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Abstract 

To find a mathematical description of a certain class of events is the goal of mathematical 

modeling. Traditionally, it is the task of mathematicians and engineer-scieatists. The goal 

of function form discovery is to develop machine intelligence systems to tackle this problem. 

Though the machine intelligence approach is still in its infancy, it has been demonstrated 

that systems based on such approach are able to give more compact and meaningful forms 

that describe the input data than the traditional numerical methods. 

This thesis presents a function form discovery system known as FFD-II which is a signif- 

icant extension of the FFD system. The adoption and extension of the data transformation 

mechanism of FFD allows FFD-II to discover a significantly wider variety of functional 

forms from numerical data than its predecessors. FFD was developed initially for find- 

ing real-valued function fomis of one independent variable. It could also be used to find 

families of functions in an indirect way. FFD-II is able to discover function forms of two 

independent variables directly from numeric data for it can make use of three dimensional 

information that cannot be used by the indirect methods which, for example, have to rely 

on "cross-effects" in the discovery. Hence, FFD-II not only exhibits better performance in 

handling the discovery problem, but is also more flexible for future extensions. Another 

sipnificant characteristics of FFD-II is its new adaptive error control. It identifies the noise 

patterns according to the smoothness of an observed functional image and monitors the 

magnitude of propagated errors according to  the theoretical error analysis results. In FFD- 

II special treatments are also added to reduce the effects of noise. Hence, the new system 

lias a greater tolerance to both the computational error as well as the noise of the input 

than FFD. 

Other new contributions of FFD-II include: 1) the construction and analysis of a three 

dimensional based function form description language; 2) the design of special purpose nu- 

meric methods which can recognize primitive functional patterns, conduct factorization and 

handle partial differential transformations of three dimensional data; 3) the quantified mea- 

surements of the qualitative characteristics of a functional image and 4) the implementation 

of a new heuristic search process. 
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Chapter 1 

Introduction 

Mathematical modeling is one of the most fundamental stages of scientific theory formation. 

This task is a very complex intellectual activity and has traditionally been the realm of the 

most talented human experts. Machines have been used only as a computing device to 

aid human experts to  process large arnount of data. With the development of cognitive 

science and artificial intelligence, the efforts on machine synthesis of this human intelligent 

activity has been receiving more attention in the last decades. Various methodologies has 

been proposed and a number of carefully specified machine discovery systems have been 

created. It has been demonstrated that, to certain extent, a machine can take over not only 

the tedious data analysis work from human scientists but also the modeling task itself- 

However, the research in this field is only a start and there is still a long way to  go. 

Addressing the problem of function f o m  discovery, this research is a step forward to the 

goal of cornputer automatic mathematical modeling. 

1.1 Machine Learning and Machine Intelligence 

Simon defined learning as "Learning denotes the changes in the systern that are adaptive 

in the sense that they enable the system to do the same task or tasks dmwn h m  the same 

population mom eficiently and more efictively the next tirne" [55]- As a science of the 
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artificial, machine learning is a research area of machine inteliigence. It seeks an algorithmic 

solution to the problem of modeling human learning activities. 

1.1.1 Machine Intelligence 

In the early years when Machine Intelligence started as a field whose goal was to mimic 

liuman intelligence in a machine, people were excited about dreaming what machine could 

do for them. However, they soon realized that they overlooked the difficulty of the job. 

Human intelligence is indeed very cornplex. 

To replicate human inteliigence we a t  least have to know the way to decompose the 

intelligent activities into appropriate parts and the interfaces that  can bring the parts 

together. Unfortunately, we know very little about this so far. However, research of last 

few decades has shown the possibility of developing inteiiigent machines with many working 

systems. It has been generally acknowledged that 

Firstly, the research in artificia1 intelligence, cognitive psychology, and scientific phi- 

losophy cofertilize each other[36, 54, 621. 

Secondly, machine intelligence does not have to rnimic human intelligent skills. Hu- 

man intelligence represents just one point in an uncharted space of possible means of 

acquiring knowledge and skills[?]. It  is commonly believed that  the human brain can 

adopt new knowledge in an "optimal way", although the process can be very long. 

A machine's superiority, on the other hand, is its power in conducting numerical and 

symbolic computations. Moreover, knowledge and skills can be shared between differ- 

ent systems by simply "copyingn. These properties suggest that  machine intelligence 

could be different fiom human intelligence. Theoretical analysis provides a means of 

exploring the possible rnethods, while the task-oriented approach provides a vehicle to  

test and improve the performance of functional intelligence systems. In this way, par- 

ticular approaches to intelligence issues could be tested in a well understood problem 

space. 
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Lastly, high level intelligence is an integration of lower level intelligences. This a p  

plies to bot h the biological intelligence and the machine intelligence. Researchers 

in the field of machine intelligence have been s u c c d  in irnplementing intelligence 

in many subproblems in a variety of specXc domains. Some implernented systems 

did even better than a human problem solver. The story of Deep Blue, a powerful 

supercomputer and an extraordinary chess player, defeating human world champion 

Garry Kasparov in 1997, is just another example. Cumulative successes not only gives 

us an insight into the issue of intelligence, but also provides us with a continuously 

expanding base for the f d i l h e n t  of new successl. 

Machine intelligence has been developed along two lines: one attempts to  mimic human 

tfiinking and the other takes advantage of the computing and formal inference power of 

codifiable machines. However, in the foreseeable future, to replicate the full gamut of 

Iiumcm intelligence is unrealistic. Gaining knowledge through theoretic research, applying 

this knowledge in working machine intelligence systems, and further developing systems that 

assist people in a variety of well specified tasks will remain the primary goal of machine 

intelligence research for the foreseeable future. 

1.1.2 Machine Learning and Machine Discovery 

The ability to learn is central to human intelligence and implanting learning capabilities in 

machines is one of the main goals of Machine Intelligence research. A system is said to learn 

from its environment if it  improves its performance in interacting with the environment (ski11 

acquisition) or it abstracts new lcnowleàge fiom the environment (knowledge acquisition)[44, 

411. Samuel's checker playing system[50] is an example of ski11 acquisition learning. The 

system included a series of parameters each of which was able to  take new numerical values. 

To improve the system's performance, these values were adjusted by training samples. 

' Rocincy Brooks[4, 51 dcmonstrated incremental machule inteiligmce with a mobile system called CREA- 

- rm E. Tlic system - crcated by decomposing the system into parts accorduig to function and activity. 

All tlic pieccs werc implcmented using known AI technologies and then interfaced into a complete syatcm. 
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The second type of learning, known as knowledge acquisition learning, relates to the 

discovery of new knowledge. In the last few decades, developing machine intelligence sys- 

tems with such capability is one of the most vital research area in the machine intelligence 

field. Generally speaking, most leaming systems are abo discovery systems to  a certain 

degree. More or less, they use inference strategies to a certain level to discover new knowl- 

edge. However, in the machine intelligence Litetature, Machine Discovery is an unsupervised 

learning process seeking an accurate, concise and rneaningfd description of regularities or 

general rules to  explain al1 or a t  least most observations[45, 651. This form of learning in- 

cludes conceptual ciustering, constructing classifiers, fitting equations to  data, discovering 

Iaws explaining a set of observations and formulating theories accounting for the behavior 

of a system. Since the discovery system relies sclely on the observation data, it requires the 

greatest amount of inference. 

1 . l .3  Machine Intelligence in Scientific Discovery 

Research in artificial intelligence and cognitive simulatien has shown that the mechanisms of 

scientific discovery can be subsumed as special cases of the general mechanisms of problem 

solving [39, 63, 571. Based on this claim, scientific discovery activities are cornputationally 

codifiable. 

There are two major forms of scientific discovery, the generation of empiricai laws and 

the formation of theories [62, 631. The former involves descriptive generalizations that sum- 

marize observations and the latter involves postulating unobserved structures or processes. 

Concerning the generation of empirical laws, researchers in machine leaming and machine 

discovery have investigated three main aspects of ernpirical discovery in recent years: 

a Taxonomy Formation [64, 231. Research on conceptual clustering [12, 421 addresses 

tliis problem by organizing a set of observations into a conceptual hierarchy, which 

can then be used to  classify new observations. 

0 Genemtion of Qualitative Laws [43, 37, 19, 51, 521. In this case, the goal is to uncover 

qualitative form relations that hold for a set of observations. 
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O The Production of Quantitative Laws [IO, 21, 40, 69, 65, 481. The task of this aspect 

is to find mat hematical relations between numeric variables. 

Some researchers have tried to integrate these three aspects into single systems 138, 39, 

473. However, this research addressed only the third aspect. 

1.2 Function Form Discovery 

In science and engineering, extracting mathematical models fiorn numeric data is of fun- 

dament al importance. Various numerical analysis (e-g., interpolation and polynomial a p  

proximation algorithms, curve and surface fit ting, etc.) and statistical methods have been 

npplied successfully to problems in science and engineering. Traditionally, this task can 

onIy be assigned to human experts, who use machines to perform numerical calculations. 

Today, the effort to endow machines with the capability of automatic modeling has 

become an important branch of machine learning and machine discovery. As stated in 

the previous section, the mechanisms of human experts' scientific behaviors are indeed the 

mechanisms of problem solving. The possibility of shifting the tedious task of mathematical 

rnodeling of numerical data from man to automatic machinery has been demonstrated by 

a number of implemented function form discovery systems, e-g., BACON by Langley in the 

1980's[30, 31, 291, FFD by Wong in 1991[65], and LINUS by Phan in 1994[48]. 

Function form discovery is a form of empirical discovery. In the literature of machine 

learning, it is also classified as learning by induction, learning from examples, learning from 

observation and discovery, quantitative learning, or unsupervised empiricai learning. The 

theoretical basis of this paradigm is empirical inductive generalization in which the system 

creates an inductive hypothesis on the basis of the given examples from the external source 

of information utilizing primarily domain-independent background knowledge. m e n  the 

given examples are numerical data, namely a set of observed data, and the goal is to con- 

struct function form descriptions (continuous numerical functions, either explicit or implicit) 

that summarizes the relations of the variables involved in the given data, the paradigm is re- 
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1.3 Function Form Discovery 

The second formulation system 

Representation II: 

may find, from the same data a trigonometric formula: 

According to the "ParsLuu~iyn and "Transparency" criteria, "Representation II" is a better 

formulation. It contains only two functionai terms, sin(=) and ey. Thus it is more compact 

t han "Representation 1" , which contains thirty terms. fn the meantime, "Representation 

II" is easier to interpret. Each term in the formula matches a geometric property, e-g., the 

oscillatory characteristic regards to z and the deamplification is governed by y. "Represen- 

tation 1" reveals very little about these underlying functional relationships. It is hard to 

translate the fit t h g  parameters into meaningful related properties. 

Today, the research field of function form discovery is still in its infancy. Up to the 

late eighties, function form discovery systems had been created in two categories. Formula 

construction? based approaches, such as BACON [26, 27, 28, 32,34,35] FAHRENHEIT [69,72, 

201 and ABACUS [ I O ,  Il], can only discover polynomial and rational function forms. Data 

analysis based approaches, such as E* [52, 531, can only discover function forms defined 

in the system's protocols. The new data transformation based method launched in the 

early nineties, such as FFD [65] and LINUS [48], is still incomplete with many open issues. 

Nevertheless, it  has been demonstrated that automatic function form discovery system can 

be used to assist in automatic knowledge acquisition, extraction of relevant knowledge fiom 

Iarge knowledge bases, and abstraction of higher-level concepts out of data sets. 

' WC CLxssEcs t the existing me thodologies into three categories, namely formula construction, data analysis 

and data transformation. Details wiIl be &en in Section 2.1. 
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1.3 Motivations of This Research 

Up to the present, most research on inductive leankg has been concerned with quaiitative 

learning that creates conceptual, logic-style descriptions fiom the given facts. In contrast, 

this research, following the work of FFD and LINUS, attempts to  address the quantitative 

learning that deals with numerical laws (more specifically, function forms) characterizing 

empirical data. Moreover, this research focuses on the three-variable function form discovery 

problems. It  is motivated by the following theoretical and ptactical concerns. 

1. From the point of view of mathematical modeling in science and en,$neering, this 

research provides an alternative to numerical analysis and the simulation of cornplex 

models. As a tool that combines traditional numerical analysis techniques with the 

artificial intelligence, it  may serve as  an intelligent assistant for human researchers in 

scientific studies and engineering developments to find functional regularities hidden 

in raw data. Research in traditional numerical analysis methods focuses only on the 

mathematical issues of accuracy and convergenc. They cannot be used to  fmd a 

meaningful and compact numerical relationship from ernpirical data without the aid 

of human expertise. This research seeks an automation of mathematic modeling that 

emphasizes not only the "justification" but also the "transparency" and "parsimony". 

2 .  From the machine discovery point of view, this research is needed t o  meet the growing 

requirements for high quality of quantitative discovery. In many fields of science, 

dat a-driven discovery is an important and powerful general theory formation method- 

Researchers gather empirical data as a prerequisite for building models and then search 

for a set of generalizations or theories to interpret physical world. For the automation 

of this process, function form discovery is usually the fundamental starting point for 

deep modeling of knowledge in machine. 

Current research in automatic empirical discovery focus mainly on qualitative rule or 

law discovery. Only very little effort has been put into quantitative discovery. The 

shortage of high quality function form discovery system is becoming an  obstacle to the 

application of machine discovery in solving scientific and engineering problems. This 
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research is aimed at developing an intelligence system which could engage as an inter- 

mediate processor in a scientific theory formation automation. The system processes 

the given empiricai numeric data and provides succeeding discovery processes with 

high level knowledge, or more specifically mathematical formulas with high quality in 

terms of just ificat icn, parsimony and transparency. 

This research demonstrates the flexibility of the data transfcrmation approach. Prier 

to the introduction of the data transformation method, ail function form discovery 

systems suffered a common limitation of being able to discover only function forms 

within a very limited number of function form classes. FFD introduced the data 

transformation technique which can discover function forms in a sipificantly wider 

range t han previous approaches. However, there are considerable open t heoreticai and 

practical issues needed to be addressed with new implementations. A demonstration 

of how this methodology works in multi-variable function form discovery problems is 

surely wort hwhile. 

4. This research specially addresses the three-variable function form discovery problems 

for the following reasons. Firstly, multi-variable problems are commonly confronted 

in scientific research and engineering development. Secondly, solving three-variable 

problems is usually a starting point for addressing higher dimension problems. Lastly, 

the indirect approach to the multi-variable function form discovery problem taken by 

FFD does not allow the system to  fully take advantage of data transformation tech- 

nique as it  is subjected to some constraints when dealing with real world problems3. 

5. As a research in the field of machine intelligence, this research also shares the gen- 

eral motivations with other research in the field, such as providing new philosophical 

perspective for investigations in cognitive science, and enriching the AI technology by 

making a worthwhile progress in such an important task. 

3Morc detailç vpiu bc given in Section 4.2.2. 
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1.4 Organization of the Thesis 

The remainder of this dissertation is organized into five chapters. Chapter 2 is a review 

of related work. The review is organized into three categories according to the cote of the 

discovery systems. The current states of this research area is presented. 

Chapter 3 establishes the theoretical foundations for the proposed methodology by first 

drawing conclusions from the review with the mechanism to  be selected to build the new 

Jiscovery system. -4 formai statement of the research problem is tEen given. The dis- 

cussions that follow the problem statement will focus on introducing the function form 

description Ianguage used by the FFD-II system and the theoretical issues concerning the 

expressiveness and redundancy of the language. 

Chapter 4 presents detailed design issues and the system implementations. Three im- 

portant issues will be investigated. They are: first, why indirect methods cannot provide 

t lie advantages that the central mechanism provides; second, why error control is important 

in multi-variable problems and how to adaptively control the errors; and lastly, what nu- 

meric tools should be used to  conduct the numeric computations involved in the discovery 

process. To introduce the adaptive error control method, both theoretical analyses and 

choices of numeric toois are presented. 

Chapter 5 reports the experiments run with FFD-II . Experiments are organized into 

four groups. Each group emphasizes only one key issue. The first group is "Randomly Se- 

lected Functionsn that verifies the fundamental discovery ability of the system. The second 

group is a cornparison between an indirect data transformation based system and FFD-II . 
The third group is an extensive verification on the system's ability to mode1 complex func- 

 ion forms represented by random surfaces. The last group is a test of the system's ability 

to handle input data with added noises. 

The final chapter, Chapter 6, wiU conclude this thesis by highlighting the contributions 

and outlining the directions for future investigations. 



Chapter 2 

Computational Function Form 

Discovery 

This chapter reviews previous research in the area of computational numerical law discovery, 

or more specifically, real value function form discovery systems. As the focus of this research 

is autonomous funct ion form discovery systems, this review wiU concentrate on artificial 

intelligence systems that discover real-valued numeric relations. Although various numerical 

analysis methods solve the same problem of finding analytic descriptions fiom numeric data, 

we view them as mathematical tools that can be used by machine intelligence function form 

discovery systems. 1 wili first classify the existing methodologies, and then review the 

related work accordingly. 

2.1 Met hodology Classification 

According to the amount of inference and the techniques employed, function form synthesis 

rnethodologies can be classified into three main categories: Numerical Analysis, Formula 

Construction and Data ~ n s f o m a t i o n .  Some systems employ combined methodologies, 

l ~ u t  we characterize them into one of these categories according to their central approach. 

The two most basic techniques used in function form discovery systems are data transfor- 
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performing different data transformations. 

Since a numeric analysis system makes its discovery based solely on predefined proto- 

types, and only a limited number of prototypes is defined, this method has limited capability 

in discoverïng the rich ~ r i e t y  of function forms in scientSc study and engineering practice. 

Only when the underlying functional relation is covered by its predefined prototypes, can 

this method perform a successful discovery under the criteria of justification, parsimony 

and transparency. However, this limitation could Iargelp depend on the domain knowledge 

of Iiuman experts who create the system to  solve problems in a specific application domain. 

In contrast, formula construction methods do not make discoveries directly from the 

functional pattern matching. The discovered function is constructed under the guide heuris- 

tics for of identifying some features. As the features usually include only the simplest ones, 

such as rnonotonicity, oscillation and constancy, formula construction methods are located 

at the other extreme of the technique spectrum opposite to the numeric analysis methods. 

Minimum effort is applied in analyzing the data. The systern's capability to discover re- 

lies largely on how new theoretical terms are constructed. The degree of inference used in 

formula construction is higher than that used in the numeric analysis method. 

Traditionally, data transformation is a "pre-processingn step which serves to simplify the 

data before other numerical tools can be used. Application of a particular transformation 

may be motivated by the need to remove non-linearity, to decompose complex features into 

fundamental ones, to fitter out noise or to capture certain global properties. It  can be 

used in both computational mathematics and pure mathematics research. The choice of 

t ransiormation is not only highly domain dependent but also guided by human cognition. In 

the function form discovery system that uses data transformation technique, the capability 

of the system largely depends on the transformation set constructed by human experts who 

create the system. 

Let 
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be the set of variables related to a problem under study. A transfonnation is a one-to-one 

mapping M from Rn to Rm: 

The type of the rnapping M determines the type of the data transfonnation. There are 

three major types of data transformations related to continuous real-vaiued variables. 

Algebnzic Transfomation. Mapping M is expressecl by anaiytic functions, usually 

explicitly. Most important geornetrical transformations, such as rotation and scaling, 

are algebraic transformations. 

Integnzl Tmnsfomation. Mapping M contains integral operations. In general the 

integral transformation takes the forxn of 

where D Rn is the integration domain, 2's are the original independent variables 

and v's are the new independent variables. K is known as the kernel function of the 

transformation. Apparently, the transformed image is affected by al1 the points in do- 

main D. Thus integral transformations are able to highlight certain global properties 

of the data. 

Diflerential Transformation. As its name indicates, differential transformations in- 

volve the description of the data in terms of their derivatives, or ditferences in the dis- 

cretized situations. Differential transformations can reveal important analytic p rop  

erties, such as dope and convexity etc., and provide elegant graphical descriptions 

of highly complex behaviors of nonlinear dgnamic systems[l4]. Many scientific terms 

and iaws are represented in the form involving derivatives. 

Some examples of transformations are listed below, where {zi, 2 2 ,  - , xn, w )  are the relevant 

variables, z's are independent variables and w is dependent variable, 
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O A simple algebraic transformation which reducing powers into products and products 

into sums is the 'logarithm transformation': 

For example, by the transformation w = log(%) the furictional relation z = zv  becomes 

w = z log( y) and the functional relation z = z y becomes w = log(z) + log( y). 

O 'Trend remova17 transformation 

is an algebra transformation, where the function f describes the trend of a process. 

r Fourier transformation [58] is the most famous integral transformation used in pure 

and applied mathematics and it plays an important role in communication theory m d  

technology.It transforms a physical space to  the fiequency space. The general form of 

the multi-dimension Fourier Transformation is 

where f (zl, x2> -, 2,) is the function to be transformed. Two other well known 

integral transformations include Laplace Transformation and Mellin Transformation 

a A simple differential transformation in a three dimension Cartesian coordinate system 

(2, y, r )  is the mapping: 

This transformation transforms a two dimensional scalar field z(z, y) into its gradient 

vector field, if the Iast two terms are viewed as the coordinates of two dimensional 

vectors. 
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A function forxn discovery system that uses data transfcirrnation technique simplifies a 

given observation functional image using the simplification tools of data transformations 

embedded in its tool-box. The discovered function form is expressecl in terms of a transfor- 

mation sequence dong with a simplifieci matching functional pattern- Hence a weli organized 

transformation set is the key to talchg advantage of data transformations and enabling the 

system to cover a wide range of complex function fonn classes. The difficuity of the function 

form discovery problem hinges upon the expressiveness of the description language, ive. the 

way of how the system express its finding. In general, the more expressive the language, 

the more difficult it is to find a specific formula. A discovery system must strike a balance 

between the language's expressiveness and the cost of identifjhg one particular member 

from the set of al1 possibilities [48]. 

2.2 Formula Construction Approaches 

BACON [37, 38, 391 is the most well known machine intelligence system specifically designed 

for automated discovery of quantitative laws from numericd data. It discovers numeric laws 

hy analyzing the relationships between variables fkom data provided by examples. A num- 

ber of discovery systems can be grouped with BACON since they use formula construction 

heuristics similar to BACON'S. Table 2.1 lists some of the discovery systems in the BACON 

family. 

According to  our methodology classification, the basic discovery strategy of the BACON 

systems is formula construction.  BACON.^ starts the discovery with a table of numerical 

values of relevant variables provided. Four simple heuristics (or rules) are employed by the 

system for driving the search to the goal. 

1. If Y has the value V in a number of cases, then hypothesize that Y always 

has the value. 
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System Key Feat ures - 
Tkend and constancy detectors 

S pecialized method for h d i n g  constant Merences 

Trend and constancy detectors 
Recursing to higher levels of description 

 BACON.^ plm 
Intrinsic property method 
Cornmon divisor met bod 

 BACON.^ plus 
General method for finding constant differences 
Expectation-based methods 

 BACON.^ plus 
Hill-climbing method for dealmg with noise 

BACON .3 for equation formation 
Dimension analysis 
Domain spli t t ing 
Logical expressions description 

 BACON.^ for equation formation 
Scope determination 

Qualitative process representation 
Correlation analysis 

Table 2.1: BACON Like Systems 

2. If X and Y are linearly related with the slope S and the intercept I in a 

number of cases, then hypothesize that this relation always holds. 

3. If X increases as Y decreases, and X and Y are not linearly related, then 

define a new tenn T as the product of X and Y. 

4. If X increases as Y ïncreases, and X and Y are not linearly related, then 

define a new term T as the ratio of X and Y. 

In the dlscovery process of BACON, the system cames out a beam search, in which only 

a certain number of pairs of terms with the highest correlations are used t o  find fundamental 

patterns and construct new terms. Then the regularities of constancy, linearity, increasing 
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and decreasing trends are detected for a selected pair of terms. This is accomplished 

simple arithmetic operations. The detection of a regularity triggers the construction 

a new term corresponding to the dope (heuristics 2, for linear relationships), the ratio 

(heuristics 4, for increasing trends) or the product (heuristics 3, for decreasing trends). A 

Iaw is attained when the data can be related together as one finai constant or iinear relation 

(heuristics 1 and 2). Thus inductive inference is performed by the production rules which 

generate the terms. 

In its Iater versions, some new features were added to enhance the system's capability 

(refers to Table 2.1). For example, the dxerence technique allows the system to  discover 

polynomial relations and the recursive technique enables the system to  deal with multi- 

variable tasks. 

BACON is an important system because: 

O It is the first machine inteliigence systems that  employs formula construction approach 

to  the function form discovery problems; 

a BACON itself has several successive versions concerned with slightly different aspects 

and components [Langley, 1978, 1979, 1981, Langley et ai. 1981, 1982, 1983b, 1984, 

Bradshaw et al. 1980, 1983al; 

Many differeat quantitative law discovery systems adapt BACON'S discovery strategy. 

For example, FAHRENHEIT 120, 691, which adapts  BACON.^ as its formula discovery 

machine, is an extension of BACON that determines the scope of the discovered for- 

mulas, and ABACUS [IO, 11, 161 and IDS [46, 471 adapts BACON'S strategy as their 

equation formation components; 

It can be easily integrated with other qualitative discovery strategies to create a 

discovery system that performs both qualitative and quantitative empirical discovery, 

e-g. GLAUBER, STAHL, and DALTON 139, 701, ABACUS, and IDS; 

BACON is a very clear and thoroughly tested algorithm and may be used as a standard 

by which subsequent systems are evaluated. 
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BACON was evaluated by a number of scient& law rediscovery tasks. However, due to  

the very small number of production rules used to recognize features for triggering transfor- 

mations, it can only find rational functions. Though it could be argued that any continuous 

function can be approximated to any order by a polynomial, this restriction to the rational 

function class is a great drawback from the point of view of parsimony and transparency. 

This limitation is &O shared by systems that use BACON'S discovery strategy. Neverthe- 

Iess, considering its small set of production rules and plausible application in the field of 

efementary chemistry and physics, BACON is one of the most important systems in the 

Iiistory of machine intelligence approach to the function form discovery problems. 

An example of BACON'S formula construction is the rediscovery of Kepler's third law. 

Table 2.2 illustrates the terms that were constructed for the discovery of Kepler's t hird law. 

Observation Data Term 1 Term 2 Term 3 
r 

Table 2.2: An Example of BACON'S Formula Construction 

The discovery system was first given a set of observation data related to a pair of original 

variables Distance(D) and Period(P). The detected trend is a increasing trend, Le. P 

increases as D increases. Thus a new term D / P  is constructed according to Heuristic 4 

(page 1,). Since no linearity and constancy is detected in the new generated term, the 

construction process will go on. Baseci on the observed decreasing trend of term D / P  

ris D increases, the second new term D2/P is constructed, and then the third, D3/P2 is 

constructed from D / P  and D'/P. The last term is found to be constant, thus it leads to 

the discovery of the function form D ~ / P *  = 1. 
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2.2.2 ABACUS, FAHRENHEIT and IDS 

BACON searches for a function form description based on trend analysis. Clearly, if there is 

no trend detected, or in other words, the underlying function is non-rnonotonic, the system 

will not find the solution. For example, if the observation range is z E [-1,2] and the 

underlying function relation is y = z2, no new term wili be constmcted by BACON since 

the observation data set is not monotonic, in spite of that the functional relation could be 

discovered by a two-step term construction: Terml = y/z and Terrn2 = Terml/z = = 

1 (Constant). ABACUS addressed this problem by integrating qualitative discovery with 

quantitative discovery. 

In ABACUS' equation learning, it searches for the best equations to describe the observed 

data with a set of inductive rules similar to  those used by  BACON.^ (a released and enhanced 

version) : 

1. If X and Y are qualitatively proportional to  a user-specifiable degree, gen- 

erate new terms z/y and z - y. 

2. If X and Y are inversely qualitatively proportional to a user specifiable 

degree, generate new ternis zy and z + y. 

3. If a term X is found constant for al1 events, the learning task is completed. 

4. If a term X is found constant for a subset of the events, the subset is removed 

frorn the list of events and associateci with the equation describing it. 

Rule 4 allows the system to find multiple equations to  describe piecewise functions. To 

speed up the searching, ABACUS also employs d e s  based on three domain-independent 

constraints. They are unit compatibility d e  (prohibiting the generation of the terms with 

incompatible unit), redundancy detection (prohibiting the generation of the terms which are 

mathematically equivalent yet syntacticdy Meren t )  and tautology detection (prohibiting 

the generation of the terms which are simplifiable by mathematical cancelation). 
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6. Periodic with increzeing (or decreasing) amplitude, 

7. Periodic without trend, 

8. Periodic with trend. 

When the îùst pattern is observed, the system w i l  hait. If the second pattern is observed, 

backtracking wili be invoked. When one of the remaining six patterns is observed, the 

s ys tem constructs new hypot heses accordhg to the rules in its knowledge base, utilizing 

the given protocols and arithmetic operators. For example, if the pattern "periodic with 

increasing amplitude" is observed, the new hypothesis will be comprised of "the current 

liypothesis" f "periodicn x 'Lmonotonic", and if a non-monotonie and non-periodic pattern 

is observed, it  may infer that the residual contains a term of "monotonic" - "monotonic" 

or 'cmonotonic't/ "monotonic". Each new hypothesis is examined one by one. If the new 

liypothesis has a lower error than the current one, new residual image is calculated and the 

process is repeated. Otherwise, it  discards the new hypothesis and checks the remaining 

Iiypotheses. 

Gerwin reported fifteen tests. Twelve tests had three component functions, one had two 

coniponents, one had a single component and one consisted of randomly generated data. 

The test came out with 40% accuracy, cornparing with 41% accuracy rate of doing by hand. 

Gerwin's algonthm is an artificial intelligence approach. The significance of this algo- 

rithm is that it has error tolerance ability and it  can carry out function form discovery 

based upon only a very small observation data set (in Gerwin's test, only ten observation 

data points were used for a single discovery task). Thus, the algorithm is quite efficient. 

However, the drawback of this approach is obvious. The function forms that could be han- 

dled are very limited. Since the system constructs hypothesis solely based upon analytic 

pattern analysis and more than one protocols may have the same analytic property, it  ïs 

not guaranteed that  the best expression is obtained. In Gerwin's test, the sjrstem modeled 

x3I2 log(x) as z2 - x and sin(r) + z ' /~/z  as sin(z) + ez/2/zs/2 . Moreover, since 

the protocols must have good significant analytic properties for the analysis step in this 

approach, it  is hard to extend the function form coverage. 
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2.3 Numerical Analysis Approaches 

2.3.1 E' Algorit hm 

Uniike previous function form discovery systems designed to find functional relôtionships in 

numcrical da%a independent of deep domain knowledge, Schaffer [52, 531 attacked function- 

finding probiems by treating function forrn discovery as a classification task. His E* algo- 

rithrn decides, among a fixed finite set of parameter id  formulas, which formula is most 

applicable to a given numeric observation data set. This differs fiom its previous work in 

two aspects. First, it  concentrates on reliable identification of a few function forms rather 

than on heuristic search of an inh i t e  space of potential relations. Second, it  introduces the 

use of different concepts, such as "distinctionn, "significance" and Yack cf fit", for evalu- 

ating apparent functional relationships- The algorithm can be considered as a numerical 

analysis function forrn discovery approach. 

Observing that a large portion of bivariate functions that were published in the journal 

Physical Review in the early 1900's fall only within a small range of function forms, SchafTer 

proposed his E* algorithm that emphasizes reliability rather than flexibility. Only eight 

possible choices are included in E' algorithm. They are listed in Table 2.3. To decide among 

tliese choices, regression analysis of data is conducted, and three notions: significance, 

distinction and sys tematic lack of fit are used to measure the goodness of the fitting results. 

Significance, a statistical measure, is used to  measure the strength of a functional pattern 

in terms of how unlikely it  is to have arisen by chance from purely random data. Distinction 

indicates how well a functional relationship approximates the observation data. In other 

words, it measures how different a candidate function is fiom other function forms with 

which it might be eosily confused. The last notion "Systematic Lack of Fit" measures the 

possibility of describing the fitting residuals by another formula. If this is the case, then we 

could Say that there is strong evidence that the relationship between given variables is not 

wliat the system has discovered. 

Schaffer tested his algorithm with 352 sets of data  of bivariate functions that were 



No. Expression 

where kl, k2 and A: are panameters 

and NULL means uNo Relationship Identified ". 

Table 2.3: Prototypes of E* Algorithm 

published in the journal Physical Reviews in the early 1900's. The results were interesting. 

Compared with BACON, it performs equally well in identifying the correct formula in 30% 

of testing cases. However, E' was much less likely to select an incorrect formula as the 

solution. BACON gave 30% incorrect answers while E' only gave 10%. 
L 

Relying only on statistical andysis, E* has a relatively large tolerance to noise. From 

the philosophy of scientific discovery point of view, E* brought some new terms into its 

disrovery process that were not considered by its previous systems. First, deep domain 

knowledge is normally brought to bear in scientific analytic work and can usually reduce 

efforts. E* only selects 7 possible fitting function patterns but performs quite well in its 

special problem domain. Second, to evaluate the findings, we need combined criteria for 

identifying a potential solution during the discovery process (such as the "significant" and 

"distinction" notions in E*). Lastly, to reduce the chance of incorrect resdt, we need to 

give a discovery result along with a confidence measure (e.g. the notion of "systematic lack 

of fit" used by E*). 
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The drawback of this approach is that, because the set of possible solutions is limited, it 

is effective only in those cases where the predefined formulas include the unknown function. 

For applications in a wide range of discovery tasks, the set must be expandeci significantly 

and the three criteria must be modified accordingly to  take into account the new formulas. 

Nevertheless, this kind of ac hoc modifications cannot improve the potential of this approach 

too much. Thus the major limitation of the E' algorithm and is its inflexibility in dealing 

witli a wide range of function forms. 

KEDS [49] is a function form discovery system which deals with piecewise functions. After 

fading to  integrate CL US TER^ [61], a cluster algorithm, and ABACUS into a piecewise func- 

t ion form discovery system of usefd for engineering, Rao and Lu observed that "in order to 

discover models for engineering domains, the task of partitioning the domain space shodd 

be closely linked to the relationships that are to  be discovered". This observation led to  

the development of KEDS, a two-phase discovery system. The partitioning is mode1 driven 

and is based upon the relationships that are discovered Gom the data, while the discovery 

process is restricted within the boundaries of the regions created by the partitioning. 

KEDS requires generalized knowledge about the kinds of relationships that are expected 

to be obtainable. This knowledge is expressed in the form of parameterized equation tem- 

plates. KEDS first tries to fit the observation to one of the template functions. If it fails 

to obtain an acceptable fitting, it tries to partition the domain by sample clustering. Af- 

ter partitioning, equation fitting is carried out within each region again. This process is 

repeated until an acceptable piecewise function form is obtained. 

Since KEDS is destined to  solve rd-world engineering problems, it employs only poly- 

nomials as its template functions. In terms of accuracy and efficient and meaningful parti- 

tioning, it achieves its goal within a limited set of function forms. However, its drawback 

is obvious. Since the solutions can only be piecewise polynomial functions, in terms of 

parsimony and transparency, the system cannot generate quality solutions. 
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2.4 Data Transformation Approaches 

2.4.1 FFD 

FFD uses the data transformation approach, introduced by Wongr651 in 1991. Since this 

research uses the same method and falls in the same category, the next chapter will be 

devoted to the fundamental issues of this approach while only a bnef review will be given 

in this part, 

IFD approaches function form discovery problems with a twephase model, feature 

simplification and function form abstmction. The former is implemented by successively 

applying data transformations selected fiom a set of transformation classes which are pre- 

defined in the system's applicable tmnsfomation set, and the latter is done by numeric 

fitting to one of the function prototypes predefined in the system's primitive finction set. 

During its discovery process, the system searches for the transformation sequence that 

t r ansforrns the initial given functional image into a recognizable simple image. Heuristics, 

based on the measurement of the simplicities of the transformed functional images and the 

complexities of the total transformation sequences that have been applied, are employed in 

a best-first search. Once the system identifies a transformed image as a primitive image, a 

fiinction form is declared to be discovered. The system reports the transformation sequence, 

possibly along wit h a set of descriptive parameters, and the final matching primitive function 

'as the discovered solution. 

Five general purpose data transformations were included in the FFD implementation. 

They are logan'thm, function inverse, recipmal, factorization and diflerwrtial. The primitive 

function set is cornposed of three classes of polynomial functions. 

cl + c2t2 + c3t + c4 = 0, for Cl  # O 

clty + czt2 + c3t + c4 = 0,  for Cl  # 0 

c1t2 + c2y + c3t + c4 = O, for Cl # 0 

FFD was tested with twenty randomiy generated binary mmbination functions, such 
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as y = t + arctan(t) + 1, y = e-' + l , ' [S i ) ,  1/(1- 2 log(t)), and so on. Among them, fifteen 

matching solutions and two approximations were found. Besides the randomly generated 

hinary combination functions, FFD was also tested with five nonlinear ordinary differentid 

equations with closed fonn solutions. It found three accurate functiond forms and one 

approximation. 

Two extensions also enable FFD to deal with oscillatory functions of the form y = 

-4(2) - s(cos(w (2))) , where A and s are two functions, and families of finctions with one 

extra variable control parameter. The latter function form is a special form of three-variable 

function form. This research focuses on the discovery of three-variable function forms. Thus 

the details of the extension will be discussed later. 

Considering that previous discovery systems can only discover function forms in a very 

limited number of functional classes, FFD did open a new era in its area. As a novel 

system that uses the data transformation approach, FFD introduced quite a number of 

new ideas. Some of them have not been incorporated, while others were implemented with 

the simplest method possible [65]. It is therefore too early to stimmarize the limitations of 

t l ~ e  data transformation approach. However, from the implemented systems in this category, 

we can draw the following conclusions from the general point of view: 

1. Data transformation approach has a great potential in dealing with complex function 

forrns. 

2. Data transformation approach is a very flexible methodology which could be eithet 

used as a general purpose function form discovery methodology or tailorecl to meet 

the needs of special applications. 

3. The flexibility of this approach is dso indicated by the capability of adopting other 

function form discovery methodologies in a cumulative way. In other words, we can 

easily use data transformation technique at the top level of the architecture of an 

discovery system which assigns specified subtasks to some other embedded low level 

systerns. 
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4. The complexity of the data transformation approach is usuaily high in both the nu- 

meric computation aspect and the computer memory requirement zuipect. The system 

must be able to perfrirm data transformation with acceptable accuracy level. That 

requires relatively large observation data set. 

5. Since some selected data transformations can only be numericdly implemented with 

certain accuracy, for example the differential transformation, to prevent the compu- 

tational error to explode is very important for the successful discovery of a fiuiction 

form. 

Our current understanding on the relationship between the system's capabïiity and 

t.he choice of transformation set and primitive set is stiU superficial. Any activities that 

Iielp us to gain theoretical knowledge, any experiments that enable us to gain practical 

understandings and any new impiementations that achieve new capabilities would be proven 

beneficial to the progress in the research area of function form discovery. 

LINUS [48] is the second discovery system that takes data transformation approach. Its 

transformation set contains the five data transformations defined in FFD and its primitive 

function set includes three different classes of polynomials. 

y + c =  0 ,  

yz+clzy + C ~ ~ + C ~ Z ~ + C ~ ~ + C ~  = O ,  

( cp3  + c2z2 + C f Z  + c4)y + cg== + w2 + h 2  f C. = 0 

New features introduced by LINUS include: 

Interactive experiment query according to the error level and minimum sample re- 

quired to make a discovery. 

Automatic range splitting and subtasks formation based on the applicability of specific 

transformations. This allows the system to deal with non-monotonie function forms 

and to a certain level to deal with piecewise function fonus. 
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Multi-solution output. 

Solution refinement through parameter calibration. 

Subt ask solutions merging by checking obtained solutions wit h different ranges. 

LINUS was reported to have successfdy discovered the function forms of four selected 

%variable functions (three of them are not monotonic), and the solutions for twenty linear 

and nontinear ordinary differential equations. In one expetiment, LINUS output nineteen 

different forms for the same observation data set. Thus the input numeric data can be 

interpreted by different ways. 

Unlike KEDS' range splitting which is based on cluster analysis, LINUS' range splitting is 

bcassd on the monotonicity of the observation data. The result is that LINUS cannot handle 

piecewise function forms whose dividing points is not the local maximum or minimum of 

the function. For example, LINUS could not find the following piecewise function forms 

22 if z 5 0 

z otherwise 

and 
-z2 if 2 5 O 

x 2  otherwise, 

tiiough it can handle the piecewise fotm 

-z if 2 5 0  

z otherwise 

The other shortcoming of LINUS is the incomplete use of observation data. When range 

splitting is needed, the program may drop some observation points around the splitting 

points to avoid infinite sample value, and the program does not make any effort later to 

get those points back. Furthermore, the program cannot provide us the necessary informa- 

tion about the splitting points which is important for piecewise function form description. 

LIN US'S sub-solution merging str ategies need to be improved significantly for handling real 

world function form discovery problems. 
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2.5 O t her Approaches 

COPPER combines qualitative reasoning with quantitative remoning. Its qualitative rea- 

soning is based on dimensional analysis and the quantitative reasoning to address possible 

missing arguments, verify constructed tenns and decide on polynomial formula in describ- 

ing input nurneric data. II-theorem [2] is the b a i s  of dimensional analysis technique. Its 

footprints can be found in many engineering domains. Three key steps of this technique 

are: 1) identifying al1 of the relevant physical terms and their units, 2) selecting base argu- 

ments frorn the identified terms, and 3) constructing dinensionless combinations (daerent 

products of exponents) of the terms. 

The first few steps of COPPER system are purely dimensional analysis. Al1 the primitives 

of the description space with units and rules for generating derived descriptors must be 

provided by the user. When the system finds out that there is no missing argument, it 

constructs physically meaningful terms and iterates through each phase to look for a simple 

functional formula which is a low-degree polynomial. 

Since COPPER'S ernphasis is to discover pbysically meaningful formulas through dimen- 

sional analyses, it only works with formulas that are linear combination of products and 

ratios of the unknown arguments. Many physicai laws are in this function class, especially 

in a good number of engineering applications. From this perspective and the Weierstrass 

approximation t heorem El?], COPPER'S pefformance surpass the performance of BACON 

and ABACUS. COPPER has demonstrated an important way t o  use deep domain knowledge 

in a function form discovery system. 

2.6 Summary 

A11 the discovery systems we have reviewed aim to  find quantitative relationships between 

numerical terms. Though many techniques were used to enhance the ability of the dis- 

covery systems, inciuding 1) preprocessing data by data transformations, 2) introducing 



domain knowledge to speed up the search, and 3) utilizing statistic tools to deal with noisy 

daia, al1 of the early systerns share a common fatal shortcoming - highly lirnited scope of 

discoverable function forms. As indicated in the preceding review, the systems in BACON 

famil y make t heir discovery wit hin polynornial and rational functions, and data analysis 

approaches make their discovery with a set of arbitrarily selected prototypes. 

T h e  data transformation approach synthesizes a wide range of function forms by combïn- 

ing two fundamental techniques, data transformations and functional pattern recognitions, 

into one system. The data transformation approach method can be viewed as a general 

quantitative law discovery model. It can adopt other methodologies in an "cumulative 

way" to enhance the performance of a new system. However, the FFG system is only a 

first atternpt of this approach and leaves still many unsolved problems and opportunities for 

irnprovements. LINUS, as the first successor of FFD , has contributed with two major im- 

provements - releasing the monotonicity constraint by range spiitting, and formula refining 

tlirough parameter calibration. This research aims to  make progress in a different direction, 

i.e. discovering three-variable function forms using the data transformation approach. 



Chapter 3 

Function Form Discovery by Data 

Transformation 

Generaily speaking, the function form discovery problem is the following: design a procedure 

t.llat can select a formula f(y,  x) = O, f E F, 3 is a set of formulas called 'available 

formula set', and the selection should optimally match with a set of given observation 

instances O = { f y;, x;) ), called 'observation data set', in terms of justification, parsimony 

and trnnsparency. The available formula set F could be a limited set of function form 

protocols (such as the functions listed in Table 2.3 for the E' algorithm), a class of analytic 

functions (such as rational functions), or an implicit set defined in a recursive way (like 

in FFD). It is also called the function form coverage of a discovery system. Typically, 

x E R C - Sn and y f D C 92, where 3? is the set of real numbers, n is an integer, R 

is cczlled the domain of the function form, D the range of the function, and R x D the 

observation domain. This problem is also called the mal-valued function fonn discovery 

problem, numeric function f o m  discovery probiem or the quantitative reasoning problem. 

If 3 contains only mathematic formulas related to continuous functions, it  is then called 

continuous function form discovery problem. Throughout this thesis, we are concerned only 

the problem of continuous function form discovery. Therefore the tenn c'function" will be 

iised to denote real-valued continuous function forms, unless explicitly noted otherwise. 
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Furthermore, we restrict our attention to three-variable problems, i.e. x E R 2 91'. 

In this chapter, 1 will discuss the foundations of the machine discovery system FFD-II. 

The discussion is divided into three parts. In the first part, 1 will describe the basics of 

the proposed methodology by showing that data transformation model is a general function 

form discovery model. A forma1 statement of the research problem will then be presented in 

the second part. In the last part 1 will first introduce the function form description language 

iised by FFD-II, and then focus on theoretical issues concerning the description language, 

such ,as expressiveness, necessity, sufficiency, and redundancy. 

3.1 General Model of Function Form Discovery 

3.1.1 Centrd Mechanism of Data Transformation 

-4s stated in the review, function form discovery systems fal! in three categories: numeric 

a~ialysis, data transformation and formula construction. Numeric analysis methods empha- 

size the recognition of functional patterns directly from the observations. Formula con- 

struction methods, in contrast, try to simplify the original observations into a very simple 

functional form, such as a constant or a linear function. The data transformation method 

is a combination of these two methods. 

The data transformation mode1 employs both a rich set of tools for data simplification, 

kriown <as the data transformation set, and a set of numeric tools that can recognize func- 

tional patterns in a set of functions known as the primitive set. Thus, it can be viewed as 

a general mode1 of function form discovery methods. 

However, the data transformation approac!! is not simply one that combines the two 

different approaches together. For handling the task of simplifying a wide variety of func- 

tional patterns, the data transformation set must be carefully composed. The primitive 

set must be able to represent, in generai, as many as possible of the simplified functional 

patterns efficiently. Furt hermore, the system must be able to  use appropriate functional 

pattern simplification tools to simplify a given observation data set efficiently into a rec- 
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ognizable primitive. Figure 3.1 depicts the central mechanism of function form discovery 

by data transformation. The key idea of this approach is recursively simplifying the func- 

tional image through data transformations until a simple recognizabl- functional pattern is 

reached' . 

3.1.2 Numeric Analysis in General 

The data transformation mode1 is a genera.1 function fonn discovery mociel. The numeric 

andysis  method could be viewed as one extreme while the formula construction method 

is its opposite. For a better understanding of the data transformation method, let us first 

examine one extreme, the numeric anaIysis method, frorn the general point of view. The 

other extreme will be discussed in the next section. 

As an extreme: numeric analysis approaches are composed of an empty set of da ta  trans- 

formations and a relatively large set of primitive functional patterns, narnely the function 

prototypes. The systern does not search for an operation that can simplify the functional 

pattern. Instead, the discovery is solely the identification of one matching prototype func- 

tion which best describes the observation data. From this perspective, traditional numeric 

methods seem to qualify as functional form discovery methods. To avoid this confusion, 

the following may he considered as the criteria which distinguish the machine discovery 

~netliods frcm pure numeric methods. 

Measured by the system's ability to discover, a discovery system should cover a larger 

variety of di fkent  function forms. A method which can onty find function form 

representations within a very few possibilities is disqualified as a discovery method. 

However, the qualifiers of "many" and "fewn are only relative. Nevertheless, any 

system t hat simpiy performs numeric approximation or interpolation using a few 

selected formulas is not a machine discovery system. 

' A fiuictiond image is a set of observation data that numerically n?prr?sents a function fom. A functional 

i i i iqc  is said to bc "simple" if through a few application of data transformations it could be tnnsformed 

irito a fiuictional image that coidd be fitted to one of the selected simple functions, primitives, dcfined in 

t h  s y ~ c ~ i i .  Formai d&tions wiii be given later on in this thesis. 
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Select the sixnplest 
functional i m a g e  from 

the sample set instânce space 

APP~Y an 
applicable transformation 

to generate a new fucntional i m a g e  

1s the riewly Add n e w  generated 
genera ted image No fmctional images 
a recogriizzble to the sample set 

instance space 

Abstrzct function 

Hypothesis 

Figure 3.1: The Central Mechanisrn of Data Transformation Approach 
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Measured by the capability of the methodology itself, a discovery system usually 

utilizes not only traditional numeric tools but ais0 some other techniques to enhance 

its discovery ability. For example, cluster analysis was employed by the KEDS system 

and dimensional analysis were used by some other systems. 

Measured by the quality of the solution, a discovery system should give a simpler and 

more interpretable solution instead of solely an accurate solution. Traditional numeric 

analysis techniques solve function form discovery problems considering only the justi- 

fication criteria. The possible parameters of the functional form templates are decided 

by minimizing a numerical mesurement of error. The simplicity and rneaningfulness 

of the solution rely on the human expert who tries to solve the problem using certain 

numeric tools. In contrast, a discovery system that use numeric analysis approach 

should have the ability to take over the task of human experts to a certain level in 

choosing the simpler and meaningful expression to describe the given observation data 

set. However, due to the limited set of prototype function forms a system can handle, 

the ability of any system, that takes the numeric analysis approach to find a simple 

and rneaningful function form is also lirnited. 

An iritelligent approach should be able to  generate a solution along with a set of 

rneaningful measurements. An example is E' aigorithm, which mesures the quality 

of its discovery by the measurements of significance, distinction and systematic lack 

Since the system does not need any inference ability to choose operations from rule space, 

numeric analysis approaches require the least arnount of inference. This is one of the reasons 

wliy this approach cannot go too far from traditional numeric methods in performing data 

niodelirig. 

3.1 -3 Formula Construction in General 

The formula construction mode1 can also be viewed as a data transformation methodology. 

A~iy formula construction approach must be able to  decide when a discovery is accomplished. 
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This activity involves the detection of some very simple functional patterns. These patterns 

correspond to the primitives in the data transformation model. The systern must also be able 

to incrementally construct a formula, (called a theoretical term as in the BACON system) , 

iitilizing inference rules and elementary formulas. These elementary formulas along with the 

way through which a formula is constructed are equivalent to the data transformation set 

and sequence in a data transformation approach. Function form discovery systems that take 

the  formula construction approach are cornposed of two fundamental parts, as with the data 

transformation approach. Therefore, the two types of systems have the same fundamental 

structure. 

Consider the BACON system. It is a formula construction based system which is one 

of the most well-known function form discovery systems. Its formula construction rules 

(Heuristics 3 and 4 on page 17) can be rewritten as  two algebraic transformations: 

Tl: (X, Y) c-, (X, X / Y )  

T 2 :  (X, Y) (X, X - Y ) ,  

and its termination conditions (Heuristics 1 and 2 on page 16) correspond to the following 

two primitives: 

W e  have seen the rediscovery of Kepler's third law by BACON in Section 2.2.1. To 

ilIustrate the concept of function form discovery by data transformation, let us  examine 

tlie same problem from the general point of view. The discovery can be made by first 

transiorming (D, P) into (D, D / P )  by applying Tl; then applying T2 to  (D, D / P )  to  

geiierate (D, D'/P); and finally applying T2 to  (D, D?/P)  to generated (D, D ~ / P ) .  After 

tliis transformation, the data match with the primitive function P 2  because D ~ / P  = 1. 

The discovered function form can be represented by a transformation sequence aiong with 

tlie matching primitive P2 as 

( T 2 o T 2 o T 1 , Y  = 1) 
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where Y is a function of the original terms D and P decided by the transformations that 

have been applied. In this example, Y = D=/P.  

1 t is easy to distinguish a numeric analysis function form discovery system, which has an 

empty transformation set, from a data transformation function form discovery system. The 

difkrences between a formula construction approach and a data transformation approach are 

a little subtle. However, we classify them into ciiffixent categories because they have différent 

constructions, emphases and performances. The differences between the constructions of 

t liese two different approaches are: 

Operat ions  The construction rule set of a formula construction system is and domain de- 

pendent. BACON includes only two rules to deal with rationals and polynomials, and 

tlie Gerwin's algorithm includes six binary rules for combining six different analytic 

fiinctions.In contrast, the transformation set employed by a data transformation sys- 

tem is usually more general and may include any one-to-one continuous mapping. In 

both cases, the transformations in the set should be well coordinated to enhance the 

performance of the system. 

Heurist ics The heuristics related to each operation in a formula construction systern are 

usually more "precisen . Each operation can only be applied when a specific pattern is 

de tected between current related terms. This requires a thorough understandin, = on 

tlie effects of each operation applied to a certain data instance. Examples are BACON'S 

lieuristics on page 16 and the elementary patterns that the Gerwin's algorithm looks 

for to trigger a certain ccnstruction step on page 22. In contrast, in a data trans- 

formation system, the heuristics are usually more coarse and general since i t  is not 

pract ical to const ruct a large, general-purpose and well understood transformation set 

at the moment. 

P r imi t ives  Unlike data transformation systems which in principle can include any func- 

t ional pattern in its primitive functional pattern set, formula construction systems 

limit their primitive functional pattern set only to constant or linear functions for the 

recasons of the structure of their heuristics and operation set. 
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With different constructions, these two methodologies have different emphases and perfor- 

mances. 

9 Formula construction methods emphasize reliability. The reliability refers to both the 

tolerance to error and the consistency of the theoretical and practical coverage. Since 

1. the operation set is compact and only those transformations that are less sensitive 

to noise are chosen, 

2. the fundamental patterns the systern choosing to handle are usually the simplest , 

3. statistical tecliniques can be easily included in the system, 

the system usually has good tolerance to both the input noise and the cornputational 

errors. Furthermore, considering also the fact that the properties of the employed 

transf~rmations and primitives in a formula construction approach are usually simple 

and easy to analyze, we know exactly what function form could or could not be 

discovered by the system. For example, BACON can and can only find polynomial and 

rational function forms. 

Data transformation methods, in contrat ,  emphasize the coverage of a large variety 

of complex function forms. That is achieved by a well organized transformation set 

dong with a primitive set. However, as a tradeoff of ernploying some powerful but 

noise sensitive transformations, the system is relatively vulnerable to  noise. The 

employment of some advanced transformations, such as differential transformations, 

makes it a difficult task to describe the exact function form coverage of a discovery 

system that takes data transformation approach. Moreover, due to the great number. 

of selectable function forms and the limited numeric computation accuracy with digital 

computing machine using selected numerical methods, systems that perform data 

transformation can not guarantee the discovery of al1 function forms that are claimed 

discoverable by t heoretical analyses of the system. 

Therefore, when we seek an application in simple domain, for example elementary 

physics and chemistry, formula construction method is a good choice for its reliability and 
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efficiency. 

3.1.4 Cumulative Enhancement 

Besides the ability to cover a wide variety of function forms, the most important benefit for 

taking data transformation approach is the possibility and flexibility of constructing new 

high performance function form discovery systems in a cumulative way. The 'cumulative 

met hodology ' is the met hodology to  construct new systems with some ot  her augmented 

simpler systems (old systems) . The new system should perform better and carries out more 

tcuks.  Meanwhile, the new system not only includes the old ones but also assigns them new 

roles. 

The data transformation approach is a general and flexible discovery method. Al1 the 

esisting methodologies can find their new roles in this approach. It has been mentioned 

that the discovery algorithms in the other two categories share the sarne limitation of 

small discover able funct ion form classes. This limitation prevents any previous discovery 

algorit hm from being a general-purpose function form machine discovery system . However, 

due to tlieir robustness and efficiency in dealing with certain simple function form discovery 

t a k s ,  they can be used in a data transformation based discovery system to  perform some 

simple functional pat tem recognitions. 

There are two major ways in which we can build a data transformation based function 

form discovery system using cumulative met hodology. First, the primitive funct ional pat- 

tern set could be organized in a better way by employing simpler function form discovery 

systems. It means that the recognition of the primitives does not have to  rely solely on 

traditional numerical tools. The recognition tasks cari also be carried out by selected func- 

t ion form discovery systems. Since a function form discovery system usually provides us 

with a more compact and meaningful fit, the performance of the system could be largely 

enhanced in the way of organizing the primitive set with some well selected simple function 

form discovery systems. 

Second, some transformations we may choose may include descriptive expressions. A 
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system must be able to find these expressions for carrying out the discovery process or 

completing a discovery. For example, if a system includes partial derivatives as one trans- 

formation, a lower dimension discovery system is required to find the possible boundary 

condit ions for inverting t hose data transformations so t hat a complete function form de- 

script ion can be obtained. The other example is dimension reduction transformation. When 

solving multi-variable function form discovery problems, reducing the dimension of the p rob  

lem is an important way to simplify the probtem. However, if we want to use this strategy, 

i t is necessary to have an associated function form discovery system that can take over the 

discovery tasks with fewer dimensions. Such a system is usually simpler than the new built 

system of higher dimension. Some transformations may be observation instance related 

and must be constructed based on the recognition of some special functional pattern from 

tlie corresponding observation instance. This will require the discovery of function forms 

within a specific function form class. A simple function form discovery algorithm should be 

available to do t his job. Factorization and dimension reduction transformations' are two 

esamples of this type of transformations. 

3.2 A Forma1 Statement of the Research Problern 

W e  have just discussed the data transformation function form discovery model as a general 

fiinction form discovery model. The numeric analysis and formula construction models are 

two of its special cases. A system based on the data transformation model must have both 

tlie ability to simplify functional patterns and the ability to recognize functions in certain 

primary function classes. When the system is give an observation data set, it recursively 

selects simplification tools (defined as the data transformations in the system's tool-box) to 

simplify the observation data set, and tries to match the shplified observation data set with 

one of the functions in a selected szt of function templates. In the discovery system, the 

'Tlic factorization is a transformation cmployed by FFD-II, whilc the dimension reduction is &cd out 

iLs i\ spcciai typc of primitive rccognïtion - compositional primitive recognition in the FFD-II systcm. Morc 

(I(.t.iiiIs wiii l>c gïvcn whcn they arc introduced. 
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simplification tools are known as the data transformation set, while the function tempiates 

are known as the primitive functional pattern set. 

In t his section, the research problem will be formally stated in the form of function form 

discovery by data transformation. Before the statement, a number of definitions will be 

given. 1 will start with the definitions of function and observation, then carry on with the 

two major components, the data transformation set and the primitive set, and finally give 

t h e  definition of function form description language. Since the symbols introduced in the 

definitions will be used as a convention in the remaining part of this thesis, they will be 

siimmarized at the end of the definition part. 

3.2.1 Definitions 

Definition 1 Let f : DI C 52' c-t D2 c 92 be an unknown mal-value function govern- 

ing the system under our study, whem Dl is called the function dornain, D2 is called the 

function range and Dl x 0' is called the observation domain. An observation is a mal- 

valued three-tuple (a ,  b ,  c )  such that: 

-4n observation data set is a set of observations 

A n  observation data set is also called a functional image or an image in short. 

An observation data set is a numeric representation (instantiation) of a function form. 

Definition 2 A transformation is a uone-to-one ont0 mapping" T defined on any non- 

ernpty  subset D f  c d, where St3 denotes three-dimensional Cartesian Space, such that: 
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where D j  C 9Z3 is the tmnsfomation domain and Dt  C Or is  the tmnsfomation range. 

The inverse transformation of a transformation T is thus the transformation 

such that Y ( u ,  u,  w )  E D I ,  T-'(2' ( u ,  u,  w )  ) i (u, v ,  w ). A transformation class 

T is a set of transfonnations that includes either a single tmnsfomation or a number of 

transfonnations described by a pararneterized transfomation. A tmnsfomation in a trans- 

formation class is an  instantiation of the class. As such, we can express a tmnsfomation 

as  a n  instance of the corresponding tmnsformation as: 

* lparurnetric expression descriptions 

1l;ithout arnbiguity, an instantiated transformation class can also be um'tten as 

T lpammetric expression descriptions* 

For example, the parameterized transformation 

is a transformation class. One of its instantiations 

is a transformation where u + v is the pararnetric expression description of this particular 

instantiation. 

Definition 3 Let Tl : D ll ct D tl and T2 : D f 2  H D t 2  be two trarrsfomations, and 

D i = D t l  n D fl is not empty. The tmnsformation composition operator O defines a binury 
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operation of two transformations, written as T2 O Ti , that yields a new transformation T 

Note that  a transformation is a one-to-one ont0 mapping. As such, the inverse of a composed 

transformation T = T2 O Tl is the transformation 

Definit ion 4 -4 transformation class set is a set of tmnsfornation classes 

where K is an integer denoting the sire of the tmmfomzation class set. The tmnsfoma- 

{ Ti 

tion set defrned by  Equation (3.10) is called the base transformation set comsponding to 

transfonnation class set ST : 

Ti is a transformation class 

i =  1 , - - - , K  

where I = ( 1 )  and I is the identity transformation 

Note that each transformation class Ti is dso a set of transformations. The bold calligraphie 

letter "S " denotes a transformation class set and a simple bold capital letter "S " denotes 

the union of transformation classes in a transformation class set S. 
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Syrnbol 1 Name 1 Expression 

T~ : ( ~ 1 ~ 9 ~ ) ~  ( u 1 v 9 a - u + b  'UI 
TF Linear Factorization 

V a , b , c E ! R ,  a . b . c # O  

Table 3.1: An Example Transformation Class Set 

As an example, Table 3.1 defines transformation classes for a transformation classes 

set. Among the transformation classes, the transformation ciass TL contains a single non- 

parameterized transformation, and TF contains many transformations expressed by a pa- 

rameterized transformation with parameters a, b and c. The transformation class TD is a 

lit tle tricky. It does not include any parameter in i t s  expression. However, it is a parame- 

terized transformation class. Recalling the definition of transformation, any transformation 

inust be a one-to-one mapping. For this reason, any differential transformation has hidden 

parameters, or more precisely, parametric expressions that contribute as the detenninist ic 

conditions required for inverting the transformation by an integral. Let (u, v, w = h(u, v ) )  

be tlie underlying functional relation corresponding to the variable triple (u, v, w ) .  If 

f (u, V )  = / h(u, ")du + C ( v )  

wliere C(v) is the integral constant. When we are given a function form corresponding to 

tlie triple (u, v, 6) as 6 = h(u, v), and we knon tha t  (u, v, lu) = TD (u, v ,  w), it is necessary 
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to specify the integral constant C(v) for extracting the functional relationship between u, v 

and w ,  i.e. w = h(u, v ) .  However, the specification of the parametric expression can take 

many forms. For example, a simple way to specify the parametric expression is to express 

it with a pair of equations that determines the integral of the partial differential: 

where f and g are functions in cIass Cm. It means, on the smooth cuve u = f ( v )  on a 

f~~nctional image with associated variables u, v and w ,  the value of w is related to the value 

of t. ,as w = g ( v ) .  Thus, the functional relationship between u, v and w will be: 

'in instantiation of a parameterized transformation is a transformation. The specified 

pnrametric values or expressions are associated with the transformation as its subscript. 

For example, TF I,,+, stands for the factorizat ion transformation 

and TD lb,=-,. ,=,?l stands for the differential transformation with the indicated parametric 

expressions, Le. 

TD : (u, v ,  W )  ++ (u, v, aw/au) 
where w = v 2 ,  when u = 0. 

Definition 5 Let A and B be two tmnsfonnation sets, the tmnsfonnation set genemted 

b y  A and B with respect tu the composition openztor O,  or the generated transformation set 

in brief, is denoted by A O B: 

de f A c B = (  

\ 

T is transformation, and 

vT, ~ T E A  or T E B ,  

then T E  A o B  

VTl, Tz f A o  B, if Tl oT2 exists, 

then Tl oT2 f Ao B 
/ 

f 

T 

\ 

1 
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The generated transformation set of a single transformation set A is denoted by A': 

Similarly, the transfomation set generated by a transformation class set S, = {Tl, - . - , TK) 
is defined as3 

- dcf ST = STf = I o T i  O - - - o T K  

Definition 6 Let ST = { Tl, - - - , TK ) be a transfomation class set, ST be the cor- 
CI 

responding base transfonation set, and ST = S,* be the corresponding generated tnzns- 

formation set. Any element of ST, which defines a tmnsformation or more precisely a 

composed transformation, is called a transformation sequence generated by Sr ,  or in  brief, 

cr transformation sequence. 

Definition 7 Let T be a transformation class, the rank of T is an arbitrariiy selected 

non-negtive integer associated with T 

Rank ( T ) = K  E N 

trhere N is the set of natuml nunbers ( i e .  non-negatiue integers). The rank of a transfor- 

nzntion in a transformation class T equals to the mnk of the transformation class 

Rank ( T )  = Rank ( T ) ,  VT E T  

Let S r  = ( Ti, - - - , TK ) be a tmnsfonnation class set, ST be the corresponding gen- 

erated transfonnation set, and 1; = Rank ( T; ) , i = 1, - - , K be the corresponding 

' Notc thnt the composition operation Uo" is associative but not commutative when it is appLied to 

t.i-;uisforrnntions (Definition 3). "O" is both associative and commutative when it is applied to transformation 

c!;wcc; (Dcfinition 5). Thus in Equation 3.15 which transformation dass appears first does not affect the 

rcsdt. 
h 

A .-Hattcd Capitd Letter" 'O ST is used to cmphasize that the transformation set is gcneratcd by the 
h 

ti-iuisfornintion c i a ~  set SI. A gcnerated transformation set ST is also denoted by S,' or S: throughout 

t.1 J s  ttlicsis. 
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tmnsfomation classes mnk values. Let E , and 5? = pl 0 O O To , where each 
- 
Ti, (i = 1, - - -, O )  is a transformation belong to one of the tmnsfomation classes in  set S,, 

i .e .  E TKi  and Ki E 11, - -, K }  . The nznk of transformation sequence is defined to 

be the sum of rank values of each individual tnznsfomzation 

The order of tmnsformation sequence T is the nurnber of transformations in the sequence: 

Definition 8 A functional primitive class is a set of fitnctions (either a single function or 

parameterized functions) {z = f(z, Y)} in the class Cw which could be either explicit or 

impiicit. A functional primitive class is denoted by F .  

Definition 9 A compositional primitive class is a tua-dimensional expression set (g(z, y)) 

(either a single expression or a number of pammeterized expressions), and each g(x, y) is 

in the class Cs. A compositional primitive class is denoted by  E .  

-4 functional primitive class is a function template which stands for a set of functions 

dis tinguished by different parameter settings ( if any ) . As such, we will use the bold capital 

letter "F" to denote a functional primitive class and use the italicized capital letter "F" 

t.o denote an instant function in the set "F". Similarly, a compositional primitive ciass 

is an expression template which stands for a set of expressions distinguished by different 

parameter settings ( if any ). So that "E " represents a compositional primitive class and 

"En represents an instant expression in the set E . 

Definition 10 An element F in a functionalphmitive class F is called a functional primitive, 

wn'tten as F E F.  An  element E in  a composition primitive class E is called a compositional 

primitive, written as E € E.  
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Definition 11 A functional primitive class or a compositional primitive class is called a 

primitive class, and denoted by P .  A primitive class set is composed of primitive classes. 

Fi is functional primitive class, 

E j  is compositional primitive class, 

i =  1 , - . - , n ;  j =  l , . . . , n  1 
where the integer 'm' is the number of functional primitives and the integer 'n' is the 

num ber of compositional prïmitiues. Correspondirzg to the primitive class set Sp, a primitive 

set is dejîned as  

A n  element P in the set S is either a finctional primitive F or a compositional primitive 

E .  It is called a primitive. 

TczbIe 3 -2 lists two examples of primitive classes. The compositional primitive class EL 

contains a parameterized expression with parameter 0 and the functional primitive class 

Ft contains a parameterized function with parameters a, b and c.  An instantiation of EL, 

such as the expression $u + bv, is a compositionai primitive expression. An instantiation 

of PL, siich as w = u + v ,  is a functionai primitive expression. 

Symbol 

Er, 

Table 3.2: Examples cf Primitives 

Name 

FL 

Expression 

Linear Compositional Primitive 
u cos(0) + v sin(0), 

Vfl  E [O ,  n )  

Linear Functional Primitive 
w -  ( a - u + b - v + c ) = O ,  

V a , b , c ~  IR 
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Definition 12 A function form description language L: has two components - a tmnsfor- 

mat ion class set and a primitive class set, writien as 

def 
L = = ( ~ T ,  S P )  (3.22) 

where 

is the transformation class set, und 

is the primitive class set. A function form description language is a h  called a language in 

brie f. 

Definition 13 Let C be u function f o m  description language described by equations 13-22), 

/3.23), and (3.24). Let = S; be the tmnsformation set genemted4 by ST, and Sp 

be the primitive set corresponding to S p .  A function form description i n  language L i s  

defined as 

def 
D t = ( & , D p )  

for any Dr E c, and Dp E Sp 

where, DT and Dp are called the description transformation sequence and the description 

primitive respectiuely. Dr can also be written as 

where each TI E ST, (i = 1, - - , k ) ,  is a base triznsfonnation. The rank of the description 

equals to the rank of the description tmnsformation sequence: 

Rank (Dr )  = Rank ( DT, D p  ) 
def - - - Rank (DT) 

' ncfcr to Dcfmition 5. 
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Definit ion 14 If a three-variable function f o m  z = f (2, y) ( o r  f (2, y, z )  = O ) can be 

expressed b y  a function form description in a language L, it is descnbable in C. 

X function forrn description language L: codd also be viewed as a set of functions that are 

clescribable by the language. As such, i f a  function form f ( r , y , z )  = O or z = f(x, y) is 

describable in C, it is denoted by 

f E c. 

Definition 15 Let Cl und C2 be two fvnction for= description languages. If 

it is said that L2 is a super-language to CI, or LI is cz sublanguage to La. Tt is denoted 

by  

If Ci C2 and C2 Ç Ll , it i s  said that Cl i s  equivalent to C2 , and denoted by 

Ci z L2. 

Definition 16 Let f (x, y ,  z )  = O or z = f ( 2 ,  y) be a function form descn'bable in a function 

jornz description language L = (ST, SP). The rank of function f o m  f in language L= is 

defined as 

The Complexity of a function form f in language L: is measured by its rank in the language 

and the complexity of the corresponding description primitives. When we construct the 

Rank ( f, L: ) = min (DL) 

'' To the riced of t l is  rcsearch, the complexity of a primitive is the numbcr of non-zero control paramctcrs- 

I i i  n more gcncrai mcasurement we skould consider how difficult it is to find thc expression of the primitive 

; i i d  liciicc tlic f~mction form. 

V D c  E L ,  and 

Dr is a descrip (3.30) 

tion of f 
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senrcli heuristics, we take into account both of the rank of the transformation sequence that 

ticas been applied, and how likely tke instance functional image can be transformed into a 

primitive with the application of a new transformation. 

An Example Funct ion Form Descri~tion Laneuaee: 

To understand the definitions, let us examine an example b c t i o n  form description language 

and Iiow function forms are expressed in the language. However, the rank values will not 

Ile shown in tliis example. They will be more meaningful to be presented in the part where 

the proposed function form description language is introduced. 

The example function form description language is based on the transformation classes 

listed in Table 3.1 and the primitive classes listed in Table 3.2. Let us first list the compo- 

nents and the relevant sets as the following, 

The Transfonnation Class Set 

The Base Transfonnation Set 

The Genemted Transfomation Set 

- 
S T = S T = I ~ T F 0 T ~ o T ~  

The Primitive Class Set 

The Primitive Set 
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The example function form description language can then be defined as: 

The Description Language 

Using t his example function form description language, the function 

* = p' -y4 

lias the following two possible descriptions6: 

TIius, the  function of Equation 3.38 is an instance of the ianguage L, written as 

= ' E L 

To transfer a function form description into a simple function, we need to invert the trans- 

formation sequence in the inverse order. Let us see the process of inverting "Description-1" 

first. 

Starting from the primitive fimction Dp: 

where u, 2. and w are the variables that are generated by applying the transformation s e  

quence DT: 

TolrtL=o, W=uq Q TFIU+V O TFIU-V Q TL 

'' Notc tlmt t h  primitives of the two descriptions are different. More detail will be givcn soon. 
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to the original variable set (z, y, z), we invert the last transformation being applied, which 

is the differential transformation TD 1 w=v21, thr-gh integration: 

where the integral function is the primitive function, and the initial condition of w = v" 

when u = O (specified by the subscript of Tg) determines the integral bounds and constant, 

t hen invert TF}(t,+rt) : 

(u, V ,  u1 + v l )  ci (u ,  U, (2' + v)(u? + v?)), 

(u, v ,  u4 - v4 )  c-f (u, U, eu'-v' 1. 

Iiaving inverted the transformation sequence, the variable triple (u, v, w )  corresponding to  

the primitive has been turned into (u, v ,  eu'+"). Since (u, v ,  w )  is a transforrned variable 

set t h a t  is obtained by applying the transformation sequence DT to a variable set (z, y, z) , 

w e  sliciild substituting the variable set (2, y, z) into the final obtained expression. That 

yields the function: 

= e='-~ '  

This completes the inverting ptocess with a function identical to Equation 3.38 

To rewrite function form "Description-2" to a simple function, we must first figure 

out  a one dimension function f (t) that relates the compositional primitive g to the 

independent variable W .  In general, a compositional primitive expression C(u, v )  irnplies 

t iiat the primitive function form can be expressed by a function f : 

which is indeed a parametric expression. Thus, to  complete a function form description that 

includes a compositional primitive, a one-dimensional function, narnely the "descriptive 
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is required to couple with the compositional primitive. Otherwise, the function form de- 

scription is not an unique description, which means it could stands for many function forms. 

In rr function form discovery task, f (t) is obtained by carrying out two-variable function 

form discovery upon a set of two-dimensional observation data. in  this example, since the 

fiinction to be expressed by the example language is known, we know the descriptive ex- 

pression is f ( t )  = 2t.  Hence we can start from the variable set (u, u, w = 2u) and invert the 

transformation sequence, which is exactly the same as it appears in "Description-1 ", in the 

same way as we did in the transfer of "Description-1 " into an explicit function. 

Equation set (3.12), which is required to couple a differential transformation, and equa- 

t-ion (3 -39) are two types of parametric expressions of the function forrn description language 

presented here. They are al1 singlevariable functions. Since the major concern of this re- 

search is the function form discovery problems in three-dimensional space, we treat them 

orily <as hidden parametric expressions that could be passed to an available two-variable func- 

tioii forni discovery system that handles the tasks of discovering the necessary expressions7. 

Definition 17 A descriptive expression of a function form description is a two-variable 

continuous function which is required for inverting a certain transformation or cornplet- 

ing a function form description that contains cornpositional primitive as a cornponent. A 

descriptive image is a set of real nurnber pairs which is the numeric representation of a 

two-variable function in the class Cw. 

We have seen how the transformation set and the primitive set in a funrticn form 

description language work together to represent a function. A data transformation based 

function form discovery system is  constructed on the bases of a defined language. If a 

system is constructed based on the description language L (Equation 3-37 and 3-37), i t  

' I i i  tlic implcmcntation, the FFD system and least-squares polynomial fitting method arc considercd as 

two dioiccs 
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wilI discover the function forrn description "Description-ln or "Description-2" from a set 

of give observation data, such as 

The example we have examined is an expiicit function. Both of the functional descrip- 

tions we have given are invertible and the inversion results in an expiicit function, which 

is a composition of elementary analytic functions. We shall mention here that things may 

iiot trirn out to  be that nice. To extract the functional expression regarding to the initial 

variables by invetting the discovered function form description, may result in an implicit 

function, an expression with integral operation or a set of equations. In other words, there 

are some functional descriptions that can only be inverted numerically. When the t ransfor- 

niation set includes the differential operation or the functional inverse8, this phenornenon 

is not avoidable. For example, if we add one more transformation class 

to the transformation class set S,( Equation (3.33) ) and one more functional primitive class 

to the primitive class set S,( equation (3.35) ), a new function form description language 

L,, is defined: 

Using this new description language, we can express the elliptic integral 

Ft wctiond iavcx-sc is one of thc transformation classes employcd by FFD-II . 
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Elliptic integrals are special functions that can only be expressed in integral format. This 

example shows not only an example of the description of a complex function form but also 

the pow&fulness of the data transformation method. 

Different function form represent ations have different syntactic simplicities and semantic 

ineaningfulness. The data transformation based mode1 has the capability to handle complex 

firriction forms in various formats. Moreover, from a given observation data set, such a 

system can provide us with multiple solutions. 

3.2.2 The Statement 

The problem addressed in this thesis can now be stated as the follows. 

Three-variable Function Form Discovery Probiem: 

1. an Obseruation Data Set Of which is governed by an unknowri explicit 

or implicit three-variable underlying function form z = f (z, y). 

2. a Function Fonn Description Language C = ( ST, Sp ) , where 

the Primitive Class Set S p  contains : 

the Ranked %nsfonnation Class Set ST is: 

3. a Mazimum Rank R,,. 

4 .  a Matching E m r  Tolemnce Level 6,,. 
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Constlxct: a Function Fonn Description Dr = (DT, Dp) E C , such that: 

1. Rank ( DT ) < Rmax. 

* 
2. the averaged deviation between the function form t = f (2, y )  repre- 

sented by Dr and the underlying function form z = f (x, y )  represented 

by the observation data set Of is l e s  than 6,, . 

Simplification Assurnptions 

At this stage, we restrict our scope with the following assumptions. Without explicit men- 

tion ? t liese assumptions will exist throughout this thesis. 

Continuity The unknown function form and al1 the underlying function forms 

of transformed images belong to the class Cm in the observation domain. 

Sirfficient Observation We can acquire sufficient fine step observation data. 

Known Expected Error The process that generates the observation data set 

are well determined, i.e. the expected error level is known. 

Acquirable Descriptive Expression Any descriptive expression~equired 

for completing a function form description could be obtained from an exist- 

ing two-dimensional function form discovery system via passing an descrip 

tive image to that system. 

The first asçümption implies that we need only t o  consider continuous transformations 

in the construction of ST and S p  , and the appiicability of basic differential transforma- 

tions. The second assumption is about the availability of the observation data. The third 

,-issiimption ensures that the error propagation during the search can be estimated. 

The last assumption allows this research to focus on the three-variable function form 

discovery problems. The discovery of two-variable function forms relies on an available 
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low dimension discovery system. Recall that WC have been coafronted with two types of 

descriptive expressions in an example (Refer to Equation 3.12 and 3.39). Since the FFD- 

II system contains the same type of transformations and compositional primitive, these 

tmo types of descriptive expressions are required to represent a complete functional format 

relat i~nship'~ between variables. It is assumed that there is a supporting system that can 

fi nd t hose expressions". However, without the descriptive expressions, the constmcted 

transformation sequence, if viewed o d y  as a sequence of transformation classes along with 

the matching compositional primitive still reveals the underlying regularities of the observed 

fiinctional image, cand can be interpreted as a numeric Iaw concerning the corresponding 

i nvestigated real world problem. That means, the system can serve as a special mathematic 

modeling tool. 

3.3 FFD-II Function Form Description Language 

As Ii,u been pointed out, the performance of a data transformation based function form 

discovery system highly relies on the description language itself. The ability to simplify 

ftinctional patterns is determined by the transformation ciass set, while the ability to rec- 

os~iize primitive patterns is determined by the primitive class set. The combination of 

these two abilities enables the system to discover function forms from numeric observation 

data. Since no specific application domain is specified, the focus is only placed on those 

peneral-purpose language components and related issues. 

3.3.1 The Transformation Class 

TIiere is no doubt that a well tailored transformation class set ensures a wide function form 

coverage and better computational efficiency. When we are confronted with the task of 

"'A functional format rclationship is rcpresented with an analytic function, cithcr impliat or cxplicit, 

wliilc A iiumcric law can be gencrally expressed by any mathematic formuia, such as an analytic function or 

;L tliffcrcxitid cqtiation. 
I I Tlic FFD systeni or simply a polynomial interpolation dgorithm can be used as the supporting system. 
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constructing a transformation class set, we may ask a t  the very beginning: "What are the 

criteria for choosing transformation classes to  meet our needs?". Unfortliriately, we know 

very little to  the answer of this question up to  now. This issue is still open and calling foi 

more attention in this research field. 

Generally speaking, it is relatively easy to  tell what transformations are necessary for 

covering a certain function form class. But it is difficult to tell what is a sufficient trans- 

formation class set to solve the function form discovery problems drawn from a specific 

poprilation. In other words, it is relatively easy to characterize a single transformation, but 

Iiard to know how the dXerent transformations in a defined transformation class set affect 

and enhance the performance of each other. Especially, when differential transformations 

are included, the analysis becornes very complicated. 

Our purpose is to design a system that can deal with "common" function forms in 

scientific fields. These common function forms are generated by the combinations of funda- 

mental analytic functions through fundamental function construction operations ( listed in 

Table 3.3 and Table 3.4 ), Generally speaking, among these fundamental functions, the con- 

stant function class is the simplest (from the perspective of being easy to identify, compute 

and manipulate), the power function class is the second simplest, and the rest are about the 

sarne. Among the operators, the linear operations " + " and " - " are the simplest, " x " is 

next, and " t " may be more difficult to handle than " x ". Functional composition provides 

the rnost function form variations and is usually the hardest to handle. 

Most of the anal-vtic functions we can find in a first year calculus text book fa11 into the 

cl'ass we have just described. As a simple example, all polynomials are derived by repeatedly 

combining a constant function and a power function with the binary operators addition and 

multiplication. The function form f (z)g(=) can be rewritten as e ' ~ g ( l ( ~ ) ) . ~ ( ~ ) .  As such, it 

is a functional composition of the exponential function and the function generated by the 

prodiict of two functions: the function g and the functional composition of log function and 

the function f .  

With this guideline of what function forms we are going to  deal with, we will consider 

t.1iose general transformations that simplify either the fundamental functions or the combi- 
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I (- . .y 1 Povr-r functions I 

Expressions 

c 
! 

- - - -- - - - 

(. . . ) u n  1 ~ o o t  functions 

Func t ion Name 

Constant funct ions 

- - - - - - - - - - 

Trigonomet ric funct ions 
I 

log(- . .) 1 Logarithm functions 1 

1 

Table 3.3: Fundamental Analytic Function Forms 

=P(- - -1 

Addition operator 

Subtraction operator 

Multiplication operator 

Exponential functions 

1 i [ Division operator 

1 @ 1 Functional composition operator 1 
Table 3.4: Fundamental Function Construction Operations 

nation operators under certain circumstances. In the rest of this chapter, 1 use the folIowing 

symbols to define the transformations. The variable set includes: 

ul, ua and tcd denote the Minable set of the current state (i.e. before trans- 

formation). Among thern, ul ,  u2 are independent while ud is dependent. 

0 V I ,  v? and vd are used to denote the variable set of a transformed state. 

Among thern, vl , v* are independent while vd is dependent. 

Let T he a transformation applicable to the variable set ( ul ,  uz, ud ) , and ( v l  , vz, vd ) 
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be the variable set that ( ul, u2, ud ) is transformed into, i.e- 

T 
( W l  u2, u d )  - ( ~ 1 1  7J21 U d )  1 

a transformation will be formulated as: 

where f ,  g, and h stand for the expressions that specify the reIationship between the original 

variable set and the new variable set. Before we define the transformations it should be 

rnentioned that the expressions f ,  g, and h may contain certain parameters, thus the above 

formula will also pertain to a transformation class T = {T) . 

Now let us define the basic data transformations for FFD-II . When a transformation 

is defined, a brief description of the usefulness of the transformation in dealing with the 

general function forms will be given. 1 will also give the applicability conditions and the 

inverse transformation of each data transformation. 

Logarithm 

The importance of this transformation is that 

1. it is a fundamental function we intend to deal with (Table 3.3); 

3. it transfers power and root functions into linear combinations; 

3. it transfers multiplication into addition; 
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4. it removes the functional composition ( operation "O" ) from the exponential 

expression exp ( f (u, v )  ). 

To preserve the continuity, logarithmcan only be applied to a functionaf image with constant 

sign. The inversion of this transformation is 

wliere the sign " f "is decided by functional image to which the logarithm transformation 

w;is applied to obtain the image O(,, .,,,, . 

Reciprocal 

ReciprocaI is an inverse of multiplication. It is a simple and common afgebraic operation 

t hat exchanges the the numerator with the denominator of a proportionai expression re- 

sulted hy the " + " operator. When combined with differential transformations, it can 

sometimes dramatically change the functional pattern. For preserving the continuity, the 

reciprocd transformation must not be applied to a functional image with different signs". 

The inverse transformation of T R ~ ~  is equivalent to T R ~ ~  

- - - - - -- - 

'' It lins becu assurncd tbat thc underlying function is continuous function. If different signs arc obsc~vcd 

i i i  ;ui i~iiagc. it implics thnt thcrc must be some points in the observation domain whose function value are 

zwo.  A..; siicl:. thc application of TR~C wiil yield infinity. 



3.3 FFD-II Description Language 

Fac t orizat ion 

This is an important transformation that can best decompose the functional patterns de- 

rived by the operator " x ". Bowever, it is important that the factor function f (ul, u2) 

rnust be simple and can be easily observed by some other means. The extraction of the 

factor function is a task of functional pattern discovery - a function form discovery re- 

lated problem. Besides simple numeric tools, function form discovery algorithms can also 

be employed to carry out this task. The inversion of this transformation is 

The simplest factorization transformation is the one with a linear factor 

where 8 and C are control parameters. The corresponding inverse transformation is 
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Funct ional Inverse 

This is the algebraic transformation that changes the pre-assumed dependent variable. Gen- 

eraily speaking, a function form 

f(% U V  W )  = O (3 .SI) 

t. liat relates t hree variables together is only a functionat relationship among the variables. 

The only criterion for a variable to be the dependent variable is the "rnonodrome require- 

ment " , which means that the variable w can be viewed as the dependeni variable if and 

only if: Yu,  v E 32, f (u,  v ,  w l )  = O and f (u, v, w2) = O only when w l  = w2 . 

Fiinctional inverse is a simple and important transformation. Firstly, combined with 

clifferential transformations, it helps to express many fundamental function forms. We will 

see this when we introduce the differential transformation later. Secondly, the complexity 

of an explicit expression of a functional relationship usually depends largely on the choice of 

which variable is viewed as the dependent variable and put on the Ieft side of the equation. 

III other words, w = g(u,  v) , I L  = h(w , v )  and equation (3.51)  may be different represen- 

tations of the same functional relationship, but the expression g(u, v )  could be much more 

complicated and harder to handle than expression h(w , v )  . 

This transformation can be applied to a function which is rnonotonic to the variable u l  . 
The inverse transformation is equivalent to the transformation itself 
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Independent Variable Exchange 

This transformation allows the system to manipulate the given image equally in both direc- 

t ions corresponding to the variables ul and u2 . Combining independent variable exchange 

with functional inverse, we can rotate variables or exchange the position of any two vari- 

ables in the triple ( 2 ,  y,  z ) , provided the functional inverse transformation is applicable 

wlien necessary. Thus a more compact transformation class set could be constructed with 

the employment of TL-,, . There is no constraint on the application of this transformation. 

The inverse transformation of TV,, is equivalent to itself 

D i fkrent ia l  Transformat ion 

Differentiation is one of the most important methods in conducting mathematic analy- 

sis. In addition to the fzct that i;=riny scientific laws are expressed in terms of differential 

equations, many geometric properties, such as dope and curvature, are expressed with dif- 

ferential terms. The k q  idea of the data transformation mode1 is recursively simplifying a 

functional image until a simple image that the system can recognize is attained. Differential 

transformations claim their key roles in sirnplifying functional patterns with their superior 

ability in manipulating functional patterns when coordinated by other transformations. 

To see the capability of differential transformations in simplifying functional patterns, 

let  us give some examples. The fundamental function forms listed in Table 3.3 can be rewrit- 

ten as differential equations with corresponding deterrninistic conditions. Results are listed 

in Table 3.5. ClearIy, the original functions were al1 transformed into one of the simplest 



3.3 FFD-II Description Language 

Function Form 

f (4 = C 

f (2) = zn 

f (z) = x1In 

Table 3.5: Differential Representations of Fundamental Function Forms 

Differential Equation 

f ' = o  

f (z)  = tan(z) 

f (2) = cot(x) 

f (4 = e x p ( 4  

function clzsses - second order polynomials Pz( x7 f, f' ) . Thus the differential transfor- 

mat ion is the most important transformation that should be included in the transformation 

clcasses set. 

Initial Condition 

f ( 0 )  = c 

2 -  f ' - n -  f  = O  

n -  f ' - x -  f  = O  

The simplest format of t hree-variable differential transformation is the following trans- 

formation with a single partial differential. 

f (O) = 0 

f (0) = 0 

fr - f* = 1 

f' + f' = -1 

f'- f = O  

Instead of summarizing a number of fundamental function combinations that can be simpli- 

fied by TDIF (as what have been done in Table 3.5) let me present an example of how TDIF 

decomposes a function form into simple components. Differential transformation TDIF is a 

Iinear operation. I t  rneans that  when it is applied to a linear combination of two functions, 

- - - - --- 

f (O) = 0 

f = 0  

f (0) = 0 
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the result is the linear combination of the difTerentials of the two component functions. As 

such, if the function g(x, y) is irrelevant to z, that means g could be treated as a constant 

when taking differential respected to z ,  we obtain from applying TDEF the result: 

In a function form discovery problem to find the underlying function of the form z = 

f(x, y) 6 g (y), the application of TDIF provides a possible way to  reduces the cornplexity 

of the problem by decomposing the initial task into two tasks: to discover f:(xl y) and to 

discover a single variable function g(y). The latter could be handled by a discovery system 

of lower dimension. 

Since it is assumed that al1 underlying functions are in the class Cm, the differential 

transformation is always applicable. The inverse transformation of TDIF is an integral. 

ivliere ci, and c are two single-variable continuous functions, known as descriptive e ~ ~ r e s s i o n s ' ~ .  

In FFD-II , the inverse is computed by numeric integration. 

3.3.2 The Primitive Classes 

The choice of primitives must strike a balance among four criteria, namely generality, non- 

rediindancy, effectiveness and simplicity. 

Genemtity means that the primitive set must be able to  represent most of 

the final simplified features in a particular problem domain. In other words, 

l :\ Finclin;: thcsc cxprcssiom are just a task of discovering two-variable function forms from numeric data. 

Tlicy crui bc donc by pasring thc corrcsponding twa-dimensional sample data to FFD or a polynomial fitting 

~11~01-it11111. 
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when combined with the transformation class set, it  must allow a system to 

discover a wide range of function forms of our interest. It ernphasizes the 

overaI1 discovery capability of a system using a certain description language. 

0 Non-redundancy means that the primitive set must not include those func- 

tional forrns that are simplifiable by the defined transformations. This cri- 

terion emphasizes the reduction of redundancy. 

Effectiveness means that the primitive set must be able to represent as 

many functional features as possible. This criterion ernphasizes the variety 

of primitives that a system can recognize and the "speeding upn of finding 

a solution. 

Simplicity means that the primitive must be simple to be expressed and easy 

to be recognized. Measured by the number of the total control parameters, a 

well tailored primitive should use less parameters. Furthermore, matching a 

functional image with the primitive should not be too costly. This criterion 

concerns the computational complexity of the system. 

Funct ional Primitives 

There are two elementary types of functional primitives, normal primitive function and 

extended primitiue function. A transformation sequence transforms the original functional 

image related to the initial Yariable triple into a new functiond image related to a new 

variable triple. If we can find a formula that describes the transfonned function image, the 

original underlying function form can be expressed by that formula and the corresponding 

transformation sequence. Any single formula in the system's tool-box that can be used to  

clescribe a functional image is a normal primitive function. Expressed by an equation, a 

~iorrnal primitive function has the form 
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where Fr( VI ,  v3, v d )  is an analytic function and (vl ,  v2, a) is the variable triple to which 

a transformed functional image is related. This primitive function type is easier to handle 

than extended primitive function type. FFD and LINUS both employ only this type of 

primitive functions in their tool-box for solving function pattern recognition problems. 

In contrast, BACON does not bind generated variables into pairs. Instead, it views 

al1 netv generated variables as theoretical terms. Knowing how a theoretical term has 

been constructed from the original variables, the system finds the underlying function form 

related to the original variables by finding certain types of regularities14 between selected 

compatible theoretical term pair. This is an example of the second type primitive functions 

- extended primitive functions. 

,411 extended primitive function is a functional relationship among a set of selectecl the- 

oretical terms, or variables, associated with different generated functional images currently 

exist in the data spacel" 

FP(t l i  tZ,  - - - ,  t , )  = O  (3.58) 

wliere t i l s  are variables (theoretical terms) associated with their corresponding transformed 

variable triples or functional images. Since a theoretical terni (or its corresponding data) is 

obtained from applying data transformations to the original variable triple (or functional 

image), there exists a functional dependency between any generated theoretical term and 

the original variables determined by the corresponding transformation sequence. If it is 

fotind that a certain set of nodes existing in the current data space satisfies Equation 3.58, 

a function form concerning the original variables is discovered. This is the foundation of an 

extended primitive function. 

lncluding extended primitive function in a discovery system's tool-kit makes it possible 

for the system to  recognize a wider varieties of cornplex functional patterns. As a result, it 

either speeds up the discovery or extends the function form coverage of the system. 

'-' Rc.,.iilcuity tsed hcre is j t ~ t  the other word for primitive function. 

" ilccaii thnt a fiuiction form discovcry system works with two spaces - rulc space and data spacc. 

Data tr;uisform;rtions c.ul bc vicwcd as the d e  spmc and the data space is composed of a set of gmcmted 

fiiirctioiid irxiagcs. 
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Although we consider only the normal primitive in FFD-II , it is worthy t o  be mentioned 

that the extended primitive type is an important primitive type. It allows the discovery 

sÿstem to use the information in the data  space in a more flexible way, and provides the 

designer with more chances to  encode desirable domain knowledge into the system. For ex- 

ample, extended primitive functions could be selected on the base of certain mathematically 

interesting and meaningful clauses. In this way, short cuts to  a compact and meaningful 

solution are assigned to the discovery system. Dimensional analysis techniques may be used 

to compose an extended primitive function that is meaningful in terms of physical meaning- 

fulness in the problems in special application domains. This issue its own is a rich research 

area and should be viewed as a worthwhile direction of future research. 

-4s we discussed in Section 3.1.4, primitive recognition could be done by a simpler dis- 

covery  stems'^. In generai, the more the primitive functions that the discovery system 

can recognize, the wider range of function forms the system can cover. However, the fo- 

ctis of this research is the fundamentals of function form discovery by data transformation. 

The compactness is emphasized, instead of powerfulness, in the construction of the ptim- 

itive function set for FFD-II. Hence, only a small set of analytic function classes will be 

considered. 

Arnong the analytic function classes, polynomial function class are the simplest. It is a 

good function class to be considered as primitive functions for the following reasons. 

0 Polynomial functions can approximate any function in class Cm to any 

arbitrary order. This is supported by Taylor expansion and various inter- 

polation theorems. 

The dependency to the control parameters (coefficients of a polynomial) is 

linear. Thus the fitting could be easily implemented with simple and well 

established numerical tools. 

I 1; Siiiipler systcrn rcfers to a function form discovery system that recognïzes fcwer function forms more 

r.ffificiciitly t h n  tlic ho& systcm. Examples of such systems tliat can be considered by a data transformation 

I ~ ~ ~ r i t l  tliscovcry systcm includc E', I<EPLER[G?] and KEDS 
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The second order polynomials can quantitativeIy represent al1 the impor- 

tant first and second order curvatures and qualitatively represent important 

functional behaviors such as local minima and maxima, elliptic, parabolic, 

flat, hyperbolic points, etc. on a surface. 

Simple algebraic analysis methods are available, e.g. factorizat ion, for ana- 

lyzing the properties of polynomial expressions. 

a Polynomials have been demonstrated to be a good choice by the existing 

data transformation based function form discovery systems such as FFD 

and LINUS. This research further supports this claim in three-variable func- 

t ion form discovery problems. 

The following two primitive function forms are designed for FFD-II. 

The differences between F ,  and Fr should not be neglected. Fq could be easily transformed 

in to  a constance function by a transformation sequence consisted of a few applications of the 

transformations previously defined. Considering the task of fitting six parameters as a trade 

off of search more nodes, it is worthwhile. However, it is usually very hard to transform an 

expression of the form F,  into a simpler function form using the transformations defined in 

tliis chapter. Considering that the square root function is a very common function format, 

it would be better to be included in the primitive set directly. 

Compositional Primitives 

Table 3.4 lists five operators that can be used to  generate complex function forms from 

elernentary functions. I t  has been pointed out that functiorial composition operator O is 
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the most important one that combines simple function forms into hard to handle complex 

function forms. With a single operator 0, two simple functions f ( t )  and g(xl y) can be 

combined into a single composed function: 

In section 3.3.1, five general-purpose transformation classes were identified. Unfortunately, 

rione of them directly simplifies function forms given by Equation 3.61. In practice, it  may 

Iiappen that through a sequence of data transformations, the original functional image is 

transformed into a new image that satisfies Equation 3.61. In solving real world problems in 

a particular domain, it might be desirable that a certain set of variables (with dimensions) 

are combined into a dimensionless atom before a meaningful formula could be obtained 

(t.his requirement specifies an additional function expression g (z, y)). In the former case, 

a compositional primitive helps to enhance the capability of the system, and in the latter 

c'ase, a compositional primitive provides a way to encoding domain knowledge. 

i n  Equation 3.61, function h(z ,  y) can be decomposed into two functions - the core 

expression g ( x ,  y) determines the '%ne-grain" behavior while the function f (t) determines 

t.lie "global feature" . The compositional primitive set specifies the functional patterns (core 

expressions g ( x ,  y)) recognizable to the system. Through certain segmentation scheme, 

we can 'assign the discovery system with the ability to identify the functional components 

9(% Y )  and f(t) .  

Recall t hat we have discussed the "cumulative methodology" in Section 3.1.4. Applying 

i t in bot h of the tasks of finding a hypothetic core expression g(z, y) and the one-dimension 

fiinction f (t) are straightforward. They both are function form discovery problems that 

c m  be solved using specific discovery methodologies or existing function form discovery 

systems. 

Generally, the composition of a compositional primitive is closely related t o  the appli- 

cation domain. To demonstrate the idea of using the compositional primitive in a discovery 

system, linear functions was chosen as the on!y campositional primitive class recognizable 
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wtiere 0 is a control parameter. The corresponding compositional primitive is defined a 

This corn positional primitive addresses the recognition of cylindric functional patterns in an 

image. This class of images is related to a one-dimension function with a p l a n a  coordinate 

system rotation. The detection and fitting of this core function will be discussed later. 

3.3.3 The Function Form Description Language 

The function form description Ianguage used by FFD-II can now be stated- The choice of 

the rank value of each transformation class wiil be discussed in the rest parts of this chapter 

and in Cliapter 4. 

Transformation Class Set 

Table 3.6 lists the definitions of each transformation classes appeared in the 

definition. Notice that in the table T T REC, T I S V ,  and T VES are single 

elernent transformation set. 

Primitive Class Set - 
S p = { F q .  F T ,  E l )  

where F, = {F,) , F, = {F,) and E 1 = { E l )  (see Eq. (3.59). Eg . (3.60) 

and Eq . (3.63) for the corresponding formulas). 

The Language 

Z=(%,sp)  
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Table 3.6: Transformation Classes of FFD-II 

Symbol 

T LOG 

TREC 

T FAC 

T rsv 

T VES 

T  DIF 

Sorne Relevant Sets : 

The Base Transformation Set 

The Primitive Set 

Definition 

2' toc = TL% 

T R E C = ( T R E C )  

T FAC = { TFAC ) 

TISV = {TISV ) 

T VEX = { TVEX ) 

T ~ r î  = { TDIF ) 

3.3.4 Transformation Macro, Redundancy and Expressiveness 

The "Trans fomat ion  Mac# technique is introduced to speed up the search for the goal. 

A transformation macro is formed by a combination of a sequence of the original transfor- 

mations, and the search algorithm treats the result as a single transformation. It  is a big 

step in the search space. As such, it  reduces the search depth required to  move from the 

s ta r t  state to  a goal state. However, on the other hand, it increases the branching factor a t  

eacli state. 

Trans. 
Description 

(3.42) 

(3.44) 

(3.48) 

(3.50) 

(3.53) 

(3.55) 

Inverse 
Description 

(3.43) 

(3.45) 

(3.49) 

(3.52) 

(3 -54) 

(3.56) 

Rank 

1 

1 

1 

O 

O 

2 
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Since FFD-II system carries out "best firstn search, ihe transformation macro technique 

is embedded in the settings of transformation ranks which is one of the major factors of 

the searching heuristics. Strictly speaking, this treatment is not to  speed up the searching, 

wliich is commonly the motivation for introducing operator rnacros, but to make the trans- 

format ion class set more compact without defining unnecessary transformation classes. In 

t his section I will first examine transformation rnacros from the aspects of their ranks. Then 

1 mil1 discuss redundant transformation sequences. As a close and important issue, 1 wili 

discuss the expressiveness of the function form description languages in the last section of 

this part. 

nansformat ion Macros and Their Ranks 

Proposition 1 Let u , v and w be the only three vanables in a problern. The fiue variable 

stiuffle transformations l7 

Ts? 
S h u f l e 2 :  ( u , v , w )  ( v , u , w )  

TS3 
Shufle 3 :  ( u ,  v, w )  ---+ (v ,  w, u )  

are a11 cornbinctions of TVEX and TINV, and the resultant ranks are al1 zero, provided T v E x  

and TI,,- are applicable to each corresponding states. 

17 III  t1J.c p<wt. WC usc ( r (  rr, v ,  w ) , s(u, ri, w ) , t( u, v, w ) ) to denote a ncw variable triple (un, un, w, ) 

t,lii\t is rclnted to thc original variable triple ( u, v, w ) by 

wlicrc r. .* ,and t dcnotc thcc functiond expressions. Howevcr, it is mquircd that thc abovc mapping is 

..( 11 ici-t.o-one onto" mapping. 
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Table 3 -7: Transformation Combinations of Variable Shuffling 

Transformation 

Tsl 

[Proof ] The first part of the proposition can be proved by Table 3.7. Based on the 

result of the first part and considering that (1) the rank value of a transformation sequence 

is the sum of the rank values of each transformation in the sequence; and (2)TvE, and 

TI,,. are ranked zero, the second part of the proposition is obvious. 

Proposition 2 The maximum number of irrelevant variable shufle transformation is two. 

In other words, we can arbitrarïly choose two and only two diflerent variable shufle tmns- 

jormations deflned by Equations (3.70) through (3.74) and al2 the rest can be derived by 

combinations of the two selected. 

Composition 
Sequence 

TVEX O Trw O T V E ~  

This proposition can be easily proved by enumerating al1 the possible combinations of any 

R e d  tant 
Rank 

O 

arbitrary choice of two different variable shiiffle transformations. It implies that we can - 
replace T %s or T lsv in language L: by a different variable shuffle transformation (or - 
replace both) and construct a new language that is equivalent to the language L used by 

FFD-II. 

Proposition 3 The differential tmnsfonnation 

-t 

i s  a transformation in set ST which has the mnk value equal to TD,, .  
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Rank ( Tm2 ) = Rank (TvEX O TDIF O TVEX ) 

= Rank (TVEX ) + Rank ( TDIF ) + Rank ( TvEx ) 

= 0 + 2 + 0  = 2 

= Rank (TDIF ) 

The proof is completed. O 

Bcased on Proposition 1 we can prove the following propositions in the same way as we 

did in the proof of Proposition 3- 

Proposition 4 Let 

Then 

( 1 )  TLoci and TLOG2 are combinations of variable shufles and TLOGi and 

have the same mnk value as TLoc- 

(2) TRECl and TREC2 a 4  combinations of variable shulgle and TREc, and 

have the same rank value as TREC, 

(3) TFAcl and TFAcZ are combinations of variable shufles and TF,\=, and 

have the same rank value as TF*=. 
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Group Group / No. 1 Name 
Trans. Classes 
in the Group 

1 5 1 Differential 1 TDIF , { T D I F Z )  1 2 1  
- - 

Table 3.8: Grouping of Fundamental Transformation Classes 

provided each transfomation c m  be applied as required. 

Clearly, the transformations introduced in Proposition 1, 3 and 4 are ail fundamental 

but not al1 of them are necessary to be included in the definition of description language 2 
rit the same time. On the other hand, equivalent languages can be constructed by replacing 

some transformation classes wit h selected different transformation classes. 

If we group al1 the new transformation classes into five groups (Table 3.8), we can 

coristriict equivalent languages by taking two different classes from group #1 and one from 

eacli of the remaining groups. As an example, the function form description language 

is equivalent to the language 2. The propositions (1 through 4) show us the reasons why 

only T VES and T rsv are included in the transformation class set and their rank 

values are set to zero. 

More Composition Properties 

We have seen some basic transformation compositions in Section 3.3.4. Intuitively, two 

transformation sequences may sornetimes reach the same state. In search for the trans- 
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formation sequence which simplifies the original image into a primitive, repeating searches 

in two equivalent branches is what should be avoided. This is the issue of transformation 

redundancy analysis. Let us first forma11 y define redundancy. 

Definition 18 Let Tl and T2 be two tmnsformations (sequences) in a genemted tmnsfor- 

mation set ST corresponding to ST . Tl and TZ are said to be equivalent ig (1) they are 

defined on the sarne domain D C *, and (2)  V (2, y, z )  E D,  Tl(z, y, z) = T2(2, y, z ) .  An 

equivalent transformation pair is denoted by Tl , T2 . A n  equivalent transformation class 

in S., is a non-empty transformation set 

where 11 denotes the empty set and T, is a selected tmnsformation sequence in class 

known as  the representative of * . 
Xpparently, " r " relation is a transitive binary relation and any two different equivalent 

transformation classes are disjoint. Thus, a generated transformation set can be divided 

into a set of disjointed equivalent classes. In other words, the collection of al1 equivalent 

transformation classes of a 

of S , .  

Definition 19 Let be 

generated transformation set ST , that is {!Pi)  , is a partition 

the generated transfomation set of ST and 

where (1 )  K is an integer which is allowed to be infinity, (2) each iPi , i = 1, - - -, K, is an 

equicalent transformation clam, and (3) V i # j ,  @; n *j is an empty set. Then, 

is called a ground partitioning of ST , and K is cailed the cardinality of . It is denoted - 
Ijy Curd ( S,) or Gard (ST) , (or simply 1 1 or ISTl )- 
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Definition 20 Let !&i be an equivalent class of a genemfed trnnsfomation set z. A - 
ground transformation of ST in is an  arbitmn'ly selected trarzsf~rmation'~ \E; f @; 

such that V T  E !&; 

Order ( T )  > Order (\k;), or 
(3 -86 j 

Order ( T )  = Order (\E;), Rank ( T )  2 Rank ( i E ; )  . 

Let (q l ,  Q2,  - .  -, OK} be a ground paditioning of c, and Qi E 4i i s  a ground 

transformation of ST in \k; , ( i = 1,2, - -, K )  . Then, the transformation set 

is called a ground kernel of ST . A gmund kernel is denoted by Os, or Os; . 

Definition 21 Let ST be a tmnsfomation c l a s  set, be the genemted tmnsfomat ion  

set of S, , a transformation T E S, is redundant with respect to a gmund kernel Qs; 

28 Tg O s = .  

Since S, has only 1 Os; 1 equivalent transformation classes, it has only 1 Os; 1 ground 

transformations in a ground transformation set. Thus, theïe are only 1 Os; 1 transforma- 

tion combinations that are not redundant. Al1 the rest are redundant transformations. 

Definition 22 Let S, be a base transformation set, ST = S,* be the genenzted tmnsfor- - 
mation set, and as; = {Pl, .Ir2 , - - , qK) be a ground kernel of S, . Then,  es; i s  

called a regular ground kernel if Os; satisJies 

-4 regular ground kernel is denoted by as, or (3s: . 
1 X Note tbat thcrc codd bc more th= one transformations in @ that satisfy Equntion (3.8G). 
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Proposition 5 Let 5 be any genemted tmnsfomation set bused on a base tmnsfomotion 

set  Sr. Then, there is at least one ground Lerne1 that is a regular gmund kernel. 

(1) Constructing a subset 9 of c. 
Let O = U& 9k . where 9; are recursively defined as 

T l  € T € S-t- 

VT E T; 

V T' and Tf' E 9;. T' f Tt' 

(2) From the construction of *, it is obvious that VTl jL T2 E 9, Tl $ T2 . 

(3) V T = T l o T 2 o . . - o T , ~ ~ , 3 T ' ~ Q ,  s u c h t h a t T r T ' .  

where, Tl, T2, - - ., Tm E ST . 
This can be proved with mathematic induction. First, from the construc- 

tion rule of VT E ST, 3Tf E 9B C T Tt. Second, assume that 

3n1 for any transformation sequence T that is composed of less than n 

base transformations, there exists a transformation Tt E *, such that 

T Tl. Now Let T("+') be a transformation sequence composed of n + 1 
base transformations. We can write T("+ '1 = T O T("), where T is a b a e  

transformation and T(") is a transformation sequence composed of n base 

transformations. From the inductive assumption and the construction 

rule of 9, there exists s transformation T' E u:!: 9k c /, such that 

T("+') T'. Thus, by mathematic induction. the proof is completed. 
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Furthermore, since it is obvious that Equation 3.86 is satisfied for each 

element in é , é is a ground kernel of z. 
The proposition is proved by summarizing (l), (2) and (3). O 

Proposition 5 provides an important theoretical result, i-e. "To a function form discovery 

system, if we describe the redundancy properly, the system will find any existing solution 

hy searching only the space of non-redundant transformation sequencesn. 

- 1  - l t  
Proposition 6 Let S, and ST be two genenrted tmnsformation sets bwed on the 

base transfomation sets STr and STlr respectively, and assume that STr E S.r'' . Then, 
- 1  

if Os; is a regular ground kernel of S,  , there exists a mgular gmund kernel of - f f  

S, such that OS: C es; . 

The proof of this proposition is quite straightforward and shaii not be presented here. For 

convenience, we shall use "group" - an algebra t e r m l 9 0  describe Our analyses in the 

remaining part of this section. However, to keep the discussion focusing, we will not point 

out which transformation is in the "regular ground kernel", although it is an important 

concept to be borne in mind along the analyses. 

Proposit ion 7 

is a non-Abelian group. Hence 

1.) A semi-group is a non-empty set S on whi& is dehed a binary operation 8 such that (1) S is dose 

i t i u l c x -  O aid  (2) 0 is assoaative on S. A scmi-group is written as ( S, @ ). if @ is commutative, a semi-group 

( S. @ ) is cded  a commutative sema-group. if ( 1 )  there is an identity element e E S and (2) every element 

i i i  o;ct S hiw CU inverse. thcn a semi-group ( S, @ ) is caiied a group. A poup is caiied an A belian group if 

i t. is ï i  conimiitativc goitp ( S. @ ) . The ordcr of a group is the number of elements in the group. 
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is r, non-Abelian group of order sir .  

[ProOf] Since Trsv O TIsv = 1 and TVEX O TVEX = 1 the first part of this proposition 

can be directly derived from Proposition 1. The second part is the result of the first part. 

n 

Proposition 8 

is a non-Abelian group of order eight. 

The similar resuIt of 2-variable problem was proved by Wong[65] and we will not repeat 

t lie proof here. Eight variable triples corresponding to the transformations set in Expres- 

sion (3.92) are tabulated below. 
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1, A ,  I l ,  8 

ne 
see definitions 

(v ,  u, I / w )  

(u, w ,  4 
(w,  %  l / v )  

( l / ~ r  U ,  W )  

(u, l / v ,  4 
(u,  W I  1 / v )  

n n e  
A n  A e  

I n e  
nno 

B Ii A B  

I A Q i ï A O  

I l A O I I A B  

n O A O 

A II O II A O 

n ~ n o n a e  
one  

(ul  l / w ,  l / v )  

( l / v , l / w , ~ )  

( l / v ,  u, l / w )  

(u ,  l / v ,  l / w )  

( I / w ,  1 /vy  U) 

I i A O n A  

A l I A Q I I A  

nn 
on 

n e n  

A ï i  û ïï A 8  ïï 8 

nA 
I 

(1/% W I  U )  

( W I  l / v ,  U )  

( v ,  w ,  4 
(w ,  v ,  1 / 4  

( l l u ,  v ,  w )  

Remarks : .t A, Ii cmd 0 stand for TV=, Tiw, and T ~ e c  respectively. 

$ '* O " is the ody impliat operator which connects two transformations- 

( l / w ,  l / v ,  l / u )  

+JI u1 

( i l w ,  U ,  V )  

(u ,  l / w ,  v )  

( l / ~ , v , u )  

A ~ A O ~ O  

onneno  
~o o n e  

i 

1 n m n a e n e  

Table 3.9: Different Non-redundant Combinations of TREC, TINV and T R ~ ~  - 

A ~ I A  

0 l l A  

I i 8 n A  

-- -- 

( l l w ,  ~ / I L ,  V )  

U , ~ W  I V  

~ I W ,  i / u Y  i / v )  

/ , /  1 )  

( v ,  i l w ,  U )  

( 1  u 1  

n n e n ~  
1 A Q n A  

Aenenn I (w,  I I U ,  1 1 ~ )  

nnonenn 
nononn 

anenean 

( i / v ,  I / U ,  W )  

( 1 1 ~ ~  W ,  I / U )  

(w ,  I / V ,  I / U )  
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Apparently the combination of independent variable exchange, functional inverse and 

reci procal result in different reciprocal format transformations. Al1 possible variations are 

tabdated in Table 3.9. Thus the following proposition is given without a detailed proof. 

From Table 3.9 we can see that the maximum number of consequently applying of the three 

transformations is nine. Any more than that would be redundant. Furthermore, there are 

39523 different symbolic combinations of that three transformations up to  the length of 

9. It means that more than 99.8% of them are redundant. Therefore, the importance of 

rediindancy analysis is demonstrated. 

Proposi t ion 10 The two transformation sequences TRECOTDrF and TI , ,  O TDIF 0 TI,,. are 

equivalent, provided each transformation is applicable. Thus the sequence T I , ,  o TDrF 0 Tlsv 

is redundant. 

[Proof ] First we should note the identity of the applicabilities of the two transformation 

scqtiences. If there is a point in the observation domain where 8w(uo,  v o ) / a u  = O , both 

sequences will not be applicable. Otherwise, both of them are applicable. 

Let w = f (u, v )  be a function which is differentiable with respect to variable u , and 

w = f (u, v )  is invertible with respect to variable u with a inverse function u = g(w , v )  

such that g(w,  v )  is differentiable with respect to variable w . Then by applying the 

transformations in the corres~onding sequence one by one according to the definitions of 

the data transformati~ns, the original image will be transformed into the foliowing two 

images 
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= fl(.o, vo) = lim f (u, w) - f (mi VI) 
P-+W u-uo 

Considering the continuity and differentiability, (3.97) can be rewritten as 

- - 1 

lim u-uo 
P + P o  w - wo 

Thus T nEc: 0 T ~ ~ ( p o )  = T rsv 0 TD,, o TIs, (PO) . The first part of the proposition is proved. 

Propos i t i on  11 Transfomation sequence TLoc O TREc is identical to the tmnsfomation 

TLo,; regarding to the sinzplicity of any given finctional fonn. Thus  TL^^ O T R E C   COU^^ be 

::icu;cd as redundant in a discouery system. 

[Proof ] Let ( u , v , w ) be a variable triple, where a functional relationship w = f (u, v )  

exists. Then, 

T ~ o c ( u , v , w )  = (u1 v 1 log(lwl) 1, 

Si nce T Lot; and TREC are applicable under the same constraint, therefore simple one-to-one 

correspondence between the image TLoc(u, v ,  f (u, v ) )  and the image T L O G O T R E C ( U ,  u, f (u, u)) 

esists (if applicable), and the two images are identical in ternis of diocoverability and com- 

plexity. 

There are tliree similar propositions concerning transformation TvEx. W e  neglect the 

similnr repeating proofs. 



3.3 FFD-II Description Language 

Proposition 12 Tmnsformation sequence 

pence  O TF,\= Th= TFAC O TvEX 

system. 

Proposition 13 Tmnsfomtation sequence 

sequence TV,,  O TLoc . Thus TLoc O TvEX 

Proposition 14 Transfomation sequence 

sequence 0 TREC . Thus T R E C  O TVEX 

TFAc O TVEX is idcntical to tmnsformation se- 

could be viewed as redundant in a discovery 

TLoG O TvEX is equivalent to transformation 

could be view as redundant. 

m 
1 RE, O TVEX is equivalent to transformation 

could be vieu: as a redundani. 

Lcast three propositions con be summarized by "For any transformation sequence composed 

of t lie transformations in the transformation set of language , if it is not redundant and 

it contains Tl-,, , then the transformation to the left of TVEX (if any) can only be Trst- 

or T D,, " . The following two redundancy propositions concerning transformation T are 

apparent, thus the proofs are neglected. 

whem Zf is the set of al1 non-negative integers, then 

Proposition 15 Let TF1 , TF2 , - - , TFn E TFAc be n diffeîent factorization transformations 

defined b y  Equation (3.46). Then, V T i ,  T2 E { T F I ,  T F 2 , .  , TFn)*, Tl T2 iff sequences 

Tl and T2 contain exactly the sarne number of each tnznsformation TF1 , TF2 + .  and TFn - 
Thus, if let 

Proposition 16 Let TF1 , TF2 , , TFn E TFAc be n different factorization tmnsformations 

defined by Equation (3.46), and let 3 be the tmnsformation set 

3= {T,:'OT,I---OTF," Vkl, k2, - - - ,  kn E Z+ (3.99) 
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where Z denotes the set of ail integers, and T? , (i = 1 , 2 ,  - - - , n) denote the tmnsformation 

sequences composed of k i  factorizutions 

respect ively. Then, 

The Expressiveness 

The key idea of data transformation based function form discovery methodology is that 

the system can recognize some primitive forms and can transform others into what it can 

recognize. The following proposition is an interpretation of this idea by "recursion". 

Proposition 17 Let L: = ( ST, SP ) be a function form description ianguage, ( ul, uz9 u d  ) 

and ( V I ,  v2, vd)  be two variable triples related by a transformation in S,f , i.e. 

where T E S: and G1 , Ga and GJ are three functional expressions which specify the 

relationshzp between the variable triples. If the functional image respects to ( V I ,  v 2 ,  u d  ) 

matches with a function form f ( V I ,  v z ,  vd ) = O in L: , then the functional image respects 

to ( u l ,  ug, u d )  matches with a function form in  L:. In other words, the function form 

f ( Gr (ur , ~3 ~ d )  , Gf ( u1 , U? , ud) , G3 (ul uz , ud) ) = O iS discoverable b y a system based 

on language C , provided f ( V I ,  vz, ) is discovenzble by the same system. 
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[Pmof] From given, we can assume that ( DT, D P )  is a function form description of 

variable triple ( v i ,  u2 , vd ) and its corresponding funct ional image O(,, ,, ,,,) . Since the 

ftinctional image O( ,, , , , ,, respects to  ( ul, u2, ud ) can be transformed into O(,, ,, ,,,) 

h~ TT iee- T(q, , .u2,u,))  = O(, IV,.,) 3 the underlying function form of O( ,, , ,?. ,, ) is thus 

( D T o T , D P ) -  

Proposition 17 provides us wit h a simple way to evaiuate the expressiveness of a language, 

or  more specifically, the constitution of the transformation class set employed by a function 

form description language. If a number of meaningful variable triples could be enumerated 

via the applications of the transformations defined in the t r a n s f o m a t h  class set, generally 

speaking, it is a positive supporting fact for the language to be a language with good 

expressiveness. 

Trans. 1 Name 
Transformation 

Sequence New Triple Rank 

Table 3.10: Some Attainable a i p l =  of The Language 2. 

-4s an example, Table 3.10 tabulates a number of the transformation attainable variable - 
tri ples of L . Since our goal is to  develop a general-purpose function form discovery system - 
without any specified application domain, we examine language C in this dimension by Iist 

only those triples with terms which are widely confronted in mathematics textbooks. Al1 
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of the triples listed in Table3.10 are related to partial derivatives of up to the order 1. The 

major variations of equations of the iùst order derivatives contain five theoretical tenns, 

i .e. u , v , w , w: , and wh. Each resultant triple listed in Table 3.10 contains only one of 

the terms zuh and wh. This is unfortunately correct. Not al1 triples that contain three of 

the five elementary terrns can be generated by a transformation sequence specified by 2 ' s  

transformation class set. Let us examine the triple (v ,  w:, w:) as an example. 

Using the transformation sequence TDl in Table 3.10, we have 

I r e  can continue manipulate the triple by applying the transformations functional inverse 

and independent variable exchange 

I t  seems that we are one step away from Our goal triple (u ,  w:, w:) . Let us now try trans- 

formation TDrF 

on  the triple 

we find that 

1 vd = lim 

Since 

we have 
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Thus 

lnstead of ( v ,  WU,  ut:), the process results in the triple 

What happened is that when we try to get the second first order partial derivative, two 

requirements should be satisfied at  the same tirne. First, variable v should be at  the first 

place of the variable triple- This has been met in Our calculation. Second, the variable u 

rnust  be at the second place of the variable triple for holding i t  constance. On the other hand, 

the term w:, must appear in the same variable triple at the same time. This is a contradiction 

to the constraint that we can only put three terms in a variable triple. Similarly, we cannot 

find a way to get a variable triple of the forrn (w, w l ,  w; )  that  is important for presenting 

a whole class of first order partial differential equations20. Furthermore, handling second 
I I  order partial differential equations requires that the eight terms, u , v , w , w l  , w: , wtu , wu, 

and w::,,, be put into a tuple. 

The above analysis shows us an important conclusion. The function form description - 
language L has a major limitation in expressing general partial differential equations. 

Considering the size of the transformation class set and primitive set, it is not a surprise. 

However, the analysis shows us also the large room to improve. Intuitively, we can modify 

the transformation set to enhance the ability to transform. For example, we can include a 

new transformation that dircctly generate the triple (w,  w:, w t ) .  The side effects of doing 

so is the introduction of computational redundancy and the increase of the search space. 

Tlie other way is to introduce the use of extended primitive functions (page 71). We can 

'" Tiic gcncrd non-Iincar partial differential equation bas the forrn F(u , v . w , w: , w:)  = 0. 
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also encode other human expertise knowledge with a set of prototypes and put them into 

the discovery system's tool-box as extended primitives. This is a more flexible way. 

Though both extensions are worthwhile research directions, especially combined with a 

particular application domain, they wiU be viewed as future research subjects for keeping 

this research reasonably focussed. 



Chapter 4 

FFD-II A Function Form 

Discovery Mode1 and Its 

Implementation 

We have discussed the theoretical issues of function f o m  discovery by data transformation in 

t lie 1 s t  chapter. A function form description language 2 , which describes a three-variable 

fiinction form with a transformation sequence and a simpIe specific functional pattern - 
fiinct ional primitive or compositional primitive, has been introduced. In this chapter, we 

will move to  the issue of the design and implementation of the new function form discovery 

system, the FFD-II system. 

FFD-II is designed to discover function forms with three variables. By taking data 

transformation approach, pioneered by Wong with his FFD system, FFD-II can find corn- 

plex function forms that are not restricted to a few specified function form classes. As has 

I~een pointed out in the review of related works, tnost previous systems share a common 

limitation of finding function forms only in a small number of function form classes. Thus 

the new system surpasses al1 those systems in the categories of formula construction and 

data analysis, such as BACON and E'. However, unlike FFI3 , FFD-II's discovery model is a 

direct model. To overcome the difficulties of increased complexities and large computational 
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error, an adaptive error control technique is employed by the new system. 

In the first part of this chapter, 1 will discuss the major challenge from the multi-variable 

function form discovery problems. The discussion introduces the general background of the 

design of FFD-II. Following the introduction, 1 wiil show that an indirect systern has only 

lirnited capability in finding multi-variable function forms and why it is possible that a direct 

mode1 c m  work better in solving the problems- This discussion explains why we chose the 

direct mode1 for our new system. The third section is an overview of the architecture of 

FFD-II . In the fourth section, the design choices of numeric recipes will be presented. And 

i n  the final section, Our discussion will focus on the implementation of adaptive error control. 

4.1 The Major Challenge Rom Multi-variable Problems 

Multi-variable function form is one that has three or more variables. To dismver multi- 

variable function forms is niuch more challenging than two-variable problems for a number 

of recasons. 

1. There are many more diverse function forms in high dimension problems than in low 

dimension problems. 

2. Observing elementary features such as monotonicity and periodicity is more difficult 

in high dimension cases. in two-variable problerns , basic analytic and geometric prop- 

erties, such as slope and curvatures can be expressed by ordinary derivatives. In 

multi-variable problems, elementary analytic and geometric properties, such as slope, 

gradient and curvatures, can only be expressed by special combinations of partial 

derivatives. The diinculty of analyzing these properties increases with the dimension 

of the problem. 

3. The complexity of multi-variable approximation is greater than that of two-variable 

c~ases. Fitting a surface or hyper-surface is much more difficult than fitting a curve. 

Usually, estimating partial derivatives from numeric observation data needs more 

effort and is less accurate than estimating ordinary derivatives. 
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4. In multi-variable problems, to describe deterministic conditions, such as initial values 

and boundary conditions, are usually more difficult than in two-variable problems. In 

two-variable probIcms, describing these conditions is sirnply the problem of finding 

parameter values and that can be done using simple numeric approximation tools. In 

liigh dimension problems, deterministic conditions usually can only be expressed by a 

functional relationship between selected variables. As such, they can only be handled 

either as a sub-discovery-task in lower dimension or witbin a small range under certain 

simplificat iûn zssumptions. 

5. The problern size increases dramatically as the increase of the dimension of the prob- 

lem. First, to meet the need of dealing with wider diversity of function forms, the 

search space in solving function form discovery problems must be extended. Second, 

the size of the observation data set in multi-variable problems is much larger than that  

in two-variable problems. For example, suppose a sample data set of N observations 

with 21' floating-point numbers can provide us with sufficiently fine step accuracy in 

a two-variable function form discovery problem. To achieve same accuracy level in 

a 3-variable function form discovery problem, an observation data set of N' samples 

with 3 N' floating-point numbers is necessary- That means the needs of both larger 

memory space and more arithmetic operations in processing the data set. 

Existing discovery systems are still very poor a t  solving multidimensional problems. 

Most are implemented in an indirect way using variable freezing technique. They reduce 

the dimension by holding al1 but one independent variables constant at  one time. Once 

al1 subtasks in lower dimension have been solved, a unification strategy is used to combine 

tiiem into a uniform result. This approach were taken by BACON and al1 its followers. It is 

also the strategy with which FFD was extended to discover families of functions. However, 

t liis technique cannot cope with the rich forms of multi-variable functions. This research 

tackles the challenge of muiti-variable function form discovery problems with a new data  

transformation based direct approach. The system performs direct three-dimensional data  

traiisformations and recognizes functional patterns directly from the transformed three- 

dimensional image. 
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The Direct Model 

FFD-II is designed on the base of the function form description language introduced in 

the kast chapter. As such, it searches in the space of three dimensional transformations (the 

operation) and matches the transformed functional image with a primitive pattern with 

t liree variables. In ot her words, it is a direct method. Figure 4.1 depicts the direct model in 

generaf. -4s a direct model, either a single node or a set of nodes connected with an "And 

.4rchV can be created under a node. In the figure, A, B and D are independent nodes, and 

riodes C and c are a pair of nodes connected by an "And Arch". In general, when two or 

more nodes are connected with an "-4nd Arch", the search algorithm must find a goal node 

CU a sub-goal under each of them. The solution is the unification of al1 sub-goals. However, 

FFD-II's search strategy is simpler. When the initial discovery task is split into two sub- 

t<asIis a t  a search node, one of them is viewed as a "dominant" sub-task, while the other is a 

srrh-t,uk associated with the dominant sub-task ( "subordinate" sub-task) . Al1 the dominant 

stih-t<zsks are function form discovery problems of three variables, whereas al1 subordinate 

suh-t,uks are function form discovery problems in a dimension reduced space, and could 

be solved by an existing twevariable function form discovery system. In other word, this 

research focuses only on finding the dominant solution path in three-dimension space. As 

clepicted in Figure 4.2, FFD-II aimed to find the goal node "G". It passes subordinate 

dimension reduced subtasks, finding Sol-1 through Sol-k, to a supporting two-variable 

function form discovery systeml. The solution to the original discovery problem is the 

combination of al1 discovery results. 

Indirect models are contrary to  direct models. They arbitrarily split the original multi- 

variable problem into subproblems of lower dimension and solve them separately one a t  

a tirne (Figure 4.2). When al1 of solutions to  the subproblems are obtained, labeled by 

Sol-1 through Sol-k in Figure 4.2, the system uses some certain methods to combine them 

together and generates the solution to the original problem of high dimension. 

Most of the previous multi-variable function form discovery models are indirect models 

' FFD aicl polpomial fitting arc choscn to carry out such discovery tasks. 



4 .3  The Direct Model 

Figure 4.1: Function Form Discovery by Data Transformation 

- the And-Or-Search-Tree of the Direct Model 

( The node labeled by italic lowercase "cn is a subproblem in lower dimension, 

and the dotted triangles denote the processes of problem solving in 

Iower dimension. ) 
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Figure 4.2: Function Form Discovery by Data Transformation 

- the And-Or-Search-Tree of the Indirect Model 

( Each subproblem is a dimension reduced problem, 

and only the root node is an And node. ) 

iitilizing a technique called variable freezing. The detailed example of this method will soon 

be presented in the analyses of the FFD family of functions discovery system. 

In this part, I am going to discuss the advantages of direct models over indirect models. 

Since the FFD family of functions discovery system2 is the only system in the category 

of data transformation approach that can handle multi-variable problems, the discussion 

will be based on the cornparisons between theFFD family of functionsdiscovery system and 

FFD-II . We shall be able to see why it is important to create a new system that takes direct 

approach to the problem a t  the end of this section. 

' faniily of functions discovery problem is a special type of multi-variable function form discovery prob- 

lcriis. From now on, FFD refcrs to the extcnded version of FFD that handes family of functions discovery 

~>r-oldcnis whcrevcr it is uscd to solve thrce-variable function form discovery problems. 
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4.2.1 The Indirect Model of FFD 

FFD was originally developed to discover two-variable function forrns y = f (t). As an 

extension, it can deal with parameterized two-variable function forms y = f (t, q5) (farnily 

of functions), where q3 c 92" is a parameter vector. Generally speaking, parameters are 

just another kind of variables. Hence, FFD family of functions discovery system can be 

viewed as a special three-variable function form discovery system when the dimension of 

the  control parameter vector # equals one3. In the discussion of this section, FFD refers to 

the FFD family of functions discovery system. 

Before going to  details, 1 shall describe some terminologies that are necessary for intro- 

ducing the discovery methodology of FFD . It should be mentioned that terminology listed 

beIow only appties to the discussion of FFD,  and should not confuse us in the rest of this 

t hesis, 

Function - A function f is a single variable function y = f (t) in class Cm within a 

specified domain t E D C 32. 

Func t ion Form - A function form (F, iS) is made up  of a set of pararneters4 9 c Rn and 
a mapping F : SZ e SZ, where 92 is the set of real numbers. In other words, a function 

form is a collection of one dimensional functions indexed by a set of parameters 9 E 

92". 

' Howcver. thc difhence between a parameter and a variable is that a paramcter usually rdects  only 

niic siiiiplc fimctional dcpendency "pattern" or "fcatureW, while the function valuc could be rclated to an 

iiiilcpcndcnt variable in a more complcx way. For example, in the formda of un i fody  accelerated motion 

.* = r r t 2  + vot. it is casy to identify a and vo as the parameters and t as the variable since the fimction d u e  

8 lc:~mxis on a ,and tto Linearly while on t quadratically. h m  the application point of view, parametcm could 

II( .  i<lcxitificd by thc contcxt of the application and by the fact that the parameter space is scunplcd much 

iiiorc C O ~ U S C ~ Y  tlian the partitionhg of the domain interval. 

' Tlioiigl~ in prinaplc multi-parameter is dowed, FFD considercd only the case of function forms with 

n siiinlc p,ararnetcr. That is only slightly diffkrmt to the three-variable function form discovcry problems 

;itldrcssc<l by this rcscarcli. Thus hercafter, WC consider the parameter 4 as values instead of vectors and 

SI) C IR. 
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Function Form Instance - An instance f+ of a function forrn (F,  @) is a function 

fd, : I+ 92, where q5 is a particular element of 9, such that f+ ( t )  = F ( t ,  4)  , Vt  E 92. 

SampIe - A sample Sp of a given function f is a set of ordered pairs of real numbers 

where P = { t ;  1 i = l , - . . , N  and ti < tp < < t N )  is a partitioning of the 

f~inction domain of f . 

Observation - An observation O*# of the form (F, 9) is a set of samples 

where: (1) 9' is a finite subset of 9 ,  

(2) f4 is the instance of (F, 9) corresponding to a valued control 

parameter in a partitioned control parameter set W ,  q5 E a' , and 

(3) P4 is the partitioning of the domain of f+ . 

Notice that 9' is a partitioning of parameter space 9 , and we are interested in only 

the function forms with one parameter, 9 C 92. 

Fitting of A Function Form - A fitting of a function form ( F ,  &) to an  observation 

O+ is a mapping 

M:*'+A 

so that for each q5 E +' , the sample SpQ ( fd) is identified with the instance fM(+) 

of (F, 4). 9' c 9 E !R is referred to  as the control parameter and 4 !Rn for any 

integer n, is the descriptive pmmeters5. 

Transformation and Primitive - A transformation is a pararneterized continuous m a p  

. 

' Notice tliat thc numbcr of control parameter can only be one for the case studied hem, whilc the numbcr 

of <lriscxiptivc p=;ir;uncters could be zcro to m y  give integcr number. 
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znd a primitive is a continuous one dimensionai function y = P(t)  . FFD employs 

five basic transformations, tabulated below, in its operation tool-box. 

. -- 

Diffcrcntial 1 A : ( t .  y) ct (t. Y') II 

Tram. 

A primitive is a parameterized one dimensional continuous function that a trans- 

formed observation can match with. The primitive function set of FFD consists the 

following three quadrat ic functions. 

A11 the parameters appeared in a transformation or a primitive are viewed as descrip- 

tive parameters. 

Defini t ion 

Unification Tkansformations - Let U be an invertible transformation which is param- 

eterized by a parameter vector 5 in 9Zk . An observation 

Iuverse 1 8 : (t, Y) (Y. t )  1 

of function form (F,  +) is said to be unijied by the class of transformations U[oT+] if 

there exists a set of vectors 

Trans. 

in which the vector a,+; corresponds to  the control parameter value d i ,  such that the 

image 

UV(O+~) = { (tj, Yj) I 3 1 5 i I N1 (tj1 Yj) E u[GI(S+i) 1,  

Defini tion 

L o g a n t h  

is a single smooth function. U will be referred t o  as the unification tmnsfonnation. 

6 will be referred to as the desc7iptiue panzmeter; and, in particular, ai is said 

A : ( t ,  Y) * (t, log 1111) 
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to contain the descriptive parameter values specifically associated with the function 

sampk S+,. . 

Similarization Transformations - The member samples of an observation 

are said to be similar to one another if there exists an invertible transformation class 

T and an associated parameter vector set 

such that the images 

are primitive functions of the same form. T is referred to as the similarization 

t ransfonnation. 

Single Cont ro l  Parameter Function Form Synthesis Problem 

Let F denote an unknown process with a specified control parameter space 9 C 92 . 
lven G' 

0 an observation of (FI 9) ; 

a set of primitive functions 3 ; 

a set of basic operators - transformations 7 ; 

0 a form fitting accuracy requirement CF ; and 

a m d m u m  dimension of descriptive parameter vector O,,, , 

Construct a function form (F, &) and a fitting M : Q t-, Q such that 

1. (F, 4) is a subset of the search space generated by 7 and 7 ; 

2. ord [(F, &)] = dim(B) 5 O,,,, ; 

3. the deviation of (F, P )  from O+. is less than , i.e. 
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This statement can be understood fiom the implementation point of view as the problem 

of finding a transformation sequence6 which is composed of the transformations d e  

fined in the set T ,  and a matching primitive function form F+ from the set 3, such 

that by consequently applying the inverse each transformation in the sequence to the corre- 

sponding primitive function sample S,#,i results in a functional image that matches with the 

given observation within a tolerable error level. This approach follows the idea of BACON'S 

multi-variable function fonn discovery strategy - variable fieezing, i.e. hold al1 but one 

independent variable constant and find a solution for the subtask then goes to the second 

variable. 

In practice, to find the mapping M is a very difficult task. FFD simplifies this task by 

making tmo simplification assumptions. 

Assumpt ion 1 (Primitive Union) It is assumed that the intemediate goal coïncides 

with the final goal. In other words, if the samples can be unificd then there exists a unifying 

squence such that the resultant image Su is a sample of a primitive function. 

Assump t ion 2 (Simple Descript ive Paramet ers) Each descriptive parameter can be 

accurately represented as a primitive jünction of the control pammeter. 

Apparently, Assumption 1 ensures that the unification could be easily detected and As- 

srimption 2 ensures that the expression of each descriptive parameter could be easily found 

with a small number of parameters. 

To discover a pararneterized function form, FFD first acquires a set of observation upon 

{&, - , d N )  - a partitioning of the control parameter 4. This is the way FFD arbitrarily 

divides the original three-variable function form discovery task into a set of subtasks in Iower 

dimension (Refer to the indirect mode1 depicted in Figure 4.2). Two-variable function form 

discovery processes are then carried out upon each sample S+;. And the discovered 2- 

variable function form hypotheses are grouped according to the corresponding identified 

'; Tlic subscript q5 signifies th& the possible descriptive parameters are expressecl in t e r m s  of functions 

of  t . 1 1 ~  control p'arameter & 
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transformation sequences. At last, if certain population of identical transformations and 

matching primitives are found, the final function form hypothesis will be given based on'the 

cassumption of simple descriptive pammeters- If the found hypothesis applies to al1 samples, 

a siiccessful discovery is reported, otherwise, the system wiU choose from continuing search 

for new hypothesis or terminating the process and reporting as a failure. The following is 

an  example of using FFD to discover a simple three-variable function form. 

An Example of FFD's Discovery of a Three-variable Eunction Form 

Underlying Function Form : y = e&t 

Sampling : The observation contains five sarnples corresponding to q51 = -2 ,  

4* = -1 , 4I = 0 , q51 = 1 and q51 = 2 . Each sample contains 101 

uniformly placed partitioning points in the domain t E [0.0, 2.01 . 

Discovered Solutions to  Each Subtask : 

Finalization : FFD finds that 4 out of 5 samples can be transformed into a 

linear function by same transformation A+. Thus A+ is a similarization 

transformation. Applying this transformation to  sample q53 resul ts in an 

identical primitive y  = O . t . Therefore an unifying transformation has 

been confirmed, i.e. A+ ( O+ ) which matches with the primitive y = at , 

where a is the only descriptive parameter. The pairs (4;, a;), i = 

1, . . , 5  can be easily fitted to a primitive a = 4 . Thus the discovered 

transformation sequeiice and primitive are: (A+ ,  y = a t  ) . The system 

terminated wit h a successful discovery. 

Trans. 

Primitive 

Xltliough it is a very simple example, we can see the discovery methodology clearly enough. 

From the practical point of view, the major difficulty of taking this approach is finding the 

A+ 

y = - 2 t  

A+ 

y = - t  

A+ 

y = 2 t  

1 1 A+ 

y = O  y = t  
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nnifying transformation and the rnapping from control parameter to descriptive parameters. 

This is the reason why simplification assumptions are needed. 

The method of simplifying a high dimension problem into low dimension by taking into 

account of one variant a t  a time is a simple and quite widely used technique. When the 

variables involved in a problem are not highly coupled, this methodology could be the best 

choice. For exarnple, if the underlying function form of an unknown process is of form 

z = f (x)  + g ( y ) ,  there wili be no doubt that the variable fieezing method is surely the best 

and simplest method for finding the solution. Moreover, since al1 the descriptive parameters 

are iclentified arbitrarily, in certain application situations, it rnight be the most effective way 

to simplify the discovery problem. 

FFD , ,as the first attempt to solve function form discovery problems using the data 

transformation technique, simplified the unification of solutions of sub-tasks with two sim- 

plification assumptions, Primitive Union and Simple Descriptive Parameters. These as- 

siirnptions are indeed constraints on how the two independent variables are coupled. It is 

possible to relax these constraints to a certain degree by upgrading the system with new 

strategies. However, as a system that takes indirect approach, there are a number of limi- 

tations concerning the system's ability. 1 will analyze the general limitations of the indirect 

approaches in the following section. Before doing that,  let us  first summarize the function 

clcasses that cannot be handled by the FFD system. 

Tl-iere are four situations under which the current FFD system may fail to  solve a three- 

variable function form discovery problern. They are: Unsattsfied Simplification Assumption, 

Failure in Finding a Tmnsfomation, Failure in Verify a Solution and Incornplete Language. 

For simplicity, we refer a function form under those situations as belonging to  USA-Class, 

FFT-Class, FVS-Class or ICL-Class respectively if i t  cannot be discovered by FFD for one 

of the corresponding reasons as named above. A11 function forrns that cannot be discovered 

by FFD fa11 into these four categories. Let us examine thern one by one. 

The first class, USA-Class, is easy to understand. The system is designed based on cer- 

tain simplification assumptions, i.e. Primitive Union a d  Simple Descriptive Parameters. 

It is obvious that a function form which does not satisfy one of the assumptions is certainly 
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heyond the system's discovery scope. One example function in this class is z = ey - logz. 

The indirect FFD method cannot f i d  the fomi by either freezing z or y as the control 

parameter, since using any transformation, the functional relationship between the required 

descriptive parameter and the chosen control parameter would not be a simple primitive 

function. 

Concerning the second class, FFT-Class, some transformations can only be triggered 

when certain functional features are observed from a given sarnple data set. For exarnple, the 

factorization is based on the observation of roots. There are two possible reasons that inhibit 

the discovery system to find such critical information from an observation corresponding to 

a certain partitioning scheme, i.e. (1) improper parameter partitioning and (2) infinity of the 

i.inderlying function. Since ali the transformations defined in the transformation set of FFD 

are fiindamental and usually necessary for the system to  discover function forms, failure in 

applying one important transformation will largely reduce the chance for the system to find 

the solution. 1 will discuss this issue more in the case studies in next chapter. Moreover, 

sornetimes the observed roots for triggering the factorization are more complicated than 

we may have expected, for exarnple, more than one root to a single sample is not a rare 

situation. Grouping the roots obtained from different samples becomes a very challenging 

t.rtsk, especially when large error being introduced in the estimation of those roots. 

As it has been pointed out that the application of some transformations are subjected 

to certain constraints. For example, Inverse (refers to the table on page 4.2.1) can only 

be applied to a monotonic curve, whereas Loganthm and Recipmcal can only be applied to 

constant sign curve. Such constraints may cause problems for FFD to verify an function 

form hypothesis made upon some samples. These are the cases pertaining to FVS-Class. 

In some cases, FFD may successfuUy find a correct two variable function form solution 

from a population of the samples of an observation data set. However, when it tries to 

confirm the hypothesis, it  may find that it  is not a valid solution since the associated 

transformation sequence is not applicable to some samples. This will cause the system to 

drop the hypothesis finally and search for a new one or t o  terminate the task. 

The last class, ICL-Class, of un-discoverable function forms is due to the FFD's intrinsic 
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capability to discover 2-variable function forms. The function form discoverable to a data 

transformation based function form discovery system is deterrnined by the transformation 

set and the primitives available to the system. Due to the large variety of function forms, 

no system can guarantee to discover al1 of them from numeric input. In other words, 

there is not a cornplete language that can make al1 functional relationships expressible. 

FFD employed only five fundamental transformations in its transformation set and three 

quadratic functions in its primitive function set. Though the performance of the system in 

carrying out function form discovery is significantly superior to its predecessors, there are 

still a number of two-variable function forms that cannot be found[65]. As we have already 

known, FFD bases its parameterized function form discovery on its abiiities in discoveting 

two-variable function forms. Hence, there exist many three-variable functions which are 

riot discoverable by FFD simply because FFD cannot handle the subtasks of finding those 

necessary two-variable function forms. 

From the methodology perspective, some of the function form classes summarized above 

are less critical than others. In general, the class USA-Class is the easiest to be changed by 

replacing the strict constraints with some others. Let us examine the function form example 

- - , - $1 - logz again. Assume that the variable z is viewed as the control parameter. It is 

easÿ for the system to find a unified function form description t = c(z) eg to describe 

the given observation, where c(z) is the only descriptive parameter. If a second round of 

iunction form discovery is carried out upon the discrete data set { ( G ,  xi)), (instead of using 

the simple descriptive parameter assumption and fitting to a primitive function), it will 

riot be hard to find the correct mapping c(z) = log(z). However, automatically combining 

the results of subtasks could be a very difficult task. Thus, any implemented system that 

uses variable freezing technique, more or less, will come with some necessary simplification 

cassumptions. 

Overcoming the transformation applicability is one of the major improvements made 

l q -  the LINUS system to the FFD system. Although it is not an easy extension, yet it is 

possible to enhance the current FFD system's ability of dealing with three-variable function 

forms belonging to FVS-Clas s by employing LINUS'S discovery strategies. However , on the 
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O t her h'znd, the identification of unification or similarization transformations will become a 

real challenge. 

The other two classes, FFT-Class and ICt-Class are more critical. I t  is relatively 

Iiarder to improve the curent  FFD system to  solve these two classes of problems which 

manifest the shortcoming of the indirect approach. 

4.2.2 Direct Vs. Indirect 

To solve multi-variable problems, it  is usually important to  find a way to  simplify the prob- 

lem by reducing the dimension of the problems. The variable freezing method used by FFD 

is one of the most widely used indirect methods for solving this problem. This method 

partitions a multi-variable problem into components by holding al1 relevant variables, but 

one, constant so that each component is a clearly defined and easy to solve one dimensional 

problem. By recursively combining the results of low dimension into solutions of higher di- 

mension, the original multi-variable problem is solved recursively. The dimension reduction 

scheme used in this technique can be viewed as an "arbitmry dimension reduction scheme". 

We say i t  is arbitmry because the reduction takes place "blindlyn without considering the 

speciaity of an individual problem to be solved. A direct method, in contrast, usually does 

not employ any arbitrary dimension reduction scheme. It views the problem as a whole and 

mes only "problem-driven dimension reduction schemes" , if any. Problem-driven means that 

a dimension reduction is triggered only if certain evidence is found in the process of solving 

a specific problem. For multi-variable function fom discovery problems, the ciifferences of 

these two approaches are outlined as  below. 

1. Indirect rrpproaches sometimes are simpler and more powerful than direct approaches, 

depending on the properties of the problem to be solved. For exarnple, to solve the 

discovery problem of family of functions, an indirect method may be the best choice. 

2. The major difficulty for an indirect approach is to  combine the results of the subtasks 

in lower dimensions into the solution of the original problem. The major difliculty 
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to a direct approach is to handle the multi-dimension problem as a whole and ex- 

tract necessary infonnatiot to form subtasks and conduct simplification. Solving a 

rnulti-dimension problem usually needs two steps: (1) simplifying the problem into 

su bpro blems, and (2) cornbining ali the solutions of the corresponding subproblems 

into the solution to the original problem. Indirect approaches use the sirnpiest schemes 

to handle the first task but employ complex strategies t o  handle the second. Direct 

approaches invest more work on the first task. They rely on the discovered evidence 

to divide the problem. Hence less work will be needed for the second step. In an 

indirect approach, the difficulties in combining the solutions of the subtask include: 

(a) identifying identical descriptive parameters. When the system includes more so- 

phisticated primitives and data transformations, this will become a more serious 

problem. 

(b) identifying the uniforrn transformation sequence. There could be several solu- 

tions to the same problem, some are accurate and some are less. If each sub- 

problem terminates with a different solution, the system must choose one from a 

set of different transformation sequences. This may not be successful since some 

transformations can only be identified based on successful estimates of the asso- 

ciated parameter value. Su& transformations include differential transformation 

and iactorization transformation. Moreover, certain transformations can only be 

applied under condition. 

( c )  finding an expression to express the descriptive parameter in terms of control pa- 

rameters. Sometimes the system has to handle large scale errors due to inaccurate 

estimation of the descriptive parameter from a single sample. Sometimes it has 

to deal with incomplete observation data set. The missing information could be 

due to the continuity constraint, the application of data transformations or the 

specific application problem. 

3. The cornputer resources required for carrying out direct or indirect discovery are 

significantly different. For an indirect approach, each subtask is related to only one 
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sample. When conducting a subtask, the system needs to process only a small portion 

of the observation data set (a single sample). For a direct approach, the system has 

to process al1 the observation data throughout the discovery process. Thus both the 

time and memory space complexities are usuaily much higher. 

Since the cornputer resources are fùed, a direct method has to work with relatively 

coarse sampling scheme. Thus handling error propagation in a direct system is more 

critical than in an indirect system. 

An indirect approach usually does not make use of the "Cross-effect" in solving the 

discovery problems7. Cross-effect can sometimes provide key information to a suc- 

cessful function form discovery. Isolatedly carrying out the subtask largely limits the 

capabilities of the function form discovery system constructed on the bases of indirect 

approach. 

Indirect approaches are unnecesçarily sensitive to some secondary factors. The syst em 

may be too fragile to the partition scheme. FFD may be confronted with difficulties 

if it cannot observe al1 necessary functional patterns from a single sarnple. BACON, a 

system that uses variable freezing technique, was reported being sensitive to the order 

of which variable were put on hold fkst [SOI. FFD shares the same drawback. 

Direct approach provides more flexibilities for constructing the discovery system. We 

have wider choices of transformations and primitives. 

We rnay suffer particular difficulties when we want to provide an indirect discovery 

system with certain domain knowledge. It is a common sense that not al1 domain 

knowledge are meaningful in the dimension reduced situation. That kind of domain 

knowledge are sometimes not usable to a direct approach. 

' 111 iuidti-dimension problems, the changes in one dimension aff'ect the system in a different dimension. 

Tlùs is c.dcd "Cross-cffect". For example, in non-linear theory, shcar strains alone demand the application 

of i~ortiiai stresses weii as shear stresses. 
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9. In many application circumstances, holding a variable constant is not practically pos- 

sible. When the data  is calculated by a simulator, the original control parameters can 

be easily held constant. However, if the data is collected frorn experiments in a lab, it 

is sometimes difEcult to set the control parameters exactly the same. When a pararn- 

eter is generated by a process based on some other control parameters, it is sometimes 

impossible to hold that parameter constant. Moreover, sometimes the experiments 

through mhich we collect observation data are not repeatable. ft  means that we have 

to deal with inadequate observations with missing data, These application related 

constraints limit the applicability of indirect systems. 

Direct models are more general than indirect models. Although from the theoretical 

point of view, an indirect model might be better in solving some specific problems, such 

as the discovery of families of functions, an available direct model is still important for 

practical reasons we have discussed above. However, to  create a direct model system, we 

will be confronted with great challenge in computational complexity, language design and 

error control. 

To accept the challenge, the FFD-II system was developed. It perfoms three dimension 

transformations and recognizes t hree dimension functionai patterns. Hence it demonstrates 

the application of data transformation baçed approach as a direct model. From the language 

design point of view, by taking direct approach, the underlying functional patterns can be 

revealed by capturing the "cross effects". From a single sample data set we can observe 

only the regularity in a certain direction. To extract two-dimensional patterns from a set 

of one-dimensional regularities is very hard. FFD does the extraction by summarizing only 

the simitarities among those one-dimensional patterns when i t  conducts a discovery task. 

However, there are some equaliy important relationships arnong one-dimensional patterns, 

for example, the differences between adjacent sarnples. Since a direct method can analyze 

those more complex relationships utilizing the cross effects in between individual samples, 

a better performance can be expected. The FFD-II system views the observation data 

set as a whole, so that when a functional pattern is observed in an area of the functional 

image, i t will enable the system to successfulty apply certain rules so as to form a functional 
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hy pot hesis corresponding t o  that observed pattern. Moreover, the formation of subtasks in 

lower dimension is fd ly  automatic and only triggered by those already recognized patterns 

diiring the discovery process. The final discovery can be made once the dominant solution 

is found. The way to  combine the solutions of subordinate sub-tasks with the solution of 

the dominant sub-task is clearly specified by the output of the system. 

The challenge of computational complexity and error propagation control are closely 

related. To attain the same fine step observation data set, a three-variable functional image 

will contain 3N2 real numbers, compared with only 2N for a tw-variable functional 

image, where N is the number of observation data points. During the search, each search 

node is czssociated with a transformed functional image. Thus the computer memory space 

complexity is much higher for carrying out the search in a direct model than in an indirect 

nlodel. Apparently, the time complexity is also significantly increased in a direct model since 

more data will be processed in transforming from one state into another and in performing 

functional pattern recognition. Moreover, with limited computer resources, we are restricted 

to use only relatively low order approximation tools in a direct model system. Considering 

polynomial fitting as an example, to f i t  a curve to the second order polynomial needs only 

three sample points, to  the third order only four sample points are necessary. To fit a surface 

using polynomial fitting, a t  least six sample points are necssary to  get a second order 

polynomial fitting and ten sample points rnust be used to get a third order polynomial. If 

the nvailable computer resources are the same for carrying out the search, the direct model 

system will have to deal with a relatively small sampling size and poor approximation 

accuracies. Hence, selecting proper numeric tools and preventing the propagated errors 

from exploding are two crucial issues in the design of FFD-II. 

4.3 An Overview of the System 

diagram and major components Up to now, 1 have discussed the superiority of data trans- 

formation approach as a generd discovery model, the befiefit of taking the direct approach, 

'as well LZS the importance of controlling the computational errors in a direct multi-variable 
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fiinction form discovery system. Now, 1 will introduce the design of the FFD-II system. 

FFD-II is a data transformation based direct function form discovery system with adap- 
- 

tive error control. The system h d s  function descriptions in the language L to describe 

an observation data set with three variables. The key idea of data transformation based 

function form discovery is depicted in Figure 3.1. Its details could be found in Section 2.1 

and 2.4. The function form description language has been defined in Section 3.3.3. Di- 

rect multi-variable function form discovery mode1 has been shown in Figure 4.1. And the 

adaptive error control will be introduced soon in this chapter. 

Bere, 1 will follow the common practice of first giving a diagram that overviews the 

architecture of the entire system and then describing the system components one by one. 

I t  is beneficial to do so for the purpose of clarifying the design and reserving an easy access 

to the system for future extensions. When there is a need of more detailed specifications 

concerning the numeric computations or implementations, a separate section follows. 

The algorithmic architecture of the FFD-II system is illustrated in Figure 4.3. In the 

figure, each box represents a major module of the system. Dashed box is used to represent 

a group of modules that join together to achieve a major function. The arrows represent 

the flow of data or function cal1 with passing parameters. Main routines are organized 

accordingly. 1 will summarize the system according to groups of modules. 

Tliere are four major groups of modules in the system. They are " E m r  Contml", "Data 

Selection " , "Search Engine" and " Post Pnicessing" , Descriptions are as following. 

Data Selection: Before the execution of a discovery task, the original observation data 

set is stored in a formated data file. The precision of the observation is given as 

an input. The program starts with the Data Selection module. The module seiects 

a subset of the observation data set from the observation data collection, an evenly 

distributed mesh grid of the size 101 x 101 sample triples8 t o  initialize the search tree. 

a It is =sumcd that the user has the full control of the expcriments from that the onginal observation 

chta arc collcctcd. if the observation data collection docs not contain enough smple data points, the systcm 

will ask tlic tiser to providc ncw observation data. However, the user can &O force the systcm to cany out 

t . 1 ~  cliscovcry upon whatevcr is pmvidcd. 
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Figure 4.3: An Overview of the FFD-II Discovery System 
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Besides initializing the root node with the functional image, the Task Initialization 

module also generates a number of child nodes attached to  the root. However, when 

a child node is first generated, it contains only the specification of the transformation 

that might be applied to obtain the associated functional image from the functional 

image of the parent node. When the node is selected to be investigated and the 

transformation is confirmed as valid, Le. applicable and non-redundant, the system 

cornputes the functional image and updates the corresponding attribute with it. If 

the corresponding transformation is not applicable, the node will be a Dead End Node 

of the search tree. An "OPENn list is constructed a t  the stage of task initialization 

for carrying out the best first search. Ail generated child nodes are added to the list. 

During the execution of the program, the Data Selection module is also called by the 

ilroise Removing module. It monitors the data selection scheme entry of a node and 

selects an adequate data set for the noise removing process upon requests. 

Search Engine: This is the central part of the system. In this part, the Data Tram- 

formation module is a set of numeric implementations of the data transformations 

defined in . The Primitive Fitting module recognizes primitive patterns. These 

two modules are the discovery tools of the system. The Thznsfonnation Validation 

module checks the validity of a transformation that is going to be applied to a func- 

tional image associated with a specific node, so that redundant transformations and 

non-applicable transformations are preventedg. The Hypothesis Abstraction module 

abst racts a functional description hypothesis. The function of the Resovrce Manage- 

ment module is to ensure that sufficient computer resources are available to continue 

the search. It  dynamically allocates memory for new nodes and releases the mernory 

allocated to dead end nodes. A Dead End Node is a node that does not have any valid 

cliild node because either maximum search depth has been reached or the associated 

transformation is invalid. If the module determines that computer resources are run- 

iiing out, it calls the Syrnbolic Zhnslation module t o  terminate the job and generate 

'Rcdimdant t-formation m a m s  have been discussed in Section 3.3.4. The applicabiity conditions 

wci-c tlc~aibcd dong with the definitions of each transformation class in Section 3.3.1. 
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output. The Search Control module selects the node to be expanded from the OPEN 

list according t o  the "Best-First" rule. The search heuristics for carrying out heuristic 

search will be introduced in Section 4-4.2. If al1 possibilities have run out, or in other 

words, the system has completed an exhaustive search, Syrnbolic Translaticn module 

is called to terminate the discovery job and generate the corresponding output. This 

could happen for the following reasons 

The incompletenes of the description language 2, 

Inadequate control parameter settings - such parameters include maximum rank 

(or depth) and the tolerable matchhg errorlo. 

Tf it is not for the first reason, we can re-configure the system or improve the quality 

of the input data and perform a new discovery. Putting al1 together, the pseudo code 

of the core search algorithm is described in Figure 4.4. 

Post Processing: Post processing consists of t hree modules. The Hypothesis Verification 

module verifies an abstracted function form hypothesis through comparing the orig- 

inal functional image with the functicnal image generated by consequently applying 

the inverse transformations to the corresponding fitting primitive. If the deviation" 

between these two images exceeds a tolerable level (a parameter input to the system), 

the hypothesis is rejected and the Search Control module invokes the search for new 

hypotheses. Otherwise, the function form hypothesis is confirmed as a discovered 

solution and the solution is sent to the Symbolic Translation module. The Symbolic 

Translation is an interface that prepares the output of the discovery result. It  re- 

ceives a solution from the Hypothesis Verification module, or particular parameter 

values from the Resource Monitor or the Search Control module. In the first case, a 

discovered function form is 0btained.h the latter cases, the module will indicate the 

reason the system failed to find a solution (either resource runni~g out or the under- 

'" Rcfcr to Scction 3.2.2 on page 58. 

' ' Tlic ricviation is rcferred to as the Matclring Error or Verification Error throughout t k  thesis. 
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- 

PROCEDURE TREE-SEARCH 

INPUT: Initialized search tree which has a root node and its 

associated child nodes. 

Initialized search tree node list OPEN with a set of tree 

nodes. 

OUTPUT : An expanded search tree and a node where the search 

terminated. 

if OFEN = n d  , terminate t h e  search. - 
Remove one node N v i t h  t he  lovest  cost  from OPEN. 

Check t h e  v a l i d i t y  of N. 
if N is inva l id  - 

then l abe l  1V a s  Dead, and repeat  from s t e p  1 .  

Compute new funct ional  image according t o  t h e  

transformation and the  parent image. 

Perform pr imit ive matching upon the  current node. 

if t he re  is  an acceptable f i t t i n g .  - 
then Suspend t h e  search. Abstract and ve r i fy  

t h e  hypothesis based on t h e  current node 
f i t t i n g .  I f  t h e  hypothesis is r e j ec t ed  by 
t h e  ver i f  i ca t ion  process , continue . 
Otherwise the  discovery t a s k  i s  ended 

successful ly .  

Generate a set of ch i ld  nodes under current node N 
according t o  t h e  ava i lab le  transformation c l a s se s  i n  

system's transformation tool-box. 

Add t h e  new generated nodes i n t o  OPEN, and repeat  from 

s t e p  1. 

Figure 4.4: The Best-First Search Algorithm 
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lying function form of the observation data set being undescribzble within the given 

error tolerance). A best matching form along with matching error will be output by 

checking the system's record of dl fittings that have been tried. 

Error Control: This part of the system adaptively controls the error propagation of re- 

peatedly applying data transformations. The E m r  Monitor module measures the 

quality of a functional image by its expected error level and roughness value. If either 

of these exceeds a corresponding preset threshold, the Noise Reduction module wili 

be invoked to improve the quality of the image. 

1. If it is the expected error level that exceeds the threshold, an image Refinement is 

required. Noise Reduction first consult the data selection module to see if there 

is any unused original observation data that could help to improve the quzlity 

of the current functional image. If so, image refinement will be performed based 

on those unused observation data and the transformation history of the current 

node- If there is no more original observation data that could be used to improve 

the quality of the current image, the Noise Reduction module will inform the 

search engine to adjust the heuristic value for those nodes generated under this 

node, so that low priorities will be giveri to the investigations under the node 

whose underlying functional pattern has been distorted by the input noise or 

computational error so badly that it could not be recovered by the system. 

If it is the image roughness'' exceeds the threshold, a polynomial smoothing 

scheme will be used to smooth the image. Recall that one of the basic assump- 

tions is that the underlying function form of any functional image is a class Cm 

function in the observation domain (page 59). As such, the pattern of an exceed- 

ingly rough surface must not be the true functional pattern of the underlying 

function form but a pattern of noise or computational error that should be re- 

moved. Siriiilar to the image refinement, the availability of additional observation 

sample points, in the form of a high resolution image are required for carrying 

'' Tlic nicamrcmcnt of roiigliness of a surf'ace wiU be defined later in this chapter. 
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Figure 4.5: The Data Structure of A Searching Node 

out the image smoothing process. 

The Error Monitoring module is called by both the Task Initialization module and 

the Data Transformation module for controlling the error adaptively. Corresponding 

fields of the search node data structure will be updated accordingly. 

The modules introduced above are implemented with a data structure shown in Fig- 

ttre 4.5. There are three groups of information in the structure. The Standard Tree group 

represents the standard tree structure, the Functional Image group contains the primary 

iiode content that describes the associated functional image of the search node. In this 

groiip, three entities are designed for controlling the noise. They are Image Roughness, 

Error Level and Data Selection Scheme. The Node Special group, provides information con- 

cerning the transformation history. The %ns-Lail entity specifies the last transformation 

t h a t  hcas been applied to generate the current node. It aIso distinguishes the current node 
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<as ~inexplored, explored or dead end node with different values. 

4.4 Numerical Recipes 

FFD-II is designed to find function forms from numeric data. Numeric computations are 

involved in the discovery process. In this section, 1 shall specify the numeric tools that 

have been used to  achieve the goal. Suice the major concern of this research is the discov- 

cru rnethodology, only simple numeric methods with sufficient accuracy have been chosen. 

PoIynomial least-squares fitting is a widely used simpIe method. It is flexible and easy to 

use. I t  also h a  relatively simple analytic properties. As such, it will be utilized to solve 

sever al numeric computation problems in the implementation of the FFD-II system. 

4.4.1 Numeric Data Xkansformations 

Table 3.6 on page 76 Iists the transformations employed by FFD-II. Arnong them, most 

nlgebraic transformations are easy to compute. The formulas to compute TLoG,  TG\ are 

giren by Equation (3.42) and (3.43). And similarly, T R ~ ~  , TG, T I N V  , TG: , TvEl and 

TF,: can be easily implemented using the equations used to define them. Thus 1 shall 

not  give more details concerning their computations here. The implementations of the 

rem aining two transformation classes are not that straightforward. 1 will describe t hem one 

hy one in this part. 

Numeric Differentiation and Integration 

Differential transformation TDIF and its inverse ~ 6 ~ :  are the most chailenging transfor- 

mations to be numerically implemented. The classic methods of computing derivatives are 

b,ased on certain difference schemes. However, this method only works well when there 

is no noise on the sample data set and the partitioning of the observation domain is uni- 

formly distributed in a rectangular mesh grid. Unfortunately, the transformed functional 

image does not satisfy such a constraint. Although we can assume that  the original input 



observation data couid be in whatever form or distribution we like (sufficient observation 

assrimption, page 59), the distribution of a transformed functional image may not be dis- 

tributed as expected. It could be distorted by the transformations that have been applied. 

In other words, the original u n i f o d y  distributed observation mesh grid may no long be 

uniformly distributed in a planar region formed by the two axes corresponding to the t a o  

independent variables. Moreover, the data we used to compute the partial derivatives may 

contain input noise and computational errors. Thus the traditionai difference method couid 

not be used to cornpute TDIF for FFD-II. 

The computation of TD,, in FFD-II is simple and intuitive. The rnethod is based on 

polynomiai surface fitting. It is described as the following. Let O~u,u,w~ be an observation 

data set and w = f(u, v) be the underlying function. Let Po = (w, vo, w o )  E 0~,.,,,~ be 

a sample point of the image. We need to compute the partial derivative . Let 
u=ry) .v=vo 

I>e a set of distinct sample points such that 

Sn defines the set of k nearest neighbors of the planar point ( u m )  . Now let w = 

g ( u ,  v ,  +) be a parameterized continuous function (a function template), where cp' is the 

parameter vector. The expression of fitting k nearest neighbors with template function g 

is n specification 6 of the vector 9 such that 

is ininimized. If we write the resultant fitting function as w = g(u, v) , then the estimated 
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Figure 4.6: Approximation of Partial Derivatives by Surface Fitting 

partial derivative value of the underlying function f a t  point (uO, va)  is 

Figure 4.6 illustrates an eight-nearest-neighbor approximation scheme. In the implementa- 

tion of FFD-II the complete second order polynomial function 

is used <as the ternplate function and eight nearest neighbors are taken into account as a 

local fitting point set (adjustable). 

Having solved the problem of numeric computation of transformation Tot,  , 1 will then 

describe the method to conduct the inverse transformation T G '  numerically. First, let US 

see what the problem is. 
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Ive 'ire given two functional images O and Ô 

and a hypothetical relationship between these two images 

R'e want to compute a functional image 

from O and 6 ,  such that if the underlying functions of image 0, a and 8 are w = f (u, v )  , 

7 ~ 1  = f (u ,  V )  and w = tj(u, v )  respectively, then 

Furtherrnore, if hypothetical relationship (4.7) holds, we need 

To solve this problem, we first reduce the dimension of the problem with a data grouping 

sclierne that groups a planar point set into subsets each of which represents a planar curve. 

To do the grouping, we notice that al1 functional images are transformed images of the 

original functional image, Or, which is partitioned into a rectangular observation mesh grid 

(Figure 4.7). That means O can be rewritten as 

and so do images Ô and 0. Therefore, are group the sarnple point indices of each image 

into Arz or N ,  groups according t o  the result of coordinates cornparison as shown in 
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Figure 4.7: Partitioning of the Input 

Sx: = ( ( 1 , k ) :  (2,E), - - ,  (Nz, b ) ) ,  for k = 1,2, - - - , N y ,  

if l ~ ( S ~ . l )  - ~ ( 1 , l ) I  2 l ~ ( S = , l )  - yl.l)l 

S k = ( ( k , l ) ,  ( k , 2 ) , - - - ,  ( b , N y ) ) ,  f o r k = 1 , 2 , - - - , N z ,  

ot herwise. 

Thus  each planar point set corresponding to an integer k, { (w, j ,  vi, l(i, j )  € Sk } , repre- 

sents a planar curve. We now define the image Ü as the image of a function w = f(u,  v )  

siich t h a t  

-4s stich, the image can be easily computed by classic numeric integration along each 

curve indexed by the corresponding set Sk 13. 

In the process of verification 14, FFD-II riews image O as the reversed image of 6 when 

'' Tlic ~iitnicric values of the derivatives dong each curve is computed based on the partial differentials 

Dtc~/Dtt ,uid 8ui/Ou. In the implernentation of FFD-II, 8w/& is approximated with the sample point values 
A 

nf i l i ia~c O. ,and O.to/Dir is approxirnated by computing the corresponding partial derivatives of image O. 

Tliir initial values for niuneric integration are calculateci from the image O in a way such that thc deviations 

Iwt.wccn O 'and O is minimizcd. 

1 I Tlic verification problcm is as such: "Giwen an original input functiocal image data set 01 , a function 
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tlie last hypothetical transformation appBed to generate Ô is TDIF. This is a compromise 

between simple computation and the satisfaction of Equation (4.9). It is obvious that 

Equation (4.9) is satisfied only if Equation (4-7) is satisfied. As a necessary condition, this 

met hod meets the needs of hypothesis verification. 

Linear Factors 

FFD-II ernploys the factorization transformation described by Equation (3.48). The factor 

( Z L ~  - cos6 + u? - sin0 + C) is detected from the corresponding functional image. The 

factorization transformation is only applied when it is hypothesized that the underlying 

fiiriction of a functional image contains a linear factor, i.e- 

f (ui , u2) = g(ull ui)  . (ul - COS 0 + uz . sin 8 + C) .  (4.13) 

Therefore, me must have evidence that shows the existence of the factor. FFD-II extracts 

the hypothetical factor through detecting lines in the contour image of ud = 0 , called 

"O-contour" image. The algorithm is designed based on three important observations: 

1. There is a factor ul cos 8 + uz - sin 8 + C only if we can observe a correspondent line 

in the O-contour image when the observation domain is properly placed. 

2. The observation domains of ail functional images, original or generated, are simple 

connected planar regions since the original observation domain is a simple connected 

planar region and al1 the applied transformations are one-to-one continuous. 

3. If D E 8' is a simple connected planar region within the observation domain, there 

exists a factor ul cos 0 + ~3 sin û + C and a planar point p(ür, ür) E D that is on 
- - - -  

foi-~ii <icscriptiou P r  = ( DT,  D p  ) E L , and a sequence of consequently transformed images corresponding 

t.ri cadi transformation in scqucncc DT . Find Out how weil V r  matches with O by numcric computing 

t l i c  eIcviation bctwecn tlie two image O and DT' ( D p )  ". 
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the contour line, i.e. 

ür *cos8+ü3  - s i n O + C =  0, 

tlien the line must cross the boundary of D . Furthermore, if point p is not on the 

boundary of D , the line will cross the boundary of D at  least twice. 

X brief description of the algorithm is as  foliows. 

Step 1 : Iterate through the boundary of the observation domain, examine the value 

of the dependent variable on the boundary sample point and compare the s i p s  

of the values of each adjacent point pair. A zero value contour points is found 

directly from the sample point value (if the function value is zero) or by a Iinear 

interpolation (if the two adjacent points have different signs). Step 2 and 3 are 

carried out  when such a point is found. 

Step 2 : Starting from a point found in step 1, trace the O-contour point into the 

observation domain to form a tree presentation of the O-contour curves. Fig- 

ure 4.8(a) illustrates an example of the tracking, where the arrows show the 

tracking order. In the figure, there are two O-contour curves of the underlying 

function shown as light dotted curves, a straight line and an ellipse. Point pl is 

the starting point on the boundary obtained from step 1. The shaded quadrilat- 

erals are the observation cells l5 in the coordinate plane ud = O .  New O-contour 

points are identified through ceU by ceIl sign examinations and interpolations. 

The key idea of the tracing process is that any O-contour line will not end in an 

inner cell. 

Step 3 : Split the found O-contour tree into simple curve pieces and f i t  each piece 

to a line. If the fitting is acceptable, a straight line equation corresponding to a 

curve piece is identified. Otherwise, the curve piece is discarded. Figure 4.8(b), 

(c) and (d) show the groups of split O-contour points and the fitting results. 

OnIy (c) is an acceptable fitting. 
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Step 4 : If the iteration of step 1 has not been completed, continue from step 1. 

This enables the algorithm to find multi-contour-lines. 

Apparently, this simple method is relatively sensitive to noise. When noise Ievel exceeds 

a limit, the O-contour tracking procedure will not be successfully completed. However, 

the crirrent research focuses more on methodology issues, only simplest numeric recipes 

t hat do not require too much computer resources are chosen. Identifying a set of complex 

cirrves from a set of planar points of its own is an interesting research topic. FFD-II 

eniploys only linear factor to  demonstrate the ideal of factorization transformations. Other 

factorization transformation classes may be considered according to the domain knowledge 

of the application. 

4.4.2 Primitive Fitting and Search Heuristics 

Primitive Fitting and The Error 

RecalI that we have defined two types of primitives, i.e. functional primitive and compo- 

sitionaI primitive. Fitting a functional image to a functional primitive is simply a linear 

fitting of leczst-squares. Let 

I>e a functional image data set and vd = P ( q ,  v 2 )  be the functional primitive fitting 

resiiltant function of O\. . The fitting error is the mean-square distance between surfaces 

v , ~  = P ( q ,  v2) and 0,. as described below. 

Let po = (vr3) , $'), ~2")) be any sample point of the observation image data set Ov . 
The normal vector of the fitting surface at  point ( v r j ) ,  vFvi)) is 
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Figure 4.8: Extracting Straight Line in A Contour Image 
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and the error distance vector is defined as 

The deviation a t  point (i, j) is therefore defined as the dot product of the two vectors 

riricf the  mean-square distance between the fitting surface and the image surface is 

Er is viewed as both the primitive function fitting error and the error between the initial 

observation image and the verification image which is generated by numerically inverting 

t l ie  t ransforrnation sequence starting from the hypothetical primitive pattern. 

The  recognition of the primitive pattern of linear compositional primitive is achieved by 

n intiiti-line fitting scheme. Let us first give the problem statement. 

L inear Composition Component Discovery ProbIem 

Givcii : a functional image observation data set 

0,. = { ( v : ,  v i ,  v j )  l i =  1, - - - ,  N } .  

Fiiicl : a control parameter 8 so that the data set generated by 

represents a smooth one dimensional function vd = g ( t )  . 

A weighted multi-line least square fitting is used to solve this problem. The algorithm 

iiicludes tliree main steps. 
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Step 1 : Find the range of the observation 0, and partition the range into ND 

adjacent close intervals 

Si = [%in + (i - 1) .A, ",in + i  - A ]  
u m u  - Vmin (4.21) for i= 1 , - - . , N D ;  a n d A =  

ND 

where 

and number ND is set to be for N = 1OVl . 

Step 2 : Segment the sample points into ND groups 

for u j  E Sr. ; and 

(VI, v;, v j  ) E UV 

(for A:= 1 , - - - , N D ) .  

Note that the groups may not be disjoint. 

Step 3 : Jointly fit al1 sample points in each group Gk to a common format straight 

line v l  cos 8+v2 sin 8-Ck = O ,  where 0 and Ck (for k = 1, . - , N D )  are the fitting 

parameters. To reduce the chance of the fitting result undesirably influenced 

by the segmentation scheme and the distribution of the sarnple points, a weight 

function is defined as 

where (1) it is assumed that the i- sarnple point is in group G j  ; (2) cj  is the 

center of the interval Sj and A is the dimension of the interval; and (3) 6 ,  a 

srna11 positive real number, is the offset that is used to adjust the shape of the 

weight function. 

The fitting problem is then a classic minimization problem, i.e. minimizing the 
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objective function 

Clearly, it is a linear problem that could be easily solved. 

Once the linear component is obtained, the fitting error is calcdated based on the 

nieCasurement of the smoothness of two-parameter functional image represented by Equa- 

tion (4.20). We assume that the sarnple points in the set 8, = { ( t i ,  v : ) )  are sorted 

according to their t values, where ti = uf cos 0 + v i  sin 6 . The computing scherne is 

described CU the following. 

Let  (ti, v j )  , 1 < i < N be any point in the set 6, , define the 6-neighborhood point 

s e t S i C a s :  . 

Si= { ( t i 1 v i )  1 ( t i , v i )  E Ô d ,  and ~ t j -  ti( 5 8 )  , 

ivliere c5 is a small positive real numberl'. Since Ô, is sorted according to the corresponding 

t values, we can assume that there exist integers El and k2 , 1 5 kl < i < k2 5 N , such 

t,liat 

Si = { ( p l  , v i l ) ,  (t"'+11v51+1), . . . pl v p ) }  - (4.26) 

Noiv define a line that crosses points ( t h  , "21 ) and (tL2, vd2) as:  

The m,zxirnum and minimum deviation values are defined as 

'" Iii tlic iinplementation o f  FFD-Il, 6 = J-. . 
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Tlius the  fitting error and the curve segment length at the i a point are given as 

Finally, the compositionai primitive fitting error is defined as 

Note t h a t  the denominator in Equation (4.31) is not exactly the Iength of the two dimen- 

sional curve. It is closely related to the length and less sensitive to noise, thus it is a better 

choice than using clcassic discrete curve length formula. 

Se,arching Heuris t  ics 

To carry out heuristic search, a cost function is used to identify the most preferred node to 

he explored in each state. The following rules are considered in the construction of the cost 

fiinctions. 

Rule 1 The node with the simplest functional image should be explored first. 

Rule 2 The node with the functional image that is easier to be obtained frorn the 

original functional image should be consider first. 

Rule 3 The transforrned functional image that has smaller expected error should be 

more preferred. 

The simplicity of an image is measured by how close it could be fitted to a primitive. 

The accumulated rank values of the transformations that have been applied to obtain the 

transformed image reflects the complexity of the possible solution in the corresponding 

h a n c h ,  The expected error level, denoted by E , which is traced automatically by the 

system, could be considered as a factor of the quality of the solution that could be expected 
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to he obtained by further transforming the current functional image. Therefore, the cost 

function could be define as 

where E j  is the functional primitive fitting error, Ec is the compositional primitive fitting 

error, R,  is the accumulated rank value of the current node, Rt is the rank value of the 

transformation that will be applied to generate the image for a new node, and 6, is an 

nrbitrarily selected small real number". The cost value obtained from Equation (4.32) will 

l ~ e  assigned to a new generated node a t  Step 7 in the search procedure (List 1 on page 119). 

.lppnrently, the designed cost function is only a rough estimation of how likely we can 

firid n relatively simple solution in a branch of the search tree. It is not rnonotonic since 

a transformed image may have larger Ef and Ec values than the image it is transformed 

from. This design demonstrates a way to conduct heuristic search in a tough real problem. 

Achieving Adaptive Error Control 

J t  I ~ a s  been pointed out Section 4.2.2 that the e r r x  ccntrol is an important issue in the 

design of a direct three-variable function form discovery system. To achieve adaptive error 

coritro1, we need to compute the expected error level of a transformed image and know when 

the image is not a smooth image. In this section I wi11 discuss these two issues. First, the 

tlieoretical propagated errors corresponding to each transformation will be analyzed. Next, 

1 will define the "roughness value" of an image. Lastly, 1 will summarize the results with 

the adaptive error control scheme used by FFD-II. 

Before going into details, let me first introduce the symbols which will be used. In this 

section, an error E is referred to as the Relative E m r .  Let c be a numeric, and 2 be an 
- - .  

i 7 
Iii  tlic implementation of FFD-II, 6, equals 0.1 when the node is an un.!~ivorable node, which me~iuis 

t.liat t.hc wsociated image contains large scalc uncoverciblc errors, rrnd otherwise it cquais O. 
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approximation of c ,  then the error of estimating c with C is 

Viewing e the expected error level, which is a positive number, we also write 

Without losing generality, we replace & with + in the above equation in the formulation of 

the propagated errors. In the discussion of errors: the following conventions are in effect: 

1. The triple (Cl, i l ? ,  i ld)  denotes the accurate sample point of the functional image of 

an underlying function ud = f (ul, u2) . 

2 .  The triple (cl, ü2, G d )  denotes the approximation of (Cl, ü2 , Gd)  - The error associated 

with each parameter is denoted by €1 , € 2  and cd respectively: 

3. Let T be a transformation and T be a numeric implementation of T l  and (cl ,  ü2, G d )  

be a n  approximation of (il1, ü2, Gd). Then the triple 

denotes the accurate transformed functional image sample point, and the triple 

denotes the approximated transformed functional image sarnple point, where (ùl, ü2, ü d )  

is an approximation of ül, ü2, Cd.  The expected errors associated with ü1 , ü2 and 
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ü,l are ZI , Z2 and Ed respectively, where 

4.5.1 Error Propagation Analyses 

To formulate the error propagations is to find the expressions that express the estimated 

errors s1 , & and in terms of €1 , €2 and cd corresponding to each specific transformation 

seqirence T . In other words, it is to find a mapping ET of the following 

From the error propagation perspective, there are two types of transformations - trans- 

formations whose propagated error are related to the coordinates of the sample point, and 

t.ransformations whose propagated error are not related to the coordinates of the sample 

point. Let us start with the examinations of the simpler type first. 

Transformations With Propagated Error Not Related To The Sample  Point 

Coordinates  

Transformations TvEs  defined by Equation (3.53) and TI,, defined by Equation (3.50) 

do not change the error levels associated with each parameter since they only exchange 

the position of the corresponding parameters. By the definition of TvEXi the accurate 

transformed triple is 

( 7  2 d )  = TVEX ( ~ 1 , ü 2 1  c d )  

= (Ü2, Ü l r  c d ) .  

Tlius applying TvEX to a data triple containing noises results hl8 

( 6 1 ,  9, G d )  = (ül(l+ c l ) ,  ü2(1+ h) , üd(l+ %)) 

Ir For klic C-C of i1 z= O. sidrar exprcssions can be used to obtain the error estimations. Samc ~uuiouuce- 

i i ~ < . i i t  will not bc madc in the rcst part of this section. 
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This proves that the new error levels associated with each of the new parameters (obtained 

from appIying ) are 

Z1 = €2 , Z2 = €1 , Cd = c d .  (4.40) 

Similarly, me can prove that the new error levels associated with each of the nem parameters 

( obtained from applying T Isv ) are 

Since the error level are not enlarged, we cd1 the TvEx and TI,,. transformations error- 

preserving transformations. 

TREC defined by Equation (3.44) is another error-preserving transformation. Let us 

examine the reason now. 

expansion, we can express 

According to the definition and using Maclaurin power series 

Therefore, we have proved that the new error levels associated with each of the new param- 

eters ( obtained from applying TREc ) are 
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Transformations With Propagated Error Related To The Sarnple Point Coor- 

dinates 

The other three transformations employed by FFD-II ,  TL^^ , T F A ~  , and TDIF , are different 

to tliose we have just seen in their error propagations. The error level through transforma- 

t i o n  will be changed depending on both the transformation applied and the functional image 

itself. In the following formulations of error propagations, Taylor power series expansion 

will be used whereas it is required without mention. 

For the transformation TLoc defined by Equation (3.42), the propagated error level 

estimation could be obtained from '" 

Silice fi1 = ül , ü2 = US and üd = logCd 

TL% (UI. fi?. ü d )  = ( ü l ( l + t l ) ,  ü 2 ( 1 + ~ 2 ) ,  l o g G d  

= ( Ü ~ ( ~ + ~ ~ )  @2(1+€2) , cd (1+ A) 1% ud  ) - 
I t  is therefore concluded with the error mapping corresponding to transformation  TL^^ as 

For the transformation defined by Equation (3.48), the propagated error level is 

' !' Wit.lioiit losing gcncr;ility, WC can ncglect tlic absolute operator. 
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identified ~zs 

Since Cl = 61, ü2 = ü2 and üd = c d  

ü1 - cosû+ü2  . s i n û + C  ' 

Gd( 1 + Ed 

- - Cd 1 + E d  

üL ~ c o s 0 + Ü q ~ s i n 8 + C  ürrl . cos 8 + Ü ? E ~  - sin 8 
1 + 

Ül -cos8+Ü2 -s in8 +C 

ü l ~ l  + cos0 + ü2e2 - sin 8 
Ü d ' ( l + é d ) '  1 -  ( ü l - c o s e + ü 2 - s i n e + C  

ü1c1 - COS 8 + ii2 é2 - sin 0 
ül -cos8 + C l  -s in0 + C  

where 

We can therefore conclude the analysis with the error mapping corresponding to transfor- 

mation TF,,c as 

ü1 - cos6+ü2  - s inB+C 
ülcl -cos 8 + Üpe2 - sin8 

The transformation T D ~ ~  is relatively hard to  analyze. Since the first two parameters 

« 1 is assumed, thus 

z1 = €1 , z2 = €2 , Zd = Ed + üle1 COS 9 + ü 2 ~ s  - sin 8 I - 
(4.44) 

ül - c o s 8 + ü 2 - s i n 8 + C  
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in the variable triple will not be changed by the transformation, it is obvious that 

To figure out the propagated error Zd , we should note that the error can be split into two 

parts: 

Computational E ~ T  of Differentials which is the numeric computation errors in- 

troduced by the approximation met hod described in Section 4.4.1; 

Propagated Error which is the theoretical difference between the underlying func- 

tion's derivative values of a clean image and the noisy image. 

Let  us  analyze them separately. 

Propaqat ed Enor o f  Differen tials 

Let  ( x, y ,  z ) denote the accurate sample points of a function form discovery problem 

and z = f ( x. y )  be the underlying function in class Cm . Let ( Z , g , 5 )  denote the 

corresponding noisy sarnple points. Assume that: 

wliere a ,  p and y are the absolute error functions, and Z = g ( 3 ,  g )  is the corresponding 

irnderlying function. We would like to find out the propagated error, i.e. the difference 

hetween g;( 2 ,  i j )  and fi( Z, y )  . 

Substitute Equation (4.46) into z = f ( z ,  y )  yields: 

Tllerefore, if we assume that la1 , 1/31 , Iyl , lail , IPil , Iyil < 1 , which means that the noise 

level is relatively small, we obtain 
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Transferring these to relative errors and for the simplicity reason, we assume that,  for a 

ninjority number of observation sample points20, 

where , €2 , €3 « 1, we have the simple propagated error estimation 

Computational Error 

The error analysis we have seen solved the problem of estirnating the difference between 

TD,,:( ül , ü2 , ü d  ) and TDIF( üL , ü3 , Cd) .  It is one of the two parts of the error that contribute 

to the propagated error of the differential transformation. Recall that al1 transformations in 

t lie discovery system are implemented numerically. The second part of the propagated error 

is the error introduced by the computation of TDIF(UL , fî2 , ü d )  using the chosen numerical 

~netliod. In the implementation of FFD-II , TDIF is calculated by a fitting scheme (Refer 

to Section 4.4.1) .  We now analyze the error associated with this computation scheme. 

Let: 

(1) po = (0, O) be the point a t  which we numerically compute the partial derivative 

of a C, function z = f (2, y) using our fitting method; 

(2) p i ,  i = 1, - - -, 8 be the eight nearest points involved in the fitting, and F p  =r 

{pi 1 i = 0, - - ., 8 ) denote the fitting point set; 

(3) A be the maximum distance poP; (for i = 1, - ,8); 

'"CoiWidcring that the error is '&O monitored by the measuremcnt of mirface roughncss that will be 

c li..;ciis.-cd soon. the as-suxnp tion will not mislead the proposed error control strategy. 
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(4) -A 5 z 5 A ,  -A 5 y < A be a small planar region; 

- allz2 + gl2=y + ü22Y2 + a12 + ü2y + 00 be the least-squares fitting ( 5 )  P(xt  Y) - 
polynomial; and 

(6) P(z ,  y )  = ail  z2 + alzxy + a22y2 + alz  + a3 y + QJ be the polynomial of truncated 

Maclaurin series of function z = f (z, y) . Thus, 

Sirice 

(i) function f (2, y) is pertaining to  class Cs , we can assume th& there is a 

positive constant K such that the corresponding derivative values are bounded 

where -A 5 5 A ;  and 

(iii) P ( z ,  y) is the least-squares fitting and considering the existence of the polyno- 

mial function P(x ,  y) , it must satisfies: 

a t  each poiiit pi , 

we woitld like to  prove ~ h a t  the second order polynomial 

wliere the coefficients are the subtractions of the corresponding coefficients in P and P , 
satisfies 

b = O(A*), (4.51) 

provided that  the fitting point set is subjected t o  certain constraints. 
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I t  is obvious that if the fitting points is scattered very close to  a line, as shown in 

Figure 4.9(b), the functional image of the resultant fitting polynomial may not be very even, 

even when Equation (4.49) are satisfied. To prevent this from happening, we assume that 

point pu adequately close to the center of the point set Fp ( iiiustrated by Figure 4.9(c) ), 

i.e. there exist five points E , N , W , S and V in set F p  , such that 

the distances between any points pair are O(A) ; 
- 

if 1 is the point where lines NS and EW cross, and K denotes the distance 

hetween points I and po , then 

Angle 4 is not close to either O or n , 

Under these conditions, we now prove b = 0(A2)  . 

Witliout loosing generality, we assume that 4 = n/2  ( Refer to Figure 4.9(d) ). Other- 

wise, a coordinate transformation can be applied to simplify the situation without changing 

the first order properties (of Our interests) of the polynomial of Equation (4.50). For the 

convenience of discussion, we assume that the coordinate origin is initially at point po . 

Moving the origin to point I results in a transformed polynomial of (4.50): 

From given, we have 
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(a) Eight-Neighbor Point Set 

(c) Adequately Centered Point Set 

(b) Il1 Distributed Points 

(d) Simplified Case 

Figure 4.9: Polynomial Fitting Points 
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w here DE, Div , DN , DS , x, and yv are infinitesimals of the same order of O( A)  , 
and zm and y, are infinitesimais of the order O(K) = O(&*) . Now we prove ü is an 

infinitesimal of order 0 ( A 3 )  by contradiction. Let us suppose ü = O(An) for integer n < 3 

( when n < O a is an infinite ) . Then, equations (El) and (E2) imply 

Eliminrrte 6 from above yields 

Clearly, d = O(An-') so that, by comparing the order of each term in equation (El) 

or (E8), 6 = O(A"-') . Similady, using equation (E3) and (EX) it can be proved that  

= O(An-l)  and f = O(An-') . By comparing the orders of each term in equation (E5) 

we find the order of the only unknown symbol ë = 0(An-2) - NOW we check with equation 

(EG) to figure out the order of a. In the equation 

considering the assumption of 5, , ijm = O ( A ~ )  and the results we have proved, the terms 
- 

k,, and % ars of 0(An+l )  and the  terms dg; , ëZ,ij, and fiji are of O(An+') . 

Considering the assumption of n being less than 3, term ü m u t  be of O(A"+') . This is 

contradictory to the assurnption of a = O(An) . Therefore, 

According to the result of a = 0(A3), we can use the same method to prove 6 ,  I? = 0 ( A 2 )  

and d ,  ë , f = 0(A) . Since 

2 = z+z, 

Y = Y + &  
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the  following orders could be figured out: 

Recalling the definitions of ~ ( z ,  y) (Equation(4.50)), P(z, y) and P ( z ,  y) ( k t  items 

(5) and (6) on page 142 ), we can conclude the discussion with the estimated computational 

error 

6, = O(A~) . (4.54) 

n 
The above proof is also valid when condition (4.52) is replaced by condition g << 1 . 

4.5.2 Surface Roughness and Smoothing 

Roughness Measurement 

Let  O = { ( ui-j ,  vis, , w;.; ) 1 i = 1, . . . , N z  ; j = 1, - - -, Ny) be a functional image sample 

point set. W e  define the roughness of the surface at  an inner point ( i , j ) , where 1 < i < 

Aix . 1 < j < Ny , as follows. 

Let " 

Clearly, if 

'' Scr: Figure 4.10 for gqhical  illustrations. 
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Figure 4.10: An Illustration of The Roughness Measure 

r we let f = F ( t )  be a continuous function such that fi = F( t i )  for i = 0,1,2 ; 

ive assume that t2 = 2 t 1  and p < 1 POP2 1 ; and 

r ive let r and 4 denote the radius and angle of the circular arch PoPlP2 , 

wliich is the approximated curvature value of f = F ( t )  at point Pl multiplied by the 

dimension of the length of the small curve segment and divided by 8. We assume that for 

a smooth ciirve point, r = 0(1), thus: 



4.5 A chieving Adaptive Error Control 

Similarly, Let 

Hence, the Roughness Valve a t  the surface point (i, j )  is defined as 

Roiiglily speaking, this measurement is a sum of second order curvatures of two un-parallel 

curves on the surface that cross a t  the surface point (i, j) multipiied by the corresponding 

length of the curve segments. 

Tlie Roughness Value of a surface is the averaged integration of the roughness elements 

at each surface sample points 

Tlie measurement given above is based on the measurement of curvatures of the curves 

in a curve set on the surface. The observation data set O presents the surface by a net 

of discretized curves on the surface. Although Equation (4.56) is not the exact curvature 

ineasurement of the surface a t  the corresponding point, it  is necessary that  e, = O(&)  

for 4 being the averaged partitioning size of the mesh grid, provided that  the cürve net is 

reasonably close to a uniformly generated net 22. The quantity of the defined roughness value 

ilt a mesh grid point responses to  non-smooth noise pattern with a large value. As such, 

the defined surface roughness measurement can meet Our need of capturing the roughness 

pattern of the surface caused by noises and errors. 

"' Uniformly Generated meam that there is a smali number A - the partitioning size, such that the 
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Smoothing a Surface 

Differential transformation is the most important transformation that allows a data trans- 

formation based function form discovery system to have the fiexibilities of finding complex 

function form expressions. However, it is more difficult and inaccurate to compute the 

transformation numerically than other algebra transformation. To fully take advantages of 

dnt a transformations, the ability to teduce the computational errors is an important issue. 

Before we chose the smoothing method, there are a few things that should be borne in Our 

minci. 

The smoothing scheme must add, as less as possible, specific functional pattern of its 

own to the image to be smoothed. Or, at  least no significant functional pattern will 

be added. 

In the three-variable cases the smooth scheme should be able to handle observation 

data set that is not regularly distributed. In other words, the mesh grid might not be 

uniformly distributed rectangles. 

Since the srnoothing treatment will be called from time to time and the size of a single 

observation data set are usually large, it is better to be a simple method that works. 

These are the criteria for designing the smoothing algorithm for FFD-II . 

Moving window averaging is probably the simplest and the most widely used noise 

removing technique. If the mesh points are adequately placed and the underlying function 

is constant, or is changing linearly with the independent variables, no bias is introduced into 

the resul t. A bias is introduced, however, when the underlying function has a nonzero second 

derivatives. To prevent the bias introduced due to nonzero curvature, Digital Smoothing 

Polynomial[l8] is an alternative. In one dimension cases where {(ti, fi), i = 1,2, - .) is the 

sarnple data set, instead of directly replacing data value fi a t  each sample point i by a 

linear combination: 

ncarby of i 
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we replace fi by pi : 

Pi = <Ln](ti) 

iv-tiere pi["l(t) is the nl!! order polynornial that is the result of fitting the sample points 

wit hin the i& moving window by least-squares. This idea is borrowed to solve our smoothing 

problem. 

Let O = { ( waj , V;.j  , wij ) 1 i = 1, - , Nx ; j = 1, , N y  ) be a functional image sample 

point set that need to be srnoothed. We choose a 5 x 5 moving window, Le. let the fitting 

point set a t  a point (i, j) be '3: 

and let the second order two-dimensional polynomial: 

be the  fitting polynomial. Clearly, second order curvatures of the underlying function do 

riot introduce bias by choosing a complete second order fitting polynomial. However, bias 

are introduced by possible higher order curvatures. Choosing higher order polynomial may 

l x  a solution to overcome this problem. But a t  this moment, we limit the complexity of 

the entire system with the simplest possible choice. 

The laborious least-squares fitting is linear. We solve it by L U  decomposition. More 

luckily, we need only to find the constant term f . This simplifies the back-substitution 

procedure of LU decomposition process. 

In general, a smoothing algorithm does not improve the precision of the data. In the 

FFD-II system, the smoothing method is applied to a non-smooth image recursively until 

the image is sufficiently smooth. Since the smoothing method introduced in this section is 

an averaging based method, it works better when there are sufficient sample points involved 

in a single computation of the average. Thus the smoothing process will only be triggered 

?'' Notc tlint speciai attentions must bc paid to the points on and next to the observation boundary. 
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when there are extra sample points, available in the forrn of fme step image, that could be 

iised to help the image smooth. 

4.5.3 Error Monitor and Adaptive Control 

Smoothing algorithms do not improve the precision of the data. It only remove the high 

frequency oscillations from the data. A more effkctive way to improve the precision of the 

observation data is to use more sample points with finer observation step size. In the FFD- 

II  system, the srnoothing method introduced in the last section is applied recursively to 

srnooth the image until the image is sufficiently smooth. An image refinement scheme is 

iised to improve the precision of the image when the estimated error level is too high. The 

refinement is implemented by using fine step observation data with larger fitting windows, 

i .e. windows with the same dimensional magnitude and more sample points. The system 

riioni tors the expected error level and the smoothness of the transformed functional image 

to decide which treatment is needed. 

Siinimarizing the results of error analyses conducted in Section 4.5.1, the estimated error 

propa~ations of each transformations are tabulated in Table 4.1. The estimation formulas 

of Tl-,, , TIsv ,  and TREc are exactly their theoretical results.  TL^^ and T F ~ ~  are roughly 
-Üd . 

estirnated. In the error estimation of TLoî , log(&) is replaced by log("'", u) , and in 

the error estimation of , maximum error level of the three attributes is adopted. The 

error estimation of TDIF is relatively rougher. In the theoretical result, Equation 4.48 is 

replaced with rnax{ci, c?, c~), and Equation 4.54 is replaced by (-) *. The rasons 

for estimating the errors in this way are list below. 

The purpose of estimating the propagated error Ievel is to capture the order of the 

expected error level. We require only 

where Z is Our estimated error level and ~ ( p )  is the real error a t  any observation 

sample point p .  When the functional image is sufiiciently srnooth and the mesh grid 
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Theoretical 1 Trans. 1 Estimated Error R e d  t s  (Eq.) 

Table 4.1: Estimated Error Propagations 

liczs not been badly distorted, the requirement will be satisfied. 

Our interest is to compute the "overall averaged order" of the the propagated error. 

A rough estimation is sufficient for serving as an errcr treatment heuristics. 

The estimated error is largely different from the true value a t  those points where the 

fiinctional image is not smooth. For that kind of exceptions, the designed smoothing 

heuristics and procedure will take charge of the situations. 

FFD-II achieves the error control based on the following two heuristics. 

Heuristics E l  : If a functional image associated with a searching node has too large 

expected propagated error level, it may not be desirable to find a solution based 

on the image. 

Heuristics E2 : If a functional image is not sufficiently smooth, measured by the 

roughness measurernent e , the image shouId be treated with surface smoothing. 
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In t be former case, the best way to reduce the error is to refine the image with fine step 

observations when the primitive fitting error is sufficiently ~ r n a 1 1 ~ ~ .  FFD-II first checks 

if there are more observation data available for refining the curent image. If yes, image 

refinement is conducted. Ot herwise, the system marks the corresponding child nodes as 

unfavorable nodes by increasing the cost value of the corresponding chiId nodes. In the 

latter c~ase, surface smoothing will be called recursively to smooth the image until a smooth 

surface is obtained. 

'' If tlic prinlitivc fitting crror cxcecds a certain limit, for example tcn times the corrcsponding expected 

rnor ICVCI. WC lmvc cvidmce to beiieve that the image is not primitive. Smoothing such an imagc is not 

ilccc~s<uy. 



Chapter 5 

5.1 The Organization and Common Background of the Ex- 

periment 

The implementation of the proposed methodology is the FFD-II system. It is written in 

C + t  programming Ianguage with over 13,000 lines of code. The experiments are run on a 

SUN SP-4RC UItra-1 machine, that is equipped with a 167MHz CPU and has 62MB RAM. 

This cliapter is a report of the experiment results. 

Before the discussion of the experimental results, two detailed examples are presented 

in the section that follows. The purpose of presenting the exarnples is to help t o  understand 

the proposed methodology. The experiments are then organized into four categories. 

The first group presented in Section 5.3 is designed to demonstrate the general discovery 

capability of the system based on the proposed function form description language described 

in Section 3.3. To minimize fortuitous results, a random test function form construction 

scheme is used to select function forms to be tested randody. 

The second group of experiments presented in Section 5.4 is a comparison between the 

proposed direct three variable function form discovery method and the indirect method 

tisi ng variable freezing technique. As mentioned befme, FFD was designed to  discover 
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function forms from two variables. It has been extended to discover function forms with 

extra parameten, known as families of one dimensional functions, using the parameter 

freezing technique. The extension is subject to certain constraints such as the "Primitive 

Union" and "Simple Descriptive Parameters" assumptions. Hovüever, the comparisons in 

the second experiment group will be made against a more general indirect function form 

discovery system, namely "Indirect-FFD" which will be introduced before the experiments 

are discussed. To demonstrate the superiority of the proposed direct approach over the 

i iidirect approach, special function forms are chosen. 

The third group of experiments, reported in Section 5.5, is designed for the purpose of 

demonstrating the system's ability to mode1 observations from more complex function forms 

tlmt cannot be expressed in terms of a few fundamental functions. Randomly generated 

two-dimension surfaces are chosen as test samples. The emphases is on the meaningfulness 

of t lie discovered expressions. 

The 1,zst experiment group, described in Section 5.6, tests the performance of the error 

treatment design of the system. Noises are added to the simulated observation data set to 

produce input observations. Different statistics wili be used to show the effectiveness of the 

proposed methodology. 

The test function forms and al1 intermediate transformed function forms are assumed 

to represent continuous functions in tlieir corresponding observation domains. The compu- 

tational complexity of the algorithm is not reportedl. Instead, 1 will report the number of 

riocles created and the number of primitive matches the system attempted before it reached 

the solution in a discovery task. These values reflect the efficiency of the designed search 

and redundancy elimination heuristics. 

Rniigldy spcaking, the timc consumed in computing a node is linear to the size of the observation data 

rct  asnciatcd with it. 'and the actual time complexity depends on the numeric tools WC chose to carry out 

chta transformations and primitive matchings. The current system stores and processes a functional image 

i i ~  tlic fnrrii of double prcasion floatingpoint data. This consumes large amounts of memory space and CPU 

t,iiiic. Tlic CPU consumption of the experimcnts reported in this chapter range from 2 seconds to about half 

  LI^ lintir. <lepend on the complcxity of the discovery task. 
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The system is run under the following default system parameter settings unless otherwise 

stated. 

Sampling: In each experiment, the observation domain is carefully arranged to 

conserve the continuity assumption. The partitioning sizes are chosen to be 

from 0.008 to 0.02. 

Accept A Fitting: The threshold cp is set to max(5 x G, IO-'), where is the ex- 

pected error of the corresponding functional image associated wit h each node. 

The system estimates é, according to the original precision, the step size, trans- 

formation history of the node and the function range of the corresponding 

images'. When a transformed functional image can be fitted to a primitive 

with a fitting error3 less than the threshold, the fit will be accepted, a hypoth- 

esis will be abstracted, and the verification process will be triggered. 

fccept A Hypothesis: The threshold EM for accepting a hypothesis is set to 

rnclx(~, ,  10-9. This is referred to as the Matching Error Tolerance Level 6,, 

in our problem state~nent (Section 3.2.2). When the deviation measured by the 

root-mean-square distance4 between the matching image (obtained by numeri- 

cally rcversing a fit ting image with corresponding reverse transformations) and 

the original observation functional image is less than this threshold, the system 

will terminate with a successful discovery. 

Smooth Image and E m r  C o m p t e d  Image: When the computed roughness value5 

of an image is greater than 

0.1 J Area of the Observation Domain 
Number of Sample Points 

the image will be viewed as a rough image. A surface smoothing process will be 

triggered. When the computed expected error of an image is greater than the 
- - 

-' Rcfcr to Section 4.5.3. 

' scc Scction 4.4.2 for details. 

' Rrfcr to Section 4.4.2. 

'' Rcfcr to Section 4.5.2 for the definition of roughness value. 
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square root of the original input noise, the image will be viewed as an image 

with unacceptable level of errors. Image refinement will be triggered. However, 

in both of the cases, if there are no additional sample points, the treatment 

process will not be triggered. Instead, the system will assign low priority to al1 

nodes in the current branch. 

Tliese settings are based on the consideration of the accuracies of the numeric tools that 

have been chosen. We should note that numeric integration is Iess sensitive to noise than 

riiimeric differentiationG. Hence it is reasonable to  set ÉM < . The arbitrary value IO-' 

represents the basic numeric fitting and integral accurâcies and E, adaptively takes into 

riccorint the accuracy of the observation data set upon which the numeric computations are 

carried out. Considering the time and memory space intensities of the system, we also set 

t.lie rmaximum search depth to 7 and the maximum tank of a function form to 10. We will 

ident ify changes to t hese settings whenever necessary. 

5.2 Two Detailed Examples 

Examples are heipful for understanding the proposed discovery mechanism and the subse- 

quent experiments. In this sections, we will see two detailed examples that dernonstrate the 

t.wo different termination primitive types of the system and how the system works. 

5.2.1 Example 1: Termination by Primitive Function Fitting 

The first function form to be discovered is 

2 = 1 + e2'Y 

Tlie simulated observation data set is obtained by partitioning the observation domain 

(2, y) f [-1, 1; - I l l ]  into a 101 x 101 mesh-grid. As such, the observation data set contains 

'; Mqior crro~s arc introduccd by thc approximations of differcntial transformations in the proccss of find- 

i tir ii xxiatdiing hypothcsis that involvcs diffmtial  transformations. Thc verification process only contains 

.ilxc4uai<: iu1d intcgral transformations. 
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solution I 

Figure 5.1: The Search Tree - Example 1 

101 :< 101 = 1021 reai valued 3-tuples and can be expressed as: 

The discovery steps are illustrated in Figure 5.1 and detailed information is given in 

Table 5.1, where "Trans." shows the associated data transformations, "Cost" refers to the 

value of searching heuristic cost function corresponding to each node, "ExpError" stands 

for the estimated error propagation, "Pf-Error" is the functional primitive fitting error, "Pp- 

Error" is the compositional primitive fitting errors and "M-Error7' is the matching error of 

liypothesis verification. The nurnber shown in each node in Figure 5.1 represents the order 

in which it was explored. The discovery is terminated at step 66. 

Let us describe the discovery process step by step. After initializing the tree root (Node 

1) with the given observation data set 0, the system starts to search for the solution: 

Step 1: The system attempts t o  find a primitive function matching the image O by fitting 

it to primitive functions. The best fitting is 



I 
Step 

t 1 

t: italic denotes the value is obtained from parent node. 

Table 5.1: Primitive Fitting and Matching of Each Step of Example 1 

Pf-Error 

, 5.13Oe-02 

Trans. 

None 

PpError Cost 

- 
M-Error Exp-Error 

1.00e-12 2.117e-O5 1 - 
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and the fitting error is 5.130E-2. It is not an acceptable fit considering that the 

expected error of O is é, = 1.OE - 12, the precision of 64 a bit floating-point nurnber. 

Thus €7 =  IO-^^. 

To find a compositional primitive matching of the image 0, the system uses the 

multi-line fitting algorithm. The best fit is 

and the fitting error is 2.117E-5, which is not acceptable. It is concluded that O is 

not primitive. 

The system then constructs six child nodes, corresponding to the transformations 

listed in Table 3.6, without computing the associated images. It assigns each new 

node a cost d u e  computed accordingly, and puts them into a sorted list "OPEN". 

Step 2: The node with the least cost value is chosen and removed from the "OPEN list. 

The system deterrnines that the associated transformation,  TL^^, is applicable. Data 

transformation is then carried out to generate a new associated functional image Cl2. 

Fitting processes are called to attempt to match a primitive to the image. When it is 

determined that O2 is not primitive, more nodes are added to the "OPEN" list. 

Step 3 and 4: The system selects nodes frorn OPEN to explore. Step 3 and 4 explored the 

child nodes of the root with associated transformations TREC and TV,, , respectively. 

Step 5: The popped node from OPEN is a child of Node 1 and requires applying trans- 

formation TFAc. Since no line pattern can be found in the contour image of O, this 

transformation is not applicable. The node is simply eliminated. 

Step 6 through 9: Four more nodes are eliminated from search tree. 

Step 10: At this node, the compositional primitive pattern fitting error is é, =1.362E 

3. According to the error estimation scheme introduced in Section 4.5, é, =4.OE4. 

e,  < 5 x É,, thus the associated functional image is primitive. As such, a function form 

' Rcfcr to  page p p y s  sctting for the thrtsshold sctting. 
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hypothesis is formed and a verification procedure is called. By numerically inverting 

the transformation TD,, and comparing the inverted image with 0, the cornputed 

matching error is found to be 1.1483-2, which is larger than en. Thus, the hypothesis 

is rejected and the search is continued. 

S tep GG: The system fits the associated functional image of this node to  

1%-ith a fitting error of E ,  =1.335E-3, while the expected error of this node is E,  =4.OE-4. 

Since < 5 x E,,  the image is primitive. By numeric verification, the function form 

matching error is found to be 1.476E-5, which is l e s  than 6,. Thus a solution is 

found and the system reports the discovery results as shown in Figure 5.2. 

TASK refers to the data file narne tha t  was input as the observation data  set. TERMI- 

KATION STATUS indicates one of the cases Success, Failure and Out of Memory. INPUT 

IMAGE provides basic information about the input. ORIGINAL PRECISION is the precision of 

the input believed by the user. REFERENCE IMAGE(S) gives the name of data  files created 

I>y the system for extracting necessary descriptive expressions using a lower dimension func- 

tion form discovery system- NODES shows the information concerning the search process, 

where To t a l  stands for total nodes created, Explored is the number of nodes upon which 

primitive matching were conducted and Open is the number of nodes left in the OPEN list 

at the time of termination. In this case, there are in total 109 nodes that have been created. 

Arnong them, 21 nodes have been explored, 45 nodes are dead end nodes and 43 nodes are 

left iinexplored. The meanings of the remaining five attributes are quite straightforward. 

To get an explicit function expression, FFD is used to find the boundary expression as 

sliown below, from the recorded data in the file "Example-1 .Bl . dat". 

So t hat we can invert the data transformation sequence step by step as shown in Table 5 2. 
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TASK : Example-1 

TERM~NATION STATUS : Success 

INPUT IMAGE: 101 x 101, 
Xmin=-1, Xmax=i, Ymin=-1, Ymax=1 

ORIGINAL PRECISION : 1.OE-12 

REFERENCE IMAGE(S) : 
1- File=./Example-l.Bl.dat, Type=Boundary 

NODES : Total 109, Explored 21, Open 43 

RUNNING TIME : 4'35.47" 

MEMORY USAGE: 4.54MB 

TRANSFORMATIONS : 

1. Diff(z,x) 

2 .  Factor(z/ (y) ) 

3 .  Log(+z) 

MATCHING PRIMITIVE FUNCTION : 

z=x*y 

ERRORS : Fitting: 1.335e-3, Matching: 1 -476e-5 

-- pp 

Figure 5.2: The Report Card for Example 1 

I r i  t h e  table, the column "Trans" shows the transformation to be inverted, the column 

;'IiiverseY' gives the expression to invert each transformation, and the column "Expression" 

gives the underlying function of the corresponding search node. Step O is the primitive 

function that was accepted as a match a t  Node 66. Step 1 and 2 invert two atgebraic 

transformations. At Step 3, the differential transformation is inverted according to the 

ext racted boundary expression. The discovered function is: 

mhich is exactly the underlying function (Equation 5.1) that has been used to generate the 

si~niilated observation data set. 
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[ Step II Trans. 1 Inverse 1 Expression 

Table 5.2: Manual Inversion for Example 1 

5.2.2 Example 2: Termination by a Primitive Pattern Fitting 

The second function form to be discovered is 

The simulated observation data set is obtained by partitioning the observation domain 

(x ,  y )  F [-î , 1; -1, 11 by a 101 x 101 mesh-grid. For this example, 1 will not give the details 

of the discovery process. Instead, 1 will focus on the discovered function form representation. 

The sÿstern terminates with a discovered function form as reported in Figure 5.3. It 

is easy to verify the correctness of the transformation sequence with the following forward 

transformation steps: 

1. Apply transformation "Factor (x+2y) " to the function z = ye '+?~ + z + y. We have: 

2. Then, apply transformation " D i f  ( z  ,x)". The generated function is: 

3. Finaily, apply transformation "Factor(y)". We obtain the function: 
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TASK : Example-2 

TERMINATION STATUS : Success 

INPUT IMAGE: 101 x 101, 

Xmin=-1, Xmax=l, Ymin=-1, Ymax=l 

O R ~ G ~ N A L  PRECISION : 1.OE-12 

REFERENCE IMAGE(S) : 

1. File=./Example-2.B7.dat, Type=Boundary 

2. File=. /Example-2 . P l S 6 .  dat , 
Type=Primitive Pattern Image 

NODES: Total 239, Explored 95, Open 27 

RUNNING TIME: 10' 18 -50" 
MEMORY USAGE : 6.73MB 

TRANSFORMATIONS : 

1. Factor(x+2y) 

2 .  Dif(z,x) 

3. Factor(y1 

MATCHING PRIMITIVE PATTERN : 

x+2y 

ERRORS: Fitting:1.5026e-04, Matching:6.8137e-05 

Figure 5.3: The Report Card for Example 2 
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The final result is a function of z + 2y. 

Now let us invert the discovered result. First, we need to find a descriptive expression 

corresponding to the primitive pattern. The underlying function is known as 

where t is the new variable which is related to the original variables x and y as t = z + 2y 

according to the primitive pattern fitting result. FFD is caiied to find a function form 

regarding to the sample set "Example-2. Pl56. dat" . Unfortunately, no acceptable descrip- 

tion could be found. We now have two choices. First, we can discard the discovered function 

form and let the system find a new one, or second, we can use polynomial fitting to find an 

acceptable description. Let us take the second choice. By fitting the recorded sample set to 

polynomial of order G using least-squares method, the following expression can be obtained 

witli the  fitting error of 5.81E-04: 

Thus the matching function is: 

The remaining inversion steps are similar to those in the first example. The discovered 

function is: 

where the expression (eZ' + 1)/2 is obtained by calling FFD upon the recorded sample set 

Example-2. B7. dat. Obviously, it is not identical to the underlying function presented in 

Equation 5.2. 

The discovered function is an approximation of the function of Equation 5.2. Let us now 

compare the discovered function form with traditional surface fitting method. There are in 

total 12 fitting parameters: 7 in the descriptive primitive polynomial, 3 to represent the two 

factors and 2 for the boundary expression. The root mean-square error of the approximation 
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is 2.05-04. Using traditional Zvariable least-squares polynornial fitting scheme, the given 

observation data set can be represented by a fourth order 2-variable polynomial which 

contains fifteen parameters. However, the accuracy is very poor. The root mean-square 

error of the fitting is 0.27. Besides the accuracy, the function discovered by FFD-II is 

also more compact (using three fewer parameters) and more rneaningful. For example, we 

c m  eluily tell that 1) the underlying function equals to zero on the line x + 2y = 0 ,  2) the 

esponential relationship exists between z and y and 3) there is a hidden functional regularity 

*f !/a=lzf 3?/)  
LIT being a function of t = z + 23. Al1 these properties are exactly the properties 

of the function defined by Equation 5.2, and they cannot be easily tell from the polynomial 

surface fitting result. This example shows that the function form discovery methods is 

superior to traditional numerical analysis methods in terms of justification, parsimony and 

t ransparency. 

5.3 Randomly Selected Functions 

5.3.1 A Random Function Form Generation Scheme 

The data transformation based function form discovery mechanism enables the system to 

overcome the major restriction of handling only the discovery tasks of a fk number of 

ftinction form prototypes. To set up test cases free of user's biases, a random scheme to 

choose test function is introduced in this section. 

An  explicit function expression can be represented by an expression tree mhose leaves 

rire the operands (independent variables or constants) and non-leaf nodes are operators. 

Definition 23 An Operator is an unary opemtor or a binary opemtor. An Unary Operator 

is a n y  functional operation in set SF: 

where * stands for a functional ezpression. A Binary Operator is any arithmetic operation 

in the set SA: 

S A = ( *  XI (5-4) 
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=In Operand is either an operator or an end opemnd. A n  End Operand is one of the elernent 

in set S,,: 

S v = C L = , y )  (5.5) 

An Expression Atom is an element in the set S: 

The function forms to be discovered in the experiments are generated by the following 

reciirsive algorithm. 

ConstructExpressionTree() 

1 : Randomly select an expression atom Atom E SE - 

2 : Construct a tree node data structure Root and assign the contentS of Root - 

with A t o m  selected in step 1. 

3 : ExpandNode(Root) - 

4: return Root 

ExpandNode(node) 

1 : At om=node . atom - 

2:  if AtomE SF - - 

4 :  - Randomly select an atom NevAtom E S E  

5 :  - Construct s tree node data structure ::euNode. Let Neu'lode. atom=NeuAtom, 

NewNode.parent=node,and node.lChild=NevNode 

6 : ExpandNode(NewNode) - 

'7 : else if Atom E SA - - 

8: - Randornly select two atoms lAtorn, rAtomf SE 

9: - Construct two tree node data structures lNode and rNode. Let 

lNode.atom=lAtom,lNode.parent~ode,node.1Child=1Node, 

rNode.atom=tAtom,rNode.parent=node,node.rChild=rNode 
- 

Tl~c  cxprcssion trcc node data structure contains four fields, node .parent, node. lChild, node. rChild 

iiuii node. atom. 
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Figure 5.4: An Expression Tree of a Function Form 

Tlie above pseudo-code represents the core of the algorithm- A complete algorithm must 

also i~icliides a set of rules to remove redundancy and be able t o  terminate within a specified 

~n~aximum depth. The maximum depth of an expression tree can be limited by restricting 

the selection of operand at a certain depth within S, . An example of redundant expression 

tree is the tree that has a node with the associated operator 'exp(*)', and the associated 

operator of its child node is 'log(*)'. Such redundancy also occurs when placing 'arctan(*)' 

irnrnedintely under 'tan(*)' (or vice versa), 'JT;)' immediately under '(*)" (or vice versa) 

and '-(*)' or '1/(*)' immediately under itself. Figure 5.4 is an example of expression tree 

tliat represents the first test function in Table 5.3. 

This algorithm can generate many of the explicit two dimensional analytic functions that 

c m  he found in a first year mathematics text book. Table 5-3 listed the first 18 functions 
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generated by the algorithm with depth Iimited to six. 

5.3.2 Experimental Results 

Experiments were carried out to discover the function forms listed in Table 5.3. Observation 

domain of each task is kept as coincident as possible whenever the continuity is conserved 

(refers to Table 5.3). Partitioning mesh grid size were a i1  fixed to 101 x 101. Unless reported 

otlierwise, we selected ~p = max(5 x c,, 1od5) and ÉM = max(c,, l ~ - ~ ) ,  as we dixussed in 

the beginning of this chapter. 

Out of the 18 discovery tasks, FFD-II successfully discovered 17 solutions. The only 

failrire wcs Taslc #9. The discussion of that case will be postponed to the end of this chapter. 

I t  rnust  be pointed out that a successful discovery does not have to be in exactly the same 

forni <as given in Table 5.3. As stated in the problem statement, the goal of function form 

discovery is to discover a function form representation of the given numeric observation 

data set that satisfies the preset error tolerance threshold. 

TahIe 5.4 tabulated the information of each discovery task. The column 'Solution' shows 

the type of termination of the task, where 'exact' means that a transformation sequence and 

primitive form leading to a function identical to  the original underlying function used to 

jerierate the simulated observation data set (provided the necessary descriptive expressions 

cati be obtained by other means)". To see if a solution is exact, we can manually carry 

out the data transformation to the known underlying function or invert the transformation 

sequence starting from the matching primitive. However, to revert the discovered forms to 

the original functions, al1 necessary descriptive expressions must be figured out first. 

The colurnn ' Total Nodes' is the total number of nodes generated during the discovery 

process, 'Explore8 is the number of nodes that had been expended and corresponding 

" Piciticc tliat thc discovery of the function form identicai to the h o w n  underlying function is a suficient 

I ,lit imt ticccssay condition to test for the correctness of the discovered form. As long as the discovered 

+oliitiori rcprcscnt the given observation data suffiaently weil, in terms of Justification, Parsimony and 

Tr;iiispai.cncy. it is a coimct solution. 
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Task # 

r = l y  + tan 5(2z + y) + log(2y + x + 1) 1 [-0.45,0.45; -0.25,0.25] 

Func t ion 

r = y + x +  (2+arctany)* 

Table 5.3: Random Selected Test Functions and Observation Domains 

Observation Domain 

[-Il 1; -1, 11 
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i 3 exact 17 3 

4 exact 109 32 

5 exact 201 55 

6 exact 330 113 

ID. 

1 ! 7 1 exact 11 13 ( 3 

S exact 175 49 

9 none 432 139 

10 exact 19 4 

11 exact 173 45 

1 exact 13 3 

soiution 

/ 12 1 exact 11 89 1 16 

13 exact 71 20 

1 l4 exact 31 6 

Total 
Nodes 

1 15 1 exact: 1)  223 1 47 

Ex- 

plored 
Expected Fitting Matching 

Open / Error 1 Error 1 Error 

: : EP was increased to 20 x en and EM W ~ S  increased to 100 x en- 

Table 5.4: Diseovery ~ & u i t s  of Experiment 1 
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primitive fitting had been performed, 'Open' is the number of nodes left in the open list 

at the time of termination. These three numbers refiect the effort of searching for the 

solution. The column 'Ezpected Emr' is the computed expected error level estimations of 

t h e  functional image associated with the termination node, 'Fitting Error' is the primitive 

fitting error of the terminate node, and 'Matching Emr' is the verified error of the solution 

through numerical inversion. The order of the expected errors successfully bound the fitting 

errors. Also, the matching error for a discovered accurate firnction forms are mostly less 

tlian IO-". 

Table 5.5 tabulated the solutions discovered by FFD-II. In two tasks, Task #2 and #15, 

the first attempts at solving the task with the common thresholds setting ended without 

soiiitions. Incre'zsed thresholds enabled the system to  find the exact solutions. By carefully 

observing the underlying functions and the discovered transformation sequences of these two 

c~ases, it could be easily determined that the problems came from the inaccurate computing 

of Tn TFtcl x + y + 1 combined with TDIF . They suggest two future improvements: (1) 

niore accurate estimation of the propagated errors so that il1 points1' could be identified; 

( 2 )  development of new computing schemes that compute the transformed image around 

tliose il1 points more acciirately. 

Since the underlying function forms are al1 known, it is easy to figure out the corre- 

sponding boundary conditions required for the differential transformations to be one-to-one 

inappings, and the matcliing primitive expressions associated with the matching primitive 

patterns (if applicable) by manually applying the discovered transformations to the original 

iiinctions' l . Table 5.6 tabulated the accurate underlying descriptive expressions12 where 

"' Il1 points arc thosc points whclre thc propagated errors might be extremely geat, for examplc, the points 

w1ir:i.c tlic d i i c s  of the factor are close to zero when performing factorization, and the points where the 

fiiiiction AUCE .TC close to zcro whcn performing reciprocal are two types. 

" Aii cxnmple c'an Le foimd in the analyses of the second detailed examplc prcscnted in Section 5.2.2 on 

~ m q :  1434. Refcr to thc example on page 54 and Definition l? on page 56 for morc detclils conccrning 

<1i:srriiptivc expression. 

" Noticc tliat tlic discovcrcd function form for Task#l? does not includc descriptive cxprcssions, and 

t . l i w c  i?; no solution for T=k#D discovered by FFD-11 . 
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Mat c hing Pr irni t ive Tramiformat ion Sequence 

Table 5.5: Solutions of Experiments on Randomly Generated Functions 

Discovered by FFD-II 
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eacli box bracketed expression pair refers to a boundary condition corresponding to  a differ- 

ential transformation and each P(t )  represents the descriptive expression corresponding to 

the discovered compositional primitive. As a function form discovery system, FFD-II must 

he able to provide these descriptive expressions as part of the solutions or a way to find 

t hem. Currently, FFD-II does not automatically give the descriptive expressions. Instead, 

i t saves the necessary two-dimensional data for finding the expressions to disk files as the 

tcz.k terminates with a S U C C ~ S S ~ K ~  discovery. 

To generate full functional representation of the given observation, function form dis- 

covery from two variables must be carried out upon the saved two-dimensional data. These 

t , ; ~ ~ k s  are non-dominant subtasks (Refer to Section 4.2) which rneans that they can be sep- 

nrnted from the original discovery task in higher dimension and they do not change the 

s t rric t ure of the function form description (the transformation sequence and the matching 

primitive) discovered by FFD-II but only complete the function form description. In other 

words, whether or not the discovery is successful is decided by the output of FFD-II before 

the descriptive expressions are figured out13. Therefore either traditional numeric tools or 

two-variable function form discovery systems can be used to handle the task of find the 

ciescriptive expressions. The selected method is referred to as "supporting system " . 

However, since function form discovery systems emphasize the discovery of high quality 

ftinction form descriptions in terms of the justification, parsimony and transparency, it is 

Iletter to choose a two-variable function form discovery system to  carry out the descriptive 

expression discovery tasks. The data transformation based function form discovery system 

FFD is one of the best choice due to its ability to discover a wide variety of one-dimensional 

iiinctions. The last column in Table 5.6 indicates the results of performing one-dimensional 

function form discovery upon t h e  recorded two-dimensional data using FFD. Of the sev- 

ent een function form descriptions, FFD successfully discovered the accurate descriptive 
- - 

'-' Tliis is tlic csscntid difference betweea the direct mode1 of FFD-II and a parameter freczing bascd 

iiiclircct iiiodcl. In the latter modcl, a successfùl discovery depends on both the succcssfd discovcry of low 

~li~m-msioti cxprcssions and whether or not the discovcred low &mension expressions could be ~nicccssfuily 

t:rmil riiicd into Zr single function form description to describe the original discovery problem. 
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Discovered 
by FFD Descript ive Expression 

exact 

exact 

exact 

exact 

[a = O, f = (eZV + 1 ) / 2 ]  

P = ( ( t  - l ) e t  + l ) / t 2  

exact 

exact 

exact 

exact 

exact 

[u = O ,  f = ( l o g 2 ) u f  arctan(u)], [u = O ,  f = 2/(2 + u ) ] ,  

P ( t )  = 1 / ( 2  + t ) ?  

exact 

exact 

[u = 2,  f = v log(2(2v + 3)*)11 [u = O ,  f = O ] ,  P ( t )  = L/t exact 

exact 

exact 

exact 

exact 

Table 5.6: Descriptive Expressions of Experiment 1 
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expressions in thirteen cases and failed to find acceptable function forms to describe the 

recorded sample data in three cases. 

When FFD failed to find the description expression, least squares polynomial fitting 

!vas used as an alternative. Although polynomial fitting results usualiy do not have good 

interpretability, the method is very reliable. In principle, we can increase the fitting accuracy 

Iq- increaçing the degree of the fitting polynomial. Thus, for reserving the accuracy of the 

discovered function form, the degree of the fitting polynomial, in each case, was seIected 

according to the estimated expected error, the primitive fitting error and the verification 

error of the original function form description discovered by FFD-II. The lowest degree 

polynomial were chosen for finding the descriptive expression, such that the polynomial 

fitting error being smaller than the primitive fitting error, the verified matching error or 

t lie estimated expected error of the corresponding discovered soiution. 

Complete function form descriptions are tabulated in Table 5.7. Al1 the extracted bound- 

ary conditions corresponding to the differential transformations are given by the subscripts 

of eacli data transformation, and the extracted descriptive expressions corresponding to 

eacii of the primitive patterns are transformed into functional formats. For the tasks #Il 

#5 and #lG, polynomial fitting results are used as the descriptive expressions where FFD 

friiled to discover them. 

IVlien FFD is used as the supporting one-dimensional function form discovery system, 

oii t of the eighteen function form discovery tasks listed in Table 5.3 and 5.4, FFD-II suc- 

cessfiilly discovered fourteen (78%) accurate functional expressions identical to the original 

~inderlying fun~t ions '~ .  With the help of polynomial fitting, another three approximations 

were found (Task #1, #5 and #16). For one case, Task #9, FFD-II failed to find an 

acceptable description of the given observation data. 

Tradit ional numeric analysis tools, such as surface fitting, usually cannot extract the 

accu rate underlying function to  describe the given observation data without sufficient knowl- 

1 I Vi:iificd by symbolicaiiy inversion of the data transformations in the discovered transformation sequcnce 

~ t ;u - t . i r i~  f r o ~ n  thc inatching primitive. Examples of the inversion have bem presentcd in Section 3.2.1 on 

1~1fi1: 54 aiid Section 5.2 on pagc158. 



.j. 3 Randomly Selected Functions 

Transforrnat ion Sequence 
Matching Primitive p(u, u) 

( = P(% v )  1 

Table 5.7: Discovered Function Form Descriptions of Experiments on 

Randomly Generated Fùnctions 
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edge of mathematicians and domain experts. However, in controst, the test results show 

tliat in many cases (in which the known accurate underljing functions are discovered) the 

discovery system FFD-II has the ability to find compact and meaningful function forms 

which describe the given data accurately. When an approximation is discovered, however, 

the superiority of the result of function form discovery is not that explicit. In Section 5.2-2, 

1 have analyzed the approximated forrn of case 5 and concluded that the proposed function 

form discovery met hodology surpasses the traditional polynomial surface fit ting met hod in 

thnt particular case. Now let us compare the proposed function form discovery methodology 

wi t II polynomial fitting method in dealing with Task fit1 and #16. The discovered function 

forms of those two c~ases can be transfered to explicit functions through manually inverting 

t lie transformation sequences: 

CCse 1: 

z = 4 + x + 5y + 0.98y2 - 1.29y3 - 0 . 5 2 ~ ~  t 

0.59y5 + 0.16yG - 0.16~',  

Ccue 16: 

z = -0 .84+~log(y+~ ' )+2 .06y  - 1.14y?+ 

2.94y3 - 0.03y4. 

TIiere are eight fitting parameters in Equation 5.7. Using two-variable polynomial fit- 

t.ing, we can fit the observation data set of Task #1 to the following six-parameter polyno- 

Observing Equation 5.9, one might guess that the terms z2 , x y , z2y,  xy2 and z3 are zero 

and the coefficient of the term x is 1 because the corresponding coefficients are very small 

or close to 1. Therefore, it is reasonable to refit the data to a new polynomial suggested 

11y the observation of Equation 5.9. The result of the new selected fitting scheme might 

generate the result identical to  Equation 5.7. It is true that the traditional polynomial 

fitting method does similarly well in handling this task. However, unlike surface fitting, 
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FFD-II successfully discovered that the underlying function is of the forrn z = z + g(y) and 

correctly set up the subtask for discovering the unknown function g(y) without any human 

intervention. 

Equation 5.8 contains five fitting parameters. We can fit the observation data set t o  the 

second order two-variable polynomial which contains eight fitting parameters. Least-squares 

fitting gives: 

- = -(6.063-2) - (1.423-2)~ + (5.48~-1)y + (5.10) 

(4.33~-5)z2 + (8.70E-1)zy - (1 .09~-1)~ ' .  

Tlie cornparisons of the two approximations (Equation 5.8 and Equation 5.10) can be sum- 

~narized ,as below: 

The root-mean-squared errors of the two representations are 3.73-2 for polynomial 

surface fitting and 5-63 -4 for the discovered result. I t  indicates that the function form 

discovery result is more accurate than the polynomial surface fitting method. 

The root-mean-squared errors of the first order partial derivatives of the two approxi- 

mations are 6.2E -2 for polynomial surface fitting and l.7E -3 for the discovered result. 

The results indicate that  the function form discovery result captures the shape of the 

given functiona1 image significantly better than the polynomial surface fitting method. 

Equation 5.8 contains one less fitting parameter than Equation 5.10. 

Eqizat i m  5.8 is easy t o  interpret than Equation 5.10. For example, fiom Equation 5.8, 

i t  is easy to  tell that: 

- For each h e d  y value, the function value changes linearly t o  the change of 

variable 2. 

- The above changing rate of the dependent variable is related to  the value of 

variable y logarithmically. 

- The underlying function cannot be defined in the range where 



- When x f O, z + -oo as y + -+ +O. 

These pieces of information are consistent with the known underlying function, but 

t hey are not revealed by Equation 5.10. 

For the analyzed cases, the function form discovery result generated by FFD-II surpasses 

poljnomial surface fitting result with regard to justification, parsimony and transparency. 

5.4 Comparison Experiments 

5.4.1 The Comparison Discovery System 

I t  I ~ a s  been pointed out that al1 function form discovery methodologies not in the "Data 

Transformation" category have a common drawback. They can discover only the function 

forms in a very small number of function form classes, Le. either rational functions or a 

fixed set prototypes. Thus it is not meaningful to compare FFD-II with any method in 

t ha t  group. The comparison should be made between FFD-II and a system that  can handle 

n rich set of three-variable function form discovery tasks. Unfortunately, there is no such 

n system in existence. However, FFD has an extension that can handle a special type of 

inrilti-variable function form discovery tasks, namely families of one-dimensional functions 

parameterized by a few parameters. It  is required that the function value change relatively 

slowly with the change in the parameter value than with the change in the independent 

variable. 

The underlying discovery strategy for this extension is parameter freezing - a classic 

indirect technique that has also been used by the BACON system. The parameter freezing 

approach could be viewed as an indirect approach to three-variable function form discov- 

cry. Recall that the current FFD family of functions discovery system finds parametric 

expressions only by primitive fitting. For conducting the comparison, the simplification 

nssiimpt ions made by FFD family of functions discovery extension (Primitive Union and 

SimpIe Descriptive Parameters) are relaxed. In other words, when FFD finds the solutions 
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to the subtasks of one-dimensional function form discovery (generated by putting one of 

the two independent variable on hold) we assume that: 

(1) The discovered solutions to the subtasks are unifiable provided the correct para- 

metric expressions are identified. 

(2)  For identifying the necessary parametric expressions, regarding to each correspond- 

ing parametric expression, the parameter values (the data) could be correctiy col- 

lected by hand. 

(3) FFD could be used to find those parametric expressions upon properly organized 

data. 

The further extended indirect data transformation based three-variable function form dis- 

covery method will be called INDIRECT-FFD in the discussion of this part. 

1 lime explained how the indirect system works and discussed sorne drawbacks of that 

approach in Section 4.2.1. 1 have also discussed why a direct approach model may generally 

perform better than an indirect approach and why a direct model approach is necessary 

and important. However, since FFD-II employs only a very small transformation set and 

recognizes only the simplest primitives, i t  is not guaranteed to discover function forrns that 

are discoverable to INDIRECT-FFD . Due to the rich variety of two-dimensional functions, 

in certain situation, an indirect method could be the best to solve the discovery problem. 

In t his part, I will focus on studying those cases that require the discovery system to use 

tlie "cross effect" information for making a successful discovery. 

Tliree specially designed discovery tasks will be investigated. They are corresponding 

to the classes L'FFT-Class", "FVS-Classn and "ICL-Class" respectively, as named in Sec- 

t.ion 4.2.1. In each experiment, 1 wiU first describe the reasons why INDIRECT-FFD fails to 

discover the correct solution. And then the discovered results made by FFD-II will follow 

tlie explanations. 

The reason for not studying the class "USA-Class" is that it is closely related to  the im- 

plementation of the indirect methodology. Designing a case that belongs to the "USA-Class" 
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Figure 5.5: Patterns in O-Contour Plane 

of FFD family of functions discovery extension is easy but not very meaningful. To compare 

with INDIRECT-FFD in this direction is not practical since INDIRECT-FFD is not subjected 

CO any constraints. However, in practice, we cannot always figure out a way to unify one 

dimensional results of parameter frozen subtasks, especially when the estirnated parameter 

values are not sufficiently accurate. It is indeed the major difficulty for irnplementing a 

gener al pur pose indirect muIti-variable function form discovery system. In ot her words, 

certain types of simpIification assurnptions are unavoidable for an indirect impIementation. 

T h s  wit hout specific implementation, we cannot talk about "USA-Class" . 

5.4.2 Case Study 1: An FFT-Class Function Form 

The first function form to be examined is 

This is a second class function form that INDIRECT-FFD will have trouble to deal with. 

Tliere are two linear factors y - z - 1 and y - z + 1 in the underlying function form. And 

the  observation domain is restricted by the circle 1 - z2 + y2 = O. Figure 5.5 shows the 

circle and two lines. Let us assume that the observation data  set is obtained by partitioning 

the range x E [-0.6, 0.61, y E [-0.6, 0.61 into a 101 x 101 mesh grid. It has been proved 

(Phan [48]) that the factorization transformation is essential for handling the discovery of 
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rat ional functions with a data transformation based function form discovery systern. To 

discover the function form of Equation 5.11, there are two factors that must be removed by 

factorizations. Obviously the two factors cannot be observed from any single sample data 

set with a fixed x or y value. Since INDIRECT-FFD approaches the discovery problem in an 

indirect may, each subtask is carried out individuaily, and it cannot combine the two factors 

observed from different sample sets together to form a unification transformation. Thus this 

function form cannot be discovered. The systern was tested with the above observation data. 

It failed to discover any solutions to any sample data set. That means, without removing 

110 th factors by factorization transformation, the functional image cannot be simplified into 

any primitive form by the system. 

By taking direct approach, FFD-II can extract hypotheses based on the information 

gained from al1 parts of the observation domain. In this study case, the system first finds 

from the original given observation image a set of planar points where the underlying func- 

tion 11as the function value of zero (use interpolation if necessary). in the next and last 

step, it conjectures the factor functions by fitting the obtained contour points into lines. 

T w o  factorizations are successfully performed and the underlying function is discovered. 

Figure 5.6 is the report card generated by FFD-II system upon the discovery of function 

form (5.11). 

Tlie ability to capture the cross-effects is important in performing high dimension pat- 

tern recognition tasks. A direct mode1 achieves this ability a s  an essential. This study case 

clemonstrates how the system creates hypotheses with cross-reference. 

5.4.3 Case Study 2: A n  FVS-Class Function Form 

The second cornparison test experimental function is 

*=fi+ J F Z i l o g y - i o g Z y  

and the observation data set is generated within the domain z E [O, 11, y E [ l ,  21 with a 

101 x 101 mesh grid. This is an FVS-Class function. As usual, we first let INDIRECT-FFD 

liandle the task. 
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TASK : Comparison- 1 

TERMINATION STATUS : Success 

INPUT IMAGE: 101 x 101. 

Xrnin=-0.6, Xmax=0.6, Ymin=-0.6, Ymax=0.6 

ORIGINAL PRECISION : 1 .OE-12 

REFERENCE IMAGE(S) : 
None 

NODES : Total 65, Explored 12, Open 33 

RUNNING TIME : 1' 12.72'' 

MEMORY USAGE : 7.1IMB 

TRANSFORMATIONS : 

1. Fact(z/(-x+y+i)) 

2. Fact(z/(-x+y-1)) 

3. Reciprocal 

MATCHING PRIMITIVE FUNCTION : 

2-2=-x-2-pn2+1 (+) 

ERRORS: Fitting:3.73e-05, Matching:1.5758e-16 
-- 

Figure 5.6: The Report Card for Comparison Test 1 



If we put variable y on hold, INDIRECT-FFD first must find a set of one-variable func- 

t ions 

z = f i + + ; J P T T + &  

where i corresponding to the sample data sets indexed by Yi  = I + 0-Ol i ,  and 4: and 4 are 

descriptive parameters. Unfortunately, testing shows that the system cannot successfully 

cliscover any of them. These function forrns cannot be easily simplified by the transforma- 

tions in the system's tool box. Thus freezing y is not an successful choice. 

Now Jet us ,assume that variable z is held as the control parameter. For those sample data 

sets with x' > 0.96 (four samples corresponding to the parameter values z = 0.97,0.98,0.99, 

and 1.0, INDIRECT-FFD c m  find a transformation sequence Q o A o O that transforms t h  

original samples into an uniform primitive forrn 

anci there are no solution found for the remaining samples. The system then tries to 

verify the obtained similarization transformation sequence with al1 the sampies. Since the 

transformation O, which can only be applied to  rnonotonic sample data set, is not applicable 

to a majority of the sarnples as the first transformation, FFD discards the hypothesis and 

t ries to find ot her ways to get a solution. In the test conducted, t here are no more solutions 

to any samples the system could find. Thus the system terminates without a discovery. 

Since the new system performs three dimensional transformations, it can capture more 

varieties of fundamental features provided by the observation than indirect approaches. 

This ability is demonstrated in this experirnent. Although the underlying function is not 

rnonotonic to  variable y, a transfonned functional image meets the requirement. This ability 

eriabled the system to extract the key transformation sub-sequence  TI^,? 0 T L ~ G  0 T ~ s v  which 

transforms an original independent variable into its logarithm. Figure 5.7 shows the correct 

solution found by FFD-TI . 

The differential transformation extracts the functional pattern of the differences between 

adjacent sample data sets indexed by z values. In this case, monotonic image is obtained. 
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TASK : Cornparison-2 

TERMINATION STATUS : Success 

INPUT IMAGE: LOI x 101, 
Xmin=O.O, Xmax=l.O, Ymin=l.O, Ymax=2.0 

ORIGINAL PRECISION : i .OE-1 2 

REFERENCE IMAGE(S) : 

1. File=./Comparison-2.Bi.datD Type=Boundary 

2. FILE=./Comparison-2.B214.datD Type=Boundary 

3 .  File=./Comparison-3.P325.dat, 

Type=Primitive Pattern Image 

NODES : Total 497, Explored 94. Open 197 

RUNNING TIME: 26 ' 0 6  -01'' 

MEMORY USAGE: 7.31M.B 
TRANSFORMATIONS : 

1. Dif(z,x) 

2. Variable Exchange (x<>y) 

3. Functional Inverse (x<>z) 

4. Log(+z) 

5. Functional Inverse (x<>z) 

6. Dif(z,x) 

MATCHING PRIMITIVE PATTERN : 

X 

ERRORS: Fitting:4.87e-04, Matching:1.5758e-05 

Figure 5.7: The Report Card for Comparison Test 2 
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Tfiree descriptive expressions required for completing the discovery are log' z ,  l/Jz and 

r / ,m. Al1 can be discovered by the two-variable FFD system. 

5.4.4 Case Study 3: An ICL-Class Function Form 

The hst  cornparison test is to discover the function 

= log@) + 6 + tan( y). (5.13) 

i t  helongs to  the fourth function class that INDIRECT-FFD discovery system cannot handle. 

Observation is made with the mesh grid 101 x 101 that evenly partitions the observation 

dornain 3: E [0.5, 1.51, y E [O& 1-51. To find the underlying function form, INDIRECT-FFD 

tnust find expressions of x 

witli a t  Iecast some (y be the chosen control parameter), or find sorne expressions of y 

with a t  least some 2' (x be the chosen control parameter). Unfortunately, no such subtasks 

corild be solved by the system in the conducted tests. What happens is that the linear 

combination of the terms log(z) and fi, or tan(y) and JY is beyond the system's discovery 

abili ty, since none of the transformations defined in FFD 's tool-box can effectively simplifies 

this combined functional image. In other words, the one-variable function forms are too 

complicated for the system to handle. We classify this type of three-variable function forms 

,as the ICL-Class function form. 

The new system took the advantage of alternatively performing difTerent differential 

transformations respect to the two independent variables. By doing this (the first three 

transformation in the solution reported in the system's output card on next page), the 

original three-variable function form discovery task was split into three easy to  handle 

siibtcasks: (1) to find a single variable function tan(y) as the descriptive expression for the 

first differential transformation, (2) to  find a single variable function l / z ,  and (3) t o  find 
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TASK : Cornparison-3 

TERMINATION STATUS : Success 

INPUT IMAGE : 101 x 101, 

Xmin=0.5, Xmax=1.5, Y m i ~ 0 . 5 ,  Ymax=1.5 

ORIGINAL PRECISION : 1.OE-12 

REFERENCE IMAGE(S) : 

1. File=./Comparison-3.Bl.dat, Type=Boundary 

2. File=./Comparison-3.B18.dat, Type=Boundary 

NODES : Total 258,  Explored 45, Open 106 

RUNNING TIME : 12' 18.57" 

MEMORY USAGE: 4. S5MB 

TRANSF~)RMAT~ONS : 

1 .  Dif(z,x) 

2. Variable Exchange ( x o y )  

3 .  Dif(z,x) 

4. Reciprocal 

MATCRING PRIMITIVE FUNCTION : 
~-2=(l/i6)xy 

ERRORS: Fitting:8.37e-05, Matching:2.97e-05 

Figure 5.8: The Report Card for Comparison Test 3 

the ttvo-variable function z = l/Jzy- The first two are easy to handle with 
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the two- 

variable FFD , and the last can be solved with the discovered transformation TREC and the 

primitive fitting z = &7/16. Therefore the original function form discovery problem is 

sol r d .  Figÿre 5.3 is the discovery result of FFD-II. The solution is identical to the test 

fiinction - Equation 5.23. 
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5.5 Randomly Generated Surfaces 

The motivation of function form discovery research is to  create a system that  can find 

frinction forms that represent the given numeric data satisfying the justification, parsimony 

and transparency criteria. We have seen that when the data is generated explicitly by 

a compact function form, such as the cases given in Section 5.2 and 5.3, the proposed 

methodology has a good potential to find the exact forrn. Eowever, the question rem& 

wliether or not the system will perform similarly well when the underlying function forms 

are not expressible in terms of elementary functions. In this section, we will further examine 

the system's capability in handling such discovery problems. The objective is to observe 

tv he t lier the system is able to extract information from the observation more effectively 

t lian traditional numeric tools. 

A set of experiments on discovering function forms from randomly generated smooth 

srirfaces were conducted. Each surface was a ninth order two-variable polynomial over the 

clomain (x, y) f [O, 1; 0, 11. Their coefficients were randomly generated quantities between 

-1 and 1. They can be viewed as truncated Taylor series expansions of certain unknown 

C '; frmctions. 

To carry out the experiments of this part, the fitting thresholds were relaxed to let the 

systern terminate with a relatively rough match. ~p and EM were increased t o  LOO times of 

tlieir normal settings, and if the system could not find a match, the thresholds were relaxed 

by another 100 times of the previous one. Al1 other settings remained the same as described 

on page 157. 

Let us first examine an example. Rounded to four significant figures, an example of 

random surface generated by a program is: 
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f . 2 X y 3  + .065zy3 + - 7 9 5 ~ ' ~ ~  + .443z3y3 + .793z4y3 - .603x5y3 

-.794z6y3 + .586 y4 + -7150 y4 - .405z2y4 - .ï29z3y4 - - 7 5 0 ~ ~ ~ ~  

+.780z5y4 - .351y5 + .512zy5 - .957x2y5 - .352z3y5 + .195z4y5 

-.064y6 - .068zy6 - .723z2y6 + .492z3y6 + .077y7 - .577zyï 

+.869z7y7 - .305y8 + . ï11zy8 - -116~".  

The function form description discovered by FFD-II in the observation dornain [O ,  1; 0,1]  

is: 

The matching error is 6.893e-02, Transformed to  an expficit expression, the function is: 

Since there are seven parameters in the discovered function, we can select the least- 

sqiiares surface fitting to fit the same randorn surface to the seven-parameter polynomia115: 

The root-mean-square error of the fitting is 6.94e-02. The cornparisons are listed as the 

following. 

1. The root-rnean-square errors are 6 . 1 9 4 2  Vs. 6.94e-02 

accuracy. 

. FFD-II achieved similar 

2. The polynomial fitting result cannot be easily interpreted. The discovered description, 

on the other hand, shows that the function value is around zero when x=0.9822 and 

the surface stays mainly above the plane of z = O (positive function) within the 

observation domain since exponential function is positive and the linear factor is 

mainly positive. 

"' Tlic complcte th-d ordcr two-variable polynomials contain tcn coefficients. To fit to a scven coefficients 

pdynoniial. six parautctcrs rdatcd to the complete second ordcr polynomial are selected, and ody one third 

(11-cicr cocfficicnt is non-zero parameter. The fitting with the least mean-square m r  is picked as the scven 

~m-arlictcr polynomid fitting result. This scheme is also used in the foliowcd cornparison fittings. 
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Figure 5.9: The Contour Image of Random Surface 1 

2. Figure 5.9, 5.10 and 5.11 show the three dimensional contour image of the original 

random surface, the discovered function form and the polynomial fitting respectively. 

Comparing the three images, it is clear that the FFD-II discovered function preserves 

global features more precisely than the polynomial fitting. For example, the polyno- 

mial fitting result exhibits some false oscillatory features that do not appear in the 

original surface and there is also a pit in the polynomial fitting surface that does not 

appear in the given surface. The single peak and the main trend of the random surface 

are captured by both approximations. 

4. Figure 5.9 shows the derivatives of the original polynomial, the polynomial fitting 

function and the discovered function. Clearly, the discovered function preserves the 

shape of the original random surface significantly better than the polynomial fitting 

result does. The latter representation looses most of the information concerning the 

derivatives. 

Ten other random surfaces were tested. The system successfully found solutions to  

seven surfaces and failed in three caçes even with the further relaxed thresholds. Table 5.8 
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x 

Figure 5.10: The Contour Image of the Discovered Form of Random Surface 1 

Figure 5.11: The Contour Image of the Polynornial Fitting of Random Surface 1 
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Figure 5.12: Mesh-grid Images of Derivatives of Random Surface 1 
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lists the results of the experimental cases in which solutions were discovered by the system. 

In  the table, "Matching Primitive" has two formats - a function expression which is a 

matching primitive function and a two-dimensional linear expression which is a matching 

primitive pattern. The column "No. of Parameter" is the number of control parameters 

in the dixovered function form including the parameters in the descriptive expressions (if 

applicable), UEdiscovet-yn stands for the computed root-mean-square error of the discovered 

function, cc ERttingn refers t o  the root-mean-quare distances of polynomial surface fitting 

with the same number of coefficients. For brevity, two significant figures after the deci- 

mals are kept. Because the underlying functions are not in short forms of the elementary 

functions, the descriptive expressions are obtained by fitting the corresponding recorded 

sample data to one-variable polynomials to a satisfactory precision (close to the primitive 

fitting error and the verified function form matching error). The fitting results are listed in 

Table 5.9. 

Among the seven discovered functions, five of them are simple. In Task #1, the system 

found a second order two-dimensional polynomial to express variable x as a function of l /z  

and y. In this way, the fitting accuracy was improved by about 4 times compared with 

direct second order polynomial surface fitting. Task #2 and #3 are two other examples of 

clianging to different polynomials in order to improve the fitting accuracy. The accuracies of 

discovered functions of tasks #4 through #7 are worse than that of the corresponding poly- 

nornial surface fitting results. However, the emphases of function form discovery include not 

only the accuracy but also the meaningfuiness. In Task #6, the system discovered that the 

observation image is approximately a cylindric surface. In Task #7, the system discovered 

that the underlying function is roughly of the form r = (1 ( u q  - v \ / 3 /5 )  dx} + t ~ ( ~ )  , 

which could also be interpreted as: dz /dz  is approximately a cylindric surface. 

Let us examine the results of tasks #4 and #5 in greater detail. The discovered function 

wliere, 
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ID. Sequence 
Matching Primitive 

-- - 

TabIe 5.8: Results of Experiments on Random Surface 

Task 
ID. 

1 

Number of 
Paramet er 

6 

Ediscovery 

6.96e-2 

Efltting 

2.57e-1 
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Table 5.9: Descriptive Expressions for the Experiments on Random Surface 

No. 

4  

is the matching primitive function, and 

- 

Descriptive Expressions 

[u = 0.5, ut = 0.500 + 1 . 4 8 2 ~  - 4.746v2 + 4 . 4 2 6 ~ 3  

are the corresponding descriptive expressions of boundary conditions. The discovered func- 

tion of Task #5 is 

1 I 

where, 

P(x ,  y) = 0.532' - 0.09zy + 0 . 3 5 ~ '  - 0.922 - 0 . 8 2 ~  + 0.96, 
is the matching primitive function, and 

are the corresponding descriptive expressions of boundary conditions. In these two cases, 

the given observation data set was formulated by first fitting the logarithrn or reciprocal of 

the  derivative image a2z/dzay to a second order polynomial and then constructing the 

functional representation by an integral. 

The root-mean-square error of describing the observation data in this way is about dou- 

ble of the root-mean-square error of describing the data by directiy fitting the observation 
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data set to the fourth order polynomid which has same number of fitting parameters as 

tabulated in Table 5.8. However, the discovered function forms capture shape information, 

i.e. slope and curvature, of the observation images better than polynomial surface fitting. 

This can be observed by comparing the shapes and patterns of three-dimension contour 

images (Figure 5.13 t hrough Figure 5-18). 

Figure 5.13 shows the p l ~ t s  of the 3D contours of the functional images of Task #4, 

where (a) is the original randorn surface, (b) is the polynomial fitting surface and (c) is 

the surface of the discovered function. The pattern16 of figure (c )  is closer to (a) than 

figure (b) ,  which implies that the discovered function captures the gradient better thân 

polynomial surface fitting. A similar conclusion can be drawn from Figures 5.14 and 5.15, 

which plot the first order partial derivatives of the original random surface, the polynomial 

fitting function and the discovered function. Note that the pattern of partial derivative 3D 

contour images contains informations concerning the second order curvatures. 

Figure 5.16 shows the 3D contours of the functional images of Task #5, where (a) is the 

original random surface, (b) is the polynomial fitting surface and (c) is the surface of the 

discovered function. Figure (c) represents the shape and pattern of (a) better than (b). Fig- 

ure 5.17 and 5.18 are cornparisons of 3D contour images of the two representations. Clearly, 

the discovered function represent the original underlying function significantly better than 

the polynomial surface fitting result in most part of the observation domain. 

Several important conclusions can be d r a m  from the experiments conducted in this 

part. 

1. As a mathematic formulation tool, FFD-II is able to translate general observation 

data into a compact and meaningful functional description in many situations. Each 

discovered forrn can be interpreted according to  the obtained transformation sequence 

and the primitive. 

"; Notc tliat at R gîvcn planar point (zo, y0 ), the direction of the gradient of a scalar fidd z = f (z, y) is 

l>cl-pcn&ciilrrr to thc contour curve f(z ,y)  = C that crosses ( z o . ~ ) .  Therefore, when the pattern of two 

..;c:tc; of coiitoiir curvcs are close to each other, the gradient vectors of the two corresponding fields will be 

rclirtivcly close to cadi other. 
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Figure 5.13: 3D Contour Images of the Surfaces in Task #4 
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Figure 5.14: 3D Contour Images(a/dz) of the Surfaces in Task #4 
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IO. . . - I-- - ----__- 

Figure 5-15: 3D Contour Images(d/dy) of the Surfaces in Task #4 
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Figure 5-16: 3D Contour Images of the Surfaces in Task #5 
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Figure 5.17: 3D Contour Images(d/âz) of the Surfaces in Task #5 
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Figure 5.18: 3D Contour Images(a/gy) of the Surfaces in Task #5 
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2. Compared with traditional polynomial surface fitting method, important geometrïc 

features are conserved more precisely by the abstracted formula. Such features include 

surface features represented in the example random surface, gradients and curvat ures. 

3. FFD-II has the ability to formulate the given numeric observation data using a variety 

of different functions, and it can achieve better or similar accuracy compared with 

polynomial surface fitting method. 

4. Traditiond data modeling toots, such as polynomiai fitting, have good reputation in 

representing given data accurately. When it is necessary we can iisudg increase the 

accuracy by simply increasing the number of fitting coefficients. However, FFD-II 

places more emphasis on the parsimony and transparency. This property has been 

further demonstrated. 

5.6 Experiments on Noisy Data 

We have just seen the enhanced ability of the proposed direct model over an indirect model. 

W e  also know the challenge associated with solving multi-variable function form discovery 

problems using direct approach17. This section will contribute to the experiments tha t  

demonstrate how the new system handles noise using proposed methodology, adaptive error 

control. I will first describe the noise model and the experiment design. Then the error 

treatment scheme will be examined from different aspects with experirnents on selected 

function forms. 

5.6.1 Noise Mode1 and Experimental Design 

To test the noisy input effects and the performance of the proposed noise treatment recipes, 

a pseudo random number generator is used to generate uniforrnly distributed random num- 

bers. Let z = f (2, y) be a function form with whom a simulated observation data set will 

17 Rcfcr t o  the ùisciissions in Section 4.2.2. 
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be made. The noisy input is the simulated observation data with additive noises: 

where c is a uniformly distributed random variable over the interval [-al a] and a is referred 

to as the Noise Leuel of the simulated observation data set. 

Et hcas been pointed out that error propagation is a major challenge for conducting data 

transformation based direct function t o m  discovery. Computational enors are the errors 

introduced by digital computations using selected numeric tools with a digital computer. 

Noises, on the other hand, refer to the inaccuracy of the collected observation data. The 

essential difference between the effects of computational errors and added noises to the 

function form discovery system is that the functional image with added noise is usually 

more uneven than a functional image with cornputational errors. When certain numeric 

data transformations are conducted upon an uneven image, large scale of propagated error 

could be introduced. Examining function y == z2 as an example, let: 

wliere É; are uniformly distributed random numbers over the intervd [-0.01,0.01] ", and 

Clearly, are the values of numerically computed first order derivative of the function 

f = x 2  (function f = 22 ), py are the nurnerically computed second order derivative values 

of fiinction f = z2 (constant 2) based on the values of gi , 3 are the function values 

of f = 21: with added noises, and $' are the numerically computed first order derivative 

value of the function f = 22 (constant 2) with added noises. Using digital computer, we 

I Y 0.01 ia the m,aximum approximation crror of using g- to approximate the first order derivative of the 

fiitictiorr y = 2' . 
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can find that the averaged approximation error of to constant 2 is 0.7538, while the 

averaged approximation error of to  constant 2 is o d y  3.35e-13. 

The simple example demonstrates how the added noises might affect the numeric com- 

pi1 t at  ion resul ts more significantly than usual computational errors. In FFD-II , differential 

transformation is numerically implernented. Although the computing scheme is different 

to the simple first order dXerence scheme used in the example, similar effect can be ob- 

ierved. Therefore, experiments on noisy observation data set is more useful for justifying 

the system's ability to handle error propagations. 

The following are the general background of the experiment design for the noisy input. 

The high computing time and memory space intensities of the algorithm decide that 

we can only choose relatively simple test function forrns, which has a solution in a 

small depth in the search tree, to generate the simulated observation data set. 

-4mong the transformations in the system's transformation set, TDIF is the one that 

is most sensitive to noise. Therefore, the selected test function form must contain at  

least one differential transformation in the accurate solution. 

,411 simulated observation data set were made in the corresponding observation do- 

mains that were partitioned by a 511x511 uniformly distributed rectangular mesh 

grid. Thus each input observation data set contains 511 x 511 double precise real 

valued observation coordinate triples (z, y, 2) .  

To this stage, the system only works with two resolution levels - Fine and Course 

siep functional images1? A Fine Step functional image refers to the original input 

functional image or the image transformecl from it. A fine step image can be expressed 

13 Howcvcr . the proposcd error trcaiment methodology is able to work with multi-rcsolution 

Crmsidcxing the availablc cornputer rcsources, only two resolution Ievcis are used to demonçtrate 

tlic ~>roposed mctliodology. 

scheme. 

and test 
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A Coarse Step functional image is a 101 x 101 observation data set which is either a 

transformed functional image of a coarse image or a evenly selected subset of a fine 

step functional image 

5. For the purpose of fully observing the performance of the system, a small EM and a 

relatively large CF were set. They were IO-' and IO-' respectively. The maximum 

searching depth were set to be 5. The relaxed c.p setting enables the system to propose 

more function form hypotheses for verifications and the tight é . ~  setting keeps the 

search goes on. Altogether, they can force the system to test more hypotheses in a 

single discovery task. 

6. To analyze the results, the discovery systern was slightly modified so that the full 

discovery processes with al1 necessary information, such as the fitting and matching 

error of al1 the abstracted hypotheses, could be recorded. 

7. To each simulated observation data set, two rounds discovery were run, one with 

error treatment switch turned "ON" and the other with it turned "OFF"- Since the 

error treatment can only be conducted with rnulti-resolution observation data set, it 

could be disabled by specifying that there is only one available resolution level. The 

performance of the proposed methodology can be evaluated based on the cornparison 

of the corresponding results. 

Generally speaking, the discovered function f o m  may not be in the exact form of the given 

underlying function that was used to  generate the simulated observation data set. The 

system discovers the functionai representation of the given data within a tolerable error 

level. However, the selected function forms in this section are al1 expressible by the function 

form description language 2. Thus the purpose of the experiments is t o  observe how well 

the proposed error treatment scheme will reduce the effects of noises and propagated errors 

and help to extract the exact underlying function forrns. 
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5 -6.2 Multi-Solution 

The first function form to be tested is 

z = eZ-Y + zy. 

There are four solutions to the problem. They are listed in Table 5.10. 

1 Solution II Transformation 1 Matching Primitive 1 Treated 1 Plain 1 

Table 5.10: Four Solutions of Form 1 

The observation domain was chosen to  be (z, y) f [-0.5,0.5; -0.5,0.5] and the noise level 

is 10-5 The last two columns in Table 5.10 show whether or not a correct solution was 

extracted in the experiment. The column titled by 'Treated' means that the error treatment 

WC- used in the test, and 'Plain' means that errm treatrnent was not used. ",/" denotes that 

the corresponding exact function fo.m was correctiy abstracted and "x" denotes that the 

corresponding exact function form was not correctly abstracted. Al1 four accurate solutions 

were abstracted when proposed error treatment was used. However, there are two out of 

the  four accurate solutions that were not abstracted without error treatment. 

Let us sumrnarize ten best matches recorded during the system's discovery process, in- 

cluding four accurate solution matches and s u  other verified matching hypotheses. Figure 5.19 

shows the primitive fitting errors at each of the nodes where function form hypotheses were 

abstracted. In the figure, (a) shows the results of conducting the discovery without applying 

error treatment and (b) shows the results with error treatment applied. Node 1 to 4 are 

the four nodes which may be associateci with an accurate solution (depending on whether 

or not the corresponding correct primitive could be found). Each of the shaded bars irn- 



(a) Fiiing Enors (untreated) 
r 

(b) Ftting Enon (treated) 
r 1 , I 1 I 1 l 

J 
1.2 1.4 1.6 1.8 2 22 2 4  26 28  3 X  (-1) 

Log Fmng Ermr 

Figure 5.19: The Fitting Errors At Corresponding Hypothesis Nodes of the Forrn 1 
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plies t hat the associated abstracted hypothesis is an accurate functional form description of 

Function (I), each of the unshaded bars implies that the associated abstracted hypothesis is 

not a description of Function (1). The axis "Log Errorn is the values of loglo(ep) where eP is 

the computed fitting error a t  each corresponding node- From the figure we can clearly ob- 

serve t hat the proposed error treatment scheme signifkantly improves the primitive fit ting 

test": 

Without treating the error, the system fa& to abstract two of the four accurate 

descriptions due to the noises associated with the input observation data. However, 

hy t reating the error with the proposed scheme, the system successfully abstracted 

four hypot hesis corresponding to the four descriptions of Function (1). 

Without treating the error, Figure 5.19(a), the fitting errors of the two hypothe- 

ses clssociated with node 1 and 2 respectively, which are accurate descriptions of 

Function (1), are not the smallest. There are totally seven other hypotheses whose 

primitive fitting errors are smaller than the fitting errors of node 1 and 2. 

Q errors By treating the error using the proposed scheme, Figure 5.19(b), the fittin, 

at nodes 2 and 3 are the smallest among the ten recorded hypotheses, and the error 

at nodes 1 and 4 are only greater than the error of one of the six other recorded 

hypotheses, (node IO), which are not description of Function (1). 

Figure 5.20 depicts the matching errors in similar layout as Figure 5.19. In Figure 5.20(a), 

the two hypotheses corresponding to the accurate descriptions of the underlying function 

I i x e  the smallest verified matching errors, Figure 5.20(b) shows that the four hypotheses 

corresponding to the accurate descriptions of the underlying function have the smallest 

verified matching errors. It implies that the system has the potential to  discover 1) two 

out of the four accurate descriptions of the underlying function form without treating the 

error, and 2) al1 four descriptions when the proposed error treatment scheme is employed. 

"O Sirice t h  systcm forms abstracted function form hypotheses based on test of whcther or not thc corn- 

~>iit,cd pi-iiuitivc fitting Wor is smaller than a threshold, it is desired that the nodes associated with accurate 

fiuiction fo in  descriptions have the srnailest primitive fitting errors. 
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(a) Matching Enon (untreated) 
i 1 1 I 1 

3 
Log Malching ErrOr 

(b) Matching Errors (treated) 
I I I I I 

25 3 
Log Malchag Errw 

Figure 5.20: The Matching Errors At Corresponding Hypothesis Nodes of Forrn 1 
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However, the proposed error treatment recipes not only aiiow the system to find two more 

accurate descriptions, but also rnake the accurate descriptions more distinguishable from 

other hypotheses. In Figure 5.20(a), the matching errors of the two hypotheses corre- 

sponding to the accurate descriptions (node 1 and 2) are not significantly srrialler than 

the matching error a t  node 4 which is not associated with an accurate description of the 

iinderlying function. They are 1.66e-03 and 2.45e-03 respectively. In Figure 5.20(b), in 

contr<ast, the  matching errors of the hypotheses corresponding to  accurate descriptions are 

significantly smaller than the matching errors of the hypotheses which do not correspond 

to an  accurate description of the underlying function. For example, the matching error at 

node 1 is 2.13e-04 and the matching error at node 5 is 4.19e-02. Thus we have stronger 

evidence to believe t hat the discovered functional form captured the significant underlying 

firrict ional pattern of the given observation data. 

Concerning the descriptive parameter fitting error, Figure 5.21 is a cornparison of the 

two test results. By treating the error utilizing the proposed error treatment scheme, the 

accu racy of the fit ting parameters are significantly increased. 

5.6.3 Variation of Noise Level 

ive have seen the improvements made by the proposed error-treatment methodology through 

stiidÿing a multi-solution case. In this section, 1 will justify the methodology by observing 

the performances through variating the noise lcvel on a single solution case. To evaluate 

the proposed methodology, a new term - Discovery Ratio - is introduced. 

Definition 24 Let E ,  be the matching e m r  of the hypothesis witch is an accurate function 

form description of the k n o m  underlying function, é~ be the matching e m r  of a fvnction 

fonn hypothesis that has the smczllest value among all the hypotheses that are not finction 

fonn description of the known underlying function. The Discovery Ratio is the ration of é, 

and EN 
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(a) Parameter Fitting Enors (untreated) 

(b) Parameter Fitîing Errors (treated) 
i T 1 1 I 1 

Figure 5.21: The Parameter Fitting Errors At Corresponding Solution Nodes of Form 1 

Since the system accepts a hypothesis based on testing whether or not the corresponding 

rnatcliing error is smaller than a preset threshold, a small DR implies a better chance for 

the system to discover the accurate underlying function form. For example, if E ,  = 10-* 

and EN = 0.1, any preset threshold value in the range (10-~, 0.1) will enable the system to 

terminate with a succ~sfu l  discovery of the accurate underlying function, and in contrast, 

if E , ,  = 0.1 and EN = 10-~, it is generally impossible for the system to terminate with 

a successful discovery of the accurate underlying function. The discovery ratio values for 

these two situations are 10-5 and 105 respectively. 

The second function form to be tested is 

z = log(. + J 2 V ) .  ( 11 

This function form has one solution described by the proposed function form description 
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Totally fourteen test runs were conducted to discover the above description with both the 

error-treatment switched on and off. The observatioa domains of the experiments carried 

out in this section were al1 (2, y) E [0.2,2,2; 0.2,2.2]. However, the input ncise level variated 

from IO-" to 0.5 x (Refer to the table below). 

1 Noise II 6 x 

T-Solution J 

Test 11 

III the above table, "y denotes that the accurate function form was discovered, and "x" 

nieans that the accurate function form was not discovered. The rows 'N-Solution' shows 

the results of the tests without employing the proposed error treatment scheme and the 

raws Iabeled by 'T-Solution' show the results of the tests with proposed error treatment 

scheme employed. 

Without employing the error treatment, the system failed to discover the underlying 

function form when input noise level increased to 5 x IO-'. With employing the error 

treatment, the noise tolerance increased to 4 x 10-~, that is about ten times of the error 
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tolerance without employing the proposed error treatment scheme- Remember, this result 

wcas O btained by using observation data with only two-resolution levels. Intuitively, a bet ter 

improvement could be expected when multi-resolution image is used since the accuracy of 

the averaging based smoothing scheme increases with the increase of the nurnber of usable 

sample points. 

Figure 5.22 plots the discovery ratios. Observing the plot carefully, we can find that 

no matter the error treatment is employed or not, the results to the first four test samples 

are very close. This phenornenon is due to the adaptive manner of the treatment scheme. 

When tlie roughness of a node does not exceed the threshold, the smoothing process will 

not be triggered. That is the situation here. However, the parameter matching errors are 

still improved since the final functional images had been smoothed. Figure 5.23 compares 

tlie parameter fitting errors of the two test types. 

This test proves again that the proposed error-treatment scheme significantly increases 

the chance for the systern to discover the accurate underlying function, and improves the 

acciiracy of the discovered results. In other words, the noise tolerance level is increased21. 

5.6.4 Experiments on More Tkansformations 

U p  to now, the transformations TLOG1 TREc and TFAc are absent from the presented noisy 

i npii t. experiments. To complete Our experiments, the third and fourth experiments are 

desiged to include these transformations into Our examinations. 

The  third function form to be tested is 

The simplest 

guage is 

description of this function using the proposed function form description lan- 

'' Notc  tliat since the niuncric tools employed by the system's basic discovery process arc based on numenc 

fit.tiri%. Tliiis the system Las basic capabiity to toIerate- noises to a certain level. Tbis comment also applics 

t.n clic FFD syatcm. 
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(b) Discovery Ratio (untreated) 
I 3 1 I 1 1 I 1 1 I 

Ratio 

(a) Discovery Ratio (treated) 
I 1 1 1 

J 

o.: 

Figure 5.22: The Cornparison of the Discovery Ratios of Form II 
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Enor 

(a) Parameter Fitu'ng Enors (treated) 

(b) Parameter Fiîüng Erron (untreated) 

Figure 5.23: The Parameter Fitting Enors of Form II 

12 

1 I I 4 1 I 1 

- 



5.6 Experiments on Noisy D a  ta 

Twenty one pairs of experiments were conducted to  discover this description upon various 

input noise levels (See the table below. The symbols used here are the same as they appeared 

in the preceding sections). The observation domains were fixed to  (2, y) E [-1,l; -1,1]. 

1 Test 

1 Noise 

1 Test 

1 Noise 

1 Noise 

1 Test 

1 Noise 

Figure 5.24 and 5.25 are the comparisons of discovery ratios and descriptive parameter 

fit ting errors. The error tolerance increases by 10 times when the proposed error-treatment 

scheme is employed. The other thing worth to mention is that  the tolerable input noise 

of this experiment is much higher than that of the rcst experiments. The reason is that 

the input noises are additive, and they are largely compressed by the transformation TLoc. 

However, if multipIicative noise are used in the simuiation of the noisy input, the noise 

tolerance level should be close. 
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(b) Discovery Ratio (untreated) 

O 0.05 O. 1 0.15 0.2 025 0.3 0.35 0.4 0.45 
Ratio 

(a) Discovery Ratio (treated) 

P 1 l l 1 1 I 1 1 

O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
Ratio 

Figure 5.24: The Cornparison of the Discovery Ratios of Form III 
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(b) Parameter Ffiing Enors (untreated) 

(a) Parameter Fitting Errors (treated) 

. . . . . . - 

Figure 5.25: The Parameter Fitting Errors of Form III 
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The fourth function form to be discovered from noisy input is 

z = arctan(y/x) + y. 

The solution of this form contains the only unused transformation T F ~ ~ :  

{ T R ~  O T F ~ I  g0Trmi 2 = -z2 - Y'), 

or similarly, 

Seven pairs of tests were conducted for different input noise levels. The observation 

domains were fixed to (z, y) E [0.5,2.5; -1,1] for al1 tests. The input noise levels and the 

test results are tabulated below. 

Test 1 2 3 4 5 6 7  

N-Solution J x x x x x x  

The results are plotted in Figure 5.26 and 5.27. Comparing with the resuIts of the preceding 

noisy input experiments, we can clearly see that the improvement is not as good as before - 
only improving the noise tolerance by six times. Through carefully analyzing the discovery 

processes, the reasons are found to be 

Numerically conducting factorization introduced very large computational errors near 

the zero points of the extracted factor in current implementation. 

The differential transformation that follows the factorization further increases the 

error significantly at the points where large scale errors have been introduced by 

TFAC . 

The reciprocal transformation requires that the functional image has constant signs 

and the requirement is not satisfied (as it  should be) due to the propagated errors 

introduced by the transformations TFAc and TDIF. 
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(b) Discovery Ratio (treated) 

(a) Oiscovery Ratio (untreated) 

6 

5 

- 4  
œ 
+ 3  

2 

1 

O 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 
Ratio 

6 

5 

- 4 -  
Q 
'-3- 

2 

Figure 5.26: The Cornparison of the Discovery Ratios of Form IV 

I I , I 1 r 1 - 
- - 

- 
- - 

When the propagated errors increase to the level a t  which the transformed functional image 

does not have constant signs as it should be in the observation domain, reciprocal transfor- 

mation will not be applicable to the correspondhg transformed image. That is the situation 

of tliis experiment. It prevents the systern from making a successful discovery by applying 

the necessary transformation TREC. This observation suggests future improvements in three 

direct ions. First , improve the accuracy of the computations of factorization transformation 

around the zero points of the factor. Second, improve the scheme of transformation valida- 

tion check to enable it to handle noised exceptional points with large errors. Last, improve 

the smoothing method to handle sharp peak pattern, i-e. the points where the function 

values are significantly larger (or smaller) than the function values of their surroundings. 

1 - 
1 t t l I 1 

O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
m a  

5.6.5 The Role of Adaptive Strategy 

If we consider the size of a functional image, the smoothing processes is very expensive. 

-4daptive rules have been designed to avoid unnecessary image smoothing. In the current 
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(a) Parameter Fttting Errorç (untreated) 
r I 1 1 l I I I i 

(b) Parameter Fttting Enors (treated) 

Figure 5.27: The Parameter Fitting Errors of Form TV 

implementation, a functional image is only smoothed when 

1. the image is not a smooth image measured by the roughness value of the image (Refer 

to 4.5.2), and 

2. t h e  image fits to a primitive well enough measured by the primitive fitting errors. 

A smoothing call is viewed as a Redundant call if its associated search node is not on the 

path to a solution. Otherwise it is viewed as an Eflective call. The ratio of the number of 

effective calls to  the number of total smoothing calls reflects the efficiency of the designed 

adaptive strategies. We call this ratio the Observed Adaptivity Eficiency Rate (OAERate) : 

Number of Effective Smoathing Calis 
OAE-Rate = 

Number of Total Smoothing Calls 
* 

Only OAE-Rate is not enough for measuring the effectiveness of the methodology. The 

ratio of the number of redundant calls to the total number of nodes the discovery system 
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investigated is also an important measurement. We c d  this value the Observed Adaptivity 

Redundancy Rate (OAR-Rate) : 

Number of Redundant Smoothing Calls 
OAR-Rate = 

Number of Total Explored Nodes 

CIearly, a large OAE-Rate and smalI OAR-Rate supports the adaptive error control scheme 

<as an effective methodology. In the computations of the rates, only the accurate descriptions 

of the underlying function are counted as solutions t o  the discovery problems2'. 

It is important to  note that the two introduced measurements are prefixed with the 

term "Observed" . This is because 

1. In the carried out experiments, we limited the searching depth to 5. As such, the 

related numbers only reflect the situation of the specific threshold setting. 

2. It is not practical to  prove that a node is not on any solution path since we usually do 

not know whether or not the underlying function form can be expressed in some other 

different form. In other words, we can only claim that a node is not on the solution 

path of any known solutions within a limited depth. 

Table 5.11 summarizes, in terms of OAE-Rate and OAR-Rate, seven discovery tasks 

that are conducted and reported in the preceding sections. 

The averaged OAERate  is 62.1%. It means that more than half of the smoothing efforts 

were contributed to the discovery of accurate function form descriptions. The averaged 

OAR-Rate is 12.5%. It means t hat there were only 12.5% nodes t hat distracted the proposed 

adaptive strategy t o  do smoothing unnecessarily. The results justify the performances of 

the proposed adaptive strategies. 

?' Notc that thc observation data sct a ~ :  simulated images of known undcrlying functions. Although in 

~>~ i~ i c ip l c  <an approximation with .suffiaently s m d  matching crror should bc vicwcd as a solution, WC do not - 
coinit tliciri as solutions sincc the dcsiped test functions have simple descriptions in C which have the 

s~iiiillcst 11iatciUng crrors within the depth limit. 
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f : Refer to the numbering of the test function forrns in Section 5.6. 

No. 

1 

Table 5.11: The Observed Efficiency of the Proposed 

Adaptive Error Control Strategies 

Funct ion 
Formt 

(1) 

5.7 Conclusions 

2 1 (11) 

The performances of the new function form discovery system have been justified from four 

clifferent aspects. The experirnental results shows that 

Observation 
Do& 

[-0.5,0.5; -0.5,0.5] 

1.  Compared with previous discovery rnethodologies, which handle the discovery tasks 

only within a very limited function classes, the new system performs significantly well 

in discovering the underlying functiond relationship among three relevant variables 

in a larger variety of function forms. The discovered form are accurate, compact 

and meaningful in terms of each description component representing an important 

significance of the observation. 

[0.2,2.2; 0.2,2.2] 

2. -4s a direct model, the system provides the flexibilities in handling complex three- 

variable function form discovery problems. It extends the function form coverage of 

its previous system in the same category (data transformation approach) with a very 

compact and more powerful data transformation set. 

Noise 
Level 

IO-* 

OAERate 

(%) 

100 

10-~ 66.6 
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3. The system has a better potential in performing idormative data modeling t han tra- 

ditional numeric toois. L e s  human knowledge are needed for expressing the numeric 

observation data with compact and meaningful mathematic formulas. 

4. The designed adaptive error control technique is effective and efficient in reduce the ef- 

fects of the noises introduced by the source (additive noises) and the errors introduced 

by the numeric computations. 

However, we had encountered with one elementary function form that is not discoverable 

l q -  tlie systern - Form #9 in Table 5.3. Examining the form carefully and doing manual 

simplification using the transformations defined in z, we can find that TDfF and Tlsv 

make the forrn more massive, and TVEXl TREC, and TLoc can not help much. In 

fact, tlie trouble cornes from the structure of the function form. The form is composed 

by a Iinear combinat ion that links several functions. When differential transformation 

does not yield nice results directly, the system may suffer fatal problems in simplifying 

the  form into a primitive, FFD-II shows its w e h e s s  in dealing with such forms that 

are linear combinations of functional operations ' J', ' logy, 'exp', ' tany or 'arctan'. For 

example, Form #9 involves Iinear combination of tangent and logarithrn functions. As 

lias heen pointed out, the powerfuiness of a transformation based function form discovery 

system relies on the ernbedded data transformation set and primitive set. The current 

system is implemented in a preliminary fashion. The variety of three-variable function 

forms are too large to be handled with the function form description language defined for 

the current system. The experimentai forms in the case studies in Section 5.4 and the 

reported failure cases in FFD documentation shows the same weakness of FFD in one 

dimensional situations. To identify more powerful transformations and t o  identify what 

function form cannot be easily simplified using certain set of data transformations are two 

equally important subjects for the research in this area. 



Chapter 6 

Conclusions and Future Research 

The goal of function form machine discovery is to develop an autonomous system that can 

find symbolic descriptions that capture the underlying regularities hidden in the numeric 

data. In scientific and engineering studies, numeric data collected from the environment 

represent first-hand information. Therefore, a function form discovery system is an impor- 

t an t  part in an integrated machine intelligence system. It processes the given data and 

provides succeeding discovery or reasoning components with high level knowledge in the 

form of compact and easy to interpret symbolic mathematic formulas. 

Function form discovery by data transformation was first introduced by Wong with the 

implementation of FFD in 1991. The work reported in this thesis is the first attempt to 

adopt this method in solving three-variable function form discovery problems. The FFD-II 

system, as reported here, was successful in solving a variety of such problems. 

6.1 Research Contributions 

The contributions of the research can be surnmarized as below. 

1. A compact function form description language has been developed and used in the 

implementation of a direct data transformation based three-variable function form 
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discovery system called FFD-II. Formai definitions and analyses of the expressive- 

ness and redundancy of the function form description language have been presented 

<as a part of the theoretical results of this research. The analysis methods and re- 

sults could be beneficial to further development of new systems for specifying new 

Ianguage components and identifying the redundancy of the language. The specified 

function form description hnguage, the analyses of the data transformation method 

as a general function form discovery model, and the implemented system with ex- 

tensive experimentation have furthered Our theoretical understanding of quantitative 

discovery. 

The implemented system demonstrated the flexibility of data transformation model 

in tackling function forrn discovery problems. The direct characteristic of the discov- 

ery mechanism of FFD-II ailows the system to discover a significantly wider variety 

of function f o r m  than its predecessors. The cumulative enhancement rnethodology, 

which has been demonstrated by the deveiopment of FFD-II (see Section 3.1.4), could 

be used to develop new enhanced data transformation based function form discovery 

system t hat adopts mcre sophisticated numeric analysis tools, application domain 

knowledge and new enhanced low dimension function form discovery implementa- 

tions. The methodology could also be applied to the development of higher dimension 

system based on implemented systems. Such developments wiil contrast with ad hoc 

customizations like those being used to construct numeric analysis based function form 

discovery system. Mathematics analysis in the demonstrated way could be carried out 

to help the construction of new description languages and removing redundancy to 

achieve better efficiency. 

The quantified measurement of the smoothness of curves and surfaces defined in this 

tliesis is simple and has proven effective. Based on the measurernents of image sim- 

plicity, the rank value of the transformation sequence and the quality of the image, 

searching heuristics has been defined for carrying out the best-first search. It has 

been demonstrated to be a simple and effective way to guide the system to find func- 

tion form description that matches the given numeric data. Furthermore, the system 
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employs simple numeric primitive recognition and hypothesis verification algorithms. 

From the experimental results show that they can effectively distinguish "goodness" 

of the matches. 

4, SpeciaI purposed numeric methods have been developed to conduct differentiation, 

functional pattern recognition, and surface smoothing. These algorithms are simple 

and effective. The methods could be used in the development of new high dimension 

sys t ems or for other numeric analysis purposes 

5 .  The theoreticd analysis of propagated errors corresponding to each numerically imple- 

mented data transformation not only provides valuable results but also demonstrates 

a general way to carry out such analyses for new data transfarmations. The designed 

error control strategies, including image refinement, smoothing and the heuristics for 

t riggering the processes, establish an example for handling noisy input and monitoring 

the discontinuity of the transformed images. 

6.  The superiorities of the implemented system over its predecessors (most of them can 

only discover function forms within a very limited number of function form classes) 

have been proven by extensive experiments. Firstly, the experimental results on ran- 

dom selected functions show the great expressiveness of the designed function form 

description language. They also demonstrate the discovery system's great ability of 

generating accurate, compact and meaningful mathematic formulas to describe the 

given numeric data. This ability usually could not be achieved by using traditional 

numeric tools. Secondly, cornparison experiments show the superiority of the direct 

multi-dimension function form discovery model over an indirect model from the ex- 

pressiveness point of view. The direct model is also superior to an indirect model for its 

flexibilities to be extended. Domain knowledge, new advanced Ianguage components 

and new achievement in the field of function form discovery (including theoretical 

analysis results and improved working systems) could be incorporated more easily 

than an indirect system. Thirdly, the experiments on random surfaces suggest that, 

comparing with polynomid surface fitting, the discovery system may fotmulate the 
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given data in a flexible way to achieve better interpretability and to capture high or- 

der functional pattern more precisely. Fourthly, detail orienteci experiment results on 

noisy input not only justify the effectiveness of the designeci error control strategies, 

but also provide us with a chance to observe how enors affect each transformation, 

for example, the application of a certain transformation codd be turned d o m  by 

relatively low level noises or propagated errors. This observation suggests that i t  is 

necessary to  verify the applicability of a transformation considering also the possible 

error effects. Lastly, the incompleteness of the description language is revealed by the 

c~ase in which FFD-II failed to find the description. The identified special function 

structures, which may not be expressible in the function form description language - 
C l  suggest future research directions to complete the language. 

6.2 Future Research 

Data transformation methods are a promising researching direction for automated function 

form discovery. Research with the developed systems in this category, e.g. FFD, LINUS, 

and FFD-II, are only beginnings. Many research issues remain open for mathematicians, 

cornputer scientists and application domain specialists to work together in this rich field. 

To conclude this thesis, i will brieffy describe some possible directions of future research. 

First of all, the experimentation shows that the function form description languages used 

by the existing systerns, including FFD, LINUS, and FFD-II , have a major incompleteness 

(see Section 5.7). To carry out more experiments to identify more such incompletenesses 

and to conduct theoretical studies to identify and incorporate new language components 

t h a t  can help to handle identified incompleteness would highly enhance the expressivenesses 

of the existing systems. 

Secondly, FFD-II is implemented by choosing simple numerical tools to carry out the 

numeric analysis tasks. More sophisticated methods could be employed to improve the 

nccuracies of the nurneric computations and the speed and memory efficiency of the system. 

More sophisticated supporting low dimension discovery systems could be used to imprcve 
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the discovery of possible descriptive expressions. 

ThirdIy, in the current implementation, the transformation sequence associated with a 

possible functional hypothesis is not considered in the processes of primitive recognition and 

descriptive expression determination. Obviously, this may cause problems under certain 

circumstances, especially to those images distorted by noisy input or propagated errors. 

For example, when the last applied transformation is reciprocai transformation and the 

functional primitive fitting result is not a polynomial with constant sign in the corresponding 

observation domain, the verification process will immediately turn the hypothesis down. 

Tliat rnakes the system unnecessarily sensitive to the observation domain. Developing 

riew primitive recognition and descriptive expression extraction algorithms by taking into 

account the data transformations will enhance the performances of the current system, 

especially to the situations of noisy input and disccvering complex function forms that 

require lengthy simplification (i.e. transformation) steps to reach a recopizable primitive. 

Fotirthly, the composed search heuristics takes into account only a few basic facts. Pos- 

sibly, new heuristics could be constructed based on the consideration of domain knowledge 

and the discovery experience of the system. 

Fifthly, the error control strategies could be improved. Currently, the expected error 

analyses are not precise enough and the estimation is "globally" . More accurate analyses 

results of the error propagations, probably point-wise, will help to improve the system's 

performance. Concerning surface smoothing we could improve the efficiency of the current 

system by selecting points with the highest discontinuity and smooth only the selected points 

under certain circumstances. And a t  the same time, new noise removing algorithm could 

he considered. However, handling noises is an important subject in engineering design and 

mathematics study. Many different methodologies have been developed to  handle different 

types of noises. Developing noise tolerant function f o m  discovery systems to handle "real- 

world" problems should be a very interesting research subject. Current implementation is 

only the first trial and it demonstrates only a possible way to handle noises. New research 

in tliis direction could start with a more thorough experimentation on the system with 

clifferent function forms and different noise models. Comparing the performances of different 
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techniques with extensive experiments is necessary for the development of a noise tolerant 

rnodel. 

Sixthly, theoretical investigations on intrinsic relationship between a given function form 

description language and the expressiveness of the language are of practical interests. Based 

on the results of FFD and FFD-II , one can hnprove the efficiency of the existing data trans- 

formation based function form discovery systems by identifying new redundant transforma- 

tions or design new function form description language to acquire new discovery power. It 

is also an interesting direction to develop special function form description language that 

incorporates domain knowledge and solves the function form discovery problems in a par- 

ticular application domain. The challenge involved in the theoretical investigations may 

require new abstract mathematic notions. 

Seventh, to conduct new experiments on advanced function forms is an important re- 

search direction. In this research, the system has only been tested with analytic functions. 

Other function forms that cari be used to  verify the data transformation function form 

discovery model include ordinary differential equations, partial differential equations and 

integral equations. They might be of greater practical interests than analytic functions. 

Moreover, since the variables may be "coupledn more tightly in these types of function 

forms than in analytic function forms, experiments on the advanced function forms may 

provide us with a better way to understand the discovery model. 

Ot her possible research directions include solving general multi-dimensional problems, 

integrating with a symbolic algebra system to provide symbolic solution verification, and 

integrating with qualitative reasoning systems to perform automatic interpretation of the 

invest igated problem. 
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