we have other four design 

variables: off-set distance 1K , grating angle 2K , and machining dimensions L and C. The overall 

uncertainty of the six design variables deems that the problem be posed as a robust design problem to 

find parameters and tolerances of 1K  and 2K  to provide sufficient conformance of the responses at 

best cost.  

Table 5-1 shows the mean and tolerance of the design factors. There are five design variables for 

each response. In the table, the means and tolerances for 1K  and 2K  are initial estimates only. In 

addition, the minimum tolerance of 1K  and 2K  are mmTol 005.0min1 =  and min2Tol  = 0.01°. 

Table 5-1 Control and Noise Factors for the Spectroscope 

Design variables Mean Tolerance 

Off-set setting 1K (mm) 230.6 ±0.05 

Grating angle 2K (º) 76 ±0.05 

Dimension C (mm) 51 ±0.05 

Dimension L (mm) 211.25 ±0.05 

Step position 1S (mm) 34.5325 ±0.001 

Step position 2S (mm) 43.4150 ±0.001 
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Screening experiment was done first to eliminate the unimportant variables. Table 5-2 shows the 

screening experimental design. We used a 152 −
V  fractional factorial design in which no main effect or 

two-factor interaction is aliased with any other main effect or two-factor interaction. The defining 

relation is I = ABCDE. Every main effect is aliased with a four-factor interaction 

LCSKKlK 211
+→ , LCSKKlK 122

+→ , CSKKLlL 21+→  

LSKKClC 21+→ , LCKKSlS 21+→  

where S is either 1S  or 2S  corresponding to response 1λ  or 2λ , respectively. 

Table 5-2 152 −
V  Screening Experimental Design 

Run 1K  2K  L C 1S  2S  1λ  2λ  

1 -1 -1 -1 -1 1 1 530.0405 1062.7259 

2 1 -1 -1 -1 -1 -1 523.9381 1056.5859 

3 -1 1 -1 -1 -1 -1 535.1537 1067.5846 

4 1 1 -1 -1 1 1 529.2925 1061.6892 

5 -1 -1 1 -1 -1 -1 535.733 1068.4727 

6 1 -1 1 -1 1 1 529.8697 1062.5724 

7 -1 1 1 -1 1 1 541.0837 1073.5683 

8 1 1 1 -1 -1 -1 534.9829 1067.4312 

9 -1 -1 -1 1 -1 -1 528.8503 1060.4051 

10 1 -1 -1 1 1 1 522.9993 1054.5188 

11 -1 1 -1 1 1 1 534.2029 1065.5057 

12 1 1 -1 1 -1 -1 528.115 1059.3831 

13 -1 -1 1 1 1 1 534.7692 1066.3788 

14 1 -1 1 1 -1 -1 528.6791 1060.2512 

15 -1 1 1 1 -1 -1 539.8812 1071.2353 

16 1 1 1 1 1 1 534.0318 1065.3518 

Every two-factor interaction is aliased with a three-factor interaction: 

LCSKKl KK +→ 2121
, LSKCKl CK 122

+→  
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CSKLKl LK 211
+→ , LCKSKl SK 122

+→  

LSKCKl CK 211
+→ , SKKLClLC 21+→  

LCKSKl SK 211
+→ , CKKLSlLS 21+→  

CSKLKl LK 122
+→ , LKKCSlCS 21+→  

The estimates of the main effects for the response 1λ  are 

LCSKKlK 211
+→ = -5.9758 

LCSKKlK 122
+→ = 5.2331 

CSKKLlL 21+→ = 5.8048 

LSKKClC 21+→ = -1.0707 

LCKKSlS 21+→ =0.1195 

The estimates of the main effects for the response 2λ  are 

LCSKKlK 211
+→ = -6.0116 

LCSKKlK 122
+→ = 4.9798 

CSKKLlL 21+→ = 5.8579 

LSKKClC 21+→ = -2.2 

LCKKSlS 21+→ =0.1202 

From the estimates of the main effects for the two responses, it is reasonable to conclude that 1K , 

2K , L, and C are significant. Therefore 1S  and 2S  were deleted from the list of significant design 

variables and assigned with nominal values 34.5325 mm and 43.4150 mm, respectively. The sums of 

squares for effects of response 1λ  are  
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The sums of squares for effects of response 2λ  are  
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The analysis of variance (ANOVA) of the screening experiment is summarized in Table 5-3. It is 

confirmed that 1K , 2K , L, and C are significant. 
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Table 5-3 Analysis of Variance for Screening Experiment 

 Source of 
Variation 

Sum of 
Squares 

Degree of 
Freedom Mean Square 0F  

1K  142.8391 1 142.8391 27469.06 

2K  109.5395 1 109.5395 21065.29 

L 134.7812 1 134.7812 25919.46 

C 4.5852 1 4.5852 881.7692 

Error 0.0575 11 0.0052  

1λ  

Total 391.8025 15   

1K  144.5575 1 144.5575 27275 

2K  99.1941 1 99.1941 18715.87 

L 137.2606 1 137.2606 25898.23 

C 19.3608 1 19.3608 3652.981 

Error 0.0582 11 0.0053  

2λ  

Total 400.4312 15   

In the following robust design, 1K  and 2K , which are adjusted to visualize the wavelengths, are 

used as control factors. C and L are uncontrollable and uncorrelated because of the different 

machining processes and are used as noise factors. Table 5-4 shows the data for this experiment. The 

experiment is a modified face-centered cube (FCC) design, which is a combined array design for a 

cuboidal region of interest. The FCC design includes three parts:  

1. As there are only 4 design factors, we have enough resource to do a single replicate 42  two-

level factorial design. 

2. 2*2=4 axial points on the face of the cube (cuboidal region). Recall that in the modified FCC 

design the axial points for the noise variables will be removed, because axial points primarily 

contribute to the estimation of the quadratic terms, and generally in robust design problems we 

rule out the pure quadratic terms of the noise variables. 
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3. One center points. Though two center points are preferable, on center point is sufficient enough 

for stability. 

Table 5-4 Experimental Design Data for the Multi-link Mechanism 

Run 1K  2K  L C 1λ  2λ  

1 -1 -1 -1 -1 529.9807 1062.6657 

2 1 -1 -1 -1 523.998 1056.6461 

3 -1 1 -1 -1 535.2135 1067.6448 

4 1 1 -1 -1 529.2327 1061.629 

5 -1 -1 1 -1 535.7928 1068.5329 

6 1 -1 1 -1 529.8098 1062.5122 

7 -1 1 1 -1 541.0239 1073.5081 

8 1 1 1 -1 535.0427 1067.4914 

9 -1 -1 -1 1 528.91 1060.4652 

10 1 -1 -1 1 522.9396 1054.4588 

11 -1 1 -1 1 534.1432 1065.4457 

12 1 1 -1 1 528.1747 1059.4431 

13 -1 -1 1 1 534.7095 1066.3187 

14 1 -1 1 1 528.7388 1060.3112 

15 -1 1 1 1 539.9409 1071.2953 

16 1 1 1 1 533.9721 1065.2918 

17 -1 0 0 0 534.9635 1066.9832 

18 1 0 0 0 528.9878 1060.9716 

19 0 -1 0 0 529.3589 1061.487 

20 0 1 0 0 534.592 1066.4668 

21 0 0 0 0 531.9756 1063.9773 

The second-order RSM prediction models for the two responses are as following: 

LKCKCL
KKKKKK
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2
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The sum of squares due to residual and total sum of squares for 1λ  and 2λ  are 
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The coefficients of multiple determination of the models for the two responses are 
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So the models explain the variability of the response very well.  

The RSM mean models for the two responses are: 
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We simplified the regression models of the two responses to first-order and included only the control 

variables: 

211 6165.29879.29762.531 KK +−=
∧

λ  

212 4899.20058.39784.1063 KK +−=
∧

λ  

To find the relationship between the variances of responses and the tolerances of control factors, we 

used Taylor series expansion   
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Assuming 0
21
=KKCov , 

11
3 KKTol σ= , and 
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Though the two responses are correlated, to make the problem simple, we assumed the off-diagonal 

coefficients of the cost matrix for the two responses are zero. Thus the total loss is  

 ])[(])[()]([ 22
2

22
1 222111 λλλλλλ σμσμ +−++−== TkTkyLEQ  (5-1) 

The loss-of-quality cost Q is the cost to recalibrate any nonconforming mechanism, either on-line in 

the factory or on-site at the customer. We used RSM mean models as 
1λ

μ  and 
2λ

μ . The variance 2
1λ

σ  

and 2
2λ

σ  can be obtained from the Taylor series expansion. The target values of the responses are 

nm5321 =λ  and nm10642 =λ , and both responses have tolerances of nm1± . In this case the 

recalibration is done in the factory and the unit cost is 500$0 =A . Cost coefficient k can be 

evaluated as 

   5002
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0
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The production cost is evaluated as  

ICLStep
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P CCC
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baC ++++++=
21
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where  

1a  and 1b  - production cost coefficients of 1K  

2a  and 2b  - production cost coefficients of 2K  

StepC  - production cost of the stepping motor subsystem (depends on the designated 

tolerance)  

CLC  - cost for machining the two noise factors: dimensions C and L 
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IC  - cost for inspection of the assembled mechanism  

In the analysis, we set 10$1 =a , 10$2 =a , 5.01 =b $-mm, 0.12 =b $-degree, StepC  = $110, CLC  = 

$340, and IC  = $50 (we assumed every unit is inspected after assembly by checking wavelengths 

against step positions using test samples).  

The single objective function used in the optimization is the total cost 

PT CQC +=  

Thus, the optimization problem can be formulated as the minimization of the total cost subject to 

constraints of the mean of the responses and the experimental regions of the control factors: 

minmin

21

max22min2max11min1

2211
,

,
)(ˆ,)(ˆ

KKKK

T

TolTolTolTol
RKK

EE

tosubject
CMin

≥≥
∈

≤≤≤≤ λλλλλλ  

We obtained the optimal conditions as following: 

00064.01 =K , 01021.02 =K , 008556.0
1
=KTol , 01199.0

2
=KTol  

999999.531
1
=λMean , 999995.1063

2
=λMean  

Q = 70.9125, 8263.649=PC , 7388.720=TC  

Notice the tolerance of 1K  and 2K  are tighter (smaller) than the initial settings (0.05 and 0.05). It is 

reasonable because comparing with the machining process of C and L, adjusting 1K  and 2K  is less 

expensive. The nominal values of 1K  and 2K  are close to the initial conditions (middle level). 

If we do not inspect the assembly in the factory and recalibration is done on site, we have 0=IC  

and the unit cost is 20000 =A  ( 200021 == KK ). After optimization, the optimal conditions are 

0005985.01 =K , 01016.02 =K , 00539.0
1
=KTol , 01.0

2
=KTol , 

999998.531
1
=λMean , 0000015.1064

2
=λMean  
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Q = 162.345, 767.650=PC , 112.813=TC  

Because the cost coefficients are increased, the tolerance of 1K  and 2K  are decreased to the 

minimum level to balance the total cost. We notice the loss-of-quality cost (Q) is increased a lot in the 

second case. It is understandable that the cost for action taken outside of the factory is more 

expensive than the cost of internal inspection. Our results for the nominal values and tolerances are 

close to the solutions of Savage and Seshadri (2003) that solved this problem with a probabilistic 

robust design method. 

5.2 Case Study 2 – Elastic Element of a Force Transducer 

The following example is from a case study of Romano et al. (2004). The robust design is applied for 

the design of the elastic element of a force transducer (Figure 5-1). The design of the element is 

intended to minimize the transducer's inaccuracy, which originates from two major sources: non-

linearity and hysteresis, when a compressive load is applied to the elastic element. There is a trade-off 

between the effects of non-linearity and hysteresis, which can be studied to improve the design of the 

transducer. The robust design experiment was simulated using a finite element program (Romano et 

al. 2004). 

 

Figure 5-1 Elastic element of the force transducer 
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The two indicators that quantify the effect of non-linearity and the hysteresis are defined as the 

responses 1y  and 2y , respectively. The nonlinearity effect is the ratio between longitudinal strain 

(retrieved at the center P of the measuring area in the y direction) and transversal strain (at a point Q 

which is 10mm off center in the x direction). The hysteresis indicator is the ratio between maximum 

strain on the measuring area and longitudinal strain at point P. We seek to achieve a target value of 

1y  and minimize 2y . While the acceptable range for 1y  is 0.9 to 1.1, and the target value is the 

midpoint 1, the acceptable range for 2y  is 1 to 3, and the target value is the lower limit 1. These 

limits meet standard specifications for the force transducer.  

Table 5-5 shows the natural and coded levels of the control and noise factors. In this problem, 

control factors are the three parameters defining the element configuration with three levels: lozenge 

angle ( 1x ), bore diameter ( 2x ), and half-length of the vertical segment ( 3x ). Though we can assign 

more levels for 1x  and 2x  to represent their variability, the corresponding standard deviations of the 

control factors are used as separated noise factors for the robust design. The noise factors in this 

design include two internal noise factors only: the standard deviation of the lozenge angle from its 

nominal value ( 1z ) and the standard deviation of the bore diameter from its nominal value ( 2z ). 

These internal noise factors are determined by the corresponding machining processes and so 

independent. They are assumed to be normally distributed random variables with zero mean and 

variance 2
1σ  and 2

2σ .  

Table 5-5 Levels of Control and Noise Factors 

Levels 
Factors 

-1 0 1 

)(1 ox  15 30 45 

)(2 mmx  8 11 14 

)(3 mmx  7 9 11 

)(1 oz  -1.5 0 1.5 

)(2 mmz  -0.25 0 0.25 
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Table 5-6 shows the data from this experiment. (The last two columns present the estimated 

responses 1ŷ  and 2ŷ  obtained from the regression model). The experiment is a modified face-

centered cube (FCC) design, which is a combined array design for a cuboidal region of interest. The 

FCC design includes three parts:  

Table 5-6 Multiple-response Experimental Design for the Force Transducer 

Run x1 x2 x3 z1 
z2 

=x1 x2 x3 z1 
y1 y2 1ŷ  2ŷ  

1 -1 -1 -1 -1 1 1.81 1.1 1.81 1.23 

2 -1 -1 -1 1 -1 1.69 1.11 1.70 1.07 

3 -1 -1 1 -1 -1 1.9 1.07 1.92 1.16 

4 -1 -1 1 1 1 1.78 1.07 1.76 1 

5 -1 1 -1 -1 -1 1.8 1.47 1.79 1.33 

6 -1 1 -1 1 1 1.63 1.18 1.63 1.17 

7 -1 1 1 -1 1 1.92 1.41 1.91 1.6 

8 -1 1 1 1 -1 1.78 1.58 1.79 1.44 

9 1 -1 -1 -1 -1 1.36 1.57 1.34 1.77 

10 1 -1 -1 1 1 1.22 2.03 1.22 1.93 

11 1 -1 1 -1 1 1.48 1.38 1.49 1.46 

12 1 -1 1 1 -1 1.44 1.68 1.42 1.62 

13 1 1 -1 -1 1 0.693 3.37 0.69 3.42 

14 1 1 -1 1 -1 0.616 3.75 0.62 3.57 

15 1 1 1 -1 -1 0.95 2.81 0.94 2.77 

16 1 1 1 1 1 0.817 2.83 0.82 2.93 

17 -1 0 0 0 0 1.79 1.24 1.79 1.25 

18 1 0 0 0 0 1.03 2.46 1.07 2.43 

19 0 -1 0 0 0 1.53 1.23 1.54 1.2 

20 0 1 0 0 0 1.22 1.73 1.23 2.08 

21 0 0 -1 0 0 1.3 1.63 1.3 1.74 

22 0 0 1 0 0 1.44 1.67 1.46 1.55 

23 0 0 0 0 0 1.38 1.73 1.38 1.64 

24 0 0 0 0 0 1.39 1.74 1.38 1.64 

25 0 0 0 0 0 1.4 1.74 1.38 1.64 
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1. A 152 −
V  two-level fractional factorial design with defining relation 21321 zzxxxI =  and setting 

of the fifth factor is 13212 zxxxz = . In the resolution V design there is no main effect or two-

factor interaction is aliased with any other main effect or two-factor interaction. 

2. 6)25(2 =−×  axial points on the face of the cube (cuboidal region). Recall that in the 

modified FCC design the axial points for the noise variables are eliminated, because axial 

points primarily contribute to the estimation of the quadratic terms, and generally in robust 

design problems we do not consider the pure quadratic terms of the noise variables. 

3. Three center points. Since the finite element simulation model considers random noise effects, 

repeated runs for the center points produce different results.  

To compare the results from different methods, first we used the same models as from Romano et 

al. (2004), which include first-order and second-order effects of control factors, two-factor 

interactions and three-factor interactions among the control factors, linear effects of the noise factors, 

and control-by-noise interactions. The RSM prediction models for the two responses are as following: 
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The sum of squares due to residual and the total sum of squares are 
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The coefficients of multiple determination are 
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that show the models explain the variability of the response well. A check of the normality 

assumption is made by constructing normal probability plots of the residuals. Figure 5-2 and Figure 

5-3 reveal no apparent problem with normality. 

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02
0.01 

0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 

0.99 

Residuals for Non-Linearity

P
ro

ba
bi

lit
y

Normal Probability Plot

 

Figure 5-2 Normal probability plot of residuals for non-linearity (y1) 
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Figure 5-3 Normal probability plot of residuals for hysteresis (y2) 
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The estimated mean models are: 
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And the estimated variance models are: 
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== zz σσ , the variance models can be given as 
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In the following subsections, we present six methods to optimize this robust design problem: 

integrated parameter and tolerance design, integrated parameter and tolerance design with GLM 

approach, integrated parameter and tolerance design with Taylor’s series expansion, parameter design 

through desirability function approach, parameter design through dual response method, and 

parameter design through mean square error (MSE) loss function. 

5.2.1 Integrated Robust Design with Cost Consideration 

The loss-of-quality cost is obtained through multivariate quality loss function: 

][],ˆ[],ˆ[ ,ˆ z)(xyCTz)(xyCTz)(xy ∑+−′−= TraceQ  

where targets of the two responses 11 =T  and 12 =T . Romano et al. (2004) give the cost matrix C as  
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⎥
⎦

⎤
⎢
⎣

⎡
=

751500
150030000

C  

They claim the cost coefficients on the diagonal are obtained by assigning a penalty of 200% of the 

unit price ($150) to the quality loss and the off-diagonal elements are selected arbitrarily to quantify 

the compensation or increase of the loss due to deviations from target associate with each pair of the 

estimated responses. The quality loss function includes two parts: the first part is cost due to non-

conformance, and the second part is the penalty imposed by the quality of prediction. 

The variance-covariance matrix for the responses is obtained through maximum likelihood 

estimation based on the experimental data as 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
==∑

0155.0000026678.0
000026678.000018217.0

ˆ 2
ijσ  

In the case of multiple responses, variance-covariance for the predicted responses is  

 ∑′=∑ − )(1)'(
,ˆ ),()(),( mm zxXXzxz)(xy

 
So the estimated expected loss function can be given as 

]),()(),[(],ˆ[],ˆ[)(ˆ )(1)'( KzxXXzxTz)(xyCTz)(xy mmTraceLE −′+−′−=  

where  

⎥
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⎤
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⎡
=∑=

3575.12755.0
9836.230497.5

CK . 

Notice we used the unbiased estimated responses in the loss function, so this cost can be expressed in 

terms of the control factors and internal noise factors (tolerances), which will also be used in the 

equation of production cost. 

The production cost is a function of the two internal noises 1σ  and 2σ  (standard deviations of the 

two control factors: lozenge angle and bore diameter): 

007.0
1.0

003.0
15.0

21 −
+

−
=

σσPC  
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The production cost determines the costs of the two main machining processes (milling and boring). 

From practical considerations for the machining ability, there are two minimum tolerance constraints: 

003.01 >σ  and 007.02 >σ . 

The single objective function used herein is the total cost PT CQC += , the sum of the production 

cost and loss-of-quality cost. The constrained optimization can be performed by minimizing the total 

cost function subject to constraints on the process means and variances, which are obtained 

previously from dual response models, and the specifications of the control and noise variables: 
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We can also formulate the optimization by combining the mean and variance constraints into a single 

constraint: 
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Romano et al. (2004) presented the solution (in coded levels) of the integrated robust design as 

473.01 =x , 801.02 =x , 13 −=x , 0074.01 =σ , 057.02 =σ , 

0034.0
1
=yVar , 0256.0

2
=yVar , 942.0

1
=yMean , 5778.2

1
=yMean , 

0068.0
1
=yMSE , 515.2

2
=yMSE . 

The total cost is $22.40 that includes two portions: the production cost 1.4$=PC , and loss of 

quality cost Q = $18.3, which is made up of the nonconformance cost ($16.6) and the penalty for the 

quality of prediction ($1.7).  
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Cost matrix is very important to the solution of the problem. If we arbitrarily change C to 

⎥
⎦

⎤
⎢
⎣

⎡
851500

150027500
, different solutions can be obtained as following: 

5673.01 =x , 6701.02 =x , 6468.03 −=x , 9276.01 =σ , 4922.02 =σ ,  

0033.0
1
=yVar , 0262.0

2
=yVar , 

9670.0
1
=yMean , 5832.2

2
=yMean . 

The production cost is 3683.0=PC , the nonconformance cost is 8.4144 and the penalty for lack-of-

fit is 2.0426. We find this solution relaxes the tight tolerances as the previous one, and the means and 

variances are improved as while. At the same time, both production cost and loss-of-quality cost are 

reduced.  

As discussed before, the economic information, such as the cost matrix, is very important for the 

tolerance design but difficult to obtain. Practically, we should bear in mind that if we consider both 

diagonals and off-diagonals of the cost matrix in the multiple responses design, the general rules for 

the single response tolerance design may be not applicable. For example, in single response tolerance 

design, tighter tolerances of the design variables result in lower loss-of-quality cost and higher 

production cost. In multiple responses design, however, the conclusion should be drawn carefully. 

When the tolerances change, the parameters and the competing responses will change also. As a 

result, while production cost still follows the same rule, loss-of-quality quality might change 

differently for each individual situation. In this example, we can have another optimal solution if we 

restrict the maximum value of 1σ  and 2σ  as 0.5: 

6033.01 =x , 6992.02 =x , 6811.03 −=x , 5.01 =σ , 4783.02 =σ ,  

0032.0
1
=yVar , 0265.0

2
=yVar , 

9412.0
1
=yMean , 6513.2

2
=yMean . 

The production cost is 514.0=PC , the nonconformance cost is 8.9422 and the penalty for the 

quality of prediction is 1.5633. As the standard deviations (tolerances) are decreased, the production 

cost is increased, but loss-of-quality cost is increased also, though not very much. 
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5.2.2 Integrated Robust Design with GLM Approach 

Figure 5-4 and Figure 5-5 present the plots of residuals versus the predicted response 1ŷ  and 2ŷ . 
Both of them exhibit funnel-shaped patterns that imply possible inequality of variance. So we used 
RSM with generalized linear model (GLM) approach to model the responses. 
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Figure 5-4 Plot of residuals versus predicted response 1ŷ  
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Figure 5-5 Plot of residuals versus predicted response 2ŷ  

The RSM prediction models for the two responses are as following: 
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The models for the two non-constant residual variances are 
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2

1
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2

2
xxxy −+−−=σ  

The estimated mean models are: 
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And the estimated variance models are: 
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We assumed ⎥
⎦

⎤
⎢
⎣

⎡
=

851500
150027500

C and used the same optimization method as before to obtain the 

optimal operating conditions as following: 

3793.01 =x , 12 =x , 4486.03 −=x , 11 =σ , 12 =σ ,  

004.0
1
=yVar , 0314.0

2
=yVar , 

9953.0
1
=yMean , 5064.2

2
=yMean . 
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The production cost is 2512.0=PC , the nonconformance cost is 6.9926 and the penalty for quality 

of prediction is 0.1451. We notice this solution has loosened the tolerances that result in lower 

production cost (easier for the machining operations), and the mean for 1ŷ  is very close to the goal. 

At the same time, because we improve the accuracy of the estimate for the residual variances and 

response surface models through GLM approach, the penalty for quality of prediction is reduced 

vastly.  

5.2.3 Integrated Robust Design with Taylor’s Series Expansion 

Taylor’s series expansion can be used as an alternative for the dual RSM approach by approximating 

the process mean and variance in terms of control variables and their standard deviations (or 

tolerances). The two RSM prediction models that include only the three control variables are 

323121

2
3

2
2

2
13211

013.00217.01484.0
0023.00073.00423.00771.01547.03608.03773.1ˆ

xxxxxx
xxxxxxy

++−
++++−−=

 

323121

2
3

2
2

2
13212

0331.01431.03006.0
0469.01231.02469.0095.04383.05917.06604.1ˆ

xxxxxx
xxxxxxy

−−+
+−+−++=

 

Using Taylor approximation, we can obtain process mean as  
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and process variance as 
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We assume the off-diagonal coefficients of the cost matrix for the two responses are zero, so the 
loss-of-quality cost is  

])[(])[( 22
22

22
11 2211 yyyy TkTkQ σμσμ +−++−=  

and we give a new production cost function that adds the standard deviation of 3x  as 

01.0
1.0

007.0
1.0

003.0
15.0

321 −
+

−
+

−
=

σσσPC
 

If we assume the cost coefficients 300001 =k  and 752 =k , through constrained optimization we 
can find the optimal operating conditions as 

3602.01 =x , 12 =x , 4511.03 −=x , 0238.01 =σ , 0397.02 =σ , 0625.03 =σ  

000233.0
1
=yVar , 0011.0

2
=yVar , 

0083.1ˆ1 =y , 4196.2ˆ2 =y  

The production cost is 1895.12=PC , and the loss-of-cost is 160.3298. Using Taylor’s series 

expansion, even without simulating the internal noises in the experimental designs, we can obtain the 

model of process mean and variance, and then achieve the parameters and tolerances of the control 

variables through the integrated robust design. Therefore, Taylor approximation is an effective 

alternative for the dual RSM approach in robust design.    

5.2.4 Parameter Design through Desirability Function Approach 

Parameter designs do not consider the economic constraints, so they are usually performed separately 

or as a first step for robust design.  Robust parameter design (RPD) is the most important part of 
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robust design. In the following subsections, we present three different parameter design methods to 

solve the same problem of a force transducer. Matlab is used to solve the multiobjective optimization 

problem. Because the multiple responses are competing, these parameter designs may not give a 

global optimal solution and tradeoff is always involved, which means an improvement in one 

response requires a degradation of another. The set of solutions can be called noninferior or Pareto 

optimal solutions. The final decision should be made by the experienced process owner based on 

practical conditions. 

In this subsection, desirability functions are used to optimize the two responses simultaneously. We 
selected the weights 121 === rrr . The desirability function of response 1y  (the target is best) is 
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The desirability function of response 2y  (the smaller the better) is 
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The overall desirability function is  

2/1
21 )( ddD ×=  

Formulated optimization to find the optimal setting of the control variables 1x , 2x , and 3x  
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We used Matlab to solve the optimization problem. Using different starting points we can obtain 

different local optima. It should be noted that the multiple responses optimization cannot guarantee to 
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find the global optimum. In general we simply solve this problem by changing the starting points of 

the search to find the local optima and making decision later through overall consideration. 

Considering the overall requirements for this problem, we selected the optimal setting as: 

4150.01 =x , 664.02 =x , 13 −=x , 

0151.1
1
=yMean , 0034.0

1
=yVar , 0037.0

1
=yMSE , 

4716.2
2
=yMean , 0253.0

2
=yVar , 191.2

2
=yMSE  

8494.01 =d , 2642.02 =d , 4737.0=D  

With this solution, 1y  is very close to target and 2y  has the smallest value, while the overall 

desirability is big among others. One should bear in mind that the trade-offs are always there, thus, 

we can not improve any criterion without deteriorating a value of at least one other. 

5.2.5 Parameter Design through Dual RSM Approach 

With dual response surface approach, the variances of the two responses should be optimized 

simultaneously, so a suitable multiobjective optimization method is very important. The relative 

importance of the multiple objectives is generally not known until the system’s best capabilities are 

determined and tradeoffs between the objectives are fully understood. The design for multiple-

response optimization should express the problem correctly and solve the problem effectively. In 

order to simplify the nonlinear multiobjective problem, we selected the weighted sum method that 

converts multiple objective functions into a single one by summing the weighted objectives.  

As in the first method, the mean and variance models are  
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The MSE loss functions are  
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)( 1yVar
∧

 and )( 2yVar
∧

 are the functions of 1x  only. Figure 5-6 shows the contour plot of the 

variance models )( 1yVar
∧

 and )( 2yVar
∧

, and the combined )()( 2211 yVarwyVarw
∧∧

+  (in this case 

because 1y  has a larger weight than 2y , we assumed 501 =w  and 12 =w ). From the contour plot it 

is clear that 11 =x  is the solution to minimize )()( 2211 yVarwyVarw
∧∧

+ . 
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Figure 5-6 Contour plot of the variance models 

The formal constrained optimization is 
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where w1 and w2 are weights of the two objectives (variances) to measure the tradeoffs between them. 

In our case, non-linearity obviously has larger weight than hysteresis, so we arbitrarily chose 1w  = 50 
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and 2w = 1. As )()( 2211 yVarwyVarw
∧∧

+  is the function of 1x  only, we fix the optimal value of 1x  

as 11 =x  and present the response surface plots in Figure 5-7 for )(ˆ
1yE and )(ˆ

2yE  versus 2x  and 

3x .  
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Figure 5-7 Response surface plot for )(ˆ
1yE  and )(ˆ

2yE  versus 2x and 3x  ( )11 =x  

Matlab was used to solve the optimization problem. The optimal operating conditions are  

11 =x , 2815.02 −=x , 9963.03 −=x , 

0028.0
1
=yVar , 0305.0

2
=yVar , 0575.1

1
=yMean , 4384.2

2
=yMean , 

0061.0
1
=yMSE , 0996.2

2
=yMSE . 

We chose this optimal solution because )( 1yE
∧

 is very close to the target, and )( 2yE
∧

 is small among 

the solutions. The values of variances and MSEs are close to that of the desirability function 

approach. 

5.2.6 Parameter Design through Mean Square Error (MSE) Loss Function  

Recall the nonlinear programming method to minimize the estimated mean squared error (MSE) loss 

function. The individual MSE loss function is  
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 )]([})]([{])([ 22 zx,zx,zx, iziiiizi yVarTyETyEMSE +−=−=  (5-2) 

This method admits a little bias in the response mean, but reduces the response variability and MSE at 

the same time. To simultaneously optimize all m responses, we can combine the responses as a single 

function for optimization 

 ,
1

i

m

i
i MSEwMSE ∑

=

∧

=  (5-3) 

where iw  is weighting coefficient. Since we knew in advance 1y  is associated with a larger weight 

than 2y  in this case study, we assumed the weights as 501 =w  and 12 =w . 

The mean and variance models are  
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Since we have three control factors, one factor should be fixed to draw the response surface plots.  

Figure 5-8 presents the response surface plots for 1MSE , 2MSE , and the combined objective 

function 2150 MSEMSE +  versus 1x  and 2x , while the third factor 3x  is fixed at -1.  
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Figure 5-8 Response surface plots for MSE1 and MSE2 versus 1x and 2x ( 13 −=x ) 

Matlab was used to solve the optimization problem. Same as other methods, there is no unique 

solution to this problem and tradeoff is always involved, which means an improvement in one 

response requires a degradation of another. All the solutions from this method are within a small 

feasible region of the design space. We selected the following solution: 

4317.01 =x , 3408.02 =x , 13 −=x ,  

0034.0)( 1 =
∧

yVar , 0254.0)( 2 =
∧

yVar , 0675.1)( 1 =
∧

yE , 2959.2)( 2 =
∧

yE ,  

0080.0
1
=yMSE , 7045.1

2
=yMSE  

Comparing the three parameter design methods, we notice all of them need to determine the 

weights arbitrarily while it is not easy to justify the weights in the experimental design. However, the 

weights for the desirability functions are much simpler to decide and make less difference for the 

final solutions. Therefore, desirability function approach is recommended for the multiple-response 

parameter design.  
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Chapter 6 
Summary and Future Research 

6.1 Summary 

In this thesis, integrated robust design was studied as a cost-effective method to improve quality in 

product design and manufacturing. Robust parameter design works on the control factors and noise 

factors to optimize the parameters of control factors and minimize the variability transmitted from the 

internal and external noise factors. The goal of parameter design is to fulfill the requirements of the 

quality characteristics or the responses.  Robust tolerance design aims to balance the quality level and 

overall cost to achieve high quality with low cost. Response surface methodology is used in system 

design and manufacturing to construct, model, and analyze the products or processes. The final 

optimum solutions are obtained through nonlinear programming methods.  

It was shown that the RSM is superior to Taguchi approach and is a natural fit for robust design 

problems. Factorial or fractional factorial designs are the basis for the cuboidal designs and spherical 

designs. A variety of RSM designs were introduced and compared. Standard or modified central 

composite design (CCD) and face-centered cube (FCC) are two of the best choices for second-order 

robust design problems.  

Dual RSM, mean square error (MSE) loss criterion, and desirability functions can be selected to 

combine with quality loss function and production cost function to formulate the optimization 

problems. Based on our study, we can conclude that ordinary least squares (OLS) method is suitable 

for  modeling constant residual variation, while generalized linear model (GLM) method can be used 

to fit non-constant residual variation. Dual RSM and ordinary least squares (OLS) or generalized 

linear model (GLM) work together very well in robust design to obtain the regression model and 

formulate the constrained optimization. In addition, desirability function approach is a good choice to 

solve multiple-response parameter design problems. 

Internal noises factors, or the standard deviations of the control factors, were included in the 

experimental design to compare with the design that does not include the internal noises. It was 

confirmed that considering the internal noise will improve the accuracy of the solution. In addition, 

considering the internal noise factors as part of control variables in the combined array design is an 
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attractive alternative to the traditional method that models the internal noise factors as part of the 

noise variables. 

Tolerance design is an important part of robust design and its results will affect the nominal values 

of the parameters. Therefore, the integrated robust design, which carries out parameter design and 

tolerance design simultaneously, is more competitive than the traditional sequential designs. This 

research identified the shortage and existing problem for tolerance design. The univariate and 

multivariate quadratic loss functions are effective to formulate the objective function of cost.    

A framework of integrated robust design was proposed and discussed in detail. Two real world case 

studies were considered. It was demonstrated that the proposed methodology is appropriate for 

solving complex design problems in industry applications. 

6.2 Recommendations for Future Research 

In this research, we assumed the noise variables are independent, so the interactions among the noise 

variables are not included in the response surface model. In real applications, the lack of attention 

adequately dealing with these potential interactions may lead to critical mistakes. Therefore, 

dependence among the noise variables should be investigated further. 

While relatively large amount of work has been done on robust parameter design, not enough has 

been focused on the research of robust tolerance design, even though the tolerance design will affect 

the parameter design and the overall robust design. The loss-of-quality cost formulated through the 

loss function and the production cost, particularly their cost coefficients, are questionable in the 

practice. The loss-of-quality cost is difficult to obtain because the economic information covers the 

areas of design, production, sales, and customer service. Furthermore, since some kinds of cost may 

associate with the whole life cycle of the product or process, it is impossible to have the accurate cost 

data. As a result, more studies should be performed on tolerance design to find a generalized and 

effective methodology.   

Multiple response optimization problems usually result in a set of optimal operating conditions or a 

desirable range. More works can be done to choose the appropriate approach and standardize the 

method to make final selection when detailed process knowledge is or is not available. 

Computer simulation models based on finite element analysis or network simulation have been 

widely used in RSM and robust design as an economic alternative to physical experiments. The RSM 
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optimization can be carried out on the metamodel to determine the optimum conditions for the real 

system. For complex systems, Latin hypercube design and other space-filling designs could be 

researched further to improve the design modeling and analysis. 

This research used response surface methodology to solve robust design problems on the product 

design and manufacturing only. Further research can extend to other areas, such as financial 

applications, environmental studies, supply chain, service industry, and so on. 
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Appendix A 
Contrast Constants and Effect Estimates for the Filtration 

Rate Experiment 

Observation A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD 

(1)=45 - - - - + + + + + + - - - - + 

a=71 + - - - - - - + + + + + + - - 

b=48 - + - - - + + - - + + + - + - 

ab=65 + + - - + - - - - + - - + + + 

c=68 - - + - + - + - + - + - + + - 

ac=60 + - + - - + - - + - - + - + + 

bc=80 - + + - - - + + - - - + + - + 

abc=65 + + + - + + - + - - + - - - - 

d=43 - - - + + + - + - - - + + + - 

ad=100 + - - + - - + + - - + - - + + 

bd=45 - + - + - + - - + - + - + - + 

abd=104 + + - + + - + - + - - + - - - 

cd=75 - - + + + - - - - + + + - - + 

acd=86 + - + + - + + - - + - - + - - 

bcd=70 - + + + - - - + + + - - - + - 

abcd=96 + + + + + + + + + + + + + + + 

Effect 

Estimates 
21.625 3.125 9.875 14.625 0.125 -18.125 16.625 2.375 -0.375 -1.125 1.875 4.125 -1.625 -2.625 1.375 
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Appendix B 
Experimental Design Data of the Injected Fuel 

Run 

number 
1x  2x  1z  2z  3z  4z  y 

1 -1 -1 -1 -1 -1 -1 91.27 

2 1 1 -1 -1 -1 -1 93.11 

3 1 -1 1 -1 -1 -1 94.84 

4 -1 1 1 -1 -1 -1 90.65 

5 1 -1 -1 1 -1 -1 93.11 

6 -1 1 -1 1 -1 -1 89.28 

7 -1 -1 1 1 -1 -1 90.47 

8 1 1 1 1 -1 -1 92.51 

9 1 -1 -1 -1 1 -1 94.62 

10 -1 1 -1 -1 1 -1 90.68 

11 -1 -1 1 -1 1 -1 92 

12 1 1 1 -1 1 -1 93.88 

13 -1 -1 -1 1 1 -1 92.32 

14 1 1 -1 1 1 -1 92.34 

15 1 -1 1 1 1 -1 93.88 

16 -1 1 1 1 1 -1 89.99 

17 1 -1 -1 -1 -1 1 94.08 

18 -1 1 -1 -1 -1 1 90.44 

19 -1 -1 1 -1 -1 1 91.6 

20 1 1 1 -1 -1 1 93.45 
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21 -1 -1 -1 1 -1 1 91.46 

22 1 1 -1 1 -1 1 91.91 

23 1 -1 1 1 -1 1 93.45 

24 -1 1 1 1 -1 1 89.58 

25 -1 -1 -1 -1 1 1 91.01 

26 1 1 -1 -1 1 1 93.25 

27 1 -1 1 -1 1 1 94.94 

28 -1 1 1 -1 1 1 91.01 

29 1 -1 -1 1 1 1 93.25 

30 -1 1 -1 1 1 1 89.65 

31 -1 -1 1 1 1 1 90.74 

32 1 1 1 1 1 1 92.66 

33 -1 0 0 0 0 0 90.41 

34 1 0 0 0 0 0 93.54 

35 0 -1 0 0 0 0 92.2 

36 0 1 0 0 0 0 91.42 

37 0 0 -1 0 0 0 92.01 

38 0 0 1 0 0 0 91.79 

39 0 0 0 -1 0 0 92.25 

40 0 0 0 1 0 0 92.2 

41 0 0 0 0 0 0 91.92 
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