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Abstract 

In this thesis, we examine the inertid and electromagnetic properties of matter 

induced &om a five-dimensional Kaluza-Klein-type extension of General Relativity 

(referred to as "Induced Matter" theory). The research presented here consists of 

six exact solutions of the 5D vacuum field equations, representing three different 

physical configurations, which are analyzed for their inertial and electromagnetic 

properties (using, for the first time &om within the Induced Matter formalism, a 

charged, imperfect fluid model) . 

The first two solutions represent sp herically-symmetric charge distributions, de- 
' 

scribing what, in the appropriate limit, would be charged 'particles'. The next two 

solutions represent &ally-symmetric 'magnetized' distributions, describing 'wires' 

carrying currents with axially-symmetric magnetic fields. The final two solutions 

are confonnally flat solutions (5D conformally flat and 4D confomdy flat in a 5D 

manifold) representing cosmolo~cal distributions. (Specifically, their 4D interpre- 

tations are that of de Sitter space.) 

We also correct a previous error made in the analysis of the Liu-Wesson class 

of 5D charged solutions, recently published in ref. [2]. Specifically, that class of 

solutions was thought to represent charged radiation, whereas it actually repre- 

sent s 'nonradiative' fluid. The inertial (and electromagnetic) properties of the Liu- 

Wesson class are calculated .'.me for the first time. 
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Chapter I 

Introduction 

It has been well-known, from the work of Kaluza, mein and others, that the field 

equations of General Relativity in five dimensions can be shown to contain the usual 

four dimensional Einstein field equations plus Maxwell's equations of electromag- 

netism, thereby effecting a unification of Eins teinian gravitation with MaxweKan 

electromagnetism (refs. [3], [4], [5], [6] ,  [7], [8]). 

Specifically, Kaluza and Klein associated the extended off-diagonal components 

of the 5D metric with the vector potentials of electromagnetism, and were able to 

show that the 15 field equations of 5D General Relativity could be broken down into 

the 10 field equations of 4D General Relativity in the presence of an electromagnetic 

field1, plus the 4 equations of electromagnetism (in vacuum), plus a scalar wave 

equation (refs. [3], [4], [5], [2], [9]). 

This attempt of Kaluza and EUein to unify gravitation and electromagnetism, 

however, included the so-called "cylinder condition" in which the fifth dimension 

was presumed to be curled up very small (on the order of PIanck length), and 

li. e., the 4D Einstein tensor equated to the electromagnetic energy-momentum tensor. 
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which forced the metric to be independent of the fifth coordinate. This was, in 

part to explain the observed absence of a fifth dimension, and, in part to try to 

incorporate the dects  of quantization into 'Kaluza-K1e.h' theory (specifically, the 

quantization of charge). However, confining particles to a cylindrical surface the 

size of Plan& length forced their masses to be on the order of Planck mass. This 

and other problems with the traditional Kaluza-KIein theory resulted in its being 

eclipsed by research into other areas (such as nuclear and quantum physics) which 

had a better chance of yielding verifiable resdts (refs. [3], [4], [lo], [9]). 

In more recent years, however, newer versions of 'Kaluza-Kkin' (5D and higher- 

D GR) theories have been advanced in which the 'cylinder condition' of Kaluza and 

Klein is abandoned, and the metric is allowed to depend on the fifth coordinate. In 

one of these, referred to as Induced Matter Theory (due to Wesson, Ponce de Leon, 

Mashhoon, Liu, etc.), the 5D field equations are presumed to exist in vacuum, 

from which the 4D Einstein tensor can be extracted and equated to a general (4D) 

energy-momentum tensor. The energy-momentum tensor is then usually identified 

with that of either a perfect fluid, or (as in refs. [ l l ]  and [12]), with an imperfect 

fluid. Since all properties of matter can be derived from this, this version of 5D 

gravity allows for the unification of matter (and energy) with spacetime as well as 

the unification of gravitation and electromagnetism (refs. [4], [8], [2], [6] ) . 

The unification of matter and energy with space and time also addresses the 

additional concerns raised by Mach over classical (Newtonian) mechanics; that is, 

relating the inertia of a test object with the material distribution of the universe. 

Since there are no sources in the Induced Matter theory (it is vacuum in 5D), then 

all matter comes from curvature effects in five dimensions, and no 'particle' can be 

said to be truly 'isolated'. Instead, matter and energy are represented as nonlocal 

distributions which depend on the global descriptions of the 5D manifold. As a re- 
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sult, the mass ('inertia') of a 'local' partide will depend on the global matterfenergy 

distributions (refs. [13], 161, [8]). 

For this thesis, several exact solutions were found for the 5 0  vacuum field equa- 

tions and then interpreted physically in accord with the Induced Matter formalism. 

First, in chapter 2, the Induced Matter theory is examined more formally (mathe- 

matically) dong with the motivations (inertial and electromagnetic) for desiring to 

investigate such a theory. The Merences between the Induced Matter formalism 

and the original Kaluza-Klein theory are also elucidated. 

In chapter 3, two off-diagonal, spherically-symmetric metrics representing 'charged 

particles' (at least , in the limiting cases) are investigated and their efFective charges, 

masses, densities, etc., calculated and analyzed. 

These 'charged particle' metrics also depend on the fifth coordinate, and, as 

such, represent the first off-diagonal ('charged') solutions dependent on the fifth 

coordinate. One of the significances of such solutions is that it can be shown 

(for diagonal solutions, at least) that metrics which are independent of the fifth 

coordiriate can only be modeled to describe radiation (ref.[$]). The dependence on 

the fifth coordinate has then been seen to be important in describing 'nonradiative' 

states of matter. 

However, it was not fully appreciated until this thesis was done that this the- 

orem (demonstrating a connection between the fifth coordinate and nonradiative 

equations of state) was derived only for diagonal metrics. Off-diagonal solutions 

are not so constrained by this theorem. A recent off-diagonal solution published by 

H. Liu and P. Wesson (ref. [2]), which also represents 'charged particles', incorrectly 

assigns their solution as radiation. As such, its correct nature has been investigated 

at the end of chapter 3. 
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In chapter 4, two off-diagonal, axially-symmetric metrics representing 'wires' (in 

the limiting case) carrying magnetic field-generating currents are presented. The 

first such metric is a completely general, radial-dependent solution to the 5D field 

equations for such a 'wire' metric. The second solution, though less general, is aIso 

dependent on the fifth coordinate (as well as the radial coordinate). The effective 

current density, linear mass density, etc., are then calculated and analyzed for each 

metric. 

In modeling the charged and magnetized metrics presented in chapters 3 and 4, 

imperfect charged fluid models were utilized; the first time such models (charged and 

imperfect) have been used within the Induced Matter formalism. (This, and other 

details of the Induced Matter theory, are discussed in more detail in chapter 2.) 

In chapter 5, two classes of diagonal, conformally flat metrics, representing (in 

the 4D limit) cosmological solutions, are presented and analyzed. The first class 

of solutions possess a 4D conformally flat portion with an extra fifth-component 

portion, while the second solution is 5D conformdy flat. These solutions, when 

analyzed, can be shown to represent 4D cosmological models (notably, de Sitter 

space). 

Both sets of metrics depend on the radial coordinate, the temporal coordinate, 

and the fifth coordinate. As such, they are complicated metrics, mixedZ functions 

of all three of coordinates (the 4D conformally fiat solution being the most general 

such solution). 

Finally, in chapter 6, discussion is 

thesis, and conclusions drawn based 

presented on all the solutions found in this 

on their analysis fiom within the Induced 

Matter formalism. 
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In appendix A, the Riemann tensors for the 'charge metrics' presented in chap- 

ter 3 are shown, along with the derivation of those metrics. In appendix B, the 

Riemann tensors and derivations of the 'wire metrics' presented in chapter 4 are 

shown, and in appendix C, Riemann tensors and derivation of the cosmological 

metrics presented in chapter 5 are shown. 

All metrics derived here were verified by on computer by GRTensor 11, computer 

s o h a r e  developed by P. Musgrave, D. Polhey and K. Lake at Queen's University 

(ref. [I]). GRTensor I1 allows rapid calculation (and, thus, verification) of all GR- 

type metrics in any number of dimensions. EIowever, GRTensor II does not allow 

for calculation of MameUian-type equations, which (due to the presence of charges 

and currents in this thesis), are also important here. As a result, in appendix D, 

a computer subroutine (written by the author) yielding calculation of Maxwell's 

equations, for the analysis of the charged and currented solutions given here, is 

presented. 

Findy, in this thesis, unless otherwise stated, Latin super/subscripts run over 

all five dimensions, a, b, . .. = 0,123,5 = t, ~84, + (or t, p$z, + for cylindrical co- 

ordinates), while Greek super/subscripts ntn over the four dimensional spacetime 

subspace, a? ,f?, ... = 0,123 = t ,  re+ (t, p#r for cylindrical coordinates). Since there 

are two metrics in each of the main chapters, 3, 4 and 5, the Roman numeral sub- 

scripts 1 and I I  on calculated quantities (such as TPY) denote the respective metric 

number for that calculated quantity in that chapter. 

Five dimensional quantities are denoted by c i r c d e x e s  (e-g., d i 2  represents 

the five dimensional metric, while ds2 represents the four dimensional metric). The 

Mth coordinate is denoted by: x5 $. The signature of the metric is taken to be 

(+, -, -, -, E), where e is the signature of the Hth  dimension and is either "+" or 

K-" depending on whether the fifth dimension is taken to be timelike or spacelike 
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(the latter usually being the case in most work in Induced Matter theory, ref. [8]; 

however see ref. [lo] for work involving a timelike fifth dimension). Units are chosen 

1 such that c = 8rG = = 1. 



Chapter 2 

5D GR Theory 

2.1 Inertia: Mach's Principle 

In developing a relativistic form of gravity, Einstein was motivated to the General 

Theory of Relativity by two main principles: the Equivalence Principle and Mach's 

Principle (refs. [14]). 

B y  the Equivalence Principle, Einstein meant the inability of any local, non- 

gravitational experiment to distinguish between an ext m a 1  gravitational field and 

acceleration. The most notable prediction of the Equivalence Principle was that 

rays of light should bend in a gravitational field; since a horizontally-projected beam 

of light would appear to trace out a curved path in a vertically-accelerated fiame, 

then, by the Equivalence Principle, the same thing should happen in a gravitational 

field. Thus, light should bend in a gravitational field (ref. [15]). 

Since the images by which we see the universe are made up of light rays, then 

light rays can trace out space(time) . If light rays, indeed, bend in a gravitational 

field, then gravity can be understood as a bending of space(time). 
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Mach's Principle represents the (positivist) view held by Mach (and others) that 

position and motion (ie., space and time) should only be regarded in a 'relative' 

context; that is, any reference to 'absolute space7 (or 'absolute time'), as Newton 

would have preferred, was meaningless since 'absolute space' (or time) could not 

be detected nor measured against. Instead, Mach insisted that the motion of any 

object be regarded only da t ive  to the rest of the universe. Mach fnrther stipulated 

that the laws of physics should be formulated in such a way as to make irrelevant 

whether it was the object that was moving with respect to the universe, or whether 

it was the universe moving about the object (ref. [16]). 

A typical example of this difference in perspective is given by consideration of 

a rotating bucket of water. If a bucket of water is rotating about a vertical axis 

through its center, the water will assume a parabolic shape about that axis. While 

the experiment is simple, its interpretation is not. How does the water 'know' that 

it is in a rotational (i-e., noninertial) frame so that it might assume a parabolic 

shape? 

According to the traditional Newtonian perspective, this is caused by the in- 

teraction of the water with absolute space; that is, 'absolute space7 provides the 

reference frame with respect to which the water can 'sense' that it is not in an 

inertial reference fiame, and react to it (i. e., assume a parabolic shape) (ref [Ei]). 

According to Mach's point-of-view, however, 'absolute space' is a meaningless 

mathematical concept since it can't be measured. Instead, Mach argued that the 

rotating water experiences an 'interaction' with respect to the rest of the matter 

distribution in the universe (so the water's noniner tia (TO tatioc) is measured relative 

to the totality 3f all the matter in the universe). It is this interaction (with respect 

to the rest of the universe), therefore, that causes the water to assnme a paraboIic 

shape (ref [15]). 
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The greatest predicted difference from these two perspectives (Newtonian and 

Machian) on the rotating bucket of water then comes horn considering what would 

happen if the bucket were not rotating, but the rest of the universe were rotating 

about it. According to the Newtonian view, there would be no effect on the water. 

Since the water is not rotating with respect to absolute space, then the water's 

surface will remain flat. 

According to Mach's view, however, all motion should be regarded as relative, 

and the situation of having the bucket remain 'at rest' while the universe is rotating 

about it is identical to the situation where the universe is 'at rest7 and the bucket 

is rotating with respect to it. Therefore, Mach's Principle says that the universe 

rotating about a bucket of water 'at rest7 should cause the surface of the water to 

assume a parabolic shape. It is interesting to note that, before Einstein, Mach and 

his followers considered themselves 'relativists' (ref. [15]). 

Intimately connected with Mach's ideas on the relativity of motion, are his 

ideas on the relativity of inertia (that is, the resistance of an object to changes 

in motion; mass). In the same way that Mach believed that space (and time) 

should be regarded in a functional (positivist) sense, so he also believed that mass 

(inertia) should be regarded from a functional point-of-view. Mass, as the resistance 

of an object to (changes in) motion, can then be understood, according to Mach, 

by comparing the relative motion/acceleration imparted to an object for a given 

impulse of momentum/force. If, for a given force, an object attains twice the 

acceleration than another object, then the first object would have half the mass 

(inertia) of the second (ref. [IT]). 

Since motion/acceleration are, themselves, only to be understood fiom a rela- 

tive point-of-view @om Mach's perspective), then inertia must, therefore, also be 

understood only in a relative fashion (relative to the rest of the universe). Partic- 
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ularly, since the standards of nonacceleration and nonrotation are defined by the 

totality of the matter in the universe, then the mass (inertia) of a given object must 

be related in some (unspecified) relative way to the distribution of matter in the 

universe (ref [15]). 

For example, an object in an otherwise empty universe would possess no 'self- 

inertia. Since, by Mach's view, there is nothing for the object to move with respect 

to, it cannot possess motion, thus, inertia for it is meaningless. Only if there is 

an appreciable distribution of matter within this universe can the standards of 

nonacceleration and nonrotation shift appreciably such that the object can obtain 

inertia (ref. [15]). Although Mach doesn't specify how this is to be accomplished, 

some (unknown?) interaction between matter must therefore give rise to inertia. 

This is seen in the statement that "matter there governs inertia heren (ref. [16]). 

There are, of course, numerable objections relating to Mach's Principle that have 

been raised (refs. [17], [El). For example, Mach's contention was that space was not 

a U t b g "  in its own right, but, rather, dependent on the material objects within it 

(i.e., he saw space as a 'creation' of the totality of all the distance-relations within 

that space; ref. [15]). So, for a single object in an otherwise empty universe, Mack 

would have regarded the extension of space as m e ~ g l e s s .  In other words, the 

dimensionality of such a space would be zero. Similarly, for only two objects within 

an otherwise empty universe, only distances along their direction of motion would 

have any meaning; thus, the dimensionality of such a space is one. Likewise, the 

dimensionality of a universe with three objects would be two, and the dimensionality 

of a universe with four objects would be three. 

But if one extends the number of objects to more than four, then one might 

expect that the dimensionality to extend to more than three. But this is clearly not 
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the case; the dimensionality of space is observed to be finite at three1. Therefore, 

one may conclude that space possesses some 'reality' independent of the matter 

within it2. Nevertheless, certain (other) aspects of Mach's Principle were seen to 

be aesthetically pleasing to Einstein (and others), who then tried to incorporate 

Mach's Principle with the Equivalence Principle into a relativistic formulation of 

gravity (refs. [14], [15]). 

Another way of stating Mach's objection to Newtonian physics (which is particu- 

larly relevant to Einstein's development of General Relativity) was the observation 

that, in Newton's view, a test particle was completely separate from the space 

(manifold) in which it traveled, and yet could experience inertial effects as if there 

was some connection to its (absolute) motion through space. This despite the fact 

that there was no a priors connection (in Newtonian physics, at least) between the 

extrinsic (the particle's motion in space) and the intrinsic (the inertial state of the 

particle) (ref. [13]). This was considered to be the most serious Machian critique 

of Newtonian physics; that (absolute) space could act on matter, but that matter 

could not act on space, and it was this point that was most readily resolved by 

Einstein in his General Relativity (ref.. [Is]). 

Einstein tried to satisfy this aspect of Mach's Principle by positing interac- 

tion between space(time) and matter. As noted above, the Equivalence Principle 

'Of course, there is the possibility that space may possess hidden dimensions which are some- 

how collapsed. Indeed, this is the very study of this thesis; five-dimensional gravity- NevertheIess, 

even in the most extended (supersymmetry, superstring) theories, the number of spatid dimen- 

sions is taken to be finite, and limited, in contrast to the nearly unlimited numbers of particles 

observed in our universe. 
20ne could argue that, if Mach viewed matter as being intrinsically dependent on space (for 

both its position/motion and inertia), then, fkom Mach's perspective, matter and space might be 

incorpomted as the the same entity, another idea which is explored in this thesis on 5D GR. 
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implies that gravitation could be understood in terms of curved space(time). Ein- 

stein, therefore, tried to couple the geometry of curved space(time) to the matter 

distribution within that space(time) . 

Einstein already had the four-dimensional view of space-time as developed by 

Minkowski to explain the effects of Special Relativity, which described the motions 

of objects in absence of a gravitational field. To then develop a relativistic form of 

gravity, Einstein applied the laws of Riemannian geometry (the geometry of curved 

spaces) to the four-dimensional space-time manifold developed by Minkowski to 

derive the formalism of General Relativity. Written in terms of his postdated 

Einstein tensor, Ga, G - igagR (where gap is the usual metric tensor, & is 

the usual Ricci tensor, and R is the usual Ricci scalar) [representing the geometry 

of c w e d  spacetime], coupled to an energy-momentum tensor, Tad [representing 

the local distribution of energy, momentum and matter in space-time and acting as 

the source of the space-time curvature], Einstein wrote his law of gravitation as: 

Although Einstein's (four-dinensional) General Relativity did satisfy Mach's 

critique of 'space acting on matter, but matter unable to act on space', it, never- 

theless, fell short of satisfying Mach's Principle completely. For example, in absence 

of any matter/energy, Mach's view was that there should be no space (the afore- 

mentioned dependency of space on the material within it). However, the Minkowski 

solution, which describes an empty universe, is a valid solution to the vacuum field 

equatims, Gap = (aB =)O. Additionally, the Kerr solution, which describes an 

isolated rotating object in an otherwise empty universe is similarly in conflict with 

Mach's Principle (if the universe is otherwise empty, then the object in question 
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defines the state of nonacceleration, nonrotation; so, by definition, it cannot ro- 

tate) (ref. [15]). (Also see ref. [18] for work analyzing Mach's Principle from the 

perspective of finding exact solutions to the fieId equations.) 

Objections to this aspect of Einstein's General Relativity may be resolved by 

imposing Mach's Principle as a sort of 'boundary condition' to select against solu- 

tions which are not 'Machian' (ref. [El).  Additionally, while there are anti-Machian 

solutions to General Relativity, there are also Machian solutions as well. For ex- 

ample, as noted above, the standards of nonrotation will be defined by the total 

mass distribution in the universe. So, near a massive object, one might expect that 

the (local) standards of nonrotation will be influenced by that object. Especially if 

such an object is rotating, it should 'drag' the local standards of 'rest' along with it. 

This efFect is predicted in General Relativity, and is known as the Lense-Thirring 

effect (refs. [14]). Physically, it could be measured, for example, by the precession 

of a gyroscope in the presence of a strong gravitational field of a rotating object 

~ 9 1  I - 

However, there are other problems with Mach's Principle which are still not 

satisfied. Most notably: although there is an interaction between the matter and 

the spatial manifold, the matter (inertia) of the 'source' in 4D GR (represented 

by the Ta0) is still separate &om the manifold. There is no intrinsic connection 

between matter and space(time), despite their obvious interaction (ref. [13]). This 

problem was noted by Einstein, himself, when he referred to the geometrical portion 

of the field equations (the left-hand side of eq. 2.1; the Gad) as  the "marblen of his 

theory, but derided to the material portion (the right-hand side of the equation, 

the Tao) as its 'base-woodn (ref. [20]). Einstein (and others) were, thus, led to try 

to find a way of incorpor-ating (possibly geometrizing) the matter (the right-hand 

side) into the geometry (the left-hand side) of the theory. 
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2.2 Kaluza-Klein Theory 

Shortly after the publication of Einstein's General Relativity, Theodor Kaluza, in 

1921, expanded Einstein's four-dimensional theory of General Relativity to f i e  di- 

mensions, in an attempt to extend Einstein's idea of geometrizing gravity to include 

electromagnetism. Kaluza's approach was to incorporate the Pvector potentials of 

MaxweUys electromagnetism, the A,? along the fifth (off-diagonal) column and row 

of an extended 5D metric tensor, Gab, in an expanded 5D general relativistic mani- 

fold (refs- [31, [41, 191); 

where the c i r d e x  over the Gab distinguishes it as a 5D metric, and where, again, 

Latin indices such as a and b range over the full five dimensions, 0,123,5, while 

Greek indices such as a and ,8 range over the four-dimensional subset 0,123. 

With this metric and a Riemannian geometry expanded by an extra dimension, 

Kaluza was able to show that the 4D field equations of General Relativity (in the 

presence of electromagnetic field) emerged as a 4 x 4 subset of the complete 5 x 5 set 

of equations in vacuum. More specifically, for a metric of the type 2.2, which had a 

constant iSiss and was independent of the fifth coordinate (the 'cylinder condition'), 

he found that the vacuum equations & = (&, =)0 

subset of the 5D Einstein tensors) could be manipulated 

PI ? [211 ): 

(where G~~ are the 4 x 4 

into the form (refs. [3], [4], 
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where the Gad is the (standard) 4D Einstein tensor and the TEM Po is the effective 

or induced energy-momentum tensor usual for electromagnetism; 

The Einstein summation convention over repeated upper and lower indices is implic- 

itly employed (Fa*FB" E xA F,*F@~), and the F, is the usual Faraday-Maxwell 

tensor; 

In standard comma notation, commas denote ordinary partial derivatives ( A , ,  = 
8, A, G aAU/ax'), and where indices on 4D quantities (such as F,) are raised and 

lowered by the 4D metric and gap). 

Kaluza then went on to show that the source-free Maxwell's equations emerged 

from the '5th component' "off-diagonal" set of the vacuum field equations, G~~ = 

(&, =)o (refs. 131, [41, PI, ~ 1 1 ) ;  

In standard semicolon not ation, the semicolon denotes the four dimensional covari- 

ant derivative (FLF &F," + FFrz, - F ~ Y J ? ~ ,  where rh is the four dimensional 

Christoffel term; r& = $gg"[g,,,, + g,,, - g,,] ) . 

As was discussed in the Introduction, Kaluza and mein attempted to explain 

the obvious observed lack of any fifth dimension by 'compactifying' the fifth di- 

mension to the dimensions of Planck length. This 'cylinder condition' then forced 

the metric to be independent of the fifth coordinate, and also yielded a constant 
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(minus unity) for the 5-5 component of the metric if only a single electric or mag- 

netic field component was present (because of the vanishing of FwF'; see eq. 2.7 

below). However, as was also discussed in the Introduction, this constraint forced 

the 'natural' mass scale for particles to then be on the order of Planck mass, an ob- 

vious contradiction with reality. Additionally, this approach yields a cosmologicd 

constant which is also much larger than is observed (refs. [3], [4]). 

Perhaps the most damaging thing for Kaluza-Klein theory was that the final 

equation worked out from the field equations, G~~ = (& =)0, yields (ref. [3], [41, 

PI : 

which constituted an obviously unacceptable restriction: a sole electric or magnetic 

field could not exist under this constraint; this would cause A,, and, thus, TEM 

to vanish, creating a 4 0  vacuum (ref. [2]). These and other problems caused the 

original version of Kaluza-Klein theory to fall out of favor with theoretical physicists 

(ref- [91)- 

2.3 Induced Matter Theory 

In recent times, contemporary physicists have reexamined Kaluza-K1eh theories, 

even extending them to ten or eleven dimensions to try to llnifv all the interactions 

and hdamental particles of nature. In order to address the problems posed by the 

compactifying of the extra dimensions in Kaluza-Klein theory, some of these con- 

temporary theories have avoided the compactifying problem by avoiding compact- 

$cation altoget her. The cylinder condition is, therefore, relaxed, and our reality 



exists on an approximate 4D hypersurface of constant x5 r $ in an otherwise 5D 

manifold (refs. [3], [4], [5] ) .  

Since the theory developed by Kaluza and Klein spedficdy involved this corn- 

pactification, then, strictly speaking, it is not appropriate to label these 'non- 

compactified' multidimensional theories as "Kaluza-K1einn. Instead, such theo- 

ries are better referted to as "extended gravity theoriesn as they are essentially 

dimensionally-extended versions of General Relativity. 

The specific version of five dimensional extended gravity theory examined here is 

usually referred to as 'Tnduced Matter" theory, and is due to P. Wesson, J. Ponce de Leon, 

B. Mashhoon, H. Liu, etc. In this version, unlike in the original Kaluza-Klein the- 

ory, the 5-5 component of the 5D metric is not set to mi- unity, as it was in 

eq. 2.2. Instead, the 5-5 component of the metric is allowed to vary, and is usually 

represeated by the square of a scalar field, Q (ref. [5]); 

where, again, E is the signature of the fifth dimension, and is either "+" or "-" 
dependkg on whether the fifth dimension is timelike or spacelike (the latter usually 

being chosen, ref. [8]). 

The corresponding inverse mehic is given as: 

Additionally, the Induced Matter metric is allowed to depend on the fifth coor- 

dinate, +. [This potential dependency of the metric on the fifth coordinate allows 
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one to describe states of matter other t h a  radiation- As was discussed in the In- 

troduction, and is shown later in the next section, when the metric is independent 

of +, the natural equation of state for the matter induced is that of radiation3. 

By dowing the metric to depend on the fifth coordinate can one induce states of 

'matter' that aren't pure radiation (ref. [8]).] 

In the Induced Matter theory, the universe is again assumed to be a vacuum 

in five dimensions, G~~ = =)0, and these 15 equations are again split into 

the 10 equations of 4D GR, 4 Maxwellian equations, and a scalar field equation. 

This time, though, because ijS5 = d2 and because the metric gab depends on +, 
the results are not so restrictive as to force a 4D vacuum. For the 4 x 4 spacetime 

subset of the vacuum field equations, Ghg = (& =)O, we get: 

Ga/3 = Tag 

where, in this case, T ,  is given by: 

where TEM is as defined in eq. 2.4 (ref. [2]). 

The equations found from G~~ = ( a s p  =)0 can then be rewritten as: 

F;, = -3@-1@pFvp f ($ - dependent t e n s )  (2.12) 

3The theorem proving a radiative equation of state for metrics independent of the fifth coor- 

dinate applies only to diagonal metrics. As will be discussed in the next section, and in the next 

chapter, the existence of ofdiagonal metric elements can also d o w  for nonradiative equations 

of state, even if the metric does not depend on the fifth coordinate. 
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and the final equation, derived &om = (& =)0, can be rewritten as a scalar 

wave equation; 

1 
0;; = --iD3~,Fw + ($ - dependent t e r n s )  

4 

Clearly, if the metric is independent of $ and eQ2 = -1, then the eqs. 2.10, 2.12 

and 2.13 (and 2.11) reduce to their Kaloza-Klein counterparts, eqs. 2.3, 2.6 and 

2.7 (and 2.4). But here, one does not have the unacceptable restriction of having 

FWFw being zero. 

2.3.1 Induced Matter 

As was mentioned in the previous section, the allowance of the metric to depend on 

the fifth coordinate, +, permits one to describe states of matter other than radiation. 

In ref. [8], this theorem was demonstrated by assuming a 5D spherically-symmetric, 

diagonal metric defined as: 

where da2 E do2 + sin2 19dq5~ and where v, A, R and p are all general fnnctions of 

r ,  t and $. 

The energy-momentum tensor can then be calculated for this metric. Since the 

metric is diagonal, the energy-momentum tensor can be writ ten as (ref. [$I): 
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where overstars are partial derivatives with respect to $, and the trace can be found 

as (ref. [S]): 

In order to physically interpret the energy-momentum tensor, it is customary 

to model it to some physically known (and realistic) model. If one models the 

energy-momentum tensor with that of a fluid (whether perfect or imperfect, charged 

or neutral), the trace of the energy-momentum tensor can then be identified as: 

TL = p - 3P,  where p is the density and P is the pressure of the fluid (the density 

p is written in script  in order to distinguish it from the cylindrical coordinate p 

used in chapter 4 to represent axial-symmetric solutions). Comparing this with 

eq- 2.16, one can write: 

Since the equation of state of radiation is: P = p/3, it is clear that if the 

4D metric coefficients (v,  X and R) are independent of $, the metric will simply 

represent the state of radiation. Conversely, if these metric coefficients depend on 

$, it will be possible to describe states of matter other than radiation, such as 

'dust' (P = 0, p # 0), vacuum (P = -p), 'absolute vacuum' (P = p = 0) and 'stiff 

matter' (P = p) (ref. [8]). 

vote: Since pressure is kinetic energy density, negative pressure is usually 

considered to be unphysical. Negative pressure can arise, however, when the kinetic 

energy density of a given medium is less than that of the background space. (In 

GR, it is possible for the space to possess an energy density.)] 
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[Additionally, the equation of state: P = -p/3 has also appeared elsewhere 

in the analysis of 5D GR (see appropriate references in [8]). This state of matter 

is of interest since the (4D GR) gravitational mass is proportional to 3P + p, 

and its vanishing indicates the presence of matter which has no (4D) gravitational 

effects. It is noted here because it appears as a limiting case to the solutions found 

in chapter 3. Note: Though this solution represents matter which has no (4D) 

gravitational mass, it is still matter, and not radiation, which is represented by the 

equation: P = p/3.] 

It should be noted, of course, that it is possible for the metric to depend on 

+, and yet still have the equation of state of radiation. This is possible if the 
.I I* * *  

bracketed expression on the right-hand side of eq. 2.17, + +- 9 + g, happens 

to vanish. It is also possible for the metric to be independent of +, and yet not 

possess a radiative equation of state. This is possible if the metric happens to be 

off-diagonal, since the theorem as it's outlined here (and as it was derived it ref. [8]) 

is only relevant to diagonal metrics. The fact that off-diagonal metrics can yield 

nunradiative equations of state is an important discovery for this thesis, and will 

be noted again in the next chapter. 

2.3.2 Machian (Inertial) Aspects of Induced Matter Theory 

This approach of the Induced Matter Theory not only has the advantage of unifying 

gravitation and electromagnetism (as the original Kaluza-Klein theory attempted) 

without the unacceptable restrictions of the original Kduza-Klein theory, but also 

has the potential of addressing Mach's concern of ensuring that the 'local' properties 

of matter (as defined by the energy-momentum tensor, TL) depend on the global 

distribution of matter. 



CHAPTER 2. 5D GR THEORY 22 

By defining the 'local' properties of matter (the T,) in terms of (curvature in) 

the fifth dimension (see eq. 2-11), then the local (inertial) properties of matter can 

be related to the cjab (the global solutions found to solve the 5D field equations). 

Since these global sohtions (the iab) represent the total 5D manifold curvature, this 

creates an intimate relation between the the inertial properties of matter at any one 

point and the total distribution of matter throughout the manifoId (represented as 

the curvature throughout that manifold) (ref. [6]). 

This differs fkom the analogous 4D approach in which the T, can be defined 

solely in terms of the 4D Gw- In that approach, the matter/energy (the source) 

is separate fiom the manifold. As such, the difference Gw - T p  (equal to G~~ in 
CI 

5D) is not constrained as it is in 5D (in 5D7 Gp - T,, = G, = 0; in 4D, no such 

constraint exists). Because of this constraint in 5D, it is typical to find an equation 

of state (e.g., a relation between P and p) imposed on the source, which, in 4D7 

has to be imported $om outside. 

In fact, the Induced Matter Theory goes even further, answering Mach's concern 

of a lack of fundamental connection between the intm'llszllSZc (inertial) state of matter 

and its eztrim-c position/motion in space(time). Whereas in both Newtonian and 

Einsteinian gravity, the sources of gravitational interaction (i.e., the matter) are 

introduced in the theory in a somewhat "ad hocn 'external' manner into their spatial 

(and temporal) background, for the Induced Matter Theory, there are no sources; 

the universe is assumed to be vacuum, with matter on a 4D level appearing to result 

from the curvature in the fifth dimension. 

As was discussed in section 2.1, Mach's assumption that space(time) could not 

exist without matter, and his assumption that matter was dependent on space(time) 

for its position/motion and inertia could lead one to imagine that space(time) and 

matter are effectively the same thing. This is precisely the tack taken by the 
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Induced Matter Theory as it assumes that matter results from the curvature of an 

(otherwise) empty 5D manifold. This approach also has the aesthetically-pleasing 

effect of finally addressing Einstein's concern of geometrizing the 'basewood' (right- 

hand side) of his equations. 

It must be noted that not aN 5(or higher)D gravity theories possess this Machian 

aspect. The Induced Matter Theory is Machian in the sense outlined here because 

it assumes a vacuum state in 5D which then appears to contain matter in 4D. Not 

all 5D theories assume a vacuum state. For example, the 5D gravity theory worked 

out by E. Leibowitz and N. Rosen assumes the existence of a 5D energy-momentum 

tensor, Tw, which couples to the 5D Einstein tensor as (ref. [22]; see also refs. in 

1231 : 

Though this approach allows for many more, less restrictive solutions than those 

required for the vacuum field equations of the Induced Matter Theory, it, never- 

theless, has the (d)efFect of having to introduce a new 5D source term into the 
A 

equations, T,. Because of this, this version of 5D gravity theory is n o t  Machian 

in the sense that the Induced Matter Theory is. It is precisely because it is vacuum 

that the Induced Matter Theory is Machian as outlined in this section. 

In this thesis, special concentration shall be given to metrics which describe 

matter as deduced &om the Induced Matter Formalism. In describing such distri- 

butions of matter, it will be seen how their local inertial properties (such as density, 

pressure, etc.) relate to the globd solutions derived as solutions to the 5D vacuum 

field equations, which are the basis of the Induced Matter formalism. 

In considering Mach's Principle as a motivation for research, it is noted that 
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Mach, himself, concentrated his concerns specifically on trying to relate the inertial 

properties of matter to the gIobal distribution of the universe. The idea of relating 

radiation to the global distribution of the universe, or even in trying to eqlain 

radiation in any such terms seems to have been overlooked by Mach in much, if 

not all of his writing (refs. [15], [17], [14]). Not that it isn't possible to apply 

Mach's Principle to radiation in some sense; by Special Relativity, radiation can be 

endowed with an effective mass resulting from its energy content, which could then, 

in principle, be related to the global distribution of the universe. But Mach applied 

the term 'mass' in its inertial context as ';resistaxice to motionn (ref. [17]), which 

is inapplicable to radiation. Since radiation (e-g., photons) travel without inertial 

resistance (i. e., at the maximal speed, c) , they are presummed to be without inertial 

mass of the kind in ordinary matter. 

It is, therefore, traditional to speak of Mach's Principle as applying to the iner- 

tial properties of matter, and not radiation. For that reason, the metrics that are 

studied in this thesis represent solutions that are not those of radiation. Addition- 

ally, metrics recognized as describing radiation (e-g., the Gross-PerryfDavidson- 

Owen solutions) have been largely analyzed in depth (ref. [lo]; see also refs. in [8]), 

while nonradiative solutions have not (see refs. [24] and [lo] for few examples). For 

that reason, also, nonradiative solutions, and their inertial properties shall be the 

study of this thesis. 

As wd, most metrics studied (in the Induced Matter formalism) have also been 

neutral, without any electromagnetic fields (see refs. [25] and [2] for few examples). 

As it turns out, the electromagnetic component of mass is an important factor in 

associating inertia (mass) to solutions which are independent of +; such solutions 

are examined in both chapters 3 and 4. It is because such electromagnetic metrics 

have not been not been studied (or not studied well) that charged/magnetized 
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metrics will also figure prominently in this thesis. 

2.3.3 Energy-Moment urn Tensor 

In order to fully describe the physical characterististics of the matter represented 

locally by the (induced) energy-momentum tensor, Tw, it is necessary to model the 

induced energy-momentum tensor with a physically realistic form. As noted above, 

this has traditionally been the model of a perfect fiuid; 

where 4 u,uY - 6; (6; being the Kronecker delta, = 1 if p = v, = 0 otherwise) 

and the up (e 5) are the four velocities of the fluid (the relation between the 

four velocities, ua zz =, "" and the five velocities, iia r s, is discussed in the next 

section). 

If one then chooses a cemoving reference frame such that uo # 0, while u1 = 
3 u2 = u = 0, i.e., no spatial motion4, one can then show (assuming uau, = 1; see 

next section) that: 

and: 

4Even if this is not strictIy the w e ,  it can still be seen that the spatial velocities, ul, uZ 

and u3 will typically be so small compared to u0 that u1 -- u2 -. u3 -- 0 will be a reasonable 

approximation. 
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However, for metrics which are not isotropic (such as the ones in chapters 3 and 

4), it can be seen that, in general, Tfi , # Tfl # T;l 3, so that the definition of 

eq. 2.21 becomes problematic. 

Three possible solutions are used to resolve this. First , one can define an egedive  

pressure, Perf, which is equal to (see refs. in [Ill) : 

Alternatively, one can define orthogonal Lcomponents' to the pressure, so that 

one has a pressure 'parallel' to the radial line of sight, ql, and another 'perpen- 

dicdar' to it, PL (ref. [4]). With this, one can obtain results analogous to those 

obtained by assuming an effective pressure (described above). For example, for a 

diagonal (nonisotropic) metric independent of $, one obtains the equation of state: 

p = PII + 2PL, which, for Pet, = $(ql + 2PL), yields the usual equation of state of 

radiation, p = 3 Pej j (ref. [4]). 

However, a more complete and more satisfying resolution to this problem is to 

consider an imperfect fluid model, with the introduction of anisotropic stresses In 

ref. [ll] (and also in ref. [12]), such an imperfect fluid model is used for the &st time 

in connection with the Induced Matter formalism. There, the energy-momentum 

tensor is written out as: 

where qp is the heat flux and r, is the anisotropic stress tensor. 

Heat flux, in the context of a(n imperfect) fluid, is well-understood (see refs. [16], 

[26] and [27]), and vanishes in the co-moving cases studied here (see below). 
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The stress tensor, as it pertains to fluid mechanics, traditionally includes both 

normal stresses (pressure) and shear stresses (strains) (refs. [26], [27]). The off- 

diagonal components of the stress tensor correspond to shear strain, while the 

diagonal components correspond to pressure. 

However, if the three 'components' of the pressure are not all equal (as in the 

cases to be studied here), it is assumed that there are anisotropic n o m a l  stresses 

in the fluid. These anisot~opic  normal stresses are then included in the diagonal 

components of the stress tensor. The diagonal components of the stress tensor then 

correspond to a mean pressure plus individual components of normal stress which 

may cause the individud 'components7 of pressure to differ horn the mean pressure 

(ref. [26]). 

In this sense, the approach here is similar to the one outlined previously, in 

which one assumes the existence of (parallel and 'components' of 

pressure whose average corresponds to a 'mean' pressure. Where this approach 

is superior is in its methodology; because it sets up a stress tensor it dows for 

the possible introduction of shear stresses, as opposed to just the normal stresses 

and pressure encountered here. The 'pardel/perpendicdary splitting of pressure 

(though it answers the problem of nonidentical pressure components) has no re- 

course to the concept of shear stress. In future work, this might be of some use 

were one to examine imperfect fluid properties for which shear stresses were present. 

So, in the approach outlined here, the 'meany pressure, P, is (mathematically) 

separated out from the rest of the stress tensor; the diagonal components of the 

stress tensor are left representing the components of anisotropic normal stress. (The 

off-diagonal components of the stress tensor continue to represent the shear strain.) 

The pressure, P, is explicitly written out separately &om the anisotropic stress 

tensor, Tw, as shown in eq. 2.23 (ref. [Ill). 
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Physically, the (remaining) components of the stress tensor of a fluid are as- 

sumed to be related to interactions between the fluid particles. These interactions 

define the nature of the fluid, destroying the otherwise 'peEfect7 nature of the fluid 

and, macroscopically, giving rise to viscosity effects (refs. [26], [27]). In standard 

Newtonian fluids, the stress tensor is assumed to be proportional to the shear tensor 

(defined as the rotational rate of deformation of a fluid element); the proportion- 

ality constant being (twice) the (Newtonian) viscosity. In relativistic not ation, the 

shear tensor can be written out as (refs. [Ill, [16]): 

where the over circle-dot denotes a derivative with respect to the four dimensional 

interval, s (ekewhere in this thesis, such derivatives are with respect to the f i e  

dimensional interval, i and are represented by over dots only). (Semi-colons again 

represent coMsiant 4D derivatives, and, again, the Einstein summation is implicitly 

employed over repeated upper and lower indices.) Here, it can be worked out that: 
0 
ua= uai7u7. 

However, the assumption that the stress tensor is proportional to the shear 

tensor is an assumption made by studying classical fluids (ref. [26]). It is known 

that nonNewtonian fluids exist which do no t  satisfy this relation, and, therefore, 

we should be wary about implicitly assuming that the fluids to be studied here are 

Newtonian (ref. [27]). (The assumption that the stress tensor is proportional to 

the shear tensor is the fluid mechanical equivalent of the assumption in mechanics 

that friction is proportional to the normal force.) 

In fact, it turns out that one cannot write rd a c a p  for any of the solutions 

found in this thesis. Indeed, for the cases examined here (in chapters 3 and 4), it is 



CHAPTER 2. 5D GR THEORY 

found that ~p vanishes. Consider: assume one has a co-moving h m e ,  such that 
-1/2 

a' = u2 = u3 = 0 and uO(# 0) = goo (deducible from a co-moving 4D metric), 

where go0 is dependent on the radial coordinate (and not on time). Then one can 

show, for the terms in eq. 2.24, that: (i) u(,;fi) vanishes for all components, except: 

Therefore, ~ l ( ~ ; g )  and 8(, 11~) substituted into eq. 2.24, for C T ~ O  = ~ 0 1 ,  will cancel 

out, thereby causing gag to va.nish completely (u:, by (iii), vanishes also, so it does 

not contribute). 

The reason that none of these solutions can be written in standard Newtonian 

form is because the velocity cannot be written as a gradient of a scalar (velocity) 

potential, T, as: ua = g a f l ~ , f l ,  which is standard for Newtonian fluids (refs. [27], 

[26]). This does not indicate a deficiency of this approach, but shows that the 

viscosity effects (presummed to exist because of the presence of anisotropic stress) 

cannot be modeled in the simple, Newtonian fashion. Since the solutions of both 

chapters 3 and 4 involve 'nonstandard' electric and magnetic fields, respectively, we 

can assume that the intra-fluid interactions are more complicated than in simple 

(viscous) Newtonian fluids. 

However, going so far as to model such interactions would require a detailed 

set of assumptions about the structure and nature of the fluid particles, and would 

bring one down to molecular and atomic levels which are beyond the scope of 

this treatment (this being a 5D classical treatment, not a quantum treatment). 

Therefore, the stresses (which represent these intra-fluid interactions) for all cases 

will be calculated and mentioned, though no modeling of them will be made. 

In ref. [ll], it is shown, by taking projections along and orthogonal to the 
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velocity field and taking traces, that: 

where Da@ is: 

[In deriving these relations (eqs. 2.25 to 2-28), it was assumed (among other 

things) that the trace of the stress tensor vanishes (7: = 0) (ref. [Ill). As noted 

above, the diagonal components of the stress tensor are normal stresses which 

cause the individual 'components' of pressure to differ from the mean pressure, P. 

However, the average of these three 'components', 711 + P, T: + P, T: + P, should 

yield the mean pressure, P. This is only possible if r,' + T: + T: = 0.1 

Applying these relations to the cwmoving reference frame just outlined (and 

assuming the TE II are diagonal), one can see that the pressure can then be shown 

to be: P = - $ ( ~ f i  , + Tfl + T; 3) (where the differences in Tfi , # , # T$ , 
can now be attributed to the presence of anisotropic stresses, and, hence, viscosity). 

In such a co-moving frame (with diagonal TE .'s), the stresses will be: r: = $ ~ f i  , - 
f [T;i2 + T ; ~ ~ ] ,  T,Z =:T&-$ [ ~ f i  +T&],T: = fTjl3-$ [ ~ f i  l + ~ f l  2], with 

all other TL'S equal to zero. 

It can also be seen, incidentally, that for a co-moving reference frame, jp will 

still be Tfl ,, while q, wiU be zero. 
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For the rnetrics examined in chapters 3 and 4, electromagnetic fields are present, 

so it will be necessary to modify the expression of the energy-momentum tensor 

to account for this. In ref. [28], the energy-ruomentum tensor of a charged perfect 

fluid is shown to be a linear combination of the electromagnetic energy-momentum 

tensor (as given in eq. 2.4) and the perfect fluid energy-momentum tensor. The 

presence of (viscous) stresses is the only difference here between perfect and imper- 

fect fluids. Since (viscous) stresses should not affect the linear superposition of the 

electromagnetic field and the fluid in the energy-momentum tensor, we will assume 

an energy-momentum tensor of the form: 

where TfYI is the imperfect fluid energy-momentum tensor defined by eq. 2.23 and 

where TiM is the electromagnetic energy-momentum tensor defined by: 

Incidentally, this definition of T i M ,  differs fiom the electromagnetic energy- 

momentum tensor given by eq. 2.4 by a factor of -eiP2. This is because the electro- 

magnetic component of the Induced Matter energy-momentum tensor, as defined by 

eq. 2.11, can be seen to be just this quantity (eq. 2.31). In making identifications of 

certain quantities in five dimensions (such as TBM ,), we note that they may have 

different definitions than those same quantities defined in four dimensions. This is 

considered reasonable provided they correspond in the appropriate 5D + 4D limit 

(ref- PI) 
This point cannot be overstressed. All  the solutions and all work that are derived 

here are done in five dimensions. The metrics satisfy five dimensional vacuum field 
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equations, and they are presumed to describe five dimensional geodesic motion. 

It is the 5D quantities that are exact. As such, when these solutions are then 

perceived from a four dimensional perspective, quantities that are usually defined 

in 4D (such as the electromagnetic energy-momentum tensor) cannot be expected 

to possess precisely the same form as the corresponding quantities in 5D. In a 5D 

manifold, quantities defined in 4D are regarded as the approzimations. Provided, 

however, that such definitions coincide in the appropriate limit, the 4D reality we 

appear to live in is then believed to be a reasonable approximation of the underlying 

5D m d o l d .  

From the assumed form of the energy-momentum tensor given in eq. 2.31, the 

expressions for Tj; , used in the definitions of g, P, r and q, can then be replaced 

by: Tz , = T,Y-TEM , where T' is calculated fiom the metric, using either eq. 2.10 

or eq. 2.11, and TiM , is calculated from eq. 2.31. The resulting expressions for 

density, pressure and stress in a co-moving reference fiame then become: 

For a radially-dependent , spherically-symmetric system, it can be deduced that 

(ref. [16]): T& , = TAM = -TiM = -TiM (where, again, sub/superscripts 

0,123 represent t, rB4 for a spherically-symmetric system), and 2"' = Ti. For such 

a system (which will be examinedin the next chapter), the eqs. 2.32 to 2.36 become: 
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where: TEM z T i M  ,,. 

For a radially-dependent , cylindrically-symmetric sys tern, it can similarly be 

deduced that (ref. [16]): TgM = -TAM = T i M  = -TiM (where, for a 

cylindrically-symmetric sys tern, sub /superscripts 0,123 represent t , p#r)  . For such 

a system (which will be examined in the chapter 4), the eqs. 2.32 to 2.36 become: 

where here: TEM f -TiM O. 

From these expressions for density, pressure and stress, the physical (and iner- 

tial) nature of the fluid can be understood. 
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2.3.4 Geodesic Motion 

Findy, we consider the geodesic motion of a test object traveling through the 

manifold. First we note from the metric definition given in eq. 2.8, one can write 

the 5D interval as: 

ds2 tjddzadzb = dsZ + d2(& + %dxP)' 

where the 4D interval, ds2, is given by: 

Then, we note that the 5D geodesic equation for a test particle traveling through 

the manifold can be written as: 

where the f & are the fivedimensional Christoffel terms defined by: f'& iiad[ija,c+ 

k k , b  - &,d] - 
The fifth component of the 5D geodesic equation can be written in the form: 

where B is a scalar function defined by (ref. [5]): 

and which is a constant if the mehric is independent of the fifth coordinate, $. 



In terms of this scalar function B, the four-components of the 5D geodesic 

equation, eq. 2.48, can then be written out as (ref. [5]): 

The left-hand side of this equation is the 'standard' 4D geodesic equation repre- 

senting the acceleration of a test particle due to 'standard' Einsteinian gravity (all 

quantities on the left-hand side are 4D quantities). The terms on the right-hand 

side of the equation, therefore, represent modifcations to the classical 4D geodesic 

motion due to the fact that we are actually dealing with five dimensional motion. 

(Again, it is noted that we are rewriting quantities properly defined in 5D into forms 

that resemble those defined in 4D .) By inspection, the first term on the right-hand 

side of the equation is clearly the form of the Lorentz force, assuming one identifies 

the factor out in front as the chaxge-to-mass ratio of the test partide; 

This shows how one might relate the charge-ternass ratio of a test particle within a 

given manifold to the effects of curvature in the fifth dimension. The modification 

of an object's motion through the 5D manifold can be observed and then described 

in familiar 4D terms (such as the Lorentz force) via eq. 2.51. 

The identification 2.52 is permissible in the cases where the 4D part of the 

metric is independent of the fifth coordinate (so that B is a constant), and the fifth 

component of the metric is 'flat' (so @ d G  = const ). However, in more general 

cases, the identification of eq. 2.52 forces certain relations between the velocity 



components of the particle and the potentials of the source which are known to be 

violated in certain cosmological solutions. Nevertheless, the identification of eq. 2.52 

should be acceptable in appropriate limiting cases (ref. [5], see also discussion in 

ref. [29]). 

Identifying the 4D gravitational mass and charge/current of the source then 

comes from matching the radial 4D gravitational and Lorentz portions of eq. 2.51 

with their Newtonian and Coulomb /Amp&c approximations, respectively. 

It is again stressed that quantities defined in 4D may not be constvlt under 

transformations in 5D (if, for example, the mass or charge/current, depends on the 

fifth coordinate). (ref. [5]). However, as long as they agree in the limit 5 0  t 4 0 ,  

such identifications may be taken as reasonable. 

The radial portion of the (4D) gravitational field &om eq. 2.51 can then be given 

as: 

where the second step was made by assuming low spatial velocities (ui << uO), and 

where up 5 are, again, the four-velocities, taken with respect to the 4D interval, 

ds. Typicdy, however, equations of motion would be given in terms of derivatives 

with respect to the 5D interval, &. The relation between ds and d i  must then be 

taken into account (from eqs. 2.46 and 2.47) as: 

2 5 + A , ~ P )  )I ' 
where overdots denote derivatives with respect to 8. 
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As noted at the beginning of this section, the approach taken in this thesis 

assumes that our universe exists on an approximate hypersurface of constant +. 
This approximation ensures that 4 G will be << unitys. Additionally, any A,, if 

they exist, wiu also Likely be s m d  (neutral metrics can exist for which A, = 0 for 
- dX0 a l l  p)-  Therefore, in most situations, ds N di, and uO N 2, where Go = is the 

zero-component of the five-velocity, iia (in most cases, in any event, uO -- ito -- 1)- 
The expression for radial 4D gravity (eq. 2.53) can then be equated (approzi- 

mately) to the Newtonian gravitational potential; 

to solve for the Newtonian gravitational mass, M. 

Similarly, we match the radial Lorentz portion, Fi ,  from the right-hand side of 

eq. 2.51 with the Coulomb field for an electrostatic charge; 

or with Amp6ric current expression for a magnetic field; 

where el j  here is the Levi-Civita %tisymmetric permutation" tensor. 

These d o w  one to then calculate the charge, Q, or current, I (implicit in Bk) for 

the given source. Again, care must be taken to emphasize that such identifications 

wd, all fields dependent on yb, e-g. Y (x', $), existing on the manifold can be appmrimately 

given by their $o-hyperSUffiu:e d u e s .  That is, in Taylor expanding T as: T(4) = f (7,b0) + ((d - 
$0)  $$ + ...; all additional tenns above the zero-order f (+o) term will be nalL 
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(for mass and charge/current ) are approximations, relating familiax (but inexact) 

4D quantities to the (exact) 5D components found here. 



Chapter 3 

Charged Particle Solutions 

As discussed in the previous chapter, it was desired to find solutions which describe 

matter, preferably charged matter, with an eye to examing its inertial properties. 

Building on work previously done on 5D charged solutions, therefore, a study has 

been made of various charged solutions with analysis given to such properties. 

In ref. [30], H. Liu and P. Wesson derived the general r-dependent 5D charged 

metric, corresponding to a spherically symmetric static charge distribution (i.e., a 

'charged particle'). The Liu-Wesson solution can be written out as: 

where df12 = do2 + sin2 Bd#2 and A and B are defined via: 
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where A is also the electrostatic vector Ao, of this metric and where a 

and b are parameters constrained by: 

The Liu-Wesson solution is a generalization of the Gross-Perry solution (ref. [30]), 

which, itself, is a ( 5 0 )  generalization of the Schwarzchild solution (ref. [7]). For 

k + 0, the Liu-Wesson solution reduces to the Gross-Perry solution, for which 

a -t 1 and b -t 0 reduces to the Schwarzchild solution (with an extra flat fifth 

dimension). 

Unlike in 4D, however, the conditions of BirkAoff's Theorem do not apply in 

this case (or in any of the other metrics examined in this thesis). Birkhoff's Theo- 

rem applies only when there is general spherical symmetry amongst all the space- 

like coordinates. Here, there is spherical symmetry amongst r, B and #, but not 

4 l. Therefore, insofar that Birkhoff's Theorem prohibits the radially-dependent , 
spherically-symmetric (Schwarzchild) solution from depending on any coordinates 

other than T ,  this is expected not to apply here. One may, therefore, find radially- 

dependent, spherically-symmetric (3D spherically-symmetric) solutions which de- 

pend on other coordinates. The Liu-Wesson solution is, therefore, not expected to 

'In order for an (n + 1)-dimensiond spacetime to possess general spherical symmetry, the n 

spacelike dimensions must be written out as: 

21 = r COS p1 

22 = r sin p1 cos cp2 

x3 = r sin p1 sin 9 2  cos p3 

xn = r sin pl sin p2 sin (03... ~ i n p , , ~  
where r = zizi, 0 5 p1...-2 5 r and 0 5 9. -1 5 27~. 
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represent all possible (3D) spherically-symmetric charge states in 5DZ. It is such al- 

ternative solutions that are derived in appendix A, two of which are examined here. 

(The 'nonapplicability' of Birkhoff7s Theorem in 5(or higher)D has been noted in 

the 5D literature; ref. [31].) 

As an aside, it should be noted that, until this work here was explicitly done, 

it was assumed that the Liu-Wesson solution, Like the Gross-Perry solution before 

it, possessed the equation of state of radiation (ref. [2 ] ) .  As charged radiation, the 

nature of the Liu-Wesson solution was thought to be, fundamentally, unphysical, 

representing, at best, an approximation to perceived reality (perhaps as a distribu- 

tion of ultra-relativistic charged particles). This was, originally, one of the strongest 

motivations for examining the r- and +-dependent charged solutions studied in this 

chapter. 

However, the assumption that the Liu-Wesson solution represented radiation 

was based on the fact that the Liu-Wesson metric is independent of $, and hence, 

by the theorem of ref. [8] (outlined in section 2.3.1 of the previous chapter), should 

represent radiation. However, as was explicitly noted in the previous chapter, that 

theorem was derived solely for diagonal metrics. As such, it does not apply to the 

Liu-Wesson metric, which is off-diagonal. The exact physical nature of the Liu- 

Wesson metric (which was not examined in ref. [2] since it was assumed to be that 

of charged radiation) is elucidated here for the fist  time, at the end of this chapter. 

2BirkhoE's Theorem fails to apply in another sense; it requires the Schwanchild solution to 

be unique (ref. [30]). But in 5D, the Liu-Wesson and GrossPerry solutions, which are the 5D 

dens ions  to the Schwarzchild solution, represents an infinite class of solutions, parametrized by 

either a or b. 
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3.1 The Metrics 

To fimther the Liu-Wesson line of research, therefore, and to try to find metrics 

representing charged matter not solely dependent on the radial coordinate, r ,  we 

therefore seek a 5D spherically-symmetric metric, off-diagonal in dtd$ (i.e., elec- 

tr ical ly charged), and dependent on T and $. [In this sense, we are imposing 3D 

spherical symmetry by requiring Gij (where i, j = 0,1,2,3,5) be invariant under 

the action of SO(4) acting on S3. (The range of i, j has to include 0 since it is 

desired that ijII depend only on R.)] Two such solutions were found for this (see 

appendix A for derivation), and they are: 

where, as mentioned in the Introduction, the Roman numeral subscripts I and I 1  

denote which metric we are taking about, and where .F and R are defined by: 

where K is a constant and a and b are parameters (not to be confused with the a 

and b parameters &om the Liu-Wesson metric!) constrained by: 

As will be seen below, K is related to the 4D gravitational mass. 
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The first metric can be seen to be an extension of the Schwarzchild metric. 

When b + 0, the 4D part of the metric becomes completely Schwarzchild assuming 

one identifies K as -2M. Since the vector potential, Ao, is given as the ratio of 

ij50/ij55 (see eq. 2.8), then the vanishing of b would cause A. to disappear as well. 

Thus, b may be identified as being related to the charge. 

The second metric not only does not possess a Schwarzchizd form, but b + 0 

does not cause the vanishing of its vector potential, A*. However, if one sets K to 

zero (and e to -1, for a spacelike fifth dimension), the resulting metric then becomes 

Minkowskian, suggesting that the K in the second metric might be related to both 

mass and charge. 

Both metrics are functions of the two main variables, r and +. An important 

point to consider is that both metrics can be transformed into functions of just one 

variable, R say, if one substitutes for r: 

These transformations alter the metrics 3.5 and 3.6 to the forms: 

The original forms of both metrics were functions of T and $ and possessed 

one off-diagonal term, dtd+. These transformed versions of the metrics, however, 

suggest that the original metrics (3.5 and 3.6) are, actually, more naturally thought 
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of as belonging to a class of metrics which are functions of a single coordinate, 

R, and possessing two off-diagonal terms, dtd4 and dad$. The derivation of the 

general class of such a solution type (analogous to the Liu-Wesson general solution), 

however, would be difEcult, possessing, as it does, two off-diagonal elements ( a  

general solution with one off-diagonal is usually difficult enough; see appendix B 

for suck an example). 

However, since we endeavor to use the original forms of the metrics, the possi- 

bility of the transformed metrics being more 'natural' should at least be considered. 

For a constant-$ manifold, d$ = 0, and both the transformed forms of the metrics, 

as well as the original forms of the metrics, reduce to (effective 4D) metrics of the 

form: 

which possesses both spherical symmetry and a limiting Minkowski (SR) form. As 

such, there is no necessary reason to prefer the original forms of the metrics over 

the transformed forms, in the case 11 = const. The choice of the original forms 

of the metrics over the transformed forms is then an arbitrary choice between two 

otherwise acceptable forms in this limit. 

Of course, as noted at the beginning of the previous section, the aforementioned 

cylinder condition is relaxed so that our reality exists on an approzirnate hypersur- 

face of constant-+. d$, then, is merely small, not zero. I t  is stiU mathematically 

possible that one could use the transformed forms of the metrics, though it is not 

clear what physical meaning one could take from such solutions from within the 

Induced Matter formalism. 

Physically, the extra off-diagonal tam, dRd& would correspond, within the 
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Induced Matter formalism, to a radial vector potential, AR. However, since this 

vector potential would be a function of R only (AR(R)) ,  then the only non-zero 

derivative of AR would be ARR- But A- would only show up in FRR which, by 

the definition of Fw, would be zero. Therefore, the existence of such an off-diagonal 

R-dependent dRd$ term would seem extraneous from a physical point-of-view . 

Nevertheless, one could still use the transformed forms of the metrics if one 

wished, and ignore the apparent superfluity provided by the dRd71, term. In this 

thesis, however, we prefer to avoid this supdui ty  and simply use the original forms 

of the metrics, which are the more physically reasonable. (If, one wished, however, 

one could examine the transformed versions of the metrics, instead.) 

3.1.1 Comparison to Liu-Wesson Solution 

In order to demonstrate the independence of these two metrics &om their Liu- 

Wesson counterparts (that is, to show that these metrics are not coordinate-transformations 

of (special cases of) the Liu-Wesson class of metrics), it is desirable to compare the 

5D Eetschmann scalars for both these metrics with the Kretschmann scalar for the 

Liu-Wesson metric. As noted at the beginning of this section, both metrics 3.5 and 

3 -6 can be transformed into finctions of one variable, R, like the Liu-Wesson metric 

(metric forms 3.11 and 3.12). This fact suggests a comparison with the Liu-Wesson 

class is in order, if only to ensure that they are, in fact, distinct. 

In 4D, the Kretschmann scalar is the only scalar i n k a n t  of the Riemann ten- 

sor in an empty spherically-symmetric spacetime (in the sense that the nonzero 

invariant, which is cubic in the Riemann tensor, is fimctionally related to the 

Kretschmann scalar), and is important in determining the nature of singulazities. 

In 5D, there may be other such scalars, but, for our purposes, we shall focus only 
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on the Kretschmann. (As well, GRTensor II was set up to calculate only the 

Kretschm-!) The 5D Kretschmann scalars, &R-, were then calculated by 

GR Tensor I1 (ref. [I]) on Maple for both metrics to be: 

[As an aside, we note that the Kretschmann scalars 

(3.14) 

(3.15) 

blow up at R = 0, whereas 

they are well-behaved at R = - K. In the original forms of the metrics, 3.5 and 

3.6, R = 0 and R = -K (for the first metric, at least) yielded singularities. The 

forms of the Kretschrnanns here (eqs. 3.14 and 3.15) suggest that R = 0 is the only 

real singularity, with R = -K (for the f is t  metric, at least) being some kind of 

'coordinate singularity7 (or horizon) ; i. e., an apparent singularity resulting from the 

choice of 'bad' coordinates, exactly analogous to the kind 'coordinate singularity' 

(horizon) present in the Schwarzchild solution for r = 2M (ref. [15]). Indeed, since 

the first metric reduces to the Schwarzchild metric in the limit & -t 0, then, by con- 

tinuity, we would expect such an analogous correspondence. (To properly analyze 

the nature of these singularities(/horizons), however, would require an extensive 

Kruskal-type analysis which is beyond the scope of this work.)] 

In comparison with the Liu-Wesson metric class, if the metrics 3.11 and 3.12 

were coordinate transformations of Liu-Wesson cases, it would require some kind 

of matching beheen the two radial coordinates, R from these metrics, and r &om 

the Liu-Wesson metric. This would then, naturally, indicate some kind of match 

between the F of these metrics and the B of  the Liu-Wesson metric. Assuming, 

then, a match between R and T and also between F and B yields: 
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Additionally, it appears reasonable to assume that any matching (if any were 

possible) would have to entail transformations on R, t and $ only; that is, no 

transformations on 0 or 4. This means that the coefficients of df12 from both sets 

of metrics should match exactly. 

Since the im in the metrics 3.11 and 3.12 are equal to -RZ, while in the Liu- 

Wesson metric they are equal to - B ( ' - ~ - ~ ) T ~  (and assuming matches between R 

and r, and between F and B), this requires 1 -a-b = 0. Along with a2 +ab +b2 = 

1, this means either a = 1 and b = 0, or a = 0 and b = 1. In both cases, the 

Kretschmann scdar for the Liu-Wesson metric becomes: 

(In general, the Kretschmann scalar for the Liu-Wesson metric is a very complicated 

function of r ,  ref. [30].) Equating this (eq. 3.17) with eq. 3.14, and R = r and 

K = - 2 M ( 1 -  k), forces: a4 = 1. 

In other words, only if a = f l (or f i) can the two Kretschmann's, and hence 

the two metrics, be equal. In general, a will not be c l  (or &i), and the f is t  metric 

will then be distinct &om the Liu-Wesson class. 

Similarly, for the second metric; equating eq. 3.17 with eq. 3.15, forces: b4 = 1, 

or b = 5 ~ 1  (or ki), which, again, is not, in general satisfied. 

Thus, only in special cases can the metrics 3.11 and 3.12 (and, hence, metrics 3.5 

and 3.6) be regarded as traasformations of the Liu-Wesson class. In general, the 

metrics presented here are independent of the Liu-Wesson class. 
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3.2 Mass and Charge 

To study these metrics more fdy ,  we next examine appropriate limiting cases in 

order to determine the 4D (limiting) identifications for the mass, M, and charge, 

Q, of the source as represented by each metric. 

As discussed in section 2.3.4 of the previous chapter, we can identify, in an ap-  

proximate sense, the 4D ('Newtonian') gravitational mass, M, by equating I?&, (21')' 

with M / r 2 .  First, writing out the eflective 4 0  metries for the two metrics 3.5 and 

3.6 gives us: 

dr' 
ds: = dt2 - - - 

bz 3 
~ ~ d a ~  

(1- =) 

where, again, the Roman numeral subscripts I and I I  denote the metric number. 

From these 4D metrics, the expressions for r~o(uo)2 can then be calculated to 

give: 

Taking the extreme radial limit for each of these, r + oo (so that aT >> b+, 

R = ar and .F 1. I + K/UT I), and equating them with M / r 2  then dows K to 

be solved in terms of M. Doing this for both metrics then yields: 
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The zercxomponents of Pvelocity, uO, represent f i s t  order corrections over the 

baselevel terms, which are found by setting uO to unity; 

Setting uo to unity is reasonable, and necessary in this instance given that the 

equations of motion have not been solved. If one were to solve the equations of 

motion (for Ga), one would be able to approximate uO, but this is beyond the scope 

of this work. Instead, we will simply approximate uo as unity. 

From eq. 3.25, the expression for K1 is perfectly consonant with the observation 

that b -t 0 should yield the Schwarzchild limit; as b -t 0, then a + 1, and 

KI -t -2M, the appropriate Schwarzchild mass term. 

For the second metric, the value of Krr also reduces to -2M for b + 0 (a -t 
1) and E = -1. However, it must be recalled &om section 3.1 that b need not 

be associated with the charge of the second metric, and that b + 0 need not 

yield the only reasonable 'limiting approximation7. Nevertheless, as far as the 

Newtonian gravitational mass is concerned, b + 0 (and E = -1) does, in fact, 

afford a reasonable limit. 

For the identification of charge, Q, we need to identify F,' (the electric fields) 

with Q /r2 in the same extreme radial limit (r -t oo ) . First, we note the expressions 

for the vector potentials, A. = explicitly for each metric (3.5 and 3.6) as: 
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The calculation of F,' = gU&Ao for each of the two metrics gives: 

and the corresponding calculations of Q (in the extreme radial limit, T + co) then 

gives: 

From the eqs. 3.24 and 3.25 and eqs. 3.30 and 3.31, it is then possible to calculate 

a charge-to-mass ratio, Q/M, of the source for each of the given metrics. For the 

&st metric, this ratio works out to be: 

Based on the observed accuracy of the Schwarzchild metric in describing our 

world, and given that, the Schwarzchild metric is solely dependent on T ,  it is rea- 

sonable to presume that b, which represents the contribution of +$ to the metric, 

should be vanishingly small in most physically real situations. This view is strength- 

ened by the observation that b3, appearing in the numerator of eq. 3.32, is coupled 

to the charge-to-mass ratio, Q / M ,  which is very small on macroscopic scales (for 

the Earth, which has an electric field of about 100 V/m (ref. [32]), Q/M E 9 x 10-lo 
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here 3; for microscopic matter the situation is reversed: Q/M 5- 2 x lo2' for the 

electron, but such regions, where quantum mechanics would be involved, are outside 

the domain of a classical theory such as 5D GR). Therefore, we make the further 

assumption that b - 0 (a .- 1) and find, for the first metric: 

This approximation is true mainly for the limit b r: 0, which, physically-speaking, 

occurs primarily in the macroscopic regime (especially for astronomical-type ob- 

jects, such as planets), where the charge density is reasonably small. In the eztreme 

limit b 0 (a + 1) gives: 

Since the right-hand side of eq. 3.34 is very close to zero in most macroscopic 

situations, then this is consistent with the assumption that b + 0, and, further, 

that b is directly related to the chazge-to-mass ratio of the source for the first metric. 

For the second metric, the charge-to-mass ratio works out to be: 

which is 2 for a = -1 (spacelike fifth dimension) or -2 for E = +1 (timelike fifth 

dimension). 

The fact that the charge-to-mass ratio for the second metric is on the order of 

unity (twice unity, in fact) is truly unexpected. As noted above, the charge-to-mass 

3$ = $6 in restored units, where kc is the Coulomb electric constant and G is Newton's 

gravitational constant, and fi = 1.2 x 10lOkg/C. 
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ratio for a macroscopic system is Mnishingly small (< I), while for microscopic 

systems, it is huge (>> 1). In this case, the ratio falls in the middle of these two 

disparate ranges. Since we are concerned with classical systems, this indicates that 

the second metric represents matter with an extreme or saturated level of charge 

distribution. 

3.3 Maxwell's Equations 

To further examine the expressions of charge (in the form of charge density) of 

these two metrics, we examine Maxwell's Equations, given by: F=$ = Ja where 

Ja is the Maxwellian current density (although here we will be most interested in 

the zeroth component of Ja, the charge density JO). 

For both metrics, the charge density, J O ,  can be given by: Jo  = F O ~ ~ ,  which, 

for both metrics, can be written out as: 

with all the other Jays being zero for both metrics. 

For the two metrics, the expression for Jo can be calculated &om this (or, 

alternatively, using the computer algorithm listed in appendix D) as: 

again Roman numeral subscripts denoting the metric number. 
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If one again assumes a large T ,  then R -t or and .F + 1. Additionally, the 

approximation b << 1 (a = I), which is realistic for most situations, is made, so 

that the two charge densities become: 

These expressions show the general dependency of the charge densities of each of 

the two so~utions, as being inversely proportional to the fourth power of r, at least 

at large values of r, which matches that of other solutions (see Liu-Wesson analysis 

below in section 3.5.1). Of course, at m a l l  values of r ,  the difference between R 

and r becomes significant, and this dependency may not hold. 

In order to compare these expressions of charge density with the charge-to-mass 

ratios of the previous section (eqs. 3.33 and 3.35) requires next examining the mass 

densities, among other things, of these metrics. 

3.4 Density, Pressure and Stress 

In this section, we examine the induced energy-momentum tensor for each of the 

two metrics and their resulting mass densities, pressures and stresses. This will 

give us the inertial properties of the matter (fluid) described by the two metrics, as 

well as allowing us to reexamine the expressions for the charge-to-mass ratios for 

both metrics, 

Although we could have calculated the induced energy-momentum tensor, T,Y, 

&om eq. 2.11, we instead used the 4D g, from eqs. 3.18 and 3.19 to calculate the 
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4D GY, (using GRTensor II on Maple, ref. [I]) and the fact that T,V = GL to deduce 

T,". For the first metric, the nonzero energy-momentum tensor components are: 

while, for the second metric, the nonzero components of the energy-momentum 

tensor are: 

Also, the electromagnetic component of the energy-momentum tensor, TEM G 

T i M  = TiM = -TsM = -TiM is, for the fist metric: 

while, for the second metric, it is: 

Fkom section 2.3.3 of the previous chapter, we next use p = Tt - TBM to 

define the density, P = -$(T: + T: + T: + h) to define the pressure, and 
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T: = $ (T,' - 2':) - f TsM (and T: = T: = -$T; to define the anisotropic stress. 

For the first metric, the density, pressure and stress are: 

:T: , following directly &om the spherical symmetry of the relation T: , = 713 = -- 

the solution (see eq. 2.40). 

The density, pressure and stress of the second metric are then: 

with, again, r&, = T& - - --7 2 1 1  XI I- 
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3.4.1 Simple Equations of State 

In special consideration of equations of state of the form P = np, where n is 

a dimensionless number (independent of T or $), we consider the expressions for 

both metrics given by dividing each P by its corresponding p. For the first metric, 

this is: 

while, for the second metric, it is: 

From examinations of both expressions on the right-hand sides of eq. 3.55 and 

3.56 of P/p, it is clear that there is no general simple relation between P  and p; 

that is, there is no general expression the form of P = ng for which n is a constant 

(independent of R) . It is, however, possible to examine the relations between P 

and p for special cases. 

For the first metric, all quantities ( P ,  p, and T,Y) a m  proportional to b which, 

for the first metric, is related to the charge. Thus, b = 0 yields P = p = T; = 0 

(for alL p, Y). This indicates that all the matter (given by p), d the kinetic motion 

(given by P) and all the internal interactions (i-e.,  viscosity, given by 7,") are of 
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electromagnetic origin, and its vanishing (i-e., b = 0) causes these quantities to 

vanish too, 

For the first metric, an interesting equation of state results &om setting K = 0; 

P = -p/3. As noted in the previous chapter, the right-hand side of this equation 

possesses the opposite sign of the standard radiation equation of state, P = p/3. 

Nevertheless, such equations of state have been studied in other contexts by several 

authors (refs. [8], [33], [34], [35], [36], [8]). Of paxticular note is that, because the 

4D GR gravitational mass is proportional to 3 P + p, this indicates the existence of 

matter which exerts no gravitational effects. Indeed, since K has been identified as 

the mass t e r n  for these metrics, it, therefore, stands to reason that K = 0 would 

yield such a state. 

For the second metric, setting K = 0 again yields the equation of state P = 

-p/3. Interestingly, setting a = 0 (b = 1) also yields the equation of state P = 

-63/3. In the first metric, tjS0 = E!, SO setting a = 0 was not possible. However, 

for the second metric, it is possible (mathematically, at least) to set a = 0 (though 

this does have the effect of rendering the metric a sole function of &, and not r). 

At first glance, it may seem unusual that setting a = 0 will yield P = -p/3 

(xvanishing gravitational mass" ) since, for the second metric, a was not proportional 

to the mass, but inuersely proportional to it (from Krr -- - 2 M a ( 2 ~ +  eq. 3.25). 

However, given that a represents the r-dependence of the metric, its vanishing 

causes the metric to become independent of r, which then causes r~o(uo)2 (which 

gives the gravitational field) to become zero automatically. This then forces M 

to be zero, which may then be taken to be consistent with the "matterless staten 

indicated by P = -p/3. 

Finally, for b = 0 for the second metric, we obtain P = -f which is interesting 
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because, at f i s t  glance, it suggests the existence of matter which is gravitationally 

repulsive (3P + p = -4p). However, upon further examination, this turns out not 

to be the case. For the second metric, for b = 0, the density works out to be: 

In this case, the density is negative definite, so that 3P + p = -463, and, thus, the 

gravitational mass, becomes positive definite. 

Generally, we note, however, that for all metrics, the dominating terms in the 

density (and pressure and stress) are the 1/R2 2 l/r2 terms, which are typical 

of isothermal states of fluid (see refs. in [lo]), and generally indicate that we are 

dealing with fluids with their densities, ( etc.) , concentrated at their origins. 

3.4.2 C harge-t o-Mass Ratio (Reconsidered) 

In order to make use of the expressions for charge density from the previous section 

(eqs. 3.39 and 3.40) and to then make a comparison with the charge-to-mass ratios 

calculated in section 3.2, we calculate the (gravitational) mass density from these 

expressions for density and pressure (eqs. 3.49 and 3.50, and eqs. 3.52 and 3.53). As 

just noted, the 4D gravitational mass is proportional to 3 P + p. This is, in fact, the 

'relativistic' 4D gravitational mass density, with the 3P acting as the relativistic 

'correction' term to the base-level density p. If we calculate this for each of the two 

metrics from the existing expressions for density and pressure, we get: 
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where, for the second case, use was made of the fact that: (26 + 1)2 = (5 + 44). 

For the extreme radial limit, r + co, these can then be approximated as: 

When we consider the charge densities for both metrics as given by eqs. 3.39 and 

3.40, we can divide them by these expressions for the gravitational mass densities 

to get alternative expressions for charge-to-mass ratios (alternative to eqs. 3.33 and 

3.35). Doing this yields: 

Although these expressions yield constant values for QIM, as do eqs. 3.33 and 

3 -3 5, they are not id entical to those expressions. This is due, in part, to the differing 

approximations which were used in arriving at these expressions. In section 3.3, the 

charge density was found as a fit to what we observe as a 4D Manuellian electric 

field. To. section 3.2, however, the charge was found by using a Coulombic fit. 

Ditferences of such approaches may naturally lead to mering results. 

Additiondy, as noted earlier, we are dealing with quantities which are normally 

defined in 43, and trying to match them to effects &om the 5D manifold. In both 

cases, the (Maxwellian and Codombic) electric fields are 4D approximations to the 

undedying 5D cunmtnre, which gives rise to the fields in question. We see this 5D 
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curvature in 4D and try to fit fields to it familiar to us &om 4D. Ultimately, this 

can lead to results which differ for differing approaches. 

Nevertheless, we note that, for the first metric, at least, the two expressions, 

3.33 and 3.62, do agree in the limit 6 -+ 0, which, as noted before, is the reasonable 

limiting case for this metric. 

3.5 Epilogue: Analysis of the Liu-Wesson Metric 

As discussed at the beginning of this chapter, one of the prime motivations for 

examining 5D charged metrics dependent on (r and) + was to extend the inves- 

tigations of charge distributions, initiated by Liu and Wesson, to that of charged 

matter. It was assumed by both, and published in ref. [2], that their solution, the 

Liu-Wesson metric (eq. 3.1), possessed the equation of state of radiation. This 

assumption was based upon the theorem, published in ref. [8] and outlined in sec- 

tion 2.3.1 of chapter 2, which stated that metrics which are independent of $I must 

possess the equation of state of radiation. 

As such, the Liu-Wesson metric would have been regarded as unpkysical, since 

it would have ended up representing charged radiation. Only in the limiting case of 

ultrarelativistic charge would the Liu-Wesson metric have been applicable. (There- 

fore, extending their line of research to a material charge distribution seemed highly 

reasonable, especially when coupled with the independent desire to examine solu- 

tions representative of matter. ) 

However, as was also mentioned in section 2.3.1 of chapter 2, this theorem has 

been derived only for diagonal rnetrics. As the Liu-Wesson solution is an off- 

diagonal metric, the theorem cannot be expected to apply to it. In the course of 
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doing this thesis, I (the author) realized that the Lin-Wesson metric, contrary to 

what was published in ref. [2], does not  possess the equation of state of radiation. 

It does, in fact, represent, a charged fluid, just as the two metrics of this chapter do 

(though with different inertial properties). Therefore, it seems appropriate that the 

equation of state, etc., of the Liu-Wesson metric be analyzed here and compared 

with the two solutions of this chapter. 

3 -5.1 Physical Aspects of the Liu-Wesson Solution 

As is suggested from the written form of the Liu-Wesson metric, the quantity M 

appearing in eq. 3.3 can be identified with the (4D) Schwarzchild mass in the 441) 

limit. Additionally, k, the 'charge' of the metric, has been identified (in the '5D- 

Schwarzchild' case, at least4) as the square of the charge-to-mass ratio; It = &. 
This case is discussed at length in ref. [2], and, as such, will not be examined any 

further here. 

Maxwell's equations for the general form of the Liu-Wesson metric can also be 

given in this context as: 

where the second step was made for k 0 and r >> M. 

As can be seen, the Liu-Wesson solution possesses the same r-dependency at 

large T as the solutions found here (but will differ as r + 0). 

To finally calculate the correct nature of the Liu-Wesson solution, we calculate 

energy-momentum tensor for the Liu-Wesson metric here fkom the $-independent 

4That is, for the case a = I and b = 0. 
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expression for T,Y of the previous chapter. The effective 4D metric from the Liu- 

Wesson metric is: 

&om which the components for T," can be calculated as: 

For the Liu-Wesson metric, the electromagnetic component of the energy-momentum 

tensor, TEM = TEM = T i M  = -TiM = -TiM 3, is then: 

Again, &om section 2.3.3 of the previous chapter, we use p = Tt - TEM to 

define the density, P = -f (T,' + Ti + T: + TEM) to define the pressure, and 

4 
T: = $(Tl- T:) - (and T: = T: = -%I) 2 1 to define the anisotropic stress. 

For the Liu-Wesson metric, therefore, the density, pressure and stress are: 
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Surprisingly, therefore, the pressure and densities as given here follow l / r 4  ex- 

pressions, as opposed to the l/r2 expressions given by the metrics studied in this 

chapter. This is a notable result as it affords a very significant diEerence between 

the two sets of solutions. 

Again, special consideration is given to equations of state of the form P = n p ,  

where n is a dimensionless number (independent of r ) .  We consider the expression 

given by dividing each P by p which is: 

Upon examining of the right-hand side of eq. 3.73, it is clear that, as with the 

two metrics studied here, there is no general simple relation between P and- p; that 

is, there is no general expression the form of P = np for which n is a constant 

(independent of R) . The only special cases are those for which the metric is neutral 

5 (either k = 0, or a = b, which causes A to vanish), or the unusual state n = -5, 

which has been previously examined. 

Finally, we calculate the 4D gravitational mass density, 3P + p, which is to be: 
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where the second step was made for k - 0 and T >> M. Taking the ratio, then, of 

the charge density found from Maxwell's equations above with this expression for 

the 4D gravitational mass density then yields: 

which, for a = 1 and b = 0 (the '5D Schwarzchild' case), gives: 

which, again, is similar (though not identical) to the k = & value found for k by 

approximating a Coulombic field to F: for the '5D Schwarzchild' case examined in 

ref. [2]. 



Chapter 4 

Magnetized Wire Solutions 

While 5D metrics describing d e d  gravitational and electric fields have been ex- 

amined here (chapter 3) and elsewhere (ref. [30]), few have been examined (&om 

witkin the Induced Matter framework, at least ) which describe unified gravitational 

and magnetic fields (see ref. [25] as one example). 

In ordinary (43) physics, the magnetic field about an axial-symmetric line 

source (a 'wire') is described by assuming that charges of one sign (e.g., electrons) 

possess a velocity relative to charges of another sign (e-g., positive copper ions). 

In 5D Kaluza-Klein/lnduced Matter physics, however, an axially-symmetric field 

is assumed to result &om curvature in the fifth dimension, coupled to the axial- 

symmetric (r )  a x i s .  This is represented in the metric by the presence of a drd$ 

term, which represents the electromagnetic vector potential, As. 

In this chapter, therdore, we shall examine two axially-symmetric metrics pos- 

sessing dzd+ terms (corresponding to As vector potentials). Such metrics will, 

therefore, be able to describe &ally-symmetric, or 'wire', distributions of matter 

possessing an axially-symmetric magnetic field, Bz. We note that we are using the 



CHAPTER 4, MAGNETIZED WIRE SOLUTIONS 66 

sub/superscripts of 0,123,5 to represent the cylindrical coordinates of t, p4z, tl, in 

this chapter (so that A3 E A. and B2 = B*). 

4.1 The Metrics 

In addition to finding metrics with off-diagonal dzd$ terms, thereby allowing the de- 

scription of adally-symmetric magnetic fields (B2), we desire to find metrics which 

represent static (and therefore t-independent), axially-symmetric (and therefore 

&independent) distributions of matter that are infinite1 in the z-direction (and 

therefore 2-independent ) . This means that the metric coefficients may be functions 

of the radial coordinate, p,  and/or the fifth coordinate, +. Since we desire the 4D 

part of the metric to at least have some connection with its Minkowski counta- 

part, ds2 = dt2 - dp2 - p2dq52 - dr2, which possesses a pdependency at least in 

g22(= -p2) ,  we seek metrics in which the coefficients are functions of p only, or of 

p and rl, (but not of q5 only). We have found one of each, and their derivation is 

described in appendix B. 

The first metric is solely p-dependent and is: 

with k and J arbitrary constants and E again the signature of the fifth coordinate 

(= +1 for a timelike fifth dimension and -1 for a spacelike fifth dimension), and 

where I denotes the metric number. p is a parameter defined by: 

%finite in the z-direction' being taken partly for simplicity and partly for correspondence 

with other (4D diagonal) axial-symmetric rnetrics (ref. [37]). 
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and 6, A, r)  and 7 are parameters obeying the relation: 

and are otherwise arbitrary. 

This metric, eq. 4.1, as its derivation in appendix B clearly demonstrates, is 

the most general pdependent metric possible for describing an axially-symmetric 

magnetized 'wire' solution, and bears a certain resemblance to its 4D counterpart 

(see ref. [37]). For J = E = b = X = r ]  = 7 = p = 0, the two relations 4.2 and 4.3 

are satisfied and the metric (eq. 4.1) reduces to: 

which is essentially the 5D axially-symmetric Minkowski metric. If, on the other 

hand, one lets only J = k = 0 and sets -p = p (so that ijS5 = f 12), one obtains: 

which must satisfy eq. 4.3 and the reduced relation: 

'~nsur in~  that = with &, = 0 (ensured by J = k = 0) and jp,, independent of z5 = $ 
forces the 4D   or ti on of the metric to become the standard 4D solution (ref. [15]). 
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Eq. 4.5 satisfying relations 4.3 and 4.6 essentially constitute the 4D (diagonal) 

&ally-symmetric 'wire7 solution (with an extra flat fifth dimensional component 

and with an arbitrary factor in hont of the dp2 term, which can be absorbed by a 

simple coordinate transformation on p) (ref. [37]). 

Although this metric (eq. 4.1) was found as the rnos t general radial (p)-dependent , 
axial-symmetric solution with a single off-diagonal (dzd*) term (as shown in ap- 

pendix B), this metdc possesses the unexpected attribute that it can be transformed 

into a diagonalized form by a 'simple' coordinate transformation which does not 

affect the metric's purely pdependency. 

Of course, it is well known that any metric subspace of the form: ds2 = 

g11(d~1)2 + 2gI2dz1dxZ + g2z(dz2)2, where gl,, g12 and g2, aIl possess the same 

sign and are functions of I' and x2, can be put into the diagonal form: dsZ = 

g[(dzl)* f ( d ~ ~ ) ~ ]  (ref. [38]; see also axial-symmetric approach in ref. [39]). This 

can then be generalized to three dimensions, so that the metric subspace: ds2 = 

gll(dz')z + 2g12dz1dz2 + g22(d22)2 + 2g23dx2dz3 + g33(d~3)2 + 2g31dx3d~1 can be 

put into the form: ds2 = g[(dx1)2 + ( d ~ ' ) ~  + (dx3)']. But this requires that the 

new (diagonal) g's to be, in general, functions of all the coordinates, xl, z2 and x3, 

irrespective of the forms of the original gll, 912, g22, g23, 933 and g31. 

If one identifies here x1 = p, x2 = r and x3 = $, one can see that, while this 

can diagonalize the metric 4.1, this diagonalization technique has the potential to 

introduce factors of z (and $) into the metric coefficients. This would violate the 

metric's basic premise as being representative of a wire infinite in the r direction 

(as discussed above, being infinite in the r-direction would require that the metric 

coefficients be independent of I). Surprisingly, however, in the case of metric 4.1, 

the metric can be diagonalized without introducing extra coordinates into the metric 

coefficients. 
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If one performs the coordinate transformation on the original metric 4.1: 

followed by the transformation: 

a + J j r & a +  

the transformed metric will become: 

which is dearly a diagonal metric still  of purely radial(p)-dependence, and, so, still  

represents a static, axial-symmetric matter distribution infinite in the z-direction. 

This also means that one could have started from the diagonalized mehic 4.9 and 

then of-diagonalized it by applying the reverse of the transformations 4.8 and 4.7. 

Normally, such an approach would not, in principle, yield the most general solution 

possible. But, as is shown in appendix B, this metric (eq. 4.1) does represent the 

most general form of a static pdependent axially-symmetric metric possessing a 

single off-diagonal (dzd$) term. 

The fact that the metric 4.1 c a n  be diagonalized in this manner merely indicates 

that we are dealing with a 'wire' metric in which the magnetic field is impl ic i t  in 

the (5D) gravitational field. That is, the drd$ crossterm (containing the As vector 

potential) can be generated kom a (simple) +-transformation on a diagonal metric 

(as above). [This is in contrast to ezplicit electric/magnetic fields (such as those 

of the previous chapter) in which the crossterms in d$ cannot  be generated from 
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(simple) +-transformations on a diagonal metric.] The physical interpretation, 

however, within the Induced Matter formalism, is still the same, and, hence, the 

metric 4.1 is physically a respectable solution. 

We decide to use a form of the metric given by making the transformation 4.7 

on the original metric 4.1, but not transformation 4.8. The reason is that, while 

the vector potential, A3, taken from metric 4.1, depends on both J and k, the 

corresponding magnetic field, B2 = FI3, t u r n s  out to be independent of k. k is, 

therefore, an extraneous constant &om the point of view of describing observable 

fields. The transformation 4.7 removes k fiom the metric, thereby reducing the 

metric to a 'least extraneous' form while still allowing it to possess the off-diagonal 

drd$ term. 

The specific transformations made on the original metric 4.1 begin with the 

transform 4.7. (We also replace p -+ -p, which is dowed by the ambiguity of the 

sign of p as defined by eq. 4.2. This change of sign simplifies terms like J / p p  to 

Jpp.) We then perform the transformations: 

and introduce: 
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as a new constant into the metric. The resulting metric we will then use is: 

where the new constant j can now be seen to represent the magnitude of A3 (and 

hence B2), and may be likened to the current magnitude. (Note, also, that the 

coefficient in fiont of the dp2 term, the factor of (1 + 7/2)', has vanished. This is 

due to the specific rescaling of the constants in the manner prescribed by eqs. 4.10 

to 4.14.) 

In analyzing wire metrics, we also seek a 'wire' metric which is not so easily 

diagonalized (i. e., in which the magnetic field is not 'implicit' in the 5D gravitational 

field). Since we have the possibility of axially-symmetric metrics that are functions 

of p and 11, we, therefore, seek an axial-symmetric, off-diagonal (dzd$) metric 

which is a function of p and +. The metric of this type found was derived as (see 

appendix 4): 

where I1 denotes this as the second metric for this chapter, and where the new 

constants K, C, B, b, A and N are defined by: 
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where f (a, n )  is a function of a and n given by: 

and where a and n (and L) are free parameters. Again, e is &1 depending on 

whether the fifth dimension is timelike or space-like. Note that the off-diagonal 

(dzd$~) term has a further sign ambiguity (resulting horn the square root of C) 

coupled to its €-term. This corresponds to differences in direction of the current. 

From these definitions, it can be seen that this metric (eq. 4.17) depends on 

the three parameters, a, n and L. a and n are 'fkee parameters', resulting from the 

derivation of the metric, while L is a constant which results solely from a coordinate 

transformation on p of the form: p -t pL. This transformation is done to include 

a pdependence in ill (this is done to make this metric 'comparable' with other 

(4D) mehics which possess p-dependencies in their gll terms; see discussion in 

section B.2 of appendix B). Setting L = 1 effectively removes the result of this 

transformation. 

Substituting definition 4.24 into the definitions 4.18, 4.19 and 4.20 one obtains, 

as functions of a and n; 

K =  ~f (a, n)[2 + (a + n ) f  (a, n)12 
(2 + a + n)[6 + (a + n - 4)f (a, n)] 
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It can be seen that the magnetic field for this metric is coupled to C, as its 

vanishing will cause A3 (given by &/&,5) to vanish. Additionally, setting either 

L = 0 or B = 2 will cause the magnetic field to vanish as such settings d cause A3 

to become independent of p (so that B2 = F13 = = 0). However, setting L = 0 

or B = 2 will yield singuladties in the metric. Setting L = 0 will cause ijll = 0, so 

that the inverse metric component ijl1 will become infinite. 

Setting B = 2 causes the denominator in C to vanish, leading to infinities in the 

metric components ix and ijZ5. [TO ensure that C really Mnishes for B = 2, one 

has to ensure that the numerator of C does not also vanish. Setting B = 2 in view 

of the definitions 4.20 to 4.24, yields the constraint a2 + an + n 2  = 0. Setting the 

numerator of C to 0 with B = 2 then requires a + n = -2. These two conditions 

require a = -1 dz 3i7 and n = -1 3i. If we insist that all exponents be real, then 

this is not possible, C's numerator could not vanish, and B = 2 must necessarily 

cause C to become infinite.] 

Thus, L = 0 and B = 2 may be taken as unphysicd cases, and that C = 0 is the 

only physically realistical way to make the magnetic field here vanish. 

4.2 Linear Mass and Current Densities 

To get our first understanding of these two metrics, we examine their limiting cases 

for (4D) gravitational and magnetic fields. As in the previous chapter, Roman 

numeral subscripts, I and II, represent the metric in question; I representing the 
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first, pdependent metric (eq. 4-16)> with I 1  representing the second, p and 9- 

dependent metric (eq. 4-17). 

As discussed in chapter 2, we can identify the Newtonian gravitational limiting 

case with ~&,(uO)~, where uo can be given by (see eq. 2.46): u0 = f[l - &(4 + 
~,i@)~]-'/~. In the previous chapter, we set uo to unity as a zero-order approxima- 

tion. In this case, however, it is essential that we make some kind of approximation 

on uO before proceeding. 

The reason is that we expect the metrics here (as their counterparts in the 

previous chapter) to be close to their Minkowski limits for most physically real- 

istic situations. Normally, metrics of the type examined in the previous chap- 

ter (Schwaszchild-like) will have metric coefficients which are very close to their 

Minkowski limits in most physically reasonable situations. For Schwarzchild space 

(as a specific example), this is not a concern, as the non-Minkowski parts of the 

metric coefficients depend on factors of (1 - 2M/+) which is 1 for any physi- 

cally realistic (macroscopic) values of r. In other words, the 1 in the (1 - 2Mf T) 

dominates in most reasonable situations. 

In these metrics, however, the metric coefficients are proportional to pure pow- 

ers of p, the radial coordinate, and do not possess terms like the "1" which can 

dominate over the p portions in limiting cases. This indicates that, in order that 

the metrics (especially metric 4.16) reduce to Minkowski-like forms, one would ex- 

pect the powers of p in both metrics to be vanishingly small. The smallness of these 

powers indicates that, even though uO differs from unity by ody a s m d  factor, we 

might expect that this factor to be on the order of the smallness of the powers of 

p, and therefore have the ability to be, itself, significant. For these metrics, the 

expression for uO will become: 
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If we then assume t z 1 >> 23, for i = 1,2,3,5, then the squareroot term in 

eq. 4.28 reduces to unity, and we obtain: uo zz t. This is then easy to solve by 

using the Lagrangian approach; both metrics are independent of t ,  and contain no 

off-diagonal terms in dt. As a result, the Lagrangians may be written as: 

and where the equation of motion for t may be found as: 

so that: & = EIp-" for the first metric, and = E ~ ~ ~ ~ ~ $ ~  for the second metric, 

where the E's are the constants of motion for the respective t's, and are close to 

unity for limiting cases. 

From these values of uo - t and by calculating rAo from the effective 4D metrics 

for each case (see eqs. 4.50 and 4.51 in section 4.4 for the effective 4D metrics), the 

weak gravitational fields can then be calculated. For the first metric, this is: 

while, for the second metric, it is: 
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In both cases, we might expect the gravitational fields to f .  off as lip, as that 

is the form of a field surrounding a line source. Of course, we may imagine, in a 

curved space, a field which does not fall off ezactly as lip, perhaps as l/p(lcA), 

where A is vanishingly small. But assuming we do impose the restriction l / p  form 

on the fields, we can then say: 

for the first metric, and 

for the second metric. 

Additionally, since we expect the fields in question to be proportional to the 

hea r  mass density, we can then identify the factors in eqs- 4.31 and 4.32 with the 

h e a r  mass densities. Taking EI -- Err 2. 1, this identifies h in the first metric 

with the linear mass density (4 x the linear mass density, in fact, assuming a form 

of 2(linear mass density)/p for the (Newtonian) gravitational limit about a line 

source), while N/KL is (4 x)  the linear mass density for the second metric. 

In further consideration of the weak-field approximation of these metrics, we 

next examine the radial components of their magnetic fields, which is also known 

to have a flat-space limit of l/p. The magnetic field components considered are 

those from the first term on the right-hand side of the expanded geodesic equation, 

eq. 2.51, which, for the radial component of the magnetic field, are: F,'. 

For the first metric, the vector potential A3 is: 
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while, for the second metric, A3 is: 

and where all other AP7s are zero for both metrics. Calculating F,' = g1'F13 = 

gllAS,l gives, for the f i s t  metric; 

and, for the second metric; 

For the first metric, we note that j = 0 causes the magnetic field to vanish, 

which is consistent with the identification of j with the magnitude of the current. 

For the limit j -t 0, we note that the first metric's magnetic field becomes: 

For the second metric, we note again that the field is, indeed, coupled to C (the 

square root of C), as well as (1 - BIZ). However, as noted above, B can never be 2, 

as this is an unphysical case, so the second metric's magnetic field can only vanish 

when C vanishes. As a result, we might identify & with the magnitude of the 

current in its case. 
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As in the case of the weak gravitational field (just examined), it may be possible 

to imagine that, in a weak curved space, the magnetic field does not fall off as l / p  

exactly, but perhaps as lip('+*), where A is again very close to zero. However, 

if, as in the weak gravitational field case, we insist that the magnetic field falls off 

exactly as l / p  (which, of course, should be its limiting value), we find, for the &st 

metric; 

and: 

for the second metric. If one then combines these results with those obtained from 

fitting the weak gravitational field to a 1 / p form (eqs. 4.33 and 4-34), one can then 

reduce both metrics to functions of just one variable. 

For the fist metric, eqs- 4.33 and 4.40 force: 

r = - X = - p - + p = X  

When coupled with the constraints 4.3 and 4.2, this forces: 

with 6 being given by: 
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For X = 0, 6 is consistent with zero (assnming one takes the "+" sign from the 

square root), thereby causing r) ,  p and 7 to vanish, resulting in a Minkowskian 

expression for the 4D portion of the &st metric. Since we have already identLfied 

A with (4x) the linear mass density, then its vanishing, forcing the 4D portion of 

the metric to become Minkowskian, is thereby consistent with this identification. 

For the second metric, the combination of constraints 4.34 and 4.41 force: 

which constrains L and introduces the constraint 2a + 6 n  - 3a2 - n2 = 0 (if these 

relations are accepted) . 

4.3 Maxwell's Equations 

To k t h e r  examine the expressions of current (and current density) of these two 

metrics, we ex&e Maxwell's Equations, given by: = Ja where Ja is the 

desired current (density) which we seek. Again Roman numeral subscripts denote 

the metric number. 

From Maxwell's Equations, J3 can be  calculated &om J3  = F ~ ' ; ~ ,  which, for 

both metrics, can be written out as: 

For the first metric, the expression for J3 can be calculated (see computer 

algorithm listed in appendix D ) as: 
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while, for the second metric, J3 can be found as: 

with d the other Ja's being zero for both metrics. 

For the first metric, it has already been established that j shonld be related to 

the magnitude of the current. For a weak current then, j -+ 0, and J 3  becomes: 

As can be seen here, the current density of the first solution couples to j ,  while 

the current density of the second solution (see eq. 4.48) couples to &, thereby 

confirming the interpretation of j and & as the magnitudes of the currents of the 

first and second metrics, respectively. 

For a magnetic field falling off roughly as l l p ,  one would expect J3 to f d  off 

roughly as l lp2.  This is approximately the case for the fist metric, and, possibly 

the case for the second metric, depending on the choice of parameters. 

Indeed, the choice of parameters a d a b l e  in both wire solutions makes solving 

for mass and current density di f icul t .  Additionally, though we expect the magnetic 

and gravitational fields to fall off roughly as l l p ,  we cannot expect that these will 

be exactly the cases, especially in curved manifolds. As a result, we do not calculate 

such quantities as current-to-mass ratios for these wires as they would be highly 

dependent on the choice of parameters, as well as undoubtedly being sensative to 
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the smallness of the powers of p (i-e., sensative to the fact that p will not differ 

much from unity; see discussion in relation to uO above). 

4.4 Density, Pressure and Stress 

Next, we examine the induced energy-momentum tensor for each of the two metrics 

and their resulting equations of state. Again, we use the 4D g, to calculate the 

4D GL (using GRTensor II on Maple, ref. [I]) and using the fact that T," = GL to 

deduce T'. With this in mind, we explicitly note the 4D portion of both metrics; 

for the first metric, this is: 

while, for the second metric, it is: 

From these 4D metrics, the effective energy-momentum tensors can then be found 

as outlined above. For the first metric, the nonzero energy-momentum tensor com- 

ponents are: 
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while, for the second metric, the nonzero components of the energy-momentum 

tensor are: 

GI o = A [AB +AN +BN] 4KpZL$2 

Again, the electromagnetic component of the energy-momentum tensor can be 

calculated (see discussion at end of section 2.3.3 for the cylindrically-symmetric 

case,) as: T E ~  -TzM = TAM I = -TiM = TzM J.  This is, for the first 

metric; 

while, for the second metric, it is: 

F'rorn section 2.3.3 of the previous chapter, we next use p = T,O + TgM to 

define the density (and where we remind the reader not to confuse the density 
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p with the coordinate p ) ,  P = -'(T,' + Ti + Tl - TBM) to define the presswe, 3 

and T: = ;T: - f(T: + T') - $TEM, T: = $T. - f (T! + T:) + $TBM and T: = 
2 3 zT3 - i(T,' + T:) - f TsM to define the anisotropic stress (all for a cylindrically 

symmetric system). For the &st metric, the density, pressure and stress are then: 

while the density, pressure and stress of the second metric are: 
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In general, these forms will depend on the values of the Msious parameters of 

each metric. For both metrics, however, it appears as though there are singularities, 

at least, for p + 0 (though, unlike for the first metric in the previous chapter, 

there do not appear to be any potential horizons from the forms of the metrics 

here). Instead, we note that the equations given here seem to indicate fluids whose 

densities, etc., increase towards p -+ 0, so that, instead of pure wire forms, we are 

dealing with axially-symmetric columns of fluid concentrated along their axes. 

4.4.1 Simple Equations of State 

In consideration of equations of state of the form P = n p ,  where n is a number 

(independent of p or $), we consider the expressions for both metrics given by 

dividing the P by its corresponding p. For the first metric, this is: 

while, for the second metric, it is: 

In order that the metrics describe an equation of state of the form P = np with 

n a number, it is necessary for the expressions on the right-hand sides of eq. 4.72 
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and 4.73 be independent of p or $. This is automatically true for the second metric 

(eq. 4-73), but is not automatically true for the &st metric (eq. 4.72). 

In fact, it is not possible for the first metric to represent an equation of state 

of the form P = np that isn't nonmagnetic, with either j or p being zero (the 

magnetic field being proportional to both j and p), or 'gravitational-less', with X 

being zero (since the 'Newtonian limit' of linear mass density is proportional to 

A). In general, therefore, the equation of state for the f is t  fist metric will be 

complicated. 

For the second metric, however, an equation of state of the form P = n p  is 

possible if one assigns: 

where n is 5 for radiation, -1 for vacuum, +1 for stiff matter and 0 for dust. 

Therefore, the second metric, at Ieast, has the potential to model various simple 

equations of state of the form P = np. 



Chapter 5 

Cosmological Solutions 

As discussed in chapter 2, if spacetime is truly five-dimensional, then our universe 

(which is perceived as four-dimensional) must essentially occupy a(n approximate) 

four-dimensional hypersurface on the five-dimensional manifold. Indeed, as written 

out in ref. [40], the standard 4D cosmological models (FRW solutions) can be 

written as conformally flat solutions (in 4D). 

It is also known that the standard (FRW) 4D cosmological solutions can be 

embedded in a flat 5D manifold (see refs. in (411 and [42]). In refs. [12], [23], [41] 

and [U], 5D solutions are examined which possess 4D cosmological interpretations. 

Many of these solutions are R i e n a n n  flat, as well as Ricci flat (vacuum),  but they 

are not confonnally flat (i-e., the solutions are not written out as fit metn'cs 

possessing conformal factors). 

To further this line of research, therefore, we examine two 5D metrics which 

possess conformdy flat sections. In the first, the 4D ( t ,  re+) spacetime portion is 

conformally flat, while the 5-5 portion possesses an additional factor. In the second, 

the entire metric is (5D) conformaly flat. For these reasons, the fist metric will 
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b e  referred to as 4D conformally fiat (in a 5D m d o l d ) ,  while the second will be 

referred to as 5D conformally flat. 

5.1 The Metrics 

The first metric examined will be the 4D conformally flat metric. It was found (see 

appendix C) as the most general flat' solution to the metric form: 

[dt2 - dr2 - r2dQ2] a; = + E  
d+2 

A(t7 r 7  $I2 B(t7 r, $ I 2  (5-1) 

where I denotes that this is the 4D conformalLy flat solution, and where A(t,r ,+) 

and B(t, T ,  $) are general functions of t, r and 11. To satisfy the vacuum field 

equations, one finds (from appendix C): 

so that the metric can be written out as: 

where, again, an overstar denotes a partial derivative with respect to the fifth 

coordinate, +. To satisfy the vacuum field equations,A(t, r,  $) must be given by: 

with a($), p(+) and 7($) general functions of $ which are constrained by: 

'See discussion on this point in section C.2 of appendix C. 
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P(+)' - 4a($)r($) = -l/e 

which equals +l for e = -1 (spacelike fifth dimension). 

The second metric to be examined is a 5D conformally flat metric corresponding 

to a solution of the general form: 

where I I  denotes that this is the 5D conformally flat solution, and where ei('vr*+) 

is the conformal factor in question, and where &(t, r, 411) is a general function of t, 

r and 11, (and where it is written with a tilde to distinguish it from the @ in the 

general form of the 5-5 component of the Induced Matter metric, iS5 = eQ2).  

Upon solving the field equations for the T-dependencies for this metric (see 

appendix C), we find: 

where k is a constant, and where u(t, 411) and v( t ,  $) are functions o f t  and + (but 

not of T), and which must satisfy the reduced field eqs. C.32, C.33, (2.34 and C.36 

from appendix C. 

The simplist (nontrivial) solution is to set v(t,qb) to a constant, such as unity 

(and set k to 1/fi to properly normalize the conformal factor) and solve u(t,qb) 

to be $ (t2 + q h 2 )  from the reduced field equations. This then yields a metric of the 

form: 
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which constitutes the main 5D conformally flat solution used in the bulk of this 

chapter. 

There are, however, many other 5D conformally flat solutions one could find 

from the aforementioned reduced field equations. For example, one could also set 

vt+ = 0 and let k -t l/O, so that Rut+ = 1, and solve u(t ,$)  to be (t + e$)- This 

would give a metric of the form: 

However, this is essentially the 4D conformally flat metric (5.3) with a($) = 0, 

P($)  = 1 and 7($) = qb. Metric 5.9, therefore, represents the overlap of the 4D 

and 5D confo~nally flat metrics, and is mentioned here mainly for completeness. 

It is noted that both metrics 5.3 and 5.8 share a s i m i l a r  form to each other, and 

to other cosmological metrics, particularly in their r-dependency. The standard 4D 

cosmological (FRW) models can be written in isotropic form with (1 + kr2)-2  as the 

metric coefficients for the 3-spatial portion of the metric (the do2 = dr2 + zZdQ2) 

(ref. [16]). As well, in some of the 5D cosmological metrics studied in refs. [12], 

[23], [41] and [42], a similar factor appears in the 3-spatial portions of those metrics. 

This matches with the T-dependence of both metrics 5.3 and 5.8 in this chapter, 

and lends credence to the idea that these metrics (here) represent cosmologies. 

It should also be noted, however, that these metrics (here) still differ from those 

studied in refs. [12], [23], [41] and [42]. Most of those metrics are, at most, written 

in the aforementioned isotropic form. They are not written in conformally flat form 

(either 4D or 5D), and, as such, these metric5 (here) differ from those previously 

studied. (As well, these metrics also possess significant mixed t and Qdependencies 

in their conformal factors). 
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At this point, it should also be noted that, despite f is t  appearances, the main 

5D solution (eq. 5.8) is not a special case of the 4D solution (eq. 5.3). One might be 

tempted to assign A = (tZ + E-I,!J~ - T ~ )  to match the denominators in both metrics. 

However, this designation assigns a+ = 1, P = O and 7 = a,b2, which do not satisfy 

the constraint 5.5. 
r 2  

Additionally, such a designation causes A = ( 2 ~ + ) ~ ,  which is not unity (or 

a constant), so that this solution would still not be 5D conformally flat. One 

might be tempted to transform: $ + JG so that d$ + d+, however, this 

transformation would then transform the denominator A -t (t2 + + - r2), which is 

not the 5D metric's denominat or. 

The only solution which 'overlaps' the 4.D and 5D conformal cases is given by 

the 'overlap' metric 5.9. The 5D solution is not, in general, a special case of the 

4D solution due to the fact that there are more (differing) metric coefficients in the 

4D solution, and, thus, greater differences amongst its Ricci tensors. This more 

greatly constrains the 4D's metric coefficients, and, thus, makes its solution more 

restrictive. The fact that there is an entire class of metrics for the 4D case, while 

the 5D case is not, is simply because, due to this increased restrictiveness, it was 

possible to constrain the 4D metric coefficients to allow for a complete derivation. 

In the case of the 5D solution, as note above, it turns out that the equations 

were so unrestrictive, that all that could be done was to reduce the field equations 

by removing their r-dependence (see appendix C). The 4D solution was the most 

general 4D conformally flat solution to be found, while the 5D solution found was 

not the most general 5D conformally flat solution. As noted in the derivation of the 

'overlap' metric, there are many 533 solutions, of which eq. 5.8 is but one restrictive 

example. Thus, the two solutions here are unique, and allow for separate, if similar, 

analyses. 
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5.2 Equations of State 

To examine the (4D) physical nature of these metrics, we again calculate the energy- 

momentum tensor, which, again, requires the effective 4D metrics of these 5D met- 

rics, 5.3 and 5.8. For the 4D confonndy flat metric, this is: 

[dt2 - dr2 - r2d02] 
ds: = (5.10) 

A@, +, $I2 
while, the corresponding 4D portion of the 5D conformally flat metric is: 

Again, using T,Y = GL, where GL is the effective 4D Einstein tensor constructed 

fkom the effective 4D metrics (eqs. 5.10 and 5-11), one can calculate the energy- 

momentum tensor for the 4D conformally flat metric as: 

and for the 5D conformally flat metric as: 

where, as in previous chapters, the 6:: is the Kronecker delta (6; = 1 for p = v; 0 

otherwise). 

Because both metrics 5.3 and 5.8 are neutral (possessing no off-diagonal terms in 

dqb), it is then possible to directly assign a density (see section 2.3.3 from chapter 2) 

as: p = T,O, and a pressure as: P = -L[T,' + 2': + T'] . Since both metrics are 3 



CHAPTER 5. COSMOLOG1CA.L SOLUTIONS 92 

isotropic, this definition of pressure becomes exact, and the anisotropic stresses, 7," 

are zero for all p, v. 

However, for the first ( 4 -  conformally %at) metric, this assigns p = 3 and 

P = -3, which seems a curious designation. To interpret this result somewhat more 

physically realistically, we consider the usual (4D) de Sitter cosmological solution: 

where e - 2 t / f ~  is the usual de Sitter cosmological expansion factor, with to as a 

constant (curvature) factor related to the de Sitter cosmological constant, A, in the 

usual way (ref. [39]); 

The de Sitter solution can then be put into a conformally flat form by the 

transformation: 

which yields a conformally flat metric of the form (ref. [39]): 

In this form (eq. 5-17), the de Sitter metric bears a similar resemblance to 

the 'overlap' metric listed in eq. 5.9. If one imagines our universe existing on 

a hypersudace of (nearly) constant $, the dq52 term can be ignored (dropped), 
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and the + term in the conformal factor can be made to disappear by making a 

transformation on t as: 

so that the 4D portion of metric 5.9 wiU appear as: 

which is the de Sitter metric (5.17) with the curvature factor, to, normalized to 

unity. 

When we examine the field equations of the usual (4D) de Sitter solution (either 

metric 5.14 or 5-17), we find (ref'. [39]): 

where the cosmological constant, A, is constrained by: 

which, for to set to unity, is precisely the solution of eq. 5.12. 

Therefore, the metric 5.3 represents a 5D generalization of the kind of universe 

described by the 4D de Sitter sohtion, with a (normalized) cosmological constant 

given by: A = 3. It should be noted, however, that metric 5.3 represents a 5D 

generalization to the de Sitter solution, and not just the special case of metric 5.9. 

Metric 5.9 can be put into a de Sitter form by transformation 5.18, but in general, 

there will be no simple (obvious) transformation of this kind for metric 5.3. This 
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indicates that the general 4D conformdy flat solution represents a de Sitter-type 

solution. 

For the second metric, the density and pressure can be rendered as: 

which then have an equation of state as: 

which is the equation of state of a vacuum (ref. [8]). However, since neither the 

density nor the pressure are actually zero (unless the coordinate 4 is zero, which is 

arbitrary), then this metric, like the 4D conformally flat one before it, represents 

a de Sitter vacuum solution with a cosmological constant given by: A = 3 / t z ,  with 

to given in this case by: to = - 4 ~ + ~ .  

Again, the metric 5.8 represents a 5D generalization to the de Sitter solution 

even though the metric 5.11 cannot be put into a pseudo-de Sitter form like eq. 5.19 

by any kind of transformation Like eq. 5.18. 

We can also look specifically at the transformed form of the overlap metric, 5.9. 

If we tramform: 

t --+ et - qb 

(t + qb)" -t e-lt 

dt + e'dt - ~ d +  

dt2 -t eztdt2 - 2cetdtd71, + d$2 
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then the overlap metric becomes: 

The 4D-portion of this metric is, again, that of de Sitter spacetime, with the 

curvature factor, to, again normalized to unity. (The presence of the off-diagonal 

dtd+-term indicates the presence of an electromagnetic vector potential, Ao. How- 

ever, since Gs0, & and, thus, A. = ij50/ij5s are constants, then no electromagnetic 

field exists here.) 

Because both solutions shown here represent vacuum cosmological states (with 

cosmolo$cal constants), it may seem that they are not truly representative of the 

actual universe we inhabit. However, it must be remembered that our universe, 

which is, in this epoch, sparsely populated with galaxies, can be approximated as a 

vacuum state. Therefore, both metrics can be used as approximations of the current 

universe (though they would almost certainly not apply to the early universe). 

[In connection with Mach's Principle, the cosmological constant can be regarded 

as the average combined field of the rest of the universe to the field of a given object 

at  a certain point (ref. [13]). In this context, describing the Cosmological constant 

in terms of an underlying 5D manif01d, as is done here, unifies it with the rest of 

space(time), and amounts to a Machian description of the Cosmological constant.] 

Finally, because the cosmological constant in the 5D conformally flat solution 

is $-dependent, i t  is, thereby, possible to make the cosmological constant either 

disappear, by letting $ = 0, or, at least, be very small (since $ is arbitrary). 

This would be necessary in order to model om (current era) universe, where the 

observed cosmological constant is very small (ref. [13]). Thus, in this respect, 

the 5D conformslly flat solution is easier to model to our universe by dowing its 
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cosmologicaI constant become very small. 



Chapter 6 

Conclusions 

In conclusion, we wanted to study solutions of matter &om within the Induced Mat- 

ter Formalism which allowed analysis of inertial and electromagnetic properties. TO 

that end, we have examined six fivedimensional metrics satisfying the 5D vacuum 

field equations, and analyzed their physical properties (both inertial and electro- 

magnetic) &om within the Induced Matter formalism. The solutions found were 811 

complicated, possessing either off-diagonal terms (chapter 4), mixed (nonseparable) 

metric coefficients (chapter 5), or both (chapter 3). The analysis used here, for the 

f is t  time ever, a charged imperfect fluid form to model the solutions (except for 

the cosmological solutions, which were modeled with a de Sitter spacetime). 

In chapter 3, the first T- and +dependent (mixed) solutions were found to 

represent charged particle solutions. These two metrics were found to represent 

spherically-symmetric, static charge distributions, whose charge and matter densi- 

ties approached infinity towards the origin. 

The first metric had a 4D limiting case of the Schwarzchild solution, which unfor- 

tunately would make differences between it and the SchwarzchiId solution difEcdt 
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to examine. The second solution, conversely, did not possess a near-SchwarzchiLd 

form. As such the secon6 metric is more easily testable, while the first metric is 

more physically realizable. 

It was also discovered that the previously analyzed Liu-Wesson solution had 

been misread as radiation. In fact, it was fluid, like the two charge metrics stud- 

ied here; the theorem 'proving' it radiation being inapplicable since that theorem 

was only applicable to diagonal solutions which the Liu-Wesson solution was not. 

The electromagnetic and inertial properties of the Liu-Wesson solution were then 

calculated. 

In chapter 4, two solutions were found to represent axially-symmetric 'wire7 

distributions of matter possessing magnetic fields. The first constituted the most 

general pdependent solution possible, but possessed the unusual ability that it 

could be diagonalized by a 'simple' coordinate transformation. 

The second metric was less general, but, being dependent on p and +, it could 

not be diagonalized by a 'simple' coordinate transformation. 

P hysically, the solutions represented axially-symmetric columns of matter which 

were concentrated along their axes. Unfortunately, due to the arbitrariness in their 

parameters, it was difficult to uniquely analyze these solutions. 

Finally, in chapter 5 conformally flat solutions, representing 4D cosmologies 

were found. Their metric coefficients were mixed combinations of all three main 

variables, t ,  r and $. The first metric was 4D conformally flat in a 5D manifold, 

and, as such, was the most general (fiat) such metric possible. 

Two 5D conformally flat solutions were also found, one of which Loverlapped' 

with the 4 .  conformally fiat solution as a 'special case'. All solutions were found 

to represent the vacum de Sitter space, which might approzimate our universe in 
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this epoch. 



Appendix A 

Derivation of Charged Particle 

Metrics 

We wish to derive solutions which represent static, spherically-symmetric and radially- 

dependent charge solutions which have a possible limiting case in the Schwarzddd 

solution. In order to do this within the Induced Matter Formalism, we require a 

5D metric which possesses an off-diagonal (dtdy5) term, representing an electromag- 

netic vector component Ao, and in which the metric coef6cients depend on T ,  and 

possibly on $. As discussed in chapter 3, we wish to examine such charged met- 

rics that are both r- and +-dependent. [As also discused, we impose 3D spherical 

symmetry by requking Gij (where i, j = 0,1,2,3,5) be invariant under the action 

of SO (4) acting on S3.] We, therefore, write out the general form of such a metric 

as: 

di2 = &dt2 + ijIj,,dr2 + &d02 + &dd2 + 2GsOdtd$ + &5d$2 ( A 4  

where the ljd are the 5D metric coefficients of the Induced Matter Formalism, and 

100 
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are h c t i o n s  of both r and $. 

A. 1 Nonseparable Charged Particle Metrics 

For the metrics used in chapter 3, the assumption of nonseparability of the metric 

coeEcients is made. That is to say, we assume that the metric coefficients (the 

) can not be written as products of factors solely dependent on r and solely 

dependent on +. Separability is often employed for the sake of simplicity, but it 

also has the effect of greatly restricting the resulting solutions. See section A.2 for 

such solutions. 

From eq. 2.8, in section 2.3 of chapter 2, it can be seen that one can equate: 

where the g,@ are the corresponding 4 0  metrics. Additionally, &om eq. 2.8, it can 

be seen that: 

i o o  = goo + &5A; = 900 + eQZAz 

along with: 
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These identifications (par titularly eq. A -5)  suggest a 'natural' set-up for the 

charged metric (eq. A.1) in which the ijoO metric coefficient is split into components 

for goo and eQ2A& For example, using the identifications A.2 to A.7, we get for the 

metric: 

(Indeed, this splitting is used as the basis for finding the general solution to the 

axial-symmetric radial-dependent ('wire') metric in appendix B.) One may then 

proceed by associating exponential factors for each of the metric coefficients (as is 

customary), and then write out the vacuum field equations. 

However, despite this 'natural' splitting of Goo, it is actually, here, preferred to 

split the ijS5 term, while keeping the tjoO term intact. This is written out (dong 

with the other metric coefficient definitions) as: 

where the v, A, a, R and p are all general fnnctions of T and $. 

(A-9) 

(A.10) 

( A X )  

(A. 12) 

(A.13) 

(A. 14) 

The reason for this 'unnatural' splitting of the LS is that it turns out to make 

the field equations (when written out) symmetric in derivatives of T and $, and in 
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terms of A and p (the coefficients of dr2 and d$'), which will be crucial to finding 

the solutions listed in chapter 3. This is not apparent &om just looking at the 

metric, but can be deduced &om a great deal of trial and error (and is actually 

suggested by a similar form used in ref. [43]). 

At fist  glance, it appears that one may have overspecified the number of con- 

stants defmed in eqs. A.9 to A.14. After all, ijS5 is one term, while it is defined in 

terms of two terms, -e' and ezh-? However, the fact that ijS5 is defined in terms 

of two terms is compensated for by the fact that bo (which is two terms) is defined 

as one term. Examining the original form of the metric (eq. AJ) ,  one can see that 

there are five independent variables, Lo, ml, hz7 and Ls (with tj33 j53 522 sin2 0) - 
In the new system of terms, as defined by eqs. A.9 to A.14, there are also five 

variables introduced, v,  A, a, K and p. Thus, the new system possesses the same 

(mdmal) number of variables as the original. 

The metric, then, as written out in this form is: 

The five-dimensional (mixed) Ricci tensors, km, for this metric can then be 

written out (with overprimes denoting partial derivatives w.r.t. T ,  and overstars 

denoting partial derivative w.r.t. $) as: 
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(A. 17) 

with: 
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and with d other (mixed) Ricci tensors zero. 

There are, thus, seven independent nonzero Ricci tensors, @ (eq. A.16), R: 

(eq. A-I?), @ (eq. A.18), fZ: (eq. A.19), @j (eq. A.20), R! (eq. A.21) and @ 
(eq. A.22), and solving the vacuum field equations means solving these seven Ricci 

tensors equated to zero. 

First, we note that we can integrate both eqs. A.20 (& and 8-22  (@) to yield 

the same result. Consider rewriting eqs. A.20 and A.22 as: 

Both equations can be immediately integrated to give similar forms. Eq. 8.27 can 

be integrated to give: 

where f, is a possible function of r, but independent of +. Eq. A.28 can then b e  

integrated to give: 

where f+ is a possible function of q5, but independent of T. Clearly the only way 

these two functions can be true simultaneously is for: 
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where f, is now a constant. The simultaneous solution to making Ricci tensors A.20 

and A.22 vanish, therefore, is: 

The fact that this kind of redundancy occurs in the solution of the field eqnations 

is guaranteed by the Bianchi identities, G: ;b = 0, which ensures that at least one 

of field equations is redundant with the others (ref. [31]). 

The Ricci tensors overall possess a notable symmetry between derivatives in r 

(overprimes) and derivatives in $ (overstars), as well as between X and p. This 

symmetry can be more fully appreciated by combining certain Ricci tensors in 

appropriate combinations. Consider the 'modified' e: 

and next consider the 'modified' R;: 



APPENDIX A- D E W A T I O N  OF CHARGED PARTICLE METRICS 107 

These expressions, eqs. A.33 and A.34, along with Ricci tensor A.17, all possess 
I I 

(a - v ) ~  terms, which can be substituted for by eq. A.32. The results are: 

As noted previously, these expressions (dong with eqs. A.18 and A.21) exhibit a 

high degree of symmetry between derivatives in T and $, and between X and p. In 

fact, eqs. A.36 and A.37 can be combined to yield the highly symmetric form: 

The two main terms in this expression, eq. A.38, 
r 2 II 1 2  

12; + Y  + 4 a + 2 a  -A(2a+;)-;(2a+;)] and 
L J 

[z 7 + 5' +4 1 +2 - i (2 h + ;)- f i  (2 & + ;)I, bear a striking resemblance to 

the main term &om eq. A X ,  
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* [z Y +- YY +4 2 +2 h~ - i (2 d, + ;)- ; (2 6 + ;)I. In fact, these three terms 

may be made identical (to within a set of arbitrary proportionality factors) by 

assuming that the metric coefficients are functions of linear combinations of r and 

+. I f  we define R as: 

where a and b are arbitrary parameters, and then assume that the metric coef- 

ficients, v, A, a, p (and K) aze d fnnctions of R, then the three terrns become 

proportional to each other; 

a2 

[z 
b2 

[Z 
a6 

where R indicates derivatives with respect to R The third term here (eq. A.42) 

must Mnish, by the vanishing of Ricci tensor A.21. Since all three terms are 

proportional to each other, then the first two terms (eqs. A.40 and A.41), and, thus, 

eq. A.38 must also Mnish i f  we assume that the metric coefficients are functions of 

linear combinations of r and ?,6. 

Although it is not necessary to assume the metric coefEcients to be functions of 

linear combinations of T and ?,6, the obvious simplicity presented by assuming this 
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in trying to solve the vacuum field equations is too great to ignore. Therefore, it 

will be assumed that the metric coefficients are functions of R, where R is defined 

as in eq. A.39. Further, since it is desired to find spherically-symmetric solutions 

representing charged extensions of the Schwarzchild case, we will assume that the 

speeific forms of the metrics to be functions of 3, where 7 is defined as: 

where K is an arbitrary constant, which can be identified, in the weak, neutral-field 

limit, as the Schwarzchild mass. We, therefore, assume that the metric coefficients 

are given by: 

with F and R given as previously defined, and with all of the Ks arbitrary factor 

constants (not to be conhsed with the K in the definition of F). The tilde over 

the 6 distinguishes this ii from the a used in the definition of R (R ar + b$). 
From these assumptions, the metric can then be written out as: 



APPENDIX A. DERIVATION OF CHARGED PARTICLE METRICS 110 

The assumed forms of these metric coefficients (eqs. A.44 to A.48) were based on 

creating the most general metric coefficients possible, each with arbitrary constant 

factors (the K's). It is, however, possible to simplify things such that we remove 

a maximum of these constants through coordinate transformations, which do not 

further reduce the generality of the metric. If we transform: 

then we remove all the arbitrary constants except for Kk, and the metric becomes: 

Substituting these mehic definitions into Ricci tensor A.21, with the tensor 

equated to zero, the results are: 
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In order for this equation to wmish for arbitrary values (powers) in R, then both 

terms must separately be zero; 

As noted previously, if this Ricci tensor (eq. 6.21) is satisfied ( i-e. ,  equal to 

zero), then so will the two terms (eqs. A.40 and A.41) of eq. A.38 (and, hence, the 

whole equation, itself) based on the assumed form of the metric. Since eq. A.38 is 

based on a combination of Ricci tensors A.17 and A.19, then it is only necessary 

to satisfy either eq. A.17 or eq. A.19 (since solving one will automatically solve the 

other if eq. A.38 is also solved). In fact, the equality of the two terms of eq. A.38 

can then be used with either eq. AS7 or eq. A.19 to construct another (simpler) 

form. Consider: 

I r I f  I f  f 2  

eq. AS7 - eq. A.40 = eq. A.34 + eq. A.41= je-* 12 P +2 pa + PU + a - ~i] 

Substituting the expressions for the metric coefficients (from eq. A.57) into this 

expression (eq. A.61), and setting it to zero, yields the result: 
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Similarly, substituting the expressions for the metric coefficients into eq. A.35, one 

obtains: 

Adding these two expressions, eqs. A.62 and A.63, then gives: 

In solving this expression, we note that the powers of .F of the two terms may 

either be the same or different. If they are the same (i-e., C = m), then either (a) 

-2+28+n=O,  ( b ) n + m = n + L = 0 , 0 r ( c ) a 2 + b 2 = 0 .  Butonecanseefcom 

eqs. A.63 and A.62 that if cases (a) or (c) are true then, from eqs. A.63 and A.62, efc 
I t 

must be zero. Since (n  - Y )  is proportional to (the square root of) this factor (see 

eq. A.32), then its vanishing would indicate that rc would be equal to v + h+ where 

h+ is an integration term which must be independent of r ,  but which may depend 

on $)- If this is true, then the the metric could be diagonalized by a coordinate 

transformation of the form: t + t - 1 eh*d$. As is discussed in chapter 4, such 

a potential diagonalization does not invalidate the solution, since it merely treats 

the charged field implicitly, within the (5D) gravitational field. However, as was 

aEo discussed in that chapter, for this thesis, it was desired to find solutions which 

do not possess the 'over'simplicity of being diagonizable. Therefore, solutions with 

r; = v + h+ were not looked at. 

If case (b) were true, then one could see, &om eq. A.60, that n, m and L would 

have to be zero. This causes the (Newtonian) gravitational field to vanish (i-e., 
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&o),  and yields trivial results (i-e., resulting in either Minkowski space or spaces 

that are transferable into Minkowski space by simple coordinate transformations). 

Thus, assuming the powers of the two 7 terms to be equal ( i -e . ,  L = m) yields 

trivial (or diagonizable) results, which are not desired. 

If we assume the powers of 3 to be different (i-e., l # m), then the sets of factors 

of the different 3 powers (i. e., [-2+2Z+m+n-!] [n+m] and [-2+2Z+L+n-m] [n+ 

l ] )  must both be zero (since different powers of 3 yield different powers of R, which 

all must be zero simnltaneously). This gives four cases: (i) -2 + 28 + m + n - 1 = 0 

and -2+28+l+n-m = 0, (ii) -2+2ii+m+n-t  = 0 aad n + t  = 0, 

(iii) -2 + 2Z + t + n - m = 0 and n + m = 0, or (iv) n + m = 0 and n + L = 0. 

However, cases (i) and (iv) yield L = m which was already looked at above and 

rejected. Therefore, the only (nontrivial) viable cases are (ii) and (iii), which will 

be labeled cases (1) and (2). That is, case (1) is: 

while case (2) is: 

Combining these results with eq. A.60 then yields, for case (1): 
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and, for case (2): 

From these, one can see that the equation -2 + 26 + 2n  = 0 is common to both 

cases. When combined with eq. A.60, the result is: 

n = = t l + i i = O o r Z  (A.69) 

The existence to two possible values for n (and, hence, ii), yields two possible 

subcases for the two main cases given. For simplicity, these cases will be designated 

as (If) and (2+) for n = +1, and (I-) and (2-) for n = -1. 

If we then input these results into eq. A.63 to round out these calculations, we 

get, for both cases (I+) and (I-): 

and, for cases (2+) and (2-): 

Up to this point, we have not examined eq. A.18, which is the last Ricci tensor 

to be examined from the original set. Substituting the expressions for the metric 

coefficients into this term then gives: 
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For d cases (I+, I-, 2+ and 2-), the result is: 

Finally? returning to eq. A.32, we must now solve this for R and k. Substituting 

the expressions for the metric coefficients into this equation (eq. A.32), we get: 

(A. 74) 

Since it is not permissible to have ef* = 0 (as just previously discussed), then the 

powers of 3 must be the same. Therefore, we can say: 

- 2 k - 2 & + m + l - n = - 2  (A. 75) 

In all four cases (I+, I-, 2+ and 2-), k = 0, and n2a2 = ef* /K:. For cases (I+) 

and (I-), we get: 

while, for cases (2+) and (2-), we get: 

(A. 76) 

(A. 77) 
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At this point, we note that we have not used the "variable sign" E (= kl) 

which normally indicates the sign of the fifth dimension. This is because of the 

definition of the metric coefficients given in eq. A.15. We could have included a 

factor of E in those definitions, but such a factor is just a constant and can easily 

be transformed away via a simple coordinate transformation. Such factors of E 

are merely included for the sake of convenience for those wishing to consider both 

possibilities of timelike and spacelike fifth dimensions. Since it has not been used 

yet, we introduce now the enotation into the expressions for Kk. Also, we will use 

-E to represent f 1 for cases (2+) and (2-) (the reason for this specific designation 

is to minimize the number of negative signs appearing in the metrics of those two 

cases). For cases (I+) and (I-), we get: 

and, for cases (2+) and (2-), we get: 

Substituting d these evaluations of the metric terms back into the metric 

(eq. A.57), we get, for case (I+): 

dr2 dg2 = J q t 2  - - - b 
3 

~ ~ d s r '  + Pc-dtd$ - [l- -&I d?b2 
a 

(A.80) 

while for case (I-) we get: 
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For case (2+), though, we get: 

and for case (2-) we get: 

In both cases (2+) and (2-), there is no d$2 term. Although there is nothing math- 

ematically wrong with this, the physical interpretation, from within the Induced 

Matter formalism, is that of a spherically-symmetric charge with an infinite vector 

potential A. (Ao = ij50/&5 = GS0/0 = 00). In order to create metrics which have 

reasonable physical interpretations, therefore, we will perform coordinate transfor- 

mations on t which create the required d$2 terms. Transform t as: t + t + y5, and 
one gets, for case (2+): 

and for case (2-) one gets: 

Although it appears here that there are four different metrics, it can be seen 

that a transformation of the form R + -R - K can cause metric (I-) to transform 

into metric (I+) and metric (2-) into metric (2+). Therefore, there are only two 

independent met~cs  in this set. 
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Thus, for completeness, the two metrics that are then used in chapter 3, are: 

where: 

F = l + K / R  

with K an arbitrary constant (related to the Schwarzchild mass) and: 

with a and b parameters arbitrary except for a and b obeying the relation: a2 + bz = 

I. Both of these solutions have then been verified on GRTensor II (ref. [I]). 

A.2 Separable Charged Particle Metrics 

In researching charged (off-diagonal in dtdqh) metrics dependent on T and $, a 

nnmber of other solutions were derived prior to  the ones of the previous section. 

These solutions (shown in this section) all possess the property of separability in 

their metric coefficients. That is, the metric coefficients were derived to be products 

of purely r- and purely +-dependent factors. Such approaches are sometimes in 

accord with physical principles (as in quantum mechanics), but usually they are 

done as a matter of simplicity- Unfortunately, in the present case, the condition of 

separability yields 'questionable' results. They are quoted here merely for the sake 

of completeness. 
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In addition to separability, the metrics were assumed to be isotropic; that is, 

the 3-spatial portions of the metric, d t2 ,  d0= and d42, all possessed the same metric 

coefficients. Thus, the metrics were assumed to be of the form: 

where such exponential terms as v(r), v($), etc., are different functions of r and 

$, despite their possessing the same Greek-letter term (see note in section B.2 of 

the next appendix). 

In solving metric A.90, the constraints of separability allow greater ease in 

finding solutions to the field equations. This is because, due to the constraints of 

separability-, terms dependent on r in the field equations must be separate of terms 

dependent on $. In each field equation, snch terms can be separated out and set 

independently to zero. 

However, this also greatly increases the number of equations needed in order to 

satisfy for vacuum, and this greatly constrains the metric coeficients. In general, 

the process makes it difficult to find nontrivial solutions for the metric coefficients. 

The metrics shown in this section are the only three such nontrivial results found 

in the course of this research. These solutions do not have 'reasonable' physical 

interpretations, and, as such, they are mentioned here for the sake of completeness 

only. 

The three metrics found in this context are then: 
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difI = -~,6~('+') [dr2 + r2df12] + 2qbcdtd$ + E ( ( I  + b/~)d@ (A.92) 

where Roman numeral subscripts T, "IF and "III" represent 

(A.93) 

the metric number 

(here), and where caution must be exercised not to confuse the various constants 

amongst the various metrics. The constants of the first metric (eq. A.91) are re- 

quired to satisfy: 

in order to satisfy the vacuum field equations. AU three metrics have also been 

verified on GRTensor 11, ref. [I]. 

The first metric is the most 'physical'; the other two metrics are absent portions 

of their metrics. The second metric is absent a Goo term, which appears to indicate 

a lack of local 'clock'. The third metric is absent a h5 term, which, in the Induced 

Matter theory (where the vector potential wodd be given by: A0 = &o/&s), would 

indicate an i n f i t e  vector potential, Ao. 

However, while the first metric is the most 'physical7, its electromagnetic vector 

potential, A*, is a constant (= -1). This yields a Mnishing electric field (El E 

a,& = 0). This could be interpreted as an infinite, vnifonn charge distribution, 

which yields no net electric field, despite the presence of electromagnetic matter. 

Alternatively, one could note that the first metric can be diagonalized by the 

transformation: 
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for which the metric becomes: 

which represents either an expanding or contracting fluid, depending on the sign 

of a. This metric, too, is subject to the same constraint (eq. A.94) as the former 

version of the metric. 

When one calculates the induced equation of state for either this metric, or the 

original (off-diagonal) metric, one o b t aim: 

for the density and pressure, and: 

for the equation of state. 

As discussed in chapters 2 and 3, such equations of state have been studied 

by other authors, such as Davidson and Owen investigating alternative aspects of 

Kaluza-Klein physics (ref. [33]), Gott and Rees (ref. [34]) and Kolb (ref. [35]) in 

relation to cosmic strings, Ponce de Leon (ref. [36]) investigating certain ("limiting 

configurations") of sources in the Reissner-Nordstrom field and Wesson in relation 

to quantum zero-point fields (see refs. in [8]). They represent "gravitationaless mat- 

ter", because the 4D gravitational mass, which is proportional to 3P + g, vanishes 

in this case (see aLso ref. [8]). 
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However, a closer examination of these expressions of density and pressure along 

with the 5D constraint common to both the diagonal and off-diagonal forms of the 

metric (eq. A.94), clearly shows that both the density and pressure in eqs. A.97 and 

A.98 are zero. The diagonal form of the metric, therefore, represents the limiting 

case in which the matter vanishes. 

The second metric appears somewhat more reasonable insofar as it possesses 

a vector potential which depends on r, & = $=/(a + b / t ) ,  thereby yielding a 

reasonable expression for the electric field: El = [Wc/(a +- b/r)2]r-2. 

Despite this, the metric 8.92 appears to be unacceptable owing to the fact 

that there is no goo t e r n ,  which would seem to exclude the possible definition of 

a local 'clock'. For example, The redshift of a photon as it travels &om a point of 

emission to a point of reception in a (4D) stationary and static spacetime is given 

as (ref. [39]): 

(A. 100) 

where gooemu is the goo value at the point of emission of the photon, and goore,, is 

the value of goo at the point of reception of the photon. 

This derivation (eq. A.100) is based on the constancy of the positions of both the 

emitter and receptors in (ordinary) tspace (so that dr2 = dQ2 = 0). The remaining 

term, the goodt2, then becomes the sole contributing term to the expression for the 

4D metric (the ds2). Since the intend, ds, is taken to represent the passage of 

proper time at a given point in spacetime, then the ratio of d s i t  for the emitter 

and dsTeqt for the receptor yields the ratios of the fkequencies-of a given photon 

passing through those points. And if the spacetime is both stationary and static, 

then one can say that dt,it = thereby yielding the derivation of eq. A. 100 
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(ref. [39]). 

The lack of any goo term in eq. A.92 ( d. e., the lack of any clock) would, therefore, 

appear to deny the possibility of defining a redshift in this manner (putting goo = 0 

into eq. A.100 yields @, ah undefined expression). 

The problem arises because the derivation of eq. A.100 effectively assumes that 

aN the terms of the metric are zero except the gmdt2 term. This is not necessarily 

the case for a 5D metric, for which the constancy of position in the fifth dimension 

is not assured (it is reasonable to still assume the constancy in the positions of the 

emitter and the receptor in ordinary 3-space). In order to consider position in the 

fifth dimension, one must examine the equations of motion for this metric. 

The 5th component of the geodesic equations (3' + f'zbiaib = 0) for the met- 

ric A.92 can be found to be: 

where overdots, again, denote derivatives with respect to dS. Equation A.lO1 can 

then be solved to yield: 

where N is a constant of motion. Integrating eq. A.102 yields an exact solution for 

.61, of the form (with an integration constant): 

41, = [(1 + c) Ni + (1 + c)k#('*) 

for c # - 1. For c = -1, the solution is: 
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$ = e  N Z + ~ O  (A. 104) 

From these, it is dear that one cannot in general set d$ = 0, since that would 

mean forcing B = const. Therefore, the origind objections to the metric A.92, 

assuming the lack of local 'clock' based on the lack of ijoo, are not valid. 

However, it is, nevertheless, preferred that metrics (describing physical recog- 

nizable spacetimes) have a goo term in order that they be made "compatiblen with 

existing metrics to compare predictions. As such, the metric A.92 is considered 

critically deficient in this regard. 

The third metric, eq. A.93, is even more unsalvageable insofar as its physi- 

cal interpretation (within the Induced Matter Formalism) is that of a spherically- 

symmetric fluid possessing an infinite vector potential, A. = w. However, it might 

be possible to salvage this and the previous metric, eq. A.92, by making transfor- 

mations on t and $. 

For example, a transformation of the form: 9 + $ + t wil l  yield a Goo term for 

metric A.92, while a transformation of the form: t -t t + + wiU yield a ijS5 term 

for metric A.92. However, for metric A.93, both the resulting Gs0 and ijS5 would be 

independent of r ,  yielding yet another fluid of infinite but uniform charge. 

For metric A.92, the given transformation will introduce factors of t into the 

metric coefficients, destroying the basic premise of these metrics that they be static 

sp herically-s ymmetric chuged solutions. 

Of course, other, more complicated transformations, yielding more interesting 

results, are possible for all three metrics. But the examination of such transforma- 

tions are beyond the scope of this thesis. 
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Derivation of Magnetized Wire 

Metrics 

In order to derive solutions which describe static, axially-symmetric 'wire' solu- 

tions, possessing an axially-symmetric magnetic field, within the Induced Matter 

Formalism, we require a 5D metric which possesses an off-diagonal (dzd$) term, 

representing an electromagnetic vector component As. Partially for simplicity, and 

partially because we desire that the 4D portion of this metric match up with the 

known 4D axially-symmetric metrics (refs. [39], [37]), the 4D portion of the metric 

will be assumed to be diagonal (like its 4D counterparts). The form of the metric 

is, then; 

cG2 = &&2 + & idp2 + 322 d+2 + &dz2 + 2G35d~d$ + a5 d$2 (B-1) 

In order that the resulting solution be static and axially-symmetric, the metric 

coefficients must be independent of both t and 

resulting solution to represent a 'wire' i n w e  in 

q5 (ref. [39]). If we also desire the 

the r-direction, it is necessary that 



the metric coefficients be independent of I. The metric coefficients, therefore, may 

depend on p, and/or $. Since, again, we desire a correspondence between this metric 

and the 4D case, which possesses an explicit pdependence (g22d42 = -p2d+2), then 

we must have an explicit pdependence here. Therefore, the metric coefficients must 

depend on p and may depend on $. 

We, therefore, derive two solutions, one dependent solely on p, and the other 

dependent on p and +. The f is t  solution is completely general, bnt s u f f a s  fiom 

the fact that it can be 'simply diagonalized' (see section B.1.1), while the second 

solution is less general, but cannot be 'simply diagonalized'. 

B. 1 p-Dependent Magnetized Wire Metric 

For the first solution, we assume a metric of the form: 

Because all the metric coefficients depend solely upon p, the metric coefficient 

eA(p) can, without loss of generality, be absorbed into dp2 by a coordinate transfor- 

mation; 

This puts the metric B.2 in the form: 
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Typically, 4D axially-symmetric (%ren) metrics are written with coefficients in 

fkont of the dp2 terms, but such coefficients are (for purely radially-dependent soh- 

tions) powers of p (ref. [37]). It, therefore, should be simple enough to (re)introduce 

such a factor into the metric by a coordinate transformation (of the form: p -t pa) 

at some later point in the analysis of the metric B.4. 

The 5D Ricci tensors for this metric can then be calculated as: 

.. 
h o = - e "  2 v + m + z @ + u  + v p  

4 I " "  " "I (B-5) 

where overprimes denote differentiation with respect to p, and all terms (a, P,  p, u, 

and K )  are dependent on p. Since there are six field equations, then any collection 
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of six (independent) combinations of the various R'S should constitute an equivalent 

set of field equations. 

Combining eqs. B.7 and B.5 then yields: 

which is the first of our equivalent field equations (and where it is implicitly assumed 
I I 

that a and Y do not vanish). 

Since both ~2~ and &, mast be zero to satisfy the vacuum field equations, then 

eq. B.11 yields: 

which can then be integrated to give: 

where cl is an integration constant. 

Similarly, eqs. B.5, B.8, B.9 and B.10 can be combined to yield: 

which is the second of our equivalent set of field equations. 

Again, since ho, &, $5 and k5 are all zero, then eq. B.14 is also zero; 
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which can also then be integrated to give: 

where cz is another integration constant. 

Our third equivalent field equation can be written directly in terms of 

(B. 17) 

Substituting in the results &om eqs. B.13 and B.16 into eq. B.17 then yields: 

which, of course, is zero since ho mast be zero. Eq. B.18 may then be integrated 

to yield: 

I 

for V, and: 

for v,  where kkl and k2 are integration constants. 
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However, for the moment, we shall leave v unaltered in the remaining field 

equations for the sake of simplicity in working out the rest of the equations. We 

shall only note here the form of u(p) as a function of p. 

Combining ~~5 and & then yields our fourth equivalent field equation: 

which is also zero by virtue of &5 and being zero. 

Substituting in the results of eqs. B.13, B.16 and B.18 into eq. B.21 then yields: 

~ ( p ) ,  a function of p, can be rewritten as a function of v, p(v), with the aid of 

eq. B.18; 

Eq. B.22 can then be written, with the help of eq. B.23, as: 

where: 
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Eq- B.24 can then be rewritten as: 

for which an integrating factor, Il , can be deduced as: 

thereby rendering eq. B -29 as: 

Eq. B.31 can then be integrated to give: 

t A + h ( v )  = c a s t  = ~ l n ( J )  (B.32) 

where J is another integration constant, and Q is a constant defined by: 



Eq. B.32 can then be rearranged to give: 

where E is a constant defined by: 

E -&/A (B.35) 

Returning to the field equations, can can next combine ~ 5 5  and &a to yield: 

which, again, is zero by virtue of R~~ and ko being zero. Eq. B.36 is now the fifth 

equivalent field equation. 
If I I1 f 

From eq. B -34, the expression (W - UP) can be written out as: 

If we introduce a constant cs defined as: 

then, considering eq. B.18 and its first integration (eq. B.13), it's clear that we can 

write: 
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where kz is the integration constant from eq. B -20. With eq. B -16, this yields: 

where ! is another integration constant (fiom integrating eq. B.16). 

Substituting eqs. B.37 and B.40 into eq. B.36 then yields: 

This can then be rewritten as: 

I 

Using a similar procedure as in eq. B.23, K can be rewritten using eq. B.18 as: 

Substituting this into eq. B.42 then yields: 

for which an integrating factor, I2 can be found as: 



where the last step was allowed because Q/Bc3E = 1. Inserting the integrating 

factor B.45 into eq. B.44 then yields: 

where use was made of the fact that + &E52 = -E. 
Bc3 

Eq. B.46 can then be integrated to give: 

where K is an integration constant, and l? is a constant defined by: 

Eq. B.47 can then be rearranged to give: 

where k is a constant defined by: 



so that: K = K/(I - k). 

The sixth and final equivalent field equation can be found by combining R ~ ~ ,  

R~~ and ko into the form: 

which is then also set equal to zero. 

However, when the solutions for K (&om eq. B.49) and p (from eq. B.34) are 

substituted into eq. B.51, the resulting equation is identical to that of eq. B.44. 

This redundancy, is the result of the Bianchi identities, 

which typically ensures that there is one redundancy within the set of field equations 

(ref. [31]). 

The set of equivalent field equations for this metric (B.4) are therefore r e p  

resented by eqs. B.11, B.14, B.17, B.21 and B.36 (with a redundancy coming in 

between eq. B.51 and B.36), whose solutions are then given by eqs. B.13, B.16, 

B.20, B.34 and B.49, respectively. As noted in eq. B.20, the solution for v(p) can 

be given by: 

where the last step was made by eq. B.38. 
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However, this can, without loss of generality be simplified by making a simple 

coordinate transformation on p such that the integration constant L1 is removed. 

This is done through the coordinate transformation: 

so that eq. B.53 becomes: 

With this simplification, the solutions for the various metric coefficients can 

then be written out as: 

where is an integration constant found &om integrating eq. B. 13, eq. B -58 (and, 

subsequently, eq. B.59) comes from integrating eq. B.34, and is its integration 

constant. 

Now, in order to make this metric compatible with 4D metrics (which typically 

have a pfactor in front of the dp2 term; see comment after eq. B.4), we must now 

make a further transformation on p of the form: 
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Additionally, we desire to remove as many of the 'arbitrary' constants &om eqs. B .56 

to B.60 as possible. To do this, we make the further transformations: 

The metric B.2 then takes on the form: 

which is dependent on five variables, cl, CZ, a, k and J ,  and the only constraints 

being provided on c3 horn eq. B .38, cs = i (1 + c l+  c2). and on E (from eqs. B .35, 

B.33, B.25, B.26, B.27, and B.28) as: 

Eq. B.66 is the most general form of the metric B.2 and has been verified to 

satisfy the field equations & = 0 by compnter software (GRTensor I1 on Maple, 

ref. [I]). 
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In order to simplify this metric to make it more readable, we introduce five new 

constants, 7, 6, p, q and A, defined in terms of the previous constants, q, cz, a,  E 

and CJ, by: 

so that the metric B.66 then takes on the form: 

and the two constraints, eqs. B.38 and B.67, become: 

The form of the metric B.73 has also been verified on GRTensor II (ref.[l] ) . 
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Magnetized Wire Met- 

As discussed in chapter 4 and in the previous section, the metric B.73 can be 

diagonalized by a 'simple' coordinate transformation. 

Of course, as was also discussed hi chapter 4, it should be possible for a metric 

of this type to be diagonalized by a general (i.e., 'nonsimple') transformation. In 

refi [38], it is shown that any metric subspace of the form: ds2 = g & ~ ' ) ~  + 
2fi2dz1d~2 + g22(dz2)27 where gll, g12 and 922 are functions of the same sign of 

2' and x 2 ,  can be transformed into the form: ds2 = g [ ( d ~ ' ) ~  + ( d ~ ~ ) ~ ] ,  where 

g is a new function of x' and x2. As discussed in chapter 4, this can then be 

expanded to thee  dimensions, so that: ds2 = gll(dz')2 + 2g12dz1dz2 + g22(d22)2 + 
2g2,dx2dx3 + g33(dx3)2 + 2g31dx3dx' can then diagonalized into the form: ds2 = 

g [ ( d ~ ' ) ~  + ( d ~ ~ ) ~  + ( d ~ ~ ) ~ ] ,  with g now a general function of zl, x2 and z3. If one 

then associates 2' = p, x2 = 2- and x3 = +, one can then see that this could 

correspond to the pz-.dl, subspace of metric B.73. 

However, because the resulting g must then be a general fnnction of p, + and 
r (irrespective of the original forms of gll, glz, g22, 923, g s  and g31), then the 

resulting diagonalized metric could end up being dependent on z. As discussed in 

the previous section, this would not correspond to a 'wire' solution infinite in the 

r-direction. As a result, the most general transformation cannot expect to preserve 

the original premise of the metric. 

However, as was also noted in chapter 4, it turns out that one can diagoaalize 

the metric B .73 'simply', and still have it remain a sole function of p, independent 

of r (and of +). 

By suitable manipulation of terms, it can be shown that the metric B.73 can be 
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put into the form: 

Now, by making the transformation: 

we can then put the metric B.76 into the form: 

Note that in eq. B.78, we have transformed away the constant k, indicating that it 

was an artifact of a gaugetype transformation (reversing eq. B.77). 

We can then rewrite eq. B.78 into the form: 

which can then be reorganized into the form: 

By making another h-ansformation; 
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I+&*&& 

the metric B.80 can again be simplified, this time to: 

which is clearly a diagonal metric dependent solely on p. In other words, the most 

general form of the radially-dependent axially-symmetric metric (C e., eq. B .73) 

can be turned into a diagonal metric (through trdormations B.77 and B.81). 

This, then, completes the proof of the diagonalizability of the radially-dependent 

axially-symmetric metric B -2. 

B.2 p-$-Dependent Magnetized Wire Metric 

As was discussed in chapter 4 and the previous section, there are two possible metric 

forms for an Induced Matter solution representing an axially-symmetric solution 

possessing a magnetic field: one in which the metric depends only on p (previous 

section) and one in which the metric depends on p and 11. It is this solution which 

will be examined here. 

We start by assuming a metric of the form: 

where the functions a, p, P, A, p and v are all general functions of p and $. 

Unfortunately, unlike in the previous section, there is no general method for solving 



for this metric when the metric coefficients are general hc t ions  of p and +. Instead, 

we assume the condition of separability for the metric coefficients; i.e., that the 

metric coefficients can be written as products of purely pdependent terms and 

purely $-dependent terms. This is achieved by writing the metric ezponents as 

sums of pdependent and +-dependent terms. Written out, this is: 

where it must be stressed that the p and +dependent functions of a given exponent- 

type are diferent functions. So, for example, a ( p )  and a($) are different functions 

of p and +- 
By making the transformations: 

the metric can, with loss of generalie, be simplified to: 

The nonzero Ricci tensors for this metric then are: 



APPENDIX B. D E m A T I O N  OF MAGNETIZED WIRE METRICS 143 



with the only other nonzero Ricci tensors, R:, R: and R:, being given in terms 

of combinations of those above. In these Ricci tensors, overprimes denote partial 

derivatives with respect to p, while overstars denote partial derivatives with respect 

to +- Because of the assumed splitting of the metric exponents due to the assump- 

tion of separability (e.g., a ( p ,  +) = a, + a+), it is understood that the overprimed 

terms are pure functions of p, while overstarred terms are pure functions of 11, (and, 

hence, why the p and T+!J subscripts on the bulk of these tenns have been dropped). 

Despite the simplifying nature of the assumed separability of the metric coef- 

ficients, it still appears diflicdt to separate out purely p and $-dependent terms 
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fiom these equations for solving the field equations. Instead, a further simplifying 

assumption is made whereby we assume that the general forms of the metric  coef- 

ficients to  be powers of p and +. So, for example, we say: ea(~*+) = = 

The rationale for this approach is found in the previous section in which the most  

general f o m  for the p-dependent magnetic wire metric  could be simply transformed 

into a (diagonal) soh t ion  in which all metric coefficients were powers of p. Addi- 

tionally, 'wire' solutions &om refs. [37] and (441 show the same power form (espe- 

cially in ref. [44] which describes a neutral p and +dependent wire metric). 

Therefore, we assume a metric of the more specific form: 

If we then make the transformations: 

and introduce new constants: 

(B.102) 

(B. 103) 
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the metric can then be written in the simplified form: 

It would also be possible to transform p such that K then be absorbed into dp2. 

However, like the transformation on $, this will introduce factors of K into the other 

metric coefficients as p appears throughout the metric. Inevitably, this would Ieave 

relative differences between three of either the coefficients of dp2, d-q52, drd+ or the 

secondary portion of dz2 (the portion containing the C in eq. B.104), depending 

on how one transforms p and/or q5. We will leave the metric in the form it has in 

eq. B.104. 

In consideration of the vacuum field equations (given by setting the Ricci ten- 

sors, eqs. B.89 to B.96, to zero), one notes that, in most of the equations, there are 

common groupings of terms which possess differing exponential factors (indeed, this 

is how the Ricci tensors in eqs. B.89 to B.96 were laid out). In order to properly 

combine terms within each of the Ricci tensors, it is then necessary to ensure that 

these relative terms are all p~oportional to each other, possessing the same powers 

of p and $. If each of these terms did not possess the same powers of p and +, 
then each of these terms would have to vanish independently. This would require 

many more restrictions on the metric coefficients and severely reduce the generality 

of the resulting solution. 

In consideration of these terms, it is clear that the factor e 2 " ( " * ~ ) - @ ( p ~ @ ) - p ( ~ )  fig- 

ures quite prominently. A number of the coefficients differ by this relative amount. 

From the form of the metric given in eq. B.104, this term is: Cp(2K-M-B)$(2k-b) - 
In order, then, that these terms possess the same relative form, it is necessary that 



this term become a constant. Therefore, we assume that: 

so that the metric can be written as: 

and where the dz2 term can be more condensely written as: -pB+b [l + C]dzZ. 

The only other terms in the coefficients of the Ricci tensors that must be exam- 

ined are the factors &+) and efi(~). The factor eA(+) appears in fiont of terms which 

possess derivatives with respect to $J ("overstarred" terms), while e ~ @ )  appears in 

fkont of term which possess derivatives with respect to p ("overprimed" terms). 

Since it is desired that all these terms (overstarred and overprimed) be combinable, 

with the same powers of p and +, it is then necessary that these two factors, eA(+) 

and efi(~), cancel out the relatiue differences in powers of p and ?jt. 

In view of the form of the metric already given (eq. %.106), the overprimed 

terms can be seen to all be proportional to p-2 (relative to the overstarred terms). 

Similar1yY the overstarred terms wiU all be proportional to +-2 (relative to the 

overprimed terms). Therefore, if one wishes the overprimed and overstarred terms 

to be combinable (with no relative d8Eerences in their respective powers of p and +), 

then must be given by p2, while eA(+) must he given by $2 - Thus, M = l = 2, 

and the metric can now be written as: 
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Substituting this form of the metric into the expression of the Ricci tensors, 

eqs. B.89 to B.96, set equal to zero (for vacuum solution) one then obtains (after 

dropping al l  common factors of p and $: 

1 
- ( a + n + 2 ) ( B + 2 ) - ( a A + n N ) + ( A + N )  = O  
2 

(B. 114) 

€( I+  C)(A + N - 2+2B)(B -2) = O  (B. 115) 

One possible solution horn this set is to assume (1 + C) = 0, and solve the 

remaining terms. However, this would render Gs = 0, SO that the metric would lose 

its dz2 term. It is not clear what this would mean physically (see discussion at the 

end of the previous appendix, section A.2, regarding similar solutions), therefore, 

we avoid this case. Instead, we solve these equations, simultaneously, for K, C, 5, 

b, A, a, N and n,  and the results are: 
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where f (a, n )  is a b c t i o n  of a and n given by: 

From this, it is seen that the metric depends on two independent variables, a 

and n. 

Finally: in consideration of the axially-symmetric metrics given in refs. [37] and 

[44], it is obvious that the dp2 portions of the metric also possess nonvanishing 

powers of p in the metric coefficient. In order to make this solution 'comparable' 

with these others, it is, therefore, desirable to consider introducing a pterm into 

the metric. This can be done through the transformation: 

which renders the metric B.107 as: 
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where the various tenns are still defined by eqs. B.116 to B.122, since this trans- 

formation does not alter these definitions. For L = 1, this metric goes back to 

its previous form, eq. B.107. And the metric can now be seen to depend on three 

independent variables, a, n and L. 

Both forms of the metric, eqs. B.107 and B.124, have been verified on GRTen- 

sor 11 for the constants as defined in eqs. B.116 to B.122 (ref. [I]). 



Appendix C 

Derivation of Conformally Flat 

Metrics 

As discussed in chapter 5, 4D cosmological solutions can be embedded in 5D flat 

(vacuum) solutions (refs. [12], [23], [41], [MI). Also in ref. [40], especially, it has 

been shown that the standard 4D cosmological (FRW) solutions can be written in 

terms of confomaZly flat metrics (in 4D). As such, we desire to extend such 4D 

conformally flat mehics to 5D to describe potential cosmological solutions. 

However, because our manifolds here are in 50, then there exists an ambiguity 

as to whether such extensions should be represented as 4 0  or 5D conformally 

flat metrics (where the 4 0  conformally flat metric would be embedded in a 5D 

manifold). For the purposes of this analysis, then, we investigate both; the first 

metric will be 5D conformally flat, while the second will be 4D conformally fiat 

embedded in a 5D manifold. 
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C.l 5D Conformally Flat Metrics 

In ref. [39], calculations are performed for general conformally related solutions. A 

given metric, g,, which is conformally related to another metric, &, satisfies, by 

definition; 

where eC is said to be the conformal factor. The second h e  is the relation for the 

corresponding inverse metric. [Note: The conformal factor, 6, is writ ten with a 

tilde in order to distinguish it fiom the @ in eQ2, the 5-5 element of the Induced 

Matter metric.] 

In ref. [39], the relation between the Ecci tensors for these two metrics is then 

calculated to be, in general not ation; 

where R, is the Ricei tensor of g,, R; is the Ricci tensor of gL and A; is 

another tensor given by: 

with 6t being the Kronecker delta (= 1 for a = P; 0 otherwise). 

If the second metric, gL is flat (i.e., so that a l l  its Riemann and Ricci tensors 

vanish), such as a Minkowski metric, then R; in eq. C.2 must Mnish. The corre- 

sponding Ricci tensors, Ricci scalars and Einstein tensors can then be calculated. 
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In ref. [39], these calculations are then done for a 4D manifold. In what follows 

here, the calculations are done for a 50 manifold. In principle, there are differences 

in these calculations, resulting, notably, fiom 6:, which is 4 for a 4D manifold, but 

5 for a 5D manifold. 

(Actually, it turns out, in this case, that the 4D and 5D calculations are the 

same, but only because we are concerned with vacuum solutions; if they were not 

vacuum, then they wouldn't be the same.) 

We take &, = iw7 where il, is the 5D Minkowski metric (= dt2 - dr2 - r2dQ2 + 
~ d J 1 ~ ) ,  and 6," = 5. Calculation of the various components of eq. C.2 (for 5 0 )  then 

gives: 

From these calculations, the expression for the conformdy transformed Ricci 

tensor becomes: 

To then satisfy the vacuum field equations of the Induced Matter Theory, the 

Ricci tensor must vanish. To assist with the calculations, we calculate the Ricci 

scalar: 
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The imposition of vacuum also requires that R Mnish. From eq. C.9 this can be 

seen to yield: 

Substituting this result into the expression for the Ricd tensor, eq. C.8, then yields: 

For m # n, this yields: 

At this point, it is assumed that 6 is a function of the three main coordinates, - 
t ,  r and $ (but not on B and 4). As a result, r':, = 0 for m # n, so that eq. C.12 

becomes: 

Since depends only on t ,  r and $, eq. C.13 can be explicitly written out as: 

(C. 15) 
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where overprimes are partial derivatives with respect to r ,  overstars are partial 

derivatives with respect to $, and over circles are partial derivatives with respect 

to t- 

For m = n in eq. C.11, one then obtains: 

The only nonzero Christoffel terms, f kn, for m = n turn out to be: 

Thus, writing eq. C.17 out explicitly yields: 

The last equation is redundant with the one prior to it since eq. C.23=eq. C.22 x sin2 8. 

Writing out eq. C.22 (or eq. (2.23) then yields: 
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I - 

Substituting this into eq. C.20 then yields: 

This equation can then be integrated to explicitly reveal the T-dependence of 8;  

where w ( t ,  $), u(t, $) and v (t: $) are general functions of t and $, but independent 

of T .  Substituting solution C.26 into eq. C.14 then yields, for the form of w(t,$); 

where K(+) and k($) are (presumed) arbitrary functions of q5, but independent of 

t and r. 

Similarly, one can substitute eq. C.26 into eq. C.15 to get: 

where K(t)  and k(t) are new arbitrary fimctions of t ,  but independent of and r. 

But since this is also an expression of w(t ,$) ,  then equating eqs. C.27 and C.28 

requires K and k to be constants, independent of t and $ j and + ) . Thus; 
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and: 

As the other terms (other than the K) on the right-hand side of this equation are 

logarithmic functions, then the K can be absorbed into them (into h for example). 

Thus, we have: 

Substituting eqs. C.31 and C.24 into eqs. C.19, C.21 and (3.16 then yields: 

In eq. C.24, we have, on the right-hand side, the collection of terms: ijd8,=sqb. 
This can be expanded as: 

Substituting this expression, and eq. C.31, into eq. C.24, then yields the constraint: 
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Eqs. C.32, C.33, C.34 and C.36, therefore, constitute the total set of constraints 

on ut+ and vt+ They are, in fact, a set of reduced field equations, with the r- 

dependencies removed. 

As noted in chapter 5, the simplest solution is to set vt+ = 1, h = I*, and 

solve ut+ to be i (tz + ell'). The resulting metric becomes: 

Alternatively, as also noted in chapter 5: one could set vt+ = 0 and let k + 
so that kvt+ = I, and solve ut+ to be (t + q6). This gives a metric of: 

Both solutions C.37 and C.38 have been verified on GRTensor II (ref. [I]). These, 

then, are the two 5D conformally flat metrics used in chapter 5 representing cos- 

mological solutions. The firs t solution is the main 5D solution of interest, while the 

secoud solution overlaps with the 4D conformally flat solutions. 

C.1.1 Riemann Flatness of (5D) Conformally Flat Metrics 

As also noted in chapter 5 (and in the previous section), previously studied cosmo- 

logical solutions have been Ricci and Ftiernann flat (refs. [ E l ,  [23], [MI, [42]). It 
can be verified (also on GRTensor II) that the solutions C.37 and C.38 are both 

Riemann flat, but it is not clear whether all such possible solutions to eqs. C.31, 

C.32, C.33, C.34 and C.36 are necessarily flat. 

In fact, it turns out that they are. Indeed, this turns out to be a property of so- 

lutions which are both vacuum and conformally flat (irrespective the dimensionality 



of the manifold). 

In order to show the general flatness of any conformally flat metric which satis- 

fies the vacuum field equations, it is first necessary to assume a general metric form, 

which includes all spatial coordinates. So, instead of assuming that the conformal 

factor depends on just r (and not on d and #) in spherical polar coordinates, we in- 

stead assume that it depends on x, y and z in Cartesian coordinates. Additionally, 

the conformal factor will also depend on t. [Note: For simplicity we shall do this in 

4 0  (not 5D), though the results can be generalized to any number of dimensions by 

simply extending the dimensionality of the (Minkowskian) metric and the number 

of (spacelike) coordinates on which the conformal factor can depend.] 

We begin, then, with a general (4D) conformally %at metric of the fom: 

The nonzero Riemann tensors for this metric can then be calculated using, in this 

case, GRTensor II. [Note: For maximal simplicity, the Riemann and Ricu tensors 

are shown as to what they are proportional to (using U ~ " s ) ,  not what they are 

exactly equal to. As will be seen, this does not affect the generality of the results.] 

The Riemaan tensors are: 



where, in standard relativistic notation, commas denote partial derivatives (C,= 

BCldx,  etc.) . 

The nonzero Ricci tensors for this metric can then also be written out as: 
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In comparison of the Ricci's and Riemann's for this system, one finds: 

(and similarly for the rest of the Riemann's). 

Thus, if Ra0 = 0 (as for a vacuum), then so do all the = 0- AS noted 

previously, though this was derived for a 4D system, it can be generalized to any 

number of dimensions by simply extending the number of (spacelike) dimensions 

of the metric in the conformal factor, C. Thus, a conformally flat metric which 

satisfies the vacuum field equations will always yield a Riemann-flat solution. 

C.2 4D Conformally Flat Metric (Embedded in 

a 5D Manifold) 

As was discussed in chapter 5 and in the previous section, finding an extension for 

4D conformdy flat solutions allows two possibilities when going to five dimensions: 

one in which the metric is 5D conformally flat (as the solutions f o ~ d  in the previous 

section were), and another in which the metric is 4D conformdy flat embedded in 
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a 5D manifold. In this section, we examine 4D conformally flat solutions embedded 

in a 5D manifold. 

We f i s t  conceive a 5D metric which of the form: 

where U ( t ,  r, $) and V(t, T, +) are general functions of t, r and +, and dq2 is the 

4D Minkowski metric (= dt2 - dr2 - r 2 d W ) .  AS can be seen, the 4D part of this 

metric is conformally flat, while the 5-5 portion of the metric possesses a different 

factor. 

From this metric, the nonzero 5D Ricci tensors can be calculated as: 
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where, again, overprimes denote partial derivatives with respect to T ,  overstars de- 

note partial derivatives with respect to +, and overcircles denote partial derivatives 

with respect to t .  The only other nonzero Ricci tensor is & which can be given 

in terms of he as: & = bg sin2 6 .  

Equating these Ricci tensors to zero then allows eqs. (2.70 and C.71 to be kte- 

grated immediately, which gives: 

where Q is an integration LLconstantn, independent of r or t ,  but possibly dependent 

on $J- 

Unfortunately, there does not appear to be much more one can do with the 

equations at this point; no more obvious solutions exist, and substituting this ex- 

pression for U into the rest of the field equations does not yield readily solvable 

results (it merely replaces equations in U and V with equations in c and V). 

Instead, we note that, as discussed in chapter 5 and in the preceding section 

of this appendix, Riemann flatness is a characteristic feature of 4D cosmological 
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solutions embedded in 5D. As a result, we might wish to examine Riernann tensors 

with an eye io making them vanish. Specifically, we examine one Ftiemann tensor 

in particular; 

If this is presumed to vanish, then one can immediately integrate it like eqs. C.70 

and (3.71. However, it should be stressed that there is no necessary reason to 

assume that this, or any other Ftiemann tensor vanishes, save for the argument 

outlined above. It merely aEords a mathematical convenience which allows further 

calculation of (possibly) cosmological-type solutions , and is reasonable in light that 

we seek cosmological solutions. [Note: N o  other Riemann tensors are assumed to 

vanish; only this one. Interestingly, however, the resulting solution does turn out 

to be Riemann flat, so all Riernann tensors do end up vanishing.] 

The integration of eq. C.73 then yields either: 

or: 

t u= eu/2+~e (C-75) 

where ct+ and c+ are new integration "constantsn, independent on r and t ,  re- 

spectively (but possibly dependent on t and +, and r and $, respectively). Care 

must be taken, however, not  to  confuse and with q, nor  with each other as 

they are all different, as  indicated by their subscripts. 

Integrating eqs. C.74 and C.75, one then obtains: 
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where at+, aT$, bt+ and b+ are n e w  functions, each di f ferent  &om each other, 

resulting fiom the integrations of ecc* dt and ecr* dt,  respectively. a ~ ,  a 4 ,  and 

be depend on, respectively, t and +, r and +, t and +, and r and $. 

In order that these two expressions match, we require: UW, = bt+ and a+ = b+, 

which then yields: 

Substituting this expression into eq. (3.72 then yields: 

where q is a new function, dependent on $, equal to -2e-=*, and not to be 

confizsed with the other a's. 

Thus, one can write: 

However, the factor eV appears as the metric coefficient to dqh2, and a+ depends 

solely on qh. Therefore one can transform this factor in the metric as: 

,&d+ -t d?l 

so that the ef fec t  5-5 component of the metric becomes: 



Thus, we can more concisely write: 

where At* is a new fimction defined by: 

When one considers eq. C.69 in the light of the assumed Mnishing of eq. C.73, 

one can then say: 

Surprisingly, this (portion of eq. C.69) is automatically satisfied £corn the expressions 

for U and V as given by eqs. C.82 C.83. This kind of 'redundancy' in the field 

equations is very similar to the kind which the Bianchi identities impose (ref. [31]), 

and suggests that requiring R~~~~ = 0 is quite reasonable in this context. 

If one sets eq. C.66=eq. C.67(= O), one can write: 

or: 
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Substituting the expressions for U and V (and At4) into this expression then yields: 

I1 I 

If we introduce a new function B+ =A - A / r ,  which must be a function of 

r and 11 only (which can deduced from noting that the function At* is a sum of 

two parts, at+ + a*, and when taking the derivative of At,+ w.r. t r ,  only a* will 

remain), we can then rewrite this expression as: 

which can then integrated to give: 

where Ch is an arbitrary constant in $, but a possible function o f t  and r. Exam- 

ining the (cube-root) of this expression; 

we find the right-hand side (of eq. C.91) to be independent of t .  It is necessary, 

therefore, that the left-hand side be likewise independent of t .  This yields three 

possibilities: Either (i) the t-dependence of Cb cancels out with the t-dependence 



APPENDIX C- DERIVATION OF CONFORMALLY FLAT M E T R E S  168 

of At4, (ii) there is n o  t-dependence in At,.+ and Ct,, or (iii) At,+ and/or Ct, are 

zero, along with Br+. 

For case (i), since one can write: Ct, = B $ / A ~ ,  and since Ct, is independent 

of $, while Atd and B4 have potential dependencies on +, then, assuming that 

Atr+ and B,+ have nonvanishing dependencies o n  4, it is necessary that the +- 
dependencies of At* and BM be factorable, and that Ctr cancel out with the 

remaining (tr-dependent) portions of At+. 

( I f  At* has no dependency on $, then, by eqs. C.82 and C.83, neither would 
* I 

eu or eV; U=V= 0. This, however, would cause Gs5 = 0, yielding infinites in the 

inverse metric.) 

Writing out the a terms (at+ and a,+) of At,.+ with the $-portions factorable 

gives: 

where the b's are new functions, dependent on, respectively, t ,  4(r, r,  and y5 (and 

where care must; again, be taken n o t  to confuse these b's with the b terms previously 

defined in this section). 

This then gives, for At+; 

A* = b+(bt + b,) 

with the expression for Ch being given by: 
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However, the expression for At4, eq. C.93, then yields, for eV; 

which is a sole h c t i o n  of $. But because eV is the coefficient of d+2, this +- 
dependent expression can be absorbed into d-7,b2 by a coordinate transformation on 

0 '  

$J. One would then have eV = *I, and v=v=~= 0, which would severely restrict 

the generality of the desired solution. 

For case (ii), if Ate has no dependency on t, then, by eqs. C.82 and C.83: 
0 0 

neither would eu or eV; U=V= 0. This, however, would, again, not be the f d y  t ,  

r and $ dependent metric desired. 

Findy, in case (iii), we would assume B* = 0, and one of At4 or C, also 

be zero. Since At* = 0 would cause the metric totaNy to vanish, we assume that 

Ch = 0. Letting B* vanish; 

then allows immediate solution for At,.+, which can then be written as: 

where -ad, is an arbitrary funetion of $ (taken to be negative for reasons of con- 

venience which will become clear later). 

If we equate eq. C.65=eq. C.67(= 0), we then get: 
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into this then yields: 

If one then equates eq. C.65=eq. C.68(= 0), we get: 

where use was made of the fact that cf= 2 (which can be deduced fkom the 

form of U and V given in eqs. C.82 and C.83). 

again substituting the expressions for U and V, eqs. C.82 and C.83 (and 

C.84), into eq. C.lOO, we get: 

where use was made of the fact that Be EA - A / r  = 0. 
It I 

By similar ar-wents as those in the vanisking of B4 =A - A /T discussed 
00 

above, it can be seen, fkom eq. C.99, that A + A / r  should also Mnish. Therefore; 

If t 

where the last step was made by B~ =A - A / r  = 0 .  

Integrating At+ fkom eq. C.102 (paying particular attention to the form At,.+ 

has been derived so far to have), then 
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where a+, & and 7+ are arbitrary functions of $ (and where it can, now, be seen 

why the factor of T~ was chosen to be negative; so that the factor of tZ would be 

positive). 

Using this expression for At,.+ in eq. C.101 then yields, after much cancellation; 

p ;  - q a 7 + ~ r ) = ~  

which can then be integrated to give: 

where kl is an arbitrary integration constant. 

Finally? it becomes necessary to consider the last Ricci tensor equation, eq. C.68; 

where use was made of the fact that fif= 2 f (see previous note) so that the 

+-derivative terms in eq. C.68 can be rendered: 

Upon substituting the most recent expression for Ah+ (eq. C.103) into eq. C.107, 

one finds, after much algebra; 
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[(-32a7 + 16b2 + 16/r) a +(-16ap) +(32a2) ?] (t' - r2) 
+ l(32~7) +(-64q + 161~) +(32@) ?] (t) (C.108) 

Since each of these [square-bracketed] factors are independent o f t  or T ,  then they 

must each vanish independently; 

Each of these expressions can be integrated to then give: 

where b, k3 and k4 are arbitrary integration constants. 

These three equations, eqs. C.112, C.113 and C.114, dong with eq. C.105, con- 

strain the quantities q,, & and 7+ sufficiently that the metric C.64 will satisfy the 

vacuum field equations. 

If one assumes that neither a+ nor 7+ are zero, then eqs. C.112 and C.114 can 

be rewritten as: 
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This is reasonable since, if either a+ or 74 were zero, then, by eq. C.105, & would 

have to be a constant, which would remove all the $-dependence of the metric (and 

make ij5 = 0). 

Substituting eq. C.105 into these two relations, eqs. C.115 and C.116, one ob- 

Clearly, one might infer from both of these equations that both a+ and 7+ were 

constant, since the other terms in each equation are constant. However, recalling 

that both k2 and 4 are completely arbitrary, they can both be set to zero. The 

remainder of eqs. C.117 and C.118 then yield: 

This renders eq. C.105 as: 

wluch equals 1 for E = -1. 
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One can then see, by multiplying the constraint C.120 by 8P and comparing it 

with eq. C.113 (the final equation) that, in order for it be satisfied, that 4 must 

equal 8. 

Therefore, the metric C.64 with A defined by eq. C.103 and & and y+ 

constrained by eq. (3.105 then constitutes the solution for the 4D conformally flat 

metric. It has been verified by GRTensor 11 (ref. [I]), which also verified that the 

solution (as general as it is) is Riema.nn flat, independent of the choices of a+, 

& and r+. As such it is the most general 4D conformdy flat solution (in a 5D 

manif01d) which is also Riemann flat (actually, with only the Riernann tensor kzzo 
being explicitly assumed to be zero). 



Appendix D 

Computer Subroutine: Maxwell's 

Equations 

Shown in this appendix is a computer algorithm which can be used to calculate 

Maxwell's Equations (FGY = J p )  for this thesis. In is used with GRTensor I1 in 

Maple: 

>with(linalg) :readlib(grii) :@ensor() : 

>grload(metric, 'metric address ') : 

>qC11 :=r;q[21 :=theta;q[3] :=phi;q[4] :=t;qC5] :=psi; 

>for il from 1 to 4 do for jl from I to 4 do 

g4 [ii . j 11 :=simplify (grcomponent (metric, [il , j 11 ) 
-grcomponent (metric, Cil ,5] ) *grcomponent (metric, C5, j 11 ) 

/grcomponent (metric, [5,5] )) 

od od; 

>g4D:=~1-ay(C@C1,1] .g4D,21 .g4[1,31 ,g4OJ41l. 
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od od od; 

> fo r  i 3  from 1 t o  4 do 

A Ci31 :=simplify (grcomponent (metric,  C5, i3] ) /grcomponent (metric, [5,5] ) ) 

od; 

Phi : =(grcomponent ( m e t r i c  [5,5] ) /epsi lon) (1/2) ; 

> f o r  i 4  from 1 t o  4 do f o r  j4 from 1 t o  4 do 

F[i4. j41 :=simplify(diff (A[j4] ,q[i4])-diff (A[i4] ,q[j4])) 

od od; 

> f o r  i 5  from 1 t o  4 do f o r  j5 fromj 1 t o  4 do f o r  k5 from 1 t o  4 do 

termCk5, j5, i5]  :=h4D[i5, j5] *(diff (F[k5, j51 ,q[i5]) 

-surn('Ch[k5,i5,m5]*~~5, j51' ,m5=i. -4)  

-sum('Ch[j5,i5,n5]*F[k5,n5] ' ,n5=1. -4)) 

od od  od; 

> f o r  i6 from 1 t o  4 do 

J [is] : =simplify(sum( ' temCi6, ~ 6 , 9 6 1 '  , s6=l. -4) ) 

od; 
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