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Abstract

Orthogonal frequency division multiple access (OFDMA) scbming a widely de-
ployed mechanism in broadband wireless networks due tajpslhility to combat the
channel impairments and support high data rate. Besidefnglegth small units of

spectrum, named sub-carriers, instead of whole spectesults in enhanced flexibility

and efficiency of the resource allocation for OFDMA networks

Resource allocation and scheduling in the downlink of OFDM#works supporting
heterogeneous traffic will be considered in this thesis. gimpose of resource alloca-
tion is to allocate sub-carriers and power to users to meatgkrvice requirements while
maintaining fairness among users and maximizes resouitzatibn. To achieve these
objectives, utility-based resource allocation schemeagwith some state-of-the-art
resource allocation paradigms such as power control, agapiodulation and coding,
sub-carrier assignment, and scheduling are adopted. Otames a utility-based re-
source allocation scheme improves resource utilizatioallmcating enough resources
based on users’ quality of service (QoS) satisfaction. @rother hand, resource alloca-
tion based on utilities is not trivial when users demandedéht traffic types with convex

and nonconvex utilities.

The first contribution of the thesis is the proposing of a fesrark, based on joint
physical (PHY) and medium access (MAC) layer optimization Litility-based resource
allocation in OFDMA networks with heterogeneous trafficagp The framework consid-
ers the network resources limitations while attemptingiipriove resources utilization
and heterogeneous users’ satisfaction of service. Thamasallocation problem is for-
mulated by continuous optimization techniques, and arrdlhgo based on interior point
and penalty methods is suggested to solve the problem. Trnenmeal results show that
the framework is very efficient in treating the nonconvexitpblem and the allocation

is accurate comparing with the ones obtained by a geneticlsafgorithm.

The second contribution of the thesis is the proposing ofgoodunistic fair schedul-
ing scheme for OFDMA networks. The contribution is twofoirst, a vector of fair



weights is proposed, which can be used in any schedulingreefa OFDMA networks
to maintain fairness. Second, the fair weights are deployad opportunistic scheduling
scheme to compensate the unfairness of the scheduling.répeged scheme efficiently

schedules users by exploiting multiuser diversity gainP®A resource allocation flex-
ibility, and utility fair service discipline.

Itis expected that the research in the thesis contributegsveloping practical schemes
with low complexity for the MAC layer of OFDMA networks.
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Chapter 1

Introduction

1.1 Research Motivation

Recently, the world has witnessed rapidly growing of wirglkeshnology and increasing
demand for wireless communication services [1]. Accorlyirthe new standards for the
next generation wireless networks, such as, IEEE 802.1% fa+wireless metropolitan
area networks (WMAN), IEEE 802.11 [6] for wireless local aresgworks (WLAN), or
universal mobile telecommunication system (UMTS) fordhgeneration (3G) wireless
networks[6], appear with the trend of providing heterogrrseservices over broadband
channel. However, successful deployment of the standacés fa number of challenges,
e.g., scarce spectrum, complex time-varying wireless mlaiand providing quality of

service requirements of heterogeneous traffic types orcgergquirements.

Despite the limited unlicensed radio frequency (specifidalow 11 GHz), itis used
exhaustively due to the advantages of fast rollout and lawiadtrative/regulatory costs.
Besides, current technological barriers of using high feeqy bands, that need line-
of-sight (LOS) transmission, fade the motivation of depahg the applications that use
those bands. On the other hand, non-line-of-sight (NLCG8)simission on the unlicensed
band suffer from multipath propagation especially in urbegas. Accordingly, wireless
transmission techniques that promote spectrum usageeefficiand enable high data
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rate transmission over multipath radio, such as, frequdivesgion multiplexing (OFDM)

have found widespread deployment in current wireless tngssson technologies [7-11].

On the other hand, a natural challenge of wireless channadliscing signal strength,
but strong restrictions are taking effect on increasingdnaitted signal strength. Lim-
iting the power consumption is one of the requirements ofrftaa green world. In
addition, the technological constraints of battery pragidior electronic mobile devices
pose a restriction on available power. In addition to powmaitation, wireless channel
is highly time varying, which results in different power tegement for each transmis-
sion instance. Also, it demands sophisticated power dilmtachemes that adaptively

allocate limited power and take advantage of users’ ditxefsr power allocation.

Irrespective of wireless medium challenges for traffic $rarssion, wireless applica-
tions, such as, cell phones, are becoming more popular am@pglications, such as,
mobile computing, and video on demand are promising in tlae future. Each of these
applications demands its own service requirements andigtaqatted service manage-
ment that should be fair to all users. To come up with a saiutio heterogeneous traffic
types transmission on wireless channel, researchers tiaut & lot of efforts on propos-
ing some resource allocation schemes that consider theraémtioned challenges. In
other words, a resource allocation scheme is needed todesriechnical issues of trans-
mission technologies and wireless access mechanismsalloibating resources to meet
the heterogeneous service requirements. Due to the largesity of telecommunication
networks topologies, constraints, and objectives, masguee allocation schemes have
been proposed so far for legacy wireless networks [12]. Hewehese schemes need
renovation and/or redesign due to the advent of new traisgonisechnologies and net-
work applications.

Multicarrier OFDM transmission is a developing aspect andtiservice provision-
ing is a promising objective in recent wireless networks.DOFA, the multiple access
mechanism based on multicarrier OFDM, results in a flexieéurce allocation [10,13]
in the sense that instead of allocating whole resources, asitotal bandwidth, to only
one user at a time, some portion of it can be allocated to eseh The flexibility of
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OFDMA resource allocation can be deployed to compensatavii@ess channel im-
pairment [14], provide QoS [15, 16], and maintain fairnelsg [ These issues have been
studied separately in the existing literature, but faisn&€3oS, and resource utilization
enhancement should be considered simultaneously forezfficesource allocation in
practice. The commercial growth of the networks with maltréer transmission and
heterogeneous traffic types strongly depends on propofiicgert resource allocation

schemes that consider the aforementioned issues.

1.2 Problem Description

Transmission over wireless medium is the first and most fonedal challenge that the
service providers face in a broadband communication nétvidre medium is impaired
by many factors, such as, obstacles, noise, interferemzkejrdersymbol interference
(ISI). Obstacles shadow the signal path or cause scattandgliffraction, which result
in multipath propagation. Noise weakens the transmittgdadistrength, and interfer-
ences distort the signal. Basically, the degradations gpesdittable and time-varying.
Besides, they become more severe when the signal bandwidtrases. Accordingly,

elaborated methods are needed to mitigate channel impatisnmebroadband networks.

One of the most effective techniques to increase the spefticiency and combat
the wireless channel impairments in wireless networks iDRFThe fundamental fea-
ture of OFDM is it converts single carrier transmission toltiearrier transmission,
which is advantageous from the PHY and MAC layers points eiwiln PHY, OFDM
sub-carriers have overlap (it is possible because of thithingonality) which increases
spectral efficiency. In MAC, using OFDMA sub-carriers can moye spectral efficiency
in two ways. First, given channel state information (CSI)ab®arriers, a transmission
can be scheduled over sub-carriers that have good statid) vésults in less effort for
retransmission of corrupted signals transmitted on weakcsuriers. Second, as CSI
of sub-carriers for different users are usually indepenhdad uncorrelated, a sub-carrier
which is not in good status for a user may be in a good statusiother user. An optimal
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frequency usage will be achieved upon optimal sub-cargsigament to users.

The performance of OFDMA depends on sub-carrier assigntoamgers as well as
power allocation to each sub-carrier. Therefore, the jeuti-carrier and power allo-
cation problem, denoted by OFDMA resource allocation mohlis formulated as an
optimization problem whose solution is an optimal allogati In an OFDMA resource
allocation problem, resources are allocated to users inyatwachieve an objective
while satisfying some constraints. Maximizing aggregaers’ rates or minimizing to-
tal required transmission power are examples of the obgeéiinctions. The constraints
are imposed by some network limitations or service requar@s) such as, maximum

available power source or users’ minimum rate requirements

A constraint, related to PHY and MAC implementation of OFDM# to allocate
a sub-carrier to only one user at a time. In other words, acauber band cannot be
shared by several users simultaneously. Appeared in an G¥@mization problem,
this constraint causes the feasible region of the probleam,the set of allocations that
satisfy all constraints, becomes discrete. An optimizatimblem with discrete feasible

region is categorized among nonconvex optimization proble

In addition to the nonconvexity of the feasible region, th®eative function of
an OFDMA optimization problem may contribute to the nonaqty of the problem.
Utility-based OFDMA resource allocation problems are agithns category of noncon-
vex problems. Utility function, shortly utility hereaftas usually a function of rate that
shows a user’s satisfaction of received service [18]. Sotitidas are designed in the
literature to achieve a specific objective, but, in this iheapplication layer utilities,
l.e., those utilities that represent users’ perception 08Q@t the application layer are
considered. In a utility-based resource allocation schees®urce are allocated accord-
ing to users’ requirements as long as the allocation is &ffe utility increment. For

1An optimization problem is nonconvex if either the feasit#gion or the objective function be non-
convex. Moreover, a functiofi is convex if the domain off, Dy, is a convex set, i.e(1 — t)z +ty € Dy
foreveryz,y € Dy andt € [0, 1], andf(0z + (1 —0)y) < 0f(xz)+ (1 —0)f(y) for everyz,y € Dy and
0<0<1.
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example, astep utility function of rate represents that the user expectsashold rate,
allocating less rate is not useful at all, and allocating enatte is wasteful. Due to the
advantage of resource utilization enhancement, someythigised resource allocation
schemes, namely utility maximization problems, have beepgsed in the literature re-
cently. In a utility maximization problem the effort is on Riaizing aggregate users’
utilities. As long as users’ utilities are concdyéhe utility maximization problem is a
convex problem. For many concave utilities, the utilitysed resource allocation prob-
lem is a convex problem which can be solved using special@dstfor convex optimiza-
tion [19]. Therefore, most works in the literature have e¢desed only concave utilities.
On the contrary, in case of utility maximization for heteeagous traffic, some of the
utilities, such as voice and video, are nonconcave. Thenutitity-based resource al-
location in a multiservice network will not be a convex optiation problem any more.
Nonconvexity of the objective function, when combined wiitie nonconvexity of the
feasible region, contributes to difficulty of solving thelitg-based OFDMA resource
allocation problem.

Unlike convex problems, which there exist several alganghto solve them up to
the optimum solution efficiently, there is no suggested r@lgm for nonconvex prob-
lems that guarantees an optimum solution. Accordingly,coaiex problems are usu-
ally solved for a local (near optimal) solution by either hstic search algorithms or
nonlinear programming (NLP) solver algorithms. When thesilela region is small and
discrete, a search algorithm may find the optimum solutidimited time, but when the
feasible region expands, the solution time grows expoakytiand search algorithms
become inefficient. Similar to the search algorithms, NLReoalgorithms will result
in local solutions. However, they are usually faster thaarde algorithms. More im-
portantly, the closeness of solutions to optimal dependthersolver algorithm which
is used. Precisely, the accuracy of the solution obtainedrbWLP solver algorithm

depends on the way that it treats the nonconvexity of thelenob

2A function f is concave if the domain off, Dy, is a convex set, i.e(1 — t)z + ty € Dy for every
x,y € Dyandt € [0,1], andf(fx+(1—0)y) > 0f(x)+(1—0)f(y) foreveryz,y € Dyand0 < 6 < 1.
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Despite the difficulties of utility-based OFDMA resourcéoahtion problems, they
can be applied in many different network scenarios. Mostresent wireless access
technologies for ultra wide band (UWB), WLAN, WMAN, and cellutetworks deploy
OFDMA and aim a heterogeneous service provisioning. Whehetpi these scenar-
los, utility-based OFDMA resource allocation schemes ¢aciently allocate resources
to qualify usres’ satisfaction and improve resource wtian. In this thesis, utility-based
OFDMA resource allocation schemes in the context of hetregus service provision-
ing in the downlink of IEEE 802.16 WMAN is investigated. Theeanpt is to specify
challenging aspects of the problem and suggest a practickhecurate solution algo-

rithm.

1.3 Research Objectives and Contributions

The main objectives of this research are to develop a framefoo resource allocation

that provides satisfactory QoS and fairness for heteragentaffic types in the down-

link of point-to-multipoint (PMP) OFDMA networks, while iproving network resource

utilization. The framework guarantees the users’ minimate requirements, maintains
fairness among users, and enhances resource utilizatmtaneously. In order to real-
ize these objectives, the research work is conducted ie gteges as follows.

In the first stage, the OFDMA resource allocation problent thaarantees users’
minimum rate requirements is formulated based on contiswiimization techniques
[20]. The problem of OFDMA resource allocation is usuallggented by mixed inte-
ger nonlinear programming (MINLP) techniques in the litara [21-30]. However, our
proposed optimization problem is an NLP problem, which dugscontain integer vari-
ables. The NLP problem uses the information of OFDMA subiieastatus to allocate
power or rate to sub-carriers. This information are obthittgough a feedback chan-
nel via underlying PHY and assumed to be constant in a limrntval. The proposed
framework allows any objective function of users’ rate basidered in the optimization

problem. Indeed, the framework can serve applications wiitiner linear/nonlinear or
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concave/nonconcave utilities that require a minimum ratdunctionality. We investi-
gate the performance of the utility-based OFDMA resourtzcation scheme using an
iterative search algorithm. We implement a heuristic deafgorithm based on genetic
algorithm (GA) for the NLP problem. The results of the itaratsearch algorithm are
used as a benchmark in the next stages of the research, whanalgtical algorithm is

proposed to solve the problem.

In the second stage, inspired by continuous optimizati@nagch used for the OFDM
resource allocation problem representation, an algorithsed on a combination of a
penalty and an interior point method (PM/IPM) is suggesteddlve the NLP prob-
lem. Mainly, the approach takes advantage of an interiontpmiethod which can be
successfully applied to nonlinear programming problenig.[3 he success of interior
point methods in solving a nonconvex or nonlinear problemngfly depends on how
nonconvexity of the problem is treated. We apply a penaltgfion method to deal with
nonconvexity problem. Before applying the interior pointthael, the nonconvexity of
the feasible region is removed by a penalty function methddre precisely, noncon-
vex constraints are moved to the objective function by afeoent penalty. Then the
interior point method is applied to solve the new problemhvabnvex feasible region.
The solutions obtained by PM/IPM are compared with neamagdtsolutions obtained
by GA in terms of speed and efficiency of the algorithms. Tloppsed PM/IPM is very
comprehensive in the sense that users can have heterogeagotequirements and the

objective function of the resource allocation scheme camdmeonvex.

In the third stage, an opportunistic fair scheduling schepoposed for heteroge-
neous traffic in the downlink of broadband OFDMA networkstHis scheme, users are
scheduled for service based on three factors: a) the adléetiata rate at the instant of
scheduling, b) the average data rate that had been expedidryyceach user during an
observation time window preceding the scheduling instantthe assigned fair weight
to each user. The scheme uses a fair service disciplinedoasd resources to users
based on the instantaneous CSI of sub-carriers. The fairnige@mpensate the un-
fairness of the opportunistic scheduling and can be adjutyeamically according to
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users’ average channel status and fairness criterion. pte@sely, the fair weights are
computed based on the proposed framework for OFDMA res@lloeation and can be
used in most of the scheduling schemes in OFDMA networks. stheduling scheme
achieves a flexible trade-off between fairness and throuigtiadio resource utilization
Is enhanced by using adaptive modulation and coding. Thedsdér runs a bit load-
ing algorithm, which is embedded in the sub-carrier assgmralgorithm, to determine

allocated rate to sub-carriers while scheduling users.

1.4 Structure of the Thesis

The wireless channel impairment, happening from varionsloen phenomena in the
signal propagation paths, should be well understood arehtadko consideration while
designing broadband wireless networks. In chapter 2, & thiracterization of the ra-
dio channel including small scale and large scale fadingesegnted. Then, the OFDM
and OFDMA design issues to cope with the large and rapid tiamnig in received sig-
nal strength and provide a reliable transmission are expthi The OFDMA resource
allocation is investigated in the context of a centrally tcofled OFDMA broadband
network in this thesis. In addition, the required knowledg&®HY and MAC relevant
to the resource allocation problem formulation is desctjlseich as the relation among

transmission rate, power, channel gain and bit error pritityab

The problem formulation for resource allocation in cemyrabntrolled OFDMA net-
works is presented in chapter 3. First, basic assumpticths@mstraints of OFDMA and
the network are introduced. The OFDMA resource allocatiablem is represented by
a MINLP first. Then, an equivalent NLP problem for the MINLPeas proposed, which
is followed by a discussion about OFDMA resource allocaposblem complexity. An
iterative search algorithm based on GA and analytical &lgyorbased on PM/IPM is
suggested to solve the NLP problem. Numerical results fena@gos with convex and
nonconvex objective functions are conducted to evaludityttased resource allocation
schemes and verify the accuracy of solutions achieved byAN¥/



Chapter 1. Introduction

An opportunistic fair scheduling scheme is proposed in 4sfdreduling heteroge-
neous traffic in the downlink of OFDMA networks. The scheduékes advantage of
independent channel variation across users to improveetweork performance through
multiuser diversity. Also, to guarantee fairness, a weadhfairness scheme based on
users’ average channel gain and required fairness cnt&iproposed. In this chapter,
first, some opportunistic fair schemes proposed in thealitee for multicarrier networks
are surveyed. Then, the optimization problems correspurdehe scheduling scheme
and the fairness scheme are derived, and separate algeréppropriate for solving
each problem is suggested. Finally, numerical results@ndwcted to evaluate the per-

formance of the scheduling scheme and illustrate its adgpto users’ CSI.

The contribution of this thesis is summarized in chapterrbaddition, the future
research directions relevant to the works in this thesisls®issed. Also, final remarks

of the thesis are given at the end of this chapter.

1.5 Bibliographic Notes

Most of the research work reported in this dissertation lep@eared in peer reviewed
papers [12, 20, 32—-35] or will be published in [36—42]. Thaeaapts discussed in chap-
ter 2 appeared in [12, 33, 35,40-42]. The work of chapter 3oeafound in [20, 34, 36,
38,40,41]. The material of chapter 4 can be found in [32,8333, 39, 42].






Chapter 2

Multi-carrier Transmission Over

Wireless Channel

The emerging technology extends the transmission rateaargkrof wireless communi-
cation beyond the limits of existing technologies whil@aling for heterogeneous traffic
transmission. To achieve all these goals, qualified prdsasfwould efficiently utilize the

spectrum and overcome the deficits of wireless channel amebus to maintaining a

satisfactory level of service for users with heterogendraffic types.

Most current wireless standards support OFDM and OFDMA threspectively,
are robust technique for transmission and flexible mechafos resource allocation on
wireless channel. The OFDM air interface mitigates muttigand interference effects,
which are some main challenges of wireless communicatitve. JFDMA mechanism
is very flexible in allocating resources due to its capabdit providing fine granularity
in accessing the spectrum. As we take advantage of thesdicm@uns through this
research work, we explain them briefly in this chapter.

First, wireless channel specifications and transmissiatiages in broadband net-
works are explained. Then, we will describe how OFDM can catnthbe channel im-
pairments and how flexibility and granularity of OFDM can beadrporated in a resource
allocation scheme to improve network performance. We cemnsa general centralized

11
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network topology throughout this thesis, which is introelden the last section of this

chapter.

2.1 Radio Channel

2.1.1 Wireless Channel Impairments

Propagation over wireless channel weakens, delays, ardatetes transmitted signals
randomly. Expansion of wireless networks over urban areagssitates NLOS trans-
mission, where a transmitted signal passes several obstis©n its way to a wireless

receiver. When a signal is propagated in NLOS conditiongjeanphenomenas, such
as, reflection, refraction, diffraction, absorption, oatsering deteriorate the signal and
result in multiple reception of the signal with differentiags and strength. The wireless

channel impairments can be categorized as the following@nena and effects:

e Noise: Additive white Gaussian noise (AWGN) is the main innpeEnt in any
communication channel. AWGN has a constant spectral dersityit affects
broadband signals more than narrow-band signals. As AWGHdgiee, it can be

formulated by simple and tractable mathematical models.

e Shadowing: Large obstacles in the propagation path, sulshilasngs and moving
objects, shadow the signal transmission. Although, radiees propagate around
such blockages via diffraction but the power loss dropsredyeShadowing phe-
nomenon causes slow variations of a transmitted signal niegpect to the signal

duration, so shadowing is sometimes referred to slow fauhinige literature.

e Pathloss: A signal power decays in the communication pattheslistance in-
creases. Pathloss depends on the environment of travergimegs and is inversely
proportional to square carrier frequencies. Broadbandasgexperience signifi-
cant pathloss. In addition, pathloss is worse in NLOS tharitte-of-sight (LOS)

12
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diffraction

Fig. 2.1: Multipath channel

transmission. Pathloss is a large-scale fading type bedtusffects are dominant

in extended geographical networks.

e Multipath Fading: Large variations in received signal dope occurred by prop-
agating the transmitted signal via diffraction, scattgriand reflection, as shown
in Fig. 2.1, is characterized as multipath fading. The v‘emmaof the amplitude
of the received signal affected by multipath fading may bey\Varge even over
very small distances or small durations. Multipath propiagacauses frequency
selective fading and intersymbol interference (ISI). Tregtiency selectivity re-
sults from destructive interference of transmitted signi#h itself due to multipath
reflections. A frequency selective fading channel cause ¢eing in some fre-
guency components of the transmitted signal. The locatadithe deep fades
may change because the interference pattern changes figittoes movement or
changes.

ISI is due to the signal propagation through different patihd concurrent recep-
tions of different transmitted signals. In a NLOS enviromié&me dispersion of a
multiple propagated signal causes it arrives at the recdiwveng the next symbol
period reception. ISl is a big concern for broadband sigrsadmission, because
the symbol length is short in time and a small delay causeTi@iditionally, ISI

13
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is overcome by equalization, but it is computationally hatdeen number of trans-

mitted signals increases.

e Doppler Shift: Time selectivity which is occurred due toatgle motion between
a transmitter and receiver causes carrier frequency digpecalled Doppler shift.
Doppler shift phenomenon depends on movement speed aridrdaequency.
Doppler shift reduces SNR and can make carrier recovery gnchsonization
more difficult for broadband signals. Doppler shift is a meamcern for OFDM-
based networks, since it can corrupt the orthogonality ef@DM sub-carriers

named intercarrier interference (ICl).

e Interference: It is the conflict resulted when two or morersigeansmit on the
same frequency band. Frequency reuse, which allows usans atailable band-
width and improve spectrum utilization, may cause signafdifferent users to
interfere with each other. Interference limits the capeaitd coverage of wireless
networks.

Typically, the broader is the signal, the worse is the wsglehannel impacts. Broadband
wireless networks need to be designed to cope with these &rd rapid variations in
received signal strength. There is no unique solution tthake impairments. However,
OFDM is a popular choice for mitigating most of these defjdscause it exploits wire-
less channel fluctuations and multichannel transmissiaibflgy for efficient transmis-
sion of broadband signals. We will explain, later in this piea, how OFDM will reduce
some of these impairments. For this purpose, we first forraglame of aforementioned

channel effects in the followings.

2.1.2 Wireless Channel, Mathematical Model

The communication channel can be modeled as a linear tinewaystem [43]. Due to
multipath propagation and Doppler effect, the channel is®uesponse té(7), Dirac

14
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O(T) ——» Channel |——» A(t,7)

E - h(t,T)

Fig. 2.2: Tapped delay model for multipath channel

impulse function transmitted at the momenis the superpose of the reflect&d)s:
Np—1
h(rt) = ) ay(t)eCmIoattens (7 — 7,(t)). (2.1)
p=0
ap, fpp, pp andr, refer to the complex-valued amplitude, doppler frequepbgse, and
delay of patly amongN,, multipath. A systematic representation/dfr, ¢) is a tapped
delay line as shown in Fig. 2.2 [44,45], where the output chedelay blockr,, is a tap
consisting of multiple propagated signal with close dekays,. In practice the number
of taps that can be distinguished is very large. Therefany, those taps with a delay
greater than the inverse of the input signal bandwidth, aresidered in the receiver
detectors [43].

Fading channel effects depend on some channel charaictessth as delay spread,
coherence frequency, and Doppler spread and some signmaktéwstics such as band-
width and duration time. In the following, we explain thedwracteristics and their
relevant bounds that limit some fading effects, such as,ft8fuency selectivity, and
ICI.
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2.1.2.1 Delay Spread

The delay dispersion of channel, identified as root meanrsqg{iRMS) delay spread,
determines the severity of ISI and frequency selectivenfpdRMS delay spreadi, s

depends on the channel stationary impulse respbfige

Np—1

h(t) = > ad(t—m) (2.2)

p=0

and channel mean delay

00 2 Np—1 2
- fo \h(t)|” tdt _ Zp:U lap|” 7p 2.3)

Jo~ In(O)F at >t lapl”

as follows [46]:

_ ol = Pde o e (= 7). (2.4)

Jo~ Ih() at >opro lapl”

RMS delay spread is the standard deviation value of the ddlagflections, weighted

TRMS

proportional to the energy in the reflected signals. To al®ldthe symbol duratiofl’

should be much larger thatg,,s [47].

2.1.2.2 Coherence Bandwidth

In a frequency selective fading channel, the frequency amapts of a transmitted signal
are distorted differently. To avoid frequency selectivitye signal bandwidth should
be smaller than the channel coherence bandwigjthwhich is the frequency band that
the channel is frequency flat fading. Coherence bandwidthmeasure of the channel
frequency dispersion, i.e., the extent between two diffefiequencies; and f; where
the channel fading is correlated. Accordingly, the fadiffga for two tones located

apart farther thams. is uncorrelated.

The correlation can be measured by the channel frequenpgnss autocorrelation

function as [48]:

R(Af) = E{H(},00H*(f=Af,0)}, (2.5)
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where(-)* denotes the complex conjugate, afdf, ¢) is the channel time-variant trans-

fer function [49]:
Np—1
H(f,t) = Z ap(t)ej(Qﬂ(fD,pt_pr(t))'i‘@P)‘ (2.6)
p=0
The coherence bandwidtB, measures the spectral width [@ (A f) | over which

the channel is considered frequency flat.

2.1.2.3 Doppler Spread

Similar to delay dispersion that causes channel frequeslegtivity, frequency disper-
sion results in channel time selectivity. Doppler spreaftequency dispersion, describ-
ing the time varying nature of the channel, occurs by retatnobility of the transmitter
and the receiver or the movement of objects in the environnv&¢hen a carrier frequency
f. is transmitted on a channel with Doppler frequerfgythe received signal spectrum
is spread over, — f;to f.+ f;. This phenomenon is known as Doppler spread, which
cause varying phase shift of the received signal. Such @l&as a very short coherence
time, i.e., the channel transfer functions variation withet is faster than the ones of the

transmitted signal. The time correlation function [14, 48]
R(At) = E{H(0,t)H*(0,t — At)} (2.7)

quantifies the time varying nature of the channel. Filif\¢), the channel coherence
time T, can be obtained, and it is defined as the time duration oveshwthe channel is
essentially flat [49]. If the signal duratidh, is greater than the coherence time of the
channel, then the channel will change during the transomssi the baseband message,
thus causing distortion at the receiver[47].

Coherence time Tc is the time domain dual of Doppler spread:
1
f:ina:c '

firer is the maximum Doppler spread. If the signal bandwidth isimyreater tharf***

T, ~

(2.8)

the effects of Doppler spread are negligible at the receiver
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2.2 Multi-Carrier OFDM

2.2.1 OFDM Transmitter and Receiver

OFDM is an old technology with a history that goes back to @05 %1]. While OFDM
concept is simple, it took a while to find a widespread appbcain modern telecommu-
nication networks due to implementation issues. Deployivgrse fast Fourier trans-
form (IFFT)/fast Fourier transform (FFT) removed the reégment for a large number
of sinusoidal generators in OFDM transmitters and sepdilétes for sub-carriers in
OFDM receivers, which accelerated OFDM emerging in todagieket.

The key concept in OFDM is to split a wide band signal into saverthogonal
narrow band signals for transmission. In other words, adstef transmitting a volume
of bits over a short time duration and a wide frequency bansl tfiansmitted over a long
time duration and several narrow frequency bands. For thizgse, a baseband high data
rate stream is divided int& parallel low data rate streamd§, [ =0,--- , K — 1, inan
OFDM transmitter as shown in Fig. 2.X;s are modulated with orthogonal sub-carriers
by IFFT and a guard interval greater than the multipath tepeeading is added between
the OFDM symbols to eliminate ISI. A cyclic extension of th&[@M symbol, i.e., a
copy of the OFDM symbol in the intervalT, < ¢ < 0, named cyclic prefix, is inserted
in the guard interval’, — 7, < t < T,, whereT} is the OFDM symbol time. OFDM
symbols are modulated by a carrier frequency after passpagadlel to serial converter.
At the receiver, the reverse action are taken place to repmthe baseband high data
rate stream. In the receiver side, channel estimation nmition are obtained and fed
back to the transmitter for adaptive transmission schemgs) as adaptive modulation,

channel coding, and power allocation.

2.2.2 PHY Layer Advantages of OFDM

Using large number of slow rate streams, which are carrieablogow band sub-carriers,

increases robustness against frequency selective fadthgranunity against impulsive
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[ \

Input Data 1 X v(t) :
|

Stream | Serialto | | Cyclic |, Parallel | | Carrier :

! Parallel IFFT Prefix to Serial Modulation | |

| |

(S l ______ |

Channel

outputbata | f _____ k

Stream | . i ) !

) | Parallel Removing Serial to Carrier !

b : to Serial FFT Cyclic Prefix Parallel Demodulatior] 1

| A :

| I

| I

| v |

: Channel :

: Estimation !

| )

OFDM Receiver

Fig. 2.3: An OFDM transceiver structure

noise. As sub-carriers bandwidth are narrow, the fading ttiney experience is flat.
Also, due to enlarging symbols duration in time domain, OF&vhbol duration is much
larger than multipath delay dispersion, which eliminat&s Eliminating ISI removes the
requirements for equalization and reduces the complekiy @FDM receiver. Orthog-
onality means sub-carriers are independent and each onleecadaptively coded and
modulated. With orthogonal sub-carriers, there is no needdiard band between sub-
carriers, to avoid ICI, because the peak of one sub-carr@mreavhen other sub-carriers
are at zero as shown in Fig. 2.4. Orthogonality allows thearbers to overlap and save
some bandwidth, so OFDM increases spectral efficiency inpaoison to frequency di-
vision multiplexing (FDM). Cyclic prefix restore the orthawality of sub-carriers at the

receiver.
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(a) Time Domain lllustration

0 Ts 2T

(b) Frequency Domain lllustration

Fig. 2.4: Time and frequency illustration of OFDM-sub-¢ars (a) two OFDM sub-
carriers modulated by binary phase shift keying (BPSK) dustilated over two OFDM
symbols duration, (b) nine OFDM sub-carriers are illugidan frequency domain
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2.2.3 MAC Layer Advantages of OFDM

Originally, OFDM was proposed as a digital modulation or tipl#xing technique,
where all sub-carriers in an OFDM symbol carried only a sseéata. However, OFDM
can be used as a multi-user transmission technique wheetsutfssub-carriers in an
OFDM symbol are assigned to different users’ transmissidng2]. Multiuser transmis-
sion is possible because of the orthogonality of OFDM subiers. Multiuser OFDM,
denoted as OFDMA, is superior to traditional multiple asa@echanisms such as TDMA
and CDMA in terms of ability to exploit multiuser diversity3h OFDMA superiority in
multiuser diversity gain stems from the fact that sub-eastiwhich are the basic units of
physical resources, i.e., time and frequency, are smaé.fifle granularity of resources

units increases the flexibility of a resource allocationesoh.

Given a block of OFDMA symbols, the number of both symbols suotcarriers can
be dynamically assigned to each user. Dynamic sub-casggmament (DSA) achieves
multiuser diversity gain. The multiuser diversity gainsas from the fact that the uti-
lization of given resources varies from one user to ano#hsub-carrier may be in deep
fading for one user. Allocating this particular sub-cart@the user with higher channel
gain permits higher transmission rate. To achieve multidsersity gain, a scheduler at
MAC is required to schedule users in appropriate frequendysgmbols of an OFDMA
block.

Another techniques that enhances the resource allocatienees in MAC is adap-
tive modulation and coding (AMC) technique. AMC allows diet modulation and
coding to be used for the transmission on each sub-carfisonte sub-carriers suffer
from interference or attenuation, they can be allocate@towamber of bits or they may
not be used for transmission. On the contrary, sub-carwérshigh channel gain are
modulated by a higher order modulation and carry more bitspb-carrier. The main
objective of adaptive modulation and coding is to compenBatradio channel instabil-
ity. It has been shown that adaptive modulation can effelstimprove the bit error rate
(BER) performance on radio channel which had suffered frord@ang and fading.
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DSA and AMC are deployed at the transmitter when the fadiragnobl is flat over a
block of OFDMA symbols and a perfect CSl is available at thagraitter. Under these
assumptions, the normalized transmission rate (bit$Az¢@n sub-carriey is given by
[54]:

r; = log, (1 n pjjo\‘[—;) , (2.9)
wherep;, a;, and N, are, respectively, the allocated power to sub-cayri¢he channel
gain of sub-carrierj, and AWGN spectral density. The Shannon capacity in equation
(2.9) is an upper bound that asymptotically approaches#imsiission rate over wire-
less channel. In practice, this upper bound is not achieveetiworks because of using
modulation and coding rates, which allow a specific numbebitsf is modulated and
coded in each sub-carrier. Basically, given CSI, a proper matidn and coding rates
can be chosen for the upcoming transmission so that the igatdcan be maximized.
An appropriate modulation and coding rate can be chosendrtmokup table. Also, for
someM -ary modulation, such as M-QAM and M-PSK, wheverepresents the modu-
lation level, approximate equations for obtainihgbased on CSI and required bit error
probability, P,, exist. The approximations of the M-QAM and M-P3K are, respec-
tively, given by [55]:

4 3p; %ZOQQM
logo M M—1

2 Qg . ™
P, loggMQ (, /ijﬁologgM sin <M)> . (2.11)

In [56-58] equation(s) (2.10) and/or (2.11) are invertealbtain the constellation

size and power adaptation for a specific However, the&)(-) function cannot be easily

P,

Q

(2.10)

Q

inverted in practice, because numerical inversions aressaey [55]. Alternatively, the
exact approximation can be written in a form that is easy werin[59—-62]. Because
both modulation schemes are special cases of the M-ary molultechniques [63],
equations (2.10) and (2.11) can be written as

Pb ~ C1exp [2037‘2—]]\2] (212)
I = Cy
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wherer; = log,M andc; = 0.2, c; = 1.5, c3 = 1 andey = 1 for M-QAM andc; = 0.05,
cs = 6,c3 = 1.9 andcy = 1 for M-QPSK [55]. Constants for different bounds can be
found in [64]. By assuming="instead of ~” in (2.12) and solving for\/, we obtain:

. Co ()]
Mo e <_1n(&)P"FZ)+C4) (2.13)
Cc1

The adaptive modulation transmission rate as a functiaf, aan be obtained by substi-
tuting (2.13) inr; = log, M:

. 1 Co Q5
r; = 0_310g2 <C4 7 ln(%)Pjﬁo) . (2.14)

Note that the transmission rates equations (2.14) and é2e93imilar. Thus, a resource
allocation scheme that maximizes one of them maximizes ther ¢65]. This result
broadens the applicability of resource allocation scheimastworks that adopt different

modulation schemes.

2.3 Network Topology and Configuration

The network topology considered in this thesis is a PMP stftecture, as shown in
Fig. 2.5, which consists of a base-station (BS) and seveeas scated in one hop neigh-
borhood from the BS. The uplink (UL) channel, the transmis$fom users to the BS,
is shared by all users, i.e., UL is a multiple access chai@elthe other hand, the down-
link (DL) channel, the transmission from the BS to users, isabficast channel. We
consider resource allocation and scheduling on broadtasinel, which is part of the

BS operations in this network.

This thesis considers a centralized resource allocatioerse, where the BS allocates
OFDM sub-carriers and power to users based on CSI. Usersastids| and report it to
the BS on each MAC frame. It is assumed that the estimatiom isrnegligible and CSI
remains constant during the next frame duration [66]. The Bterdhines sub-carrier
assignments and power allocations based on CSI and broascakbcation vector on a
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power
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Fig. 2.5: Network platform is the DL of a PMP infrastructurbeve spectrum and power

are allocated to users with heterogeneous service regeimsm
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signaling channel at the beginning of each MAC frame. In tilWwing, some of PHY

and MAC specification related to resource allocation prnoliermulation are reviewed.

2.3.1 PHY Layer

The PHY layer is responsible for raw bit transmission. Weuass a single physical
channel shared among all users and, hence, the channes ascestrolled by a MAC
protocol. The radio technology used in the physical chacaelbe any widely deployed
one, such as WiFi or WIMAX. All users are equipped with ideaticommunication

devices and are capable of performing all the required n&ing functions and services.

For simplicity, ideal wireless channel without transmasserror is assumed unless
otherwise is mentioned. CSl is basic to achieving efficiesuece allocation. The infor-
mation is estimated at the receiver and fed back to the tra@snAs the characteristics
of slow fading channel are different from fast fading chdrioe OFDM networks, dif-
ferent estimation algorithms should be used for each cae HEstimation algorithms
take advantage of the correlation between time [67] or feegy [68] instances of chan-
nel to estimate the channel. As CSI in OFDM networks is preskmt both time and
frequency domain, a channel estimation algorithm for OFD#uorks should consider
both time and frequency domain characteristics. As the tioreslation between sym-
bols of a fast fading channel decreases with time faster dhslow fading channel, fast
fading channel estimation is more complicated. We assumeftannel estimation is tak-
ing effect through pilot assisted methods, i.e, the comeleselope of the fading channel
is estimated using pilot symbols [69, 70]. As these methadgstipe channel estimation
for pilot sub-carriers, the channel estimation of the othéy-carriers can be derived by
interpolation.

2.3.2 MAC Layer

Radio resource allocation is part of the MAC sub-layer task&e current layered net-

work architecture. MAC functionality in controlling aceet shared resources will im-
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prove if it can acquire time-varying information of resoes¢c mainly CSI, and users’
requirements from PHY and upper layers, respectively. Adapesource allocation
schemes deploy the provided information to smartly alle¢aé air links to users based
on users’ QoS requirements and channel quality. Therefomss-layer design and
optimization across PHY and MAC are suggested for wirelessurce allocation and

scheduling schemes [71-73].

Using a cross-layer design between PHY and MAC, users’ CSlasvkrat the be-
ginning of each transmission frame. Upon receiving a feeklichannel estimation, the
BS makes new decisions for allocation of shared resourcesméordhs users of the new
assignment. The period of resource allocation fetchingeddg on the speed of varia-
tion of the fading channel. Adaptive resource managemehniques are successfully
applied to slow varying fading channel, such as in fixed or adimapplications where

the channel is static or quasi-static.

The BS broadcasts information based on OFDMA in the DL. Uskagklogged
traffic, buffered in separate queues at the BS, are transhaitt@ssigned sub-carrier and
allocated power determined by the resource allocationmsehdJL and DL subframes
are interleaving in a time division duplexing (TDD) mannerai MAC frame as shown
in Fig. 2.6. A MAC frame consists of frame header, DL and UL fantes, and guard
bands. The frame header is used for synchronizing usershatBS and carrying users’
profiles, e.g., the code rate or the sub-carrier allocateshti user. All MAC frames
are assumed to have the same fixed length, which can be eelsigved in practice by
commonly used link layer functions, such as fragmentatiaoacatenation of the upper

layer packets.

2.4 Summary

In this chapter, the fading channel characteristics wepdagxed, and the mathematical
model of wireless fading channel was presented. Then, baséte channel model, we
described how OFDM can improve communication over fadiranckel. An overview of
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Fig. 2.6: OFDM symbols and sub-carriers in a MAC frame

the OFDM and OFDMA transceivers structures along with aranation of their oper-
ations were presented. In addition, the required knowledé#Y and MAC relevant to
the resource allocation problem formulation was describadh as the relation among

transmission rate, power, channel gain, bit error proligjénd infrastructure used.
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Chapter 3

A Framework for Resource Allocation
In OFDMA Networks

Resource allocation is a very broad topic in telecommuroodield due to the extended
scope of targets, e.g., diverse service provisioningegfit infrastructure accommoda-
tion, or mobility support. In this chapter, we consider t@se allocation in multicarrier
OFDMA networks when users have heterogeneous rate regemtsm We investigate
how the flexibility and granularity of OFDMA can be incorpted in a resource alloca-

tion scheme to improve network performance and resourbeation.

We formulate the joint optimization problem of sub-carréssignment and power
allocation in OFDMA networks as an MINLP problem first. A maghallenge in solv-
ing the optimization problem is non-convexity caused by ¢benbinatorial nature of
sub-carrier assignment problem and/or non-convex obgtiinctions. To avoid combi-
natorial optimization, we formulate the resource allomatas a nonlinear programming
(NLP) with continuous variables. The problem formulatiotidws by a discussion about
the complexity and performance of the proposed schemetsietie literature. We sug-
gest an approach based on PM/IPM to solve the NLP problenmgléstwo-step imple-
mentation, first, the penalty method is applied to convertribin-convex feasible region
to a convex one. Then, the interior point method is deployedadive the new prob-
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lem which is non-convex only in the objective function. Takate the performance of
PM/IPM, we implement a genetic algorithm that achieves gdéimal solutions of the
problem by iterative searching. Numerical results aregues] at the end of the chapter
to demonstrate that PM/IPM can solve the problem withintiehitime while the solu-
tions are close to the ones obtained by the genetic algaoritmadditions, the sensitivity
of PM/IPM to users’ channel gains and the effects of utibsed resource allocation are
investigated.

3.1 Problem Formulation

In wireless OFDMA networks, sub-carrier assignment to sised power allocation to
sub-carriers, referred as OFDMA resource allocation,caffiee network performance
significantly. In practice, to assign sub-carriers andcaite power efficienty; an OFDMA
resource allocation is presented as an optimization pnofleose objective function and
constraints are determined based on users’ requiremeshtsednvork specifications. De-
pending on the definition of the objective functions, diffiet utilization performance are
expected. Resource allocation algorithms available initeeature focus on two main
objectives: either data rate maximization or power minatian. Using a general ob-
jective function of rate, we present an optimization prabler sub-carrier assignment
and power allocation constrained by the BS maximum power gedsuminimum rate

requirement. The problem formulation of power minimizatig not discussed here.

Interested readers are referred to [58] and [22].

The restrictions imposed by OFDMA networks specificationd asers’ require-
ments determine the feasible region, i.e., the set of feasiliocation that satisfy all
constraints. Due to the exclusive sub-carrier assignmfe@EDMA, the feasible region
Is discrete and consequently nonconvex. The objectivetifumof the problem depends

on users’ demand and networks service providers’ goalsgiwhsually is a nonlinear

1An efficient resource allocation is the one that allocatesiash resource as is needed by a user as
long as resource is available.
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function in practice. MINLP techniques are used when a discnetwork structure and
continuous parameters are simultaneously formulated ieldordingly, most proposed
schemes for the OFDMA resource allocation are based on MIM&Preview some of

these schemes in section 3.2.

Following the work in the literature, first, we present an NIl problem for the
OFDMA resource allocation. The feasible region of the MINkBblem contains integer
variables representing sub-carriers assigned to userscamichuous variables represent-
ing power allocated to sub-carriers. Then, we prove thasét®f constraints including
the integer variables, in the MINLP problem, can be sulistitby a set of nonlinear con-
straints with continuous variables. Accordingly, we préssen NLP problem that unifies
sub-carrier assignment and power allocation in a rate (aeppallocation problem. For
more readability of formulas, the network parameters usdlle optimization problems
are given in Table 3.1.

3.1.1 MINLP and NLP Problems

We consider a network platform shown in Fig. 2.5, which csitssof the BS and several
users located in one hop neighborhood from the BS in a PMPsiméreture. The BS
assigns sub-carriers to users and allocates a fractiored $total powerpPsg, to each
user in each resource allocation interval. A solution ofrémource allocation problem

is denoted by a rate allocation vectoor a power allocation vectagras below:

r = [7’11,7"12,...,TlK,...,TMl,...,TMK]T (31)

p = [p11,p12,-~-72911{,--prl?---apMK]T- (3-2)

Similarly, a sub-carrier assignment vector is denoted, yhere

c = [6117612,...,ClK,...,CMl,...,CMK]T (33)
andc;; is
1 if sub-carrierj is assigned to user
Cij == . (34)
0 otherwise.
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Table 3.1: Notations Descriptions

Notation Description

M total number of users in the network

K total number of sub-carriers in the network
7 user index belongs tM := {1,2,..., M }

Jj sub-carrier index belongs 16 := {1, 2, ..., K'}
Qj channel gain of useron sub-carriey

Dij allocated power to useéron sub-carriey

Tij allocated rate to uséron sub-carriey

R . minimum service rate requirement of uger
B network bandwidth

Pgg BS total power budget

Every user can use several sub-carriers, but each sulercean be assigned to at most
one user. Mathematically, this restriction is given by

M

=1
If sub-carrier; has not been assigned to usethen allocated power to uséon sub-
carrierj must be zero. Therefore, for every user M and every sub-carrigre K, we
must have the following condition:

if Cij = 0 then Pij = 0. (36)
We include this restriction in the optimization problemahgh the following constraint:
Dij S PBScij Vi € ./\/l, Vj e K. (37)

Note that, ifc;; = 0, (3.7) impliesp;; < 0 that along with the non-negativity constraint
pi; > 0yieldsp;; = 0 and satisfies (3.6). When, = 1, (3.7) is reduced to the redundant
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constrainp;; < Pgg, because of the existence of the following constraint, Whigsures

total allocated power to the sub-carriers in each time slbirited to Pgs:

M K

Z Z cijpij < Pps. (3.8)

i=1 j=1

As (3.7) includes (3.6), variables;'s can be removed from (3.8) as follows:

Z sz'j < Pps. (3.9)

i=1 j=1

If noise spectral density equals to one and rate adaptagi@ssumed to be continu-

ous [47], the approximate transmission rate for usmr sub-carriey, r;;, is given by:

B
Tz'j = E 10g2 (1 + aijpij) . (310)

Moreover, quality of service (QoS) requirements are ptegon the objective function
and constraints of the optimization problerft; .., the minimum service rate require-

ment of uset with rater; is guaranteed through the following constraint:

min

K
?"z':ZTz’jZRi Vi e M.
j=1

Also, QoS requirements of users, in terms of rate, can bentake account through
users’ utilities, which represent users’ satisfactionltafcated rate. However, to present
a general optimization problem that unifies most of the @gsproblems for OFDMA
resource allocation, general objective functi(r), is used in this subsectiotF.(r) can
be substitute by any function of rate, such as, sum of usesgjivted rate) _ w;r;, or

sum of users’ utilities) _ u;(r;), wherew; andu; are the assigned weight and utility to
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user:. The optimization problen#r;, which is an MINLP problem, is resulted:

Pry: max F(r) (3.11)
¢ p
B
s.t Tij = ? 10g2 (1 + aijpij) Vi € M, \V/] c ’C, (312)
K
ri=Y 1y > Rh,, Vi€ M, (3.13)
j=1
M K
Z Zpij < Pgs, (3.14)

i=1 j=1

NE

Cij S 1 \V/] c IC, (315)
1=1
0< Dij < PBSCU Vie M, Vj e K, (316)
Cij S {O, 1} Vi € M, VJ e K. (317)

We eliminate integer variables;'s and formulate the problem as a continuous nonlinear

one-stage programming problefr;:

Pry: max F(r) (3.18)
p
B
K
ri= 1y >R VieM, (3.20)
j=1
M K
Z Zpij < Ppgs, (3.21)
i=1 j=1
pi;pi; =0 Vj € K,Vi e M\ {i}, (3.22)
0< Dijs Vie M, Vj e K. (323)

Proposition 3.1.1 There is a one-to-one correspondence between the set of feasible so-

lutions of Pr, and the set of feasible solutions of Pr,.

We prove it by showing that from each feasible solutionfof, a feasible solution of

Pry is obtained and vice versa.
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Let p* be a feasible solution oPr,. For everyi € M andj € K, definec]; as
follows:
L if pi; >0

o= (3.24)
0 otherwise.

Clearly p* and ¢* satisfy (3.12), (3.13), (3.14), (3.16), and (3.17). We rddhat this

M
cro>

solution also satisfies (3.15). If this is not true, therstséomeg € K sothaty ;" cj;

2. This implies that there are at least tigandi, such that:;*lj =c,; =1 However, the

derivation ofc;; frompj; in (3.24) yields; ; > 0 andpj,; > 0. Hencep;, ,p;,; > 0 which
is in contradiction to the fact that satisfies (3.22). Sp*, ¢* must also satisfy (3.15).

Next, assume thatp*, ¢*) is a feasible solution of’r;. Thusp* satisfies (3.19),
(3.20), (3.21), (3.23). Ip* does not satisfy (3.22), then there musibes M andj € K
such thatp%p% > 0 or equivalentlyp% > 0 andp% > ( for somej. Constraint (3.16)
f‘il c;} > C%—l—c% > 2, which is in contradiction

to the assumption th@p*, ¢*) satisfies (3.15). Thys' also satisfies (3.22) and therefore,

is a feasible solution oPr,. For every feasible solution afr; and associated feasible

implies thatcj; = 1 andcf; = 1. Thus)

solution of Pry, the rate allocation vectors are identical. ThHspposition 2.1 implies
there is a one-to-one correspondence between the set afayolutions ofPr; and

Pry; As a result, they have the same optimal value.

ProblemPr, can be written only in terms of allocated rate, if an equivalent con-
straint ofr;; replaces constraint (3.22). It can be shown that the foligveionstraints are
equivalent to (3.22):

zj’rij} VJ S ’C,Vl eM \ {%},
C) ‘ng _rij’ :T%j—FTij \V/] E]C,\V/’i € M\{i},
)

(b) 7y + 1y = max{r;
(
(d) (ryy—ris)? = (ryy +735)> Vj € K, Vi € M\ {i}.

We use(a) in the rest of the chapter, because they are differentiaiddehave a simple
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representation. Thug)r, can be restated as follows:

Prs3: max F(r) (3.25)

K
st ) >R ViEM, (3.26)

7=1
M K 1 ok
Y —(@F —1)< Pgg Vie M, Vj €K, (3.27)
i—1 =1 g
ririy =0 Vie M\ {i} Vj € K, (3.28)
0 S Tig, Vi € M, \V/] e K. (329)

As the objective function is continuous over the range aihd the feasible region d@fr;
is closed and bounded, tlegtreme value theorem (Weierstrass Theorem) [75] implies

that Problem( Pr3) has global optimal solution(s):

Theorem 3.1.1 (extreme value theorenmbet f be a continuous real-valued function

whose domain, Dy, is bounded and closed. Then there exist z; and x, in D such that:

f(x) < f(x) < f(xy) Vo€ Dy.

AlthoughWeierstrass Theorem guarantees that the global optimal solution exists, finding
such a global solution for a general continuous objectivetion is hard, i.e., there is no

polynomial time algorithm for obtaining the global optinsallution.

3.2 Related Works and Problem Complexity

In general, objective functioft is a function of users’ rates. The choice/®falong with

the set of constraints affect both computational compjexitPr; and the network per-
formance. The following discussion will provide an insightb the problem in terms of
achievable performance and complexity for different otiyedfunctions and constraints.
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3.2.1 Linear Objective Function

Common linear objective functions, used in the OFDMA resewaitocation problems,
areF(r) = > .r;andF(r;) = > w;r;. The former, known as bit rate maximization
problem, maximizes total users’ data rate and the latewknas weighted rate maxi-
mization problem, maximizes aggregate users’ rate migdtipby a vector of weights,
w;’s, subject to a given power budget. Bit rate maximizatiorbpgm, is the most com-
mon objective function deployed in [11, 23-29, 62]. [23] d2d] consider joint sub-
carrier and power allocation with power constraint as an M®N\problem. [25] formu-
lates the problem by allowing a sub-carrier to be shared blgipleiusers. The opti-
mization problem is decoupled into two subproblems, subieraassignment to users
and power allocation to sub-carriers, and a two-step algoris proposed for solution.
In the first step, a sub-carrier is assigned to only one user has the best channel
gain on that sub-carrier. In the second step, the amountogmnit power to be allo-
cated to each sub-carrier is determined by water-fillingesuh[76] to maximize overall
data rate. To reduce computational complexity of watangll equal power allocation
scheme may be adopted. It has been shown that water-fillthg@agual power allocation
schemes have only marginal performance difference [77]coAdingly, a suboptimal
solution in [26] allocates uniform power to sub-carriersved the channel gain and the
fixed power allocation Pzs/K), sub-carriers’ ratesr(;’s) are known. The problem is
converted into a linear integer programming (LIP) probleithvunteger variables;;’s.
Then a reduced computational complexity algorithm is dggdioto solve LIP by, first,
assigning sub-carriers to maximize total users’ data ratespective of users’ minimum
required data rate constraints, and, second, adjustingauiers assignment to satisfy

users’ minimum required rate constraints.

A geometric programming (GP), a special form of convex opation, has been pro-
posed in [78] for weighted rate maximization or weighted powinimization. There
exist several algorithms to solve GP efficiently and optlynaddowever, GP is not appli-
cable in some OFDMA resource allocation problems becauseecting or approximat-
ing objectives and constraints to be compatible with GP {§8hallenging.
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3.2.2 Nonlinear Objective Functions and Constraints

To providing QoS and fairness or maximizing resource #flan, some OFDMA re-
source allocation schemes have been proposed that usegambibjective functions or
add a set of nonlinear constraints in the optimization bl

3.2.2.1 Nonlinear Objectives

The objective functions can be chosen properly to achienespecific objects.

Max-min fairness solution is addressed in [29] by maxingzihe minimum users’
data rates, i.emax min ;. A convex feasible region is obtained for the problem by
relaxing the constraint of exclusively allocating one salorier to only one user. Assum-
ing equal amount of power is allocated to each sub-car@8t,groposes an algorithm to

assign sub-carriers to users.

Rate proportional fairness schemes have been proposed 8032 set of rates that
maximizes aggregate logarithms of users’ data rates ipragrtional fair. This set of
rates is chosen as a fair weight allocation set and is deglioya scheduling scheme that

determines users’ transmissions order according to usleasinel gains and fair weights.

An appropriate form of the objective function in networkdwheterogeneous traf-
fic is to maximize users’ aggregate utility functions. Assugnconcave or linear utility
functions, [30, 81] investigate the utility-based reseuatiocation in OFDMA networks
for both discrete and continuous adaptive rate. The opéitia problem is decomposed
into two problems: DSA and APA. The DSA problem is represéiate a uniform power
allocation problem, and the APA problem is represented a®d fub-carrier assignment
problem. Different approaches are proposed for solving D2\, and joint DSA/APA
problems. DSA is relaxed to a nonlinear integer (binaryppem, and a sorting search
algorithm is proposed for sub-carrier assignment. Whentdityufunctions are linear
or sub-carriers bandwidth is small enough to be considerditesimal (rate region

Is concave), sorting search algorithm gives optimal sohgi Otherwise, the solution
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is suboptimal, and sorting search algorithm only reducesctimputation complexity.
A sequential-linear-approximation water-filling algbm is proposed to solve the APA
continuous rate adaptation. The relaxed nonlinear congentelem is approached by a
series of linear optimization problems derived by a sedaklmear-approximation algo-
rithm named Frank-Wolfe method [82]. For APA with discresteradaptation, a greedy
algorithm is deployed to allocate bits and the correspangmwer. In each bit loading
iteration, the greedy algorithm allocates power to somecsuhiers that maximize the
utility argument per power. Assuming concave utility fuoos, the greedy algorithm
results in optimal bit loading and power allocation. Figadl joint DSA and APA solu-
tion is proposed for the original problem. For continuous i@daptation, combinations
of iterative sub-carrier assignment, power allocatiord #re updates of marginal util-
ities are deployed. A new sub-carrier assignment is derfbasid on the sub-gradient
of concave utility functions; the corresponding power editoon is determined by linear
approximation of the objective function; the algorithmpgavhen the marginal utility
function is negligible. For discrete rate adaptation, aloimiation of sorting-search DSA

and the greedy APA algorithm is deployed.

3.2.2.2 Nonlinear Constraints

A set of constraints can be added to the problem to force amofifairness or QoS.

To resolve unfair rate allocation of bit rate maximizatiamigems and balance be-
tween capacity and fairness, [27] formulates the problenadiging a set of nonlin-
ear constraints which assures proportional users’ da&s.raThe primal solution of
the constrained fairness problem is computationally cempb be obtained, so a low-
complexity suboptimal algorithm that separates sub-eaassignment and power alloca-
tion is proposed. The decoupled allocation algorithm, &issigns sub-carriers assuming
uniform power allocation. Then, an optimal power allocatadgorithm maximizes total

capacity while maintaining proportional fairness.

An alternative way of fair allocation of resources is conifgna fair scheduling algo-
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rithm with resource allocation techniques. [28] developssmurce management scheme
by integrating DSA and generalized processor sharing (Gegduling to maximize
network throughput subject to the constraints on the togadsmit power, user's SNR
requirement, and GPS fair scheduling. A fixed modulatioelieéas been considered for
all sub-carriers. At the first step of the algorithm, the nembf sub-carriers allocated
to users are determined with a modified GPS scheduling baseders’ required rate
and fairness constraint. At the second step, an algorititaptoyed to determine the set
of required number of sub-carriers of each user, derivetierstep one. As a user with
a higher SNR requirement consumes more power, sub-cawitdrshe largest channel
gain are assigned to users with the highest SNR requireragihdng as the total trans-
mission power for each user does not exceed the total traagmipower constraint.
Also, the principle of generalized processor sharing idaleggl as a constraint of the

optimization problem in [62] to allocate sub-carriers fgamong users.

Furthermore, an associated set of constraints to a speaif: €Daracteristic can
be include to guarantee users’ required QoS, e.g., [11]iggsvusers’ minimum rate
requirements, and [28] guarantees tolerable signal teermaitso of users’ receivers by
including corresponding rate and signal to noise ratio wamgs to the optimization

problem.

3.2.3 Problem Complexity

Note that when either a set of constraints is added to thdgarobr a nonlinear objective
function is deployed, the problem remains nonconvex. Theptexity of the problem

Is caused by nonconvexity of the feasible region and/or camcavity of the objective
function. The sets aof;;’s andp;;’s in the MINLP problem Pr,, as well ag;;’s andr;;’s

in the NLP problem Pr, and Pr; are nonconvex. The nonconvexity arises from the fact
that a sub-carrier should be allocated exclusively to oree Wor example, consider two
feasible allocation power vectops= [1,0,0,0,1, 1] andp = [0, 1,1, 1,0, 0] in a simple
network which consists of two users and three sub-carrleesa € (0, 1), the convex
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combination ofp andp, which is
Oép—i_(l_a)ﬁ: [a,(l—a),(l—a),(l—a),a,a], (330)

does not belong to the feasible region, and the definitionooi/ex feasible region is
not held. An optimization problem whose objective functismon-concave (in a maxi-
mization problem) and its feasible region is nonconvexategorized among nonconvex

optimization problems, which are difficult to be solved faglabal optimum.

In general, nonconvex optimization problems are NP-haBgl ghd there is no poly-
nomial time algorithm to find their global optimum has beenrfd yet. Therefore,
OFDMA resource allocation problems can be solved for a lopéimal solution by ex-
haustive search algorithms. Search algorithms span alkim@gintire feasible region of
the problem to find the highest local maximum (or lowest looalimum). As they do
not stop searching when they find a local optimum, it is exgeb¢hat the algorithms
achieve near optimal solutions when searching time appesamfinity. However, the
long response time of search algorithms limits their usagkisia barrier in developing
elaborated OFDMA resource allocation schemes, while OFD#&é&merging in broad-
band wireless networks, and the OFDMA resource allocatises in many contexts.
This motivates us to investigate continuous optimizatippraaches, rather than discrete
methods, that can treat the nonconvexity of the OFDMA resmalocation problem. To
the best of our knowledge, using continuous optimizatiopragches for the OFDMA

resource allocation problem has not been addressed intenatlire yet.

3.3 Penalty Function and Interior Point Methods

We propose an interior point based approach to solve the Ok Bddource allocation
problem. We were motivated by the increasing trend towamtaving the interior point
theory and methods and applying them on new problems. Sgedbyfiit is highly ex-

pected that interior point methods will be helpful in solyiMINLP problems [84] and

41



Resource Allocation in OFDMA Wireless Netwroks

are successful in solving continuous nonlinear probleragjqularly with convex feasi-
ble regions [31, 85]. We apply the proposed method to sélwewhich contains con-
tinuous variables only, i.e., is an NLP problem. The sucoéssterior point methods
in solving a nonconvex nonlinear problems strongly depemd&ow nonconvexity of
the problem is treated. Although the proposed formulatmmpfoblemPr; is continu-

ous, the feasible region of the problem is nonconvex yetwgayse a penalty function
method to remove the nonconvexity of the feasible regionreMfwecisely, nonconvex
constraints are moved to the objective function by a coeflicpenalty. We apply the
proposed penalty function method combined with an intgsmnt method to solve the

NLP problem for the OFDMA resource allocation problem.

3.3.1 PM/IPM Descriptions

In Prs, all constraints except (3.28) are convex. We add this sebétraints to the ob-
jective function as a penalty term, which is negative whemafrthe constraints in (3.28)
is violated, and zero otherwise. After adding the penaltynt® the objective function,

the new objective function becomes:

I M M K
Pymax [(r) —52 S (3.31)

1=1 i=1,i#1 Jj=1

where positive constant is the penalty parameter. The new objective function along

with the constraints of’r; form the following problem:

Pry: max f(r) (3.32)

T

st C(r) >0, (3.33)
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whereC(r) is the vector of inequality constraints (3.26), (3.27) aB®29), which is

represented as follows:

K 1
Zj:l i — Rmm

ZJK:I Tmj — Rf\r/[nn
Clr)=| =X as @27 1)+ Pos |- (3.34)

T11

"MK

Instead of solvingPr;, we solve Pr, whose feasible region is convex. However, an
optimal solution ofPr4 with a positiveL will not be an optimal solution ofr3, unless
the (positive) penalty term is zero. By makihdarger, we penalize constraint violations
more severely, thereby forcing the minimizer of the penaltyction to be smaller. We

formally prove this statement in the following proposition

Proposition 3.3.1 The value of penalty term S, S°7, i Z] L 75,75 @t an optimal
solution of Problem P;, decreases, as L increases.

Let L; and L, be two penalty parameters so that < L,. Denote optimal solutions
of ProblemsP;, and P, with r; andr,, respectively. Since, is an optimal solution
associated with parametés, the value of the objective function df;, atr; is larger

than the value of the objective function Bf, atr,, so

Ll M M K Ll M M K
DI Flr) =5 > D (r)i(r1);,(3.35)
i=1 i=1,i#i I=1 =1 i=1,i£i J=1

and consequently

Ll Z Z Z r1)5;(r1)i Z Z Z(Tz)zj(’f’z)ij < F(ry) — F(rq).(3.36)

i=1 i=1,i#1 J=1 1=1 i=1,i#1 J=1

43



Resource Allocation in OFDMA Wireless Netwroks

Similarly, sincer, is an optimal solution of’;,, the value of the objective function of

Pp, atr, is greater than its value at. Hence

(r2);;(r2)s5, (3.37)

[\D
M:
M:
Mw
S
A
)
3
T
w|g*
NE
NE
M=

and consequently

L2 M M K
(z S S -3 3 3 e

1=1 i=1,i#1 J=1 1=1 i=1,i#1 J=1

Inequalities (3.36) and (3.38) imply that

i=1 i=1,i#: =1 i=1 i=1,i71 =1
Hence
@_)Zzgquzz%mzomm
1=1 i=1,i#1 J=1 i=1 i=1,i#i J=1

Using the assumption thét < L,, we have

M M K
Z Z Z (r1)s;(r1)s Z Z Z ra)i; (72)is, (3.41)

i=1 i=1,i#i J=1

which completes the proof.

Therefore, the largeL is, the more penalized the constraint violations of penalty
term is, and the smaller the penalty term will be. Indeeds ghown in Theorem?7.1
of [31] that for a large enough choice &f global optimal solution(s) of’r, is (are)
optimal solution(s) ofPr;. However, the maximization of (r) in P, becomes more
difficult to perform asl. becomes large [31]. In this thesis, we find an appropriateeval
for L through a simple search method.
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Even though the objective function &fr, is a non-concave nonlinear function, but
its feasible region is convex. Convexity of the feasible sagnotivates us to use some

interior point methods to solver,.

Before applying the interior point method, we first conve# ihequality constraints
in C'(r) to equality constraints by associating a positive slackatée to each constraint.
Denote thg2M + 1)K vector of slack variables with. Hence,Pr, is converted to the

following minimization problem:

Prs : mTin —f(r) (3.42)
st C(r)—s=0, (3.43)
s> 0. (3.44)

A necessary condition for a feasible solutionfof; to be optimal is to satisfy the fol-

lowing conditions, called Karush-Kuhn-Tucker (KKT) cotidns:

Vfr)— AT(r)z =0, (3.45)
C(r)—s=0, (3.46)

Sz =0, (3.47)

§>0, 2>0. (3.48)

In the aforementioned KKT conditions, is a diagonal matrix with diagonal elements
given by vectors, and vectorz contains(2M + 1)K Lagrange multipliers used in the

definition of the Lagrangian function @?r;:
L(r,s,z)=f(r)—2T(C(r)—s). (3.49)

The matrixA in (3.45) is the Jacobian matrix 6f(r) represented by:

A= 7Kln(2)2KTBn len(2)2KT5¥K (3.50)

Bay, Bay,
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wherel! is an identity matrix of dimension/ K x M K, and© is the followingM x M K

matrix:
lox) Oux)y - - Our
o_ 0(1.,;0 1(1.,K) 0(1:,() | (3.51)
Owry Ouky -+ lam

wherel; ) and0(; k) are K vectors ofl and0, respectively.

To find an approximation for a local optimum of a nonlinearlpeon, interior point
methods solve a series of perturbed KKT conditions in whidly the right-hand-side in
equation (3.47) is replaced by a vector.

Vf(r)— AT(r)z =0, (3.52)
C(r) — s =0, (3.53)

Sz = e, (3.54)

s>0, >0, (3.55)

withe = (1,1, ...,1)" andu > 0. Interior point methods start with an initial interior poin
in the feasible region that satisfies perturbed KKT condgiéor someu and proceeds
to find another interior point that satisfies perturbed KKhditions (3.52)-(3.55) for

a smaller value of:. As the method proceedsg, is decreased, and consequently the
solution of the perturbed KKT conditions approaches thetgwi of the KKT conditions,

in which = 0. It is expected that after several iterations the solutidhoonverge to a
point that satisfies the KKT conditions of the problem [31].

In each iteration of the interior point method, directiomsl d&engths of movements
are updated based on the first and second order gradients obj#ctive function and
constraints. The vector of movement directions for vagabl s, and z, denoted by
b= [b,, bs,b.]", is computed by solving the following linear system of edpra:
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ViLe o0 —AT(r) b, Vou(r) — AT (r)z
0 A S bs | = Sz — e ;
A(r)y —I 0 b. C(r)—s

Here,Z denotes the diagonal matrix whose diagonal elements ag@ biy vector:. As
matricesV? L andV.,.f(r) depend on the objective function chosen for the problem, we

provide their descriptions in Appendix, section A.1, forresen objective function.

After obtaining movement directions, the length of movemeach direction, step

length, denoted by"** anda***, are specified as below:

al® =max{a € (0,1] : s+ abs > (1 — 1) s}, (3.56)

s

al" =max{a € (0,1]: z+ab, > (1 —7) 2}, (3.57)

z

wherer € (0,1). A large value ofr close to one, e.gs = 0.995, is usually chosen
to avoids andz approaching zero too quickly. Now, the new interior poitack vari-
ables, and Lagrange multiplier&;™, s*, 2T), are determined with the information of

movement directions and step lengths accordingly:

= 4 o, (3.58)
sT = s+ al"b,, (3.59)
2T =2+ al"b,. (3.60)

For the next iterationy is updated to a smaller value, say < u. There are several
strategies to chooge". Among them we use a linear method to update

put=opn oe(0,1). (3.61)

Sinceos < 1, p approaches zero over several iterations. However, chpasuery small
o or a very larges will cause faster or slower convergence, respectively.h@lgh
fast convergence is always desired, it may cause some pa@nsuch as andz, to
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approach zero too quickly, which reduces the performanteahethod, e.g., the offered

solution may be infeasible or far from optimality.

The interior point method is terminated when a stoppingedon is achieved. In
this work, the initial value of.y = 1 has been chosen, and wherapproaches a very
small value or the change in allocated rate vectoiis negligible, the method stops.
Algorithm 1 presents a summary of the interior point methoglementation steps used

in our simulation.

Algorithm 1 The solution algorithm foiPr;
Input: M, K, Pgs, B, a, Uj, initial _r, sg, pig, 7, 0

Output: r

Setting up and initialization:

Choosenitial _r and compute, > 0.

Chooseu, > 0 and compute, > 0 accordingly.

Set parameters € (0, 1) ando € (0, 1).

Setk = 0 and Exit_flag = 0.

Interior point method main loop:

while Ezit_flag == 0 do
Solve (3.56) to obtain movement directibr= (b, b;,b.).
Computen***, anda*** using (3.56) and (3.57).
Compute(rF*1, sk+1 2k+1) ysing (3.58) to (3.60).
Setp ! «— pF andk «— k4 1.

10:  ComputeEzit_flag.
11: end while

12: return r.

3.4 Genetic Algorithm

In our simulation, we use GA as an intelligent search alporito find near-optimal so-

lutions. GA is a randomized adaptive search method thatessss a large number of
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search points at each iteration, then generates a new sgble points based on char-
acteristics of the old search points. GA deploys a randamizaearch technique that
avoids searching process being stopped when a local optim@attained and contin-
ues searching the feasible region for a better local optif86h Also, adaptive search
based on the previous search points limits computationalpbexity, i.e., the compu-
tational burden does not necessarily increase with anaserén dimensions of search
region [87].

3.4.1 Genetic Algorithm Methodology

In GA context, feasible solutions of a problem are repre=gby a data structure named
(chromosome), and a fitness function is defined to evaluasslfie solutions. The al-
gorithm begins with forming an initial population (first gemation) of random feasible
solutions. Then, the initial population is improved towdné optimal solution by gen-
erating a new population from the current chromosomes gir@everal iterations. The
evolution is in favor of chromosomes with better fitness galubecause they are more
likely to be inherited to the next generation. The new pofpahais generated in each

iteration through the following operators:

e Selection: The operator chooses better chromosomes of current gemei@torm
a population of parent chromosomes. The larger is the fitvase of a chromo-

some, the higher is the probability of it being selected asram.

e Crossover: The operator generates new chromosomes (children) froensar
chosen by selection operator. A crossover between a paarehfs is performed
by selecting a point on the chromosomes of the two parentssaaghping the

chromosomes beyond that point.

e Mutation: The operator probabilistically changes an arbitrary el@noéa chro-
mosome to a new value. Mutation avoids the algorithm stappira local opti-

mum by generating new chromosomes which may have a bettesditralue than
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a population of chromosomes

M: number of user:
Chromosome 1 | X, | umber of users
Chromosome 2 | X, | K: number of sub-carriers
Y: population size
Chromosome y | ¥y | Fp | (l Wy |
Chromosome Y | X, |

Chromosome y

Sub-carrier 1 Sub-carrier K

Fig. 3.1: The population and chromosomes representations

the ones of the chromosome of the current local optimum.

3.4.2 Genetic Algorithm Implementation

The specifics of chromosomes and fitness function as well astgs implementation
depend on the problem to be solved/Ax M vector is chosen for the chromosome in
our implementation, where K and M are the numbers of subezarand users, respec-
tively. Chromosome of the population is a vectgey - - - x5 - - - v ] of z¥, wherej € K
represents a sub-carrier index, as shown in Fig. 3{lis al x M allocation vector of

a continuous valuey;, wherei € M is a user’s index, that shows allocated power to
useri on sub-carrietj, p;;. Eachz} contains only one non-zero elemeny,, due to the

constraint of exclusive sub-carrier assignment to a user.

An initial population,P,, of N chromosomes is formed by allocating a random user
to each sub-carrier of each chromosome. The minimum redjpiogver, that satisfies
user’ minimum required rate, is assigned to the users tladléwcated to sub-carriers
in initial population. Each chromosome is a feasible soltso it should satisfy all the
constraints of the problem. If a chromosome does not satn&fyproblem constraints,
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the procedure of chromosome generation will be repeatee. fifiess function is the
objective function of the optimization problem. Selectmperator is a fithess propor-
tionate selection, also known as roulette-wheel selectitat selects individuals with a
probability proportional to their fithess values. This sélen operator gives a chance
to weak solutions (low fitness values) to be selected, hofiiagthose weak solutions
will result in some good solutions (high fitness value) inssmver operation. Using a
uniform distribution peress, @ pointj from {M,--- | (K — 1)M} is chosen for crossover
operation. In other words, crossover is performed overcarbers. Mutation operation
chooses a mutating element frof, - - - , KM} with a uniform distribution pp,. Ac-
tually, the mutating element indicates a new usfar sub-carrierj, so allocated power
to the previous user of sub-carrigis altered to zero, and a random power is allocated
to the mutating element. Crossover and mutation are repdated generated chromo-
somes do not satisfy the problem constraints. Once a newlgtapu?P,, is generated
through selection and crossover and mutation, it repldeesid one. However, as the
chromosome with the best fithess value, referred telids may be lost in selection,
crossover, and mutation operators, an elitism operatiperntrmed before substituting
P,_1 with P,. Elitism operation substitutes the corresponding chramesto the least
fitness value oP, with elite. GA stops afteV,,, iterations or when there is no increment
in elite’s fithess value forV;;;. Numerical parameters of GA are listed in Table 3.2 and

the pseudo code of the solution is outlined in Algorithm 2.

3.5 Numerical Results

In this section, the convergence of GA is investigated in13 Wwhich then will be used as
a benchmark to evaluate the performance of PM/IPM in ternopbimality and sensitiv-

ity to network parameters in 3.5.2. As the focus of the res@atlocation in this thesis is
on utility maximization problems, in 3.5.3, we demonstriatev the resource utilization

performance is enhanced in utility-based resource allmtatroblem.

In our simulation, traffic arriving at the BS is first bufferedseparate infinite queues
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Algorithm 2 GA implementation for the problem

Input: M, K, Mtr,NfitypcrOSS7 pout; Pps, B, o, F
Output: p;;

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

© @ N o 9 &

Setting up and initialization:
Generate initial populatio®,.
Find dlite,.
v=1andExit_flag == 0.
Genetic algorithm main loop:
while Ezit_flag == 0 do
Performselection using roulette wheel sampling scheme.
fory=1:W do
while constraintg3.20)t0(3.23) are not heldlo
crossover with probability peross.
end while
while constraintg3.20)t0(3.23) are not heldlo
Mutation with probability pm.
end while
Findelite,.
Pyi1 = Py.
Replace the worst chromosome withlite, ;.
Exit_flag = Check termin_conditions.
v=v+1
end for

end while

return Dij-
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dedicated to each user, then, is forwarded to users on the-tilokvpath using assigned
sub-carriers and allocated power. We assume the objectnatibn is aggregate utility
maximization. In its simplest form, the utility function ager: may be a linear function
of its rate,U; = r;, or an exponential function of rate suchlgs= 1 —exp(—*), whereb

defines the curvature of the utility function. However, floe tvorst case, we allow utility

functions to be non-concave and nonlinear. There are twodfatisers with concave
and convex utility functions expressed by equation (3.88).[r; denotes allocated rate
to useri, [1 and/2 are thresholds, ankl controls the shape of the utility function. The
function is concave fot < 1 and convex fok > 1. k = 0.7 andk = 2 have been chosen
for concave and convex utility functions, respectively.eTading channel is frequency
selective Rayleigh fading. Sub-carriers are divided betwe® groups of sub-carriers
with good average channel gain and sub-carriers with weakage channel gain. Other
simulation parameters are listed in Table 3.2.

0 r S lla
U;(r) =< sin® <§%> I <r<ls, (3.62)
1 r> lg.

3.5.1 Genetic Algorithm Convergence

To evaluate convergence performance of GA, a scenariostorgsbf4 users with con-
cave utility functions is considered. It is assumed thataye channel gains aieand
0.3 on the first and the second half of the sub-carriers, resgdgtifor all users. In the
first iteration of GA, sub-carriers are assigned to usertuskely and randomly; This
assignment of sub-carriers is irrespective of users’ celagain on sub-carriers. Then,
the required power to achieve a minimum rate requiremenaci @ser is allocated uni-
formly to sub-carriers assigned to each user. It is expeabti@idmore power is allocated
to the sub-carriers with better average channel gain asibes proceed, to gain higher
rate and utility.

Fig. 3.2 depicts the distribution of allocated power to thb-sarriers in the first and
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Table 3.2: Simulation Parameters

Parameter Value
maximum power budget of the BS 20 Watt
total bandwidth 2400 Hz
number of sub-carriers 24
number of users 4

minimum required rate of users with convex utility

minimum required rate of users with concave util

y 100 bit/symbol
ty bit/symbol

number of iterations 30000
crossover probability 0.75
mutation probability 0.1
initial population, 200

the last iteration of GA. A comparison between the two disttions illustrates that GA
evolves toward allocating more power to the good statuscsuwbers and less power to
the bad status (weak) sub-carriers, i.e., evolution of thershm toward maximizing
the objective function by utilizing the resources efficlgnfTo show the speed of con-
vergence, the best fitness value, the best users’ totdlyudilia chromosomes, in each
iteration is illustrated in

Fig. 3.3. The curve is monotonically increasing due tostittechnique, i.e., the best
individual of current population is transfered to the neapplation, so the best fitness
value never drops. As expected, there is a noticeable trfidetoveen optimality and

short solution time.

3.5.2 Interior Point and Penalty Method Performance

We evaluate the performance of PM/IPM in terms of optimaBtjution time, and sen-

sitivity of solution to users’ channel gain variations ostarriers. The results achieved
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Fig. 3.2: Power allocation distribution on sub-carriers
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Fig. 3.3: Convergence of fithess value

by GA is used as a benchmark. A network of 4 users with convdigyudtinctions but
diverse channel gain on sub-carriers is considered. Wema# sumber of users be-
cause GA results are intractable for large number of usekrafye channel gain on

sub-carriers is higher for users 1 and 3 than users 2 and 4.

Fig. 3.4 shows the convergence speed of GA and PM/IPM over. fithe iterations of
GA and PM/IPM stop when the improvement in rate allocatiocteeis less thare —13.
GA has a very slow convergence speed, although it starts &romitial allocation with
better aggregate utilities than the ones of PM/IPM. In camspa, PM/IPM converges
very fast while its maximum achievable aggregate utiliiad convergence time depend
on the value ob. The smaller isr, the faster is the method, and the less accurate is the
result. The data tips on the diagram show the time and aggregéties with x andy,
respectively. It can be seen that28t61 sec, PM/IPM with o = 0.95 obtains the same
aggregate utilities as the one of GA, i.8.609, which is obtained in abow916 sec.
Wheno increases beyon@ 99, PM/IPM has no further improvement in achievable ag-
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Fig. 3.4: Convergence speed comparison of GA and PM/IPM

gregate utilities or convergence speed. Fig. 3.5 compatakititility achieved by GA
over iterations and PM/IPM over time, respectively. GA hdast convergence for the
first 1e + 3 iterations, but it slows down beyond that, so it can reactéodptimum in

an infinite time. On the other hand, in= 29 sec, PM/IPM with & = 0.95 obtains the
same aggregate utility as the ones of GA, which is obtainebout5e + 3 sec. When

o increases beyond.99, PM/IPM has no more improvement in achievable aggregate

utilities or convergence speed.

The convergence of PM/IPM is determined by the aggregdtgasiand constraints’
violations in the penalty term. For PM/IPM convergence,raggte utilities should be
maximized subject to the fact that constraints’ violatians negligible or close to zero.
Fig. 3.6 illustrates aggregate constraints’ deviationan(fzero), for two different values
of o, when PM/IPM iterations proceed over time. The negligililgragate deviations
at convergence points, especially tor= 0.99, ensures the rate allocation satisfies the
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Fig. 3.5: Performance comparison of GA and PM/IPM

exclusive sub-carrier allocation. Besides, a comparisawedsn Fig. 3.4 and Fig. 3.6
shows aggregate constraints’ deviations and aggregditeestconvergence happen si-

multaneously, which satisfies the convergence requiresradrihe problem.

Moreover, a comparison between rate allocation of GA andPM/shown in Fig. 3.7,
demonstrates the performance of PM/IPM in recognizingrdeehannel status and its
capability in allocating resources. Let all users have #reeschannel status, except that
average channel gain on sub-carriers is higher for userd B #man those of users 2 and
4. Therefore, more resources should be allocated to the ustr better average chan-
nel quality to gain user diversity and maximize aggregailé@ies. The numeric tables
in Fig. 3.7 represent that both GA and PM/IPM allocate mote tausers 1 and 3 than
users 2 and 4. Also, it can be seen that PM/IPM allocates egteato the users with the

same average channel quality on sub-carriers.

Table 3.3 presents rate allocation and exclusive subecassignment by PM/IPM,
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Fig. 3.6: Aggregate penalty term constraints’ deviationBM/IPM
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Fig. 3.7: Utility allocation comparison of GA and PM/IPM
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the vectors of allocated rate to sub-carriers; 1,.. ., 24, of users 1 to 4, tor,, along
with the corresponding channel gains of the users on thecauiers,a; to ay. The
gray rows of the table represent the assigned sub-caraarsers, and the sub-carriers
on white rows are unassigned. The result confirms the suoté¥gl/IPM in exclusive
sub-carrier assignment since no sub-carrier has beemasig two users. In addition, a
sub-carrier is assigned to a user that has the best channargthat sub-carrier, which
results in a solution closer to the optimum. In numericaultssgiven in Table 3.3, all
users achieve a utility equal to one, so some sub-carriensameeded to be assigned to

any user.

3.5.3 Resource Utilization Performance

The numerical analysis is conducted in this section to siawhow considering users’
utilities and application level QoS requirement in a resewllocation problem can im-
prove the efficiency of network utilization and users’ datition. We divide the users
into two groups of users with concave and nonconcave aslishown in Fig. 3.8. The
average channel gains equal to 0.8 for the first half of thecaubers and 0.2 for the sec-
ond half. Fig. 3.9 demonstrates the allocated rate to thegt@ops of users along with
their corresponding utilities. In our scenario, the netw@sources are tight, so all users
cannot achieve utility equal to unity at the same time. Upgos ¢ircumstances, the re-
sources are allocated to users with nonconcave utility flitsé allocated rate shows that
users with nonconcave utility require less rate to achjeve0 satisfasction. The rest of
resources are allocated to users with concave utility. gsilmber of users increases,
less rate is allocated to each user. Therefore, utility aldaion is worse for users with
nonconcave utility than users with concave utility. To destoate the effectiveness of
resource utilization, defined as the total users’ utiljtigs compare the resource utiliza-
tion performance of a greedy scheme with the ones of a ubbityed scheme. The greedy
scheme allocates resources evenly between the two grougeis. Fig. 3.10 shows that
utility-based resource allocation utilizes the networkowrces more effective than the
greedy scheme. With a small increase in allocated rate s uggh nonconcave utility
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Table 3.3: Users’s Allocated Rates on Each Sub-carrier

n |og T Qo Ty |3 3 |0y T4
1 050 37 010 0 0020 0300
2 1.30 10 1.04 10 0590 04010
3 011 0 104 0 6.13]470 0.75]0
4 011 /0 041 0 0270 213|221
5 02910 19710 3480 098]0
6 3340 1970 [1.04]|0 [1.52]0
7 04910 07910 04410 42010
8 0520 225,309 0830 0.02]0
9 194 /0 199 290 0430 0.06 |0
10 1.03 |0 0250 0990 0.21]0
111330 102010 [222]0 1095]0
1212710 044 (0 [1.10]0 0.82]0
13001 0 010 0 0340 08543
141062 0 2890 [158]0 03010
151160 PB69]0 1660 [251|0
16 028 ' 0 093 0 7.21| 128 1410
17 0470 04210 0370 3.16 |0
1837910 0590 [1.03]0 [L.75]0
193240 0370 0060 434 334
20 2.37 1 260 0.06 O 0420 0.65]0
2119810 268 |0 [211]0 104010
2203110 033]0 0340 [1.341]0
23108310 [1.18 10 0330 0.46 |0
24 363 301 0.15|0 1270 22110
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Fig. 3.8: Concave and nonconcave utilities correspondirggath group of users

and a small decrease in allocated rate to users with conddig wsers’ satisfaction
level of service (utilities) for users with nonconcave ititiincreases. However, utility
degradation of users with concave utility is negligible.e@all, the sum of users’ utilities
increases with utility-based resource allocation whidessadvantage of the diversity of

the application level QoS requirement of users.

3.6 Summary

The non-convexity of OFDMA resource allocation optiminatproblem has been stud-
ied in this chapter. A framework for the resource allocati@s been developed and
a novel approach based on a penalty function method and anomnpoint method
(PM/IPM) has been applied to solve the optimization problé&mmerical results have
demonstrated that the proposed approach performs welhiedaog near optimal solu-
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tions while satisfies the non-convex (sub-carrier assignje®nstraints.
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Chapter 4

Opportunistic Fair Scheduling in
OFDMA Networks

Scheduling the transmissions in a telecommunication nmedaatures a resource allo-
cation scheme. Inspired by the framework proposed for thBI@4 resource allocation
in the previous chapter, we propose an opportunistic fhiedaling scheme for OFDMA
broadcast wireless channel where users have heterogers¢eusquirements. The pro-
posed scheme jointly considers multiuser diversity gaiRD®IA resource allocation
flexibility, and utility fair service discipline. Fairnessnong users is maintained by de-
ploying a utility-based fair scheme that computes a setioffaights and assigns them
to users. In each scheduling interval, the resource addat each user is proportional

to its assigned weighting factor and its channel quality &D® sub-carriers.

The proposed scheduler is designed with a modular stryatansisting of OFDMA
Resource Allocation Module and Fairness Module. We presenséparate optimization
programming problems representing OFDMA Resource Allocatodule and Fairness
Module to reduce the complexity, and we suggest fast algostto solve the problems.
We present simulation results to demonstrate the perfaceaithe proposed scheduling
scheme in terms of throughput and fairness in a wirelessarktwhere users can be
either fixed or mobile with heterogeneous rate requirements
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4.1 Background and Related Works

Opportunistic scheduling, which allocates resources ¢oauwith the best channel qual-
ity in each scheduling interval, is a throughput-optimaiesoe for wireless networks
with fading channel [89]. Opportunistic scheduling impeevthroughput and channel
utilization especially when it exploits OFDMA, which pralds more flexibility in re-

source allocation by dividing a broadband channel intorsgvarrow band channels. An
opportunistic scheduler in the DL needs to allocate theuess, i.e., the base station’s
sub-carriers and power, to users that have the best chaainebig some sub-carriers in
each scheduling interval. Therefore, an OFDMA resouragcation module is needed

in any opportunistic scheduler for OFDMA networks.

Despite throughput and channel utilization enhancemewgrs unfairness occurs by
opportunistic scheduling when averages of channel qualitysers differ significantly.
For example, the scheduler may not provide fair service teea that has been shaded
by neighborhood buildings in an urban area, because thenehgunality of that user
is always less than other users in the neighborhood. Heneasjiant of opportunistic
scheduling scheme that maintains a level of fairness torturfate users, namely, oppor-

tunistic fair scheduling, is needed in practical networks.

Recently, some opportunistic fair scheduling schemes fdti4zarrier transmission
techniques have been appeared in the literature. In [9Bfpaghput maximization prob-
lem with deterministic and probabilistic fairness conistisfor code division multiple
access (CDMA) networks is proposed. To reduce complexigystiheduling problem is
decoupled into two separate tractable optimization prablea scheduling problem that
maximizes total system throughput and a fairness proble@mncintrols and/or updates
long-term fairness constraints. The proposed approachpeopriate for CDMA net-
works. Downlink opportunistic scheduling for OFDMA netwsris considered in [91],
where the scheduling is constrained by users’ quality ofiserand fairness require-
ments. The utility-based fairness in [91] aims at maxingzihe total network utility

while guaranteeing minimum utility for individual usersroportional fair scheduling
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for OFDMA networks is considered in [92]. This paper prooskistering sub-carriers
into sub-bands in order to reduce feedback overhead andlewitypof the scheduling
scheme. Whereas, the current literature consider variahsigues to combat the com-
plexity of multi-carrier opportunistic fair scheme for gxtuling homogeneous traffic, the
challenges of scheduling heterogeneous traffic with oppdstic scheduling schemes
have not been addressed yet. Our work unifies many of thesdeuhd in the literature
while proposing a utility proportional fair approach for hiservice OFDMA networks,

i.e., OFDMA networks with heterogeneous traffic.

4.2 Opportunistic Fair Scheduling Scheme

The proposed opportunistic fair scheduling scheme joicliysiders a utility-based fair
resource allocation scheme and an OFDMA resource allotattbeme to allocate re-
sources and schedule transmissions in the downlink. In seledduling interval, de-
picted in Fig 4.1, the scheduling scheme selects a subs#&aftsmission, assigns sub-
carriers to selected users, and determines the transmipsiwer and the coding and
modulation scheme of each sub-carrier. All these allooatiand assignments are de-
termined by OFDMA Resource Allocation Module involved in theheduler architec-
ture shown in Fig. 4.2. Also, the architecture containsriess Module which performs
in parallel with OFDMA Resource Allocation Module. Fairnddsdule includes Fair
Weight and Transmission History blocks, as shown in Fig. £2nsidering the avail-
ability of CSl, a,; of sub-carrierj for user:, the Fair Weight block generates a set of fair
weightsIV;’s, associated to usefs= 1---M, based on a utility-based fairness scheme.
Then, the weights along with a set of average transmittedteatisersR;’s, are used in
OFDMA Resource Allocation Module to allocate the resoureasyf

The OFDMA resource allocation block determines users’acble rates based on
CSl at each scheduling interval, and the fair weight block potes the set of fair weights
based on the averages CSI. The weights do not change duriegrimaunication inter-

val, unless average CSI of sub-carriers for a user changear@ntission to a user is
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Fig. 4.2: Architecture of the proposed scheduler
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terminatedJV;’s are calculated based on a fairness criterion, such asmmax+ propor-
tional fairness, as will be explained later. The scheduenapts to maker;’s as close
as possible tdV;’s to maintain fairness. This is achieved by maintainingftiiwing

equalities:

R R _ Ry

s 4.1
Wy W Wi 41

R; is updated at the beginning of each scheduling interval byxponentially weighted
moving average (EWMA) technique. EWMA puts more emphasis oemnedata and
less emphasis on older data by applying weighting factang;iwdecrease exponentially
as data grows older. This technique is advantageous in tise $leat the fairness scheme
attempts to compensate for unfairness of recent alloca@srnsoon as possible. Equa-
tion (4.2) gives the EWMA of transmitted rate to ugeat the beginning of scheduling
intervalm;:

Ri(m) = (1 - Ticwm— 1)+ <Tic>n<m— 1), .2)

wherer; is the transmitted rate to useérand?. is a constant that determines smooth-
ness of the exponentially decreasing weighting factorsargdT, results in smoother
decaying of the weighting factors and considering largenioer of scheduling intervals
in averaging. Accordingly, if allocation of rates has beeafair in the past scheduling in-
tervals, it is more probable that the scheduler compengatésat in the next scheduling

intervals.

4.3 Network Model and Problem Formulation

We present separate mathematical optimization progragnproblems for OFDMA Re-
source Allocation Module and Fairness Module. The OFDMAouese allocation, de-
scribed in subsection 4.3.1, is an optimization problem sghobjective function rep-
resents the scheduler objectives, and its constraintseaezndined based on OFDMA
network specifications. Similarly, we present an optimaaiproblem that considers
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users’ heterogeneous rate requirements and average CSinfouts proportional fair

weights in subsection 4.3.2.

4.3.1 OFDMA Resource Allocation Problem

Our network consists of a BS and several users located in gn@&ighborhood from
the BS. Users’ backlogged traffic, buffered in separate quati¢ghe BS, is scheduled
at the beginning of each down-link interval consistingdofOFDM symbols. The BS
assigns OFDM sub-carriers to users and allocates a fractida power, Pgg, to each
sub-carrier of any OFDM symbol at each scheduling inteteahted at the beginning of
each down-link interval, as shown in Fig. 4.1. Table 4.1 latas symbols representing

various network parameters.

Without loss of generality, we assume that noise spectnasitieand sub-carriers
bandwidth are equal to one. Then, allocated rate to usarsub-carrier; of OFDM

symboln, r;;,, is
Tijn = 10gy (1+ Oéijnpijn) . (4.3)

Total allocated power to the sub-carriers of each OFDM synisblimited by Pgg,

i.e.,

M K
Z Zpijn < Ppg Vn e N. (4.4)

i=1 j=1

Implementation of OFDM requires exclusive allocation ofudb-€arrier to a single

user. This constraint is mathematically represented by
Tiim *Tin =0 Vi € M,i £, Vj €K, VneN. (4.5)

Constraint (4.5) implies that if sub-carrigis assigned to user i.e.,r;,, # 0, allocated

rate to every other user on sub-carrieaf OFDM symboln must be zero.

To balance the achievable transmission rate and fairrfesspiportunistic fair sched-
uler allocates sub-carrigrof OFDM symboln to user: that has the maximum,, /(R;/W;).
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Table 4.1: List of Symbols

Symbol Description
M number of users in the network
K number of OFDM sub-carriers
N number of OFDM symbols in the down-link interval
i user index belongs 81 := {1,2,..., M}
J sub-carrier index belongs 16 := {1,2,..., K'}
n symbol index belongs t&/ := {1,2, ..., N}
R; average transmitted rate to uger
W; fair weight of user
Rl . minimum service rate requirement of tke user
Pgg the BS total power budget
Qijn channel gain of useron sub-carriel
of OFDM symboln
Dijn required power by useron sub-carriey
of OFDM symboln to transmitr;;,,
Tijn achievable rate by useion sub-carriey

of OFDM symboln
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The probability of assigning sub-carrigto user:; increases when the achievable trans-
mission rate of usei on sub-carrier;j is high or average transmitted rate to uses
smaller than its fair weight. The objective can matheméyidze written as

N K M
max ZZZ (TgL) : (4.6)

n=1 j=1 i=1 \ W,

The objective function (4.6) along with constraints (4@4), (4.5) model the mathe-

matical optimization problemPrg) of the opportunistic fair scheduling scheme.

N K M
Prg: max ZZZ (Tijn> (4.7)

N R,
YT =1 j=1 i=1 \ W;
MK or, _q
st > ) ———— < PpsVne N, (4.8)
i=1 j=1 n
Fim Tin =0 Vi € M, i #1,Vj €K, Vn €N, (4.9)
rijnzO ViGM, \V/j EK, VTLEN (410)

The optimal solution ofPrg allocates rate to users on all sub-carriers for each OFDM
symbol in a scheduling interval that achieves maximum tghguit subject to the fairness
criterion defined by (4.1). In practice, providing CSI of eacib-carrier over all symbols

of each scheduling interval results in large messaginghaaat on the reverse feedback
channel. Besides, because of the correlation among CSI ofeastbr over consecutive
symbols, the CSI of each sub-carrier is assumed to remairtiagdrier all symbols over

a scheduling interval. Accordingly, index representing symbols of each scheduling

interval can be dropped, arféis can be simplified to problenf?r;:

Pry - max ZZ <E> (4.11)

" ST =\ W
MK oy
st Y ) < Pgg, (4.12)
=1 =1 M
ry iy =0 Vi€ M,i#i, VjeK, (4.13)
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Fig. 4.3: Comparison between equal rate and equal utilipcation

4.3.2 Fairness Problem

This subsection describes how fair weights can be deriveddan utility proportional

fairness.

Fairness in its simplest form can be defined as equal rateatibm. However, when
users have diverse service requirements and channel, ahratgl allocation results in
under-utilization of network resources. For example, a wsth voice service needs less
rate than the ones of a user with a video service to be satigiedqual rate allocation to
these users may make the first user not to use the extra rdeetivdasecond user starves.
Fig. 4.3 shows the utilities of three different applicagofhe dashed line labeled “equal
rate” illustrates that equal rate allocation does not mleaqual user satisfaction. On the
other hand, equal allocation of utilities, which is intexfad as equal users’ satisfaction,
utilizes the network resources more efficiently. Thus, wk egnsider utility fairness

instead of rate fairness [80].

In this chapter, the fair weights are determined based dityuproportional fair-
ness where the allocated resources are proportional te’udemands. Utility pro-
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portional fair is advantageous in a network when its useve l@terogeneous rate re-
quirements, since no user is ignored because of its highiresoequirement. Consider
U = {up|up, = {up1,une, ..., unrs t}, @ bounded set o/ users’ feasible utilities subset
up, Whereuy,; is the utility of useri. Utility proportional fairness is defined [93]:

Definition 4.3.1 Utility proportional fairness- A set of utilities u,, is utility proportional
fair if for any feasible utility set uy,, the sum of proportional changes in their utilitiesis

non-positive:

3 ns(Fs) — umi(ri) _ o (4.15)

A straightforward way to obtain a proportional fair allocatv, € U is to find a set that

maximizesy _, log(uy,;) over the convex set of feasible allocati@#$94, 95].

max F = Zlog(uhi) (4.16)

We denote the set of;; that results in the proportional fair sef, asw;;, which are
used in Fairness Module to derive fair weights. The set ofw;; is the solution of the
optimization problem that maximizés,, log(us;) subject to the network resources lim-
its. The fairness optimization problem has a power congtsamilar to (4.3) and (4.4).
However, as we attempt to find a long term fair allocation sbregces, the average CSI
over time is deployed in the problem, 89 will be used instead of,,, in (4.3). Also,
the exclusive sub-carrier assignment, constraint (4sb)elaxed, because this problem
Is solved for fair weights regardless of specific sub-ca@l®cation. Also, we add the
minimum rate requirement constraint to make sure that tin@flacation qualifies min-

imum QoS requirements. Accordingly, utility proportioriair weights can be obtained
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by solving the optimization problerRrs.

Prg: max F (4.17)
K
st =) wy;<-R, VieM, (4.18)
j=1
M K
Qwii — ]
S>> S —— < Pps, (4.19)
i=1 j=1 R

The allocation ofw;; is a long term fair rate allocation to useon sub-carrierj. There-

fore, the fair weight of useris inferred as follows:
K
j=1

If the scheduler allocates resources to users such thatongaduration of time the set
of aggregate transmitted rates to users is proportionélesét of fair weightsiy;, i.e.,
the set of equations (4.1) is satisfied, the scheduling sehsmatility proportional fair.
The set ofi¥; is valid until the average channel gains of a user sudderdn@és or the
transmission to a user is terminated. A practical approadb periodically update the

fair weights.

4.4 Solution Algorithms for OFDMA Resource Alloca-

tion and Fairness Optimization Problems

ProblemPr; needs to be solved in every scheduling interval, whilg is solved only
when its input parameters are changed. Probl&msand Prg are nonconvex optimiza-
tion problems in general and finding their optimal solutismaontrivial [20]. Problem
Pr; is nonconvex in feasible region, whiférg is nonconvex because of nonconvex util-

ity functions in the objective function. The efficiency of &thod in solving a nonconvex
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problem strongly depends on how nonconvexity of the probgetmreated. Therefore, we

apply different approaches to treat the nonconvexity ohgaoblem.

We use a Lagrange dual decomposition method to sBlveThe method does not
guarantee an optimal solution, but it can efficiently obtasar optimal solution(s) with
a practical number of sub-carriers [78]. The adaptationagfrange dual decomposition
method hinges on the results reported in [96] that the dugdip' vanishes as the number
of sub-carriers increases.

Whereas Lagrange dual decomposition method is applied t@ g8l an interior
point method is applied to solv®;, because the objective function is sum of users’
utilities which can be non-linear functions of users’ rat®d interior point methods are

shown to be successful in solving non-linear optimizatiosbpems efficiently [31].

4.4.1 The Dual Method

If 1; = W,/ R,, the objective function of problerr is to maximize> | (ui Zle rij> .
Constraints (4.13) and (4.14) form the dom@irthat Lagrangian ofr; can be defined

over it as

2mi — 1
L ({rij}. A ZZWU ( — - PBS) : (4.22)
]

i=1 j=1

where is the Lagrange multiplier. The dual problemf-, is expressed as

min max L ({r;;},\). (4.23)

A {riy}eD

The solution of the dual problem givaghat minimizes the maximum value gfover the

domainD and determines the set of rate allocations to sub-carrigrghat maximizes
L. The optimization problem (4.23) is a minimization problemth one scalar variable
A that can be solved by an iterative algorithm. We use algorho solve the problem.

In each iteration of algorithm 3, the setf that maximize<C is determined by solving

1The difference between the primal optimal and dual optirohltsn
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K decomposed problems of rate allocation to sub-carrieralldsation of sub-carriers
to users are independent, the optimization problems (4u243olved in parallel to obtain

allocated rate to sub-carriers.

{rij YD Q5

al ora — 1\
max Zﬂﬂ"z‘j - A Vi=1---K. (4.24)
i=1

When adaptive modulation is used, allocated rate to eacleauler is determined from
a discrete set of rates. Accordingly, the solution of probl@.24) is determined by
searching over the domaid. The search algorithm is performed in real-time, because

the size of the domaif is confined by the number of modulation levels and sub-aatrie

4.4.2 The Interior Point Method

For notational simplicity, a solution dPrg is denoted by a weight allocation vector
w = [wn,wlg, oo Wi1Ky e, WLy - - ,U)MK]T, (425)

wherew; = Zle w;; represents allocated weight to useiVe put the inequality con-

straints in a vecto€'(w), which is represented as follows:
Zj‘(zl wij — Ry,

Sy wary — RAL,
_ M K 1 ;oKW
C(w) = — Zi:l ijl O[:”_(2 5 — 1)+ Pgs | (4.26)

w11

WM K

and convert the inequality constraints to equality comstsaby associating a positive

slack variable to each constraint. Hengey is converted to the following minimization
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Algorithm 3 Solution Algorithm for the Dual Problem

Input: M, K, Pgg, cvj, i, bit loading set

Output: 75

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

Setting up and initialization:

1. Seth =1,e =1, Exit_flag =1, \p,_1 = A\, = 0.
2: Solve (4.24) forr;.

3: ComputeAp = Ppg — pjj.

4. if Ap > 0then

5:
6
7
8
9

return Tij

: else

while Exit_flag > le — 5 do
if Ap > 0then
€ =0.99 xe.
A= A1
Apy = App_1.
else
Ah_1 = Ap.
Apn—1 = App.
end if
An = An + |ex Ap).
Solve (4.24) for;;.
UpdateAp.
Exit_flag = N\, — A\p_1.
h=h+1.
end while
end if

return Tij--
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problem:
Prg: min —Zlog(ui(w)) (4.27)
st Cw)—s=0, (4.28)
s> 0. (4.29)

The rest of the interior point algorithm is implemented asadied in chapter 3, so we
avoid repeating it here. The correspond®ijt, £ andV,, f(w) for Pry can be found in
Appendix A.2.

4.5 Complexity of the Proposed Approach

The decomposition of (4.23) inte equations (4.24) reduces the exponential complexity
to the linear complexity ik [96]. The solution of (4.24) is obtained by a heuristic sbarc
method due to the discreteness of the donfinThe search algorithm is feasible for a
practical network, because the sizefdfs confined by the number of modulation levels,
users, and sub-carriers. When adaptive modulation is uiedated number of bits to
each sub-carrier is a discrete variable that can be chosentfre bit loading vector of
the modulation technique [34].

Problem Prg is required to be solved only when the network charactesst.g.,
users’ average channel gain or the number of admitted us#re hetwork, change. The
scheduling scheme starts with default fair weights, elyequal to one, and updates
the fair weights with the ones obtained by solviRgs during the first iterations of the

scheduling scheme.

4.6 Numerical Results

Performance of the opportunistic fair scheduling schemevauated in this section.
The investigated performance metrics are the overall mtwooughput and fairness
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index of the proposed scheme, which are compared with the afreepure opportunistic
scheduling scheme. We implement a multi-carrier pure dppgstic scheme similar to

the opportunistic fair excegf- = 1fori=1--- M.

To compare the performance in terms of fairness, a fairnessameeds to be defined
first. We use Gini fairness index which is an inequality measi resource sharing that
measures deviation from equations (4.1) for each schedwdethe total allocated rate to
useri over the simulated intervals be symbolizBd We examine the inequality among

the set of proportions = {z;|z; = R,-/Wi} by Gini fairness index/, defined as follows:

M M
I:ﬁZZ\zx—zﬂ, (4.30)

z=1 y=1

wherez = # The Gini fairness index takes values between 0 and 1. A Hateaa
tion is perfectly fair if/ = 0. A high value of/, close to 1, indicates higher unfairness

among the proportions.

The wireless channel is simulated to experience both frezyuselective and large-
scale fading [47], [28]. Users receive six Rayleigh distiabmultipath signals. The real
and imaginary components of the received signals to diftausers are generated from
an uncorrelated multidimensional Gaussian distributiotin wero mean and an iden-
tity covariance matrix. Uncorrelated multi-path compaselead to uncorrelated user
frequency responses in the frequency domain. Thus, fultinsar diversity can be ex-

ploited. The large-scale fading is distance dependentatahfs the inverse-power law:
vij|* = D ", (4.31)

whereD; is the distance between the BS and usemetersy is pathloss exponent, and
7i; IS pathloss of useron sub-carriej. Numerical values of the wireless channel used

in the simulation are: doppler frequerey0 Hz, andx = 2.

The network accepts users with nonconcave and concavly @isifictions, respec-
tively. The users’ utility functions are expressed by eouraf4.32) [88], where; denotes
allocated rate to user/,,;, andl,,.. are lower and upper rate thresholds, @ncbntrols
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users 9to 16 users1to 8 users 9to 16

(@) (b)

Fig. 4.4: Simulated scenarios: (a) fixed users, (b) a fixedarsg a mobile user, (c) users

with heterogeneous rate requirements

the shape of the utility function. The function is concaveifo< 1 and convex fok > 1.
k= 2lnin =11 = 10,002 = 600 andk = 0.7,l,in = I3 = Llnee = 14 = 800 have
been chosen for convex and concave utility functions, reisdy.

O Zfr S lmina
wi (r) = & sin® (52250 ) Ly < 7 < D, (4.32)
1 7> las-

The simulated network consists of a BS, with total power etmal Watt, located
at the center of the cell with 800m radius, that transmitsiaaedated traffic in its queues
to users ove64 sub-carriers. We show the scheduling schemes performance/erse
channel gains and traffic types by considering the threeasmenshown in Fig. 4.4. In
the first scenario, Fig. 4.4-(a), users’ utilities are caecaUsers are fixed, but their
channel gains are different due to pathloss and multipatinga The second scenario,
Fig. 4.4-(b), considers a fixed user and a mobile user thatdréable pathloss due to the
movement, and both users have the same concave utility.hifdestenario, Fig. 4.4-(c),

consists of users with nonconcave and concave utilities.
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4.6.1 Fixed Users

In the first scenario, shown in Fig. 4.4-(a), there &seusers, half of the them are uni-
formly located on a circle witth0 meters radius, and the other half are located on the
cell edge at equal angular distance. As users have diveesmehgains, we investigate
the effect of channel diversity on throughput and fairness$gsmance of the scheduling

schemes using this scenario.

Fig. 4.5 shows overall throughput versus the number of dsetlse opportunistic and
opportunistic fair scheduling schemes in the first scenagthe opportunistic scheme
assigns a sub-carrier to a user that has the highest chaminamit, its throughput is the
upper bound. The opportunistic fair has lower throughpahtbpportunistic because in
some scheduling intervals it assigns a sub-carrier to athaetacked service for a long
time. Both scheduling schemes exploit multi-user diveragymore users join the inner
circle, i.e., when the number of users increases from 2 toR8gn4.5. Users 9 to 16 are
far from the BS and their channel gains are always much lovear the users located on

inner circle, so they do not increase multi-user diverséing

Fig. 4.6 shows the Gini fairness index of the first scenarlee fairness index of op-
portunistic and opportunistic fair increases as the nurobasers increases. Increasing
user diversity has an adverse effect on fairness. Howehisreffect is moderated in the
opportunistic fair scheme at low spatial diversity (i.esets 1 to 8).

4.6.2 A Fixed and a Mobile User

In the second scenario, a fixed user and a mobile user thatsnaovay from the base
station are considered. At first, users 1 and 2 are locates ¢tothe BS at the same
distance. Then, user 2 moves away from the BS toward the edie ckll. We inves-

tigate the adaptivity of the opportunistic fair schedulingapturing the network status

variations using this scenario.

Fig. 4.7 shows the throughput of useand use? at the three positions for oppor-
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Fig. 4.5: Overall network throughput for scenario (a)
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Fig. 4.6: Fairness index for scenario (a)
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Fig. 4.7: Uset and Use?’s throughput at different positions of the second scenario

tunistic and opportunistic fair schemes. The throughputpgdortunistic fair has been
illustrated for two different time constants,, for the lowpass filter of the transmission
history. As uset moves away from the BS and its channel gain drops, the oppstitun
scheduling allocates less rate to it and finally ignores vt is very far. On the other
hand, the opportunistic fair scheduling scheme, whichniti¢eto allocate proportional
rates to the fair weights, allocates more rate to user 2 thaores of opportunistic allo-
cation. The diagram shows opportunistic fair with smalleis less effective, comparing

to the one with larger,,, in compensating the bad channel gain of user2 as it moveg awa
from the BS. The reason is smaller number of scheduling iaterare considered and
compensated for in the fairness scheme wheis small. Therefore, the scheduler has

shorter time to compensate for the unfairness.

Fig. 4.8 shows the Gini fairness index of the opportunistid apportunistic fair
scheduling with two differenf,. in the second scenario. When both users are close
to the BS and their channel are almost similar, unfairnesgppbdunistic scheduling
is not observed. However, as ugenoves and its channel degrades, the opportunistic
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Fig. 4.8: Fairness performance of the second scenario

fair scheme treats it more fairly than the opportunisticesoh, so the fairness index of
the opportunistic scheme deteriorates whenigeat position® and3. Opportunistic
fair scheme with largef’,. outperforms the one with small&t. in terms of the fairness

performance .

The performance study of the second scenario indicateghbadpportunistic fair
scheduling can capture the network changes and adapt thedaischeme accordingly.
The adaptivity of the scheme can be adjusted by controllgttansmission history
duration, which is one of the components of the fairness reodturthermore, the trade

off between fairness and throughput can be adjusted signilar

4.6.3 Users With Heterogeneous Rate Requirements

In the third scenario, all6 users are at the same distance from the BS, on a circle with
50 meters radius, but they are running two different applosatiwith different utility

functions. The first group of users, usdrgo 8, are subscribed to a service with a
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Table 4.2: Aggregate Utilities of the Scheduling Schemes

Scheduling Schem% S Ui(r) S0 Ui(re) 002, Ui(r)

161.4702 141.0092 302.4793
306.2989 196.6107 502.9096

Opportunistic

Opportunistic Fair

nonconcave utility function. The second group of userstaséo 16, are subscribed to

a service with a concave utility function.

The utility values of user$ to 8 over 100 samples of the channel, when their traffic
is scheduled by opportunistic scheme and opportunisticstdieme, are represented in
Fig. 4.9-a and Fig. 4.9-b, respectively. The figures reveas] first, opportunistic scheme
ignores some users with low channel gains over the simulatiterval, such as user
8 in Fig. 4.9-a. This fact causes severe unfairness in setovisioning when the
user diversity is high. Second, the rate allocations anaddéme utility distributions of
users for opportunistic scheme is not as regular as the droggportunistic fair scheme.
Accordingly, opportunistic scheduling is not effective service provisioning for the

applications that should be scheduled almost regularly.

The data statistics of the simulation, shown in Table 4.pjas that the utilization
of resources or users’ satisfaction of received serviceciwis represented by the sum
of users’ utilities, is improved for opportunistic fair ssdiuling more than that of the op-
portunistic scheduling scheme. Moreover, the users witiveo utilities have a higher
aggregate utility than the ones of the users with concaligegi The reason is the gradi-
ent of the convex utility function is higher than the gradiehconcave utility function at
lower rates in our simulation. Therefore, for the same alled rate, convex utility value

is larger than the concave value.
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Fig. 4.9: Utility values of user$ to 8 for opportunistic and opportunistic fair scheduling
schemes versus time
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4.7 Summary

An opportunistic fair scheduling scheme is proposed fordtxnlink of OFDMA net-
works where users have heterogeneous rate requirements.schieduler takes sub-
carriers channel gain and fairness requirements into atdouassign sub-carriers to
users and allocate rate to each sub-carrier. We considee$a constraints by adopting
the utility proportional fair criteria, computing a set @fif weights associated to users,
and allocating the resources according to the fair weigftts.proposed scheme is adap-
tive because the fair weights can be modified dynamicallynthe network characteris-
tics change due to mobility of users, admitting a new usezhanging the fairness policy
of the network service provider. As the fair weights are cated based on a utility-
based resource allocation scheme, the resource utilizafithe network improves and
allocated resources conform the requirement of the uséishvare represented by their
utilities. Comparing to opportunistic scheduling scherhe,fgroposed opportunistic fair

scheduling scheme provides fairer and smoother servidetigt cost of the throughput.
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Chapter 5

Conclusions and Further Works

The success of wireless networks in supporting a varietyppfieations and being ex-
panded in a large commercial scale is strongly tied to theopeance of corresponded
resource allocation schemes. The research in this thesisés on resource allocation
schemes for OFDMA networks with heterogeneous traffic typleEh simultaneously
provide Qo0S, maintain fairness, and improve network w@tilen. Following, we sum-

marize the major research contributions of the thesis, anpgse further works.

5.1 Major Research Contributions

e We investigate the OFDMA resource allocation problem aneldg a framework
for the resource allocation in a very generic form. The fraor exploits many
aspects of an efficient resource allocation scheme, sudolahoration between
MAC and PHY, and adaptivity to resource changes to improgeekource utiliza-
tion performance while satisfying heterogeneous usersiatels and maintaining
fairness among users. Also, the framework captures thentsiseharacteristics
of the network and users’ requirements, such as, exclusivecarrier allocation

constraint and users’ minimum QoS requirements.
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We have followed a new direction in problem formulation. idelprevious for-
mulations for the OFDMA resource allocation problem, inlitexature, which are
based on combinatorial optimization techniques, we uséreorus optimization
techniques for the problem formulation. Given this methbgroblem formula-
tion, we present an NLP problem that can be solved by contiswptimization
algorithms rather than combinatorial ones. Our suggestgditnm is a combina-
tion of interior point methods and penalty function methodke proposed algo-
rithm treats the non-convexity of the problem and expldits $trength of interior

point methods in solving NLP problems.

The proposed framework for OFDMA resource allocation caafy@ied to many
centralized networks with multiservice support. More imtpatly, the applica-
tion of the framework can be extended to network utility nmaization (NUM)

problems with either convex or non-convex objective fumtsi. The new prob-
lem formulation method sheds some light on the future reseabout deploying
continuous optimization techniques for solving the OFDM&aurce allocation
problem. Also, the simple and fast algorithms deployedlifate performance

analysis of a variety of OFDMA resource allocation schemes.

e We propose an opportunistic fair scheduling scheme for ORDMtworks with
heterogeneous traffic types. In the proposed scheduleifree$a enforcement
technique has been integrated with an opportunistic sd¢imgicheme to maintain
longterm fairness and smooth service delivery. The fagisebeme assigns some
fair weights to users which maintain utility proportionalrhess among users. The
fair weights are determined based on users’ average chgaimsland utility func-
tions, so fair weights can be assigned for long durationsmg &s users’ average
channel gains are static and no user joins/departs the rlet®@o the other hand,
when the channel statistics are dynamic, the fair weighseacomputed period-
ically, with a period which is proportional to the rate of idions. The fairness
scheme can be adjusted to maintain a measure of fairnesly tagHoosely, i.e.,
the tradeoff between throughput and fairness is adjustable
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Our proposed scheduling scheme design is modular, whigs nekeparating the
tasks of the scheduler between an OFDMA resource allocatmatule and a fair-
ness module. Besides, as individual modules are less catgdi¢than the com-
bined one, fast and simple algorithms can be used in eachlmtmlueduce the
complexity of the scheduling. To achieve an optimal resewitocation, we for-
mulate the tasks of each module with an optimization prognarg problem. We
apply dual method algorithms to the OFDMA resource allaraproblem, where
the objective function is a linear function. When dual methégbrithms are ap-
plied to the OFDMA resource allocation problem the dualiépgs not zero, but
it is reduced significantly for practical parameters sébactor the problem. More
precisely, when the number of sub-carriers grows bigger the number of users,
the duality gap vanishes. Applying duality methods is atkgeous in our scheme,
because the computational complexity of rate allocatiahasers’ scheduling is
reduced. Due to the non-linearity of the fairness moduleapation problem, we
apply an interior point method combined with a penalty fiortimethod. Using
interior point and penalty function methods in the fairnepimization problem
facilitates the utility fairness implementation; hendamproves resource utiliza-

tion.

5.2 Further Works

The proposed schemes for resource allocation and schgdnlthis thesis tackle some
challenges of the OFDMA resource allocation problem suatoasconvexity issues and
heterogeneous traffic support. However, there are stillynogren issues to extend the

research and deserve further investigation:

e The research in this thesis investigates conceptual aspécéesource allocation
schemes for OFDMA networks. However, fine tuning of the sateparameters
and improving the algorithms convergence speed remairuftindr research. For
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example, the width of the exponential window in the movingrage technique
should be adjusted according to the required tradeoff tleroughput and fair-
ness. In addition, the performance of the proposed scheavestieen derived for
saturated buffers; the effect of traffic model variationgtoe performance can be
studied to specify if adapting or modifying the schemes arpired. Some im-
portant aspects of PM/IPM that can be discussed include lexitypanalyses, the
initial choice of penalty parameter, strategies for upaathe KKT perturbations,

and appropriate criteria for terminating inner iterations

e Scalability is a necessary factor of the algorithms for s@\optimization prob-
lems of the OFDMA resource allocation. When the number of carbier in-
creases in the network, the algorithms may take longer tiwh&h is not accept-
able for real-time applications. Some techniques suchlasatrier clustering may
be taken into account to downsize the allocation variablisch result in loosing
some diversity gain [97]. For practical implementation tregleoff between scal-
able algorithms and achieving high diversity gain desetedse recognized and
controlled.

e The OFDMA resource allocation problems in this thesis anmestrained by the
total transmit power, and the utility functions are funosoof rate. However, in
some applications the objective of the resource allocasiom minimize transmis-
sion power [98], or maximize an objective function which @& a function of rate,
e.g., maximizing aggregate utilities where the utilities a function of delay [99].
As the problem formulations are different in such cases camespecify the appli-
cability of the proposed algorithms in this thesis to thosidfems and the required

modifications of the algorithms if it is needed.

e The results from this thesis and other research [100] inelitt@at collaborating
with PHY layer can significantly improve the performance @$aurce allocation
schemes in wireless OFDMA networks. The performances gigsed resource
allocation schemes, which are based on cross-layer degigiP®Y layer, depend

94



Chapter 5. Conclusions and Further Works

on the accuracy of PHY layer models or measurements.

In this thesis, short-term time variations of channel angl@ted in the OFDMA
resource allocation scheme, and users’ average chanmsl @& deployed in the
fairness scheme. The performance study of the schemessawpo chapter 3
and 4 is based on the assumption of Rayleigh distributiorhi@amplitude of the
channel gains. The performance analysis can be extendetirless medium
with different fading characteristics, such as, Rician ok&gami fading channel
distributions. Furthermore, some other channel stasisBpecifications can be
deployed in adjusting resource allocation parameters. ekample, the average
fade duration, which quantifies how long the signal spentisiba threshold [101],
can be deployed to determine the periods of fair weightuation.

Perfect CSl is assumed to be available in the BS when chanmemation are
obtained by measurement. However, there exist some undgritaachieved CSI
due to unreliable feedback channel, which may result in grdecisions being
made by the schemes [102]. It is important to study the effettmperfect CSI,
e.g. estimation error and feedback delay. Also, feedbaekh@ad reduction de-
serves to be investigated specifically in practical netwavith large number of
sub-carriers and users. Effective approaches are neededimbain the diversity

gains while reducing the feedback overhead.

The PHY layer capacity and the resource allocation schemlykd in the link
layer directly affect the available resources for adngttiew call requests. While
satisfying users’ requirements and network constraintglleadmission strategy
tries to allow as many user as possible to access the resainseltaneously. Ac-
cordingly, an admission control strategy in the networkelaig corresponded to
stochastic transmissions inherent in channel-aware mk$§®03]. Designing an
admission control strategy that benefits from the efficiefaiyness, and improved
resource utilization of the proposed resource allocatabresies in this work is of
great importance for commercial implementation of the sedgeas well as theo-
retically extending the work.
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e The framework in chapter 3 formulates the rate allocatioceintralized OFDMA
networks as a NUM problem. A large number of work based ontytihaxi-
mization approach for network resource allocation has hEeformed already
(look at [104] and the references therein), such as TCP ctingesontrol [105],
sharing link capacities among sources, and bandwidthaltmt in wireless net-
works [106]. In particular, the previous research focusegmposing distributed
algorithms to solve NUM problems where the utilities werglased to be concave.
However, the demand for transmission heterogeneous trgffes, i.e., real-time
and non-real-time, requires non-concave utilities beiclned in NUM problems.
Then, the proposed distributed algorithms for convex NUbtgms may not be
tractable for non-convex ones. Inspired by the formulatieethod and proposed
algorithms in this thesis, non-convex NUM problems can beswtered in future

research.

e Users’ minimum rate requirement constraints and utiligdd resource allocation
satisfy users’ essential QoS requirements, but some apipis such as video or
streaming media need stringent QoS requirements that asatisfied by this ap-
proach. Besides, a higher resource utilization is achielvatbre video statistics
are properly used in the resource allocation scheme [1@f]cémmercial video
applications, such as video on demand and internet protetlision (IPTV),
some traffic characteristics, such as, different impogasicencoded video lay-
ers, burstiness of video content, and decoding dependemsjraints of multime-
dia can be taken into account for further resource utilmaind resource alloca-
tion efficiency [108]. However, considering these aspeotsemew challenges on
resource allocation problem formulation. Neverthelelss,dramatic increase in
video demand on wireless broadband networks drives mmnsfor developing
suitable resource allocation schemes, which attain thieelsigoverall video qual-
ity given the limited resources while delivering consistend smooth service and

maintaining fairness among users who subscribed the sar§e Qo

e The resource allocation schemes in the literature can leg@ared as centralized
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or decentralized schemes. The former is corresponded veoriet with a PMP
infrastructure, but the later can be applied to either PNiiy(s-hop or multihop)
or adhoc networks.

The network infrastructure considered in this thesis is r@reéized single-hop,
which is a fundamental infrastructure in many networks,,egllular and relay
networks. The proposed resource allocation scheme hasspeerally designed
for a stand alone network. However, when some centralizegleshop networks
are adjacent, such as in cellular networks, the inter-cédirierence should be
taken into account. It has been revealed that collaboraifddSs will resolve

the inter-cell interference problem and result in bettefqgrenance [80], providing
that effective decentralized schemes with low complexatytifie collaboration are
suggested. Similarly, the proposed centralized schem&deaxtended to multi-
hop relay networks. In multihop networks the co-existentcmoltiple links for

transmission causes more complexity, because the aatike iin each resource
allocation intervals should be determined in addition te thte and sub-carrier

allocation to the transmission on each link [109].

Decentralized schemes are of great importance for the res@liocation in the

UL of centralized networks or in decentralized networkse Jinoposed resource
allocation scheme in this thesis can be applied in the UL sothe slight changes [110].
For example, the BS power constraint is replaced by a per usegmpconstraint.
Furthermore, as the nodes in the network, except the BS, drasoally able

to monitor all channels used for other nodes transmissimgffective informa-

tion exchange mechanism is needed to take full advantadpe @hiannel diversity

among different nodes.

5.3 Final Remarks

The coexistence of real-time and non-real-time traffic itufe wireless networks is
promising. Therefore, resource allocation schemes thgpat multiple traffic types
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and maintain fairness simultaneously are demanded.

While considering most important resource allocation pigrad, such as adaptive
rate or power allocation, dynamic frequency allocatiorg acheduling, this thesis fo-
cuses on the OFDMA fine resolution and flexibility in resouaiecation. We present a
framework which considers the OFDMA network restrictiossagell as heterogeneous
users’ fairness and QoS constraints while attempting taongthe wireless system
scarce resources utilization. By taking a different di@ctirom previous works, we
introduce a new problem formulation and solution, based mticuous optimization
techniques, for the OFDMA resource allocation optimizagwoblem, which produces

results with reasonable accuracy in practical time dunatio

The new formulation for the OFDMA resource allocation, imstthesis, facilitates
applying other continuous optimization approaches that treat nonconvexity prob-
lem more efficient than discrete optimization methods tleatehbeen proposed so far
in the literature. For instance, scalable and fast-corngrgontinuous methods can be

searched for to be applied to this new problem formulaticiuither works.

98



Appendix A

Derivation of V2L, V, f(r), V2,,,L,
and V,, f(w)

The mathematical representations\af.£ andV . f(r), required by the interior point al-
gorithms in chapter 3, as well 88, £ andV,, f (w), required in chapter 4, are presented
in section A.1 and A.2, respectively.

Al VLandV,f(r)

The objective function of’r;, based on utility functions (3.62), is represented by:

flr)= — (Ul(r1)+...+UM(TM))+g(ZZ(mm+...+T’gKnK)).(A.1)
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T
Accordingly,V, f(r) = (8‘:{1 N afTJ;K> is computed as follows:
4]
e N (S
oU:
#(;;) ZZ ik —TMK
Vo f(r) =— : +1L : , (A.2)
U
—g,{](w?l) ZZ i1 — M1
9
—%ﬁgﬁ?ﬂ D i TiK — TMK

Where, forj = 17 .o 7K’ ande — %l’;—_llll:

av; %sm(kfl)(@cos(e) if i=1, (A3)
Orij 0 otherwise. .

To obtainV? £, V2, f(r) andV?2,.C(r) are computed first:

G<T1> O(K,K) O(KJ()
0 G(r ... 0
Vi = — |t G0 o (A4)
Ocrr) O ) G(rm)
Oy L(k.k) Ik x)
) I(K.’K) 0<K.,K> f(K-,m | (A5)
Ik xy Ik k) O(x,K)
where
02U, 02U,
87“1'187‘7;1 T 87“1'187‘”(
_0%U; _0°U;
G(?"l) _ Orio0ri1 o Orio0r; K ] (AG)
02U; 02U,
87'”( 87'7;1 T 87'”( 87'”(
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Ok,x) Is @K x K matrix with all zero entries, anfx k) is a K’ x K identity matrix. The
second partial derivatives of the utility functions re@uirfor calculating~(r;) functions

are:

U, Kn?
: = —_ 1 (k72) 2 aink
Orr;  A(ls — 1) ((k — 1)sin""?(0)cos(0) — sin*(0)) , (A7)

forjandj € {1,---, K}.

Finally, V2, C(r) for calculatingV? £ is obtained by:

2Kgll
o 0 0
K@\ o 22 o
Vng(r) = ( ) G12 . (A.8)
B 5 : :
0 0 2~

OAMK

A2 V2 randV,f(w)

The objective function of’ry, based on utility functions (4.32), is represented by:

fw) = = log(U(wr) — ... — log(Uns (wn)). (A.9)
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Accordingly,V,, f(w) is computed as follows:

1 0

km 1 km 0
wa(w) - = (2 (l2 - ll) c?s(9§> 0 - (2 (l4 - l3) c?s(9§> 1 (AlO)

km
2(12~1) 525 (g)

km
2(lg—11) 250
= | ee (A.11)

km
2(la~1s) Sty

km
2(la—l3) 23
where,§ = g% Note that utility functions (4.32) are convex foe= 1, , &
and concave foi = & +1,--- , M.
To obtainv? L, V2 f(w)andV2 C(w) are computed first:
G(wl) O(KJ() Ce O(K,K)
0 Gwy) ... 0
V2 fwy= — | (_ 2 o (A.12)
O(K,K) O(K,K) Ce G(U}M>
where
9% fi 0% fi
Ow;10w;1 7T Qw1 0wk
9% fi 02 fi
G(w,) _ 3wz‘2.<9wi1 3w¢2<.9wm 7 (A.13)
9% fi 0% fi
OwixOwiy "7 OwixOwik

and0k k) is aK x K matrix with all zero entries. The second partial derivatioéthe
objective functions required for calculatiig(w;) are:
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forjandj € {1,---,K}.

(A.14)

We needV? C(w) to calculateV2 L. As the users’ minimum rate requirement

Ri

min

lows:

Then,VZ C(w) is derived

Vi€ (w) =

e
K I3+l
E]:l w(%-‘rl)j - %
K
Zj:l WMy — %
= S (@ — 1) + Pas
W11
WM K
as follows:
2:” 0 0
11
0 QW12
(In(2)) o
0 0 QWM K
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equalsl,,;, andw;’s are bounded by;,;, andl,,.., first, we rewriteC(w) as fol-

: (A.15)

(A.16)
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