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Abstract

Medical imaging plays a vital role in the medical field because it is widely

used in diseases diagnosis and treatment of patients. There are different

modalities of medical imaging such as ultrasounds, x-rays, Computed Tomog-

raphy (CT), Magnetic Resonance (MR), and Positron Emission Tomography

(PET). Most of these modalities usually suffer from noise and other sampling

artifacts. The diagnosis process in these modalities depends mainly on the

interpretation of the radiologists. Consequently, the diagnosis is subjective

as it is based on the radiologist experience.

Medical image segmentation is an important process in the field of image

processing. It has a significant role in many applications such as diagno-

sis, therapy planning, and advanced surgeries. There are many segmenta-

tion techniques to be applied on medical images. However, most of these

techniques are still depending on the experts, especially for initializing the

segmentation process. The artifacts of images can affect the segmentation

output.

In this thesis, we propose a new approach for automatic prostate seg-

mentation of Trans-Rectal UltraSound (TRUS) images by dealing with the

speckle not as noise but as informative signals. The new approach is an

automation of the conventional region growing technique. The proposed

approach overcomes the requirement of manually selecting a seed point for
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initializing the segmentation process. In addition, the proposed approach

depends on unique features such as the intensity and the spatial Euclidean

distance to overcome the effect of the speckle noise of the images. The exper-

imental results of the proposed approach show that it is fast and accurate.

Moreover, it performs well on the ultrasound images, which has the common

problem of the speckle noise.
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Chapter 1

INTRODUCTION

Medical images are the key assets which provide means for health care pro-

fessionals to evaluate patients for diagnosis and treatment. Hence, the vision

that drives the medical imaging analysis and processing is an important factor

in improving the patient health. Studying medical images depends mainly on

the visual interpretation of the radiologists. However, this consumes time,

besides, it is usually subjective as it varies according to the experience of

the radiologists. Due to the aforesaid considerations, using computer-aided

image analysis techniques becomes a necessity, in order to facilitate analyz-

ing and processing different medical image modalities. All image techniques

can be grouped under a general framework-Image Engineering (IE), which

consists of three layers: image processing (low layer), image analysis (mid-

dle layer), and image understanding (high layer), as shown in Fig. 1.1. In

recent years, image engineering has formed a new discipline and made great
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progress. Image segmentation is the first step and also one of the most criti-

cal tasks of image analysis, which has the objective of extracting information

(represented by data) from an image via image segmentation, object repre-

sentation, and feature measurement as shown in Fig. 1.1. It is evident that

the results of segmentation will have considerable influence over the accuracy

of feature measurement [1].

Computerized medical image segmentation plays an important rule in

medical imaging applications. It is widely used in different applications such

as diagnosis, localization of pathology, study of anatomical structure, treat-

ment planning, and computer-integrated surgery. However, medical image

segmentation remains a hard problem due to the variability and the com-

plexity of the anatomical structures in the human body. Besides, there is a

wide variety of medical imaging modalities. Most of these modalities suffer

from the presence of noise and sampling artifacts. These problems can signif-

icantly affect the results of the segmentation. There are different techniques

used for medical image segmentation, each of which has its advantages, and

disadvantages, as it will be discussed in chapter 3. In the sense of comput-

erized segmentation techniques, it should be expected that these techniques

are automatically performed. However, it is not exactly the case because

most of them still need at least some sort of manual interaction.
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Figure 1.1: Image engineering and image segmentation [1]
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1.1 Research Motivations

A good segmentation technique should give accurate results in a reasonable

time. Accurate results mean that the segmented regions should be uniform

and homogeneous with respect to a certain criteria, such as the intensity.

Additionally, these regions must be without many small holes. Finally, ad-

jacent regions should have different values of the chosen criteria. Another

important requirement for good segmentation is to be independent on manual

intervention.

A good ultrasound image segmentation technique should make use of

all prior knowledge such as image features (e.g., intensity) and shape. All

methods that proved to be successful are based either implicitly or explicitly

on this concept.

Our motivation is to achieve the aforementioned requirements for a good

image segmentation, in general, and for a good ultrasound image segmen-

tation, in particular, by applying region growing segmentation technique on

ultrasound imaging modality. The proposed segmentation technique is based

on some priors to make it more robust.

Many incentives are contributed to the choice of using ultrasound imag-

ing. First, it is a safe means of imaging the human body because it emits

no ionizing radiation, and it uses low-power sound waves. Hence, no known

long term side effects. Second, it is a quick modality since it can be made

in a few minutes. Two other strengths of ultrasound imaging are its rel-
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atively low cost and portability. Unfortunately, there are some problems

associated with using ultrasound images. The most common problem is the

speckle noise, which significantly affects the quality of the segmentation out-

put either manual or computer-aided segmentation. Two other problems are

the low contrast and week boundaries. These drawbacks limit working with

this modality in image processing in general, and in image segmentation in

particular.

In this thesis, we are interested in prostate segmentation in ultrasound

images. Prostate segmentation is an essential process because it detects the

prostate volumes and boundaries, which both play an important rule in the

diagnosis of prostate diseases and treatment. Moreover, in case of prostate

cancer, prostate volumes and boundaries are so important in follow up of the

cancer, which may help in reducing death rate.

There are many techniques used for prostate segmentation in ultrasound

images. The classical techniques do not depend on shape modeling and

knowledge of ultrasound images, while recent techniques focus on the incor-

poration of prior knowledge about shape and speckle [2].

1.2 Objectives

The main objective of this thesis is to design an automated segmentation

technique that can meet the requirements of the segmentation process with-

out manual interaction. Additionally, the proposed technique should per-
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form well on ultrasound images without needing any preprocessing steps to

overcome the speckle noise and the other known artifacts of images. The

proposed technique benefits from this speckle noise to achieve automation of

the proposed segmentation technique. The proposed technique can be used

for routine clinical practice as it is automated, accurate, robust, fast, and

simple.

1.3 Thesis Outline

In chapter 2, ultrasound medical imaging basics are discussed. A brief idea

about the mechanism of ultrasound imaging and its different modes is given.

Also, the advantages and disadvantages of ultrasound imaging are explored.

In chapter 3, a survey of the current medical image segmentation techniques is

introduced. Chapter 4 presents Fuzzy C-Means (FCM) segmentation tech-

nique, which is an automated segmentation technique. FCM is used as a

benchmark for evaluating the proposed technique. Chapter 5 introduces the

proposed automated modified region growing segmentation technique, where

the results for applying the proposed technique to a set of ultrasound im-

ages are introduced. Chapter 6 presents the experimental results of three

techniques: FCM, the automated conventional region growing, and the au-

tomated modified region growing. The accuracies of the three techniques

are compared to evaluate the performance of the proposed technique. Fi-

nally, the thesis is concluded in chapter 7, summarizing the strengths of the
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proposed technique, and outlining our future work to extend the proposed

technique.
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Chapter 2

ULTRASOUND IMAGING

This chapter tackles the ultrasound imaging modality and explains its mech-

anism. The different modes of ultrasound are briefly represented. The ad-

vantages and disadvantages of this modality are also investigated.

2.1 Ultrasound Preliminaries

Today, the role of medical imaging is not limited to simple visualization and

inspection of anatomic structures, but it goes beyond that to patient diagno-

sis, advanced surgical planning and simulation, radiotherapy planning, etc.

Various medical imaging modalities such as ultrasound, X-ray, Computer To-

mography (CT), and Magnetic Resonance Imaging (MRI) are widely used

in routine clinical practice. Ultrasound is one of the most common medical

image modalities, and it is used in nearly all hospitals and clinics. Its distinc-
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Figure 2.1: Ultrasound machine [3]
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tive feature is that it uses high frequency ultrasound to construct an image

rather than the traditional x-ray. It is an imaging technique in which deep

structures of the body are visualized by recording the reflections (echoes) of

ultrasonic waves directed into the tissues. There are three steps to create

an ultrasound image. First, producing a sound wave, then, receiving echoes,

and finally, interpreting those echoes. The ultrasonic waves are produced

by electrically stimulating a piezoelectric crystal called a transducer. As the

beam strikes an interface or boundary between tissues of varying acoustic

impedance (e.g., muscle and blood) some of the sound waves are reflected

back to the transducer as echoes. The echoes are then converted into elec-

trical pulses that travel to the ultrasonic scanner, where they are processed

and transformed into a digital image displayed on the monitor, presenting

a picture of the tissues under examination. However, the interference of

those echoes, having different phases, add together to give a resultant wave

whose amplitude and phase varies randomly resulting in the speckle, which

is common in ultrasound images. It should be noted that the speckle is more

dependent on the measuring system than on the tissue itself. The speckle is

detrimental because it reduces both image contrast (the ability to see the de-

sired object against the background) and the distinction of subtle gradations

and boundaries in the tissue structure. A conventional ultrasound imaging

device is shown in Fig. 2.1. Frequencies in the range of 2 to 18 MHz are used

in diagnostic ultrasonography. The choice of frequency is a trade-off between

spatial resolution of the image and imaging depth. The lower frequencies
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provide a greater depth of penetration but produce less resolution, while the

upper range provide less penetration with high resolution. Ultrasound im-

ages are highly detailed and geometrically correct to the first order [4]. There

are two basic equations used in ultrasonic imaging [5]. The first equation is

d = 1
2
tc

where

d : the one way distance of an object that cause the echo

t : time delay

c: the speed of sound in tissue (between 1450 and 1520 m/s)

The second equation is

s(t) = T (t)⊗B(t)⊗ A(t)⊗ η(t)

where

S(t): received signal strength

T(t): transmitted signal

B(t): transducer properties

A(t): attenuation of signal path to and from the scatterer

η(t): strength of the scatterer

2.2 Ultrasound Modes

Ultrasound modes include A-mode, B-mode, M-mode, and doppler mode.
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A-mode is the simplest type of ultrasound, in which a transducer is used

to scan a line through the body. The returned echoes are plotted on an

oscilloscope as a function of depth.

In B-mode, a linear array of transducers is used to simultaneously scan a

plane through the body, and the strength of the returned echoes is displayed

as bright spots in their geometrically correct direction and distance. It is

displayed as a 2D image.

In M-mode, a rapid images sequence of B-mode scans are displayed on

screen to enable doctors to see and measure the range of motion of an organ,

whose boundaries produce motion reflections relative to a fixed probe.

Doppler mode is based on the doppler effect. It can be defined as the

change in frequency and wavelength of a wave for an object moving relative

to the source of the waves [3].

Ultrasound imaging has a lot of strengths that can make it ideal in nu-

merous situations rather than the other modalities. First, ultrasound has

a non-radioactive nature, hence, it has no cumulative biological side effects.

This feature makes it a non-invasive safe means of creating cross sectional im-

ages of the human body. Second, it is a quick modality, since it can be made

in a few seconds. Third, it is often small and easily moved as it can be done

while standing next to the bed of the patient. This is useful especially when

the patient is in intensive care unit, thus, avoiding the danger caused while

moving him to the radiology department. Finally, it is relatively inexpen-

sive compared to other modalities. From all the aforementioned advantages,
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we can conclude that if there is a diagnostic question to be resolved by any

of the medical imaging modalities, ultrasound should be one of the selected

choices as it offers the best price-to-performance ratio. Ultrasound is ex-

tensively used for obstetric/gynecologic, cardiac, vascular, prostate, breast,

and general abdominal imaging. On the other hand, there are characteristic

artifacts which make the segmentation process tough such as the inherent

presence of speckle noise, attenuation, shadows, and signal dropout due to

the orientation dependence of the acquisition which can cause missing bound-

aries. These artifacts can have negative effects on image interpretation and

diagnostic tasks performed by experts or by computerized automated fea-

ture detection and extraction techniques. Additionally, these images usually

have low contrast and fuzzy boundaries between the organ or the region of

interest, to be segmented, and the background. These difficulties make the

ultrasound images inherently hard to segment [4].

A lot of efforts have been done over the years for modeling and reducing

the speckle noise in ultrasound images using different filters and enhancing

techniques. For example, several techniques for suppressing speckle noise

have been developed for ultrasound images in [6]-[12]. These efforts achieve

good results but consume time, hence, eliminating the advantage of being a

fast imaging technique.

Most of ultrasound exams are non-invasive, performed by using a trans-

ducer on the skin, however, some of them is done inside the body (invasive

ultrasound). In these exams, the transducer is attached to a probe. This
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probe is placed into different places in the body such as transesophageal

echocardiogram, in which the transducer is inserted into the esophagus to

obtain images of the nearby heart. In transvaginal ultrasound, a transducer

is inserted into a woman’s vagina to view her uterus and ovaries. In trans-

rectal ultrasound (TRUS) imaging, a transducer is inserted into a man’s

rectum to view his prostate [14]. Since we are interested in prostate segmen-

tation, we only consider TRUS in this thesis, and it is explained in detail in

the next section.
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Figure 2.2: Trans-rectal ultrasound (TRUS) [13]

2.3 Trans-Rectal Ultrasound (TRUS) Imaging

Trans-rectal ultrasound (TRUS) imaging is a procedure, in which a probe

is inserted into the rectum, as shown in Fig. 2.2. It emits high energy

sound waves, which penetrate internal tissues or organs and produce echos.

Those echos create an image of organs in the pelvis. Trans-rectal ultrasound

(TRUS) images are widely used for the screening of the prostate gland. TRUS

images may reveal prostate cancer, benign prostatic hypertrophy, or prostati-

tis. TRUS images may also be used to help guide a biopsy of the prostate

[13].
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Chapter 3

STATE-OF-ART MEDICAL

IMAGE SEGMENTATION

TECHNIQUES

In this chapter, we survey almost all the algorithms that have a general-

ized scope, which are the basis of most of the segmentation techniques. In

addition, the advantages and disadvantages of each technique are discussed.

3.1 Medical Image Segmentation Definition

It has been commonly known that visual interpretation of medical images

is highly subjective. Therefore, the need arises for image processing tech-

niques that must be applied on medical images to help the radiologists for
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easier and better diseases diagnosis. Image segmentation is the first step and

also one of the most critical tasks of image analysis and processing because

the segmentation results affect all the subsequent processes of image analy-

sis such as object representation and description, feature measurement, and

even the following higher level tasks such as object classification. Hence, im-

age segmentation is the most essential and crucial process for facilitating the

delineation, characterization, and visualization of regions of interest. Manual

segmentation is not only a tedious and time consuming process, but also it

is inaccurate especially with the increasing medical imaging modalities and

unmanageable quantity of medical images that need to be examined. Seg-

mentation by experts has shown to be variable up to 20%. It is therefore

desirable to use automated algorithms that are accurate and require as little

user interaction as possible. In the segmentation process, the anatomical

structure or the region of interest needs to be delineated and extracted out

so that it can be viewed individually. Generally, image segmentation can be

defined as the process of partitioning a digital image into multiple regions

(set of pixels). The goal of segmentation is to simplify and/or change the

representation of the image into something that is more meaningful and eas-

ier to analyze. The result of image segmentation is either a set of regions that

collectively cover the entire image or a set of contours extracted from the im-

age [1]. According to this general definition, we can define the medical image

segmentation, more specifically, as the process of delineating and separating

the anatomical structure (region of interest) so that it can be viewed indi-
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vidually in order to achieve important objectives such as patient diagnosis,

radio therapy planning, and advanced surgical planning and research.

3.1.1 Mathematical Meaning of Image Segmentation

If the domain of the image is given by I, then, the segmentation problem is

to determine the sets whose union is the entire image I. Thus, the sets that

make up segmentation must satisfy:

I =
K⋃

k=1

Sk

where Sk

⋂
Sj = ∅ ∀ k 6= j, and each Sk is a connected region. Ideally,

segmentation method defines those sets that belong to distinctive anatomical

structures or regions of interest in the image.

3.1.2 Hard Segmentation and Soft Segmentation

There are two concepts of segmentation: hard segmentation and soft (fuzzy)

segmentation. Hard segmentation is the segmentation that forces a decision

of whether a pixel is inside or outside the object. Hard segmentation is

based on the concept of a characteristic function, which is simply an indicator

function of whether a pixel is inside or outside its corresponding set. For a

location j ∈ I, the characteristic function Xk(j) of the set Sk is defined as:

18



XK(j) =


1 if j ∈ Sk

0 otherwise

(3.1)

On the other hand, soft (fuzzy) segmentation allows regions to overlap.

Soft segmentation is very important in medical image segmentation because

of partial volume effects, where multiple tissues contribute to a single pixel

resulting in a blurring of intensity across boundaries. Soft segmentation is

considered the generalization of the characteristic function in eq. (3.1). This

generalization is defined as the membership function which does not have to

be binary valued. A membership function Mk(j) should satisfy the following

conditions [15]:

0 ≤Mk(j) ≤ 1 ∀k, j

k∑
k=1

Mk(j) = 1 ∀j

The general imaging artifacts such as speckle noise, motion, and par-

tial volume effects can significantly affect the outcome of the segmentation

process. Hence, in order to guarantee a good segmentation, preprocessing

steps should be performed before applying any segmentation algorithm. The

major problem faced in medical images is the time consumed in the pre-

processing steps. To overcome these problems, different methods and filters

such as mean filters and median filters are used for denoising and enhancing
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the images. However, filtering process may lead to loss of some important

information.

3.2 Overview of Medical Image Segmentation

Techniques

There are many segmentation techniques used in medical images depending

on the type of tissue, the anatomy of the Region Of Interest (ROI), and the

modality being used. With the huge number of the developed techniques,

a classification of image segmentation techniques becomes an essential task.

Different classifications have been proposed. For example, in [16], segmenta-

tion techniques are classified into three generations according to the level of

algorithmic complexity which is added by each of them. In this thesis, the

classification of the medical image segmentation techniques is performed so

that the algorithms in the same class have some common properties. Addi-

tionally, the algorithms in different classes show certain distinguishable prop-

erties. Hence, all classes together can include all algorithms. The medical

image segmentation techniques are classified into three classes [17]:

1. Structural techniques

2. Stochastic techniques

3. Hybrid techniques
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The techniques in each class are discussed in detail in the following subsec-

tions.

3.2.1 Structural Techniques

The structural techniques use some information about the structure of the re-

gion for segmenting it. Different types of structural techniques are discussed

in the following subsections.

3.2.1.1 Edge-Detection Techniques

Edge detection is a problem of fundamental importance in image analysis.

In typical images, edges characterize object boundaries, therefore, they are

useful for segmentation. Edge detection techniques are commonly used for

detecting edges in an image to perform segmentation. The classical edge de-

tection techniques usually use the edge detection operators, which are based

mainly on the gradation such as Sobel, Robert, and Prewitt edge detectors

[18]. Edges are formed at the intersection of two regions with different in-

tensities.

Advantages: Those techniques work very well only on images with good

contrast between different regions.

Disadvantages: They detect all the edges. Hence, it is very difficult to

find the relation between the edges and the region of interest. In addition,

those algorithms are sensitive to noise.
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(a) Dilation

(b) Erosion

Figure 3.1: Morphological techniques [18]

3.2.1.2 Morphological Techniques

Mathematical morphology is widely used in the image processing field. It

is based on few simple mathematical concepts from the set theory. Mathe-

matical morphology is a tool for extracting certain components in the image.

These components are useful in the representation and description of a region

shape such as the boundaries. Morphological techniques are performed by

the concept of Structuring Elements (SE). SE is used to scan the whole im-

age, then, the morphological techniques remove the objects that can not fit

into the SE. The two most basic operations in mathematical morphology are

erosion and dilation. Dilation is used to smooth the boundary by filling the

holes and the gaps as shown in Fig. 3.1(a). Erosion is also used for smooth-
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ing the boundary but in a different way because it smooths the boundary by

removing small-sized objects and fingers of narrow width as indicated in Fig.

3.1(b). Although, morphological techniques are not stand-alone segmenta-

tion techniques, we are interested in them because they are widely used in

the preprocessing or the postprocessing of the output of the segmentation

process.

Advantages: Simple to understand and implement.

Disadvantages: Difficult to control. In addition, those techniques can

change the morphology of the input data. It is well known that a series of

dilations followed by erode operations leads to loss of high frequencies and

fills holes. Similarly, a series of erodes followed by dilations can introduce

holes and high frequencies. For the reasons stated above, those algorithms

should be avoided when accuracy is of prime concern as there is a risk of

losing important data [18].

3.2.1.3 Graph-Searching Algorithms

Graphs are an abstract representation consisting of a set of vertices V =

{v1, · · · , vn}, and a set of edges E = {..., {vi, vj} , ...}, where ek = {vi, vj}

indicates that there is an edge (arc) from vertex i to vertex j. Each edge

has an associated weight representing the cost of transition from vito vj as

shown in Fig. 3.2(a). In these algorithms, edges and surfaces are represented

as graphs, and the algorithm tries to find the lowest-cost path, (Cpq) indicated

in Fig. 3.2(b), between two nodes of the graph using any search algorithm.
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(a) Graph representation (b) Fully connected
graph

(c) Segmented images using graph search algorithm

Figure 3.2: Graph search algorithm [19]
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Advantages: Those algorithms can perform well even if the separations

between regions are broken as in the images shown in Fig. 3.2(c).

Disadvantages: Those algorithms require surfaces to be represented as

graphs, which could be tricky.

3.2.1.4 Deformable Models

Deformable models are curves or surfaces defined in an image. They are

physically motivated model-based techniques for delineating region bound-

aries by fitting closed parametric curves or surfaces to image data by means

of energy minimization. Those models deform under the influence of two ba-

sic components of an energy function. The two components are the internal

and external forces as indicated in eq. (3.2). The process of deformation is

performed by minimizing the energy function E(c) that is designed in such

away that its local minimum is obtained at the boundary of the object.

To delineate an object boundary in an image, a closed curve or surface

must first be initialized near the desired boundary, and then, it is allowed to

deform as shown in Fig. 3.3. Internal forces are defined within the curve or

surface to keep it smooth during the deformation. External forces are usually

derived from the image to attract the curve or surface towards the desired

feature of interest [20].
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E(c) = α

ˆ 1

0

| c′(q) |2 dq + β

ˆ 1

0

| c”(q) |2 dq︸ ︷︷ ︸
internal forces

−λ

ˆ 1

0

| ∇f(c(q)) | dq︸ ︷︷ ︸
external forces

(3.2)

A lot of work is performed on segmentation using 3D deformable surfaces

[21]-[24].

Advantages: They have the capability of accommodating the great vari-

ability and complexity of biological structures, which is a great advantage in

the medical field. In addition, they offer a coherent and consistent mathemat-

ical description and they are robust to noise and boundary gaps. Moreover,

they offer sub-pixel accuracy for the boundary representation, which may be

important to medical applications .

Disadvantages: An important drawback of the snakes is that they re-

quire manual interaction to place an initial model or to choose appropriate

initial parameters. Besides, they can not be used in non-interactive appli-

cations, unless they are initialized close to the structure to be segmented

because they are designed as interactive models. Furthermore, the internal

energy constraints of snakes can limit their geometric flexibility, and prevent

a snake from representing long tube-like shapes or shapes with significant

protrusions or bifurcations. Additionally, since classical deformable contour

models are parametric and are incapable of adapting topological changes

without additional machinery, the topology of the structure of interest must

be known in advance. Finally, they are non intrinsic because the energy is
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(a) Intensity CT image slice of LV. (b) Edge detected image. (c) Initial snake.
(d)-(f) Snake deforming towards LV boundary, driven by “inflation” force.

Figure 3.3: Detecting LV boundary using snakes [25]

Figure 3.4: Image sequence of clipped angiogram of retina showing an auto-
matically subdividing snake flowing and branching along a vessel [25]

Figure 3.5: Segmentation of a cross sectional image of a human vertebra
phantom with a topologically adaptable snake [25]
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explicitly dependent on the parametrization of the curve, and it does not

have a direct relation with the geometry of the objects [26].

Many improvements have been performed to avoid those disadvantages

such as the work involving the development of topology independent shape

modeling schemes that allow a deformable contour model to not only repre-

sent long tube-like shapes or shapes with bifurcations as shown in Fig. 3.4

but also to dynamically sense and change its topology as indicated in Fig.

3.5.

3.2.1.5 Isosurfaces and Level Sets

Level set models are motivated by the theory of curve evolution, and not

by energy minimization like the previous deformable models. Isosurfaces are

defined by connecting voxels with intensities equal to the isovalue in a 3D

volume. In 3D, it is very tough to follow a surface. Hence, rather than follow

the interface itself, the level set approach instead takes the original curve

(red one in Fig. 3.6(a)), and build it into a surface. The cone-shaped surface

(shown also in Fig. 3.6(b)) has a great property as it intersects the xy plane

exactly where the curve sits. This surface is called the level-set function,

which takes as input any point on the plane and returns the height of that

point. The red curve in Fig. 3.6(a) is called the zero level set because it is

the collection of all points that are at height zero [27].
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(a) The original front and the level set function

(b) Red curve is zero level set

Figure 3.6: Level set method [27]

A level set is nothing but an isosurface of the function φ which implicitly

defines hyper-surface S enclosing an image region R such that:

S := ∂R

To perform segmentation given by S, φ is modified rather than modifying

S itself. This modification of φ can affect the shape of S, and can also change
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its topology. S can now break up into disjoint surfaces unlike the definition

of S for the deformable surface model. Level set methods are based on a

partial differential equation (geometric flow), and can be solved using finite

difference methods. The basic equation describing the level set methods is

eq. (3.3), which describes the change of φ over time (or iteration) t:

φt + V.∇φ = 0 (3.3)

where

φt: Temporal partial derivative of level set function.

V : External force field guiding evolution of curve in the image.

∇φ: Spatial gradient operator.

If the external force V is defined as the gradient field of an image, the

level set methods can be successfully applied for image processing purposes.

Then the object is to look for a steady state solution of eq. (3.3), where the

surface S has locked onto object edges [28].

Advantages: Level-set models are topologically flexible as they allow au-

tomatic changes in the topology. Hence, they can easily represent compli-

cated surface shapes adapting the sudden changes in the biological structures

(solving the problem of fixed topology in snakes). Furthermore, these models

can incorporate many degrees of freedom, and therefore, can accommodate

complex shapes. Several objects can be detected simultaneously without

any prior knowledge of their number. Moreover, they are versatile, robust,
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accurate, and efficient.

Disadvantages: They require considerable thought in order to construct

appropriate velocities for advancing the level set function.

3.2.1.6 Geodesic Active Contours

It is a combination of the active contours and the level set methods, and it is

called geodesic active contours. It connects the classical active contours based

on energy minimization and geometric level sets based on curve evolution

theory.

This technique is based on active contours evolving in time according to

intrinsic geometric measures in the image. It means that the boundaries

are detected using the active contours based on the geodesic (local) minimal

distance computations. Then, assuming this geodesic active contour is intro-

duced at the zero level-set of a 3D function, the computation of the curve is

turned to be a geometric flow that is the same as level sets.

However, geodesic active contours are superior than the level sets as they

can accurately track boundaries with high variations in their gradient values,

including small gaps [29].

The geodesic active contours are based on the concept of minimal surfaces.

It is observed that finding S can be put as finding a surface of minimal

weighted area with the weight being given by a function h(f) of the image

f . Minimization of this area via the calculus of variations leads to a gradient

descent rule in image space. This minimization procedure can equivalently be
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implemented by finding the steady state solution, i.e., φt = 0 of the following

partial differential equation:

φt = h(f). | ∇φ | .
(

div
∇φ

| ∇φ |
+ v

)
+∇h.∇φ (3.4)

where

h(f) = 1
1+|∇Gσ∗f |2

div V = ∂v1

∂x
+ ∂v2

∂y
+ ∂v3

∂z
with V = ∇φ

|∇φ|

∇Gσ: The difference of Gaussian (DoG) filter with size of σ.

V : A constant force in the normal direction to the level sets of φ.

By evolving a function φ until φt = 0 using eq. (3.4). From some initial

estimate φo, one can find a regularized surface S, which is located on edges

in the image f [28].

Advantages: It improves the deformable models by making it an intrin-

sic (geometric) and topology independent as it can change topology during

evolution. Also, it improves the existing level sets due to the geodesic for-

mulations. Moreover, it permits simultaneous detection of the internal and

external boundaries in many objects without any special procedures for con-

tour tracking. Additionally, it does not need any specific stopping conditions.

Finally, it provides unique, stable, and consistent results [29].
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3.2.2 Stochastic Techniques

Stochastic techniques are applied on discrete pixels without considering any

structural information of the region. These techniques are based only on

statistical analysis.

3.2.2.1 Thresholding Approaches

(a) Original image (b) Thresholded image

(c) Grey level histogram

Figure 3.7: Thresholding approach [18, 30]

Thresholding approaches segment the image by creating a binary par-
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titioning of the image intensities. A thresholding procedure attempts to

determine an intensity value called the threshold, which separates the de-

sired classes. The segmentation is then achieved by grouping all pixels with

intensity greater than the threshold into one class, and all other pixels into

another class. Determination of more than one threshold value is called mul-

tithresholding as shown in Fig. 3.7(c).

Advantages: Simple and effective for images having good histogram with

good contrast intensities like the image in Fig. 3.7(a), resulting in 3.7 (b).

Disadvantages: It can not be applied to multi-channel images. Besides,

it is sensitive to noise and intensity inhomogeneities [18].

3.2.2.2 Classifiers

Figure 3.8: Classifiers for 2D and 3D [31]

Classifier methods are pattern recognition techniques that assign to each
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pixel in the image a tissue class, where the classes are agreed in advance.

Classifiers are known as supervised methods because they require training

data that are manually segmented, and then, this training data is used for

guiding the automatic segmentation of the new data as shown in Fig. 3.8

for 2D and 3D data. Classifiers can be either parametric or non parametric

classifiers as indicated below.

1) Non Parametric Classifiers

Non parametric classifiers are not based on any assumptions about the sta-

tistical data structure. Examples of non parametric classifiers include:

• KNN (K-nearest neighbor) classifier: Each pixel is classified in the

same class as the training datum that has the nearest intensity.

• Parzen window classifier: The classification is made according to the

majority of the pixels confined within a predefined window of the fea-

ture (for example, intensity) centered at the unlabeled pixel intensity.

2) Parametric Classifiers

Parametric classifiers assume that pixels intensities are independent samples

from a mixture of probability distributions, usually Gaussian. Bayes classifier

is a parametric classifier. It is based on a probabilistic model specification.

Advantages: Classifiers are relatively computationally efficient since there

are no iterations, additionally, they can be applied to multi-channel images.
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Disadvantages: Classifiers need manual interaction for obtaining training

data [32].

3.2.2.3 Clustering Approaches

Clustering can be loosely defined as the process of organizing objects into

groups, whose members are similar in some way. In this case, these “objects"

are the data pixels, and the “groups” are the clusters. Similar “properties”

could be any property the data pixel possesses like the intensity, gradient,

and/or color. The cluster is therefore a collection of objects which are “sim-

ilar” between them and are “dissimilar” to the objects belonging to other

clusters. Clustering algorithms essentially perform the same function as the

classifier methods without the use of training data. Thus, they are termed

unsupervised methods. Two commonly used clustering algorithms are the

K-means or ISODATA algorithm, and the fuzzy c-means algorithm (FCM).

K-means starts by partitioning the input pixels into k initial clusters. It then

calculates the mean pixel, or centroid, of each cluster. It constructs a new

partition by associating each point with the closest centroid. Then, the cen-

troids are recalculated for the new clusters, and the algorithm is repeated by

alternate application of these two steps until convergence, which is obtained

when the pixels no longer switch clusters (or alternatively centroids are no

longer changed), is reached. In FCM, each pixel has a degree of belonging to

a number of clusters, as in the fuzzy logic, rather than belonging completely

to just one cluster, which is the case in K-means. Thus, pixels on the edge
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of a cluster, may be in the cluster to a lesser degree than pixels in the center

of cluster. In other words, FCM allows labels to be ”fuzzy,” that is, a pixel

can be partially in one cluster and partially in others. FCM also provides

information on how well a pixel ”fits” a cluster. Since in clustering tech-

niques there is no need for training data, they are termed as unsupervised

techniques [33].

Advantages: They don not need training data because they iterate be-

tween segmenting the image and characterizing the properties of each cluster.

Disadvantages: Sensitive to noise and intensity inhomogeneities.

3.2.2.4 Markov Random Field Models

Markov Random Field (MRF) is a statistical model, and not a stand-alone

segmentation method. However, it is commonly used in segmentation tech-

niques. In medical imaging, MRF is typically used as it considers that only

neighboring labels have direct interactions with each other. MRFs are of-

ten associated with clustering segmentation algorithms such as the K-means

algorithm, or FCM algorithm to incorporate spatial constraints [34].

Advantages: MRF is robust to noise, which makes it widely used in mod-

eling both segmentation classes and intensity inhomogeneities that can occur

in MR images.

Disadvantages: The proper selection of the parameters controlling the

strength of spatial interactions is challenging. Also, it requires computation-

ally intensive algorithms.
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3.2.3 Hybrid Approaches

Hybrid approaches include those techniques which possess characteristics of

both structural and stochastic techniques.

3.2.3.1 Region Growing

Region growing is a technique for extracting a region of the image that is

connected based on some predefined criteria. These criteria can be based on

intensity information. In its simplest form, region growing requires a seed

point that is manually selected by an operator.

Advantages: Region growing approach is simple.

Disadvantages: It requires a seed point, which generally means manual

interaction. Thus, for each region to be segmented, a seed point is needed

[18].

3.2.3.2 Split and Merge

Split and merge technique is the opposite of the region growing. It works

on the whole image. Also, it requires the input data to be organized into a

pyramidal grid structure of regions, with each region organized in groups of

four in case of 2D, and of eight in case of 3D. Any region can be split into

subregions, and the appropriate regions can be merged into a single larger

region.

Advantages: No manual interaction.
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Disadvantages: It requires the input to be organized into a pyramidal

grid structure which could be difficult [17].

3.2.3.3 Atlas-Guided Approaches

Atlas-guided approaches are good candidates for medical image segmenta-

tion when a standard atlas, such as these models shown in Fig. 3.9(a), (b)

[35], is available. First, the atlas is performed by compiling information on

the anatomy that requires segmentation. Then, it is used as a guide for

segmenting new images. In order for atlas to guide the segmentation, it has

to be aligned to the patient’s space. In [36], the atlas, a set of MRIs taken

on a template subject, is aligned to the patient by registering the template

MRIs to the MR scans of the patient, using a non-rigid registration algo-

rithm. This process results in a correspondence field, which maps each pixel

in the atlas space to one in the patient coordinate system. The spatial priors

are then applied to correspondence field resulting in patient specific spatial

priors, which guide the segmentation as indicated in Fig. 3.9(c).

Advantages: The labels are transferred as well as the segmentation.

Disadvantages: The approaches are best suited for segmenting stable

structures, hence, accurate segmentation of complex structures is very diffi-

cult due to anatomical variability.
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(a) Abdominal atlas (b) Brain atlas

(c) Segmentation using atlas guided approach

Figure 3.9: Atlas-guided approach [35, 36]
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Figure 3.10: Artificial neural network [37]

3.2.3.4 Artificial Neural Networks (ANN)

ANNs are massive networks of parallel and distributed computational ele-

ments called neurons, as shown in Fig. 3.10. These neurons are tied together

with weighted connections to achieve learning through the adaptation of these

weights. It simulates the function of the human brain. ANNs can be used in

a variety of ways for image segmentation, either as classifiers by determining

the weights using training data in an supervised technique or as a clustering

method in an unsupervised technique.

Advantages: Partially overcomes the drawbacks of the conventional seg-

mentation algorithms based on structural knowledge, which often require

considerable user expertise. In addition, spatial information can be easily

incorporated into its classification procedures due to the large number of

highly interconnected and tied processing elements.
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Disadvantages: Their processing is usually performed on a standard serial

computer, hence, reducing its potential computational advantage of being

inherently parallel [37].

3.2.3.5 Watershed Approaches

(a) The immersion analogy

(b) Dam construction

Figure 3.11: Watershed approach [38]

The watershed algorithm depends on the idea of mathematical morphol-

ogy to divide images into homogeneous regions. It deals with the image as

topographical surface, where the gray levels represent altitudes. According
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to this concept, there are three types of points:

• Points belonging to a regional minimum.

• Points at which a drop of water would fall to a single minimum (the

catchment basin).

• Points at which a drop of water would be equally likely to fall to more

than one minimum (watersheds) as shown in Fig. 3.11(a).

Main idea: Assume that there is a hole punched in each regional minimum,

and that the entire topography is flooded from below by letting water rise

through the holes at a uniform rate. When rising water in distinct catchments

basins is about to merge, a dam is constructed to stop this merging. These

dam boundaries are the watershed lines. This is shown in Fig. 3.11(b)[18].

Watershed segmentation algorithm:

• Start with all pixels that have the lowest possible value. These form

the basis for initial watersheds.

• For each intensity level k:

• For each group of pixels of intensity k:

• If adjacent to exactly one existing region, add these pixels to that

region.

• Else if adjacent to more than one existing regions, mark as boundary.
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• Else start a new region.

Advantages: It is an intuitive and easy method. Additionally, it introduces

closed lines around regions every time.

Disadvantages: This method has the common problem of oversegmen-

tation that occurs when the image is segmented into an unnecessarily large

number of regions. Therefore, in case of medical imaging, watershed algo-

rithms are usually followed by a postprocessing step to merge the separated

regions that have the same structure [39].

3.3 Conclusion

From the survey conducted above, we can conclude that there is a large num-

ber of techniques used for medical image segmentation. The concept of each

technique is explained in details. Also, the advantages and disadvantages of

each technique are explored. It should be noted that some of the techniques

suffer from the manual interaction problem. This interaction is necessary in

order to initialize the segmentation process. Examples of these techniques

are deformable models, classifiers, and region growing.

On the other hand, there are other techniques that are automatic tech-

niques. These techniques do not need any manual interaction for initializing

segmentation such as split and merge, watershed, and Fuzzy C-Means (FCM)

clustering.

In this thesis, the work is focused on two segmentation techniques among
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these techniques: the region growing technique, and the Fuzzy C-means

(FCM) clustering technique.
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Chapter 4

FUZZY C-MEANS

CLUSTERING (FCM)

TRUS images do not have strong boundaries (fuzzy) between organs, or

ROIs, and the surrounding tissues. The segmentation of TRUS images is

known as fuzzy segmentation, where each pixel is assigned a membership

value in each region. More accurate estimates of region properties are usu-

ally obtained, when taking into account the memberships while computing

these properties. FCM is one of the techniques that are used to obtain such

classification. In this chapter, we present Fuzzy C-Means (FCM) segmenta-

tion technique. FCM performs the segmentation without manual interaction,

as discussed in chapter 3. Since FCM is widely used in automatic medical

image segmentation [40]-[42], it is selected as a benchmark in this thesis.
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4.1 FCM Concept

FCM, in particular, is used to obtain segmentation via fuzzy pixel classi-

fication. Unlike hard classification methods, which force pixels to belong

exclusively to one class, FCM allows pixels to belong to multiple classes with

varying degrees of membership. This approach allows additional flexibility,

making it more suitable for the medical image segmentation. FCM is an un-

supervised technique, which clusters data by iteratively computing a fuzzy

membership function and a mean value estimates for each cluster. The fuzzy

membership function, whose values must be between 0 and 1, shows the de-

gree of similarity between the data value at that location and the prototypical

data value, or centroid, of its cluster [43].

Mathematically, the FCM algorithm for scalar data seeks the membership

functions µci and the centroids vi, such that the following objective function

is minimized:

Jm(P, V ) =
k∑

i=1

∑
x∈ci

(µci(x))m|x − vi|2 ∀x ∈ X (4.1)

where P is the fuzzy partitioning of the data set X formed by c1, c2, · · · , ck.

The parameter m is a weight that determines the degree to which partial

members of a cluster affect the clustering result. m is the weighting ex-

ponent on each fuzzy membership, the larger the value of m, the fuzzier

the partition. It is well-known that choosing m = 2 is a good value. This

value for m has the advantage of simplifying the update equations, and can
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therefore speed up computer implementations of the algorithm. The FCM

algorithm tries to minimize Jm by iteratively updating the partition matrix

using the following equations:

µci(x) =
1

k∑
j=1

(
|x−vi|2
|x−vj |2

) 1
m−1

∀1 ≤ i ≤ k, x ∈ X, m > 1 (4.2)

vi =

∑
x∈X

(µci(x))mx

k∑
i=1

(µci(x))m

(4.3)

The FCM objective function is minimized when high membership values are

assigned to pixels whose intensities are close to the centroid for its particular

cluster, and low membership values are assigned when the pixel data is far

from the centroid. In the last decades, FCM has been widely used in medical

image segmentation especially with the advantage of being unsupervised tech-

nique. But, less report on FCM usage for ultrasound images segmentation

because it is not robust for ultrasound images, which are usually corrupted

by noise. However, many works used FCM for the segmentation of ultra-

sound images, but first, they had to do preprocessing steps for enhancing the

ultrasound images and remove noise. For example, in [40], FCM preprocess-

ing is performed by using histogram equalization and median filter. Besides

FCM itself is a time-consuming technique due to the iterations it performs,

the time consumed for the preprocessing steps used for enhancing adds extra
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time to the FCM process.

We use FCM in the segmentation of the prostate on ultrasound images in

order to compare it as an operator independent technique, with the proposed

technique to measure its quality. In this chapter, the performance and the

results of FCM technique is examined.

4.2 FCM Implementation

FCM is implemented according to the following algorithm:

FCM algorithm FCM(X, c, m, e) , where

X: Unlabeled data set.

c: The number of clusters.

m: A weighting value in the objective function.

e: A threshold for the convergence criteria.

1) Initialize prototype V = v1, v2, · · · , vc.

2) Repeat V Previous ←− V

3) Compute membership functions using eq. (4.2).

4) Update the prototype, vi in V using eq. (4.3). Until

c∑
i=1

|vPrevious
i − vi| ≤ e (4.4)

The process starts by choosing the number of output clusters c, which is

selected according to the image under consideration. Then, initializing the
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prototype v with random values, and computing the membership function

according to eq. (4.2). The next step is to update the prototype v. The

process is iterated till the condition of eq. (4.4) is met. This condition is

verified when the difference in the prototype values is less than a certain

threshold, e, which is chosen to be 0.05. After the previous condition is met,

the membership function of each pixel in the image is examined to determine

the cluster to which it belongs. The criterion used is that if the membership

function (µci(x)) of a pixel is greater than or equal to 0.8, then, this pixel

belongs to the cluster.

4.3 Results

In this section, we present the results of applying FCM technique on a set

of biomedical TRUS prostate images without performing any preprocessing

steps to enhance the images. The implementation of FCM is done using

MATLAB 7, running on a machine with Intel Centrino Core2Duo 2 GHz

processor. FCM starts with no manual interaction. Figs. 4.1-4.5(a) show the

original TRUS prostate images. Figs. 4.1-4.5(b), show that results of using

the FCM segmentation. It can be seen that FCM segments the prostate

inaccurately due to the speckle noise that is inherently present in ultrasound

image. FCM could not handle this noise because it appends all pixels with

membership values satisfying the above criterion to the prostate cluster. The

binary prostate cluster for each image is shown in Figs. 4.1-4.5(c), while the
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gold standard of these images is shown in Figs. 4.1-4.5(d). The difference

between the gold standard of each image and the prostate binary cluster is

introduced in Figs. 4.1-4.5(e). From this difference, it can be seen that FCM

has poor performance in TRUS prostate images.

4.4 Conclusion

In terms of programming implementation, FCM is relatively straightforward.

It employs an objective function that is intuitive and easy-to-grasp. However,

from the previous results, it is clear that FCM technique gives unsatisfactory

segmentation results. It fails to achieve the requirements of a good segmen-

tation due to the following reasons. First, its accuracy is sensitive to the

speckle noise in ultrasound images as it squares the “error” between a pro-

totype and a pixel, thus, the effect of noisy pixels is emphasized. Second, it

gives counter-intuitive membership values for noisy pixels, which should not

receive significant memberships with any of the clusters. We surprisingly,

found that FCM gives them membership values close to those of the pixels

in the prostate cluster. This results in the inaccurate segmentation results

shown above. Hence, we can conclude that FCM gives accurate segmenta-

tion results only for data sets composed of well-separated clusters, which is

not always the case in medical images. In other words, the images to be seg-

mented using FCM, must undergo a series of enhancing techniques to remove

the noise, so that FCM can give accurate results [40]. In this thesis, we did
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not use any of these enhancing techniques before applying FCM, in order

to make a fair comparison with the proposed technique. Moreover, FCM

consumes time, which may not be acceptable in critical medical applications.
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(a) Original image (b) Segmeted prostate

(c) Binary prostate cluster (d) Gold standard

(e) Difference between binary prostate cluster
and gold standard

Figure 4.1: FCM results for image 1
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(a) Original image (b) Segmented prostate

(c) Binary prostate cluster (d) Gold standard

(e) Difference between binary prostate cluster
and gold standard

Figure 4.2: FCM results for image 2
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(a) Original image (b) Segmented prostate

(c) Binary prostate cluster (d) Gold standard

(e) Difference between segmented prostate
and gold standard

Figure 4.3: FCM results for image 3
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(a) Original image (b) Segmented prostate

(c) Binary prostate cluster (d) Gold standard

(e) Difference between segmented binary and
gold standard

Figure 4.4: FCM results for image 4
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(a) Original image (b) Segmented prostate

(c) Binary prostate cluster (d) Gold standard

(e) Difference between segmented binary and
gold standard

Figure 4.5: FCM results for image 5
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Chapter 5

THE PROPOSED AUTOMATED

REGION GROWING

SEGMENTATION TECHNIQUE

In this chapter, the proposed automated region growing technique is pre-

sented. The main goal of the proposed method is to automatically segment

the prostate in TRUS images. The proposed automated method is robust,

relatively fast, accurate, and simple.

5.1 Conventional Region Growing

In the region growing technique, segmentation is performed by aggregating

pixels or subregions into larger regions according to predefined criteria. The
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(a) Ideal image

(b) The region of interest is
segmented based on a selected
seed point

(c) Spearation of pixels with different
intensities based on the inensity of the
seed point

Figure 5.1: Region growing technique [15]
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selection of similarity criteria relies on the problem to be solved and the

type of available image data. This similarity criteria can be intensity, color,

texture, shape, or size. The region growing process starts with a seed point,

which is manually selected. After that, the region grows by annexing to

the seed point those neighboring pixels that show similarity in a certain

criteria, such as intensity. The process is iterated till it meets a stopping rule.

Generally, the region growing should stop, when no more pixels satisfy the

criteria for inclusion in that region. This is depicted in Fig.5.1(b)-(c), where

the region growing technique has been used to isolate one of the structures

from the original image shown in Fig. 5.1(a). Region growing technique

offers several advantages over conventional segmentation techniques. It is

fast, simple, and easy to implement. However, since the starting seed point

must be manually selected in the region growing technique, it suffers from

the manual initialization problem. The success of region growing technique

depends on the proper selection of this seed point. This results in a main

disadvantage for the region growing technique, since the manual interaction

is usually debated [18].

5.2 Automated Modified Region Growing Tech-

nique

In this thesis, we propose a novel modified region growing technique to seg-

ment the prostate in TRUS images. The proposed technique is simple, fast,
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Figure 5.2: Automated modified region growing flow chart
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Figure 5.3: Intensity computation procedure

automated, and accurate. The proposed technique not only overcomes the

manual interaction problem, but also, makes the region growing technique

more robust to noise by considering a controlling parameter, which is the

Euclidean distance, while performing the region growing. The main idea of

the proposed technique is to make use of the spatial characteristics of the

prostate TRUS image, where the size of the prostate is relatively large com-

pared to the scan range of the ultrasound transducer. Hence, there is a high

probability that the axes at the centers of the TRUS images traverse through

the prostate. The proposed technique is summarized in the flow chart shown

in Fig. 5.2, and its details are as follows:

• Step(1): Determine the axes of the image;

• Step(2): At each pixel P along the image axes, we calculate the inten-

sity difference between the two pixels at distances of L pixels from P

along the same axis, where we selected L = 80 pixels. In other words,

we calculate the intensity difference between two pixels separated by
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2L pixels and put the result to the pixel P centered between those

two pixels as shown in Fig. 5.3. The reason behind that separation

is to benefit from the abrupt intensity transition between the prostate

area and the noisy background to detect the boundaries between the

prostate area and the surrounding noisy areas. It is interesting to men-

tion that in this step, we made use of the characteristic speckle noise

in TRUS, instead of considering it as noise and trying to remove it.

Also, it should be noted that we have tried the conventional gradient

method; however, it could not handle the speckle around the prostate

causing failure of this method as it will be discussed in the next section;

• Step(3): The image is broken up into 2×3 non-overlapping equal parts;

• Step(4), step(5): In each part, the pixel that has the maximum inten-

sity difference is marked. These markers are guaranteed to be located

inside the prostate itself or at least surrounding the prostate area.

• Step(6): These markers are then used to obtain the seed point, where

its indices are calculated as the average of the resulted markers’ indices.

In this way, the automation of selecting the seed point is achieved.

• Step(7): The region growing process starts automatically with the seed

point as the initial region to be grown, where the intensity of the seed

point is set as the initial intensity mean of the growing region. More-

over, the coordinates of the seed point are used as the initial centroid

of the growing region;
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• Step(8): The neighbors of the selected point, which is initially the seed

point, are chosen based on their spatial locations with respect to the

selected point;

• Step(9): The intensity difference between the selected point and its

neighbors is calculated and compared to a small valued threshold;

• Step(10): Check if the minimum intensity difference is greater than the

intensity threshold. If yes, then, END. If no, then, go to the next step;

• Step(11): Select the neighboring pixel that gives the minimum intensity

difference;

• Step(12): In this step, we overcome the ultrasound images noisy back-

ground by introducing a new controlling spatial parameter, which is

the Euclidean distance between the centroid of the region to be grown

and the pixel to be appended to the region as follows. Check if the

Euclidean distance between the pixel that gives the minimum inten-

sity difference and the centroid of the growing region is less than a

predefined Euclidean threshold, if no then, remove that pixel from the

neighboring list so that it is not selected again and, return to step (11).

If yes then, go to the next step;

• Step(13): The pixel that satisfies the conditions in step (10) and step

(12), which are the intensity difference and the Euclidean distance,

respectively, is appended to the growing region;
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• Step(14): After a new pixel is added to the region, calculate the average

of the coordinates of the pixels in the growing region, and set it as the

coordinates of the new centroid of the growing region;

• Step(15): After a new pixel is added to the region, the intensity mean of

the region is calculated, and it is considered as the new region intensity

mean. Finally, go back to step (8).

5.2.1 Discussion

These steps verify all the goals of a good segmentation for the following

reasons. First and foremost, accurate because the obtained seed point is

guaranteed to be inside the organ, which is necessary to get accurate seg-

mentation. Second, they are robust as they could handle the noise problem

successfully, using the modification of the Euclidean distance. Third, they

achieve high performance speed.

5.3 Results

The implementation of the proposed method is done using MATLAB 7. The

proposed technique is tested on a set of thirty biomedical ultrasound images.

The implementation is performed on a machine with Intel Centrino Core2Duo

2GHz processor.

In the following subsections, we introduce the results of combining the

automatic selection of the seed point with the conventional region growing
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technique, and with the modified region growing technique, respectively.

5.3.1 The Automatic Seed Point Selection Combined

With The Conventional Region Growing Technique

The region growing is performed starting with the automatically selected

seed point, and the region grows based on the intensity difference between

the seed region and the neighbors. The process stops when the minimum in-

tensity difference is greater than a predefined threshold. This is the conven-

tional procedure of the region growing except for the automatic initialization.

However, this technique did not give good results for noisy ultrasound images

as those shown in Figs. 5.4-5.8(a). Figs. 5.4-5.8(b) show the markers that

are chosen based on the intensity feature of the images. Also these figures

show the automatically selected seed point, which is obtained by averaging

the coordinates of these markers. It can be seen that the proposed automa-

tion method succeeds in obtaining a seed point inside the prostate area in

all cases. The resulted binary segmented prostates based are shown in Figs.

5.4-5.8(c). The final segmentation result in Figs. 5.4-5.8(d) shows that the

prostate in these images is delineated in an inaccurate way. It includes the

pixels that have similar intensities, however, they are not in the prostate.

The differences between the gold standards, given in Figs. 5.4-5.8(e), and

these inaccurate segmentation results are shown in Figs. 5.4-5.8(f).

This method gives reasonable results with accepted accuracies for less
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noisy images or the pre-enhanced images. However, in case of very noisy

images with no preprocessing for enhancing the image quality and removing

noise, like our case, it does not provide an exact delineation of the prostate,

and its performance is greatly degraded.

5.3.2 The Automatic Seed Point Selection Combined

With Modified Region Growing Technique

According to the results obtained above, the main concern then is to over-

come the noise problem in the raw ultrasound images that causes inaccurate

segmentation. In order to get accurate segmentation results, it is necessary

to include a controlling parameter to hinder the growing region from picking

the pixels of the noisy background. In this modified technique, we select the

controlling parameter to be the spatial Euclidean distance as explained in

details in section 5.2 (step12 ).

We apply this modified technique on the same ultrasound images shown in

Figs. 5.9-5.13(a). Also, we use the same technique for selecting the markers

that are averaged to obtain the seed point as shown in Figs. 5.9-5.13(b). Re-

gion growing is performed considering the Euclidean distance between each

pixel, that verifies the intensity requirement, and the centroid of the growing

region. This Euclidean distance should be less than a predefined Euclidean

threshold. The modified technique achieves better results compared to the

results of the conventional region growing technique previously discussed.
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The binary segmented prostates are shown in Figs. 5.9-5.13(c). The final

segmented prostates shown in Figs. 5.9-5.13(d) indicate how accurately the

prostate is delineated without any effect of the noisy background. These re-

sults prove that the modified region growing technique is efficient and robust

to noise. Also, the difference between the gold standards, shown in Figs. 5.9-

5.13(e), and the binary cluster is shown in Figs. 5.9-5.13(f). The obtained

result introduce higher accuracies than the previous automated conventional

technique.

5.4 Conclusion

The goal of this work is to develop an automatic robust segmentation tech-

nique for the prostate in ultrasound images. The above results show that

the new method is a very powerful segmentation method. In addition, it

gives an automatic prostate segmentation without any manual interaction

for the initialization. Moreover, it is a robust technique since it overcomes

the common speckle noise problems usually present in ultrasound images by

taking into account the spatial Euclidean distance while performing the re-

gion growing. Moreover, the segmentation is performed relatively fast, when

compared to manual segmentation or other automatic techniques, like FCM

discussed in chapter 4, making this technique suitable for routine clinical use

for the diagnosis and treatment procedures in prostate diseases.
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented

(e) Gold standard (f) Difference between gold standard and bi-
nary segmented prostate

Figure 5.4: Automated conventional region growing results for image 1
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented

(e) Gold standard (f) Difference between gold standard and bi-
nary segmented prostate

Figure 5.5: Automated conventional region growing results image 2
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference between gold standard and the
binary segmented prostate

Figure 5.6: Automated conventional region growing results for image 3
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference between gold standard and the
binary segmented prostate

Figure 5.7: Automated conventional region growing results for image 4
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference between gold standard and bi-
nary segmented prostate

Figure 5.8: Automated conventional region growing results for image 5
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(a) Original image (b) Markers with the seed point

(c) Segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference between gold standard and binary
segmented

Figure 5.9: Automated modified region growing results for image 1
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference between gold standard and seg-
mented binary

Figure 5.10: Automated modified region growing results for image 2
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference between gold standard and seg-
mented binary

Figure 5.11: Automated modified region growing results for image 3
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference betweenthe gold standard and
segmented binary

Figure 5.12: Automated modified region growing results for image 4
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(a) Original image (b) Markers with the seed point

(c) Final segmented prostate (d) Binary segmented prostate

(e) Gold standard (f) Difference between the gold standard and
segmented binary

Figure 5.13: Automated modified region growing results for image 5
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Chapter 6

EXPERIMENTAL RESULTS

The automated proposed technique is implemented in Matlab, and it is ap-

plied to a set of thirty biomedical TRUS prostate images.

In this chapter, we compare between the automation of the region grow-

ing combined with the conventional region growing, the automated modified

region growing, and the FCM technique, respectively. The results of applying

the three techniques on different images are shown in Figs. 6.1-6.5.
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(a) Original image (b) Automated conventional region growing

(c) Automated modified region growing (d) FCM result

Figure 6.1: Image 1 results
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(a) Original image (b) Automated conventional region growing

(c) Automated modified region growing (d) FCM result

Figure 6.2: Image 2 results
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(a) Original image (b) Automated conventional region growing

(c) Automated modified region growing (d) FCM results

Figure 6.3: Image 3 results
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(a) Original image (b) Automated conventional region growing

(c) Automated modified region growing (d) FCM results

Figure 6.4: Image 4 results
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(a) Original image (b) Automated conventional region growing

(c) Automated modified region growing (d) FCM result

Figure 6.5: Image 5 results
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6.1 Accuracy Measurement

In order to determine the quality of any technique, its accuracy should be

measured. For segmentation, the accuracy is defined as the degree of close-

ness of the obtained segmentation results to its reference standard. The

reference standard, in the case of medical images, is the radiology marking

which is known as the gold standard.

There are different methods used for determining the accuracy of any

medical image segmentation technique [44]. In this thesis, we calculated the

accuracy by measuring the similarity between the obtained results and the

gold standard according to eq. 6.1

accuracy = 1− (
M∑
i=1

N∑
j=1

B(i, j)⊕G(i, j))/(M ×N) (6.1)

where

G: The gold standard.

B: The binary segmented prostate.

M ×N : The size of G, which is the same as the size of B.

In this thesis, we used eq. 6.1 for calculating accuracy.

The accuracy results obtained by applying eq. 6.1 on the results of the

three implemented techniques; FCM (chapter 4), automated conventional

region growing (chapter 5), and automated modified region growing (chapter

5), are shown in Table 6.1.

Table 6.1 shows that the proposed automated modified region growing
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technique introduces the highest accuracies in all images. For example, in

image 1, it gives an accuracy of 97%, which is higher than FCM and the

automated conventional region growing by 25% and 24%, respectively. Ad-

ditionally, by observing the results in the table, it can be seen that both

FCM and the automated conventional region growing give lower accuracies

in case of very noisy images such as image 1 and image 2, while the proposed

technique is not affected at all, and it gives the highest accuracies. This

proves the superiority of the proposed technique. Also, it can be seen that

the automated conventional region growing outperforms the FCM technique.

Table 6.1: Accuracy comparison between FCM, the automated conventional,
and the automated modified region growing techniques.

Image FCM Automated conventional Automated modified
number accuracy region growing accuracy region growing accuracy
Image 1 72% 73% 97%
Image 2 74% 77% 98%
Image 3 89% 90% 97%
Image 4 82% 89% 95%
Image 5 80% 94% 95%

6.2 Time Measurement

Another factor for measuring the quality of the proposed technique is to

compute the implementation time for both the FCM technique, and the

automated modified region growing technique. Table 6.2 shows the imple-

mentation time for both techniques.
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From Table 6.2, it is clearly seen that there is a significant difference in

the time required for implementing both techniques. The time required for

implementing the proposed automated modified region growing technique is

greatly less than that required for FCM implementation. For example, in

image 1, the time required for the proposed technique is only 37.4 seconds,

while the time required for FCM is about 26 minutes. It means that the

proposed automated modified region growing technique saves time by an

amount of 97.6%.

Table 6.2: Time comparison between FCM and the automated modified re-
gion growing techniques
Image number FCM implementation Automated modified region

time (sec) growing implementation time (sec)
Image 1 1576.3 37.4600
Image 2 1554.8 55.0070
Image 3 3879.3 601.2120
Image 4 3794.2 887.3850
Image 5 3542.2 808.2990
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Chapter 7

CONCLUSION AND FUTURE

WORK

7.1 Conclusion

Prostate ultrasound images are widely used in many clinical applications,

hence, accurate delination of the prostate is a critical issue for these med-

ical applications such as the prostate biopsy. There are many limitations

that can affect the segmentation of ultrasound images such as low contrast,

speckle noise, and fuzzy boundaries. Therefore, an automatic, accurate, fast,

and robust segmentation technique is strongly needed. In this thesis, we

have proposed a new technique for the prostate segmentation. The proposed

technique is mainly based on the region growing technique, which is widely

used in medical image segmentation. However, the proposed technique is
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considered a modification for the conventional region growing technique in

two main issues. First, the proposed technique overcomes the manual inter-

action problem associated with the region growing technique by selecting the

seed point automatically. The interesting concept of this thesis is that it has

a different segmentation perspective because it does not consider the speckle

as noise needs to be removed before performing segmentation. Instead, the

proposed technique considers the speckle as a signal carrying intensity infor-

mation. It makes use of this information in determining the markers used for

automatically selecting the seed point. Second, the stopping criteria relies

on two parameters, and not only one like the conventional region growing

technique. These parameters are the intensity, and the new parameter is the

spatial Euclidean distance. Involving the spatial Euclidean distance makes

the proposed technique more accurate and robust to the noise in ultrasound

images. By conducting extensive performance evaluation, the proposed tech-

nique proves to give higher accuracies than those obtained by the automated

conventional region growing or the FCM technique. In this thesis, an average

similarity of 96.4% with gold standards was achieved, which is very high for

these type of images (ultrasound images).

Moreover, the proposed technique saves time compared to the manual

segmentation, which takes up to 20 minutes to be performed. Also, when

compared to the time required for implementing FCM , it is found to be a

time- saving technique.

Those advantages make the proposed technique a good candidate for daily
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clinical purposes as it is automated, fast, robust, and accurate.

7.2 Future Work

Our future work will include integrating the proposed automated modified

region growing technique with other segmentation techniques that suffer from

the initialization problem such as deformable model technique to eliminate

the need of manual interaction.

The proposed technique can also be efficiently applied to the segmentation

of breast ultrasound images to help in detecting tumors in case of breast

cancer, which becomes a common disease in the last few decades.

The proposed technique is applied to 2D TRUS images and can be ex-

tended to 3D TRUS images, where it may help in obtaining new valuable

information from the images.
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