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Abstract

Orthogonal frequency division multiple access (OFDMA) is becoming a widely de-

ployed mechanism in broadband wireless networks due to its capability to combat the

channel impairments and support high data rate. Besides, dealing with small units of

spectrum, named sub-carriers, instead of whole spectrum, results in enhanced flexibility

and efficiency of the resource allocation for OFDMA networks.

Resource allocation and scheduling in the downlink of OFDMA networks supporting

heterogeneous traffic will be considered in this thesis. Thepurpose of resource alloca-

tion is to allocate sub-carriers and power to users to meet their service requirements while

maintaining fairness among users and maximizes resource utilization. To achieve these

objectives, utility-based resource allocation schemes along with some state-of-the-art

resource allocation paradigms such as power control, adaptive modulation and coding,

sub-carrier assignment, and scheduling are adopted. On onehand, a utility-based re-

source allocation scheme improves resource utilization byallocating enough resources

based on users’ quality of service (QoS) satisfaction. On the other hand, resource alloca-

tion based on utilities is not trivial when users demand different traffic types with convex

and nonconvex utilities.

The first contribution of the thesis is the proposing of a framework, based on joint

physical (PHY) and medium access (MAC) layer optimization, for utility-based resource

allocation in OFDMA networks with heterogeneous traffic types. The framework consid-

ers the network resources limitations while attempting to improve resources utilization

and heterogeneous users’ satisfaction of service. The resource allocation problem is for-

mulated by continuous optimization techniques, and an algorithm based on interior point

and penalty methods is suggested to solve the problem. The numerical results show that

the framework is very efficient in treating the nonconvexityproblem and the allocation

is accurate comparing with the ones obtained by a genetic search algorithm.

The second contribution of the thesis is the proposing of an opportunistic fair schedul-

ing scheme for OFDMA networks. The contribution is twofold.First, a vector of fair
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weights is proposed, which can be used in any scheduling scheme for OFDMA networks

to maintain fairness. Second, the fair weights are deployedin an opportunistic scheduling

scheme to compensate the unfairness of the scheduling. The proposed scheme efficiently

schedules users by exploiting multiuser diversity gain, OFDMA resource allocation flex-

ibility, and utility fair service discipline.

It is expected that the research in the thesis contributes todeveloping practical schemes

with low complexity for the MAC layer of OFDMA networks.

iv



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Xuemin

(Sherman) Shen for his generous support and supervision, and for the great experience

that he shared with me. I learned valuable lessons from his personality and his visions.

I will never forget his encouragement when I faced difficulties and felt frustrated during

the course of my Ph.D. study. He gave me enough time and freedom to choose the

research topic which I am interested in. Without his endlesssupport, my achievements

were not possible.

I am also grateful to my Doctoral Committee Members: Professor Sagar Naik, Pro-

fessor Pin-Han Ho, the internal external examiner, Professor Jun Cai, and also the ex-

ternal examiner, Professor Ben Liang. Their valuable comments and suggestions helped

me improve the quality of this dissertation. Their precioustime and efforts devoted to

this dissertation are highly appreciated.

With great thanks, I want to acknowledge the partial financial support of the Iranian

Ministry of Science, Research, and Technology (MSRT), the Natural Sciences and En-

gineering Research Council (NSERC) of Canada, and the Universityof Waterloo schol-

arships and awards for funding this research work. My thanksare also extended to the

ECE Department of the University of Waterloo for a nice atmosphere, kind treatment and

support.

Special thanks to my friends and colleagues in the broadbandcommunication re-

search (BBCR) group for their fruitful discussions and professional collaborations. My

deepest thank goes to Mehrdad Dianati, Naghmeh Mansouri, Somayeh Moazeni, Mo-

hamad Awad, and Ibrahim Alsolami who inspired me by new ideasthrough constructive

discussions.

Finally, and most importantly, I would like to express my deep appreciation to my

parents and my husband, Masoud, for all their encouragement, understanding, support,

patience, and true love throughout the ups and downs. As always, I thank and praise God

by my side.

v



to my dear Masoud

&

my blossom of life, Samin

vi



Contents

List of Abbreviations xii

List of Symbols xv

List of Tables xv

List of Figures xviii

1 Introduction 1

1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Objectives and Contributions . . . . . . . . . . . . . . . .. . 6

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Multi-carrier Transmission Over Wireless Channel 11

2.1 Radio Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Wireless Channel Impairments . . . . . . . . . . . . . . . . . . 12

2.1.2 Wireless Channel, Mathematical Model . . . . . . . . . . . . . 14

vii



2.1.2.1 Delay Spread . . . . . . . . . . . . . . . . . . . . . 16

2.1.2.2 Coherence Bandwidth . . . . . . . . . . . . . . . . . 16

2.1.2.3 Doppler Spread . . . . . . . . . . . . . . . . . . . . 17

2.2 Multi-Carrier OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 OFDM Transmitter and Receiver . . . . . . . . . . . . . . . . . 18

2.2.2 PHY Layer Advantages of OFDM . . . . . . . . . . . . . . . . 18

2.2.3 MAC Layer Advantages of OFDM . . . . . . . . . . . . . . . . 21

2.3 Network Topology and Configuration . . . . . . . . . . . . . . . . . . 23

2.3.1 PHY Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 MAC Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A Framework for Resource Allocation in OFDMA Networks 29

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 MINLP and NLP Problems . . . . . . . . . . . . . . . . . . . . 31

3.2 Related Works and Problem Complexity . . . . . . . . . . . . . . . . . 36

3.2.1 Linear Objective Function . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Nonlinear Objective Functions and Constraints . . . . . .. . . 38

3.2.2.1 Nonlinear Objectives . . . . . . . . . . . . . . . . . 38

3.2.2.2 Nonlinear Constraints . . . . . . . . . . . . . . . . . 39

3.2.3 Problem Complexity . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Penalty Function and Interior Point Methods . . . . . . . . . .. . . . . 41

3.3.1 PM/IPM Descriptions . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

viii



3.4.1 Genetic Algorithm Methodology . . . . . . . . . . . . . . . . . 49

3.4.2 Genetic Algorithm Implementation . . . . . . . . . . . . . . . 50

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Genetic Algorithm Convergence . . . . . . . . . . . . . . . . . 53

3.5.2 Interior Point and Penalty Method Performance . . . . . .. . . 54

3.5.3 Resource Utilization Performance . . . . . . . . . . . . . . . . 61

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Opportunistic Fair Scheduling in OFDMA Networks 67

4.1 Background and Related Works . . . . . . . . . . . . . . . . . . . . . 68

4.2 Opportunistic Fair Scheduling Scheme . . . . . . . . . . . . . . .. . . 69

4.3 Network Model and Problem Formulation . . . . . . . . . . . . . . .. 71

4.3.1 OFDMA Resource Allocation Problem . . . . . . . . . . . . . 72

4.3.2 Fairness Problem . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Solution Algorithms for OFDMA Resource Allocation and Fairness Op-

timization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 The Dual Method . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 The Interior Point Method . . . . . . . . . . . . . . . . . . . . 79

4.5 Complexity of the Proposed Approach . . . . . . . . . . . . . . . . . .81

4.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.1 Fixed Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.2 A Fixed and a Mobile User . . . . . . . . . . . . . . . . . . . . 84

4.6.3 Users With Heterogeneous Rate Requirements . . . . . . . . . 87

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ix



5 Conclusions and Further Works 91

5.1 Major Research Contributions . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Further Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

APPENDICES 98

A Derivation of ∇2
rrL,∇rf(r),∇2

wwL, and∇wf(w) 99

A.1 ∇2
rrL and∇rf(r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 ∇2
wwL and∇wf(w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

References 103

x



List of Abbreviations

3G third generation

AMC adaptive modulation and coding

AWGN additive white Gaussian noise

BER bit error rate

BPSK binary phase shift keying

BS base station

bps bit per second

CSI channel state information

DL downlink

DSA dynamic sub-carrier assignment

EWMA exponential window moving average

FDM frequency division multiplexing

FFT fast Fourier transform

GA genetic algorithm

GPS generalized processor sharing

IFFT inverse fast Fourier transform

ISI intersymbol interference

IPTV internet protocol television

KKT Karush-Kuhn-Tucker

LIP linear integer programming

LOS line-of-sight

xi



MAC medium access layer

MINLP mixed integer nonlinear programming

NLOS non-line-of-sight

NLP nonlinear programming

NUM network utility maximization

OFDM orthogonal frequency division multiplexing

OFDMA orthogonal frequency division multiple access

PHY physical layer

PMP point-to-multipoint

PM/IPM penalty method/interior point method

Pr problem

QoS quality of service

RF radio frequency

RMS root mean square

SNR signal to noise ratio

TDD time division duplexing

TDM time division multiplexing

UL uplink

UMTS universal mobile telecommunication system

UWB ultra wide band

WiFi wireless fidelity

WiMax wireless interoperability for microwave access

WLAN wireless local area networks

WMAN wireless metropolitan area networks

WWAN wireless wide area networks

xii



List of Symbols

A the Jacobian matrix ofC(r)

αijn channel gain of useri on sub-carrierj of OFDMA symboln

αij channel gain of useri on sub-carrierj of each allocation interval

αmax
s length of movement for vectors

αmax
z length of movement for vectorz

B network bandwidth

b vector of movements for vectorsr, s, andz, denoted byb = [br, bs, bz]
T

C(r) vector of inequality constraints in PM/IPM

c a solution for sub-carrier assignment[c11, c12, . . . , c1K , . . . , cM1, . . . , cMK ]T

cij a binary variable representing assignment of sub-carrierj to useri

e e = (1, 1, ..., 1)T

F a general objective function

g iteration number in PM/IPM

h utility set index inU

i user index belongs toM := {1, 2, ...,M}

j sub-carrier index belongs toK := {1, 2, ..., K}

K total number of sub-carriers in the network

k convexity controlling factor of utility functions

κ long distance fading exponent

L Lagrangian function

xiii



L penalty parameter in PM/IPM

l1 minimum required rate in utility functions

l2 maximum rate in utility functions

M total number of users in the network

µ KKT perturbing variable

N total number of OFDM symbols in each scheduling interval

Nitr maximum number of iterations

Nfit maximum number of iterations thatelite’s fitness value does not change

n symbol index belongs toN := {1, 2, ..., N}

PBS the BS total power budget

P0 an initial population

Pn nth population

p a solution for power allocation,[p11, p12, . . . , p1K , . . . , pM1, . . . , pMK ]T

pij allocated power to useri on sub-carrierj of each allocation interval

pijn required power by useri on sub-carrierj of OFDMA symboln to transmitrijn

pcross probability of crossover

pmut probability of mutation

R̃i total transmitted rate to useri over simulation intervals

Ri average transmitted rate to useri overTc scheduling interval

Ri
min minimum service rate requirement of useri

r a solution for rate allocation,[r11, r12, . . . , r1K , . . . , rM1, . . . , rMK ]T

rij allocated rate to useri on sub-carrierj of each allocation interval

rijn achievable rate by useri on sub-carrierj of OFDMA symboln

S a diagonal matrix with diagonal elements given by vectors

s the vector of slack variables in PM/IPM

σ a constant for updating KKT perturbing variable

Tc time constant of the lowpass filter for computing users’ transmission rates averages

τ a constant value in PM/IPM for updating the movement directions

xiv



U a bounded set ofM users’ feasible utilities subsets,uh

Ui utility function of useri

uh uh = {uh1, uh2, . . . , uhM}

uhi is the utility of useri in utility subseth

v iteration number in GA algorithm

W population size

Wi useri’s fair weight

xy
j a1×M allocation vector ofxy

ijs in GA algorithm

xy
ij allocated power to useri on sub-carrierj in GA algorithm

y a chromosome, aK ×M vector equals[xy
1 · · ·x

y
j · · ·x

y
K ]

Z a diagonal matrix with diagonal elements given by vectorz

z a vector containing(2M + 1)K Lagrange multipliers

xv





List of Tables

3.1 Notations Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Users’s Allocated Rates on Each Sub-carrier . . . . . . . . . . .. . . . 62

4.1 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Aggregate Utilities of the Scheduling Schemes . . . . . . . .. . . . . 88

xvii





List of Figures

2.1 Multipath channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Tapped delay model for multipath channel . . . . . . . . . . . . .. . . 15

2.3 An OFDM transceiver structure . . . . . . . . . . . . . . . . . . . . . 19

2.4 Time and frequency illustration of OFDM-sub-carriers (a) two OFDM

sub-carriers modulated by binary phase shift keying (BPSK) are illus-

trated over two OFDM symbols duration, (b) nine OFDM sub-carriers

are illustrated in frequency domain . . . . . . . . . . . . . . . . . . . .20

2.5 Network platform is the DL of a PMP infrastructure where spectrum and

power are allocated to users with heterogeneous service requirements. . 24

2.6 OFDM symbols and sub-carriers in a MAC frame . . . . . . . . . . .. 27

3.1 The population and chromosomes representations . . . . . .. . . . . . 50

3.2 Power allocation distribution on sub-carriers . . . . . . .. . . . . . . . 55

3.3 Convergence of fitness value . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Convergence speed comparison of GA and PM/IPM . . . . . . . . . .. 57

3.5 Performance comparison of GA and PM/IPM . . . . . . . . . . . . . .58

3.6 Aggregate penalty term constraints’ deviations in PM/IPM . . . . . . . 59

3.7 Utility allocation comparison of GA and PM/IPM . . . . . . . .. . . . 60

3.8 Concave and nonconcave utilities corresponding to each group of users 63

xix



3.9 Allocated rate and corresponding utilities to each group of users . . . . 64

3.10 Utilization performance of utility-based and greedy schemes . . . . . . 65

4.1 Scheduling instances and sub-carriers allocation illustrations in a MAC

frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Architecture of the proposed scheduler . . . . . . . . . . . . . .. . . . 70

4.3 Comparison between equal rate and equal utility allocation . . . . . . . 75

4.4 Simulated scenarios: (a) fixed users, (b) a fixed user and amobile user,

(c) users with heterogeneous rate requirements . . . . . . . . . .. . . . 83

4.5 Overall network throughput for scenario (a) . . . . . . . . . .. . . . . 85

4.6 Fairness index for scenario (a) . . . . . . . . . . . . . . . . . . . . .. 85

4.7 User1 and User2’s throughput at different positions of the second scenario86

4.8 Fairness performance of the second scenario . . . . . . . . . .. . . . . 87

4.9 Utility values of users1 to 8 for opportunistic and opportunistic fair

scheduling schemes versus time . . . . . . . . . . . . . . . . . . . . . 89

xx



Chapter 1

Introduction

1.1 Research Motivation

Recently, the world has witnessed rapidly growing of wireless technology and increasing

demand for wireless communication services [1]. Accordingly, the new standards for the

next generation wireless networks, such as, IEEE 802.16 [2–5] for wireless metropolitan

area networks (WMAN), IEEE 802.11 [6] for wireless local areanetworks (WLAN), or

universal mobile telecommunication system (UMTS) for third generation (3G) wireless

networks[6], appear with the trend of providing heterogeneous services over broadband

channel. However, successful deployment of the standards faces a number of challenges,

e.g., scarce spectrum, complex time-varying wireless channel, and providing quality of

service requirements of heterogeneous traffic types or service requirements.

Despite the limited unlicensed radio frequency (specifically below11 GHz), it is used

exhaustively due to the advantages of fast rollout and low administrative/regulatory costs.

Besides, current technological barriers of using high frequency bands, that need line-

of-sight (LOS) transmission, fade the motivation of developing the applications that use

those bands. On the other hand, non-line-of-sight (NLOS) transmission on the unlicensed

band suffer from multipath propagation especially in urbanareas. Accordingly, wireless

transmission techniques that promote spectrum usage efficiency and enable high data
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rate transmission over multipath radio, such as, frequencydivision multiplexing (OFDM)

have found widespread deployment in current wireless transmission technologies [7–11].

On the other hand, a natural challenge of wireless channel isreducing signal strength,

but strong restrictions are taking effect on increasing transmitted signal strength. Lim-

iting the power consumption is one of the requirements of having a green world. In

addition, the technological constraints of battery products for electronic mobile devices

pose a restriction on available power. In addition to power limitation, wireless channel

is highly time varying, which results in different power requirement for each transmis-

sion instance. Also, it demands sophisticated power allocation schemes that adaptively

allocate limited power and take advantage of users’ diversity for power allocation.

Irrespective of wireless medium challenges for traffic transmission, wireless applica-

tions, such as, cell phones, are becoming more popular and new applications, such as,

mobile computing, and video on demand are promising in the near future. Each of these

applications demands its own service requirements and sophisticated service manage-

ment that should be fair to all users. To come up with a solution for heterogeneous traffic

types transmission on wireless channel, researchers have to put a lot of efforts on propos-

ing some resource allocation schemes that consider the aforementioned challenges. In

other words, a resource allocation scheme is needed to consider technical issues of trans-

mission technologies and wireless access mechanisms whileallocating resources to meet

the heterogeneous service requirements. Due to the large diversity of telecommunication

networks topologies, constraints, and objectives, many resource allocation schemes have

been proposed so far for legacy wireless networks [12]. However, these schemes need

renovation and/or redesign due to the advent of new transmission technologies and net-

work applications.

Multicarrier OFDM transmission is a developing aspect and multiservice provision-

ing is a promising objective in recent wireless networks. OFDMA, the multiple access

mechanism based on multicarrier OFDM, results in a flexible resource allocation [10,13]

in the sense that instead of allocating whole resources, such as total bandwidth, to only

one user at a time, some portion of it can be allocated to each user. The flexibility of

2
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OFDMA resource allocation can be deployed to compensate forwireless channel im-

pairment [14], provide QoS [15,16], and maintain fairness [17]. These issues have been

studied separately in the existing literature, but fairness, QoS, and resource utilization

enhancement should be considered simultaneously for efficient resource allocation in

practice. The commercial growth of the networks with multicarrier transmission and

heterogeneous traffic types strongly depends on proposing efficient resource allocation

schemes that consider the aforementioned issues.

1.2 Problem Description

Transmission over wireless medium is the first and most fundamental challenge that the

service providers face in a broadband communication network. The medium is impaired

by many factors, such as, obstacles, noise, interference, and intersymbol interference

(ISI). Obstacles shadow the signal path or cause scatteringand diffraction, which result

in multipath propagation. Noise weakens the transmitted signal strength, and interfer-

ences distort the signal. Basically, the degradations are unpredictable and time-varying.

Besides, they become more severe when the signal bandwidth increases. Accordingly,

elaborated methods are needed to mitigate channel impairments in broadband networks.

One of the most effective techniques to increase the spectral efficiency and combat

the wireless channel impairments in wireless networks is OFDM. The fundamental fea-

ture of OFDM is it converts single carrier transmission to multi-carrier transmission,

which is advantageous from the PHY and MAC layers points of view. In PHY, OFDM

sub-carriers have overlap (it is possible because of their orthogonality) which increases

spectral efficiency. In MAC, using OFDMA sub-carriers can improve spectral efficiency

in two ways. First, given channel state information (CSI) of sub-carriers, a transmission

can be scheduled over sub-carriers that have good status, which results in less effort for

retransmission of corrupted signals transmitted on weak sub-carriers. Second, as CSI

of sub-carriers for different users are usually independent and uncorrelated, a sub-carrier

which is not in good status for a user may be in a good status foranother user. An optimal
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frequency usage will be achieved upon optimal sub-carrier assignment to users.

The performance of OFDMA depends on sub-carrier assignmentto users as well as

power allocation to each sub-carrier. Therefore, the jointsub-carrier and power allo-

cation problem, denoted by OFDMA resource allocation problem, is formulated as an

optimization problem whose solution is an optimal allocation. In an OFDMA resource

allocation problem, resources are allocated to users in a way to achieve an objective

while satisfying some constraints. Maximizing aggregate users’ rates or minimizing to-

tal required transmission power are examples of the objective functions. The constraints

are imposed by some network limitations or service requirements, such as, maximum

available power source or users’ minimum rate requirements.

A constraint, related to PHY and MAC implementation of OFDMA, is to allocate

a sub-carrier to only one user at a time. In other words, a sub-carrier band cannot be

shared by several users simultaneously. Appeared in an OFDMA optimization problem,

this constraint causes the feasible region of the problem, i.e., the set of allocations that

satisfy all constraints, becomes discrete. An optimization problem with discrete feasible

region is categorized among nonconvex optimization problems1.

In addition to the nonconvexity of the feasible region, the objective function of

an OFDMA optimization problem may contribute to the nonconvexity of the problem.

Utility-based OFDMA resource allocation problems are among this category of noncon-

vex problems. Utility function, shortly utility hereafter, is usually a function of rate that

shows a user’s satisfaction of received service [18]. Some utilities are designed in the

literature to achieve a specific objective, but, in this thesis, application layer utilities,

i.e., those utilities that represent users’ perception of QoS at the application layer are

considered. In a utility-based resource allocation scheme, resource are allocated accord-

ing to users’ requirements as long as the allocation is effective in utility increment. For

1An optimization problem is nonconvex if either the feasibleregion or the objective function be non-

convex. Moreover, a functionf is convex if the domain off , Df , is a convex set, i.e.,(1− t)x + ty ∈ Df

for everyx, y ∈ Df andt ∈ [0, 1], andf(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) for everyx, y ∈ Df and

0 ≤ θ ≤ 1.
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example, astep utility function of rate represents that the user expects a threshold rate,

allocating less rate is not useful at all, and allocating more rate is wasteful. Due to the

advantage of resource utilization enhancement, some utility-based resource allocation

schemes, namely utility maximization problems, have been proposed in the literature re-

cently. In a utility maximization problem the effort is on maximizing aggregate users’

utilities. As long as users’ utilities are concave2, the utility maximization problem is a

convex problem. For many concave utilities, the utility-based resource allocation prob-

lem is a convex problem which can be solved using special methods for convex optimiza-

tion [19]. Therefore, most works in the literature have considered only concave utilities.

On the contrary, in case of utility maximization for heterogeneous traffic, some of the

utilities, such as voice and video, are nonconcave. Then, the utility-based resource al-

location in a multiservice network will not be a convex optimization problem any more.

Nonconvexity of the objective function, when combined withthe nonconvexity of the

feasible region, contributes to difficulty of solving the utility-based OFDMA resource

allocation problem.

Unlike convex problems, which there exist several algorithms to solve them up to

the optimum solution efficiently, there is no suggested algorithm for nonconvex prob-

lems that guarantees an optimum solution. Accordingly, nonconvex problems are usu-

ally solved for a local (near optimal) solution by either heuristic search algorithms or

nonlinear programming (NLP) solver algorithms. When the feasible region is small and

discrete, a search algorithm may find the optimum solution inlimited time, but when the

feasible region expands, the solution time grows exponentially, and search algorithms

become inefficient. Similar to the search algorithms, NLP solver algorithms will result

in local solutions. However, they are usually faster than search algorithms. More im-

portantly, the closeness of solutions to optimal depends onthe solver algorithm which

is used. Precisely, the accuracy of the solution obtained byan NLP solver algorithm

depends on the way that it treats the nonconvexity of the problem.

2A function f is concave if the domain off , Df , is a convex set, i.e.,(1 − t)x + ty ∈ Df for every

x, y ∈ Df andt ∈ [0, 1], andf(θx+(1−θ)y) ≥ θf(x)+(1−θ)f(y) for everyx, y ∈ Df and0 ≤ θ ≤ 1.
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Despite the difficulties of utility-based OFDMA resource allocation problems, they

can be applied in many different network scenarios. Most of present wireless access

technologies for ultra wide band (UWB), WLAN, WMAN, and cellularnetworks deploy

OFDMA and aim a heterogeneous service provisioning. When applied to these scenar-

ios, utility-based OFDMA resource allocation schemes can efficiently allocate resources

to qualify usres’ satisfaction and improve resource utilization. In this thesis, utility-based

OFDMA resource allocation schemes in the context of heterogeneous service provision-

ing in the downlink of IEEE 802.16 WMAN is investigated. The attempt is to specify

challenging aspects of the problem and suggest a practical and accurate solution algo-

rithm.

1.3 Research Objectives and Contributions

The main objectives of this research are to develop a framework for resource allocation

that provides satisfactory QoS and fairness for heterogeneous traffic types in the down-

link of point-to-multipoint (PMP) OFDMA networks, while improving network resource

utilization. The framework guarantees the users’ minimum rate requirements, maintains

fairness among users, and enhances resource utilization simultaneously. In order to real-

ize these objectives, the research work is conducted in three stages as follows.

In the first stage, the OFDMA resource allocation problem that guarantees users’

minimum rate requirements is formulated based on continuous optimization techniques

[20]. The problem of OFDMA resource allocation is usually presented by mixed inte-

ger nonlinear programming (MINLP) techniques in the literature [21–30]. However, our

proposed optimization problem is an NLP problem, which doesnot contain integer vari-

ables. The NLP problem uses the information of OFDMA sub-carrier status to allocate

power or rate to sub-carriers. This information are obtained through a feedback chan-

nel via underlying PHY and assumed to be constant in a limitedinterval. The proposed

framework allows any objective function of users’ rate be considered in the optimization

problem. Indeed, the framework can serve applications witheither linear/nonlinear or

6
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concave/nonconcave utilities that require a minimum rate for functionality. We investi-

gate the performance of the utility-based OFDMA resource allocation scheme using an

iterative search algorithm. We implement a heuristic search algorithm based on genetic

algorithm (GA) for the NLP problem. The results of the iterative search algorithm are

used as a benchmark in the next stages of the research, where an analytical algorithm is

proposed to solve the problem.

In the second stage, inspired by continuous optimization approach used for the OFDM

resource allocation problem representation, an algorithmbased on a combination of a

penalty and an interior point method (PM/IPM) is suggested to solve the NLP prob-

lem. Mainly, the approach takes advantage of an interior point method which can be

successfully applied to nonlinear programming problems [31]. The success of interior

point methods in solving a nonconvex or nonlinear problem strongly depends on how

nonconvexity of the problem is treated. We apply a penalty function method to deal with

nonconvexity problem. Before applying the interior point method, the nonconvexity of

the feasible region is removed by a penalty function method.More precisely, noncon-

vex constraints are moved to the objective function by a coefficient penalty. Then the

interior point method is applied to solve the new problem with convex feasible region.

The solutions obtained by PM/IPM are compared with near optimal solutions obtained

by GA in terms of speed and efficiency of the algorithms. The proposed PM/IPM is very

comprehensive in the sense that users can have heterogeneous rate requirements and the

objective function of the resource allocation scheme can benonconvex.

In the third stage, an opportunistic fair scheduling schemeis proposed for heteroge-

neous traffic in the downlink of broadband OFDMA networks. Inthis scheme, users are

scheduled for service based on three factors: a) the achievable data rate at the instant of

scheduling, b) the average data rate that had been experienced by each user during an

observation time window preceding the scheduling instant ,c) the assigned fair weight

to each user. The scheme uses a fair service discipline to allocate resources to users

based on the instantaneous CSI of sub-carriers. The fair weights compensate the un-

fairness of the opportunistic scheduling and can be adjusted dynamically according to

7
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users’ average channel status and fairness criterion. Moreprecisely, the fair weights are

computed based on the proposed framework for OFDMA resourceallocation and can be

used in most of the scheduling schemes in OFDMA networks. Thescheduling scheme

achieves a flexible trade-off between fairness and throughput. Radio resource utilization

is enhanced by using adaptive modulation and coding. The scheduler runs a bit load-

ing algorithm, which is embedded in the sub-carrier assignment algorithm, to determine

allocated rate to sub-carriers while scheduling users.

1.4 Structure of the Thesis

The wireless channel impairment, happening from various random phenomena in the

signal propagation paths, should be well understood and taken into consideration while

designing broadband wireless networks. In chapter 2, a brief characterization of the ra-

dio channel including small scale and large scale fading is presented. Then, the OFDM

and OFDMA design issues to cope with the large and rapid variations in received sig-

nal strength and provide a reliable transmission are explained. The OFDMA resource

allocation is investigated in the context of a centrally controlled OFDMA broadband

network in this thesis. In addition, the required knowledgeof PHY and MAC relevant

to the resource allocation problem formulation is described, such as the relation among

transmission rate, power, channel gain and bit error probability.

The problem formulation for resource allocation in centrally controlled OFDMA net-

works is presented in chapter 3. First, basic assumptions and constraints of OFDMA and

the network are introduced. The OFDMA resource allocation problem is represented by

a MINLP first. Then, an equivalent NLP problem for the MINLP one is proposed, which

is followed by a discussion about OFDMA resource allocationproblem complexity. An

iterative search algorithm based on GA and analytical algorithm based on PM/IPM is

suggested to solve the NLP problem. Numerical results for scenarios with convex and

nonconvex objective functions are conducted to evaluate utility-based resource allocation

schemes and verify the accuracy of solutions achieved by PM/IPM.
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An opportunistic fair scheduling scheme is proposed in 4 forscheduling heteroge-

neous traffic in the downlink of OFDMA networks. The scheduler takes advantage of

independent channel variation across users to improve the network performance through

multiuser diversity. Also, to guarantee fairness, a weighted fairness scheme based on

users’ average channel gain and required fairness criterion is proposed. In this chapter,

first, some opportunistic fair schemes proposed in the literature for multicarrier networks

are surveyed. Then, the optimization problems correspondent to the scheduling scheme

and the fairness scheme are derived, and separate algorithms appropriate for solving

each problem is suggested. Finally, numerical results are conducted to evaluate the per-

formance of the scheduling scheme and illustrate its adaptivity to users’ CSI.

The contribution of this thesis is summarized in chapter 5. In addition, the future

research directions relevant to the works in this thesis arediscussed. Also, final remarks

of the thesis are given at the end of this chapter.

1.5 Bibliographic Notes

Most of the research work reported in this dissertation haveappeared in peer reviewed

papers [12, 20, 32–35] or will be published in [36–42]. The concepts discussed in chap-

ter 2 appeared in [12, 33, 35, 40–42]. The work of chapter 3 canbe found in [20, 34, 36,

38,40,41]. The material of chapter 4 can be found in [32,33,35,37,39,42].
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Chapter 2

Multi-carrier Transmission Over

Wireless Channel

The emerging technology extends the transmission rate and range of wireless communi-

cation beyond the limits of existing technologies while allowing for heterogeneous traffic

transmission. To achieve all these goals, qualified protocols should efficiently utilize the

spectrum and overcome the deficits of wireless channel simultaneous to maintaining a

satisfactory level of service for users with heterogeneoustraffic types.

Most current wireless standards support OFDM and OFDMA which, respectively,

are robust technique for transmission and flexible mechanism for resource allocation on

wireless channel. The OFDM air interface mitigates multipath and interference effects,

which are some main challenges of wireless communication. The OFDMA mechanism

is very flexible in allocating resources due to its capability of providing fine granularity

in accessing the spectrum. As we take advantage of these specifications through this

research work, we explain them briefly in this chapter.

First, wireless channel specifications and transmission challenges in broadband net-

works are explained. Then, we will describe how OFDM can combat the channel im-

pairments and how flexibility and granularity of OFDM can be incorporated in a resource

allocation scheme to improve network performance. We consider a general centralized
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network topology throughout this thesis, which is introduced in the last section of this

chapter.

2.1 Radio Channel

2.1.1 Wireless Channel Impairments

Propagation over wireless channel weakens, delays, and deteriorates transmitted signals

randomly. Expansion of wireless networks over urban areas necessitates NLOS trans-

mission, where a transmitted signal passes several obstructions on its way to a wireless

receiver. When a signal is propagated in NLOS conditions, random phenomenas, such

as, reflection, refraction, diffraction, absorption, or scattering deteriorate the signal and

result in multiple reception of the signal with different delays and strength. The wireless

channel impairments can be categorized as the following phenomena and effects:

• Noise: Additive white Gaussian noise (AWGN) is the main impairment in any

communication channel. AWGN has a constant spectral density, so it affects

broadband signals more than narrow-band signals. As AWGN is additive, it can be

formulated by simple and tractable mathematical models.

• Shadowing: Large obstacles in the propagation path, such asbuildings and moving

objects, shadow the signal transmission. Although, radio waves propagate around

such blockages via diffraction but the power loss drops severely. Shadowing phe-

nomenon causes slow variations of a transmitted signal withrespect to the signal

duration, so shadowing is sometimes referred to slow fadingin the literature.

• Pathloss: A signal power decays in the communication path asthe distance in-

creases. Pathloss depends on the environment of traversingsignals and is inversely

proportional to square carrier frequencies. Broadband signals experience signifi-

cant pathloss. In addition, pathloss is worse in NLOS than the line-of-sight (LOS)
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diffraction

scattering

reflection

line-of-sight

Fig. 2.1: Multipath channel

transmission. Pathloss is a large-scale fading type because its effects are dominant

in extended geographical networks.

• Multipath Fading: Large variations in received signal envelope occurred by prop-

agating the transmitted signal via diffraction, scattering, and reflection, as shown

in Fig. 2.1, is characterized as multipath fading. The variation of the amplitude

of the received signal affected by multipath fading may be very large even over

very small distances or small durations. Multipath propagation causes frequency

selective fading and intersymbol interference (ISI). The frequency selectivity re-

sults from destructive interference of transmitted signalwith itself due to multipath

reflections. A frequency selective fading channel cause deep fading in some fre-

quency components of the transmitted signal. The locationsof the deep fades

may change because the interference pattern changes with reflectors movement or

changes.

ISI is due to the signal propagation through different pathsand concurrent recep-

tions of different transmitted signals. In a NLOS environment, time dispersion of a

multiple propagated signal causes it arrives at the receiver during the next symbol

period reception. ISI is a big concern for broadband signal transmission, because

the symbol length is short in time and a small delay cause ISI.Traditionally, ISI
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is overcome by equalization, but it is computationally hardwhen number of trans-

mitted signals increases.

• Doppler Shift: Time selectivity which is occurred due to relative motion between

a transmitter and receiver causes carrier frequency dispersion called Doppler shift.

Doppler shift phenomenon depends on movement speed and carrier frequency.

Doppler shift reduces SNR and can make carrier recovery and synchronization

more difficult for broadband signals. Doppler shift is a mainconcern for OFDM-

based networks, since it can corrupt the orthogonality of the OFDM sub-carriers

named intercarrier interference (ICI).

• Interference: It is the conflict resulted when two or more users transmit on the

same frequency band. Frequency reuse, which allows users share available band-

width and improve spectrum utilization, may cause signals from different users to

interfere with each other. Interference limits the capacity and coverage of wireless

networks.

Typically, the broader is the signal, the worse is the wireless channel impacts. Broadband

wireless networks need to be designed to cope with these large and rapid variations in

received signal strength. There is no unique solution to allthese impairments. However,

OFDM is a popular choice for mitigating most of these deficits, because it exploits wire-

less channel fluctuations and multichannel transmission flexibility for efficient transmis-

sion of broadband signals. We will explain, later in this chapter, how OFDM will reduce

some of these impairments. For this purpose, we first formulate some of aforementioned

channel effects in the followings.

2.1.2 Wireless Channel, Mathematical Model

The communication channel can be modeled as a linear time variant system [43]. Due to

multipath propagation and Doppler effect, the channel impulse response toδ(τ), Dirac
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X XX

δ(τ) Channel h(t, τ)

δ(τ) τ1 τ2 τNp

a1 a2
aNp

Σ h(t, τ)

Fig. 2.2: Tapped delay model for multipath channel

impulse function transmitted at the momentτ , is the superpose of the reflectedδ(τ)s:

h(τ, t) =

Np−1
∑

p=0

ap(t)e
j(2πfD,pt+ϕp)δ (τ − τp(t)) . (2.1)

ap, fD,p, ϕp andτp refer to the complex-valued amplitude, doppler frequency,phase, and

delay of pathp amongNp multipath. A systematic representation ofh(τ, t) is a tapped

delay line as shown in Fig. 2.2 [44,45], where the output of each delay blockτp, is a tap

consisting of multiple propagated signal with close delaysto τp. In practice the number

of taps that can be distinguished is very large. Therefore, only those taps with a delay

greater than the inverse of the input signal bandwidth, are considered in the receiver

detectors [43].

Fading channel effects depend on some channel characteristics such as delay spread,

coherence frequency, and Doppler spread and some signal characteristics such as band-

width and duration time. In the following, we explain these characteristics and their

relevant bounds that limit some fading effects, such as, ISI, frequency selectivity, and

ICI.
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2.1.2.1 Delay Spread

The delay dispersion of channel, identified as root mean square (RMS) delay spread,

determines the severity of ISI and frequency selective fading. RMS delay spreadτRMS

depends on the channel stationary impulse responseh(t)

h(t) =

Np−1
∑

p=0

apδ (t− τp) (2.2)

and channel mean delaȳτ :

τ̄ =

∫∞

0
|h(t)|2 tdt

∫∞

0
|h(t)|2 dt

=

∑Np−1
p=0 |ap|

2 τp
∑Np−1

p=0 |ap|
2

(2.3)

as follows [46]:

τRMS =

∫∞

0
|h(t) (t− τ̄)|2 dt
∫∞

0
|h(t)|2 dt

=

∑Np−1
p=0 |ap (τp − τ̄)|2

∑Np−1
p=0 |ap|

2
. (2.4)

RMS delay spread is the standard deviation value of the delay of reflections, weighted

proportional to the energy in the reflected signals. To avoidISI, the symbol durationTs

should be much larger thanτRMS [47].

2.1.2.2 Coherence Bandwidth

In a frequency selective fading channel, the frequency components of a transmitted signal

are distorted differently. To avoid frequency selectivity, the signal bandwidth should

be smaller than the channel coherence bandwidthBc, which is the frequency band that

the channel is frequency flat fading. Coherence bandwidth is ameasure of the channel

frequency dispersion, i.e., the extent between two different frequenciesf1 andf2 where

the channel fading is correlated. Accordingly, the fading effect for two tones located

apart farther thanBc is uncorrelated.

The correlation can be measured by the channel frequency response autocorrelation

function as [48]:

R (∆f) = E{H(f, 0)H∗(f −∆f, 0)}, (2.5)
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where(·)∗ denotes the complex conjugate, andH(f, t) is the channel time-variant trans-

fer function [49]:

H(f, t) =

Np−1
∑

p=0

ap(t)e
j(2π(fD,pt−fτp(t))+ϕp). (2.6)

The coherence bandwidthBc measures the spectral width of|R (∆f) | over which

the channel is considered frequency flat.

2.1.2.3 Doppler Spread

Similar to delay dispersion that causes channel frequency selectivity, frequency disper-

sion results in channel time selectivity. Doppler spread orfrequency dispersion, describ-

ing the time varying nature of the channel, occurs by relative mobility of the transmitter

and the receiver or the movement of objects in the environment. When a carrier frequency

fc is transmitted on a channel with Doppler frequencyfd, the received signal spectrum

is spread overfc − fd to fc + fd. This phenomenon is known as Doppler spread, which

cause varying phase shift of the received signal. Such channel has a very short coherence

time, i.e., the channel transfer functions variation with time is faster than the ones of the

transmitted signal. The time correlation function [14,48]

R (∆t) = E{H(0, t)H∗(0, t−∆t)} (2.7)

quantifies the time varying nature of the channel. FromR (∆t), the channel coherence

time Tc can be obtained, and it is defined as the time duration over which the channel is

essentially flat [49]. If the signal durationTs is greater than the coherence time of the

channel, then the channel will change during the transmission of the baseband message,

thus causing distortion at the receiver[47].

Coherence time Tc is the time domain dual of Doppler spread:

Tc ≈
1

fmax
d

. (2.8)

fmax
d is the maximum Doppler spread. If the signal bandwidth is much greater thanfmax

d

the effects of Doppler spread are negligible at the receiver.
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2.2 Multi-Carrier OFDM

2.2.1 OFDM Transmitter and Receiver

OFDM is an old technology with a history that goes back to 60s [50,51]. While OFDM

concept is simple, it took a while to find a widespread application in modern telecommu-

nication networks due to implementation issues. Deployinginverse fast Fourier trans-

form (IFFT)/fast Fourier transform (FFT) removed the requirement for a large number

of sinusoidal generators in OFDM transmitters and separatefilters for sub-carriers in

OFDM receivers, which accelerated OFDM emerging in todays market.

The key concept in OFDM is to split a wide band signal into several orthogonal

narrow band signals for transmission. In other words, instead of transmitting a volume

of bits over a short time duration and a wide frequency band, it is transmitted over a long

time duration and several narrow frequency bands. For this purpose, a baseband high data

rate stream is divided intoK parallel low data rate streamsXl, l = 0, · · · , K − 1, in an

OFDM transmitter as shown in Fig. 2.3.Xls are modulated with orthogonal sub-carriers

by IFFT and a guard interval greater than the multipath time-spreading is added between

the OFDM symbols to eliminate ISI. A cyclic extension of the OFDM symbol, i.e., a

copy of the OFDM symbol in the interval−Tg ≤ t ≤ 0, named cyclic prefix, is inserted

in the guard intervalTs − Tg ≤ t ≤ Tg, whereTs is the OFDM symbol time. OFDM

symbols are modulated by a carrier frequency after passing aparallel to serial converter.

At the receiver, the reverse action are taken place to reproduce the baseband high data

rate stream. In the receiver side, channel estimation information are obtained and fed

back to the transmitter for adaptive transmission schemes,such as adaptive modulation,

channel coding, and power allocation.

2.2.2 PHY Layer Advantages of OFDM

Using large number of slow rate streams, which are carried bynarrow band sub-carriers,

increases robustness against frequency selective fading and immunity against impulsive
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Fig. 2.3: An OFDM transceiver structure

noise. As sub-carriers bandwidth are narrow, the fading that they experience is flat.

Also, due to enlarging symbols duration in time domain, OFDMsymbol duration is much

larger than multipath delay dispersion, which eliminates ISI. Eliminating ISI removes the

requirements for equalization and reduces the complexity of an OFDM receiver. Orthog-

onality means sub-carriers are independent and each one canbe adaptively coded and

modulated. With orthogonal sub-carriers, there is no need for guard band between sub-

carriers, to avoid ICI, because the peak of one sub-carrier occurs when other sub-carriers

are at zero as shown in Fig. 2.4. Orthogonality allows the sub-carriers to overlap and save

some bandwidth, so OFDM increases spectral efficiency in comparison to frequency di-

vision multiplexing (FDM). Cyclic prefix restore the orthogonality of sub-carriers at the

receiver.
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Fig. 2.4: Time and frequency illustration of OFDM-sub-carriers (a) two OFDM sub-

carriers modulated by binary phase shift keying (BPSK) are illustrated over two OFDM

symbols duration, (b) nine OFDM sub-carriers are illustrated in frequency domain

20



Chapter 2. Multi-carrier Transmission Over Wireless Channel

2.2.3 MAC Layer Advantages of OFDM

Originally, OFDM was proposed as a digital modulation or multiplexing technique,

where all sub-carriers in an OFDM symbol carried only a user’s data. However, OFDM

can be used as a multi-user transmission technique when subsets of sub-carriers in an

OFDM symbol are assigned to different users’ transmission [14,52]. Multiuser transmis-

sion is possible because of the orthogonality of OFDM sub-carriers. Multiuser OFDM,

denoted as OFDMA, is superior to traditional multiple access mechanisms such as TDMA

and CDMA in terms of ability to exploit multiuser diversity [53]. OFDMA superiority in

multiuser diversity gain stems from the fact that sub-carriers, which are the basic units of

physical resources, i.e., time and frequency, are small. The fine granularity of resources

units increases the flexibility of a resource allocation scheme.

Given a block of OFDMA symbols, the number of both symbols andsub-carriers can

be dynamically assigned to each user. Dynamic sub-carrier assignment (DSA) achieves

multiuser diversity gain. The multiuser diversity gain arises from the fact that the uti-

lization of given resources varies from one user to another.A sub-carrier may be in deep

fading for one user. Allocating this particular sub-carrier to the user with higher channel

gain permits higher transmission rate. To achieve multiuser diversity gain, a scheduler at

MAC is required to schedule users in appropriate frequency and symbols of an OFDMA

block.

Another techniques that enhances the resource allocation schemes in MAC is adap-

tive modulation and coding (AMC) technique. AMC allows different modulation and

coding to be used for the transmission on each sub-carrier. If some sub-carriers suffer

from interference or attenuation, they can be allocated lower number of bits or they may

not be used for transmission. On the contrary, sub-carrierswith high channel gain are

modulated by a higher order modulation and carry more bits per sub-carrier. The main

objective of adaptive modulation and coding is to compensate for radio channel instabil-

ity. It has been shown that adaptive modulation can effectively improve the bit error rate

(BER) performance on radio channel which had suffered from shadowing and fading.
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DSA and AMC are deployed at the transmitter when the fading channel is flat over a

block of OFDMA symbols and a perfect CSI is available at the transmitter. Under these

assumptions, the normalized transmission rate (bits/sec/Hz) on sub-carrierj is given by

[54]:

rj = log2

(

1 + pj

αj

N0

)

, (2.9)

wherepj, αj, andN0 are, respectively, the allocated power to sub-carrierj, the channel

gain of sub-carrierj, and AWGN spectral density. The Shannon capacity in equation

(2.9) is an upper bound that asymptotically approaches the transmission rate over wire-

less channel. In practice, this upper bound is not achieved in networks because of using

modulation and coding rates, which allow a specific number ofbits is modulated and

coded in each sub-carrier. Basically, given CSI, a proper modulation and coding rates

can be chosen for the upcoming transmission so that the user bit rate can be maximized.

An appropriate modulation and coding rate can be chosen froma lookup table. Also, for

someM -ary modulation, such as M-QAM and M-PSK, whereM represents the modu-

lation level, approximate equations for obtainingM based on CSI and required bit error

probability,Pb, exist. The approximations of the M-QAM and M-PSKPb are, respec-

tively, given by [55]:

Pb ≈
4

log2M
Q





√

3pj
αj

N0
log2M

M − 1



 (2.10)

Pb ≈
2

log2M
Q

(√

2pj

αj

N0

log2M sin
( π

M

)

)

. (2.11)

In [56–58] equation(s) (2.10) and/or (2.11) are inverted toobtain the constellation

size and power adaptation for a specificPb. However, theQ(·) function cannot be easily

inverted in practice, because numerical inversions are necessary [55]. Alternatively, the

exact approximation can be written in a form that is easy to invert [59–62]. Because

both modulation schemes are special cases of the M-ary modulation techniques [63],

equations (2.10) and (2.11) can be written as

Pb ≈ c1exp

[

−c2pj
αj

N0

2c3rj − c4

]

, (2.12)
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whererj = log2M andc1 = 0.2, c2 = 1.5, c3 = 1 andc4 = 1 for M-QAM andc1 = 0.05,

c2 = 6, c3 = 1.9 andc4 = 1 for M-QPSK [55]. Constants for different bounds can be

found in [64]. By assuming “=” instead of “≈” in (2.12) and solving forM , we obtain:

M = c3

√

√

√

√

(

c2

− ln(Pb

c1
)
Pj

αj

N0

+ c4

)

(2.13)

The adaptive modulation transmission rate as a function ofPb can be obtained by substi-

tuting (2.13) inrj = log2 M :

rj =
1

c3

log2

(

c4 +
c2

− ln(Pb

c1
)
Pj

αj

N0

)

. (2.14)

Note that the transmission rates equations (2.14) and (2.9)are similar. Thus, a resource

allocation scheme that maximizes one of them maximizes the other [65]. This result

broadens the applicability of resource allocation schemesto networks that adopt different

modulation schemes.

2.3 Network Topology and Configuration

The network topology considered in this thesis is a PMP infrastructure, as shown in

Fig. 2.5, which consists of a base-station (BS) and several users located in one hop neigh-

borhood from the BS. The uplink (UL) channel, the transmission from users to the BS,

is shared by all users, i.e., UL is a multiple access channel.On the other hand, the down-

link (DL) channel, the transmission from the BS to users, is a broadcast channel. We

consider resource allocation and scheduling on broadcast channel, which is part of the

BS operations in this network.

This thesis considers a centralized resource allocation scheme, where the BS allocates

OFDM sub-carriers and power to users based on CSI. Users estimate CSI and report it to

the BS on each MAC frame. It is assumed that the estimation error is negligible and CSI

remains constant during the next frame duration [66]. The BS determines sub-carrier

assignments and power allocations based on CSI and broadcastan allocation vector on a
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Fig. 2.5: Network platform is the DL of a PMP infrastructure where spectrum and power

are allocated to users with heterogeneous service requirements.
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signaling channel at the beginning of each MAC frame. In the following, some of PHY

and MAC specification related to resource allocation problem formulation are reviewed.

2.3.1 PHY Layer

The PHY layer is responsible for raw bit transmission. We assume a single physical

channel shared among all users and, hence, the channel access is controlled by a MAC

protocol. The radio technology used in the physical channelcan be any widely deployed

one, such as WiFi or WiMAX. All users are equipped with identical communication

devices and are capable of performing all the required networking functions and services.

For simplicity, ideal wireless channel without transmission error is assumed unless

otherwise is mentioned. CSI is basic to achieving efficient resource allocation. The infor-

mation is estimated at the receiver and fed back to the transmitter. As the characteristics

of slow fading channel are different from fast fading channel for OFDM networks, dif-

ferent estimation algorithms should be used for each case [10]. Estimation algorithms

take advantage of the correlation between time [67] or frequency [68] instances of chan-

nel to estimate the channel. As CSI in OFDM networks is presented in both time and

frequency domain, a channel estimation algorithm for OFDM networks should consider

both time and frequency domain characteristics. As the timecorrelation between sym-

bols of a fast fading channel decreases with time faster thana slow fading channel, fast

fading channel estimation is more complicated. We assume the channel estimation is tak-

ing effect through pilot assisted methods, i.e, the complexenvelope of the fading channel

is estimated using pilot symbols [69, 70]. As these methods give the channel estimation

for pilot sub-carriers, the channel estimation of the othersub-carriers can be derived by

interpolation.

2.3.2 MAC Layer

Radio resource allocation is part of the MAC sub-layer tasks in the current layered net-

work architecture. MAC functionality in controlling access to shared resources will im-
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prove if it can acquire time-varying information of resources, mainly CSI, and users’

requirements from PHY and upper layers, respectively. Adaptive resource allocation

schemes deploy the provided information to smartly allocate the air links to users based

on users’ QoS requirements and channel quality. Therefore,cross-layer design and

optimization across PHY and MAC are suggested for wireless resource allocation and

scheduling schemes [71–73].

Using a cross-layer design between PHY and MAC, users’ CSI is known at the be-

ginning of each transmission frame. Upon receiving a feedback channel estimation, the

BS makes new decisions for allocation of shared resources andinforms users of the new

assignment. The period of resource allocation fetching depends on the speed of varia-

tion of the fading channel. Adaptive resource management techniques are successfully

applied to slow varying fading channel, such as in fixed or nomadic applications where

the channel is static or quasi-static.

The BS broadcasts information based on OFDMA in the DL. Users’backlogged

traffic, buffered in separate queues at the BS, are transmitted on assigned sub-carrier and

allocated power determined by the resource allocation scheme. UL and DL subframes

are interleaving in a time division duplexing (TDD) manner in a MAC frame as shown

in Fig. 2.6. A MAC frame consists of frame header, DL and UL subfames, and guard

bands. The frame header is used for synchronizing users withthe BS and carrying users’

profiles, e.g., the code rate or the sub-carrier allocated toeach user. All MAC frames

are assumed to have the same fixed length, which can be easily achieved in practice by

commonly used link layer functions, such as fragmentation or concatenation of the upper

layer packets.

2.4 Summary

In this chapter, the fading channel characteristics were explained, and the mathematical

model of wireless fading channel was presented. Then, basedon the channel model, we

described how OFDM can improve communication over fading channel. An overview of
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Fig. 2.6: OFDM symbols and sub-carriers in a MAC frame

the OFDM and OFDMA transceivers structures along with an explanation of their oper-

ations were presented. In addition, the required knowledgeof PHY and MAC relevant to

the resource allocation problem formulation was described, such as the relation among

transmission rate, power, channel gain, bit error probability, and infrastructure used.
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Chapter 3

A Framework for Resource Allocation

in OFDMA Networks

Resource allocation is a very broad topic in telecommunication field due to the extended

scope of targets, e.g., diverse service provisioning, different infrastructure accommoda-

tion, or mobility support. In this chapter, we consider resource allocation in multicarrier

OFDMA networks when users have heterogeneous rate requirements. We investigate

how the flexibility and granularity of OFDMA can be incorporated in a resource alloca-

tion scheme to improve network performance and resource utilization.

We formulate the joint optimization problem of sub-carrierassignment and power

allocation in OFDMA networks as an MINLP problem first. A major challenge in solv-

ing the optimization problem is non-convexity caused by thecombinatorial nature of

sub-carrier assignment problem and/or non-convex objective functions. To avoid combi-

natorial optimization, we formulate the resource allocation as a nonlinear programming

(NLP) with continuous variables. The problem formulation follows by a discussion about

the complexity and performance of the proposed schemes exist in the literature. We sug-

gest an approach based on PM/IPM to solve the NLP problem. Using a two-step imple-

mentation, first, the penalty method is applied to convert the non-convex feasible region

to a convex one. Then, the interior point method is deployed to solve the new prob-
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lem which is non-convex only in the objective function. To evaluate the performance of

PM/IPM, we implement a genetic algorithm that achieves nearoptimal solutions of the

problem by iterative searching. Numerical results are presented at the end of the chapter

to demonstrate that PM/IPM can solve the problem within limited time while the solu-

tions are close to the ones obtained by the genetic algorithm. In additions, the sensitivity

of PM/IPM to users’ channel gains and the effects of utility-based resource allocation are

investigated.

3.1 Problem Formulation

In wireless OFDMA networks, sub-carrier assignment to users and power allocation to

sub-carriers, referred as OFDMA resource allocation, affect the network performance

significantly. In practice, to assign sub-carriers and allocate power efficiently1, an OFDMA

resource allocation is presented as an optimization problem whose objective function and

constraints are determined based on users’ requirements and network specifications. De-

pending on the definition of the objective functions, different utilization performance are

expected. Resource allocation algorithms available in the literature focus on two main

objectives: either data rate maximization or power minimization. Using a general ob-

jective function of rate, we present an optimization problem for sub-carrier assignment

and power allocation constrained by the BS maximum power and users’ minimum rate

requirement. The problem formulation of power minimization is not discussed here.

Interested readers are referred to [58] and [22].

The restrictions imposed by OFDMA networks specifications and users’ require-

ments determine the feasible region, i.e., the set of feasible allocation that satisfy all

constraints. Due to the exclusive sub-carrier assignment of OFDMA, the feasible region

is discrete and consequently nonconvex. The objective function of the problem depends

on users’ demand and networks service providers’ goals, which usually is a nonlinear

1An efficient resource allocation is the one that allocates asmuch resource as is needed by a user as

long as resource is available.

30



Chapter 3. A Framework for Resource Allocation in OFDMA Networks

function in practice. MINLP techniques are used when a discrete network structure and

continuous parameters are simultaneously formulated [74]. Accordingly, most proposed

schemes for the OFDMA resource allocation are based on MINLP. We review some of

these schemes in section 3.2.

Following the work in the literature, first, we present an MINLP problem for the

OFDMA resource allocation. The feasible region of the MINLPproblem contains integer

variables representing sub-carriers assigned to users andcontinuous variables represent-

ing power allocated to sub-carriers. Then, we prove that theset of constraints including

the integer variables, in the MINLP problem, can be substituted by a set of nonlinear con-

straints with continuous variables. Accordingly, we present an NLP problem that unifies

sub-carrier assignment and power allocation in a rate (or power) allocation problem. For

more readability of formulas, the network parameters used in the optimization problems

are given in Table 3.1.

3.1.1 MINLP and NLP Problems

We consider a network platform shown in Fig. 2.5, which consists of the BS and several

users located in one hop neighborhood from the BS in a PMP infrastructure. The BS

assigns sub-carriers to users and allocates a fraction of the BS total power,PBS, to each

user in each resource allocation interval. A solution of theresource allocation problem

is denoted by a rate allocation vectorr or a power allocation vectorp as below:

r = [r11, r12, . . . , r1K , . . . , rM1, . . . , rMK ]T (3.1)

p = [p11, p12, . . . , p1K , . . . , pM1, . . . , pMK ]T . (3.2)

Similarly, a sub-carrier assignment vector is denoted byc, where

c = [c11, c12, . . . , c1K , . . . , cM1, . . . , cMK ]T (3.3)

andcij is

cij =







1 if sub-carrierj is assigned to useri,

0 otherwise.
(3.4)
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Table 3.1: Notations Descriptions

Notation Description

M total number of users in the network

K total number of sub-carriers in the network

i user index belongs toM := {1, 2, ...,M}

j sub-carrier index belongs toK := {1, 2, ..., K}

αij channel gain of useri on sub-carrierj

pij allocated power to useri on sub-carrierj

rij allocated rate to useri on sub-carrierj

Ri
min minimum service rate requirement of useri

B network bandwidth

PBS BS total power budget

Every user can use several sub-carriers, but each sub-carrier can be assigned to at most

one user. Mathematically, this restriction is given by

M
∑

i=1

cij ≤ 1 ∀j ∈ K. (3.5)

If sub-carrierj has not been assigned to useri, then allocated power to useri on sub-

carrierj must be zero. Therefore, for every useri ∈M and every sub-carrierj ∈ K, we

must have the following condition:

if cij = 0 then pij = 0. (3.6)

We include this restriction in the optimization problem through the following constraint:

pij ≤ PBScij ∀i ∈M, ∀j ∈ K. (3.7)

Note that, ifcij = 0, (3.7) impliespij ≤ 0 that along with the non-negativity constraint

pij ≥ 0 yieldspij = 0 and satisfies (3.6). Whencij = 1, (3.7) is reduced to the redundant
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constraintpij ≤ PBS, because of the existence of the following constraint, which assures

total allocated power to the sub-carriers in each time slot is limited toPBS:

M
∑

i=1

K
∑

j=1

cijpij ≤ PBS. (3.8)

As (3.7) includes (3.6), variablescij ’s can be removed from (3.8) as follows:

M
∑

i=1

K
∑

j=1

pij ≤ PBS. (3.9)

If noise spectral density equals to one and rate adaptation is assumed to be continu-

ous [47], the approximate transmission rate for useri on sub-carrierj, rij, is given by:

rij =
B

K
log2 (1 + αijpij) . (3.10)

Moreover, quality of service (QoS) requirements are projected on the objective function

and constraints of the optimization problem.Ri
min, the minimum service rate require-

ment of useri with rateri is guaranteed through the following constraint:

ri =
K
∑

j=1

rij ≥ Ri
min ∀i ∈M.

Also, QoS requirements of users, in terms of rate, can be taken into account through

users’ utilities, which represent users’ satisfaction of allocated rate. However, to present

a general optimization problem that unifies most of the existing problems for OFDMA

resource allocation, general objective functionF(r), is used in this subsection.F(r) can

be substitute by any function of rate, such as, sum of users’ weighted rate,
∑

ωiri, or

sum of users’ utilities,
∑

ui(ri), whereωi andui are the assigned weight and utility to
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useri. The optimization problemPr1, which is an MINLP problem, is resulted:

Pr1 : max
c, p

F(r) (3.11)

s.t rij =
B

K
log2 (1 + αijpij) ∀i ∈M, ∀j ∈ K, (3.12)

ri =
K
∑

j=1

rij ≥ Ri
min ∀i ∈M, (3.13)

M
∑

i=1

K
∑

j=1

pij ≤ PBS, (3.14)

M
∑

i=1

cij ≤ 1 ∀j ∈ K, (3.15)

0 ≤ pij ≤ PBScij ∀i ∈M, ∀j ∈ K, (3.16)

cij ∈ {0, 1} ∀i ∈M, ∀j ∈ K. (3.17)

We eliminate integer variablescij ’s and formulate the problem as a continuous nonlinear

one-stage programming problemPr2:

Pr2 : max
p
F(r) (3.18)

s.t rij =
B

K
log2 (1 + αijpij) ∀i ∈M, ∀j ∈ K, (3.19)

ri =
K
∑

j=1

rij ≥ Ri
min ∀i ∈M, (3.20)

M
∑

i=1

K
∑

j=1

pij ≤ PBS, (3.21)

pîjpij = 0 ∀j ∈ K,∀i ∈M \ {̂i}, (3.22)

0 ≤ pij, ∀i ∈M, ∀j ∈ K. (3.23)

Proposition 3.1.1 There is a one-to-one correspondence between the set of feasible so-

lutions of Pr1 and the set of feasible solutions of Pr2.

We prove it by showing that from each feasible solution ofPr2, a feasible solution of

Pr1 is obtained and vice versa.
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Let p∗ be a feasible solution ofPr2. For everyi ∈ M and j ∈ K, definec∗ij as

follows:

c∗ij =







1 if p∗ij > 0

0 otherwise.
(3.24)

Clearly p∗ and c∗ satisfy (3.12), (3.13), (3.14), (3.16), and (3.17). We claim that this

solution also satisfies (3.15). If this is not true, there exists somej ∈ K so that
∑M

i=1 c∗ij ≥

2. This implies that there are at least twoi1 andi2 such thatc∗i1j = c∗i2j = 1. However, the

derivation ofc∗ij from p∗ij in (3.24) yieldsp∗i1j > 0 andp∗i2j > 0. Hencep∗i1jp
∗
i2j > 0 which

is in contradiction to the fact thatp∗ satisfies (3.22). Sop∗, c∗ must also satisfy (3.15).

Next, assume that(p∗, c∗) is a feasible solution ofPr1. Thusp∗ satisfies (3.19),

(3.20), (3.21), (3.23). Ifp∗ does not satisfy (3.22), then there must beī, ǐ ∈M andj̄ ∈ K

such thatp∗
īj̄
p∗

ǐj̄
> 0 or equivalentlyp∗

īj̄
> 0 andp∗

ǐj̄
> 0 for someǰ. Constraint (3.16)

implies thatc∗
īj̄

= 1 andc∗
ǐj̄

= 1. Thus
∑M

i=1 c∗
ij̄
≥ c∗

īj̄
+ c∗

ǐj̄
≥ 2, which is in contradiction

to the assumption that(p∗, c∗) satisfies (3.15). Thusp∗ also satisfies (3.22) and therefore,

is a feasible solution ofPr2. For every feasible solution ofPr1 and associated feasible

solution ofPr2, the rate allocation vectors are identical. Thus,Proposition 2.1 implies

there is a one-to-one correspondence between the set of optimal solutions ofPr1 and

Pr2; As a result, they have the same optimal value.

ProblemPr2 can be written only in terms of allocated raterij, if an equivalent con-

straint ofrij replaces constraint (3.22). It can be shown that the following constraints are

equivalent to (3.22):

(a) rîjrij = 0 ∀j ∈ K,∀i ∈M \ {̂i},

(b) rîj + rij = max{rîj, rij} ∀j ∈ K,∀i ∈M \ {̂i},

(c) |rîj − rij| = rîj + rij ∀j ∈ K,∀i ∈M \ {̂i},

(d) (rîj − rij)
2 = (rîj + rij)

2 ∀j ∈ K,∀i ∈M \ {̂i}.

We use(a) in the rest of the chapter, because they are differentiable and have a simple
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representation. Thus,Pr2 can be restated as follows:

Pr3 : max
r
F(r) (3.25)

s.t
K
∑

j=1

rij ≥ Ri
min ∀i ∈M, (3.26)

M
∑

i=1

K
∑

j=1

1

αij

(2
rijK

B − 1) ≤ PBS ∀i ∈M, ∀j ∈ K, (3.27)

rîjrij = 0 ∀i ∈M \ {̂i} ∀j ∈ K, (3.28)

0 ≤ rij, ∀i ∈M, ∀j ∈ K. (3.29)

As the objective function is continuous over the range ofr and the feasible region ofPr3

is closed and bounded, theextreme value theorem (Weierstrass Theorem) [75] implies

that Problem(Pr3) has global optimal solution(s):

Theorem 3.1.1 (extreme value theorem)Let f be a continuous real-valued function

whose domain, Df , is bounded and closed. Then there exist x1 and x2 in Df such that:

f (x1) ≤ f (x) ≤ f (x2) ∀x ∈ Df .

AlthoughWeierstrass Theorem guarantees that the global optimal solution exists, finding

such a global solution for a general continuous objective function is hard, i.e., there is no

polynomial time algorithm for obtaining the global optimalsolution.

3.2 Related Works and Problem Complexity

In general, objective functionF is a function of users’ rates. The choice ofF along with

the set of constraints affect both computational complexity of Pr3 and the network per-

formance. The following discussion will provide an insightinto the problem in terms of

achievable performance and complexity for different objective functions and constraints.
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3.2.1 Linear Objective Function

Common linear objective functions, used in the OFDMA resource allocation problems,

areF(r) =
∑

i ri andF(ri) =
∑

i ωiri. The former, known as bit rate maximization

problem, maximizes total users’ data rate and the later, known as weighted rate maxi-

mization problem, maximizes aggregate users’ rate multiplied by a vector of weights,

ωi’s, subject to a given power budget. Bit rate maximization problem, is the most com-

mon objective function deployed in [11, 23–29, 62]. [23] and[24] consider joint sub-

carrier and power allocation with power constraint as an MINLP problem. [25] formu-

lates the problem by allowing a sub-carrier to be shared by multiple users. The opti-

mization problem is decoupled into two subproblems, sub-carrier assignment to users

and power allocation to sub-carriers, and a two-step algorithm is proposed for solution.

In the first step, a sub-carrier is assigned to only one user who has the best channel

gain on that sub-carrier. In the second step, the amount of transmit power to be allo-

cated to each sub-carrier is determined by water-filling scheme [76] to maximize overall

data rate. To reduce computational complexity of water-filling, equal power allocation

scheme may be adopted. It has been shown that water-filling and equal power allocation

schemes have only marginal performance difference [77]. Accordingly, a suboptimal

solution in [26] allocates uniform power to sub-carriers. Given the channel gain and the

fixed power allocation (PBS/K), sub-carriers’ rates (rij ’s) are known. The problem is

converted into a linear integer programming (LIP) problem with integer variablescij ’s.

Then a reduced computational complexity algorithm is deployed to solve LIP by, first,

assigning sub-carriers to maximize total users’ data rates, irrespective of users’ minimum

required data rate constraints, and, second, adjusting sub-carriers assignment to satisfy

users’ minimum required rate constraints.

A geometric programming (GP), a special form of convex optimization, has been pro-

posed in [78] for weighted rate maximization or weighted power minimization. There

exist several algorithms to solve GP efficiently and optimally. However, GP is not appli-

cable in some OFDMA resource allocation problems because converting or approximat-

ing objectives and constraints to be compatible with GP [79]is challenging.
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3.2.2 Nonlinear Objective Functions and Constraints

To providing QoS and fairness or maximizing resource utilization, some OFDMA re-

source allocation schemes have been proposed that use nonlinear objective functions or

add a set of nonlinear constraints in the optimization problem.

3.2.2.1 Nonlinear Objectives

The objective functions can be chosen properly to achieve some specific objects.

Max-min fairness solution is addressed in [29] by maximizing the minimum users’

data rates, i.e.,max min ri. A convex feasible region is obtained for the problem by

relaxing the constraint of exclusively allocating one sub-carrier to only one user. Assum-

ing equal amount of power is allocated to each sub-carrier, [29] proposes an algorithm to

assign sub-carriers to users.

Rate proportional fairness schemes have been proposed in [32,80]. A set of rates that

maximizes aggregate logarithms of users’ data rates is rateproportional fair. This set of

rates is chosen as a fair weight allocation set and is deployed in a scheduling scheme that

determines users’ transmissions order according to users’channel gains and fair weights.

An appropriate form of the objective function in networks with heterogeneous traf-

fic is to maximize users’ aggregate utility functions. Assuming concave or linear utility

functions, [30,81] investigate the utility-based resource allocation in OFDMA networks

for both discrete and continuous adaptive rate. The optimization problem is decomposed

into two problems: DSA and APA. The DSA problem is represented as a uniform power

allocation problem, and the APA problem is represented as a fixed sub-carrier assignment

problem. Different approaches are proposed for solving DSA, APA, and joint DSA/APA

problems. DSA is relaxed to a nonlinear integer (binary) problem, and a sorting search

algorithm is proposed for sub-carrier assignment. When all utility functions are linear

or sub-carriers bandwidth is small enough to be considered infinitesimal (rate region

is concave), sorting search algorithm gives optimal solutions. Otherwise, the solution
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is suboptimal, and sorting search algorithm only reduces the computation complexity.

A sequential-linear-approximation water-filling algorithm is proposed to solve the APA

continuous rate adaptation. The relaxed nonlinear concaveproblem is approached by a

series of linear optimization problems derived by a sequential-linear-approximation algo-

rithm named Frank-Wolfe method [82]. For APA with discrete rate adaptation, a greedy

algorithm is deployed to allocate bits and the corresponding power. In each bit loading

iteration, the greedy algorithm allocates power to some sub-carriers that maximize the

utility argument per power. Assuming concave utility functions, the greedy algorithm

results in optimal bit loading and power allocation. Finally, a joint DSA and APA solu-

tion is proposed for the original problem. For continuous rate adaptation, combinations

of iterative sub-carrier assignment, power allocation, and the updates of marginal util-

ities are deployed. A new sub-carrier assignment is derivedbased on the sub-gradient

of concave utility functions; the corresponding power allocation is determined by linear

approximation of the objective function; the algorithm stops when the marginal utility

function is negligible. For discrete rate adaptation, a combination of sorting-search DSA

and the greedy APA algorithm is deployed.

3.2.2.2 Nonlinear Constraints

A set of constraints can be added to the problem to force a notion of fairness or QoS.

To resolve unfair rate allocation of bit rate maximization problems and balance be-

tween capacity and fairness, [27] formulates the problem byadding a set of nonlin-

ear constraints which assures proportional users’ data rates. The primal solution of

the constrained fairness problem is computationally complex to be obtained, so a low-

complexity suboptimal algorithm that separates sub-carrier assignment and power alloca-

tion is proposed. The decoupled allocation algorithm, firstassigns sub-carriers assuming

uniform power allocation. Then, an optimal power allocation algorithm maximizes total

capacity while maintaining proportional fairness.

An alternative way of fair allocation of resources is combining a fair scheduling algo-
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rithm with resource allocation techniques. [28] develops aresource management scheme

by integrating DSA and generalized processor sharing (GPS)scheduling to maximize

network throughput subject to the constraints on the total transmit power, user’s SNR

requirement, and GPS fair scheduling. A fixed modulation level has been considered for

all sub-carriers. At the first step of the algorithm, the number of sub-carriers allocated

to users are determined with a modified GPS scheduling based on users’ required rate

and fairness constraint. At the second step, an algorithm isdeployed to determine the set

of required number of sub-carriers of each user, derived in the step one. As a user with

a higher SNR requirement consumes more power, sub-carrierswith the largest channel

gain are assigned to users with the highest SNR requirement,as long as the total trans-

mission power for each user does not exceed the total transmission power constraint.

Also, the principle of generalized processor sharing is deployed as a constraint of the

optimization problem in [62] to allocate sub-carriers fairly among users.

Furthermore, an associated set of constraints to a specific QoS characteristic can

be include to guarantee users’ required QoS, e.g., [11] provides users’ minimum rate

requirements, and [28] guarantees tolerable signal to noise ratio of users’ receivers by

including corresponding rate and signal to noise ratio constraints to the optimization

problem.

3.2.3 Problem Complexity

Note that when either a set of constraints is added to the problem or a nonlinear objective

function is deployed, the problem remains nonconvex. The complexity of the problem

is caused by nonconvexity of the feasible region and/or non-concavity of the objective

function. The sets ofcij ’s andpij ’s in the MINLP problem,Pr1, as well aspij ’s andrij ’s

in the NLP problem,Pr2 andPr3 are nonconvex. The nonconvexity arises from the fact

that a sub-carrier should be allocated exclusively to one user. For example, consider two

feasible allocation power vectorsp = [1, 0, 0, 0, 1, 1] andp̂ = [0, 1, 1, 1, 0, 0] in a simple

network which consists of two users and three sub-carriers.For α ∈ (0, 1), the convex
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combination ofp andp̂, which is

αp + (1− α)p̂ = [α, (1− α), (1− α), (1− α), α, α], (3.30)

does not belong to the feasible region, and the definition of convex feasible region is

not held. An optimization problem whose objective functionis non-concave (in a maxi-

mization problem) and its feasible region is nonconvex, is categorized among nonconvex

optimization problems, which are difficult to be solved for aglobal optimum.

In general, nonconvex optimization problems are NP-hard [83], and there is no poly-

nomial time algorithm to find their global optimum has been found yet. Therefore,

OFDMA resource allocation problems can be solved for a localoptimal solution by ex-

haustive search algorithms. Search algorithms span almostthe entire feasible region of

the problem to find the highest local maximum (or lowest localminimum). As they do

not stop searching when they find a local optimum, it is expected that the algorithms

achieve near optimal solutions when searching time approaches infinity. However, the

long response time of search algorithms limits their usage and is a barrier in developing

elaborated OFDMA resource allocation schemes, while OFDMAis emerging in broad-

band wireless networks, and the OFDMA resource allocation arises in many contexts.

This motivates us to investigate continuous optimization approaches, rather than discrete

methods, that can treat the nonconvexity of the OFDMA resource allocation problem. To

the best of our knowledge, using continuous optimization approaches for the OFDMA

resource allocation problem has not been addressed in the literature yet.

3.3 Penalty Function and Interior Point Methods

We propose an interior point based approach to solve the OFDMA resource allocation

problem. We were motivated by the increasing trend toward improving the interior point

theory and methods and applying them on new problems. Specifically, it is highly ex-

pected that interior point methods will be helpful in solving MINLP problems [84] and
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are successful in solving continuous nonlinear problems, particularly with convex feasi-

ble regions [31, 85]. We apply the proposed method to solvePr3 which contains con-

tinuous variables only, i.e., is an NLP problem. The successof interior point methods

in solving a nonconvex nonlinear problems strongly dependson how nonconvexity of

the problem is treated. Although the proposed formulation for problemPr3 is continu-

ous, the feasible region of the problem is nonconvex yet. So,we use a penalty function

method to remove the nonconvexity of the feasible region. More precisely, nonconvex

constraints are moved to the objective function by a coefficient penalty. We apply the

proposed penalty function method combined with an interiorpoint method to solve the

NLP problem for the OFDMA resource allocation problem.

3.3.1 PM/IPM Descriptions

In Pr3, all constraints except (3.28) are convex. We add this set ofconstraints to the ob-

jective function as a penalty term, which is negative when one of the constraints in (3.28)

is violated, and zero otherwise. After adding the penalty term to the objective function,

the new objective function becomes:

PL max
r

f(r) = F(r)−
L

2

M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

rîjrij, (3.31)

where positive constantL is the penalty parameter. The new objective function along

with the constraints ofPr3 form the following problem:

Pr4 : max
r

f(r) (3.32)

s.t C(r) ≥ 0, (3.33)
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whereC(r) is the vector of inequality constraints (3.26), (3.27) and (3.29), which is

represented as follows:

C(r) =



































∑K

j=1 r1j −R1
min

...
∑K

j=1 rMj −RM
min

−
∑M

i=1

∑K

j=1
1

αij
(2

Krij

B − 1) + PBS

r11

...

rMK



































. (3.34)

Instead of solvingPr3, we solvePr4 whose feasible region is convex. However, an

optimal solution ofPr4 with a positiveL will not be an optimal solution ofPr3, unless

the (positive) penalty term is zero. By makingL larger, we penalize constraint violations

more severely, thereby forcing the minimizer of the penaltyfunction to be smaller. We

formally prove this statement in the following proposition:

Proposition 3.3.1 The value of penalty term
∑M

î=1

∑M

i=1,i6=î

∑K

j=1 rîjrij at an optimal

solution of Problem PL decreases, as L increases.

Let L1 andL2 be two penalty parameters so thatL1 ≤ L2. Denote optimal solutions

of ProblemsPL1 andPL2 , with r1 andr2, respectively. Sincer1 is an optimal solution

associated with parameterL1, the value of the objective function ofPL1 at r1 is larger

than the value of the objective function ofPL2 at r2, so

F(r2)−
L1

2

M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij ≤ F(r1)−
L1

2

M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij, (3.35)

and consequently

L1

2





M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij −
M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij



 ≤ F(r1)−F(r2).(3.36)
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Similarly, sincer2 is an optimal solution ofPL2 , the value of the objective function of

PL2 at r2 is greater than its value atr1. Hence

F(r1)−
L2

2

M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij ≤ F(r2)−
L2

2

M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij, (3.37)

and consequently

L2

2





M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij −
M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij



 ≥ F(r1)−F(r2).(3.38)

Inequalities (3.36) and (3.38) imply that

L2

2





M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij −
M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij



 ≥ F(r1)−F(r2)

≥
L1

2





M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij −
M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij



 . (3.39)

Hence

(

L2

2
−

L1

2

)





M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij −
M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij



 ≥ 0. (3.40)

Using the assumption thatL1 ≤ L2, we have

M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r1)îj(r1)ij ≥
M
∑

î=1

M
∑

i=1,i6=î

K
∑

j=1

(r2)îj(r2)ij, (3.41)

which completes the proof.

Therefore, the largerL is, the more penalized the constraint violations of penalty

term is, and the smaller the penalty term will be. Indeed, it is shown in Theorem17.1

of [31] that for a large enough choice ofL, global optimal solution(s) ofPr4 is (are)

optimal solution(s) ofPr3. However, the maximization off(r) in PL becomes more

difficult to perform asL becomes large [31]. In this thesis, we find an appropriate value

for L through a simple search method.
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Even though the objective function ofPr4 is a non-concave nonlinear function, but

its feasible region is convex. Convexity of the feasible region motivates us to use some

interior point methods to solvePr4.

Before applying the interior point method, we first convert the inequality constraints

in C(r) to equality constraints by associating a positive slack variable to each constraint.

Denote the(2M + 1)K vector of slack variables withs. Hence,Pr4 is converted to the

following minimization problem:

Pr5 : min
r
−f(r) (3.42)

s.t C(r)− s = 0, (3.43)

s ≥ 0. (3.44)

A necessary condition for a feasible solution ofPr5 to be optimal is to satisfy the fol-

lowing conditions, called Karush-Kuhn-Tucker (KKT) conditions:

∇f(r)− AT (r)z = 0, (3.45)

C(r)− s = 0, (3.46)

Sz = 0, (3.47)

s ≥ 0, z ≥ 0 . (3.48)

In the aforementioned KKT conditions,S is a diagonal matrix with diagonal elements

given by vectors, and vectorz contains(2M + 1)K Lagrange multipliers used in the

definition of the Lagrangian function ofPr5:

L (r, s, z) = f(r)− zT (C(r)− s) . (3.49)

The matrixA in (3.45) is the Jacobian matrix ofC(r) represented by:

A =











Θ

−K ln(2)2
Kr11

B

Bα11
. . . −K ln(2)2

Kr
MK
B

Bα
MK

I











, (3.50)
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whereI is an identity matrix of dimensionMK×MK, andΘ is the followingM×MK

matrix:

Θ =















1(1,K) 0(1,K) . . . 0(1,K)

0(1,K) 1(1,K) . . . 0(1,K)

...
...

...

0(1,K) 0(1,K) . . . 1(1,K)















, (3.51)

where1(1,K) and0(1,K) areK vectors of1 and0, respectively.

To find an approximation for a local optimum of a nonlinear problem, interior point

methods solve a series of perturbed KKT conditions in which only the right-hand-side in

equation (3.47) is replaced by a vectorµe:

∇f(r)− AT (r)z = 0, (3.52)

C(r)− s = 0, (3.53)

Sz = µe, (3.54)

s ≥ 0, z ≥ 0 , (3.55)

with e = (1, 1, ..., 1)T andµ > 0. Interior point methods start with an initial interior point

in the feasible region that satisfies perturbed KKT conditions for someµ and proceeds

to find another interior point that satisfies perturbed KKT conditions (3.52)-(3.55) for

a smaller value ofµ. As the method proceeds,µ is decreased, and consequently the

solution of the perturbed KKT conditions approaches the solution of the KKT conditions,

in whichµ = 0. It is expected that after several iterations the solution will converge to a

point that satisfies the KKT conditions of the problem [31].

In each iteration of the interior point method, directions and lengths of movements

are updated based on the first and second order gradients of the objective function and

constraints. The vector of movement directions for variables r, s, andz, denoted by

b = [br, bs, bz]
T , is computed by solving the following linear system of equations:
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







∇2
rrL 0 −AT (r)

0 Z S

A(r) −I 0

















br

bs

bz









=









∇ru(r)− AT (r)z

Sz − µe

C(r)− s









,

Here,Z denotes the diagonal matrix whose diagonal elements are given by vectorz. As

matrices∇2
rrL and∇rf(r) depend on the objective function chosen for the problem, we

provide their descriptions in Appendix, section A.1, for a chosen objective function.

After obtaining movement directions, the length of movement in each direction, step

length, denoted byαmax
s andαmax

z , are specified as below:

αmax
s = max {α ∈ (0, 1] : s + αbs ≥ (1− τ) s} , (3.56)

αmax
z = max {α ∈ (0, 1] : z + αbz ≥ (1− τ) z} , (3.57)

whereτ ∈ (0, 1). A large value ofτ close to one, e.g.,τ = 0.995, is usually chosen

to avoids andz approaching zero too quickly. Now, the new interior point, slack vari-

ables, and Lagrange multipliers,(r+, s+, z+), are determined with the information of

movement directions and step lengths accordingly:

r+ = r + αmax
s br, (3.58)

s+ = s + αmax
s bs, (3.59)

z+ = z + αmax
z bz. (3.60)

For the next iteration,µ is updated to a smaller value, sayµ+ < µ. There are several

strategies to chooseµ+. Among them we use a linear method to updateµ:

µ+ = σµ σ ∈ (0, 1). (3.61)

Sinceσ < 1, µ approaches zero over several iterations. However, choosing a very small

σ or a very largeσ will cause faster or slower convergence, respectively. Although

fast convergence is always desired, it may cause some parameters, such ass andz, to
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approach zero too quickly, which reduces the performance ofthe method, e.g., the offered

solution may be infeasible or far from optimality.

The interior point method is terminated when a stopping criterion is achieved. In

this work, the initial value ofµ0 = 1 has been chosen, and whenµ approaches a very

small value or the change in allocated rate vector,r, is negligible, the method stops.

Algorithm 1 presents a summary of the interior point method implementation steps used

in our simulation.

Algorithm 1 The solution algorithm forPr5

Input: M,K,PBS, B, α, Ui, initial r, s0, µ0, τ, σ

Output: r

Setting up and initialization:

1: Chooseinitial r and computes0 > 0.

2: Chooseµ0 > 0 and computez0 > 0 accordingly.

3: Set parametersτ ∈ (0, 1) andσ ∈ (0, 1).

4: Setk = 0 andExit flag = 0.

Interior point method main loop:

5: while Exit flag == 0 do

6: Solve (3.56) to obtain movement directionb = (br, bs, bz).

7: Computeαmax
s , andαmax

z using (3.56) and (3.57).

8: Compute(rk+1, sk+1, zk+1) using (3.58) to (3.60).

9: Setµk+1 ← µk andk ← k + 1.

10: ComputeExit flag.

11: end while

12: return r.

3.4 Genetic Algorithm

In our simulation, we use GA as an intelligent search algorithm to find near-optimal so-

lutions. GA is a randomized adaptive search method that processes a large number of
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search points at each iteration, then generates a new set of feasible points based on char-

acteristics of the old search points. GA deploys a randomization search technique that

avoids searching process being stopped when a local optimumis attained and contin-

ues searching the feasible region for a better local optimum[86]. Also, adaptive search

based on the previous search points limits computational complexity, i.e., the compu-

tational burden does not necessarily increase with an increase in dimensions of search

region [87].

3.4.1 Genetic Algorithm Methodology

In GA context, feasible solutions of a problem are represented by a data structure named

(chromosome), and a fitness function is defined to evaluate feasible solutions. The al-

gorithm begins with forming an initial population (first generation) of random feasible

solutions. Then, the initial population is improved towardthe optimal solution by gen-

erating a new population from the current chromosomes through several iterations. The

evolution is in favor of chromosomes with better fitness values, because they are more

likely to be inherited to the next generation. The new population is generated in each

iteration through the following operators:

• Selection:The operator chooses better chromosomes of current generation to form

a population of parent chromosomes. The larger is the fitnessvalue of a chromo-

some, the higher is the probability of it being selected as a parent.

• Crossover: The operator generates new chromosomes (children) from parents

chosen by selection operator. A crossover between a pair of parents is performed

by selecting a point on the chromosomes of the two parents andswapping the

chromosomes beyond that point.

• Mutation: The operator probabilistically changes an arbitrary element of a chro-

mosome to a new value. Mutation avoids the algorithm stopping in a local opti-

mum by generating new chromosomes which may have a better fitness value than
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Sub-carrier 1 Sub-carrier K

1      2         … M 1       2           … M

0 0 0 0py1Kpy21

a population of chromosomes

X1

X2

XY

Chromosome y

xy1 xy2 xyK

Chromosome 1

Chromosome Y

Chromosome 2

Chromosome y

M: number of users

K: number of sub-carriers

Y: population size

Fig. 3.1: The population and chromosomes representations

the ones of the chromosome of the current local optimum.

3.4.2 Genetic Algorithm Implementation

The specifics of chromosomes and fitness function as well as operators implementation

depend on the problem to be solved. AK ×M vector is chosen for the chromosome in

our implementation, where K and M are the numbers of sub-carriers and users, respec-

tively. Chromosomey of the population is a vector[xy
1 · · ·x

y
j · · ·x

y
K ] of xy

j , wherej ∈ K

represents a sub-carrier index, as shown in Fig. 3.1.xy
j is a1 ×M allocation vector of

a continuous valuexy
ij, wherei ∈ M is a user’s index, that shows allocated power to

useri on sub-carrierj, py
ij. Eachxy

j contains only one non-zero element,xy
ij, due to the

constraint of exclusive sub-carrier assignment to a user.

An initial population,P0, of N chromosomes is formed by allocating a random user

to each sub-carrier of each chromosome. The minimum required power, that satisfies

user’ minimum required rate, is assigned to the users that are allocated to sub-carriers

in initial population. Each chromosome is a feasible solution, so it should satisfy all the

constraints of the problem. If a chromosome does not satisfythe problem constraints,
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the procedure of chromosome generation will be repeated. The fitness function is the

objective function of the optimization problem. Selectionoperator is a fitness propor-

tionate selection, also known as roulette-wheel selection, that selects individuals with a

probability proportional to their fitness values. This selection operator gives a chance

to weak solutions (low fitness values) to be selected, hopingthat those weak solutions

will result in some good solutions (high fitness value) in crossover operation. Using a

uniform distribution,pcross, a pointj from {M, · · · , (K − 1)M} is chosen for crossover

operation. In other words, crossover is performed over sub-carriers. Mutation operation

chooses a mutating element from{1, · · · , KM} with a uniform distribution,pmut. Ac-

tually, the mutating element indicates a new useri for sub-carrierj, so allocated power

to the previous user of sub-carrierj is altered to zero, and a random power is allocated

to the mutating element. Crossover and mutation are repeatedif new generated chromo-

somes do not satisfy the problem constraints. Once a new population Pn is generated

through selection and crossover and mutation, it replaces the old one. However, as the

chromosome with the best fitness value, referred to aselite, may be lost in selection,

crossover, and mutation operators, an elitism operation isperformed before substituting

Pv−1 with Pv. Elitism operation substitutes the corresponding chromosome to the least

fitness value ofPv with elite. GA stops afterNitr iterations or when there is no increment

in elite’s fitness value forNfit. Numerical parameters of GA are listed in Table 3.2 and

the pseudo code of the solution is outlined in Algorithm 2.

3.5 Numerical Results

In this section, the convergence of GA is investigated in 3.5.1, which then will be used as

a benchmark to evaluate the performance of PM/IPM in terms ofoptimality and sensitiv-

ity to network parameters in 3.5.2. As the focus of the resource allocation in this thesis is

on utility maximization problems, in 3.5.3, we demonstratehow the resource utilization

performance is enhanced in utility-based resource allocation problem.

In our simulation, traffic arriving at the BS is first buffered in separate infinite queues
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Algorithm 2 GA implementation for the problem
Input: M,K,Nitr,Nfit, pcross, pmut, PBS, B, α,F

Output: pij

Setting up and initialization:

1: Generate initial population,P0.

2: Find elite0.

3: v = 1 andExit flag == 0.

Genetic algorithm main loop:

4: while Exit flag == 0 do

5: Performselection using roulette wheel sampling scheme.

6: for y = 1 : W do

7: while constraints(3.20)to(3.23) are not helddo

8: crossover with probabilitypcross.

9: end while

10: while constraints(3.20)to(3.23) are not helddo

11: Mutation with probabilitypmut.

12: end while

13: Find eliten.

14: Pv+1 = Pv.

15: Replace the worst chromosome withelitev−1.

16: Exit flag = Check termin conditions.

17: v = v + 1

18: end for

19:

20: end while

21: return pij.
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dedicated to each user, then, is forwarded to users on the down-link path using assigned

sub-carriers and allocated power. We assume the objective function is aggregate utility

maximization. In its simplest form, the utility function ofuseri may be a linear function

of its rate,Ui = ri, or an exponential function of rate such asUi = 1−exp(−ri

b
), whereb

defines the curvature of the utility function. However, for the worst case, we allow utility

functions to be non-concave and nonlinear. There are two sets of users with concave

and convex utility functions expressed by equation (3.62) [88]. ri denotes allocated rate

to useri, l1 andl2 are thresholds, andk controls the shape of the utility function. The

function is concave fork < 1 and convex fork > 1. k = 0.7 andk = 2 have been chosen

for concave and convex utility functions, respectively. The fading channel is frequency

selective Rayleigh fading. Sub-carriers are divided between two groups of sub-carriers

with good average channel gain and sub-carriers with weak average channel gain. Other

simulation parameters are listed in Table 3.2.

Ui (r) =



















0 r ≤ l1,

sink
(

π
2

ri−l1
l2−l1

)

l1 < r ≤ l2,

1 r > l2.

(3.62)

3.5.1 Genetic Algorithm Convergence

To evaluate convergence performance of GA, a scenario consisting of4 users with con-

cave utility functions is considered. It is assumed that average channel gains are1 and

0.3 on the first and the second half of the sub-carriers, respectively, for all users. In the

first iteration of GA, sub-carriers are assigned to users exclusively and randomly; This

assignment of sub-carriers is irrespective of users’ channel gain on sub-carriers. Then,

the required power to achieve a minimum rate requirement of each user is allocated uni-

formly to sub-carriers assigned to each user. It is expectedthat more power is allocated

to the sub-carriers with better average channel gain as iterations proceed, to gain higher

rate and utility.

Fig. 3.2 depicts the distribution of allocated power to the sub-carriers in the first and
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Table 3.2: Simulation Parameters

Parameter Value

maximum power budget of the BS 20 Watt

total bandwidth 2400 Hz

number of sub-carriers 24

number of users 4

minimum required rate of users with convex utility 100 bit/symbol

minimum required rate of users with concave utility1 bit/symbol

number of iterations 30000

crossover probability 0.75

mutation probability 0.1

initial population, 200

the last iteration of GA. A comparison between the two distributions illustrates that GA

evolves toward allocating more power to the good status sub-carriers and less power to

the bad status (weak) sub-carriers, i.e., evolution of the algorithm toward maximizing

the objective function by utilizing the resources efficiently. To show the speed of con-

vergence, the best fitness value, the best users’ total utility of a chromosomes, in each

iteration is illustrated in

Fig. 3.3. The curve is monotonically increasing due to elitism technique, i.e., the best

individual of current population is transfered to the next population, so the best fitness

value never drops. As expected, there is a noticeable trade off between optimality and

short solution time.

3.5.2 Interior Point and Penalty Method Performance

We evaluate the performance of PM/IPM in terms of optimality, solution time, and sen-

sitivity of solution to users’ channel gain variations on sub-carriers. The results achieved
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Fig. 3.2: Power allocation distribution on sub-carriers
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Fig. 3.3: Convergence of fitness value

by GA is used as a benchmark. A network of 4 users with convex utility functions but

diverse channel gain on sub-carriers is considered. We use small number of users be-

cause GA results are intractable for large number of users. Average channel gain on

sub-carriers is higher for users 1 and 3 than users 2 and 4.

Fig. 3.4 shows the convergence speed of GA and PM/IPM over time. The iterations of

GA and PM/IPM stop when the improvement in rate allocation vector is less than1e−13.

GA has a very slow convergence speed, although it starts froman initial allocation with

better aggregate utilities than the ones of PM/IPM. In comparison, PM/IPM converges

very fast while its maximum achievable aggregate utilitiesand convergence time depend

on the value ofσ. The smaller isσ, the faster is the method, and the less accurate is the

result. The data tips on the diagram show the time and aggregate utilities withx andy,

respectively. It can be seen that, at29.61 sec, PM/IPM with σ = 0.95 obtains the same

aggregate utilities as the one of GA, i.e.,3.609, which is obtained in about8916 sec.

Whenσ increases beyond0.99, PM/IPM has no further improvement in achievable ag-
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Fig. 3.4: Convergence speed comparison of GA and PM/IPM

gregate utilities or convergence speed. Fig. 3.5 compares total utility achieved by GA

over iterations and PM/IPM over time, respectively. GA has afast convergence for the

first 1e + 3 iterations, but it slows down beyond that, so it can reach to the optimum in

an infinite time. On the other hand, int = 29 sec, PM/IPM with σ = 0.95 obtains the

same aggregate utility as the ones of GA, which is obtained inabout5e + 3 sec. When

σ increases beyond0.99, PM/IPM has no more improvement in achievable aggregate

utilities or convergence speed.

The convergence of PM/IPM is determined by the aggregate utilities and constraints’

violations in the penalty term. For PM/IPM convergence, aggregate utilities should be

maximized subject to the fact that constraints’ violationsare negligible or close to zero.

Fig. 3.6 illustrates aggregate constraints’ deviations (from zero), for two different values

of σ, when PM/IPM iterations proceed over time. The negligible aggregate deviations

at convergence points, especially forσ = 0.99, ensures the rate allocation satisfies the
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Fig. 3.5: Performance comparison of GA and PM/IPM

exclusive sub-carrier allocation. Besides, a comparison between Fig. 3.4 and Fig. 3.6

shows aggregate constraints’ deviations and aggregate utilities convergence happen si-

multaneously, which satisfies the convergence requirements of the problem.

Moreover, a comparison between rate allocation of GA and PM/IPM, shown in Fig. 3.7,

demonstrates the performance of PM/IPM in recognizing diverse channel status and its

capability in allocating resources. Let all users have the same channel status, except that

average channel gain on sub-carriers is higher for users 1 and 3 than those of users 2 and

4. Therefore, more resources should be allocated to the users with better average chan-

nel quality to gain user diversity and maximize aggregate utilities. The numeric tables

in Fig. 3.7 represent that both GA and PM/IPM allocate more rate to users 1 and 3 than

users 2 and 4. Also, it can be seen that PM/IPM allocates equalrate to the users with the

same average channel quality on sub-carriers.

Table 3.3 presents rate allocation and exclusive sub-carrier assignment by PM/IPM,
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Fig. 3.7: Utility allocation comparison of GA and PM/IPM
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the vectors of allocated rate to sub-carriers,n = 1, . . . , 24, of users 1 to 4,r1 to r4, along

with the corresponding channel gains of the users on the sub-carriers,α1 to α4. The

gray rows of the table represent the assigned sub-carriers to users, and the sub-carriers

on white rows are unassigned. The result confirms the successof PM/IPM in exclusive

sub-carrier assignment since no sub-carrier has been assigned to two users. In addition, a

sub-carrier is assigned to a user that has the best channel gain on that sub-carrier, which

results in a solution closer to the optimum. In numerical results given in Table 3.3, all

users achieve a utility equal to one, so some sub-carriers are not needed to be assigned to

any user.

3.5.3 Resource Utilization Performance

The numerical analysis is conducted in this section to show that how considering users’

utilities and application level QoS requirement in a resource allocation problem can im-

prove the efficiency of network utilization and users’ satisfaction. We divide the users

into two groups of users with concave and nonconcave utilities shown in Fig. 3.8. The

average channel gains equal to 0.8 for the first half of the sub-carriers and 0.2 for the sec-

ond half. Fig. 3.9 demonstrates the allocated rate to the twogroups of users along with

their corresponding utilities. In our scenario, the network resources are tight, so all users

cannot achieve utility equal to unity at the same time. Upon this circumstances, the re-

sources are allocated to users with nonconcave utility first. The allocated rate shows that

users with nonconcave utility require less rate to achieve%100 satisfasction. The rest of

resources are allocated to users with concave utility. As the number of users increases,

less rate is allocated to each user. Therefore, utility degradation is worse for users with

nonconcave utility than users with concave utility. To demonstrate the effectiveness of

resource utilization, defined as the total users’ utilities, we compare the resource utiliza-

tion performance of a greedy scheme with the ones of a utility-based scheme. The greedy

scheme allocates resources evenly between the two groups ofusers. Fig. 3.10 shows that

utility-based resource allocation utilizes the network resources more effective than the

greedy scheme. With a small increase in allocated rate to users with nonconcave utility
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Table 3.3: Users’s Allocated Rates on Each Sub-carrier

n α1 r1 α2 r2 α3 r3 α4 r4

1 0.50 37 0.10 0 0.02 0 0.30 0

2 1.30 0 1.04 0 0.59 0 0.40 0

3 0.11 0 1.04 0 6.13 470 0.75 0

4 0.11 0 0.41 0 0.27 0 2.13 221

5 0.29 0 1.97 0 3.48 0 0.98 0

6 3.34 0 1.97 0 1.04 0 1.52 0

7 0.49 0 0.79 0 0.44 0 4.20 0

8 0.52 0 2.25 309 0.83 0 0.02 0

9 1.94 0 1.99 290 0.43 0 0.06 0

10 1.03 0 0.25 0 0.99 0 0.21 0

11 1.33 0 0.20 0 2.22 0 0.95 0

12 1.27 0 0.44 0 1.10 0 0.82 0

13 0.01 0 0.10 0 0.34 0 0.85 43

14 0.62 0 2.89 0 1.58 0 0.30 0

15 1.16 0 3.69 0 1.66 0 2.51 0

16 0.28 0 0.93 0 7.21 128 1.41 0

17 0.47 0 0.42 0 0.37 0 3.16 0

18 3.79 0 0.59 0 1.03 0 1.75 0

19 3.24 0 0.37 0 0.06 0 4.34 334

20 2.37 260 0.06 0 0.42 0 0.65 0

21 1.98 0 2.68 0 2.11 0 0.40 0

22 0.31 0 0.33 0 0.34 0 1.34 0

23 0.83 0 1.18 0 0.33 0 0.46 0

24 3.63 301 0.15 0 1.27 0 2.21 0
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Fig. 3.8: Concave and nonconcave utilities corresponding toeach group of users

and a small decrease in allocated rate to users with concave utility, users’ satisfaction

level of service (utilities) for users with nonconcave utility increases. However, utility

degradation of users with concave utility is negligible. Overall, the sum of users’ utilities

increases with utility-based resource allocation which takes advantage of the diversity of

the application level QoS requirement of users.

3.6 Summary

The non-convexity of OFDMA resource allocation optimization problem has been stud-

ied in this chapter. A framework for the resource allocationhas been developed and

a novel approach based on a penalty function method and an interior point method

(PM/IPM) has been applied to solve the optimization problem. Numerical results have

demonstrated that the proposed approach performs well in achieving near optimal solu-
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tions while satisfies the non-convex (sub-carrier assignment) constraints.
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Chapter 4

Opportunistic Fair Scheduling in

OFDMA Networks

Scheduling the transmissions in a telecommunication medium features a resource allo-

cation scheme. Inspired by the framework proposed for the OFDMA resource allocation

in the previous chapter, we propose an opportunistic fair scheduling scheme for OFDMA

broadcast wireless channel where users have heterogeneousrate requirements. The pro-

posed scheme jointly considers multiuser diversity gain, OFDMA resource allocation

flexibility, and utility fair service discipline. Fairnessamong users is maintained by de-

ploying a utility-based fair scheme that computes a set of fair weights and assigns them

to users. In each scheduling interval, the resource allocated to each user is proportional

to its assigned weighting factor and its channel quality on OFDM sub-carriers.

The proposed scheduler is designed with a modular structure, consisting of OFDMA

Resource Allocation Module and Fairness Module. We present two separate optimization

programming problems representing OFDMA Resource Allocation Module and Fairness

Module to reduce the complexity, and we suggest fast algorithms to solve the problems.

We present simulation results to demonstrate the performance of the proposed scheduling

scheme in terms of throughput and fairness in a wireless network where users can be

either fixed or mobile with heterogeneous rate requirements.
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4.1 Background and Related Works

Opportunistic scheduling, which allocates resources to users with the best channel qual-

ity in each scheduling interval, is a throughput-optimal scheme for wireless networks

with fading channel [89]. Opportunistic scheduling improves throughput and channel

utilization especially when it exploits OFDMA, which provides more flexibility in re-

source allocation by dividing a broadband channel into several narrow band channels. An

opportunistic scheduler in the DL needs to allocate the resources, i.e., the base station’s

sub-carriers and power, to users that have the best channel gain on some sub-carriers in

each scheduling interval. Therefore, an OFDMA resource allocation module is needed

in any opportunistic scheduler for OFDMA networks.

Despite throughput and channel utilization enhancement, severe unfairness occurs by

opportunistic scheduling when averages of channel qualityof users differ significantly.

For example, the scheduler may not provide fair service to a user that has been shaded

by neighborhood buildings in an urban area, because the channel quality of that user

is always less than other users in the neighborhood. Hence, avariant of opportunistic

scheduling scheme that maintains a level of fairness to unfortunate users, namely, oppor-

tunistic fair scheduling, is needed in practical networks.

Recently, some opportunistic fair scheduling schemes for multi-carrier transmission

techniques have been appeared in the literature. In [90], a throughput maximization prob-

lem with deterministic and probabilistic fairness constraints for code division multiple

access (CDMA) networks is proposed. To reduce complexity, the scheduling problem is

decoupled into two separate tractable optimization problems: a scheduling problem that

maximizes total system throughput and a fairness problem that controls and/or updates

long-term fairness constraints. The proposed approach is appropriate for CDMA net-

works. Downlink opportunistic scheduling for OFDMA networks is considered in [91],

where the scheduling is constrained by users’ quality of service and fairness require-

ments. The utility-based fairness in [91] aims at maximizing the total network utility

while guaranteeing minimum utility for individual users. Proportional fair scheduling
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for OFDMA networks is considered in [92]. This paper proposes clustering sub-carriers

into sub-bands in order to reduce feedback overhead and complexity of the scheduling

scheme. Whereas, the current literature consider various techniques to combat the com-

plexity of multi-carrier opportunistic fair scheme for scheduling homogeneous traffic, the

challenges of scheduling heterogeneous traffic with opportunistic scheduling schemes

have not been addressed yet. Our work unifies many of the results found in the literature

while proposing a utility proportional fair approach for multiservice OFDMA networks,

i.e., OFDMA networks with heterogeneous traffic.

4.2 Opportunistic Fair Scheduling Scheme

The proposed opportunistic fair scheduling scheme jointlyconsiders a utility-based fair

resource allocation scheme and an OFDMA resource allocation scheme to allocate re-

sources and schedule transmissions in the downlink. In eachscheduling interval, de-

picted in Fig 4.1, the scheduling scheme selects a subset fortransmission, assigns sub-

carriers to selected users, and determines the transmission power and the coding and

modulation scheme of each sub-carrier. All these allocations and assignments are de-

termined by OFDMA Resource Allocation Module involved in thescheduler architec-

ture shown in Fig. 4.2. Also, the architecture contains Fairness Module which performs

in parallel with OFDMA Resource Allocation Module. FairnessModule includes Fair

Weight and Transmission History blocks, as shown in Fig. 4.2. Considering the avail-

ability of CSI,aij of sub-carrierj for useri, the Fair Weight block generates a set of fair

weightsWi’s, associated to usersi = 1· · ·M , based on a utility-based fairness scheme.

Then, the weights along with a set of average transmitted rate to users,Ri’s, are used in

OFDMA Resource Allocation Module to allocate the resources fairly.

The OFDMA resource allocation block determines users’ achievable rates based on

CSI at each scheduling interval, and the fair weight block computes the set of fair weights

based on the averages CSI. The weights do not change during thecommunication inter-

val, unless average CSI of sub-carriers for a user changes or transmission to a user is
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terminated.Wi’s are calculated based on a fairness criterion, such as max-min or propor-

tional fairness, as will be explained later. The scheduler attempts to makeRi’s as close

as possible toWi’s to maintain fairness. This is achieved by maintaining thefollowing

equalities:

R1

W1

=
R2

W2

= · · · =
RM

WM

. (4.1)

Ri is updated at the beginning of each scheduling interval by anexponentially weighted

moving average (EWMA) technique. EWMA puts more emphasis on recent data and

less emphasis on older data by applying weighting factors, which decrease exponentially

as data grows older. This technique is advantageous in the sense that the fairness scheme

attempts to compensate for unfairness of recent allocations as soon as possible. Equa-

tion (4.2) gives the EWMA of transmitted rate to useri at the beginning of scheduling

intervalm:

Ri(m) = (1−
1

Tc

)Ri(m− 1) + (
1

Tc

)ri(m− 1), (4.2)

whereri is the transmitted rate to useri, andTc is a constant that determines smooth-

ness of the exponentially decreasing weighting factors. A largeTc results in smoother

decaying of the weighting factors and considering larger number of scheduling intervals

in averaging. Accordingly, if allocation of rates has been unfair in the past scheduling in-

tervals, it is more probable that the scheduler compensatesfor that in the next scheduling

intervals.

4.3 Network Model and Problem Formulation

We present separate mathematical optimization programming problems for OFDMA Re-

source Allocation Module and Fairness Module. The OFDMA resource allocation, de-

scribed in subsection 4.3.1, is an optimization problem whose objective function rep-

resents the scheduler objectives, and its constraints are determined based on OFDMA

network specifications. Similarly, we present an optimization problem that considers
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users’ heterogeneous rate requirements and average CSI to compute proportional fair

weights in subsection 4.3.2.

4.3.1 OFDMA Resource Allocation Problem

Our network consists of a BS and several users located in one hop neighborhood from

the BS. Users’ backlogged traffic, buffered in separate queues at the BS, is scheduled

at the beginning of each down-link interval consisting ofN OFDM symbols. The BS

assigns OFDM sub-carriers to users and allocates a fractionof its power,PBS, to each

sub-carrier of any OFDM symbol at each scheduling interval,located at the beginning of

each down-link interval, as shown in Fig. 4.1. Table 4.1 tabulates symbols representing

various network parameters.

Without loss of generality, we assume that noise spectral density and sub-carriers

bandwidth are equal to one. Then, allocated rate to useri on sub-carrierj of OFDM

symboln, rijn, is

rijn = log2 (1 + αijnpijn) . (4.3)

Total allocated power to the sub-carriers of each OFDM symbol is limited by PBS,

i.e.,

M
∑

i=1

K
∑

j=1

pijn ≤ PBS ∀n ∈ N . (4.4)

Implementation of OFDM requires exclusive allocation of a sub-carrier to a single

user. This constraint is mathematically represented by

rîjn · rijn = 0 ∀î ∈M, i 6= î, ∀j ∈ K, ∀n ∈ N . (4.5)

Constraint (4.5) implies that if sub-carrierj is assigned to userî, i.e.,rîjn 6= 0, allocated

rate to every other user on sub-carrierj of OFDM symboln must be zero.

To balance the achievable transmission rate and fairness, the opportunistic fair sched-

uler allocates sub-carrierj of OFDM symboln to useri that has the maximumrijn/(Ri/Wi).
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Table 4.1: List of Symbols

Symbol Description

M number of users in the network

K number of OFDM sub-carriers

N number of OFDM symbols in the down-link interval

i user index belongs toM := {1, 2, ...,M}

j sub-carrier index belongs toK := {1, 2, ..., K}

n symbol index belongs toN := {1, 2, ..., N}

Ri average transmitted rate to useri

Wi fair weight of useri

Ri
min minimum service rate requirement of theith user

PBS the BS total power budget

αijn channel gain of useri on sub-carrierj

of OFDM symboln

pijn required power by useri on sub-carrierj

of OFDM symboln to transmitrijn

rijn achievable rate by useri on sub-carrierj

of OFDM symboln
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The probability of assigning sub-carrierj to useri increases when the achievable trans-

mission rate of useri on sub-carrierj is high or average transmitted rate to useri is

smaller than its fair weight. The objective can mathematically be written as

max
N
∑

n=1

K
∑

j=1

M
∑

i=1

(

rijn

Ri

Wi

)

. (4.6)

The objective function (4.6) along with constraints (4.3),(4.4), (4.5) model the mathe-

matical optimization problem(Pr6) of the opportunistic fair scheduling scheme.

Pr6 : max
rijn

N
∑

n=1

K
∑

j=1

M
∑

i=1

(

rijn

Ri

Wi

)

(4.7)

s.t
M
∑

i=1

K
∑

j=1

2rijn − 1

αijn

≤ PBS ∀n ∈ N , (4.8)

rîjn · rijn = 0 ∀î ∈M, i 6= î, ∀j ∈ K, ∀n ∈ N , (4.9)

rijn ≥ 0 ∀i ∈M, ∀j ∈ K, ∀n ∈ N . (4.10)

The optimal solution ofPr6 allocates rate to users on all sub-carriers for each OFDM

symbol in a scheduling interval that achieves maximum throughput subject to the fairness

criterion defined by (4.1). In practice, providing CSI of eachsub-carrier over all symbols

of each scheduling interval results in large messaging overhead on the reverse feedback

channel. Besides, because of the correlation among CSI of a sub-carrier over consecutive

symbols, the CSI of each sub-carrier is assumed to remain constant for all symbols over

a scheduling interval. Accordingly, indexn representing symbols of each scheduling

interval can be dropped, andPr6 can be simplified to problemPr7:

Pr7 : max
rij

K
∑

j=1

M
∑

i=1

(

rij

Ri

Wi

)

(4.11)

s.t
M
∑

i=1

K
∑

j=1

2rij − 1

αij

≤ PBS, (4.12)

rîj · rij = 0 ∀î ∈M, i 6= î, ∀j ∈ K, (4.13)

rij ≥ 0 ∀i ∈M, ∀j ∈ K. (4.14)
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4.3.2 Fairness Problem

This subsection describes how fair weights can be derived based on utility proportional

fairness.

Fairness in its simplest form can be defined as equal rate allocation. However, when

users have diverse service requirements and channel, an equal rate allocation results in

under-utilization of network resources. For example, a user with voice service needs less

rate than the ones of a user with a video service to be satisfied. An equal rate allocation to

these users may make the first user not to use the extra rate while the second user starves.

Fig. 4.3 shows the utilities of three different applications. The dashed line labeled “equal

rate” illustrates that equal rate allocation does not provide equal user satisfaction. On the

other hand, equal allocation of utilities, which is interpreted as equal users’ satisfaction,

utilizes the network resources more efficiently. Thus, we will consider utility fairness

instead of rate fairness [80].

In this chapter, the fair weights are determined based on utility proportional fair-

ness where the allocated resources are proportional to users’ demands. Utility pro-
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portional fair is advantageous in a network when its users have heterogeneous rate re-

quirements, since no user is ignored because of its high resource requirement. Consider

U = {uh|uh = {uh1, uh2, . . . , uhM}}, a bounded set ofM users’ feasible utilities subset

uh, whereuhi is the utility of useri. Utility proportional fairness is defined [93]:

Definition 4.3.1 Utility proportional fairness- A set of utilities uh is utility proportional

fair if for any feasible utility set ûh, the sum of proportional changes in their utilities is

non-positive:

M
∑

i=1

ûhi(r̂i)− uhi(ri)

uhi(ri)
≤ 0. (4.15)

A straightforward way to obtain a proportional fair allocation uh ∈ U is to find a set that

maximizes
∑

i log(uhi) over the convex set of feasible allocationsU [94,95].

max
h
F =

∑

i

log(uhi) (4.16)

We denote the set ofrij that results in the proportional fair setuh aswij, which are

used in Fairness Module to derive fair weightsWi. The set ofwij is the solution of the

optimization problem that maximizes
∑

i log(uhi) subject to the network resources lim-

its. The fairness optimization problem has a power constraint similar to (4.3) and (4.4).

However, as we attempt to find a long term fair allocation of resources, the average CSI

over time is deployed in the problem, soaij will be used instead ofaijn in (4.3). Also,

the exclusive sub-carrier assignment, constraint (4.5), is relaxed, because this problem

is solved for fair weights regardless of specific sub-carrier allocation. Also, we add the

minimum rate requirement constraint to make sure that the fair allocation qualifies min-

imum QoS requirements. Accordingly, utility proportionalfair weights can be obtained
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by solving the optimization problemPr8.

Pr8 : max
wij

F (4.17)

s.t −
K
∑

j=1

wij ≤ −Ri
min ∀i ∈M, (4.18)

M
∑

i=1

K
∑

j=1

2wij − 1

aij

≤ PBS, (4.19)

wij ≥ 0 ∀i ∈M, ∀j ∈ K. (4.20)

The allocation ofwij is a long term fair rate allocation to useri on sub-carrierj. There-

fore, the fair weight of useri is inferred as follows:

Wi =
K
∑

j=1

wij (4.21)

If the scheduler allocates resources to users such that in a long duration of time the set

of aggregate transmitted rates to users is proportional to the set of fair weights,Wi, i.e.,

the set of equations (4.1) is satisfied, the scheduling scheme is utility proportional fair.

The set ofWi is valid until the average channel gains of a user suddenly changes or the

transmission to a user is terminated. A practical approach is to periodically update the

fair weights.

4.4 Solution Algorithms for OFDMA Resource Alloca-

tion and Fairness Optimization Problems

ProblemPr7 needs to be solved in every scheduling interval, whilePr8 is solved only

when its input parameters are changed. ProblemsPr7 andPr8 are nonconvex optimiza-

tion problems in general and finding their optimal solutionsis nontrivial [20]. Problem

Pr7 is nonconvex in feasible region, whilePr8 is nonconvex because of nonconvex util-

ity functions in the objective function. The efficiency of a method in solving a nonconvex
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problem strongly depends on how nonconvexity of the problemis treated. Therefore, we

apply different approaches to treat the nonconvexity of each problem.

We use a Lagrange dual decomposition method to solveP2. The method does not

guarantee an optimal solution, but it can efficiently obtainnear optimal solution(s) with

a practical number of sub-carriers [78]. The adaptation of Lagrange dual decomposition

method hinges on the results reported in [96] that the duality gap1 vanishes as the number

of sub-carriers increases.

Whereas Lagrange dual decomposition method is applied to solve P2, an interior

point method is applied to solveP3, because the objective function is sum of users’

utilities which can be non-linear functions of users’ rates, and interior point methods are

shown to be successful in solving non-linear optimization problems efficiently [31].

4.4.1 The Dual Method

If µi = Wi/Ri, the objective function of problemPr7 is to maximize
∑M

i=1

(

µi

∑K

j=1 rij

)

.

Constraints (4.13) and (4.14) form the domainD that Lagrangian ofPr7 can be defined

over it as

L ({rij} , λ) =
M
∑

i=1

K
∑

j=1

µirij − λ

(

2rij − 1

αij

− PBS

)

, (4.22)

whereλ is the Lagrange multiplier. The dual problem ofPr7, is expressed as

min
λ

max
{rij}∈D

L ({rij} , λ) . (4.23)

The solution of the dual problem givesλ that minimizes the maximum value ofL over the

domainD and determines the set of rate allocations to sub-carriers,rij, that maximizes

L. The optimization problem (4.23) is a minimization problemwith one scalar variable

λ that can be solved by an iterative algorithm. We use algorithm 3 to solve the problem.

In each iteration of algorithm 3, the set ofrij that maximizesL is determined by solving

1The difference between the primal optimal and dual optimal solution
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K decomposed problems of rate allocation to sub-carriers. Asallocation of sub-carriers

to users are independent, the optimization problems (4.24)are solved in parallel to obtain

allocated rate to sub-carriers.

max
{rij}∈D

M
∑

i=1

µirij − λ

(

2rij − 1

αij

)

∀j = 1 · · ·K. (4.24)

When adaptive modulation is used, allocated rate to each sub-carrier is determined from

a discrete set of rates. Accordingly, the solution of problem (4.24) is determined by

searching over the domainD. The search algorithm is performed in real-time, because

the size of the domainD is confined by the number of modulation levels and sub-carriers.

4.4.2 The Interior Point Method

For notational simplicity, a solution ofPr8 is denoted by a weight allocation vectorw:

w = [w11, w12, . . . , w1K , . . . , wM1, . . . , wMK ]T , (4.25)

wherewi =
∑K

j=1 wij represents allocated weight to useri. We put the inequality con-

straints in a vectorC(w), which is represented as follows:

C(w) =

































∑K

j=1 w1j −R1
min

...
∑K

j=1 wMj −RM
min

−
∑M

i=1

∑K

j=1
1

αij
(2

Kwij

B − 1) + PBS

w11

...

wMK

































, (4.26)

and convert the inequality constraints to equality constraints by associating a positive

slack variable to each constraint. Hence,Pr8 is converted to the following minimization
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Algorithm 3 Solution Algorithm for the Dual Problem
Input: M,K,PBS, αij, µi, bit loading set

Output: rij

Setting up and initialization:

1: Seth = 1, ǫ = 1, Exit flag = 1, λh−1 = λh = 0.

2: Solve (4.24) forrij.

3: Compute∆p = PBS − pij.

4: if ∆p > 0 then

5: return rij.

6: else

7: while Exit flag > 1e− 5 do

8: if ∆p > 0 then

9: ǫ = 0.99 ∗ ǫ.

10: λh = λh−1.

11: ∆ph = ∆ph−1.

12: else

13: λh−1 = λh.

14: ∆ph−1 = ∆ph.

15: end if

16: λh = λh + |ǫ ∗∆p|.

17: Solve (4.24) forrij.

18: Update∆p.

19: Exit flag = λh − λh−1.

20: h = h + 1.

21: end while

22: end if

23: return rij..
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problem:

Pr9 : min
w
−
∑

i

log(ui(w)) (4.27)

s.t C(w)− s = 0, (4.28)

s ≥ 0. (4.29)

The rest of the interior point algorithm is implemented as described in chapter 3, so we

avoid repeating it here. The correspondent∇2
wwL and∇wf(w) for Pr9 can be found in

Appendix A.2.

4.5 Complexity of the Proposed Approach

The decomposition of (4.23) intoK equations (4.24) reduces the exponential complexity

to the linear complexity inK [96]. The solution of (4.24) is obtained by a heuristic search

method due to the discreteness of the domainD. The search algorithm is feasible for a

practical network, because the size ofD is confined by the number of modulation levels,

users, and sub-carriers. When adaptive modulation is used, allocated number of bits to

each sub-carrier is a discrete variable that can be chosen from the bit loading vector of

the modulation technique [34].

ProblemPr8 is required to be solved only when the network characteristics, e.g.,

users’ average channel gain or the number of admitted users to the network, change. The

scheduling scheme starts with default fair weights, e.g., all equal to one, and updates

the fair weights with the ones obtained by solvingPr8 during the first iterations of the

scheduling scheme.

4.6 Numerical Results

Performance of the opportunistic fair scheduling scheme isevaluated in this section.

The investigated performance metrics are the overall network throughput and fairness
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index of the proposed scheme, which are compared with the ones of a pure opportunistic

scheduling scheme. We implement a multi-carrier pure opportunistic scheme similar to

the opportunistic fair exceptRi

Wi
= 1 for i = 1 · · ·M .

To compare the performance in terms of fairness, a fairness metric needs to be defined

first. We use Gini fairness index which is an inequality measure of resource sharing that

measures deviation from equations (4.1) for each scheduler. Let the total allocated rate to

useri over the simulated intervals be symbolizedR̃i. We examine the inequality among

the set of proportionsz = {zi |zi = R̃i/Wi} by Gini fairness index,I, defined as follows:

I = 1
2M2z̄

M
∑

x=1

M
∑

y=1

|zx − zy|, (4.30)

wherez̄ =
∑M

i=1 zi

M
. The Gini fairness index takes values between 0 and 1. A rate alloca-

tion is perfectly fair ifI = 0. A high value ofI, close to 1, indicates higher unfairness

among the proportions.

The wireless channel is simulated to experience both frequency selective and large-

scale fading [47], [28]. Users receive six Rayleigh distributed multipath signals. The real

and imaginary components of the received signals to different users are generated from

an uncorrelated multidimensional Gaussian distribution with zero mean and an iden-

tity covariance matrix. Uncorrelated multi-path components lead to uncorrelated user

frequency responses in the frequency domain. Thus, full multiuser diversity can be ex-

ploited. The large-scale fading is distance dependent and follows the inverse-power law:

|γij|
2 = D−κ

i |αij|, (4.31)

whereDi is the distance between the BS and useri in meters,κ is pathloss exponent, and

γij is pathloss of useri on sub-carrierj. Numerical values of the wireless channel used

in the simulation are: doppler frequency= 30 Hz, andκ = 2.

The network accepts users with nonconcave and concave utility functions, respec-

tively. The users’ utility functions are expressed by equation (4.32) [88], whereri denotes

allocated rate to useri, lmin andlmax are lower and upper rate thresholds, andk controls
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(a) (b) (c)

user1 user2

users 1 to 8
ց

users 9 to 16
ց

users 1 to 8
ց

users 9 to 16
ւ

Fig. 4.4: Simulated scenarios: (a) fixed users, (b) a fixed user and a mobile user, (c) users

with heterogeneous rate requirements

the shape of the utility function. The function is concave for k < 1 and convex fork > 1.

k = 2,lmin = l1 = 10,lmaxl2 = 600 andk = 0.7,lmin = l3 = 1,lmax = l4 = 800 have

been chosen for convex and concave utility functions, respectively.

ui (r) =



















0 ifr ≤ lmin,

sink
(

π
2

ri−lmin

lmax−lmin

)

lmin < r ≤ lmax,

1 r > lmax.

(4.32)

The simulated network consists of a BS, with total power equalto 20 Watt, located

at the center of the cell with 800m radius, that transmits accumulated traffic in its queues

to users over64 sub-carriers. We show the scheduling schemes performance for diverse

channel gains and traffic types by considering the three scenarios shown in Fig. 4.4. In

the first scenario, Fig. 4.4-(a), users’ utilities are concave. Users are fixed, but their

channel gains are different due to pathloss and multipath fading. The second scenario,

Fig. 4.4-(b), considers a fixed user and a mobile user that hasvariable pathloss due to the

movement, and both users have the same concave utility. The third scenario, Fig. 4.4-(c),

consists of users with nonconcave and concave utilities.
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4.6.1 Fixed Users

In the first scenario, shown in Fig. 4.4-(a), there are16 users, half of the them are uni-

formly located on a circle with50 meters radius, and the other half are located on the

cell edge at equal angular distance. As users have diverse channel gains, we investigate

the effect of channel diversity on throughput and fairness performance of the scheduling

schemes using this scenario.

Fig. 4.5 shows overall throughput versus the number of usersfor the opportunistic and

opportunistic fair scheduling schemes in the first scenario. As the opportunistic scheme

assigns a sub-carrier to a user that has the highest channel gain on it, its throughput is the

upper bound. The opportunistic fair has lower throughput than opportunistic because in

some scheduling intervals it assigns a sub-carrier to a userthat lacked service for a long

time. Both scheduling schemes exploit multi-user diversityas more users join the inner

circle, i.e., when the number of users increases from 2 to 8 inFig. 4.5. Users 9 to 16 are

far from the BS and their channel gains are always much lower than the users located on

inner circle, so they do not increase multi-user diversity gain.

Fig. 4.6 shows the Gini fairness index of the first scenario. The fairness index of op-

portunistic and opportunistic fair increases as the numberof users increases. Increasing

user diversity has an adverse effect on fairness. However, this effect is moderated in the

opportunistic fair scheme at low spatial diversity (i.e., users 1 to 8).

4.6.2 A Fixed and a Mobile User

In the second scenario, a fixed user and a mobile user that moves away from the base

station are considered. At first, users 1 and 2 are located close to the BS at the same

distance. Then, user 2 moves away from the BS toward the edge ofthe cell. We inves-

tigate the adaptivity of the opportunistic fair schedulingin capturing the network status

variations using this scenario.

Fig. 4.7 shows the throughput of user1 and user2 at the three positions for oppor-
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Fig. 4.5: Overall network throughput for scenario (a)
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Fig. 4.6: Fairness index for scenario (a)
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Fig. 4.7: User1 and User2’s throughput at different positions of the second scenario

tunistic and opportunistic fair schemes. The throughput ofopportunistic fair has been

illustrated for two different time constants,Tc, for the lowpass filter of the transmission

history. As user2 moves away from the BS and its channel gain drops, the opportunistic

scheduling allocates less rate to it and finally ignores it when it is very far. On the other

hand, the opportunistic fair scheduling scheme, which intends to allocate proportional

rates to the fair weights, allocates more rate to user 2 than the ones of opportunistic allo-

cation. The diagram shows opportunistic fair with smallerTc is less effective, comparing

to the one with largerTc, in compensating the bad channel gain of user2 as it moves away

from the BS. The reason is smaller number of scheduling intervals are considered and

compensated for in the fairness scheme whenTc is small. Therefore, the scheduler has

shorter time to compensate for the unfairness.

Fig. 4.8 shows the Gini fairness index of the opportunistic and opportunistic fair

scheduling with two differentTc in the second scenario. When both users are close

to the BS and their channel are almost similar, unfairness of opportunistic scheduling

is not observed. However, as user2 moves and its channel degrades, the opportunistic
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Fig. 4.8: Fairness performance of the second scenario

fair scheme treats it more fairly than the opportunistic scheme, so the fairness index of

the opportunistic scheme deteriorates when user2 is at positions2 and3. Opportunistic

fair scheme with largerTc outperforms the one with smallerTc in terms of the fairness

performance .

The performance study of the second scenario indicates thatthe opportunistic fair

scheduling can capture the network changes and adapt the fairness scheme accordingly.

The adaptivity of the scheme can be adjusted by controlling the transmission history

duration, which is one of the components of the fairness module. Furthermore, the trade

off between fairness and throughput can be adjusted similarly.

4.6.3 Users With Heterogeneous Rate Requirements

In the third scenario, all16 users are at the same distance from the BS, on a circle with

50 meters radius, but they are running two different applications with different utility

functions. The first group of users, users1 to 8, are subscribed to a service with a
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Table 4.2: Aggregate Utilities of the Scheduling Schemes

Scheduling Scheme
∑8

i=1 Ui(ri)
∑16

i=9 Ui(ri)
∑16

i=1 Ui(ri)

Opportunistic 161.4702 141.0092 302.4793

Opportunistic Fair 306.2989 196.6107 502.9096

nonconcave utility function. The second group of users, users 9 to 16, are subscribed to

a service with a concave utility function.

The utility values of users1 to 8 over100 samples of the channel, when their traffic

is scheduled by opportunistic scheme and opportunistic fair scheme, are represented in

Fig. 4.9-a and Fig. 4.9-b, respectively. The figures reveal that, first, opportunistic scheme

ignores some users with low channel gains over the simulation interval, such as user

8 in Fig. 4.9-a. This fact causes severe unfairness in service provisioning when the

user diversity is high. Second, the rate allocations and hence the utility distributions of

users for opportunistic scheme is not as regular as the ones of opportunistic fair scheme.

Accordingly, opportunistic scheduling is not effective inservice provisioning for the

applications that should be scheduled almost regularly.

The data statistics of the simulation, shown in Table 4.2, depicts that the utilization

of resources or users’ satisfaction of received service, which is represented by the sum

of users’ utilities, is improved for opportunistic fair scheduling more than that of the op-

portunistic scheduling scheme. Moreover, the users with convex utilities have a higher

aggregate utility than the ones of the users with concave utilities. The reason is the gradi-

ent of the convex utility function is higher than the gradient of concave utility function at

lower rates in our simulation. Therefore, for the same allocated rate, convex utility value

is larger than the concave value.
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Fig. 4.9: Utility values of users1 to 8 for opportunistic and opportunistic fair scheduling

schemes versus time

89



Resource Allocation in OFDMA Wireless Netwroks

4.7 Summary

An opportunistic fair scheduling scheme is proposed for thedownlink of OFDMA net-

works where users have heterogeneous rate requirements. The scheduler takes sub-

carriers channel gain and fairness requirements into account to assign sub-carriers to

users and allocate rate to each sub-carrier. We consider fairness constraints by adopting

the utility proportional fair criteria, computing a set of fair weights associated to users,

and allocating the resources according to the fair weights.The proposed scheme is adap-

tive because the fair weights can be modified dynamically when the network characteris-

tics change due to mobility of users, admitting a new user, orchanging the fairness policy

of the network service provider. As the fair weights are computed based on a utility-

based resource allocation scheme, the resource utilization of the network improves and

allocated resources conform the requirement of the users, which are represented by their

utilities. Comparing to opportunistic scheduling scheme, the proposed opportunistic fair

scheduling scheme provides fairer and smoother service with the cost of the throughput.
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Chapter 5

Conclusions and Further Works

The success of wireless networks in supporting a variety of applications and being ex-

panded in a large commercial scale is strongly tied to the performance of corresponded

resource allocation schemes. The research in this thesis focuses on resource allocation

schemes for OFDMA networks with heterogeneous traffic typeswhich simultaneously

provide QoS, maintain fairness, and improve network utilization. Following, we sum-

marize the major research contributions of the thesis, and propose further works.

5.1 Major Research Contributions

• We investigate the OFDMA resource allocation problem and develop a framework

for the resource allocation in a very generic form. The framework exploits many

aspects of an efficient resource allocation scheme, such as,collaboration between

MAC and PHY, and adaptivity to resource changes to improve the resource utiliza-

tion performance while satisfying heterogeneous users’ demands and maintaining

fairness among users. Also, the framework captures the essential characteristics

of the network and users’ requirements, such as, exclusive sub-carrier allocation

constraint and users’ minimum QoS requirements.
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We have followed a new direction in problem formulation. Unlike previous for-

mulations for the OFDMA resource allocation problem, in theliterature, which are

based on combinatorial optimization techniques, we use continuous optimization

techniques for the problem formulation. Given this method of problem formula-

tion, we present an NLP problem that can be solved by continuous optimization

algorithms rather than combinatorial ones. Our suggested algorithm is a combina-

tion of interior point methods and penalty function methods. The proposed algo-

rithm treats the non-convexity of the problem and exploits the strength of interior

point methods in solving NLP problems.

The proposed framework for OFDMA resource allocation can beapplied to many

centralized networks with multiservice support. More importantly, the applica-

tion of the framework can be extended to network utility maximization (NUM)

problems with either convex or non-convex objective functions. The new prob-

lem formulation method sheds some light on the future research about deploying

continuous optimization techniques for solving the OFDMA resource allocation

problem. Also, the simple and fast algorithms deployed facilitate performance

analysis of a variety of OFDMA resource allocation schemes.

• We propose an opportunistic fair scheduling scheme for OFDMA networks with

heterogeneous traffic types. In the proposed scheduler, a fairness enforcement

technique has been integrated with an opportunistic scheduling scheme to maintain

longterm fairness and smooth service delivery. The fairness scheme assigns some

fair weights to users which maintain utility proportional fairness among users. The

fair weights are determined based on users’ average channelgains and utility func-

tions, so fair weights can be assigned for long durations as long as users’ average

channel gains are static and no user joins/departs the network. On the other hand,

when the channel statistics are dynamic, the fair weights can be computed period-

ically, with a period which is proportional to the rate of variations. The fairness

scheme can be adjusted to maintain a measure of fairness tightly or loosely, i.e.,

the tradeoff between throughput and fairness is adjustable.
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Our proposed scheduling scheme design is modular, which helps in separating the

tasks of the scheduler between an OFDMA resource allocationmodule and a fair-

ness module. Besides, as individual modules are less complicated than the com-

bined one, fast and simple algorithms can be used in each module to reduce the

complexity of the scheduling. To achieve an optimal resource allocation, we for-

mulate the tasks of each module with an optimization programming problem. We

apply dual method algorithms to the OFDMA resource allocation problem, where

the objective function is a linear function. When dual methodalgorithms are ap-

plied to the OFDMA resource allocation problem the duality gap is not zero, but

it is reduced significantly for practical parameters selection for the problem. More

precisely, when the number of sub-carriers grows bigger than the number of users,

the duality gap vanishes. Applying duality methods is advantageous in our scheme,

because the computational complexity of rate allocation and users’ scheduling is

reduced. Due to the non-linearity of the fairness module optimization problem, we

apply an interior point method combined with a penalty function method. Using

interior point and penalty function methods in the fairnessoptimization problem

facilitates the utility fairness implementation; hence, it improves resource utiliza-

tion.

5.2 Further Works

The proposed schemes for resource allocation and scheduling in this thesis tackle some

challenges of the OFDMA resource allocation problem such asnon-convexity issues and

heterogeneous traffic support. However, there are still many open issues to extend the

research and deserve further investigation:

• The research in this thesis investigates conceptual aspects of resource allocation

schemes for OFDMA networks. However, fine tuning of the schemes parameters

and improving the algorithms convergence speed remain for further research. For
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example, the width of the exponential window in the moving average technique

should be adjusted according to the required tradeoff between throughput and fair-

ness. In addition, the performance of the proposed schemes have been derived for

saturated buffers; the effect of traffic model variations onthe performance can be

studied to specify if adapting or modifying the schemes are required. Some im-

portant aspects of PM/IPM that can be discussed include complexity analyses, the

initial choice of penalty parameter, strategies for updating the KKT perturbations,

and appropriate criteria for terminating inner iterations.

• Scalability is a necessary factor of the algorithms for solving optimization prob-

lems of the OFDMA resource allocation. When the number of sub-carrier in-

creases in the network, the algorithms may take longer time,which is not accept-

able for real-time applications. Some techniques such as sub-carrier clustering may

be taken into account to downsize the allocation variables,which result in loosing

some diversity gain [97]. For practical implementation thetradeoff between scal-

able algorithms and achieving high diversity gain deservesto be recognized and

controlled.

• The OFDMA resource allocation problems in this thesis are constrained by the

total transmit power, and the utility functions are functions of rate. However, in

some applications the objective of the resource allocationis to minimize transmis-

sion power [98], or maximize an objective function which is not a function of rate,

e.g., maximizing aggregate utilities where the utilities are a function of delay [99].

As the problem formulations are different in such cases, onecan specify the appli-

cability of the proposed algorithms in this thesis to those problems and the required

modifications of the algorithms if it is needed.

• The results from this thesis and other research [100] indicate that collaborating

with PHY layer can significantly improve the performance of resource allocation

schemes in wireless OFDMA networks. The performances of proposed resource

allocation schemes, which are based on cross-layer design with PHY layer, depend
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on the accuracy of PHY layer models or measurements.

In this thesis, short-term time variations of channel are exploited in the OFDMA

resource allocation scheme, and users’ average channel gains are deployed in the

fairness scheme. The performance study of the schemes proposed in chapter 3

and 4 is based on the assumption of Rayleigh distribution for the amplitude of the

channel gains. The performance analysis can be extended forwireless medium

with different fading characteristics, such as, Rician or Nakagami fading channel

distributions. Furthermore, some other channel statistical specifications can be

deployed in adjusting resource allocation parameters. Forexample, the average

fade duration, which quantifies how long the signal spends below a threshold [101],

can be deployed to determine the periods of fair weights calculation.

Perfect CSI is assumed to be available in the BS when channel information are

obtained by measurement. However, there exist some uncertainty in achieved CSI

due to unreliable feedback channel, which may result in wrong decisions being

made by the schemes [102]. It is important to study the effects of imperfect CSI,

e.g. estimation error and feedback delay. Also, feedback overhead reduction de-

serves to be investigated specifically in practical networks with large number of

sub-carriers and users. Effective approaches are needed tomaintain the diversity

gains while reducing the feedback overhead.

• The PHY layer capacity and the resource allocation scheme deployed in the link

layer directly affect the available resources for admitting new call requests. While

satisfying users’ requirements and network constraints, acall admission strategy

tries to allow as many user as possible to access the resources simultaneously. Ac-

cordingly, an admission control strategy in the network layer is corresponded to

stochastic transmissions inherent in channel-aware networks [103]. Designing an

admission control strategy that benefits from the efficiency, fairness, and improved

resource utilization of the proposed resource allocation schemes in this work is of

great importance for commercial implementation of the schemes as well as theo-

retically extending the work.
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• The framework in chapter 3 formulates the rate allocation incentralized OFDMA

networks as a NUM problem. A large number of work based on utility maxi-

mization approach for network resource allocation has beenperformed already

(look at [104] and the references therein), such as TCP congestion control [105],

sharing link capacities among sources, and bandwidth allocation in wireless net-

works [106]. In particular, the previous research focused on proposing distributed

algorithms to solve NUM problems where the utilities were assumed to be concave.

However, the demand for transmission heterogeneous traffictypes, i.e., real-time

and non-real-time, requires non-concave utilities be considered in NUM problems.

Then, the proposed distributed algorithms for convex NUM problems may not be

tractable for non-convex ones. Inspired by the formulationmethod and proposed

algorithms in this thesis, non-convex NUM problems can be considered in future

research.

• Users’ minimum rate requirement constraints and utility-based resource allocation

satisfy users’ essential QoS requirements, but some applications such as video or

streaming media need stringent QoS requirements that are not satisfied by this ap-

proach. Besides, a higher resource utilization is achieved if more video statistics

are properly used in the resource allocation scheme [107]. For commercial video

applications, such as video on demand and internet protocoltelevision (IPTV),

some traffic characteristics, such as, different importance of encoded video lay-

ers, burstiness of video content, and decoding dependency constraints of multime-

dia can be taken into account for further resource utilization and resource alloca-

tion efficiency [108]. However, considering these aspects pose new challenges on

resource allocation problem formulation. Nevertheless, the dramatic increase in

video demand on wireless broadband networks drives motivations for developing

suitable resource allocation schemes, which attain the highest overall video qual-

ity given the limited resources while delivering consistent and smooth service and

maintaining fairness among users who subscribed the same QoS.

• The resource allocation schemes in the literature can be categorized as centralized
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or decentralized schemes. The former is corresponded to networks with a PMP

infrastructure, but the later can be applied to either PMP (single-hop or multihop)

or adhoc networks.

The network infrastructure considered in this thesis is a centralized single-hop,

which is a fundamental infrastructure in many networks, e.g., cellular and relay

networks. The proposed resource allocation scheme has beenspecially designed

for a stand alone network. However, when some centralized single-hop networks

are adjacent, such as in cellular networks, the inter-cell interference should be

taken into account. It has been revealed that collaborationof BSs will resolve

the inter-cell interference problem and result in better performance [80], providing

that effective decentralized schemes with low complexity for the collaboration are

suggested. Similarly, the proposed centralized scheme canbe extended to multi-

hop relay networks. In multihop networks the co-existence of multiple links for

transmission causes more complexity, because the active links in each resource

allocation intervals should be determined in addition to the rate and sub-carrier

allocation to the transmission on each link [109].

Decentralized schemes are of great importance for the resource allocation in the

UL of centralized networks or in decentralized networks. The proposed resource

allocation scheme in this thesis can be applied in the UL withsome slight changes [110].

For example, the BS power constraint is replaced by a per user power constraint.

Furthermore, as the nodes in the network, except the BS, are not usually able

to monitor all channels used for other nodes transmissions,an effective informa-

tion exchange mechanism is needed to take full advantage of the channel diversity

among different nodes.

5.3 Final Remarks

The coexistence of real-time and non-real-time traffic in future wireless networks is

promising. Therefore, resource allocation schemes that support multiple traffic types
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and maintain fairness simultaneously are demanded.

While considering most important resource allocation paradigms, such as adaptive

rate or power allocation, dynamic frequency allocation, and scheduling, this thesis fo-

cuses on the OFDMA fine resolution and flexibility in resourceallocation. We present a

framework which considers the OFDMA network restrictions as well as heterogeneous

users’ fairness and QoS constraints while attempting to improve the wireless system

scarce resources utilization. By taking a different direction from previous works, we

introduce a new problem formulation and solution, based on continuous optimization

techniques, for the OFDMA resource allocation optimization problem, which produces

results with reasonable accuracy in practical time duration.

The new formulation for the OFDMA resource allocation, in this thesis, facilitates

applying other continuous optimization approaches that may treat nonconvexity prob-

lem more efficient than discrete optimization methods that have been proposed so far

in the literature. For instance, scalable and fast-converging continuous methods can be

searched for to be applied to this new problem formulation infurther works.
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Appendix A

Derivation of ∇2
rrL,∇rf (r),∇2

wwL,

and∇wf (w)

The mathematical representations of∇2
rrL and∇rf(r), required by the interior point al-

gorithms in chapter 3, as well as∇2
wwL and∇wf(w), required in chapter 4, are presented

in section A.1 and A.2, respectively.

A.1 ∇2
rrL and∇rf(r)

The objective function ofPr5, based on utility functions (3.62), is represented by:

f(r) = − (U1(r1) + . . . + UM(rM)) +
L

2
(
∑

i

∑

î

(rî1ri1 + . . . + rîKriK)).(A.1)
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Accordingly,∇rf(r) =
(

∂f

∂r11
, . . . , ∂f

∂rMK

)T

is computed as follows:

∇rf(r) = −

































∂U1(r1)
∂r11

...
∂U1(r1)
∂rMK

...
∂UM (rM )

∂rM1

...
∂UM (rM )

∂rMK

































+ L

































∑

i ri1 − r11

...
∑

i riK − rMK

...
∑

i ri1 − rM1

...
∑

i riK − rMK

































, (A.2)

where, forj = 1, · · · , K, andθ = π
2

r−l1
l2−l1

:

∂Uĭ

∂rij

=







kπ
2(l2−l1)

sin(k−1)(θ)cos(θ) if i = ĭ,

0 otherwise.
(A.3)

To obtain∇2
rrL,∇2

rrf(r) and∇2
rrC(r) are computed first:

∇2
rrf(r) = −















G(r1) 0(K,K) . . . 0(K,K)

0(K,K) G(r2) . . . 0(K,K)

...
...

...

0(K,K) 0(K,K) . . . G(rM)















(A.4)

+L















0(K,K) I(K,K) . . . I(K,K)

I(K,K) 0(K,K) . . . I(K,K)

...
...

...

I(K,K) I(K,K) . . . 0(K,K)















, (A.5)

where

G(ri) =















∂2Ui

∂ri1∂ri1
. . . ∂2Ui

∂ri1∂riK

∂2Ui

∂ri2∂ri1
. . . ∂2Ui

∂ri2∂riK

...
...

∂2Ui

∂riK∂ri1
. . . ∂2Ui

∂riK∂riK















. (A.6)
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0(K,K) is aK×K matrix with all zero entries, andI(K,K) is aK×K identity matrix. The

second partial derivatives of the utility functions required for calculatingG(ri) functions

are:

∂2Ui

∂rij̆∂rij

=
Kπ2

4(l2 − l1)2

(

(k − 1)sin(k−2)(θ)cos2(θ)− sink(θ)
)

, (A.7)

for j̆ andj ∈ {1, · · · , K}.

Finally,∇2
rrC(r) for calculating∇2

rrL is obtained by:

∇2
rrC(r) =

(

Kln(2)

B

)2

















2
Kr11

B

α11
0 . . . 0

0 2
Kr12

B

α12
. . . 0

...
...

...

0 0 . . . 2
KrMK

B

αMK

















. (A.8)

A.2 ∇2
wwL and∇wf(w)

The objective function ofPr9, based on utility functions (4.32), is represented by:

f(w) = − log(U1(w1)− . . .− log(UM(wM)). (A.9)
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Accordingly,∇wf(w) is computed as follows:

∇wf(w) = −

(

kπ

2 (l2 − l1)
cos(θ)
sin(θ)

)



























1
...

1

0
...

0



























−

(

kπ

2 (l4 − l3)
cos(θ)
sin(θ)

)



























0
...

0

1
...

1



























(A.10)

= −

































kπ

2(l2−l1)
cos(θ)
sin(θ)

...
kπ

2(l2−l1)
cos(θ)
sin(θ)

kπ

2(l4−l3)
cos(θ)
sin(θ)

...
kπ

2(l4−l3)
cos(θ)
sin(θ)

































, (A.11)

where,θ = π
2

wij−lmin

lmax−lmin
. Note that utility functions (4.32) are convex fori = 1, · · · , M

2

and concave fori = M
2

+ 1, · · · ,M .

To obtain∇2
wwL,∇2

wwf(w) and∇2
wwC(w) are computed first:

∇2
wwf(w) = −















G(w1) 0(K,K) . . . 0(K,K)

0(K,K) G(w2) . . . 0(K,K)

...
...

...

0(K,K) 0(K,K) . . . G(wM)















, (A.12)

where

G(wi) =















∂2fi

∂wi1∂wi1
. . . ∂2fi

∂wi1∂wiK

∂2fi

∂wi2∂wi1
. . . ∂2fi

∂wi2∂wiK

...
...

∂2fi

∂wiK∂wi1
. . . ∂2fi

∂wiK∂wiK















, (A.13)

and0(K,K) is aK ×K matrix with all zero entries. The second partial derivatives of the

objective functions required for calculatingG(wi) are:
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∂2fi

∂wij̆∂wij

=
Kπ2

4(lmax − lmin)2

(

1

sin2 (θ)

)

, (A.14)

for j̆ andj ∈ {1, · · · , K}.

We need∇2
wwC(w) to calculate∇2

wwL. As the users’ minimum rate requirement

Ri
min equalslmin andwi’s are bounded bylmin andlmax, first, we rewriteC(w) as fol-

lows:

C(w) =
























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





















∑K

j=1 w1j −
l1+l2

2
...

∑K

j=1 w(M
2 )j
− l1+l2

2
∑K

j=1 w(M
2

+1)j
− l3+l4

2

...
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j=1 wMj −
l3+l4

2

−
∑M

i=1

∑K

j=1
1

αij
(2wij − 1) + PBS

w11

...

wMK










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



































, (A.15)

Then,∇2
wwC(w) is derived as follows:

∇2
wwC(w) = (ln(2))2















2w11

α11
0 . . . 0

0 2w12

α12
. . . 0

...
...

...

0 0 . . . 2wMK

αMK















. (A.16)
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