
NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The

manuscript was microfilmed as received.

This reproduction is the best copy available.

UMI

Discovery of hnction Forms in Three Variables

Ziqiang Wang

A thesis

presented to the University of Waterloo

in fulfilrnent of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 1998

OZiqiang Wang 1998

uisitiorrs and Acquisitions et
îographic Services senrices bibliographiques a

The author has granted a non- L'auteur a accordé une licence non
exclusive licence aüowing the exclusive permettant à la
National Lïbfary of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distriiute or sel1 reproduire, prêter7 distniuer ou
copies of this thesis in rnicroform, vendre des copies de cette thèse sous
paper or electronic fomats. la forme de mimiciche/fh, de

reproduction sur papier ou sur fonnat
électronique.

The author retains ownership of the L'auteur maserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. andoridon.

The University of Waterloo requires the signatures of dl persons using or photocopying this

thesis. Please sign below, and give address and date.

Abstract

To find a mathematical description of a certain class of events is the goal of mathematical

modeling. Traditionally, it is the task of mathematicians and engineer-scieatists. The goal

of function form discovery is to develop machine intelligence systems to tackle this problem.

Though the machine intelligence approach is still in its infancy, it has been demonstrated

that systems based on such approach are able to give more compact and meaningful forms

that describe the input data than the traditional numerical methods.

This thesis presents a function form discovery system known as FFD-II which is a signif-

icant extension of the FFD system. The adoption and extension of the data transformation

mechanism of FFD allows FFD-II to discover a significantly wider variety of functional

forms from numerical data than its predecessors. FFD was developed initially for find-

ing real-valued function fomis of one independent variable. It could also be used to find

families of functions in an indirect way. FFD-II is able to discover function forms of two

independent variables directly from numeric data for it can make use of three dimensional

information that cannot be used by the indirect methods which, for example, have to rely

on "cross-effects" in the discovery. Hence, FFD-II not only exhibits better performance in

handling the discovery problem, but is also more flexible for future extensions. Another

sipnificant characteristics of FFD-II is its new adaptive error control. It identifies the noise

patterns according to the smoothness of an observed functional image and monitors the

magnitude of propagated errors according to the theoretical error analysis results. In FFD-

II special treatments are also added to reduce the effects of noise. Hence, the new system

lias a greater tolerance to both the computational error as well as the noise of the input

than FFD.

Other new contributions of FFD-II include: 1) the construction and analysis of a three

dimensional based function form description language; 2) the design of special purpose nu-

meric methods which can recognize primitive functional patterns, conduct factorization and

handle partial differential transformations of three dimensional data; 3) the quantified mea-

surements of the qualitative characteristics of a functional image and 4) the implementation

of a new heuristic search process.

Acknowledgements

1 wish to express here rny greatest appreciation to Professor Andrew K.C. Wong for his

trernendous support and encouragement over the ye-. He constantly impressed me with

his knowIedge, insight, open-mindedness and generosity as he guided me t hroughout my

research. I a m also deeply grateful for his careful review of this thesis.

In a very special way, 1 would like to thank Dr. Puiwing Wong, to me who has been a

constant source of inspiration and expert advice. Special thanks are also extended to the

other members of my Ph.D. committee, including Professor Glenn R. Heppler, Professor

Atohamed Kamel, and Professor Paul Thagard. They have given me some most valuable

suggestions and helped reviewing this thesis. My sincere gratitude also goes to my external

examiner Professor Howard J. Hamilton. He read through the thesis with great patience

and kindly helped me with a number of corrections.

1 am very grateful to aU the people who run the PAMI Lab (Pattern Recognition and

Machine Intelligence Lab), for its unique magnificent environment thrciughout the years. 1

consider myself very fortunate to have them as m y colleagues and friends.

Last, but by no means the least, my deepest gratitude goes to my wife Li and Our

son Jeff for their sacrifice and great patience. liideed, their understanding, inspiration,

encouragement and love were what carrieci me through the course of rny Ph.D work. Then,

of course, there is my wann-hearted sister Chaoying Wang and her loving family. They

made my stay in Waterloo a most enjoyable period in m y Me.

Contents

1 Introduction 1

. 1.1 Machine Learning and Machine Intelligence 1

. 1.1.1 Machine Intelligence 2

. 1.1 -2 ' Machine Learning and Machine Discovery 3

. 1.1.3 Machine Intelligence in ScientSc Discovery 4

. 1.2 Function Form Discovery 5

. 1.3 Motivations of This Research 8

. 1.4 Organization of the Thesis 10

2 Computational Function Form Discovery 11

. 2.1 Methodology Classification 11

. 2 -2 Formula Construction Approaches 16

. 2.2.1 BACON 16

. 2.2.2 ABACUS, FAHRENHEIT and IDS 20

. 2.2.3 Gerwin's Algorithm 22

. 2 -3 Numerical Analysis Approaches 24

. 2.3.1 E' Algorithm 24

4.2 The Direct Mode1 . 98

. 4.2.1 The Indirect Mode1 of FFD 101

. 4.2.2 Direct Vs . Indirect 110

. 4.3 An Overview of the System 114

. 4.4 Numerical Recipes 122

. 4.4.1 Numeric Data Transformations 122

4.4.2 Primitive Fitting and Search Heuristics 129

4.5 Achieving Adaptive Error Control . 135

. 4.5.1 Error Propagation Analyses 137

4.5.2 Surface Roughneçs and Smoothing 147

. 4.5.3 Error Monitor and Adaptive Control 152

5 Experiments 155

5.2 The Organization and Common Background of the Experiment 155

. 5.2 T w o Detailed Examples 158

. 5.2.1 Example 1: Termination by Primitive Fùnction Fitting 158

. 5.2.2 Exarnple 2: Termination by a Primitive Pattern Fitting 164

. 5.3 Randomly Selected Functions 167

. 5.3.1 A Random Function Form Generation Scheme 167

. 5.3.2 Experirnental Results 170

. 5.4 Cornparison Experiments 181

. 5.4.1 The Cornparison Discovery System 181

. 5.4.2 Case Study 1: An FFT-Class Function Form 183

. 5.4.3 Case Study 2: An FVS-Class Function Form 184

viii

. 5.4.4 Case Study 3: An ICL-Class Fùnction Form 188

. 5.5 Randomly Generated Surfaces 190

. 5.6 Experiments on Noisy Data 205

. 5.6.1 Noise Mode1 and Experimentd Design 205

. 5.6.2 Multi-Solution 209

. 5.6.3 Variationof NoiseLevel 213

. 5.6.4 Experiments on More Transformations 216

. 5.6.5 The Role of Adaptive Strategy 223

. 5.7 Conclusions 226

6 Conclusions and Future Research

6.1 Research Contributions

6.2 Future

B ib liograp hy

Research .

List of Tables

. 2.1 BACON Like Systems 17

. 2.2 An Example of BACON 's Formula Construction 19

. 2.3 Prototypes of E' Algorithm 25

. 3.1 An Example Transformation Class Set 46

. 3.2 Examples of Primitives 50

. 3.3 Firndarnental Anaiytic Function Forrns 62

. 3.4 Fundamental Function Construction Operations 62

. 3.5 Differentiai Reptesentations of Fundamental Function Forms 68

. 3.6 Transformation Classes of FFD-II 76

. 3.7 Transformation Combinations of Variable Shuffling 78

. 3.8 Grouping of Fundamental Transformation Classes 80

3.9 Different Non-redundant Combinations of TRECr TINV and TREc 86

. 3.10 Some Attainsble Triplesof The Language 2 91

. 4.1 Estimated Error Propagations 153

5.1 Primitive Fitting and Matching of Each Step of Exarnple 1 160

. 5.2 Manuai Inversion for Example 1 164

. 5.3 Random Selected Test Functions and Observation Domains 171

. 5.4 Discovery Results of Experiment 1 172

. 5.5 Solutions of Experixnents on Randornly Generated h c t i o n s 174

Discovered by FFD-II

. 5.6 Descriptive Expressions of Experiment 1 176

5.7 Discovered Function Form Descriptions of Experiments on 178
Randomiy Generated Functions

. 5.8 Results of Experiments on Random Surface 196

5.9 Descriptive Expressions for the Expetiments on Random Surface 197

. 5.10 Four Solutions of Form 1 209

. 5.11 The Observed Efficiency of the Proposed 226

Adaptive Error Control Strategies

List of Figures

3.1 The Central Mechanism of Data Transformation Approach 36

4.1 Funct ion Forrn Discovery by Data Transformation 99

. the And-Or-Search-Tree of the Direct Model

. 4.2 Function Form Discovery by Data Transformation 100

- the And-Or-Search-Tree of the Indirect Model

. 4.3 An Overview of the FFD-II Discovery System 116

. 4.4 The Best-First Search Algorithm 119

. 4.5 The Data Structure of A Searching Node 121

. 4.6 Approximation of Partial Derivatives by Surface Fitting 124

. 4.7 Partitioning of the Input 126

. 4.8 Extracting Straight Line in A Contour Image 130

. 4.9 Polynomial Fitting Points 145

. 4.10 An Illustration of The Roughness Measure 148

. 5.1 The Search Tree . Exarnple 1 159

. 5.2 The Report Card for Example 1 163

. 5.3 The Report Card for Example 2 165

. 5.4 An Expression Tree of a Function Form 169

xii

5.5 Patterns in O-Contour Plane . 183

5.6 The Report Card for Cornparison Test 1 . 185

5 -7 The Report Card for Cornparison Test 2 . 187

5.8 The Report Card for Cornparison Test 3 . 189

5.9 The Contour Image of Random Surface 1 192

5.10 The Contour Image of the Discovered Form of Randorn Surface 1 193

5.11 The Contour Image of the Polynomial Fitting of Radom Surface 1 193

5.12 Mesh-grid Images of Derivatives of Randorn Surface 1 194

5.13 3D Contour Images of the Surfaces in Task #4 199

5.14 3D Contour Images(a/âz) of the Surfaces in Taçk #4 200

5.15 3D Contour Images(d/dy) of the Surfaces in Task #4 201

5.1G 3D Contour Images of the Surfaces in Task #5 202

5.17 3D Contour Images(d/dz) of the Surf'aces in Task #5 203

5.18 3D Contour Irnages(d/dy) of the Surfaces in Task #5 204

. . . 5.19 The Fitting Errors At Corresponding Hypothesis Nodes of the Form 1 210

5.20 The Matching Errors At Corresponding Hypothesis Nodes of Form 1 212

5.21 The Parameter Fitting Errors At Corresponding Solution Nodes of Form 1 . 214

5.22 The Cornparison of the Discovery Ratios of Form II 217

5.23 The Parameter Fitting Errors of Form II . 218

5.24 The Cornparison of the Discovery Ratios of Form III 220

. 5.25 The Parameter Fitting Errors of Form III 221

5.26 The Cornparison of the Discovery Ratios of Form N 223

5.27 The Parameter Fitting Errors of Form N 224

Chapter 1

Introduction

Mathematical modeling is one of the most fundamental stages of scientific theory formation.

This task is a very complex intellectual activity and has traditionally been the realm of the

most talented human experts. Machines have been used only as a computing device to

aid human experts to process large arnount of data. With the development of cognitive

science and artificial intelligence, the efforts on machine synthesis of this human intelligent

activity has been receiving more attention in the last decades. Various methodologies has

been proposed and a number of carefully specified machine discovery systems have been

created. It has been demonstrated that, to certain extent, a machine can take over not only

the tedious data analysis work from human scientists but also the modeling task itself-

However, the research in this field is only a start and there is still a long way to go.

Addressing the problem of function f o m discovery, this research is a step forward to the

goal of cornputer automatic mathematical modeling.

1.1 Machine Learning and Machine Intelligence

Simon defined learning as "Learning denotes the changes in the systern that are adaptive

in the sense that they enable the system to do the same task or tasks dmwn h m the same

population mom eficiently and more efictively the next tirne" [55]- As a science of the

1.1 Machine Learning and Machine Inteiiigence 2

artificial, machine learning is a research area of machine inteliigence. It seeks an algorithmic

solution to the problem of modeling human learning activities.

1.1.1 Machine Intelligence

In the early years when Machine Intelligence started as a field whose goal was to mimic

liuman intelligence in a machine, people were excited about dreaming what machine could

do for them. However, they soon realized that they overlooked the difficulty of the job.

Human intelligence is indeed very cornplex.

To replicate human inteliigence we a t least have to know the way to decompose the

intelligent activities into appropriate parts and the interfaces that can bring the parts

together. Unfortunately, we know very little about this so far. However, research of last

few decades has shown the possibility of developing inteiiigent machines with many working

systems. It has been generally acknowledged that

Firstly, the research in artificia1 intelligence, cognitive psychology, and scientific phi-

losophy cofertilize each other[36, 54, 621.

Secondly, machine intelligence does not have to rnimic human intelligent skills. Hu-

man intelligence represents just one point in an uncharted space of possible means of

acquiring knowledge and skills[?]. It is commonly believed that the human brain can

adopt new knowledge in an "optimal way", although the process can be very long.

A machine's superiority, on the other hand, is its power in conducting numerical and

symbolic computations. Moreover, knowledge and skills can be shared between differ-

ent systems by simply "copyingn. These properties suggest that machine intelligence

could be different fiom human intelligence. Theoretical analysis provides a means of

exploring the possible rnethods, while the task-oriented approach provides a vehicle to

test and improve the performance of functional intelligence systems. In this way, par-

ticular approaches to intelligence issues could be tested in a well understood problem

space.

1.1 Madune Leaniing and bfachine Intelligence 3

Lastly, high level intelligence is an integration of lower level intelligences. This a p

plies to bot h the biological intelligence and the machine intelligence. Researchers

in the field of machine intelligence have been s u c c d in irnplementing intelligence

in many subproblems in a variety of specXc domains. Some implernented systems

did even better than a human problem solver. The story of Deep Blue, a powerful

supercomputer and an extraordinary chess player, defeating human world champion

Garry Kasparov in 1997, is just another example. Cumulative successes not only gives

us an insight into the issue of intelligence, but also provides us with a continuously

expanding base for the f d i l h e n t of new successl.

Machine intelligence has been developed along two lines: one attempts to mimic human

tfiinking and the other takes advantage of the computing and formal inference power of

codifiable machines. However, in the foreseeable future, to replicate the full gamut of

Iiumcm intelligence is unrealistic. Gaining knowledge through theoretic research, applying

this knowledge in working machine intelligence systems, and further developing systems that

assist people in a variety of well specified tasks will remain the primary goal of machine

intelligence research for the foreseeable future.

1.1.2 Machine Learning and Machine Discovery

The ability to learn is central to human intelligence and implanting learning capabilities in

machines is one of the main goals of Machine Intelligence research. A system is said to learn

from its environment if it improves its performance in interacting with the environment (ski11

acquisition) or it abstracts new lcnowleàge fiom the environment (knowledge acquisition)[44,

411. Samuel's checker playing system[50] is an example of ski11 acquisition learning. The

system included a series of parameters each of which was able to take new numerical values.

To improve the system's performance, these values were adjusted by training samples.

' Rocincy Brooks[4, 51 dcmonstrated incremental machule inteiligmce with a mobile system called CREA-

- rm E. Tlic system - crcated by decomposing the system into parts accorduig to function and activity.

All tlic pieccs werc implcmented using known AI technologies and then interfaced into a complete syatcm.

1.1 Macbiae Learning and Machine Intelligence 4

The second type of learning, known as knowledge acquisition learning, relates to the

discovery of new knowledge. In the last few decades, developing machine intelligence sys-

tems with such capability is one of the most vital research area in the machine intelligence

field. Generally speaking, most leaming systems are abo discovery systems to a certain

degree. More or less, they use inference strategies to a certain level to discover new knowl-

edge. However, in the machine intelligence Litetature, Machine Discovery is an unsupervised

learning process seeking an accurate, concise and rneaningfd description of regularities or

general rules to explain al1 or a t least most observations[45, 651. This form of learning in-

cludes conceptual ciustering, constructing classifiers, fitting equations to data, discovering

Iaws explaining a set of observations and formulating theories accounting for the behavior

of a system. Since the discovery system relies sclely on the observation data, it requires the

greatest amount of inference.

1 . l .3 Machine Intelligence in Scientific Discovery

Research in artificial intelligence and cognitive simulatien has shown that the mechanisms of

scientific discovery can be subsumed as special cases of the general mechanisms of problem

solving [39, 63, 571. Based on this claim, scientific discovery activities are cornputationally

codifiable.

There are two major forms of scientific discovery, the generation of empiricai laws and

the formation of theories [62, 631. The former involves descriptive generalizations that sum-

marize observations and the latter involves postulating unobserved structures or processes.

Concerning the generation of empirical laws, researchers in machine leaming and machine

discovery have investigated three main aspects of ernpirical discovery in recent years:

a Taxonomy Formation [64, 231. Research on conceptual clustering [12, 421 addresses

tliis problem by organizing a set of observations into a conceptual hierarchy, which

can then be used to classify new observations.

0 Genemtion of Qualitative Laws [43, 37, 19, 51, 521. In this case, the goal is to uncover

qualitative form relations that hold for a set of observations.

- 1 -2 Function Form Discovery

O The Production of Quantitative Laws [IO, 21, 40, 69, 65, 481. The task of this aspect

is to find mat hematical relations between numeric variables.

Some researchers have tried to integrate these three aspects into single systems 138, 39,

473. However, this research addressed only the third aspect.

1.2 Function Form Discovery

In science and engineering, extracting mathematical models fiorn numeric data is of fun-

dament al importance. Various numerical analysis (e-g., interpolation and polynomial a p

proximation algorithms, curve and surface fit ting, etc.) and statistical methods have been

npplied successfully to problems in science and engineering. Traditionally, this task can

onIy be assigned to human experts, who use machines to perform numerical calculations.

Today, the effort to endow machines with the capability of automatic modeling has

become an important branch of machine learning and machine discovery. As stated in

the previous section, the mechanisms of human experts' scientific behaviors are indeed the

mechanisms of problem solving. The possibility of shifting the tedious task of mathematical

rnodeling of numerical data from man to automatic machinery has been demonstrated by

a number of implemented function form discovery systems, e-g., BACON by Langley in the

1980's[30, 31, 291, FFD by Wong in 1991[65], and LINUS by Phan in 1994[48].

Function form discovery is a form of empirical discovery. In the literature of machine

learning, it is also classified as learning by induction, learning from examples, learning from

observation and discovery, quantitative learning, or unsupervised empiricai learning. The

theoretical basis of this paradigm is empirical inductive generalization in which the system

creates an inductive hypothesis on the basis of the given examples from the external source

of information utilizing primarily domain-independent background knowledge. m e n the

given examples are numerical data, namely a set of observed data, and the goal is to con-

struct function form descriptions (continuous numerical functions, either explicit or implicit)

that summarizes the relations of the variables involved in the given data, the paradigm is re-

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The

manuscript was microfilmed as received.

This reproduction is the best copy available.

UMI

1.3 Function Form Discovery

The second formulation system

Representation II:

may find, from the same data a trigonometric formula:

According to the "ParsLuu~iyn and "Transparency" criteria, "Representation II" is a better

formulation. It contains only two functionai terms, sin(=) and ey. Thus it is more compact

t han "Representation 1" , which contains thirty terms. fn the meantime, "Representation

II" is easier to interpret. Each term in the formula matches a geometric property, e-g., the

oscillatory characteristic regards to z and the deamplification is governed by y. "Represen-

tation 1" reveals very little about these underlying functional relationships. It is hard to

translate the fit t h g parameters into meaningful related properties.

Today, the research field of function form discovery is still in its infancy. Up to the

late eighties, function form discovery systems had been created in two categories. Formula

construction? based approaches, such as BACON [26, 27, 28, 32,34,35] FAHRENHEIT [69,72,

201 and ABACUS [I O , Il], can only discover polynomial and rational function forms. Data

analysis based approaches, such as E* [52, 531, can only discover function forms defined

in the system's protocols. The new data transformation based method launched in the

early nineties, such as FFD [65] and LINUS [48], is still incomplete with many open issues.

Nevertheless, it has been demonstrated that automatic function form discovery system can

be used to assist in automatic knowledge acquisition, extraction of relevant knowledge fiom

Iarge knowledge bases, and abstraction of higher-level concepts out of data sets.

' WC CLxssEcs t the existing me thodologies into three categories, namely formula construction, data analysis

and data transformation. Details wiIl be &en in Section 2.1.

1.3 Motivations of This Reseasch

1.3 Motivations of This Research

Up to the present, most research on inductive leankg has been concerned with quaiitative

learning that creates conceptual, logic-style descriptions fiom the given facts. In contrast,

this research, following the work of FFD and LINUS, attempts to address the quantitative

learning that deals with numerical laws (more specifically, function forms) characterizing

empirical data. Moreover, this research focuses on the three-variable function form discovery

problems. It is motivated by the following theoretical and ptactical concerns.

1. From the point of view of mathematical modeling in science and en,$neering, this

research provides an alternative to numerical analysis and the simulation of cornplex

models. As a tool that combines traditional numerical analysis techniques with the

artificial intelligence, it may serve as an intelligent assistant for human researchers in

scientific studies and engineering developments to find functional regularities hidden

in raw data. Research in traditional numerical analysis methods focuses only on the

mathematical issues of accuracy and convergenc. They cannot be used to fmd a

meaningful and compact numerical relationship from ernpirical data without the aid

of human expertise. This research seeks an automation of mathematic modeling that

emphasizes not only the "justification" but also the "transparency" and "parsimony".

2 . From the machine discovery point of view, this research is needed t o meet the growing

requirements for high quality of quantitative discovery. In many fields of science,

dat a-driven discovery is an important and powerful general theory formation method-

Researchers gather empirical data as a prerequisite for building models and then search

for a set of generalizations or theories to interpret physical world. For the automation

of this process, function form discovery is usually the fundamental starting point for

deep modeling of knowledge in machine.

Current research in automatic empirical discovery focus mainly on qualitative rule or

law discovery. Only very little effort has been put into quantitative discovery. The

shortage of high quality function form discovery system is becoming an obstacle to the

application of machine discovery in solving scientific and engineering problems. This

1.3 Motivations of This Research

research is aimed at developing an intelligence system which could engage as an inter-

mediate processor in a scientific theory formation automation. The system processes

the given empiricai numeric data and provides succeeding discovery processes with

high level knowledge, or more specifically mathematical formulas with high quality in

terms of just ificat icn, parsimony and transparency.

This research demonstrates the flexibility of the data transfcrmation approach. Prier

to the introduction of the data transformation method, ail function form discovery

systems suffered a common limitation of being able to discover only function forms

within a very limited number of function form classes. FFD introduced the data

transformation technique which can discover function forms in a sipificantly wider

range t han previous approaches. However, there are considerable open t heoreticai and

practical issues needed to be addressed with new implementations. A demonstration

of how this methodology works in multi-variable function form discovery problems is

surely wort hwhile.

4. This research specially addresses the three-variable function form discovery problems

for the following reasons. Firstly, multi-variable problems are commonly confronted

in scientific research and engineering development. Secondly, solving three-variable

problems is usually a starting point for addressing higher dimension problems. Lastly,

the indirect approach to the multi-variable function form discovery problem taken by

FFD does not allow the system to fully take advantage of data transformation tech-

nique as it is subjected to some constraints when dealing with real world problems3.

5. As a research in the field of machine intelligence, this research also shares the gen-

eral motivations with other research in the field, such as providing new philosophical

perspective for investigations in cognitive science, and enriching the AI technology by

making a worthwhile progress in such an important task.

3Morc detailç vpiu bc given in Section 4.2.2.

1.4 Organization of the Thesis

1.4 Organization of the Thesis

The remainder of this dissertation is organized into five chapters. Chapter 2 is a review

of related work. The review is organized into three categories according to the cote of the

discovery systems. The current states of this research area is presented.

Chapter 3 establishes the theoretical foundations for the proposed methodology by first

drawing conclusions from the review with the mechanism to be selected to build the new

Jiscovery system. -4 formai statement of the research problem is tEen given. The dis-

cussions that follow the problem statement will focus on introducing the function form

description Ianguage used by the FFD-II system and the theoretical issues concerning the

expressiveness and redundancy of the language.

Chapter 4 presents detailed design issues and the system implementations. Three im-

portant issues will be investigated. They are: first, why indirect methods cannot provide

t lie advantages that the central mechanism provides; second, why error control is important

in multi-variable problems and how to adaptively control the errors; and lastly, what nu-

meric tools should be used to conduct the numeric computations involved in the discovery

process. To introduce the adaptive error control method, both theoretical analyses and

choices of numeric toois are presented.

Chapter 5 reports the experiments run with FFD-II . Experiments are organized into

four groups. Each group emphasizes only one key issue. The first group is "Randomly Se-

lected Functionsn that verifies the fundamental discovery ability of the system. The second

group is a cornparison between an indirect data transformation based system and FFD-II .
The third group is an extensive verification on the system's ability to mode1 complex func-

 ion forms represented by random surfaces. The last group is a test of the system's ability

to handle input data with added noises.

The final chapter, Chapter 6, wiU conclude this thesis by highlighting the contributions

and outlining the directions for future investigations.

Chapter 2

Computational Function Form

Discovery

This chapter reviews previous research in the area of computational numerical law discovery,

or more specifically, real value function form discovery systems. As the focus of this research

is autonomous funct ion form discovery systems, this review wiU concentrate on artificial

intelligence systems that discover real-valued numeric relations. Although various numerical

analysis methods solve the same problem of finding analytic descriptions fiom numeric data,

we view them as mathematical tools that can be used by machine intelligence function form

discovery systems. 1 wili first classify the existing methodologies, and then review the

related work accordingly.

2.1 Met hodology Classification

According to the amount of inference and the techniques employed, function form synthesis

rnethodologies can be classified into three main categories: Numerical Analysis, Formula

Construction and Data ~ n s f o m a t i o n . Some systems employ combined methodologies,

l ~ u t we characterize them into one of these categories according to their central approach.

The two most basic techniques used in function form discovery systems are data transfor-

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The

manuscript was microfilmed as received.

This reproduction is the best copy available.

3.1 Me thodology Classification

performing different data transformations.

Since a numeric analysis system makes its discovery based solely on predefined proto-

types, and only a limited number of prototypes is defined, this method has limited capability

in discoverïng the rich ~ r i e t y of function forms in scientSc study and engineering practice.

Only when the underlying functional relation is covered by its predefined prototypes, can

this method perform a successful discovery under the criteria of justification, parsimony

and transparency. However, this limitation could Iargelp depend on the domain knowledge

of Iiuman experts who create the system to solve problems in a specific application domain.

In contrast, formula construction methods do not make discoveries directly from the

functional pattern matching. The discovered function is constructed under the guide heuris-

tics for of identifying some features. As the features usually include only the simplest ones,

such as rnonotonicity, oscillation and constancy, formula construction methods are located

at the other extreme of the technique spectrum opposite to the numeric analysis methods.

Minimum effort is applied in analyzing the data. The systern's capability to discover re-

lies largely on how new theoretical terms are constructed. The degree of inference used in

formula construction is higher than that used in the numeric analysis method.

Traditionally, data transformation is a "pre-processingn step which serves to simplify the

data before other numerical tools can be used. Application of a particular transformation

may be motivated by the need to remove non-linearity, to decompose complex features into

fundamental ones, to fitter out noise or to capture certain global properties. It can be

used in both computational mathematics and pure mathematics research. The choice of

t ransiormation is not only highly domain dependent but also guided by human cognition. In

the function form discovery system that uses data transformation technique, the capability

of the system largely depends on the transformation set constructed by human experts who

create the system.

Let

2.1 hl e thodology CIassification 14

be the set of variables related to a problem under study. A transfonnation is a one-to-one

mapping M from Rn to Rm:

The type of the rnapping M determines the type of the data transfonnation. There are

three major types of data transformations related to continuous real-vaiued variables.

Algebnzic Transfomation. Mapping M is expressecl by anaiytic functions, usually

explicitly. Most important geornetrical transformations, such as rotation and scaling,

are algebraic transformations.

Integnzl Tmnsfomation. Mapping M contains integral operations. In general the

integral transformation takes the forxn of

where D Rn is the integration domain, 2's are the original independent variables

and v's are the new independent variables. K is known as the kernel function of the

transformation. Apparently, the transformed image is affected by al1 the points in do-

main D. Thus integral transformations are able to highlight certain global properties

of the data.

Diflerential Transformation. As its name indicates, differential transformations in-

volve the description of the data in terms of their derivatives, or ditferences in the dis-

cretized situations. Differential transformations can reveal important analytic p rop

erties, such as dope and convexity etc., and provide elegant graphical descriptions

of highly complex behaviors of nonlinear dgnamic systems[l4]. Many scientific terms

and iaws are represented in the form involving derivatives.

Some examples of transformations are listed below, where {zi, 2 2 , - , xn, w) are the relevant

variables, z's are independent variables and w is dependent variable,

2.1 Me thodology Classification 15

O A simple algebraic transformation which reducing powers into products and products

into sums is the 'logarithm transformation':

For example, by the transformation w = log(%) the furictional relation z = zv becomes

w = z log(y) and the functional relation z = z y becomes w = log(z) + log(y).

O 'Trend remova17 transformation

is an algebra transformation, where the function f describes the trend of a process.

r Fourier transformation [58] is the most famous integral transformation used in pure

and applied mathematics and it plays an important role in communication theory m d

technology.It transforms a physical space to the fiequency space. The general form of

the multi-dimension Fourier Transformation is

where f (zl, x2> -, 2,) is the function to be transformed. Two other well known

integral transformations include Laplace Transformation and Mellin Transformation

a A simple differential transformation in a three dimension Cartesian coordinate system

(2, y, r) is the mapping:

This transformation transforms a two dimensional scalar field z(z, y) into its gradient

vector field, if the Iast two terms are viewed as the coordinates of two dimensional

vectors.

2.3 Fornula Construction Approacties 16

A function forxn discovery system that uses data transfcirrnation technique simplifies a

given observation functional image using the simplification tools of data transformations

embedded in its tool-box. The discovered function form is expressecl in terms of a transfor-

mation sequence dong with a simplifieci matching functional pattern- Hence a weli organized

transformation set is the key to talchg advantage of data transformations and enabling the

system to cover a wide range of complex function fonn classes. The difficuity of the function

form discovery problem hinges upon the expressiveness of the description language, ive. the

way of how the system express its finding. In general, the more expressive the language,

the more difficult it is to find a specific formula. A discovery system must strike a balance

between the language's expressiveness and the cost of identifjhg one particular member

from the set of al1 possibilities [48].

2.2 Formula Construction Approaches

BACON [37, 38, 391 is the most well known machine intelligence system specifically designed

for automated discovery of quantitative laws from numericd data. It discovers numeric laws

hy analyzing the relationships between variables fkom data provided by examples. A num-

ber of discovery systems can be grouped with BACON since they use formula construction

heuristics similar to BACON'S. Table 2.1 lists some of the discovery systems in the BACON

family.

According to our methodology classification, the basic discovery strategy of the BACON

systems is formula construction. BACON.^ starts the discovery with a table of numerical

values of relevant variables provided. Four simple heuristics (or rules) are employed by the

system for driving the search to the goal.

1. If Y has the value V in a number of cases, then hypothesize that Y always

has the value.

2.2 Fofmda Construction Approacties

System Key Feat ures -
Tkend and constancy detectors

S pecialized method for h d i n g constant Merences

Trend and constancy detectors
Recursing to higher levels of description

 BACON.^ plm
Intrinsic property method
Cornmon divisor met bod

 BACON.^ plus
General method for finding constant differences
Expectation-based methods

 BACON.^ plus
Hill-climbing method for dealmg with noise

BACON .3 for equation formation
Dimension analysis
Domain spli t t ing
Logical expressions description

 BACON.^ for equation formation
Scope determination

Qualitative process representation
Correlation analysis

Table 2.1: BACON Like Systems

2. If X and Y are linearly related with the slope S and the intercept I in a

number of cases, then hypothesize that this relation always holds.

3. If X increases as Y decreases, and X and Y are not linearly related, then

define a new tenn T as the product of X and Y.

4. If X increases as Y ïncreases, and X and Y are not linearly related, then

define a new term T as the ratio of X and Y.

In the dlscovery process of BACON, the system cames out a beam search, in which only

a certain number of pairs of terms with the highest correlations are used t o find fundamental

patterns and construct new terms. Then the regularities of constancy, linearity, increasing

3.2 Formula Construction Approaches

and decreasing trends are detected for a selected pair of terms. This is accomplished

simple arithmetic operations. The detection of a regularity triggers the construction

a new term corresponding to the dope (heuristics 2, for linear relationships), the ratio

(heuristics 4, for increasing trends) or the product (heuristics 3, for decreasing trends). A

Iaw is attained when the data can be related together as one finai constant or iinear relation

(heuristics 1 and 2). Thus inductive inference is performed by the production rules which

generate the terms.

In its Iater versions, some new features were added to enhance the system's capability

(refers to Table 2.1). For example, the dxerence technique allows the system to discover

polynomial relations and the recursive technique enables the system to deal with multi-

variable tasks.

BACON is an important system because:

O It is the first machine inteliigence systems that employs formula construction approach

to the function form discovery problems;

a BACON itself has several successive versions concerned with slightly different aspects

and components [Langley, 1978, 1979, 1981, Langley et ai. 1981, 1982, 1983b, 1984,

Bradshaw et al. 1980, 1983al;

Many differeat quantitative law discovery systems adapt BACON'S discovery strategy.

For example, FAHRENHEIT 120, 691, which adapts BACON.^ as its formula discovery

machine, is an extension of BACON that determines the scope of the discovered for-

mulas, and ABACUS [IO, 11, 161 and IDS [46, 471 adapts BACON'S strategy as their

equation formation components;

It can be easily integrated with other qualitative discovery strategies to create a

discovery system that performs both qualitative and quantitative empirical discovery,

e-g. GLAUBER, STAHL, and DALTON 139, 701, ABACUS, and IDS;

BACON is a very clear and thoroughly tested algorithm and may be used as a standard

by which subsequent systems are evaluated.

2.2 Formda Construction Approaches

BACON was evaluated by a number of scient& law rediscovery tasks. However, due to

the very small number of production rules used to recognize features for triggering transfor-

mations, it can only find rational functions. Though it could be argued that any continuous

function can be approximated to any order by a polynomial, this restriction to the rational

function class is a great drawback from the point of view of parsimony and transparency.

This limitation is &O shared by systems that use BACON'S discovery strategy. Neverthe-

Iess, considering its small set of production rules and plausible application in the field of

efementary chemistry and physics, BACON is one of the most important systems in the

Iiistory of machine intelligence approach to the function form discovery problems.

An example of BACON'S formula construction is the rediscovery of Kepler's third law.

Table 2.2 illustrates the terms that were constructed for the discovery of Kepler's t hird law.

Observation Data Term 1 Term 2 Term 3
r

Table 2.2: An Example of BACON'S Formula Construction

The discovery system was first given a set of observation data related to a pair of original

variables Distance(D) and Period(P). The detected trend is a increasing trend, Le. P

increases as D increases. Thus a new term D / P is constructed according to Heuristic 4

(page 1,). Since no linearity and constancy is detected in the new generated term, the

construction process will go on. Baseci on the observed decreasing trend of term D / P

ris D increases, the second new term D2/P is constructed, and then the third, D3/P2 is

constructed from D / P and D'/P. The last term is found to be constant, thus it leads to

the discovery of the function form D ~ / P * = 1.

2.2 Formula Construction Approades

2.2.2 ABACUS, FAHRENHEIT and IDS

BACON searches for a function form description based on trend analysis. Clearly, if there is

no trend detected, or in other words, the underlying function is non-rnonotonic, the system

will not find the solution. For example, if the observation range is z E [-1,2] and the

underlying function relation is y = z2, no new term wili be constmcted by BACON since

the observation data set is not monotonic, in spite of that the functional relation could be

discovered by a two-step term construction: Terml = y/z and Terrn2 = Terml/z = =

1 (Constant). ABACUS addressed this problem by integrating qualitative discovery with

quantitative discovery.

In ABACUS' equation learning, it searches for the best equations to describe the observed

data with a set of inductive rules similar to those used by BACON.^ (a released and enhanced

version) :

1. If X and Y are qualitatively proportional to a user-specifiable degree, gen-

erate new terms z/y and z - y.

2. If X and Y are inversely qualitatively proportional to a user specifiable

degree, generate new ternis zy and z + y.

3. If a term X is found constant for al1 events, the learning task is completed.

4. If a term X is found constant for a subset of the events, the subset is removed

frorn the list of events and associateci with the equation describing it.

Rule 4 allows the system to find multiple equations to describe piecewise functions. To

speed up the searching, ABACUS also employs d e s based on three domain-independent

constraints. They are unit compatibility d e (prohibiting the generation of the terms with

incompatible unit), redundancy detection (prohibiting the generation of the terms which are

mathematically equivalent yet syntacticdy Meren t) and tautology detection (prohibiting

the generation of the terms which are simplifiable by mathematical cancelation).

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The

manuscript was microfilmed as received.

This reproduction is the best copy available.

UMI

2.3 Formula Cons truc tion Approadies

6. Periodic with increzeing (or decreasing) amplitude,

7. Periodic without trend,

8. Periodic with trend.

When the îùst pattern is observed, the system w i l hait. If the second pattern is observed,

backtracking wili be invoked. When one of the remaining six patterns is observed, the

s ys tem constructs new hypot heses accordhg to the rules in its knowledge base, utilizing

the given protocols and arithmetic operators. For example, if the pattern "periodic with

increasing amplitude" is observed, the new hypothesis will be comprised of "the current

liypothesis" f "periodicn x 'Lmonotonic", and if a non-monotonie and non-periodic pattern

is observed, it may infer that the residual contains a term of "monotonic" - "monotonic"

or 'cmonotonic't/ "monotonic". Each new hypothesis is examined one by one. If the new

liypothesis has a lower error than the current one, new residual image is calculated and the

process is repeated. Otherwise, it discards the new hypothesis and checks the remaining

Iiypotheses.

Gerwin reported fifteen tests. Twelve tests had three component functions, one had two

coniponents, one had a single component and one consisted of randomly generated data.

The test came out with 40% accuracy, cornparing with 41% accuracy rate of doing by hand.

Gerwin's algonthm is an artificial intelligence approach. The significance of this algo-

rithm is that it has error tolerance ability and it can carry out function form discovery

based upon only a very small observation data set (in Gerwin's test, only ten observation

data points were used for a single discovery task). Thus, the algorithm is quite efficient.

However, the drawback of this approach is obvious. The function forms that could be han-

dled are very limited. Since the system constructs hypothesis solely based upon analytic

pattern analysis and more than one protocols may have the same analytic property, it ïs

not guaranteed that the best expression is obtained. In Gerwin's test, the sjrstem modeled

x3I2 log(x) as z2 - x and sin(r) + z ' /~/z as sin(z) + ez/2/zs/2 . Moreover, since

the protocols must have good significant analytic properties for the analysis step in this

approach, it is hard to extend the function form coverage.

2.3 Numerical A n d p i s Approaches

2.3 Numerical Analysis Approaches

2.3.1 E' Algorit hm

Uniike previous function form discovery systems designed to find functional relôtionships in

numcrical da%a independent of deep domain knowledge, Schaffer [52, 531 attacked function-

finding probiems by treating function forrn discovery as a classification task. His E* algo-

rithrn decides, among a fixed finite set of parameter id formulas, which formula is most

applicable to a given numeric observation data set. This differs fiom its previous work in

two aspects. First, it concentrates on reliable identification of a few function forms rather

than on heuristic search of an inh i t e space of potential relations. Second, it introduces the

use of different concepts, such as "distinctionn, "significance" and Yack cf fit", for evalu-

ating apparent functional relationships- The algorithm can be considered as a numerical

analysis function forrn discovery approach.

Observing that a large portion of bivariate functions that were published in the journal

Physical Review in the early 1900's fall only within a small range of function forms, SchafTer

proposed his E* algorithm that emphasizes reliability rather than flexibility. Only eight

possible choices are included in E' algorithm. They are listed in Table 2.3. To decide among

tliese choices, regression analysis of data is conducted, and three notions: significance,

distinction and sys tematic lack of fit are used to measure the goodness of the fitting results.

Significance, a statistical measure, is used to measure the strength of a functional pattern

in terms of how unlikely it is to have arisen by chance from purely random data. Distinction

indicates how well a functional relationship approximates the observation data. In other

words, it measures how different a candidate function is fiom other function forms with

which it might be eosily confused. The last notion "Systematic Lack of Fit" measures the

possibility of describing the fitting residuals by another formula. If this is the case, then we

could Say that there is strong evidence that the relationship between given variables is not

wliat the system has discovered.

Schaffer tested his algorithm with 352 sets of data of bivariate functions that were

No. Expression

where kl, k2 and A: are panameters

and NULL means uNo Relationship Identified ".

Table 2.3: Prototypes of E* Algorithm

published in the journal Physical Reviews in the early 1900's. The results were interesting.

Compared with BACON, it performs equally well in identifying the correct formula in 30%

of testing cases. However, E' was much less likely to select an incorrect formula as the

solution. BACON gave 30% incorrect answers while E' only gave 10%.
L

Relying only on statistical andysis, E* has a relatively large tolerance to noise. From

the philosophy of scientific discovery point of view, E* brought some new terms into its

disrovery process that were not considered by its previous systems. First, deep domain

knowledge is normally brought to bear in scientific analytic work and can usually reduce

efforts. E* only selects 7 possible fitting function patterns but performs quite well in its

special problem domain. Second, to evaluate the findings, we need combined criteria for

identifying a potential solution during the discovery process (such as the "significant" and

"distinction" notions in E*). Lastly, to reduce the chance of incorrect resdt, we need to

give a discovery result along with a confidence measure (e.g. the notion of "systematic lack

of fit" used by E*).

3.3 Numerical Andysis Approaches 26

The drawback of this approach is that, because the set of possible solutions is limited, it

is effective only in those cases where the predefined formulas include the unknown function.

For applications in a wide range of discovery tasks, the set must be expandeci significantly

and the three criteria must be modified accordingly to take into account the new formulas.

Nevertheless, this kind of ac hoc modifications cannot improve the potential of this approach

too much. Thus the major limitation of the E' algorithm and is its inflexibility in dealing

witli a wide range of function forms.

KEDS [49] is a function form discovery system which deals with piecewise functions. After

fading to integrate CL US TER^ [61], a cluster algorithm, and ABACUS into a piecewise func-

t ion form discovery system of usefd for engineering, Rao and Lu observed that "in order to

discover models for engineering domains, the task of partitioning the domain space shodd

be closely linked to the relationships that are to be discovered". This observation led to

the development of KEDS, a two-phase discovery system. The partitioning is mode1 driven

and is based upon the relationships that are discovered Gom the data, while the discovery

process is restricted within the boundaries of the regions created by the partitioning.

KEDS requires generalized knowledge about the kinds of relationships that are expected

to be obtainable. This knowledge is expressed in the form of parameterized equation tem-

plates. KEDS first tries to fit the observation to one of the template functions. If it fails

to obtain an acceptable fitting, it tries to partition the domain by sample clustering. Af-

ter partitioning, equation fitting is carried out within each region again. This process is

repeated until an acceptable piecewise function form is obtained.

Since KEDS is destined to solve rd-world engineering problems, it employs only poly-

nomials as its template functions. In terms of accuracy and efficient and meaningful parti-

tioning, it achieves its goal within a limited set of function forms. However, its drawback

is obvious. Since the solutions can only be piecewise polynomial functions, in terms of

parsimony and transparency, the system cannot generate quality solutions.

2.4 Data Transformation Approaches

2.4 Data Transformation Approaches

2.4.1 FFD

FFD uses the data transformation approach, introduced by Wongr651 in 1991. Since this

research uses the same method and falls in the same category, the next chapter will be

devoted to the fundamental issues of this approach while only a bnef review will be given

in this part,

IFD approaches function form discovery problems with a twephase model, feature

simplification and function form abstmction. The former is implemented by successively

applying data transformations selected fiom a set of transformation classes which are pre-

defined in the system's applicable tmnsfomation set, and the latter is done by numeric

fitting to one of the function prototypes predefined in the system's primitive finction set.

During its discovery process, the system searches for the transformation sequence that

t r ansforrns the initial given functional image into a recognizable simple image. Heuristics,

based on the measurement of the simplicities of the transformed functional images and the

complexities of the total transformation sequences that have been applied, are employed in

a best-first search. Once the system identifies a transformed image as a primitive image, a

fiinction form is declared to be discovered. The system reports the transformation sequence,

possibly along wit h a set of descriptive parameters, and the final matching primitive function

'as the discovered solution.

Five general purpose data transformations were included in the FFD implementation.

They are logan'thm, function inverse, recipmal, factorization and diflerwrtial. The primitive

function set is cornposed of three classes of polynomial functions.

cl + c2t2 + c3t + c4 = 0, for Cl # O

clty + czt2 + c3t + c4 = 0, for Cl # 0

c1t2 + c2y + c3t + c4 = O, for Cl # 0

FFD was tested with twenty randomiy generated binary mmbination functions, such

2.4 Data Transformation Approaches 28

as y = t + arctan(t) + 1, y = e-' + l , ' [S i) , 1/(1- 2 log(t)), and so on. Among them, fifteen

matching solutions and two approximations were found. Besides the randomly generated

hinary combination functions, FFD was also tested with five nonlinear ordinary differentid

equations with closed fonn solutions. It found three accurate functiond forms and one

approximation.

Two extensions also enable FFD to deal with oscillatory functions of the form y =

-4(2) - s(cos(w (2))) , where A and s are two functions, and families of finctions with one

extra variable control parameter. The latter function form is a special form of three-variable

function form. This research focuses on the discovery of three-variable function forms. Thus

the details of the extension will be discussed later.

Considering that previous discovery systems can only discover function forms in a very

limited number of functional classes, FFD did open a new era in its area. As a novel

system that uses the data transformation approach, FFD introduced quite a number of

new ideas. Some of them have not been incorporated, while others were implemented with

the simplest method possible [65]. It is therefore too early to stimmarize the limitations of

t l ~ e data transformation approach. However, from the implemented systems in this category,

we can draw the following conclusions from the general point of view:

1. Data transformation approach has a great potential in dealing with complex function

forrns.

2. Data transformation approach is a very flexible methodology which could be eithet

used as a general purpose function form discovery methodology or tailorecl to meet

the needs of special applications.

3. The flexibility of this approach is dso indicated by the capability of adopting other

function form discovery methodologies in a cumulative way. In other words, we can

easily use data transformation technique at the top level of the architecture of an

discovery system which assigns specified subtasks to some other embedded low level

systerns.

2.4 Data Transformation Approdes

4. The complexity of the data transformation approach is usuaily high in both the nu-

meric computation aspect and the computer memory requirement zuipect. The system

must be able to perfrirm data transformation with acceptable accuracy level. That

requires relatively large observation data set.

5. Since some selected data transformations can only be numericdly implemented with

certain accuracy, for example the differential transformation, to prevent the compu-

tational error to explode is very important for the successful discovery of a fiuiction

form.

Our current understanding on the relationship between the system's capabïiity and

t.he choice of transformation set and primitive set is stiU superficial. Any activities that

Iielp us to gain theoretical knowledge, any experiments that enable us to gain practical

understandings and any new impiementations that achieve new capabilities would be proven

beneficial to the progress in the research area of function form discovery.

LINUS [48] is the second discovery system that takes data transformation approach. Its

transformation set contains the five data transformations defined in FFD and its primitive

function set includes three different classes of polynomials.

y + c = 0 ,

yz+clzy + C ~ ~ + C ~ Z ~ + C ~ ~ + C ~ = O ,

(cp3 + c2z2 + C f Z + c4)y + cg== + w2 + h 2 f C. = 0

New features introduced by LINUS include:

Interactive experiment query according to the error level and minimum sample re-

quired to make a discovery.

Automatic range splitting and subtasks formation based on the applicability of specific

transformations. This allows the system to deal with non-monotonie function forms

and to a certain level to deal with piecewise function fonus.

2.4 Data Transionna tion Approaches

Multi-solution output.

Solution refinement through parameter calibration.

Subt ask solutions merging by checking obtained solutions wit h different ranges.

LINUS was reported to have successfdy discovered the function forms of four selected

%variable functions (three of them are not monotonic), and the solutions for twenty linear

and nontinear ordinary differential equations. In one expetiment, LINUS output nineteen

different forms for the same observation data set. Thus the input numeric data can be

interpreted by different ways.

Unlike KEDS' range splitting which is based on cluster analysis, LINUS' range splitting is

bcassd on the monotonicity of the observation data. The result is that LINUS cannot handle

piecewise function forms whose dividing points is not the local maximum or minimum of

the function. For example, LINUS could not find the following piecewise function forms

22 if z 5 0

z otherwise

and
-z2 if 2 5 O

x 2 otherwise,

tiiough it can handle the piecewise fotm

-z if 2 5 0

z otherwise

The other shortcoming of LINUS is the incomplete use of observation data. When range

splitting is needed, the program may drop some observation points around the splitting

points to avoid infinite sample value, and the program does not make any effort later to

get those points back. Furthermore, the program cannot provide us the necessary informa-

tion about the splitting points which is important for piecewise function form description.

LIN US'S sub-solution merging str ategies need to be improved significantly for handling real

world function form discovery problems.

2.5 Other Approades

2.5 O t her Approaches

COPPER combines qualitative reasoning with quantitative remoning. Its qualitative rea-

soning is based on dimensional analysis and the quantitative reasoning to address possible

missing arguments, verify constructed tenns and decide on polynomial formula in describ-

ing input nurneric data. II-theorem [2] is the b a i s of dimensional analysis technique. Its

footprints can be found in many engineering domains. Three key steps of this technique

are: 1) identifying al1 of the relevant physical terms and their units, 2) selecting base argu-

ments frorn the identified terms, and 3) constructing dinensionless combinations (daerent

products of exponents) of the terms.

The first few steps of COPPER system are purely dimensional analysis. Al1 the primitives

of the description space with units and rules for generating derived descriptors must be

provided by the user. When the system finds out that there is no missing argument, it

constructs physically meaningful terms and iterates through each phase to look for a simple

functional formula which is a low-degree polynomial.

Since COPPER'S ernphasis is to discover pbysically meaningful formulas through dimen-

sional analyses, it only works with formulas that are linear combination of products and

ratios of the unknown arguments. Many physicai laws are in this function class, especially

in a good number of engineering applications. From this perspective and the Weierstrass

approximation t heorem El?], COPPER'S pefformance surpass the performance of BACON

and ABACUS. COPPER has demonstrated an important way t o use deep domain knowledge

in a function form discovery system.

2.6 Summary

A11 the discovery systems we have reviewed aim to find quantitative relationships between

numerical terms. Though many techniques were used to enhance the ability of the dis-

covery systems, inciuding 1) preprocessing data by data transformations, 2) introducing

domain knowledge to speed up the search, and 3) utilizing statistic tools to deal with noisy

daia, al1 of the early systerns share a common fatal shortcoming - highly lirnited scope of

discoverable function forms. As indicated in the preceding review, the systems in BACON

famil y make t heir discovery wit hin polynornial and rational functions, and data analysis

approaches make their discovery with a set of arbitrarily selected prototypes.

T h e data transformation approach synthesizes a wide range of function forms by combïn-

ing two fundamental techniques, data transformations and functional pattern recognitions,

into one system. The data transformation approach method can be viewed as a general

quantitative law discovery model. It can adopt other methodologies in an "cumulative

way" to enhance the performance of a new system. However, the FFG system is only a

first atternpt of this approach and leaves still many unsolved problems and opportunities for

irnprovements. LINUS, as the first successor of FFD , has contributed with two major im-

provements - releasing the monotonicity constraint by range spiitting, and formula refining

tlirough parameter calibration. This research aims to make progress in a different direction,

i.e. discovering three-variable function forms using the data transformation approach.

Chapter 3

Function Form Discovery by Data

Transformation

Generaily speaking, the function form discovery problem is the following: design a procedure

t.llat can select a formula f(y, x) = O, f E F, 3 is a set of formulas called 'available

formula set', and the selection should optimally match with a set of given observation

instances O = { f y;, x;)), called 'observation data set', in terms of justification, parsimony

and trnnsparency. The available formula set F could be a limited set of function form

protocols (such as the functions listed in Table 2.3 for the E' algorithm), a class of analytic

functions (such as rational functions), or an implicit set defined in a recursive way (like

in FFD). It is also called the function form coverage of a discovery system. Typically,

x E R C - Sn and y f D C 92, where 3? is the set of real numbers, n is an integer, R

is cczlled the domain of the function form, D the range of the function, and R x D the

observation domain. This problem is also called the mal-valued function fonn discovery

problem, numeric function f o m discovery probiem or the quantitative reasoning problem.

If 3 contains only mathematic formulas related to continuous functions, it is then called

continuous function form discovery problem. Throughout this thesis, we are concerned only

the problem of continuous function form discovery. Therefore the tenn c'function" will be

iised to denote real-valued continuous function forms, unless explicitly noted otherwise.

3.1 Gen eraI Model of Function Form Discovery

Furthermore, we restrict our attention to three-variable problems, i.e. x E R 2 91'.

In this chapter, 1 will discuss the foundations of the machine discovery system FFD-II.

The discussion is divided into three parts. In the first part, 1 will describe the basics of

the proposed methodology by showing that data transformation model is a general function

form discovery model. A forma1 statement of the research problem will then be presented in

the second part. In the last part 1 will first introduce the function form description language

iised by FFD-II, and then focus on theoretical issues concerning the description language,

such ,as expressiveness, necessity, sufficiency, and redundancy.

3.1 General Model of Function Form Discovery

3.1.1 Centrd Mechanism of Data Transformation

-4s stated in the review, function form discovery systems fal! in three categories: numeric

a~ialysis, data transformation and formula construction. Numeric analysis methods empha-

size the recognition of functional patterns directly from the observations. Formula con-

struction methods, in contrast, try to simplify the original observations into a very simple

functional form, such as a constant or a linear function. The data transformation method

is a combination of these two methods.

The data transformation mode1 employs both a rich set of tools for data simplification,

kriown <as the data transformation set, and a set of numeric tools that can recognize func-

tional patterns in a set of functions known as the primitive set. Thus, it can be viewed as

a general mode1 of function form discovery methods.

However, the data transformation approac!! is not simply one that combines the two

different approaches together. For handling the task of simplifying a wide variety of func-

tional patterns, the data transformation set must be carefully composed. The primitive

set must be able to represent, in generai, as many as possible of the simplified functional

patterns efficiently. Furt hermore, the system must be able to use appropriate functional

pattern simplification tools to simplify a given observation data set efficiently into a rec-

3 . 1 General Mode1 of Function Form Discovery 35

ognizable primitive. Figure 3.1 depicts the central mechanism of function form discovery

by data transformation. The key idea of this approach is recursively simplifying the func-

tional image through data transformations until a simple recognizabl- functional pattern is

reached' .

3.1.2 Numeric Analysis in General

The data transformation mode1 is a genera.1 function fonn discovery mociel. The numeric

andysis method could be viewed as one extreme while the formula construction method

is its opposite. For a better understanding of the data transformation method, let us first

examine one extreme, the numeric anaIysis method, frorn the general point of view. The

other extreme will be discussed in the next section.

As an extreme: numeric analysis approaches are composed of an empty set of da ta trans-

formations and a relatively large set of primitive functional patterns, narnely the function

prototypes. The systern does not search for an operation that can simplify the functional

pattern. Instead, the discovery is solely the identification of one matching prototype func-

tion which best describes the observation data. From this perspective, traditional numeric

methods seem to qualify as functional form discovery methods. To avoid this confusion,

the following may he considered as the criteria which distinguish the machine discovery

~netliods frcm pure numeric methods.

Measured by the system's ability to discover, a discovery system should cover a larger

variety of di fkent function forms. A method which can onty find function form

representations within a very few possibilities is disqualified as a discovery method.

However, the qualifiers of "many" and "fewn are only relative. Nevertheless, any

system t hat simpiy performs numeric approximation or interpolation using a few

selected formulas is not a machine discovery system.

' A fiuictiond image is a set of observation data that numerically n?prr?sents a function fom. A functional

i i i iqc is said to bc "simple" if through a few application of data transformations it could be tnnsformed

irito a fiuictional image that coidd be fitted to one of the selected simple functions, primitives, dcfined in

t h s y ~ c ~ i i . Formai d&tions wiii be given later on in this thesis.

3.1 Generai Model of Function Fonn Discovery

Select the sixnplest
functional i m a g e from

the sample set instânce space

APP~Y an
applicable transformation

to generate a new fucntional i m a g e

1s the riewly Add n e w generated
genera ted image No fmctional images
a recogriizzble to the sample set

instance space

Abstrzct function

Hypothesis

Figure 3.1: The Central Mechanisrn of Data Transformation Approach

3.1 Generai Model of Function Form Discovery 37

Measured by the capability of the methodology itself, a discovery system usually

utilizes not only traditional numeric tools but ais0 some other techniques to enhance

its discovery ability. For example, cluster analysis was employed by the KEDS system

and dimensional analysis were used by some other systems.

Measured by the quality of the solution, a discovery system should give a simpler and

more interpretable solution instead of solely an accurate solution. Traditional numeric

analysis techniques solve function form discovery problems considering only the justi-

fication criteria. The possible parameters of the functional form templates are decided

by minimizing a numerical mesurement of error. The simplicity and rneaningfulness

of the solution rely on the human expert who tries to solve the problem using certain

numeric tools. In contrast, a discovery system that use numeric analysis approach

should have the ability to take over the task of human experts to a certain level in

choosing the simpler and meaningful expression to describe the given observation data

set. However, due to the limited set of prototype function forms a system can handle,

the ability of any system, that takes the numeric analysis approach to find a simple

and rneaningful function form is also lirnited.

An iritelligent approach should be able to generate a solution along with a set of

rneaningful measurements. An example is E' aigorithm, which mesures the quality

of its discovery by the measurements of significance, distinction and systematic lack

Since the system does not need any inference ability to choose operations from rule space,

numeric analysis approaches require the least arnount of inference. This is one of the reasons

wliy this approach cannot go too far from traditional numeric methods in performing data

niodelirig.

3.1 -3 Formula Construction in General

The formula construction mode1 can also be viewed as a data transformation methodology.

A~iy formula construction approach must be able to decide when a discovery is accomplished.

3.1 General Model of Function Form Discovery 38

This activity involves the detection of some very simple functional patterns. These patterns

correspond to the primitives in the data transformation model. The systern must also be able

to incrementally construct a formula, (called a theoretical term as in the BACON system) ,

iitilizing inference rules and elementary formulas. These elementary formulas along with the

way through which a formula is constructed are equivalent to the data transformation set

and sequence in a data transformation approach. Function form discovery systems that take

the formula construction approach are cornposed of two fundamental parts, as with the data

transformation approach. Therefore, the two types of systems have the same fundamental

structure.

Consider the BACON system. It is a formula construction based system which is one

of the most well-known function form discovery systems. Its formula construction rules

(Heuristics 3 and 4 on page 17) can be rewritten as two algebraic transformations:

Tl: (X, Y) c-, (X, X / Y)

T 2 : (X, Y) (X, X - Y) ,

and its termination conditions (Heuristics 1 and 2 on page 16) correspond to the following

two primitives:

W e have seen the rediscovery of Kepler's third law by BACON in Section 2.2.1. To

ilIustrate the concept of function form discovery by data transformation, let us examine

tlie same problem from the general point of view. The discovery can be made by first

transiorming (D, P) into (D, D / P) by applying Tl; then applying T2 to (D, D / P) to

geiierate (D, D'/P); and finally applying T2 to (D, D?/P) to generated (D, D ~ / P) . After

tliis transformation, the data match with the primitive function P 2 because D ~ / P = 1.

The discovered function form can be represented by a transformation sequence aiong with

tlie matching primitive P2 as

(T 2 o T 2 o T 1 , Y = 1)

3 . 1 Generai Mode1 of Function Form Discovery 39

where Y is a function of the original terms D and P decided by the transformations that

have been applied. In this example, Y = D=/P.

1 t is easy to distinguish a numeric analysis function form discovery system, which has an

empty transformation set, from a data transformation function form discovery system. The

difkrences between a formula construction approach and a data transformation approach are

a little subtle. However, we classify them into ciiffixent categories because they have différent

constructions, emphases and performances. The differences between the constructions of

t liese two different approaches are:

Operat ions The construction rule set of a formula construction system is and domain de-

pendent. BACON includes only two rules to deal with rationals and polynomials, and

tlie Gerwin's algorithm includes six binary rules for combining six different analytic

fiinctions.In contrast, the transformation set employed by a data transformation sys-

tem is usually more general and may include any one-to-one continuous mapping. In

both cases, the transformations in the set should be well coordinated to enhance the

performance of the system.

Heurist ics The heuristics related to each operation in a formula construction systern are

usually more "precisen . Each operation can only be applied when a specific pattern is

de tected between current related terms. This requires a thorough understandin, = on

tlie effects of each operation applied to a certain data instance. Examples are BACON'S

lieuristics on page 16 and the elementary patterns that the Gerwin's algorithm looks

for to trigger a certain ccnstruction step on page 22. In contrast, in a data trans-

formation system, the heuristics are usually more coarse and general since i t is not

pract ical to const ruct a large, general-purpose and well understood transformation set

at the moment.

P r imi t ives Unlike data transformation systems which in principle can include any func-

t ional pattern in its primitive functional pattern set, formula construction systems

limit their primitive functional pattern set only to constant or linear functions for the

recasons of the structure of their heuristics and operation set.

33.1 Generai Mode1 of Func tion Form Discovery 40

With different constructions, these two methodologies have different emphases and perfor-

mances.

9 Formula construction methods emphasize reliability. The reliability refers to both the

tolerance to error and the consistency of the theoretical and practical coverage. Since

1. the operation set is compact and only those transformations that are less sensitive

to noise are chosen,

2. the fundamental patterns the systern choosing to handle are usually the simplest ,

3. statistical tecliniques can be easily included in the system,

the system usually has good tolerance to both the input noise and the cornputational

errors. Furthermore, considering also the fact that the properties of the employed

transf~rmations and primitives in a formula construction approach are usually simple

and easy to analyze, we know exactly what function form could or could not be

discovered by the system. For example, BACON can and can only find polynomial and

rational function forms.

Data transformation methods, in contrat , emphasize the coverage of a large variety

of complex function forms. That is achieved by a well organized transformation set

dong with a primitive set. However, as a tradeoff of ernploying some powerful but

noise sensitive transformations, the system is relatively vulnerable to noise. The

employment of some advanced transformations, such as differential transformations,

makes it a difficult task to describe the exact function form coverage of a discovery

system that takes data transformation approach. Moreover, due to the great number.

of selectable function forms and the limited numeric computation accuracy with digital

computing machine using selected numerical methods, systems that perform data

transformation can not guarantee the discovery of al1 function forms that are claimed

discoverable by t heoretical analyses of the system.

Therefore, when we seek an application in simple domain, for example elementary

physics and chemistry, formula construction method is a good choice for its reliability and

S . 1 G e n e d Modei Function Fc-m Discovery

efficiency.

3.1.4 Cumulative Enhancement

Besides the ability to cover a wide variety of function forms, the most important benefit for

taking data transformation approach is the possibility and flexibility of constructing new

high performance function form discovery systems in a cumulative way. The 'cumulative

met hodology ' is the met hodology to construct new systems with some ot her augmented

simpler systems (old systems) . The new system should perform better and carries out more

tcuks. Meanwhile, the new system not only includes the old ones but also assigns them new

roles.

The data transformation approach is a general and flexible discovery method. Al1 the

esisting methodologies can find their new roles in this approach. It has been mentioned

that the discovery algorithms in the other two categories share the sarne limitation of

small discover able funct ion form classes. This limitation prevents any previous discovery

algorit hm from being a general-purpose function form machine discovery system . However,

due to tlieir robustness and efficiency in dealing with certain simple function form discovery

t a k s , they can be used in a data transformation based discovery system to perform some

simple functional pat tem recognitions.

There are two major ways in which we can build a data transformation based function

form discovery system using cumulative met hodology. First, the primitive funct ional pat-

tern set could be organized in a better way by employing simpler function form discovery

systems. It means that the recognition of the primitives does not have to rely solely on

traditional numerical tools. The recognition tasks cari also be carried out by selected func-

t ion form discovery systems. Since a function form discovery system usually provides us

with a more compact and meaningful fit, the performance of the system could be largely

enhanced in the way of organizing the primitive set with some well selected simple function

form discovery systems.

Second, some transformations we may choose may include descriptive expressions. A

3.2 A Formal Statement of the Researcb Problem

system must be able to find these expressions for carrying out the discovery process or

completing a discovery. For example, if a system includes partial derivatives as one trans-

formation, a lower dimension discovery system is required to find the possible boundary

condit ions for inverting t hose data transformations so t hat a complete function form de-

script ion can be obtained. The other example is dimension reduction transformation. When

solving multi-variable function form discovery problems, reducing the dimension of the p rob

lem is an important way to simplify the probtem. However, if we want to use this strategy,

i t is necessary to have an associated function form discovery system that can take over the

discovery tasks with fewer dimensions. Such a system is usually simpler than the new built

system of higher dimension. Some transformations may be observation instance related

and must be constructed based on the recognition of some special functional pattern from

tlie corresponding observation instance. This will require the discovery of function forms

within a specific function form class. A simple function form discovery algorithm should be

available to do t his job. Factorization and dimension reduction transformations' are two

esamples of this type of transformations.

3.2 A Forma1 Statement of the Research Problern

W e have just discussed the data transformation function form discovery model as a general

fiinction form discovery model. The numeric analysis and formula construction models are

two of its special cases. A system based on the data transformation model must have both

tlie ability to simplify functional patterns and the ability to recognize functions in certain

primary function classes. When the system is give an observation data set, it recursively

selects simplification tools (defined as the data transformations in the system's tool-box) to

simplify the observation data set, and tries to match the shplified observation data set with

one of the functions in a selected szt of function templates. In the discovery system, the

'Tlic factorization is a transformation cmployed by FFD-II, whilc the dimension reduction is &cd out

iLs i\ spcciai typc of primitive rccognïtion - compositional primitive recognition in the FFD-II systcm. Morc

(I(.t.iiiIs wiii l>c gïvcn whcn they arc introduced.

3.2 A Formal Statement o f the Research Problem 43

simplification tools are known as the data transformation set, while the function tempiates

are known as the primitive functional pattern set.

In t his section, the research problem will be formally stated in the form of function form

discovery by data transformation. Before the statement, a number of definitions will be

given. 1 will start with the definitions of function and observation, then carry on with the

two major components, the data transformation set and the primitive set, and finally give

t h e definition of function form description language. Since the symbols introduced in the

definitions will be used as a convention in the remaining part of this thesis, they will be

siimmarized at the end of the definition part.

3.2.1 Definitions

Definition 1 Let f : DI C 52' c-t D2 c 92 be an unknown mal-value function govern-

ing the system under our study, whem Dl is called the function dornain, D2 is called the

function range and Dl x 0' is called the observation domain. An observation is a mal-

valued three-tuple (a , b , c) such that:

-4n observation data set is a set of observations

A n observation data set is also called a functional image or an image in short.

An observation data set is a numeric representation (instantiation) of a function form.

Definition 2 A transformation is a uone-to-one ont0 mapping" T defined on any non-

ernpty subset D f c d, where St3 denotes three-dimensional Cartesian Space, such that:

3.2 A Formal Statement of the Research Problem

where D j C 9Z3 is the tmnsfomation domain and Dt C Or is the tmnsfomation range.

The inverse transformation of a transformation T is thus the transformation

such that Y (u , u, w) E D I , T-'(2' (u , u, w)) i (u, v , w). A transformation class

T is a set of transfonnations that includes either a single tmnsfomation or a number of

transfonnations described by a pararneterized transfomation. A tmnsfomation in a trans-

formation class is an instantiation of the class. As such, we can express a tmnsfomation

as a n instance of the corresponding tmnsformation as:

* lparurnetric expression descriptions

1l;ithout arnbiguity, an instantiated transformation class can also be um'tten as

T lpammetric expression descriptions*

For example, the parameterized transformation

is a transformation class. One of its instantiations

is a transformation where u + v is the pararnetric expression description of this particular

instantiation.

Definition 3 Let Tl : D ll ct D tl and T2 : D f 2 H D t 2 be two trarrsfomations, and

D i = D t l n D fl is not empty. The tmnsformation composition operator O defines a binury

3.2 A Formd Statement of the Research Problem 45

operation of two transformations, written as T2 O Ti , that yields a new transformation T

Note that a transformation is a one-to-one ont0 mapping. As such, the inverse of a composed

transformation T = T2 O Tl is the transformation

Definit ion 4 -4 transformation class set is a set of tmnsfornation classes

where K is an integer denoting the sire of the tmmfomzation class set. The tmnsfoma-

{ Ti

tion set defrned by Equation (3.10) is called the base transformation set comsponding to

transfonnation class set ST :

Ti is a transformation class

i = 1 , - - - , K

where I = (1) and I is the identity transformation

Note that each transformation class Ti is dso a set of transformations. The bold calligraphie

letter "S " denotes a transformation class set and a simple bold capital letter "S " denotes

the union of transformation classes in a transformation class set S.

3.2 A Formal Statement of the Research Probiem

Syrnbol 1 Name 1 Expression

T~ : (~ 1 ~ 9 ~) ~ (u 1 v 9 a - u + b 'UI
TF Linear Factorization

V a , b , c E ! R , a . b . c # O

Table 3.1: An Example Transformation Class Set

As an example, Table 3.1 defines transformation classes for a transformation classes

set. Among the transformation classes, the transformation ciass TL contains a single non-

parameterized transformation, and TF contains many transformations expressed by a pa-

rameterized transformation with parameters a, b and c. The transformation class TD is a

lit tle tricky. It does not include any parameter in i t s expression. However, it is a parame-

terized transformation class. Recalling the definition of transformation, any transformation

inust be a one-to-one mapping. For this reason, any differential transformation has hidden

parameters, or more precisely, parametric expressions that contribute as the detenninist ic

conditions required for inverting the transformation by an integral. Let (u, v, w = h(u, v))

be tlie underlying functional relation corresponding to the variable triple (u, v, w) . If

f (u, V) = / h(u, ")du + C (v)

wliere C(v) is the integral constant. When we are given a function form corresponding to

tlie triple (u, v, 6) as 6 = h(u, v), and we knon tha t (u, v, lu) = TD (u, v , w), it is necessary

3.2 A Fonnai Statement of the Research Prob!em

to specify the integral constant C(v) for extracting the functional relationship between u, v

and w , i.e. w = h(u, v) . However, the specification of the parametric expression can take

many forms. For example, a simple way to specify the parametric expression is to express

it with a pair of equations that determines the integral of the partial differential:

where f and g are functions in cIass Cm. It means, on the smooth cuve u = f (v) on a

f~~nctional image with associated variables u, v and w , the value of w is related to the value

of t. ,as w = g (v) . Thus, the functional relationship between u, v and w will be:

'in instantiation of a parameterized transformation is a transformation. The specified

pnrametric values or expressions are associated with the transformation as its subscript.

For example, TF I,,+, stands for the factorizat ion transformation

and TD lb,=-,. ,=,?l stands for the differential transformation with the indicated parametric

expressions, Le.

TD : (u, v , W) ++ (u, v, aw/au)
where w = v 2 , when u = 0.

Definition 5 Let A and B be two tmnsfonnation sets, the tmnsfonnation set genemted

b y A and B with respect tu the composition openztor O, or the generated transformation set

in brief, is denoted by A O B:

de f A c B = (

\

T is transformation, and

vT, ~ T E A or T E B ,

then T E A o B

VTl, Tz f A o B, if Tl oT2 exists,

then Tl oT2 f Ao B
/

f

T

\

1

3.2 A Formal Statement of the Research Problem

The generated transformation set of a single transformation set A is denoted by A':

Similarly, the transfomation set generated by a transformation class set S, = {Tl, - . - , TK)
is defined as3

- dcf ST = STf = I o T i O - - - o T K

Definition 6 Let ST = { Tl, - - - , TK) be a transfomation class set, ST be the cor-
CI

responding base transfonation set, and ST = S,* be the corresponding generated tnzns-

formation set. Any element of ST, which defines a tmnsformation or more precisely a

composed transformation, is called a transformation sequence generated by Sr , or in brief,

cr transformation sequence.

Definition 7 Let T be a transformation class, the rank of T is an arbitrariiy selected

non-negtive integer associated with T

Rank (T) = K E N

trhere N is the set of natuml nunbers (i e . non-negatiue integers). The rank of a transfor-

nzntion in a transformation class T equals to the mnk of the transformation class

Rank (T) = Rank (T) , VT E T

Let S r = (Ti, - - - , TK) be a tmnsfonnation class set, ST be the corresponding gen-

erated transfonnation set, and 1; = Rank (T;) , i = 1, - - , K be the corresponding

' Notc thnt the composition operation Uo" is associative but not commutative when it is appLied to

t.i-;uisforrnntions (Definition 3). "O" is both associative and commutative when it is applied to transformation

c!;wcc; (Dcfinition 5). Thus in Equation 3.15 which transformation dass appears first does not affect the

rcsdt.
h

A .-Hattcd Capitd Letter" 'O ST is used to cmphasize that the transformation set is gcneratcd by the
h

ti-iuisfornintion c i a ~ set SI. A gcnerated transformation set ST is also denoted by S,' or S: throughout

t.1 J s ttlicsis.

3.2 A Formai Statement of the Researcb Problem 49

tmnsfomation classes mnk values. Let E , and 5? = pl 0 O O To , where each
-
Ti, (i = 1, - - -, O) is a transformation belong to one of the tmnsfomation classes in set S,,

i .e . E TKi and Ki E 11, - -, K } . The nznk of transformation sequence is defined to

be the sum of rank values of each individual tnznsfomzation

The order of tmnsformation sequence T is the nurnber of transformations in the sequence:

Definition 8 A functional primitive class is a set of fitnctions (either a single function or

parameterized functions) {z = f(z, Y)} in the class Cw which could be either explicit or

impiicit. A functional primitive class is denoted by F .

Definition 9 A compositional primitive class is a tua-dimensional expression set (g(z, y))

(either a single expression or a number of pammeterized expressions), and each g(x, y) is

in the class Cs. A compositional primitive class is denoted by E .

-4 functional primitive class is a function template which stands for a set of functions

dis tinguished by different parameter settings (if any) . As such, we will use the bold capital

letter "F" to denote a functional primitive class and use the italicized capital letter "F"

t.o denote an instant function in the set "F". Similarly, a compositional primitive ciass

is an expression template which stands for a set of expressions distinguished by different

parameter settings (if any). So that "E " represents a compositional primitive class and

"En represents an instant expression in the set E .

Definition 10 An element F in a functionalphmitive class F is called a functional primitive,

wn'tten as F E F. An element E in a composition primitive class E is called a compositional

primitive, written as E € E.

3.2 A Formal Statement of the Research Problem 50

Definition 11 A functional primitive class or a compositional primitive class is called a

primitive class, and denoted by P . A primitive class set is composed of primitive classes.

Fi is functional primitive class,

E j is compositional primitive class,

i = 1 , - . - , n ; j = l , . . . , n 1
where the integer 'm' is the number of functional primitives and the integer 'n' is the

num ber of compositional prïmitiues. Correspondirzg to the primitive class set Sp, a primitive

set is dejîned as

A n element P in the set S is either a finctional primitive F or a compositional primitive

E . It is called a primitive.

TczbIe 3 -2 lists two examples of primitive classes. The compositional primitive class EL

contains a parameterized expression with parameter 0 and the functional primitive class

Ft contains a parameterized function with parameters a, b and c. An instantiation of EL,

such as the expression $u + bv, is a compositionai primitive expression. An instantiation

of PL, siich as w = u + v , is a functionai primitive expression.

Symbol

Er,

Table 3.2: Examples cf Primitives

Name

FL

Expression

Linear Compositional Primitive
u cos(0) + v sin(0),

Vfl E [O , n)

Linear Functional Primitive
w - (a - u + b - v + c) = O ,

V a , b , c ~ IR

3.2 A Formal Statement of the Research Problem 51

Definition 12 A function form description language L: has two components - a tmnsfor-

mat ion class set and a primitive class set, writien as

def
L = = (~ T , S P) (3.22)

where

is the transformation class set, und

is the primitive class set. A function form description language is a h called a language in

brie f.

Definition 13 Let C be u function f o m description language described by equations 13-22),

/3.23), and (3.24). Let = S; be the tmnsformation set genemted4 by ST, and Sp

be the primitive set corresponding to S p . A function form description i n language L i s

defined as

def
D t = (& , D p)

for any Dr E c, and Dp E Sp

where, DT and Dp are called the description transformation sequence and the description

primitive respectiuely. Dr can also be written as

where each TI E ST, (i = 1, - - , k) , is a base triznsfonnation. The rank of the description

equals to the rank of the description tmnsformation sequence:

Rank (Dr) = Rank (DT, D p)
def - - - Rank (DT)

' ncfcr to Dcfmition 5.

3.2 A Formal Statement of the Research Problem 52

Definit ion 14 If a three-variable function f o m z = f (2, y) (o r f (2, y, z) = O) can be

expressed b y a function form description in a language L, it is descnbable in C.

X function forrn description language L: codd also be viewed as a set of functions that are

clescribable by the language. As such, i f a function form f (r , y , z) = O or z = f(x, y) is

describable in C, it is denoted by

f E c.

Definition 15 Let Cl und C2 be two fvnction for= description languages. If

it is said that L2 is a super-language to CI, or LI is cz sublanguage to La. Tt is denoted

by

If Ci C2 and C2 Ç Ll , it i s said that Cl i s equivalent to C2 , and denoted by

Ci z L2.

Definition 16 Let f (x, y , z) = O or z = f (2 , y) be a function form descn'bable in a function

jornz description language L = (ST, SP). The rank of function f o m f in language L= is

defined as

The Complexity of a function form f in language L: is measured by its rank in the language

and the complexity of the corresponding description primitives. When we construct the

Rank (f, L:) = min (DL)

'' To the riced of t l is rcsearch, the complexity of a primitive is the numbcr of non-zero control paramctcrs-

I i i n more gcncrai mcasurement we skould consider how difficult it is to find thc expression of the primitive

; i i d liciicc tlic f~mction form.

V D c E L , and

Dr is a descrip (3.30)

tion of f

3.2 A Formal Statement of the Research Problem 53

senrcli heuristics, we take into account both of the rank of the transformation sequence that

ticas been applied, and how likely tke instance functional image can be transformed into a

primitive with the application of a new transformation.

An Example Funct ion Form Descri~tion Laneuaee:

To understand the definitions, let us examine an example b c t i o n form description language

and Iiow function forms are expressed in the language. However, the rank values will not

Ile shown in tliis example. They will be more meaningful to be presented in the part where

the proposed function form description language is introduced.

The example function form description language is based on the transformation classes

listed in Table 3.1 and the primitive classes listed in Table 3.2. Let us first list the compo-

nents and the relevant sets as the following,

The Transfonnation Class Set

The Base Transfonnation Set

The Genemted Transfomation Set

-
S T = S T = I ~ T F 0 T ~ o T ~

The Primitive Class Set

The Primitive Set

3.2 A Formal Statement of the Research Problem

The example function form description language can then be defined as:

The Description Language

Using t his example function form description language, the function

* = p' -y4

lias the following two possible descriptions6:

TIius, the function of Equation 3.38 is an instance of the ianguage L, written as

= ' E L

To transfer a function form description into a simple function, we need to invert the trans-

formation sequence in the inverse order. Let us see the process of inverting "Description-1"

first.

Starting from the primitive fimction Dp:

where u, 2. and w are the variables that are generated by applying the transformation s e

quence DT:

TolrtL=o, W=uq Q TFIU+V O TFIU-V Q TL

'' Notc tlmt t h primitives of the two descriptions are different. More detail will be givcn soon.

3.2 A Formai Statement of the Researc.6 Problem

to the original variable set (z, y, z), we invert the last transformation being applied, which

is the differential transformation TD 1 w=v21, thr-gh integration:

where the integral function is the primitive function, and the initial condition of w = v"

when u = O (specified by the subscript of Tg) determines the integral bounds and constant,

t hen invert TF}(t,+rt) :

(u, V , u1 + v l) ci (u , U, (2' + v)(u? + v?)),

(u, v , u4 - v4) c-f (u, U, eu'-v' 1.

Iiaving inverted the transformation sequence, the variable triple (u, v, w) corresponding to

the primitive has been turned into (u, v , eu'+"). Since (u, v , w) is a transforrned variable

set t h a t is obtained by applying the transformation sequence DT to a variable set (z, y, z) ,

w e sliciild substituting the variable set (2, y, z) into the final obtained expression. That

yields the function:

= e='-~ '

This completes the inverting ptocess with a function identical to Equation 3.38

To rewrite function form "Description-2" to a simple function, we must first figure

out a one dimension function f (t) that relates the compositional primitive g to the

independent variable W . In general, a compositional primitive expression C(u, v) irnplies

t iiat the primitive function form can be expressed by a function f :

which is indeed a parametric expression. Thus, to complete a function form description that

includes a compositional primitive, a one-dimensional function, narnely the "descriptive

3.2 A Formal Statement of the Research Problem

is required to couple with the compositional primitive. Otherwise, the function form de-

scription is not an unique description, which means it could stands for many function forms.

In rr function form discovery task, f (t) is obtained by carrying out two-variable function

form discovery upon a set of two-dimensional observation data. in this example, since the

fiinction to be expressed by the example language is known, we know the descriptive ex-

pression is f (t) = 2t. Hence we can start from the variable set (u, u, w = 2u) and invert the

transformation sequence, which is exactly the same as it appears in "Description-1 ", in the

same way as we did in the transfer of "Description-1 " into an explicit function.

Equation set (3.12), which is required to couple a differential transformation, and equa-

t-ion (3 -39) are two types of parametric expressions of the function forrn description language

presented here. They are al1 singlevariable functions. Since the major concern of this re-

search is the function form discovery problems in three-dimensional space, we treat them

orily <as hidden parametric expressions that could be passed to an available two-variable func-

tioii forni discovery system that handles the tasks of discovering the necessary expressions7.

Definition 17 A descriptive expression of a function form description is a two-variable

continuous function which is required for inverting a certain transformation or cornplet-

ing a function form description that contains cornpositional primitive as a cornponent. A

descriptive image is a set of real nurnber pairs which is the numeric representation of a

two-variable function in the class Cw.

We have seen how the transformation set and the primitive set in a funrticn form

description language work together to represent a function. A data transformation based

function form discovery system is constructed on the bases of a defined language. If a

system is constructed based on the description language L (Equation 3-37 and 3-37), i t

' I i i tlic implcmcntation, the FFD system and least-squares polynomial fitting method arc considercd as

two dioiccs

3.2 A Forma1 Statement of the Reseerch Problem 57

wilI discover the function forrn description "Description-ln or "Description-2" from a set

of give observation data, such as

The example we have examined is an expiicit function. Both of the functional descrip-

tions we have given are invertible and the inversion results in an expiicit function, which

is a composition of elementary analytic functions. We shall mention here that things may

iiot trirn out to be that nice. To extract the functional expression regarding to the initial

variables by invetting the discovered function form description, may result in an implicit

function, an expression with integral operation or a set of equations. In other words, there

are some functional descriptions that can only be inverted numerically. When the t ransfor-

niation set includes the differential operation or the functional inverse8, this phenornenon

is not avoidable. For example, if we add one more transformation class

to the transformation class set S,(Equation (3.33)) and one more functional primitive class

to the primitive class set S,(equation (3.35)), a new function form description language

L,, is defined:

Using this new description language, we can express the elliptic integral

Ft wctiond iavcx-sc is one of thc transformation classes employcd by FFD-II .

.?.2 A Formal Statement of the R e s e d Problem 58

Elliptic integrals are special functions that can only be expressed in integral format. This

example shows not only an example of the description of a complex function form but also

the pow&fulness of the data transformation method.

Different function form represent ations have different syntactic simplicities and semantic

ineaningfulness. The data transformation based mode1 has the capability to handle complex

firriction forms in various formats. Moreover, from a given observation data set, such a

system can provide us with multiple solutions.

3.2.2 The Statement

The problem addressed in this thesis can now be stated as the follows.

Three-variable Function Form Discovery Probiem:

1. an Obseruation Data Set Of which is governed by an unknowri explicit

or implicit three-variable underlying function form z = f (z, y).

2. a Function Fonn Description Language C = (ST, Sp) , where

the Primitive Class Set S p contains :

the Ranked %nsfonnation Class Set ST is:

3. a Mazimum Rank R,,.

4 . a Matching E m r Tolemnce Level 6,,.

3.2 A Formal Statemen t of the Researcb Problem

Constlxct: a Function Fonn Description Dr = (DT, Dp) E C , such that:

1. Rank (DT) < Rmax.

*
2. the averaged deviation between the function form t = f (2, y) repre-

sented by Dr and the underlying function form z = f (x, y) represented

by the observation data set Of is l e s than 6,, .

Simplification Assurnptions

At this stage, we restrict our scope with the following assumptions. Without explicit men-

tion ? t liese assumptions will exist throughout this thesis.

Continuity The unknown function form and al1 the underlying function forms

of transformed images belong to the class Cm in the observation domain.

Sirfficient Observation We can acquire sufficient fine step observation data.

Known Expected Error The process that generates the observation data set

are well determined, i.e. the expected error level is known.

Acquirable Descriptive Expression Any descriptive expression~equired

for completing a function form description could be obtained from an exist-

ing two-dimensional function form discovery system via passing an descrip

tive image to that system.

The first asçümption implies that we need only t o consider continuous transformations

in the construction of ST and S p , and the appiicability of basic differential transforma-

tions. The second assumption is about the availability of the observation data. The third

,-issiimption ensures that the error propagation during the search can be estimated.

The last assumption allows this research to focus on the three-variable function form

discovery problems. The discovery of two-variable function forms relies on an available

3.3 FFD-II Description Language 60

low dimension discovery system. Recall that WC have been coafronted with two types of

descriptive expressions in an example (Refer to Equation 3.12 and 3.39). Since the FFD-

II system contains the same type of transformations and compositional primitive, these

tmo types of descriptive expressions are required to represent a complete functional format

relat i~nship'~ between variables. It is assumed that there is a supporting system that can

fi nd t hose expressions". However, without the descriptive expressions, the constmcted

transformation sequence, if viewed o d y as a sequence of transformation classes along with

the matching compositional primitive still reveals the underlying regularities of the observed

fiinctional image, cand can be interpreted as a numeric Iaw concerning the corresponding

i nvestigated real world problem. That means, the system can serve as a special mathematic

modeling tool.

3.3 FFD-II Function Form Description Language

As Ii,u been pointed out, the performance of a data transformation based function form

discovery system highly relies on the description language itself. The ability to simplify

ftinctional patterns is determined by the transformation ciass set, while the ability to rec-

os~iize primitive patterns is determined by the primitive class set. The combination of

these two abilities enables the system to discover function forms from numeric observation

data. Since no specific application domain is specified, the focus is only placed on those

peneral-purpose language components and related issues.

3.3.1 The Transformation Class

TIiere is no doubt that a well tailored transformation class set ensures a wide function form

coverage and better computational efficiency. When we are confronted with the task of

"'A functional format rclationship is rcpresented with an analytic function, cithcr impliat or cxplicit,

wliilc A iiumcric law can be gencrally expressed by any mathematic formuia, such as an analytic function or

;L tliffcrcxitid cqtiation.
I I Tlic FFD systeni or simply a polynomial interpolation dgorithm can be used as the supporting system.

3.3 FFD-II Descri'p tion Language 61

constructing a transformation class set, we may ask a t the very beginning: "What are the

criteria for choosing transformation classes to meet our needs?". Unfortliriately, we know

very little to the answer of this question up to now. This issue is still open and calling foi

more attention in this research field.

Generally speaking, it is relatively easy to tell what transformations are necessary for

covering a certain function form class. But it is difficult to tell what is a sufficient trans-

formation class set to solve the function form discovery problems drawn from a specific

poprilation. In other words, it is relatively easy to characterize a single transformation, but

Iiard to know how the dXerent transformations in a defined transformation class set affect

and enhance the performance of each other. Especially, when differential transformations

are included, the analysis becornes very complicated.

Our purpose is to design a system that can deal with "common" function forms in

scientific fields. These common function forms are generated by the combinations of funda-

mental analytic functions through fundamental function construction operations (listed in

Table 3.3 and Table 3.4), Generally speaking, among these fundamental functions, the con-

stant function class is the simplest (from the perspective of being easy to identify, compute

and manipulate), the power function class is the second simplest, and the rest are about the

sarne. Among the operators, the linear operations " + " and " - " are the simplest, " x " is

next, and " t " may be more difficult to handle than " x ". Functional composition provides

the rnost function form variations and is usually the hardest to handle.

Most of the anal-vtic functions we can find in a first year calculus text book fa11 into the

cl'ass we have just described. As a simple example, all polynomials are derived by repeatedly

combining a constant function and a power function with the binary operators addition and

multiplication. The function form f (z)g(=) can be rewritten as e ' ~ g (l (~)) . ~ (~) . As such, it

is a functional composition of the exponential function and the function generated by the

prodiict of two functions: the function g and the functional composition of log function and

the function f .

With this guideline of what function forms we are going to deal with, we will consider

t.1iose general transformations that simplify either the fundamental functions or the combi-

3.3 FFD-11 Description Language

I (- . .y 1 Povr-r functions I

Expressions

c
!

- - - -- - - -

(. . .) u n 1 ~ o o t functions

Func t ion Name

Constant funct ions

- - - - - - - - - -

Trigonomet ric funct ions
I

log(- . .) 1 Logarithm functions 1

1

Table 3.3: Fundamental Analytic Function Forms

=P(- - -1

Addition operator

Subtraction operator

Multiplication operator

Exponential functions

1 i [Division operator

1 @ 1 Functional composition operator 1
Table 3.4: Fundamental Function Construction Operations

nation operators under certain circumstances. In the rest of this chapter, 1 use the folIowing

symbols to define the transformations. The variable set includes:

ul, ua and tcd denote the Minable set of the current state (i.e. before trans-

formation). Among thern, ul , u2 are independent while ud is dependent.

0 V I , v? and vd are used to denote the variable set of a transformed state.

Among thern, vl , v* are independent while vd is dependent.

Let T he a transformation applicable to the variable set (ul , uz, ud) , and (v l , vz, vd)

3.3 FFD-II Description Language

be the variable set that (ul, u2, ud) is transformed into, i.e-

T
(W l u2, u d) - (~ 1 1 7J21 U d) 1

a transformation will be formulated as:

where f , g, and h stand for the expressions that specify the reIationship between the original

variable set and the new variable set. Before we define the transformations it should be

rnentioned that the expressions f , g, and h may contain certain parameters, thus the above

formula will also pertain to a transformation class T = {T) .

Now let us define the basic data transformations for FFD-II . When a transformation

is defined, a brief description of the usefulness of the transformation in dealing with the

general function forms will be given. 1 will also give the applicability conditions and the

inverse transformation of each data transformation.

Logarithm

The importance of this transformation is that

1. it is a fundamental function we intend to deal with (Table 3.3);

3. it transfers power and root functions into linear combinations;

3. it transfers multiplication into addition;

3.3 FFD-II Description Language

4. it removes the functional composition (operation "O") from the exponential

expression exp (f (u, v)).

To preserve the continuity, logarithmcan only be applied to a functionaf image with constant

sign. The inversion of this transformation is

wliere the sign " f "is decided by functional image to which the logarithm transformation

w;is applied to obtain the image O(,, .,,,, .

Reciprocal

ReciprocaI is an inverse of multiplication. It is a simple and common afgebraic operation

t hat exchanges the the numerator with the denominator of a proportionai expression re-

sulted hy the " + " operator. When combined with differential transformations, it can

sometimes dramatically change the functional pattern. For preserving the continuity, the

reciprocd transformation must not be applied to a functional image with different signs".

The inverse transformation of T R ~ ~ is equivalent to T R ~ ~

- - - - - -- -

'' It lins becu assurncd tbat thc underlying function is continuous function. If different signs arc obsc~vcd

i i i ;ui i~iiagc. it implics thnt thcrc must be some points in the observation domain whose function value are

zwo. A..; siicl:. thc application of TR~C wiil yield infinity.

3.3 FFD-II Description Language

Fac t orizat ion

This is an important transformation that can best decompose the functional patterns de-

rived by the operator " x ". Bowever, it is important that the factor function f (ul, u2)

rnust be simple and can be easily observed by some other means. The extraction of the

factor function is a task of functional pattern discovery - a function form discovery re-

lated problem. Besides simple numeric tools, function form discovery algorithms can also

be employed to carry out this task. The inversion of this transformation is

The simplest factorization transformation is the one with a linear factor

where 8 and C are control parameters. The corresponding inverse transformation is

3.3 FFD-II Description Language

Funct ional Inverse

This is the algebraic transformation that changes the pre-assumed dependent variable. Gen-

eraily speaking, a function form

f(% U V W) = O (3 .SI)

t. liat relates t hree variables together is only a functionat relationship among the variables.

The only criterion for a variable to be the dependent variable is the "rnonodrome require-

ment " , which means that the variable w can be viewed as the dependeni variable if and

only if: Yu, v E 32, f (u, v , w l) = O and f (u, v, w2) = O only when w l = w2 .

Fiinctional inverse is a simple and important transformation. Firstly, combined with

clifferential transformations, it helps to express many fundamental function forms. We will

see this when we introduce the differential transformation later. Secondly, the complexity

of an explicit expression of a functional relationship usually depends largely on the choice of

which variable is viewed as the dependent variable and put on the Ieft side of the equation.

III other words, w = g(u, v) , I L = h(w , v) and equation (3.51) may be different represen-

tations of the same functional relationship, but the expression g(u, v) could be much more

complicated and harder to handle than expression h(w , v) .

This transformation can be applied to a function which is rnonotonic to the variable u l .
The inverse transformation is equivalent to the transformation itself

3.3 FFD-II Description Language

Independent Variable Exchange

This transformation allows the system to manipulate the given image equally in both direc-

t ions corresponding to the variables ul and u2 . Combining independent variable exchange

with functional inverse, we can rotate variables or exchange the position of any two vari-

ables in the triple (2 , y, z) , provided the functional inverse transformation is applicable

wlien necessary. Thus a more compact transformation class set could be constructed with

the employment of TL-,, . There is no constraint on the application of this transformation.

The inverse transformation of TV,, is equivalent to itself

D i fkrent ia l Transformat ion

Differentiation is one of the most important methods in conducting mathematic analy-

sis. In addition to the fzct that i;=riny scientific laws are expressed in terms of differential

equations, many geometric properties, such as dope and curvature, are expressed with dif-

ferential terms. The k q idea of the data transformation mode1 is recursively simplifying a

functional image until a simple image that the system can recognize is attained. Differential

transformations claim their key roles in sirnplifying functional patterns with their superior

ability in manipulating functional patterns when coordinated by other transformations.

To see the capability of differential transformations in simplifying functional patterns,

let us give some examples. The fundamental function forms listed in Table 3.3 can be rewrit-

ten as differential equations with corresponding deterrninistic conditions. Results are listed

in Table 3.5. ClearIy, the original functions were al1 transformed into one of the simplest

3.3 FFD-II Description Language

Function Form

f (4 = C

f (2) = zn

f (z) = x1In

Table 3.5: Differential Representations of Fundamental Function Forms

Differential Equation

f ' = o

f (z) = tan(z)

f (2) = cot(x)

f (4 = e x p (4

function clzsses - second order polynomials Pz(x7 f, f') . Thus the differential transfor-

mat ion is the most important transformation that should be included in the transformation

clcasses set.

Initial Condition

f (0) = c

2 - f ' - n - f = O

n - f ' - x - f = O

The simplest format of t hree-variable differential transformation is the following trans-

formation with a single partial differential.

f (O) = 0

f (0) = 0

fr - f* = 1

f' + f' = -1

f'- f = O

Instead of summarizing a number of fundamental function combinations that can be simpli-

fied by TDIF (as what have been done in Table 3.5) let me present an example of how TDIF

decomposes a function form into simple components. Differential transformation TDIF is a

Iinear operation. I t rneans that when it is applied to a linear combination of two functions,

- - - - ---

f (O) = 0

f = 0

f (0) = 0

3.3 FFD-II Description Language 69

the result is the linear combination of the difTerentials of the two component functions. As

such, if the function g(x, y) is irrelevant to z, that means g could be treated as a constant

when taking differential respected to z , we obtain from applying TDEF the result:

In a function form discovery problem to find the underlying function of the form z =

f(x, y) 6 g (y), the application of TDIF provides a possible way to reduces the cornplexity

of the problem by decomposing the initial task into two tasks: to discover f:(xl y) and to

discover a single variable function g(y). The latter could be handled by a discovery system

of lower dimension.

Since it is assumed that al1 underlying functions are in the class Cm, the differential

transformation is always applicable. The inverse transformation of TDIF is an integral.

ivliere ci, and c are two single-variable continuous functions, known as descriptive e ~ ~ r e s s i o n s ' ~ .

In FFD-II , the inverse is computed by numeric integration.

3.3.2 The Primitive Classes

The choice of primitives must strike a balance among four criteria, namely generality, non-

rediindancy, effectiveness and simplicity.

Genemtity means that the primitive set must be able to represent most of

the final simplified features in a particular problem domain. In other words,

l :\ Finclin;: thcsc cxprcssiom are just a task of discovering two-variable function forms from numeric data.

Tlicy crui bc donc by pasring thc corrcsponding twa-dimensional sample data to FFD or a polynomial fitting

~11~01-it11111.

3.3 FFD-II Description Language

when combined with the transformation class set, it must allow a system to

discover a wide range of function forms of our interest. It ernphasizes the

overaI1 discovery capability of a system using a certain description language.

0 Non-redundancy means that the primitive set must not include those func-

tional forrns that are simplifiable by the defined transformations. This cri-

terion emphasizes the reduction of redundancy.

Effectiveness means that the primitive set must be able to represent as

many functional features as possible. This criterion ernphasizes the variety

of primitives that a system can recognize and the "speeding upn of finding

a solution.

Simplicity means that the primitive must be simple to be expressed and easy

to be recognized. Measured by the number of the total control parameters, a

well tailored primitive should use less parameters. Furthermore, matching a

functional image with the primitive should not be too costly. This criterion

concerns the computational complexity of the system.

Funct ional Primitives

There are two elementary types of functional primitives, normal primitive function and

extended primitiue function. A transformation sequence transforms the original functional

image related to the initial Yariable triple into a new functiond image related to a new

variable triple. If we can find a formula that describes the transfonned function image, the

original underlying function form can be expressed by that formula and the corresponding

transformation sequence. Any single formula in the system's tool-box that can be used to

clescribe a functional image is a normal primitive function. Expressed by an equation, a

~iorrnal primitive function has the form

3.3 FFD-II Description Language 71

where Fr(VI , v3, v d) is an analytic function and (vl , v2, a) is the variable triple to which

a transformed functional image is related. This primitive function type is easier to handle

than extended primitive function type. FFD and LINUS both employ only this type of

primitive functions in their tool-box for solving function pattern recognition problems.

In contrast, BACON does not bind generated variables into pairs. Instead, it views

al1 netv generated variables as theoretical terms. Knowing how a theoretical term has

been constructed from the original variables, the system finds the underlying function form

related to the original variables by finding certain types of regularities14 between selected

compatible theoretical term pair. This is an example of the second type primitive functions

- extended primitive functions.

,411 extended primitive function is a functional relationship among a set of selectecl the-

oretical terms, or variables, associated with different generated functional images currently

exist in the data spacel"

FP(t l i tZ, - - - , t ,) = O (3.58)

wliere t i l s are variables (theoretical terms) associated with their corresponding transformed

variable triples or functional images. Since a theoretical terni (or its corresponding data) is

obtained from applying data transformations to the original variable triple (or functional

image), there exists a functional dependency between any generated theoretical term and

the original variables determined by the corresponding transformation sequence. If it is

fotind that a certain set of nodes existing in the current data space satisfies Equation 3.58,

a function form concerning the original variables is discovered. This is the foundation of an

extended primitive function.

lncluding extended primitive function in a discovery system's tool-kit makes it possible

for the system to recognize a wider varieties of cornplex functional patterns. As a result, it

either speeds up the discovery or extends the function form coverage of the system.

'-' Rc.,.iilcuity tsed hcre is j t ~ t the other word for primitive function.

" ilccaii thnt a fiuiction form discovcry system works with two spaces - rulc space and data spacc.

Data tr;uisform;rtions c.ul bc vicwcd as the d e spmc and the data space is composed of a set of gmcmted

fiiirctioiid irxiagcs.

3.3 FFD-II Description Language 72

Although we consider only the normal primitive in FFD-II , it is worthy t o be mentioned

that the extended primitive type is an important primitive type. It allows the discovery

sÿstem to use the information in the data space in a more flexible way, and provides the

designer with more chances to encode desirable domain knowledge into the system. For ex-

ample, extended primitive functions could be selected on the base of certain mathematically

interesting and meaningful clauses. In this way, short cuts to a compact and meaningful

solution are assigned to the discovery system. Dimensional analysis techniques may be used

to compose an extended primitive function that is meaningful in terms of physical meaning-

fulness in the problems in special application domains. This issue its own is a rich research

area and should be viewed as a worthwhile direction of future research.

-4s we discussed in Section 3.1.4, primitive recognition could be done by a simpler dis-

covery stems'^. In generai, the more the primitive functions that the discovery system

can recognize, the wider range of function forms the system can cover. However, the fo-

ctis of this research is the fundamentals of function form discovery by data transformation.

The compactness is emphasized, instead of powerfulness, in the construction of the ptim-

itive function set for FFD-II. Hence, only a small set of analytic function classes will be

considered.

Arnong the analytic function classes, polynomial function class are the simplest. It is a

good function class to be considered as primitive functions for the following reasons.

0 Polynomial functions can approximate any function in class Cm to any

arbitrary order. This is supported by Taylor expansion and various inter-

polation theorems.

The dependency to the control parameters (coefficients of a polynomial) is

linear. Thus the fitting could be easily implemented with simple and well

established numerical tools.

I 1; Siiiipler systcrn rcfers to a function form discovery system that recognïzes fcwer function forms more

r.ffificiciitly t h n tlic ho& systcm. Examples of such systems tliat can be considered by a data transformation

I ~ ~ ~ r i t l tliscovcry systcm includc E', I<EPLER[G?] and KEDS

3.3 FFD-II Description Language

The second order polynomials can quantitativeIy represent al1 the impor-

tant first and second order curvatures and qualitatively represent important

functional behaviors such as local minima and maxima, elliptic, parabolic,

flat, hyperbolic points, etc. on a surface.

Simple algebraic analysis methods are available, e.g. factorizat ion, for ana-

lyzing the properties of polynomial expressions.

a Polynomials have been demonstrated to be a good choice by the existing

data transformation based function form discovery systems such as FFD

and LINUS. This research further supports this claim in three-variable func-

t ion form discovery problems.

The following two primitive function forms are designed for FFD-II.

The differences between F , and Fr should not be neglected. Fq could be easily transformed

in to a constance function by a transformation sequence consisted of a few applications of the

transformations previously defined. Considering the task of fitting six parameters as a trade

off of search more nodes, it is worthwhile. However, it is usually very hard to transform an

expression of the form F, into a simpler function form using the transformations defined in

tliis chapter. Considering that the square root function is a very common function format,

it would be better to be included in the primitive set directly.

Compositional Primitives

Table 3.4 lists five operators that can be used to generate complex function forms from

elernentary functions. I t has been pointed out that functiorial composition operator O is

3.3 FFD-II Description Language 74

the most important one that combines simple function forms into hard to handle complex

function forms. With a single operator 0, two simple functions f (t) and g(xl y) can be

combined into a single composed function:

In section 3.3.1, five general-purpose transformation classes were identified. Unfortunately,

rione of them directly simplifies function forms given by Equation 3.61. In practice, it may

Iiappen that through a sequence of data transformations, the original functional image is

transformed into a new image that satisfies Equation 3.61. In solving real world problems in

a particular domain, it might be desirable that a certain set of variables (with dimensions)

are combined into a dimensionless atom before a meaningful formula could be obtained

(t.his requirement specifies an additional function expression g (z, y)). In the former case,

a compositional primitive helps to enhance the capability of the system, and in the latter

c'ase, a compositional primitive provides a way to encoding domain knowledge.

i n Equation 3.61, function h(z , y) can be decomposed into two functions - the core

expression g (x , y) determines the '%ne-grain" behavior while the function f (t) determines

t.lie "global feature" . The compositional primitive set specifies the functional patterns (core

expressions g (x , y)) recognizable to the system. Through certain segmentation scheme,

we can 'assign the discovery system with the ability to identify the functional components

9(% Y) and f(t) .

Recall t hat we have discussed the "cumulative methodology" in Section 3.1.4. Applying

i t in bot h of the tasks of finding a hypothetic core expression g(z, y) and the one-dimension

fiinction f (t) are straightforward. They both are function form discovery problems that

c m be solved using specific discovery methodologies or existing function form discovery

systems.

Generally, the composition of a compositional primitive is closely related t o the appli-

cation domain. To demonstrate the idea of using the compositional primitive in a discovery

system, linear functions was chosen as the on!y campositional primitive class recognizable

3.3 FFD-II Description Language

wtiere 0 is a control parameter. The corresponding compositional primitive is defined a

This corn positional primitive addresses the recognition of cylindric functional patterns in an

image. This class of images is related to a one-dimension function with a p l a n a coordinate

system rotation. The detection and fitting of this core function will be discussed later.

3.3.3 The Function Form Description Language

The function form description Ianguage used by FFD-II can now be stated- The choice of

the rank value of each transformation class wiil be discussed in the rest parts of this chapter

and in Cliapter 4.

Transformation Class Set

Table 3.6 lists the definitions of each transformation classes appeared in the

definition. Notice that in the table T T REC, T I S V , and T VES are single

elernent transformation set.

Primitive Class Set -
S p = { F q . F T , E l)

where F, = {F,) , F, = {F,) and E 1 = { E l) (see Eq. (3.59). Eg . (3.60)

and Eq . (3.63) for the corresponding formulas).

The Language

Z=(%,sp)

3.3 FFD-II Description Language

Table 3.6: Transformation Classes of FFD-II

Symbol

T LOG

TREC

T FAC

T rsv

T VES

T DIF

Sorne Relevant Sets :

The Base Transformation Set

The Primitive Set

Definition

2' toc = TL%

T R E C = (T R E C)

T FAC = { TFAC)

TISV = {TISV)

T VEX = { TVEX)

T ~ r î = { TDIF)

3.3.4 Transformation Macro, Redundancy and Expressiveness

The "Trans fomat ion Mac# technique is introduced to speed up the search for the goal.

A transformation macro is formed by a combination of a sequence of the original transfor-

mations, and the search algorithm treats the result as a single transformation. It is a big

step in the search space. As such, it reduces the search depth required to move from the

s ta r t state to a goal state. However, on the other hand, it increases the branching factor a t

eacli state.

Trans.
Description

(3.42)

(3.44)

(3.48)

(3.50)

(3.53)

(3.55)

Inverse
Description

(3.43)

(3.45)

(3.49)

(3.52)

(3 -54)

(3.56)

Rank

1

1

1

O

O

2

3.3 FFD-II Description Language

Since FFD-II system carries out "best firstn search, ihe transformation macro technique

is embedded in the settings of transformation ranks which is one of the major factors of

the searching heuristics. Strictly speaking, this treatment is not to speed up the searching,

wliich is commonly the motivation for introducing operator rnacros, but to make the trans-

format ion class set more compact without defining unnecessary transformation classes. In

t his section I will first examine transformation rnacros from the aspects of their ranks. Then

1 mil1 discuss redundant transformation sequences. As a close and important issue, 1 wili

discuss the expressiveness of the function form description languages in the last section of

this part.

nansformat ion Macros and Their Ranks

Proposition 1 Let u , v and w be the only three vanables in a problern. The fiue variable

stiuffle transformations l7

Ts?
S h u f l e 2 : (u , v , w) (v , u , w)

TS3
Shufle 3 : (u , v, w) ---+ (v , w, u)

are a11 cornbinctions of TVEX and TINV, and the resultant ranks are al1 zero, provided T v E x

and TI,,- are applicable to each corresponding states.

17 III t1J.c p<wt. WC usc (r (rr, v , w) , s(u, ri, w) , t(u, v, w)) to denote a ncw variable triple (un, un, w,)

t,lii\t is rclnted to thc original variable triple (u, v, w) by

wlicrc r. .* ,and t dcnotc thcc functiond expressions. Howevcr, it is mquircd that thc abovc mapping is

..(11 ici-t.o-one onto" mapping.

3.3 FFD-II Description Language

Table 3 -7: Transformation Combinations of Variable Shuffling

Transformation

Tsl

[Proof] The first part of the proposition can be proved by Table 3.7. Based on the

result of the first part and considering that (1) the rank value of a transformation sequence

is the sum of the rank values of each transformation in the sequence; and (2)TvE, and

TI,,. are ranked zero, the second part of the proposition is obvious.

Proposition 2 The maximum number of irrelevant variable shufle transformation is two.

In other words, we can arbitrarïly choose two and only two diflerent variable shufle tmns-

jormations deflned by Equations (3.70) through (3.74) and al2 the rest can be derived by

combinations of the two selected.

Composition
Sequence

TVEX O Trw O T V E ~

This proposition can be easily proved by enumerating al1 the possible combinations of any

R e d tant
Rank

O

arbitrary choice of two different variable shiiffle transformations. It implies that we can -
replace T %s or T lsv in language L: by a different variable shuffle transformation (or -
replace both) and construct a new language that is equivalent to the language L used by

FFD-II.

Proposition 3 The differential tmnsfonnation

-t

i s a transformation in set ST which has the mnk value equal to TD,, .

3.3 FFD-II Description Language

Rank (Tm2) = Rank (TvEX O TDIF O TVEX)

= Rank (TVEX) + Rank (TDIF) + Rank (TvEx)

= 0 + 2 + 0 = 2

= Rank (TDIF)

The proof is completed. O

Bcased on Proposition 1 we can prove the following propositions in the same way as we

did in the proof of Proposition 3-

Proposition 4 Let

Then

(1) TLoci and TLOG2 are combinations of variable shufles and TLOGi and

have the same mnk value as TLoc-

(2) TRECl and TREC2 a 4 combinations of variable shulgle and TREc, and

have the same rank value as TREC,

(3) TFAcl and TFAcZ are combinations of variable shufles and TF,\=, and

have the same rank value as TF*=.

3.3 FFD-II Description Language

Group Group / No. 1 Name
Trans. Classes
in the Group

1 5 1 Differential 1 TDIF , { T D I F Z) 1 2 1
- -

Table 3.8: Grouping of Fundamental Transformation Classes

provided each transfomation c m be applied as required.

Clearly, the transformations introduced in Proposition 1, 3 and 4 are ail fundamental

but not al1 of them are necessary to be included in the definition of description language 2
rit the same time. On the other hand, equivalent languages can be constructed by replacing

some transformation classes wit h selected different transformation classes.

If we group al1 the new transformation classes into five groups (Table 3.8), we can

coristriict equivalent languages by taking two different classes from group #1 and one from

eacli of the remaining groups. As an example, the function form description language

is equivalent to the language 2. The propositions (1 through 4) show us the reasons why

only T VES and T rsv are included in the transformation class set and their rank

values are set to zero.

More Composition Properties

We have seen some basic transformation compositions in Section 3.3.4. Intuitively, two

transformation sequences may sornetimes reach the same state. In search for the trans-

3.3 FFD-II Description Language 81

formation sequence which simplifies the original image into a primitive, repeating searches

in two equivalent branches is what should be avoided. This is the issue of transformation

redundancy analysis. Let us first forma11 y define redundancy.

Definition 18 Let Tl and T2 be two tmnsformations (sequences) in a genemted tmnsfor-

mation set ST corresponding to ST . Tl and TZ are said to be equivalent ig (1) they are

defined on the sarne domain D C *, and (2) V (2, y, z) E D, Tl(z, y, z) = T2(2, y, z) . An

equivalent transformation pair is denoted by Tl , T2 . A n equivalent transformation class

in S., is a non-empty transformation set

where 11 denotes the empty set and T, is a selected tmnsformation sequence in class

known as the representative of * .
Xpparently, " r " relation is a transitive binary relation and any two different equivalent

transformation classes are disjoint. Thus, a generated transformation set can be divided

into a set of disjointed equivalent classes. In other words, the collection of al1 equivalent

transformation classes of a

of S , .

Definition 19 Let be

generated transformation set ST , that is {!Pi) , is a partition

the generated transfomation set of ST and

where (1) K is an integer which is allowed to be infinity, (2) each iPi , i = 1, - - -, K, is an

equicalent transformation clam, and (3) V i # j , @; n *j is an empty set. Then,

is called a ground partitioning of ST , and K is cailed the cardinality of . It is denoted -
Ijy Curd (S,) or Gard (ST) , (or simply 1 1 or ISTl)-

3.3 FFD-II Description Language 82

Definition 20 Let !&i be an equivalent class of a genemfed trnnsfomation set z. A -
ground transformation of ST in is an arbitmn'ly selected trarzsf~rmation'~ \E; f @;

such that V T E !&;

Order (T) > Order (\k;), or
(3 -86 j

Order (T) = Order (\E;), Rank (T) 2 Rank (i E ;) .

Let (q l , Q2, - . -, OK} be a ground paditioning of c, and Qi E 4i i s a ground

transformation of ST in \k; , (i = 1,2, - -, K) . Then, the transformation set

is called a ground kernel of ST . A gmund kernel is denoted by Os, or Os; .

Definition 21 Let ST be a tmnsfomation c l a s set, be the genemted tmnsfomat ion

set of S, , a transformation T E S, is redundant with respect to a gmund kernel Qs;

28 Tg O s = .

Since S, has only 1 Os; 1 equivalent transformation classes, it has only 1 Os; 1 ground

transformations in a ground transformation set. Thus, theïe are only 1 Os; 1 transforma-

tion combinations that are not redundant. Al1 the rest are redundant transformations.

Definition 22 Let S, be a base transformation set, ST = S,* be the genenzted tmnsfor- -
mation set, and as; = {Pl, .Ir2 , - - , qK) be a ground kernel of S, . Then, es; i s

called a regular ground kernel if Os; satisJies

-4 regular ground kernel is denoted by as, or (3s: .
1 X Note tbat thcrc codd bc more th= one transformations in @ that satisfy Equntion (3.8G).

3.3 FFD-II Description Language 83

Proposition 5 Let 5 be any genemted tmnsfomation set bused on a base tmnsfomotion

set Sr. Then, there is at least one ground Lerne1 that is a regular gmund kernel.

(1) Constructing a subset 9 of c.
Let O = U& 9k . where 9; are recursively defined as

T l € T € S-t-

VT E T;

V T' and Tf' E 9;. T' f Tt'

(2) From the construction of *, it is obvious that VTl jL T2 E 9, Tl $ T2 .

(3) V T = T l o T 2 o . . - o T , ~ ~ , 3 T ' ~ Q , s u c h t h a t T r T ' .

where, Tl, T2, - - ., Tm E ST .
This can be proved with mathematic induction. First, from the construc-

tion rule of VT E ST, 3Tf E 9B C T Tt. Second, assume that

3n1 for any transformation sequence T that is composed of less than n

base transformations, there exists a transformation Tt E *, such that

T Tl. Now Let T("+') be a transformation sequence composed of n + 1
base transformations. We can write T("+ '1 = T O T("), where T is a b a e

transformation and T(") is a transformation sequence composed of n base

transformations. From the inductive assumption and the construction

rule of 9, there exists s transformation T' E u:!: 9k c /, such that

T("+') T'. Thus, by mathematic induction. the proof is completed.

3.3 FFD-II Description Langage

Furthermore, since it is obvious that Equation 3.86 is satisfied for each

element in é , é is a ground kernel of z.
The proposition is proved by summarizing (l), (2) and (3). O

Proposition 5 provides an important theoretical result, i-e. "To a function form discovery

system, if we describe the redundancy properly, the system will find any existing solution

hy searching only the space of non-redundant transformation sequencesn.

- 1 - l t
Proposition 6 Let S, and ST be two genenrted tmnsformation sets bwed on the

base transfomation sets STr and STlr respectively, and assume that STr E S.r'' . Then,
- 1

if Os; is a regular ground kernel of S, , there exists a mgular gmund kernel of - f f

S, such that OS: C es; .

The proof of this proposition is quite straightforward and shaii not be presented here. For

convenience, we shall use "group" - an algebra t e r m l 9 0 describe Our analyses in the

remaining part of this section. However, to keep the discussion focusing, we will not point

out which transformation is in the "regular ground kernel", although it is an important

concept to be borne in mind along the analyses.

Proposit ion 7

is a non-Abelian group. Hence

1.) A semi-group is a non-empty set S on whi& is dehed a binary operation 8 such that (1) S is dose

i t i u l c x - O aid (2) 0 is assoaative on S. A scmi-group is written as (S, @). if @ is commutative, a semi-group

(S. @) is cded a commutative sema-group. if (1) there is an identity element e E S and (2) every element

i i i o;ct S hiw CU inverse. thcn a semi-group (S, @) is caiied a group. A poup is caiied an A belian group if

i t. is ï i conimiitativc goitp (S. @) . The ordcr of a group is the number of elements in the group.

3.3 FFD-II Description Language

is r, non-Abelian group of order sir .

[ProOf] Since Trsv O TIsv = 1 and TVEX O TVEX = 1 the first part of this proposition

can be directly derived from Proposition 1. The second part is the result of the first part.

n

Proposition 8

is a non-Abelian group of order eight.

The similar resuIt of 2-variable problem was proved by Wong[65] and we will not repeat

t lie proof here. Eight variable triples corresponding to the transformations set in Expres-

sion (3.92) are tabulated below.

3.3 FFD-II Description Language

1, A , I l , 8

ne
see definitions

(v , u, I / w)

(u, w , 4
(w, % l / v)

(l / ~ r U , W)

(u, l / v , 4
(u, W I 1 / v)

n n e
A n A e

I n e
nno

B Ii A B

I A Q i ï A O

I l A O I I A B

n O A O

A II O II A O

n ~ n o n a e
one

(ul l / w , l / v)

(l / v , l / w , ~)

(l / v , u, l / w)

(u , l / v , l / w)

(I / w , 1 /vy U)

I i A O n A

A l I A Q I I A

nn
on

n e n

A ï i û ïï A 8 ïï 8

nA
I

(1/% W I U)

(W I l / v , U)

(v , w , 4
(w , v , 1 / 4

(l l u , v , w)

Remarks : .t A, Ii cmd 0 stand for TV=, Tiw, and T ~ e c respectively.

$ '* O " is the ody impliat operator which connects two transformations-

(l / w , l / v , l / u)

+JI u1

(i l w , U , V)

(u , l / w , v)

(l / ~ , v , u)

A ~ A O ~ O

onneno
~o o n e

i

1 n m n a e n e

Table 3.9: Different Non-redundant Combinations of TREC, TINV and T R ~ ~ -

A ~ I A

0 l l A

I i 8 n A

-- --

(l l w , ~ / I L , V)

U , ~ W I V

~ I W , i / u Y i / v)

/ , / 1)

(v , i l w , U)

(1 u 1

n n e n ~
1 A Q n A

Aenenn I (w, I I U , 1 1 ~)

nnonenn
nononn

anenean

(i / v , I / U , W)

(1 1 ~ ~ W , I / U)

(w , I / V , I / U)

3.3 FFD-II Description Laguage 87

Apparently the combination of independent variable exchange, functional inverse and

reci procal result in different reciprocal format transformations. Al1 possible variations are

tabdated in Table 3.9. Thus the following proposition is given without a detailed proof.

From Table 3.9 we can see that the maximum number of consequently applying of the three

transformations is nine. Any more than that would be redundant. Furthermore, there are

39523 different symbolic combinations of that three transformations up to the length of

9. It means that more than 99.8% of them are redundant. Therefore, the importance of

rediindancy analysis is demonstrated.

Proposi t ion 10 The two transformation sequences TRECOTDrF and TI , , O TDIF 0 TI,,. are

equivalent, provided each transformation is applicable. Thus the sequence T I , , o TDrF 0 Tlsv

is redundant.

[Proof] First we should note the identity of the applicabilities of the two transformation

scqtiences. If there is a point in the observation domain where 8w(uo, v o) / a u = O , both

sequences will not be applicable. Otherwise, both of them are applicable.

Let w = f (u, v) be a function which is differentiable with respect to variable u , and

w = f (u, v) is invertible with respect to variable u with a inverse function u = g(w , v)

such that g(w, v) is differentiable with respect to variable w . Then by applying the

transformations in the corres~onding sequence one by one according to the definitions of

the data transformati~ns, the original image will be transformed into the foliowing two

images

3.3 FFD-II Description Language 88

= fl(.o, vo) = lim f (u, w) - f (mi VI)
P-+W u-uo

Considering the continuity and differentiability, (3.97) can be rewritten as

- - 1

lim u-uo
P + P o w - wo

Thus T nEc: 0 T ~ ~ (p o) = T rsv 0 TD,, o TIs, (PO) . The first part of the proposition is proved.

Propos i t i on 11 Transfomation sequence TLoc O TREc is identical to the tmnsfomation

TLo,; regarding to the sinzplicity of any given finctional fonn. Thus TL^^ O T R E C COU^^ be

::icu;cd as redundant in a discouery system.

[Proof] Let (u , v , w) be a variable triple, where a functional relationship w = f (u, v)

exists. Then,

T ~ o c (u , v , w) = (u1 v 1 log(lwl) 1,

Si nce T Lot; and TREC are applicable under the same constraint, therefore simple one-to-one

correspondence between the image TLoc(u, v , f (u, v)) and the image T L O G O T R E C (U , u, f (u, u))

esists (if applicable), and the two images are identical in ternis of diocoverability and com-

plexity.

There are tliree similar propositions concerning transformation TvEx. W e neglect the

similnr repeating proofs.

3.3 FFD-II Description Language

Proposition 12 Tmnsformation sequence

pence O TF,\= Th= TFAC O TvEX

system.

Proposition 13 Tmnsfomtation sequence

sequence TV,, O TLoc . Thus TLoc O TvEX

Proposition 14 Transfomation sequence

sequence 0 TREC . Thus T R E C O TVEX

TFAc O TVEX is idcntical to tmnsformation se-

could be viewed as redundant in a discovery

TLoG O TvEX is equivalent to transformation

could be view as redundant.

m
1 RE, O TVEX is equivalent to transformation

could be vieu: as a redundani.

Lcast three propositions con be summarized by "For any transformation sequence composed

of t lie transformations in the transformation set of language , if it is not redundant and

it contains Tl-,, , then the transformation to the left of TVEX (if any) can only be Trst-

or T D,, " . The following two redundancy propositions concerning transformation T are

apparent, thus the proofs are neglected.

whem Zf is the set of al1 non-negative integers, then

Proposition 15 Let TF1 , TF2 , - - , TFn E TFAc be n diffeîent factorization transformations

defined b y Equation (3.46). Then, V T i , T2 E { T F I , T F 2 , . , TFn)*, Tl T2 iff sequences

Tl and T2 contain exactly the sarne number of each tnznsformation TF1 , TF2 + . and TFn -
Thus, if let

Proposition 16 Let TF1 , TF2 , , TFn E TFAc be n different factorization tmnsformations

defined by Equation (3.46), and let 3 be the tmnsformation set

3= {T,:'OT,I---OTF," Vkl, k2, - - - , kn E Z+ (3.99)

3.3 FFD-II Description Language 90

where Z denotes the set of ail integers, and T? , (i = 1 , 2 , - - - , n) denote the tmnsformation

sequences composed of k i factorizutions

respect ively. Then,

The Expressiveness

The key idea of data transformation based function form discovery methodology is that

the system can recognize some primitive forms and can transform others into what it can

recognize. The following proposition is an interpretation of this idea by "recursion".

Proposition 17 Let L: = (ST, SP) be a function form description ianguage, (ul, uz9 u d)

and (V I , v2, vd) be two variable triples related by a transformation in S,f , i.e.

where T E S: and G1 , Ga and GJ are three functional expressions which specify the

relationshzp between the variable triples. If the functional image respects to (V I , v 2 , u d)

matches with a function form f (V I , v z , vd) = O in L: , then the functional image respects

to (u l , ug, u d) matches with a function form in L:. In other words, the function form

f (Gr (ur , ~3 ~ d) , Gf (u1 , U? , ud) , G3 (ul uz , ud)) = O iS discoverable b y a system based

on language C , provided f (V I , vz,) is discovenzble by the same system.

3.3 FFD-II Description Language

[Pmof] From given, we can assume that (DT, D P) is a function form description of

variable triple (v i , u2 , vd) and its corresponding funct ional image O(,, ,, ,,,) . Since the

ftinctional image O(,, , , , ,, respects to (ul, u2, ud) can be transformed into O(,, ,, ,,,)

h~ TT iee- T(q, , .u2,u,)) = O(, IV,.,) 3 the underlying function form of O(,, , ,?. ,,) is thus

(D T o T , D P) -

Proposition 17 provides us wit h a simple way to evaiuate the expressiveness of a language,

or more specifically, the constitution of the transformation class set employed by a function

form description language. If a number of meaningful variable triples could be enumerated

via the applications of the transformations defined in the t r a n s f o m a t h class set, generally

speaking, it is a positive supporting fact for the language to be a language with good

expressiveness.

Trans. 1 Name
Transformation

Sequence New Triple Rank

Table 3.10: Some Attainable a i p l = of The Language 2.

-4s an example, Table 3.10 tabulates a number of the transformation attainable variable -
tri ples of L . Since our goal is to develop a general-purpose function form discovery system -
without any specified application domain, we examine language C in this dimension by Iist

only those triples with terms which are widely confronted in mathematics textbooks. Al1

3.3 FFD-II Description Language

of the triples listed in Table3.10 are related to partial derivatives of up to the order 1. The

major variations of equations of the iùst order derivatives contain five theoretical tenns,

i .e. u , v , w , w: , and wh. Each resultant triple listed in Table 3.10 contains only one of

the terms zuh and wh. This is unfortunately correct. Not al1 triples that contain three of

the five elementary terrns can be generated by a transformation sequence specified by 2 ' s

transformation class set. Let us examine the triple (v , w:, w:) as an example.

Using the transformation sequence TDl in Table 3.10, we have

I r e can continue manipulate the triple by applying the transformations functional inverse

and independent variable exchange

I t seems that we are one step away from Our goal triple (u , w:, w:) . Let us now try trans-

formation TDrF

on the triple

we find that

1 vd = lim

Since

we have

3.3 FFD-II Description Language

Thus

lnstead of (v , WU, ut:), the process results in the triple

What happened is that when we try to get the second first order partial derivative, two

requirements should be satisfied at the same tirne. First, variable v should be at the first

place of the variable triple- This has been met in Our calculation. Second, the variable u

rnust be at the second place of the variable triple for holding i t constance. On the other hand,

the term w:, must appear in the same variable triple at the same time. This is a contradiction

to the constraint that we can only put three terms in a variable triple. Similarly, we cannot

find a way to get a variable triple of the forrn (w, w l , w;) that is important for presenting

a whole class of first order partial differential equations20. Furthermore, handling second
I I order partial differential equations requires that the eight terms, u , v , w , w l , w: , wtu , wu,

and w::,,, be put into a tuple.

The above analysis shows us an important conclusion. The function form description -
language L has a major limitation in expressing general partial differential equations.

Considering the size of the transformation class set and primitive set, it is not a surprise.

However, the analysis shows us also the large room to improve. Intuitively, we can modify

the transformation set to enhance the ability to transform. For example, we can include a

new transformation that dircctly generate the triple (w, w:, w t) . The side effects of doing

so is the introduction of computational redundancy and the increase of the search space.

Tlie other way is to introduce the use of extended primitive functions (page 71). We can

'" Tiic gcncrd non-Iincar partial differential equation bas the forrn F(u , v . w , w: , w:) = 0.

3.3 FFD-II Description Language 94

also encode other human expertise knowledge with a set of prototypes and put them into

the discovery system's tool-box as extended primitives. This is a more flexible way.

Though both extensions are worthwhile research directions, especially combined with a

particular application domain, they wiU be viewed as future research subjects for keeping

this research reasonably focussed.

Chapter 4

FFD-II A Function Form

Discovery Mode1 and Its

Implementation

We have discussed the theoretical issues of function f o m discovery by data transformation in

t lie 1 s t chapter. A function form description language 2 , which describes a three-variable

fiinction form with a transformation sequence and a simpIe specific functional pattern -
fiinct ional primitive or compositional primitive, has been introduced. In this chapter, we

will move to the issue of the design and implementation of the new function form discovery

system, the FFD-II system.

FFD-II is designed to discover function forms with three variables. By taking data

transformation approach, pioneered by Wong with his FFD system, FFD-II can find corn-

plex function forms that are not restricted to a few specified function form classes. As has

I~een pointed out in the review of related works, tnost previous systems share a common

limitation of finding function forms only in a small number of function form classes. Thus

the new system surpasses al1 those systems in the categories of formula construction and

data analysis, such as BACON and E'. However, unlike FFI3 , FFD-II's discovery model is a

direct model. To overcome the difficulties of increased complexities and large computational

4.1 Tl1 e Major Cbailenge From Multi- variable Problems

error, an adaptive error control technique is employed by the new system.

In the first part of this chapter, 1 will discuss the major challenge from the multi-variable

function form discovery problems. The discussion introduces the general background of the

design of FFD-II. Following the introduction, 1 wiil show that an indirect systern has only

lirnited capability in finding multi-variable function forms and why it is possible that a direct

mode1 c m work better in solving the problems- This discussion explains why we chose the

direct mode1 for our new system. The third section is an overview of the architecture of

FFD-II . In the fourth section, the design choices of numeric recipes will be presented. And

i n the final section, Our discussion will focus on the implementation of adaptive error control.

4.1 The Major Challenge Rom Multi-variable Problems

Multi-variable function form is one that has three or more variables. To dismver multi-

variable function forms is niuch more challenging than two-variable problems for a number

of recasons.

1. There are many more diverse function forms in high dimension problems than in low

dimension problems.

2. Observing elementary features such as monotonicity and periodicity is more difficult

in high dimension cases. in two-variable problerns , basic analytic and geometric prop-

erties, such as slope and curvatures can be expressed by ordinary derivatives. In

multi-variable problems, elementary analytic and geometric properties, such as slope,

gradient and curvatures, can only be expressed by special combinations of partial

derivatives. The diinculty of analyzing these properties increases with the dimension

of the problem.

3. The complexity of multi-variable approximation is greater than that of two-variable

c~ases. Fitting a surface or hyper-surface is much more difficult than fitting a curve.

Usually, estimating partial derivatives from numeric observation data needs more

effort and is less accurate than estimating ordinary derivatives.

4.1 The Major Challenge h m Multi-variable Problems 97

4. In multi-variable problems, to describe deterministic conditions, such as initial values

and boundary conditions, are usually more difficult than in two-variable problems. In

two-variable probIcms, describing these conditions is sirnply the problem of finding

parameter values and that can be done using simple numeric approximation tools. In

liigh dimension problems, deterministic conditions usually can only be expressed by a

functional relationship between selected variables. As such, they can only be handled

either as a sub-discovery-task in lower dimension or witbin a small range under certain

simplificat iûn zssumptions.

5. The problern size increases dramatically as the increase of the dimension of the prob-

lem. First, to meet the need of dealing with wider diversity of function forms, the

search space in solving function form discovery problems must be extended. Second,

the size of the observation data set in multi-variable problems is much larger than that

in two-variable problems. For example, suppose a sample data set of N observations

with 21' floating-point numbers can provide us with sufficiently fine step accuracy in

a two-variable function form discovery problem. To achieve same accuracy level in

a 3-variable function form discovery problem, an observation data set of N' samples

with 3 N' floating-point numbers is necessary- That means the needs of both larger

memory space and more arithmetic operations in processing the data set.

Existing discovery systems are still very poor a t solving multidimensional problems.

Most are implemented in an indirect way using variable freezing technique. They reduce

the dimension by holding al1 but one independent variables constant at one time. Once

al1 subtasks in lower dimension have been solved, a unification strategy is used to combine

tiiem into a uniform result. This approach were taken by BACON and al1 its followers. It is

also the strategy with which FFD was extended to discover families of functions. However,

t liis technique cannot cope with the rich forms of multi-variable functions. This research

tackles the challenge of muiti-variable function form discovery problems with a new data

transformation based direct approach. The system performs direct three-dimensional data

traiisformations and recognizes functional patterns directly from the transformed three-

dimensional image.

4.2 The Direct Model

The Direct Model

FFD-II is designed on the base of the function form description language introduced in

the kast chapter. As such, it searches in the space of three dimensional transformations (the

operation) and matches the transformed functional image with a primitive pattern with

t liree variables. In ot her words, it is a direct method. Figure 4.1 depicts the direct model in

generaf. -4s a direct model, either a single node or a set of nodes connected with an "And

.4rchV can be created under a node. In the figure, A, B and D are independent nodes, and

riodes C and c are a pair of nodes connected by an "And Arch". In general, when two or

more nodes are connected with an "-4nd Arch", the search algorithm must find a goal node

CU a sub-goal under each of them. The solution is the unification of al1 sub-goals. However,

FFD-II's search strategy is simpler. When the initial discovery task is split into two sub-

t<asIis a t a search node, one of them is viewed as a "dominant" sub-task, while the other is a

srrh-t,uk associated with the dominant sub-task ("subordinate" sub-task) . Al1 the dominant

stih-t<zsks are function form discovery problems of three variables, whereas al1 subordinate

suh-t,uks are function form discovery problems in a dimension reduced space, and could

be solved by an existing twevariable function form discovery system. In other word, this

research focuses only on finding the dominant solution path in three-dimension space. As

clepicted in Figure 4.2, FFD-II aimed to find the goal node "G". It passes subordinate

dimension reduced subtasks, finding Sol-1 through Sol-k, to a supporting two-variable

function form discovery systeml. The solution to the original discovery problem is the

combination of al1 discovery results.

Indirect models are contrary to direct models. They arbitrarily split the original multi-

variable problem into subproblems of lower dimension and solve them separately one a t

a tirne (Figure 4.2). When al1 of solutions to the subproblems are obtained, labeled by

Sol-1 through Sol-k in Figure 4.2, the system uses some certain methods to combine them

together and generates the solution to the original problem of high dimension.

Most of the previous multi-variable function form discovery models are indirect models

' FFD aicl polpomial fitting arc choscn to carry out such discovery tasks.

4 .3 The Direct Model

Figure 4.1: Function Form Discovery by Data Transformation

- the And-Or-Search-Tree of the Direct Model

(The node labeled by italic lowercase "cn is a subproblem in lower dimension,

and the dotted triangles denote the processes of problem solving in

Iower dimension.)

4.3 The Direct Model

Figure 4.2: Function Form Discovery by Data Transformation

- the And-Or-Search-Tree of the Indirect Model

(Each subproblem is a dimension reduced problem,

and only the root node is an And node.)

iitilizing a technique called variable freezing. The detailed example of this method will soon

be presented in the analyses of the FFD family of functions discovery system.

In this part, I am going to discuss the advantages of direct models over indirect models.

Since the FFD family of functions discovery system2 is the only system in the category

of data transformation approach that can handle multi-variable problems, the discussion

will be based on the cornparisons between theFFD family of functionsdiscovery system and

FFD-II . We shall be able to see why it is important to create a new system that takes direct

approach to the problem a t the end of this section.

' faniily of functions discovery problem is a special type of multi-variable function form discovery prob-

lcriis. From now on, FFD refcrs to the extcnded version of FFD that handes family of functions discovery

~>r-oldcnis whcrevcr it is uscd to solve thrce-variable function form discovery problems.

4 . 2 The Direct Model

4.2.1 The Indirect Model of FFD

FFD was originally developed to discover two-variable function forrns y = f (t). As an

extension, it can deal with parameterized two-variable function forms y = f (t, q5) (farnily

of functions), where q3 c 92" is a parameter vector. Generally speaking, parameters are

just another kind of variables. Hence, FFD family of functions discovery system can be

viewed as a special three-variable function form discovery system when the dimension of

the control parameter vector # equals one3. In the discussion of this section, FFD refers to

the FFD family of functions discovery system.

Before going to details, 1 shall describe some terminologies that are necessary for intro-

ducing the discovery methodology of FFD . It should be mentioned that terminology listed

beIow only appties to the discussion of FFD, and should not confuse us in the rest of this

t hesis,

Function - A function f is a single variable function y = f (t) in class Cm within a

specified domain t E D C 32.

Func t ion Form - A function form (F, iS) is made up of a set of pararneters4 9 c Rn and
a mapping F : SZ e SZ, where 92 is the set of real numbers. In other words, a function

form is a collection of one dimensional functions indexed by a set of parameters 9 E

92".

' Howcver. thc difhence between a parameter and a variable is that a paramcter usually rdects only

niic siiiiplc fimctional dcpendency "pattern" or "fcatureW, while the function valuc could be rclated to an

iiiilcpcndcnt variable in a more complcx way. For example, in the formda of un i fody accelerated motion

.* = r r t 2 + vot. it is casy to identify a and vo as the parameters and t as the variable since the fimction d u e

8 lc:~mxis on a ,and tto Linearly while on t quadratically. h m the application point of view, parametcm could

II(. i<lcxitificd by thc contcxt of the application and by the fact that the parameter space is scunplcd much

iiiorc C O ~ U S C ~ Y tlian the partitionhg of the domain interval.

' Tlioiigl~ in prinaplc multi-parameter is dowed, FFD considercd only the case of function forms with

n siiinlc p,ararnetcr. That is only slightly diffkrmt to the three-variable function form discovcry problems

;itldrcssc<l by this rcscarcli. Thus hercafter, WC consider the parameter 4 as values instead of vectors and

SI) C IR.

4.2 The Direct Model

Function Form Instance - An instance f+ of a function forrn (F, @) is a function

fd, : I+ 92, where q5 is a particular element of 9, such that f+ (t) = F (t , 4) , Vt E 92.

SampIe - A sample Sp of a given function f is a set of ordered pairs of real numbers

where P = { t ; 1 i = l , - . . , N and ti < tp < < t N) is a partitioning of the

f~inction domain of f .

Observation - An observation O*# of the form (F, 9) is a set of samples

where: (1) 9' is a finite subset of 9 ,

(2) f4 is the instance of (F, 9) corresponding to a valued control

parameter in a partitioned control parameter set W , q5 E a' , and

(3) P4 is the partitioning of the domain of f+ .

Notice that 9' is a partitioning of parameter space 9 , and we are interested in only

the function forms with one parameter, 9 C 92.

Fitting of A Function Form - A fitting of a function form (F , &) to an observation

O+ is a mapping

M:*'+A

so that for each q5 E +' , the sample SpQ (fd) is identified with the instance fM(+)

of (F, 4). 9' c 9 E !R is referred to as the control parameter and 4 !Rn for any

integer n, is the descriptive pmmeters5.

Transformation and Primitive - A transformation is a pararneterized continuous m a p

.

' Notice tliat thc numbcr of control parameter can only be one for the case studied hem, whilc the numbcr

of <lriscxiptivc p=;ir;uncters could be zcro to m y give integcr number.

4.2 The Direct Mode1 103

znd a primitive is a continuous one dimensionai function y = P(t) . FFD employs

five basic transformations, tabulated below, in its operation tool-box.

. --

Diffcrcntial 1 A : (t . y) ct (t. Y') II

Tram.

A primitive is a parameterized one dimensional continuous function that a trans-

formed observation can match with. The primitive function set of FFD consists the

following three quadrat ic functions.

A11 the parameters appeared in a transformation or a primitive are viewed as descrip-

tive parameters.

Defini t ion

Unification Tkansformations - Let U be an invertible transformation which is param-

eterized by a parameter vector 5 in 9Zk . An observation

Iuverse 1 8 : (t, Y) (Y. t) 1

of function form (F, +) is said to be unijied by the class of transformations U[oT+] if

there exists a set of vectors

Trans.

in which the vector a,+; corresponds to the control parameter value d i , such that the

image

UV(O+~) = { (tj, Yj) I 3 1 5 i I N1 (tj1 Yj) E u[GI(S+i) 1,

Defini tion

L o g a n t h

is a single smooth function. U will be referred t o as the unification tmnsfonnation.

6 will be referred to as the desc7iptiue panzmeter; and, in particular, ai is said

A : (t , Y) * (t, log 1111)

4.2 The Direct Mode1 104

to contain the descriptive parameter values specifically associated with the function

sampk S+,. .

Similarization Transformations - The member samples of an observation

are said to be similar to one another if there exists an invertible transformation class

T and an associated parameter vector set

such that the images

are primitive functions of the same form. T is referred to as the similarization

t ransfonnation.

Single Cont ro l Parameter Function Form Synthesis Problem

Let F denote an unknown process with a specified control parameter space 9 C 92 .
lven G'

0 an observation of (FI 9) ;

a set of primitive functions 3 ;

a set of basic operators - transformations 7 ;

0 a form fitting accuracy requirement CF ; and

a m d m u m dimension of descriptive parameter vector O,,, ,

Construct a function form (F, &) and a fitting M : Q t-, Q such that

1. (F, 4) is a subset of the search space generated by 7 and 7 ;

2. ord [(F, &)] = dim(B) 5 O,,,, ;

3. the deviation of (F, P) from O+. is less than , i.e.

4.2 The Direct Mode1 105

This statement can be understood fiom the implementation point of view as the problem

of finding a transformation sequence6 which is composed of the transformations d e

fined in the set T , and a matching primitive function form F+ from the set 3, such

that by consequently applying the inverse each transformation in the sequence to the corre-

sponding primitive function sample S,#,i results in a functional image that matches with the

given observation within a tolerable error level. This approach follows the idea of BACON'S

multi-variable function fonn discovery strategy - variable fieezing, i.e. hold al1 but one

independent variable constant and find a solution for the subtask then goes to the second

variable.

In practice, to find the mapping M is a very difficult task. FFD simplifies this task by

making tmo simplification assumptions.

Assumpt ion 1 (Primitive Union) It is assumed that the intemediate goal coïncides

with the final goal. In other words, if the samples can be unificd then there exists a unifying

squence such that the resultant image Su is a sample of a primitive function.

Assump t ion 2 (Simple Descript ive Paramet ers) Each descriptive parameter can be

accurately represented as a primitive jünction of the control pammeter.

Apparently, Assumption 1 ensures that the unification could be easily detected and As-

srimption 2 ensures that the expression of each descriptive parameter could be easily found

with a small number of parameters.

To discover a pararneterized function form, FFD first acquires a set of observation upon

{&, - , d N) - a partitioning of the control parameter 4. This is the way FFD arbitrarily

divides the original three-variable function form discovery task into a set of subtasks in Iower

dimension (Refer to the indirect mode1 depicted in Figure 4.2). Two-variable function form

discovery processes are then carried out upon each sample S+;. And the discovered 2-

variable function form hypotheses are grouped according to the corresponding identified

'; Tlic subscript q5 signifies th& the possible descriptive parameters are expressecl in t e r m s of functions

of t . 1 1 ~ control p'arameter &

4.2 The Direct Mode1 106

transformation sequences. At last, if certain population of identical transformations and

matching primitives are found, the final function form hypothesis will be given based on'the

cassumption of simple descriptive pammeters- If the found hypothesis applies to al1 samples,

a siiccessful discovery is reported, otherwise, the system wiU choose from continuing search

for new hypothesis or terminating the process and reporting as a failure. The following is

an example of using FFD to discover a simple three-variable function form.

An Example of FFD's Discovery of a Three-variable Eunction Form

Underlying Function Form : y = e&t

Sampling : The observation contains five sarnples corresponding to q51 = -2 ,

4* = -1 , 4I = 0 , q51 = 1 and q51 = 2 . Each sample contains 101

uniformly placed partitioning points in the domain t E [0.0, 2.01 .

Discovered Solutions to Each Subtask :

Finalization : FFD finds that 4 out of 5 samples can be transformed into a

linear function by same transformation A+. Thus A+ is a similarization

transformation. Applying this transformation to sample q53 resul ts in an

identical primitive y = O . t . Therefore an unifying transformation has

been confirmed, i.e. A+ (O+) which matches with the primitive y = at ,

where a is the only descriptive parameter. The pairs (4;, a;), i =

1, . . , 5 can be easily fitted to a primitive a = 4 . Thus the discovered

transformation sequeiice and primitive are: (A+ , y = a t) . The system

terminated wit h a successful discovery.

Trans.

Primitive

Xltliough it is a very simple example, we can see the discovery methodology clearly enough.

From the practical point of view, the major difficulty of taking this approach is finding the

A+

y = - 2 t

A+

y = - t

A+

y = 2 t

1 1 A+

y = O y = t

4.2 The Direct Mode1

nnifying transformation and the rnapping from control parameter to descriptive parameters.

This is the reason why simplification assumptions are needed.

The method of simplifying a high dimension problem into low dimension by taking into

account of one variant a t a time is a simple and quite widely used technique. When the

variables involved in a problem are not highly coupled, this methodology could be the best

choice. For exarnple, if the underlying function form of an unknown process is of form

z = f (x) + g (y) , there wili be no doubt that the variable fieezing method is surely the best

and simplest method for finding the solution. Moreover, since al1 the descriptive parameters

are iclentified arbitrarily, in certain application situations, it rnight be the most effective way

to simplify the discovery problem.

FFD , ,as the first attempt to solve function form discovery problems using the data

transformation technique, simplified the unification of solutions of sub-tasks with two sim-

plification assumptions, Primitive Union and Simple Descriptive Parameters. These as-

siirnptions are indeed constraints on how the two independent variables are coupled. It is

possible to relax these constraints to a certain degree by upgrading the system with new

strategies. However, as a system that takes indirect approach, there are a number of limi-

tations concerning the system's ability. 1 will analyze the general limitations of the indirect

approaches in the following section. Before doing that, let us first summarize the function

clcasses that cannot be handled by the FFD system.

Tl-iere are four situations under which the current FFD system may fail to solve a three-

variable function form discovery problern. They are: Unsattsfied Simplification Assumption,

Failure in Finding a Tmnsfomation, Failure in Verify a Solution and Incornplete Language.

For simplicity, we refer a function form under those situations as belonging to USA-Class,

FFT-Class, FVS-Class or ICL-Class respectively if i t cannot be discovered by FFD for one

of the corresponding reasons as named above. A11 function forrns that cannot be discovered

by FFD fa11 into these four categories. Let us examine thern one by one.

The first class, USA-Class, is easy to understand. The system is designed based on cer-

tain simplification assumptions, i.e. Primitive Union a d Simple Descriptive Parameters.

It is obvious that a function form which does not satisfy one of the assumptions is certainly

4.2 The Direct Mode1 108

heyond the system's discovery scope. One example function in this class is z = ey - logz.

The indirect FFD method cannot f i d the fomi by either freezing z or y as the control

parameter, since using any transformation, the functional relationship between the required

descriptive parameter and the chosen control parameter would not be a simple primitive

function.

Concerning the second class, FFT-Class, some transformations can only be triggered

when certain functional features are observed from a given sarnple data set. For exarnple, the

factorization is based on the observation of roots. There are two possible reasons that inhibit

the discovery system to find such critical information from an observation corresponding to

a certain partitioning scheme, i.e. (1) improper parameter partitioning and (2) infinity of the

i.inderlying function. Since ali the transformations defined in the transformation set of FFD

are fiindamental and usually necessary for the system to discover function forms, failure in

applying one important transformation will largely reduce the chance for the system to find

the solution. 1 will discuss this issue more in the case studies in next chapter. Moreover,

sornetimes the observed roots for triggering the factorization are more complicated than

we may have expected, for exarnple, more than one root to a single sample is not a rare

situation. Grouping the roots obtained from different samples becomes a very challenging

t.rtsk, especially when large error being introduced in the estimation of those roots.

As it has been pointed out that the application of some transformations are subjected

to certain constraints. For example, Inverse (refers to the table on page 4.2.1) can only

be applied to a monotonic curve, whereas Loganthm and Recipmcal can only be applied to

constant sign curve. Such constraints may cause problems for FFD to verify an function

form hypothesis made upon some samples. These are the cases pertaining to FVS-Class.

In some cases, FFD may successfuUy find a correct two variable function form solution

from a population of the samples of an observation data set. However, when it tries to

confirm the hypothesis, it may find that it is not a valid solution since the associated

transformation sequence is not applicable to some samples. This will cause the system to

drop the hypothesis finally and search for a new one or t o terminate the task.

The last class, ICL-Class, of un-discoverable function forms is due to the FFD's intrinsic

4 - 2 The Direct Model

capability to discover 2-variable function forms. The function form discoverable to a data

transformation based function form discovery system is deterrnined by the transformation

set and the primitives available to the system. Due to the large variety of function forms,

no system can guarantee to discover al1 of them from numeric input. In other words,

there is not a cornplete language that can make al1 functional relationships expressible.

FFD employed only five fundamental transformations in its transformation set and three

quadratic functions in its primitive function set. Though the performance of the system in

carrying out function form discovery is significantly superior to its predecessors, there are

still a number of two-variable function forms that cannot be found[65]. As we have already

known, FFD bases its parameterized function form discovery on its abiiities in discoveting

two-variable function forms. Hence, there exist many three-variable functions which are

riot discoverable by FFD simply because FFD cannot handle the subtasks of finding those

necessary two-variable function forms.

From the methodology perspective, some of the function form classes summarized above

are less critical than others. In general, the class USA-Class is the easiest to be changed by

replacing the strict constraints with some others. Let us examine the function form example

- - , - $1 - logz again. Assume that the variable z is viewed as the control parameter. It is

easÿ for the system to find a unified function form description t = c(z) eg to describe

the given observation, where c(z) is the only descriptive parameter. If a second round of

iunction form discovery is carried out upon the discrete data set { (G , xi)), (instead of using

the simple descriptive parameter assumption and fitting to a primitive function), it will

riot be hard to find the correct mapping c(z) = log(z). However, automatically combining

the results of subtasks could be a very difficult task. Thus, any implemented system that

uses variable freezing technique, more or less, will come with some necessary simplification

cassumptions.

Overcoming the transformation applicability is one of the major improvements made

l q - the LINUS system to the FFD system. Although it is not an easy extension, yet it is

possible to enhance the current FFD system's ability of dealing with three-variable function

forms belonging to FVS-Clas s by employing LINUS'S discovery strategies. However , on the

4.3 The Direct Mode1

O t her h'znd, the identification of unification or similarization transformations will become a

real challenge.

The other two classes, FFT-Class and ICt-Class are more critical. I t is relatively

Iiarder to improve the curent FFD system to solve these two classes of problems which

manifest the shortcoming of the indirect approach.

4.2.2 Direct Vs. Indirect

To solve multi-variable problems, it is usually important to find a way to simplify the prob-

lem by reducing the dimension of the problems. The variable freezing method used by FFD

is one of the most widely used indirect methods for solving this problem. This method

partitions a multi-variable problem into components by holding al1 relevant variables, but

one, constant so that each component is a clearly defined and easy to solve one dimensional

problem. By recursively combining the results of low dimension into solutions of higher di-

mension, the original multi-variable problem is solved recursively. The dimension reduction

scheme used in this technique can be viewed as an "arbitmry dimension reduction scheme".

We say i t is arbitmry because the reduction takes place "blindlyn without considering the

speciaity of an individual problem to be solved. A direct method, in contrast, usually does

not employ any arbitrary dimension reduction scheme. It views the problem as a whole and

mes only "problem-driven dimension reduction schemes" , if any. Problem-driven means that

a dimension reduction is triggered only if certain evidence is found in the process of solving

a specific problem. For multi-variable function fom discovery problems, the ciifferences of

these two approaches are outlined as below.

1. Indirect rrpproaches sometimes are simpler and more powerful than direct approaches,

depending on the properties of the problem to be solved. For exarnple, to solve the

discovery problem of family of functions, an indirect method may be the best choice.

2. The major difficulty for an indirect approach is to combine the results of the subtasks

in lower dimensions into the solution of the original problem. The major difliculty

4.2 The Direct Mode1 111

to a direct approach is to handle the multi-dimension problem as a whole and ex-

tract necessary infonnatiot to form subtasks and conduct simplification. Solving a

rnulti-dimension problem usually needs two steps: (1) simplifying the problem into

su bpro blems, and (2) cornbining ali the solutions of the corresponding subproblems

into the solution to the original problem. Indirect approaches use the sirnpiest schemes

to handle the first task but employ complex strategies t o handle the second. Direct

approaches invest more work on the first task. They rely on the discovered evidence

to divide the problem. Hence less work will be needed for the second step. In an

indirect approach, the difficulties in combining the solutions of the subtask include:

(a) identifying identical descriptive parameters. When the system includes more so-

phisticated primitives and data transformations, this will become a more serious

problem.

(b) identifying the uniforrn transformation sequence. There could be several solu-

tions to the same problem, some are accurate and some are less. If each sub-

problem terminates with a different solution, the system must choose one from a

set of different transformation sequences. This may not be successful since some

transformations can only be identified based on successful estimates of the asso-

ciated parameter value. Su& transformations include differential transformation

and iactorization transformation. Moreover, certain transformations can only be

applied under condition.

(c) finding an expression to express the descriptive parameter in terms of control pa-

rameters. Sometimes the system has to handle large scale errors due to inaccurate

estimation of the descriptive parameter from a single sample. Sometimes it has

to deal with incomplete observation data set. The missing information could be

due to the continuity constraint, the application of data transformations or the

specific application problem.

3. The cornputer resources required for carrying out direct or indirect discovery are

significantly different. For an indirect approach, each subtask is related to only one

4.2 The Direct Model

sample. When conducting a subtask, the system needs to process only a small portion

of the observation data set (a single sample). For a direct approach, the system has

to process al1 the observation data throughout the discovery process. Thus both the

time and memory space complexities are usuaily much higher.

Since the cornputer resources are fùed, a direct method has to work with relatively

coarse sampling scheme. Thus handling error propagation in a direct system is more

critical than in an indirect system.

An indirect approach usually does not make use of the "Cross-effect" in solving the

discovery problems7. Cross-effect can sometimes provide key information to a suc-

cessful function form discovery. Isolatedly carrying out the subtask largely limits the

capabilities of the function form discovery system constructed on the bases of indirect

approach.

Indirect approaches are unnecesçarily sensitive to some secondary factors. The syst em

may be too fragile to the partition scheme. FFD may be confronted with difficulties

if it cannot observe al1 necessary functional patterns from a single sarnple. BACON, a

system that uses variable freezing technique, was reported being sensitive to the order

of which variable were put on hold fkst [SOI. FFD shares the same drawback.

Direct approach provides more flexibilities for constructing the discovery system. We

have wider choices of transformations and primitives.

We rnay suffer particular difficulties when we want to provide an indirect discovery

system with certain domain knowledge. It is a common sense that not al1 domain

knowledge are meaningful in the dimension reduced situation. That kind of domain

knowledge are sometimes not usable to a direct approach.

' 111 iuidti-dimension problems, the changes in one dimension aff'ect the system in a different dimension.

Tlùs is c.dcd "Cross-cffect". For example, in non-linear theory, shcar strains alone demand the application

of i~ortiiai stresses weii as shear stresses.

4.2 The Direct Mode1

9. In many application circumstances, holding a variable constant is not practically pos-

sible. When the data is calculated by a simulator, the original control parameters can

be easily held constant. However, if the data is collected frorn experiments in a lab, it

is sometimes difEcult to set the control parameters exactly the same. When a pararn-

eter is generated by a process based on some other control parameters, it is sometimes

impossible to hold that parameter constant. Moreover, sometimes the experiments

through mhich we collect observation data are not repeatable. ft means that we have

to deal with inadequate observations with missing data, These application related

constraints limit the applicability of indirect systems.

Direct models are more general than indirect models. Although from the theoretical

point of view, an indirect model might be better in solving some specific problems, such

as the discovery of families of functions, an available direct model is still important for

practical reasons we have discussed above. However, to create a direct model system, we

will be confronted with great challenge in computational complexity, language design and

error control.

To accept the challenge, the FFD-II system was developed. It perfoms three dimension

transformations and recognizes t hree dimension functionai patterns. Hence it demonstrates

the application of data transformation baçed approach as a direct model. From the language

design point of view, by taking direct approach, the underlying functional patterns can be

revealed by capturing the "cross effects". From a single sample data set we can observe

only the regularity in a certain direction. To extract two-dimensional patterns from a set

of one-dimensional regularities is very hard. FFD does the extraction by summarizing only

the simitarities among those one-dimensional patterns when i t conducts a discovery task.

However, there are some equaliy important relationships arnong one-dimensional patterns,

for example, the differences between adjacent sarnples. Since a direct method can analyze

those more complex relationships utilizing the cross effects in between individual samples,

a better performance can be expected. The FFD-II system views the observation data

set as a whole, so that when a functional pattern is observed in an area of the functional

image, i t will enable the system to successfulty apply certain rules so as to form a functional

4 . 3 An Overview of the System

hy pot hesis corresponding t o that observed pattern. Moreover, the formation of subtasks in

lower dimension is fd ly automatic and only triggered by those already recognized patterns

diiring the discovery process. The final discovery can be made once the dominant solution

is found. The way to combine the solutions of subordinate sub-tasks with the solution of

the dominant sub-task is clearly specified by the output of the system.

The challenge of computational complexity and error propagation control are closely

related. To attain the same fine step observation data set, a three-variable functional image

will contain 3N2 real numbers, compared with only 2N for a tw-variable functional

image, where N is the number of observation data points. During the search, each search

node is czssociated with a transformed functional image. Thus the computer memory space

complexity is much higher for carrying out the search in a direct model than in an indirect

nlodel. Apparently, the time complexity is also significantly increased in a direct model since

more data will be processed in transforming from one state into another and in performing

functional pattern recognition. Moreover, with limited computer resources, we are restricted

to use only relatively low order approximation tools in a direct model system. Considering

polynomial fitting as an example, to f i t a curve to the second order polynomial needs only

three sample points, to the third order only four sample points are necessary. To fit a surface

using polynomial fitting, a t least six sample points are necssary to get a second order

polynomial fitting and ten sample points rnust be used to get a third order polynomial. If

the nvailable computer resources are the same for carrying out the search, the direct model

system will have to deal with a relatively small sampling size and poor approximation

accuracies. Hence, selecting proper numeric tools and preventing the propagated errors

from exploding are two crucial issues in the design of FFD-II.

4.3 An Overview of the System

diagram and major components Up to now, 1 have discussed the superiority of data trans-

formation approach as a generd discovery model, the befiefit of taking the direct approach,

'as well LZS the importance of controlling the computational errors in a direct multi-variable

4.3 An Ovem-ew of the System 115

fiinction form discovery system. Now, 1 will introduce the design of the FFD-II system.

FFD-II is a data transformation based direct function form discovery system with adap-
-

tive error control. The system h d s function descriptions in the language L to describe

an observation data set with three variables. The key idea of data transformation based

function form discovery is depicted in Figure 3.1. Its details could be found in Section 2.1

and 2.4. The function form description language has been defined in Section 3.3.3. Di-

rect multi-variable function form discovery mode1 has been shown in Figure 4.1. And the

adaptive error control will be introduced soon in this chapter.

Bere, 1 will follow the common practice of first giving a diagram that overviews the

architecture of the entire system and then describing the system components one by one.

I t is beneficial to do so for the purpose of clarifying the design and reserving an easy access

to the system for future extensions. When there is a need of more detailed specifications

concerning the numeric computations or implementations, a separate section follows.

The algorithmic architecture of the FFD-II system is illustrated in Figure 4.3. In the

figure, each box represents a major module of the system. Dashed box is used to represent

a group of modules that join together to achieve a major function. The arrows represent

the flow of data or function cal1 with passing parameters. Main routines are organized

accordingly. 1 will summarize the system according to groups of modules.

Tliere are four major groups of modules in the system. They are " E m r Contml", "Data

Selection " , "Search Engine" and " Post Pnicessing" , Descriptions are as following.

Data Selection: Before the execution of a discovery task, the original observation data

set is stored in a formated data file. The precision of the observation is given as

an input. The program starts with the Data Selection module. The module seiects

a subset of the observation data set from the observation data collection, an evenly

distributed mesh grid of the size 101 x 101 sample triples8 t o initialize the search tree.

a It is =sumcd that the user has the full control of the expcriments from that the onginal observation

chta arc collcctcd. if the observation data collection docs not contain enough smple data points, the systcm

will ask tlic tiser to providc ncw observation data. However, the user can &O force the systcm to cany out

t . 1 ~ cliscovcry upon whatevcr is pmvidcd.

4 .3 An Overview of the System

Figure 4.3: An Overview of the FFD-II Discovery System

4.3 An Overview of the System 11'7

Besides initializing the root node with the functional image, the Task Initialization

module also generates a number of child nodes attached to the root. However, when

a child node is first generated, it contains only the specification of the transformation

that might be applied to obtain the associated functional image from the functional

image of the parent node. When the node is selected to be investigated and the

transformation is confirmed as valid, Le. applicable and non-redundant, the system

cornputes the functional image and updates the corresponding attribute with it. If

the corresponding transformation is not applicable, the node will be a Dead End Node

of the search tree. An "OPENn list is constructed a t the stage of task initialization

for carrying out the best first search. Ail generated child nodes are added to the list.

During the execution of the program, the Data Selection module is also called by the

ilroise Removing module. It monitors the data selection scheme entry of a node and

selects an adequate data set for the noise removing process upon requests.

Search Engine: This is the central part of the system. In this part, the Data Tram-

formation module is a set of numeric implementations of the data transformations

defined in . The Primitive Fitting module recognizes primitive patterns. These

two modules are the discovery tools of the system. The Thznsfonnation Validation

module checks the validity of a transformation that is going to be applied to a func-

tional image associated with a specific node, so that redundant transformations and

non-applicable transformations are preventedg. The Hypothesis Abstraction module

abst racts a functional description hypothesis. The function of the Resovrce Manage-

ment module is to ensure that sufficient computer resources are available to continue

the search. It dynamically allocates memory for new nodes and releases the mernory

allocated to dead end nodes. A Dead End Node is a node that does not have any valid

cliild node because either maximum search depth has been reached or the associated

transformation is invalid. If the module determines that computer resources are run-

iiing out, it calls the Syrnbolic Zhnslation module t o terminate the job and generate

'Rcdimdant t-formation m a m s have been discussed in Section 3.3.4. The applicabiity conditions

wci-c tlc~aibcd dong with the definitions of each transformation class in Section 3.3.1.

4.3 An Overview of the System 118

output. The Search Control module selects the node to be expanded from the OPEN

list according t o the "Best-First" rule. The search heuristics for carrying out heuristic

search will be introduced in Section 4-4.2. If al1 possibilities have run out, or in other

words, the system has completed an exhaustive search, Syrnbolic Translaticn module

is called to terminate the discovery job and generate the corresponding output. This

could happen for the following reasons

The incompletenes of the description language 2,

Inadequate control parameter settings - such parameters include maximum rank

(or depth) and the tolerable matchhg errorlo.

Tf it is not for the first reason, we can re-configure the system or improve the quality

of the input data and perform a new discovery. Putting al1 together, the pseudo code

of the core search algorithm is described in Figure 4.4.

Post Processing: Post processing consists of t hree modules. The Hypothesis Verification

module verifies an abstracted function form hypothesis through comparing the orig-

inal functional image with the functicnal image generated by consequently applying

the inverse transformations to the corresponding fitting primitive. If the deviation"

between these two images exceeds a tolerable level (a parameter input to the system),

the hypothesis is rejected and the Search Control module invokes the search for new

hypotheses. Otherwise, the function form hypothesis is confirmed as a discovered

solution and the solution is sent to the Symbolic Translation module. The Symbolic

Translation is an interface that prepares the output of the discovery result. It re-

ceives a solution from the Hypothesis Verification module, or particular parameter

values from the Resource Monitor or the Search Control module. In the first case, a

discovered function form is 0btained.h the latter cases, the module will indicate the

reason the system failed to find a solution (either resource runni~g out or the under-

'" Rcfcr to Scction 3.2.2 on page 58.

' ' Tlic ricviation is rcferred to as the Matclring Error or Verification Error throughout t k thesis.

4.3 A n Ot-erview of the System

-

PROCEDURE TREE-SEARCH

INPUT: Initialized search tree which has a root node and its

associated child nodes.

Initialized search tree node list OPEN with a set of tree

nodes.

OUTPUT : An expanded search tree and a node where the search

terminated.

if OFEN = n d , terminate t h e search. -
Remove one node N v i t h t he lovest cost from OPEN.

Check t h e v a l i d i t y of N.
if N is inva l id -

then l abe l 1V a s Dead, and repeat from s t e p 1 .

Compute new funct ional image according t o t h e

transformation and the parent image.

Perform pr imit ive matching upon the current node.

if t he re is an acceptable f i t t i n g . -
then Suspend t h e search. Abstract and ve r i fy

t h e hypothesis based on t h e current node
f i t t i n g . I f t h e hypothesis is r e j ec t ed by
t h e ver i f i ca t ion process , continue .
Otherwise the discovery t a s k i s ended

successful ly .

Generate a set of ch i ld nodes under current node N
according t o t h e ava i lab le transformation c l a s se s i n

system's transformation tool-box.

Add t h e new generated nodes i n t o OPEN, and repeat from

s t e p 1.

Figure 4.4: The Best-First Search Algorithm

4.3 A n Overview of the System 220

lying function form of the observation data set being undescribzble within the given

error tolerance). A best matching form along with matching error will be output by

checking the system's record of dl fittings that have been tried.

Error Control: This part of the system adaptively controls the error propagation of re-

peatedly applying data transformations. The E m r Monitor module measures the

quality of a functional image by its expected error level and roughness value. If either

of these exceeds a corresponding preset threshold, the Noise Reduction module wili

be invoked to improve the quality of the image.

1. If it is the expected error level that exceeds the threshold, an image Refinement is

required. Noise Reduction first consult the data selection module to see if there

is any unused original observation data that could help to improve the quzlity

of the current functional image. If so, image refinement will be performed based

on those unused observation data and the transformation history of the current

node- If there is no more original observation data that could be used to improve

the quality of the current image, the Noise Reduction module will inform the

search engine to adjust the heuristic value for those nodes generated under this

node, so that low priorities will be giveri to the investigations under the node

whose underlying functional pattern has been distorted by the input noise or

computational error so badly that it could not be recovered by the system.

If it is the image roughness'' exceeds the threshold, a polynomial smoothing

scheme will be used to smooth the image. Recall that one of the basic assump-

tions is that the underlying function form of any functional image is a class Cm

function in the observation domain (page 59). As such, the pattern of an exceed-

ingly rough surface must not be the true functional pattern of the underlying

function form but a pattern of noise or computational error that should be re-

moved. Siriiilar to the image refinement, the availability of additional observation

sample points, in the form of a high resolution image are required for carrying

'' Tlic nicamrcmcnt of roiigliness of a surf'ace wiU be defined later in this chapter.

4.3 An Overview of the System

1 I

Tree
i Standard

Rank- Depth
I l .
1 I I
I I

Figure 4.5: The Data Structure of A Searching Node

out the image smoothing process.

The Error Monitoring module is called by both the Task Initialization module and

the Data Transformation module for controlling the error adaptively. Corresponding

fields of the search node data structure will be updated accordingly.

The modules introduced above are implemented with a data structure shown in Fig-

ttre 4.5. There are three groups of information in the structure. The Standard Tree group

represents the standard tree structure, the Functional Image group contains the primary

iiode content that describes the associated functional image of the search node. In this

groiip, three entities are designed for controlling the noise. They are Image Roughness,

Error Level and Data Selection Scheme. The Node Special group, provides information con-

cerning the transformation history. The %ns-Lail entity specifies the last transformation

t h a t hcas been applied to generate the current node. It aIso distinguishes the current node

4.4 Numerical Recipes

<as ~inexplored, explored or dead end node with different values.

4.4 Numerical Recipes

FFD-II is designed to find function forms from numeric data. Numeric computations are

involved in the discovery process. In this section, 1 shall specify the numeric tools that

have been used to achieve the goal. Suice the major concern of this research is the discov-

cru rnethodology, only simple numeric methods with sufficient accuracy have been chosen.

PoIynomial least-squares fitting is a widely used simpIe method. It is flexible and easy to

use. I t also h a relatively simple analytic properties. As such, it will be utilized to solve

sever al numeric computation problems in the implementation of the FFD-II system.

4.4.1 Numeric Data Xkansformations

Table 3.6 on page 76 Iists the transformations employed by FFD-II. Arnong them, most

nlgebraic transformations are easy to compute. The formulas to compute TLoG, TG\ are

giren by Equation (3.42) and (3.43). And similarly, T R ~ ~ , TG, T I N V , TG: , TvEl and

TF,: can be easily implemented using the equations used to define them. Thus 1 shall

not give more details concerning their computations here. The implementations of the

rem aining two transformation classes are not that straightforward. 1 will describe t hem one

hy one in this part.

Numeric Differentiation and Integration

Differential transformation TDIF and its inverse ~ 6 ~ : are the most chailenging transfor-

mations to be numerically implemented. The classic methods of computing derivatives are

b,ased on certain difference schemes. However, this method only works well when there

is no noise on the sample data set and the partitioning of the observation domain is uni-

formly distributed in a rectangular mesh grid. Unfortunately, the transformed functional

image does not satisfy such a constraint. Although we can assume that the original input

observation data couid be in whatever form or distribution we like (sufficient observation

assrimption, page 59), the distribution of a transformed functional image may not be dis-

tributed as expected. It could be distorted by the transformations that have been applied.

In other words, the original u n i f o d y distributed observation mesh grid may no long be

uniformly distributed in a planar region formed by the two axes corresponding to the t a o

independent variables. Moreover, the data we used to compute the partial derivatives may

contain input noise and computational errors. Thus the traditionai difference method couid

not be used to cornpute TDIF for FFD-II.

The computation of TD,, in FFD-II is simple and intuitive. The rnethod is based on

polynomiai surface fitting. It is described as the following. Let O~u,u,w~ be an observation

data set and w = f(u, v) be the underlying function. Let Po = (w, vo, w o) E 0~,.,,,~ be

a sample point of the image. We need to compute the partial derivative . Let
u=ry) .v=vo

I>e a set of distinct sample points such that

Sn defines the set of k nearest neighbors of the planar point (u m) . Now let w =

g (u , v , +) be a parameterized continuous function (a function template), where cp' is the

parameter vector. The expression of fitting k nearest neighbors with template function g

is n specification 6 of the vector 9 such that

is ininimized. If we write the resultant fitting function as w = g(u, v) , then the estimated

4.4 Numerical Recipes

Plane paraIIlei
to üW coor-
dinace pirine

Cross curve
of pimc and
surfacc

The ohseruaiion data poinrc PG

O Projections on UW coordinac plane

Figure 4.6: Approximation of Partial Derivatives by Surface Fitting

partial derivative value of the underlying function f a t point (uO, va) is

Figure 4.6 illustrates an eight-nearest-neighbor approximation scheme. In the implementa-

tion of FFD-II the complete second order polynomial function

is used <as the ternplate function and eight nearest neighbors are taken into account as a

local fitting point set (adjustable).

Having solved the problem of numeric computation of transformation Tot, , 1 will then

describe the method to conduct the inverse transformation T G ' numerically. First, let US

see what the problem is.

4.4 Numericd Recipes

Ive 'ire given two functional images O and Ô

and a hypothetical relationship between these two images

R'e want to compute a functional image

from O and 6 , such that if the underlying functions of image 0, a and 8 are w = f (u, v) ,

7 ~ 1 = f (u , V) and w = tj(u, v) respectively, then

Furtherrnore, if hypothetical relationship (4.7) holds, we need

To solve this problem, we first reduce the dimension of the problem with a data grouping

sclierne that groups a planar point set into subsets each of which represents a planar curve.

To do the grouping, we notice that al1 functional images are transformed images of the

original functional image, Or, which is partitioned into a rectangular observation mesh grid

(Figure 4.7). That means O can be rewritten as

and so do images Ô and 0. Therefore, are group the sarnple point indices of each image

into Arz or N , groups according t o the result of coordinates cornparison as shown in

..O m..

. m m m m .

e Observation Do

Z 1 xz x j xx,-2 x

Figure 4.7: Partitioning of the Input

Sx: = ((1 , k) : (2,E), - - , (Nz, b)) , for k = 1,2, - - - , N y ,

if l ~ (S ~ . l) - ~ (1 , l) I 2 l ~ (S = , l) - yl.l)l

S k = ((k , l) , (k , 2) , - - - , (b , N y)) , f o r k = 1 , 2 , - - - , N z ,

ot herwise.

Thus each planar point set corresponding to an integer k, { (w, j , vi, l(i, j) € Sk } , repre-

sents a planar curve. We now define the image Ü as the image of a function w = f(u, v)

siich t h a t

-4s stich, the image can be easily computed by classic numeric integration along each

curve indexed by the corresponding set Sk 13.

In the process of verification 14, FFD-II riews image O as the reversed image of 6 when

'' Tlic ~iitnicric values of the derivatives dong each curve is computed based on the partial differentials

Dtc~/Dtt ,uid 8ui/Ou. In the implernentation of FFD-II, 8w/& is approximated with the sample point values
A

nf i l i ia~c O. ,and O.to/Dir is approxirnated by computing the corresponding partial derivatives of image O.

Tliir initial values for niuneric integration are calculateci from the image O in a way such that thc deviations

Iwt.wccn O 'and O is minimizcd.

1 I Tlic verification problcm is as such: "Giwen an original input functiocal image data set 01 , a function

4.4 .Numericd Recipes

tlie last hypothetical transformation appBed to generate Ô is TDIF. This is a compromise

between simple computation and the satisfaction of Equation (4.9). It is obvious that

Equation (4.9) is satisfied only if Equation (4-7) is satisfied. As a necessary condition, this

met hod meets the needs of hypothesis verification.

Linear Factors

FFD-II ernploys the factorization transformation described by Equation (3.48). The factor

(Z L ~ - cos6 + u? - sin0 + C) is detected from the corresponding functional image. The

factorization transformation is only applied when it is hypothesized that the underlying

fiiriction of a functional image contains a linear factor, i.e-

f (ui , u2) = g(ull ui) . (ul - COS 0 + uz . sin 8 + C) . (4.13)

Therefore, me must have evidence that shows the existence of the factor. FFD-II extracts

the hypothetical factor through detecting lines in the contour image of ud = 0 , called

"O-contour" image. The algorithm is designed based on three important observations:

1. There is a factor ul cos 8 + uz - sin 8 + C only if we can observe a correspondent line

in the O-contour image when the observation domain is properly placed.

2. The observation domains of ail functional images, original or generated, are simple

connected planar regions since the original observation domain is a simple connected

planar region and al1 the applied transformations are one-to-one continuous.

3. If D E 8' is a simple connected planar region within the observation domain, there

exists a factor ul cos 0 + ~3 sin û + C and a planar point p(ür, ür) E D that is on
- - - -

foi-~ii <icscriptiou P r = (DT, D p) E L , and a sequence of consequently transformed images corresponding

t.ri cadi transformation in scqucncc DT . Find Out how weil V r matches with O by numcric computing

t l i c eIcviation bctwecn tlie two image O and DT' (D p) ".

4.4 Numericd Recipes

the contour line, i.e.

ür *cos8+ü3 - s i n O + C = 0,

tlien the line must cross the boundary of D . Furthermore, if point p is not on the

boundary of D , the line will cross the boundary of D at least twice.

X brief description of the algorithm is as foliows.

Step 1 : Iterate through the boundary of the observation domain, examine the value

of the dependent variable on the boundary sample point and compare the s i p s

of the values of each adjacent point pair. A zero value contour points is found

directly from the sample point value (if the function value is zero) or by a Iinear

interpolation (if the two adjacent points have different signs). Step 2 and 3 are

carried out when such a point is found.

Step 2 : Starting from a point found in step 1, trace the O-contour point into the

observation domain to form a tree presentation of the O-contour curves. Fig-

ure 4.8(a) illustrates an example of the tracking, where the arrows show the

tracking order. In the figure, there are two O-contour curves of the underlying

function shown as light dotted curves, a straight line and an ellipse. Point pl is

the starting point on the boundary obtained from step 1. The shaded quadrilat-

erals are the observation cells l5 in the coordinate plane ud = O . New O-contour

points are identified through ceU by ceIl sign examinations and interpolations.

The key idea of the tracing process is that any O-contour line will not end in an

inner cell.

Step 3 : Split the found O-contour tree into simple curve pieces and f i t each piece

to a line. If the fitting is acceptable, a straight line equation corresponding to a

curve piece is identified. Otherwise, the curve piece is discarded. Figure 4.8(b),

(c) and (d) show the groups of split O-contour points and the fitting results.

OnIy (c) is an acceptable fitting.

4.4 Primitive Fitting and Search Heuristics 129

Step 4 : If the iteration of step 1 has not been completed, continue from step 1.

This enables the algorithm to find multi-contour-lines.

Apparently, this simple method is relatively sensitive to noise. When noise Ievel exceeds

a limit, the O-contour tracking procedure will not be successfully completed. However,

the crirrent research focuses more on methodology issues, only simplest numeric recipes

t hat do not require too much computer resources are chosen. Identifying a set of complex

cirrves from a set of planar points of its own is an interesting research topic. FFD-II

eniploys only linear factor to demonstrate the ideal of factorization transformations. Other

factorization transformation classes may be considered according to the domain knowledge

of the application.

4.4.2 Primitive Fitting and Search Heuristics

Primitive Fitting and The Error

RecalI that we have defined two types of primitives, i.e. functional primitive and compo-

sitionaI primitive. Fitting a functional image to a functional primitive is simply a linear

fitting of leczst-squares. Let

I>e a functional image data set and vd = P (q , v 2) be the functional primitive fitting

resiiltant function of O\. . The fitting error is the mean-square distance between surfaces

v , ~ = P (q , v2) and 0,. as described below.

Let po = (vr3) , $'), ~2")) be any sample point of the observation image data set Ov .
The normal vector of the fitting surface at point (v r j) , vFvi)) is

4.4 Prkni t ive Fit ting an ci Search He uristics

The Observation

(4

/// 0

Figure 4.8: Extracting Straight Line in A Contour Image

4.4 Primitive Fitting and Search Heuristics

and the error distance vector is defined as

The deviation a t point (i, j) is therefore defined as the dot product of the two vectors

riricf the mean-square distance between the fitting surface and the image surface is

Er is viewed as both the primitive function fitting error and the error between the initial

observation image and the verification image which is generated by numerically inverting

t l ie t ransforrnation sequence starting from the hypothetical primitive pattern.

The recognition of the primitive pattern of linear compositional primitive is achieved by

n intiiti-line fitting scheme. Let us first give the problem statement.

L inear Composition Component Discovery ProbIem

Givcii : a functional image observation data set

0,. = { (v : , v i , v j) l i = 1, - - - , N } .

Fiiicl : a control parameter 8 so that the data set generated by

represents a smooth one dimensional function vd = g (t) .

A weighted multi-line least square fitting is used to solve this problem. The algorithm

iiicludes tliree main steps.

LI. 4 Primitive Fit ting and Search Heuristics 132

Step 1 : Find the range of the observation 0, and partition the range into ND

adjacent close intervals

Si = [%in + (i - 1) .A, ",in + i - A]
u m u - Vmin (4.21) for i= 1 , - - . , N D ; a n d A =

ND

where

and number ND is set to be for N = 1OVl .

Step 2 : Segment the sample points into ND groups

for u j E Sr. ; and

(VI, v;, v j) E UV

(for A:= 1 , - - - , N D) .

Note that the groups may not be disjoint.

Step 3 : Jointly fit al1 sample points in each group Gk to a common format straight

line v l cos 8+v2 sin 8-Ck = O , where 0 and Ck (for k = 1, . - , N D) are the fitting

parameters. To reduce the chance of the fitting result undesirably influenced

by the segmentation scheme and the distribution of the sarnple points, a weight

function is defined as

where (1) it is assumed that the i- sarnple point is in group G j ; (2) cj is the

center of the interval Sj and A is the dimension of the interval; and (3) 6 , a

srna11 positive real number, is the offset that is used to adjust the shape of the

weight function.

The fitting problem is then a classic minimization problem, i.e. minimizing the

4.4 Priait ive Fit ting and Search Heuristics

objective function

Clearly, it is a linear problem that could be easily solved.

Once the linear component is obtained, the fitting error is calcdated based on the

nieCasurement of the smoothness of two-parameter functional image represented by Equa-

tion (4.20). We assume that the sarnple points in the set 8, = { (t i , v :)) are sorted

according to their t values, where ti = uf cos 0 + v i sin 6 . The computing scherne is

described CU the following.

Let (ti, v j) , 1 < i < N be any point in the set 6, , define the 6-neighborhood point

s e t S i C a s : .

Si= { (t i 1 v i) 1 (t i , v i) E Ô d , and ~ t j - ti(5 8) ,

ivliere c5 is a small positive real numberl'. Since Ô, is sorted according to the corresponding

t values, we can assume that there exist integers El and k2 , 1 5 kl < i < k2 5 N , such

t,liat

Si = { (p l , v i l) , (t"'+11v51+1), . . . pl v p) } - (4.26)

Noiv define a line that crosses points (t h , "21) and (tL2, vd2) as:

The m,zxirnum and minimum deviation values are defined as

'" Iii tlic iinplementation o f FFD-Il, 6 = J-. .

4.4 Primitive Fitting and Search Heuristics

Tlius the fitting error and the curve segment length at the i a point are given as

Finally, the compositionai primitive fitting error is defined as

Note t h a t the denominator in Equation (4.31) is not exactly the Iength of the two dimen-

sional curve. It is closely related to the length and less sensitive to noise, thus it is a better

choice than using clcassic discrete curve length formula.

Se,arching Heuris t ics

To carry out heuristic search, a cost function is used to identify the most preferred node to

he explored in each state. The following rules are considered in the construction of the cost

fiinctions.

Rule 1 The node with the simplest functional image should be explored first.

Rule 2 The node with the functional image that is easier to be obtained frorn the

original functional image should be consider first.

Rule 3 The transforrned functional image that has smaller expected error should be

more preferred.

The simplicity of an image is measured by how close it could be fitted to a primitive.

The accumulated rank values of the transformations that have been applied to obtain the

transformed image reflects the complexity of the possible solution in the corresponding

h a n c h , The expected error level, denoted by E , which is traced automatically by the

system, could be considered as a factor of the quality of the solution that could be expected

4.5 Achieving Adaptive Error Control 135

to he obtained by further transforming the current functional image. Therefore, the cost

function could be define as

where E j is the functional primitive fitting error, Ec is the compositional primitive fitting

error, R, is the accumulated rank value of the current node, Rt is the rank value of the

transformation that will be applied to generate the image for a new node, and 6, is an

nrbitrarily selected small real number". The cost value obtained from Equation (4.32) will

l ~ e assigned to a new generated node a t Step 7 in the search procedure (List 1 on page 119).

.lppnrently, the designed cost function is only a rough estimation of how likely we can

firid n relatively simple solution in a branch of the search tree. It is not rnonotonic since

a transformed image may have larger Ef and Ec values than the image it is transformed

from. This design demonstrates a way to conduct heuristic search in a tough real problem.

Achieving Adaptive Error Control

J t I ~ a s been pointed out Section 4.2.2 that the e r r x ccntrol is an important issue in the

design of a direct three-variable function form discovery system. To achieve adaptive error

coritro1, we need to compute the expected error level of a transformed image and know when

the image is not a smooth image. In this section I wi11 discuss these two issues. First, the

tlieoretical propagated errors corresponding to each transformation will be analyzed. Next,

1 will define the "roughness value" of an image. Lastly, 1 will summarize the results with

the adaptive error control scheme used by FFD-II.

Before going into details, let me first introduce the symbols which will be used. In this

section, an error E is referred to as the Relative E m r . Let c be a numeric, and 2 be an
- - .

i 7
Iii tlic implementation of FFD-II, 6, equals 0.1 when the node is an un.!~ivorable node, which me~iuis

t.liat t.hc wsociated image contains large scalc uncoverciblc errors, rrnd otherwise it cquais O.

4 . 5 A chie ving A dap tive Error Con trol

approximation of c , then the error of estimating c with C is

Viewing e the expected error level, which is a positive number, we also write

Without losing generality, we replace & with + in the above equation in the formulation of

the propagated errors. In the discussion of errors: the following conventions are in effect:

1. The triple (Cl, i l ? , i ld) denotes the accurate sample point of the functional image of

an underlying function ud = f (ul, u2) .

2 . The triple (cl, ü2, G d) denotes the approximation of (Cl, ü2 , Gd) - The error associated

with each parameter is denoted by €1 , € 2 and cd respectively:

3. Let T be a transformation and T be a numeric implementation of T l and (cl , ü2, G d)

be a n approximation of (il1, ü2, Gd). Then the triple

denotes the accurate transformed functional image sample point, and the triple

denotes the approximated transformed functional image sarnple point, where (ùl, ü2, ü d)

is an approximation of ül, ü2, Cd. The expected errors associated with ü1 , ü2 and

4.5 Acl~ieving Adaptive Error Con trol

ü,l are ZI , Z2 and Ed respectively, where

4.5.1 Error Propagation Analyses

To formulate the error propagations is to find the expressions that express the estimated

errors s1 , & and in terms of €1 , €2 and cd corresponding to each specific transformation

seqirence T . In other words, it is to find a mapping ET of the following

From the error propagation perspective, there are two types of transformations - trans-

formations whose propagated error are related to the coordinates of the sample point, and

t.ransformations whose propagated error are not related to the coordinates of the sample

point. Let us start with the examinations of the simpler type first.

Transformations With Propagated Error Not Related To The Sample Point

Coordinates

Transformations TvEs defined by Equation (3.53) and TI,, defined by Equation (3.50)

do not change the error levels associated with each parameter since they only exchange

the position of the corresponding parameters. By the definition of TvEXi the accurate

transformed triple is

(7 2 d) = TVEX (~ 1 , ü 2 1 c d)

= (Ü2, Ü l r c d) .

Tlius applying TvEX to a data triple containing noises results hl8

(6 1 , 9, G d) = (ül(l+ c l) , ü2(1+ h) , üd(l+ %))

Ir For klic C-C of i1 z= O. sidrar exprcssions can be used to obtain the error estimations. Samc ~uuiouuce-

i i ~ < . i i t will not bc madc in the rcst part of this section.

4.5 Aclu'eving Adaptive Error Control

This proves that the new error levels associated with each of the new parameters (obtained

from appIying) are

Z1 = €2 , Z2 = €1 , Cd = c d . (4.40)

Similarly, me can prove that the new error levels associated with each of the nem parameters

(obtained from applying T Isv) are

Since the error level are not enlarged, we cd1 the TvEx and TI,,. transformations error-

preserving transformations.

TREC defined by Equation (3.44) is another error-preserving transformation. Let us

examine the reason now.

expansion, we can express

According to the definition and using Maclaurin power series

Therefore, we have proved that the new error levels associated with each of the new param-

eters (obtained from applying TREc) are

4. .5 Acliieving Adap tive Error Con trol 139

Transformations With Propagated Error Related To The Sarnple Point Coor-

dinates

The other three transformations employed by FFD-II , TL^^ , T F A ~ , and TDIF , are different

to tliose we have just seen in their error propagations. The error level through transforma-

t i o n will be changed depending on both the transformation applied and the functional image

itself. In the following formulations of error propagations, Taylor power series expansion

will be used whereas it is required without mention.

For the transformation TLoc defined by Equation (3.42), the propagated error level

estimation could be obtained from '"

Silice fi1 = ül , ü2 = US and üd = logCd

TL% (UI. fi?. ü d) = (ü l (l + t l) , ü 2 (1 + ~ 2) , l o g G d

= (Ü ~ (~ + ~ ~) @2(1+€2) , cd (1+ A) 1% ud) -
I t is therefore concluded with the error mapping corresponding to transformation TL^^ as

For the transformation defined by Equation (3.48), the propagated error level is

' !' Wit.lioiit losing gcncr;ility, WC can ncglect tlic absolute operator.

4.5 Aclzieving Adaptive Error Con trol

identified ~zs

Since Cl = 61, ü2 = ü2 and üd = c d

ü1 - cosû+ü2 . s i n û + C '

Gd(1 + Ed

- - Cd 1 + E d

üL ~ c o s 0 + Ü q ~ s i n 8 + C ürrl . cos 8 + Ü ? E ~ - sin 8
1 +

Ül -cos8+Ü2 -s in8 +C

ü l ~ l + cos0 + ü2e2 - sin 8
Ü d ' (l + é d) ' 1 - (ü l - c o s e + ü 2 - s i n e + C

ü1c1 - COS 8 + ii2 é2 - sin 0
ül -cos8 + C l -s in0 + C

where

We can therefore conclude the analysis with the error mapping corresponding to transfor-

mation TF,,c as

ü1 - cos6+ü2 - s inB+C
ülcl -cos 8 + Üpe2 - sin8

The transformation T D ~ ~ is relatively hard to analyze. Since the first two parameters

« 1 is assumed, thus

z1 = €1 , z2 = €2 , Zd = Ed + üle1 COS 9 + ü 2 ~ s - sin 8 I -
(4.44)

ül - c o s 8 + ü 2 - s i n 8 + C

4- -5 Acliieving Adaptive Enor Control

in the variable triple will not be changed by the transformation, it is obvious that

To figure out the propagated error Zd , we should note that the error can be split into two

parts:

Computational E ~ T of Differentials which is the numeric computation errors in-

troduced by the approximation met hod described in Section 4.4.1;

Propagated Error which is the theoretical difference between the underlying func-

tion's derivative values of a clean image and the noisy image.

Let us analyze them separately.

Propaqat ed Enor o f Differen tials

Let (x, y , z) denote the accurate sample points of a function form discovery problem

and z = f (x. y) be the underlying function in class Cm . Let (Z , g , 5) denote the

corresponding noisy sarnple points. Assume that:

wliere a , p and y are the absolute error functions, and Z = g (3 , g) is the corresponding

irnderlying function. We would like to find out the propagated error, i.e. the difference

hetween g;(2 , i j) and fi(Z, y) .

Substitute Equation (4.46) into z = f (z , y) yields:

Tllerefore, if we assume that la1 , 1/31 , Iyl , lail , IPil , Iyil < 1 , which means that the noise

level is relatively small, we obtain

4.5 Acl~iev-ing Adaptive Error Con trol

Transferring these to relative errors and for the simplicity reason, we assume that, for a

ninjority number of observation sample points20,

where , €2 , €3 « 1, we have the simple propagated error estimation

Computational Error

The error analysis we have seen solved the problem of estirnating the difference between

TD,,:(ül , ü2 , ü d) and TDIF(üL , ü3 , Cd) . It is one of the two parts of the error that contribute

to the propagated error of the differential transformation. Recall that al1 transformations in

t lie discovery system are implemented numerically. The second part of the propagated error

is the error introduced by the computation of TDIF(UL , fî2 , ü d) using the chosen numerical

~netliod. In the implementation of FFD-II , TDIF is calculated by a fitting scheme (Refer

to Section 4.4.1) . We now analyze the error associated with this computation scheme.

Let:

(1) po = (0, O) be the point a t which we numerically compute the partial derivative

of a C, function z = f (2, y) using our fitting method;

(2) p i , i = 1, - - -, 8 be the eight nearest points involved in the fitting, and F p =r

{pi 1 i = 0, - - ., 8) denote the fitting point set;

(3) A be the maximum distance poP; (for i = 1, - ,8);

'"CoiWidcring that the error is '&O monitored by the measuremcnt of mirface roughncss that will be

c li..;ciis.-cd soon. the as-suxnp tion will not mislead the proposed error control strategy.

4.5 Aciiieving Acfap tive Error Control

(4) -A 5 z 5 A , -A 5 y < A be a small planar region;

- allz2 + gl2=y + ü22Y2 + a12 + ü2y + 00 be the least-squares fitting (5) P(xt Y) -
polynomial; and

(6) P(z , y) = ail z2 + alzxy + a22y2 + alz + a3 y + QJ be the polynomial of truncated

Maclaurin series of function z = f (z, y) . Thus,

Sirice

(i) function f (2, y) is pertaining to class Cs , we can assume th& there is a

positive constant K such that the corresponding derivative values are bounded

where -A 5 5 A ; and

(iii) P (z , y) is the least-squares fitting and considering the existence of the polyno-

mial function P(x , y) , it must satisfies:

a t each poiiit pi ,

we woitld like to prove ~ h a t the second order polynomial

wliere the coefficients are the subtractions of the corresponding coefficients in P and P ,
satisfies

b = O(A*), (4.51)

provided that the fitting point set is subjected t o certain constraints.

4.5 Acliieving Adaptive Error Control 144

I t is obvious that if the fitting points is scattered very close to a line, as shown in

Figure 4.9(b), the functional image of the resultant fitting polynomial may not be very even,

even when Equation (4.49) are satisfied. To prevent this from happening, we assume that

point pu adequately close to the center of the point set Fp (iiiustrated by Figure 4.9(c)),

i.e. there exist five points E , N , W , S and V in set F p , such that

the distances between any points pair are O(A) ;
-

if 1 is the point where lines NS and EW cross, and K denotes the distance

hetween points I and po , then

Angle 4 is not close to either O or n ,

Under these conditions, we now prove b = 0(A2) .

Witliout loosing generality, we assume that 4 = n/2 (Refer to Figure 4.9(d)). Other-

wise, a coordinate transformation can be applied to simplify the situation without changing

the first order properties (of Our interests) of the polynomial of Equation (4.50). For the

convenience of discussion, we assume that the coordinate origin is initially at point po .

Moving the origin to point I results in a transformed polynomial of (4.50):

From given, we have

4.5 A chieving Adap tive Error Control

(a) Eight-Neighbor Point Set

(c) Adequately Centered Point Set

(b) Il1 Distributed Points

(d) Simplified Case

Figure 4.9: Polynomial Fitting Points

4.5 Acl~ieving Adaptive Error Control 146

w here DE, Div , DN , DS , x, and yv are infinitesimals of the same order of O(A) ,
and zm and y, are infinitesimais of the order O(K) = O(&*) . Now we prove ü is an

infinitesimal of order 0 (A 3) by contradiction. Let us suppose ü = O(An) for integer n < 3

(when n < O a is an infinite) . Then, equations (El) and (E2) imply

Eliminrrte 6 from above yields

Clearly, d = O(An-') so that, by comparing the order of each term in equation (El)

or (E8), 6 = O(A"-') . Similady, using equation (E3) and (EX) it can be proved that

= O(An-l) and f = O(An-') . By comparing the orders of each term in equation (E5)

we find the order of the only unknown symbol ë = 0(An-2) - NOW we check with equation

(EG) to figure out the order of a. In the equation

considering the assumption of 5, , ijm = O (A ~) and the results we have proved, the terms
-

k,, and % ars of 0(An+l) and the terms dg; , ëZ,ij, and fiji are of O(An+') .

Considering the assumption of n being less than 3, term ü m u t be of O(A"+') . This is

contradictory to the assurnption of a = O(An) . Therefore,

According to the result of a = 0(A3), we can use the same method to prove 6 , I? = 0 (A 2)

and d , ë , f = 0(A) . Since

2 = z+z,

Y = Y + &

4.5 A chie ving Adap tive Error Control

the following orders could be figured out:

Recalling the definitions of ~ (z , y) (Equation(4.50)), P(z, y) and P (z , y) (k t items

(5) and (6) on page 142), we can conclude the discussion with the estimated computational

error

6, = O(A~) . (4.54)

n
The above proof is also valid when condition (4.52) is replaced by condition g << 1 .

4.5.2 Surface Roughness and Smoothing

Roughness Measurement

Let O = { (ui-j , vis, , w;.;) 1 i = 1, . . . , N z ; j = 1, - - -, Ny) be a functional image sample

point set. W e define the roughness of the surface at an inner point (i , j) , where 1 < i <

Aix . 1 < j < Ny , as follows.

Let "

Clearly, if

'' Scr: Figure 4.10 for gqhical illustrations.

4.5 Achieving Adaptive Error Control

Figure 4.10: An Illustration of The Roughness Measure

r we let f = F (t) be a continuous function such that fi = F(t i) for i = 0,1,2 ;

ive assume that t2 = 2 t 1 and p < 1 POP2 1 ; and

r ive let r and 4 denote the radius and angle of the circular arch PoPlP2 ,

wliich is the approximated curvature value of f = F (t) at point Pl multiplied by the

dimension of the length of the small curve segment and divided by 8. We assume that for

a smooth ciirve point, r = 0(1), thus:

4.5 A chieving Adaptive Error Control

Similarly, Let

Hence, the Roughness Valve a t the surface point (i, j) is defined as

Roiiglily speaking, this measurement is a sum of second order curvatures of two un-parallel

curves on the surface that cross a t the surface point (i, j) multipiied by the corresponding

length of the curve segments.

Tlie Roughness Value of a surface is the averaged integration of the roughness elements

at each surface sample points

Tlie measurement given above is based on the measurement of curvatures of the curves

in a curve set on the surface. The observation data set O presents the surface by a net

of discretized curves on the surface. Although Equation (4.56) is not the exact curvature

ineasurement of the surface a t the corresponding point, it is necessary that e, = O(&)

for 4 being the averaged partitioning size of the mesh grid, provided that the cürve net is

reasonably close to a uniformly generated net 22. The quantity of the defined roughness value

ilt a mesh grid point responses to non-smooth noise pattern with a large value. As such,

the defined surface roughness measurement can meet Our need of capturing the roughness

pattern of the surface caused by noises and errors.

"' Uniformly Generated meam that there is a smali number A - the partitioning size, such that the

4. .5 Acliieving Adaptive Error Con trol

Smoothing a Surface

Differential transformation is the most important transformation that allows a data trans-

formation based function form discovery system to have the fiexibilities of finding complex

function form expressions. However, it is more difficult and inaccurate to compute the

transformation numerically than other algebra transformation. To fully take advantages of

dnt a transformations, the ability to teduce the computational errors is an important issue.

Before we chose the smoothing method, there are a few things that should be borne in Our

minci.

The smoothing scheme must add, as less as possible, specific functional pattern of its

own to the image to be smoothed. Or, at least no significant functional pattern will

be added.

In the three-variable cases the smooth scheme should be able to handle observation

data set that is not regularly distributed. In other words, the mesh grid might not be

uniformly distributed rectangles.

Since the srnoothing treatment will be called from time to time and the size of a single

observation data set are usually large, it is better to be a simple method that works.

These are the criteria for designing the smoothing algorithm for FFD-II .

Moving window averaging is probably the simplest and the most widely used noise

removing technique. If the mesh points are adequately placed and the underlying function

is constant, or is changing linearly with the independent variables, no bias is introduced into

the resul t. A bias is introduced, however, when the underlying function has a nonzero second

derivatives. To prevent the bias introduced due to nonzero curvature, Digital Smoothing

Polynomial[l8] is an alternative. In one dimension cases where {(ti, fi), i = 1,2, - .) is the

sarnple data set, instead of directly replacing data value fi a t each sample point i by a

linear combination:

ncarby of i

4.5 Acliieving Adaptive Error Con trol

we replace fi by pi :

Pi = <Ln](ti)

iv-tiere pi["l(t) is the nl!! order polynornial that is the result of fitting the sample points

wit hin the i& moving window by least-squares. This idea is borrowed to solve our smoothing

problem.

Let O = { (waj , V;.j , wij) 1 i = 1, - , Nx ; j = 1, , N y) be a functional image sample

point set that need to be srnoothed. We choose a 5 x 5 moving window, Le. let the fitting

point set a t a point (i, j) be '3:

and let the second order two-dimensional polynomial:

be the fitting polynomial. Clearly, second order curvatures of the underlying function do

riot introduce bias by choosing a complete second order fitting polynomial. However, bias

are introduced by possible higher order curvatures. Choosing higher order polynomial may

l x a solution to overcome this problem. But a t this moment, we limit the complexity of

the entire system with the simplest possible choice.

The laborious least-squares fitting is linear. We solve it by L U decomposition. More

luckily, we need only to find the constant term f . This simplifies the back-substitution

procedure of LU decomposition process.

In general, a smoothing algorithm does not improve the precision of the data. In the

FFD-II system, the smoothing method is applied to a non-smooth image recursively until

the image is sufficiently smooth. Since the smoothing method introduced in this section is

an averaging based method, it works better when there are sufficient sample points involved

in a single computation of the average. Thus the smoothing process will only be triggered

?'' Notc tlint speciai attentions must bc paid to the points on and next to the observation boundary.

4 .5 A cliieving Adap tive Error Control 152

when there are extra sample points, available in the forrn of fme step image, that could be

iised to help the image smooth.

4.5.3 Error Monitor and Adaptive Control

Smoothing algorithms do not improve the precision of the data. It only remove the high

frequency oscillations from the data. A more effkctive way to improve the precision of the

observation data is to use more sample points with finer observation step size. In the FFD-

II system, the srnoothing method introduced in the last section is applied recursively to

srnooth the image until the image is sufficiently smooth. An image refinement scheme is

iised to improve the precision of the image when the estimated error level is too high. The

refinement is implemented by using fine step observation data with larger fitting windows,

i .e. windows with the same dimensional magnitude and more sample points. The system

riioni tors the expected error level and the smoothness of the transformed functional image

to decide which treatment is needed.

Siinimarizing the results of error analyses conducted in Section 4.5.1, the estimated error

propa~ations of each transformations are tabulated in Table 4.1. The estimation formulas

of Tl-,, , TIsv , and TREc are exactly their theoretical results. TL^^ and T F ~ ~ are roughly
-Üd .

estirnated. In the error estimation of TLoî , log(&) is replaced by log("'", u) , and in

the error estimation of , maximum error level of the three attributes is adopted. The

error estimation of TDIF is relatively rougher. In the theoretical result, Equation 4.48 is

replaced with rnax{ci, c?, c~), and Equation 4.54 is replaced by (-) *. The rasons

for estimating the errors in this way are list below.

The purpose of estimating the propagated error Ievel is to capture the order of the

expected error level. We require only

where Z is Our estimated error level and ~ (p) is the real error a t any observation

sample point p . When the functional image is sufiiciently srnooth and the mesh grid

4.5 Aciiieving Adap tive Error Con trol

Theoretical 1 Trans. 1 Estimated Error R e d t s (Eq.)

Table 4.1: Estimated Error Propagations

liczs not been badly distorted, the requirement will be satisfied.

Our interest is to compute the "overall averaged order" of the the propagated error.

A rough estimation is sufficient for serving as an errcr treatment heuristics.

The estimated error is largely different from the true value a t those points where the

fiinctional image is not smooth. For that kind of exceptions, the designed smoothing

heuristics and procedure will take charge of the situations.

FFD-II achieves the error control based on the following two heuristics.

Heuristics E l : If a functional image associated with a searching node has too large

expected propagated error level, it may not be desirable to find a solution based

on the image.

Heuristics E2 : If a functional image is not sufficiently smooth, measured by the

roughness measurernent e , the image shouId be treated with surface smoothing.

4 . .5 A chieving Adap tive Error Control 154

In t be former case, the best way to reduce the error is to refine the image with fine step

observations when the primitive fitting error is sufficiently ~ r n a 1 1 ~ ~ . FFD-II first checks

if there are more observation data available for refining the curent image. If yes, image

refinement is conducted. Ot herwise, the system marks the corresponding child nodes as

unfavorable nodes by increasing the cost value of the corresponding chiId nodes. In the

latter c~ase, surface smoothing will be called recursively to smooth the image until a smooth

surface is obtained.

'' If tlic prinlitivc fitting crror cxcecds a certain limit, for example tcn times the corrcsponding expected

rnor ICVCI. WC lmvc cvidmce to beiieve that the image is not primitive. Smoothing such an imagc is not

ilccc~s<uy.

Chapter 5

5.1 The Organization and Common Background of the Ex-

periment

The implementation of the proposed methodology is the FFD-II system. It is written in

C + t programming Ianguage with over 13,000 lines of code. The experiments are run on a

SUN SP-4RC UItra-1 machine, that is equipped with a 167MHz CPU and has 62MB RAM.

This cliapter is a report of the experiment results.

Before the discussion of the experimental results, two detailed examples are presented

in the section that follows. The purpose of presenting the exarnples is to help t o understand

the proposed methodology. The experiments are then organized into four categories.

The first group presented in Section 5.3 is designed to demonstrate the general discovery

capability of the system based on the proposed function form description language described

in Section 3.3. To minimize fortuitous results, a random test function form construction

scheme is used to select function forms to be tested randody.

The second group of experiments presented in Section 5.4 is a comparison between the

proposed direct three variable function form discovery method and the indirect method

tisi ng variable freezing technique. As mentioned befme, FFD was designed to discover

.5.1 The Organization of the Experiment 156

function forms from two variables. It has been extended to discover function forms with

extra parameten, known as families of one dimensional functions, using the parameter

freezing technique. The extension is subject to certain constraints such as the "Primitive

Union" and "Simple Descriptive Parameters" assumptions. Hovüever, the comparisons in

the second experiment group will be made against a more general indirect function form

discovery system, namely "Indirect-FFD" which will be introduced before the experiments

are discussed. To demonstrate the superiority of the proposed direct approach over the

i iidirect approach, special function forms are chosen.

The third group of experiments, reported in Section 5.5, is designed for the purpose of

demonstrating the system's ability to mode1 observations from more complex function forms

tlmt cannot be expressed in terms of a few fundamental functions. Randomly generated

two-dimension surfaces are chosen as test samples. The emphases is on the meaningfulness

of t lie discovered expressions.

The 1,zst experiment group, described in Section 5.6, tests the performance of the error

treatment design of the system. Noises are added to the simulated observation data set to

produce input observations. Different statistics wili be used to show the effectiveness of the

proposed methodology.

The test function forms and al1 intermediate transformed function forms are assumed

to represent continuous functions in tlieir corresponding observation domains. The compu-

tational complexity of the algorithm is not reportedl. Instead, 1 will report the number of

riocles created and the number of primitive matches the system attempted before it reached

the solution in a discovery task. These values reflect the efficiency of the designed search

and redundancy elimination heuristics.

Rniigldy spcaking, the timc consumed in computing a node is linear to the size of the observation data

rct asnciatcd with it. 'and the actual time complexity depends on the numeric tools WC chose to carry out

chta transformations and primitive matchings. The current system stores and processes a functional image

i i ~ tlic fnrrii of double prcasion floatingpoint data. This consumes large amounts of memory space and CPU

t,iiiic. Tlic CPU consumption of the experimcnts reported in this chapter range from 2 seconds to about half

 LI^ lintir. <lepend on the complcxity of the discovery task.

5.1 The Organization of the Experiment

The system is run under the following default system parameter settings unless otherwise

stated.

Sampling: In each experiment, the observation domain is carefully arranged to

conserve the continuity assumption. The partitioning sizes are chosen to be

from 0.008 to 0.02.

Accept A Fitting: The threshold cp is set to max(5 x G, IO-'), where is the ex-

pected error of the corresponding functional image associated wit h each node.

The system estimates é, according to the original precision, the step size, trans-

formation history of the node and the function range of the corresponding

images'. When a transformed functional image can be fitted to a primitive

with a fitting error3 less than the threshold, the fit will be accepted, a hypoth-

esis will be abstracted, and the verification process will be triggered.

fccept A Hypothesis: The threshold EM for accepting a hypothesis is set to

rnclx(~, , 10-9. This is referred to as the Matching Error Tolerance Level 6,,

in our problem state~nent (Section 3.2.2). When the deviation measured by the

root-mean-square distance4 between the matching image (obtained by numeri-

cally rcversing a fit ting image with corresponding reverse transformations) and

the original observation functional image is less than this threshold, the system

will terminate with a successful discovery.

Smooth Image and E m r C o m p t e d Image: When the computed roughness value5

of an image is greater than

0.1 J Area of the Observation Domain
Number of Sample Points

the image will be viewed as a rough image. A surface smoothing process will be

triggered. When the computed expected error of an image is greater than the
- -

-' Rcfcr to Section 4.5.3.

' scc Scction 4.4.2 for details.

' Rrfcr to Section 4.4.2.

'' Rcfcr to Section 4.5.2 for the definition of roughness value.

5.3 Two Detiriled Examples 158

square root of the original input noise, the image will be viewed as an image

with unacceptable level of errors. Image refinement will be triggered. However,

in both of the cases, if there are no additional sample points, the treatment

process will not be triggered. Instead, the system will assign low priority to al1

nodes in the current branch.

Tliese settings are based on the consideration of the accuracies of the numeric tools that

have been chosen. We should note that numeric integration is Iess sensitive to noise than

riiimeric differentiationG. Hence it is reasonable to set ÉM < . The arbitrary value IO-'

represents the basic numeric fitting and integral accurâcies and E, adaptively takes into

riccorint the accuracy of the observation data set upon which the numeric computations are

carried out. Considering the time and memory space intensities of the system, we also set

t.lie rmaximum search depth to 7 and the maximum tank of a function form to 10. We will

ident ify changes to t hese settings whenever necessary.

5.2 Two Detailed Examples

Examples are heipful for understanding the proposed discovery mechanism and the subse-

quent experiments. In this sections, we will see two detailed examples that dernonstrate the

t.wo different termination primitive types of the system and how the system works.

5.2.1 Example 1: Termination by Primitive Function Fitting

The first function form to be discovered is

2 = 1 + e2'Y

Tlie simulated observation data set is obtained by partitioning the observation domain

(2, y) f [-1, 1; - I l l] into a 101 x 101 mesh-grid. As such, the observation data set contains

'; Mqior crro~s arc introduccd by thc approximations of differcntial transformations in the proccss of find-

i tir ii xxiatdiing hypothcsis that involvcs diffmtial transformations. Thc verification process only contains

.ilxc4uai<: iu1d intcgral transformations.

5.3 TWO Detailed Examples

solution I

Figure 5.1: The Search Tree - Example 1

101 :< 101 = 1021 reai valued 3-tuples and can be expressed as:

The discovery steps are illustrated in Figure 5.1 and detailed information is given in

Table 5.1, where "Trans." shows the associated data transformations, "Cost" refers to the

value of searching heuristic cost function corresponding to each node, "ExpError" stands

for the estimated error propagation, "Pf-Error" is the functional primitive fitting error, "Pp-

Error" is the compositional primitive fitting errors and "M-Error7' is the matching error of

liypothesis verification. The nurnber shown in each node in Figure 5.1 represents the order

in which it was explored. The discovery is terminated at step 66.

Let us describe the discovery process step by step. After initializing the tree root (Node

1) with the given observation data set 0, the system starts to search for the solution:

Step 1: The system attempts t o find a primitive function matching the image O by fitting

it to primitive functions. The best fitting is

I
Step

t 1

t: italic denotes the value is obtained from parent node.

Table 5.1: Primitive Fitting and Matching of Each Step of Example 1

Pf-Error

, 5.13Oe-02

Trans.

None

PpError Cost

-
M-Error Exp-Error

1.00e-12 2.117e-O5 1 -

5.3 TIVO Detailed Examples 161

and the fitting error is 5.130E-2. It is not an acceptable fit considering that the

expected error of O is é, = 1.OE - 12, the precision of 64 a bit floating-point nurnber.

Thus €7 = IO-^^.

To find a compositional primitive matching of the image 0, the system uses the

multi-line fitting algorithm. The best fit is

and the fitting error is 2.117E-5, which is not acceptable. It is concluded that O is

not primitive.

The system then constructs six child nodes, corresponding to the transformations

listed in Table 3.6, without computing the associated images. It assigns each new

node a cost d u e computed accordingly, and puts them into a sorted list "OPEN".

Step 2: The node with the least cost value is chosen and removed from the "OPEN list.

The system deterrnines that the associated transformation, TL^^, is applicable. Data

transformation is then carried out to generate a new associated functional image Cl2.

Fitting processes are called to attempt to match a primitive to the image. When it is

determined that O2 is not primitive, more nodes are added to the "OPEN" list.

Step 3 and 4: The system selects nodes frorn OPEN to explore. Step 3 and 4 explored the

child nodes of the root with associated transformations TREC and TV,, , respectively.

Step 5: The popped node from OPEN is a child of Node 1 and requires applying trans-

formation TFAc. Since no line pattern can be found in the contour image of O, this

transformation is not applicable. The node is simply eliminated.

Step 6 through 9: Four more nodes are eliminated from search tree.

Step 10: At this node, the compositional primitive pattern fitting error is é, =1.362E

3. According to the error estimation scheme introduced in Section 4.5, é, =4.OE4.

e, < 5 x É,, thus the associated functional image is primitive. As such, a function form

' Rcfcr to page p p y s sctting for the thrtsshold sctting.

5.3 TWO Detailed Examples 162

hypothesis is formed and a verification procedure is called. By numerically inverting

the transformation TD,, and comparing the inverted image with 0, the cornputed

matching error is found to be 1.1483-2, which is larger than en. Thus, the hypothesis

is rejected and the search is continued.

S tep GG: The system fits the associated functional image of this node to

1%-ith a fitting error of E , =1.335E-3, while the expected error of this node is E, =4.OE-4.

Since < 5 x E,, the image is primitive. By numeric verification, the function form

matching error is found to be 1.476E-5, which is l e s than 6,. Thus a solution is

found and the system reports the discovery results as shown in Figure 5.2.

TASK refers to the data file narne tha t was input as the observation data set. TERMI-

KATION STATUS indicates one of the cases Success, Failure and Out of Memory. INPUT

IMAGE provides basic information about the input. ORIGINAL PRECISION is the precision of

the input believed by the user. REFERENCE IMAGE(S) gives the name of data files created

I>y the system for extracting necessary descriptive expressions using a lower dimension func-

tion form discovery system- NODES shows the information concerning the search process,

where To t a l stands for total nodes created, Explored is the number of nodes upon which

primitive matching were conducted and Open is the number of nodes left in the OPEN list

at the time of termination. In this case, there are in total 109 nodes that have been created.

Arnong them, 21 nodes have been explored, 45 nodes are dead end nodes and 43 nodes are

left iinexplored. The meanings of the remaining five attributes are quite straightforward.

To get an explicit function expression, FFD is used to find the boundary expression as

sliown below, from the recorded data in the file "Example-1 .Bl . dat".

So t hat we can invert the data transformation sequence step by step as shown in Table 5 2.

5.3 T rr70 Det ailed Examples

TASK : Example-1

TERM~NATION STATUS : Success

INPUT IMAGE: 101 x 101,
Xmin=-1, Xmax=i, Ymin=-1, Ymax=1

ORIGINAL PRECISION : 1.OE-12

REFERENCE IMAGE(S) :
1- File=./Example-l.Bl.dat, Type=Boundary

NODES : Total 109, Explored 21, Open 43

RUNNING TIME : 4'35.47"

MEMORY USAGE: 4.54MB

TRANSFORMATIONS :

1. Diff(z,x)

2 . Factor(z/ (y))

3 . Log(+z)

MATCHING PRIMITIVE FUNCTION :

z=x*y

ERRORS : Fitting: 1.335e-3, Matching: 1 -476e-5

-- pp

Figure 5.2: The Report Card for Example 1

I r i t h e table, the column "Trans" shows the transformation to be inverted, the column

;'IiiverseY' gives the expression to invert each transformation, and the column "Expression"

gives the underlying function of the corresponding search node. Step O is the primitive

function that was accepted as a match a t Node 66. Step 1 and 2 invert two atgebraic

transformations. At Step 3, the differential transformation is inverted according to the

ext racted boundary expression. The discovered function is:

mhich is exactly the underlying function (Equation 5.1) that has been used to generate the

si~niilated observation data set.

5.2 Trvo Detailed ExampIes

[Step II Trans. 1 Inverse 1 Expression

Table 5.2: Manual Inversion for Example 1

5.2.2 Example 2: Termination by a Primitive Pattern Fitting

The second function form to be discovered is

The simulated observation data set is obtained by partitioning the observation domain

(x , y) F [-î , 1; -1, 11 by a 101 x 101 mesh-grid. For this example, 1 will not give the details

of the discovery process. Instead, 1 will focus on the discovered function form representation.

The sÿstern terminates with a discovered function form as reported in Figure 5.3. It

is easy to verify the correctness of the transformation sequence with the following forward

transformation steps:

1. Apply transformation "Factor (x+2y) " to the function z = ye '+?~ + z + y. We have:

2. Then, apply transformation " D i f (z ,x)". The generated function is:

3. Finaily, apply transformation "Factor(y)". We obtain the function:

5.2 Trvo Detaiied Examples

TASK : Example-2

TERMINATION STATUS : Success

INPUT IMAGE: 101 x 101,

Xmin=-1, Xmax=l, Ymin=-1, Ymax=l

O R ~ G ~ N A L PRECISION : 1.OE-12

REFERENCE IMAGE(S) :

1. File=./Example-2.B7.dat, Type=Boundary

2. File=. /Example-2 . P l S 6 . dat ,
Type=Primitive Pattern Image

NODES: Total 239, Explored 95, Open 27

RUNNING TIME: 10' 18 -50"
MEMORY USAGE : 6.73MB

TRANSFORMATIONS :

1. Factor(x+2y)

2 . Dif(z,x)

3. Factor(y1

MATCHING PRIMITIVE PATTERN :

x+2y

ERRORS: Fitting:1.5026e-04, Matching:6.8137e-05

Figure 5.3: The Report Card for Example 2

5.2 Trvo Detailed Examples

The final result is a function of z + 2y.

Now let us invert the discovered result. First, we need to find a descriptive expression

corresponding to the primitive pattern. The underlying function is known as

where t is the new variable which is related to the original variables x and y as t = z + 2y

according to the primitive pattern fitting result. FFD is caiied to find a function form

regarding to the sample set "Example-2. Pl56. dat" . Unfortunately, no acceptable descrip-

tion could be found. We now have two choices. First, we can discard the discovered function

form and let the system find a new one, or second, we can use polynomial fitting to find an

acceptable description. Let us take the second choice. By fitting the recorded sample set to

polynomial of order G using least-squares method, the following expression can be obtained

witli the fitting error of 5.81E-04:

Thus the matching function is:

The remaining inversion steps are similar to those in the first example. The discovered

function is:

where the expression (eZ' + 1)/2 is obtained by calling FFD upon the recorded sample set

Example-2. B7. dat. Obviously, it is not identical to the underlying function presented in

Equation 5.2.

The discovered function is an approximation of the function of Equation 5.2. Let us now

compare the discovered function form with traditional surface fitting method. There are in

total 12 fitting parameters: 7 in the descriptive primitive polynomial, 3 to represent the two

factors and 2 for the boundary expression. The root mean-square error of the approximation

5.3 Randomly Selected Functions

is 2.05-04. Using traditional Zvariable least-squares polynornial fitting scheme, the given

observation data set can be represented by a fourth order 2-variable polynomial which

contains fifteen parameters. However, the accuracy is very poor. The root mean-square

error of the fitting is 0.27. Besides the accuracy, the function discovered by FFD-II is

also more compact (using three fewer parameters) and more rneaningful. For example, we

c m eluily tell that 1) the underlying function equals to zero on the line x + 2y = 0 , 2) the

esponential relationship exists between z and y and 3) there is a hidden functional regularity

*f !/a=lzf 3?/)
LIT being a function of t = z + 23. Al1 these properties are exactly the properties

of the function defined by Equation 5.2, and they cannot be easily tell from the polynomial

surface fitting result. This example shows that the function form discovery methods is

superior to traditional numerical analysis methods in terms of justification, parsimony and

t ransparency.

5.3 Randomly Selected Functions

5.3.1 A Random Function Form Generation Scheme

The data transformation based function form discovery mechanism enables the system to

overcome the major restriction of handling only the discovery tasks of a fk number of

ftinction form prototypes. To set up test cases free of user's biases, a random scheme to

choose test function is introduced in this section.

An explicit function expression can be represented by an expression tree mhose leaves

rire the operands (independent variables or constants) and non-leaf nodes are operators.

Definition 23 An Operator is an unary opemtor or a binary opemtor. An Unary Operator

is a n y functional operation in set SF:

where * stands for a functional ezpression. A Binary Operator is any arithmetic operation

in the set SA:

S A = (* XI (5-4)

5.3 Randornly Selected Functions 168

=In Operand is either an operator or an end opemnd. A n End Operand is one of the elernent

in set S,,:

S v = C L = , y) (5.5)

An Expression Atom is an element in the set S:

The function forms to be discovered in the experiments are generated by the following

reciirsive algorithm.

ConstructExpressionTree()

1 : Randomly select an expression atom Atom E SE -

2 : Construct a tree node data structure Root and assign the contentS of Root -

with A t o m selected in step 1.

3 : ExpandNode(Root) -

4: return Root

ExpandNode(node)

1 : At om=node . atom -

2: if AtomE SF - -

4 : - Randomly select an atom NevAtom E S E

5 : - Construct s tree node data structure ::euNode. Let Neu'lode. atom=NeuAtom,

NewNode.parent=node,and node.lChild=NevNode

6 : ExpandNode(NewNode) -

'7 : else if Atom E SA - -

8: - Randornly select two atoms lAtorn, rAtomf SE

9: - Construct two tree node data structures lNode and rNode. Let

lNode.atom=lAtom,lNode.parent~ode,node.1Child=1Node,

rNode.atom=tAtom,rNode.parent=node,node.rChild=rNode
-

Tl~c cxprcssion trcc node data structure contains four fields, node .parent, node. lChild, node. rChild

iiuii node. atom.

5.3 Randomly Selected Functions

Figure 5.4: An Expression Tree of a Function Form

Tlie above pseudo-code represents the core of the algorithm- A complete algorithm must

also i~icliides a set of rules to remove redundancy and be able t o terminate within a specified

~n~aximum depth. The maximum depth of an expression tree can be limited by restricting

the selection of operand at a certain depth within S, . An example of redundant expression

tree is the tree that has a node with the associated operator 'exp(*)', and the associated

operator of its child node is 'log(*)'. Such redundancy also occurs when placing 'arctan(*)'

irnrnedintely under 'tan(*)' (or vice versa), 'JT;)' immediately under '(*)" (or vice versa)

and '-(*)' or '1/(*)' immediately under itself. Figure 5.4 is an example of expression tree

tliat represents the first test function in Table 5.3.

This algorithm can generate many of the explicit two dimensional analytic functions that

c m he found in a first year mathematics text book. Table 5-3 listed the first 18 functions

5.3 R a n d o d j . Selected Functions

generated by the algorithm with depth Iimited to six.

5.3.2 Experimental Results

Experiments were carried out to discover the function forms listed in Table 5.3. Observation

domain of each task is kept as coincident as possible whenever the continuity is conserved

(refers to Table 5.3). Partitioning mesh grid size were a i1 fixed to 101 x 101. Unless reported

otlierwise, we selected ~p = max(5 x c,, 1od5) and ÉM = max(c,, l ~ - ~) , as we dixussed in

the beginning of this chapter.

Out of the 18 discovery tasks, FFD-II successfully discovered 17 solutions. The only

failrire wcs Taslc #9. The discussion of that case will be postponed to the end of this chapter.

I t rnust be pointed out that a successful discovery does not have to be in exactly the same

forni <as given in Table 5.3. As stated in the problem statement, the goal of function form

discovery is to discover a function form representation of the given numeric observation

data set that satisfies the preset error tolerance threshold.

TahIe 5.4 tabulated the information of each discovery task. The column 'Solution' shows

the type of termination of the task, where 'exact' means that a transformation sequence and

primitive form leading to a function identical to the original underlying function used to

jerierate the simulated observation data set (provided the necessary descriptive expressions

cati be obtained by other means)". To see if a solution is exact, we can manually carry

out the data transformation to the known underlying function or invert the transformation

sequence starting from the matching primitive. However, to revert the discovered forms to

the original functions, al1 necessary descriptive expressions must be figured out first.

The colurnn ' Total Nodes' is the total number of nodes generated during the discovery

process, 'Explore8 is the number of nodes that had been expended and corresponding

" Piciticc tliat thc discovery of the function form identicai to the h o w n underlying function is a suficient

I ,lit imt ticccssay condition to test for the correctness of the discovered form. As long as the discovered

+oliitiori rcprcscnt the given observation data suffiaently weil, in terms of Justification, Parsimony and

Tr;iiispai.cncy. it is a coimct solution.

5.3 Randomiy Selected Functions

Task #

r = l y + tan 5(2z + y) + log(2y + x + 1) 1 [-0.45,0.45; -0.25,0.25]

Func t ion

r = y + x + (2+arctany)*

Table 5.3: Random Selected Test Functions and Observation Domains

Observation Domain

[-Il 1; -1, 11

5.3 Randomly Selected Functions

i 3 exact 17 3

4 exact 109 32

5 exact 201 55

6 exact 330 113

ID.

1 ! 7 1 exact 11 13 (3

S exact 175 49

9 none 432 139

10 exact 19 4

11 exact 173 45

1 exact 13 3

soiution

/ 12 1 exact 11 89 1 16

13 exact 71 20

1 l4 exact 31 6

Total
Nodes

1 15 1 exact: 1) 223 1 47

Ex-

plored
Expected Fitting Matching

Open / Error 1 Error 1 Error

: : EP was increased to 20 x en and EM W ~ S increased to 100 x en-

Table 5.4: Diseovery ~ & u i t s of Experiment 1

5.3 Rcmdotnly Selected Functions 173

primitive fitting had been performed, 'Open' is the number of nodes left in the open list

at the time of termination. These three numbers refiect the effort of searching for the

solution. The column 'Ezpected Emr' is the computed expected error level estimations of

t h e functional image associated with the termination node, 'Fitting Error' is the primitive

fitting error of the terminate node, and 'Matching Emr' is the verified error of the solution

through numerical inversion. The order of the expected errors successfully bound the fitting

errors. Also, the matching error for a discovered accurate firnction forms are mostly less

tlian IO-".

Table 5.5 tabulated the solutions discovered by FFD-II. In two tasks, Task #2 and #15,

the first attempts at solving the task with the common thresholds setting ended without

soiiitions. Incre'zsed thresholds enabled the system to find the exact solutions. By carefully

observing the underlying functions and the discovered transformation sequences of these two

c~ases, it could be easily determined that the problems came from the inaccurate computing

of Tn TFtcl x + y + 1 combined with TDIF . They suggest two future improvements: (1)

niore accurate estimation of the propagated errors so that il1 points1' could be identified;

(2) development of new computing schemes that compute the transformed image around

tliose il1 points more acciirately.

Since the underlying function forms are al1 known, it is easy to figure out the corre-

sponding boundary conditions required for the differential transformations to be one-to-one

inappings, and the matcliing primitive expressions associated with the matching primitive

patterns (if applicable) by manually applying the discovered transformations to the original

iiinctions' l . Table 5.6 tabulated the accurate underlying descriptive expressions12 where

"' Il1 points arc thosc points whclre thc propagated errors might be extremely geat, for examplc, the points

w1ir:i.c tlic d i i c s of the factor are close to zero when performing factorization, and the points where the

fiiiiction AUCE .TC close to zcro whcn performing reciprocal are two types.

" Aii cxnmple c'an Le foimd in the analyses of the second detailed examplc prcscnted in Section 5.2.2 on

~ m q : 1434. Refcr to thc example on page 54 and Definition l? on page 56 for morc detclils conccrning

<1i:srriiptivc expression.

" Noticc tliat tlic discovcrcd function form for Task#l? does not includc descriptive cxprcssions, and

t . l i w c i?; no solution for T=k#D discovered by FFD-11 .

-5.3 R,: idomly Selected Functions

Mat c hing Pr irni t ive Tramiformat ion Sequence

Table 5.5: Solutions of Experiments on Randomly Generated Functions

Discovered by FFD-II

5.3 Randonily Selected Fuactioas 275

eacli box bracketed expression pair refers to a boundary condition corresponding to a differ-

ential transformation and each P(t) represents the descriptive expression corresponding to

the discovered compositional primitive. As a function form discovery system, FFD-II must

he able to provide these descriptive expressions as part of the solutions or a way to find

t hem. Currently, FFD-II does not automatically give the descriptive expressions. Instead,

i t saves the necessary two-dimensional data for finding the expressions to disk files as the

tcz.k terminates with a S U C C ~ S S ~ K ~ discovery.

To generate full functional representation of the given observation, function form dis-

covery from two variables must be carried out upon the saved two-dimensional data. These

t , ; ~ ~ k s are non-dominant subtasks (Refer to Section 4.2) which rneans that they can be sep-

nrnted from the original discovery task in higher dimension and they do not change the

s t rric t ure of the function form description (the transformation sequence and the matching

primitive) discovered by FFD-II but only complete the function form description. In other

words, whether or not the discovery is successful is decided by the output of FFD-II before

the descriptive expressions are figured out13. Therefore either traditional numeric tools or

two-variable function form discovery systems can be used to handle the task of find the

ciescriptive expressions. The selected method is referred to as "supporting system " .

However, since function form discovery systems emphasize the discovery of high quality

ftinction form descriptions in terms of the justification, parsimony and transparency, it is

Iletter to choose a two-variable function form discovery system to carry out the descriptive

expression discovery tasks. The data transformation based function form discovery system

FFD is one of the best choice due to its ability to discover a wide variety of one-dimensional

iiinctions. The last column in Table 5.6 indicates the results of performing one-dimensional

function form discovery upon t h e recorded two-dimensional data using FFD. Of the sev-

ent een function form descriptions, FFD successfully discovered the accurate descriptive
- -

'-' Tliis is tlic csscntid difference betweea the direct mode1 of FFD-II and a parameter freczing bascd

iiiclircct iiiodcl. In the latter modcl, a successfùl discovery depends on both the succcssfd discovcry of low

~li~m-msioti cxprcssions and whether or not the discovcred low &mension expressions could be ~nicccssfuily

t:rmil riiicd into Zr single function form description to describe the original discovery problem.

5.3 Randomly Selected Functions

Discovered
by FFD Descript ive Expression

exact

exact

exact

exact

[a = O, f = (eZV + 1) / 2]

P = ((t - l) e t + l) / t 2

exact

exact

exact

exact

exact

[u = O , f = (l o g 2) u f arctan(u)], [u = O , f = 2/(2 + u)] ,

P (t) = 1 / (2 + t) ?

exact

exact

[u = 2, f = v log(2(2v + 3)*)11 [u = O , f = O] , P (t) = L/t exact

exact

exact

exact

exact

Table 5.6: Descriptive Expressions of Experiment 1

5.3 Rnndondy Selected Functions 177

expressions in thirteen cases and failed to find acceptable function forms to describe the

recorded sample data in three cases.

When FFD failed to find the description expression, least squares polynomial fitting

!vas used as an alternative. Although polynomial fitting results usualiy do not have good

interpretability, the method is very reliable. In principle, we can increase the fitting accuracy

Iq- increaçing the degree of the fitting polynomial. Thus, for reserving the accuracy of the

discovered function form, the degree of the fitting polynomial, in each case, was seIected

according to the estimated expected error, the primitive fitting error and the verification

error of the original function form description discovered by FFD-II. The lowest degree

polynomial were chosen for finding the descriptive expression, such that the polynomial

fitting error being smaller than the primitive fitting error, the verified matching error or

t lie estimated expected error of the corresponding discovered soiution.

Complete function form descriptions are tabulated in Table 5.7. Al1 the extracted bound-

ary conditions corresponding to the differential transformations are given by the subscripts

of eacli data transformation, and the extracted descriptive expressions corresponding to

eacii of the primitive patterns are transformed into functional formats. For the tasks #Il

#5 and #lG, polynomial fitting results are used as the descriptive expressions where FFD

friiled to discover them.

IVlien FFD is used as the supporting one-dimensional function form discovery system,

oii t of the eighteen function form discovery tasks listed in Table 5.3 and 5.4, FFD-II suc-

cessfiilly discovered fourteen (78%) accurate functional expressions identical to the original

~inderlying fun~t ions '~ . With the help of polynomial fitting, another three approximations

were found (Task #1, #5 and #16). For one case, Task #9, FFD-II failed to find an

acceptable description of the given observation data.

Tradit ional numeric analysis tools, such as surface fitting, usually cannot extract the

accu rate underlying function to describe the given observation data without sufficient knowl-

1 I Vi:iificd by symbolicaiiy inversion of the data transformations in the discovered transformation sequcnce

~ t ;u - t . i r i~ f r o ~ n thc inatching primitive. Examples of the inversion have bem presentcd in Section 3.2.1 on

1~1fi1: 54 aiid Section 5.2 on pagc158.

.j. 3 Randomly Selected Functions

Transforrnat ion Sequence
Matching Primitive p(u, u)

(= P(% v) 1

Table 5.7: Discovered Function Form Descriptions of Experiments on

Randomly Generated Fùnctions

5.3 Randomly Selected Functions 179

edge of mathematicians and domain experts. However, in controst, the test results show

tliat in many cases (in which the known accurate underljing functions are discovered) the

discovery system FFD-II has the ability to find compact and meaningful function forms

which describe the given data accurately. When an approximation is discovered, however,

the superiority of the result of function form discovery is not that explicit. In Section 5.2-2,

1 have analyzed the approximated forrn of case 5 and concluded that the proposed function

form discovery met hodology surpasses the traditional polynomial surface fit ting met hod in

thnt particular case. Now let us compare the proposed function form discovery methodology

wi t II polynomial fitting method in dealing with Task fit1 and #16. The discovered function

forms of those two c~ases can be transfered to explicit functions through manually inverting

t lie transformation sequences:

CCse 1:

z = 4 + x + 5y + 0.98y2 - 1.29y3 - 0 . 5 2 ~ ~ t

0.59y5 + 0.16yG - 0.16~',

Ccue 16:

z = -0 .84+~log(y+~ ')+2 .06y - 1.14y?+

2.94y3 - 0.03y4.

TIiere are eight fitting parameters in Equation 5.7. Using two-variable polynomial fit-

t.ing, we can fit the observation data set of Task #1 to the following six-parameter polyno-

Observing Equation 5.9, one might guess that the terms z2 , x y , z2y, xy2 and z3 are zero

and the coefficient of the term x is 1 because the corresponding coefficients are very small

or close to 1. Therefore, it is reasonable to refit the data to a new polynomial suggested

11y the observation of Equation 5.9. The result of the new selected fitting scheme might

generate the result identical to Equation 5.7. It is true that the traditional polynomial

fitting method does similarly well in handling this task. However, unlike surface fitting,

5.3 Randomiy Selected Functions 180

FFD-II successfully discovered that the underlying function is of the forrn z = z + g(y) and

correctly set up the subtask for discovering the unknown function g(y) without any human

intervention.

Equation 5.8 contains five fitting parameters. We can fit the observation data set t o the

second order two-variable polynomial which contains eight fitting parameters. Least-squares

fitting gives:

- = -(6.063-2) - (1.423-2)~ + (5.48~-1)y + (5.10)

(4.33~-5)z2 + (8.70E-1)zy - (1 .09~-1)~ ' .

Tlie cornparisons of the two approximations (Equation 5.8 and Equation 5.10) can be sum-

~narized ,as below:

The root-mean-squared errors of the two representations are 3.73-2 for polynomial

surface fitting and 5-63 -4 for the discovered result. I t indicates that the function form

discovery result is more accurate than the polynomial surface fitting method.

The root-mean-squared errors of the first order partial derivatives of the two approxi-

mations are 6.2E -2 for polynomial surface fitting and l.7E -3 for the discovered result.

The results indicate that the function form discovery result captures the shape of the

given functiona1 image significantly better than the polynomial surface fitting method.

Equation 5.8 contains one less fitting parameter than Equation 5.10.

Eqizat i m 5.8 is easy t o interpret than Equation 5.10. For example, fiom Equation 5.8,

i t is easy to tell that:

- For each h e d y value, the function value changes linearly t o the change of

variable 2.

- The above changing rate of the dependent variable is related to the value of

variable y logarithmically.

- The underlying function cannot be defined in the range where

- When x f O, z + -oo as y + -+ +O.

These pieces of information are consistent with the known underlying function, but

t hey are not revealed by Equation 5.10.

For the analyzed cases, the function form discovery result generated by FFD-II surpasses

poljnomial surface fitting result with regard to justification, parsimony and transparency.

5.4 Comparison Experiments

5.4.1 The Comparison Discovery System

I t I ~ a s been pointed out that al1 function form discovery methodologies not in the "Data

Transformation" category have a common drawback. They can discover only the function

forms in a very small number of function form classes, Le. either rational functions or a

fixed set prototypes. Thus it is not meaningful to compare FFD-II with any method in

t ha t group. The comparison should be made between FFD-II and a system that can handle

n rich set of three-variable function form discovery tasks. Unfortunately, there is no such

n system in existence. However, FFD has an extension that can handle a special type of

inrilti-variable function form discovery tasks, namely families of one-dimensional functions

parameterized by a few parameters. It is required that the function value change relatively

slowly with the change in the parameter value than with the change in the independent

variable.

The underlying discovery strategy for this extension is parameter freezing - a classic

indirect technique that has also been used by the BACON system. The parameter freezing

approach could be viewed as an indirect approach to three-variable function form discov-

cry. Recall that the current FFD family of functions discovery system finds parametric

expressions only by primitive fitting. For conducting the comparison, the simplification

nssiimpt ions made by FFD family of functions discovery extension (Primitive Union and

SimpIe Descriptive Parameters) are relaxed. In other words, when FFD finds the solutions

5.4 Cornparison Experimen ts 182

to the subtasks of one-dimensional function form discovery (generated by putting one of

the two independent variable on hold) we assume that:

(1) The discovered solutions to the subtasks are unifiable provided the correct para-

metric expressions are identified.

(2) For identifying the necessary parametric expressions, regarding to each correspond-

ing parametric expression, the parameter values (the data) could be correctiy col-

lected by hand.

(3) FFD could be used to find those parametric expressions upon properly organized

data.

The further extended indirect data transformation based three-variable function form dis-

covery method will be called INDIRECT-FFD in the discussion of this part.

1 lime explained how the indirect system works and discussed sorne drawbacks of that

approach in Section 4.2.1. 1 have also discussed why a direct approach model may generally

perform better than an indirect approach and why a direct model approach is necessary

and important. However, since FFD-II employs only a very small transformation set and

recognizes only the simplest primitives, i t is not guaranteed to discover function forrns that

are discoverable to INDIRECT-FFD . Due to the rich variety of two-dimensional functions,

in certain situation, an indirect method could be the best to solve the discovery problem.

In t his part, I will focus on studying those cases that require the discovery system to use

tlie "cross effect" information for making a successful discovery.

Tliree specially designed discovery tasks will be investigated. They are corresponding

to the classes L'FFT-Class", "FVS-Classn and "ICL-Class" respectively, as named in Sec-

t.ion 4.2.1. In each experiment, 1 wiU first describe the reasons why INDIRECT-FFD fails to

discover the correct solution. And then the discovered results made by FFD-II will follow

tlie explanations.

The reason for not studying the class "USA-Class" is that it is closely related to the im-

plementation of the indirect methodology. Designing a case that belongs to the "USA-Class"

5 .4 Cornparison Experimen t s

Figure 5.5: Patterns in O-Contour Plane

of FFD family of functions discovery extension is easy but not very meaningful. To compare

with INDIRECT-FFD in this direction is not practical since INDIRECT-FFD is not subjected

CO any constraints. However, in practice, we cannot always figure out a way to unify one

dimensional results of parameter frozen subtasks, especially when the estirnated parameter

values are not sufficiently accurate. It is indeed the major difficulty for irnplementing a

gener al pur pose indirect muIti-variable function form discovery system. In ot her words,

certain types of simpIification assurnptions are unavoidable for an indirect impIementation.

T h s wit hout specific implementation, we cannot talk about "USA-Class" .

5.4.2 Case Study 1: An FFT-Class Function Form

The first function form to be examined is

This is a second class function form that INDIRECT-FFD will have trouble to deal with.

Tliere are two linear factors y - z - 1 and y - z + 1 in the underlying function form. And

the observation domain is restricted by the circle 1 - z2 + y2 = O. Figure 5.5 shows the

circle and two lines. Let us assume that the observation data set is obtained by partitioning

the range x E [-0.6, 0.61, y E [-0.6, 0.61 into a 101 x 101 mesh grid. It has been proved

(Phan [48]) that the factorization transformation is essential for handling the discovery of

5.4 Conzparison Experimen ts 184

rat ional functions with a data transformation based function form discovery systern. To

discover the function form of Equation 5.11, there are two factors that must be removed by

factorizations. Obviously the two factors cannot be observed from any single sample data

set with a fixed x or y value. Since INDIRECT-FFD approaches the discovery problem in an

indirect may, each subtask is carried out individuaily, and it cannot combine the two factors

observed from different sample sets together to form a unification transformation. Thus this

function form cannot be discovered. The systern was tested with the above observation data.

It failed to discover any solutions to any sample data set. That means, without removing

110 th factors by factorization transformation, the functional image cannot be simplified into

any primitive form by the system.

By taking direct approach, FFD-II can extract hypotheses based on the information

gained from al1 parts of the observation domain. In this study case, the system first finds

from the original given observation image a set of planar points where the underlying func-

tion 11as the function value of zero (use interpolation if necessary). in the next and last

step, it conjectures the factor functions by fitting the obtained contour points into lines.

T w o factorizations are successfully performed and the underlying function is discovered.

Figure 5.6 is the report card generated by FFD-II system upon the discovery of function

form (5.11).

Tlie ability to capture the cross-effects is important in performing high dimension pat-

tern recognition tasks. A direct mode1 achieves this ability a s an essential. This study case

clemonstrates how the system creates hypotheses with cross-reference.

5.4.3 Case Study 2: A n FVS-Class Function Form

The second cornparison test experimental function is

*=fi+ J F Z i l o g y - i o g Z y

and the observation data set is generated within the domain z E [O, 11, y E [l , 21 with a

101 x 101 mesh grid. This is an FVS-Class function. As usual, we first let INDIRECT-FFD

liandle the task.

.S. 4 Comparison Experimen ts

TASK : Comparison- 1

TERMINATION STATUS : Success

INPUT IMAGE: 101 x 101.

Xrnin=-0.6, Xmax=0.6, Ymin=-0.6, Ymax=0.6

ORIGINAL PRECISION : 1 .OE-12

REFERENCE IMAGE(S) :
None

NODES : Total 65, Explored 12, Open 33

RUNNING TIME : 1' 12.72''

MEMORY USAGE : 7.1IMB

TRANSFORMATIONS :

1. Fact(z/(-x+y+i))

2. Fact(z/(-x+y-1))

3. Reciprocal

MATCHING PRIMITIVE FUNCTION :

2-2=-x-2-pn2+1 (+)

ERRORS: Fitting:3.73e-05, Matching:1.5758e-16
--

Figure 5.6: The Report Card for Comparison Test 1

If we put variable y on hold, INDIRECT-FFD first must find a set of one-variable func-

t ions

z = f i + + ; J P T T + &

where i corresponding to the sample data sets indexed by Yi = I + 0-Ol i , and 4: and 4 are

descriptive parameters. Unfortunately, testing shows that the system cannot successfully

cliscover any of them. These function forrns cannot be easily simplified by the transforma-

tions in the system's tool box. Thus freezing y is not an successful choice.

Now Jet us ,assume that variable z is held as the control parameter. For those sample data

sets with x' > 0.96 (four samples corresponding to the parameter values z = 0.97,0.98,0.99,

and 1.0, INDIRECT-FFD c m find a transformation sequence Q o A o O that transforms t h

original samples into an uniform primitive forrn

anci there are no solution found for the remaining samples. The system then tries to

verify the obtained similarization transformation sequence with al1 the sampies. Since the

transformation O, which can only be applied to rnonotonic sample data set, is not applicable

to a majority of the sarnples as the first transformation, FFD discards the hypothesis and

t ries to find ot her ways to get a solution. In the test conducted, t here are no more solutions

to any samples the system could find. Thus the system terminates without a discovery.

Since the new system performs three dimensional transformations, it can capture more

varieties of fundamental features provided by the observation than indirect approaches.

This ability is demonstrated in this experirnent. Although the underlying function is not

rnonotonic to variable y, a transfonned functional image meets the requirement. This ability

eriabled the system to extract the key transformation sub-sequence TI^,? 0 T L ~ G 0 T ~ s v which

transforms an original independent variable into its logarithm. Figure 5.7 shows the correct

solution found by FFD-TI .

The differential transformation extracts the functional pattern of the differences between

adjacent sample data sets indexed by z values. In this case, monotonic image is obtained.

5.4 Comparison Experimen ts

TASK : Cornparison-2

TERMINATION STATUS : Success

INPUT IMAGE: LOI x 101,
Xmin=O.O, Xmax=l.O, Ymin=l.O, Ymax=2.0

ORIGINAL PRECISION : i .OE-1 2

REFERENCE IMAGE(S) :

1. File=./Comparison-2.Bi.datD Type=Boundary

2. FILE=./Comparison-2.B214.datD Type=Boundary

3 . File=./Comparison-3.P325.dat,

Type=Primitive Pattern Image

NODES : Total 497, Explored 94. Open 197

RUNNING TIME: 26 ' 0 6 -01''

MEMORY USAGE: 7.31M.B
TRANSFORMATIONS :

1. Dif(z,x)

2. Variable Exchange (x<>y)

3. Functional Inverse (x<>z)

4. Log(+z)

5. Functional Inverse (x<>z)

6. Dif(z,x)

MATCHING PRIMITIVE PATTERN :

X

ERRORS: Fitting:4.87e-04, Matching:1.5758e-05

Figure 5.7: The Report Card for Comparison Test 2

5.4 Cornparison Experimen ts 188

Tfiree descriptive expressions required for completing the discovery are log' z , l/Jz and

r / ,m. Al1 can be discovered by the two-variable FFD system.

5.4.4 Case Study 3: An ICL-Class Function Form

The hst cornparison test is to discover the function

= log@) + 6 + tan(y). (5.13)

i t helongs to the fourth function class that INDIRECT-FFD discovery system cannot handle.

Observation is made with the mesh grid 101 x 101 that evenly partitions the observation

dornain 3: E [0.5, 1.51, y E [O& 1-51. To find the underlying function form, INDIRECT-FFD

tnust find expressions of x

witli a t Iecast some (y be the chosen control parameter), or find sorne expressions of y

with a t least some 2' (x be the chosen control parameter). Unfortunately, no such subtasks

corild be solved by the system in the conducted tests. What happens is that the linear

combination of the terms log(z) and fi, or tan(y) and JY is beyond the system's discovery

abili ty, since none of the transformations defined in FFD 's tool-box can effectively simplifies

this combined functional image. In other words, the one-variable function forms are too

complicated for the system to handle. We classify this type of three-variable function forms

,as the ICL-Class function form.

The new system took the advantage of alternatively performing difTerent differential

transformations respect to the two independent variables. By doing this (the first three

transformation in the solution reported in the system's output card on next page), the

original three-variable function form discovery task was split into three easy to handle

siibtcasks: (1) to find a single variable function tan(y) as the descriptive expression for the

first differential transformation, (2) to find a single variable function l / z , and (3) t o find

5 . 4 Comparison Experimen ts

TASK : Cornparison-3

TERMINATION STATUS : Success

INPUT IMAGE : 101 x 101,

Xmin=0.5, Xmax=1.5, Y m i ~ 0 . 5 , Ymax=1.5

ORIGINAL PRECISION : 1.OE-12

REFERENCE IMAGE(S) :

1. File=./Comparison-3.Bl.dat, Type=Boundary

2. File=./Comparison-3.B18.dat, Type=Boundary

NODES : Total 258, Explored 45, Open 106

RUNNING TIME : 12' 18.57"

MEMORY USAGE: 4. S5MB

TRANSF~)RMAT~ONS :

1 . Dif(z,x)

2. Variable Exchange (x o y)

3 . Dif(z,x)

4. Reciprocal

MATCRING PRIMITIVE FUNCTION :
~-2=(l/i6)xy

ERRORS: Fitting:8.37e-05, Matching:2.97e-05

Figure 5.8: The Report Card for Comparison Test 3

the ttvo-variable function z = l/Jzy- The first two are easy to handle with

189

the two-

variable FFD , and the last can be solved with the discovered transformation TREC and the

primitive fitting z = &7/16. Therefore the original function form discovery problem is

sol r d . Figÿre 5.3 is the discovery result of FFD-II. The solution is identical to the test

fiinction - Equation 5.23.

5.5 R a n d o d y Generated Surfaces

5.5 Randomly Generated Surfaces

The motivation of function form discovery research is to create a system that can find

frinction forms that represent the given numeric data satisfying the justification, parsimony

and transparency criteria. We have seen that when the data is generated explicitly by

a compact function form, such as the cases given in Section 5.2 and 5.3, the proposed

methodology has a good potential to find the exact forrn. Eowever, the question rem&

wliether or not the system will perform similarly well when the underlying function forms

are not expressible in terms of elementary functions. In this section, we will further examine

the system's capability in handling such discovery problems. The objective is to observe

tv he t lier the system is able to extract information from the observation more effectively

t lian traditional numeric tools.

A set of experiments on discovering function forms from randomly generated smooth

srirfaces were conducted. Each surface was a ninth order two-variable polynomial over the

clomain (x, y) f [O, 1; 0, 11. Their coefficients were randomly generated quantities between

-1 and 1. They can be viewed as truncated Taylor series expansions of certain unknown

C '; frmctions.

To carry out the experiments of this part, the fitting thresholds were relaxed to let the

systern terminate with a relatively rough match. ~p and EM were increased t o LOO times of

tlieir normal settings, and if the system could not find a match, the thresholds were relaxed

by another 100 times of the previous one. Al1 other settings remained the same as described

on page 157.

Let us first examine an example. Rounded to four significant figures, an example of

random surface generated by a program is:

5.5 Randondy Generated Surfaces

f . 2 X y 3 + .065zy3 + - 7 9 5 ~ ' ~ ~ + .443z3y3 + .793z4y3 - .603x5y3

-.794z6y3 + .586 y4 + -7150 y4 - .405z2y4 - .ï29z3y4 - - 7 5 0 ~ ~ ~ ~

+.780z5y4 - .351y5 + .512zy5 - .957x2y5 - .352z3y5 + .195z4y5

-.064y6 - .068zy6 - .723z2y6 + .492z3y6 + .077y7 - .577zyï

+.869z7y7 - .305y8 + . ï11zy8 - -116~".

The function form description discovered by FFD-II in the observation dornain [O , 1; 0,1]

is:

The matching error is 6.893e-02, Transformed to an expficit expression, the function is:

Since there are seven parameters in the discovered function, we can select the least-

sqiiares surface fitting to fit the same randorn surface to the seven-parameter polynomia115:

The root-mean-square error of the fitting is 6.94e-02. The cornparisons are listed as the

following.

1. The root-rnean-square errors are 6 . 1 9 4 2 Vs. 6.94e-02

accuracy.

. FFD-II achieved similar

2. The polynomial fitting result cannot be easily interpreted. The discovered description,

on the other hand, shows that the function value is around zero when x=0.9822 and

the surface stays mainly above the plane of z = O (positive function) within the

observation domain since exponential function is positive and the linear factor is

mainly positive.

"' Tlic complcte th-d ordcr two-variable polynomials contain tcn coefficients. To fit to a scven coefficients

pdynoniial. six parautctcrs rdatcd to the complete second ordcr polynomial are selected, and ody one third

(11-cicr cocfficicnt is non-zero parameter. The fitting with the least mean-square m r is picked as the scven

~m-arlictcr polynomid fitting result. This scheme is also used in the foliowcd cornparison fittings.

5.5 Randomly Genera ted Surfaces

Figure 5.9: The Contour Image of Random Surface 1

2. Figure 5.9, 5.10 and 5.11 show the three dimensional contour image of the original

random surface, the discovered function form and the polynomial fitting respectively.

Comparing the three images, it is clear that the FFD-II discovered function preserves

global features more precisely than the polynomial fitting. For example, the polyno-

mial fitting result exhibits some false oscillatory features that do not appear in the

original surface and there is also a pit in the polynomial fitting surface that does not

appear in the given surface. The single peak and the main trend of the random surface

are captured by both approximations.

4. Figure 5.9 shows the derivatives of the original polynomial, the polynomial fitting

function and the discovered function. Clearly, the discovered function preserves the

shape of the original random surface significantly better than the polynomial fitting

result does. The latter representation looses most of the information concerning the

derivatives.

Ten other random surfaces were tested. The system successfully found solutions to

seven surfaces and failed in three caçes even with the further relaxed thresholds. Table 5.8

5.5 Randody Generated Surfaces

x

Figure 5.10: The Contour Image of the Discovered Form of Random Surface 1

Figure 5.11: The Contour Image of the Polynornial Fitting of Random Surface 1

5.5 Randomly Generated Surfaces

Figure 5.12: Mesh-grid Images of Derivatives of Random Surface 1

5.5 Randomiy Generated Sudaces 195

lists the results of the experimental cases in which solutions were discovered by the system.

In the table, "Matching Primitive" has two formats - a function expression which is a

matching primitive function and a two-dimensional linear expression which is a matching

primitive pattern. The column "No. of Parameter" is the number of control parameters

in the dixovered function form including the parameters in the descriptive expressions (if

applicable), UEdiscovet-yn stands for the computed root-mean-square error of the discovered

function, cc ERttingn refers t o the root-mean-quare distances of polynomial surface fitting

with the same number of coefficients. For brevity, two significant figures after the deci-

mals are kept. Because the underlying functions are not in short forms of the elementary

functions, the descriptive expressions are obtained by fitting the corresponding recorded

sample data to one-variable polynomials to a satisfactory precision (close to the primitive

fitting error and the verified function form matching error). The fitting results are listed in

Table 5.9.

Among the seven discovered functions, five of them are simple. In Task #1, the system

found a second order two-dimensional polynomial to express variable x as a function of l /z

and y. In this way, the fitting accuracy was improved by about 4 times compared with

direct second order polynomial surface fitting. Task #2 and #3 are two other examples of

clianging to different polynomials in order to improve the fitting accuracy. The accuracies of

discovered functions of tasks #4 through #7 are worse than that of the corresponding poly-

nornial surface fitting results. However, the emphases of function form discovery include not

only the accuracy but also the meaningfuiness. In Task #6, the system discovered that the

observation image is approximately a cylindric surface. In Task #7, the system discovered

that the underlying function is roughly of the form r = (1 (u q - v \ / 3 /5) dx} + t ~ (~) ,

which could also be interpreted as: dz /dz is approximately a cylindric surface.

Let us examine the results of tasks #4 and #5 in greater detail. The discovered function

wliere,

5.5 R a n d o d y Generated Surfaces

ID. Sequence
Matching Primitive

-- -

TabIe 5.8: Results of Experiments on Random Surface

Task
ID.

1

Number of
Paramet er

6

Ediscovery

6.96e-2

Efltting

2.57e-1

5.5 Randomly Generated Sudaces

Table 5.9: Descriptive Expressions for the Experiments on Random Surface

No.

4

is the matching primitive function, and

-

Descriptive Expressions

[u = 0.5, ut = 0.500 + 1 . 4 8 2 ~ - 4.746v2 + 4 . 4 2 6 ~ 3

are the corresponding descriptive expressions of boundary conditions. The discovered func-

tion of Task #5 is

1 I

where,

P(x , y) = 0.532' - 0.09zy + 0 . 3 5 ~ ' - 0.922 - 0 . 8 2 ~ + 0.96,
is the matching primitive function, and

are the corresponding descriptive expressions of boundary conditions. In these two cases,

the given observation data set was formulated by first fitting the logarithrn or reciprocal of

the derivative image a2z/dzay to a second order polynomial and then constructing the

functional representation by an integral.

The root-mean-square error of describing the observation data in this way is about dou-

ble of the root-mean-square error of describing the data by directiy fitting the observation

5.5 Randomly Generated Sutfaces 198

data set to the fourth order polynomid which has same number of fitting parameters as

tabulated in Table 5.8. However, the discovered function forms capture shape information,

i.e. slope and curvature, of the observation images better than polynomial surface fitting.

This can be observed by comparing the shapes and patterns of three-dimension contour

images (Figure 5.13 t hrough Figure 5-18).

Figure 5.13 shows the p l ~ t s of the 3D contours of the functional images of Task #4,

where (a) is the original randorn surface, (b) is the polynomial fitting surface and (c) is

the surface of the discovered function. The pattern16 of figure (c) is closer to (a) than

figure (b) , which implies that the discovered function captures the gradient better thân

polynomial surface fitting. A similar conclusion can be drawn from Figures 5.14 and 5.15,

which plot the first order partial derivatives of the original random surface, the polynomial

fitting function and the discovered function. Note that the pattern of partial derivative 3D

contour images contains informations concerning the second order curvatures.

Figure 5.16 shows the 3D contours of the functional images of Task #5, where (a) is the

original random surface, (b) is the polynomial fitting surface and (c) is the surface of the

discovered function. Figure (c) represents the shape and pattern of (a) better than (b). Fig-

ure 5.17 and 5.18 are cornparisons of 3D contour images of the two representations. Clearly,

the discovered function represent the original underlying function significantly better than

the polynomial surface fitting result in most part of the observation domain.

Several important conclusions can be d r a m from the experiments conducted in this

part.

1. As a mathematic formulation tool, FFD-II is able to translate general observation

data into a compact and meaningful functional description in many situations. Each

discovered forrn can be interpreted according to the obtained transformation sequence

and the primitive.

"; Notc tliat at R gîvcn planar point (zo, y0), the direction of the gradient of a scalar fidd z = f (z, y) is

l>cl-pcn&ciilrrr to thc contour curve f(z ,y) = C that crosses (z o . ~) . Therefore, when the pattern of two

..;c:tc; of coiitoiir curvcs are close to each other, the gradient vectors of the two corresponding fields will be

rclirtivcly close to cadi other.

5.5 Randomly Generated Surfaces

Figure 5.13: 3D Contour Images of the Surfaces in Task #4

5.5 Randomly Generat ed Surfaces

Figure 5.14: 3D Contour Images(a/dz) of the Surfaces in Task #4

5.5 Randomly Genera ted Surfaces

IO. . . - I-- - ----__-

Figure 5-15: 3D Contour Images(d/dy) of the Surfaces in Task #4

5.5 Randomly Generated Surfaces

Figure 5-16: 3D Contour Images of the Surfaces in Task #5

5.5 Randomly Generated Sdaces

Figure 5.17: 3D Contour Images(d/âz) of the Surfaces in Task #5

5.5 Randomly Generated Surfaces

Figure 5.18: 3D Contour Images(a/gy) of the Surfaces in Task #5

5. G Experimen ts on Noisy Data 205

2. Compared with traditional polynomial surface fitting method, important geometrïc

features are conserved more precisely by the abstracted formula. Such features include

surface features represented in the example random surface, gradients and curvat ures.

3. FFD-II has the ability to formulate the given numeric observation data using a variety

of different functions, and it can achieve better or similar accuracy compared with

polynomial surface fitting method.

4. Traditiond data modeling toots, such as polynomiai fitting, have good reputation in

representing given data accurately. When it is necessary we can iisudg increase the

accuracy by simply increasing the number of fitting coefficients. However, FFD-II

places more emphasis on the parsimony and transparency. This property has been

further demonstrated.

5.6 Experiments on Noisy Data

We have just seen the enhanced ability of the proposed direct model over an indirect model.

W e also know the challenge associated with solving multi-variable function form discovery

problems using direct approach17. This section will contribute to the experiments tha t

demonstrate how the new system handles noise using proposed methodology, adaptive error

control. I will first describe the noise model and the experiment design. Then the error

treatment scheme will be examined from different aspects with experirnents on selected

function forms.

5.6.1 Noise Mode1 and Experimental Design

To test the noisy input effects and the performance of the proposed noise treatment recipes,

a pseudo random number generator is used to generate uniforrnly distributed random num-

bers. Let z = f (2, y) be a function form with whom a simulated observation data set will

17 Rcfcr t o the ùisciissions in Section 4.2.2.

5.6 Experiments on Noisy Data

be made. The noisy input is the simulated observation data with additive noises:

where c is a uniformly distributed random variable over the interval [-al a] and a is referred

to as the Noise Leuel of the simulated observation data set.

Et hcas been pointed out that error propagation is a major challenge for conducting data

transformation based direct function t o m discovery. Computational enors are the errors

introduced by digital computations using selected numeric tools with a digital computer.

Noises, on the other hand, refer to the inaccuracy of the collected observation data. The

essential difference between the effects of computational errors and added noises to the

function form discovery system is that the functional image with added noise is usually

more uneven than a functional image with cornputational errors. When certain numeric

data transformations are conducted upon an uneven image, large scale of propagated error

could be introduced. Examining function y == z2 as an example, let:

wliere É; are uniformly distributed random numbers over the intervd [-0.01,0.01] ", and

Clearly, are the values of numerically computed first order derivative of the function

f = x 2 (function f = 22), py are the nurnerically computed second order derivative values

of fiinction f = z2 (constant 2) based on the values of gi , 3 are the function values

of f = 21: with added noises, and $' are the numerically computed first order derivative

value of the function f = 22 (constant 2) with added noises. Using digital computer, we

I Y 0.01 ia the m,aximum approximation crror of using g- to approximate the first order derivative of the

fiitictiorr y = 2' .

5.6 Experiments on Noisy Data 207

can find that the averaged approximation error of to constant 2 is 0.7538, while the

averaged approximation error of to constant 2 is o d y 3.35e-13.

The simple example demonstrates how the added noises might affect the numeric com-

pi1 t at ion resul ts more significantly than usual computational errors. In FFD-II , differential

transformation is numerically implernented. Although the computing scheme is different

to the simple first order dXerence scheme used in the example, similar effect can be ob-

ierved. Therefore, experiments on noisy observation data set is more useful for justifying

the system's ability to handle error propagations.

The following are the general background of the experiment design for the noisy input.

The high computing time and memory space intensities of the algorithm decide that

we can only choose relatively simple test function forrns, which has a solution in a

small depth in the search tree, to generate the simulated observation data set.

-4mong the transformations in the system's transformation set, TDIF is the one that

is most sensitive to noise. Therefore, the selected test function form must contain at

least one differential transformation in the accurate solution.

,411 simulated observation data set were made in the corresponding observation do-

mains that were partitioned by a 511x511 uniformly distributed rectangular mesh

grid. Thus each input observation data set contains 511 x 511 double precise real

valued observation coordinate triples (z, y, 2) .

To this stage, the system only works with two resolution levels - Fine and Course

siep functional images1? A Fine Step functional image refers to the original input

functional image or the image transformecl from it. A fine step image can be expressed

13 Howcvcr . the proposcd error trcaiment methodology is able to work with multi-rcsolution

Crmsidcxing the availablc cornputer rcsources, only two resolution Ievcis are used to demonçtrate

tlic ~>roposed mctliodology.

scheme.

and test

5.6 Experiments on Noisy Data

A Coarse Step functional image is a 101 x 101 observation data set which is either a

transformed functional image of a coarse image or a evenly selected subset of a fine

step functional image

5. For the purpose of fully observing the performance of the system, a small EM and a

relatively large CF were set. They were IO-' and IO-' respectively. The maximum

searching depth were set to be 5. The relaxed c.p setting enables the system to propose

more function form hypotheses for verifications and the tight é . ~ setting keeps the

search goes on. Altogether, they can force the system to test more hypotheses in a

single discovery task.

6. To analyze the results, the discovery systern was slightly modified so that the full

discovery processes with al1 necessary information, such as the fitting and matching

error of al1 the abstracted hypotheses, could be recorded.

7. To each simulated observation data set, two rounds discovery were run, one with

error treatment switch turned "ON" and the other with it turned "OFF"- Since the

error treatment can only be conducted with rnulti-resolution observation data set, it

could be disabled by specifying that there is only one available resolution level. The

performance of the proposed methodology can be evaluated based on the cornparison

of the corresponding results.

Generally speaking, the discovered function f o m may not be in the exact form of the given

underlying function that was used to generate the simulated observation data set. The

system discovers the functionai representation of the given data within a tolerable error

level. However, the selected function forms in this section are al1 expressible by the function

form description language 2. Thus the purpose of the experiments is t o observe how well

the proposed error treatment scheme will reduce the effects of noises and propagated errors

and help to extract the exact underlying function forrns.

5. G Experiments on Noisy Data

5 -6.2 Multi-Solution

The first function form to be tested is

z = eZ-Y + zy.

There are four solutions to the problem. They are listed in Table 5.10.

1 Solution II Transformation 1 Matching Primitive 1 Treated 1 Plain 1

Table 5.10: Four Solutions of Form 1

The observation domain was chosen to be (z, y) f [-0.5,0.5; -0.5,0.5] and the noise level

is 10-5 The last two columns in Table 5.10 show whether or not a correct solution was

extracted in the experiment. The column titled by 'Treated' means that the error treatment

WC- used in the test, and 'Plain' means that errm treatrnent was not used. ",/" denotes that

the corresponding exact function fo.m was correctiy abstracted and "x" denotes that the

corresponding exact function form was not correctly abstracted. Al1 four accurate solutions

were abstracted when proposed error treatment was used. However, there are two out of

the four accurate solutions that were not abstracted without error treatment.

Let us sumrnarize ten best matches recorded during the system's discovery process, in-

cluding four accurate solution matches and s u other verified matching hypotheses. Figure 5.19

shows the primitive fitting errors at each of the nodes where function form hypotheses were

abstracted. In the figure, (a) shows the results of conducting the discovery without applying

error treatment and (b) shows the results with error treatment applied. Node 1 to 4 are

the four nodes which may be associateci with an accurate solution (depending on whether

or not the corresponding correct primitive could be found). Each of the shaded bars irn-

(a) Fiiing Enors (untreated)
r

(b) Ftting Enon (treated)
r 1 , I 1 I 1 l

J
1.2 1.4 1.6 1.8 2 22 2 4 26 28 3 X (-1)

Log Fmng Ermr

Figure 5.19: The Fitting Errors At Corresponding Hypothesis Nodes of the Forrn 1

5.6 Experiments on Noisy Data 211

plies t hat the associated abstracted hypothesis is an accurate functional form description of

Function (I), each of the unshaded bars implies that the associated abstracted hypothesis is

not a description of Function (1). The axis "Log Errorn is the values of loglo(ep) where eP is

the computed fitting error a t each corresponding node- From the figure we can clearly ob-

serve t hat the proposed error treatment scheme signifkantly improves the primitive fit ting

test":

Without treating the error, the system fa& to abstract two of the four accurate

descriptions due to the noises associated with the input observation data. However,

hy t reating the error with the proposed scheme, the system successfully abstracted

four hypot hesis corresponding to the four descriptions of Function (1).

Without treating the error, Figure 5.19(a), the fitting errors of the two hypothe-

ses clssociated with node 1 and 2 respectively, which are accurate descriptions of

Function (1), are not the smallest. There are totally seven other hypotheses whose

primitive fitting errors are smaller than the fitting errors of node 1 and 2.

Q errors By treating the error using the proposed scheme, Figure 5.19(b), the fittin,

at nodes 2 and 3 are the smallest among the ten recorded hypotheses, and the error

at nodes 1 and 4 are only greater than the error of one of the six other recorded

hypotheses, (node IO), which are not description of Function (1).

Figure 5.20 depicts the matching errors in similar layout as Figure 5.19. In Figure 5.20(a),

the two hypotheses corresponding to the accurate descriptions of the underlying function

I i x e the smallest verified matching errors, Figure 5.20(b) shows that the four hypotheses

corresponding to the accurate descriptions of the underlying function have the smallest

verified matching errors. It implies that the system has the potential to discover 1) two

out of the four accurate descriptions of the underlying function form without treating the

error, and 2) al1 four descriptions when the proposed error treatment scheme is employed.

"O Sirice t h systcm forms abstracted function form hypotheses based on test of whcther or not thc corn-

~>iit,cd pi-iiuitivc fitting Wor is smaller than a threshold, it is desired that the nodes associated with accurate

fiuiction fo in descriptions have the srnailest primitive fitting errors.

5.6 Experiments on Noisy Data

(a) Matching Enon (untreated)
i 1 1 I 1

3
Log Malching ErrOr

(b) Matching Errors (treated)
I I I I I

25 3
Log Malchag Errw

Figure 5.20: The Matching Errors At Corresponding Hypothesis Nodes of Forrn 1

5.6 Experiments on Noisy Data 213

However, the proposed error treatment recipes not only aiiow the system to find two more

accurate descriptions, but also rnake the accurate descriptions more distinguishable from

other hypotheses. In Figure 5.20(a), the matching errors of the two hypotheses corre-

sponding to the accurate descriptions (node 1 and 2) are not significantly srrialler than

the matching error a t node 4 which is not associated with an accurate description of the

iinderlying function. They are 1.66e-03 and 2.45e-03 respectively. In Figure 5.20(b), in

contr<ast, the matching errors of the hypotheses corresponding to accurate descriptions are

significantly smaller than the matching errors of the hypotheses which do not correspond

to an accurate description of the underlying function. For example, the matching error at

node 1 is 2.13e-04 and the matching error at node 5 is 4.19e-02. Thus we have stronger

evidence to believe t hat the discovered functional form captured the significant underlying

firrict ional pattern of the given observation data.

Concerning the descriptive parameter fitting error, Figure 5.21 is a cornparison of the

two test results. By treating the error utilizing the proposed error treatment scheme, the

accu racy of the fit ting parameters are significantly increased.

5.6.3 Variation of Noise Level

ive have seen the improvements made by the proposed error-treatment methodology through

stiidÿing a multi-solution case. In this section, 1 will justify the methodology by observing

the performances through variating the noise lcvel on a single solution case. To evaluate

the proposed methodology, a new term - Discovery Ratio - is introduced.

Definition 24 Let E , be the matching e m r of the hypothesis witch is an accurate function

form description of the k n o m underlying function, é~ be the matching e m r of a fvnction

fonn hypothesis that has the smczllest value among all the hypotheses that are not finction

fonn description of the known underlying function. The Discovery Ratio is the ration of é,

and EN

5.6 Experiments on Noisy Data

(a) Parameter Fitting Enors (untreated)

(b) Parameter Fitîing Errors (treated)
i T 1 1 I 1

Figure 5.21: The Parameter Fitting Errors At Corresponding Solution Nodes of Form 1

Since the system accepts a hypothesis based on testing whether or not the corresponding

rnatcliing error is smaller than a preset threshold, a small DR implies a better chance for

the system to discover the accurate underlying function form. For example, if E , = 10-*

and EN = 0.1, any preset threshold value in the range (10-~, 0.1) will enable the system to

terminate with a succ~sfu l discovery of the accurate underlying function, and in contrast,

if E , , = 0.1 and EN = 10-~, it is generally impossible for the system to terminate with

a successful discovery of the accurate underlying function. The discovery ratio values for

these two situations are 10-5 and 105 respectively.

The second function form to be tested is

z = log(. + J 2 V) . (11

This function form has one solution described by the proposed function form description

5.6 Experiments on Noisy Data

Totally fourteen test runs were conducted to discover the above description with both the

error-treatment switched on and off. The observatioa domains of the experiments carried

out in this section were al1 (2, y) E [0.2,2,2; 0.2,2.2]. However, the input ncise level variated

from IO-" to 0.5 x (Refer to the table below).

1 Noise II 6 x

T-Solution J

Test 11

III the above table, "y denotes that the accurate function form was discovered, and "x"

nieans that the accurate function form was not discovered. The rows 'N-Solution' shows

the results of the tests without employing the proposed error treatment scheme and the

raws Iabeled by 'T-Solution' show the results of the tests with proposed error treatment

scheme employed.

Without employing the error treatment, the system failed to discover the underlying

function form when input noise level increased to 5 x IO-'. With employing the error

treatment, the noise tolerance increased to 4 x 10-~, that is about ten times of the error

5.6 Experiments on Noisy Data 2 16

tolerance without employing the proposed error treatment scheme- Remember, this result

wcas O btained by using observation data with only two-resolution levels. Intuitively, a bet ter

improvement could be expected when multi-resolution image is used since the accuracy of

the averaging based smoothing scheme increases with the increase of the nurnber of usable

sample points.

Figure 5.22 plots the discovery ratios. Observing the plot carefully, we can find that

no matter the error treatment is employed or not, the results to the first four test samples

are very close. This phenornenon is due to the adaptive manner of the treatment scheme.

When tlie roughness of a node does not exceed the threshold, the smoothing process will

not be triggered. That is the situation here. However, the parameter matching errors are

still improved since the final functional images had been smoothed. Figure 5.23 compares

tlie parameter fitting errors of the two test types.

This test proves again that the proposed error-treatment scheme significantly increases

the chance for the systern to discover the accurate underlying function, and improves the

acciiracy of the discovered results. In other words, the noise tolerance level is increased21.

5.6.4 Experiments on More Tkansformations

U p to now, the transformations TLOG1 TREc and TFAc are absent from the presented noisy

i npii t. experiments. To complete Our experiments, the third and fourth experiments are

desiged to include these transformations into Our examinations.

The third function form to be tested is

The simplest

guage is

description of this function using the proposed function form description lan-

'' Notc tliat since the niuncric tools employed by the system's basic discovery process arc based on numenc

fit.tiri%. Tliiis the system Las basic capabiity to toIerate- noises to a certain level. Tbis comment also applics

t.n clic FFD syatcm.

5.6 Experiments on Noisy Data

(b) Discovery Ratio (untreated)
I 3 1 I 1 1 I 1 1 I

Ratio

(a) Discovery Ratio (treated)
I 1 1 1

J

o.:

Figure 5.22: The Cornparison of the Discovery Ratios of Form II

5.6 Experiments on Noisy Data

Enor

(a) Parameter Fitu'ng Enors (treated)

(b) Parameter Fiîüng Erron (untreated)

Figure 5.23: The Parameter Fitting Enors of Form II

12

1 I I 4 1 I 1

-

5.6 Experiments on Noisy D a ta

Twenty one pairs of experiments were conducted to discover this description upon various

input noise levels (See the table below. The symbols used here are the same as they appeared

in the preceding sections). The observation domains were fixed to (2, y) E [-1,l; -1,1].

1 Test

1 Noise

1 Test

1 Noise

1 Noise

1 Test

1 Noise

Figure 5.24 and 5.25 are the comparisons of discovery ratios and descriptive parameter

fit ting errors. The error tolerance increases by 10 times when the proposed error-treatment

scheme is employed. The other thing worth to mention is that the tolerable input noise

of this experiment is much higher than that of the rcst experiments. The reason is that

the input noises are additive, and they are largely compressed by the transformation TLoc.

However, if multipIicative noise are used in the simuiation of the noisy input, the noise

tolerance level should be close.

5. G Experiments on Noisy Data

(b) Discovery Ratio (untreated)

O 0.05 O. 1 0.15 0.2 025 0.3 0.35 0.4 0.45
Ratio

(a) Discovery Ratio (treated)

P 1 l l 1 1 I 1 1

O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Ratio

Figure 5.24: The Cornparison of the Discovery Ratios of Form III

.5.6 Experiments on Noisy Data

(b) Parameter Ffiing Enors (untreated)

(a) Parameter Fitting Errors (treated)

. -

Figure 5.25: The Parameter Fitting Errors of Form III

-5.6 Experiments on Noisy Data

The fourth function form to be discovered from noisy input is

z = arctan(y/x) + y.

The solution of this form contains the only unused transformation T F ~ ~ :

{ T R ~ O T F ~ I g0Trmi 2 = -z2 - Y'),

or similarly,

Seven pairs of tests were conducted for different input noise levels. The observation

domains were fixed to (z, y) E [0.5,2.5; -1,1] for al1 tests. The input noise levels and the

test results are tabulated below.

Test 1 2 3 4 5 6 7

N-Solution J x x x x x x

The results are plotted in Figure 5.26 and 5.27. Comparing with the resuIts of the preceding

noisy input experiments, we can clearly see that the improvement is not as good as before -
only improving the noise tolerance by six times. Through carefully analyzing the discovery

processes, the reasons are found to be

Numerically conducting factorization introduced very large computational errors near

the zero points of the extracted factor in current implementation.

The differential transformation that follows the factorization further increases the

error significantly at the points where large scale errors have been introduced by

TFAC .

The reciprocal transformation requires that the functional image has constant signs

and the requirement is not satisfied (as it should be) due to the propagated errors

introduced by the transformations TFAc and TDIF.

.5.6 Experiments on Noisy Data

(b) Discovery Ratio (treated)

(a) Oiscovery Ratio (untreated)

6

5

- 4
œ
+ 3

2

1

O 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45
Ratio

6

5

- 4 -
Q
'-3-

2

Figure 5.26: The Cornparison of the Discovery Ratios of Form IV

I I , I 1 r 1 -
- -

-
- -

When the propagated errors increase to the level a t which the transformed functional image

does not have constant signs as it should be in the observation domain, reciprocal transfor-

mation will not be applicable to the correspondhg transformed image. That is the situation

of tliis experiment. It prevents the systern from making a successful discovery by applying

the necessary transformation TREC. This observation suggests future improvements in three

direct ions. First , improve the accuracy of the computations of factorization transformation

around the zero points of the factor. Second, improve the scheme of transformation valida-

tion check to enable it to handle noised exceptional points with large errors. Last, improve

the smoothing method to handle sharp peak pattern, i-e. the points where the function

values are significantly larger (or smaller) than the function values of their surroundings.

1 -
1 t t l I 1

O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
m a

5.6.5 The Role of Adaptive Strategy

If we consider the size of a functional image, the smoothing processes is very expensive.

-4daptive rules have been designed to avoid unnecessary image smoothing. In the current

5.6 Experiments on Noisy Data

(a) Parameter Fttting Errorç (untreated)
r I 1 1 l I I I i

(b) Parameter Fttting Enors (treated)

Figure 5.27: The Parameter Fitting Errors of Form TV

implementation, a functional image is only smoothed when

1. the image is not a smooth image measured by the roughness value of the image (Refer

to 4.5.2), and

2. t h e image fits to a primitive well enough measured by the primitive fitting errors.

A smoothing call is viewed as a Redundant call if its associated search node is not on the

path to a solution. Otherwise it is viewed as an Eflective call. The ratio of the number of

effective calls to the number of total smoothing calls reflects the efficiency of the designed

adaptive strategies. We call this ratio the Observed Adaptivity Eficiency Rate (OAERate) :

Number of Effective Smoathing Calis
OAE-Rate =

Number of Total Smoothing Calls
*

Only OAE-Rate is not enough for measuring the effectiveness of the methodology. The

ratio of the number of redundant calls to the total number of nodes the discovery system

5-13 Experiments on Noisy Data 225

investigated is also an important measurement. We c d this value the Observed Adaptivity

Redundancy Rate (OAR-Rate) :

Number of Redundant Smoothing Calls
OAR-Rate =

Number of Total Explored Nodes

CIearly, a large OAE-Rate and smalI OAR-Rate supports the adaptive error control scheme

<as an effective methodology. In the computations of the rates, only the accurate descriptions

of the underlying function are counted as solutions t o the discovery problems2'.

It is important to note that the two introduced measurements are prefixed with the

term "Observed" . This is because

1. In the carried out experiments, we limited the searching depth to 5. As such, the

related numbers only reflect the situation of the specific threshold setting.

2. It is not practical to prove that a node is not on any solution path since we usually do

not know whether or not the underlying function form can be expressed in some other

different form. In other words, we can only claim that a node is not on the solution

path of any known solutions within a limited depth.

Table 5.11 summarizes, in terms of OAE-Rate and OAR-Rate, seven discovery tasks

that are conducted and reported in the preceding sections.

The averaged OAERate is 62.1%. It means that more than half of the smoothing efforts

were contributed to the discovery of accurate function form descriptions. The averaged

OAR-Rate is 12.5%. It means t hat there were only 12.5% nodes t hat distracted the proposed

adaptive strategy t o do smoothing unnecessarily. The results justify the performances of

the proposed adaptive strategies.

?' Notc that thc observation data sct a ~ : simulated images of known undcrlying functions. Although in

~>~ i~ i c ip l c <an approximation with .suffiaently s m d matching crror should bc vicwcd as a solution, WC do not -
coinit tliciri as solutions sincc the dcsiped test functions have simple descriptions in C which have the

s~iiiillcst 11iatciUng crrors within the depth limit.

Con clusion 226

-- -- - - -

f : Refer to the numbering of the test function forrns in Section 5.6.

No.

1

Table 5.11: The Observed Efficiency of the Proposed

Adaptive Error Control Strategies

Funct ion
Formt

(1)

5.7 Conclusions

2 1 (11)

The performances of the new function form discovery system have been justified from four

clifferent aspects. The experirnental results shows that

Observation
Do&

[-0.5,0.5; -0.5,0.5]

1. Compared with previous discovery rnethodologies, which handle the discovery tasks

only within a very limited function classes, the new system performs significantly well

in discovering the underlying functiond relationship among three relevant variables

in a larger variety of function forms. The discovered form are accurate, compact

and meaningful in terms of each description component representing an important

significance of the observation.

[0.2,2.2; 0.2,2.2]

2. -4s a direct model, the system provides the flexibilities in handling complex three-

variable function form discovery problems. It extends the function form coverage of

its previous system in the same category (data transformation approach) with a very

compact and more powerful data transformation set.

Noise
Level

IO-*

OAERate

(%)

100

10-~ 66.6

5.7 Conclusion 227

3. The system has a better potential in performing idormative data modeling t han tra-

ditional numeric toois. L e s human knowledge are needed for expressing the numeric

observation data with compact and meaningful mathematic formulas.

4. The designed adaptive error control technique is effective and efficient in reduce the ef-

fects of the noises introduced by the source (additive noises) and the errors introduced

by the numeric computations.

However, we had encountered with one elementary function form that is not discoverable

l q - tlie systern - Form #9 in Table 5.3. Examining the form carefully and doing manual

simplification using the transformations defined in z, we can find that TDfF and Tlsv

make the forrn more massive, and TVEXl TREC, and TLoc can not help much. In

fact, tlie trouble cornes from the structure of the function form. The form is composed

by a Iinear combinat ion that links several functions. When differential transformation

does not yield nice results directly, the system may suffer fatal problems in simplifying

the form into a primitive, FFD-II shows its w e h e s s in dealing with such forms that

are linear combinations of functional operations ' J', ' logy, 'exp', ' tany or 'arctan'. For

example, Form #9 involves Iinear combination of tangent and logarithrn functions. As

lias heen pointed out, the powerfuiness of a transformation based function form discovery

system relies on the ernbedded data transformation set and primitive set. The current

system is implemented in a preliminary fashion. The variety of three-variable function

forms are too large to be handled with the function form description language defined for

the current system. The experimentai forms in the case studies in Section 5.4 and the

reported failure cases in FFD documentation shows the same weakness of FFD in one

dimensional situations. To identify more powerful transformations and t o identify what

function form cannot be easily simplified using certain set of data transformations are two

equally important subjects for the research in this area.

Chapter 6

Conclusions and Future Research

The goal of function form machine discovery is to develop an autonomous system that can

find symbolic descriptions that capture the underlying regularities hidden in the numeric

data. In scientific and engineering studies, numeric data collected from the environment

represent first-hand information. Therefore, a function form discovery system is an impor-

t an t part in an integrated machine intelligence system. It processes the given data and

provides succeeding discovery or reasoning components with high level knowledge in the

form of compact and easy to interpret symbolic mathematic formulas.

Function form discovery by data transformation was first introduced by Wong with the

implementation of FFD in 1991. The work reported in this thesis is the first attempt to

adopt this method in solving three-variable function form discovery problems. The FFD-II

system, as reported here, was successful in solving a variety of such problems.

6.1 Research Contributions

The contributions of the research can be surnmarized as below.

1. A compact function form description language has been developed and used in the

implementation of a direct data transformation based three-variable function form

6.1 Research Con tribut ions 229

discovery system called FFD-II. Formai definitions and analyses of the expressive-

ness and redundancy of the function form description language have been presented

<as a part of the theoretical results of this research. The analysis methods and re-

sults could be beneficial to further development of new systems for specifying new

Ianguage components and identifying the redundancy of the language. The specified

function form description hnguage, the analyses of the data transformation method

as a general function form discovery model, and the implemented system with ex-

tensive experimentation have furthered Our theoretical understanding of quantitative

discovery.

The implemented system demonstrated the flexibility of data transformation model

in tackling function forrn discovery problems. The direct characteristic of the discov-

ery mechanism of FFD-II ailows the system to discover a significantly wider variety

of function f o r m than its predecessors. The cumulative enhancement rnethodology,

which has been demonstrated by the deveiopment of FFD-II (see Section 3.1.4), could

be used to develop new enhanced data transformation based function form discovery

system t hat adopts mcre sophisticated numeric analysis tools, application domain

knowledge and new enhanced low dimension function form discovery implementa-

tions. The methodology could also be applied to the development of higher dimension

system based on implemented systems. Such developments wiil contrast with ad hoc

customizations like those being used to construct numeric analysis based function form

discovery system. Mathematics analysis in the demonstrated way could be carried out

to help the construction of new description languages and removing redundancy to

achieve better efficiency.

The quantified measurement of the smoothness of curves and surfaces defined in this

tliesis is simple and has proven effective. Based on the measurernents of image sim-

plicity, the rank value of the transformation sequence and the quality of the image,

searching heuristics has been defined for carrying out the best-first search. It has

been demonstrated to be a simple and effective way to guide the system to find func-

tion form description that matches the given numeric data. Furthermore, the system

G. 1 Research Contributions 230

employs simple numeric primitive recognition and hypothesis verification algorithms.

From the experimental results show that they can effectively distinguish "goodness"

of the matches.

4, SpeciaI purposed numeric methods have been developed to conduct differentiation,

functional pattern recognition, and surface smoothing. These algorithms are simple

and effective. The methods could be used in the development of new high dimension

sys t ems or for other numeric analysis purposes

5 . The theoreticd analysis of propagated errors corresponding to each numerically imple-

mented data transformation not only provides valuable results but also demonstrates

a general way to carry out such analyses for new data transfarmations. The designed

error control strategies, including image refinement, smoothing and the heuristics for

t riggering the processes, establish an example for handling noisy input and monitoring

the discontinuity of the transformed images.

6. The superiorities of the implemented system over its predecessors (most of them can

only discover function forms within a very limited number of function form classes)

have been proven by extensive experiments. Firstly, the experimental results on ran-

dom selected functions show the great expressiveness of the designed function form

description language. They also demonstrate the discovery system's great ability of

generating accurate, compact and meaningful mathematic formulas to describe the

given numeric data. This ability usually could not be achieved by using traditional

numeric tools. Secondly, cornparison experiments show the superiority of the direct

multi-dimension function form discovery model over an indirect model from the ex-

pressiveness point of view. The direct model is also superior to an indirect model for its

flexibilities to be extended. Domain knowledge, new advanced Ianguage components

and new achievement in the field of function form discovery (including theoretical

analysis results and improved working systems) could be incorporated more easily

than an indirect system. Thirdly, the experiments on random surfaces suggest that,

comparing with polynomid surface fitting, the discovery system may fotmulate the

6.2 Future Research 231

given data in a flexible way to achieve better interpretability and to capture high or-

der functional pattern more precisely. Fourthly, detail orienteci experiment results on

noisy input not only justify the effectiveness of the designeci error control strategies,

but also provide us with a chance to observe how enors affect each transformation,

for example, the application of a certain transformation codd be turned d o m by

relatively low level noises or propagated errors. This observation suggests that i t is

necessary to verify the applicability of a transformation considering also the possible

error effects. Lastly, the incompleteness of the description language is revealed by the

c~ase in which FFD-II failed to find the description. The identified special function

structures, which may not be expressible in the function form description language -
C l suggest future research directions to complete the language.

6.2 Future Research

Data transformation methods are a promising researching direction for automated function

form discovery. Research with the developed systems in this category, e.g. FFD, LINUS,

and FFD-II, are only beginnings. Many research issues remain open for mathematicians,

cornputer scientists and application domain specialists to work together in this rich field.

To conclude this thesis, i will brieffy describe some possible directions of future research.

First of all, the experimentation shows that the function form description languages used

by the existing systerns, including FFD, LINUS, and FFD-II , have a major incompleteness

(see Section 5.7). To carry out more experiments to identify more such incompletenesses

and to conduct theoretical studies to identify and incorporate new language components

t h a t can help to handle identified incompleteness would highly enhance the expressivenesses

of the existing systems.

Secondly, FFD-II is implemented by choosing simple numerical tools to carry out the

numeric analysis tasks. More sophisticated methods could be employed to improve the

nccuracies of the nurneric computations and the speed and memory efficiency of the system.

More sophisticated supporting low dimension discovery systems could be used to imprcve

6.3 Future Research

the discovery of possible descriptive expressions.

ThirdIy, in the current implementation, the transformation sequence associated with a

possible functional hypothesis is not considered in the processes of primitive recognition and

descriptive expression determination. Obviously, this may cause problems under certain

circumstances, especially to those images distorted by noisy input or propagated errors.

For example, when the last applied transformation is reciprocai transformation and the

functional primitive fitting result is not a polynomial with constant sign in the corresponding

observation domain, the verification process will immediately turn the hypothesis down.

Tliat rnakes the system unnecessarily sensitive to the observation domain. Developing

riew primitive recognition and descriptive expression extraction algorithms by taking into

account the data transformations will enhance the performances of the current system,

especially to the situations of noisy input and disccvering complex function forms that

require lengthy simplification (i.e. transformation) steps to reach a recopizable primitive.

Fotirthly, the composed search heuristics takes into account only a few basic facts. Pos-

sibly, new heuristics could be constructed based on the consideration of domain knowledge

and the discovery experience of the system.

Fifthly, the error control strategies could be improved. Currently, the expected error

analyses are not precise enough and the estimation is "globally" . More accurate analyses

results of the error propagations, probably point-wise, will help to improve the system's

performance. Concerning surface smoothing we could improve the efficiency of the current

system by selecting points with the highest discontinuity and smooth only the selected points

under certain circumstances. And a t the same time, new noise removing algorithm could

he considered. However, handling noises is an important subject in engineering design and

mathematics study. Many different methodologies have been developed to handle different

types of noises. Developing noise tolerant function f o m discovery systems to handle "real-

world" problems should be a very interesting research subject. Current implementation is

only the first trial and it demonstrates only a possible way to handle noises. New research

in tliis direction could start with a more thorough experimentation on the system with

clifferent function forms and different noise models. Comparing the performances of different

G.2 Future Research

techniques with extensive experiments is necessary for the development of a noise tolerant

rnodel.

Sixthly, theoretical investigations on intrinsic relationship between a given function form

description language and the expressiveness of the language are of practical interests. Based

on the results of FFD and FFD-II , one can hnprove the efficiency of the existing data trans-

formation based function form discovery systems by identifying new redundant transforma-

tions or design new function form description language to acquire new discovery power. It

is also an interesting direction to develop special function form description language that

incorporates domain knowledge and solves the function form discovery problems in a par-

ticular application domain. The challenge involved in the theoretical investigations may

require new abstract mathematic notions.

Seventh, to conduct new experiments on advanced function forms is an important re-

search direction. In this research, the system has only been tested with analytic functions.

Other function forms that cari be used to verify the data transformation function form

discovery model include ordinary differential equations, partial differential equations and

integral equations. They might be of greater practical interests than analytic functions.

Moreover, since the variables may be "coupledn more tightly in these types of function

forms than in analytic function forms, experiments on the advanced function forms may

provide us with a better way to understand the discovery model.

Ot her possible research directions include solving general multi-dimensional problems,

integrating with a symbolic algebra system to provide symbolic solution verification, and

integrating with qualitative reasoning systems to perform automatic interpretation of the

invest igated problem.

Bibliography

fl] ,&ho AV, Hopcroft JE and Ullman JD: The design and analysis of computer algo-

rthms. Addson-Wesley, Menlo Park, CA, 1974.

[2] Barenblatt GI: Dimensional analysis. Gordon and Breach Science Publishers, New

York 1987.

[3] Bradshaw G, Langley P, Simon HA: BACON.4: The discovery of intrinsic p rop

erties. Pmceedings of the T h i d National Conference of the Canadian Society for

Computational Studies of Intelligence. 1960.

[4] Brooks RA: Intelligence without representation. Computation & Idelligence.

Luger GF (ed), AAAI Press, Menlo Park, CA 1995.

[5] Brooks RA & Connell JH: Asynchronous distributed control system for a mobile

robot. Proceedings SPIE. Cambridge, M A . 1986.

[G] Brychkov YA, Glaeske HJ, Prudnikov AP and Tuan VK: Multidimensional integml

transformation. Gordon and Breach Science Publishers, Philadelphia, 1992.

f7] Carbone11 GJ, Michaiski RS and Mitchell TM: An overview of machine learning.

Machine Learning: An Artificial Intelligence Appmach- Michalski RS, Carbone11

JG and Mitchell TM, (eds), Pittsburgh, Pa., 1983.

[8] Collins JS: A regression analysis program incorporating heurisic terrn: selection.

Machine Intelligence 2. Dale E and Michie D, (eds), American Elsevier, New York,

1968.

6.2 Future Research

[9] DeBoor C: Bicubic spline interpolation. J. Math. and Phys. 41, 1962.

[IO] Falkenhainer BC and Michalski RS: Integrating quantitative and qualitative dis-

covery: ABACUS system. Machine Learning. 1, Kluwer Acadernic PubIishers,

Boston. 1990.

[Il] Falkenhainer BC and Michalski RS: Integrating quantitative and qualitative dis-

covery in the ABACUS system, Machine Learning: A n Artificial Intelligence Ap-

proach Vol. III. Kodratoff Y and Michalski R (eds), Morgan Kaufmann Publishers

Inc. California, 1990.

[12f Fisher D: Knowledge acquisition via incrementol conceptual clustering. Machine

Learning. 2 , 1987.

[13] Gerwin DG: Information processing, data inferences, and scientific generalization.

Behavioral Science. 19, 1974.

[14] Gleich J: Chaos: Making a new science. Viking, New York, 1987.

[15] Goetz A: Introduction to diflerential geometry. Addison Wesley Publishing Com-

pany, California, 1970.

[l G] Gregory HG: The A BA CUS.2 system for quantitative discovery: Using dependen-

cies to discover non-linear terms. Technical Re-port ML1 88-17, George Mason

University, Machine Learning and Inference Laboratory, June 1988.

[l i] Hammerlin G and Hoffmann KH: Numerical Mathematics Spriner-Verlag, New

York, 1991.

[la] Hamming RW: Digital Filters. 3rd ed. Englewood Cliffs, NJ:Prentice Hall, 1989.

[19] Jones R: Generating predictions to aid the scientific discovery process. Pmceedings

of the Fifth National Conference on Artificial Intelligence. 1986.

[20] Koehn BW, and Zytkow J W: Experimenting and theorizing in theory formation.

Pmceedings of the A CM Sigart International Symposium on Methodologies for

Intefiigent Systerw. Knoxville, 1986.

6.3 Future Research 236

[2 11 Kokar MM: Discovering functional formulas through changing representation base.

Proceedings of the Pifth National Conference on Artificial Intelligence. 1986.

[22] Kokar MM: Determining Arguments of Invariant Functional Descriptions, Machine

Leuming. 1, 1968.

[23] Kulkarni D & Simon H: The Processes of Scientific Discovery: The Strategy of

Experimentation. Cognitive Science, 12, 1988.

[24] Lancaster P, Salkauskas K: A survey of curve and surface fitting. University of

Calgary, 1977.

f25] Langhaar HL: Dimensional analysis and theory of models. John Wiley and Sons,

New York. 1951.

[26] Langley P: BACON.l: A general discovery system. Proceedings of the Second

National Con ference of the Canadian Society for Computational Studies of Intel-

ligence. 1978.

[27] LangIey P: Descriptive Discovery Processes: Experiments in Baconian Science.

Ph.D. Th., Department of Psychology, Carnegie-Mellon University, 1979.

[28] Lczngiey P: Data-driven discovery of physical laws. Cognitive Science. 5, 1981.

[29] Langley P: Strategy acquisition governed by experimentation. Prwceedings of the

European Conference on Artificial Intelligence. Paris, 1982.

[30] Langley P: Learning search strategies through discrimination. International Jour-

nal of Man-Machine Studies. 18, 1986.

[31] Langley P: Learning to search: From weak rnethodç t o domain-specific heuristics.

Cognitive Science. 9 , 1986.

[32] Langley P, Bradshaw G, Simon HA: BACON.5: The discovery of conservation

laws. Proceedings of the Seventh International Joint Conference on Artificial In-

telligence. 1981.

6.2 Future Research 237

1331 Langley P, Bradshaw G, Simon HA: Data-driven and expectation-driven discovery

of empirical laws. Pmceedings of the Fourth National Conference of the Canadian

Society for Computational Studies of Intelligence. 1982.

[34] Langley P, Bradshaw G , Simon HA: Rediscovering chemistry with the BACON

system. Machine Learning: A n Artificial Intelligence Approach. Michalski RS,

Carbone11 JG, Mitchell TM, (eds), Tioga Press, Polo Alto, CA, 1983.

[35] Langley Pl Bradshaw G, Zytkow J , Simon HA: Three facets of scientific discovery.

Proceedings of the Eighth International Joint Conference on Artificial Intelligence.

1983.

[36] Langley P, Ohlsson S, Thibadeau R, Walter R: Cognitive architectures and prin-

ciples of behavior. Pmceedings of the Sixth Conference of the Cognitive Science

Society. Boulder, Colorado, 1984.

1371 Langley P, Zytkow J, Simon HA, Bradshaw GL: The search for regularity: four

caspects of scientific discovery. Machine Leaming: A n Intelligence Approach Vol.

II. Michalski RS, Carbone11 JG, Mitchell TM, (eds), Tioga Press, Palo Alto, CA,

1986

[3S] Langley Pl Simon HA, Bradshaw GL, and Jan MZ. Scientific Discovery: Cornpu-

tational Explorutions of the Creative Processes. MIT press, 1987.

[39] Langley P, Simon HA, Bradshaw GL: Heuristics for Empirical Discovery. Cornpu-

tational Models of Learning. Leonard Bolc (ed), 1987.

[40] Langley Pl Simon HA, Bradshaw GL & Zytkow JM: Scientific explorations of the

creative process. Cambridge, M A : MIT Press. 1987.

[41] Langley P and Zytkow J: Data-driven approaches to empiricd discovery. Artificial

Intelligence. 40, 1989.

[42] Lebowitz M: Experiments with incremental concept formation: UNIMEM. Ma-

chine Learning. 2 , 1987.

6.3 Future Research 238

[43] Lenat DB: Automated theory formation in mathematics. Proceedings of the Fifth

International Joint Conference on Artificial Intelligence. 1977.

[44] Michalski RS: Understganding the nature of learning: issues and research direc-

tions. I n Machine Learning, An Artificial Intelligence Appmach Vol IL Michalski

RS, Carbone11 JG, Mitchell TM (eds.). M. Kaufmann Publishers, 1986.

1451 Michalski RS: Learning Strategies and Automated Knowledge Acquisition. Corn-

putational ModeLs of Learning. Leonasd Bolc (ed), 1987.

[46] Nordhausen B, Langley P: robust approach to numeric discovery. Proceedings of

the 1990 International Conference on Machine Learning. Morgan Kaufmann Pub-

lishers Inc., California, 1990.

[47] Nordhausen B, Langley P: An integrated approach to empirical discovery. A Corn-

putational ModeLs of Scientijic Discoveq and Theory Formation. Shrager J and

Langley P (eds.) , Morgan Kaufmann Publishers, Inc., 1990

[48] Phan TH: Function discovery using data transformation. Ph.D Th., Department

of Cornputer Science, University of Calgary, Alberta, Can. 1994.

[49] Rao RB & Lu SCY: KEDS: a knowledge-based equation discovery system for engi-

neering problems. A Proceedings of the Eighth Conference o n Artificial Intelligence

for Applications. Monterey, California. IEEE Press, CA, 1992.

[50] Samuel AL: Some studies in machine learning using the game of checkers. Corn-

puter and Thought. Feigenbaurn E A and Feldman J (eds), McGraw-Hill NY, 1963.

[51] Schaffer C: Bacon, data analysis and artificial intelligence. Pmceedings of the Sizth

International Workshop on Machine Learning. 1989.

[52] Schaffer C: An environment/classification shceme for evaluation of domain inde-

pendent function-finding prograrns. Pmceedings of the IJCA I Workshop o n Knowl-

edge Discovery in Databases. 1989.

6.3 Future Researcb 239

[53] Schaffer C: Domain-Independent Scientijic Function Finding. Ph.D. Th., Rutgers

University, 1990.

1541 Schrager J and Langley P: Computational Approaches to Scientific Discovery.

Computational Models of Scientific Discovery and Theory Pomation. Shrager J

and Langley P (eds), Morgan Kauhann Publishers, Inc., 1990.

[55] Simon HA: Why should machines learn? Machine Learning: A n Artificial Intel-

ligence Approach. Michalski RS, Carbone11 JG, Mitchell TM, (eds), Pittsburgh,

Pa., 1983.

[56] Simon HA: Machine as Mind. Computation d Intelligence, Collected Readings.

Luger GF (ed.), AAAI Press, CA 1995.

[Zr] Simon HA and Lea G: Problem solving and rule induction: a unified view. Knowl-

edge and Cognition. Gregg L (ed.), Lawrence Erlbaum Associated, Eiiis dale, New

Jersey, 1975.

[58] Sneddon IN: Foumer Transformations. McGraw-Hill, New York, 1951.

[59] Sneddon IN: The Use of Integnzl Tmnsfoms. McGraw-Hill, New York, 1972.

[GO] Spath H: Spline interpolation of degree thme. The Cornputer Journal, Vol. 12,

1969.

1611 Stepp RE: Conjunctive conceptual clustering: a methodology and experimentation.

P h.D. Th., Department of Cornputer Science, University of Illinois, Urbana, IL,

1984.

[62] Thagard P: Computational Philosophy of Science. Cambridge, Massachusetts:

MIT Press, 1988.

[63] Thagard P and Nowak G: The Conceptual Structure of the Geological Revolution.

Computational Models of Scientific Discovery and Theory Formation. Shrager J

and Langley P (eds), Morgan Kaufmann Publishers, Inc., 1990.

[64] Valdés-Pérez RE: Machine Discovery of Chernical Reaction Pathways. Ph.D. Th.

Department of Computer Science, Carnegie Mellon University, 1990.

[68] Wong P: Mahcine Discovery of Function F o m . Ph.D. Th., Department of Sys-

tems Design Eng., University of Waterloo, Ontario, Can. 1991.

[66] Wu YH: Reduction: a practical mechanism of searching for regularity in data.

Proceedings of the Fifth In ternational Con femnce on Machine Leaming. Morgan

Kaufmann Pub., 1988.

[Gï] Wu YH and Wang SL: Discovering knowledge from observational data. Proceedings

of the IJCAI Workshop on Knowledge Discovery in Databases. 1989.

[68] Zagoruiko NG: Empirical prediction algorthms. Computer Oriented Cearning Pm-

cess. Simon JC(ed), Noorclhoff, Leyden.

[69] Zytkow JM: Combining many searches in the FAHRENHEIT discovery system.

Proceedings of the Fourth International Machine Cearning Worhhop. Irvine, CA.,

1987.

[TOI Zytkow JbI and Simon HA: A theory of historical discovery: the construction of

componen tial models. Mahcine Leaming. 1. Kluwer Academic Publishers, Boston.

1986.

[il] Zytkow JM: Deriving laws through anaiysis of processes and equations. Com-

putational Models of Scientific Discovery and Theory Formation. Shrager J and

Langley P (eds) , Morgan Kaufmann Publishers, Inc., 1990.

[72] Zytkow JM, Zhu J and Zembowicz R: Operational definition refinement: a discov-

ery process. Proceedings of the 1991 National Conference on ArtifLcial Intelligence.

MIT Press, Massachusetts. 1992.

