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Abstract

To find a mathematical description of a certain class of events is the goal of mathematical
modeling. Traditionally, it is the task of mathematicians and engineer-scientists. The goal
of function form discovery is to develop machine intelligence systems to tackle this problem.
Though the machine intelligence approach is still in its infancy, it has been demonstrated
that systems based on such approach are able to give more compact and meaningful forms

that describe the input data than the traditional numerical methods.

This thesis presents a function form discovery system known as FFD-II which is a signif-
icant extension of the FFD system. The adoption and extension of the data transformation
mechanism of FFD allows FFD-II to discover a significantly wider variety of functional
forms from numerical data than its predecessors. FFD was developed initially for find-
ing real-valued function forms of one independent variable. It could also be used to find
families of functions in an indirect way. FFD-II is able to discover function forms of two
independent variables directly from numeric data for it can make use of three dimensional
information that cannot be used by the indirect methods which, for example, have to rely
on “cross-effects” in the discovery. Hence, FFD-II not only exhibits better performance in
handling the discovery problem, but is also more flexible for future extensions. Another
significant characteristics of FFD-II is its new adaptive error control. It identifies the noise
patterns according to the smoothness of an observed functional image and monitors the
magnitude of propagated errors according to the theoretical error analysis results. In FFD-
I special treatments are also added to reduce the effects of noise. Hence, the new system
has a greater tolerance to both the computational error as well as the noise of the input

than FFD.

Other new contributions of FFD-II include: 1) the construction and analysis of a three
dimensional based function form description language; 2) the design of special purpose nu-
meric methods which can recognize primitive functional patterns, conduct factorization and
handle partial differential transformations of three dimensional data; 3) the quantified mea-
surements of the qualitative characteristics of a functional image and 4) the implementation

of a new heuristic search process.
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Chapter 1

Introduction

Mathematical modeling is one of the most fundamental stages of scientific theory formation.
This task is a very complex intellectual activity and has traditionally been the realm of the
most talented human experts. Machines have been used only as a computing device to
aid human experts to process large amount of data. With the development of cognitive
science and artificial intelligence, the efforts on machine synthesis of this human intelligent
activity has been receiving more attention in the last decades. Various methodologies has
been proposed and a number of carefully specified machine discovery systems have been
created. It has been demonstrated that, to certain extent, a machine can take over not only

the tedious data analysis work from human scientists but also the modeling task itself.

However, the research in this field is only a start and there is still a long way to go.
Addressing the problem of function form discovery, this research is a step forward to the

goal of computer automatic mathematical modeling.

1.1 Machine Learning and Machine Intelligence

Simon defined learning as “Learning denotes the changes in the system that are adaptive
in the sense that they enable the system to do the same task or tasks drawn from the same

population more efficiently and more effectively the nezt time” [55]. As a science of the
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artificial, machine learning is a research area of machine intelligence. It seeks an algorithmic

solution to the problem of modeling human learning activities.

1.1.1 Machine Intelligence

In the early years when Machine Intelligence started as a field whose goal was to mimic
human intelligence in a machine, people were excited about dreaming what machine could
do for them. However, they soon realized that they overlooked the difficulty of the job.

Human intelligence is indeed very complex.

To replicate human intelligence we at least have to know the way to decompose the
intelligent activities into appropriate parts and the interfaces that can bring the parts
together. Unfortunately, we know very little about this so far. However, research of last
few decades has shown the possibility of developing intelligent machines with many working

systems. It has been generally acknowledged that

Firstly, the research in artificial intelligence, cognitive psychology, and scientific phi-
losophy cofertilize each other[36, 54, 62].

Secondly, machine intelligence does not have to mimic human intelligent skills. Hu-
man intelligence represents just one point in an uncharted space of possible means of
acquiring knowledge and skills[7]. It is commonly believed that the human brain can
adopt new knowledge in an “optimal way”, although the process can be very long.
A machine’s superiority, on the other hand, is its power in conducting numerical and
symbolic computations. Moreover, knowledge and skills can be shared between differ-
ent systems by simply “copying”. These properties suggest that machine intelligence
could be different from human intelligence. Theoretical analysis provides a means of
exploring the possible methods, while the task-oriented approach provides a vehicle to
test and improve the performance of functional intelligence systems. In this way, par-
ticular approaches to intelligence issues could be tested in a well understood problem

space.
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Lastly, high level intelligence is an integration of lower level intelligences. This ap-
plies to both the biological intelligence and the machine intelligence. Researchers
in the field of machine intelligence have been successful in implementing intelligence
in many subproblems in a variety of specific domains. Some implemented systems
did even better than a human problem solver. The story of Deep Blue, a powerful
supercomputer and an extraordinary chess player, defeating human world champion
Garry Kasparov in 1997, is just another example. Cumulative successes not only gives
us an insight into the issue of intelligence, but also provides us with a continuously

expanding base for the fulfillment of new success?.

Machine intelligence has been developed along two lines: one attempts to mimic human
thinking and the other takes advantage of the computing and formal inference power of
codifiable machines. However, in the foreseeable future, to replicate the full gamut of
human intelligence is unrealistic. Gaining knowledge through theoretic research, applying
this knowledge in working machine intelligence systems, and further developing systems that
assist people in a variety of well specified tasks will remain the primary goal of machine

intelligence research for the foreseeable future.

1.1.2 Machine Learning and Machine Discovery

The ability to learn is central to human intelligence and implanting learning capabilities in
machines is one of the main goals of Machine Intelligence research. A system is said to learn
from its environment if it improves its performance in interacting with the environment (skill
acquisition) or it abstracts new knowledge from the environment (knowledge acquisition)[44,
41]. Samuel’s checker playing system(50] is an example of skill acquisition learning. The
system included a series of parameters each of which was able to take new numerical values.

To improve the system’s performance, these values were adjusted by training samples.

! Rodney Brooks[4, 5] demonstrated incremental machine intelligence with a mobile system called CREA-
TURE. The system was crcated by decomposing the system into parts according to function and activity.

All the picces were implemented using known Al technologies and then interfaced into a complete system.
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The second type of learning, known as knowledge acquisition learning, relates to the
discovery of new knowledge. In the last few decades, developing machine intelligence sys-
tems with such capability is one of the most vital research area in the machine intelligence
field. Generally speaking, most learning systems are also discovery systems to a certain
degree. More or less, they use inference strategies to a certain level to discover new knowl-
edge. However, in the machine intelligence literature, Machine Discovery is an unsupervised
learning process seeking an accurate, concise and meaningful description of regularities or
general rules to explain all or at least most observations[45, 65]. This form of learning in-
cludes conceptual clustering, constructing classifiers, fitting equations to data, discovering
laws explaining a set of observations and formulating theories accounting for the behavior
of a system. Since the discovery system relies sclely on the observation data, it requires the

greatest amount of inference.

1.1.3 Machine Intelligence in Scientific Discovery

Research in artificial intelligence and cognitive simulaticn has shown that the mechanisms of
scientific discovery can be subsumed as special cases of the general mechanisms of problem
solving [39, 63, 57]. Based on this claim, scientific discovery activities are computationally

cadifiable.

There are two major forms of scientific discovery, the generation of empirical laws and
the formation of theories [62, 63]. The former involves descriptive generalizations that sum-
marize observations and the latter involves postulating unobserved structures or processes.
Concerning the generation of empirical laws, researchers in machine learning and machine

discovery have investigated three main aspects of empirical discovery in recent years:

e Tazonomy Formation [64, 23]. Research on conceptual clustering [12, 42] addresses
this problem by organizing a set of observations into a conceptual hierarchy, which

can then be used to classify new observations.

e Generation of Qualitative Laws [43, 37, 19, 51, 52]. In this case, the goal is to uncover

qualitative form relations that hold for a set of observations.
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o The Production of Quantitative Laws [10, 21, 40, 69, 65, 48]. The task of this aspect

is to find mathematical relations between numeric variables.

Some researchers have tried to integrate these three aspects into single systems [38, 39,

47]. However, this research addressed only the third aspect.

1.2 Function Form Discovery

In science and engineering, extracting mathematical models from numeric data is of fun-
damental importance. Various numerical analysis (e.g., interpolation and polynomial ap-
proximation algorithms, curve and surface fitting, etc.) and statistical methods have been
applied successfully to problems in science and engineering. Traditionally, this task can

only be assigned to human experts, who use machines to perform numerical calculations.

Today, the effort to endow machines with the capability of automatic modeling has
become an important branch of machine learning and machine discovery. As stated in
the previous section, the mechanisms of human experts’ scientific behaviors are indeed the
mechanisms of problem solving. The possibility of shifting the tedious task of mathematical
modeling of numerical data from man to automatic machinery has been demonstrated by
a number of implemented function form discovery systems, e.g., BAcCON by Langley in the

1980’s[30, 31, 29], FFD by Wong in 1991[65], and LiNUs by Phan in 1994(48].

Function form discovery is a form of empirical discovery. In the literature of machine
learning, it is also classified as learning by induction, learning from examples, learning from
observation and discovery, quantitative learning, or unsupervised empirical learning. The
theoretical basis of this paradigm is empirical inductive generalization in which the system
creates an inductive hypothesis on the basis of the given examples from the external source
of information utilizing primarily domain~independent background knowledge. When the
given examples are numerical data, namely a set of observed data, and the goal is to con-
struct function form descriptions (continuous numerical functions, either explicit or implicit)

that summarizes the relations of the variables involved in the given data, the paradigm is re-
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The second formulation system may find, from the same data a trigonometric formula:

Representation II:

;= sin(@)

e¥
According to the “Parsituony” and “Transparency” criteria, “Representation II” is a better
formulation. It contains only two functional terms, sin(z) and e¥. Thus it is more compact
than “Representation I”, which contains thirty terms. In the meantime, “Representation
IT” is easier to interpret. Each term in the formula matches a geometric property, e.g., the
oscillatory characteristic regards to z and the deamplification is governed by y. “Represen-

tation I” reveals very little about these underlying functional relationships. It is hard to

translate the fitting parameters into meaningful related properties.

Today, the research field of function form discovery is still in its infancy. Up to the
late eighties, function form discovery systems had been created in two categories. Formula
construction® based approaches, such as BACON [26, 27, 28, 32, 34, 35] FAHRENHEIT [69, 72,
20] and ABAcus [10, 11], can only discover polynomial and rational function forms. Data
analysis based approaches, such as E* [52, 53], can only discover function forms defined
in the system’s protocols. The new data transformation based method launched in the
early nineties, such as FFD [65] and LiNus [48], is still incomplete with many open issues.
Nevertheless, it has been demonstrated that automatic function form discovery system can
be used to assist in automatic knowledge acquisition, extraction of relevant knowledge from

large knowledge bases, and abstraction of higher-level concepts out of data sets.

? We classifies the existing methodologies into three categories, namely formula construction, data analysis

and data transformation. Details will be given in Section 2.1.
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1.3 Motivations of This Research

Up to the present, most research on inductive leaning has been concerned with qualitative

learning that creates conceptual, logic-style descriptions from the given facts. In contrast,

this research, following the work of FFD and LiNus, attempts to address the quantitative

learning that deals with numerical laws (more specifically, function forms) characterizing

empirical data. Moreover, this research focuses on the three-variable function form discovery

problems. It is motivated by the following theoretical and practical concerns.

1.

[V

From the point of view of mathematical modeling in science and engineering, this
research provides an alternative to numerical analysis and the simulation of complex
models. As a tool that combines traditional numerical analysis techniques with the
artificial intelligence, it may serve as an intelligent assistant for human researchers in
scientific studies and engineering developments to find functional regularities hidden
in raw data. Research in traditional numerical analysis methods focuses only on the
mathematical issues of accuracy and convergenc. They cannot be used to find a
meaningful and compact numerical relationship from empirical data without the aid
of human expertise. This research seeks an automation of mathematic modeling that

emphasizes not only the “justification” but also the “transparency” and “parsimony”.

From the machine discovery point of view, this research is needed to meet the growing
requirements for high quality of quantitative discovery. In many fields of science,
data-driven discovery is an important and powerful general theory formation method.
Researchers gather empirical data as a prerequisite for building models and then search
for a set of generalizations or theories to interpret physical world. For the automation
of this process, function form discovery is usually the fundamental starting point for

deep modeling of knowledge in machine.

Current research in automatic empirical discovery focus mainly on qualitative rule or
law discovery. Only very little effort has been put into quantitative discovery. The
shortage of high quality function form discovery system is becoming an obstacle to the

application of machine discovery in solving scientific and engineering problems. This
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research is aimed at developing an intelligence system which could engage as an inter-
mediate processor in a scientific theory formation automation. The system processes
the given empirical numeric data and provides succeeding discovery processes with
high level knowledge, or more specifically mathematical formulas with high quality in

terms of justificaticn, parsimony and transparency.

3. This research demonstrates the flexibility of the data transfcrmation approach. Prior
to the introduction of the data transformation method, all function form discovery
systems suffered a common limitation of being able to discover only function forms
within a very limited number of function form classes. FFD introduced the data
transformation technique which can discover function forms in a significantly wider
range than previous approaches. However, there are considerable open theoretical and
practical issues needed to be addressed with new implementations. A demonstration
of how this methodology works in multi-variable function form discovery problems is

surely worthwhile.

4. This research specially addresses the three-variable function form discovery problems
for the following reasons. Firstly, multi-variable problems are commonly confronted
in scientific research and engineering development. Secondly, solving three-variable
problems is usually a starting point for addressing higher dimension problems. Lastly,
the indirect approach to the multi-variable function form discovery problem taken by
FFD does not allow the system to fully take advantage of data transformation tech-

nique as it is subjected to some constraints when dealing with real world problems®.

5. As a research in the field of machine intelligence, this research also shares the gen-
eral motivations with other research in the field, such as providing new philosophical
perspective for investigations in cognitive science, and enriching the Al technology by

making a worthwhile progress in such an important task.

3*More details will be given in Section 4.2.2.
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1.4 Organization of the Thesis

The remainder of this dissertation is organized into five chapters. Chapter 2 is a review
of related work. The review is organized into three categories according to the core of the

discovery systems. The current states of this research area is presented.

Chapter 3 establishes the theoretical foundations for the proposed methodology by first
drawing conclusions from the review with the mechanism to be selected to build the new
discovery system. A formal statement of the research problem is then given. The dis-
cussions that follow the problem statement will focus on introducing the function form
description language used by the FFD-II system and the theoretical issues concerning the

expressiveness and redundancy of the language.

Chapter 4 presents detailed design issues and the system implementations. Three im-
portant issues will be investigated. They are: first, why indirect methods cannot provide
the advantages that the central mechanism provides; second, why error control is important
in multi-variable problems and how to adaptively control the errors; and lastly, what nu-
meric tools should be used to conduct the numeric computations involved in the discovery
process. To introduce the adaptive error control method, both theoretical analyses and

choices of numeric tools are presented.

Chapter 5 reports the experiments run with FFD-II. Experiments are organized into
four groups. Each group emplasizes only one key issue. The first group is “Randomly Se-
lected Functions” that verifies the fundamental discovery ability of the system. The second
group is a comparison between an indirect data transformation based system and FFD-II.
The third group is an extensive verification on the system’s ability to model complex func-
vion forms represented by random surfaces. The last group is a test of the system’s ability

to handle input data with added noises.

The final chapter, Chapter 6, will conclude this thesis by highlighting the contributions

and outlining the directions for future investigations.



Chapter 2

Computational Function Form

Discovery

This chapter reviews previous research in the area of computational numerical law discovery,
or more specifically, real value function form discovery systems. As the focus of this research
is autonomous function form discovery systems, this review will concentrate on artificial
intelligence systems that discover real-valued numeric relations. Although various numerical
analysis methods solve the same problem of finding analytic descriptions from numeric data,
we view them as mathematical tools that can be used by machine intelligence function form
discovery systems. I will first classify the existing methodologies, and then review the

related work accordingly.

2.1 Methodology Classification

According to the amount of inference and the techniques employed, function form synthesis
methodologies can be classified into three main categories: Numerical Analysis, Formula
Construction and Data Transformation. Some systems employ combined methodologies,
but we characterize them into one of these categories according to their central approach.

The two most basic techniques used in function form discovery systems are data transfor-

11
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2.1 Methodology Classification 13

performing different data transformations.

Since a numeric analysis system makes its discovery based solely on predefined proto-
types, and only a limited number of prototypes is defined, this method has limited capability
in discovering the rich variety of function forms in scientific study and engineering practice.
Only when the underlying functional relation is covered by its predefined prototypes, can
this method perform a successful discovery under the criteria of justification, parsimony
and transparency. However, this limitation could largely depend on the domain knowledge

of human experts who create the system to solve problems in a specific application domain.

In contrast, formula construction methods do not make discoveries directly from the
functional pattern matching. The discovered function is constructed under the guide heuris-
tics for of identifying some features. As the features usually include only the simplest ones,
such as monotonicity, oscillation and constancy, formula construction methods are located
at the other extreme of the technique spectrum opposite to the numeric analysis methods.
Minimum effort is applied in analyzing the data. The system’s capability to discover re-
lies largely on how new theoretical terms are constructed. The degree of inference used in

formula construction is higher than that used in the numeric analysis method.

Traditionally, data transformation is a “pre-processing” step which serves to simplify the
data before other numerical tools can be used. Application of a particular transformation
may be motivated by the need to remove non-linearity, to decompose complex features into
fundamental ones, to filter out noise or to capture certain global properties. It can be
used in both computational mathematics and pure mathematics research. The choice of
transformation is not only highly domain dependent but also guided by human cognition. In
the function form discovery system that uses data transformation technique, the capability
of the system largely depends on the transformation set constructed by human experts who

create the system.

Let

{u1|u21"'1un}
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be the set of variables related to a problem under study. A transformation is a one~to—one

mapping M from R" to R™:
M
{u1:u21 Tty un}"_){vh Uz, -, vm}-

The type of the mapping M determines the type of the data transformation. There are

three major types of data transformations related to continuous real-valued variables.

o Algebraic Transformation. Mapping M is expressed by analytic functions, usually
explicitly. Most important geometrical transformations, such as rotation and scaling,

are algebraic transformations.

o Integral Transformation. Mapping M contains integral operations. In general the

integral transformation takes the form of

F(zlazZv'“szn):‘/Df(zl) Z2, "'vzn)'

K( T1, T2y, "y Tn V1, U2, **°, Uy ) dzldzZ”‘dzn,

where D C R™ is the integration domain, z's are the original independent variables
and v’s are the new independent variables. K is known as the kernel function of the
transformation. Apparently, the transformed image is affected by all the points in do-
main D. Thus integral transformations are able to highlight certain global properties

of the data.

o Differential Transformation. As its name indicates, differential transformations in-
volve the description of the data in terms of their derivatives, or differences in the dis-
cretized situations. Differential transformations can reveal important analytic prop-
erties, such as slope and convexity etc., and provide elegant graphical descriptions
of highly complex behaviors of nonlinear dynamic systems[14]. Many scientific terms

and laws are represented in the form involving derivatives.

Some examples of transformations are listed below, where {z;, z2, - - -, Z,,, w} are the relevant

variables, z’s are independent variables and w is dependent variable,
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e A simple algebraic transformation which reducing powers into products and products

into sums is the ‘logarithm transformation’:
{zll 2, ", Tn, w} — {zll Z2,°° "y Zn, log(w)} .

For example, by the transformation w = log(z) the functional relation z = z¥ becomes

w = z log(y), and the functional relation z = zy becomes w = log(z) + log(y).

e ‘Trend removal’ transformation

{:11321 o '1zﬂlw} — {31’32! Ty W — f(zlsz)' - '1271)} .
is an algebra transformation, where the function f describes the trend of a process.

e Fourier transformation [58] is the most famous integral transformation used in pure
and applied mathematics and it plays an important role in communication theory and
technology.It transforms a physical space to the frequency space. The general form of

the multi-dimension Fourier Transformation is

- o0 . o0 . 0 .
f = F[f]:/ e“'-‘lyl/ enz,y_‘_”/ eiznyn

-f(z1,22,- -+, 2,)dzy dzg - - - dz,, .

where f(z1,2z3,---,2,) is the function to be transformed. Two other well known
integral transformations include Laplace Transformation and Mellin Transformation

(59, 6].
e A simple differential transformation in a three dimension Cartesian coordinate system
(z,y, z) is the mapping:
M 8z 8
(z: y1z) — (zsya i: é

This transformation transforms a two dimensional scalar field z(z, y) into its gradient
vector field, if the last two terms are viewed as the coordinates of two dimensional

vectors.



2.2 Formula Construction Approaches 16

A function form discovery system that uses data transformation technique simplifies a
given observation functional image using the simplification tools of data transformations
embedded in its tool-box. The discovered function form is expressed in terms of a transfor-
mation sequence along with a simplified matching functional pattern. Hence a well organized
transformation set is the key to taking advantage of data transformations and enabling the
system to cover a wide range of complex function form classes. The difficulty of the function
form discovery problem hinges upon the expressiveness of the description language, i.e. the
way of how the system express its finding. In general, the more expressive the language,
the more difficult it is to find a specific formula. A discovery system must strike a balance
between the language’s expressiveness and the cost of identifying one particular member

from the set of all possibilities [48].

2.2 Formula Construction Approaches

2.2.1 BAcoON

Bacon [37, 38, 39] is the most well known machine intelligence system specifically designed
for automated discovery of quantitative laws from numerical data. It discovers numeric laws
by analyzing the relationships between variables from data provided by examples. A num-
ber of discovery systems can be grouped with BACON since they use formula construction
heuristics similar to BACON’s. Table 2.1 lists some of the discovery systems in the BAcoN

family.

According to our methodology classification, the basic discovery strategy of the BAcoN
systems is formula construction. BACON.1 starts the discovery with a table of numerical
values of relevant variables provided. Four simple heuristics (or rules) are employed by the

system for driving the search to the goal.

1. If Y has the value V in a number of cases, then hypothesize that Y always
has the value.
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System Year | Key Features
BaAcon.1 1978 | Trend and constancy detectors
BACON.2 1979 | Specialized method for finding constant differences
BAcon.3 1981 | Trend and constancy detectors
Recursing to higher levels of description
BAconN .4 1980 | BAcoN.3 plus
Intrinsic property method
Common divisor method
BAacon.5 1981 | BacoN.4 plus
General method for finding constant differences
Expectation-based methods
BAcoN.6 1983 | BacoN.5 plus
Hill-climbing method for dealing with noise
ABAcCUS 1986 | BacoN.3 for equation formation
Dimension analysis
Domain splitting
Logical expressions description
FAHRENHEIT | 1987 | BAcoN.4 for equation formation
Scope determination
Ips 1989 | Qualitative process representation
Correlation analysis

2. If X and Y are linearly related with the slope S and the intercept I in a

Table 2.1: BAcoN Like Systems

number of cases, then hypothesize that this relation always holds.

3. If X increases as Y decreases, and X and Y are not linearly related, then

define a new term T as the product of X and Y.

4. If X increases as Y increases, and X and Y are not linearly related, then

define a new term T as the ratioof X and Y.

17

In the discovery process of BACON, the system carries out a beam search, in which only

a certain number of pairs of terms with the highest correlations are used to find fundamental

patterns and construct new terms. Then the regularities of constancy, linearity, increasing
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and decreasing trends are detected for a selected pair of terms. This is accomplished by
simple arithmetic operations. The detection of a regularity triggers the construction of
a new term corresponding to the slope (heuristics 2, for linear relationships), the ratio
(heuristics 4, for increasing trends) or the product (heuristics 3, for decreasing trends). A
law is attained when the data can be related together as one final constant or linear relation
(heuristics 1 and 2). Thus inductive inference is performed by the production rules which

generate the terms.

In its later versions, some new features were added to enhance the system’s capability
(refers to Table 2.1). For example, the difference technique allows the system to discover
polynomial relations and the recursive technique enables the system to deal with multi—

variable tasks.

BacoN is an important system because:

It is the first machine intelligence systems that employs formula construction approach

to the function form discovery problems;

e BAcoON itself has several successive versions concerned with slightly different aspects
and components [Langley, 1978, 1979, 1981, Langley et al. 1981, 1982, 1983b, 1984,
Bradshaw et al. 1980, 1983a];

e Many different quantitative law discovery systems adapt BACON’s discovery strategy.
For example, FABRENHEIT [20, 69], which adapts BACON.4 as its formula discovery
machine, is an extension of BACON that determines the scope of the discovered for-
mulas, and ABAcus (10, 11, 16] and IDs [46, 47] adapts BACON’s strategy as their

equation formation components;

e It can be easily integrated with other qualitative discovery strategies to create a
discovery system that performs both qualitative and quantitative empirical discovery,

e.g. GLAUBER, STAHL, and DALTON [39, 70], ABACUS, and IDs;

e BACON is a very clear and thoroughly tested algorithm and may be used as a standard

by which subsequent systems are evaluated.
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BACON was evaluated by a number of scientific law rediscovery tasks. However, due to
the very small number of production rules used to recognize features for triggering transfor-
mations, it can only find rational functions. Though it could be argued that any continuous
function can be approximated to any order by a polynomial, this restriction to the rational
function class is a great drawback from the point of view of parsimony and transparency.
This limitation is also shared by systems that use BACON’s discovery strategy. Neverthe-
less, considering its small set of production rules and plausible application in the field of
elementary chemistry and physics, BACON is one of the most important systems in the

history of machine intelligence approach to the function form discovery problems.

An example of BACON’s formula construction is the rediscovery of Kepler’s third law.

Table 2.2 illustrates the terms that were constructed for the discovery of Kepler’s third law.

Plant Observation Data Term 1 | Term 2 | Term 3
Distance(D) Period(P) D/P | D*/P | D3/P?
A 1.0 1.0 1.0 1.0 1.0
B 4.0 8.0 0.5 2.0 1.0
C 9.0 27.0 0.333 3.0 1.0

Table 2.2: An Example of BACON’s Formula Construction

The discovery system was first given a set of observation data related to a pair of original
variables Distance(D) and Period(P). The detected trend is a increasing trend, i.e. P
increases as D increases. Thus a new term D/P is constructed according to Heuristic 4
(page 17). Since no linearity and constancy is detected in the new generated term, the
construction process will go on. Based on the observed decreasing trend of term D/P
as D increases, the second new term D?/P is constructed, and then the third, D3/P? is
constructed from D/P and D?/P. The last term is found to be constant, thus it leads to

the discovery of the function form D3/P? = 1.
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2.2.2 ABAcUS, FAHRENHEIT and IDs

BacoN searches for a function form description based on trend analysis. Clearly, if there is
no trend detected, or in other words, the underlying function is non-monotonic, the system
will not find the solution. For example, if the observation range is z € [—1,2] and the
underlying function relation is y = z2, no new term .will be constructed by BACON since
the observation data set is not monotonic, in spite of that the functional relation could be
discovered by a two-step term construction: Terml = y/z and Term2 = Term1/z = y/z% =
1 (Constant). ABAcus addressed this problem by integrating qualitative discovery with

quantitative discovery.

In ABACUS’ equation learning, it searches for the best equations to describe the observed
data with a set of inductive rules similar to those used by BACON.3 (a released and enhanced

version):

1. If X and Y are qualitatively proportional to a user-specifiable degree, gen-

erate new terms z/y and z — y.

o

. If X and Y are inversely qualitatively proportional to a user specifiable

degree, generate new terms zy and z + y.
3. If a term X is found constant for all events, the learning task is completed.

4. If a term X is found constant for a subset of the events, the subset is removed

from the list of events and associated with the equation describing it.

Rule 4 allows the system to find multiple equations to describe piecewise functions. To
speed up the searching, ABACUS also employs rules based on three domain-independent
constraints. They are unit compatibility rule (prohibiting the generation of the terms with
incompatible unit), redundancy detection (prohibiting the generation of the terms which are
mathematically equivalent yet syntactically different) and tautology detection (prohibiting

the generation of the terms which are simplifiable by mathematical cancelation).
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6. Periodic with increasing (or decreasing) amplitude,
7. Periodic without trend,

8. Periodic with trend.

When the first pattern is observed, the system will halt. If the second pattern is observed,
backtracking will be invoked. When one of the remaining six patterns is observed, the
system constructs new hypotheses according to the rules in its knowledge base, utilizing
the given protocols and arithmetic operators. For example, if the pattern “periodic with
increasing amplitude” is observed, the new hypothesis will be comprised of “the current
hypothesis” +“periodic” x “monotonic”, and if a non-monotonic and non-periodic pattern
is observed, it may infer that the residual contains a term of “monotonic” ~“monotonic”
or “monotonic” /“monotonic”. Each new hypothesis is examined one by one. If the new
hypothesis has a lower error than the current one, new residual image is calculated and the
process is repeated. Otherwise, it discards the new hypothesis and checks the remaining

hypotheses.

Gerwin reported fifteen tests. Twelve tests had three component functions, one had two
components, one had a single component and one consisted of randomly generated data.

The test came out with 40% accuracy, comparing with 41% accuracy rate of doing by hand.

Gerwin’s algorithm is an artificial intelligence approach. The significance of this algo-
rithm is that it has error tolerance ability and it can carry out function form discovery
based upon only a very small observation data set (in Gerwin'’s test, only ten observation
data points were used for a single discovery task). Thus, the algorithm is quite efficient.
However, the drawback of this approach is obvious. The function forms that could be han-
dled are very limited. Since the system constructs hypothesis solely based upon analytic
pattern analysis and more than one protocols may have the same analytic property, it is
not guaranteed that the best expression is obtained. In Gerwin’s test, the system modeled
z3/2log(z) as z2 —=z and sin(z) + z}/2/z as sin(z) + €*/2/z%/2 . Moreover, since
the protocols must have good significant analytic properties for the analysis step in this

approach, it is hard to extend the function form coverage.
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2.3 Numerical Analysis Approaches

2.3.1 E~- Algorithm

Unlike previous function form discovery systems designed to find functional relationships in
numerical data independent of deep domain knowledge, Schaffer [52, 53] attacked function-
finding problems by treating function form discovery as a classification task. His E* algo-
rithm decides, among a fixed finite set of parameterized formulas, which formula is most
applicable to a given numeric observation data set. This differs from its previous work in
two aspects. First, it concentrates on reliable identification of a few function forms rather
than on heuristic search of an infinite space of potential relations. Second, it introduces the
use of different concepts, such as “distinction”, “significance” and “lack cf fit”, for evalu-
ating apparent functional relationships. The algorithm can be considered as a numerical

analysis function form discovery approach.

Observing that a large portion of bivariate functions that were published in the journal
Physical Review in the early 1900’s fall only within a small range of function forms, Schaffer
proposed his E* algorithm that emphasizes reliability rather than flexibility. Only eight
possible choices are included in E* algorithm. They are listed in Table 2.3. To decide among
these choices, regression analysis of data is conducted, and three notions: significance,

distinction and systematic lack of fit are used to measure the goodness of the fitting results.

Significance, a statistical measure, is used to measure the strength of a functional pattern
in terms of how unlikely it is to have arisen by chance from purely random data. Distinction
indicates how well a functional relationship approximates the observation data. In other
words, it measures how different a candidate function is from other function forms with
which it might be easily confused. The last notion “Systematic Lack of Fit” measures the
possibility of describing the fitting residuals by another formula. If this is the case, then we
could say that there is strong evidence that the relationship between given variables is not

what the system has discovered.

Schaffer tested his algorithm with 352 sets of data of bivariate functions that were
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No. Expression

1 y = ky-z4+ks
2 y = k.22

3 y=k-271

4 y = k-z271/2
5 y = k-21/2

6 y=k-2z!

7 y = k-z2

8 NULL

where k;, k2 and k are parameters

and NULL means “No Relationship Identified”.

"Table 2.3: Prototypes of E* Algorithm

published in the journal Physical Reviews in the early 1900’s. The results were interesting.
Compared with BACON, it performs equally well in identifying the correct formula in 30%
of testing cases. However, E* was much less likely to select an incorrect formula as the

solution. BAcoN gave 30% incorrect answers while E* only gave 10%.

1 N

Relying only on statistical analysis, E* has a relatively large tolerance to noise. From
the philosophy of scientific discovery point of view, E* brought some new terms into its
discovery process that were not considered by its previous systems. First, deep domain
knowledge is normally brought to bear in scientific analytic work and can usually reduce
efforts. E* only selects 7 possible fitting function patterns but performs quite well in its
special problem domain. Second, to evaluate the findings, we need combined criteria for
identifying a potential solution during the discovery process {such as the “significant” and
“distinction” notions in E*). Lastly, to reduce the chance of incorrect result, we need to
give a discovery result along with a confidence measure (e.g. the notion of “systematic lack

of fit” used by E™).
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The drawback of this approach is that, because the set of possible solutions is limited, it
is effective only in those cases where the predefined formulas include the unknown function.
For applications in a wide range of discovery tasks, the set must be expanded significantly
and the three criteria must be modified accordingly to take into account the new formulas.
Nevertheless, this kind of ac hoc modifications cannot improve the potential of this approach
too much. Thus the major limitation of the E* algorithm and is its inflexibility in dealing

with a wide range of function forms.

2.3.2 KEDs

KEDs [49] is a function form discovery system which deals with piecewise functions. After
failing to integrate CLUSTER2 [61], a cluster algorithm, and ABACUS into a piecewise func-
tion form discovery system of useful for engineering, Rao and Lu observed that “in order to
discover models for engineering domains, the task of partitioning the domain space should
be closely linked to the relationships that are to be discovered”. This observation led to
the development of KEDS, a two—phase discovery system. The partitioning is model driven
and is based upon the relationships that are discovered from the data, while the discovery

process is restricted within the boundaries of the regions created by the partitioning.

KEDS requires generalized knowledge about the kinds of relationships that are expected
to be obtainable. This knowledge is expressed in the form of parameterized equation tem-
plates. KEDs first tries to fit the observation to one of the template functions. If it fails
to obtain an acceptable fitting, it tries to partition the domain by sample clustering. Af-
ter partitioning, equation fitting is carried out within each region again. This process is

repeated until an acceptable piecewise function form is obtained.

Since KEDs is destined to solve real-world engineering problems, it employs only poly-
nomials as its template functions. In terms of accuracy and efficient and meaningful parti-
tioning, it achieves its goal within a limited set of function forms. However, its drawback
is obvious. Since the solutions can only be piecewise polynomial functions, in terms of

parsimony and transparency, the system cannot generate quality solutions.
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2.4 Data Transformation Approaches

2.4.1 FFD

FFD uses the data transformation approach, introduced by Wong[65] in 1991. Since this
research uses the same method and falls in the same category, the next chapter will be
devoted to the fundamental issues of this approach while only a brief review will be given

in this part.

FFD approaches function form discovery problems with a two-phase model, feature
stmplification and function form abstraction. The former is implemented by successively
applying data transformations selected from a set of transformation classes which are pre-
defined in the system’s applicable transformation set, and the latter is done by numeric

fitting to one of the function prototypes predefined in the system’s primitive function set.

During its discovery process, the system searches for the transformation sequence that
transforms the initial given functional image into a recognizable simple image. Heuristics,
based on the measurement of the simplicities of the transformed functional images and the
complexities of the total transformation sequences that. have been applied, are employed in
a best-first search. Once the system identifies a transformed image as a primitive image, a
function form is declared to be discovered. The system reports the transformation sequence,
possibly along with a set of descriptive parameters, and the final matching primitive function

as the discovered solution.

Five general purpose data transformations were included in the FFD implementation.
They are logarithm, furction inverse, reciprocal, factorization and Aifferential. The primitive

function set is composed of three classes of polynomial functions.

iyl +cot’+eat+eqg = 0, forey #0
city + cot’ +cst+cqg = 0, fore; #0
it +cy+cat+cg = 0, foreg #0

FFD was tested with twenty randomly generated binary combination functions, such
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as y=t+arctan(t) +1, y = e~t+1/(2¢), 1/(1 — 2log(t)), and so on. Among them, fifteen
matching solutions and two approximations were found. Besides the randomly generated
binary combination functions, FFD was also tested with five nonlinear ordinary differential
equations with closed form solutions. It found three accurate functional forms and one

approximation.

Two extensions also enable FFD to deal with oscillatory functions of the form y =
A(z) - s(cos(w(z))), where A and s are two functions, and families of functions with one
extra variable control parameter. The latter function form is a special form of three-variable
function form. This research focuses on the discovery of three-variable function forms. Thus

the details of the extension will be discussed later.

Considering that previous discovery systems can only discover function forms in a very
limited number of functional classes, FFD did open a new era in its area. As a novel
system that uses the data transformation approach, FFD introduced quite a number of
new ideas. Some of them have not been incorporated, while others were implemented with
the simplest method possible [65]. It is therefore too early to summarize the limitations of
the data transformation approach. However, from the implemented systems in this category,

we can draw the following conclusions from the general point of view:

1. Data transformation approach has a great potential in dealing with complex function

forms.

2. Data transformation approach is a very flexible methodology which could be either
used as a general purpose function form discovery methodology or tailored to meet

the needs of special applications.

3. The flexibility of this approach is also indicated by the capability of adopting other
function form discovery methodologies in a cumulative way. In other words, we can
easily use data transformation technique at the top level of the architecture of an
discovery system which assigns specified subtasks to some other embedded low level

systems.
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4. The complexity of the data transformation approach is usually high in both the nu-
meric computation aspect and the computer memory requirement aspect. The system
must be able to perform data transformation with acceptable accuracy level. That

requires relatively large observation data set.

5. Since some selected data transformations can only be numerically implemented with
certain accuracy, for example the differential transformation, to prevent the compu-
tational error to explode is very important for the successful discovery of a function

form.

Our current understanding on the relationship between the system’s capability and
the choice of transformation set and primitive set is still superficial. Any activities that
help us to gain theoretical knowledge, any experiments that enable us to gain practical
understandings and any new implementations that achieve new capabilities would be proven

beneficial to the progress in the research area of function form discovery.

2.4.2 LiINuUS

LiNus [48] is the second discovery system that takes data transformation approach. Its
transformation set contains the five data transformations defined in FFD and its primitive
function set includes three different classes of polynomials.

y+c=0,

v +cizy+coy+c3z2 4 cqz+c5 =0,

(123 + 2z + caz + )y + s + cez2 +erz + 3 =0

New features introduced by LINUs include:

e Interactive experiment query according to the error level and minimum sample re-

quired to make a discovery.

o Automatic range splitting and subtasks formation based on the applicability of specific
transformations. This allows the system to deal with non-monotonic function forms

and to a certain level to deal with piecewise function forms.



2.4 Data Transformation Approaches 30

e Multi-solution output.
e Solution refinement through parameter calibration.

e Subtask solutions merging by checking obtained solutions with different ranges.

LiNus was reported to have successfully discovered the function forms of four selected
2-variable functions (three of them are not monotonic), and the solutions for twenty linear
and nonlinear ordinary differential equations. In one experiment, LINUS output nineteen
different forms for the same observation data set. Thus the input numeric data can be

interpreted by different ways.

Unlike KEDS' range splitting which is based on cluster analysis, LINUS’ range splitting is
based on the monotonicity of the observation data. The result is that LINUS cannot handle
piecewise function forms whose dividing points is not the local maximum or minimum of

the function. For example, LINUS could not find the following piecewise function forms

2z if 2<0
y= .
z otherwise
and
22 if <0
y =

z° otherwise,
though it can handle the piecewise form
-z if z<0

y =
z otherwise

The other shortcoming of LINUS is the incomplete use of observation data. When range
splitting is needed, the program may drop some observation points around the splitting
points to avoid infinite sample value, and the program does not make any effort later to
get those points back. Furthermore, the program cannot provide us the necessary informa-
tion about the splitting points which is important for piecewise function form description.
LiNuUs’s sub-solution merging strategies need to be improved significantly for handling real

world function form discovery problems.
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2.5 Other Approaches

COPPER

CoPPER combines qualitative reasoning with quantitative reasoning. Its qualitative rea-
soning is based on dimensional analysis and the quantitative reasoning to address possible
missing arguments, verify constructed terms and decide on polynomial formula in describ-
ing input numeric data. II-theorem [2] is the basis of dimensional analysis technique. Its
footprints can be found in many engineering domains. Three key steps of this technique
are: 1) identifying all of the relevant physical terms and their units, 2) selecting base argu-
ments from the identified terms, and 3) constructing dimensionless combinations (different

products of exponents) of the terms.

The first few steps of COPPER system are purely dimensional analysis. All the primitives
of the description space with units and rules for generating derived descriptors must be
provided by the user. When the system finds out that there is no missing argument, it
constructs physically meaningful terms and iterates through each phase to look for a simple

functional formula which is a low-degree polynomial.

Since COPPER’s emphasis is to discover physically meaningful formulas through dimen-
sional analyses, it only works with formulas that are linear combination of products and
ratios of the unknown arguments. Many physical laws are in this function class, especially
in a good number of engineering applications. From this perspective and the Weierstrass
approximation theorem [17], COPPER’s performance surpass the performance of BAcoN
and ABAcus. CoPPER has demonstrated an important way to use deep domain knowledge

in a function form discovery system.

2.6 Summary

All the discovery systems we have reviewed aim to find quantitative relationships between
numerical terms. Though many techniques were used to enhance the ability of the dis-

covery systems, including 1) preprocessing data by data transformations, 2) introducing
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domain knowledge to speed up the search, and 3) utilizing statistic tools to deal with noisy
data, all of the early systems share a common fatal shortcoming — highly limited scope of
discoverable function forms. As indicated in the preceding review, the systems in Bacon
family make their discovery within polynomial and rational functions, and data analysis

approaches make their discovery with a set of arbitrarily selected prototypes.

The data transformation approach synthesizes a wide range of function forms by combin-
ing two fundamental techniques, data transformations and functional pattern recognitions,
into one system. The data transformation apptoaéh method can be viewed as a general
quantitative law discovery model. It can adopt other methodologies in an “cumulative
way” to enhance the performance of a new system. However, the FFL system is only a
first attempt of this approach and leaves still many unsolved problems and opportunities for
improvements. LINUS, as the first successor of FFD, has contributed with two major im-
provements — releasing the monotonicity constraint by range splitting, and formula refining
through parameter calibration. This research aims to make progress in a different direction,

i.e. discovering three-variable function forms using the data transformation approach.



Chapter 3

Function Form Discovery by Data

Transformation

Generally speaking, the function form discovery problem is the following: design a procedure
that can select a formula f(y,x) = 0, f € F, F is a set of formulas called ‘available
formula set’, and the selection should optimally match with a set of given observation
instances O = {{y:, x:)}, called ‘observation data set’, in terms of justification, parsimony
and transparency. The available formula set F could be a limited set of function form
protocols (such as the functions listed in Table 2.3 for the E* algorithm), a class of analytic
functions (such as rational functions), or an implicit set defined in a recursive way (like
in FFD). It is also called the function form coverage of a discovery system. Typically,
x € RC R* and y € D C R, where R is the set of real numbers, n is an integer, R
is called the domain of the function form, D the range of the function, and R x D the
observation domain. This problem is also called the real-valued function form discovery

problem, numeric function form discovery probiem or the quantitative reasoning problem.

If F contains only mathematic formulas related to continuous functions, it is then called
continuous function form discovery problem. Throughout this thesis, we are concerned only
the problem of coatinuous function form discovery. Therefore the terin “function” will be

used to denote real-valued continuous function forms, unless explicitly noted otherwise.

33
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Furthermore, we restrict our attention to three-variable problems, i.e. x € R C R2.

In this chapter, I will discuss the foundations of the machine discovery system FFD-IIL.
The discussion is divided into three parts. In the first part, I will describe the basics of
the proposed methodology by showing that data transformation model is a general function
form discovery model. A formal statement of the research problem will then be presented in
the second part. In the last part I will first introduce the function form description language
used by FFD-II, and then focus on theoretical issues concerning the description language,

such as expressiveness, necessity, sufficiency, and redundancy.

3.1 General Model of Function Form Discovery

3.1.1 Central Mechanism of Data Transformation

As stated in the review, function form discovery systems fall in three categories: numeric
analysis, data transformation and formula construction. Numeric analysis methods empha-
size the recognition of functional patterns directly from the observations. Formula con-
struction methods, in contrast, try to simplify the original observations into a very simple
functional form, such as a constant or a linear function. The data transformation method

is a combination of these two methods.

The data transformation model employs both a rich set of tools for data simplification,
known as the data transformation set, and a set of numeric tools that can recognize func-
tional patterns in a set of functions known as the primitive set. Thus, it can be viewed as

a general model of function form discovery methods.

However, the data transformation approach is not simply one that combines the two
different approaches together. For handling the task of simplifying a wide variety of func-
tional patterns, the data transformation set must be carefully composed. The primitive
set must be able to represent, in general, as many as possible of the simplified functional
patterns efficiently. Furthermore, the system must be able to use appropriate functional

pattern simplification tools to simplify a given observation data set efficiently into a rec-
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ognizable primitive. Figure 3.1 depicts the central mechanism of function form discovery
by data transformation. The key idea of this approach is recursively simplifying the func-
tional image through data transformations until a simple recognizablz functional pattern is

reached?!.

3.1.2 Numeric Analysis in General

The data transformation model is a general function form discovery model. The numeric
analysis method could be viewed as one extreme while the formula construction method
is its opposite. For a better understanding of the data transformation method, let us first
examine one extreme, the numeric analysis method, from the general point of view. The

other extreme will be discussed in the next section.

As an extreme, numeric analysis approaches are composed of an empty set of data trans-
formations and a relatively large set of primitive functional patterns, namely the function
prototypes. The system does not search for an operation that can simplify the functional
patiern. Instead, the discovery is solely the identification of one matching prototype func-
tion which best describes the observation data. From this perspective, traditional numeric
methods seem to qualify as functional form discovery methods. To avoid this confusion,
the following may be considered as the criteria which distinguish the machine discovery

methods frcm pure numeric methods.

e Measured by the system’s ability to discover, a discovery system should cover a larger
-ariety of different function forms. A method which can only find function form
representations within a very few possibilities is disqualified as a discovery method.
However, the qualifiers of “many” and “few” are only relative. Nevertheless, any
system that simply performs numeric approximation or interpolation using a few

selected formulas is not a machine discovery system.

! A functional image is a set of observation data that numerically represents a function form. A functional
image is said to be “simple” if through a few application of data transformations it could be transformed
into a functional immage that could be fitted to one of the selected simple functions, primitives, defined in
the system. Formal definitions will be given later on in this thesis.
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Figure 3.1: The Central Mechanism of Data Transformation Approach
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e Measured by the capability of the methodology itself, a discovery system usually
utilizes not only traditional numeric tools but also some other techniques to enhance
its discovery ability. For example, cluster analysis was employed by the KEDs system

and dimensional analysis were used by some other systems.

e Measured by the quality of the solution, a discovery system should give a simpler and
more interpretable solution instead of solely an accurate solution. Traditional numeric
analysis techniques solve function form discovery problems considering only the justi-
fication criteria. The possible parameters of the functional form templates are decided
by minimizing a numerical measurement of error. The simplicity and meaningfulness
of the solution rely on the human expert who tries to solve the problem using certain
numeric tools. In contrast, a discovery system that use numeric analysis approach
should have the ability to take over the task of human experts to a certain level in
choosing the simpler and meaningful expression to describe the given observation data
set. However, due to the limited set of prototype function forms a system can handle,
the ability of any system, that takes the numeric analysis approach to find a simple

and meaningful function form is also limited.

e An intelligent approach should be able to generate a solution along with a set of
meaningful measurements. An example is E™ algorithm, which measures the quality

of its discovery by the measurements of significance, distinction and systematic lack

of fit.

Since the system does not need any inference ability to choose operations from rule space,
numeric analysis approaches require the least amount of inference. This is one of the reasons
why this approach cannot go too far from traditional numeric methods in performing data

modeling.

3.1.3 Formula Construction in General

The formula construction model can also be viewed as a data transformation methodology.

Any formula construction approach must be able to decide when a discovery is accomplished.
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This activity involves the detection of some very simple functional patterns. These patterns
correspond to the primitivesin the data transformation model. The system must also be able
to incrementally construct a formula, (called a theoretical term as in the BACON system),
utilizing inference rules and elementary formulas. These elementary formulas along with the
way through which a formula is constructed are equivalent to the data transformation set
and sequence in a data transformation approach. Function form discovery systems that take
the formula construction approach are composed of two fundamental parts, as with the data
transformation approach. Therefore, the two types of systems have the same fundamental

structure.

Consider the BACON system. It is a formula construction based system which is one
of the most well-known function form discovery systems. Its formula construction rules

(Heuristics 3 and 4 on page 17) can be rewritten as two algebraic transformations:

T1: (X, Y) — (X, X/Y)
T2: (X,Y) — (X, X-Y),

and its termination conditions (Heuristics 1 and 2 on page 16) correspond to the following

two primitives:

Pl: Y = a-X+5b6
P2:Y = C.

We have seen the rediscovery of Kepler’s third law by BACON in Section 2.2.1. To
illustrate the concept of function form discovery by data transformation, let us examine
the same problem from the general point of view. The discovery can be made by first
transforming (D, P) into (D, D/P) by applying T'1; then applying T2 to (D, D/P) to
generate (D, D?/P); and finally applying T2 to (D, D?/P) to generated (D, D*/P). After
this transformation, the data match with the primitive function P2 because D3/P = 1.
The discovered function form can be represented by a transformation sequence along with
the matching primitive P2 as

(T207T20T1,Y =1)
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where Y is a function of the original terms D and P decided by the transformations that

have been applied. In this example, Y = D3/P.

It is easy to distinguish a numeric analysis function form discovery system, which has an

empty transformation set, from a data transformation function form discovery system. The

a little subtle. However, we classify them into different categories because they have different
constructions, emphases and performances. The differences between the constructions of

these two different approaches are:

Operations The construction rule set of a formula construction system is and domain de-
pendent. BACON includes only two rules to deal with rationals and polynomials, and
the Gerwin’s algorithm includes six binary rules for combining six different analytic
functions.In contrast, the transformation set employed by a data transformation sys-
tem is usually more general and may include any one-to-one continuous mapping. In
both cases, the transformations in the set should be well coordinated to enhance the

performance of the system.

Heuristics The heuristics related to each operation in a formula construction system are
usually more “precise”. Each operation can only be applied when a specific pattern is
detected between current related terms. This requires a thorough understanding on
the effects of each operation applied to a certain data instance. Examples are BACON’s
heuristics on page 16 and the elementary patterns that the Gerwin’s algorithm looks
for to trigger a certain ccnstruction step on page 22. In contrast, in a data trans-
formation system, the heuristics are usually more coarse and general since it is not
practical to construct a large, general-purpose and well understood transformation set

at the moment.

Primitives Unlike data transformation systems which in principle can include any func-
tional pattern in its primitive functional pattern set, formula construction systems
limit their primitive functional pattern set only to constant or linear functions for the

reasons of the structure of their heuristics and operation set.
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With different constructions, these two methodologies have different emphases and perfor-

mances.

e Formula construction methods emphasize reliability. The reliability refers to both the

tolerance to error and the consistency of the theoretical and practical coverage. Since

1. the operation set is compact and only those transformations that are less sensitive

to noise are chosen,
2. the fundamental patterns the system choosing to handle are usually the simplest,

3. statistical techniques can be easily included in the system,

the system usually has good tolerance to both the input noise and the computational
errors. Furthermore, considering also the fact that the properties of the employed
transformations and primitives in a formula construction approach are usually simple
and easy to analyze, we know exactly what function form could or could not be
discovered by the system. For example, BACON can and can only find polynomial and

rational function forms.

e Data transformation methods, in contrast, emphasize the coverage of a large variety
of complex function forms. That is achieved by a well organized transformation set
along with a primitive set. However, as a tradeoff of employing some powerful but
noise sensitive transformations, the system is relatively vulnerable to noise. The
employment of some advanced transformations, such as differential transformations,
makes it a difficult task to describe the exact function form coverage of a discovery
system that takes data transformation approach. Moreover, due to the great number-
of selectable function forms and the limited numeric computation accuracy with digital
computing machine using selected numerical methods, systems that perform data
transformation can not guarantee the discovery of all function forms that are claimed

discoverable by theoretical analyses of the system.

Therefore, when we seek an application in simple domain, for example elementary

physics and chemistry, formula construction method is a good choice for its reliability and
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efficiency.

3.1.4 Cumulative Enhancement

Besides the ability to cover a wide variety of function forms, the most important benefit for
taking data transformation approach is the possibility and flexibility of constructing new
high performance function form discovery systems in a cumulative way. The ‘cumulative
methodology’ is the methodology to construct new systems with some other augmented
simpler systems (old systems). The new system should perform better and carries out more
tasks. Meanwhile, the new system not only includes the old ones but also assigns them new

roles.

The data transformation approach is a general and flexible discovery method. All the
existing methodologies can find their new roles in this approach. It has been mentioned
that the discovery algorithms in the other two categories share the same limitation of
small discoverable function form classes. This limitation prevents any previous discovery
algorithm from being a general-purpose function form machine discovery system. However,
due to their robustness and efficiency in dealing with certain simple function form discovery
tasks, they can be used in a data transformation based discovery system to perform some

simple functional pattern recognitions.

There are two major ways in which we can build a data transformation based function
form discovery system using cumulative methodology. First, the primitive functional pat-
tern set could be organized in a better way by employing simpler function form discovery
systems. It means that the recognition of the primitives does not have to rely solely on
traditional numerical tools. The recognition tasks can also be carried out by selected func-
tion form discovery systems. Since a function form discovery system usually provides us
with a more compact and meaningful fit, the performance of the system could be largely
enhanced in the way of organizing the primitive set with some well selected simple function

form discovery systems.

Second, some transformations we may choose may include descriptive expressions. A
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system must be able to find these expressions for carrying out the discovery process or
completing a discovery. For example, if a system includes partial derivatives as one trans-
formation, a lower dimension discovery system is required to find the possible boundary
conditions for inverting those data transformations so that a complete function form de-
scription can be obtained. The other example is dimension reduction transformation. When
solving multi-variable function form discovery problems, reducing the dimension of the prob-
lem is an important way to simplify the problem. However, if we want to use this strategy,
it is necessary to have an associated function form discovery system that can take over the
discovery tasks with fewer dimensions. Such a system is usually simpler than the new built
system of higher dimension. Some transformations may be observation instance related
and must be constructed based on the recognition of some special functional pattern from
the corresponding observation instance. This will require the discovery of function forms
within a specific function form class. A simple function form discovery algorithm should be
available to do this job. Factorization and dimension reduction transformations® are two

examples of this type of transformations.

3.2 A Formal Statement of the Research Problem

We have just discussed the data transformation function form discovery model as a general
function form discovery model. The numeric analysis and formula construction models are
two of its special cases. A system based on the data transformation model must have both
the ability to simplify functional patterns and the ability to recognize functions in certain
primary function classes. When the system is give an observation data set, it recursively
selects simplification tools (defined as the data transformations in the system’s tool-box) to
simplify the observation data set, and tries to match the simplified observation data set with

one of the functions in a selected set of function templates. In the discovery system, the

“The factorization is a transformation employed by FFD-II, while the dimension reduction is carried out
ax a special type of primitive recognition — compositional primitive recognition in the FFD-II system. More

details will be given when they are introduced.
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simplification tools are known as the data transformation set, while the function tempiates

are known as the primitive functional pattern set.

In this section, the research problem will be formally stated in the form of function form
discovery by data transformation. Before the statement, a number of definitions will be
given. I will start with the definitions of function and observation, then carry on with the
two major components, the data transformation set and the primitive set, and finally give
the definition of function form description language. Since the symbols introduced in the
definitions will be used as a convention in the remaining part of this thesis, they will be

summarized at the end of the definition part.

3.2.1 Definitions

Definition 1 Let f : D; C R® — D, C R be an unknown real-value function govern-

ing the system under our study, where Dy is called the function domain, D, is called the

function range and D; x D, is called the observation domain. An observation is a real-

valued three-tuple (a, b, c) such that:

c=f(a, b) and (a, b, ¢} € Dy x D> (3.1)

An observation data set is a set of observations

w; = f(w, v;);
So L (wi, v, wi) | (w, v, w;) € Dy X Do; (3.2)

i=1,---,m

An observation data set is also called a functional image or an image in short.

An observation data set is a numeric representation (instantiation) of a function form.

Definition 2 A transformation is a “one-to-one onto mapping” T defined on any non-

empty subset Dy C R3, where N3 denotes three-dimensional Cartesian Space, such that:
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T: Dg+— Dy, (3.3)

where Dy C R® is the transformation domain and D, C R® is the transformation range.
f g

The inverse transformation of a transformation T is thus the transformation

T-': D,—> Dy (3.4)

such that Y (u, v, w) € Dy, T~ T (u, v, w)) = (u, v, w). A transformation class
T is a set of transformations that includes either a single transformation or a number of
transformations described by a parameterized transformation. A transformation in a trans-
formation class is an instantiation of the class. As such, we can express a transformation

as an instance of the corresponding transformation as:

. . i 3.5
Iparametmc ezpression descriptions (35)

Without ambiguity, an instantiated transformation class can also be written as

(3-6)

| parametric ezpression descriptions’

For example, the parameterized transformation

def ) 1 TF:("vv’w)’_*("'v’a-u—i-'g-v-}-c)

TF —
Va,b,ceR, a-b-c#0
is a transformation class. One of its instantiations
Tl (u,v,w)— [ u,v w)
F utv - » Vs 1 Yy u+v

is a transformation where u + v is the parametric expression description of this particular

instantiation.

Definition 3 Let Ty : Dy + Dy and T» : Dy — Dy be two transformations, and

D; = D.;;N Dy, is not empty. The transformation composition operator o defines a binary
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operation of two transformations, written as T> o Ty, that yields a new transformation T

v z, ¥, ED 1T s ¥ Dv
ThoT, 2 1. p,esp,| " (=¥ =) €D T2 v, 2) €D (3.7)
and T(zl y:z)=T2(T1(2, y,Z))

where Dy =T (D;)C Djsy and Dy =T2(D;) C Dys.

Note that a transformation is a one-to-one onto mapping. As such, the inverse of a composed

transformation T = T» o T} is the transformation
T l=(TooT ) =T oTs! (3.8)
An example of transformation composition is Tf|u+v © TF|u—v:

w
TFI,‘+U o TFIu—u : (u, v, ‘UJ) — (u, v, -uT_——vz-)

Definition 4 A transformation class set is a set of transformation classes

T; is a transformation class
s. = 7 : (3.9)
i=1,---,K
where K is an integer denoting the size of the transformation class set. The transforma-

tion set defined by Equation (3.10) is called the base transformation set corresponding to

transformation class set S :

K
T%Iu(UTf) (3.10)

=1

where I = {1} and I is the identity transformation
1 (v, v, w) — (u,v,w), VY(u,v,w)e R (3.11)
Note that each transformation class T'; is also a set of transformations. The bold calligraphic

letter “S " denotes a transformation class set and a simple bold capital letter “S” denotes

the union of transformation classes in a transformation class set S.
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Symbol Name Expression

Tr : (u,v,w) — (u,v, W
Tr Linear Factorization Tr F ) ( a-u+b-v+c)
Va,b,ceR, a-b-c#0

T, Logarithm {T.|TL : (u, v, w) — (u, v, log(w)) }

Tp Differentiation {Tp|Tp: (u, v, w) — (u, v, dw/3u)}

Table 3.1: An Example Transformation Class Set

As an example, Table 3.1 defines transformation classes for a transformation classes
set. Among the transformation classes, the transformation class T';, contains a single non-
parameterized transformation, and T'r contains many transformations expressed by a pa-
rameterized transformation with parameters a, b and ¢. The transformation class T'p is a
little tricky. It does not include any parameter in its expression. However, it is a parame-
terized transformation class. Recalling the definition of transformation, any transformation
must be a one-to-one mapping. For this reason, any differential transformation has hidden
parameters, or more precisely, parametric expressions that contribute as the deterministic
conditions required for inverting the transformation by an integral. Let (u,v, w = h(u,v))

be the underlying functional relation corresponding to tiie variable triple (u, v, w). If
(u, v, = h(u, v)) =Tp (u, v, w = h(u,v)),

then

h(u,v) = dw/0u = k! (u,v)
and
flu,v) = [ h(u, v)du + C(v)

where C(v) is the integral constant. When we are given a function form corresponding to

the triple (u, v, w) as w = h(u,v), and we know that (u, v, w) = Tp(u, v, w), it is necessary
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to specify the integral constant C'(v) for extracting the functional relationship between u, v
and w, i.e. w = h(u,v). However, the specification of the parametric expression can take
many forms. For example, a simple way to specify the parametric expression is to express

it with a pair of equations that determines the integral of the partial differential:

u = f(v)
w = g(v)

(3.12)

where f and g are functions in class C*. It means, on the smooth curve u = f(v) on a
functional image with associated variables u, v and w, the value of w is related to the value

of v as w = g(v). Thus, the functional relationship between u, v and w will be:

w= /f(v) h(u, v)du + g(v)

An instantiation of a parameterized transformation is a transformation. The specified
parametric values or expressions are associated with the transformation as its subscript.

For example, Tr|,+v stands for the factorization transformation

)

w
(u, v, w) — (u,v,u+v
and Tplju=0.w=v2] Stands for the differential transformation with the indicated parametric

expressions, i.e.
Tp : (u,v,w) — (u,v,0w/0u)

where w = v2, when u = 0.

Definition 5 Let A and B be two transformation sets, the transformation set generated

by A and B with respect to the composition operator o, or the generated transformation set
in brief, is denoted by Ao B:

4 3\
T is transformation, and

VT, if Te A or T € B,

AcBE ! T then T€ Ao B L (3.13)

VT, To € Ao B, if T) oT> exists,
then TYoTo € Ao B




3.2 A Formal Statement of the Research Problem 48

The generated transformation set of a single transformation set A is denoted by A™:

def

A"=— Ao A (3.14)
Stimilarly, the transformation set generated by a transformation class set S+ = {T1,---, Tk}
is defined as®
<=  def -
ST —— ST =IOT10"'OTK (315)
Definition 6 Let St = {T1,---, Tk} be a transformation class set, S+ be the cor-

responding base transformation set, and ‘§; = SI be the corresponding generated trans-
formation set. Any element of §:, which defines a transformation or more precisely a

composed transformation, is called a transformation sequence generated by S r, or in brief,

a transformation sequence.

Definition 7 Let T be a transformation class, the rank of T 1is an arbitrarily selected

non-negtive integer associated with T
Rank (T)=K e N (3.16)

where N is the set of natural numbers (i.e. non-negative integers). The rank of a transfor-

mation in a transformation class T equals to the rank of the transformation class

Rank (T) = Rank (T), VT €T (3.17)
Let S+ ={T,,---, Tk} be a transformation class set, g; be the corresponding gen-
erated transformation set, and I; = Rank (T;), i=1,---, K be the corresponding

? Note that the composition operation “o” is associative but not commutative when it is applied to
transformations (Definition 3). “o” is both associative and commutative when it is applied to transformation
classes (Definition 5). Thus in Equation 3.15 which transformation class appears first does not affect the
result.

A ~Hatted Capital Letter™ “§:" is used to cmphasize that the transformation set is generated by the
transformation class set S+. A generated transformation set g‘: is also denoted by §1 or S; throughout

this thesis.
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transformation classes rank values. Let T € :ST; ,and T=Tyo0Th0---0To, where each
T:;, (i=1,---,0) is a transformation belong to one of the transformation classes in set S 1,
iie. T; € Tk, and K; € {1,.--,K}. The rank of transformation sequence T is defined to

be the sum of rank values of each individual transformation

o
Rank (T)E Y Ik, ’ (3.18)

i=1

The order of transformation sequence T is the number of transformations in the sequence:

Order (T) o (3.19)

Definition 8 A functional primitive class is a set of functions (either a single function or

parameterized functions) {z = f(z,y)} in the class C™ which could be either erplicit or

implicit. A functioneal primitive class tis denoted by F.

Definition 9 A compositional primitive class is a two-dimensional ezpression set {g(z,y)}

(either a single ezpression or a number of parameterized erpressions), and each g(z,y) is

in the class C™. A compositional primitive class is denoted by E.

A functional primitive class is a function template which stands for a set of functions
distinguished by different parameter settings (if any ). As such, we will use the bold capital
letter “F” to denote a functional primitive class and use the italicized capital letter “F "
to denote an instant function in the set “F". Similarly, a compositional primitive class
is an expression template which stands for a set of expressions distinguished by different
parameter settings (if any ). So that “E " represents a compositional primitive class and

“E” represents an instant expression in the set E .

Definition 10 An element F in a functional primitive class F' is called a functional primitive,

written as F € F. An element E in a composition primitive class E is called a compositional

primitive, written as E € E.



3.2 A Formal Statement of the Research Problem 50

Definition 11 A functional primitive class or a compositional primitive class is called a

primitive class, and denoted by P. A primitive class set is composed of primitive classes.

F; is functional primitive class,
def
Sp = F;, E; | E; is compositional primitive class, (3.20)

i=11"'1m; j:’l:"'?n

where the integer ‘m’ is the number of functional primitives and the integer ‘n’ is the
number of compositional primitives. Corresponding to the primitive class set Sp, a primitive

set is defined as
Spi—‘i(UF,‘)U(UE;) (3.21)
i=1 i=1

An element P in the set Sp ts either a functional primitive F or a compositional primitive

E. It is called a primitive.

Table 3.2 lists two examples of primitive classes. The compositional primitive class Er,
contains a parameterized expression with parameter # and the functional primitive class
F; contains a parameterized function with parameters a, b and ¢. An instantiation of E,
such as the expression ‘slu + gv, is a compositional primitive expression. An instantiation

of Fr, such as w = u + v, is a functional primitive expression.

Symbol Name Expression
. . Lo ucos(8) + vsin(4),
E; Linear Compositional Primitive Er
vé e ([0, )
w—(a-u+b-v+c)=0,
Fr Linear Functional Primitive Fry, ( )
Va,b,ce R

Table 3.2: Examples of Primitives
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Definition 12 A function form description language £ has two components — a transfor-

mation class set and a primitive class set, written as

L (8, S,) (3.22)
where
Sr={T1,---, Tk} (3.23)
is the transformation class set, and
Se={Fy,---, Fn} U {Ey, ---, En} (3.24)

is the primitive class set. A function form description language is also called a language in

brief.

Definition 13 Let L be a function form description language described by equations (3.22),
(8.28), and (3.24). Let S, = S* be the transformation set generated* by S, and S,

be the primitive set corresponding to Sps. A function form description in language £ is

defined as

Dc &L (Dr, Dp)

forany Dr € §1, and Dp € S

where, D and Dp are called the description transformation sequence and the description

primitive respectively. DT can also be written as

DT ‘—"—TkoTk-l O-- -OT1 (3.26)

where each T; € ST, (i =1,---,k), is a base transformation. The rank of the description

equals to the rank of the description transformation sequence:

Rank (Dg) = Rank (Dr, Dp) (3.27)
4L Rank (Dr)

' Refer to Definition 5.
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Definition 14 If a three-veriable function form z = f(z,y) (or f(z,y,z) =0 ) can be

erpressed by a function form description in a language L, it is describable in L.

A function form description language £ could also be viewed as a set of functions that are
describable by the language. As such, if a function form f(z,y,z) =0 or z = f(z,y) is
describable in L, it is denoted by

fecL.
Definition 15 Let £1 and L2 be two function form description languages. If

Vfel, = fe€Ll,

it 1s said that L, is a super-language to £, or £, is a sub-language to L£,. It is denoted

by
L1 L2 or (3.28)
£2 1 L1 (3.29)

in

If L1 C L£2 and L£2C L1, it is said that L1 is equivalent to L£2, and denoted by
L1= L£2.

Definition 16 Let f(z,y,z) =0 or z = f(z,y) be a function form describable in a function
form description language £ = (S+,S¢). The rank of function form f in language L 1is

defined as
VDc € L, and

Rank (f, L) =min{ Rank (Dc)| D, is a descrip- (3.30)
tion of f

The Complezity of a function form f in language £ is measured by its rank in the language

and the complexity of the corresponding description primitive®>. When we construct the

* To the need of this research, the complexity of a primitive is the number of non-zero control parameters.
In a more general measurement we should consider how difficult it is to find the expression of the primitive

and hence the function form.
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search heuristics, we take into account both of the rank of the transformation sequence that
has been applied, and how likely the instance functional image can be transformed into a

primitive with the application of a new transformation.

An Example Function Form Description Language:

To understand the definitions, let us examine an example function form description language
and how function forms are expressed in the language. However, the rank values will not
he shown in this example. They will be more meaningful to be presented in the part where

the proposed function form description language is introduced.

The example function form description language is based on the transformation classes
listed in Table 3.1 and the primitive classes listed in Table 3.2. Let us first list the compo-

nents and the relevant sets as the following,
The Transformation Class Set
S:={Tr,TL,Tp} (3.31)
The Base Transformation Set
S.=IJrrJT:YTo (3.32)
The Generated Transformation Set
S$:=8*=IoTroTLoTp (3.33)
The Primitive Class Set
Se={Es, Fr} (3.34)

The Primitive Set

S, = ELUFL (3.35)
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The example function form description language can then be defined as:

The Description Language

L = (S:,Sp) (3.36)

({TvaLvTD}v{ELaFL}) (337)

i

Using this example function form deSCl'iptiOﬂ langua, e, the function
o g g
z =el='-v") (3.38)

has the following two possible descriptions®:

Function Form Description-1

DY = (Tplw=o.w=v) © TFlutv 0 TFlu—v o Tp, w = 2u)

Function Form Description-2
DY = (Tpl=o.w=v?]° TFlutv © Trlucy o TL , u)
Thus, the function of Equation 3.38 is an instance of the language £, written as
z=el@-¥) c £

To transfer a function form description into a simple function, we need to invert the trans-
formation sequence in the inverse order. Let us see the process of inverting “Description-1"

first.
Starting from the primitive function Dp:
w=2u,

where u, v and w are the variables that are generated by applying the transformation se-
quence Dr:

TD![u:O. w=v?] o TFlu+v o TFIu-v o TL

“ Note that the primitives of the two descriptions are different. More detail will be given soon.
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to the original variable set (z,y, z), we invert the last transformation being applied, which

is the differential transformation Tp|[y=g, w=v?], through integration:

(u,v,w) — (u,v,[u2udu+ v?) = (u, v, u® + v?),
(

where the integral function is the primitive function, and the initial condition of w = v>
when u = 0 (specified by the subscript of Tp) determines the integral bounds and constant,

then invert Tr|(,iv):
(u,v,u’ + vz) — (u,v, (u+ v)(u2 + vz)),
invert Tp|(,—u):
(u,v, (u+ v)(u? + v%)) — (u,v, (u+ v)(u — v)( + v?)) = (u,v,u* — v*),

invert T :

4

(u,v,u* —v*)— (u,v,e*'~"").

Having inverted the transformation sequence, the variable triple (u, v, w) corresponding to
the primitive has been turned into (u, v, e"“"‘). Since (u, v, w) is a transformed variable
set that is obtained by applying the transformation sequence Dr to a variable set (z, y, z),
we shcould substituting the variable set (z,y, z) into the final obtained expression. That
vields the function:

z ==~V

This completes the inverting process with a function identical to Equation 3.38

To rewrite function form “Description-2” to a simple function, we must first figure
out a one dimension function f(t) that relates the compositional primitive u to the
independent variable w. In general, a compositional primitive expression C(u,v) implies

that the primitive function form can be expressed by a function f:

w = f(C(u,v)),

which is indeed a parametric expression. Thus, to complete a function form description that

includes a compositional primitive, a one-dimensional function, namely the “descriptive
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b ”
expression ,

w = f(t) (3-39)

is required to couple with the compositional primitive. Otherwise, the function form de-
scription is not an unique description, which means it could stands for many function forms.
In a function form discovery task, f(t) is obtained by carrying out two-variable function
form discovery upon a set of two-dimensional observation data. In this example, since the
function to be expressed by the example language is known, we know the descriptive ex-
pression is f(t) = 2t. Hence we can start from the variable set (u, v, w = 2u) and invert the
transformation sequence, which is exactly the same as it appears in “Description-1”, in the

same way as we did in the transfer of “Description-1” into an explicit function.

Equation set (3.12), which is required to couple a differential transformation, and equa-
tion (3.39) are two types of parametric expressions of the function form description language
presented heré. They are all single-variable functions. Since the major concern of this re-
search is the function form discovery problems in three-dimensional space, we treat them
only as hidden parametric expressions that could be passed to an available two-variable func-

tion form discovery system that handles the tasks of discovering the necessary expressions’.

Definition 17 A descriptive expression of a function form description is a two-variable

continuous function which is required for inverting a certain transformation or complet-
ing a function form description that contains compositional primitive as a component. A

descriptive image is a set of real number pairs which is the numeric representation of a

two-variable function in the class C™.

We have seen how the transformation set and the primitive set in a function form
description language work together to represent a function. A data transformation based
function form discovery system is constructed on the bases of a defined language. If a

system is constructed based on the description language £ (Equation 3.37 and 3.37), it

* In the implementation, the FFD system and least-squares polynomial fitting method are considered as

two choices
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will discover the function form description “Description-1" or “Description-2” from a set

of give observation data, such as

o

z;; =-1+0.1%, yi; = -1+ 0.17, z;; = eTiiTYj
(zij: ¥i5» 2ij)
for i=0,---,20; 7=0,---,20

The example we have examined is an explicit function. Both of the functional descrip-
tions we have given are invertible and the inversion results in an explicit function, which
is a composition of elementary analytic functions. We shall mention here that things may
not turn out to be that nice. To extract the functional expression regarding to the initial
-ariables by inverting the discovered function form description, may result in an implicit
function, an expression with integral operation or a set of equations. In other words, there
are some functional descriptions that can only be inverted numerically. When the transfor-
mation set includes the differential operation or the functional inverse®, this phenomenon

is not avoidable. For example, if we add one more transformation class
Tr: (u,v,w)— (u,v,1/w)

to the transformation class set S +( Equation (3.33) ) and one more functional primitive class
Fs: w?=(1-u?)(1-uv?

to the primitive class set §p(equation (3.35)), a new function form description language

L, is defined:
L, = ({TFvTLrTDsTR}!{EL1FL|F$}) (340)

Using this new description language, we can express the elliptic integral

z 1
z:f(z,y)::/(; (1 —tz)(l—yztz)dt
by
(TR OTDI[u=0, w=0} 1 FS )

* Functional inverse is one of the transformation classes employed by FFD-II.
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Elliptic integrals are special functions that can only be expressed in integral format. This
example shows not only an example of the description of a complex function form but also

the powérfulness of the data transformation method.

Different function form representations have different syntactic simplicities and semantic
meaningfulness. The data transformation based model has the capability to handle complex
function forms in various formats. Moreover, from a given observation data set, such a

system can provide us with multiple solutions.

3.2.2 The Statement

The problem addressed in this thesis can now be stated as the follows.

Three-variable Function Form Discovery Problem:

Given :

1. an Observation Data Set Oy which is governed by an unknown explicit

or implicit three-variable underlying function form z = f(z,y).
2. a Function Form Description Language £ = (ST, Sp), where

® the Primitive Class Set Sp contains :
sp ! Fi, E;

o the Ranked Transformation Class Set St is:
ST={T1a T21 M} Tk}

Rank (T:) =T, i=1,.---, k

3. a Mazimum Renk Ruyax-

4. a Matching Error Tolerance Level Spmax-
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Construct : a Function Form Description De = (Dt, Dp) € £ , such that:

1. Rank (D7) < Rmax-

2. the averaged deviation between the function form z = f(z, y) repre-
sented by D, and the underlying function form z = f(z, y) represented

by the observation data set Oy is less than dpax .

Simplification Assumptions

At this stage, we restrict our scope with the following assumptions. Without explicit men-

tion, these assumptions will exist throughout this thesis.

Continuity The unknown function form and all the underlying function forms

of transformed images belong to the class C° in the observation domain.
Sufficient Observation We can acquire sufficient fine step observation data.

Known Expected Error The process that generates the observation data set

are well determined, i.e. the expected error level is known.

9 required

Acquirable Descriptive Expression Any descriptive expression
for completing a function form description could be obtained from an exist-
ing two-dimensional function form discovery system via passing an descrip-

tive image to that system.

The first assumption implies that we need only to consider continuous transformations
in the construction of ST and Sp, and the applicability of basic differential transforma-
tions. The second assumption is about the availability of the observation data. The third

assumption ensures that the error propagation during the search can be estimated.

The last assumption allows this research to focus on the three-variable function form

discovery problems. The discovery of two-variable function forms relies on an available

“Refer to Definition 17, page 56.
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low dimension discovery system. R=call that wc have been confronted with two types of
descriptive expressions in an example (Refer to Equation 3.12 and 3.39). Since the FFD-
IT system contains the same type of transformations and compositional primitive, these
two types of descriptive expressions are required to represent a complete functional format
relationship!? between variables. It is assumed that there is a supporting system that can

11 However, without the descriptive expressions, the constructed

find those expressions
transformation sequence, if viewed only as a sequence of transformation classes along with
the matching compositional primitive still reveals the underlying regularities of the observed
functional image, and can be interpreted as a numeric law concerning the corresponding

investigated real world problem. That means, the system can serve as a special mathematic

modeling tool.

3.3 FFD-II Function Form Description Language

As has been pointed out, the performance of a data transformation based function form
discovery system highly relies on the description language itself. The ability to simplify
functional patterns is determined by the transformation class set, while the ability to rec-
ognize primitive patterns is determined by the primitive class set. The combination of
these two abilities enables the system to discover function forms from numeric observation
data. Since no specific application domain is specified, the focus is only placed on those

general-purpose language components and related issues.

3.3.1 The Transformation Class

There is no doubt that a well tailored transformation class set ensures a wide function form

coverage and better computational efficiency. When we are confronted with the task of

' A functional format rclationship is represented with an analytic function, either implicit or explicit,
while 2 numeric law can be generally expressed by any mathematic formula, such as an analytic function or
a differential cquation.

"' The FFD system or simply a polynomial interpolation algorithm can be used as the supporting system.
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constructing a transformation class set, we may ask at the very beginning: “What are the
criteria for choosing transformation classes to meet our needs?”. Unfortunately, we know
very little to the answer of this question up to now. This issue is still open and calling for

more attention in this research field.

Generally speaking, it is relatively easy to tell what transformations are necessary for
covering a certain function form class. But it is difficult to tell what is a sufficient trans-
formation class set to solve the function form discovery problems drawn from a specific
population. In other words, it is relatively easy to characterize a single transformation, but
hard to know how the different transformations in a defined transformation class set affect
and enhance the performance of each other. Especially, when differential transformations

are included, the analysis becomes very complicated.

Our purpose is to design a system that can deal with “common” function forms in
scientific fields. These common function forms are generated by the combinations of funda-
mental analytic functions through fundamental function construction operations (listed in
Table 3.3 and Table 3.4). Generally speaking, among these fundamental functions, the con-
stant function class is the simplest (from the perspective of being easy to identify, compute
and manipulate), the power function class is the second simplest, and the rest are about the
same. Among the operators, the linear operations “+"” and “ —" are the simplest, “ x” is
next, and “ <" may be more difficult to handle than “ x ”. Functional composition provides

the most function form variations and is usually the hardest to handle.

Most of the analytic functions we can find in a first year calculus text book fall into the
class we have just described. As a simple example, all polynomials are derived by repeatedly
combining a constant function and a power function with the binary operators addition and
multiplication. The function form f(z)9(*) can be rewritten as eloslf(=))a(z)  As such, it
is a functional composition of the exponential function and the function generated by the
product of two functions: the function g and the functional composition of log function and

the function f.

With this guideline of what function forms we are going to deal with, we will consider

those general transformations that simplify either the fundamental functions or the combi-
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Expressions Function Name
c Constant functions
--)" Peower functions
(--)n Root functions

sin(- - ), cos(---),

Trigonometric functions
tan(---}, cot(--),--- &

exp(---) Exponential functions

log(-- ) Logarithm functions

Table 3.3: Fundamental Analytic Function Forms

Symbol | Meaning

+ Addition operator

- Subtraction operator

X Multiplication operator

= Division operator

® Functional composition operator

Table 3.4: Fundamental Function Construction Operations

nation operators under certain circumstances. In the rest of this chapter, I use the following

symbols to define the transformations. The variable set includes:

e uj, u» and ug denote the variable set of the current state (i.e. before trans-

formation). Among them, u;, u; are independent while u4 is dependent.

® v;, v» and vy are used to denote the variable set of a transformed state.

Among them, v,, v, are independent while v4 is dependent.

Let T be a transformation applicable to the variable set (u;, uz, ug), and (v;, v2, vgq)
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be the variable set that (u;, u;, u4) is transformed into, i.e.
T
(‘U[, Uz, ud) e (v11 va, vd) ]

a transformation will be formulated as:

v = f(uh U2, ud)

T : v2 = g (u;, 4z, uq) (3.41)

Ud = h(ulv us, ud)

where f, g, and k stand for the expressions that specify the relationship between the original
variable set and the new variable set. Before we define the transformations it should be
mentioned that the expressions f, g, and k may contain certain parameters, thus the above

formula will also pertain to a transformation class T = {T}.

Now let us define the basic data transformations for FFD-II. When a transformation
is defined, a brief description of the usefulness of the transformation in dealing with the
ceneral function forms will be given. 1 will also give the applicability conditions and the

inverse transformation of each data transformation.

Logarithm

(
nm=u
Troc : § v2=up (3.42)
vg = log|u4|

The importance of this transformation is that

1. it is a fundamental function we intend to deal with (Table 3.3);

[V

. it transfers power and root functions into linear combinations;

3. it transfers multiplication into addition;
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4. it removes the functional composition ( operation “®” ) from the exponential

expression exp{ f(u, v)).

To preserve the continuity, logarithm can only be applied to a functional image with constant

sign. The inversion of this transformation is

n=u

Uz (3.43)

-1 .
TLoc; - U2

vq = * exp(uq)

where the sign “+"is decided by functional image to which the logarithm transformation

was applied to obtain the image Oy, y,.u,) -

Reciprocal

n=u
TREC : Vg = Uz (3.44)
vg=1/uq4

Reciprocal is an inverse of multiplication. It is a simple and common algebraic operation
that exchanges the the numerator with the denominator of a proportional expression re-
sulted by the “ + ” operator. When combined with differential transformations, it can
sometimes dramatically change the functional pattern. For preserving the continuity, the
reciprocal transformation must not be applied to a functional image with different signs!2.

The inverse transformation of T'rec is equivalent to TRec

v = u;
Tﬁilzc : Uz = Uz (3.45)
vg = 1/uy

'? It has been assumed that the underlying function is continuous function. If different signs are observed
in an image. it implies that there must be some points in the observation domain whose function value are

zera. Ax such, the application of Tgrec will yield infinity.
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Factorization

vy = U
Trac : Uy = Us (3.46)
_ u
vd = f u, u2)

This is an important transformation that can best decompose the functional patterns de-
rived by the operator “ x ”. However, it is important that the factor function f(u;,us)
must be simple and can be easily observed by some other means. The extraction of the
factor function is a task of functional pattern discovery — a function form discovery re-
lated problem. Besides simple numeric tools, function form discovery algorithms can also

be employed to carry out this task. The inversion of this transformation is

Thac ° U2 = U (3.47)

vg = uq - f(u1, us)

The simplest factorization transformation is the one with a linear factor

v =y
Tric - Uy = Us (3.48)
Vg = ugq/(uy -cos@ + uz -sinf + C)

where § and C are control parameters. The corresponding inverse transformation is

v = Uy

T_l . Uy = Uz (3.49)

Fac

vg = (u; -cos@ +uz-sinf + C) - uq
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Functional Inverse

V1 = U4
Ty Uy = Uy (3.50)
Vg =uy

This is the algebraic transformation that changes the pre-assumed dependent variable. Gen-

erally speaking, a function form

f(u,v,w)=0 (3.51)

that relates three variables together is only a functional relationship among the variables.
The only criterion for a variable to be the dependent variable is the “monodrome require-
ment”, which means that the variable w can be viewed as the dependeni variable if and

only if: Yu,v € R, f(u,v,w;) =0 and f(u,v,w;) =0 only when wl =w2.

Functional inverse is a simple and important transformation. Firstly, combined with
differential transformations, it helps to express many fundamental function forms. We will
see this when we introduce the differential transformation later. Secondly, the complexity
of an explicit expression of a functional relationship usually depends largely on the choice of
which variable is viewed as the dependent variable and put on the left side of the equation.
In other words, w = g(u, v), u = k{w, v) and equation (3.51) may be different represen-
tations of the same functional relationship, but the expression g(u, v) could be much more

complicated and harder to handle than expression h(w,v).
This transformation can be applied to a function which is monotonic to the variable v, .

The inverse transformation is equivalent to the transformation itself

U = u4
Tho Vs = Uup (3.52)

v =1u
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Independent Variable Exchange

U = Uz
TVEX . vz = ul. (3-53)
VUd = U4

This transformation allows the system to manipulate the given image equally in both direc-
tions corresponding to the variables u, and u, . Combining independent variable exchange
with functional inverse, we can rotate variables or exchange the position of any two vari-
ables in the triple (=z, y, z), provided the functional inverse transformation is applicable
when necessary. Thus a more compact transformation class set could be constructed with
the employment of T'ygx . There is no constraint on the application of this transformation.

The inverse transformation of Tvgx is equivalent to itself

V] = Uy
Toe t { va=1uy (3.54)
U4 = U4

Differential Transformation

Differentiation is one of the most important methods in conducting mathematic analy-
sis. In addition to the fact that many scientific laws are expressed in terms of differential
equations, many geometric properties, such as slope and curvature, are expressed with dif-
ferential terms. The key idea of the data transformation model is recursively simplifying a
functional image until a simple irnage that the system can recognize is attained. Differential
transformations claim their key roles in simplifying functional patterns with their superior

ability in manipulating functional patterns when coordinated by other transformations.

To see the capability of differential transformations in simplifying functional patterns,
let us give some examples. The fundamental function forms listed in Table 3.3 can be rewrit-
ten as differential equations with corresponding deterministic conditions. Results are listed

in Table 3.5. Clearly, the original functions were all transformed into one of the simplest
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Function Form | Differential Equation | Initial Condition
f(z)=c =0 f(0)=c
f(z) ==z" z-f'—n-f=0 f(0)=20

f(z) =z n-f'—z-f=0 f(0)=0
f(z) = sin(z) (f)2+=1 f(0)=20
f(z) = cos(z) (f)+f=1 f(0)=1
f(z) = tan(z) ff-f£=1 f(0)=0
f(z) = cot(z) f'+f=-1 f(x/2)=0
f(z) = exp(z) ff-f=0 f(0)=0
f(z) = log(z) z-f'=1 f(1)=0

Table 3.5: Differential Representations of Fundamental Function Forms

function classes — second order polynomials Py(z, f, f'). Thus the differential transfor-
mation is the most important transformation that should be included in the transformation

classes set.

The simplest format of three-variable differential transformation is the following trans-

formation with a single partial differential.

Towr : U3 = us (3.55)

Instead of summarizing a number of fundamental function combinations that can be simpli-
fied by Tpir (as what have been done in Table 3.5) let me present an example of how Tpe
decomposes a function form into simple components. Differential transformation Tph is a

linear operation. It means that when it is applied to a linear combination of two functions,

h(z,y) = f(z,y) £ 9(z,v),
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the result is the linear combination of the differentials of the two component functions. As
such, if the function g(z,y) is irrelevant to z, that means g could be treated as a constant

when taking differential respected to z, we obtain from applying Tp, the result:

TD(F(zl Y, f(zr y) ig(zv y) ) = (zﬁ Y, f:,:(zl y) )’

In a function form discovery problem to find the underlying function of the form z =
f(z,y) = g(y), the application of Tp;s provides a possible way to reduces the complexity
of the problem by decomposing the initial task into two tasks: to discover f.(z,y) and to
discover a single variable function g(y). The latter could be handled by a discovery system

of lower dimension.

Since it is assumed that all underlying functions are in the class C>°, the differential

transformation is always applicable. The inverse transformation of T'p;s is an integral.

v =w
-1 . Va2 = Uy
Toe - (3.56)
uy
vg = / ugdu; + C(ug)
co(u2)

where ¢, and ¢ are two single-variable continuous functions, known as descriptive expressions!3.

In FFD-II, the inverse is computed by numeric integration.

3.3.2 The Primitive Classes

The choice of primitives must strike a balance among four criteria, namely generality, non-

redundancy, effectiveness and simplicity.

e Generality means that the primitive set must be able to represent most of

the final simplified features in a particular problem domain. In other words,

'* Finding these expressions are just a task of discovering two-variable function forms from numeric data.
Thiey can be done by pascing the corresponding two-dimensional sample data to FFD or a polynomial fitting

algorithm.
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when combined with the transformation class set, it must allow a system to
discover a wide range of function forms of our interest. It emphasizes the

overall discovery capability of a system using a certain description language.

e Non-redundency means that the primitive set must not include those func-
tional forms that are simplifiable by the defined transformations. This cri-

terion emphasizes the reduction of redundancy.

o Effectiveness means that the primitive set must be able to represent as
many functional features as possible. This criterion emphasizes the variety
of primitives that a system can recognize and the “speeding up” of finding

a solution.

e Simplicity means that the primitive must be simple to be expressed and easy
to be recognized. Measured by the number of the total control parameters, a
well tailored primitive should use less parameters. Furthermore, matching a
functional image with the primitive should not be too costly. This criterion

concerns the computational complexity of the system.

Functional Primitives

There are two elementary types of functional primitives, normal primitive function and
ertended primitive function. A transformation sequence transforms the original functional
image related to the initial variable triple into a new functional image related to a new
-ariable triple. If we can find a formula that describes the transformed function image, the
original underlying function form can be expressed by that formula and the corresponding
transformation sequence. Any single formula in the system’s tool-box that can be used to
describe a functional image is a normal primitive function. Expressed by an equation, a

normal primitive function has the form

Fp(vi, v2,v4) =0 (3.57)
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where Fp( vy, vs, vg) is an analytic function and (v, v, vg) is the variable triple to which
a transformed functional image is related. This primitive function type is easier to handle
than extended primitive function type. FFD and LiNus both employ only this type of

primitive functions in their tool-box for solving function pattern recognition problems.

In contrast, BACON does not bind generated variables into pairs. Instead, it views
all new generated variables as theoretical terms. Knowing how a theoretical term has
been constructed from the original variables, the system finds the underlying function form
related to the original variables by finding certain types of regularities!* between selected
compatible theoretical term pair. This is an example of the second type primitive functions

— extended primitive functions.

An extended primitive function is a functional relationship among a set of selected the-
oretical terms, or variables, associated with different generated functional images currently

exist in the data space!®

FP(tht21"'1tm)=0 (3.58)

where ¢;’s are variables (theoretical terms) associated with their corresponding transformed
variable triples or functional images. Since a theoretical term (or its corresponding data) is
obtained from applying data transformations to the original variable triple (or functional
image), there exists a functional dependency between any generated theoretical term and
the original variables determined by the corresponding transformation sequence. If it is
found that a certain set of nodes existing in the current data space satisfies Equation 3.58,
a function form concerning the original variables is discovered. This is the foundation of an

extended primitive function.

Including extended primitive function in a discovery system’s tool-kit makes it possible
for the system to recognize a wider varieties of complex functional patterns. As a result, it

either speeds up the discovery or extends the function form coverage of the system.

""Regularity used here is just the other word for primitive function.
' Recall that a function form discovery system works with two spaces — rule space and data space.
Data transformations can be viewed as the rule space and the data space is composed of a set of generated

functional images.
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Although we consider only the normal primitive in FFD-II, it is worthy to be mentioned
that the extended primitive type is an important primitive type. It allows the discovery
system to use the information in the data space in a more flexible way, and provides the
designer with more chances to encode desirable domain knowledge into the system. For ex-
ample, extended primitive functions could be selected on the base of certain mathematically
interesting and meaningful clauses. In this way, short cuts to a compact and meaningful
solution are assigned to the discovery system. Dimensional analysis techniques may be used
to compose an extended primitive function that is meaningful in terms of physical meaning-
fulness in the problems in special application domains. This issue its own is a rich research

area and should be viewed as a worthwhile direction of future research.

As we discussed in Section 3.1.4, primitive recognition could be done by a simpler dis-
covery systems!®. In general, the more the primitive functions that the discovery system
can recognize, the wider range of function forms the system can cover. However, the fo-
cus of this research is the fundamentals of function form discovery by data transformation.
The compactness is emphasized, instead of powerfulness, in the construction of the prim-
itive function set for FFD-II. Hence, only a small set of analytic function classes will be

considered.

Among the analytic function classes, polynomial function class are the simplest. It is a

good function class to be considered as primitive functions for the following reasons.

e Polynomial functions can approximate any function in class C*> to any
arbitrary order. This is supported by Taylor expansion and various inter-

polation theorems.

e The dependency to the control parameters (coefficients of a polynomial) is
linear. Thus the fitting could be easily implemented with simple and well

established numerical tools.

' Simpler system refers to a function form discovery system that recognizes fewer function forms more
efficiently than the host system. Examples of such systems that can be considered by a data transformation

based discovery system include E*, KEPLER[67] and KEDS
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e The second order polynomials can quantitatively represent all the impor-
tant first and second order curvatures and qualitatively represent important
functional behaviors such as local minima and maxima, elliptic, parabolic,

flat, hyperbolic points, etc. on a surface.

e Simple algebraic analysis methods are available, e.g. factorization, for ana-

lyzing the properties of polynomial expressions.

e Polynomials have been demonstrated to be a good choice by the existing
data transformation based function form discovery systems such as FFD
and LiNUs. This research further supports this claim in three-variable func-

tion form discovery problems.

The following two primitive function forms are designed for FFD-II.

F,: w= Cs-u”>+Cs-u-v + C3-v° (3.59)
+Cr-u + Cy-v + Co.

F.: w?>= Cs-u?+Cy-u-v + Cz-v2 (3.60)
+Co-u+ Cy-v + Co.

The differences between F; and F, should not be neglected. F'; could be easily transformed
into a constance function by a transformation sequence consisted of a few applications of the
transformations previously defined. Considering the task of fitting six parameters as a trade
off of search more nodes, it is worthwhile. However, it is usually very hard to transform an
expression of the form F, into a simpler function form using the transformations defined in
this chapter. Considering that the square root function is a very common function format,

it would be better to be included in the primitive set directly.

Compositional Primitives

Table 3.4 lists five operators that can be used to generate complex function forms from

elementary functions. It has been pointed out that functional composition operator © is
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the most important one that combines simple function forms into hard to handle complex
function forms. With a single operator ©, two simple functions f(t) and g(z,y) can be

combined into a single composed function:
h(z,y)=(f09)(z.y)= f(9(=,¥)) (3.61)

In section 3.3.1, five general-purpose transformation classes were identified. Unfortunately,
none of them directly simplifies function forms given by Equation 3.61. In practice, it may
happen that through a sequence of data transformations, the original functional image is
transformed into a new image that satisfies Equation 3.61. In solving real world problems in
a particular domain, it might be desirable that a certain set of variables (with dimensions)
are combined into a dimensionless atom before a meaningful formula could be obtained
(this requirement specifies an additional function expression g(z,y)). In the former case,
a compositional primitive helps to enhance the capability of the system, and in the latter

case, a compositional primitive provides a way to encoding domain knowledge.

in Equation 3.61, function h(z,y) can be decomposed into two functions — the core
expression g(z,y) determines the “fine-grain” behavior while the function f(t) determines
the “global feature”. The compositional primitive set specifies the functional patterns (core
expressions g(z,y)) recognizable to the system. Through certain segmentation scheme,

we can assign the discovery system with the ability to identify the functional components
g(z.y) and f(t).

Recall that we have discussed the “cumulative methodology” in Section 3.1.4. Applying
it in both of the tasks of finding a hypothetic core expression g(z, y) and the one-dimension
function f(t) are straightforward. They both are function form discovery problems that
can be solved using specific discovery methodologies or existing function form discovery

systems.

Generally, the composition of a compositional primitive is closely related to the appli-
cation domainr. To demonstrate the idea of using the compositional primitive in a discovery

system, linear functions was chosen as the only compositional primitive class recognizable
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to FFD-II, i.e.

g(z,y) =z - cos(8) + y -sin(0) (3.62)
where @ is a control parameter. The corresponding compositional primitive is defined as

E; : w-cos(8) + v -sin(8) (3.63)

This compositional primitive addresses the recognition of cylindric functional patterns in an
image. This class of images is related to a one-dimension function with a planar coordinate

system rotation. The detection and fitting of this core function will be discussed later.

3.3.3 The Function Form Description Language

The function form description language used by FFD-II can now be stated. The choice of
the rank value of each transformation class will be discussed in the rest parts of this chapter

and in Chapter 4.

Transformation Class Set

3; = {TLOG ' TREC) TFAC! TI.\'V ’ TVEx, TDIF} (3-64)

Table 3.6 lists the definitions of each transformation classes appeared in the
definition. Notice that in the table T 1o¢, T Rec, T 1xv, and T vex are single

element transformation set.

Primitive Class Set

Sp={F,, F., E} (3.65)

where F,={F,}, F,={F,} and E; = {E} (see Eq.(3.59), Eq.(3.60)
and Egq.(3.63) for the corresponding formulas).

The Language
L =(Sr, Sr) (3.66)
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Trans. Inverse
Symbol Definition . .. Rank
Description | Description
T Loc T Loc = { TLOG } (3-42) (3.43) 1
T REec T RECc = { TREC } (3.44) (3-45) 1
T Fac T Fac = { TFAC } (3.48) (3-49) 1
T 1oy Tiw ={Tixv } (3.50) (3.52) 0
Tvex | Tvex={Tvex} (3.53) (3.54) 0
T pw Tpwr ={Tor} (3.55) (3.56) 2
Table 3.6: Transformation Classes of FFD-II
Some Relevant Sets :
e The Base Transformation Set
§; =TUTLogUTREcUT FacUT1xv UT vex UT prr
e The Generated Transformation Set
§;' = {I: Tiocs TRec) TFacy) Tixvy Tvexs Torwr }'

e The Primitive Set

Sp=F,UF,.UE,

3.3.4 Transformation Macro, Redundancy and Expressiveness

76

(3.67)

(3.68)

(3.69)

The “Transformation Macro” technique is introduced to speed up the search for the goal.

A transformation macro is formed by a combination of a sequence of the original transfor-

mations, and the search algorithm treats the result as a single transformation. It is a big

step in the search space. As such, it reduces the search depth required to move from the

start state to a goal state. However, on the other hand, it increases the branching factor at

each state.
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Since FFD-II system carries out “best first” search, ihe transformation macro technique
is embedded in the settings of transformation ranks which is one of the major factors of
the searching heuristics. Strictly speaking, this treatment is not to speed up the searching,
which is commonly the motivation for introducing operator macros, but to make the trans-
formation class set more compact without defining unnecessary transformation classes. In
this section 1 will first examine transformation macros from the aspects of their ranks. Then
I will discuss redundant transformation sequences. As a close and important issue, I will
discuss the expressiveness of the function form description languages in the last section of

this part.

Transformation Macros and Their Ranks

Proposition 1 Let u, v and w be the only three variables in a problem. The five variable

shuffle transformations!?
Shuffle 1: (u, v, w) —5 (u, w,v) (3.70)
Shuffle 2: (u, v, w) E) (v, u, w) (3.71)
Shuffle 3: (u, v, w) 1-53-) (v, w, u) (3.72)
Shuffle §:  (u, v, w) —% (w,u,v) (3.73)
Shuffle 5: (u, v, w) f-i) (w, v, u) (3.74)

are all combinetions of Tvex and T'ixv , and the resultant ranks are all zero, provided Tvgx

and T« are applicable to each corresponding states.

'" In this part. we use (r(u, v, w), s(y, v, w), t(u, v, w)) to denote a new variable triple (un, v, w,)

thiat. ix related to the original variable triple (u, v, w) by

u, = r(u,v,w)
vp = s(u, v, w)
wn = tu,v,w)

where r. s and t denote three functional expressions. However, it is required that the above mapping is

“olie-to-one onto” mapping.
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Transformation Cgl:::o:nizieon Re;l:::nt
Ts1 Tvex o Tivv © Tvex 0
Ts2 Tvex 0
Tss3 Tvex © Ty 0
Ts4 Tixv © Tvex 0
Tss Tixv 0

Table 3.7: Transformation Combinations of Variable Shuffling

[Proof] The first part of the proposition can be proved by Table 3.7. Based on the
result of the first part and considering that (1)the rank value of a transformation sequence
is the sum of the rank values of each transformation in the sequence; and (2)7Tvex and

Ty are ranked zero, the second part of the proposition is obvious. O

Proposition 2 The mazimum number of irrelevant variable shuffle transformation is two.
In other words, we can arbitrarily choose two and only two different variable shuffle trans-
formations defined by Egquations (3.70) through (3.74) and all the rest can be derived by

combinations of the two selected.

This proposition can be easily proved by enumerating all the possible combinations of any
arbitrary choice of two different variable shuffle transformations. It implies that we can
replace T vex or Tixv in language c by a different variable shuffle transformation {or
replace both) and construct a new language that is equivalent to the language C used by

FFD-II.

Proposition 3 The differential transformation

Tow= w )

TDIFZ : (u! v, ‘lD) — 4 v, 'a—v' (375)

s a transformation in set 5;’ which has the rank value equal to Tp.
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[Proof] Clearly,

Tow2 =TvexoTprr o Tvex € g:;'
Thus,
Rank (TDIF2 ) = Rank (TV!-::( o Tpr © Tvex )
= Rank (T\-’Bx ) + Rank ( TD[F ) -+ Rank ( TV'EX )

0+2+0 =2

= Rank (TDIF )

The proof is completed. O

Based on Proposition 1 we can prove the following propositions in the same way as we

did in the proof of Proposition 3.

Proposition 4 Let

Troct : (u, v, w)— (log(u), v, w) (3.76)
Trocz : (w, v, w)+— (u, log(v), w) (3.77)
Trecr @ (w, v, w)— (1/y, v, w) (3.78)
Trecz = (w, v, w)+— (u, 1/v, w) (3.79)
Terer @ (w v, w)— (u/(vcos() + wsin(8) +¢), v, w) (3.80)
Traz ¢ (u, v, w)— (u, v/(weos(6) + usin(d) + c), w) (3.81)

Then
(1) Troc1 and Trogz are combinations of variable shuffles and T'1og, and

have the same rank value as T oG-

(2) Trect and TRrecz2 are combinations of variable shuffle and Trec, and

have the same rank value as TRgc,

(8) Tric1 and Tracz are combinations of variable shuffles and TF,\c, and

have the same rank value as Tp,c.
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o] T G
1 Variable Shuffle | {T's1}, {Ts2}, {Tsa}, {Tsa}, {Tss} 0
2 Logarithm Troc, {Troc1}, { Trocz} 1
3 Reciprocal T Rrec, { Trec1}: { Trec2} 1
4 Factorization Tric) { Tract}ts { Trac2} 1
5 Differential Tow, { T2} 2

Table 3.8: Grouping of Fundamental Transformation Classes

provided each transformation can be applied as required.

Clearly, the transformations introduced in Proposition 1, 3 and 4 are all fundamental
but not all of them are necessary to be included in the definition of description language c
at the same time. On the other hand, equivalent languages can be constructed by replacing

some transformation classes with selected different transformation classes.

If we group all the new transformation classes into five groups (Table 3.8), we can
construct equivalent languages by taking two different classes from group #1 and one from
each of the remaining groups. As an example, the function form description language

c. = { TLOGI}  {TRec1}, { TFacr}, , E; (3.82)

{Ts1}, {Ts3}, { Toiwrz}

is equivalent to the language £. The propositions (1 through 4) show us the reasons why
only Tvegx and T« are included in the transformation class set g; and their rank

values are set to zero.

More Composition Properties

We have seen some basic transformation compositions in Section 3.3.4. Intuitively, two

transformation sequences may sometimes reach the same state. In search for the trans-
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formation sequence which simplifies the original image into a primitive, repeating searches
in two equivalent branches is what should be avoided. This is the issue of transformation

redundancy analysis. Let us first formally define redundancy.

Definition 18 Let T, and T be two transformations (sequences) in a generated transfor-
mation set Sy corresponding to St. T and T, are said to be equivalent iff (1) they are
defined on the same domain D C R®, and (2) V(z,v,2z) € D, T\(z,y,2) = T>(z,y,z). An

equivalent transformation pair is denoted by T, = T> . An equivalent transformation class

in §‘r is a non-empty transformation set

@ ) g ¥ CS,, and ¥ #A; (3.83)
T, c¢¥, VIS, Tec¥ ifT=T,

where A denotes the empty set and T, is a selected transformation sequence in class ¥

known as the representative of ¥ .

—_— 17

Apparently, “ =" relation is a transitive binary relation and any two different equivalent
transformation classes are disjoint. Thus, a generated transformation set can be divided
into a set of disjointed equivalent classes. In other words, the collection of all equivalent
transformation classes of a generated transformation set S, that is {¥;}, is a partition

of g’:
Definition 19 Let g'\T be the generated transformation set of &1 and
o K
S.=J % (3.84)
=1

where (1) K is an integer which is allowed to be infinity, (2)each ¥;,i=1,---,K, is an

equivalent transformation class, and (3) Vi # j, W; ¥, is an empty set. Then,

{‘rls wz: Tt ‘PK} (3-85)

is called a ground partitioning of E:, and K is called the cardinality of g'; It is denoted

by Curd (g;) or Card (St), (or simply |3':] or |S+| ).
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Definition 20 Let W; be an equivalent class of a generaied transformation set S,. A
ground transformation of 'S-; in W;, is an arbitrarily selected transformation'® ¥; ¢ ¥;

such that VT ¢ ¥;

Order (T) > Order (¥;), or

(3.86)
Order (T) = Order (¥;), Rank (T') > Rank (¥;).
Let {¥,, ¥,, ---, g} be a ground partitioning of S, and ¥; € ¥; isa ground
transformation of S+ in ¥;, (¢=1,2,---,K) . Then, the transformation set
{Tll TZy T ‘FK} (3-87)

is called a ground kernel of S.. 4 ground kernel is denoted by Os, or @s;: .

Definition 21 Let &+ be a transformation class set, ?; be the generated transformation

set of S+, a transformation T € :S'—; is redundant with respect to a ground kernel ©Os;

iff T2 Oss: .

Since S has only | @ss | equivalent transformation classes, it has only | ®@sz | ground
transformations in a ground transformation set. Thus, there are only | Qs; | transforma-

tion combinations that are not redundant. All the rest are redundant transformations.

Definition 22 Let S+ be a base transformation set, E: = SY be the generated transfor-
mation set, and Ogss = {¥,, ¥y, ---, ¥k} be a ground kernel of S1. Then, Os; is

called a regular ground kernel if @s; satisfies

V¥; € Os:
if V;=Tq,0Ty;_,0---0Ty (3-88)
then Ty, , oTiu;_,0---0Ty € Osy and Ty, € Oss:

A regular ground kernel is denoted by @g, or 65; .

'* Note that there could be more than one transformations in W that satisfy Equation (3.86).
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Proposition 5 Let S; be any generated transformation set based on a base transformation
set St. Then, there is at least one ground kernel that is a regular ground kernel.
[Proof ]

(1) Constructing a subset & of S.

Let & = (J7Z, ®1 , where ®; are recursively defined as

(
TeSq;
QB = T T
VTI: TZ € @9, Tl $ T2
P, = Py
J VTI € §i~lx T2 € QB: s.t. (3‘89)
P = TooTy VT € U;;% ®;, To0T1 #T;
VT'and T" € ®;, T'# T"
L (l =2, 3| R} m)

(2) From the construction of @, it is obvious that VT, # T, € ®,T1 # T» .

(3 VI =Ti0T20---0T €S8, 3T' € &, such that T =T",
where, T1,7%,---, Tn € S+.
This can be proved with mathematic induction. First, from the construc-
tion rule of ®,, VT € S+, 3T’ € 5 C ®, T = T’. Second, assume that
dn, for any transformation sequence T that is composed of less than n
base transformations, there exists a transformation 7' € &, such that
T = T'. Now let T("*!) be a transformation sequence composed of n + 1
base transformations. We can write T("+1) = T o T(?) where T is a base
transformation and T'(™) is a transformation sequence composed of n base
transformations. From the inductive assumption and the construction
rule of ®, there exists a transformation T’ € |Ji; $: C ¥, such that

T("+1) = T’. Thus, by mathematic induction, the proof is completed.
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Furthermore, since it is obvious that Equation 3.86 is satisfied for each

element in €, ® is a ground kernel of 3\1- .
The proposition is proved by summarizing (1), (2) and (3). O

Proposition 5 provides an important theoretical result, i.e. “To a function form discovery
system, if we describe the redundancy properly, the system will find any existing solution

by searching only the space of non-redundant transformation sequences”.

Proposition 6 Let :9-:-’ and §;" be two generated transformation sets based on the
base transformation sets Sy’ and S+"” respectively, and assume that S’ € S". Then,
if Ogs 1is a regular ground kernel of g':l , there ezists a reqular ground kernel @gr of

5. such that Os: C Oy .

The proof of this proposition is quite straightforward and shall not be presented here. For
convenience, we shall use “group” — an algebra term!? to describe our analyses in the
remaining part of this section. However, to keep the discussion focusing, we will not point
out which transformation is in the “regular ground kernel”, although it is an important

concept to be borne in mind along the analyses.

Proposition 7

I' Trev s Tvexs Tvexo Tiwvs Trww o Tvex, | (3.90)

Tvex o Tixv 0 Tvex

ts a non-Abelian group. Hence

({Tixv s Tvex}, o) (3.91)

'Y A semi-group is a non-empty set S on which is defined a binary operation ® such that (1) S is close
under @ and (2)@ is associative on S. A semi-group is written as (S, @ ). If ® is commutative, a semi-group

{S. @) is called a commutative semi-group. If (1) there iz an identity element e € § and (2) every element

in ~et S has an inverse, then a semi-group (S, ®) is called a group. A group is called an Abelian group if

it i a conunutative group (S, @ ). The order of a group is the number of clements in the group.
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is @ non-Abelian group of order siz.

[Preof] Since Tixy © Tixv = I, and Tvex 0 Tvex = I, the first part of this proposition
can be directly derived from Proposition 1. The second part is the result of the first part.
4

Proposition 8

I, T, TRec) Tinv o Trecy TrRec© Tinv
Tixe ©TRec © Tixvv » TRec © Tinv © TRec s ) © (3.92)

Tixv o TRec © Tinv © TRec
ts a non-Abelian group. Hence
( {TI.\'V ] TREC }' 1 © ) (3.93)

is a non-Abelian group of order eight.

The similar result of 2-variable problem was proved by Wong[65] and we will not repeat
the proof here. Eight variable triples corresponding to the transformations set in Expres-

sion (3.92) are tabulated below.

I (u, v, w)
Tixv (w, v, u)
TRec (u, v, 1/w)
T1ixv © TRec (1/w, v, u)
Trec © Tinv (w, v, 1/u)
Tixv © TRec © Tixv (1/u, v, w)
Trec © Tiwv © TRec (1/u, v, 1/w)
Tixv © TRec © Tisv © Trec | (1/w, v, 1/u)
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I, A, I, ©| see definitions AllIGNIAGIIO (1/w, 1/v, 1/u)
AO (v, u, 1/w) ImA {(w, u, v)
IMIA® (1/w, u, v) ATIA (u, w, v)
ATAO |  (u,1/w,v) emA (w, u, 1/v)
ne (1/w, v, u) I6IIA (1/v, u, w)
ATIO (v, 1/w, u) ATIIOIIA (u, 1/v, w)
ONAO | (1/w, u, 1/v) AGIIA (u, w, 1/v)
AOIIAG | (u,1l/w, 1/v) MIAGIIA (1/v, w, u)
NAGNA® | (1/v,1/w, u) AITIAGIIA (w, 1/v, u)
nenAe | (1/v,u, 1/w) ALl (v, w, u)
ATIONIA® | (u, 1/v, 1/w) oIl (w, v, 1/u)
MANOINA® | (1/w, 1/v,u) nerm (1/u, v, w)
ene | (1/w,v, 1/u) AllOHN (v, 1/u, w)
nemne | (i/u,v, 1/w) AOII (v, w, 1/u)
AnTene | (v, 1/u, 1/w) MAGII (1/u, w, v)
Aonie | (v, l/w, 1/u) AITAOII (w, 1/u, v)
mAGNO | (1/u, 1/w,v) ONOAI| (1/u,w,1/v)
AnAene | (1/w,1/u,v) AONOAIL| (w,1/u, 1/v)
enAene | (1/u, 1/w, 1/v) MAGIOAI (1/v, 1/u, w)
AOIAONO | (1/w, 1/u, 1/v) NONOAN | (1/v,w,1l/u)
nAaenaene | (1/v, 1/u, 1/w) ANIOIIOAIT (w, 1/v, 1/u)
ATIAOIIAGN®O | (1/u,1/v,1/w) | TATIOIIOAI (1/u, 1/v, w)
nenAene | (1/v,1/w, 1/u)
Remarks: t A, Il and © stand for Tvex, T, and Trec respectively.
+ “0" is the only implicit operator which connects two transformations.

Table 3.9: Different Non-redundant Combinations of TRec, Tixv and T'Rec-

86
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Apparently the combination of independent variable exchange, functional inverse and
reciprocal result in different reciprocal format transformations. All possible variations are

tabulated in Table 3.9. Thus the following proposition is given without a detailed proof.

Proposition 9

({I, TVEx ) TLW ) TREC }*: °) (3-94)

is a non-Abelian group of order {8.

From Table 3.9 we can see that the maximum number of consequently applying of the three
transformations is nine. Any more than that would be redundant. Furthermore, there are
29523 different symbolic combinations of that three transformations up to the length of
9. It means that more than 99.8% of them are redundant. Therefore, the importance of

redundancy analysis is demonstrated.

Proposition 10 The two transformation sequences TrecoTpir and Tixy o Tpw o Tixy are
equivalent, provided each transformation is applicable. Thus the sequence Tixv o Tpiwr o Tixv

ts redundant.

[Proof ] First we should note the identity of the applicabilities of the two transformation
sequences. If there is a point in the observation domain where dw(uo,vg)/9u = 0, both

sequences will not be applicable. Otherwise, both of them are applicable.

Let w = f(u,v) be a function which is differentiable with respect to variable u, and
w = f(u,v) is invertible with respect to variable u with a inverse function u = g(w, v)
such that g(w,v) is differentiable with respect to variable w . Then by applying the
transformations in the corresponding sequence one by one according to the definitions of
the data transformaticns, the original image will be transformed into the following two
images

1
TrecoTpr : (u,v,w)v+— (u, v, m) (3.95)

TIN\'OTDIFOT[NV : (uv ‘U,ID)P——-)(U,U, g,',,(f(u,u),v)) (3'96)
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Let py = (uo, vo, wo) € R®, p = (u,vo, w) € R® such that wo = f(uo,v0) and
w = f(u,vg) . By definition,

dw f(u) vO) — f(u01 vo)

EM " = fu(uo, vo) = ,,ll,"},o U — ug (3.97)
Considering the continuity and differentiability, (3.97) can be rewritten as
dw . w=wp
G, = Jim o= (3-98)
- 1
. U — Ug
lim
P—Po W~ Wo
- 1
9g(w, v)
ow |,

Thus TRreec © Tow(po) = Tixv ©Tpir © Tixv(Po) . The first part of the proposition is proved.

Since Order (Tlxv oTpw OTva) =3 > Order (TREC o TDIF) =2, TiwoTproTixy

is redundant. O

Proposition 11 Transformation sequence Troc © Trec ts tdentical to the transformation
T Lo regarding to the simplicity of any given functional form. Thus Trog © TRec could be
vicwed as redundant in a discovery system.
(Proof] Let (u, v, w) be a variable triple, where a functional relationship w = f(u, v)
exists. Then,
Troc(u,v,w) = (u, v, log(|w|)),

Troc © Trec(u, v, w) = (u, v, —log(lw|) ).
Since T'Log and Trec are applicable under the same constraint, therefore simple one-to-one
correspondence between the image T'L o (¥, v, f(u, v)) and the image T'LocoT Rec(u, v, f(u,v))
exists (if applicable), and the two images are identical in terms of discoverability and com-
plexity. @
There are three similar propositions concerning transformation Tvgx. We neglect the

similar repeating proofs.
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Proposition 12 Transformation sequence Tgyc 0 T'vex ts identical to transformation se-
quence Tyvgx © Tryc . Thus Tpuic © Tyvex could be viewed as redundant in a discovery

system.

Proposition 13 Transformation sequence Trog © T'vex 1s equivalent to transformation

sequence Tvex 0 TLoc - Thus Trog © Tvex could be view as redundant.

Proposition 14 Transformation sequence T rec © Tvex 1is equivalent to transformation

sequence Tvgx © Tree . Thus Trec o Tvex could be view as a redundani.

Last three propositions can be summarized by “For any transformation sequence composed
of the transformations in the transformation set of language c , if it is not redundant and
it contains Tvgx, then the transformation to the left of Tvex (if any) can only be Tuv
or Tpi". The following two redundancy propositions concerning transformation Tr,c are

apparent, thus the proofs are neglected.

Proposition 15 Let T¢y , T2, - - - , Ten € TEac be n different factorization transformations
defined by Equation (3.46). Then, VT1,T2 € {Te1, Tr2,-** , Ten }*, T1 = T» iff sequences
T, and T» contain exactly the same number of each transformation Tey , Tea , -+ and Te, .
Thus, if let

F= { TE o TX2...oTk" | VK1, k2, ---, kne Z¥ } (3.99)

where Z% is the set of all non-negative integers, then

f = .@.{ Te1 Ty oo Ten }' (3-100)

Proposition 16 Let Tty ,Tr2,- -+ , Ten € TFac be n different factorization transformations

defined by Equation (3.46), and let F be the transformation set

J—':{TF';IOT;;Z---OTF':;' Vkl,k2,---,kneZ} (3.101)
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where Z denotes the set of all integers, and TX*, (i=1,2,---, n) denote the transformation

sequences composed of ki factorizations

Wi if ki=0
ki
. Te: if ki>0
TFEI=< i=H1 F1 f

ki
HTF:I otherwise

\ 1=1
respectively. Then,

F= @—{Tmc-Tm Tz Ten }° (3.102)

The Expressiveness

The key idea of data transformation based function form discovery methodology is that
the system can recognize some primitive forms and can transform others into what it can

recognize. The following proposition is an interpretation of this idea by “recursion”.

Proposition 17 Let £L = (S, 8p) be a function form description language, (u;, u2, ug)

and (v1, va, vg) be two variable triples related by a transformation in S}, i.e.

vy = Gl(uh Us, ud)
T( u,, us, ud) = (Uh U2, Ud) : v = Gz(uh Uz, ud)
Vg = GS(ulv us, ud)

where T € ST and G1, G2 and G3 are three functional ezpressions which specify the
relationship between the variable triples. If the functional image respects to (vi, va, vq)
matches with a function form f(wvy, v2, vg4) =0 in L, then the functional image respects
to (uy, us, ug) matches with a function form in £ . In other words, the function form
f(Gi(u1, ua, ug), Ga(uy, ua, ug), Ga(uy, u2, ug) ) = 0 is discoverable by a system based

on language £, provided f(vi, va, vq) is discoverable by the same system.
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[Proof] From given, we can assume that (Dz,Dp) is a function form description of
variable triple (v;, vs, vg) and its corresponding functional image O, ., 4) - Since the
functional image Oy, u.,u,) respects to (uy, us, ug) can be transformed into O (v v2.4)

by T',i.e. T(O(uy.uz,ug)) = O(oy.v2.v4) » the underlying function form of Oy, u..u,) is thus
(DroT,Dp). O

Proposition 17 provides us with a simple way to evaluate the expressiveness of a language,
or more specifically, the constitution of the transformation class set employed by a function
form description language. If a number of meaningful variable triples could be enumerated
via the applications of the transformations defined in the transformat.on class set, generally

speaking, it is a positive supporting fact for the language to be a language with good

expressiveness.
Trans. Tm;‘:ii:ﬁ::““ New Triple | Rank
Tro TpwroT vex (u, v, wy) Y
Tor Trec°Towr o Tinv (w, v, w,,) 3
Tor Tvex°Trec® Toir© Tiny o Tvex (u, w, w,) 3
T3 Trec*TowoTrLoc o Tiwv | (w, v, u-w), 4
Tos TvexoTrec*TowroTLoc | (u, w, v- w) ) 4
°Tixv o Tvex
Tos TowoTroc | (u, v, wy/w) | 3
T Tvex°Tow°TrocoTvex | (u, v, w,/w) 3

-

Table 3.10: Some Attainable Triples of The Language L.

As an example, Table 3.10 tabulates a number of the transformation attainable variable
triples of L . Since our goal is to develop a general-purpose function form discovery system
without any specified application domain, we examine language L in this dimension by list

only those triples with terms which are widely confronted in mathematics textbooks. All
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of the triples listed in Table 3.10 are related to partial derivatives of up to the order 1. The
major variations of equations of the first order derivatives contain five theoretical terms,
ie. v, v, w, w,,and w,. Each resultant triple listed in Table 3.10 contains only one of
the terms w, and w]. This is unfortunately correct. Not all triples that contain three of
the five elementary terms can be generated by a transformation sequence specified by C’s

transformation class set. Let us examine the triple (v, w), w}) as an example.

Using the transformation sequence Tp; in Table 3.10, we have
To1(u, v, w) = (w, v, w))

We can continue manipulate the triple by applying the transformations functional inverse

and independent variable exchange
Tvex o Tixv(w, v, w;) = (v, wy,, w)

It seems that we are one step away from our goal triple (v, w),, w)). Let us now try trans-

formation Tpe

D
(ul,u'_),Ud) — (vhv'.’avd) : U2 = Up

on the triple

u; = v, uz = w,(u,v), ug = w(u,v),

we find that
v =v, Uz = w;(u" ‘U)

) Aw(u,v
vy = lim .__L_)
Av—0 Av Aw! (u,v)=0
Since
Aw, (u,v) = wi,Au+ w,, Av
we have
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Thus
vy = lim 2¥®v)
Av—0 Av Aw! (u,v)=0

— lim w) (u, v)Au + w)(u,v)Av
Av—0 Av Aw!, (u,v)=0

n

_ uy _ ’

- " Wy, + w,
un

Instead of (v, w!, w,), the process results in the triple

”

w.
’ uv _ '
ur ) wu+wv)‘
uu

(v, w

What happened is that when we try to get the second first order partial derivative, two
requirements should be satisfied at the same time. First, variable v should be at the first
place of the variable triple. This has been met in our calculation. Second, the variable u
must be at the second place of the variable triple for holding it constance. On the other hand,
the term w!, must appear in the same variable triple at the same time. This is a contradiction
to the constraint that we can only put three terms in a variable triple. Similarly, we cannot
find a way to get a variable triple of the form (w, w, w;) that is important for presenting
a whole class of first order partial differential equations®®. Furthermore, handling second
1 1"

order partial differential equations requires that the eight terms, v, v, w, w), , w) , wll, , wl,

and w),,, be put into a tuple.

B IX]

The above analysis shows us an important conclusion. The function form description
language L has a major limitation in expressing general partial differential equations.
Considering the size of the transformation class set and primitive set, it is not a surprise.
However, the analysis shows us also the large room to improve. Intuitively, we can modify
the transformation set to enhance the ability to transform. For example, we can include a
new transformation that directly generate the triple (w, w),, w!). The side effects of doing
so is the introduction of computational redundancy and the increase of the search space.

The other way is to introduce the use of extended primitive functions (page 71). We can

** The general non-linear partial differential equation has the form F(u, v, w, w,, w;) = 0.
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also encode other human expertise knowledge with a set of prototypes and put them into

the discovery system’s tool-box as extended primitives. This is a more flexible way.

Though both extensions are worthwhile research directions, especially combined with a
particular application domain, they will be viewed as future research subjects for keeping

this research reasonably focussed.



Chapter 4

FFD-II — A Function Form
Discovery Model and Its

Implementation

We have discussed the theoretical issues of function form discovery by data transformation in
the last chapter. A function form description language £, which describes a three-variable
function form with a transformation sequence and a simple specific functional patiern —
functional primitive or compositional primitive, has been introduced. In this chapter, we
will move to the issue of the design and implementation of the new function form discovery

system, the FFD-II system.

FFD-II is designed to discover function forms with three variables. By taking data
transformation approach, pioneered by Wong with his FFD system, FFD-II can find com-
plex function forms that are not restricted to a few specified function form classes. As has
been pointed out in the review of related works, most previous systems share a common
limitation of finding function forms only in a small number of function form classes. Thus
the new system surpasses all those systems in the categories of formula construction and
data analysis, such as BAcoN and E*. However, unlike FFDD, FFD-II's discovery model is a

direct model. To overcome the difficulties of increased complexities and large computational

95
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error, an adaptive error control technique is employed by the new system.

In the first part of this chapter, I will discuss the major challenge from the multi-variable
function form discovery problems. The discussion introduces the general background of the
design of FFD-II. Following the introduction, I will show that an indirect system has only
limited capability in finding multi-variable function forms and why it is possible that a direct
model can work better in solving the problems. This discussion explains why we chose the
direct model for our new system. The third section is an overview of the architecture of
FFD-II. In the fourth section, the design choices of numeric recipes will be presented. And

in the final section, our discussion will focus on the implementation of adaptive error control.

4.1 The Major Challenge From Multi-variable Problems

Multi-variable function form is one that has three or more variables. To discover multi-
-ariable function forms is much more challenging than two-variable problems for a number

of reasons.

1. There are many more diverse function forms in high dimension problems than in low

dimension problems.

]

Observing elementary features such as monotonicity and periodicity is more difficult
in high dimension cases. In two-variable problems, basic analytic and geometric prop-
erties, such as slope and curvatures can be expressed by ordinary derivatives. In
multi-variable problems, elementary analytic and geometric properties, such as slope,
gradient and curvatures, can only be expressed by special combinations of partial
derivatives. The dificulty of analyzing these properties increases with the dimension

of the problem.

3. The complexity of multi-variable approximation is greater than that of two-variable
cases. Fitting a surface or hyper-surface is much more difficult than fitting a curve.
Usually, estimating partial derivatives from numeric observation data needs more

effort and is less accurate than estimating ordinary derivatives.
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4. In multi-variable problems, to describe deterministic conditions, such as initial values
and boundary conditions, are usually more difficult than in two-variable problems. In
two-variable problems, describing these conditions is simply the problem of finding
parameter values and that can be done using simple numeric approximation tools. In
high dimension problems, deterministic conditions usually can only be expressed by a
functional relationship between selected variables. As such, they can only be handled
either as a sub-discovery-task in lower dimension or within a small range under certain

simplificaticn assumptions.

5. The problem size increases dramatically as the increase of the dimension of the prob-
lem. First, to meet the need of dealing with wider diversity of function forms, the
search space in solving function form discovery problems must be extended. Second,
the size of the observation data set in multi-variable problems is much larger than that
in two-variable problems. For example, suppose a sample data set of N observations
with 2N floating-point numbers can provide us with sufficiently fine step accuracy in
a two-variable function form discovery problem. To achieve same accuracy level in
a 3-variable function form discovery problem, an observation data set of N2 samples
with 3N? floating-point numbers is necessary. That means the needs of both larger

memory space and more arithmetic operations in processing the data set.

Existing discovery systems are still very poor at solving multidimensional problems.
Most are implemented in an indirect way using variable freezing technique. They reduce
the dimension by holding all but one independent variables constant at one time. Once
all subtasks in lower dimension have been solved, a unification strategy is used to combine
them into a uniform result. This approach were taken by BACON and all its followers. It is
also the strategy with which FFD was extended to discover families of functions. However,
this technique cannot cope with the rich forms of multi-variable functions. This research
tackles the challenge of multi-variable function form discovery problems with a new data
transformation based direct approach. The system performs direct three-dimensional data
transformations and recognizes functional patterns directly from the transformed three-

dimensional image.
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4.2 The Direct Model

FFD-II is designed on the base of the function form description language £ introduced in
the last chapter. As such, it searches in the space of three dimensional transformations (the
operation) and matches the transformed functional image with a primitive pattern with
three variables. In other words, it is a direct method. Figure 4.1 depicts the direct model in
general. As a direct model, either a single node or a set of nodes connected with an “And
Arch” can be created under a node. In the figure, A, B and D are independent nodes, and
nodes C and ¢ are a pair of nodes connected by an “And Arch”. In general, when two or
more nodes are connected with an “And Arch”, the search algorithm must find a goal node
as a sub-goal under each of them. The solution is the unification of ali sub-goals. However,
FFD-II’'s search strategy is simpler. When the initial discovery task is split into two sub-
tasks at a search node, one of them is viewed as a “dominant” sub-task, while the other is a
sub-task associated with the dominant sub-task (“subordinate” sub-task). All the dominant
sub-tasks are function form discovery problems of three variables, whereas all subordinate
sub-tasks are function form discovery problems in a dimension reduced space, and could
be solved by an existing two-variable function form discovery system. In other word, this
research focuses only on finding the dominant solution path in three-dimension space. As
depicted in Figure 4.2, FFD-II aimed to find the goal node “G”. It passes subordinate
dimension reduced subtasks, finding Sol-1 through Sol-k, to a supporting two-variable
function form discovery system!. The solution to the original discovery problem is the

combination of all discovery results.

Indirect models are contrary to direct models. They arbitrarily split the original multi-
variable problem into subproblems of lower dimension and solve them separately one at
a time (Figure 4.2). When all of solutions to the subproblems are obtained, labeled by
Sol-1 through Sol-k in Figure 4.2, the system uses some certain methods to combine them

together and generates the solution to the original problem of high dimension.

Most of the previous multi-variable function form discovery models are indirect models

'FFD and polynomial fitting arc chosen to carry out such discovery tasks.
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Figure 4.1: Function Form Discovery by Data Transformation

— the And-Or-Search-Tree of the Direct Model

( The node labeled by italic lowercase “c” is a subproblem in lower dimension,
and the dotted triangles denote the processes of problem solving in

lower dimension. )



4.2 The Direct Model 100

High Order
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Figure 4.2: Function Form Discovery by Data Transformation

— the And-Or-Search-Tree of the Indirect Model

(

( Each subproblem is a dimension reduced problem,

and only the root node is an And node.)

utilizing a technique called variable freezing. The detailed example of this method will soon

be presented in the analyses of the FFD family of functions discovery system.

In this part, I am going to discuss the advantages of direct models over indirect models.
Since the FFD family of functions discovery system? is the only system in the category
of data transformation approach that can handle multi-variable problems, the discussion
will be based on the comparisons between theFFD family of functionsdiscovery system and
FFD-II . We shall be able to see why it is important to create a new system that takes direct

approach to the problem at the end of this section.

? family of functions discovery problem is a special type of multi-variable function form discovery prob-
lems. From now on, FFD refers to the extended version of FFD that handles family of functions discovery

problems wherever it is used to solve three-variable function form discovery problems.
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4.2.1 The Indirect Model of FFD

FFD was originally developed to discover two-variable function forms y = f(t). As an
extension, it can deal with parameterized two-variable function forms y = f(¢, ¢) (family
of functions), where ¢ C R" is a parameter vector. Generally speaking, parameters are
just another kind of variables. Hence, FFD family of functions discovery system can be
viewed as a special three-variable function form discovery system when the dimension of
the control parameter vector ¢ equals one®. In the discussion of this section, FFD refers to

the FFD family of functions discovery system.

Before going to details, I shall describe some terminologies that are necessary for intro-
ducing the discovery methodology of FFD . It should be mentioned that terminology listed
below only applies to the discussion of FFD, and should not confuse us in the rest of this

thesis.

Function — A function f is a single variable function y = f(t) in class C*> within a

specified domain t€ D C R.

Function Form — A function form (F, ®) is made up of a set of parameters* ® C R™ and
a mapping F : ® — R, where R is the set of real numbers. In other words, a function

form is a collection of one dimensional functions indexed by a set of parameters ® €

R".

* However, the difference between a parameter and a variable is that a paramecter usually reflects only
onc simple functional dependency “pattern™ or “feature™, while the function value could be rclated to an
independent variable in a more complex way. For example, in the formula of uniformly accelerated motion
s+ = at® + vot, it is easy to identify a and vo as the parameters and ¢t as the variable since the function value
depends on 2 and vo linearly while on ¢ quadratically. From the application point of view, parameters could
be identified by the context of the application and by the fact that the parameter space is sampled much
nmore coarsely than the partitioning of the domain interval.

' Though in principle multi-parameter is allowed, FFD considered only the case of function forms with
a single parameter. That is only slightly different to the three-variable function form discovery problems
addressed by this rescarch. Thus hereafter, we consider the parameter ¢ as values instead of vectors and

T CR.
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Function Form Instance — An instance f; of a function form (F,®) is a function

fo : R — R, where ¢ is a particular element of ®, such that f;(t) = F(t,¢), Vte R.

Sample — A sample Sp of a given function f is a set of ordered pairs of real numbers
Sp(f) ={(t;, ;) | i € P and y: = f(t:)},

where P={t; |i=1,---,N and t; < t3 < --- < ty} is a partitioning of the

function domain of f.

Observation — An observation Og: of the form (F, ®) is a set of samples
Ou ((F,®)] := {Sp,(fs) |# € ¥' C &},

where: (1) @’ is a finite subset of &,
(2) fs is the instance of (F,®) corresponding to a valued control
parameter in a partitioned control parameter set $’, ¢ € ¥, and

(8) P, is the partitioning of the domain of fg .

Notice that &’ is a partitioning of parameter space ®, and we are interested in only

the function forms with one parameter, $ C R.

Fitting of A Function Form — A fitting of a function form (F, &) to an observation
Oy is a mapping
M:d &
so that for each ¢ € ®', the sample Sp, (f3) is identified with the instance fM(¢)
of (F,$). ' C & C R is referred to as the control parameter and & C R™ for any

integer n, is the descriptive parameters®.

Transformation and Primitive — A transformation is a parameterized continuous map-

ping
T:R— R?

* Notice that the number of control parameter can only be one for the case studied here, while the number

of descriptive parameters could be zero to any give integer number,



4.2 The Direct Model 103

and a primitive is a continuous one dimensional function y = P(t) . FFD employs

five basic transformations, tabulated below, in its operation tool-box.

Trans. Definition Trans. Definition

Inverse O : (t,y) — (nt) Logarithm A (t,y) — (¢ 1og|y])
Reciprocal | ¥ : (t,y) — (t.1/y) || Factorization | IT : (¢,y) — (t. =)
Differential | A : {t.y) — (t.¢)

A primitive is a parameterized one dimensional continuous function that a trans-
formed observation can match with. The primitive function set of FFD consists the

following three quadratic functions.

y2 + c1t2 +ecot4+e3 = 0,
ty + cit’ +cat+c3 = 0,
y+ c1t> +eit+e3 = 0.

All the parameters appeared in a transformation or a primitive are viewed as descrip-

tive parameters.

Unification Transformations — Let U be an invertible transformation which is param-

eterized by a parameter vector & in R*. An observation

Op = {S¢'11 T 1S¢N}

of function form (F, ®) is said to be unified by the class of transformations Ulas] if

there exists a set of vectors
V={&, -, dsn}
in which the vector @y; corresponds to the control parameter value ¢;, such that the
image
Uv(O¢)={ (tj9;) | 31<i< N, (t,y5) € Ula(Sq;) }
is a single smooth function. U will be referred to as the unification transformation.

a will be referred to as the descriptive parameter; and, in particular, &; is said



4.2 The Direct Model 104

to contain the descriptive parameter values specifically associated with the function

sample Sy, .

Similarization Transformations — The member samples of an observation
Os = {Sgy1- -1 S¢n}

are said to be similar to one another if there exists an invertible transformation class

T and an associated parameter vector set

14 :{5¢1""!&¢N}

such that the images
T[@](Se:), 1<i< N,

are primitive functions of the same form. T is referred to as the similarization

transformation.

Single Control Parameter Function Form Synthesis Problem

Let F denote an unknown process with a specified control parameter space ® C R.
Given
e an observation Qg of (F,®);
e a set of primitive functions F ;
e a set of basic operators — transformations T ;
e a form fitting accuracy requirement g ; and

e a maximum dimension of descriptive parameter vector Onaz ,

Construct a function form (F,#®) and a fitting M : & — & such that
1. (F,®) is a subset of the search space generated by F and T ;
2. ord [(F! é)] = dlm(é) < Omaz ;

3. the deviation of (F,®) from Qg is less than er , i.e.

Ex[(F, ®), Op] < €F.
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This statement can be understood from the implementation point of view as the problem

of finding a transformation sequence®

T, which is composed of the transformations de-
fined in the set 7, and a matching primitive function form F; from the set F , such
that by consequently applying the inverse each transformation in the sequence to the corre-
sponding primitive function sample Sy, results in a functional image that matches with the
given observation within a tolerable error level. This approach follows the idea of BACON's
multi-variable function form discovery strategy — variable freezing, i.e. hold all but one

independent variable constant and find a solution for the subtask then goes to the second

variable.

In practice, to find the mapping M is a very difficult task. FFD simplifies this task by

making two simplification assumptions.

Assumption 1 (Primitive Union) It is assumed that the intermediate goal coincides
with the final goal. In other words, if the samples can be unified then there ezxists a unifying

sequence such that the resultant image Sy is a sample of a primitive function.

Assumption 2 (Simple Descriptive Parameters) Each descriptive parameter can be

accurately represented as a primitive function of the control parameter.

Apparently, Assumption 1 ensures that the unification could be easily detected and As-
sumption 2 ensures that the expression of each descriptive parameter could be easily found

with a small number of parameters.

To discover a parameterized function form, FFD first acquires a set of observation upon
{#1, -, dn} — a partitioning of the control parameter ¢. This is the way FFD arbitrarily
divides the original three-variable function form discovery task into a set of subtasks in lower
dimension (Refer to the indirect model depicted in Figure 4.2). Two-variable function form
discovery processes are then carried out upon each sample Sy,. And the discovered 2-

variable function form hypotheses are grouped according to the corresponding identified

® The subscript ¢ signifies that the possible descriptive parameters are expressed in terms of functions

of the control parameter ¢
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transformation sequences. At last, if certain population of identical transformations and
matching primitives are found, the final function form hypothesis will be given based on the
assumption of stmple descriptive parameters. If the found hypothesis applies to all samples,
a successful discovery is reported, otherwise, the system will choose from continuing search
for new hypothesis or terminating the process and reporting as a failure. The following is

an example of using FFD to discover a simple three-variable function form.

An Example of FFD’s Discovery of a Three-variable Function Form

Underlying Function Form : y = e*t

Sampling : The observation contains five samples corresponding to ¢; = -2,
$1 =-1, 61 =0, ¢1 =1 and ¢; = 2. Each sample contains 101

uniformly placed partitioning points in the domain ¢ € [0.0, 2.0].

Discovered Solutions to Each Subtask :

¢ ) &2 @3 b4 &s
Trans. A Ay I As Ay

Primitive | y=~2t |ly=—-t{y=0|y=t |y=2¢

Finalization : FFD finds that 4 out of 5 samples can be transformed into a
linear function by same transformation A;. Thus A} is a similarization
transformation. Applying this transformation to sample ¢3 results in an
identical primitive y = 0 -t. Therefore an unifying transformation has
been confirmed, i.e. Ay(Og) which matches with the primitive y = at,
where a is the only descriptive parameter. The pairs (¢, a;), i =
1,---,5 can be easily fitted to a primitive a = ¢ . Thus the discovered
transformation sequeice and primitive are: (A4, y = at) . The system

terminated with a successful discovery.

Although it is a very simple example, we can see the discovery methodology clearly enough.

From the practical point of view, the major difficulty of taking this approach is finding the
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unifying transformation and the mapping from control parameter to descriptive parameters.

This is the reason why simplification assumptions are needed.

The method of simplifying a high dimension problem into low dimension by taking into
account of one variant at a time is a simple and quite widely used technique. When the
variables involved in a problem are not highly coupled, this methodology could be the best
choice. For example, if the underlying function form of an unknown process is of form
z = f(z) + g(y), there will be no doubt that the variable freezing method is surely the best
and simplest method for finding the solution. Moreover, since all the descriptive parameters
are identified arbitrarily, in certain application situations, it might be the most effective way

to simplify the discovery problem.

FFD, as the first attempt to solve function form discovery problems using the data
transformation technique, simplified the unification of solutions of sub-tasks with two sim-
plification assumptions, Primitive Union and Simple Descriptive Parameters. These as-
sumptions are indeed constraints on how the two independent variables are coupled. It is
possible to relax these constraints to a certain degree by upgrading the system with new
strategies. However, as a system that takes indirect approach, there are a number of limi-
tations concerning the system’s ability. I will analyze the general limitations of the indirect
approaches in the following section. Before doing that, let us first summarize the function

classes that cannot be handled by the FFD system.

There are four situations under which the current FFD system may fail to solve a three-
variable function form discovery problem. They are: Unsatisfied Stmplification Assumption,
Failure in Finding a Transformation, Failure in Verify a Solution and Incomplete Language.
For simplicity, we refer a function form under those situations as belonging to USA-Class,
FFT-Class, FVS-Class or ICL-Class respectively if it cannot be discovered by FFD for one
of the corresponding reasons as named above. All function forms that cannot be discovered

by FFD fall into these four categories. Let us examine them one by one.

The first class, USA-Class, is easy to understand. The system is designed based on cer-
tain simplification assumptions, i.e. Primitive Union and Simple Descriptive Parameters.

It is obvious that a function form which does not satisfy one of the assumptions is certainly
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beyond the system’s discovery scope. One example function in this class is z = e¥ - logz.
The indirect FFD method cannot find the form by either freezing z or y as the control
parameter, since using any transformation, the functional relationship between the required
descriptive parameter and the chosen control parameter would not be a simple primitive

function.

Concerning the second class, FFT-Class, some transformations can only be triggered
when certain functional features are observed from a given sample data set. For example, the
factorization is based on the observation of roots. There are two possible reasons that inhibit
the discovery system to find such critical information from an observation corresponding to
a certain partitioning scheme, i.e. (1) improper parameter partitioning and (2) infinity of the
underlying function. Since all the transformations defined in the transformation set of FFD
are fundamental and usually necessary for the system to discover function forms, failure in
applying one important transformation will largely reduce the chance for the system to find
the solution. I will discuss this issue more in the case studies in next chapter. Moreover,
sometimes the observed roots for triggering the factorization are more complicated than
we may have expected, for example, more than one root to a single sample is not a rare
situation. Grouping the roots obtained from different samples becomes a very challenging

task, especially when large error being introduced in the estimation of those roots.

As it has been pointed out that the application of some transformations are subjected
to certain constraints. For example, Inverse (refers to the table on page 4.2.1) can only
be applied to a monotonic curve, whereas Logarithm and Reciprocal can only be applied to
constant sign curve. Such constraints may cause problems for FFD to verify an function
form hypothesis made upon some samples. These are the cases pertaining to FVS-Class.
In some cases, FFD may successfully find a correct two variable function form solution
from a population of the samples of an observation data set. However, when it tries to
confirmm the hypothesis, it may find that it is not a valid solution since the associated
transformation sequence is not applicable to some samples. This will cause the system to

drop the hypothesis finally and search for a new one or to terminate the task.

The last class, ICL-Class, of un-discoverable function forms is due to the FFD’s intrinsic
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capability to discover 2-variable function forms. The function form discoverable to a data
transformation based function form discovery system is determined by the transformation
set and the primitives available to the system. Due to the large variety of function forms,
no system can guarantee to discover all of them from numeric input. In other words,
there is not a complete language that can make all functional relationships expressible.
FFD employed only five fundamental transformations in its transformation set and three
quadratic functions in its primitive function set. Though the performance of the system in
carrying out function form discovery is significantly superior to its predecessors, there are
still a number of two-variable function forms that cannot be found[65]. As we have already
known, FFD bases its parameterized function form discovery on its abilities in discovering
two-variable function forms. Hence, there exist many three-variable functions which are
not discoverable by FFD simply because FFD cannot handle the subtasks of finding those

necessary two-variable function forms.

IFrom the methodology perspective, some of the function form classes summarized above
are less critical than others. In general, the class USA-Class is the easiest to be changed by
replacing the strict constraints with some others. Let us examine the function form example
= = ¢¥ -logz again. Assume that the variable z is viewed as the control parameter. It is
easy for the system to find a unified function form description z = c(z) - e¥ to describe
the given observation, where ¢(z) is the only descriptive parameter. If a second round of
function form discovery is carried out upon the discrete data set {(¢;, z:)}, (instead of using
the simple descriptive parameter assumption and fitting to a primitive function}, it will
not be hard to find the correct mapping ¢(z) = log(z). However, automatically combining
the results of subtasks could be a very difficult task. Thus, any implemented system that
uses variable freezing technique, more or less, will come with some necessary simplification

assumptions.

Overcoming the transformation applicability is one of the major improvements made
by the LINUs system to the FFD system. Although it is not an easy extension, yet it is
possible to enhance the current FFD system’s ability of dealing with three-variable function

forms belonging to FVS-Class by employing LINUS’s discovery strategies. However, on the
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other hand, the identification of unification or similarization transformations will become a

real challenge.

The other two classes, FFT-Class and ICL-Class are more critical. It is relatively
harder to improve the current FFD system to solve these two classes of problems which

manifest the shortcoming of the indirect approach.

4.2.2 Direct Vs. Indirect

To solve multi-variable problems, it is usually important to find a way to simplify the prob-
lem by reducing the dimension of the problems. The variable freezing method used by FFD
is one of the most widely used indirect methods for solving this problem. This method
partitions a multi-variable problem into components by holding all relevant variables, but
one, constant so that each component is a clearly defined and easy to solve one dimensional
problem. By récursively combining the results of low dimension into solutions of higher di-
mension, the original multi-variable problem is solved recursively. The dimension reduction
scheme used in this technique can be viewed as an “arbitrary dimension reduction scheme”.
We say it is arbitrary because the reduction takes place “blindly” without considering the
specialty of an individual problem to be solved. A direct method, in contrast, usually does
not employ any arbitrary dimension reduction scheme. It views the problem as a whole and
uses only “problem-driven dimension reduction schemes”, if any. Problem-driven means that
a dimension reduction is triggered only if certain evidence is found in the process of solving
a specific problem. For multi-variable function form discovery problems, the differences of

these two approaches are outlined as below.

1. Indirect approaches sometimes are simpler and more powerful than direct approaches,
depending on the properties of the problem to be solved. For example, to solve the

discovery problem of family of functions, an indirect method may be the best choice.

2. The major difficulty for an indirect approach is to combine the results of the subtasks

in lower dimensions into the solution of the original problem. The major difficulty
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to a direct approach is to handle the multi-dimension problem as a whole and ex-

tract necessary information to form subtasks and conduct simplification. Solving a

multi-dimension problem usually needs two steps: (1) simplifying the problem into

subproblems, and (2) combining all the solutions of the corresponding subproblems

into the solution to the original problem. Indirect approaches use the simplest schemes

to handle the first task but employ complex strategies to handle the second. Direct

approaches invest more work on the first task. They rely on the discovered evidence

to divide the problem. Hence less work will be needed for the second step. In an

indirect approach, the difficulties in combining the solutions of the subtask include:

(a)

(b)

(<)

identifying identical descriptive parameters. When the system includes more so-
phisticated primitives and data transformations, this will become a more serious

problem.

identifying the uniform transformation sequence. There could be several solu-
tions to the same problem, some are accurate and some are less. If each sub-
problem terminates with a different solution, the system must choose one from a
set of different transformation sequences. This may not be successful since some
transformations can only be identified based on successful estimates of the asso-
ciated parameter value. Such transformations include differential transformation
and factorization transformation. Moreover, certain transformations can only be

applied under condition.

finding an expression to express the descriptive parameter in terms of control pa-
rameters. Sometimes the system has to handle large scale errors due to inaccurate
estimation of the descriptive parameter from a single sample. Sometimes it has
to deal with incomplete observation data set. The missing information could be
due to the continuity constraint, the application of data transformations or the

specific application problem.

3. The computer resources required for carrying out direct or indirect discovery are

significantly different. For an indirect approach, each subtask is related to only one
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sample. When conducting a subtask, the system needs to process only a small portion
of the observation data set (a single sample). For a direct approach, the system has
to process all the observation data throughout the discovery process. Thus both the

time and memory space complexities are usually much higher.

4. Since the computer resources are fixed, a direct method has to work with relatively
coarse sampling scheme. Thus handling error propagation in a direct system is more

critical than in an indirect system.

5. An indirect approach usually does not make use of the “Cross-effect” in solving the
discovery problems’. Cross-effect can sometimes provide key information to a suc-
cessful function form discovery. Isolatedly carrying out the subtask largely limits the
capabilities of the function form discovery system constructed on the bases of indirect

approach.

6. Indirect approaches are unnecessarily sensitive to some secondary factors. The system
may be too fragile to the partition scheme. FFD may be confronted with difficulties
if it cannot observe all necessary functional patterns from a single sample. BACON, a
system that uses variable freezing technique, was reported being sensitive to the order

of which variable were put on hold first [20]. FFD shares the same drawback.

. Direct approach provides more flexibilities for constructing the discovery system. We

=1

have wider choices of transformations and primitives.

8. We may suffer particular difficulties when we want to provide an indirect discovery
system with certain domain knowledge. It is a common sense that not all domain
knowledge are meaningful in the dimension reduced situation. That kind of domain

knowledge are sometimes not usable to a direct approach.

7 In multi-dimension problems, the changes in one dimension affect the system in a different dimension.
Thix is called “Cross-effect™. For example, in non-linear theory, shear strains alone demand the application

of normal stresses as well as shear stresses.
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9. In many application circumstances, holding a variable constant is not practically pos-
sible. When the data is calculated by a simulator, the original control parameters can
be easily held constant. However, if the data is collected from experiments in a lab, it
is sometimes difficult to set the control parameters exactly the same. When a param-
eter is generated by a process based on some other control parameters, it is sometimes
impossible to hold that parameter constant. Moreover, sometimes the experiments
through which we collect observation data are not repeatable. It means that we have
to deal with inadequate observations with missing data. These application related

constraints limit the applicability of indirect systems.

Direct models are more general than indirect models. Although from the theoretical
point of view, an indirect model might be better in solving some specific problems, such
as the discovery of families of functions, an available direct model is still important for
practical reasons we have discussed above. However, to create a direct model system, we
will be confronted with great challenge in computational complexity, language design and

error control.

To accept the challenge, the FFD-II system was developed. It performs three dimension
transformations and recognizes three dimension functional patterns. Hence it demonstrates
the application of data transformation based approach as a direct model. From the language
design point of view, by taking direct approach, the underlying functional patterns can be
revealed by capturing the “cross effects”. From a single sample data set we can observe
only the regularity in a certain direction. To extract two-dimensional patterns from a set
of one-dimensional regularities is very hard. FFD does the extraction by summarizing only
the similarities among those one-dimensional patterns when it conducts a discovery task.
However, there are some equally important relationships among one-dimensional patterns,
for example, the differences between adjacent samples. Since a direct method can analyze
those more complex relationships utilizing the cross effects in between individual samples,
a better performance can be expected. The FFD-II system views the observation data
set as a whole, so that when a functional pattern is observed in an area of the functional

image, it will enable the system to successfully apply certain rules so as to form a functional
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hypothesis corresponding to that observed pattern. Moreover, the formation of subtasks in
lower dimension is fully automatic and only triggered by those already recognized patterns
during the discovery process. The final discovery can be made once the dominant solution
is found. The way to combine the solutions of subordinate sub-tasks with the solution of

the dominant sub-task is clearly specified by the output of the system.

The challenge of computational complexity and error propagation control are closely
related. To attain the same fine step observation data set, a three-variable functional image
will contain 3N? real numbers, compared with only 2N for a two-variable functional
image, where N is the number of observation data points. During the search, each search
node is associated with a transformed functional image. Thus the computer memory space
complexity is much higher for carrying out the search in a direct model than in an indirect
model. Apparently, the time complexity is also significantly increased in a direct model since
more data will be processed in transforming from one state into another and in performing
functional pattern recognition. Moreover, with limited computer resources, we are restricted
to use only relatively low order approximation tools in a direct model system. Considering
polynomial fitting as an example, to fit a curve to the second order polynomial needs only
three sample points, to the third order only four sample points are necessary. To fit a surface
using polynomial fitting, at least six sample points are necessary to get a second order
polynomial fitting and ten sample points must be used to get a third order polynomial. If
the available computer resources are the same for carrying out the search, the direct model
system will have to deal with a relatively small sampling size and poor approximation
accuracies. Hence, selecting proper numeric tools and preventing the propagated errors

from exploding are two crucial issues in the design of FFD-II.

4.3 An Overview of the System

diagram and major components Up to now, I have discussed the superiority of data trans-
formation approach as a general discovery model, the benefit of taking the direct approach,

as well as the importance of controlling the computational errors in a direct multi-variable
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function form discovery system. Now, I will introduce the design of the FFD-II system.
FFD-II is a data transformation based direct function form discovery system with adap-
tive error control. The system finds function descriptions in the language L to describe
an observation data set with three variables. The key idea of data transformation based
function form discovery is depicted in Figure 3.1. Its details could be found in Section 2.1
and 2.4. The function form description language L has been defined in Section 3.3.3. Di-
rect multi-variable function form discovery model has been shown in Figure 4.1. And the

adaptive error control will be introduced soon in this chapter.

Here, I will follow the common practice of first giving a diagram that overviews the
architecture of the entire system and then describing the system components one by one.
It is beneficial to do so for the purpose of clarifying the design and reserving an easy access
to the system for future extensions. When there is a need of more detailed specifications

concerning the numeric computations or implementations, a separate section follows.

The algorithmic architecture of the FFD-II system is illustrated in Figure 4.3. In the
figure, each box represents a major module of the system. Dashed box is used to represent
a group of modules that join together to achieve a major function. The arrows represent
the flow of data or function call with passing parameters. Main routines are organized

accordingly. I will summarize the system according to groups of modules.

There are four major groups of modules in the system. They are “Error Control”, “Data

Selection™, “Search Engine” and “Post Processing”. Descriptions are as following.

Data Selection: Before the execution of a discovery task, the original observation data
set is stored in a formated data file. The precision of the observation is given as
an input. The program starts with the Data Selection module. The module selects
a subset of the observation data set from the observation data collection, an evenly

distributed mesh grid of the size 101 x 101 sample triples® to initialize the search tree.

® It is assumed that the user has the full control of the experiments from that the original observation
data arc collected. If the observation data collection does not contain enough sample data points, the system
will ask the user to provide new observation data. However, the user can also force the system to carry out

the discovery upon whatever is provided.
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Figure 4.3: An Overview of the FFD-II Discovery System
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Besides initializing the root node with the functional image, the Task Initialization
module also generates a number of child nodes attached to the root. However, when
a child node is first generated, it contains only the specification of the transformation
that might be applied to obtain the associated functional image from the functional
image of the parent node. When the node is selected to be investigated and the
transformation is confirmed as valid, i.e. applicable and non-redundant, the system
computes the functional image and updates the corresponding attribute with it. If
the corresponding transformation is not applicable, the node will be a Dead EFnd Node
of the search tree. An “OPEN?” list is constructed at the stage of task initialization
for carrying out the best first search. All generated child nodes are added to the list.
During the execution of the program, the Data Selection module is also called by the
Noise Removing module. It monitors the data selection scheme entry of a node and

selects an adequate data set for the noise removing process upon requests.

Search Engine: This is the central part of the system. In this part, the Data Trans-
formation module is a set of numeric implementations of the data transformations
defined in £. The Primitive Fitting module recognizes primitive patterns. These
two modules are the discovery tools of the system. The Trensformation Validation
module checks the validity of a transformation that is going to be applied to a func-
tional image associated with a specific node, so that redundant transformations and
non-applicable transformations are prevented®. The Hypothesis Abstraction module
abstracts a functional descripiion hypothesis. The function of the Resource Manage-
ment module is to ensure that sufficient computer resources are available to continue
the search. It dynamically allocates memory for new nodes and releases the memory
allocated to dead end nodes. A Dead End Node is a node that does not have any valid
child node because either maximum search depth has been reached or the associated
transformation is invalid. If the module determines that computer resources are run-

ning out, it calls the Symbolic Translation module to terminate the job and generate

?Redundant transformation macros have been discussed in Section 3.3.4. The applicability conditions

were described along with the definitions of each transformation class in Section 3.3.1.
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output. The Search Control module selects the node to be expanded from the OPEN
list according to the “Best-First” rule. The search heuristics for carrying out heuristic
search will be introduced in Section 4.4.2. If all possibilities have run out, or in other
words, the system has completed an exhaustive search, Symbolic Translaticn module
is called to terminate the discovery job and generate the corresponding output. This

could happen for the following reasons

e The incompleteness of the description language C,
e The noisy irput and cemputaticnal errors,

e Inadequate control parameter settings — such parameters include maximum rank

(or depth) and the tolerable matching error!®.

If it is not for the first reason, we can re-configure the system or improve the quality
of the input data and perform a new discovery. Putting all together, the pseudo code

of the core search algorithm is described in Figure 4.4.

Post Processing: Post processing consists of three modules. The Hypothesis Verification
module verifies an abstracted function form hypothesis through comparing the orig-
inal functional image with the functicnal image generated by consequently applying
the inverse transformations to the corresponding fitting primitive. If the deviation!!
between these two images exceeds a tolerable level (a parameter input to the system),
the hypothesis is rejected and the Search Control module invokes the search for new
hypotheses. Otherwise, the function form hypothesis is confirmed as a discovered
solution and the solution is sent to the Symbolic Translation module. The Symbolic
Translation is an interface that prepares the output of the discovery result. It re-
ceives a solution from the Hypothesis Verification module, or particular parameter
values from the Resource Monitor or the Search Control module. In the first case, a
discovered function form is obtained.In the latter cases, the module will indicate the

reason the system failed to find a solution (either resource running out or the under-

' Refer to Section 3.2.2 on page 58.

"' The deviation is referred to as the Matching Error or Verification Ervor throughout this thesis.
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ProceDpURE TREE-SEARCH

INPUT : Initialized search tree which has a root node and its

associated child nodes.

Initialized search tree node list OPEN with a set of tree

nodes.

OUTPUT : An expanded search tree and a node where the search

terminated.

if OPEN = null, terminate the search.
Remove one node N with the lowest cost from OPEN.
Check the validity of N.
if N is invalid
then label N as Dead, and repeat from step 1.
4. Compute new functional image according to the

transformation and the parent image.

Perform primitive matching upon the current node.
if there is an acceptable fitting.
then Suspend the search. Abstract and verify
the hypothesis based on the current node
fitting. If the hypothesis is rejected by
the verification process, continue .
Otherwise the discovery task is ended

successfully.

7. Generate a set of child nodes under current node N
according to the available transformation classes in
system’s transformation tool-box.

8. Add the new generated nodes into OPEN, and repeat from
step 1.

Figure 4.4: The Best-First Search Algorithm
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lying function form of the observation data set being undescribable within the given

error tolerance). A best matching form along with matching error will be output by

checking the system’s record of all fittings that have been tried.

Error Control: This part of the system adaptively controls the error propagation of re-

peatedly applying data transformations. The Error Monitor module measures the

quality of a functional image by its expected error level and roughness value. If either

of these exceeds a corresponding preset threshold, the Noise Reduction module will

be invoked to improve the quality of the image.

1.

(V]

If it is the expected error level that exceeds the threshold, an image Refinementis
required. Noise Reduction first consult the data selection module to see if there
is any unused original observation data that could help to improve the quzlity
of the current functional image. If so, image refinement will be performed based
on those unused observation data and the transformation history of the current
node. If there is no more original observation data that could be used to improve
the quality of the current image, the Noise Reduction module will inform the
search engine to adjust the heuristic value for those nodes generated under this
node, so that low priorities will be given to the investigations under the node
whose underlying functional pattern has been distorted by the input noise or

computational error so badly that it could not be recovered by the system.

. If it is the image roughness'? exceeds the threshold, a polynomial smoothing

scheme will be used to smooth the image. Recall that one of the basic assump-
tions is that the underlying function form of any functional image is a class C*
function in the observation domain (page 59). As such, the pattern of an exceed-
ingly rough surface must not be the true functional pattern of the underlying
function form but a pattern of noise or computational error that should be re-
moved. Similar to the image refinement, the availability of additional observation

sample points, in the form of a high resolution image are required for carrying

'"* The measurement of roughness of a surface will be defined later in this chapter.
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Figure 4.5: The Data Structure of A Searching Node

out the image smoothing process.

The Error Monitoring module is called by both the Task Initialization module and
the Data Transformation module for controlling the error adaptively. Corresponding

fields of the search node data structure will be updated accordingly.

The modules introduced above are implemented with a data structure shown in Fig-
ure 4.5. There are three groups of information in the structure. The Standard Tree group
represents the standard tree structure, the Functional Image group contains the primary
node content that describes the associated functional image of the search node. In this
group, three entities are designed for controlling the noise. They are Image Roughness,
Error Leveland Data Selection Scheme. The Node Special group, provides information con-
cerning the transformation history. The Trans-Labelentity specifies the last transformation

that has been applied to generate the current node. It also distinguishes the current node
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as unexplored, explored or dead end node with different values.

4.4 Numerical Recipes

FFD-II is designed to find function forms from numeric data. Numeric computations are
involved in the discovery process. In this section, I shall specify the numeric tools that
have been used to achieve the goal. Since the major concern of this research is the discov-
cry methodology, only simple numeric methods with sufficient accuracy have been chosen.
Polynomial least-squares fitting is a widely used simple method. It is flexible and easy to
use. It also has relatively simple analytic properties. As such, it will be utilized to solve

several numeric computation problems in the implementation of the FFD-II system.

4.4.1 Numeric Data Transformations

Table 3.6 on page TG lists the transformations employed by FFD-II. Among them, most
algebraic transformations are easy to compute. The formulas to compute T'1 o, TL—olc are
given by Equation (3.42) and (3.43). And similarly, Trec, Tl{gc, Tixv , T[;‘f_, Tvex and

T can be easily implemented using the equations used to define them. Thus I shall

-1
Viex
not give more details concerning their computations here. The implementations of the
remaining two transformation classes are not that straightforward. I will describe them one

by one in this part.

Numeric Differentiation and Integration

Differential transformation Tp, and its inverse Tgl; are the most challenging transfor-
mations to be numerically implemented. The classic methods of computing derivatives are
based on certain difference schemes. However, this method only works well when there
is no noise on the sample data set and the partitioning of the observation domain is uni-
formly distributed in a rectangular mesh grid. Unfortunately, the transformed functional

image does not satisfy such a constraint. Although we can assume that the original input
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observation data could be in whatever form or distribution we like (sufficient observation
assumption, page 59), the distribution of a transformed functional image may not be dis-
tributed as expected. It could be distorted by the transformations that have been applied.
In other words, the original uniformly distributed observation mesh grid may no long be
uniformly distributed in a planar region formed by the two axes corresponding to the two
independent variables. Moreover, the data we used to compute the partial derivatives may
contain input noise and computational errors. Thus the traditional difference method could

not be used to compute Tp; for FFD-II.

The computation of T'p; in FFD-II is simple and intuitive. The method is based on
polynomial surface fitting. It is described as the following. Let O(,, ., be an observation

data set and w = f(u,v) be the underlying function. Let Py = (uq, vo, wo) € O(, ) be

a sample point of the image. We need to compute the partial derivative gé . Let
u=ug.v=vg
Sk = {(u(): Yo, on), (ulv vy, wl)a T (uks Vi, wk) } € O(u,u.w) (41)
be a set of distinct sample points such that
Vp(u,v,w) € O(u.v,w)r p ¢ Skn == (4'2)

V{u —u0)? + (v — v0)® > V{uwi — uo)? + (vi — vo)?
forall :=1,---,k

Si defines the set of k nearest neighbors of the planar point (ug,v). Now let w =
g(u,v, ) be a parameterized continuous function (a function template), where & is the
parameter vector. The expression of fitting k nearest neighbors with template function g

is a specification ¢ of the vector ¢ such that

>

(u;.‘u;.w; )esk

w; — f(ui, vi, @) ’ (4.3)

is minimized. If we write the resultant fitting function as w = §(u, v), then the estimated
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Figure 4.6: Approximation of Partial Derivatives by Surface Fitting

partial derivative value of the underlying function f at point (uq,vg) is

3 f —~ Bﬁ(uo, ‘UQ) (44)

du (uo,vo) - du

Figure 4.6 illustrates an eight-nearest-neighbor approximation scheme. In the implementa-

tion of FFD-II the complete second order polynomial function
g{u,v) = an cul+ajz-uvtap-vita-utay-v+ag (4.5)

is used as the template function and eight nearest neighbors are taken into account as a

local fitting point set (adjustable).

Having solved the problem of numeric computation of transformation Tp, I will then
describe the method to conduct the inverse transformation TD‘I}, numerically. First, let us

see what the problem is.
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We are given two functional images O and o

0= {(uisvi:wi) 1= 1|"'1N}
(4.6)
6 = {(u;,v;,tb;),iz 11"'1N}
and a hypothetical relationship between these two images
Toe(0) =0 (4.7)
We want to compute a functional image
0= {(u,vi, @) |i=1,---,N} (4.8)

from © and @, such that if the underlying functions of image @, O and Oarew=f (u,v),

w = f(u,v) and w = §(u,v) respectively, then

9 ~ ). (4.9)

Furthermore, if hypothetical relationship (4.7) holds, we need

f(u, v) = f(u,v) (4.10)

To solve this problem, we first reduce the dimension of the problem with a data grouping
scheme that groups a planar point set into subsets each of which represents a planar curve.
To do the grouping, we notice that all functional images are transformed images of the
original functional image, Oy, which is partitioned into a rectangular observation mesh grid

(Figure 4.7). That means O can be rewritten as
0= {(u‘i.js Vij» wt.J)liz 1,"',N$,]'= 11"'|Ny}1

and so do images @ and © . Therefore, we group the sample point indices of each image

into N, or N, groups according to the result of coordinates comparison as shown in
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Yy
' The Observation Domain
* Y3

Y2
n
I1 T2 T3 Tne =2 TN,

Figure 4.7: Partitioning of the Input
Equation (4.11).

St = {(1,k), (2,k), ---, (Nz,k)}, fork=1,2,---,Ny,

if |y, 1) — vanl 2 v,y — vaal
(4.11)

Sk = {(k, 1), (k,2),---, (k,Ny)}, fork=1,2,---,Nz,

otherwise.

Thus each planar point set corresponding to an integer k, { (uij, vij} l(i, J)E Sk} , Tepre-
sents a planar curve. We now define the image @ as the image of a function w = f(u, v)
such that

fi=g(u,v)

fo=1£.

(4.12)

As such, the image O can be easily computed by classic numeric integration along each

curve indexed by the corresponding set Sj !3.

In the process of verification 14, FFD-II views image O as the reversed image of & when

* The numeric values of the derivatives along cach curve is computed based on the partial differentials
Jw fOn and dw /dv. In the implementation of FFD-II, dw/du is approximated with the sample point values
of immage O. and 9w /dv is approximated by computing the corresponding partial derivatives of image O.
Tl initial values for numeric integration are calculated from the image O in a way such that the deviations
between O and O is minimized.

"' Tl verification problem is as such: “Given an original input functioral image data set Oy, a function
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the last hypothetical transformation applied to generate Ois T Dir - This is a compromise
between simple computation and the satisfaction of Equation (4.9). It is obvious that
Equation (4.9) is satisfied only if Equation (4.7) is satisfied. As a necessary condition, this

method meets the needs of hypothesis verification.

Linear Factors

FFD-II employs the factorization transformation described by Equation (3.48). The factor
(uy - cos@ + us -sin@ + C) is detected from the corresponding functional image. The
factorization transformation is only applied when it is hypothesized that the underlying

function of a functional image contains a linear factor, i.e.
fluy, us) = g(uy, u2) - (ug - cos@ + us -sinf + C). (4.13)

Therefore, we must have evidence that shows the existence of the factor. FFD-II extracts
the hypothetical factor through detecting lines in the contour image of u4s = 0, called

“0-contour” image. The algorithm is designed based on three important observations:
1. There is a factor u; -cos@ + us -sin 8 +C only if we can observe a correspondent line
u; -cosf +uz -sinf+C =0 (4.14)

in the Q-contour image when the observation domain is properly placed.

(V]

The observation domains of all functional images, original or generated, are simple
connected planar regions since the original observation domain is a simple connected

planar region and all the applied transformations are one-to-one continuous.

3. If D € R® is a simple connected planar region within the observation domain, there

exists a factor u; -cosf + u, -sinf + C and a planar point p(i;,%2) € D that is on

form description P¢e = (Dr, Dp) € £ , and a sequence of consequently transformed images corresponding
to each transformation in sequence Dt . Find Out how well D, matches with O by numeric computing

the deviation between the two image O and Dy' (Dp)”.
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the contour line, i.e.

4y -cosf +1iis-sinf+C =0,

then the line must cross the boundary of D . Furthermore, if point p is not on the

boundary of D, the line will cross the boundary of D at least twice.
A brief description of the algorithm is as follows.

Step 1: Iterate through the boundary of the observation domain, examine the value
of the dependent variable on the boundary sample point and compare the signs
of the values of each adjacent point pair. A zero value contour points is found
directly from the sample point value (if the function value is zero) or by a linear
interpolation (if the two adjacent points have different signs). Step 2 and 3 are

carried out when such a point is found.

Step 2: Starting from a point found in step 1, trace the 0-contour point into the
observation domain to form a tree presentation of the O-contour curves. Fig-
ure 4.8(a) illustrates an example of the tracking, where the arrows show the
tracking order. In the figure, there are two 0-contour curves of the underlying
function shown as light dotted curves, a straight line and an ellipse. Point p; is
the starting point on the boundary obtained from step 1. The shaded quadrilat-
erals are the observation cells1® in the coordinate plane uy = 0. New 0-contour
points are identified through cell by cell sign examinations and interpolations.
The key idea of the tracing process is that any 0-contour line will not end in an

inner cell.

Step 3: Split the found O-contour tree into simple curve pieces and fit each piece
to a line. If the fitting is acceptable, a straight line equation corresponding to a
curve piece is identified. Otherwise, the curve piece is discarded. Figure 4.8(b),
(c) and (d) show the groups of split 0-contour points and the fitting results.
Only (c) is an acceptable fitting.

'* An observation cell is a quadrilateral whose four corner points are (u,(,-',-, . u;(.-,,-,), (u1¢i41.5) » B2(i+1.5) )

(Migiss j41) » Y2erj+1)) a0d (Vigijan) s Ya(ijen)) -
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Step 4: If the iteration of step 1 has not been completed, continue from step 1.

This enables the algorithm to find multi-contour-lines.

Apparently, this simple method is relatively sensitive to noise. When noise level exceeds
a limit, the 0-contour tracking procedure will not be successfully completed. However,
the current research focuses more on methodology issues, only simplest numeric recipes
that do not require too much computer resources are chosen. Identifying a set of complex
curves from a set of planar points of its own is an interesting research topic. FFD-II
employs only linear factor to demonstrate the ideal of factorization transformations. Other
factorization transformation classes may be considered according to the domain knowledge

of the application.

4.4.2 Primitive Fitting and Search Heuristics
Primitive Fitting and The Error

Recall that we have defined two types of primitives, i.e. functional primitive and compo-
sitional primitive. Fitting a functional image to a functional primitive is simply a linear

fitting of least-squares. Let
Ov = {(vy’j)rvéi‘j)lv((ii’j)) ‘ i=1,-- ',NZ; j =1,-- ',Ny}

be a functional image data set and vgy = P(v1,v2) be the functional primitive fitting
resultant function of O, . The fitting error is the mean-square distance between surfaces
vy = P{v1,v2) and O, as described below.

Let pg = (v({'j ), v.(,i'j ), v(i'j )) be any sample point of the observation image dataset Oy .

The normal vector of the fitting surface at point ( (£9) (i'j )) is

ﬁij = ( v P‘Uo’ - /\[(Pvl P‘Uz) +1 ‘ (i.7) _ vg‘a') (4'15)

v =7 )y V2
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(a)
Planar Region of
The Observation /»\\
s ;
?
; Uy |
i[ uy S 2

(c) )

Figure 4.8: Extracting Straight Line in A Contour Image
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and the error distance vector is defined as

7

= (0,0, o - P (oD o).

G = (oD, oD ) - (oD D P (off LD yfimhich)) (4.16)

The deviation at point (z,j) is therefore defined as the dot product of the two vectors
dij = | &5 - 7ij | (4.17)

and the mean-square distance between the fitting surface and the image surface is

E,:J gd;} Nz-Ny - (4.18)

E is viewed as both the primitive function fitting error and the error between the initial
observation image and the verification image which is generated by numerically inverting

the transformation sequence starting from the hypothetical primitive pattern.

The recognition of the primitive pattern of linear compositional primitive is achieved by

a multi-line fitting scheme. Let us first give the problem statement.

Linear Composition Component Discovery Problem

Given : a functional image observation data set

0\-={(vli,vzi,v;)|i=1,---,N}. (4.19)

Find : a control parameter 8 so that the data set generated by

tt :vl"~cosﬂ+v2"-sin0

i=1,---,N

By =4 (t, o) (4.20)

represents a smooth one dimensional function vg = g(t) .

A weighted multi-line least square fitting is used to solve this problem. The algorithm

includes three main steps.



4.4 Primitive Fitting and Search Heuristics 132

Step 1: Find the range of the observation O, and partition the range into Np

adjacent close intervals

Si = [vmin‘*'(i— I)A; vmin+i'A]
Vmax — Vmj (4.21)
for i=1,---,Np; and A = —=&=___=a_
Np
where
Vinin = mm vl , v = max vl ,
i (:r v vy )EO\ { d} max (vl;.v._.i, "'di )EOv { d}
and number Np is set to be VN for N = |0O¢].
Step 2: Segment the sample points into Np groups
. . .. | for vje St; and
Gk = (Ull, ‘Ug’, UJ) .d R L.
(v, vs, v]) € Oy (4.22)

(for k=1,---,Np).
Note that the groups may not be disjoint.

Step 3: Jointly fit all sample points in each group G} to a common format straight
line vy cos @+vssin@—C. = 0, where 8 and Ci. (fork =1, -- -, Np) are the fitting
parameters. To reduce the chance of the fitting result undesirably influenced
by the segmentation scheme and the distribution of the sample points, a weight

function is defined as
w; _—w(ui v} v‘-)—-__ (6-{-(]_2'_’.—5'))2 (4.23)
: 1» Y22 %d A ’

where (1) it is assumed that the it2 sample point is in group G; ; (2) c; is the
center of the interval S; and A is the dimension of the interval; and (3) 4, a
small positive real number, is the offset that is used to adjust the shape of the
weight function.

The fitting problem is then a classic minimization problem, i.e. minimizing the
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objective function

Np i ] ”
F(0,C1,---,Ck)=z: Z (w_,--(vfcosG-i—szsinﬂ—Ck)) .
k=1 (vlj'vzj'vdj)eck

(4.24)

Clearly, it is a linear problem that could be easily solved.

Once the linear component is obtained, the fitting error is calculated based on the
measurement of the smoothness of two-parameter functional image represented by Equa-
tion (4.20). We assume that the sample points in the set Oy = {(t?,v})} are sorted
according to their t values, where t' = v{cos# + visind. The computing scheme is

described as the following.
Let (t?, vj) ,1 <1< N be any point in the set O, , define the d-neighborhood point

set S; as:

S;:{(ti,vg) t (t,v])) € By, and |t — ¢ ga}, (4.25)

where § is a small positive real number!®. Since Oy is sorted according to the corresponding
t values, we can assume that there exist integers k; and k,, 1 < k; < i< ks < N, such

that
S; = {(tkl,vj;l), (o oy, (zkz,v{;:)} : (4.26)

Now define a line that crosses points (tk‘ , vﬁ‘) and (t"", v;“'-') as:

Avg+ Bt+C =0

(4.27)
A=tk — b B=okt gk O =tk gl gk ol
The maximum and minimum deviation values are defined as
o — max Av}+ Bt +C
maX T e <j<ka VAZ + B?
(4.28)

. f[Avj+Bt;+C
€min = klg‘;}gkg /——A2 + B2

16 . . N — t |
I the implementation of FFD-II, é§ = *—; - -
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Thus the fitting error and the curve segment length at the itk point are given as

max{v}| /2, } —min{e}l 2}, if Ax0

§; = 7=k (4.29)
max(|emax| s |€min| s |€max — €min]), otherwise
s; = \/(ng _ 051)2 + (tkl — ko )2_ (4.30)
Finally, the compositional primitive fitting error is defined as
N-25.
E. = =3 t ] (431
N3 )

Note that the denominator in Equation (4.31) is not exactly the length of the two dimen-
sional curve. It is closely related to the length and less sensitive to noise, thus it is a better

choice than using classic discrete curve length formula.

Searching Heuristics

To carry out heuristic search, a cost function is used to identify the most preferred node to
be explored in each state. The following rules are considered in the construction of the cost

functions.
Rule 1 The node with the simplest functional image should be explored first.

Rule 2 The node with the functional image that is easier to be obtained from the

original functional image should be consider first.

Rule 3 The transformed functional image that has smaller expected error should be

more preferred.

The simplicity of an image is measured by how close it could be fitted to a primitive.
The accumulated rank values of the transformations that have been applied to obtain the
transformed image reflects the complexity of the possible solution in the corresponding
branch. The expected error level, denoted by ¢, which is traced automatically by the

system, could be considered as a factor of the quality of the solution that could be expecied
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to be obtained by further transforming the current functional image. Therefore, the cost

function could be define as

Cost = 10{~ gl (BtR) . . . 2 4§, (4.32)

where E is the functional primitive fitting error, E. is the compositional primitive fitting
error, R, is the accumulated rank value of the current node, R, is the rank value of the
transformation that will be applied to generate the image for a new node, and 4. is an
arbitrarily selected small real number!?. The cost value obtained from Equation (4.32) will
be assigned to a new generated node at Step 7 in the search procedure (List 1 on page 119).
Apparently, the designed cost function is only a rough estimation of how likely we can
find a relatively simple solution in a branch of the search tree. It is not monotonic since
a transformed image may have larger £y and E. values than the image it is transformed

from. This design demonstrates a way to conduct heuristic search in a tough real problem.

4.5 Achieving Adaptive Error Control

It has been pointed out Section 4.2.2 that the error ccntrol is an important issue in the
design of a direct three-variable function form discovery system. To achieve adaptive error
control, we need to compute the expected error level of a transformed image and know when
the image is not a smooth image. In this section I will discuss these two issues. First, the
theoretical propagated errors corresponding to each transformation will be analyzed. Next,
[ will define the “roughness value” of an image. Lastly, I will summarize the results with

the adaptive error control scheme used by FFD-II.

Before going into details, let me first introduce the symbols which will be used. In this

section, an error € is referred to as the Relative Error. Let ¢ be a numeric, and é be an

" In the implementation of FFD-II, §. equals 0.1 when the node is an unfavorable node, which means

that the associated image contains large scale uncoverable errors, and otherwise it equals 0.
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approximation of c, then the error of estimating ¢ with ¢ is

) fél, if ex=0
€(é, c) = (4.33)

Ic—'c'—-g I , otherwise .

Viewing € as the expected error level, which is a positive number, we also write
éx=(lte-c. (4.34)

Without losing generality, we replace + with + in the above equation in the formulation of

the propagated errors. In the discussion of errors, the following conventions are in effect:

1. The triple (i,, @2, %tg) denotes the accurate sample point of the functional image of

an underlying function ug = f(u;, uz2).

2. The triple (@, @2, @q) denotes the approximation of (#,, #2, #4). The error associated

with each parameter is denoted by ¢;, €2 and ¢z respectively:

€1 = e(ty, ),
€2 = E(‘l—l,z, 1.12) R (4'35)

€4 = €(q, Uq) -

3. Let T be a transformation and T be a numeric implementation of T, and (4, 2, %4)

be an approximation of (&, i&,, @g). Then the triple

(01, U2, U4) = T (i1, it2, iq) (4.36)
denotes the accurate transformed functional image sample point, and the triple

(01, B2, Ba) = T (i1, B2, @4) (4.37)

denotes the approximated transformed functional image sample point, where (ii;, @2, @q4)

is an approximation of i, @iy, #4. The expected errors associated with #; , ¥, and
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U4 are €, €& and & respectively, where

€1 = 6(1—}1, 1-)1) ,
& = c(5, ) , (4.38)

€4 = €(V4q, Ud) -

4.5.1 Error Propagation Analyses

To formulate the error propagations is to find the expressions that express the estimated
errors &, € and & in termsof €;, €2 and €4 corresponding to each specific transformation

sequence T . In other words, it is to find a mapping Er of the following
(er, €2, €a) 5 (&1, &, &) - (4.39)

From the error propagation perspective, there are two types of transformations — trans-
formations whose propagated error are related to the coordinates of the sample point, and
transformations whose propagated error are not related to the coordinates of the sample

point. Let us start with the examinations of the simpler type first.

Transformations With Propagated Error Not Related To The Sample Point

Coordinates

Transformations Tvex defined by Equation (3.53) and T'iyv defined by Equation (3.50)
do not change the error levels associated with each parameter since they only exchange
the position of the corresponding parameters. By the definition of Tyg¢, the accurate
transformed triple is
(%1, B2, %) = Tvex (1, 2, @)
= (i, Uy, @q)-

Thus applying Tvex to a data triple containing noises results in'®

(91,92, 54) = (01(1+&), ©2(1+&), 5a(l +2))

*For the case of 1 = 0, similar expressions can be used to obtain the error estimations. Same announce-

ment will not be made in the rest part of this section.
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= TVEX(ﬁl:ﬁ21ﬁd)
= ('_‘211-‘1:1-‘4)
= (@0 +e), (l+a), a(1+ e) )

= (B(l+e), 2(1+a), tu(l+e)).

This proves that the new error levels associated with each of the new parameters ( obtained
from applying T vex ) are

€1 =€, 6 =€, €4 = €4. (4.40)

Similarly, we can prove that the new error levels associated with each of the new parameters

( obtained from applying Ty ) are
€ = €4 , €2 == €2, €4 = €1 (4.41)

Since the error level are not enlarged, we call the Tvgx and Tpy transformations error-

preserving transformations.

TRree defined by Equation (3.44) is another error-preserving transformation. Let us

examine the reason now. According to the definition and using Maclaurin power series

y U2, T)

(=
= (ﬁ (1+e), (1 +ea), ;)
(

expansion, we can express
Trec (1, 2, %) =

uq(1 + €q)
U1(1+€1) u2(1+€2) ‘;:d (1—€d+0(642)) )

= (vl(l +e€1), 92(1 + €2), ﬁd(l—ed)).

Therefore, we have proved that the new error levels associated with each of the new param-

eters (obtained from applying TRrec) are

€1 =€ ) Ez = €2, €4 = €g (442)
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Transformations With Propagated Error Related To The Sarnple Point Coor-

dinates

The other three transformations employed by FFD-II, T1oc, Tric,and Tpye, are different
to those we have just seen in their error propagations. The error level through transforma-
tion will be changed depending on both the transformation applied and the functional image
itself. In the following formulations of error propagations, Taylor power series expansion

will be used whereas it is required without mention.

For the transformation T'po; defined by Equation (3.42), the propagated error level

estimation could be obtained from °

T'Loc (171, 4y, 174) = (1, @2, logiy)
= (a1(1+51), (1 + €2), log (da(l + ea) ) .
Note that when 0< ¢, <€ 1

log (ﬁd(l + 64)) = logiig + log (1 + €4)

=~ logtig + €4

= loguy (1+ Tog iy )

Since ¥, = @1, U2 = 12 and ¥y = logdy

o - - - €4
Tioo (@, @, 8) = (B(l+a), ball+e) logts (1+ oo ) )
= (1-)1(1 +61) , 52(1 + 62) , Ud (1 + lo;dﬁd ) ) .
It is therefore concluded with the error mapping corresponding to transformation T’ o as
f=a, b=, = . (4.43)
log 44

For the transformation Tp,c defined by Equation (3.48), the propagated error level is

' Without losing generality, we can neglect the absolute operator.
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identified as

T (ﬁ s ﬁd)z(ﬁ @ 4 )
Fac { T H2, 1y %25 iy -cosf + @s -sind + C

= (ﬁ1(1+€1),ﬁ3(1+€2)y

24(1+€q) )
;(1+€ ) -cos+i(l+e) -sin@+C /-

g

iy -cos@ + ity -sinf + C '

Since 9 =1, U2 = 1> and o4 =

ug(1+eq)
21(1l+ € ) -cosf+u(l+e€)-sinf +C
_ iy ) l+eq
) - cosf + ity -sinf +C tty€y - cos @ + is€s - sin b

Uy -cosf + 1, -sinf +C

i1€; - cos + iia€a -sinf )

= vd'(1+€d). (1_ ﬁl-c050+ﬁ2'5ing+c

. it €1 - cos @ + tizea -sin b
—~ vd-(1+ed-— — — - s
) -cos@ + @ty -sinfd + C

i€y - is€s - Sin6 .
where | 1% cosf + ugf' 7 < 1 is assumed, thus
) -cos@ + ity -sinf + C
TF.\C(ﬁlyﬁ'Q)ﬁd> = (61(1+€1),52(1+€2),

1-1161 'C050+ﬁ2€2 -sin 6@ ))
i) rcosf + 1y -sinf +C )

Uq - (1 + €4 —
We can therefore conclude the analysis with the error mapping corresponding to transfor-

mation Tg,- as

_ - _ i€ ~cosl + tiges -sinf
= s = €3, = = p - . .44
=, e 21 M=t %) -cosf + iz -sinfd + C (4.44)

The transformation Tp is relatively hard to analyze. Since the first two parameters
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in the variable triple will not be changed by the transformation, it is obvious that

El =€, Ez = €3. (4.45)
To figure out the propagated error €;, we should note that the error can be split into two
parts:

Computational Error of Differentials which is the numeric computation errors in-

troduced by the approximation method described in Section 4.4.1;

Propagated Error which is the theoretical difference between the underlying func-

tion’s derivative values of a clean image and the noisy image.

Let us analyze them separately.

Propagated Error of Differentials

Let (z, y, z) denote the accurate sample points of a function form discovery problem
and z = f(z.y) be the underlying function in class C>= . Let (Z, §, Z) denote the

corresponding noisy sample points. Assume that:

z=z+ a7,y
y=79+B(z,7) (4.46)

-4

Il
]

- 7(51 37)
where a, B and v are the absolute error functions, and z = g(Z, 7) is the corresponding
underlying function. We would like to find out the propagated error, i.e. the difference
between g (Z,y) and f(Z, 7).
Substitute Equation (4.46) into z = f(z, y) yields:

9(2,9) = f(2+a(z,9), §+B(Z9)) + (% 9).

Therefore, if we assume that ||, (8], |7], |ail, |8, |vi] < 1, which means that the noise

level is relatively small, we obtain

942, 9) = fi(Z+e,5+B8) -(1+al)+f) (+a,5+8) -Bi+7]
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= {(H+afl+Brl) (1+ai)+
(fy+afp+Bfy)-Bi+7i} (2 9)
{ £+ (alfi+ B+ vi+afli+B£4) } (2, 9)

Q

Transferring these to relative errors and for the simplicity reason, we assume that, for a

majority number of observation sample points2°,
[Zailx e, 8l = e, [Zvii e (4.47)

where €, €3, €3 < 1, we have the simple propagated error estimation

| Jdz f/ El_fl €2 g1 € € " € en
< — +2fl4+4d 8 + 2l
s =l RES . zi= TRE] Z zfx:: ] J' (4.48)

"If;’” 1l

Computational Error

The error analysis we have seen solved the problem of estimating the difference between
Tow( @ ,%2,ig) and Tpe( @y , Ea, &g ). It is one of the two parts of the error that contribute
to the propagated error of the differential transformation. Recall that all transformations in
the discovery system are implemented numerically. The second part of the propagated error
is the error introduced by the computation of T'pye( @y , @2, ig ) using the chosen numerical
method. In the implementation of FFD-II, Tp; is calculated by a fitting scheme (Refer

to Section 4.4.1). We now analyze the error associated with this computation scheme.
Let:

(1) po = (0,0) be the point at which we numerically compute the partial derivative
of a C. function z = f(z,y) using our fitting method;
(2) pi, i =1,---,8 be the eight nearest points involved in the fitting, and Fp =

{pili=0,---,8} denote the fitting point set;

(3) A be the maximum distance pgp; (for i =1,+.-,8);

“"Considering that the error is also monitored by the measurement of surface roughness that will be

discussed soon. the assumption will not mislead the proposed error control strategy.
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(4) —A<z< A, -A <y< A be asmall planar region;

{(3) P(z,y) = @11z% + @122y + @22y> + @1z + G2y + @9 be the least-squares fitting
polynomial; and

(6) P(z,y) = a11z2% + a12zy + az:y® + a1z + asy + ap be the polynomial of truncated
Maclaurin series of function z = f(z,y). Thus,

_of _ o

a; = as = .
17 3z 2 Oyl

¥
Po

Since

(i) function f(z,y) is pertaining to class C>, we can assume that there is a
positive constant K such that the corresponding derivative values are bounded
by K ;

(i) 2 \° 3
(i) fz,9) - Ple,y) = (a4 +aL) f6.0) =09,
where —A <£§< A; and
(iii) P(z,y) is the least-squares fitting and considering the existence of the polyno-

mial function P(z,y), it must satisfies:

f(z,y) - P(=z,y) = 0(A%)

_ (4.49)
P(z,y) — P(z,y) = O(4?)
at each poiut p;.
we would like to prove that the second order polynomial
15'(::, y) = P(z,y) - P(z,y) =a+ bz +cy+ dz? + ezy + fy?, (4.50)

where the coefficients are the subtractions of the corresponding coefficients in P and P,

satisfies

b=0(A?), (4.51)

provided that the fitting point set is subjected to certain constraints.
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[t is obvious that if the fitting points is scattered very close to a line, as shown in
Figure 4.9(b), the functional image of the resultant fitting polynomial may not be very even,
even when Equation (4.49) are satisfied. To prevent this from happening, we assume that
point py adequately close to the center of the point set Fp (illustrated by Figure 4.9(c)),
i.e. there exist five points E, N, W S and V inset Fp, such that

e the distances between any points pair are O(A);

e if I is the point where lines NS and EW cross, and x denotes the distance

between points I and pg, then

k= 0(A%); (4.52)
e Angle ¢ is not close to either Q or = .

Under these conditions, we now prove b= O(A2?).

Without loosing generality, we assume that ¢ = w/2 (Refer to Figure 4.9(d) ). Other-
wise, a coordinate transformation can be applied to simplify the situation without changing
the first order properties (of our interests) of the polynomial of Equation (4.50). For the
convenience of discussion, we assume that the coordinate origin is initially at point pg .

Moving the origin to point I results in a transformed polynomial of (4.50):

P(Z,5) = @ + bz + ey + dz2° + ez + fi°. (4.53)
From given, we have
( B(E) = a+bDg+dD} — 0(aY) (E1)
B(W) = a-btDw+dDj = 0(A3) (E2)
B(N)y = a+é&Dny+ fD} = 0(A?%) (E3)
| P(S) = a-&Ds+ fD = 0(A?) (E4)
PV) = a+bzy+cjy
+dzl? +ezvge + f5; = O(Ad) (ES5)
P(po) = @+ b, + Cijp
\ +dzZ2 + &Zpydp, + fi2 = O(AY) (E6)
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4.5 Achieving Adaptive Error Control 146

where Dg,Dw, Dn, Ds, zv and yy are infinitesimals of the same order of O(A),
and z,, and y,, are infinitesimals of the order O(x) = O(A?). Now we prove @ is an
infinitesimal of order O(A?®) by contradiction. Let us suppose @ = O(A™) for integer n < 3
(when n < 0 @ is an infinite). Then, equations (E1) and (E2) imply

bDg+dDEZ = O(A™) (E7)
~bDw +dD3 = O(A™). (E8)

Eliminate b from above yields

d-(DEDw + DgD3) = (Dg+ Dw)-0O(A™). (E9)

Clearly, d = O(A™"2?) so that, by comparing the order of each term in equation (ET7)
or (E8), b = O(A™'). Similarly, using equation (E3) and (E4) it can be proved that
¢=0(A""!) and f= O(A""?). By comparing the orders of each term in equation (E5)
we find the order of the only unknown symbol & = O(A™"~2). Now we check with equation

(EG) to figure out the order of @. In the equation
G+ (b2py + Chpy + dEgy + EZpope + fl,) = O(A7)

considering the assumption of Z,, , #», = O(A?) and the results we have proved, the terms
bZ,, and &, areof O(A™*!) and the terms dz 2, &Z,,7,, and f§2 are of O(A™+?).
Considering the assumption of n being less than 3, term @ must be of O(A™*+!). This is

contradictory to the assumption of @ = O(A™) . Therefore,

a= O(Aa) .

According to the result of @ = O(A?), we can use the same method to prove b, & = O(A?)

and d, &, f =0(A). Since

L1}
!

z + Zp,

Y+ Upo

<
il
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the following orders could be figured out:

( a = a+b Ty, +C- Ypg
+d-Z2 + & Tpip+ f- U5 = O(A?),
b = b+2d-Zp, + € Y = 0(A?),
d e = e+é&-Zp+2f 0(A?),
d = d = 0(A),
e = € = 0(4),
f = F = 0(4).

Recalling the definitions of P(z,y) (Equation(4.50)), P(z,y) and P(z,y) (list items

(5) and (G) on page 142), we can conclude the discussion with the estimated computational
error

5. = 0(A?). (4.54)

K

The above proof is also valid when condition (4.52) is replaced by condition A<l

4.5.2 Surface Roughness and Smoothing
Roughness Measurement

Let O ={(uj, vij,wij)|i=1,---,Nz;j=1,---,Ny} be a functional image sample
point set. We define the roughness of the surface at an inner point (7, j), where 1 <<

Nz, 1< j< Ny, as follows.

Let 21

’

fo=wis1j, i=wi;— fo, fa=wit15— Jfo,
t = \/(_uu — i1 )2 + (vij — vi-1,5)%,

) ta = \/Eui«f-l.j —uij )2+ (viprj~vij):+t,
|-t fel

N EY B

Clearly, if

*! Sce Figure 4.10 for graphical illustrations.
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Pz(tg, f2)

Pi(ty, fl) ...............

Figure 4.10: An Illustration of The Roughness Measure

e welet f = F(t) be a continuous function such that f; = F(¢;) for i=0,1,2;

® we assume that ¢, = 2¢; and g < ,Popz ; and

e we let r and ¢ denote the radius and angle of the circular arch PP, P> ,

then

p__roreoster) o |BR| (4.55)
i PP l 2rsin($/2) 8 8r

which is the approximated curvature value of f = F(¢) at point P; multiplied by the
dimension of the length of the small curve segment and divided by 8. We assume that for

a smooth curve point, r = O(1), thus:

7!

—};;a = 0(|RR|) .
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Similarly, let

90 = Wi j-1, 91 = Wij— go, g2 = W; j+1 — Jo,

s1= \/( Ui — i1 )2+ (vij—vij1)?,

Sz = \/( Ui — ;)2 + (vijs1 —vij )% + 51,

_ 18291 — 8192

\ - J‘q% + S%

Hence, the Roughness Value at the surface point (i, j) is defined as

1 4

73
J \/tgz + f22 322 _*_922

Roughly speaking, this measurement is a sum of second order curvatures of two un-parallel
curves on the surface that cross at the surface point (Z, ) multiplied by the corresponding

length of the curve segments.

The Roughness Value of a surface is the averaged integration of the roughness elements

at each surface sample points

Nz-1Ny-1

e=| Y. Y e /(Nz-2)/(Ny-2). (4.57)

i=2 j=2

The measurement given above is based on the measurement of curvatures of the curves
in a curve set on the surface. The observation data set (O presents the surface by a net
of discretized curves on the surface. Although Equation (4.56) is not the exact curvature
measurement of the surface at the corresponding point, it is necessary that pg;; = O(A)
for A being the averaged partitioning size of the mesh grid, provided that the curve net is
reasonably close to a uniformly generated net 22. The quantity of the defined roughness value
at a mesh grid point responses to non-smooth noise pattern with a large value. As such,

the defined surface roughness measurement can meet our need of capturing the roughness

pattern of the surface caused by noises and errors.

** Uniformly Generated means that there is a small number A — the partitioning size, such that the

ohservation data sct is
O = (uij,vijowij)={w1+i-A, v +37-A, wij)
for t=1.--- . Nxz:5=1,---,Ny.



4.5 Achieving Adaptive Error Control 150

Smoothing a Surface

Differential transformation is the most important transformation that allows a data trans-
formation based function form discovery system to have the flexibilities of finding complex
function form expressions. However, it is more difficult and inaccurate to compute the
transformation numerically than other algebra transformation. To fully take advantages of
data transformations, the ability to reduce the computational errors is an important issue.
Before we chose the smoothing method, there are a few things that should be borne in our

mind.

o The smoothing scheme must add, as less as possible, specific functional pattern of its
own to the image to be smoothed. Or, at least no significant functional pattern will

be added.

o In the three-variable cases the smooth scheme should be able to handle observation
data set that is not regularly distributed. In other words, the mesh grid might not be

uniformly distributed rectangles.

@ Since the smoothing treatment will be called from time to time and the size of a single

observation data set are usually large, it is better to be a simple method that works.

These are the criteria for designing the smoothing algorithm for FFD-II.

Moving window averaging is probably the simplest and the most widely used noise
removing technique. If the mesh points are adequately placed and the underlying function
is constant, or is changing linearly with the independent variables, no bias is introduced into
the result. A bias is introduced, however, when the underlying function has a nonzero second
derivatives. To prevent the bias introduced due to nonzero curvature, Digital Smoothing
Polynomial[18] is an alternative. In one dimension cases where {(¢;, f;),t = 1,2,---} is the
sample data set, instead of directly replacing data value f; at each sample point 7 by a

linear combination:

%= Y cfe

ncarby of i
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we replace f; by p;:
pi = P;["] (%)

where P[™(t) is the nt? order polynomial that is the result of fitting the sample points
within the it moving window by least-squares. This idea is borrowed to solve our smoothing

problem.

Let O = {(uij,vij,wij)|i=1,---,Nz;j=1,---, Ny} be a functional image sample
point set that need to be smoothed. We choose a 5 x 5 moving window, i.e. let the fitting

point set at a point (i,j) be?3:
{ (Uittjth s Viglj+h s Witlj+h) }l, h=-2, —1,0,1,2} , (4.58)

and let the second order two-dimensional polynomial:

z = Pj(z,y) = a(z—uij)>+b(z—uj)y—vij)+c(z—w;)’
+d(z—uij)+e(y—vij)+f. (4.59)

be the fitting polynomial. Clearly, second order curvatures of the underlying function do
not introduce bias by choosing a complete second order fitting polynomial. However, bias
are introduced by possible higher order curvatures. Choosing higher order polynomial may
be a solution to overcome this problem. But at this moment, we limit the complexity of

the entire system with the simplest possible choice.

The laborious least-squares fitting is linear. We solve it by L U decomposition. More
luckily, we need only to find the constant term f. This simplifies the back-substitution

procedure of LU decomposition process.

In general, a smoothing algorithm does not improve the precision of the data. In the
FFD-II system, the smoothing method is applied to a non-smooth image recursively until
the image is sufficiently smooth. Since the smoothing method introduced in this section is
an averaging based method, it works better when there are sufficient sample points involved

in a single computation of the average. Thus the smoothing process will only be triggered

** Note that special attentions must be paid to the points on and next to the observation boundary.
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when there are extra sample points, available in the form of fine step image, that could be

used to help the image smooth.

4.5.3 Error Monitor and Adaptive Control

Smoothing algorithms do not improve the precision of the data. It only remove the high
frequency oscillations from the data. A more effective way to improve the precision of the
observation data is to use more sample points with finer observation step size. In the FFD-
IT system, the smoothing method introduced in the last section is applied recursively to
smooth the image until the image is sufficiently smooth. An image refinement scheme is
used to improve the precision of the image when the estimated error level is too high. The
refinement is implemented by using fine step observation data with larger fitting windows,
i.e. windows with the same dimensional magnitude and more sample points. The system
monitors the expected error level and the smoothness of the transformed functional image

to decide which treatment is needed.

Summarizing the results of error analyses conducted in Section 4.5.1, the estimated error
propagations of each transformations are tabulated in Table 4.1. The estimation formulas
of T'vgx, Tixv, and TRec are exactly their theoretical results. T'poc and T'r,c are roughly
estimated. In the error estimation of T'ro¢ , log(@q) is replaced by log( ﬂ"’“'—‘;ﬁd*m), and in
the error estimation of Tf,c, maximum error level of the three attributes is adopted. The
error estimation of T'p,r is relatively rougher. In the theoretical result, Equation 4.48 is

Gdny —itd,_:

2
replaced with max{e;, €2, €3}, and Equation 4.54 is replaced by (—(mgﬁ?) . The reasons

for estimating the errors in this way are list below.

e« The purpose of estimating the propagated error level is to capture the order of the

expected error level. We require only
O(€) = O(e(p)) (4.60)

where € is our estimated error level and ¢(p) is the real error at any observation

sample point p. When the functional image is sufficiently smooth and the mesh grid



4.5 Achieving Adaptive Error Control

T Theoretical Estimated Error
. ed Err
rans Results(Eq.)
Tvex (4.40) éfl=¢€,& =€, =¢
Tixv (4.41) € =€, E2=€,&=¢
TRrec (4.42) =€, =¢€,&=¢
- - €4
TLOG (4.43) € =€, €2 = €3, €4 = p =
udmnx — udmin
log .
TF,\C (4~44) €& =€ 1 € = €2, € = maX{E]_, €2, Ed}
(4.45), €, =€, & =¢2,
Tor 4.48), (454) | & Fmas ~ T | *
( . )1 ( . ) €d = (Nx+Ny)/2 + max{fll €2, fd}

Table 4.1: Estimated Error Propagations

has not been badly distorted, the requirement will be satisfied.

153

e Qur interest is to compute the “overall averaged order” of the the propagated error.
P g g

A rough estimation is sufficient for serving as an error treatment heuristics.

® The estimated error is largely different from the true value at those points where the

functional image is not smooth. For that kind of exceptions, the designed smoothing

heuristics and procedure will take charge of the situations.

FFD-II achieves the error control based on the following two heuristics.

Heuristics E1 : If a functional image associated with a searching node has too large

expected propagated error level, it may not be desirable to find a solution based

on the image.

Heuristics E2 : If a functional image is not sufficiently smooth, measured by the

roughness measurement g, the image should be treated with surface smoothing.
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In the former case, the best way to reduce the error is to refine the image with fine step
observations when the primitive fitting error is sufficiently small>*. FFD-II first checks
if there are more observation data available for refining the current image. If yes, image
refinement is conducted. Otherwise, the system marks the corresponding child nodes as
unfavorable nodes by increasing the cost value of the corresponding child nodes. In the
latter case, surface smoothing will be called recursively to smooth the image until a smooth

surface is obtained.

“'If the primitive fitting error exceeds a certain limit, for example ten times the corresponding expected
error level. we have evidence to believe that the image is not primitive. Smoothing such an image is not

naecessary.



Chapter 5

Experiments

5.1 The Organization and Common Background of the Ex-

periment

The implementation of the proposed methodology is the FFD-II system. It is written in
C-++ programming language with over 13,000 lines of code. The experiments are run on a
SUN SPARC Ultra-1 machine, that is equipped with a 167TMHz CPU and has 62MB RAM.

This chapter is a report of the experiment results.

Before the discussion of the experimental results, two detailed examples are presented
in the section that follows. The purpose of presenting the examples is to help to understand

the proposed methodology. The experiments are then organized into four categories.

The first group presented in Section 5.3 is designed to demonstrate the general discovery
capability of the system based on the proposed function form description language described
in Section 3.3. To minimize fortuitous results, a random test function form construction

scheme is used to select function forms to be tested randomly.

The second group of experiments presented in Section 5.4 is a comparison between the
proposed direct three variable function form discovery method and the indirect method

using variable freezing technique. As mentioned befcre, FFD was designed to discover

155
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function forms from two variables. It has been extended to discover function forms with
extra parameters, known as families of one dimensional functions, using the parameter
freezing technique. The extension is subject to certain constraints such as the “Primitive
Union” and “Simple Descriptive Parameters” assumptions. However, the comparisons in
the second experiment group will be made against a more general indirect function form
discovery system, namely “Indirect-FFD” which will be introduced before the experiments
are discussed. To demonstrate the superiority of the proposed direct approach over the

indirect approach, special function forms are chosen.

The third group of experiments, reported in Section 5.5, is designed for the purpose of
demonstrating the system’s ability to model observations from more complex function forms
that cannot be expressed in terms of a few fundamental functions. Randomly generated
two-dimension surfaces are chosen as test samples. The emphases is on the meaningfulness

of the discovered expressions.

The last experiment group, described in Section 5.6, tests the performance of the error
treatment design of the system. Noises are added to the simulated observation data set to
produce input observations. Different statistics will be used to show the effectiveness of the

proposed methodology.

The test function forms and all intermediate transformed function forms are assumed
to represent continuous functions in their corresponding observation domains. The compu-
tational complexity of the algorithm is not reported!. Instead, I will report the number of
nodes created and the number of primitive matches the system attempted before it reached
the solution in a discovery task. These values reflect the efficiency of the designed search

and redundancy elimination heuristics.

' Roughly speaking, the time consumed in computing a node is lincar to the size of the observation data
sct associated with it. and the actual time complexity depends on the numeric tools we chose to carry out
data transformations and primitive matchings. The current system stores and processes a functional image
inn the form of double precision floating-point data. This consumes large amounts of memory space and CPU
timec. The CPU consumption of the experiments reported in this chapter range from 2 seconds to about half

an hour. depend on the complexity of the discovery task.
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The system is run under the following default system parameter settings unless otherwise

stated.

Sampling: In each experiment, the observation domain is carefully arranged to
conserve the continuity assumption. The partitioning sizes are chosen to be

from 0.008 to 0.02.

Accept A Fitting: The threshold ep is set to max(5 x €,, 10™%), where ¢, is the ex-
pected error of the corresponding functional image associated with each node.
The system estimates €, according to the original precision, the step size, trans-
formation history of the node and the function range of the corresponding
images>. When a transformed functional image can be fitted to a primitive
with a fitting error® less than the threshold, the fit will be accepted, a hypoth-

esis will be abstracted, and the verification process will be triggered.

Accept A Hypothesis: The threshold e for accepting a hypothesis is set to
max(€,, 107°). This is referred to as the Matching Error Tolerance Level &,,,x
in our problem stateinent (Section 3.2.2). When the deviation measured by the
root-mean-square distance? between the matching image (obtained by numeri-
cally rcversing a fitting image with corresponding reverse transformations) and
the original observation functional image is less than this threshold, the system

will terminate with a successful discovery.

Smooth I'mage and Error Corrupted Image: When the computed roughness value®

of an image is greater than

0 Area of the Observation Domain
Number of Sample Points

b

the image will be viewed as a rough image. A surface smoothing process will be

triggered. When the computed expected error of an image is greater than the

* Refer to Section 4.5.3.

¥ See Section 4.4.2 for details.

' Refer to Section 4.4.2.

* Refer to Section 4.5.2 for the definition of roughness value.
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square root of the original input noise, the image will be viewed as an image
with unacceptable level of errors. Image refinement will be triggered. However,
in both of the cases, if there are no additional sample points, the treatment
process will not be triggered. Instead, the system will assign low priority to all

nodes in the current branch.

These settings are based on the consideration of the accuracies of the numeric tools that
have been chosen. We should note that numeric integration is less sensitive to noise than
numeric differentiation®. Hence it is reasonable to set exq < ep . The arbitrary value 103
represents the basic numeric fitting and integral accuracies and ¢, adaptively takes into
account the accuracy of the observation data set upon which the numeric computations are
carried out. Considering the time and memory space intensities of the system, we also set
the maximum search depth to 7 and the maximum rank of a function form to 10. We will

identify changes to these settings whenever necessary.

5.2 Two Detailed Examples

Examples are helpful for understanding the proposed discovery mechanism and the subse-
quent experiments. In this sections, we will see two detailed examples that demonstrate the

two different termination primitive types of the system and how the system works.

5.2.1 Example 1: Termination by Primitive Function Fitting

The first function form to be discovered is
z=1+¢€FY (5.1)

The simulated observation data set is obtained by partitioning the observation domain

(z,y) € [-1,1; —1,1] into a 101 x 101 mesh-grid. As such, the observation data set contains

® Major errors are introduced by the approximations of differential transformations in the process of find-
ing a matching hypothesis that involves differential transformations. The verification process only contains

alzebraje and integral transformations.
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solution

Figure 5.1: The Search Tree — Example 1

101 ;< 101 = 1021 real valued 3-tuples and can be expressed as:

z;=-1+40.022,:=0,1,---,100,

O ={ (20,51 + 5%
y: = —1+0'02j1 j: 0113 "'1100

The discovery steps are illustrated in Figure 5.1 and detailed information is given in
Table 5.1, where “Trans.” shows the associated data transformations, “Cost” refers to the
value of searching heuristic cost function corresponding to each node, “Exp-Error” stands
for the estimated error propagation, “Pf-Error” is the functional primitive fitting error, “Pp-
Error” is the compositional primitive fitting errors and “M-Error” is the matching error of
hypothesis verification. The number shown in each node in Figure 5.1 represents the order

in which it was explored. The discovery is terminated at step 66.
Let us describe the discovery process step by step. After initializing the tree root {Node

1) with the given observation data set O, the system starts to search for the solution:

Step 1: The system attempts to find a primitive function matching the image O by fitting

it to primitive functions. The best fitting is

z =0.1778z% — 1.0641zy + 0.1778y> + 1.9388,
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Step || Trans Cost Exp-Error | Pf-Error Pp-Error M-Error
1 None - 1.00e-12 5.130e-02 | 2.117e-05 -
2 Troc 9.01e-06 1.00e-12 1.121e-02 | 3.346e-05 -
3 Trec | 9.01e-06 | 1.00e-12 1.576e-03 | 5.830e-05 -
4 Tvex 9.01e-06 1.00e-12 | 5.130e-02% | 2.117e-05 -
10 T 9.01e-05 4.00e-04 1.917e-01 | 1.362e-03 | 1.1483e-02
11 Toiw 9.01e-05 | 4.00e-04 1.917e-01 | 1.362e-03 | 1.1483e-02
15 TRec 3.35e-04 1.00e-12 5.049e-02 | 2.071e-05 -
16 Tvex | 3.35e-04 | 1.00e-12 1.121e-02 | 3.346e-05 -
24 Tvex 5.83e-04 1.00e-12 1.576e-03 | 5.8380e-05 -
32 Tvex 8.52¢-04 1.00e-12 5.049e-02 | 2.071e-05 -
38 Toewr 3.35e-03 | 4.00e-04 2.039e-02 | 4.537e-02 -
39 Towr 3.35e-03 | 4.00e-04 2.039e-02 | 4.537e-02 -
42 Tow 5.83e-03 4.00e-04 2.012e-03 | 4.484e-01 -
43 Toiw 5.83e-03 4.00e-04 2.012e-03 | 8.201e-01 -
46 Toiw 8.52e-03 4.00e-04 1.888e-01 | 3.270e-03 -
47 Tow 8.52e-03 | 4.00e-04 1.888e-01 | 3.270e-03 -
52 Tvex | 2.51e-01 | 4.00e-04 1.917e-01 | 1.362e-03 | 1.14553e-GZ
53 || Tracl v | 2.51e-01 | 4.00e-04 4.698e-02 | 2.303e-05 | 1.346e-02
56 Tvex 2.51e-01 4.00e-04 1.917e-01 | 1.362e-03 -
57 TF.\ci z | 2.51le-01 4.00e-04 4.698e-02 | 2.320e-05 | 1.3126e-02
G6 Troc | 2.30e+00 | 4.00e-04 1.355e-03 | 1.467e-05 | 1.3118e-06

: italic denotes the value is obtained from parent node.

Table 5.1: Primitive Fitting and Matching of Each Step of Example 1
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and the fitting error is 5.130E-2. It is not an acceptable fit considering that the
expected error of O is €, = 1.0E — 12, the precision of 64 a bit floating-point number.
Thus ep = 10757,

To find a compositional primitive matching of the image O, the system uses the

multi-line fitting algorithm. The best fit is
—0.0029z + 1.0000y,

and the fitting error is 2.117E-5, which is not acceptable. It is concluded that O is
not primitive.

The system then constructs six child nodes, corresponding to the transformations
listed in Table 3.6, without computing the associated images. It assigns each new

node a cost value computed accordingly, and puts them into a sorted list “OPEN”.

Step 2: The node with the least cost value is chosen and removed from the “OPEN?” list.
The system determines that the associated transformation, T'10¢, is applicable. Data
transformation is then carried out to generate a new associated functional image 0.
Fitting processes are called to attempt to match a primitive to the image. When it is

determined that O, is not primitive, more nodes are added to the “OPEN?" list.

Step 3 and 4: The system selects nodes from OPEN to explore. Step 3 and 4 explored the

child nodes of the root with associated transformations T'rgc and Tyvex , respectively.

Step 5: The popped node from OPEN is a child of Node 1 and requires applying trans-
formation TF,c. Since no line pattern can be found in the contour immage of O, this

transformation is not applicable. The node is simply eliminated.
Step 6 through 9: Four more nodes are eliminated from search tree.

Step 10: At this node, the compositional primitive pattern fitting error is ¢, =1.362E-
3. According to the error estimation scheme introduced in Section 4.5, ¢, =4.0E-4.

€p < 5 X €,, thus the associated functional image is primitive. As such, a function form

" Refer to page pg:sys setting for the threshold sectting.
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hypothesis is formed and a verification procedure is called. By numerically inverting
the transformation Tp; and comparing the inverted image with O, the computed
matching error is found to be 1.148E-2, which is larger than ¢,,. Thus, the hypothesis

is rejected and the search is continued.

......

Step 66: The system fits the associated functional image of this node to
z = 0.0001z2 + 1.0008zy + 0.0001y>,

with a fitting error of ¢, =1.335E-3, while the expected error of this node is €, =4 . 0E-4.
Since ¢, < 5 X ¢€,, the image is primitive. By numeric verification, the function form
matching error is found to be 1.476E-5, which is less than ¢,. Thus a solution is

found and the system reports the discovery results as shown in Figure 5.2.

TAsK refers to the data file name that was input as the observation data set. TERMI-
NATION STATUS indicates one of the cases Success, Failure and Out of Memory. INPUT
[MAGE provides basic information about the input. ORIGINAL PRECISION is the precision of
the input believed by the user. REFERENCE IMAGE(S) gives the name of data files created
by the system for extracting necessary descriptive expressions using a lower dimension func-
tion form discovery system. NODES shows the information concerning the search process,
where Total stands for total nodes created, Explored is the number of nodes upon which
primitive matching were conducted and Open is the number of nodes left in the OPEN list
at the time of termination. In this case, there are in total 109 nodes that have been created.
Among them, 21 nodes have been explored, 45 nodes are dead end nodes and 43 nodes are

left unexplored. The meanings of the remaining five attributes are quite straightforward.

To get an explicit function expression, FFD is used to find the boundary expression as

shown below, from the recorded data in the file “Example-1.B1.dat”.

z=0

z=2.

So that we can invert the data transformation sequence step by step as shown in Table 5.2.
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Task: Example-1
TERMINATION STATUS: Success
INpuT IMAGE: 101 x 101,
Xmin=-1, Xmax=1, Ymin=-1, Ymax=1
ORIGINAL PRECISION: 1.0E-12
REFERENCE IMAGE(S):
1. File=./Example-1.B1.dat, Type=Boundary
NoDEs: Total 109, Explored 21, Open 43
RUNNING TIME: 4°35.47"
MEMORY USAGE: 4.54MB
TRANSFORMATIONS :
1. Diff(z,x)
2. Factor(z/(y))
3. Log(+z)
MATCHING PRIMITIVE FUNCTION:
zZ=x*y
ERRORS: Fitting:1.335e~3, Matching:1.476e-5

Figure 5.2: The Report Card for Example 1

In the table, the column “Trans” shows the transformation to be inverted, the column
“Inverse” gives the expression to invert each transformation, and the column “Expression”
gives the underlying function of the corresponding search node. Step 0 is the primitive
function that was accepted as a match at Node 66. Step 1 and 2 invert two algebraic
transformations. At Step 3, the differential transformation is inverted according to the

extracted boundary expression. The discovered function is:
z=1+¢€",

which is exactly the underlying function (Equation 5.1) that has been used to generate the

simulated observation data set.
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Step || Trans. Inverse Expression
) - - z==zy
1 Log(+z) (z,v,2) = (z,y,€) z= e
2 Factor(y) | (z,v,2) = (2,y,2*y) z = yeV
3 Diff(z,x) | (z,¥,2) = (z,¥,(fzdz)) +2 | z=€e"¥ +1

Table 5.2: Manual Inversion for Example 1

5.2.2 Example 2: Termination by a Primitive Pattern Fitting

The second function form to be discovered is

z=ye"tW Lz 4y,

164

(5-2)

The simulated observation data set is obtained by partitioning the observation domain

(z.y) € [-1,1; —1,1] by a 101 x 101 mesh-grid. For this example, I will not give the details

of the discovery process. Instead, I will focus on the discovered function form representation.

The system terminates with a discovered function form as reported in Figure 5.3. It

is easy to verify the correctness of the transformation sequence with the following forward

transformation steps:

1. Apply transformation “Factor (x+2y)” to the function z = ye***¥ 4z + y. We have:

L yez+2!l+z+y

z+ 2y

2. Then, apply transformation “Dif(z,x)"”. The generated function is:

L _YE 2 et gy

(z +2y)?

3. Finally, apply transformation “Factor(y)”. We obtain the function:

_(z+2y—1)e=tW 41

(z +2y)°
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TASK: Example-2
TERMINATION STATUS: Success
INPUT IMAGE: 101 x 101,
Xmin=-1, Xmax=1, Ymin=-1, Ymax=1
ORIGINAL PRECISION: 1.0E-12
REFERENCE IMAGE(S):
1. File=./Example-2.B7.dat, Type=Boundary
2. File=./Example-2.P156.dat,
Type=Primitive Pattern Image
Nobes: Total 239, Explored 95, Open 27
RunNiNGg TIME: 10°18.50"
MEMORY USAGE: 6.73MB
TRANSFORMATIONS :
1. Factor(x+2y)
2. Dif(z,x)
3. Factor(y)
MATCHING PRIMITIVE PATTERN:
x+2y
ERRORS: Fitting:1.5026e-04, Matching:6.8137e-05

Figure 5.3: The Report Card for Example 2
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The final result is a function of z 4 2y.

Now let us invert the discovered result. First, we need to find a descriptive expression
corresponding to the primitive pattern. The underlying function is known as

_ t
z=(t 123 +1

where ¢t is the new variable which is related to the original variables z and y as t = z + 2y
according to the primitive pattern fitting result. FFD is called to find a function form
regarding to the sample set “Example-2.P156.dat”. Unfortunately, no acceptable descrip-
tion could be found. We now have two choices. First, we can discard the discovered function
form and let the system find a new one, or second, we can use polynomial fitting to find an
acceptable description. Let us take the second choice. By fitting the recorded sample set to
polynomial of order G using least-squares method, the following expression can be obtained

with the fitting error of 5.81E-04:

=z = P(t) = 1073(500 + 335¢ + 125¢2 + 31.8¢> + 6.7¢* + 1.55¢> + 0.219¢°).
Thus the matching function is:

z=P(z+2y)= 1073 (500 + 335(z + 2y) + 125(z + 2y)> + 31.8(z + 2y)3+

6.7(z + 2y)* + 1.55(z + 2y)® + 0.219(z + 2y)6) .

The remaining inversion steps are similar to those in the first example. The discovered
function is:
T
5= {/ yP(z + 2y)dz + (¥ + 1)/2} (z +29),
0
where the expression (e?¥ 4+ 1)/2 is obtained by calling FFD upon the recorded sample set
Example-2.B7.dat. Obviously, it is not identical to the underlying function presented in

Equation 5.2.

The discovered function is an approximation of the function of Equation 5.2. Let us now
compare the discovered function form with traditional surface fitting method. There are in
total 12 fitting parameters: 7 in the descriptive primitive polynomial, 3 to represent the two

factors and 2 for the boundary expression. The root mean-square error of the approximation
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i1s 2.08-04. Using traditional 2-variable least-squares polynomial fitting scheme, the given
observation data set can be represented by a fourth order 2-variable polynomial which
contains fifteen parameters. However, the accuracj is very poor. The root mean-square
error of the fitting is 0.27. Besides the accuracy, the function discovered by FFD-II is
also more compact (using three fewer parameters) and more meaningful. For example, we
can easily tell that 1) the underlying function equals to zero on the line z 4 2y = 0, 2) the
exponential relationship exists between z and y and 3) there is a hidden functional regularity
of !I‘M—Zigﬂl being a function of t = z + 2y. All these properties are exactly the properties
of the function defined by Equation 5.2, and they cannot be easily tell from the polynomial
surface fitting result. This example shows that the function form discovery methods is
superior to traditional numerical analysis methods in terms of justification, parsimony and

transparency.

5.3 Randomly Selected Functions

5.3.1 A Random Function Form Generation Scheme

The data transformation based function form discovery mechanism enables the system to
overcome the major restriction of handling only the discovery tasks of a fix number of
function form prototypes. To set up test cases free of user’s biases, a random scheme to
choose test function is introduced in this section.

An explicit function expression can be represented by an expression tree whose leaves

are the operands (independent variables or constants) and non-leaf nodes are operators.

Definition 23 An Operator is an unary operator or a binary operator. An Unary Operator

is any functional operation in set Sg:
Sr ={—(*), 1/(*), V%, ()%, exp(»), log(), tan(x), arctan(x) } (5.3)

where » stands for a functional ezpression. A Binary Operator is any arithmetic operation

in the set Sy:
Sa={+ x} (5.4)
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An Operand is either an operator or an end operand. An End Operand is one of the element

in set S,:
Se={1,2z,y} (5-5)

An Expression Atom is an element in the set S:

SE=SrpUS4US, (5.6)

The function forms to be discovered in the experiments are generated by the following

recursive algorithm.

Construct ExpressionTree()

1: Randomly select an expression atom Atom € Sg

2: Construct a tree node data structure Root and assign the content® of Root
with Atom selected in step 1.

3: ExpandNode(Root)

4: return Root

ExpandNode(node)

1l: Atom=node.atom

2: if Atome Sf

4: Randomly select an atom NewAtom &€ Sg

5: Construct a tree node data structure MewNode. Let New'lode.atom=NewAtom,

NewNode .parent=node, and node.1Child=NewNode

G: ExpandNode(NewNode)

7: else if Atome Sy

8: Randomly select two atoms 1Atom, rAtome Sg

9: Construct two tree node data structures 1Node and rNode. Let

1Node.atom=1Atom, 1Node.parent=node, node.1lChild=1Node,

rNode.atom=rAtom, rNode.parent=node, node.rChild=rNode

*The expression tree node data structure contains four fields, node.parent, node.1Child, node.rChild

and node.atom.
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Cos O
O

Figure 5.4: An Expression Tree of a Function Form

10: ExpandNode(1Node)
11: ExpandNode(rNode)
12: return

The above pseudo-code represents the core of the algorithm. A complete algorithm must
also includes a set of rules to remove redundancy and be able to terminate within a specified
maximum depth. The maximum depth of an expression tree can be limited by restricting
the selection of operand at a certain depth within S, . An example of redundant expression
tree is the tree that has a node with the associated operator ‘exp(x)’, and the associated
operator of its child node is ‘log(x)’. Such redundancy also occurs when placing ‘arctan(x)’
immediately under ‘tan(x)’ (or vice versa), ‘\/(*)’ immediately under ‘(x)?’ (or vice versa)
and ‘—(%)’ or ‘1/(x)’ immediately under itself. Figure 5.4 is an example of expression tree

that represents the first test function in Table 5.3.

This algorithm can generate many of the explicit two dimensional analytic functions that

can be found in a first year mathematics text book. Table 5.3 listed the first 18 functions
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generated by the algorithm with depth limited to six.

5.3.2 Experimental Results

Experiments were carried out to discover the function forms listed in Table 5.3. Observation
domain of each task is kept as coincident as possible whenever the continuity is conserved
(refers to Table 5.3). Partitioning mesh grid size were all fixed to 101 x 101. Unless reported
otherwise, we selected ep = max(5 X €,,107%) and epq = max(e,, 107°), as we discussed in

the beginning of this chapter.

Out of the 18 discovery tasks, FFD-II successfully discovered 17 solutions. The only
failure was Task #9. The discussion of that case will be postponed to the end of this chapter.
[t must be pointed ocut that a successful discovery does not have to be in exactly the same
form as given in Table 5.3. As stated in the problem statement, the goal of function form
discovery is to discover a function form representation of the given numeric observation

data set that satisfies the preset error tolerance threshold.

Table 5.4 tabulated the information of each discovery task. The column ‘Solution’ shows
the type of termination of the task, where ‘ezact’ means that a transformation sequence and
primitive form leading to a function identical to the original underlying function used to
generate the simulated observation data set (provided the necessary descriptive expressions
can be obtained by other means)?. To see if a solution is exact, we can manually carry
out the data transformation to the known underlying function or invert the transformation
sequence starting from the matching primitive. However, to revert the discovered forms to

the original functions, all necessary descriptive expressions must be figured out first.

The column ‘Total Nodes’ is the total number of nodes generated during the discovery

process, ‘Ezplored’ is the number of nodes that had been expended and corresponding

? Notice that the discovery of the function form identical to the known underlying function is a sufficient
It not necessary condition to test for the correctness of the discovered form. As long as the discovered
solution rcpresent the given cobservation data suffidently well, in terms of Justification, Parsimony and

Transparency. it is a correct solution.
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Task # Function Observation Domain
1 z=y+z + (2 + arctany)? [-1,1; -1,1]
2 z= -ﬁ’_.—ge-“v [0.1,1; -1,1]
3 z=y((4z +9)* +(1+9)?) -1,1; -1,1]
4 z=-2-5§_~1v+2y+1 [0,1; -1,1]
5 z=ye"tW tz 4y [-1,1; —-1,1]
6 z=y+z? 4 V=) [-0.5,1.5; —0.5,1.5]
7 z=2y+1+ztanf(2y+1) [-1,1; —-0.9,-0.1]
8 z=y+2z+3+z2z+2y+3 [-0.75,2.75; —0.75, 2.75]
9 z = 2y +tan §(2z + y) + log(2y + z + 1) | [-0.45,0.45; —0.25,0.25]
10 z2 =2z + 2y + log(y + 3) [-1,1; -1,1]
11 z =y + zlog(2 + y) + arctan(z) [-1,1; -1,1]
12 z=(2+e")(1 + e¥) [-1,1; -1,1]
13 z = z log(y(2z + 3)?) [-1,1;1,3]
14 z=2+e/y [-1,1; 0.2,2.2]
15 z =14z + eWW+2z+2) [-1.3,0.7; —1.3,0.7]
16 z=(z+ —y%) log(y + ¥°) [-1,1; 1, 3]
17 2= —\7}3%2, [-1,1;1,3]
18 z =z +log(z +2y+1)2 [0,2;0,2]

Table 5.3: Random Selected Test Functions and Observation Domains

171
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Task Solution Total | Ex- Open Expected | Fitting |Matching
ID. Nodes |plored Error Error Error

1 exact 13 3 3 4.00e-04 2.56e-12 1.87e-15
2 exact! 154 28 42 2.10e-04 6.84e-08 2.53e-03
3 exact 17 3 3 4.00e-04 8.19e-12 3.45e-04
4 exact 109 32 23 4.50e-04 9.88e-08 8.03e-06
5 exact 201 55 60 4.00e-04 2.28e-04 9.19e-05
6 exact 330 113 47 6.24e-04 5.00e-05 4.21e-04
7 exact 13 3 3 1.96e-04 1.82e-07 2.07e-04
8 exact 175 49 54 2.45e-03 7.03e-05 1.77e-05
9 none 432 139 0 - - -
10 exact 19 4 9 4.00e-04 9.89e-13 4.94e-16
11 exact 173 45 57 8.00e-04 4.47e-03 1.79e-05
12 exact 89 16 39 4.00e-04 2.31e-07 7.35e-06
13 exact 71 20 16 8.00e-04 6.42e-08 5.69e-06
14 exact 31 6 20 1.82¢-04 7.08e-10 1.26e-05
15 exact? 223 47 71 2.37e-04 | 5.75e-03 | 1.24e-02
16 exact 13 3 3 4.00e-04 2.28e-07 9.72e-06
17 exact 61 11 34 1.00e-12 5.30e-06 6.34e-18
18 exact 13 3 3 4.00e-04 3.24e-06 1.30e-05
t: epq was increased to 10 x ¢,.
Y. ep was increased to 20 X €, and exq was increased to 100 X €.

Table 5.4: Discovery Results of Experiment 1



5.3 Randomly Selected Functions 173

primitive fitting had been performed, ‘Oper’ is the number of nodes left in the open list
at the time of termination. These three numbers reflect the effort of searching for the
solution. The column ‘Ezpected Error’ is the computed expected error level estimations of
the functional image associated with the termination node, ‘Fitting Error’ is the primitive
fitting error of the terminate node, and ‘Matching Error’ is the verified error of the solution
through numerical inversion. The order of the expected errors successfully bound the fitting
errors. Also, the matching error for a discovered accurate function forms are mostly less

than 10~%.

Table 5.5 tabulated the solutions discovered by FFD-II. In two tasks, Task #2 and #15,
the first attempts at solving the task with the common thresholds setting ended without
solutions. Increased thresholds enabled the system to find the exact solutions. By carefully
observing the underlying functions and the discovered transformation sequences of these two
cases, it could be easily determined that the problems came from the inaccurate computing
of Treey, TFiwc|Z + y + 1 combined with T'p;r . They suggest two future improvements: (1)
more accurate estimation of the propagated errors so that ill points!® could be identified;
(2) development of new computing schemes that compute the transformed image around

those ill points more accurately.

Since the underlying function forms are all known, it is easy to figure out the corre-
sponding boundary conditions required for the differential transformations to be one-to-one
mappings, and the matching primitive expressions associated with the matching primitive
patterns (if applicable) by manually applying the discovered transformations to the original

functions!!. Table 5.6 tabulated the accurate underlying descriptive expressions!? where

'" 1l points are those points where the propagated errors might be extremely great, for example, the points
where the values of the factor are close to zero when performing factorization, and the points where the
function values arc close to zero when performing reciprocal are two types.

' An example can be found in the analyses of the second detailed example presented in Section 5.2.2 on
page 164. Refer also to the example on page 54 and Definition 17 on page 56 for more details concerning
descriptive expression.

'* Notice that the discovered function form for Task#17 does not include descriptive expressions, and
there ix no solution for Task#9 discovered by FFD-II.



5.3 Rz domly Selected Functions

TI?)Sk Transformation Sequence Matching Primitive
1 Toiw Fw=1
2 TpwoTixv ©TRec© Tinvy P:v
3 Tpw F: w = 32uv + 83
4 TpwoTowroT vex P:u
5 TFaclyo TD:FOTE‘.\c|ﬂ P: u+2v
6 TpiroTLoc ©Towr © Tpw o Tvex Frw=v+1
7 Towe P:v
8 TeacluoTowoTowo Tvex P:u+tv
9 - -
10 Tow Fw=2
11 TFacly©Toiwr © TRec© Towr o Tvex P:utv
12 ToroTLos P:u
13 TowoTvex oTpwr o Tvex P:u
14 TrogoTow F:w=uv
15 TrLoc © Thaclutvsr ©ToroTvex | F: w=2u? + 4uv + 4u + log4
16 Towr P: v
17 TRec© TFac| 2us1 F: w? =u%+20°
18 Towr P: u+2v

Table 5.5: Solutions of Experiments on Randomly Generated Functions

Discovered by FFD-II
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each box bracketed expression pair refers to a boundary condition corresponding to a differ-
ential transformation and each P(t) represents the descriptive expression corresponding to
the discovered compositional primitive. As a function form discovery system, FFD-II must
be able to provide these descriptive expressions as part of the solutions or a way to find
them. Currently, FFD-II does not automatically give the descriptive expressions. Instead,
it saves the necessary two-dimensional data for finding the expressions to disk files as the

task terminates with a successful discovery.

To generate full functional representation of the given observation, function form dis-
covery from two variables must be carried out upon the saved two-dimensional data. These
tasks are non-dominant subtasks (Refer to Section 4.2) which means that they can be sep-
arated from the original discovery task in higher dimension and they do not change the
structure of the function form description (the transformation sequence and the matching
primitive) discovered by FFD-II but only complete the function form description. In other
words, whether or not the discovery is successful is decided by the output of FFD-II before
the descriptive expressions are figured out!3. Therefore either traditional numeric tools or
two-variable function form discovery systems can be used to handle the task of find the

descriptive expressions. The selected method is referred to as “supporting system?”.

However, since function form discovery systems emphasize the discovery of high quality
function form descriptions in terms of the justification, parsimony and transparency, it is
better to choose a two-variable function form discovery system to carry out the descriptive
expression discovery tasks. The data transformation based function form discovery system
FFD is one of the best choice due to its ability to discover a wide variety of one-dimensional
functions. The last column in Table 5.6 indicates the results of performing one-dimensional
function form discovery upon the recorded two-dimensional data using FFD . Of the sev-

enteen function form descriptions, FFD successfully discovered the accurate descriptive

3 Thix is the essential difference between the direct model of FFD-II and a parameter freezing based
indirect model. In the latter model, a successful discovery depends on both the successful discovery of low
Jimension expressions and whether or not the discovered low dimension expressions could be successfully

combined into a single function form description to describe the original discovery problem.
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Task Discovered

ID. Descriptive Expression by FFD

1 [u=0, f =v+ (2 + arctan(v))?] none

2 (u=0.45, f = v%e3"], P(t) = t3e exact

3 [u=0, f=v(v?+ (1+v)?)] exact

4 fu=0,f=1],[u=0, f=2] exact
P(t) =2/(2t+ 1) exact

5 [u=0, f=(e®" +1)/2] exact
P=((t—1)et +1)/¢ none

6 [u=0, f=v>+1],[u=0, f=u+2], exact
[u=0, f=2log(u +1)]

7 [u=0, f=1+2v +tan(F(2v +1)], exact
P(t) = tan(3(2t + 1))

8 u=0, f=2v+v/2v+3], [u=0, f=1+v/v2v+ 3] exact
P(t) = —1/(2t + 3)3/?

10 [u=0, f=2v+ log(v+3)] exact

11 [u=0, f = (log2)u+ arctan(u)], [u =0, f=2/(2+ u)], exact
P(t) = 1/(2+1)

12 [u=0, f=1log3(1 + e¥)], P(t) = e /(2 +¢€*) exact

13 [u=2, f=vlog(2(2v+3)?)], [u=0, f=0], P(t) =1/t exact

14 [u=0, fF=2+1/v] exact

15 [u=0, f=2+v] exact

16 [u=0, f = ;37 log(v + v?)] none
P(t) = log(t + t2) exact

18 [u=1, f=1+2log(2v+2)], P(t)=1+2/(t+1) exact

Table 5.6: Descriptive Expressions of Experiment 1
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expressions in thirteen cases and failed to find acceptable function forms to describe the

recorded sample data in three cases.

When FFD failed to find the description expression, least squares polynomial fitting
was used as an alternative. Although polynomial fitting results usually do not have good
interpretability, the method is very reliable. In principle, we can increase the fitting accuracy
by increasing the degree of the fitting polynomial. Thus, for reserving the accuracy of the
discovered function form, the degree of the fitting polynomial, in each case, was selected
according to the estimated expected error, the primitive fitting error and the verification
error of the original function form description discovered by FFD-II. The lowest degree
polynomial were chosen for finding the descriptive expression, such that the polynomial
fitting error being smaller than the primitive fitting error, the verified matching error or

the estimated expected error of the corresponding discovered solution.

Complete function form descriptions are tabulated in Table 5.7. All the extracted bound-
ary conditions corresponding to the differential transformations are given by the subscripts
of each data transformation, and the extracted descriptive expressions corresponding to
each of the primitive patterns are transformed into functional formats. For the tasks #1,
#5 and #16, polynomial fitting results are used as the descriptive expressions where FFD

failed to discover them.

When FFD is used as the supporting one-dimensional function form discovery system,
out of the eighteen function form discovery tasks listed in Table 5.3 and 5.4, FFD-II suc-
cessfully discovered fourteen (78%) accurate functional expressions identical to the original
underlying functions!®. With the help of polynomial fitting, another three approximations
were found (Task #1, #5 and #16). For one case, Task #9, FFD-II failed to find an

acceptable description of the given observation data.

Traditional numeric analysis tools, such as surface fitting, usually cannot extract the

accurate underlying function to describe the given observation data without sufficient knowl-

'* Verified by symbolically inversion of the data transformations in the discovered transformation sequence
starting from the matching primitive. Examples of the inversion have been presented in Section 3.2.1 on

page 54 and Section 5.2 on pagel58.
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Matching Primitive p(u, v)

ID. Transformation Sequence
(w=p(u,v))
1 TDtr|w = 0. 1 = 44 50+ 0.986% — 1.200% — 1
oojss::; + 0.59¢% + 0.16¢% —
2 TDie| u=o.45. f=v2esr © Trnv 0 TRec© Tiny v2ed”
3 Toir| o, F=v(v? +{14v)?) 32uv + 8v>
4 Toir|u=0. =2 © TDir| u=0. f=1 © Tvex 2/(2u+1)
5 TFiclp 0 TDwr| u=o. f=(e2¢+1)/2 © TFaclut2e | 1073{500 + 335(u + 2v) + 125(u + 2v)*+
31.8(u+ 2v)3 + 6.7(u + 2v)*+
1.55(u + 2v)% 4+ 0.219(u + 2v)°}
6 Tir| =0, f=2log(u+1) © TLoc o TDir|u=0. f=u+2 v+1
o TDIF{ u=0, f=v241° Tvex
7 TDir| w=0. f=1+20+tan(E(2v+1) tan(%(2v + 1))
8 TFac|v© T neo, f=lt+v/ /T3 ~1/(2u + 2v + 3)3/2
© T'Dtef umo. f=20+0y/7053 © T Vex
10 TDIFI 1©=0, f=2v+log(v+3) 2
11 TFac)e© Torr|u=o, f=2/(2+u) © TRec 1/(2+ u +v)?
© T'Die| u=0. f=(log 2)utarctan(u) © T Vex
12 T Dir} u=0. f=log3(1+e*) © TLoc e*/(2+ e%)
13 TDir| u=0. §=0© Tvex 1/u
0 TDie| =2, f=viog(2(2v+3)? © Tvex
14 Troco TD[Fl u=0, f=2+41/v uv
15 TLoc © TFaclutv+1 © Tore|u=o, f=24v © Tvex 2u? + 4uv + 4u + log4
16 TD1r| u=0. f=—0.84+2.06v1.14v+2.94v> —0.03v* log(v + v?)
17 TRec OTFACIM 2% = u? + 2v?
18 Toie| u=1, f=142l0g(2v+2) 1+2/(u+2v+1)

Table 5.7: Discovered Function Form Descriptions of Experiments on

Randomly Generated Functions
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edge of mathematicians and domain experts. However, in contrast, the test results show
that in many cases (in which the known accurate underlying functions are discovered) the
discovery system FFD-II has the ability to find compact and meaningful function forms
which describe the given data accurately. When an approximation is discovered, however,
the superiority of the result of function form discovery is not that explicit. In Section 5.2.2,
[ have analyzed the approximated form of case 5 and concluded that the proposed function
form discovery methodology surpasses the traditional polynomial surface fitting method in
that particular case. Now let us compare the proposed function form discovery methodology
with polynomial fitting method in dealing with Task #1 and #16. The discovered function
forms of those two cases can be transfered to explicit functions through manually inverting
the transformation sequences:
Case 1:
z = 4+z+5y+0.98y> - 1.29y% — 0.52y* + (5.7)
0.59y° + 0.16y°% — 0.16y7,
Case 16:
z = —0.84+ zlog(y+ y?)+2.06y — 1.14y> + (5.8)
2.94y> — 0.03y4.

There are eight fitting parameters in Equation 5.7. Using two-variable polynomial fit-
ting, we can fit the observation data set of Task #1 to the following six-parameter polyno-
mial:

z = 4.03+z+ 4.9y + (1.47E-3)z? + (2.05E-5)zy + (5.9)
(6.43E-1)y? + (3.79E-5)z> + (4.97E-5)z%y +
(4.97E-5)zy® — (7.94E-2)y>.
Observing Equation 5.9, one might guess that the terms z2, zy, 2%y, zy®> and z3 are zero
and the coefficient of the term z is 1 because the corresponding coefficients are very small
or close to 1. Therefore, it is reasonable to refit the data to a new polynomial suggested
by the observation of Equation 5.9. The result of the new selected fitting scheme might
generate the result identical to Equation 5.7. It is true that the traditional polynomial

fitting method does similarly well in handling this task. However, unlike surface fitting,
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FFD-II successfully discovered that the underlying function is of the form z = z + g(y) and
correctly set up the subtask for discovering the unknown function g(y) without any human

intervention.

Equation 5.8 contains five fitting parameters. We can fit the observation data set to the
second order two-variable polynomial which contains eight fitting parameters. Least-squares
fitting gives:

z = —(6.06E-2) — (1.42E-2)z + (5.48E-1)y + (5.10)
(4.33E-5)z> + (8.70E-1)zy — (1.09E-1)y°.
The comparisons of the two approximations (Equation 5.8 and Equation 5.10) can be sum-

marized as below:

e The root-mean-squared errors of the two representations are 3.7E-2 for polynomial
surface fitting and 5.6E -4 for the discovered result. It indicates that the function form

discovery result is more accurate than the polynomial surface fitting method.

e The root-mean-squared errors of the first order partial derivatives of the two approxi-
mations are 6.2E-2 for polynomial surface fitting and 1.7E-3 for the discovered result.
The results indicate that the function form discovery result captures the shape of the

given functional image significantly better than the polynomial surface fitting method.
e Equation 5.8 contains one less fitting parameter than Equation 5.10.

e Equation 5.8 is easy to interpret than Equation 5.10. For example, from Equation 5.8,

it is easy to tell that:

— For each fixed y value, the function value changes linearly to the change of

variable z.

— The above changing rate of the dependent variable is related to the value of

variable y logarithmically.

— The underlying function cannot be defined in the range where

y+y® <0.
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— Whenz #0, z— —oco0 as y+y? — +0.

These pieces of information are consistent with the known underlying function, but

they are not revealed by Equation 5.10.

For the analyzed cases, the function form discovery result generated by FFD-II surpasses

polynomial surface fitting result with regard to justification, parsimony and transparency.

5.4 Comparison Experiments

5.4.1 The Comparison Discovery System

It has been pointed out that all function form discovery methodologies not in the “Data
Transformation” category have a common drawback. They can discover only the function
forms in a very small number of function form classes, i.e. either rational functions or a
fixed set prototypes. Thus it is not meaningful to compare FFD-II with any method in
that group. The comparison should be made between FFD-II and a system that can handle
a rich set of three-variable function form discovery tasks. Unfortunately, there is no such
a system in existence. However, FFD has an extension that can handle a special type of
multi-variable function form discovery tasks, namely families of one-dimensional functions
parameterized by a few parameters. It is required that the function value change relatively
slowly with the change in the parameter value than with the change in the independent

variable.

The underlying discovery strategy for this extension is parameter freezing — a classic
indirect technique that has also been used by the BACON system. The parameter freezing
approach could be viewed as an indirect approach to three-variable function form discov-
ery. Recall that the current FFD family of functions discovery system finds parametric
expressions only by primitive fitting. For conducting the comparison, the simplification
assumptions made by FFD family of functions discovery extension (Primitive Union and

Simple Descriptive Parameters) are relaxed. In other words, when FFD finds the solutions
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to the subtasks of one-dimensional function form discovery (generated by putting one of

the two independent variable on hold) we assume that:

{1) The discovered solutions to the subtasks are unifiable provided the correct para-

metric expressions are identified.

(2) For identifying the necessary parametric expressions, regarding to each correspond-
ing parametric expression, the parameter values (the data) could be correctly col-

lected by hand.

(3) FFD could be used to find those parametric expressions upon properly organized

data.

The further extended indirect data transformation based three-variable function form dis-

covery method will be called INDIRECT-FFD in the discussion of this part.

I have explained how the indirect system works and discussed some drawbacks of that
approach in Section 4.2.1. I have also discussed why a direct approach model may generally
perform better than an indirect approach and why a direct model approach is necessary
and important. However, since FFD-II employs only a very small transformation set and
recognizes only the simplest primitives, it is not guaranteed to discover function forms that
are discoverable to INDIRECT-FFD . Due to the rich variety of two-dimensional functions,
in certain situation, an indirect method could be the best to solve the discovery problem.
In this part, I will focus on studying those cases that require the discovery system to use

the “cross effect” information for making a successful discovery.

Three specially designed discovery tasks will be investigated. They are corresponding
to the classes “FFT-Class”, “FVS-Class” and “ICL-Class” respectively, as named in Sec-
tion 4.2.1. In each experiment, I will first describe the reasons why INDIRECT-FFD fails to
discover the correct solution. And then the discovered results made by FFD-II will follow

the explanations.

The reason for not studying the class “USA~Class” is that it is closely related to the im-

plementation of the indirect methodology. Designing a case that belongs to the “USA-Class”
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Observation:
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Figure 5.5: Patterns in 0-Contour Plane

of FFD family of functions discovery extension is easy but not very meaningful. To compare
with INDIRECT-FFD in this direction is not practical since INDIRECT-FFD is not subjected
to any constraints. However, in practice, we cannot always figure out a way to unify one
dimensional results of parameter frozen subtasks, especially when the estimated parameter
values are not sufficiently accurate. It is indeed the major difficulty for implementing a
general purpose indirect multi-variable function form discovery system. In other words,
certain types of simplification assumptions are unavoidable for an indirect implementation.

Thus without specific implementation, we cannot talk about “USA-Class”.

5.4.2 Case Study 1: An FFT-Class Function Form

The first function form to be examined is

(y—=2)-1

Vi—zi—g?

This is a second class function form that INDIRECT-FFD will have trouble to deal with.

(5.11)

There are two linear factors y — z — 1 and y — z + 1 in the underlying function form. And
the observation domain is restricted by the circle 1 — z2 + y> = 0. Figure 5.5 shows the
circle and two lines. Let us assume that the observation data set is obtained by partitioning
the range z € [-0.6, 0.6],y € [-0.6, 0.6] into a 101 x 101 mesh grid. It has been proved

(Phan [48]) that the factorization transformation is essential for handling the discovery of
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rational functions with a data transformation based function form discovery system. To
discover the function form of Equation 5.11, there are two factors that must be removed by
factorizations. Obviously the two factors cannot be observed from any single sample data
set with a fixed z or y value. Since INDIRECT-FFD approaches the discovery problem in an
indirect way, each subtask is carried out individually, and it cannot combine the two factors
observed from different sample sets together to form a unification transformation. Thus this
function form cannot be discovered. The system was tested with the above observation data.
It failed to discover any solutions to any sample data set. That means, without removing
both factors by factorization transformation, the functional image cannot be simplified into

any primitive form by the system.

By taking direct approach, FFD-II can extract hypotheses based on the information
gained from all parts of the observation domain. In this study case, the system first finds
from the original given observation image a set of planar points where the underlying func-
tion has the function value of zero (use interpolation if necessary). In the next and last
step, it conjectures the factor functions by fitting the obtained contour points into lines.
Two factorizations are successfully performed and the underlying function is discovered.
Figure 5.6 is the report card generated by FFD-II system upon the discovery of function

form (5.11).

The ability to capture the cross-effects is important in performing high dimension pat-
tern recognition tasks. A direct model achieves this ability as an essential. This study case

demonstrates how the system creates hypotheses with cross-reference.

5.4.3 Case Study 2: An FVS-Class Function Form

The second comparison test experimental function is
z=+Z+ Vz2+1llogy — log’y (5-12)

and the observation data set is generated within the domain z € [0,1], ¥ € [1,2] with a
101 x 101 mesh grid. This is an FVS-Class function. As usual, we first let INDIRECT-FFD

handle the task.
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TAasK: Comparison-1
TERMINATION STATUS: Success
InpuT IMAGE: 101 x 101,
Xmin=~0.6, Xmax=0.6, Ymin=-0.6, Ymax=0.6
ORIGINAL PRECISION: 1.0E-12
REFERENCE IMAGE(s):
None
NoDpEs: Total 65, Explored 12, Open 33
RunNING TIME: 1°12.72%
MEeMORY USAGE: T7.11MB
TRANSFORMATIONS:
1. Fact(z/(-x+y+1))
2. Fact(z/(-x+y-1))
3. Reciprocal
MATCHING PRIMITIVE FUNCTION:
z"2=-x"2-y"2+1 (+)
Errors: Fitting:3.73e-05, Matching:1.5758e~16

Figure 5.6: The Report Card for Comparison Test 1
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If we put variable y on hold, INDIRECT-FFD first must find a set of one-variaktle func-

tions

z=VZ+ VI +1+ ¢

where ¢ corresponding to the sample data sets indexed by y; = 1+ 0.014, and ¢ and @% are
descriptive parameters. Unfortunately, testing shows that the system cannot successfully
discover any of them. These function forms cannot be easily simplified by the transforma-

tions in the system’s tool box. Thus freezing y is not an successful choice.

Now let us assume that variable z is held as the control parameter. For those sample data
sets with z* > 0.96 (four samples corresponding to the parameter values ¢ = 0.97,0.98,0.99,
and 1.0, INDIRECT-FFD can find a transformation sequence © o A o © that transforms the

original samples into an uniform primitive form
z=y’+ iy +

and there are no solution found for the remaining samples. The system then tries to
verify the obtained similarization transformation sequence with all the samples. Since the
transformation ©, which can only be applied to monotonic sample data set, is not applicable
to a majority of the samples as the first transformation, FFD discards the hypothesis and
tries to find other ways to get a solution. In the test conducted, there are no more solutions

to any samples the system could find. Thus the system terminates without a discovery.

Since the new system performs three dimensional transformations, it can capture more
varieties of fundamental features provided by the observation than indirect approaches.
This ability is demonstrated in this experiment. Although the underlying function is not
monotonic to variable y, a transformed functional image meets the requirement. This ability
enabled the system to extract the key transformation sub-sequence T'1xy 0T Loc ©T1xv Which
transforms an original independent variable into its logarithm. Figure 5.7 shows the correct

solution found by FFD-II.

The differential transformation extracts the functional pattern of the differences between

adjacent sample data sets indexed by z values. In this case, monotonic image is obtained.
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TAsk: Comparison-2
TERMINATION STATUS: Success
INpUT IMAGE: 101 x 101,
Xmin=0.0, Xmax=1.0, Ymin=1.0, Ymax=2.0
ORIGINAL PRECISION: 1.0E-12
REFERENCE IMAGE(S):
1. File=./Comparison-2.B1.dat, Type=Boundary
2. FILE=./Comparison-2.B214.dat, Type=Boundary
3. File=./Comparison-3.P325.dat,
Type=Primitive Pattern Image
Nopes: Total 497, Explored 94, Open 197
RunNING TIME: 26°06.01"
MEMORY UsaGe: 7.31MB

TRANSFORMATIONS:
1. Dif(z,x)
2. Variable Exchange (x<>y)
3. Functional Inverse (x<>z)
4. Log(+z)
5. Functional Inverse (x<>z)

6. Dif(z,x)
MATCHING PRIMITIVE PATTERN:

X

ERRORS: Fitting:4.87e-04, Matching:1.5758e-05

Figure 5.7: The Report Card for Comparison Test 2
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Three descriptive expressions required for completing the discovery are log®z, 1//z and

z/\/(z* + 1). All can be discovered by the two-variable FFD system.

5.4.4 Case Study 3: An ICL-Class Function Form

The last comparison test is to discover the function

z = log(z) + /zy + tan(y). (5.13)

[t belongs to the fourth function class that INDIRECT-FFD discovery systemn cannot handle.
Observation is made with the mesh grid 101 x 101 that evenly partitions the observation
domain z € [0.5, 1.5}, y € [0.5, 1.5]. To find the underlying function form, INDIRECT-FFD

must find expressions of z
z = log(z) + \/¥*v/Z + tan(y")

with at least some y* (y be the chosen control parameter), or find some expressions of y
z = tan(y) + Vzi /¥ + log(z")

with at least some z* (z be the chosen control parameter). Unfortunately, no such subtasks
could be solved by the system in the conducted tests. What happens is that the linear
combination of the terms log(z) and /z, or tan(y) and /¥ is beyond the system’s discovery
ability, since none of the transformations defined in FFD ’s tool-box can effectively simplifies
this combined functional image. In other words, the one-variable function forms are too
complicated for the system to handle. We classify this type of three-variable function forms

as the ICL-Class function form.

The new system took the advantage of alternatively performing different differential
transformations respect to the two independent variables. By doing this (the first three
transformation in the solution reported in the system’s output card on next page), the
original three-variable function form discovery task was split into three easy to handle
subtasks: (1) to find a single variable function tan(y) as the descriptive expression for the

first differential transformation, (2) to find a single variable function 1/z, and (3) to find
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TAsK: Comparison-3
TERMINATION STATUS: Success
InPuT IMAGE: 101 x 101,
Xmin=0.5, Xmax=1.5, Ymin=0.5, Ymax=1.5
ORIGINAL PRECISION: 1.0E-12
REFERENCE IMAGE(S):
1. File=./Comparison-3.B1.dat, Type=Boundary
2. File=./Comparison~3.B18.dat, Type=Boundary
Nopes: Total 258, Explored 45, Open 106
RunNING TIME: 12’18.57"
MEMORY USAGE: 4.55MB

TRANSFORMATIONS :
1. Dif(z,x)
2. Variable Exchange (x<>y)
3. Dif(z,x)

4. Reciprocal
MATCHING PRIMITIVE FUNCTION:
z-2=(1/16)xy
ERRORS: Fitting:8.37e-05, Matching:2.97e-05

Figure 5.8: The Report Card for Comparison Test 3

the two-variable function z = 1/,/zy. The first two are easy to handle with the two-
variable FFD), and the last can be solved with the discovered transformation Trec and the
primitive fitting z = \/Zy/16. Therefore the original function form discovery problem is

soived. Figure 5.8 is the discovery result of FFD-II. The solution is identical to the test

function — Equation 5.13.
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5.5 Randomly Generated Surfaces

The motivation of function form discovery research is to create a system that can find
function forms that represent the given numeric data satisfying the justification, parsimony
and transparency criteria. We have seen that when the data is generated explicitly by
a compact function form, such as the cases given in Section 5.2 and 5.3, the proposed
methodology has a good potential to find the exact form. However, the question remains
whether or not the system will perform similarly well when the underlying function forms
are not expressible in terms of elementary functions. In this section, we will further examine
the system’s capability in handling such discovery problems. The objective is to observe

whether the system is able to extract information from the observation more effectively

than traditional numeric tools.

A set of experiments on discovering function forms from randomly generated smooth
surfaces were conducted. Each surface was a ninth order two-variable polynomial over the
domain (z,y) € [0, 1; 0, 1]. Their coefficients were randomly generated quantities between
-1 and 1. They can be viewed as truncated Taylor series expansions of certain unknown

C'™ functions.

To carry out the experiments of this part, the fitting thresholds were relaxed to let the
system terminate with a relatively rough match. ep and €x( were increased to 100 times of
their normal settings, and if the system could not find a match, the thresholds were relaxed
by another 100 times of the previous one. All other settings remained the same as described

on page 157.

Let us first examine an example. Rounded to four significant figures, an example of

random surface generated by a program is:

z = .825-— .682z + .60322 + .36623 — .487z* + .061z° — .3762° + .021z7
—.584z% 4 .2702° + .147y — .565zy + .975z%y + .0148z3y + .577zy
—.951z%y + .655z% — .987z"y — .495z%y + .107y? + .254zy>
+.736z%y? — .6042%y? + .829z%y? — 72025y + .2192%y2 — .07T1z"y>
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+.224y° + .065zy> + .7952%y> + 44323y + .793z%y> — .60325°
—.794z%y° + .586y* + .715zy* — .405z2y* ~ .729z%y* — .7502%y*
+.780z%y* — .351y°% + .512zy° — .957z2y> —~ .352z3y5 + .195z4y°
—.064y% — .068zy° — .72322y% + .49223¢y% + .077y" — .577zy"
+.869z%y7 — .305y® + .711zy® — .1164°.
The function form description discovered by FFD-II in the observation domain [0, 1; 0, 1]
is:
[ TLoc © T'Fac(0.9822-z) »
F :z =2.583z> + 1.432zy + 0.7006y> — 0.2230z —~ 0.2847y — 0.0190

The matching error is 6.893e-02. Transformed to an explicit expression, the function is:

z = (09822 _ 2)62.5881’2 +1.432::y+0.7006y"'—0.2230::—0.28471/—0.0190'

Since there are seven parameters in the discovered function, we can select the least-

squares surface fitting to fit the same random surface to the seven-parameter polynomialls:

z = +0.9959 — 2.7292z — 0.5503y + 7.4074z> + 0.8975zy + 1.1076y> — 5.9783z>.

The root-mean-square error of the fitting is 6.94e-02. The comparisons are listed as the

following.

1. The root-mean-square errors are 6.19e-02 Vs. 6.94e-02. FFD-II achieved similar

accuracy.

[SV)

The polynomial fitting result cannot be easily interpreted. The discovered description,
on the other hand, shows that the function value is around zero when x=0.9822 and
the surface stays mainly above the plane of z = 0 (positive function) within the
observation domain since exponential function is positive and the linear factor is

mainly positive.

'* The complete third order two-variable polynomials contain ten coefficients. To fit to a seven coefficients
polynomial, six parameters related to the complete second order polynomial are selected, and only one third
order cocfficient is non-zero paramecter. The fitting with the least mean-square error is picked as the seven

parameter polynomial fitting result. This scheme is also used in the followed comparison fittings.
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Figure 5.9: The Contour Image of Random Surface 1

3. Figure 5.9, 5.10 and 5.11 show the three dimensional contour image of the original
random surface, the discovered function form and the polynomial fitting respectively.
Comparing the three images, it is clear that the FFD-II discovered function preserves
global features more precisely than the polynomial fitting. For example, the polyno-
mial fitting result exhibits some false oscillatory features that do not appear in the
original surface and there is also a pit in the polynomial fitting surface that does not
appear in the given surface. The single peak and the main trend of the random surface

are captured by both approximations.

4. Figure 5.9 shows the derivatives of the original polynomial, the polynomial fitting
function and the discovered function. Clearly, the discovered function preserves the
shape of the original random surface significantly better than the polynomial fitting
result does. The latter representation looses most of the information concerning the

derivatives.

Ten other random surfaces were tested. The system successfully found solutions to

seven surfaces and failed in three cases even with the further relaxed thresholds. Table 5.8
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Figure 5.10: The Contour Image of the Discovered Form of Random Surface 1

25~

Figure 5.11: The Contour Image of the Polynomial Fitting of Random Surface 1
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Figure 5.12: Mesh-grid Images of Derivatives of Random Surface 1
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lists the results of the experimental cases in which solutions were discovered by the system.
In the table, “Matching Primitive” has two formats — a function expression which is a
matching primitive function and a two-dimensional linear expression which is a matching
primitive pattern. The column “No. of Parameter” is the number of control parameters
in the discovered function form including the parameters in the descriptive expressions (if
applicable), “Egiscovery Stands for the computed root-mean-square error of the discovered
function, “Egeing” refers to the root-mean-square distances of polynomial surface fitting
with the same number of coefficients. For brevity, two significant figures after the deci-
mals are kept. Because the underlying functions are not in short forms of the elementary
functions, the descriptive expressions are obtained by fitting the corresponding recorded
sample data to one-variable polynomials to a satisfactory precision (close to the primitive
fitting error and the verified function form matching error). The fitting results are listed in

Table 5.9.

Among the seven discovered functions, five of them are simple. In Task #1, the system
found a second order two-dimensional polynomial to express variable z as a function of 1/z
and y. In this way, the fitting accuracy was improved by about 4 times compared with
direct second order polynomial surface fitting. Task #2 and #3 are two other examples of
changing to different polynomials in order to improve the fitting accuracy. The accuracies of
discovered functions of tasks #4 through #7 are worse than that of the corresponding poly-
nomial surface fitting results. However, the emphases of function form discovery include not
only the accuracy but also the meaningfulness. In Task #6, the system discovered that the
observation image is approximately a cylindric surface. In Task #?7, the system discovered
that the underlying function is roughly of the form =z = {/f (u 2/5—v 3/5) dx} +9(y),

which could also be interpreted as: dz/3z is approximately a cylindric surface.

Let us examine the results of tasks #4 and #5 in greater detail. The discovered function
of Task #4 is
z v
z= /0 {.[3 ePEdy + Pl(z)}dx + Py(y),

.5 .5
where,

P(z,y) = 3.45z% — 2.37zy + 1.72y* — 0.26z + 1.08y — 0.46,
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Tr fa ti
Task ansformation Matching Primitive
ID. Sequence
— 2 2
1 T - T w = 0-41u _— 0-19uv + 0.34'U
Ivv @ £ Rec +1.67u — 1.13v + 1.87
w = -0.08u®+ 1.11uv + 1.870v2
2 TINV
—1.20u — 1.42v + 0.56
— 2 2
3 Trew 0 T w = -—0.18u°+ 0.23uv + 0.78v
Ivv 0 & Vex ~1.23u — 0.32v — 0.81
2 2
4 T T T T w = 3.45u° —2.37uv+1.72v
Lo © L Dir © 4L Vex © L D1r —0.26u + 1.08v — 0.46
2 2
T T T T :w = 0.53u* ~ 0.09uv 4 0.35v
5 Rec Q9 L Dir © 4 Vex © 4 DiF —0.92u — 0.82v + 0.96
6 None P : uv39/7 + v/10/7
7 Tow P: uy/2/5-vy3/5
Task Number of Eae Epex;
ID. Parameter discovery tting
1 6 6.96e-2 1.57e-1
2 6 4.59e-2 2.38e-1
3 6 1.02e-1 1.39e-1
4 15 5.31e-2 2.96e-2
5 15 5.45e-2 2.59e-2
6 6 3.50e-1 1.14e-1
7 10 1.48e-1 I 5.97e-2

Table 5.8: Results of Experiments on Random Surface

196
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No. | Descriptive Expressions

4 | [u=0.5, w=0.5004 1.482v — 4.746v2 + 4.426v7]
[u=0.5, w=0.260 — 1.911v + 12.505v> — 29.062v> + 30.872v4]
5 | [u=0.5, w=1.144 —- 0.244v + 3.561v> — 3.120v7)

[u=0.5, w=1.119 + 3.404v — 13.319v2 + 31.688v° — 24.003v1]
6 | P(t) = 0.302 — 0.456¢ + 5.254¢ — 11.682¢> 4- 4.829¢*

7 | [u=0.5,w=—0.585+ 1.646v — 6.042v% + 14.573v> — 7.90v"]
P(t) = 0.468 — 0.116¢ + 0.102¢% + 0.767t>

Table 5.9: Descriptive Expressions for the Experiments on Random Surface

is the matching primitive function, and

Pi(z) = 0.260 — 1.911z + 12.505z2 — 29.062z> + 30.872z*,
P»(y) = 0.500 + 1.482y — 4.746y2 + 4.4263°,

are the corresponding descriptive expressions of boundary conditions. The discovered func-
tion of Task #5 is

L 0: {/0“’5 ﬁdy + Pl(z)}dx-{- Py(v),

where,

P(z,y) = 0.532> — 0.09zy + 0.35y% — 0.92z — 0.82y + 0.96,
is the matching primitive function, and

Pi(z) = 1.119 + 3.404z — 13.319z2 + 31.688z% — 24.003z4,
Pa(y) = 1.144 — 0.244y + 3.561y* — 3.120y°,

are the corresponding descriptive expressions of boundary conditions. In these two cases,
the given observation data set was formulated by first fitting the logarithm or reciprocal of
the derivative image 82z/8z8y to a second order polynomial and then constructing the

functional representation by an integral.

The root-mean-square error of describing the observation data in this way is about dou-

ble of the root-mean-square error of describing the data by directly fitting the observation
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data set to the fourth order polynomial which has same number of fitting parameters as
tabulated in Table 5.8. However, the discovered function forms capture shape information,
i.e. slope and curvature, of the observation images better than polynomial surface fitting.
This can be observed by comparing the shapes and patterns of three-dimension contour

images (Figure 5.13 through Figure 5.18).

Figure 5.13 shows the plcts of the 3D contours of the functional images of Task #4,
where (a) is the original random surface, (b) is the polynomial fitting surface and (c) is
the surface of the discovered function. The pattern!® of figure (c) is closer to (a) than
figzure (b), which implies that the discovered function captures the gradient better than
polynomial surface fitting. A similar conclusion can be drawn from Figures 5.14 and 5.15,
which plot the first order partial derivatives of the original random surface, the polynomial
fitting function and the discovered function. Note that the pattern of partial derivative 3D

contour images contains informations concerning the second order curvatures.

Figure 5.16 shows the 3D contours of the functional images of Task #5, where (a) is the
original random surface, (b) is the polynomial fitting surface and (c) is the surface of the
discovered function. Figure (c) represents the shape and pattern of (a) better than (b). Fig-
ure 3.17 and 5.18 are comparisons of 3D contour images of the two representations. Clearly,
the discovered function represent the original underlying function significantly better than

the polynomial surface fitting result in most part of the observation domain.

Several important conclusions can be drawn from the experiments conducted in this

part.

1. As a mathematic formulation tool, FFD-II is able to translate general observation
data into a compact and meaningful functional description in many situations. Each
discovered form can be interpreted according to the obtained transformation sequence

and the primitive.

' Note that at a given planar point (zo,#0), the direction of the gradient of a scalar ficld z = f(z,y) is
perpendicular to the contour curve f(z,y) = C that crosses (zo.yo). Therefore, when the patterns of two
sets of contour curves are close to each other, the gradient vectors of the two corresponding fields will be

relatively close to each other.
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{b) Polynomial Surface Fitbng

Figure 5.13: 3D Contour Images of the Surfaces in Task #4
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(b) Potynomsal Surface Filting {c) Discoverec Function

Figure 5.14: 3D Contour Images(3/9z) of the Surfaces in Task #4
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(b) Potynomual Sutface Fiting
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Figure 5.15: 3D Contour Images(8/8y) of the Surfaces in Task #4
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{b) Potynomsal Surtace Fiting {c) Discovered Function

Figure 5.16: 3D Contour Images of the Surfaces in Task #5
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Figure 5.17: 3D Contour Images(8/9z) of the Surfazes in Task #5
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Figure 5.18: 3D Contour Images(3/8y) of the Surfaces in Task #5
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Compared with traditional polynomial surface fitting method, important geometric
features are conserved more precisely by the abstracted formula. Such features include

surface features represented in the example random surface, gradients and curvatures.

3. FFD-II has the ability to formulate the given numeric observation data using a variety
of different functions, and it can achieve better or similar accuracy compared with

polynomial surface fitting method.

4. Traditional data modeling tools, such as polynomial fitting, have good reputation in
representing given data accurately. When it is necessary we can nsually increase the
accuracy by simply increasing the number of fitting coefficients. However, FFD-II
places more emphasis on the parsimony and transparency. This property has been

further demonstrated.

5.6 Experiments on Noisy Data

We have just seen the enhanced ability of the proposed direct model over an indirect model.
We also know the challenge associated with solving multi-variable function form discovery
problems using direct approach!?. This section will contribute to the experiments that
demonstrate how the new system handles noise using proposed methodology, adaptive error
control. I will first describe the noise model and the experiment design. Then the error
treatment scheme will be examined from different aspects with experiments on selected

function forms.

5.6.1 Noise Model and Experimental Design

To test the noisy input effects and the performance of the proposed noise treatment recipes,
a pseudo random number generator is used to generate uniformly distributed random num-

bers. Let z = f(z,y) be a function form with whom a simulated observation data set will

" Refer to the discussions in Section 4.2.2.
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be made. The noisy input is the simulated observation data with additive noises:

Hz,y) = f(z,y) + ¢ (5.14)

where ¢ is a uniformly distributed random variable over the interval {—a, a] and a is referred

to as the Noise Level of the simulated observation data set.

It has been pointed out that error propagation is a major challenge for conducting data
transformation based direct function form discovery. Computational errors are the errors
introduced by digital computations using selected numeric tools with a digital computer.
Noises, on the other hand, refer to the inaccuracy of the collected observation data. The
essential difference between the effects of computational errors and added noises to the
function form discovery system is that the functional image with added noise is usually
more uneven than a functional image with computational errors. When certain numeric
data transformations are conducted upon an uneven image, large scale of propagated error

2

could be introduced. Examining function y == z* as an example, let:

z; = 0.01%, (:=0,---,102),
¥ = z%, (t=0,---,102),
¥ = 2zt €, (i=0,---,102)

where ¢; are uniformly distributed random numbers over the interval [-0.01,0.01] 8, and

7; = (¥i1—w)/0.01, (i=0,---,101)
v o= (§:'+1 - ¥:)/0.01, (z=0,---,100),
@ = (§l4—§)/001, (i=0,---,100).

Clearly, . are the values of numerically computed first order derivative of the function
f = z* (function f =2z ), 77 are the numerically computed second order derivative values
of function f = z2 (constant 2) based on the values of ¥}, §/ are the function values
of f =2z with added noises, and ¥ are the numerically computed first order derivative

value of the function f = 2z (constant 2) with added noises. Using digital computer, we

' 0.01 is the maximum approximation error of using ¥ to approximate the first order derivative of the

. »
function y==z°.
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can find that the averaged approximation error of §” to constant 2 is 0.7538, while the

averaged approximation error of § to constant 2 is only 3.35e-13.

The simple example demonstrates how the added noises might affect the numeric com-
putation results more significantly than usual computational errors. In FFD-II, differential
transformation is numerically implemented. Although the computing scheme is different
to the simple first order difference scheme used in the example, similar effect can be ob-
served. Therefore, experiments on noisy observation data set is more useful for justifying

the system’s ability to handle error propagations.
The following are the general background of the experiment design for the noisy input.
1. The high computing time and memory space intensities of the algorithm decide that

we can only choose relatively simple test function forms, which has a solution in a

small depth in the search tree, to generate the simulated observation data set.

[N)

. Among the transformations in the system’s transformation set, Tp,s is the one that
s most sensitive to noise. Therefore, the selected test function form must contain at

least one differential transformation in the accurate solution.

3. All simulated observation data set were made in the corresponding observation do-
mains that were partitioned by a 511x511 uniformly distributed rectangular mesh
grid. Thus each input observation data set contains 511 x 511 double precise real

valued observation coordinate triples (z, y, z).

4. To this stage, the system only works with two resolution levels — Fine and Coarse
siep functional images!®. A Fine Step functional image refers to the original input
functional image or the image transformed from it. A fine step image can be expressed

as

Or = {(uwij, vij,wi;) |1 =1,2,.--,511;5=1,2,---,511}.

'? However. the proposed error treaiment methodology is able to work with multi-resolution scheme.
Considering the available computer resources, only two resolution levels are used to demonstrate and test

the proposed methodology.
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w

=]

A Coarse Step functional image is a 101 X 101 observation data set which is either a
transformed functional image of a coarse image or a evenly selected subset of a fine

step functional image

Oc¢c = {(u,-j,v,-j,w,-j) |t=6,11,---,506;7 = 6,11, - --,506} C Op.

. For the purpose of fully observing the performance of the system, a small €4 and a

relatively large ep were set. They were 10~7 and 10~! respectively. The maximum
searching depth were set to be 5. The relaxed ep setting enables the system to propose
more function form hypotheses for verifications and the tight e setting keeps the
search goes on. Altogether, they can force the system to test more hypotheses in a

single discovery task.

. To analyze the results, the discovery system was slightly modified so that the full

discovery processes with all necessary information, such as the fitting and matching

error of all the abstracted hypotheses, could be recorded.

. To each simulated observation data set, two rounds discovery were run, one with

error treatment switch turned “oN” and the other with it turned “ofFF”. Since the
error treatment can only be conducted with multi-resolution observation data set, it
could be disabled by specifying that there is only one available resolution level. The
performance of the proposed methodology can be evaluated based on the comparison

of the corresponding results.

Generally speaking, the discovered function form may not be in the exact form of the given

underlying function that was used to generate the simulated observation data set. The

system discovers the functional representation of the given data within a tolerable error

level. However, the selected function forms in this section are all expressible by the function

form description language L. Thus the purpose of the experiments is to observe how well

the proposed error treatment scheme will reduce the effects of noises and propagated errors

and help to extract the exact underlying function forms.
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5.6.2 Multi-Solution

The first function form to be tested is

z=€e""VY+zy. (D)

There are four solutions to the problem. They are listed in Table 5.10.

Solution || Transformation Matching Primitive | Treated Plain
1 TpwoTvexo Tow P:z—-y v v
2 TpwroTvexoTpwoTvex Pz-y v Vv
3 TowoTpe P:z-—~y v X
4 TowoTpwroTvex P:z—vy v x

Table 5.10: Four Solutions of Form I

The observation domain was chosen to be (z,y) € [-0.5, 0.5; —0.5, 0.5] and the noise level
is 1072. The last two columns in Table 5.10 show whether or not a correct solution was
extracted in the experiment. The column titled by ‘Treated’ means that the error treatment
was used in the test, and ‘Plain’ means that errcr treatment was not used. “,/” denotes that
the corresponding exact function formn was correctly abstracted and “x” denotes that the
corresponding exact function form was not correctly abstracted. All four accurate solutions
were abstracted when proposed error treatment was used. However, there are two out of

the four accurate solutions that were not abstracted without error treatment.

Let us summarize ten best matches recorded during the system’s discovery process, in-
cluding four accurate solution matches and six other verified matching hypotheses. Figure 5.19
shows the primitive fitting errors at each of the nodes where function form hypotheses were
abstracted. In the figure, (a) shows the results of conducting the discovery without applying
error treatment and (b) shows the results with error treatment applied. Node 1 to 4 are
the four nodes which may be associated with an accurate solution (depending on whether

or not the corresponding correct primitive could be found). Each of the shaded bars im-
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(a) Fitting Errors (untreated)
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Figure 5.19: The Fitting Errors At Corresponding Hypothesis Nodes of the Form I
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plies that the associated abstracted hypothesis is an accurate functional form description of
Function (I), each of the unshaded bars implies that the associated abstracted hypothesis is
not a description of Function (I). The axis “Log Error” is the values of log;,(¢,) where ¢, is
the computed fitting error at each corresponding node. From the figure we can clearly ob-
serve that the proposed error treatment scheme significantly improves the primitive fitting

test?0:

e Without treating the error, the system fails to abstract two of the four accurate
descriptions due to the noises associated with the input observation data. However,
by treating the error with the proposed scheme, the system successfully abstracted

four hypothesis corresponding to the four descriptions of Function (I).

e Without treating the error, Figure 5.19(a), the fitting errors of the two hypothe-
ses associated with node 1 and 2 respectively, which are accurate descriptions of
Function (I), are not the smallest. There are totally seven other hypotheses whose

primitive fitting errors are smaller than the fitting errors of node 1 and 2.

e By treating the error using the proposed scheme, Figure 5.19(b), the fitting errors
at nodes 2 and 3 are the smallest among the ten recorded hypotheses, and the error
at nodes 1 and 4 are only greater than the error of one of the six other recorded

hypotheses, (node 10), which are not description of Function (I).

Figure 5.20 depicts the matching errors in similar layout as Figure 5.19. In Figure 5.20(a),
the two hypotheses corresponding to the accurate descriptions of the underlying function
have the smallest verified matching errors, Figure 5.20(b) shows that the four hypotheses
corresponding to the accurate descriptions of the underlying function have the smaliest
verified matching errors. It implies that the system has the potential to discover 1) two
out of the four accurate descriptions of the underlying function form without treating the

error, and 2) all four descriptions when the proposed error treatment scheme is employed.

“® Since the system forms abstracted function form hypotheses based on test of whether or not the com-
puted primitive fitting error is smaller than a threshold, it is desired that the nodes associated with accurate

function form descriptions have the smallest primitive fitting errors.
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(a) Matching Errors (untreated)
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Figure 5.20: The Matching Errors At Corresponding Hypothesis Nodes of Form I
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However, the proposed error treatment recipes not only allow the system to find two more
accurate descriptions, but also make the accurate descriptions more distinguishable from
other hypotheses. In Figure 5.20(a), the matching errors of the two hypotheses corre-
sponding to the accurate descriptions (node 1 and 2) are not significantly smaller than
the matching error at node 4 which is not associated with an accurate description of the
underlying function. They are 1.66e-03 and 2.45e-03 respectively. In Figure 5.20(b), in
contrast, the matching errors of the hypotheses corresponding to accurate descriptions are
significantly smaller than the matching errors of the hypotheses which do not correspond
to an accurate description of the underlying function. For example, the matching error at
node 1 is 2.13e-04 and the matching error at node 5 is 4.19e-02. Thus we have stronger
evidence to believe that the discovered functional form captured the significant underlying

functional pattern of the given observation data.

Concerning the descriptive parameter fitting error, Figure 5.21 is a comparison of the
two test results. By treating the error utilizing the proposed error treatment scheme, the

accuracy of the fitting parameters are significantly increased.

5.6.3 Variation of Noise Level

We have seen the improvements made by the proposed error-treatment methodology through
studying a multi-solution case. In this section, I will justify the methodology by observing
the performances through variating the noise lcvel on a single solution case. To evaluate

the proposed methodology, a new term — Discovery Ratio — is introduced.

Definition 24 Let ¢,, be the matching error of the hypothesis witch is an accurate function
form description of the known underlying function, e be the matching error of a function
form hypothesis that has the smallest value among all the hypotheses that are not function

form description of the known underlying function. The Discovery Ratio is the ration of €,,

and €n

€
Dp = —.
EN
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Figure 5.21: The Parameter Fitting Errors At Corresponding Solution Nodes of Form I

Since the system accepts a hypothesis based on testing whether or not the corresponding
matching error is smaller than a preset threshold, a small Dgp implies a better chance for
the system to discover the accurate underlying function form. For example, if ¢, = 107*
and ex = 0.1, any preset threshold value in the range (1074,0.1) will enable the system to
terminate with a succassful discovery of the accurate underlying function, and in contrast,
if €, = 0.1 and ey = 1074, it is generally impossible for the system to terminate with
a successful discovery of the accurate underlying function. The discovery ratio values for

these two situations are 10~° and 10° respectively.

The second function form to be tested is

z = log(z + V22 + y2). (1)

This function form has one solution described by the proposed function form description
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language L:
{TrecoTow, F : 2= \/2? + y*}.

Totally fourteen test runs were conducted to discover the above description with both the
error-treatment switched on and off. The observation domains of the experiments carried
out in this section were all (z, y) € [0.2, 2, 2; 0.2, 2.2]. However, the input ncise level variated

from 10~% to 0.5 x 10~2 (Refer to the table below).

Test 1 2 3 4 5

Noise 107* | 2x107* | 3x107* |4x 1074 |5x10~*
N—Solution v v4 v Vv X
T-Solution v Vv v v v

Test 6 7 8 9 10

Noise 6x107% | 7x107% | 8x10"% | 9x10~¢ 103

N-Solution X X X X X
T-Solution Vv v v v Vv
Test 11 12 13 14

Noise 2x1073 | 3x107%{4x107%|{5x10"3

N-Solution X X X X

T-Solution v v v X

In the above table, “\/” denotes that the accurate function form was discovered, and “x”
means that the accurate function form was not discovered. The rows ‘N-Solution’ shows
the results of the tests without employing the proposed error treatment scheme and the
raws labeled by ‘T-Solution’ show the results of the tests with proposed error treatment
scheme employed.

Without employing the error treatment, the system failed to discover the underlying

function form when input noise level increased to 5 x 10™%*. With employing the error

treatment, the noise tolerance increased to 4 x 103, that is about ten times of the error
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tolerance without employing the proposed error treatment scheme. Remember, this result
was obtained by using observation data with only two-resolution levels. Intuitively, a better
improvement could be expected when multi-resolution image is used since the accuracy of
the averaging based smoothing scheme increases with the increase of the number of usable

sample points.

Figure 5.22 plots the discovery ratios. Observing the plot carefully, we can find that
no matter the error treatment is empioyed or not, the results to the first four test samples
are very close. This phenomenon is due to the adaptive manner of the treatment scheme.
When the roughness of a node does not exceed the threshold, the smoothing process will
not be triggered. That is the situation here. However, the parameter matching errors are
still improved since the final functional images had been smoothed. Figure 5.23 compares

the parameter fitting errors of the two test types.

This test proves again that the proposed error-treatment scheme significantly increases
the chance for the system to discover the accurate underlying function, and improves the

accuracy of the discovered results. In other words, the noise tolerance level is increased?!.

5.6.4 Experiments on More Transformations

Up to now, the transformations T'[ o6, TRec and TFac are absent from the presented noisy
input experiments. To complete our experiments, the third and fourth experiments are

designed to include these transformations into our examinations.

The third function form to be tested is

‘.‘+ 2 2_y2
p= T fet 7 (III)
The simplest description of this function using the proposed function form description lan-

guage is

{TowoTLog, F : z = 2z}.

2! Note that since the numeric tools employed by the system’s basic discovery process are based on numeric
fitting. Thus the system has basic capability to tolerate noises to a certain level. This comment also applies

to the FFD system.
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(b) Discovery Ratio (untreated)
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Figure 5.22: The Comparison of the Discovery Ratios of Form II
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(b) Parameter Fitting Errors (untreated)
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Figure 5.23: The Parameter Fitting Errors of Form II
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Twenty one pairs of experiments were conducted to discover this description upon various
input noise levels (See the table below. The symbols used here are the same as they appeared

in the preceding sections). The observation domains were fixed to (z,y) € [-1,1; —1,1].

Test 1 2 3 4 5 6
Noise 1072 [2x1072|3x107™®|4x107°|5x107%|6x107°
N-Solution Vv Vv v v Vv Vv
T-Solution Vv v v V4 Vv v
Test 7 8 9 10 11 12
Noise 7x1073 | 8x1073|9x1073| 1072 2x1072 | 3 x 1072
N-Solution Vv Vv v v X X
T-Solution Vv V4 Vv Vv Vv V4
Test 13 14 15 16 17 18

Noise 4x10°2{5%x10"2|6x10"2|7x10"2 | 8x10"2|9x 102

N-Solution X X X X X P
T-Solution Vv v v v v v
Test 19 20 21
Noise 107! |2x107!|3x107?!
N-Solution X X X
T-Solution v Vv X

Figure 5.24 and 5.25 are the comparisons of discovery ratios and descriptive parameter
fitting errors. The error tolerance increases by 10 times when the proposed error-treatment
scheme is employed. The other thing worth to mention is that the tolerable input noise
of this experiment is much higher than that of the rest experiments. The reason is that
the input noises are additive, and they are largely compressed by the transformation T'roc.
However, if multiplicative noise are used in the simulation of the noisy input, the noise

tolerance level should be close.
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(b) Discovery Ratio (untreated)
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Figure 5.24: The Comparison of the Discovery Ratios of Form III
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(b) Parameter Fitting Errors (untreated)
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Figure 5.25: The Parameter Fitting Errors of Form III



5.6 Experiments on Noisy Data 222

The fourth function form to be discovered from noisy input is

z = arctan(y/z) + . (IV)
The solution of this form contains the only unused transformation Tg,c:

:- yZ},

{TRECOTFACIEOTDIF: zZ=-Z
or similarly,

{TrecoTDir OTFACI_I_/_? z=-z% - yz}‘

Seven pairs of tests were conducted for different input noise levels. The observation
domains were fixed to (z,y) € [0.5,2.5; —1, 1] for all tests. The input noise levels and the

test results are tabulated below.

Test 1 2 3 4 5 6 7
Noise(x107%) || 1.0 { 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0

N-Solution Vx| x| x x | x X

T-Solution ViV IVvIiIvVIV]V]| X

The results are plotted in Figure 5.26 and 5.27. Comparing with the results of the preceding
noisy input experiments, we can clearly see that the improvement is not as good as before —
only improving the noise tolerance by six times. Through carefully analyzing the discovery

processes, the reasons are found to be

1. Numerically conducting factorization introduced very large computational errors near

the zero points of the extracted factor in current implementation.

2. The differential transformation that follows the factorization further increases the

error significantly at the points where large scale errors have been introduced by
Tfuc-
3. The reciprocal transformation requires that the functional image has constant signs

and the requirement is not satisfied (as it should be) due to the propagated errors

introduced by the transformations Tr,c and Tpyr.
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(a) Discovery Ratio (untreated)
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Figure 5.26: The Comparison of the Discovery Ratios of Form IV

When the propagated errors increase to the level at which the transformed functional image
does not have constant signs as it should be in the observation domain, reciprocal transfor-
mation will not be applicable to the corresponding transformed image. That is the situation
of this experiment. It prevents the system from making a successful discovery by applying
the necessary transformation T'rec. This observation suggests future improvements in three
directions. First, improve the accuracy of the computations of factorization transformation
around the zero points of the factor. Second, improve the scheme of transformation valida-
tion check to enable it to handle noised exceptional points with large errors. Last, improve
the smoothing method to handle sharp peak pattern, i.e. the points where the function

values are significantly larger (or smaller) than the function values of their surroundings.

5.6.5 The Role of Adaptive Strategy

If we consider the size of a functional image, the smoothing processes is very expensive.

Adaptive rules have been designed to avoid unnecessary image smoothing. In the current
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(a) Parameter Fitting Errors (untreated)
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Figure 5.27: The Parameter Fitting Errors of Form IV
implementation, a functional image is only smoothed when

1. the image is not a smooth image measured by the roughness value of the image (Refer

to 4.5.2), and

2. the image fits to a primitive well enough measured by the primitive fitting errors.

A smoothing call is viewed as a Redundant call if its associated search node is not on the
path to a solution. Otherwise it is viewed as an Effective call. The ratio of the number of
effective calls to the number of total smoothing calls reflects the efficiency of the designed
adaptive strategies. We call this ratio the Observed Adaptivity Efficiency Rate (OAE-Rate):

Number of Effective Smocthing Calls

OAE-Rate = Number of Total Smoothing Calls

Only OAE-Rate is not enough for measuring the effectiveness of the methodology. The

ratio of the number of redundant calls to the total number of nodes the discovery system
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investigated is also an important measurement. We call this value the Observed Adaptivity

Redundancy Rate (OAR-Rate):

Number of Redundant Smoothing Calls
Number of Total Explored Nodes

OAR~-Rate =

Clearly, a large OAE-Rate and small OAR-Rate supports the adaptive error control scheme
as an effective methodology. In the computations of the rates, only the accurate descriptions

of the underlying function are counted as solutions to the discovery problems22.

[t is important to note that the two introduced measurements are prefixed with the

term “Observed”. This is because

1. In the carried out experiments, we limited the searching depth to 5. As such, the

related numbers only reflect the situation of the specific threshold setting.

[Ev]

It is not practical to prove that a node is not on any solution path since we usually do
not know whether or not the underlying function form can be expressed in some other
different form. In other words, we can only claim that a node is not on the solution

path of any known solutions within a limited depth.

Table 5.11 summarizes, in terms of OAE-Rate and OAR-Rate, seven discovery tasks

that are conducted and reported in the preceding sections.

The averaged OAE-Rate is 62.1%. It means that more than half of the smoothing efforts
were contributed to the discovery of accurate function form descriptions. The averaged
OAR-Rate is 12.5%. It means that there were only 12.5% nodes that distracted the proposed
adaptive strategy to do smoothing unnecessarily. The results justify the performances of

the proposed adaptive strategies.

*? Note that the observation data sct are simulated images of known underlying functions. Although in
principle an approximation with sufficiently small matching error should be viewed as a solution, we do not
count them as solutions since the designed test functions have simple descriptions in £ which have the

smallest matching errors within the depth limit.
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No. Function Observation Noise | OAE-Rate | OAR-Rate

Form! Domain Level (%) (%)

1 (1) [-0.5,0.5; —-0.5,0.5] | 102 100 0

2 (1I1) [0.2,2.2; 0.2,2.2] 10—4 66.6 19.0

3 (1) [0.2,2.2;0.2,2.2] |3x10~3 42.9 12.9

4 (1) [-1,1; -1,1] 103 75.0 9.1

5 (III) (-1,1; —1,1]} 10~2 60.0 22.2

6 (IV) [0.5,2.5; —1,1] 10~* 50.0 4.1

7 (IV) [0.5,2.5; -1,1] | 6 x 10~* 40.0 20.0

t: Refer to the numbering of the test function forms in Section 5.6.

Table 5.11: The Observed Efficiency of the Proposed

Adaptive Error Control Strategies

5.7 Conclusions

The performances of the new function form discovery system have been justified from four

different aspects. The experimental results shows that

1. Compared with previous discovery methodologies, which handle the discovery tasks
only within a very limited function classes, the new system performs significantly well
in discovering the underlying functional relationship among three relevant variables
in a larger variety of function forms. The discovered form are accurate, compact
and meaningful in terms of each description component representing an important

significance of the observation.

As a direct model, the system provides the flexibilities in handling complex three-

o

variable function form discovery problems. It extends the function form coverage of
its previous system in the same category (data transformation approach) with a very

compact and more powerful data transformation set.
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3. The system has a better potential in performing informative data modeling than tra-
ditional numeric tools. Less human knowledge are needed for expressing the numeric

observation data with compact and meaningful mathematic formulas.

4. The designed adaptive error control technique is effective and efficient in reduce the ef-
fects of the noises introduced by the source (additive noises) and the errors introduced

by the numeric computations.

However, we had encountered with one elementary function form that is not discoverable
by the system — Form #9 in Table 5.3. Examining the form carefully and doing manual
simplification using the transformations defined in f, we can find that Tpy and Tixv
make the form more massive, and Tvex, TRecy TFac and Trog can not help much. In
fact, the trouble comes from the structure of the function form. The form is composed
by a linear combination that links several functions. When differential transformation
does not yield nice results directly, the system may suffer fatal problems in simplifying
the form into a primitive. FFD-II shows its weakness in dealing with such forms that
are linear combinations of functional operations ‘\/“’, ‘log’, ‘exp’, ‘tan’ or ‘arctan’. For
example, Form #9 involves linear combination of tangent and logarithm functions. As
has been pointed out, the powerfulness of a transformation based function form discovery
system relies on the embedded data transformation set and primitive set. The current
system is implemented in a preliminary fashion. The variety of three-variable function
forms are too large to be handled with the function form description language defined for
the current system. The experimental forms in the case studies in Section 5.4 and the
reported failure cases in FFD documentation shows the same weakness of FFD in one
dimensional situations. To identify more powerful transformations and to identify what
function form cannot be easily simplified using certain set of data transformations are two

equally important subjects for the research in this area.



Chapter 6

Conclusions and Future Research

The goal of function form machine discovery is to develop an autonomous system that can
find symbolic descriptions that capture the underlying regularities hidden in the numeric
data. In scientific and engineering studies, numeric data collected from the environment
represent first-hand information. Therefore, a function form discovery system is an impor-
tant part in an integrated machine intelligence system. It processes the given data and
provides succeeding discovery or reasoning components with high level knowledge in the

form of compact and easy to interpret symbolic mathematic formulas.

Function form discovery by data transformation was first introduced by Wong with the
implementation of FFD in 1991. The work reported in this thesis is the first attempt to
adopt this method in solving three-variable function form discovery problems. The FFD-II

system, as reported here, was successful in solving a variety of such problems.

6.1 Research Contributions

The contributions of the research can be summarized as below.

1. A compact function form description language has been developed and used in the

implementation of a direct data transformation based three-variable function form

228
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discovery system called FFD-II. Formal definitions and analyses of the expressive-
ness and redundancy of the function form description language have been presented
as a part of the theoretical results of this research. The analysis methods and re-
sults could be beneficial to further development of new systems for specifying new
language components and identifying the redundancy of the language. The specified
function form description language, the analyses of the data transformation method
as a general function form discovery model, and the implemented system with ex-
tensive experirnentation have furthered our theoretical understanding of quantitative

discovery.

. The implemented system demonstrated the flexibility of data transformation model

in tackling function form discovery problems. The direct characteristic of the discov-
ery mechanism of FFD-II allows the system to discover a significantly wider variety
of function forms than its predecessors. The cumulative enhancement methodology,
which has been demonstrated by the development of FFD-II (see Section 3.1.4), could
be used to develop new enhanced data transformation based function form discovery
system that adopts mcre sophisticated numeric analysis tools, application domain
knowledge and new enhanced low dimension function form discovery implementa-
tions. The methodology could also be applied to the development of higher dimension
system based on implemented systems. Such developments will contrast with ad koc
customizations like those being used to construct numeric analysis based function form
discovery system. Mathematics analysis in the demonstrated way could be carried out
to help the construction of new description languages and removing redundancy to

achieve better efficiency.

. The quantified measurement of the smoothness of curves and surfaces defined in this

thesis is simple and has proven effective. Based on the measurements of image sim-
plicity, the rank value of the transformation sequence and the quality of the image,
searching heuristics has been defined for carrying out the best-first search. It has
been demonstrated to be a simple and effective way to guide the system to find func-

tion form description that matches the given numeric data. Furthermore, the system
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employs simple numeric primitive recognition and hypothesis verification algorithms.
From the experimental results show that they can effectively distinguish “goodness”

of the matches.

. Special purposed numeric methods have been developed to conduct differentiation,

functional pattern recognition, and surface smoothing. These algorithms are simple
and effective. The methods could be used in the development of new high dimension

systems or for other numeric analysis purposes.

. The theoretical analysis of propagated errors corresponding to each numerically imple-

mented data transformation not only provides valuable results but also demonstrates
a general way to carry out such analyses for new data transformations. The designed
error control strategies, including image refinement, smoothing and the heuristics for
triggering the processes, establish an example for handling noisy input and monitoring

the discontinuity of the transformed images.

. The superiorities of the implemented system over its predecessors (most of them can

only discover function forms within a very limited number of function form classes)
have been proven by extensive experiments. Firstly, the experimental results on ran-
dom selected functions show the great expressiveness of the designed function form
description language. They also demonstrate the discovery system’s great ability of
generating accurate, compact and meaningful mathematic formulas to describe the
given numeric data. This ability usually could not be achieved by using traditional
numeric tools. Secondly, comparison experiments show the superiority of the direct
multi-dimension function form discovery model over an indirect model from the ex-
pressiveness point of view. The direct model is also superior to an indirect model for its
flexibilities to be extended. Domain knowledge, new advanced language components
and new achievement in the field of function form discovery (including theoretical
analysis results and improved working systems) could be incorporated more easily
than an indirect system. Thirdly, the experiments on random surfaces suggest that,

comparing with polynomial surface fitting, the discovery system may formulate the
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given data in a flexible way to achieve better interpretability and to capture high or-
der functional pattern more precisely. Fourthly, detail oriented experiment results on
noisy input not only justify the effectiveness of the designed error control strategies,
but also provide us with a chance to observe how errors affect each transformation,
for example, the application of a certain transformation could be turned down by
relatively low level noises or propagated errors. This observation suggests that it is
necessary to verify the applicability of a transformation considering also the possible
error effects. Lastly, the incompleteness of the description language is revealed by the
case in which FFD-II failed to find the description. The identified special function
structures, which may not be expressible in the function form description language

-~

L, suggest future research directions to complete the language.

6.2 Future Research

Data transformation methods are a promising researching direction for automated function
form discovery. Research with the developed systems in this category, e.g. FFD, LINUs,
and FFD-II, are only beginnings. Many research issues remain open for mathematicians,
computer scientists and application domain specialists to work together in this rich field.

To conclude this thesis, I will briefly describe some possible directions of future research.

First of all, the experimentation shows that the function form description languages used
by the existing systems, including FFD, LiNus, and FFD-II, have a major incompleteness
(see Section 5.7). To carry out more experiments to identify more such incompletenesses
and to conduct theoretical studies to identify and incorporate new language components
that can help to handle identified incompleteness would highly enhance the expressivenesses

of the existing systems.

Secondly, FFD-II is implemented by choosing simple numerical tools to carry out the
numeric analysis tasks. More sophisticated methods could be employed to improve the
accuracies of the numeric computations and the speed and memory efficiency of the system.

More sophisticated supporting low dimension discovery systems could be used to imprecve
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the discovery of possible descriptive expressions.

Thirdly, in the current implementation, the transformation sequence associated with a
possible functional hypothesis is not considered in the processes of primitive recognition and
descriptive expression determination. Obviously, this may cause problems under certain
circumstances, especially to those images distorted by noisy input or propagated errors.
For example, when the last applied transformation is reciprocal transformation and the
functional primitive fitting result is not a polynomial with constant sign in the corresponding
observation domain, the verification process will immediately turn the hypothesis down.
That makes the system unnecessarily sensitive to the observation domain. Developing
new primitive recognition and descriptive expression extraction algorithms by taking into
account the data transformations will enhance the performances of the current system,
especially to the situations of noisy input and disccvering complex function forms that

require lengthy simplification (i.e. transformation) steps to reach a recognizable primitive.

Fourthly, the composed search heuristics takes into account only a few basic facts. Pos-
sibly, new heuristics could be constructed based on the consideration of domain knowledge

and the discovery experience of the system.

Fifthly, the error control strategies could be improved. Currently, the expected error
analyses are not precise enough and the estimation is “globally”. More accurate analyses
results of the error propagations, probably point-wise, will help to improve the system’s
performance. Concerning surface smoothing we could improve the efficiency of the current
system by selecting points with the highest discontinuity and smooth only the selected points
under certain circumstances. And at the same time, new noise removing algorithm could
be considered. However, handling noises is an important subject in engineering design and
mathematics study. Many different methodologies have been developed to handle different
types of noises. Developing noise tolerant function form discovery systems to handle “real-
world” problems should be a very interesting research subject. Current implementation is
only the first trial and it demonstrates only a possible way to handle noises. New research
in this direction could start with a more thorough experimentation on the system with

different function forms and different noise models. Comparing the performances of different
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techniques with extensive experiments is necessary for the development of a noise tolerant

model.

Sixthly, theoretical investigations on intrinsic relationship between a given function form
description language and the expressiveness of the language are of practical interests. Based
on the results of FFD and FFD-II, one can improve the efficiency of the existing data trans-
formation based function form discovery systems by identifying new redundant transforma-
tions or design new function form description language to acquire new discovery power. It
is also an interesting direction to develop special function form description language that
incorporates domain knowledge and solves the function form discovery problems in a par-
ticular application domain. The challenge involved in the theoretical investigations may

require new abstract mathematic notions.

Seventh, to conduct new experiments on advanced function forms is an important re-
search direction. In this research, the system has only been tested with analytic functions.
Other function forms that can be used to verify the data transformation function form
discovery model include ordinary differential equations, partial differential equations and
integral equations. They might be of greater practical interests than analytic functions.
Moreover, since the variables may be “coupled” more tightly in these types of function
forms than in analytic function forms, experiments on the advanced function forms may

provide us with a better way to understand the discovery model.

Other possible research directions include solving general multi-dimensional problems,
integrating with a symbolic algebra system to provide symbolic solution verification, and
integrating with qualitative reasoning systems to perform automatic interpretation of the

investigated problem.
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