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ABSTRACT 

In this thesis we provide a summary of the methods by which remote sensing may be 

applied in forestry, while also acknowledging the various limitations which are faced. The 

application of spatial statistics to high spatial resolution imagery is explored as a means of 

increasing the information which may be extracted from digital images. A number of high 

spatial resolution optical remote sensing satellites that are soon to be launched will increase 

the availability of imagery for the monitoring of forest structure. This technological 

advancement is timely as current forest management practices have been altered to reflect the 

need for sustainable ecosystem level management. 

The low accuracy level at which forest structural parameters have been estimated in the 

past is partly due to low image spatial resolution. A large pixel is often composed of a 

number of surface features, resulting in a spectral value which is due to the reflectance 

characteristics of all surface features within that pixel. In the case of small pixels, a portion of 

a surface feature may be represented by a single pixel. When a single pixel represents a 

portion of a surface object, the potential to isolate distinct surface features exists. Spatial 

statistics, such as the Getis statistic, provide for an image processing method to isolate distinct 

surface features. In this thesis, high spatial resolution imagery sensed over a forested 

landscape is processed with spatial statistics to combine distinct image objects into clusters, 

representing individual or groups of trees. 

Tree clusters are a means to deal with the inevitable foliage overlap which occurs within 

complex mixed and deciduous forest stands. The generation of image objects, that is, clusters, 

is necessary to deal with the presence of spectrally mixed pixels. The ability to estimate forest 

inventory and biophysical parameters from image clusters generated from spatially dependent 

image features is tested in this thesis. The inventory parameter of crown closure is 

successfully estimated from image clusters, yet the grouping of trees into clusters causes 

mixed results when estimating stem counts. The assignment of a cover class of each cluster is 

also undertaken. The knowledge of cluster cover class has also enabled the estimation of leaf 

area index. Further, spatial information alone may be used to estimate LA1 under described 

conditions. 
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1. INTRODUCTION 

7 .  RATIONALE 

Forests and woodlands are the most widely distributed vegetation eco5;'stem on the 

planet covering approximately 40% of the global land surface (Westoby, 1989). The 

econ,omic importance of forests is clear, since through either consumption, or utilization of 

some product or service, forests affect the everyday life of most humans (van Martin, 1984). 

Less clear is the impact of forests upon the global environment through processes such as the 

regulation of the global climate, storage of carbon, conversion of carbon dioxide to oxygen, 

and energy exchange with the atmosphere through control of albedo (Gates, 1990). For 

example, it is known that deforestation and the combustion of fossil fuel contribute more than 

7 billion metric tons of carbon into the atmosphere each year above the natural flux, mostly in 

the form of C@ (Jarvis and Dewar, 1993). Forests annually produce 70% of the net global 

terrestrial carbon accumulation (Peterson and Running, 1989) which results in the uptake of 

carbon from the atmosphere and the conversion of the greenhouse gas C02 to Oz (Landsburg 

and Gower, 1997). While forests are necessary for the regulation of the Earth's atmosphere 

and climate, which requires vast tracts of forest, harvesting of forests is undertaken either due 

to need or for economic gain. Sustainable forest management policies have been initiated to 

reconcile the competing aims for the use of forests (Toman and Ashton, 1995). The 

responsibility of our heritage dictates a need for monitoring of forests, as anthropogenic forces 

are potentially responsible for significant changes in C02 levels, desertification, deforestation, 

and loss of biodiversity. 

Canada contains approximately lo%, or 41 7.6 million hectares, of the global forest 

cover (Westoby, 1989) with Canadian forest products accounting for 18% of the world's 



forest products exports, which in 1993 were valued at $27 billion (NRC, 1995). Canada's 

forests have been estimated to contain an estimated 2.6 x 10'0 tonnes of biomass and 2.4 x 

10'0 m3 of gross merchantable timber (Brand, 1990). This importance of forests, both 

environmentally and economically, has necessitated a change in Canadian forest policy. The 

implementation of ecosystem management shifted the emphasis from maintaining the ability 

to harvest a known quantity yearly, based on annual allowable cut, to the maintenance of 

healthy, diverse ecosystems. This change in forest management policy in Canada 

demonstrates the shift in global forest management priorities from stand management to 

ecosystem management (NRC, 1995). A key change resulting fiam this change in priorities is 

the monitoring of complete natural ecosystem areas, not only the artificial boundaries of a 

forest management area. Inventories under traditional forest stand management generally 

consisted of measures of age, species, and timber volume; yet within an ecosystem 

management framework, the level of detail of measures is increased, requiring information on 

soils, productivity, and habitat requirements. Within an ecosystem management framework, 

the future management goals for a forest are considered in terms of age, composition, 

structure, distribution, and aesthetics (Gillis and Leckie, 1993), as well as non-timber values, 

such as potential for employment and recreation (CCFM, 1995). The techniques utilized by 

forest managers and forest scientists are continuing to overlap as the need for sustainable 

forest management increases (Toman and Ashton, 1996). 

Assessment of forests within an ecosystem management framework implies both 

geographic and economic advantages in applying remote sensing methods to generate data on 

forest extent and location. Yet, often remote sensing methods fail to capture the diversity of 

forests necessary for management decisions (Peterson and Running, 1989). Multi-sensor 

fusion (Wulder, et al., 1995), multitemporal analysis (Qi, et al., 1993), increased spectral 



resolution (Gong, et al., 1992), and increased spatial resolution (Leckie, el al., 1995) may 

assist in providing the level of detail desired for the formulation of forest management 

decisions. In this thesis we are chiefly concerned with optical satellite and airborne remote 

sensing methods and applications for the monitoring of forest inventory and biophysical 

parameters. The promise of high spatial resolution sensors in satellite orbit in the near future 

(Aplin, et a!., 1997) will increase the utility of satellite data in the forest remote sensing 

context and will likely increase the number of users of remotely sensed data for forest 

management. Acknowledgment of current techniques, which have heretofore been unreliable, 

are important to note as these techniques may be more fruitful with the increased spatial 

resolution offered with the proposed sensors. A review of currently available methods and 

applications is provided as well as research issues and techniques which are pertinent to the 

high variance imagery which is collected by high spatial resolution imagery. High spatial 

resolution airborne remotely sensed data has permitted development of methods and 

applications for the assessment of forests resulting in a rich information source for potential 

users of high spatial resolution satellite data. 

Forest structure is defined as the above-ground organization of plant materials (Spurr 

and Barnes, 1980). Vegetation characteristics, climate environment, and site properties 

combine to produce the structural characteristics of a forest stand. Mixed and deciduous 

forests are generally structurally complex, due to the potential for overlap between the 

branches and crowns of trees present. Trees of a younger age will be found suppressed 

beneath older, more dominant, trees. Intermediate trees are in transition between forest layers. 

Co-dominant trees are often found in even-aged forest stands (Sharpe, et al., 1976). Tree 

species is also a factor in the amount of foliage overlap that may be expected; the large 

crowns of deciduous trees are often highly overlapped. The overlap of foliage results in 



difficulties for the remote sensing of deciduous and mixed forests. Remote sensing 

instruments collect data in a manner which discretize a continuous surface into a grid of 

regularly sized and shaped pixels. As a result, when applying remote sensing to record data 

over a mixed or deciduous forest the pixels are often composed of the spectral characteristics 

from more than one element of ground cover. Even at a high spatial resolution of 1 x lm, 

mixed pixels are encountered. The presence of mixed pixels diminishes the variability 

between pixels and creates difficulties in calibrating the spectral data to ground data. Yet, at 

the high spatial resolution of im, the variance between the pixels is still high, enabling a 

hybrid approach to understanding of the imagery, based upon spectral and spatial information. 

Acknowledgment of the manner in which remotely sensed data are collected indicates the 

likely presence of a spatial dependence between neighbouring pixels. The relationship 

between the size of the objects of interest, in this case trees, and the image resolution dictates 

what spatial information will be captured. If the resolution is fine enough to resolve an 

individual object with a number of pixels, the imagery is considered H-resolution (Strahler, et 

al., 1986). Conversely, the L-resolution case occurs when an object of interest is found 

completely within a pixel. The data collected for this study are high at im spatial resolution, 

yet are not H-resolution, when considering the mixed and deciduous forests present in the 

Fundy Model Forest, within the Acadian forest region. 

A unique set of problems are posed for analysis of a mixed forest sensed at a 1 rn spatial 

resolution: 
the data is L-resolution with mixed pixels expected, yet many pixels are nearly 

the variance between the pixels is high, 

based upon the high variance and mixed pixels, cover-type, spectral signatures are 

variable. 



The result of these conditions is an inability to use traditional remote sensing techniques to 

assess forests when using L-resolution data in a low-variance environment. The variance of a 

30 metre Landsat pixel is low compared with l m  spatial resolution data. Wulder and Boots 

(1 998a), studied the spatial dependence characteristics of Landsat TM imagery of a managed 

forest area and found the dependence to be stand-based, due to the inclusion of spectral 

elements in each pixel related to dominant tree species, understory, and the shadow 

component. The image spatial structure that arises from lm spatial resolution data has 

neighbouring pixels relating the overstory, understory, and shadow component, with many 

pixels composing the transition between these stand elements. As a result, the spatial 

dependence between pixels with the lm data is tree based as opposed to being stand-based 

with the Landsat data. 

As evident from this discussion, techniques which were developed for analyzing 

different cover types or spatial resolutions are not uni versa11 y transferable. Previous research 

in boreal coniferous forests has established that individual trees may be discriminated and 

classified (Gougeon, 1993, 1995a; Price, et aL, 1996). Within deciduous forest stands, 

however, species separation is limited by factors such as the variety and mixtures of species, 

stand density, crown closure, complex canopy structure, and spectral confusion between 

overstory and understory species. For deciduous and mixed forests, an alternate approach is 

required. The ability to cluster pixels based upon an understanding of the relationship 

between image spatial resolution and the vegetation objects in the forest is presented as a 

means to account for the mixels caused by foliage overlap, yet still enable detailed data 

extraction. Clustering based upon the spatial dependence between pixels enables the 

extraction of stand vegetation assemblages. Trees which are suppressed by more dominant 

trees, resulting in mixels, may be segmented into clusters. 



In this thesis, we will present the pertinent background literature for the estimation of 

forest inventory and biophysical parameters. The theory and application of the Getis statistic 

is presented as a means for generation of spatial dependence values for cluster generation. 

Tree clusters are then generated from 1 m spatial resolution casi data (Anger, et al., 1996), 

through the segmentation of the Getis statistic values. Experiments are then undertaken to 

demonstrate the potential for the estimation of forest inventory and biophysical parameters 

from the image clusters. In this investigation the forest structural information that is available 

for mixed and deciduous forests located in the Acadian forest regjon of New Brunswick, 

Canada, when studied using remotely sensed data with a lrn pixel resolution will be 

determined. 



The primary research objective of this thesis is to: 

investigate alternate methods for the estimation of forest inventory and 

biophysical parameters based upon spatial information extraction through 

digital image processing of high spatial resolution multispectral imagery. 

To accomplish this goal, a number of secondary objectives have been isolated: 

Present the rationale for the monitoring of forest structure in an ecosystem 

monitoring framework in a Canadian context. (Chapter 2) 

Provide a framework for the research through identification and 

documentation of the limitations of existing techniques for spatial 

information extraction. (Chapter 3) 

Survey existing information extraction techniques, which may be applied to 

discern forest structural properties at a spatial resolution of lm. (Chapter 4) 

Propose an alternate spatial information extraction technique based upon 

spatial statistics, in particular the Getis statistic. (Chapter 5) 

Apply the spatial dependence data generated with the Getis statistics to 

partition forest stands into sqe2!lon clusters. (Chapter 7) 



Develop and test a methodology to combine existing information extraction 

techniques with the Getis statistic to allow for estimation of forest 

inventory parameters. (Chapter 8) 

Develop and test a methodology to combine existing information extraction 

techniques with the Getis statistic to allow for estimation of the forest 

biophysical parameter leaf area index (LAI). (Chapter 9) 

Discuss issues raised through the presentation of the thesis to provide a 

context for the conclusions (Chapter 10). 

Synthesize the results of the combination of spectral and spatial 

information extraction techniques on forests of complex multi-species 

structure (Chapter 6) and relate these findings back to the primary thesis 

objective (Chapter 1 1) and propose a future research agenda based upon 

these results (Chapter 12). 



2. FOREST STRUCTURE FOR ECOSYSTEM MONITORING 
AND MANAGEMENT 

Chapter Objective: Present the rationale for the monitoring of forest structure in an 
ecosystem monitoring framework in a Canadian context 

Forest structure is the above-ground organization of plant materials (Spurr and Barnes, 

1980) with the structure of a given forest being the result of competition for light, water, and 

nutrients at a particular location (Kozlowski, et al., 1991). The growth of woody plants (trees) 

is controlled through hereditary and environmental processes on the plant physiology. The 

affected plant physiological processes include photosynthesis, carbohydrate and nitrogen 

metabolism, respiration, translocation, and plant water balance. Environmental processes 

which influence the growth and development of trees are light, water, COz concentration, 

temperature, and nutrient availability (Waring and Schlesinger, 1985; Kozlowski, et a!., 

199 1). Tree growth is based upon the competition for resources; the available external 

environmental factors of light, water, and mineral nutrients. The amount of light available to 

the lower portions of trees is restricted by the level of the canopy closure. The mutual shading 

of trees results in differing light intensity available for interception by tree canopies. The 

amount of light penetrating through the canopy is inversely proportional to the number of 

trees per unit area. Light transmission in relation to individual stands has been quantified by 

stand density measures such as leaf area index, trees per unit area, crown closure, basal area, 

and stem density (Curran, 1980). 

Forest structure may vary from homogeneous even-aged stands to heterogeneous mixed 

stands with multiple age classes. The greater complexity of mixed forests compared to pure 



forests is a reflection of the variations among species in crown form, phenology, growth rate, 

longevity, and size. Accordingly, the ability to assess the structure of a forest permits insight 

into environmental factors such as hydrology, albedo, productivity, and soils. Understanding 

of the forest structure allows for the ability to monitor, model, and predict important 

biophysical processes, such as the interaction between the forest and the atmosphere, based 

upon the input of a forest structural measure to a forest productivity model (Running, et al., 

1994; Loveland, et al., 199 1). Changes in forest structure may also provide for forest 

inventory information related to forest vigor, harvests, bums, stocking level, disease, and 

insect infestations (Gillis and Leckie, 1996). As suggested, forests may be characterized in 

terms of inventory measures or biophysical parameters. Inventory parameters provide 

detailed data on the location and extent of forest resources, such as species composition, age, 

height, tolerance level, density, and crown closure (Gillis and Leckie, 1993). 

Forest biophysical parameters provide data on the productivity, structure, and amount 

of forest resources. Table 2.1 presents and defines the most common forest biophysical 

parameters. These measures are most commonly used as they are often conelated to other 

measures, can be applied to any plant canopy, and may be integrated into regional scale 

models (Running and Hunt, 1993). Forest biophysical parameters are often an attempt to 

simplify the measurement of forest structure into a single measure, such as leaf area index. 

LA1 is an important structural attribute of forest ecosystems because of its potential to be a 

measure of energy, gas, and water exchanges. Maximum canopy leaf area is correlated to 

mean annual temperature, length of growing season, mean annual minimum air temperature, 

and water availability (Gholz, 1982). Further, physiological processes such as photosynthesis, 

transpiration, and evapotranspiration are related to LA1 (Pierce and Running, 1988). As an 

analogy, Running and Hunt (1993) present the notion of a forest canopy as a "green sponge" 



with a thickness equivalent to its LAI. The collection of the detailed measures that 

characterize a forest inventory has previously been limited by the technical capabilities of 

remote sensing instruments. Current technological developments are enabling greater spectral 

and spatial resolution on a variety of platforms allowing for the remote measurement of 

inventory parameters (Leckie, 1990; Leckie, et al., 1995). Forest assessment approaches 

which incorporate data from a variety of spectral and spatial resolutions are necessary to 

address the complexity of sustainable forest management with remotely sensed data. 

Table 2.1. Typical forest biophysical parameters (definitions after Bonham, 1989) 

Parameter 
LA1 

GLOBAL lMPORTANCE OF FOREST STRUCTURE 

Detail 
leaf area index - is a measure of area of foliage per unit area of ground 

Biomass 

NPP 

Geologic records demonstrate that the Earth has undergone continuous and significant 

biomass - is the total of absolute amount of vegetation present (often 
considered in terms of above ground biomass) 
net primary productivity - is similar to biomass, but has a temporal 
component as it is related to the amount of biomass accumulated over a given 
time period 

change throughout its 4.5 billion year existence. The Earth's history may be viewed as a 

dynamic continuum, experiencing changes at various time scales. Recent research suggests 

that human activities may be responsible for some dramatically increased rates of change in 

several key components of the global system. For example, it is known that deforestation and 

the combustion of fossil fuel contribute more than 7 billion metric tons of carbon into the 

atmosphere each year above the natural flux, mostly in the form of CO2. Anthropogenic 

forces have also been presented as responsible for significant changes in ozone levels, 

desertification, deforestation, and loss of biodiversity (Jarvis and Dewar, 1993). 



The societal and ecological implications of human-induced global climate change and 

variability could be devastating. Bubbles trapped in ice cores from Greenland and Antarctica 

show that atmospheric C02 concentrations were relatively stable for at least 160,000 years, 

fluctuating between roughly 180 and 280 parts per million (ppm) (Schlesinger, 1991). Since 

the start of the Industrial Revolution, increased emissions have pushed this concentration to an 

unprecedented (in recent history) 354 ppm. This is recently observed in the excellent monthly 

record from Hawaii's Mauna Loa atmospheric recording station (Keeling, et al., 1989). 

Various simulation models predicting the climate in 2 x C02 concentrations have forecasted 

globally-averaged warming of between 1.5 and 4S°C (summarized by LeDrew, 1995, p. 63). 

Climatic simulations of increased CO2 environments have shown the greatest temperature 

increases to occur at higher latitudes, with extremes found at the continental interiors (Gates, 

1990). Such modifications in the temperature regime could alter the composition and 

functioning of the boreal forest (Davis and Botkin, 1985). 

Gates (1990) presents the need for modeling, based upon historical and current 

information, to assess the response of forests to climate variability. Potential changes in forest 

composition and the ability of forests to adapt to changing environments may be anticipated 

through modeling. Through measurement of the boreal forest components the potential is 

presented for monitoring, modeling, and reaction. Understanding of what is expected, 

through modeling, at a particular location enables comparison with ground validation. The 

ability to accurately assess forest structure is especially important at ecotones, the boundaries 

between ecoregions. 

In the forestry situation, changes to the boreal forest composition will be first noted at 

the fringes of the forest regions, such as at the northern and southern extremes of current 

boreal forest extent. Changes in environmental conditions may alter growing conditions and 



result in a shift of boundaries, and therefore, in forest structure (Waring and Schlesinger, 

1985). Gates (1 990) has hypothesized that forests will undergo great changes as temperature 

and precipitation patterns shift. The rates of forest movement will likely be slower than 

climate change, resulting in the death of sensitive hardwood species. With the shifting 

patterns of climate and precipitation it is theorized that boreal forests will move north 

replacing tundra and the mixed hardwood forests may replace boreal forests. The ability to 

detect locational changes in forest structure is a geographical research issue that may be 

addressed with remotely sensed data. 

2.3. THE CANADIANFORESTS 

Canada contains 417.6 million hectares of forested land, representing 45% of the total 

land base of the country, and is approximately 10% of the global forest cover (Westoby, 

1989). Canada's forests have been estimated to contain approximately 2.6 x 10'0 tonnes of 

biomass and 2.4 x 101° m3 of gross merchantable timber (Brand, 1990). Ninety four percent 

of Canadian forests are held in trust by governments (71 % provincial, 23% federal), with the 

remaining 6% privately owned. As forest management is largely the responsibility of 

provincial and territorial governments,, each jurisdiction has a set of forest regulations, 

policies, and legislation. The federal government's role in forestry relates to areas such as 

trade, commerce, international affairs, Indian affairs, pesticide regulation, and scientific 

research. Forest management and forest inventory in Canada are primarily a provincial 

responsibility (Gillis and Leckie, 1993). 

Approximately 56% of Canadian forests are considered commercial forests (NRC, 

1995), capable of producing timber and non-timber products, with nearly 28% of the potential 

commercial area currently being exploited. Further, approximately 12% of Canada's forest 



area is protected from harvesting by policy or legislation. The sustained yield of timber from 

Canada's forests is currently estimated at between 2.04 x 108 and 2.25 x 108 m3lyear. 

Boreal forest and Canadian forest are often considered synonymous due to the 

dominance of the boreal forest in Canada. In Canada's forests there are 165 different tree 

species, of which 63% are softwoods, 15% hardwoods, and 22% mixed woods (Gray, 1995). 

The majority of these stands are of even age composition due to disturbances such as harvest, 

fire or insect infestation. 

Canada's forests, primarily due to the large area covered, are important both in a 

scientific and economic sense. The role the boreal forests play in the regulation of 

environmental processes, such as, carbon cycling, climate, hydrology, and productivity are of 

great interest to Canadian and foreign scientists. The history of harvesting the boreal forests 

is older than Canada and continues to play an important role in the Canadian economy. 

23.1. Canadian Forest Coverage 

For the determination of Canada's forest coverage, there are three primary classification 

levels, (in order of increasing detail): 

1. national description of forest regions and sections (Rowe, 1977), 

2. forest inventory schemes (Gray, 1995), and 

3. regional and provincial site and ecoregion or biogeoclimatic zone classifications 

(Gillis and Leckie, 1993). 

Rowe (1977) describes the forest geography of the country by region and section, with a 

region being roughly uniform in physiognomy and dominant tree species. Canada is divided 

into 10 forest regions (Table 2.2), which are further divided into 90 forest sections (Gray, 

1995). The 90 forest sections are subdivided from within the forest regions based upon a 

further distinctive pattern of physiography and vegetation within the forest region (Rowe, 

1 977). 



Table 2.2. Forest regions of Canada, including area (after Gray, 

Forest Region 
Boreal Forest Region, Predominantly Forest 
Boreal Forest Region, Forest and Grass 
Boreal Forest Region, Forest and Barren 
Subalpine Forest Region 
Montane Forest Region 
Coast Forest Region 
Columbia Forest Region 
Deciduous Forest Region 
Great Lakes-St. Lawrence Forest Region 
Acadian Forest Region 
Grassland 
Tundra 

Area (x 1000 ha) 
239,438 

The long-term sustainable use of forest lands in Canada is a function of balancing a 

variety of interests. As a result, in 1991, the Canadian Council of Forest Ministers (CCFM), 

as the trustee of the National Forest Strategy, held a series of public forums to gauge public 

sentiment towards the management of Canada's forests. The resulting vision statement 

proposed that, 

"our goal is to maintain and enhance the long-term health of our forest ecosystems for 

the benefit of all living things, both nationally and globally, while providing 

environmental, economic, social and cultural opportunities for the benefit of present 

and future generations" (CCFM, 1995, p. v). 

To create a management scheme which takes into account such diverse interests, detailed 

measurement of forest ecosystems is necessary. A commitment was made to develop criteria 

and indicators which would allow for such detailed measurements. A second public 

consultation process was embarked upon soliciting input from scientists associated will all 

levels of government, academia, industry, non-governmental organizations, and special 



interest groups. The resulting recommendations are presented in Defining Sustainable Forest 

Management: A Canadian Approach to Criteria and indicators (CCFM, 1995). The 

framework of criteria and indicators is based upon the following principles: 

1. The need to manage forests as ecosystems, 

2. Forest ecosystems simultaneously provide environmental, economic, and social 

benefits, 

3. An informed and included public is necessary for implementation of sustainable 

forest management, and 

4. Forest management is a dynamic process which should reflect the best available 

information. 

To generate the desired criteria and indicators (Table 2.3), detailed measurements of forest 

inventory and biophysical parameters are necessary. For example, to assess genetic diversity, 

species, amounts and distributions of forest species must first be derived from forest inventory 

information. To assess the existing amount of biomass, a parameter such as leaf area index, 

may be computed. Further, to generate forest sector contributions to the global carbon budget, 

both inventory and biophysical parameter estimates are necessary. 



Table 2.3. Summary list of criteria and indicators for defining sustainable forest 
management in Canada (after CCFM, 1995) 

Criteria and Indicators - Ecological 

Conservation of biological diversity 
ecosystem diversity 
species diversity 
genetic diversity 

Maintenance and enhancement of forest ecosystem condition and productivity 
incidence of disturbance and stress (biotic and abiotic) 
ecosystemresilience 
extant biomass (biota) 

Conservation of soil and water resources 
physical environmental factors 
policy and protection forest factors 

Forest ecosystem contributions to global ecological cycles 
contribution to global carbon budget 
forest land conversion 
forest sector C02 conservation 
forest sector policy factors 
contributions to hydrological cycles 

Criteria and Indicators - Socio-economic 

Multiple benefits to society 
productivecapacity 
competitiveness of forest resource industries (timberinon-timber related) 
contribution to the national economy (timberinon-timber related) 
non-timber values (including option values) 

Accepting society's re,sponsibility for sustainable~deveIopment 
aboriginal and treaty rights 
participation by aboriginal communities in sustainable forest management 
sustainability of forest communities 
fair and effective decision making 
informed decision making 



2.5. FOREST MANAGEMENT: FOREST WVENTORY PARAMETERS 

Management of forest lands requires information describing the location and volume 

of timber available, and as forests are dynamic biological systems, estimates of growth are 

also required. Forest inventories are undertaken to accurately relate the characteristics of the 

forest property (Table 2.4) and these measures may also be utilized to extrapolate to future 

forest conditions. Forest mensuration (Section 3.2.1) is the actual collection of detailed 

measures on a per-tree basis, or by a statistically based sampling technique. These measures 

are analyzed to result in the indicators utilized by the forest manager. Forest managers may 

look at the site-quality of a particular stand, such as the actual volume of a stand compared 

against a standard for a site of similar characteristics. If the stand is found to be below the 

standard volume, some treatment may be prescribed (Sharpe, et al., 1976). Further, the data 

collected for a commercial forest inventory may also be applied to predict biomass based 

upon empirical relationships between species, diameter (DBH), and biomass (Schroeder, et 

al., 1997). 

Table 2-4. Indicators necessary for traditional forest management 
(UBC, 1983) 

Characteristic Indicator 
Site Quality volume 

soil 
lesser vegetation 
age-height relationships (site index) 

Stocking crown closure 
number of trees compared to a standard 

Density number of trees per hectare 
basal area per hectare 

As forest management is primarily a provincial government responsibility, each 

province has a methodology for detailed inventory of forest lands (Gillis and Leckie, 1993). 



Knowledgeable management of the forest resource requires basic information on the location, 

composition, and extent of the resource. Each province has a similar inventory technique with 

common elements (Table 2.5). Inventory techniques are continually evolving, especially to 

introduce new technologies, such as global positioning systems, geographical information 

systems, and remotely sensed data (Gillis and Leckie, 1996). 

Table 2.5. Typical provincial forest inventory parameters (after Gillis and Leckie, 
1993) 

Parameter 
Scale 
Species 
Development Stage 

Crown Closure 
Stand Indicators 
Non-Forest Conditions 

Ownership 
Map Symbol Legend 

I Detail 
Normally 1 : 12,500 to 1 :20,000 

1 ~bbreviated species or tolerance level 
Development description, including elements such as cut, burn, regenerating, 
and mature 
Percentage classes from 10 to 30% to greater than 90% 
Brief site description 
Non-forest characteristics, such as agricultural, mining, gravel, and cut 
blocks 
Land ownership characteristics 

1 Explanation ofthe symbols used 

2-6. FOREST BlOPHYSlCAL PARAMETERS 

There is an unlimited number of combinations of vegetative arrangements found in 

forests; yet, to integrate forest structure into models of forest conditions a repeatable and 

standardized measure is necessary. The growth of individual trees may be quantified by a 

variety of methods (Kozlowski, ef al., 1991). Foresters are interested in the increment in the 

amount of wood produced by a stand, while ecologists are interested in dry weight increases 

and losses of organic matter per unit area and the partitioning of dry matter production. 

Changes in weight, or biomass, of forest trees are used to assess growth, nutrient cycling, and 

energy flow in forest stands. A common measure of forest growth is net primary productivity 

(NPP), that may be thought of as the difference between photosynthesis and respiration 

(Kozlowski, et al., 1991) or as the amount of energy left to the tree for growth. NPP, is 



directly related to the amount of carbon released to the atmosphere and the inversely 

corresponding amount is that which is incorporated by the plant. NPP is the energy base for 

all secondary production in the forest environment and represents the amount of potentially 

harvestable material or organic matter for long-term storage in soils and the forest floor 

(Waring and Schlesinger, 1985). The NPP of forest stands varies widely as a function of site, 

forest type, age of stands, species and genotype, and climate. NPP increases from arctic to 

tropical regions with increasing water supply, soil fertility, and also with decreasing elevation. 

The productivity of forest stands varies significantly between different sites. The production 

of dry matter (wood) is due to the capacity of trees to synthesize carbohydrates, and therefore 

the growth of an individual tree is often related to crown size. This allows dominant trees, 

with large fully exposed crowns, to produce more dry matter than may be produced by 
' 

suppressed trees with small shade crowns. As a result, leaf area, as indicated by leaf area 

index (LAI), is directly related to the productivity of forest stands (Figure 2.1) (Running and 

Hunt, 1994). 

Figure 2.1. Relationship between maximum LA1 
and NPP (after Waring and Schlesinger, 1985) 



The ability to measure and quantify structure is made possible through the assessment 

of LAI, defined as the leaf area per unit ground area, a dimensionless index usually measured 

with a scale that provides units of m2 ma. LA1 is an important structural attribute of forest 

ecosystems because of its potential to be a measure of energy, gas, and water exchanges. 

Maximum canopy leaf area is correlated to mean annual temperature, length of growing 

season, mean annual minimum air temperature, and water availability (Gholz, 1982). Further, 

physiological processes such as photosynthesis, transpiration, and evapotranspiration are 

related to LA1 (Pierce and Running, 1988). This relationship allows for various processes to 

be estimated kom LAI. 

Absorbed photosynthetically active radiation (APAR) is important as an indication of 

vegetation energy requirements in forest structure studies. PAR is the solar radiation between 

approximately 0.4 and 0.7 pm which is consumed in the canopy photosynthetic process (Li 

and Moreau, 1996). The amount of absorbed photosynethically active radiation (APAR) is 

important in studies of forest structure due to a direct link to photosynthesis, net primary 

productivity, and the carbon cycle (Waring, et al., 1993; Sellers, 1995). A theoretical 

approach is presented by Sellers ( I  985), for relating canopy photosynthesis and stornatal 

resistance to spectral reflectivity. The limits of APAR, as a structural indicator in the 

estimation of LAI, are demonstrated in the asymptotic relationship presented in Figure 2.2. 

As illustrated, a difficulty in the estimation of LA1 >3 is due to the near complete absorption 

of PAR wavelengths related to the optical depth of a complex canopy (Sellers, 1989). The 

relationship between APAR and LA1 and vegetation indices is also asymptotic, limiting 

accurate estimation to simple, single layer canopies (Baret and Guyot, 199 1). 



Figure 23. Variation of the fraction of absorbed 
photosynthetically active radiation (APAR) with leaf area 
index (after Sellers, 1989). 

2.6.1. Within Stand Partitioning of LA1 

A maximum potential LA1 may be associated with a species and a location (Waring and 

Schlesinger, 1985) with overstory species having a greater potential for increasing leaf area 

than understory species. As a component of the Oregon Transect Terrestrial Ecosystem 

Research (OTI'ER) project, Peterson, et al. (1 987) present the variability of LA1 along a 

transect with variation demonstrated in a geographic nature. It was found that the coastal 

environment supported the growth of different species and structures than inland conditions 

(Peterson and Waring, 1993). Also demonstrated was the variability in stand LA1 as a 

function of percentage of the stand which is represented by understory species (Table 2.6). In 

an open stand, failure to include understory species will result in an incorrect estimate of leaf 

area. Knowledge of the proportion of the stand represented by overstory and understory 

species is important through all stages of succession to properly estimate stand LAI. 



Table 2.6. Total stand LA1 as a function of overstory versus understory 
representation (after Peterson, et al., 1987) 

Dominant Tree Species 

Western Hemlock 
Sitka Spruce 
Douglas Fir 
Lodgepole Pine 
White Fir 
Ponderosa Pine 

Overstory Understory 
LA1 I LA1 

% of LA1 
of 

Understory 
5 
37 
20 
26 

I 0.4 
I .2 

The proportion of a forest stand represented by overstory and understory species is a 

result of the potential species assemblages and the succesional regime of the stand. Stand 

succession, the transition of species from less to more cornp1.w structure, generally occurs 

after a disturbance (Spurr and Barnes, 1980). Figure 2.3 demonstrates the succession of a 

forest stand, initially occupied by grasses, giving way to shrubs, then trees. The tree species 

will grow towards a climax forest of species that are best suited for the conditions at that 

location. Also demonstrated in Figure 2.3 is the increasing complexity of both vertical and 

horizontal structure of the forest. The vertical structure refers to tree height distribution and 

the horizontal distribution pertains to stand density and spatial distribution (St-Onge and 

Cavayas, 1995). The grasses have minimum vertical stratification and are well represented 

from above, in contrast to the mature forests which are poorly represented from the nadir view 

(Wulder, et al., 1996a, 1998). Stand stratification is primarily the result of variations, in time 

and method of establishment and growth rate of species. 



Figure 2.3. Demonstration of vegetation succession with increasing horizontal and 
vertical vegetation complexity (after Falinski, 1989). 



MEASUREMENT OF FOREST STRUCTURE 

Chapter Oblective: Provide a framework for the research through identification and 
documentation of the limitations of existing techniques for 
spatial information extraction. 

Remote sensing, the measurement of phenomena without physical contact, enables the 

representation of physical realities with surrogate information. Relationships may be 

developed between ground-based control measurements and remotely sensed information, 

such as digital imaging satellites or airborne data. Studies involving remotely sensed data 

normally have data collection, processing, and analysis stages which relate the remote 

measures to the ground-based validation measures (Steven, 1987). Remote sensing is an 

imaging information source that can be used to assess the distribution and variability in forest 

structure. Approaches to the assessment of forest structure may either address forest 

inventory or biophysical parameters. Utilizing high spatial resolution remote sensing 

instruments, the forest image data may be collected at a resolution where the objects of 

interest are larger than the pixel size (Woodcock and Stmhler, 1987). At this spatial 

resolution, individual stand objects, such as trees, may be reconstructed from digital image 

pixel values. The ability to discern individual trees, and the relationships between these trees, 

will allow for the estimation of both inventory parameters (Gougeon, 1995a) and biophysical 

paramekrs, such as LA1 (Hay and Niernann, 1994). The suite of image processing techniques 

which has been developed to relate forest biophysical information to spectral information may 

be integrated with the newly developed object-based approaches. 



Canada has been a pioneer in the research, development, and implementation of remote 

sensing in forestry surveys and management. Early experimentation with aerial photographs 

began in the 1920s, and in the 1950s Canada was the first nation to operationalize 

management using aerial photographic interpretation (Leckie, 1990). In the 1960s large-scale 

photographic sampling for aerial surveys was pioneered (Spencer and Hall, 1988). With the 

launch of the Landsat series of satellites in 1972, Canada began to receive and implement the 

use of digital satellite imagery (Leckie, 1990). New developments, such as increased spatial 

resolution of sensors and novel image processing techniques, have been developed which are 

increasing the effectiveness of remote sensing in forestry (Gillis and Leckie, 1 996). 

In this chapter, we will provide a summary of the development of techniques utilized to 

assess structure, from in situ stand measurements, to aerial photographs, to current state-of- 

the-art high resolution digital multispectral remote sensing techniques. The estimation 

techniques developed for the assessment of structure will also be summarized in terms of 

forest biophysical and inventory parameter estimation from the perspective of both satellite 

and airbome instruments. The satellite remote sensing section will precede the airborne 

multispectral section as much of the historical analysis of forest structure with multispectral 

methods has been undertaken with satellite data. 

3.2. FlELD MEASUREMENT OF FOREST lNVENTORY 
PARA METERS 

The field measurement of forest inventory parameters is an intensive and expensive 

process (Leckie, 1990) requiring a human presence in the forest to physically measure the 

trees (Gillis and Leckie, 1993; Avery and Burkhart, 1994). Forest mensuration is understood 

as the process by which measurement of the present and future volume, growth, and 

development of individual trees and stands, and related timber products are undertaken 



(Sharpe, et al., 1976). The field of forest mensuration is concerned with direct measurements, 

sampling, and prediction (Avery and Burlchart, 1994). 

3.2.1. Forest Mensuration - Direct Measures, Sampling, and Prediction 

Direct measurement of trees requires the use of appropriate instruments; for example, tree 

calipers or a diameter tape are utilized to make measurements of tree diameter (Spun, 1952). 

Yet, as it is impractical to attempt to measure all trees of a forest stand directly, a variety of 

sampling techniques has been developed to scale direct measurements taken in selected 

locations to represent a larger area (Robinson and Wood, 1994). The techniques are generally 

based upon a rule for selecting sample trees within a plot, a criteria for selecting sample plots, 

and a method for the transformation of sample values to represent the entire area. Prediction 

of stand volume may be gleaned from tables that have been developed for most forest species 

which enable prediction of stand, or tree, volume from tree height and diameter at breast 

height (DBH) data. 

From a nadir-viewing sensor that partitions the forest canopy into a grid of regularly sized 

and shaped pixels, there are limits to what may be measured. As individuals, mature trees 

may be discriminated in the high spatial resolution remotely sensed imagery; measures that 

are based upon single trees or assemblages of trees may be estimated. There appears to be 

promise in the application of remote sensing methods in the estimation of tree-crown 

diameter, canopy closure, stand density, and tree species for non-plantation forest stands of 

deciduous and mixed forest composition. The ground data collected for this study are typical 

of the measurements taken by foresters to characterize a forest stand (Cole, 1995). A forest 

stand is considered as a group of trees that are similar enough in characteristics to be 

considered as a homogeneous unit (Landsburg and Gower, 1996). Measurements made upon 

a sample plot in a forest stand are an attempt to characterize the trees of an area representative 



of a stand, and to enable extrapolation of the measured characteristics at the plot level to the 

entire stand. (The suite of field data collected is presented in Table 6. I ,  as a component of 

Chapter 6.) 

Estimates of site characteristics are also important. Forest site characterization is normally 

based upon the interaction of factors affecting the productivity of forests, such as soils, light 

regime, climate, and topography. Measurement of site characteristics provide the forest 

manager with an indication of potential productivity of forest stands, and enable a frame of 

reference for diagnosis and prescription (Avery and Burkhan, 1 994). Site characteristics may 

be inferred through measurement of stand density, stocking level, basal area per hectare, and 

trees per hectare. As measures of site are based upon the amount and relationship of trees per 

unit area, high spatial resolution remote sensing methods may be appropriate for their 

measurement, 

3.3. FIELD MEASUREMENT OF FOREST BlUPHYSlCA L 
PARA METERS 

The measurement offorest structure may be undertaken at a variety of scales, with 

accuracy inversely related to the size of the area assessed. In situ field methods for the 

estimation of forest structure are expensive and time consuming, yet the most accurate. The 

trade-off when utilizing airborne or satellite remote sensing methods to estimate forest 

structure is the large spatial area of coverage and repeatability of measurement. In situ 

measures of forest structure will always be necessary for the calibration and validation of 

remotely sensed measures of forest structure. 

33.1. In situ Assessment of LA1 

In forestry the high labor intensity of direct measures of LA1 has been an impediment to 

LA1 measurement and as a result many indirect measures have been devised. Direct 



measurement of forest LA1 involves destructive sampling of representative trees and assessing 

the dry weight to live weight ratio of all constituent components of the sample tree. The 

individual tree leaf areas calculated are summed for the plot and divided by the plot area to 

calculate the m2 leaf area per m2 ground area (Kaufinann and Troendle, 198 1) .  Indirect 

measurements of LA1 are often related to the amount of light penetrating the canopy (light 

interception) and degree of canopy closure (see Table 3.1 for a summary of methods). 

Table 3.1. Summary of the research related to direct in situ estimation of LA1 
-- -- 

Detail Description ~eference 
Allometric computation and assessment of the relationship Kaufmann and Troendle, 
equations 

Pipe model theory 

Non-linear 
relationship 

Effect of stand 
density 

Unbiased estimates 

Hemispherical 
photography 

Comparison of 
direct and indirect 

Error assessment 

Comparison of 
prediction 
techniaues 

between leaf area and sapwood cross-sectional area 

explanation and demonstration of pipe model theory 

a non-linear relationship is found for trees of 
increasing size 

stand density is demonstrated to have an effect upon 
the ratio of foliage area to sapwood cross-sectional 
area 

methodology for estimates unbiased by stand density 
and site index 

hemispherical photography are assessed to determine 
plant area index and geometry of a forest stand 

LA1 estimates derived from allometric and light 
interception methods are compared; found to be 
poorly related 

bias and error assessment in LA1 estimation from 
sapwood cross-sectional area 

Predictions based upon sapwood cross-sectional area 
are found to provide the most accurate 

1981 

Waring et al.., 1982 

Dean and Long, I986 

Hungerford, 1987 

Long arid Smith, I988 

Chen, et al., 1991 

Smith, et al., 1991 a 

Woods, et al., 199 1 ; 
Dean, et al., 1988 

Lavigne, er a/., 1996 



3.3.1.1. Direct In situ LA1 Estimation 

Tree stems are generally composed of bark, cambium, and heartwood. Bark is the 

protective outer layer of trees, the cambium is where tissue formation is initiated, sapwood 

conducts water and nutrients from the roots to the leaves, and the heartwood contains cells 

which no longer function physiologically but act as the supportive skeleton of the tree. Most 

of the sapwood cells are dead but are able to conduct water. The pipe model theory is based 

upon the concept that a unit weight of tree foliage is serviced by a specific cross sectional area 

of conducting sapwood in the crown. Below the crown component of a tree, a large fraction 

of the tree stem may be non-conducting tissue (heartwood), so therefore the sapwood area 

would have to be known to estimate foliage (Waring, et aL, 1982; Grier and Waring, 1974). 

Lavigne, et al., (1996) assessed a variety of predictor variables in allometric estimation of LA1 

and found that estimates computed with sapwood cross-sectional areas at breast height as the 

most reliable independent variable. As a result, knowledge of the sapwood cross sectional 

area of a tree may be applied to predict LA1 (Kaufmann and Troendle, 198 1 ; Lavigne, et al., 

1996). Sapwood cross-sectional area is calculated from the radius provided from the DBH 

measurement, bark width, and sapwood width. The standard guidelines for assessment of tree 

leaf area are detailed in Aldred and Alemdag (1988). Allometric relationships are stand 

specific, based upon the local plant/environment interaction, potentially resulting in a need for 

the derivation of new relationships for each studied stand. Less expensive and more timely 

estimation methods are necessary based upon the prevailing plantlenvironrnent conditions 

found at the particular location (Chen and Cihlar, 1995). 



3.3.1.2. Indirect In M u  LA1 Estimation 

Indirect in situ methods for the assessment of forest structure have been developed to 

provide a less expensive and faster technique for the derivation of ground validation data 

(Steven, 1987) for the remote sensing of forest structure. Indirect in situ estimation of forest 

structure is based upon the theory that leaf material may generally accumulate to a magnitude 

in relation to the amount of solar irradiance received. The commonly used techniques to 

estimate LA1 consider the canopy as accumulated layers of foliage through which solar 

radiation is absorbed exponentially as the amount of leaf area increases (see Table 3.2). 

Foliage area may be expressed as the LA1 representing the upper surfaces of the leaves (single 

sided LAI) projected downward to a unit area of ground beneath the canopy. The penetration 

of radiation through the leaf layers approximates the Beer-Lambert Law, 

where, I,  is the intensity of light below the canopy, 10 is the intensity of visible light above 

the canopy, k is an extinction coefficient (the slope of the relationship), and ZLAI is the 

cumulative amount of projected leaf area measured in square meters of foliage area per square 

metre of ground area. The extinction coefficient (k) is normally a species specific value based 

upon the amount of vegetation overlap and crown shape (Waring and Schlesinger, 1985). 



Table 3.2. Summary of the research related to indirect in situ estimation of LA1 

Detail Description Reference 
Review of fisheye photography, a "crownmeter*', and a "pasture Welles, 1990 

probe" are assessed by as additional methods to 
obtain gap fraction measurements 

measurement 
methods 

All vegetation 
included in 
computation 

Underestimation of 
LA1 

Effect of sun angle 

TRAC method 

light interception techniques cannot distinguish Fassnacht, et al., 1994 
between foliar interception and that intercepted by 
plant woody tissues; also reviews measurement 
methods 

indirect measures are often found to underestimate Gower and Norman, 1991 
LA1 especially in stands where the assumption of 
random distribution of foliage is violated, such as 
conifer stands 

recommend caution as the sun angle has an effect Nel and Wessman, 1993 
upon the results when using gap fraction methods 

a technique based upon repeated hemispherical Chen and Cihlar, 1995 
sampling and calculation of gap fraction which 
provides ground truth LA1 values through assessment 
of foliage angular distribution and foliage spatial 
distribution 

Chen and Cihlar, (1 995) have developed a method of LA1 estimation which is an 

attempt at accounting for both the amount of light penetrating the canopy and the non-random 

arrangement of foliage elements. The leaf area measured with gap fraction is the effective 

leaf area as all leaf and woody matter are included. Gap fraction methods are based upon the 

assumption that the foliage distribution are random (Chen and Black, 1992) although foliage 

is non-random in distribution at the stand, species, tree, and branch levels (Whitehead, et al., 

1990; Kuuluvainen and Pukkala, 1989; Oker-Blom and Kellomaki, 1983). The Chen and 

Cihlar (1 995) technique is based upon repeated hemispherical sampling and calculation of gap 

fraction which provides ground truth LA1 values through assessment of foliage angular 

distribution (LI-COR LAI-2000) and foliage spatial distribution (TRAC - Tracing Radiation 

and Architecture of Canopies). This method addresses the two key problems with light 

penetration gap fraction methods by assessing both the distribution of foliar elements and the 



below canopy penetration of light at a number of sample points to calibrate the hemispherical 

penetration characteristics. Ground measurements are labor intensive and cover small 

sampling areas, yet the values derived at local sites may be utilized as training data for larger 

scaled remotely sensed measurements. 

3.4. FACTORS WHICH AFFECT THE REMOTE SENSlNG OF 
FORESTS 

Optical remotely sensed data is a the result of a complex series of interactions between the 

electromagnetic radiation emitted by the sun reflected off Earth's surface and received by a 

sensor. In the forestry context, this complex series of interactions encompasses factors such 

as the optical properties of the stand, spatial resolution (scale), stand object relationship to 

scale, and spatial aggregation. 

3.4.1. Spectral Response of Forest Canopies 

The interpretation of remotely sensed data of forest canopies requires knowledge of the 

factors affecting their optical properties (Guyot, et al., 1989). The factors affecting the forest 

canopy may be internal or external to the forest stand. External factors that have an affect on 

the reflectance of forests are the size of the viewed area, orientation and inclination of the 

view axis, sun elevation, wind speed, and clouds or other potential atmospheric interference 

(nebulosity). Factors internal to the stand that have an effect on reflectance are row , 

orientation, optical properties of the background, and canopy geometry (Guyot, et aL, 1 989). 

Terrain also has an effect upon stand reflectance (Craig, 198 1 ; Civco, 1989) resulting in 

variations in reflectance based upon the sun I surface / sensor geometq (Schaaf, et al., 1994). 

Knowledge of the potential factors affecting the spectral response of forest canopies assists in 

the application of the most appropriate image analysis technique. 



3.4.2. Scale in Remote Sensing 

The spatial resolution of a remotely sensed measurement is determined by the sensor's 

instantaneous field of view (IFOV), the area of the target which is viewed by a sensor in an 

instant of time. With imaging sensors, this quantity is normally expressed as a pixel size. 

Using this definition, spatial resolution is analogous to scale (Woodcock and Strahler, 1987). 

Scale is a fundamental concept in remote sensing and plays an important role in determining 

the type and quality of information that can be extracted from an image. Unfortunately this 

concept is poorly understood, likely because an image is a regular, comprehensive 

representation of the ground surface which creates the illusion of strong and predictable 

correlations between the measured radiance at each pixel and the surface features of interest 

(Woodcock and Strahler, 1987). The appropriate scale for analysis is the subject of debate 

(Table 3.3) with the cover type often playing a key role in the result. In the analysis of 

geographic spatial phenomena, the difficulty relating to spatial scale and scale changes is 

because the size of the phenomena decide the scale (Meentemeyer, 1989) and that the 

phenomena of interest are variable in size across a landscape. 



Table 3.3. Studies addressing the issue of the selection of appropriate scale for 
analysis in remote sensing 

Detail Description Reference 
Information 
content and 
measures 

information extraction measures based upon 
assessment of local entropy present as a function of 
resolution 

Wong and Vogel, 1977 

Effective resolution for urban examples the minimum resolution at which 
unique surface objects are resolvable is assessed 

Welch, 1982 

Simulated scene use of geometrical optical models to simulate forest 
scenes in order to estimate optimal resolution 

Li and Strahkr, I985 

Internal class 
variability 

as the resolution decreases (more coarse) the internal 
class spectral variability decreases improving the 
ability to classify homogeneous areas 

Cushnie, 1987 

Sensor dependent 
information 
content 

assessment of the spatial variability captured as a 
function of resolution; the effect upon classification 
and information extraction 

Irons, et al., 1985; 
Chavez, 1992; Johnson 
and Howarth, 1987 

Landscape ecology the effect of changing spatial scale on the spatial 
patterns present, concepts such as grain and extent; 
concept of the land unit as a homogeneous tract at the 
utilized scale 

Zonneveld, 1989; Turner, 
et al., 1989 

Effect of resolution 
up variograms 

variograms are often used to relate the range of spatial 
structure of a scene; this paper assess the effect of 
initial spatial resolution upon variogram results 

Ramstein and Raffy, 1989 

Decrease in 
variance with 
increase in spatial 
resolution 

the scale and spatial aggregation problem is 
demonstrated and illustrated in a forestry context; the 
effect of scale changes upon classification accuracy is 
also demonstrated 

Marceau, er al., 1994a 

Sampling grid to 
correspond to 
cover type 

the scale and aggregation characteristics of the cover 
type should dictate the spatial sampling grid interval; 
determined with minimum spectral variance 

Marceau, et al., 1994b 

Variogram 
assessment 

use of semivariogram analysis on digitized aerial 
photographs at a variety of scales to determine spatial 
dependency to derive optimal resolution; Hyppanen 
provides an example for boreal forests 

Woodcock and Strahler, 
1987; Hyppanen, 1997 

Local variance and utilization of the variogram to select appropriate 
resolution for analvsis 

Atkinson and Curran, 
1997 variogram support . . 



3.4.3. The Nature of Models in Remote Sensing 

The relationship between the spatial resolution and the forest objects of interest influences 

the information content as the elements which comprise an image are represented in detail as a 

function of the scale. Strahler, et al., (1986) propose the concepts of H-resolution and L- 

resolution to characterize scene models based on information content. The H-resolution case 

occurs if the objects of interest in the scene are larger than the image resolution. The L- 

resolution case occurs when the resolution cells are larger than the objects resulting in an 

inability to resolve individual elements. The terms high and low resolution often cany an 

absolute connotation of a pixel size, not of information content. Differing abilities for 

analysis exist depending on the initial image data content. The availability of H-resolution 

imagery has blurred the distinction between biophysical and inventory approaches in the 

remote sensing of forests as the information content of the imagery is no longer a limiting 

factor. 

3.4.4. Scale and the Representation of Geographic Data 

Remotely sensed instruments typically discretize a continuous natural surface into a 

uniform grid of equally sized and shaped pixels (Fisher, 1997; Jupp, el al., 1988). This 

arbitrary sampling of grid units by remote sensing instruments does not provide a suitable 

model for nature, and as a result there is no intrinsic geographical meaning to the spectral 

measures recorded by remote sensing systems (Marceau, et ul., 1994a). This problem is 

demonstrated as the difficulty in extracting accurate, reproducible information from images of 

varying resolutions, and in this respect is similar to a phenomenon understood to human 

geographers as the modifiable areal unit problem (MAUP) (Openshaw, 1984). The MAUP is 

two sets of interacting problems which are related to the spatial scale of the data and any need 

for aggregation of the spatial data. There are two primary problems within the MAUP, 



a variety of different results may be computed for the same data as it is increasingly 

aggregated (scale problem), and 

the data may also be aggregated in a variety of ways (aggregation problem). 

The scale problem refers to the variation of results that can be obtained when the same areal 

data are combined into progressively larger units of analysis, and indicates a failure to 

discriminate the objects of geographical inquiry. The aggregation problem arises from the 

large number of ways in which these areal units can be combined, and reflects a failure to 

understand the processes at work between scales. The integrity of the analysis is dependent 

upon the knowledgeable integration of the data during analysis through an understanding of 

the geographical phenomenon taking place and the scale of the initial data collection. Further, 

the scale of the map or image dictates the level of detail that may be represented (Table 3.4). 

The required scale for analysis or model input will dictate the detail of data acquisition. 

Table 3.4. Levels of plant recognition in forestry to be expected at selected image 
scales (after Avery and Berlin, 1992) 

The amount of variance that is captured is a function of the scale and the accuracy of 

Type or Scale 
Earth Satellite Images 
1:25,000 to 1: 100,000 
1 : 10,000 to 1 :25,000 
1 :2,500 to 1 : 10,000 
1 :500 to 1 :2,500 

any modeled results will be a function of properly representing the original variance 

General Level of Plant Discrimination 
Separation of extensive masses of evergreen versus deciduous forests 
Recognition of broad vegetative types, largely by inferential processes 
Direct identification of major cover types and species occurring in pure stands 
Identification of individual trees and large shrubs 
Identification of individual range plants and grassland types 

(Marceau, et al., 1994a). The scale of the geographic data implies a region of representation 

and an associated level of variance (Levin, 1993). Point data are often physically collected 

and scaled to represent a larger area (Norman, 1993) which implies broad homogeneity of the 

collected characteristics. The ability of the point data to capture the characteristics of a larger 

region gives rise to issues of spatial scale and aggregation. Collection of structural 



infomation at a number of locations within the larger area at the local scale enables the 

assessment of the appropriateness of the data collected to represent a larger area. Utilization 

of estimates made at the local level with high spatial resolution data may be integrated with 

data collected at lower spatial resolutions to increase the accuracies of regional estimates of 

spatially varying phenomena (Wulder, et at., 1996~). 

55. AERlAL PHOTOGRAPHY 

Aerial photography is the oldest and most frequently utilized form of remote sensing, 

originating with the merging of a photographic camera and a balloon platform in 1859. The 

spatial resolution of aerial photographs is very high and is limited mainly by film properties. 

The spectral resolution of panchromatic is defined as the range from 0.25 to 0.7 pm, with the 

potential for collection of other spectral ranges (Avery and Berlin, 1992). For forestry 

applications the spectral range from 0.5 to 0.7 pm is most commonly used. Aerial 

photography is the most frequently utilized remote sensing tool for the assessment of forests 

(Gillis and Leckie, 1996). The use of aerial photographs in the estimation of biophysical 

parameters is infrequent in the literature in comparison to usage in forest inventory (Table 

3.5). 

3.5.1 Aerial Photography for Forest Inventory and Biophysical Parameters 

The photogrammetric interpretation of aerial photographs in forestry is normally an analog 

process involving three stages: 

1. photo reading, 

2. photo measuring, and 

3. answer deduction (Watts, 1983). 

Photo reading is the recognition of familiar objects, such as roads or trees; photo measuring is 

the application of photogrammetric methods in the measurement of tree heights, crown 



diameters, or topographic contours; and, answer deduction is the derivation of information not 

directly obtainable from the photograph, such as tree species or tree condition (Watts, 1983). 

Estimation of inventory and biophysical parameters is undertaken as a potential component of 

the answer deduction phase. The technology to allow for the digitization of aerial 

photographs is a relatively recent development, with the analog approaches being better 

established and more diverse. 

Table 3.5. Summary of the research related to the use of aerial photography in the 
estimation of forest inventory parameters 
. . . . . . . 

Detail Description Reference 
Analog Methods 
Texts; manuals the analog field of air photo interpretation is beyond Watts, 1983; Avery and 

the scope of this study; referred to are a selection of Berlin, 1992; Sayn- . 
texts and manuals related to the aerial photograph of Wittenstein, 1978 
forests 

Stem counts 

History, present, 
and possibilities 

Map production 

manual interpretation of 35-mm aerial photographs to Needham and Smith, 1987 
count stems and determine species; greatest success 
found for dominant species 

good survey of remote sensing technologies in a Leckie, 1990 
Canadian context; from aerial photography to current 
and potential future remote sensing techniques; 
presents costs of different techniques 

summary of forest inventory in Canada with an Leckie and Gillis, 1995 
emphasis on actual map production; photo acquisition 
timing, quality, scales, interpretation, organization, 
procedures and accuracy are presented 

Digital Methods 
Digitization of scanning, digitizing, georectification or Leckie, 1990; 
aerial photographs orthorectification of aerial photographs, to enable 

registration to GIs based forest inventory maps 

Classification of a method is outlined to account for topographic Dymond, I992 
digitized air effects, lens falloff, and hot-spot effects of digitized air 
photographs photographs 

Applied compared semivariance and root mean square texture Lark, 1996 
geostatistics information; root mean square provided similar 

results with less computation needed; processed . 
digitized aerial photographs 



With the launch of the first Landsat satellite in 1972 systematic, synoptic, repetitive, 

mid-resolution (80 m) multispectral images of the Earth's surface were available from space. 

Data capture, transmission, storage, and analysis technologies have increased substantially 

since the first Landsat, with a wide variety of spectral, spatial, and temporal options available 

to users of satellite image technology (Table 3.6). 

Table 3.6. Most frequently utilized Earth resource satellite systems 
(Avery and Berlin, 1992) 

Sensor Spectral Number of Spatial Temporal 
Range (pm) Spectral Resolution Resolution 

Bands (m) (days) 
  and sat 
Multispectral Scanner (MSS) 0.5-0.6 4 80 16 

0.6-0.7 80 
0.7-0.8 80 

0.8-0.1 1 80 
Thematic Mapper ('I'M) 0.45-0.52 7 30 16 

0.52-0.60 30 
0.63-0.69 30 
0.76-0.90 30 
1.55- 1.75 30 
2.08-2.35 30 
10.4- 12.5 120 

SPOT 
HRV ( X S )  0.50-0.59 3 20 26 

HRV (P) 0.5 1-0.73 I 10 26 

The use of satellite data in the estimation of forest structure has been directed at the 

estimation of biophysical parameters and the accurate estimation of forest inventory 

parameters. The L-resolution sensors which have been available up to this point have not 

provided the high accuracy inventory information required by forest managers (Gillis and 

Leckie, 1996). The ability to estimate biophysical parameters and inventory information from 

satellite digital multispectral remote sensing systems is addressed in the next sub-section. 



3.6.1. Satellite Estimation of LAI 

The utility of remotely sensed data in the estimation of LA1 has been widely recognized 

and studied (Table 3.7). Remotely sensed data provides the ability to assess LA1 in a 

synoptic, digital, and repeatable manner, at a variety of scales, allowing for mapping and 

modeling at regional and global scales (Loveland, et al., 1991 ; Running, et al., 1994). In the 

estimation of LA1 from above the canopy two general approaches are the most frequently and 

successfully applied: 

1. empirical studies involving spectral reflectance values, and 

2. stochastic or deterministic canopy radiation models 

Complex canopy radiation models have been developed (Li and Strahler, 1985; Wu and 

Strahler, 1994) to assess the structure of forest canopies which take into account the effects of 

solar elevation, diffuse and direct radiation, and spectral quality (Waring and Schlesinger, 

1985). In comparison, empirical spectral studies are normally based upon the relationship 

between vegetation indices, such as the normalized difference vegetation index (NDVI) and 

LA1 (Chen, 1996). The relationship between LA1 and NDVI is asymptotic resulting in poor 

estimation above LA1 of approximately 4 (Figure 3.1) due to the overlapping of vegetation as 

both stand structural complexity and LA1 increase (Running, et al., 1986; Franklin, 1986; 

Spanner, el al., 1990; Baret, et al., 1988; Baret and Guyot, 1991 ; Asrar, et al., 1984; Spanner, 

et al., 1 994; Smith, et al., 199 1 b). 



Table 3.7. Summary of the research in estimation of LA1 from above the forest 
canopy with satellite instruments or spatial physical data stored in a GIs 

Detail Description Reference 
Canopy radiation stand models based upon the relationship sunlit and Li and Strahler, 1985; Li 
models shaded portions of the canopy; assessment of the effect and Strahler, 1992; Wu 

of mutual shadowing, crown shape, topography and Strahler, 1994; Li, et 
al., 1995; Schaaf, et al., 
1 994 

Spectral channels assessment of empirical relationships between spectral Peterson, et al., 1987; 
and ratios values, band ratios and LA1 Spanner, et al., 1990; 

Chen and Cihlar, 1996 

OpticalISAR fusion multi-source remote sensing through the fusion of Wulder, et al., 1995; 
optical and SAR data for the empirical estimation of Franklin eta!., 1994 
LA1 

Seasonal LAI from estimation of the seasonal variability of LA1 Curran, et al., 1992 
NDVI 

MIR correction for applied a rated MIR to correct NDVI for the level of Nemani, et al., 1993 
canopy closure canopy closure 

LA1 from existing the determination of LA1 may be based upon Franklin, 1995; Franklin 
information previously mapped data and known relationships and Stephenson, 1996 

stored and assessed in a geographic information 
system 

Semivariance of scene semivariance has also been demonstrated to St-Onge and Cavayas, 
simulated images contain a direct relationship with canopy structure 1995 

Evaluation of comparison of the ability vegetation indices to Chen, 1996 
vegetation indices estimate LAI; introduction of a modified simple ratio 

Pixel an attempt to discern the spectral contents of a pixel, Hall, et al., 1995; Peddle, 
decomposition in conjunction with geometrical optical modeling has et al., 1997 

also been applied to the estimation of forest structural 
characteristics 

LA1 from estimation of hardwood and mixed conifer-hardwood Fassnacht and Gower, 
vegetation indices forest LA1 from a variety of vegetation indices 1997 



Figure 3.1. Simulated relationship between LA1 
and NDVI (after Spanner, et al., 1990). 
Demonstrated is the saturation of NDVI response 
due to vegetation overlap as stand structural 
complexity increases. 

Current analysis techniques and understanding of satellite data have provided relatively 

poor estimates of forest structure due to limitations of sensor spatial, spectral, and temporal 

resolution. No better information source is cuhently available for regional and global 

assessment of forest biophysical parameters. 

3.6.2. Satellite Estimation of Inventory Parameters 

The forestry community is the largest market for satellite data in Canada of any 

application field, accounting for approximately 22% of the annual sales of satellite imagery 

(Leckie, 1990). The satellite estimation of inventory parameters offers the potential for large 

area estimation of forest stand parameters at a low cost (Table 3.8) enabling inventory and 

change detection analyses to be undertaken (Danson, 1987). 

Human visual assessment of aerial photographs continues to be the remote sensing 

inventory method of choice. Conventional methods of interpretation are both time consuming 

and costly and results may vary between analysts. The development of inventory techniques 



based upon image processing of multispectral satellite imagery increases the potential for 

reduced costs and automation. Table 3.9 presents a summary of studies which have attempted 

to assess forest inventory parameters, most of which are empirically related to ground 

measures (Danson, 1987; Franklin, 1994). (Airborne simulations of satellite sensors are also 

included in this summary.) 

Table 3.9. Summary of the research in estimation of inventory parameters from 
above the forest canopy with satellite instruments 

Detail Description Reference 
Landsat MSS a test case for operational mapping with the mid- Bryant, et al., 1980 

resolution Landsat MSS; good agreement at scale of 
analysis 

Landsat TM 

Landsat and 
ancillary data 
(DEW 

PCA of Landsat 
TM 

SPOT-1 HRV 
inventory 

SPOT and TM 

Mu1 ti-sensor 

Landsat TM 

Volume estimation 

volume estimation; assessment of empirical 
relationships between forest stand parameters and 
reff ectance data 

automated system for forest classification and 
inventory; use of MSS reflectance, texture, and digital 
elevation model 

poor estimation of stand density; principal components 
analysis used to select bandsets for softwood 
discrimination 

SPOT-1 correlation study between reflectance data 
and DBH, canopy closure, height, density, and age; 

volume estimation; estimation of coniferous forest 
volume with correlation and regression relationships; 
significant relationships were found between softwood 
volume and the log of reflectance data 

experiment to estimate crown closure from spectrally 
un-mixed classified imagery 

visually assisted species identification; digital 
enhancements to assist analog interpretation; use of 
PCA and h e a r  band combinations 

accuracy of volume estimates found to be within 25% 
of field estimates; effects of forest cover, terrain, and 
scale assessed upon timber volume estimation with 
thematic mapper data in a rocky mountain site; 

Franklin, 1986 

Franklin, er al., 1986 

Horler and Ahern, 1986 

Danson, 1987; De Wulf, 
et al., 199 1 

Ripple, er al., 1 99 1 

Gong, et a/., 1993 

Beaubien, 1994 

Gemmel, 1995 

reflectance not related to volume 



3.1. NEW GENERA TlON OF COMMERCIAL HlGH RESOLUTION 
SA TELLlTES 

The knowledge acquired from the analysis of airborne high resolution data will soon be 

applicable to a new suite of proposed high spatial resolution satellites. In the near future, high 

spatial resolution satellites will provide spatial data at a resolution of approximately 4 m 

multispectral and 1 m panchromatic. A complete discussion of the high resolution satellite 

systems is beyond the scope of this thesis, but a summary listing of proposed sensors is 

provided to indicate the types of systems which will be available (Table 3.10). The ability to 

perform forest inventory and structural analysis from a stable satellite platform with an image 

footprint of greater than 10 km should soon be possible (Fritz, 1996). 

Table 3.10. Specifications and proposed launch dates of a selection of 
high resolution satellites (Aplin, et al., 1997) 

Country 

France 
Japan 
France 
U.S. 
US. 
U.S. 
us. 
U.S. 

U.S. 

U.S. 
U.S. 

Program 

Spot SB 
ALOS 

Spot 5A 
GDE 

OrbView 
Space Imaging 

Eyeglass 
Earth Watch 
(Qu ic kB ird) 
Earth Watch 
(Early Bird) 
TRW Clark 
CTA Lewis 

Scheduled Launch Resolution in Meters 

Pan- 
chromatic 

5 
2.5 
5 
1 

1 - 2  
1 
1 
1 

3 

3 
5 

Multi- 
spectral 

10 
10 
I0 

8 
4 

4 

1 5  

15 
30 

No. of 
Bands 

4 
4 
4 

4 
4 

4 

3 

3 
384 

Table  contents created from review of press releases, Internet documentation, and Fritz (1 996) 
"Launched December 24, 1997, as of December 28/97 communication with the satellite has been 
sporadic, satellite now in uncontrolled orbit 
'~aunched August 23, 1997, technical failure resulted in re-entry September 27, 1997 



The availability of 4 m spatial resolution data is of relevance as the image processing 

that is undertaken in this thesis is upon lm spatial resolution data (Section 6.3.1). The 

methods and applications developed may provide insights to ability estimate forest structural 

parameters from the *I m spatial resolution satellite data. Small changes in the spatial 

resolution of high resolution imagery have a significant effect on image information content. 

For example, the parameter tree crown size may be distinguishable at 0.5m but no longer at 

1 .Om (LRvesque and King, 1995). These results are consistent with the findings of St-Onge 

and Cavayas (1 995) who could no longer estimate crown diameter once simulated imagery 

was degraded from 0.36m to 2.16m. A simulation study assessing the change in image texture 

as a function of image resolution, as indicated by image semivariance, also illustrated the 

change of infomation content at differing image spatial resolutions (Bruniquel-Pine1 and 

Gastellu-Etchegorry, 1998). The infomation content at a given spatial resolution, in 

conjunction with the size of the trees in the scene, result in unique image structural conditions 

relating forest structural information of a particular size regime. 

3.8. HlGHSPATlAL RESOLUTIONANDAlRBORNE 
MULTISPECTRA L REMOTE SENSING 

Airbome remote sensing provides a flexible operational and experimental tool. The 

ability to remotely sense the surface of interest at a desired time, with the chosen technical 

specifications, is the key feature of airborne remote sensing. Sensors such as the compact 

airbome spectrographic imager (casi) provide high spectral and spatial resolution (see Table 

3.1 1 for casi technical specifications). Airbome remote sensing has limitations due to the 

instability of the platform, resulting in the need to correct for image attitude (Anger, et al., 

1996). The high resolution data collected creates an H-resolution environment with the 

associated increase in variance over present satellite systems. The increase in variance results 



in problems in the application of traditional remote sensing techniques, such a multispectral 

classification (Gougeon, 1995b). Due to low flying altitudes, high resolution, and sensor 

engineering, airborne rnultispectral remote sensing instruments often have a narrow image 

width (footprint) resulting in the need for mosaicking. 

Table 3.11. Technical specifications of the compact airborne spectrographic 
imager (easi) (from Wulder, et al., 1996d) 

Spectral coverage I 545 nm spectral range within 400 nrn to 100 nm. Using 288 
channels; 2.2 nrn spectral resolution, witb 1.9 nm sampling interval. 

Parameter 
Spatial coverage 

Summary 
512 pixels, 37.8O field of view across track (May be optimized to 
44.7 " with a motorized aperture lens.). Ground resolution governed 
by aircraft speed, a1 titude, and sensor configuration time. Typically 
one to ten meters.* 

Spectral mode 

Spatial mode 

Full spectral (288 pixels) resolution for up to 39 look directions 
across the 37.8. field of view. Includes a single band, full spatial 
resolution scene recovery channel. 

Full spatial (51 2 pixels) resolution across 37.8 across track field of 
view for up to 19 user selected bands. 

I resolution of 1 1.4 nm). 
* In all modes, data are digitized to a precision of 12 bits. 

Enhanced spectral mode 

3.8.1. Estimation of LA1 with Multispectral Airborne Instruments 

Full spectral (288 bands) resolution for up to 101 look directions. 
Charge summation increases spatial coverage if spectral resolution is 
reduced (5 1 I look directions, 48 contiguous bands at a spectral 

Estimation of LA1 from airborne instruments is a relatively new application and is 

currently addressed by applying image processing techniques initially developed to assess 

imagery from satellite systems (Smith, et al., 1991b). In general, the approaches in the 

estimation of LA1 from airbome data have been empirical relationships between ground 

validated LA1 and airborne vegetation indices (Table 3.12). The high variance environment 

requires additional information to increase the accuracy of LA1 estimates. Texture has been 

combined with a vegetation index in the multivariate regression estimation of LA1 witb 

promising results (Wulder, et al., 1996a, 1998). 



Table 3.12. Summary of the research in estimation of LA1 from above the forest 
canopy with high resolution airborne instruments 

Detail Description Reference 
casi estimates of use of a ceptometer to generate validation LA1 values; Smith, et al., 1991b 

High resolution 
hyperspectral 

Multi-platform 
estimation of LAI, 
including casi 

casi estimates of 
LAI, spectral and 
textural 

Digital frame 
camera estimates 
of LAI, spectral 
and textural 

Multivariate 
spectral estimates 
from shadow 

assessmeni of the relat'hnship between LA1 and 
NDVI; resolution from 1.58 to 2.34m 

Hyperspectral casi collected at 5m resolution was Gong, et al., 1 992 
found to be strongly related to 8 pine stands with a 
LA1 range of 0 to 3.0 

Casi estimates of LA1 were included as a portion of Spanner, et al., 1994 
the OlTER project; comparatively larger standard 
errors with the casi attributed to increased spectral 
variance 

Addition of texture to regression based relationships Wulder, et al., 1996a, 
between vegetation indices and LAI; resolution 2 m 1998 
and 1 m 

Use of spectral and second order textural information Olthof and King, 1997 
to estimate LAI; regression estimates with spectral 
data are improved with textural information; LA1 
range of 1.2 to 4.9; 0.25m digital frame camera 
imagery 

Estimates of LA1 from three spectrally unique shadow Seed and King, 1997 
fractions; reported R' of 0.9 with standard error of 
0.34 over an LA1 range of 1.12 to 4.92; 0.25m digital 

fractions frame camera ima~ery 



38.2. Estimation of Inventory Parameters with Airborne Instruments 

The use of airborne multispectral instruments in the estimation of forest inventory 

parameters is the logical progression from aerial photographs and large scale digitized aerial 

photographs. Aircraft attitude correction systems (Schwan, et al., 1993), GPS (Gibbons, 

1992), and image analysis techniques are being developed to the point that operational 

applications are possible in forestry (Table 3.13). Leckie, et al. (1995) present a summary of 

the application of airborne rnultispectral remote sensing to forest inventory mapping, 

including an operational framework consisting the following steps: 

1. collection of high resolution digital multispectral imagery (* 0.70 m resolution), 

2, calibrate the data, 

3. conect the imagery for atmospheric influences, 

4. correct for remaining illumination-viewer geometry effects (BRDF), 
5. geometrically correct the imagery to a base map, 

6. apply enhancements to help discern species, 

7. visually interpret the forest stands, and 

8. transfer stand boundaries with a quality control step to produce an inventory map 

stored on a GIs. 

The ability to digitally process imagery is not yet developed enough for full automation of 

processing, but progress is being made with an increased ability to discriminate between 

individual conifer trees (Gougeon, 1995a; Price, et al., 1 W6), classify individual trees 

(Gougeon, 1995b), and to estimate stand volume (St-Onge and Cavayas, 1995). Although 

visual interpretation is currently still a necessary component of operational forest inventory 

(Leckie and Dombrowski, 1 984; Beaubien, 1994) the advances mentioned will soon make 

components of an inventory eligible for automation. 



Table 3.13. Summary of the research in estimation of inventory parameters from 
above the forest canopy with high resolution airborne instruments 

Detail Description Reference 
Advances in the current state-of-the-art in remote sensing Leckie, 1990 
remote sensing for 
forest management 

technologies for forest surveys and mapping 
applications; costs, platforms, technologies, and 
future potential 

a crown-following approach to the automatic 
delineation of individual tree crowns in high spatial 
resolution aerial images; multi-pass valley following 
approach 

Gougeon, 1993; 
Gougeon, l995a 

Stem counting 

Estimation of stand 
age with casi 

L-resolution data hyperspectral data; analysis found a 
poor relationship with digital data and age classes; 
assessed red edge, derivative spectra, and band ratios 

a summary of processing and techniques involved in 
the current level of operational use of multispectral 
data for forest inventory mapping 

Forest inventory 
mapping 

Leckie, et al., 1995 

Empirical approach 
estimates of forest 
parameters 

a regression based empirical approach was taken in the 
estimation of forest stand parameters; limited by lack 
of proper image correction and L-resolution (5 m 
resolution) 

Baulies and Pons, 1995 

Semivariance and 
geometrical optical 
models 

use of semivariograms to estimate height and stocking 
of forest stands; analysis of MEIS and simulated 
scene created utilizing geometrical optical models 

S t-Onge and Cavayas, 
1995 

Classification of 
sub-metre data 

trees as image objects; demonstration of classification 
techniques for variance rich environment; tree color 
line approach 

Gougeon, 1995 b 

Use of the casi as 
an inventory tool 

stem counts, individual tree crown areas, mean crown 
spectra, individual tree crown spectra are 
demonstrated in a forest management context 

Price, et al., 1996 

Semivariance on 
multi-resolution 
imagery 

0.25,0.5, and I .0 rn spatial resolution pixels of 
forested area sensed with a digital frame camera 
illustrate change in forest structural content with 
decrease in image resolution 

Levesque and King, 1996 

Texture analysis in 
classification of 
inventory elements 

an object specific image texture approach is developed 
and presented; the ability to place inventory 
parameters in proper class is increased with object 

Hay, et al., 1996 

s~ecific texture of H-resolution imaeerv 



3.9. OTHER TECHNOLOGES IN THE ESTlMATlON OF FOREST 
STRUCTURE 

The remote sensing of forests is undertaken with more technologies than those 

rigorously presented in this paper. Development has been undertaken on passive and active 

remote sensing systems (see Table 3.14 for a summary). Digital frame cameras, are an 

alternative to pushbroom scanners and imaging spectrometers that also provide detailed 

spatial and spectral information. Digital frame cameras acquire multispectral imagery similar 

to a digitized aerial photograph, often with one camera per wavelength range requiring 

multiple camera systems for multispectral imagery. Digital camera sensor technology is 

flexible in allowing many configurations, such as multiple single cameras with filters, single 

cameras with a filter wheel or optical beam splitting, and low cost imaging spectrometers 

using a spatially variable filter or grating (King, 1995). Imaging spectrometers provide 

spectral information for a large number of narrow spectral bands for each pixel resulting in a 

full spectral curve for each pixel (Vane and Goetz, 1993). However, the spectral channels 

collected are highly correlated, resulting in much redundant spectral data. The strength of 

imaging spectrometer data is in applications such as spectral curve analysis, end member 

collection for spectral mixture analysis, and for the identification of sub-sets of critical bands. 

Active remote sensing systems are becoming more prevalent as Iaser and radar technology are 

applied to forestry studies. Airborne laser systems emit a laser signal and time the response to 

create a profile of the top of the tree canopy (Leckie, 1990). Radar systems emit microwave 

energy and record the signal that is scattered back to the sensor. In addition, spatial 

information technologies are being developed to provide for new options for storage and 

analysis of collected data with geographical information systems (Ehlers, et al., 1989). 



Table 3.14. Brief summary of new technologies in the estimation of forest 
structure 

Detail Description Reference 
GIs integration review papers demonstrating the synergy between Ehlers, et al., 1989; Davis 
with remote 
sensing 

Radar literature 
review 

Airborne lasers 
systems 

GPS 

Imaging 
spectrome try 

Radar 
investigations of 
forests 

Digital frame 
cameras / 
Videograph y 

GIs storage and 
analysis of forestry 
data 

remote &sing and GIs; Trotter focuses on GIs in 
natural resource management. 

thorough survey of radar remote sensing applications 
for forestry applications; literature review; 
commissioned for CCRS 

survey of airborne laser systems, demonstrated an 
ability to discern canopy closure, tree height, ground 
elevation and stand density 

global positioning systems may provide for improved 
placement of sample plots and integration of physical 
data to remote sensing and GIs analysis 

introduction to special issue on terrestrial imaging 
spectrometry; review of technology and progress in 
imaging spectrometry based upon AVIRIS data 

biomass relationship to SAR data; forest backscatter 
characteristics; backscatter models related to forest 
cover 

excellent survey of the history, development, 
technology, and application of digital frame cameras; 
full summary of the use of airborne videography 

integration of GIs and a classified remotely sensed 
image to improve estimates of LA1 by decomposing 
polygons; improvement of classifications for model 

and Sirnonett, 1991; 
Trotter, 1991 

Werle, 1989 

Leckie, 1990 

Gibbons, 1992 

Vane and Goetz, 1993 

Kasischke, et al., 1994; 
Sun, et al., 199 1 ; 
Hoekman, 1985 

King, 1995 

Franklin, et al., 1997a, 
1 997b; Wulder, 1 998a; 
Wulder, et al., 1997c 

input; NPP estimation and assessment 
1. 

The history and techniques for the measurement of forest structure from in situ 

observations to state-of-the-art high spatial resolution multispectral airborne imaging 

spectrometers were presented in this chapter. Direct and indirect ground based measures of 

LA1 provide the ground validation data for remote sensing projects. The information content 

in relation to the image spatial resolution was also presented. The ability to extract 

information from remotely sensed imagery is often limited by the technology available. 



Advances in instrument technology, both in airborne and satellite areas, promise a rich 

information source for the study of forest landscapes. 

The spatial resolution available for analysis in this present study, at lm  spatial resolution, 

enables the extraction of detailed forest information. Yet, even at l m  spatial resolution the 

spatial structure of the imagery, which results fiom the discretization of the continuous forest 

landscape, is at the limit of tree discernment and beginning to relate to stand level 

characteristics. The foliage overlap which occurs in deciduous and mixed forests further 

confounds the analysis of the forest upon an individual tree basis. The information content of 

the imagery requires development of a technique which takes into account the spatial structure 

of the imagery. Current image analysis techniques, presented in the next chapter (Chapter 4), 

generally operate at a tree or stand level. To maximize the information content of the imagery 

available in this study, and upon forthcoming satellite sensors, a void in the image processing 

techniques may be addressed. The approach undertaken in this thesis proposes to make a 

contribution to the maximization of data extraction at a i m spatial resolution sensed over 

deciduous and mixed forests. Subsequent chapters (Chapters 5,7,8, and 9) address the 

shortcomings of existing image processing techniques and present an alternate approach. The 

generation of tree clusters based upon the spatial dependence between pixels is an approach to 

extract detailed forest inventory and biophysical data from available remotely sensed imagery. 





4. IMAGE ANALYSIS TECHNIQUES FOR THE EXTRACTION 
OF FOREST STRUCTURE 

Chapter Objective: Survey existing information extraction techniques, which may 
be applied to discern forest structural properties at a spatial 
resolution of I m. 

The change in Canadian forest management policy, stressing ecosystems over stands, 

has blurred the traditional lines between forest science and forest inventory. Successful 

assessment of forest structure with high spatial resolution instruments may borrow from the 

established L-resolution satellite techniques and develop new techniques suited to the 

properties of the new technology. The data collected by multispectral remote sensing 

instruments is in a digital form, allowing for mathematical analyses and manipulations. The 

information content of remotely sensed data is enhanced by the ability to apply image analysis 

techniques to extract subtle structural information. Image processing provides the ability to 

assess the interrelationships between pixel location and values. Following is an assessment of 

the image analysis techniques which are appropriate for the extraction of forest structural 

information from high spatial resolution digital imagery. For a full review of image analysis 

techniques for the extraction of forest structural information see the review paper by Wulder 

(1 998c). 

As mentioned in Section 3.4.3, the relationship between image spatial resolution and 

the objects of interest is paramount to what type of forest information may be extracted. The 

lm spatial resolution imagery of mixed and deciduous forests available for this study are at 

the transition between H- and L-resolution. The existing imagery analysis techniques for the 



extraction of forest structure were not developed with consideration specifically to the image 

structure present in the images available for this study. The survey of related image 

processing techniques in this chapter will demonstrate which image processing techniques 

may be appropriate while also exhibiting which techniques are not, providing the rationale for 

the selection of the tree clustering technique based upon pixel spatial dependence. 

Characteristically, green plants strongly absorb visible electromagnetic radiation and 

strongly scatter near-infrared radiation (Cumn, 1980). This is as a result of pigments, 

especially chlorophyll, which absorb visible wavelengths, while the air-water interfaces 

between the intercellular spaces and cell walls cause multiple refraction, resulting in high net 

reflectance values in the near-infixed wavelengths (Gausman, 1977). Vegetation indices have 

been developed to emphasize the difference between the absorption in the visible and 

reflectance in the infrared through mathematical processing of multispectral bands, such as 

ratioing and differencing. The normalized difference vegetation index is a commonly used 

vegetation index, calculated from the red (R) portion of the visible and near infrared (NIR) 

radiation, in the form of, 

NDVI = (NIR-R) / (NIR+R) 12 I 
a 

initially developed as a measure of green leaf biomass (Tucker, 1979). NDVI has also been 

demonstrated to assist in compensation for changing illumination conditions, surface slopes, 

and viewing aspects (Avery and Berlin, 1992). Canopy interception dictates the upper limit for 

vegetation to utilize available sunlight for photosynthesis which further drives production (Law 

and Waring, 1994). NDVl captures infomation relating to the amount of radiation absorbed in 

the visible (Red) and reflected in the infrared (NIR) by vegetation. 



Vegetation indices, such as NDVI, may be viewed as a surrogate for scene vegetation 

content and are applied in an attempt to relate to physical measures of vegetation, such as 

LAI. Other vegetation indices may be utilized with some success, such as RVI, demonstrated 

by Spanner, et al., (1994) to be well related to LAI. Nemani, et a!., (1993) utilized the middle 

infrared of the Landsat sensor to apply a correction for the effects of changes in the level of 

canopy closure on the computation of NDVI. There are many different vegetation indices 

which may relate to particular characteristics in a given case (Huete, 1988; Chen, 1996; 

Myneni, et al., 1995). Chen and Guilbeault (1 996) found that in relationships between a 

vegetation index and LAI, that the indices based upon simple ratios of two bands were best 

correlated with ground measurements of LA1 and the fraction of photosynthetically active 

radiation (WAR). Limiting the effectiveness of vegetation indices in the estimation of forest 

structure is that relationships are frequently non-linear and reach an asymptote at an LA1 value 

of approximately 4 (recall Figure 2.2, p. 21) (Running, et aL, 1986; Franklin, 1986; Spanner, 

et al., 1990; Baret, et al., 1 988; Baret and Guyot, 199 1 ; Asrar, et al., 1 984; Spanner, et al., 

1994; Wulder, 1 996b). 

By definition, NDVI is a function of infrared and red reflectance values (Formula 2). 

Table 4.1 is a mathematical illustration of the lack of variability in NDVI values for a series of 

infrared and red reflectance values which result from a diversity of image features. The 

spectral conditions which result in the same NDVI could be the result of differing vegetative 

and forest structural conditions or from non-vegetated features. Variability in forest structural 

characteristics, such as stand density, crown closure, or species composition could be 

accounting for the variability in infrared and red reflectance. Surface conditions which result 

in low infrared and red spectral values, such as a sandy loam soil (Avery and Berlin, 1992), 

may result in an NDVI value which causes confusion with vegetation. Conversely, high 



infrared and red values, while physically unlikely, could also produce a NDVI value expected 

for vegetation. The presentation of the mathematical argument is intended largely to illustrate 

that spectral vegetation indices, while useful, must be applied with caution. As a result, an 

attempt to incorporate ancillary information to assist NDVI in the assessment of forest 

structure is indicated. 

Table 4.1. Variability in NDVI with changing infrared 
(IR) and Red reflectance values 

IR Red NDVI IR I Red 
10 2.5 0.60 4 
20 5 0.60 4 
30 7.5 0.60 4 
40 10 0.60 4 
50 12.5 0.60 4 
60 15 0.60 4 
70 17.5 0.60 4 
80 20 0.60 4 
90 22.5 0.60 4 
1 00 25 0.60 4 

4.3. TEXTURE IN THE CONTEXT OF FOREST STRUCTURE 

The preceding section demonstrated the shortcoming of NDVI in the estimation LA1 due 

to an asymptotic relationship for LAIs greater than 3. The vegetation index values saturate as a 

function of being derived from a remote platform which may only view the vertical expression 

of a stand. As LA1 values increase, the horizontal complexity of the stand also increases, 

proving difficult to measure from a vertical viewing remote platform. For example, stands with 

differing horizontal levels of complexity may appear the same to a vertical viewing sensor 

(recall Figure 2.3, p. 23). Accordingly, stands with varying vegetation composition and 

structure may have similar vegetation index values due to a similar vertical expression. 

The introduction of spatially sensitive image texture variables in the estimation of LA1 

increases the accuracy of LA1 values obtained remotely in relation to field collected data, 
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especially for LA1 values greater than 3 (Wulder, et al., 1996a). The variation in texture is 

related to changes in the spatial distribution of terrestrial vegetation. Texture derivatives are 

supplemental to the image data, and, accordingly, provide an accessible, low cost, additional 

information source. Image tone alone is of limited utility in the estimation of LAI. The 

addition of texture, representing the spatial variation in tones, will add structural information 

to the empirical prediction of LAI. The textural values act as surrogates for the actual 

physical canopy composition. Texture has been demonstrated to add structural information to 

the spectrally derived vegetation indices and improve estimates of LA1 (Wulder, et aL, 1 996a, 

1998). Texture has been utilized in remote sensing as ancillary information in multispectral 

classifications of L-resolution imagery of vegetation cover (Franklin and Peddle, 1990; Frank, 

1984) and H-resolution of forest structure (Table 4.2). 

Table 4.2. Summary of texture in H-resolution analysis of forest structure 

Detail Descri~tion Reference 
Development of 
textural signatures 
for MEIS forest 
scene 

Object-specific 
imager texture 
analysis 

Comparison of 
texture measures in 
the empirical 
estimation of LA1 

Digital frame 
camera estimates 
of LAI, spectral 
and textural 

Texture combined 

the development of textural signature to compare to Gougeon and Wong, 1986 
spectral signatures to assist in region growing 
segmentation of MEIS forest imagery 

an object-specific image texture analysis of H- Hay, et al, 1994; Hay, er 
resolution forest imagery improve the ability to place al., 1996 
forests into structural classes based upon the texture 
created by the inter-relationship between mature 
conifer trees 

first order, second order, and a newly developed Wulder, er a!., 1997b 
semivariance moment texture are compared for ability 
to estimate LAI; a spectral dependency is found 
between species heterogeneity, texture derivative, and 
predication ability 

Use of spectral and second order textural information Olthof and King, 1997 
to estimate LAI; regression estimates with spectral 
data are improved with textural information; LA1 
range of 1.2 to 4.9; 0.25m digital frame camera 
imagery 

texture is combined with NDVI to provide an increase Wulder, et al., I996a. 
with NDVI in empirical ability to estimate LAI over NDVI alone 1998 



43.1. Texture and NDVI in the Estimation of LAI 

Texture has been demonstrated to be valuable in the statistical estimation of LA1 (Wulder 

et al., 1996a). Yet, many texture measures are limited by subjective user based decisions, 

such as the texture measure to apply and the size of window. In this example, digital image 

semivariance is computed to assess the mean spatial dependence within image sample plots to 

dictate customized window sizes (Franklin, et a!., 1996) for the derivation of first and second 

order texture measures. First-order texture is a representative statistical value for the central 

cell of a fixed moving window which is passed over the image (Jensen, 1986). Second-order 

texture measures are not computed directly from the image values but rather from the 

statistical distribution of local properties in the spatial domain. An example is the calculation 

of second-order statistics from pixel relationships stored in a gray level co-occurrence matrix 

(Haralick, et al., 1973). A hybrid spatial measure is also presented in this example, 

semivariance moment texture, or SMT (Wulder et al., 1998). SMT is derived from the 

semivariance response found at each pixel. At each pixel semivariance response is computed 

and significant locations of the semivariance response are utilized as spatial descriptors. The 

nugget, sill, range, mean semivariance between nugget and sill, and the slope of the 

semivariance response between nugget and sill, are the values which may be derived for each 

pixel with SMT. 

The work of Wulder et al. ( 1996a, 1998) is an exploration of the relationship between 

LAI, NDVI, and texture. A summary of the findings of Wulder et al. (1 998) demonstrates the 

potential of a variety of texture measures in the estimation of LA1 from airborne spectrometer 

data. The relationship between LA1 and NDVl is important to provide the vegetative 

characteristics of a stand. The relationship between LA1 and NDVI is weak when considered 

over a variety of stands simultaneously, due to spectral variation between stands. Within 



stands, the species heterogeneity will also diminish the relationship with LA1 and decrease the 

strength of the relationships. The spectral and structural variability between stand types 

dictates the need for stratification between stand types for analysis. For hardwood stands, a 

strong initial relationship between LA1 and NDVI may be found based upon broad canopy 

elements and species spectral similarity. In hardwood stands, primary texture measures and 

SMT values are found to be best related to LAI. Primary texture measures are most 

successful for the estimation of homogeneous cover types. SMT measures are sensitive to the 

spatial characteristics of the stand such as crown closure and density and as a result are useful 

in the estimation of a variety of cover types. Multivariate estimation of LA1 from NDVI and 

two texture measures resulted in an increase of coeffkient of variation to 0.61 from an initial 

0.42 between LA1 and NDVI. An assessment of softwood plots demonstrated the need for 

stratification between regeneration regimes. In plantations the tree planting pattern results in 

a strong textural component to the softwood stands. Mixed wood plots, containing both 

deciduous and coniferous species, consequently contain spectral variability based upon both 

species and vegetation distribution. As a result, texture proved significant in increasing the 

ability to estimate mixed forest LAI. 

Based upon these encouraging results, further investigation of image spatial information in 

the estimation of forest structure will be pursued. Some conclusion which may be drawn from 

these previous studies are, 

first- and second-order texture are capturing different information based upon 

factors such as species spectral response and density, 

SMT is generating data related to the distribution of vegetative elements of a stand 

and the spectral response of these elements, and 
the performance of the texture measures in the predictive equations of LA1 is 

found to be dependent upon forest cover type. Accordingly, in the spectral 



estimation of LAI, a specific texture measure may be required as input on a species 

specific basis. 

As described above, in the summary of the work by Wulder et al. (1996a, 1998), spatial 

information was incorporated into empirical models for the estimation of LA1 with promising 

results. One problem with the empirical estimation of LA1 from image spectral and spatial 

values is the selection of pixels from which to extract the reflectance information. 

4.4. DIGITAL TREE CROWN DELINEATION 

The ability to digitally delineate tree crowns of a forest allows for improved estimation 

of inventory elements such as density, volume, and canopy closure. Forest stand density 

estimation has been attempted on L-resolution data with an accuracy too low for inventory 

usage, but high enough for regional density characterization (Franklin, 1994; Wu and Strahler, 

1994). Methods are being developed to estimate forest structure directly through the 

delineation of the actual objects of interest. Once delineated, trees may be classified, 

separated from the understory, or spectrally assessed (see Table 4.3). An international forum 

on the Automated Interpretation of High Spatial Resolution Imagery for Forestry (Leckie and 

Hill, 1998) demonstrated several current approaches to the delineation of tree crowns, such as 

valley following (Gougeon, 1998), radiance peak filtering (Niemann and Adams, 19%; 

Walsworth and King, 1998), edge finding (Pinz, 1998), template matching (Pollock, 1998), 

morphology (Barbezat and Jacot, 1 998), and clustering (Culvenor, et nl., 1998; Wulder, 

1 998b). 

An example of the valley following approach to stem counting and classification has 

been demonstrated upon H-resolution MElS multispectral scanner data of conifer forests. 

Image processing techniques are applied for the isolation of conifer tree species (Gougeon, 

1995a), and subsequent classification schemes for the crowns delineated on the H-resolution 



imagery (Ciougeon, 1995b). The tree delineation approach outlined by Gougeon (1 995a) 

considers the dark understory areas between trees as "valleys" and attempts to join together 

the comparatively low valley digital numbers. An iterative approach to the joining of valley 

pixels results in nearly delineated trees requiring further sharpening with a rule-based strategy. 

The rule-based classification is based upon spatial discrimination of the trees considered as 

objects, and applying techniques borrowed from manual aerial photo interpretation. 

A stem isolation approach based on'radiance peak filtering has been presented by Hay, 

et al. 1996. Radiance peak filtering is based upon the premise that each tree in an H- 

resolution scene has a bright pixel which represents the apex of the tree. Passing a filter over 

the image and seeking the highest digital number within the filter kemel provides an estimate 

of tree stem locations (Dralle and Rudemo, 1997). Normally a kernel of a fixed size is passed 

over the image which does not account for the presence of trees of a variety of sizes. Hay, er 

al. (1 996), used semivariance to customize the kernel size for the extraction of the radiance 

peaks. Daley, et al. (1 W8), dynamically allocated the kernel size for each pixel location 

based upon the local scene structure. The problem common to radiance peak filtering is a 

large number of pixels indicated as trees that are not. The problem of false positives has been 

investigated by Bumett, et al. (1 998), through the introduction of spatial autocorrelation and 

spectral directionality. To account for false positive identification based upon multiple 

radiance peaks for an individual tree crown upon high spatial resolution digitized aerial 

photography, Walsworth and King (1 998) compare a cumulative pixel transversal, or cost 

surface, to a local maxima filter. Among the results indicated is the ability of a double aspect 

technique of image decomposition which provides information relating changes in tree size, 

density, and illumination conditions. 



Edge finding techniques for the isolation of tree crowns often work in conjunction with 

a radiance peak filter. Once the radiance peak is isolated the edges to the image object may be 

delineated based upon an iterative search approach (Pinz, 1998). Template matching 

approaches are based upon the spectral characteristics found within an image scene compared 

to synthetic image templates. The synthetic image templates are generated based upon known 

stand characteristics which may be matched to image scenes to indicate the crown distribution 

present in the imagery (Pollock, 1998; Larsen, 1998). The morphology of digitized airphotos 

has also been presented as a means to extract tree crowns (Barbezat and Jacot, 1998). 

The overlap of foliage common to deciduous species results in difficulty in the 

delineation of individual stems. The foliage of co-dominant species are found to overlap, 

while suppressed trees growing beneath the more dominant trees result in spectral confusion. 

Wulder (1998b), has approached the problem through generation of clusters based upon 

spatially dependent groups of pixels. On I m spatial resolution imagery of a deciduous forest 

the clusters represent either a large single tree or a cluster of spectrally similar trees. The 

clusters of trees may be spectrally classified, provide clues to crown closure, and also indicate 

the stand level structure. Culvenor, el al. (1 998), demonstrate an approach to clustering based 

upon identification of maxima and minima pixels, of an infrared image channel, to represent 

crown centroids and crown edges. A user defined parameter is used to calculate a threshold 

value for acceptance or rejection of a pixel's membership to the crown under consideration. 

The interest by the forestly and ecological communities to possess an accurate 

accounting of all trees within a management unit or an ecosystem is illustrated by the variety 

of tree crown delineation approaches. Factors which affect the remote sensing of forest 

canopies also have an effect on the efficacy of the tree crown delineation approaches. The 

relationship between the image resolution and the tree size is important, as the ability to 



reconstruct trees with a number of individual pixels is often required. Cover type is also 

important as conifers are generally more readily delineated than deciduous species. The 

difficulty in finding an automated approach to tree crown delineation that is robust to all 

forest conditions indicates the utility of a system which pairs the automated crown detection 

approaches with a photointerpretation approach (Leckie, et al., 1998). 

Table 4.3. Summary of stem counting in analysis of forest structure 

Detail Description Reference 
Multiple pass a crown-following approach to the automatic Gougeon, 1993; 
valley fofiowiq, delineation of individual tree crowns in high spatial Gougeon, 1995a 
plus rule based resolution aerial images; complete and thorough 
improvements outline of methodology and rationale; initially a 

valley following approach is implemented then a rule 
based stage improves the initiaI delineation 

Bright pixel as the through implementation of an object specific texture Hay, et al., 1996 
crown centre measure Hay created tree objects from H-resolution 

imagery; the highest NDVI value (bright spot) was 
found to correspond with tree crowns 

Use of the casi of a implementation of Gougeon's techniques; Price, er al., 1996 
forest management demonstrated an ability to delineate trees, compute 
tool stem counts, stand density, canopy closure, and 

estimation of broad classes of DBH and height 

Cellular automata Radiance peak filter applied to isolate individual tree Walsworth and King, 
and Markov locations; transitions between computed Markov 1997 
transition matrices transition matrices demonstrate differing forest 

structural information content for pixel based and 
neighborhood based estimates 

Automated An international workshop on techniques and Leckie and Hill, 1998 (in 
interpretation of applications related to the processing and analysis of press) 
high spatial high resolution imagery in a forestry context; 
resolution imagery example techniques are valley following, radiance 
for forestry peak filtering, edge finding, template matching, 

morphology, and clustering (summaries in text above) 

4.5. SPA TlA L DlSCRIMlNA TORS 

The ability to discern individual conifer trees has been demonstrated in the previous 

section, based upon spectral differences between the overstory and understory and the 

implementation of rule-based procedures. The mle-based procedures which are implemented 



attempt to introduce techniques utilized in the visual interpretation of aerial photographs 

based upon shape, size, and distribution (Gougeon, 1995a). Fournier, et al., (1995) developed 

a catalogue of spatial discriminators for future implementation of a rule-based delineation 

procedure. Discrimination of stems was undertaken on 40 cm MEIS data by a 

photogrammetrist to assess the utility and validity of the spatial discriminators. The 

accuracies found from visual interprztation of the MEIS imagery based upon the classification 

rules was found to be within the range of accuracies expected for interpretation of aerial 

photographs. The 40 cm resolution data were found to be at the limit for the assessment of 

tree outlines and a need was expressed to apply the technique to higher spatial resolution 

imagery. Unfortunately, the resolution of the imagery being available for this thesis research 

is of too low a resolution to attempt shape detection. 

4.6. HIGH RESOLUTION IMAGE CLASSIFICA TlON 

Once trees have been delineated through the application of digital methods, further 

information is available based upon the digital numbers found within each crown. Spectral 

information may be extracted from each individual tree crown to enable classification to 

species types based upon the observed spectral response. Traditional classification tools, 

successfully applied to L-resolution data (Robinove, 198 1 ; Congalton, 199 1 ) assume pixels to 

be independent and normally distributed, which is not the case with the delineated tree 

objects. Gougeon (1 99%) presents a comparison of possible multispectral classification 

schemes for individually delineated coniferous plantation tree crowns. Seven differing 

multispectral representations for the tree crowns are extracted for comparison by Gougeon 

(1 995b): 

1. mean digital number, 

2. mean of sun lit crown, 



3. highest digital number (brightest pixel), 

4. tree color line - slope, (slope signature derived from relationships between all the 

bands compared individually with the infrared), 

5. tree color line - mean vector and first principal component, (mean vector of tree 

color line in multidimensional space) 

6. tree color line - mean vector, first principal component, and eigen values, (as with 

number 5, with the addition of the eigen values to describe the spread of the 

distribution), and 

7. mean and covariance matrix, (the mean and covariance matrix of the distribution of 

pixels in multispectral space for each tree crown. 
The tree color line is an attempt to generate a single value to represent the relationships found 

with principal components analysis (Gougeon, 1995b). A single summary value may be 

incorporated into the tree classification schemes. Similar maximum likelihood classification 

accuracy results are found for each technique with the greatest classification success 

demonstrated with the "mean of sun lit crown" digital number representing the spectral 

response of the crown. 

4.7. IMAGE SEMIVARlANCE IN THE CONTEXT OF FOREST 
STRUCTURE 

A variogram describes the magnitude, spatial scale, and general form of the variation in a 

given set of data (Matheron, 1963). Variograms have been the tool used to link models of 

ground scenes to spatial variation in images (Woodcock, et al., 1988a). Semivariograms are a 

graphical representation of the spatial variability, and provide a means of measuring the 

spatial dependency of continuously varying phenomena (Curran, 1988; Cohen, et al., 1990; 

Rossi, et al., 1994; Brown and Bara, 1994). The semivariogram also displays the average 

change of a property with increasing lag, although the true variogram is continuous (Oliver, et 

al., 1989). Semivariance is the variance per site when sites are considered as profiles or areas 

of pixels, and is developed from the theory of regionalized variables (Matheron, 1963, Curran, 

1988; Webster, et al., 1989; Cohen, et al, 1990; Woodcock, et a!., l988b). In a remote 



sensing context the sites are pixels, and the semivariance is the variance found between a pair 

of pixels (Evesque and King, 1996). 

4.7.1. Semivariance Computation 

A remotely sensed image may be processed for semivariance through the computation of 

the relationships between pixel pairs. In the case of a transect passing across a remotely 

sensed image, the digital numbers z of pixel transect x are extracted at regular intervals (where 

[x = 1,2, . . ., n]). The relationship between a pair of pixels found h pixels apart, or the lag 

distance, is recorded as the average squared difference between all pixel pairs. The 

semivariance, y(h), between pixels is half of the value of the average squared difference 

between pixels, and is computed as follows for pixels found h lags apart is (Curran and 

Atkinson, 1998): 

I 
y(h) = ~E[z(x)  - Z(x - h)]' [ 3 ]  

In each transect of values there will be m(h) pairs separated by the same lag distance h. The 

value y is an estimate of the semivariance and is understood as a measure of dissimilarity 

between pixels spatially separated (Jupp, et at., 1988). As a result, the semivariogram 

function q(h) may be used to display the average semivariance at each lag in a graphical 

manner. For each transect there are m(h) observational pairs all separated by the same lag h. 

For a given lag h, the semivariogram is calculated using the following formula: 

In Figure 4.1 we present a theoretical semivariogram based upon the commonly found 

spherical shape model (Curran, 1988). As the example semivariogram illustrates, through the 

low semivariance values found between locations at the initial lags, the pixels found close 

together are more closely related than those located further away. The semivariance 



computed for lag 0 is an estimate of the intra-pixel variability and provides an indication of 

the level of noise in the data, it is termed the nugget. As the distance between pixels increases 

the semivariance between the pixels also increases which results in a rise of the semivariance 

curve. The semivariance curve will rise until reaching the sill, which indicates the maximum 

variability between pixels. The range is the lag taken for the semivariance to reach the sill 

(Curran and Atkinson, 1998). The range provides an indication of the region of spatial 

dependency, the values at the lag locations greater than the range are spatially independent of 

the pixel from which the computation transect was initiated (Uvesque and King, 1996). 

sill 

Figure 4.1. Example spherical semivariogram showing nugget, sill, 
range, and curve form. 

The curve forms generated are related to the relationship between image resolution and 

the spatial extent of a surface cover. The form of the semivariogram is dependant upon the 

size and spacing of sample points or the ground resolution elements, also known as the 

support. The support is defined as the area and shape of the surface represented by each 



sample point (Curran, 1988). As a result, high spatial resolution imagery is often required to 

fully capture the fine detail of spatial dependence characteristics present. The differing 

information content with varying resolution is presented in a forestry context (Uvesque and 

King, 1996) and urban, agricultural and forestry contexts (Woodcock, et al., 1988b). 

The shape of the semivariance curve is dependent upon factors such as the 

aforementioned support, and additional factors such as, the ground surface cover, the spectral 

resolution, and the orientation of the sampling transect. The heterogeneity of the ground 

surface cover will have an impact upon spectral distinctiveness of the support and the variance 

inherent to that ground cover. The impact of spectral resolution is limited as spatial features 

are found to be consistent for gross spatial features (Curran, 1988). The orientation of the 

sampling transect is important due to the often anisotropic nature of remotely sensed imagery, 

which results fiom factors such as sun elevation and planting patterns. Curran (1988) 

presents six semivariance curve forms common to remotely sensed imagery. The curve foms 

are the result of the image characteristics such as spatial resolution, support, transect direction, 

and surface cover. The two primary groups for the possible models are bounded and - 

unbounded. Bounded models reach a sill, while unbounded models do not reach a sill (Oliver, 

et al., 1989). Patterns to the relationship between the image characteristics and curve form 

allow for curves to be f i t  to modeled data (Woodcock, et al., 1988a) and image data 

(Woodcock, et al., 1988b). 

In this research, semivariogram analysis is undertaken utilizing specifically developed C 

computer language code (Franklin, et al., 1996) that computes semivariance for each pixel 

location within an image that is found to be within a buffer of 30 pixels from the image edges. 

The 30 pixel limit is invoked as that is the length of the semivariance computation transect. 

To account for the potential effects of image anisotropy, the image semivariance may be 



computed in the Queen's case around each pixel, with the average of the eight results stored in 

an image channel, or in a Rook's case where 4 directions are averaged and stored. Within this 

thesis the semivariance range is utilized as an indicator of spatial dependence (as discussed 

above), and is stored as an 8 bit integer value, which may be converted to a window size 

(Franklin, et al., 1996) or analyzed as an indication of texture (Wulder, er al., 1998). The use 

of 8 bit integer values rather than 32 bit real values saves storage space with little loss of 

information. Computing a range value for each eligible pixel in the image reduces problems 

which arise when attempting to select a transect origin. The automated process for computing 

range values did so by computing semivariance for each of the Queen's case directions 

radiating from the central pixel. Once it is determined that a pixel is eligible for processing 

based upon being within the edge buffer, each direction is treated like an individual transect. 

For each transect the semivariance at each lag is stored in an array until the semivariance 

values cease to increase. The highest value, understood to be the sill, indicates the lag number 

to be written to an array to represent the range for that direction. This procedure is followed 

for all eight directions. The eight range values are then extracted from the array and averaged. 

The average range value is written to file and the processes is resumed for the next pixel. 

With this methodology a bounded semivariogram model is assumed. If an unbounded model 

is encountered the range is set at the maximum allowable lag location. The maximum 

allowable lag location is set as one third of the total transect length as the reliability of 

semivariance (y(h)), decreases with increasing lag (h)  (Curran, et al., 1988). 

4.7.2. Semivariance Application 

A recent review paper by C u m  and Atkinson (1998) provides: an introduction to use of 

semivariance in remote sensing, computation, statistical rationale, summary of application, 

and some examples using semivariograms, and an indication of future applications. The 



summary provided by Curran and Atkinson (1 998) is not application specific. The emphasis 

of the following summary of applications is upon forestry applications, and especialjy those 

undertaken with high spatial resolution imagery. 

Image semivariance has been used extensively in the assessment of L-resolution forest 

structure (see Bowers, et a!., 1994; Cohen, et al., 1990 for examples). In analysis of H- 

resolution forest imagery each pixel represents near pure spectral characteristics of an object. 

Image semivariance has been demonstrated to represent image structural information 

(Franklin and McDermid, 1993). St-Onge and Cavayas (1995) have utilized the infomation 

inherent in the directional variogram as a method to estimate the stocking and height of forest 

stands, both strongly related to LAI. Semivariance response has also been exploited in the 

multivariate estimation of LA1 as an image textural indicator based upon extraction of discrete 

points from the semivariance response curve (Wulder, 1996; Wulder, et at., 1997b, 1998). At 

a high image spatial resolution small changes in image resolution have an effect on the 

accuracy and ability to estimate forest biophysical parameters (Bmniquel-Pine1 and Gastellu- 

Etchegony, 1938; Uvesque and King, 1996). Uvesque and King (1 996) present a multi- 

scale analysis illustrating the relationship between information content and image 

semivariance. For example, in the measurement of crown closure the semivariance range was 

found to have a 0.80 correlation with crown closure with 0.25 metre resolution imagery; with 

a decrease in correlation between range and crown closure to -0.16 with 0.5 metre resolution 

imagery. 



4.8. CHAPTER SUMMARY 

The image analysis techniques presented in this chapter provide an indication of the 

current state-of-the-art tool box for processing digital images of forests. Vegetation indices 

provide an indication of the vegetative characteristics of a particular location. Texture values 

provide an indication of the forest structure, based upon the spatial variability in image tones 

that is related to discretization of the forest by the remote sensing instrument. Digital tree 

crown delineation has proved successful upon conifer plantations. The ability to spectrally 

classify the conifer stands has also been promising. The use of spatial discriminators to 

digitally characterize tree crown outlines requires imagery of less than 40 cm in spatial 

resolution, even for the more predictable conifer vegetation arrangements. The utility of 

image semivariance provides an argument for continued research based upon the spatial 

dependence between pixels. The following chapter presents the Getis statistic as a means to 

characterize the spatial dependence between the pixels and we discuss how this type of 

information is appropriate for 1 m spatial resolution imagery of deciduous and mixed forests. 





5. THE GETIS STATISTIC 

Chapter Objective: Propose an alternate spatial information extraction technique 
based upon spatial statistics, in particular the Getis statistic. 

5.1. lNTRODUCTlQN 

To enable data collection by remote sensing instruments, the Earth's continuously 

varying surface is regularized into a grid of consistently sized and shaped pixels 

(Schowengerdt, 1997). Remotely sensed data, as a result, are often highly spatially 

autocorrelated. The characterization and quantification of spatial autocorrelation can provide 

a valuable source of information for both theoretical and applied studies in remote sensing. 

Consequently, various techniques have been developed to assess the spatial dependence 

characteristics of remotely sensed imagery. Typically such techniques yield summary 

measures which enable the identification of distinctive regions of spatial dependency within 

the image. In contrast, local indicators of spatial association (LISA) measures, focus upon 

variations within the regions of spatial dependence. In this chapter we provide an introduction 

to one such LISA measure, the Getis statistic, and indicate how it may be used in the analysis 

of high spatial resolution digital imagery of deciduous and mixed wood forests. The Getis 

statistic provides a measure of spatial dependence for each pixel while also indicating the 

relative magnitudes of the digital numbers in the neighbourhood of the pixel. Knowledge of 

the spatial dependence between pixels will permit the generation of clusters based upon the 

discretization of a forest landscape. 



5.2. GETlS STA TlSTlC BACKGROUND 

Considered generally, spatial autocorrelation arises when the value of a variable x 

recorded at a location on the Earth's surface is related to values of the same variable at nearby 

locations. Thus, the measurement of spatial autocorrelation involves the simultaneous 

consideration of both locational and attribute information (Goodchild, 1986). In the case of 

remotely sensed images, the locations are pixels and the attribute data are the spectrally 

derived digital numbers. Positive spatial autocorrelation is said to occur when similar values 

of x are found in spatial juxtaposition while negative spatial autocorrelation occurs when 

neighbouring values of x are dissimilar. In general, the degree of spatial autocorrelation is 

not independent of the scale at which the data are analyzed, with negative spatial 

autocorrelation being more sensitive to scale changes (Chou, 1991). As remote sensing 

methods regularize continuous landscapes into a grid of equally sized and regularly spaced 

data in the form of pixels (Fisher, 1997), it is anticipated that there will be some degree of 

dependency between pixels, most likely in the form of positive spatial autocorrelation. Such 

dependence has potentially a dual impact on the analysis of image data. On the one hand it is 

a source of nuisance and error when traditional statistical techniques involving independence 

assumptions are applied, while on the other hand it represents information which may be 

exploited as an image characteristic. 

The spatially autocorrelated nature of imagery was identified early in the assessment of 

remotely sensed data (Craig, 1979) and its effect upon traditional classification techniques 

was noted by Campbell (198 1 ). Later, studies of image spatial autocorrelation examined pixel 

inter-relationships using a scanline technique (Labovitz and Masuoka, 1984). This approach, 

however, only allows spatial dependency to be assessed in a limited number of directions. A 

more flexible approach is provided by semivariance analysis which permits both the scale and 



pattern of spatial variability in an image to be identified (Jupp, et aL, 1988; Franklin et al., 

1996). Semivariance may be computed in a given direction along a transect (Curran, 1988) or 

in a non-directional fashion, sometimes utilizing mean variograms (Marinda and Cam, 1994) 

or structure functions (Wald, 1989). Table 5.1 summarizes representative examples of this 

work. Note that the usual focus of semivariance analysis is on summary values which identify 

distinctive regimes of spatial dependence within the image. Only occasionally are values 

generated for an individual pixel or its immediate vicinity. Such exceptions are Woodcock 

and Strahler (1 987) who used the local variance within a (3x3) window as an aid to 

determining scale effects and Marinda at al. (1 992) who compute the semivariance in a (7x7) 

moving window for each pixel in a training mask. However, in the latter case it is the means 

and standard deviations of the semivariances so obtained which are actually used. 

Spatial dependency has also been explored using spatial autocorrelation statistics such 

as join-counts and Moran's I* and Geary's c (Goodchild, 1986) (see Table 5.1 for examples). 

However, such approaches yield a single summary measure which may be unrepresentative if 

the nature and extent of spatial autocorrelation varies significantly over the image. To 

overcome these limitations, local indicators of spatial association (LISA) have been developed 

(Anselin, 1995). In contrast to existing methods, LISA measures focus on local variations 

within patterns of spatial dependence (Table 5.2 summarizes such work). Thus, they have the 

potential to uncover discrete spatial regimes which might be overlooked by existing 

techniques. 

For example, Moran's l may be computed in the software package IDRISl to generate a value to represent the 
entire image or within a sub-region defined by a binary mask. As a result, to generate an image of Moran's I 
values within the first lag an individual binary mask with a 3x3 sub-region defined for each pixel of the image is 
required (Votour, 1998). 



Table 5.1. Summary of a selection of techniques utilized in the assessment and 
application of autocorrelation in the remote sensing literature 

Assess 
au tocorrelation by 
row and column 

- 

Detail - Description Reference 
spatial autocorrelation presence demonstrated in this Craig, 1979 
early study to assess the appropriate use of statistics 
upon Landsat TM imagery; spatial autocorrelation 
was assessed directionally along image scan lines or 
along image columns 

Sources of image 
autocorrelation; 
scanline processing 

Areal mean and 
variance changes 
over season 

Assessment of 
autoconelation on 
a scanline basis 

Semivariance as an 
image processing 
technique 

Join count statistics 
to assess 
classification errors 

Semivariogram 
structure functions 

Semivariance 
theory and 
application in 
remote sensing 

Semivariogram 
textural classifier 
(STC) 

present sources of variation of autocorrelation in Craig and Labovitz, 1980; 
Landsat T M  imagery; effects such as surface cover, Craig, 198 1 ; Craig, 1984 
terrain, instrument specifications, and Sun angle 

spatial correlation effects upon accuracy of supervised Campbell, 198 1 
classification of land cover are assessed through 
analysis of the means and variances of a series of 
kernels over six growing season dates 

demonstrate the effect crf autocorrelation in training Labovitz and Masuoka, 
data upon spectral signatures; autocorrefation of 1984 
signatures causes the appearance of false anomalies 

spatial filtering, spatial registration, and image Carr and Myers, 1984 
restoration, are demonstrated utilizing the 
semivariance values of Landsat TM imagery 

use of join count statistics to assess the errors in maps Congalton, 1988 
generated from remotely sensed data 

demonstration of the semivariogram as a structure Wald, 1989 
function which may linked to Fourier transform for 
assessment of periodicity of autoco~elation 

the relationship between pixels of a regularized Curran, 1988; Jupp, et al., 
surface is presented in terms of semivariance, and then 1988; Jupp, et al., 1989 
applied to simple model images 

semivariogram textural classifier (STC) demonstrated Marinda, et of., 1992; 
to exploit pixel inter-relationships relationship to Marinda and Cam, 1 994; 
vegetation cover types on radar imagery Marinda, et al., 1996 

Scale dependence 
of semivariograms 

the scale dependence of semivariograms is Lacaze, el al., 1994 
demonstrated for soil and vegetation; semivariograms 
assessed in reference to theoktical models 



Table 5.2. Summary of literature related to local indicators of spatial association 
with reference to computation or application of the Getis statistic 

Detail Description Reference 
Second-order heterogeneity of the forest as a function of the scale of Getis and Franklin, 1987 

analysis; use of the Getis model (circa 1984) to 
influence data sampling methodologies 

neighbourhood 
analysis 

Demonstration of 
standardized G: 

Demonstration of 
Getis statistic upon 
remotely sensed 
imagery 

Summary of LISA 
statistics 

Determination of a 
minimum sample 
size 

Snow cover and 
atmospheric . 

patterns 

Radiance peak 
filtering 

Getis statistic in 
relation to TM 

demonstration of Gt in applications; statistic Getis and Ord, 1992; Ord 
derivation and distribution described and demonstrated and Getis, 1995 

spatial dependence and heterogeneity of remotely Getis, 1994 
sensed data are demonstrated on a small (8x8 pixel) 
Landsat TM image sub-sample, implications to studies 
of scale effects, model specification, sampling 
procedures, data storage, and segmentation 

presentation of local indicators of spatial association as Anselin, 1995 
a new class of statistics; describes decomposition of 
global measures to assess contribution of each 
observation; valuable to indicate pockets of 
nonstationarity, identify outliers, and to assess 
locational influence of values upon global statistics 

the authors state that computation of the G statistic is Griffith, et ul., 1996 
normally distributed with a minimum sample size of 8 

examination of patterns of spatial of snow water Derksen, et a!., 1998ab; 
equivalent (SWE) values; hemispheric patterns of 
spatial dependence found to be related to atmospheric 
circulation 

semivariance is applied to dictate optimal window size Burnett, et al., 1998 
for radiance peak filtering with Getis statistic values 
used to screen out false positives 

a relationship is found between level of Getis statistic Wulder, et al., 1997a; 
and Landsat TM image channels and digitally Wulder and Boots, 1998a 

imagery classified species 

One set of LISA measures is the G statistics developed by Getis and Ord (Getis and 

Ord, 1992: Ord and Getis, 1995). Although these statistics were initially developed for the 

analysis of point data, Getis (1 994) has demonstrated their potential to identify significant 

spatial dependency in remotely sensed imagery. One Getis statistic, GT, yields a 

standardized value which indicates both the degree of autocorrelation in the values of the 

digital numbers centered on a given pixel and the magnitude of these values in relation to 



those of the entire image. Wulder and Boots, (1 998b) introduced the rationale and presented a 

methodology for the Gi* to the remote sensing community. Wulder and Boots (1998a) have 

also applied Gi* in the assessment of a Landsat Thematic Mapper (TM) image of a managed 

forest region. Study results indicate a strong Landsat TM channel and cover type dependence 

to local spatial autocorrelation measured by the Gi*. The following section will provide an 

overview of the Getis statistics and illustrate the computation and interpretation of Gi* values. 

COMPUTA TlON OF THE GETIS STATISTIC 

In general, LISA measures evaluate the extent and nature of concentration in the values 

of a variable x in a local region within the study area. The Getis statistics achieve this by 

expressing the sum of the weighted variate values within a specified distance of a particular 

observation i as a proportion of the sum of the variate values for the entire study area. This 

value can be compared with the statistic's expected value under a hypothesis of no local 

spatial autocorrelation to indicate if the degree of clustering of x values in the vicinity of i is 

greater or less than chance would dictate (Getis, 1994). 

There are two versions of the Getis statistic, Gi and G;. In the former, the value of x at 

i is excluded fiom the local sum, while in the latter it is included. G: seems more appropriate 

for remote sensing applications since it allows for the computation of the statistic with a 

window of user-defined dimensions and so it is this statistic which we describe below. 

Formally, the statistic Gf (d) for some distance d is defined (Getis and Ord, 1992) as 

G,'(d) = Xj wi,(d)xj 1 Zf i  i s ]  

where (w,(d)) is a spatial weights matrix. Here we consider symmetric binary weights, with 

ones assigned to all locations within distance d of observation i, including i itself (i.e., w, = I) ,  



and zero otherwise. In the remote sensing context, a window can be defined around an 

observation i by specifying an appropriate value of d. 

Ord and Getis (1995) provide steps to derive a standardized version of Gi* which are 

summarized in the context of application to remote sensing digital images. We begin by 

calculating the mean and variance of x for the entire image as follows 

I = Z  ] x i / n  and n = Z i x , z l n - X 2  161 

The expected value of Gi*is, 

E(Gi*) = W,' l n 

with a variance of 

resulting in the following standardized form, 

where W; = Zjwi,(d). The values of Gi* given by (5) are in Z score standardized form. Griffith 

et al. (1996) suggest that if a minimum of 8 values are used for the computation of Gi*, the 

resultant distribution of G: values is normal. Significant positive values indicate clustering of 

high variate values while significant negative values indicate clustering of low variate values. 

In consideration of remotely sensed imagery, the Gf values measure the extent to which a 

pixel is surrounded by a cluster of high or low values of a particular variable, such as image 

digital number (DN) values. Large positive G: values denote a cluster of high DN values; 

large negative G{ values denote a cluster of low DN values. In addition, computing G: 

within a series of windows of increasing windows and noting the distance at which the largest 

absolute value of Gr occurs allows for an assessment of the size of the region of association 



around an individual pixel, noted as the maximum G: distance (MGD). A small window size 

(distance) indicates that spatial dependency is confined to a very localized region while a large 

distance value indicates more spatially extensive spatial dependence. Yet, the interpretation 

of the MGD values should be done with caution. A MGD of 1 could mean that the region of 

association is small, or that the region of association is large and that Gi* is maximized 

between neighbouring pixels. Assessment of the difference between G: at maximum and 

minimum values provides insights to such situations. A weakness of the Gi* statistic, which it 

shares with other LISA measures (Tiefelsdorf and Boots, 1997), is that it cannot be used to 

identify clustering of medium values since mid-range values of G; (i.e., values around zero) 

can result from either this situation or an absence of clustering of similar variate values. 

Computer code was developed to process remotely sensed imagery for spatial 

dependence characteristics. Gi* is computed within four different window sizes representing 

four differing distances (d) measured in terms of pixels, from an initial distance of 1 (a 3 by 3 

window) up to distance of 4 (a 9 by 9 window). The largest absolute standardized Gi* value 

computed for any window represents a maximization of local association. These maximum 

Gi* and the MGD at which they occur are written to an image file for numeric and visual 

assessment. 

5.4. POTENTIAL OF 0; FOR PROCESSING OF HlGH SPATIAL 
RESOLUTlON IMAGERY 

Measures of spatial dependence, such as semivariograms, have proven valuable in 

digital image processing of remotely sensed imagery. Local indicators of spatial association 

are complementary to semivariograrns while also providing some information not detectable 

in sernivariogram analysis which allows for an improved understanding of image spatial 

structure. Knowledge of the magnitude of autocorrelated values is valuable supplementary 



information available through the assessment of digital imagery. Further investigation of 

local indicators of spatial association in the context of remotely sensed digital imagery may: 

allow for assessment of clusters to assist in up-scaling of digital data, 

provide unique magnitude information related to image clusters, 

act as ancillary data in multispectral image classifications, 

allow for the creation of hzzy boundaries around image objects, 

provide information for the delimitation of regions of similar spatial structure, 

assist in development of appropriate sampling schemes, and 

provide criteria to assist in the creation of statistically valid class signatures. 

LISA statistics, specifically the Getis statistic, provide information based on the spatial 

structure of digital images. The ability to assess the strength of inter-pixel relationships, as 

well as the magnitude of the autocorrelated data, may prove valuable when the values 

computed from semivariance, as a positive valued function, prove inadequate for a particular 

objective. For imagery collected over a forest at a spatial resolution of 1 m, spatial 

dependence information helps account for the foliage overlap and the inability to delineate 

trees by providing values fiom which clusters may be generated. 

5.5. RELA TlONSHIP BETWEEN OBJECTS OF INTEREST AND 
RESOLUTION WHElV PROCESSMUG WITH 0: 

The spatial dependency information computed upon remotely sensed imagery is based 

upon the synthesis of image spatial resolution with the size of the objects of interest. In the 

case of forest inventory trees are the objects of interest. The size of the tree crown in relation 

to the resolution dictates the type of spatial dependency infomation that will be generated. 

Figure 5.1 presents a binary example of a tree crown with a 3 metre radius with a series of 

simulated image spatial resolutions. At the highest simulated resolution (0.5m) many pixels 

compose a single tree crown; yet, as the resolution decreases the number of pixels which 

compose an object decreases. The number of pixels which compose an object relates the type 

of spatial dependency information that will be generated. At the higher spatial resolution 



levels the spatial dependency information computed as G: relates the within-crown spectral 

variability. As the resolution decreases, spatial dependencies relating the spectral differences 

between crown, understory, and shadow spectral components are generated. A decrease in 

resolution to the point that a single pixel contains an entire tree, or trees, results in the 

generation of spatial dependency values which relate stand level characteristics. As 

mentioned, this is a generalized binary example, in contrast to the complex tree crown objects 

represented by the spectral values collected with an airborne multispectral scanner. Tree 

crowns are complex spectrally due to forest architectural and structural considerations such as 

within crown variation in reflectance, irregular shading patterns, and tree overlap. 



- 8 1 pure pixels 
- 42 edge pixel! 

- 16 pure pixels 
- 20 edge pixels 

- 4 pure pixels 
- 12 edge pixels 

0 pure pixels 
4 edge pixels 

0 pure pixels 
0 edge pixels 

Figure 5.1. Idealized binary illustration of the 
relationship between image resolution, object 
resolution,and the computation of spatial dependency. 
Simulated image object has a 3m radius. 



5.6. RELA TIONSHIP BENYEEN DlGiTA L MAOE SEMIVARIANCE 
AND THE GETIS STA TISTlC 

In the near future, =Im spatial resolution panchromatic (450-900nm) data may be 

available from the proposed high spatial resolution satellite sensor QuickBird (Aplin, et al., 

1997). To explore the forestry potential of such imagery, l m  panchromatic data collected 

with the casi are assessed in the following example. The panchromatic image data were 

processed to generate an image of semivariance range values. Semivariance was computed in 

Rook's case, 4 directions, for each pixel with the results averaged to represent the pixel 

(Woodcock, et aL, 1988a). (Refer to Section 4.7.1 for semivariance computation details.) As 

noted in Section 4.7.1, the transect length for computation of semivariance for each direction 

of the Rooks case is 30 pixels, which is larger than the image objects of interest, while also 

allowing for a sufficient number of pixels for pair-wise processing at the size of the support. 

The support, representing the size of the sampling unit, in the case of remotely sensed data is 

indicated as the pixel size. 

Figures 5.2a-d numerically illustrate the spatial dependence characteristics within the 

semivariance range computed upon a subset of casi panchromatic image data (Wulder, 

1998b). The central number outlined is the pixel of reference for this example. The initial 

panchromatic digital numbers (Figure 5.2a) represent a cluster of four deciduous trees, two of 

which have canopy radii in excess of 3m. The semivariance range values, denoted in bold in 

the four computation directions, illustrate the pixels which resulted in a range value of 4 to 

result for the pixel of interest (Figure 5.2b). The strength of the relationship between 

neighbouring pixels, within the range of 4 computed with semivariance, is illustrated in 

Figure 5 . 2 ~ .  As noted in Figure 5.2d, this G; value was found to be at a maximum at a 

distance of one. The 3x3 window in which the GT was found to be at maximum is also noted 

in bold type. The local spatial dependency is found to be at a maximum at the central point of 

the cluster. The high level of autocorrelation between the pixels within the tree cluster is 

demonstrated by the low distance values in which the Gi* value is maximized. The 



complementary nature between the semivariance generated range and Gr allows for the 

extraction of image information that increases the utility of semivariance measures. 

Elsewhere in the illustration high distance values are seen to relate to regions of transition. 

The relationship between spectral transitions and the nature of the pattern of distances at 

which Gi* is maximized relates well to stand density. To enable comparison, Figure 5.3a-d 

graphically illustrates the spatial dependence characteristics of the same image subset used for 

demonstration in Figure 5.2a-d. With lm spatial resolution, as stand density increases, the 

amount of change of distance values within an area also increases. 



Figure 53a. Sub-set of image panchromatic casi data 

Figure 52b. Semivariance range values computed for each pixel using 
Rooks case 

Figure 5.2~. Getis statistic values computed for each pixel 
1.38 1.16 1.1 1 0.94 0.84 0.76 0.65 0.50 0.37 0.33 
0.91 0.98 1.01 0.99 0.92 0.69 0.56 0.49 0.43 0.33 
0.91 0.91 1.00 1.01 0.96 0.87 0.86 0.80 0.72 0.66 
0.86 1.07 1.23 1.17 1.18 1.13 1.06 0.96 0.89 0.86 
0.76 1.01 1.30 1.37 1.44 1.41 133 1.16 1.06 1.09 
0.78 0.81 1.16 1.40 1.56 1.60 1.57 154 137 1.33 
0.75 0.67 0.75 0.99 1.24 1.44 1.41 1.46 1.31 1.23 
0.73 0.42 0.40 0.54 0.74 1.00 1.10 1.13 1.11 1.07 
0.40 0.09 -0.27 -0.20 0.15 054 0.73 0.89 0.99 0.96 
-0.23 -0.55 -0.88 -0.89 -0.55 034 0.44 0.72 0.79 0.67 
-0.62 -0.97 -1.38 -1.52 -1.25 -0.57 0.40 0.60 0.64 0.56 

Figure 5.M. Distance value at which Getis statistic value is maximized 



Figure 5.3a. Sub-set of panchromatic cmi 
digital image data 

Figure 5.3b. Semivariance range values 
computed for each pixel using Rooks case 

Figure 53c. Getis statistic values computed 
for each pixel 

Figure 5.3d. Distance value at which Getis 
statistic value is maximized 



5.7. CHAPTER SUMMARY 

The Getis statistic provides information related to the spatial dependence between 

pixels within the semivariance range. The ability to quantify the strength of spatial 

dependence between pixels is a function of the relationship between image resolution with the 

size of the objects of interest on the landscape. High spatial resolution imagery partitions a 

continuous surface into a grid of regularly sized and shaped pixels. The Getis statistic 

provides a metric for assessing the strength of the relationships between the pixels which 

result from the discretization of a continuous forest surface. In the case of mixed and 

deciduous forests where there is overlap between the foliage of adjacent and suppressed trees 

a spatial resolution of 1 x l m  is insufficient to extract image objects. The spatial dependence 

data generated by the Getis statistic provides a means to group trees together based on the 

strength of the inter-relationships between pixels. 

The spatial information content of the Getis statistic is complementary with 

semivariance. The range of the semivariogram indicates a region of spatial dependence. The 

Getis statistic provides an indication of the strength of the spatial dependence within the range 

of semivariance. Spatial information sources provide a means to assess forest structure based 

upon the image spatial structure which is processed; where the image spatial structure is a 

function of image spatial resolution and the forest objects of interest. 



6. RESEARCH CONTEXT, STUDY AREA, AND DATA 
DESCRIPTION 

Chapter Objective: Present the context for the analysis based upon the physical 
characteristics of the study area and the image and field data 
collected. 

6 7 STUDY AREA DESCRIPTION 

The Fundy Model Forest (FMF) is a 420,000 hectare working forest in southeast New 

Brunswick, Canada (Figure 6.1).   he model forest is located in the Acadian forest region 

(Figure 6.2) and is composed of a variety of broadleaf deciduous and coniferous species and 

include a wide range of forest conditions (Rowe, 1977) with stand ages ranging from 

regeneration to old growth. The Acadian forest region is characterized by a wide variety of 

forest species. Coniferous tree species are predominantly jack pine (Pinus banksiana), white 

spruce (Picea glauca), balsam fir (Abies balsarnea), and red spruce (Picea rubens). The 

predominant deciduous species are red maple (Acer rubrum) and white birch (Betula 

papyrifra), with stands also including beech (Fagus grandifolia), striped maple (Acer 

pensylvanicum), trembling aspen (Populus tremuloides), long tooth aspen (Populus 

grandidentata), and sugar maple (Acer saccharurn) (Wulder, 1996). The study area was 

centered near Sussex at 45' 43' North and 65" 3 1' West, with data collected immediately 

north and south of the town site. Stands were selected for inclusion in the study to represent a 

range of forest types, crown closures, stand densities, tree species, and LA1 values. 



Figure 6.1. Location of the study area in the 
eastern Canadian Maritime region, of New 
Brunswick, Nova Scotia, and Prince Edward 
Island, with the Fundy Model Forest study 
area shaded. 

Figure 6.2. The Fundy Model Forest study area presented in detail, with Sussex 
located at 4S0 43' North and 65' 31' West (NRC, 1994). 



The ground reference data are the result the combination of a summary survey, that 

required collection of a representative set of parameters for every tree in each sample plot, 

with an intensive survey that measured a selection of trees in detail (Table 6.1). All plot 

locations were referenced, in metres from the south east comer of the plot. Sap wood width 

was measured using a tree core sample extracted with an increment borer at breast height 

(1.37 m above ground). The tree core once extracted was held up to allow the opaque area of 

the sap wood area to stand out in contrast to the heart wood area. The opaque sap wood area 

was then measured using a ruler with a millimetre scale and recorded. The bark width was 

also measured from this same tree core. Errors may be introduced through biases introduced 

by different individuals making the measurements. Total tree height was measured in metres 

using a Abney level (Avery and Burlchart, 1994). The inclinometer provides the angle at 

which the instrument is held. With knowledge of the distance that the person holding the 

Abney level was standing away from the tree, while pointing the instrument at the tree top and 

to the tree base and recording the angles, the tree height may be computed using trigonometry. 

Similarly the base-to-live crown area was measured. The base-to-live crown is the distance 

from the ground up to the point where the tree bole is predominately foliated. Errors may 

result from irregular landscape, different individuals making the measurements, and dense 

foliage obscuring the view of the tree tops. Crown widths are measured using a measuring 

tape and two people. One person holds the tape to the bark of a tree while the other person 

walks out backwards from under the tree crown foliage looking up to see where the outer edge 

of the tree branches occurs. The point at which the tree being measured ends was recorded as 

the crown radius (Cole, 1995). The crown radius was measured in two directions, one in the 



same direction as the intended flight line, the other perpendicular to the flight line. Crown 

radius measurements are difficult in densely foliated areas. 

Tree species and DBH were measured for every tree found entirely within the plot area; 

this is considered as the summary sample. All of the trees which were found entirely within 

the plot were provided with a reference number. In the field the measurement crew assessed 

the breakdown of tree species and the total number of trees. To reduce the amount of time 

necessary for field sampling bivariate regression relationships were generated between DBH 

and the intensively surveyed parameters which allows for extrapolation of the characteristics 

of interest to all trees in the summary sample (Table 6.2). A random sample of the trees 

within each species was selected from random number tables to select the trees for the 

intensive survey within the 20 x 20m plot. A minimum number of 3 trees was required for 

any given species within a stand. If there were fewer than 3 trees of a particular species 

within a stand, all trees of that species are measured. In the case of plot 9 all trees were 

measured due to the small total number of trees. For species with greater than 3 available 

samples, a minimum of 40% of the trees of that species are sampled. The means and standard 

emors are provided for the estimates of sap wood width, bark width, total tree height, base-to- 

live crown, and crown radius in two directions from the summary sample of DBH values 

(Table 2). In many cases all trees of a particular species were measured. 



Table 6.1. Ground reference data sampled for each plot (* denotes parameters measured 
in both summary and intensive survey) 

plot number 
slope 
Aspect 
stand type 
Date 
tree number* 
species* 
diameter at breast height (DBH)" 
location 1 (X)* 
location 2 (Y)* 
crown class (C.C.) (C = co-dominant, I - intermediate, S - suppressed, D .= dominant) 
sapwood width (SapW) 
bark width (bark) 
total height (TotHt) 
base to live crown (BLC) 
crown width one (with flight line) 
crown width two (perpendicular to flight line) 



Table 6.2. Results of bivariate regressions between DBH and intensively sampled field 
parameters (* "m" denotes all trees measured in field, no need for estimation) 

Sapwood Bark (rnm) Height (m) Base to live Crown width Crown width 
(mm) crown (m) I (m) 2 (m) 

Plot species total Intensive Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 
stems sample 

5 Be 5 3 14.0 6.02 2.3 0.65 6.5 1.23 3.6 0.25 2.6 0.46 3.1 0.73 

rM 35 10 39.1 7.52 5.7 0.88 15.1 2.47 9.7 1.85 5.4 1.33 4.2 1.09 

rS 1 1 m m m m m m r n m m m r n m  
sM 4 3 56.7 24.07 5.0 1.83 16.7 0.88 11.8 0.21 7.1 0.22 6.3 2.91 
stM 3 3 m m m m m m m m m r n m m  
wB 4 3 48.0 14.47 5.7 1.17 14.6 1.58 8.8 0.58 5.9 0.00 7.0 0.33 

YB 15 6 32.2 8.62 4.8 0.79 14.7 1.06 6.4 1.99 5.7 1.33 5.4 1.56 
Total 67 29 

6 bF 15 10 38.6 12.06 4.7 0.70 11.9 1.59 4.3 1.42 3.8 0.61 4.0 0.72 
r M 19 10 53.4 14.84 7.3 2.29 18.7 2.23 12.6 1.59 5.8 1.24 5.7 1.65 
rS 3 3 m m m m m m m m m m m m  
wA I 1 m m m m m m m m m m m m  
wB 4 4 m m m m m m m m m m m m  
Total 42 28 

eN 1 l m m m m m m m m m m m m  
rM 7 3 34.3 4.37 7.3 2.61 13.3 0.29 8.0 0.34 3.5 0.83 4.9 0.09 
rS 9 6 49.5 17.1 3 6.7 1.86 14.9 2.67 6.5 3.70 5.0 1.24 5.5 1.03 
stM 2 2 m m r n m m m m m m m m m  
wB 10 8 58.9 11.99 8.8 1.94 16.8 2.00 11.7 1.47 5.8 1.07 5.5 0.80 

Total 40 29 

8 Be I 1 m m m m m m m m m m m m  
rM 1 1  7 42.3 12.74 4.7 0.98 12.9 1.46 5.9 2.48 5.7 0.88 4.8 1.28 
rS 8 4 45.3 16.04 5.8 0.84 11.5 3.33 2.8 1.05 21.2 2.27 21.2 2.07 
stM 1 1 m m r n m m m m m m m r n m  
wB 3 1 10 51.2 11.94 5.7 1.21 16.0 1.45 9.6 0.91 4.1 0.71 4.3 0.78 
bF 2 2 m r n m m m m m m m m m m  
Total 54 25 

9 ItA I I m m m m r n m m m m r n m m  
rM 19 19 m m m m m m m m m m m m  
rs 2 2 m r n m m m m m m r n m m m  
t A 2 2 m m m m m m m m m m m m  
wB 3 m m r n m m m m m r n m m r n  - 3 

Total 27 27 

stM I 1 m r n m r n m m m m m m m m  
.P 2 2 m m m m m m m m m m m m  
wB 34 10 49.7 10.24 6.7 1.02 15.3 1.97 9.7 0.87 4.2 0.49 4.0 0.71 

Total 51 20 
Note: for species abbreviations see Table 6.4. 



Table 6.3. Dubee Settlement flight line plot summaries, including species, 
number of stems per species and total, and LA1 

plot no- stand typew species (number of stems) total LA1 
stems 

5 IH -TH over Be(51, rM(35), rS(l), sM(4), 67 4.93 
stM(31, wB(4), yB( IS) 

6 MW over, bF(15), rM(19), rS(3), wA(l), 42 5.87 
light HW under wB(4) 

7 HW - SW over, Be(lO), bF(l), eH(1), rM(7), rS(9), 40 6.88 
MW under stM(2), wB(10) 

8 HW -SW over, W l ) ,  rM(I 11, rS(8), stM(I ), 54 5.25 
HW -SW under wB(3 1 ), bF(2) 

9 HW over, SW under lt.A(l), rM(19), rS(2), tA(2), wB(3) 27 3.28 
10 IH over, TH under rM(14), stM( 1 ), jP(2), wB(34) 5 1 4.30 

* all plots 20m2 
-Stand crown class/type: 

IH - intolerant hardwood, 
TH - tolerant hardwood, 
HW - hardwood, 
SW - softwood, 
MW - mixed-wood. 

(for species abbreviations see Table 6.4) 

Based upon the plot information generated from the field data plot maps are created. 

The plot maps have been degraded to a regular 1 m grid to allow for comparison to the lm  

spatial resolution remotely sensed data. The plot maps are created from the field data held in 

a GIs. To generate the digital field plot maps, information relating tree height, crown size, 

and tree crown class was integrated with a specifically developed C program (Figure 6.3). 

Tree height information is available for each tree based upon the field sampling and 

regression results. Crown size is a term to describe the estimate of the two-dimensional radial 

extent of the tree crown from the estimates of crown width recorded in the field and estimated 

through regression. To enable comparison of continuous measurements made in the field to 

discrete digital image data, the plot maps are a probability map. As the radial extent of a tree 

cannot be captured in i m spatial resolution gridded data, the likelihood of tree presence at a 

particular location is recorded. At the centre of a tree the likelihood of the tree being captured 

on the imagery is high, yet the amount of a pixel which is composed of tree materials 

decreases with movement from the centre of the tree. As a result, 3 classes of tree presence 



are generated, tree pixels (centre of tree), tree extent pixels, and suppressedltree extent pixels. 

Treitz, et a!., (1  992), explore the problems associated with the collection of field data for 

DSlO 
0 tree pixels (center of tree) I suppressedltree extent pixels 
Ill tree extent pixels I non-tree pixels 
(each square cell represents I by lm pixel) 

Figure 6.3. Field data plot maps for each study plot 
and image. 



classification with high spatial resolution imagery (5x5 m pixels), finding that the more 

spectrally diverse a class the lower the classification accuracy. These results illustrate the 

difficulty in capturing the original forest variance in the remotely sensed imagery. 

For the purposes of analysis the stands have been stratified into hardwood, softwood, 

and mixed-wood species (Table 6.4). Where the hardwoods are the combination of all pure 

deciduous species, softwoods are all the coniferous species, mixed-woods are the stands 

which are a combination of hardwood and softwood species. 

Table 6.4. Forest stand species composition and 
abbreviations 

hardwood class species 
Be beech 
rM red maple 
sM sugar maple 
stM striped maple 
wB white birch 
YB yellow birch 
gB gray birch 
eH eastern hemlock 
1 tA long tooth aspen 
tA trembling &pen 
wA white aspn 

Fagus grandifolia 
A cer rubrum 
A cer saccharurn 
A cer pensylvanicurn 
Betula papyrifira 
Betula alleghaniensis 
Betula popufolia 
Tsuga canadensis 
Populus grandidentata 
Populus tremuloides 
Populus giauca 

softwood class species 
jp jack pine Pinus banksiana - - 

WP white pine Pissodes strobus 
r S red spruce Picea rubens 
bF balsam fir Abies balsamea 
WS white spruce Picea glauca 

The heterogeneous species composition of the FMF study area required a variety of 

allometric equations to compute field based estimates of LA1 (Table 6.5). To ensure 

confidence in the allometric estimation of LAI, new equations were developed for white birch, 

red maple, and trembling aspen, the most commonly occurring species in the study region, 

from destructive samples, following the approach outlined and demonstrated by Singh (1 982). 



For species which occur infrequently in the study region, expensive destructive sampling was 

avoided by using, or adapting, existing equations. 

Table 6.5. Allometric equations applied to derive leaf area (LA) of study plots * 
Species Equation Source 
wB LA = 0.041 2 1 SAA1 ,325 Wulder, et al., 1998 

LA - 0.6964 SAA0.8472 Wulder, et al., 1998 
LA - 0.1418 SA"0.9921 Wulder, et al., 1998 
LA - ( I  63.05 SAA 1.408 I)/ adapted from Lavigne, er al., 1 996 
( 202.16A1.4081 + SAA1*4081) 
LA - ,1746 SAA1.266 adapted from Robichaud and Methven, 1992 
use the equation for rS 
LA - 0.25 SA adapted from Hungerford, 1987 
use the equation for rM ---------- 
use the equation for sM ---------- 
use the equation for sM ---------- 
use the equation for bF ---------- 

ItA use the equation for tA ---..------ 
*SA is sapwood area at breast height in cm2, LA is leaf area in m2. 

REMOTELY SENSED DATA 

63.1. Remotely Sensed Airborne casi Imagery 

On July 31, 1995, at 13:00 local time, compact airborne spectrographic imager (casi) 

imagery was acquired from a Cessna 3 10 aircraft at an elevation of 700 m and at a speed of 

approximately 55 knots utilizing the standard casi 12.5 mm focal length (Anger et al., 1996). 

This configuration was selected to scan ix l m resolution imagery with five user selected 

spectral bands (Table 6.6), to characterize significant locations on a vegetation spectral 

response curve (Figure 6.4). The sample spectral response curve presented in Figure 6.4 is of 

a single Maple leaf as sensed with a spectroradiometer (Analytical Spectral Devices, 1993) in 

the study area. Spectral signatures of any species occur within an envelope of maximum and 

minimum likely response. The spectral signature illustrated may, as a result, not be 

completely rep'resentative of all deciduous tree spectral response. The intention of providing a 

sample spectral response curve is to provide the reader with an indication of the general form 



of the spectral response expected. The illustrated spectral response curve has a steep red edge, 

the rise in reflectance from the red to infrared wavelengths, that is not common. As a result, 

the selection of 750 nm to represent the infrared requires additional justification. When 

deciding upon the wavelength range to represent the infrared two considerations were 

paramount, sufficient distance from the red wavelengths and red edge and not too far into the 

outer range of the casi spectral sensitivity as instrument noise increases near the edges of the 

approximate 400 to 900 nm range. The 750 nm wavelength centre was decided upon as 

appropriate due to the satisfaction of the two aforementioned restraints. The azimuth of the 

data acquisition flight lines is approximately towards the sun to reduce changing illumination 

conditions and view angle effects. The sky was clear and the relative humidity was low 

reducing the effects of the atmosphere upon the imagery (Wulder, et al., 1996d). See 

Appendix 1 for a complete summary of pre-, during, and post flight data acquisition activities. 

Table 6.6. Fundy Model Forest cad imagery spectral wavelength channel 
summary 

Channel and Spectral Location Bandwidth(nm) Centre (nm) Width (nm) 
channel I (green) 560.5 to 569.4 565.0 8.9 
channel 2 (red) 640.9 to 649.8 645.4 8.9 
channel 3 (red well) 660.6 to 669.6 665.1 9.0 
channel 4 (red edge) 707.4 to 7 14.6 71 1.0 7.2 
channel 5 (infrared) 748.8 to 752.4 750.6 3.6 



Pigmentation (Visible) 

350 400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 6.4. Sample vegetation spectral response curve with user selected casi channels 
superimposed. Also noted are the characteristic regions of wavelength sensitivity, 
where the spectral response in the visible wavelengths are related to vegetation 
pigmentation, and in the near infrared where spectral response is a function of 
internal leaf structure. 

To enable insight to the type of forestry information that may be extracted from 1 m 

panchromatic imagery that is expected to be included upon high spatial resolution satellite 

sensors in the near future (recall Table 3.1 I), a simulated panchromatic channel has be 

computed from the casi spectral data. As panchromatic literally means "sensitive to light of 

all colors" (Avery and Berlin, 1992) there is variability in what may be considered as 

panchromatic. The SPOT panchromatic range spans 5 10 to 700 nm (Avery and Berlin, 1992) 

while the panchromatic range of the proposed l m  spatial resolution instrument on board the 

OrbView and the 0.82m spatial resolution QuickBird satellites is 450 to 900 nm (Aplin, et al., 



1997). Based upon the data available, and the flexibility in consideration of the panchromatic 

range, the five casi spectral channels available for this study were summed and averaged to 

represent data which would be similar to remotely sensed panchromatic data. The regular 

distribution of casi channels at important spectral locations on portions the vegetation spectral 

response curve allowed for averaging without potential error being incorporated through a 

weighting of the channels. 

6.3.2. Atmospheric Correction of Image Data 

Utilized in this field campaign was an ASD spectroradiometer (Analytical Spectral 

Devices, Inc., 1993) which collects data fiom approximately 400 to 900 nm at a 1.8nm 

recording interval. Collection of spectral data in situ enables characterization of the spectral 

characteristics of a sample object free of atmospheric interference between the object surface 

and the sensor (Milton, 1987). This characterization enables the comparison of spectra which 

are, in theory, undisturbed by the atmosphere between the sensor and surface and the airborne 

collected data which is subject to atmospheric interference. Objects which are present in 

remotely sensed imagery and in situ spectral calibration data act as pseudo-invariant features 

(PIFs) for use in atmospheric correction of image data (Freemantle, et al., 1992). Spectral 

information were recorded in the field concurrent with the casi over-flight to enable 

atmospheric correction of the casi data. Paved roads, which intersect the flight lines at a 

number of known locations, are used as PIF targets. 

The spectroradiometer was operated using the procedure recommended by Peddle, et al., 

(1995), utilizing Kodak gray cards to calibrate the incoming irradiance. The date, time, and 

geographic location, in terms of latitude and longitude, are noted during spectral sample 

collection to enable the computation of the solar zenith angle. Spectral and angular 

computation are based upon the provided sun anglellocation/time/date combination, which 



yield a panel bi-directional reflectance factor (BRF) specific to the solar zenith angle present. 

Reflectance values may then be computed from the panel and target reflectance values with a 

panel calibration BRF specific to the solar zenith angle. 

6.3.3. Radiometric and Geometric Processing of Digital Image Data 

Image preprocessing of the casi data is performed to radiometrically correct the data 'for 

the effects of scattered light, to remove instrument offsets, and to convert the digital numbers 

to standard radiometric units (Anger et al., 1995). General correction techniques which 

address visible and near infiared image radiometry are often required for successful 

application of aerial and satellite remote sensing (Hall, et a!., 1991; Franklin and Giles, 

1995). Accordingly, an initial bundle adjustment was undertaken to correct for the non- 

systematic airbome imaging effects of roll, pitch, and yaw . Correction of image radiometry, 

especially reflectance, is of most importance for studies incorporating temporal analysis. 

Image radiance and reflectance are strongly linearly related allowing for the option of not 

undertaking a radiometric to reflectance calibration for single time period studies, such as this 

research. Collection of global positioning system (GPS) ground data and flight locational data 

enabled differential correction and geometric adjustment of the airbome imagery. The aircraft 

position and angular orientation was recorded for each scanline using the onboard GPS 

receiver and a two-axis vertical gyro. The geometric correction process utilized this aircraft 

attitude information and placed each pixel of the image on a georeferenced UTM grid 

(Cosandier et al., 1992; Schwarz et al., 1993). The base station GPS receiver unit, located at 

a known geographic point, was used to correct the imagery acquired by the airbome GPS unit 

(Hoffman-Wellenhof, et al., 1992). For this study locational data were collected with L1 

Carrier Phase Novatel GPS receiver units at a 5 second epoch rate, allowing for a positional 

error of less than 1 Ocm based upon 1 Okm baseline length and a 15 minute observation time. 



6.3.4. Image Data: Context and Subject 

The collection rationale and processing procedures have been presented to demonstrate the 

integrity of the data under consideration. Six sample images have been sub-set for processing 

in this study and are presented here to illustrate the context of the image analysis. As the,, 

Getis statistic is derived including the global mean and variance (Formula 4) knowledge of the 

entire scene contents is important to understanding the spatial dependency results. The 

subject of the analysis, the field sampled plots, are also considered in relation to this global 

data, which has an influence upon the data which is extracted from the sample plots. As each 

field sample plot is geographically located in a different area, six images were subset fiom a 

larger image for analysis. As a result, each field sample plot under consideration has an 

associated image (Figure 6.5a to 0. 



Figure 6Sa. DS5 infrared full image sample (xl) and plot zoom (x8), illustrating a plot 
with a mature intoleranfltolerant hardwood overstory. 



Figure 6.5b. DS6 infrared full image sample (xl) and plot zoom (x8), illustrating a plot 
with a mixed wood overstory and a light hardwoodunderstory. 



Figure 6.5~. DS7 infrared full image sample (xl) and plot zoom (xS), illustrating plot 
with a hardwoodlsofhvood overstory and a mixed wood understory. 



Figure 6Sd. DS8 infrared full image sample (xl) and plot zoom (x8), illustrating a plot 
with a hardwood/softwood overstory and understory. 



Figure 6Se. DS9 infrared full image sample (xl) and plot zoom (xB), illustrating a plot 
with a hardwood overstory and a softwood understory. 



Figure 6.5f. DSlO infrared full image sample (XI) and plot zoom (x8), illustrating a plot 
with an intolerant hardwood overstory and a tolerant hardwood understory. 





7. GENERATION OF IMAGE VEGETATION OBJECTS 

Chapter Objective: Apply the spatial dependence data generated with the Getis 
statistics to partition forest stands into vegetation clusters. 

This chapter demonstrates the problems and potential related to the partitioning of 

forest vegetation based upon image spatial information for 1 m spatial resolution imagery 

collected over deciduous and mixed forests. The Getis statistic (Gi*) is presented as a means 

to generate clusters of forest vegetation. The image spatial resolution of 1 m is too coarse to 

allow for a situation where many pixels make up a single tree object. The image spatial 

resolution limitations present in this study encourage the examination of a new approach for 

the assessment of image structural information. The use of image spatial autocorrelation, as 

represented by the Getis statistic (G:), allows for the generation of image objects based upon 

pixel associations related to the forest structure. Digitally generated image objects, or 

clusters, are a representation of the trees which are discernible at a spatial resolution of lm. 

The clusters which are generated may be composed of a single or multiple species, which is a 

shortcoming of this approach. Further, the clusters may also be related to the presence in the 

forest of a multitude of structural situations, such as a single large dominant tree, groups of 

codominant trees, or a dominant tree in association with suppressed trees. 

Techniques exist for very high spatial resolution data, such as 3cm, which discern 

characteristics at the individual within tree level, such as branch architecture (Brandtburg, 

1997) which enable techniques such as tree vectorization (Landry, et al., 1997). Techniques 

appropriate at the lm spatial resolution discern between tree variability. In reference to the 

Im spatial resolution data available for analysis in this study; large solitary trees may be 



discernible, yet trees which overlap, or are of varying height, are difficult to discern at the one 

metre level. Tree cluster infoxmation may be analyzed to provide information related the 

characteristics of forest stands which are potential discernable with the l m  spatial resolution 

imagery available for this study. 

To enable a comparison between ground measured tree data and the remotely sensed 

prediction of forest vegetation from image objects, spatial dependency values, in the form of 

the Getis statistic (Gi*), are generated for each pixel. As the generation of GT values in 

remote sensing is a new technique (Wulder and Boots, 1998b), before a prediction of forest 

structural parameters may be made, the behavior of the Gi* values is assessed. A prudent 

assessment of both the reflectance values and resultant G: values generated for the images 

processed for this study prior to integration of the image and field data is undertaken to allow 

for an increased understanding of the behavior of the Getis statistic in a variety of situations. 

The data generated in this chapter are to be further analyzed in subsequent chapters for a 

relationship to forest inventory (Chapter 8) and biophysical parameters (Chapter 9). Once the 

behavior of the G: values generated in this study is established, the image objects are 

generated. This will allow for an assessment of the agreement between the plot maps created 

from the ground collected and the remotely sensed data. 

7.2. ASSESSMENT OF MAG€ SPATIAL AND SPECTRAL DATA 

To allow for comparison between the distribution of reflectance and G; data for the entire 

image area with the portion of the image found within the study area a random sample of 400 

DNs was extracted from the entire image area. The spatial dependency values generated for 

the entire image area were related to the distribution of initial reflectance data based upon the 



physical vegetation properties which dictate the reflectance in each channel. As a result, 

factors such as high values for non-vegetated areas will alter the results of clusters. 

7.2.1. Spectral Data Summary 

The relationship between spatial resolution and the dominant ground cover dictates the 

spectral signal which is received at the sensor. At a spatial resolution of i rn, over a region 

dominated by forest cover, the spectral response largely resembles that expected for 

vegetation, with the anthropogenic features, such as roads, having some effect on the mean 

image spectral response. Understanding of the spectral response for each image utilized in 

this study is important as the global mean and variance values are included in later analysis to 

generate Getis statistic values. 

Table 7.1 presents the summary statistics for the spectral data present in each study image 

randomly selected from the entire image area. (Recall Table 6.6 for the wavelength range 

occupied by each image channel.) As expected for a vegetation spectral response curve (see 

Figure 6.4) the values in the green spectrai range have a higher reflectance than the red 

channels and the infrared channels have the highest mean reflectance values and greatest 

range. As each image is sampling unique ground cover, distinct patterns to the spectral 

response for each study image are also expected. The complexity of the gross image spectral 

characteristics preclude definitive statements on the rationale for the resultant image spectral 

characteristics. General statements may be made, such as in reference to the red spectral 

channel, that the presence of roads likely increases the mean red reflectance. The casi 

panchromatic simulation channel is moderated by the wide spectral bandwidth including a 

variety of spectral characteristics. 

A degree of variability has been illustrated for the overall image spectral characteristics 

above. The field plots, with the sample restricted to a single area, have a distribution of 



values which relate the spectral characteristics found within each plot area. In Table 7.2 we 

present the spectral characteristics found within the image areas corresponding to the field 

plots. As the spectral signal of roads and other non-vegetation surface covers are not included 

in the plot areas, the spectral resemblance to a vegetation spectral response curve is further 

accentuated. Indicators have been placed in Table 7.2 to demonstrate the change in spectral 

response between the overall image values and those found exclusively within the plot areas. 

In general, the red (C2) reflectance is lower in the plots than in the remainder of the image. 

Also, the NIR (C5) reflectance is higher than that found outside of the sample plot. The lower 

reflectance in the red and increased reflec.tance in the infrared is indicative of vegetation 

dominated spectral response. 



Table 7.1. Summary statistics for random sample of casi spectral data, measured in 
percent reflectance, for each image which contains one of the surveyed sample plots 

casi- 1 cusi-2 mi-3 casi-4 casi-5 casi-PAN 
DS-5 Image Sample Summary statistics 
Minimum 4 1 1 3 8 3 
Maximum 40 18 16 56 85 38 
Range 36 17 15 53 77 35 
Mean 18.2 6.4 4.8 25.2 45.2 19.5 
Median 18 6 5 25 46 20 
Standard Deviation 6.2 2.6 2.0 10.4 15.0 6.8 

DS-6 Image Sample Summary statistics 
Minimum 6 2 I 4 6 4 
Maximum 87 87 86 82 84 79 
Range 8 1 85 85 78 78 75 
Mean 25.6 15.3 13.8 31.8 41.9 25.3 
Median 23 9 7 3 2 41.5 25 
Standard Deviation 12.2 14.4 14.8 12.7 15.9 10.8 

DS-7 Image Sample Summary statistics 
Minimum 6 2 1 5 2 4 
Maximum 53 48 46 62 84 45 
Range 47 46 45 57 82 4 1 
Mean 23.7 11.0 9.0 28.9 43.2 22.7 
Median 23 9 7 29 42 23 
Standard Deviation 8.4 7 .O 6.8 11.8 15.1 7.9 

DS-8 Image Sample Summary statistics 
Minimum 6 2 1 5 2 6 
Maximum 53 48 46 62 84 68 
Range 47 46 45 57 82 62 
Mean 23.7 11.0 9.0 28.9 43.2 24.7 
Median 23 9 7 29 42 25 
Standard Deviation 8.4 7.0 6.8 11.8 15.1 8.3 

DS-9 Image Sample Summary statistics 
Minimum 5 1 I 3 4 3 
Maximum 80 79 78 74 82 7 1 
Range 75 78 77 7 1 78 68 
Mean 19.8 10.3 8.9 24.2 37.0 19.6 
Median 18 7 6 24 36 19 
Standard Deviation 11.1 11.5 11.5 12.7 15.0 10.3 

DS- I0 Image Sample Summary statistics 
Minimum 5 2 1 4 7 4 
Maximum 85 85 83 8 1 95 77 
Range 80 83 82 77 88 73 
Mean 24,8 13.2 11.4 31.2 44.1 24.5 
Median 23 8 6 3 1 44 24 
Standard Deviation 11.7 13.2 13.5 12.5 15.2 10.3 



Table 7.2. Summary statistics for the casi spectral data corresponding to the field 
plots, measured in percent reflectance, for of the surveyed sample plots 

casi- 1 cad-2 casi-3 casi-4 casi-5 casi-PAN 
DS-5 Plot Summary Statistics 
Minimum 7 'r 1 = 1 = 6 7 19 'r 6 'r 
Maximum 34 4 23 ? 21 'r 53 3. 89 'r 37 -1 
Range 27 4 22 ? 20 0 47 3. 70 & 31 -1 
Mean 20.6 t 6.8 ? 4.9 ?* 30.6 7 57.4 ? 23.6 ? 
Median 21 ? 7 ? 5 = 32 T 59 'r 25 ? 
Standard Deviation 5.87 -1 2.93 ? 2.46 ? 10.60 ? 14.90 5- 6.86 ? 
DS-6 Plot Summary Statistics 
Minimum 8 7' 2 = 2 7' 9 'r 18 ? 9 'r 
Maximum 36 -1 12 4 12.1 55 5. 85 ? 39 4 
Range 28 -1 10 -1 10 4 46.1 67 3. 30 4 
Mean 21.1 -L 7.0 4 5.2 5- 30.4 k* 54.4 ? 23.2 -1 
Median 21 3. 7 -1 5 5. 31 4 56 ? 24 3. 
Standard Deviation 5.82 4 2.07 4 1.57 3. 10.03 3. 15.07 3. 6.65 3- 
DS-7 Plot Summary Statistics 
Minimum 7 t 2 = 1 = 5 = 14 'r 6 ?  
Maximum 43 -1 IS & 13 .1 61 -1 89 'r 41 3. 
Range 36 -1 13 4 12 4 56 4 75 -1 35 4 
Mean 26.4 ? 8.8 5- 6.2 4 . 36.1 ? 56.9 ? 26.5 'r 
Median 27 ? 9 = 6 & 36 ? 59 7' 27 ? 
Standard Deviation 7.58015 -1 2.66 -1 1.83 3. 12.80 ? 16.37 'r 7.95 'r 
DS-8 Plot Summary Statistics 
Minimum 8 t  2 = 1 = 5 = 13 'r 6 = 
Maximum 50 -1 19 4 12 4 67 ? 87 'r 43 4 
Range 42 4 17 4 11 4 62 '? 74.1 37.1 
Mean 21.6 4 7.5 5. 5.5 5. 31.4 'r 54.3 'r 23.7 4 
Median 20 3. 7.1 5 4 30 ? 56 ? 23 -1 
Standard Deviation 6.83 & 2.54 -1 1.61.1 11.033. 12.363. 6.55 -1 
DS-9 Plot Summary Statistics 
Minimum 4.1 I = 1 = 4 7 12 'r 4 'r 
Maximum 38 .1 17 3. 14 4 60 -1 78 4 38 4 
Range 34 -1 16 3. 13 3. 56 -1 66 3. 34 4 
Mean 20.4 t* 7.2 3. 5.3 3. 28.2 ? 47.3 'r 21.3 'r 
Median 20 'r 7 = 5 4 29 ? 49 'r 22 'r 
Standard Deviation 6.95 4 2.81 2.143. 11.50j 14.70.1 7.33 4 
DS- 10 Plot Summary Statistics 
Minimum 13 ? 3 t 2 ? 14? 28 ? 12 'r 
Maximum 43 -1 17 3- 16 & 60 .1 84 -1 40 4 
Range 30 -1 14 -1 14.1 46.1 56 -1 28 3. 
Mean 24.4 J* 8.3 3. 6.0 .1 33.6 7 53.7 7 24.8 'r 
Median 24 'r 8 = 6 = 32 ? 52 ? 24 = 
Standard Deviation 5.70 3. 2.29 -1 1.67 4 9.47 -1 10.67 -1 5.56 4 

? denotes that value in plot sample is greater than found in the random sample 
& denotes that .value in plot sample is less than found in the random sample - denotes that value in plot sample is equal to that found in the random sample 
* denotes that mean value in plot sample is not significantly different from random sample (at a 95% level of 
significance) 



7.2.2. Generation of Getis Statistic 

The computation of the normalized Getis statistic (Formula 9, p. 78) is based on the 

assessment of the sum of pixel values within a given distance of a pixel of interest in relation 

to the sum expected for that distance based upon global mean and variance values. As a 

result, knowledge of the global mean and variance values, generated using each pixel in the 

image for computation, provides an increased understanding of the resultant G: values (Table 

7.3). As the global mean and variance values where computed from all image pixels slight 

differences are found in comparison to the random sample. The values in Table 7.3 are 

presented to allow for the verification of G; results. Knowledge of the global mean and 

variance values allows for the comparison of individually computed results to the computer 

generated results. (In verification of results it is important to consider the computation 

window size.) Global mean and variance relate to the context of where the Gr values are 

derived from, such as an image dominated by a lake or roads, which may have an influence 

upon the values generated for the region of interest, in this case the plot areas. Spatial 

information which may be generated for a spectral feature that is within the centre of the 

complete range of spectral values may be obscured by features such as roads or lakes. As the 

G? values are standardized and normal, this allows for the comparison of 2-scores generated 

for each pixel location. The total number of pixels present in the sample images and the total 

number of pixels utilized in the computation of G? values is not equal due to masking out an 

edge border of 9 pixels in width and the non-inclusion in processing of image areas which 

only include zero values. Generation of G? upon a variety of images has demonstrated the 

detriment of including large areas of zero values (Wulder and Boots, 1998a; Derksen, et al., 

1998a). With inclusion of non-data values, the global mean and variance values are 



suppressed and the richness of the spatial information generated is diminished through 

inflation of the sample size with zero values. 

Table 7.3. Summary of distribution of spectral values within each channel for 
each image containing a ground sample plot. The global mean, variance, and 
number of pixels are included in Gi* computation as the global expectation to 
be compared to local characteristics. (each image is 300 pixels by 400 lines = 
120,000 pixels possible total) 

DS-5 
Global mean 
Global variance 
# of pixels 

DS-6 
Global mean 
Global variance 
# of pixels 

DS-7 
Global mean 
Global variance 
# of pixeIs 

DS-8 
Global mean 
Global variance 
# of pixels 

DS-9 
Global mean 
Global variance 
# of pixels 

DS-I0 
Global mean 
Global variance 
# of pixels 

casi- I casi-2 casi-3 casi-4 casi-5 casi-PAN 

119700 119700 119700 119700 119700 119700 

7.23. Spatial Data Summary 

The distribution of Gr values are first presented as summary values extracted randomly to 

represent the entire image and then in terns of what characteristics are present in the plot area. 

In Table 7.4 we present the distribution of G; values generated for each spectral channel 

within each sample image. Within the red wavelength range, the expected reflectance for 

vegetation is low, and for non-vegetation features it is high. As a result, the Gi* values for the 

red spectral wavelengths demonstrate a range of data that is of marginal interest in assessment 



of vegetation. The presence of anthropogenic features such as roads and exposed soil of cut- 

blocks result in an high Gi* with a large range, yet for the vegetated features the spatial 

information is less expansive. A possible means to maximize the spectral information in the 

red wavelengths is to apply a mask to remove non-vegetation pixels. This may be 

accomplished through assessment of the infrared and red wavelength; if the red reflectance 

exceeds the infrared, remove the pixel from consideration. As the purpose of this 

investigation is to assess the behavior of the Getis statistic in a variety of image spectral 

conditions masking has not been undertaken. 

The distribution of G; in each channel, in each image, are found to approximate a normal 

distribution with a mean of 0 and a standard deviation of 1 (Table 7.4). Whereas, the 

distribution of G? demonstrated in Table 7.5, are not approaching normality relating unique 

conditions being captured in the plot area versus the image area. The field plots, with the 

sample restricted to a single area, have a distribution of values which relate the spatial 

characteristics found within each plot area. The mean values relate to the distribution of the 

vegetation in the plots, therefore an increase in the magnitude of clustering is found for most 

channels. The sample image DS7 is difficult to assess due to the presence of a dense conifer 

stand, cut blocks, and roads, while the plot area of interest is a mixed forest stand (Figure 

6%). 



Table 7.4. Distribution of random sample Getis Statistic values by sample image 
denoted by which image channels were used for computation (n=400) 

casi- 1 casi-2 casi-3 casi-4 casi-5 casi-PAN 
DS-AII Summary Statistics 
Minimum -2.35 -2.06 - 1.83 -2.1 1 -2.77 -2.40 
Maximum 4.97 5.27 5.27 3.78 3.07 4.9 1 
Range 7.32 7.33 7.09 5.89 5.84 7.3 1 
Mean -0.0 1 0.00 0.0 1 -0.03 -0.02 -0.02 
Median -0.29 -0.41 -0.41 -0.15 -0.1 4 -0.20 
Standard Deviation 0.97 0.97 0.97 0.9 1 0.92 0.94 
DS-5 Summary Statistics 
Minimum -2.35 -2.06 - 1.83 -2.1 1 -2.39 -2.40 
Maximum 2.83 3.86 4.87 2.48 2.13 2.3 1 
Range 5.18 5.92 6.70 4.58 4.52 4.70 
Mean -0.0 1 -0.0 1 0.00 0.00 0.00 -0.0 1 
Median -0.16 0.0 1 -0.09 -0.12 0.1 1 -0.07 
Standard Deviation 0.89 0.84 0.83 0.85 0.88 0.87 
DS-6 Summary Statistics 
Minimum - 1 .57 -0.90 -0.83 -2.07 -2.23 - 1.89 
Maximum 4.97 5.15 5.02 3.78 2.29 4.9 1 
Range 6.54 6.05 5.85 5.85 4.5 1 6.80' 
Mean 0.02 0.07 0.08 0.00 -0.04 0.02 
Median -0.34 -0.50 -0.52 0.04 -0.04 -0.20 
Standard Deviation 1.05 1.09 1.08 0.95 0.94 I .03 
DS-7 Summary Statistics 
Minimum -2.10 - 1.28 -1.14 -2.1 1 -2.77 -2.33 
Maximum 3.16 4.66 4.78 2.55 2.29 2.82 
Range 5.26 5.93 5.92 4.66 5.06 5.16 
Mean 0.00 0.00 0.00 -0.0 1 -0.02 -0.0 1 
Median -0.25 -0.39 -0.42 0.06 -0.26 0.03 
Standard Deviation 1.00 0.98 0.97 0.94 0.94 0.96 
DS-8 Summary Statistics 
Minimum -2.10 -1.28 -1.14 -2.1 I -2.77 -2.04 
Maximum 3.16 4.66 4.78 2.55 2.29 4.0 1 
Range 5.26 5.93 5.92 4.66 5.06 6.05 
Mean 0.00 0.00 0.00 -0.0 1 -0.02 0.0 1 
Median -0.25 -0.39 -0.42 0.06 -0.26 -0.1 8 
Standard Deviation 1.00 0.98 0.97 0.94 0.94 0.93 
DS-9 Summary Statistics 
Minimum -1.31 -0.78 -0.68 - 1.63 -2.27 - 1 .56 
Maximum 4.78 5.24 5.27 3.53 2.59 4.48 
Range 6.09 6.02 5.95 5.16 4.86 6.04 
Mean -0.08 -0.05 -0.05 -0.10 -0.06 -0.09 
Median -0.36 -0.38 -0.39 -0.3 1 -0.19 -0.3 1 
Standard Deviation 0.92 0.9 1 0.9 1 0.90 0.93 0.9 1 
DS- 10 Summary Statistics 
Minimum - 1 S 8  -0.84 -0.75 -2.06 -2.34 - 1.93 
Maximum 4.93 5.27 5.14 3.62 3 -07 4.8 1 
Range 6.5 1 6.1 1 5.89 5.68 5.41 6.74 
Mean -0.02 -0.0 1 0.00 -0.03 0.00 -0.03 
Median -0.33 -0.45 -0.46 -0.24 -0.08 -0.29 
Standard Deviation 0.98 1.02 1.02 0.90 0.89 0.95 



Table 7.5. Summary statistics of Getis statistic values computed upon each casi 
spectral channel 

casi- 1 casi-2 casi-3 casi-4 casi-5 cad-PAN 
DS-5 Getis statistic values (n-400) 
Minimum -1.64? -1.55 ? -1.56 ? -1.49 ? -1.49 'T -1.61 ? 
Maximum 2.32 ? 3.99 ? 4.76 'T' 2.07 ? 2.27 ? 2.05 ? 
Range 3.96 ? 5.54 ? 6.32 ? 3.57 ? 3.76 3.65 ? 
Mean 0.45 3- 0.16 3. 0.09 4* 0.61 3. 0.96 4 0.70 3. 
Median 0.613. 0.22 ? 0.06 'T' 0.82 3. 1.11 4 0.90 3. 
Standard Deviation 0.80 ? 0.92 ? 0.98 4 0.79 ? 0.79 ? 0.80 ? 

DS-6 Getis statistic values (n-380) 
Minimum -1.31'T -0.82 ? -0.74 ? -1.54 T -1.32 ? -1.40 'T 
Maximum 0.74 I' -0.30 ? -0.26 ? 1.52 ? 2.40 4 1.07 ? 
Range 2.05 ? 0.51 ? 0.48 ? 3.06 ? 3.72 ? 2.47 ? 
Mean -0.39 -0.58 3. -0.57 4 -0.09 $* 0.85 3- -0.18 4 
Median -0.40 4 -0.56 3- -0.56 3. -0.10 ? 1.01 3- -0.18 3. 
Standard Deviation 0.40 '? 0.09 ? 0.07 ? 0.63 ? 0.78 ? 0.52 ? 

DS-7 Getis statistic values (n-400) 
Minimum -1.644 -1.18 & -0.97 3. -1.72 'T' -1.59 7 -1.86 ? 
Maximum 2.03 ? 0.30 ? 0.21 ? 2.45 ? 2.34 3- 2.08 ? 
Range 3.67? 1.48 ? 1.18 ? 4.18 ? 3.93 t 3.95 ? 
Mean 0.37 ? -0.39 3. -0.48 3. 0.66 4 0.96 5- 0.50 3. 
Median 0.55 4 -0.37 ? -0.44 ? 0.85 4 1 .15 4 0.70 4 
Standard Deviation 0.82 ? 0.27 ? 0.15 ? 0.91 ? 0.89 ? 0.86 ? 

DS-8 Getis statistic values (n-441) 
Minimum -1.56? -0.98 ? -0.81 'T -1.87 ? -1.73 T -1.89 '? 
Maximum 2.11? 0.66 ? 0.14 '? 2.31 ? 2.12 ? 1.88 ? 
Range 3.66 ? 1.64 ? 0.95 ? 4.18 ? 3.85 ? 3.77 ? 
Mean -0.37 3. -0.47 4 -0.45 3. -0.13 3. 0.51 4 -0.13 3. 
Median -0.57 & -0.50 4 -0.45 4 -0.34 5- 0.58 3. -0.27 4 
Standard Deviation 0.63 ?' 0.23 'T' 0.1 I ? 0.72 t 0.61 'T 0.64 7' 

DS-9 Getis statistic values (11441) 
Minimum -1.23T -0.75 ? -0.67 ? -1.53 ? -1.65 ? -1.37 ? 
Maximum 1.04 I' -0.08 ? -0.20 ? 1.69 ? 2.20 ? 1.18 ? 
Range 2.27 t 0.67 ? 0.47 ? 3.21 ? 3.85 ? 2.55 ? 
Mean -0.06 5.8 -0.38 -0.39 3. 0.23 4 0.70 3- 0.05 4 
Median -0.09 7 -0.36 'T' -0.37 ? 0.35 3. 0.85 4 0.16 ? 
Standard Deviation 0.49 ? 0.12 '? 0.08 ? 0.70 ? 0.82 ? 0.56 ? 

DS-1 0 Getis statistic values (n-441) 
Minimum -0.85 ?' -0.68 -0.62 'T' -0.96 ? -0.56 ? -0.94 I' 
Maximum 1.13 ? -0.19 ? -0.28 'T 1.55 ? 2.20 ? 1.01 ? 
Range 1.98 ? 0.49 ? 0.34 ? 2.51 ? 2.76 ? 1.95 I' 
Mean -0.05 ?'* -0.42 3. -0.44 3. 0.18 4 0.71 4 0.01 7 
Median -0.13 ? -0.41 3. -0.44 4 0.22 3. 0.71 -1 -0.06 '? 
Standard Deviation 0.40 ? 0.08 ? 0 ? 0.54 ? 0.47 ? 0.41 ? 

? denotes that value in plot sample is greater than found in the random sample 
3. denotes that value in plot sample is less than found in tbe random sample - denotes that value in plot sample is equal to that found in the random sample 
* denotes that mean value in plot sample is not significantly different from random sample (at a 95% 
level of significance) 



7.2.4. Integrated Consideration of the Spectral and Spatial Data 

The previous data summaries have illustrated that the distributions of the casi spectral and 

spatial data are independent of one another. Consideration of the spectral data in reference to 

the spatial data provides insights into where the spectral information is occurring in image 

space. When computing Gr  the distance value, which relates the distance around the pixel of 

consideration at which the autocorrelation is maximized, is also collected. A distance value of 

1 relates that a 3x3 window surrounding a pixel is the spatial region at which spectral 

response is found to be most similar. In contrast, a distance value of 4 relates that the spatial 

dependence around a pixel is maximized within a 9x9 window. Consideration of the 

distribution of reflectance and Ei* values in terms of the distance at which spatial association 

is maximized provides insights into the spatial distribution of image spectral values 

(maximum Getis distance: MGD), 

The integrated distribution of spectral and spatial data presents the manner in which the 

spectral data are spatially distributed in the imagey. To enable the demonstration of the 

integrated distribution of spectral and spatial data, the following distributions are presented 

following a short introduction: 

I .  original spectral reflectance, in aggregate and in terms of MGD, 

2. Gi* values computed within static sized window, 

3. overall distribution of G f values plotted as a function of MGD, 

4. count of the proportion of occurrence of each distance value, and 

5. proportion of distance occurrence as a function of G; range. 

Distribution I demonstrates that the original spectral reflectance values are normally 

distributed, both in terns of all image pixels and when the distribution of spectral response is 

considered as a function of MGD. Distribution 2 illustrates the frequency of occurrence of 

Gr values when computed within static sized windows. Yet, distribution 2 operates on the 



assumption that all processes are occurring at the same scale. The frequency of occurrence of 

each MGD in reference to where these values occur, in terms of Gf value, relates that each 

computation distance is generating different information. To illustrate the dependence of 

scale upon the resultant Gi* values, distribution 3 presents the Gi* values as a function of 

associated MGD. Distribution 3 deconstructs the MGD to include distance values and 

associated G? values. As each MGD has an associated G? value these numbers may be 

plotted to demonstrate the composition of the aggregate MGD. The aggregate values relate to 

the Gr values utilized for analysis in this thesis. Distribution 4 presents the frequency of 

occurrence of each MGD for the entire image, and is included to provide further insights into 

the spatial dependence characteristics of the imagery, and the scale at which the dominant 

spatial processes in the imagery are operating. The proportional occurrence of MGD values 

may also be considered in terms of the G; range. Distribution 5 presents the proportion of 

each distance value which comprises each GT range. The dominant spectral characteristics, 

related to the spatial structure of the imagery, plots of MGD as a function of Gi* range, which 

relate the manner in which the original spectral values are distributed spatially in the imagery. 

The spectral and spatial values of red (CZ), infrared (C5), and panchromatic 

reflectance, MGD, and G f , are assessed with the aforementioned distributional series upon 

sample image DS7. The image encompassing the plot DS7 was selected to due the complex 

conditions present. Selection of a simple image may lead to observations particular to a single 

case, the choice to utilize DS7 for further analysis is intended to present a variable spectral 

scenario with elements of the other study plots also included. Such analysis of the spectral 

and spatial dependencies with unique values for each pixel in an image is unusual in the 

remote sensing literature. The red spectral channel was selected to represent the visible 

wavelengths and the behavior of spectral and spatial information with a limited range of 



values. Figure 7.1 is presented to illustrate the original distribution of red spectral response 

which is skewed towards the higher reflectance values. The dominance of low reflectance 

values relates the dominance of vegetation in the study image. The skew towards higher 

reflectance values is due to the non-vegetation features present in the image. The combined 

value relates the complete distribution of spectral values to be compared to the what is 

occurring at each MGD. At each MGD the distribution of reflectance values vary in 

frequency, yet all are found to be relatively normal with the skew towards high reflectance 

values. 

Figure 7.2 is presented to illustrate the distribution of Gi* values computed within 

static sized windows. The dominance of low reflectance values results in a high frequency of 

moderate negative G; values for all distances. The frequent occurrence of distance 1 (3x3 

window) at the GT range near zero is an indication of lack of sensitivity of Gr with values at 

the middle of the full range of processed values. The frequent occurrence of G; values near 

zero indicates the variety of spatial dependency characteristics which may be related within a 

3x3 window. The high count of G r  occurrence near zero at distance 1 may be the result of a 

distinct spatial regime with a high value computed for distance 1, or may represent an area of 

weak spatial dependence which is maximized within distance 1. As a result, caution must be 

exercised when interpreting the image spatial dependency values which are represented by G; 

values that are near zero. 

Figure 7.3 is presented to illustrate that when Gr is extracted at MGD, the frequency 

of values at the Gr range near zero are reduced in importance. The distribution of G? values 

at MGD for the red spectral channel are mildly bi-modal. A bi-modal distribution to G: 

values indicates the presence in the imagery of a spatial dependence between the magnitude of 

reflectance values and location within the image. At a spatial resolution of im, the 



interpretation of the distribution of Gi* at MGD indicates the clustering of low red reflectance 

values associated with vegetation and a clustering of higher red reflectance values related to 

the non-vegetated features. The dominance of vegetation in the sample scene processed for 

this demonstration resulted in the greater prevalence of values centered about a GT of -0.7. 

In Table 7.6 we present the frequency of each MGD over the entire image. The counts 

for each distance relate the frequency at which the spatial dependence in the sample image is 

maximized. The frequent occurrence of distance 1 indicates that neighbouring pixels are most 

often the region in which a spatial process is best summarized. Yet, 45% of the occurrences 

indicate that the region of spatial dependency is best described within a larger region. Figure 

7.4 relates the relationship between MOD frequency and G;, the prevalence of distance 1 in 

the low range of G; values relates the strong spatial association between the tree object 

reflectance values. The high proportion of distance 1 values at a G; may indicate a region of 

high spatial association, or that in regions of low association the spatial dependence found to 

be maximized in the immediate neighbourhood, with a distance of 1, may be due to the G; 

value being the highest of a series of low values. The roughly equal occurrence of distance 

proportions above zero indicates the lack of strong spatial dependency between the higher red 

reflectance values found in a im spatial resolution image of a forest. 
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Mgure 7.1. Original diztribution of red spectral response (combined) and as a 
fimction of the distance at which the maximum Getis statistic is computed. 

Figure 7.2. Distribution of Getis statistic values when computed on the red 
spectral channel for a single distance. 



Figure 7.3. Overall distribution of red channel Getis statistic values (combined) 
and as a function of distance at which the maximum Getis statistic value is 
computed. 

Table 7.6. Frequency of distance 
selection at maximized red Getis statistic 
location (n= 108772) 

Distance Count Percentage 
1 5991 7 55 



Figure 7.4. Proportion of MGD value frequency for the red channel by Getis 
statistic location. 

As illustrated (in Table 7.4 and 7.5), red reflectance values for vegetation are low and are 

of a limited range; whereas, infrared reflectance values are high for vegetation, and occupy a 

larger range of potential values. In Figure 7.5 we present the large range of infrared 

reflectance values found on the sample image. The infrared reflectance values approach 

normality for the entire image, and also when considered as a function of MGD. The strong 

association of neighbouring pixel values is illustrated here with the frequent occurrence of 

distance 1 as the MGD. 

Figure 7.6 is presented to illustrate the distribution of Gr values computed within static 

sized windows. The distribution of the G; for distance 1,2, and 3, with prevalence at a 

negative Gi* near -0.5 may indicate the low infrared values which occur in shadows created by 

the trees. The high count of distance 1 G; values indicates the frequent occ&-rence of 



unrelated values within a 3x3 window. Yet, when considering the Gp values at MGD these 

low associations are no longer included. 

Figure 7.7 is presented as an illustration of the bi-modal distribution of Gi* values for the 

infrared reflectance values on the sample image DS7. The bimodal distribution to the Gi* 

values at MGD indicates the low infrared reflectance values related to image shadow features 

and the high infrared reflectance values are related to vegetation. The range of spectral values 

which may be found in a shadow are limited resulting in the peaked distribution of negative 

Gi* values. The greater potential range of vegetation infrared reflectance results in a less 

peaked distribution. The spatial dependence is maximized within a 3x3 window 62% of the 

potential instances (Table 7.7). Yet, in 38% of the instances a static window would not 

capture the spatial structure present in the imagery. As the image spatial structure is a 

function of the forest vegetation structure, the use of a series of windows to characterize the 

spatial dependence characteristics maximizes the information extraction potential. 

In Figure 7.8 we present the relationship between the MGD frequency as a function of Gi*. 

Distance 1, which relates a strong spatial dependence within a 3x3 pixel window is capturing 

a variety of information. At low G; the proportion of G: accounted for within distance 1 

appears related to the constrainment of dark objects and shadow features, at G? near zero the 

regions of low association are accounted for, and at high G: values a strong spatial 

dependence between high infrared values is demonstrated. The distribution of the distances 2 

and 3 appear to account for transitional areas between regions of high and low spatial 

association. Distance 2 appears to indicate a moderate level of larger regions of association of 

low and high infrared reflectance values. As expected, distance 4 is most prevalent in regions 

of low association in the centre of the distribution. 
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Figure 7.5. Original distribution of infrared spectral response (combined) and as 
a function of the distance at which the maximum Getis statistic is computed. 

Figure 7.6. Distribution of Getis statistic values when computed on the infrared 
channel for a single distance. 
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Figure 7.7. Overall distribution of infrared Getis statistic values 
(combined) and as a function of the distance at which the maximum 
Getis is statistic computed. 

Table 7.7. Frequency of distance 
selection at maximized infrared Getis 
statistic location (n=108772) 

Distance Count Percentage 
I 67844 62 



Getis statistic 

Figure 7.8. Proportion of MGD value frequency for the infrared channel by Getis 
statistic location. 

The panchromatic spectral response is a function of the spectral response in both visible 

and infrared wavelengths. The distribution of panchromatic spectral values approximates the 

normal distribution over the entire image as well as when considered as a function of MGD 

(Figure 7.9). The wide spectral bandwidth of the panchromatic channel is illustrated in the 

moderated spectral response. 

We present in Figure 7.10 the distribution of G? values computed within static siied 

windows. A familiar distribution emerges with a high occumnce of G; near zero in a 3x3 

window related to the lack of spatial dependence often found within a 3x3 window. The 

frequent occurrences of distances 2,3, and 4, at mild negative Gi* is a function of the 

constrained range of low panchromatic values. 



Figure 7.1 1 is a presentation of the G: frequency as a function of the distance at which G? 

is maximized. The distribution of G: at MGD for the panchromatic spectral information 

found in sample image DS7 is bi-modal. This bi-modal distribution relates the tendency of 

high values to be found with high values, low values to be found with low values, and for a 

smaller number of transitional values to be found between these more dominant spectral 

objects. The frequent occurrence of distance I as the MGD indicates a tendency for the 

spatial association of the panchromatic reflectance data to be maximized within a 3x3 window 

(Table 7.8). The spatial dependence is maximized at Distance I in the sample image in the 

neighbourhood for 1. 61% of image pixels. Yet, = 39% of the image local spatial dependence 

occurs within a window larger than 3x3. 

The distribution of the spatial dependence regions in terms of Gi* values is presented as a 

proportion of distance occurrence in Figure 7.12. Distance 1 accounts for a range of strengths 

in spatial dependency, including clusters of low panchromatic values, mid-range low spatial 

association regions, and clusters of high panchromatic values. The Gi* values in the centre of 

the distribution likely relate areas where the spatial dependence between pixels at any of the 

four distance values is low, Gi* is merely maximized with a low value in the 3x3 window. 

The larger distances, 3 and 4, are consistent through the moderate Gf range accounting for 

regions of moderate, yet broad association. The consistent proportion of distance 2 as the 

MGD indicates image spatial processes in operation within a 5x5 pixel window, including 

both low and high panchromatic reflectance values. 
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Figure 7.9. Original distribution of panchromatic spectral response (combined) 
and as a function of distance at which the maximum Getis statistic is computed. 
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Figure 7.10. Distribution of Getis statistic values when computed on the 
panchromatic channel for a single distance. 
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Figure 7.11. Overall distribution of panchromatic Getis statistic values (combined) 
and as a function of the distance at which the maximum Getis statistic is computed. 

Table 78. Frequency of distance 
selection at maximized panchromatic 
Getis statistic location (n=108772) 

Distance Count Percentage 
1 6663 1 6 1 
2 14728 14 
3 9970 9 
4 1 7442 16 



Figure 7.12. Proportion of MGD value frequency for the panchromatic channel 
by Getis statistic location. 

7.2.4.1. Section Summary 

The preceding consideration of the spectral reflectance values in reference to the 

spatial data generated from the spectral data exposed many interesting relationships, such as: 

image spatial structure relates to the size of objects found in forest imagery which 
is also related to the spatial resolution, 
image spectral values have a unique distribution in the spatial domain, and 
image spatial processes are not all operating at the same scale. 

The ability to detect patterns of spatial dependency as a function of original spectral 

characteristics enables extraction of unique information relating to the forest structure. 

Further investigation on the range of G; values between the minimum and maximum may be 

a means to reveal the nature of the spatial dependence in homogeneous regions. The 

demonstration of the spatial distribution of spectral values in image space reveals that the 



image structure is capturing unique information based on the relationship between image 

spatial resolution and the size of the objects remotely sensed. 

7.25. Selection of Spectral Channels for Analysis 

To reduce unnecessary duplication in the following analyses, the inter-relationships 

between the spatial and spectral data are investigated. In Table 7.9 the correlations between 

the casi spectral data and GT values are presented. High con-elations indicate a dependence 

between the spectral values found at the same pixel locations. Low correlations between the 

spectral channeh indicate the presence of unique spectral information in comparison to the 

other spectral channels. The NIR spectral channel (crrsi-S), has the lowest correlations to all 

other channels, indicating an independence of spectral information. The casi visible channels 

are all strongly interrelated. The casi visible channels are also strongly related to the 

panchromatic channel. Sensors which have the ability to collect narrow band visible spectral 

information normally also have the capability to collect near infrared information (Anger, et 

aL, 1996; Aplin, et al., 1997). Yet, sensors which collect panchromatic information normally 

lack the ability to collect other spectral information. As a result, for further analyses in this 

thesis, the NIR channel (casi-5), and the panchromatic channel will be utilized. The G: data 

generated from casi-5 and casi-PAN are weakly correlated. 



Table 7.9. Correlations between casi spectral and Gt spatial data (random 

PAN I 

sample, n=400) 

7.3. SEGMENTA TlON OF GETlS STA TlSTlC VALUES INTO TREE 
CLUSTERS 

casi-2 
casi-3 
casi-4 
casi-5 
casi-pAN 
GEns-1 
GETIS-2 
GETIS-3 
GETIS-4 
GETIS-5 
~ J 3 " l ' S -  

There are many techniques for the extraction of information from digital images 

casi-1 casi-2 casi-3 casi-4 casi-5 casi- GETIS GETIS GETIS GETIS GETIS 
PAN - 1  -2 -3 -4 -5 

0.87 
0.83 1.00 
0.90 0.67 OAl 
0.39 -0.01 -0.08 0.68 
0.85 0.73 0.70 0.83 0.47 
0.91 0.79 0.75 0.82 0.35 0.74 
0.81 0.88 0.87 0.62 0.02 0.64 0.88 
0.77 0.88 0.87 0.57 -0.04 0.61 0.84 0.99 
0.87 0.63 0.58 0.90 0.60 0.75 0.92 0.70 0.64 
0.34 -0.06 -0.12 0.58 0.92 0.39 0.36 -0.01 -0.07 0.62 
0.78 0.67 0.64 0.73 0.40 0.91 0.81 0.69 0.66 0.81 0.41 

(Rosenfeld, 1984). A method of grouping related pixels is through image segmentation (Reed 

and Du Buff, 1993). There is a wide variety of image segmentation techniques; yet, the 

selection of an appropriate technique for a particular image type and objective is not a trivial 

task (Pal and Pal, 1993). Image segmentation is an art and science. For successful 

segmentation, the art is to consider physical characteristics of how the imagery was created 

and what the data represent, while also developing a consistent and rigorous technique to 

process the data. Based upon the image spatial resolution and the forest composition in the 

study area, the goal of the segmentation of Gi* values is to group together, or cluster, high 

near infrared and panchromatic reflectance values. For example, high near infrared 

reflectance values are expected for trees based on an understanding of the reflectance 



properties of vegetation (Gausman, 1977). Gi* values are generated from the reflectance 

values to enable such clustering. 

The selection of threshold values to partition the G; values into image based objects is 

not possible due the local computation of G? values (Pal and Pal, 1993). A threshold value 

which may successfully create clusters in one image section may not work in another section 

due to changes in forest structure. As a result, a measurement guided spatial clustering 

technique is needed to group the Gi* values into clusters based upon local characteristics. The 

generation of tree clusters is undertaken from the segmentation of G: values. The G; values 

are well prepared for segmentation as each pixel has a value which indicates the strength of 

the relationship between neighbouring pixels. 

The G: values computed from the reflectance imagery provide information relating the 

strength of the relationship between pixels and the magnitude of the reflectance values which 

are found in association. The segmentation approach developed for this study utilizes both 

the strength and the magnitude of the G; to form tree clusters. The following steps are 

undertaken to cluster the Gi* values: 

select reflectance imagery for analysis 

assess the spectral reflectance ch&acteristics of the selected wavelength(s): 

- near infrared and panchromatic; high reflectance = vegetation 

- visible, such as red wavelengths, low reflectance = vegetation 

generate G: from the image data 

process the Gr values to find local minima and maxima for use as seed points 

(minima are pixels which are found to be the lowest value within a 3x3 window; 

maxima are the greatest value found within a 3x3 window) 

label each seed point (seed labels are used to populate each pixel or the resultant 

objects) 



* merge seed points which are directly adjacent; this implemented to avoid equal 

values resulting in multiple adjacent seed points. 

initiate iterative grouping from each minima and maxima seed point 

- omni-directional clustering based upon Gi* similarity 

- place the pixels in clusters where similarity is maximized 

- similarity is calculated as minimum difference between pixels 

The resultant clusters are labeled representations of groups of similar reflectance 

characteristics. The labels enable the extraction of the original spectral values which comprise 

a spatially dependent cluster. In the following section we will assess the ability to match the 

image spatial structure generated clusters with ground measured forest characteristics. 

7.4. COMPARISON OF FlELD DATA WlTH IMAGE CLUSTERS 

A complete consideration of the field data and the Gi* clusters to assess the relationship 

between forest inventory and biophysical parameters is undertaken in dedicated chapters. 

This section is intended to allow for a discussion of the problems in matching the field data to 

the image data. In Figure 7.13 we present a sub-image of raw infrared data and the G: data 

which were computed from the raw values. As the image data is geocoded and the field data 

have been oriented with a GPS in the field, co-registration of the field and image data may be 

undertaken for analysis. 



CASI Infrared Gi* from CASI Infrared 
-- - 

Figure 7.13. Comparison of image spectral and spatial data (DS7) 

As the tree locations are known, and stored in a GIs, the crown dimensions for each 

tree have been computed (see Figure 6.3) and have enabled the generation of plot maps based 

upon ground survey data. The ground measured and delineated stand maps are a reasonable 

representation of the tree distribution within the sample plot based upon ground measurements 

taken from below the canopy (Figure 7.14). As may be expected, the forest stand appears 

much different from above, and this difference in representation hampers the ability to match 

ground data to remotely sensed data. An exact match of the ground measured plot map with 

the representation derived from image spatial information is unlikely based upon the 

aforementioned errors. Yet, if the image derived plot map contains similar distribution 

characteristics to the field derived plot map some assumptions may be made. The analyst may 

assume, based upon confidence in the ground control and the ability to locate a plot, that the 

variability between plot maps is largely a function of error in relating the field collected data 

to the image data. The ability to "line-up" each of the datum is indeed a difficult proposition. 



Field Data 
Tree present 
Tree should be present 
Tree may be present 
Tree not present 

. - . - - - - - - - - 

Clusters from G;* on CASI IR 

Shades denote different obiects 

Figure 7.14. Comparison of field data and clusters generated from 
Gr on casi NIR channel (from image DS7) 

The image derived plot maps and distribution characteristics may be understood as the 

"remote truth", or the best fit data according to the limitations of spatial resolution and data 

scaling. The concept of a "remote truth" versus ground truth is an acknowledgment that 

remote sensing instruments, collecting data from above, are unable to record the surface of the 

canopy in the same manner as mensuration data which are measured from below. Likewise, 

factors such as spatial and spectral resolution, view angles, and illumination conditions will 

invariably result in a remotely sensed canopy which varies from ground mensuration data. 

Figure 7.15 presents the clusters generated for each of the plots studi~d, which may be 

compared to the field plots (Figure 6.3). 



= 1 by 1 m pixel area (where each shade represents a different object) 

Figure 7.15. Image spatial dependency generated clusters 



The investigation of the spectral and spatial properties of the imagery has presented 

new insights into the spatial distribution of reflectance in image space. The technique of 

assessing the distance at which spatial dependency is maximized in relation to spectral 

reflectance provides new clues to the physical link between a forest landscape and image 

spatial structure. The spatial dependence measure of G: is capturing image spatial structure 

which is related to forest structure. Subsequently, further analysis to investigate the 

relationship between the image spatial structure and forest inventory and biophysical 

parameters is appropriate. 

The visual agreement between the clusters and the field data is promising. The spatial 

resolution of lm  in consideration of deciduous and mixed forests results in a difficulty in the 

cross recognition of image objects to forest objects. Confidence in the match between the 

field data and the image generated clusters is based upon image geocorrection, the plot based 

GPS measures, and field site visits. Further analysis in the estimation of forest inventory and 

structural parameters will provide a means of quantification of the match between the image 

clusters and field data. 



8. ESTIMATION OF FOREST INVENTORY PARAMETERS 

Chapter Objective: Develop and test a methodology to combine existing 
information extraction techniques with the Getis statistic to 
alio w for estimation of forest inventory parameters. 

The relationship between the forest inventory parameters of crown closure, stand 

density, and tree species classification with spatially derived image vegetation clusters is 

investigated in this chapter. The relationships between forest inventory parameters and the 

G? clusters will be limited due to the nature of the clusters. A single tree cluster may contain 

a number of trees resulting in a limited ability to estimate the number of stems in a particular 

area. Yet, clusters as a spatially derived entity are appropriate for relating the extent of 

vegetation within an area, enabling the estimation of crown closure. As a cluster may be 

composed of a number of trees, there is difficulty in labeling the cluster with a single species. 

Cover classes, based on the broad groupings of deciduous, coniferous, and mixed forest, are 

measurable from the spectral information found within clusters. Cover class information is 

valuable for the provision of model inputs and to relate the general characteristics of a stand. 

The investigation undertaken in this chapter will allow for further insights regarding the type 

of forest inventory information that may be collected from the spatial and spectral information 

available from lm spatial resolution airborne and forthcoming satellite remotely sensed data. 



8.2. ESTlMATION OF STAND D E ' T Y  

Stand density is a quantitative measure of the number of trees found within a unit area 

of forest. Stand density may be expressed in absolute or relative terms. Absolute measures of 

stand density are derived directly from measurements in the stand whereas relative measures 

are comparisons between stands (Avery and Burkhart, 1994). For example, the number of 

trees per hectare is an absolute measure of density, while relative measures of stand density 

are based upon comparison to a known or ideal density. 

As clusters are composed of 1 or more trees in close association, the ability to estimate 

the number of stems per a unit of area is difficult. The nature of the forest growth through a 

succesional series results in an ever changing forest structure over time, such as the variability 

in stand stratification based upon dominance. Forest structure may change through situations 

such as suppressed trees replacing aging dominant or co-dominant trees. Figure 8.1 illustrates 

situations from co-dominance in an even-aged stand through to a complex situation of 

dominance, co-dominance, intermediate, and suppressed trees found in association in an un- 

even aged stratified mixture. The difficulty in the remote sensing of deciduous and mixed 

forest stand density is apparent in such illustrations. At a lm spatial resolution, with the 

forest type present in the Acadian forest region, the ability to discern individual stems is 

unlikely. Yet, a relationship between stand stratification, based upon dominance, and 

clustering information may exist. 



Even-aged stand 

Balanced uneven aged stand 

Irregular uneven aged stand 

Even aged stratified mixture 

Figure 8.1. Variation in structure of forest 
stands. The first three stands (from the top) 
consist of the same species. The forth is 
composed of several species of the same age 
(after Kozlowski, et a l ,  1991). 



The counts of tree crown class levels, such as dominant, co-dominant, suppressed, and 

intermediate, relate the structure found in each stand (Table 8.1). Crown classes are 

determined as follows: dominant trees are those which have crowns which extend above the 

general level of the crown cover and receive full light from above and partially from the sides 

and are larger than the average trees within the stand; co-dominant trees are those which form 

the general level of the crown cover and receive full light fiom above but relatively little fiom 

the sides; intermediate trees are those which are shorter than dominant or co-dominant trees 

and may extend into the crown cover formed by domjnan t or co-dominant trees and are 

crowded and receive little light from the top and almost none from the sides; suppressed trees 

are found entirely below the general level of the canopy and receive no direct light (Avery and 

Burkhart, 1994). Counts of tree crown class are selected to relate to the image cluster data as 

the stratification of the trees present within the study areas is taken from the crown class 

information. Clusters are expected to develop between dominant and trees in a suppressed 

situation. Clearly dominant trees are relatively infrequent in comparison to co-dominant trees, 

relating the age structure and succesional characteristics of the sample plots. Further, within a 

20x20 m sample plot area, the number of clearly dominant trees is limited. El;y definition, 

intermediate and suppressed trees are found in association with more dominant trees. The 

multi-layered characteristics of the study plots relates the structural complexity present. 

Table 8.1. Counts of tree crown class levels, trees within plots, and cluster 
derived parameters 

1 Dominant Suppressed Intermediate Co-dominant Tree Total cluster No. of clusters Total pixels 
DSS I 6 17 2 1 23 67 22.5 13 293 



As an investigation of the potential density information that may be available from 

image clusters three parameters are extracted (Table 8.1). The number of pixels per cluster 

(pixels/cluster) is a mean value generated from the number of pixels found within each cluster 

for each sample plot. The number of clusters (No. of clusters) is a count of the number of 

clusters found within each sample plot. To provide an indication of the coverage of the plot 

by the image derived clusters, the total number of pixels which are expected to be included 

within a plot is generated from the multiplication of the number of clusters by the mean 

number of pixels per cluster (Total pixels). 

Table 8.2 presents the relationships between the field collected tree crown class data 

and the image generated cluster information. Inspection of the correlations between the field 

collected crown class data indicates a relationship between dominant, suppressed, and 

intermediate trees. Suppressed and intermediate trees, by definition, are most often found in 

conjunction with dominant trees. The weak negative relationship between dominant and 

suppressed trees with co-dominant trees is indicative of the stand structure which resulted in 

the categorization of the trees. Co-dominant trees are categorized based upon similarity of 

characteristics of neighbouring trees. Co-dominance often includes local characteristics such 

as even age and height, which results in scant opportunity for growth of intermediate or 

suppressed trees. 

Table 8.2. Correlations between tree crown class, number of trees, and 
cluster derived values for all six plots combined 

Dominant 
Suppressed 
Intermediate 
Co-dominant 

Co- Tree Pixels/ No. of Total 
Dominant Suppressed Intermediate dominant Total cluster clusters pixels 

1 .OO 
0.78 1.00 
0.82 0.96 1.00 
-0.22 -0.1 2 0.07 1 .OO 

Tree Total 
Pixeldcluster 
No, of clusters 
Total pixels 

0.43 0.59 0.74 0.73 1.00 
059 0.17 0.35 -0.16 0 1 1.00 
-0.06 0.34 0.07 -0.39 -0.19 -0.75 1.00 
0.54 0.73 053 -0.74 -0.13 0.02 0.64 1.00 



Dominant, suppressed, and intermediate tree counts appear to be accounting for similar 

variance when compared to the cluster summary information. The physical association of 

dominant, suppressed, and intermediate trees in the field results in the generation of image 

clusters due to the proximity of the trees and the image lm spatial resolution utilized in this 

analysis. The strong relationship between dominant trees and the total number of trees found 

within each plot is likely a function of the consistent representation of dominant trees in the 

imagery. The negative relationship between co-dominant trees and cluster derived 

information is due to generation of more clusters as the level of co-dominance increases, as 

the association between objects is more clearly defined. Co-dominant trees often possess a 

discrete space in the field, which results in the generation of an increasing number of small 

clusters as co-dominance increases. As the sample space is limited (20 x 20m field plot) the 

size of the clusters generated from the co-dominant trees in the imagery decreases as the level 

of co-dominance increases. Conversely, as the number of dominant trees increases, the 

clusters increase in size. The increase in cluster size for dominant trees is the increased 

potential for the presence of intermediate and suppressed trees in association with the 

dominant trees. In the field plots, the intermediate and suppressed trees will often share pixel 

space with the dominant trees resulting in an undefined delimitation between trees and an 

opportunity for inclusion of intermediate and suppressed trees in clusters spectrally dominated 

by the dominant trees. For example, the strong positive relationship (r-0.73) between the 

count of pixels included in image generated clusters and the field count of suppressed trees 

indicates the role of suppressed trees in the occupation of pixels along with dominant trees at 

a spatial resolution of im. Manual stem count extraction from aerial photographs also finds 

the greatest success when seeking dominant species (Needham and Smith, 1987). 



8.2.1. Section Results and Discussion 

The relationships between the field collected crown class data and the image generated 

cluster data indicate complementary information content. Knowledge of the stand crown class 

regime provides a variety of insights to the clusters that are generated from the image data. 

Based upon the complex stand structure, due to the presence of deciduous and coniferous 

trees, individual stem counting at a 1 m spatial resolution is limited. The cluster data shows 

promise for the extraction of relative densiiy information, yet based upon the use of clusters 

which are composed of one or more trees, exact stern counts will be elusive. While absolute 

stern counts may not be possible, relative density changes within an image area may be an 

alternative approach. Areal based parameters, such as crown closure, which do not require the 

delineation of single trees may be more successfully addressed. 

8.3. ESTllWATlON OF CROWN CLOSURE 

Crown closure, also referred to as canopy closure, is a measure of the percentage of a 

forest area accounted for within a vertical projection of the tree crowns (Avery and Burkhart, 

f 994), with the maximum amount of crown closure being 100 percent. Crown closure can be 

an indicator of stand volume, density, and basal area. As crown closure is the vertical 

projection of vegetation over an area it is well suited to measurement with remote sensing 

techniques. Crown closure estimates are problematic to compare between field, photo, and 

digitally interpreted methods. Field estimates of crown closure are commonly generated from 

the measurement of crown extent in two perpendicular directions that provides a mean radius 

which may then be used to compute individual crown areas that may be aggregated to 

represent a plot area (Cole, 1995), resulting in a ratio value of crown closure. Optical methods 

based upon hemispherical photography may also be utilized (Chan, et al., 1986) to measure 

crown closure in the field from below the canopy. Estimates of crown closure from aerial 



photographs are often derived from placing a clear plastic sheet over the photograph with dots 

drawn on the plastic at a known interval, allowing for estimates of crown closure to be 

estimated by the amount of crown foliage area found beneath the dots (Avery and Burkhart, 

1994). Estimates of crown closure based upon photo interpretation are often placed into 

closure classes, which are commonly 10% intervals, yet in particular instances may be further 

aggregated to 30% interval classes (Gillis and Leckie, 1993). Digital estimates of crown 

closure are also related in ratio values based upon the automated computation. 

In this study, the crown closure estimates are based upon field measurements after Cole 

(1995) which generated ratio values of crown closure. These crown closure values, although 

likely of a false precision, are preferred over the placement of the crown closure values into 

10% class intervals. The placement of the crown closure values generated from the field 

collected data into 10% classes for comparison to image based estimates of crown closure 

would make comparison difficult. Placement of the field estimates and image based estimates 

of crown closure into 10% classes for comparison would not allow for the full potential of the 

data to be explored. When placing values into 10% classes the actual similarity of closure 

estimates is obscured. Placement of a crown closure estimate of 13 into the 10% class interval 

of 10 to 201  would result in the appearance of 13% as a better estimate of crown closure of 

19% than 21 % which would be placed in the next greater crown closure range. 

In this section, crown closure as measured in the field is compared to the area of the 

plot accounted for by image clusters. The clusters are generated from G: values generated 

upon infrared and panchromatic image data. For further comparison, the clusters formed from 

image segmentation are compared to a simple threshold of Gi* values. The threshold limit 

was zero, with values above zero assumed to be canopy foliage related. Table 8.3 presents the 



results of the comparison between field estimates of crown closure and closure estimates 

derived from image spatial dependency. 

Table 83.  Crown closure estimates from image threshold and cluster data. The 
difference between the estimate and the field data is noted in parenthesis. (Critical 
t = '2.222, DF = 10, a = 0.092, * denotes statistical significance of difference to 
field data) 

PlotIImage Field Data Threshold IR Threshold PAN Cluster IR Cluster PAN 
DS5 0.82 0.58 (-0.24) 0.83 (4.01) 0.73 (-0.09) 0.64 (-0.1 9) 
DS6 0.59 , 0.5 I (-0.09) 0.42 (-0.1 7) 0.62 (N.03) 0.38 (-0.2 1 ) 
DS7 0.69 0.57 (-0.1 2) 0.75 (4.06) 0.55 (-0.14) 0.56 (-0.12) 
DS8 0.74 0.14 (-0.60) 0.38 (-0.36) 0.62 (-0.12) 0.48 (-0.25) 
DS9 0.59 0.39 (-0.20) 0.57 (-0.02) 0.57 (-0.02) 0.43 (-0.16) 
DSIO 0.54 0.23 (-0.30) 0.47 (-0.06) 0.38 (-0.16) 0.36 (-0.18) 

Absolute difference 
from field data 1.55 0.68 0.56 1.1 1 
StDev. difference from field data 0.18 0.15 0.07 0.04 
t-statistic 2.97" 1.06 1.30 3.00* 

An underestimation of crown closure results occurs in most instances. The 

underestimation of crown closure with the image based information is likely related to 

shadowing within the stand. For the six plots available to this study, an ability to estimate 

crown closure to within r 10% is demonstrated for estimates from a threshold of G: generated 

on panchromatic image data and clusters generated from infrared image data. The crown 

closure estimates from Threshold IR and Cluster PAN are found to be significantly different 

from the field based estimates of canopy closure. Insignificant t-statistic values for Threshold 

PAN and Cluster IR do not allow for the rejection of the null hypothesis, indicating a 

similarity between the field based and remotely sensed estimates of crown closure. Although 

the Threshold 1R values are significant, the provision of a threshold value is not sensitive to 

spatial dependency variations found within the images and is accordingly unreliable with a 

large absolute difference combined with a large standard deviation indicating the high 

variability of the estimates. The estimates of crown closure with the cluster information have 

a small absolute error with a low standard deviation indicating a lower range to the estimates. 



The under-estimation of the cluster based crown closure estimates on plot 7,8, and 10 may be 

related to the stand structure and resultant shadow regime within the stand. The 

underestimation of crown closure with panchromatic image data may be related to the lower 

dynamic range of the data in comparison to the infrared image data. The larger dynamic 

range of the infrared image data allows for greater variability between neighbouring pixel 

values for the generation of clusters. 

8.4. ASSIGNMENT OF COVER CLASS 

This section is a demonstration of a technique for assigning species cover classes to the 

image generated clusters. As the lm spatial resolution will not allow for regular separation of 

individual trees the clusters are subject to spectral dilution by the inclusion of a variety of 

species within each cluster. As a result, the assignment of a general cover class is undertaken, 

which is broader than individual species and is comprised of hardwood (HW), softwood 

(SW), and mixed wood (MW). It should be noted, however, that softwood clusters are an 

uncommon occurrence in this study. Cover classes may be utilized as an input to predictive 

equations of LAI from high spatial resolution digital remotely sensed imagery (Wulder, et a!., 

1996a; 1998). The cover classes predicted for the clusters are applied in Chapter 9 to estimate 

LAI. 

The procedure to generate cover classes for the clusters is as follows; 

G? spatial dependence values generated (Section 7.2.2) 

data segmented based upon spatial dependence (Section 7.3) 

mean spectral values extracted for each polygon 

Ward's method of clustering undertaken to group the clusters based upon the 

spectral information within each cluster (Davis, 1986).' 

' Clustering techniques generally create groups based upon within and between group variance. Pixels are 
placed into a cluster based upon having more in common with one group than another, through minimization of 
internal variation while maximizing variation between groups. Homogeneous and distinct groups are delineated 



The groups generated from the clustering are compared to standard spectra to be 

placed in the appropriate cover class. (Once clusters are generated, the spectral 

values which compose the clusters may be investigated to assist in assignment of 

each cluster in a cover class. A wide range of input spectral values results in an 

assignment of MW, a small range of spectral values with spectral characteristics 

similar to conifer spectra collected in the field will be assigned SW. While a-small 

range of spectral values similar to hardwood spectra collected in the field will be 

assigned to HW. This process was implemented with the assistance of the 

dendrograms generated from each plot through the clustering process.) 

the cover classes assigned are compared to field data stored in a raster GIs. 

Appendix 2 contains tables presenting the mean spectral reflectance values for each 

extracted cluster within each sample plot. To assess the success of the assignment of cluster 

labels, tables for each plot have been created which present the class assigned utilizing a 

statistical clustering technique to the trees which are expected based upon the ground data. 

The image data generated cover class is compared to the tree species which have been noted 

for the field plots in the same locations. The portion of the stand that is not grouped into a 

cluster is characterized as understory (US). The success of the labeling of the image clusters 

is based upon the inclusion of related species from the ground data found for the image 

derived clusters. For instance, an image cluster cover class of hardwood (HW) must have 

hardwood species within the cluster to be labeled as matching. Although more complex 

schemes may be developed, such as those which may utilize the areal contribution of each tree 

in the cluster to adjust the labels, these methods assume a less complex situation than is 

actually present. The complexity of the situation is based upon the 3-dimensional distribution 

of forest elements in the field and how remote sensing instruments collect these data. The 

estimation method applied in this study provides for an indication of the ability to classify 

based upon assessment of distances between group centroids, or in the case of Ward's method, an F-test. The 
ability to select a statistical tolerance led to the selection of Ward's mctbod. 
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clusters of a complex forest environment. Also recorded for each sample plot is the number 

of trees which are recorded in the field data and the number which are accounted for within 

the image generated clusters. 

Sample plot DS5 is characterized as having an intolerant and tolerant hardwood 

overstory (Table 6.2). The clusters generated for the sample image DS5, produce classes that 

are correct 9 of 13 times (Table 8.4). Clusters, such as 3497 and 3622, may have been classed 

as MW based upon a strong conifer reflectance signal from the understory. The large number 

of trees found within a single cluster relates the difficulty in differentiation between image 

objects, with similar spectral characteristics, at a 1 m spatial resolution. 

Table 8.4. Summary of DS5 image cluster data and field collected cluster 
data. Cluster from segmentation, class from reflectance, number of pixels 
in clusters from image data, trees per cluster and total trees per cluster 
from fusion with GIs data (where * denotes matching class, "denotes non- 
matching class; n=67, n in clusters=52) 

Cluster Class # Pixels in Cluster Trees 1 Cluster Total trees / Cluster 

3427 W* 24 rM(3) 3 
3444 HW* 27 rM(4), Be, sM, yB 7 
3495 HWA 8 0 0 
3497 MWA 19 r w ) ,  YW) 7 
3523 HW* 2 YB 1 
3534 NW* 24 YB(~ ) ,  rM(3) 5 
3563 HW* 32 wB, rM 2 
3579 HW* 2 1 sM 1 
3622 MWA 24 rM(2), stM, yB(2) 5 
3623 HW* 25 yB(3), Be(2) 5 
3646 HW* 29 rM(4), yB, Be, sM 7 
3700 HWA 40 stM, rS, rM(4), yB 7 
3714 HW* 18 YW), rM(2) 4 

Sample plot DS6 is characterized as having a mixed wood overstory and a light hardwood 

understory (Table 6.2). The complex composition of this sample plot, with contrasting 

spectral features in the overstory and understory layers, diminished the ability to spectrally 

classify the image generated clusters to match the field collected data, and resulted in a low 



success rate of 2 of 13 correct matches (Table 8.5). Table A2.2, in Appendix 2, denotes the 

low variability in mean spectral values extracted, which may have reduced the ability to 

correctly classify the clusters. A greater problem appears to be the lack of trees found to be 

present in five of the image generated clusters. The lack of field values where there are image 

generated clusters may be related to the difficulty in matching the image data to the field data. 

An additional cause for the generation of ghost clusters may be that spectrally significant 

portions of understory vegetation in an open canopy situation are generating clusters based 

upon spatial dependence characteristics. 

Table 8.5. Summary of DS6 image cluster data and field collected cluster data. 
Cluster from segmentation, class from reflectance, number of pixels in clusters 
from image data, trees per cluster and total trees per cluster from fusion with 
GIs data (where * denotes matching class, "denotes non-matching class; n=42, n 
in clusters=37) 

Cluster Class # Pixels in Cluster Trees I Cluster Total trees 1 Cluster 
0 US 143 NA NA 

3056 HWA 22 0 0 
3068 HW* 13 rM 1 
307 1 HwA 28 bF(21, wB(2) 4 
3099 MW* 50 rM(2), bF(5), wA, wB(2) 10 
3125 MWA 9 r S 2 .  
3 176 HWA 5 1 rM(6), wB, bF(2) 9 
3242 MWA 8 0 .  0 
3263 MWA 8 0 0 
3296 HWA 15 rM(3). rS(3) 6 
3320 HWA 5 rM, bF 2 
332 1 HWA 18 rS, rM(2) 3 
3338 MWA 4 0 0 
3339 MWA 7 0 0 

Sample plot DS7 is characterized as having a mixed-wood overstory and a light mixed- 

wood understory (Table 6.2). Table 8.6 presents the agreement between the image generated 

estimates of cover class and the field collected tree data. Agreement between the image 

generated classified clusters and the field data is found in 5 of 9 instances, with 2 clusters 

failing to have any trees present. Tree shadows, from both trees within the sample plot and 



outside, may cause a reduction in spectral infomation available for the development of 

clusters. For example, in DS7 a count of 31 or 40 trees are accounted for within the clusters. 

As a result, clusters are being generated where there may be no tree, or there may be a lack of 

a cluster where there is a tree. The sample plot is dominated by HW species with the SW 

species making a small contribution to the spectral values derived for some clusters resulting 

in mis-labeling. 

Table 8.6. Summary of DS7 image cluster data and field collected cluster 
data. Cluster from segmentation, class from reflectance, number of pixels in 
clusters from image data, trees per cluster and total trees per cluster from 
fusion with GIs data (where * denotes matching class, "denotes non- 
matching class; n-40, n in clusters=31) 
Cluster Class # Pixels in Cluster Trees / Cluster Total trees / Cluster 

0 US 182 NA NA 
3332 MW* 3 rM(2), rS, Be, wB 5 
3352 HWA 29 0 0 
3390 HW* 15 Be 1 
3427 MWA 13 wB, rM 2 
3442 HW* 16 Be, stM 2 
3459 HWA 3 1 wB(2). rS, rM 4 
3460 MW* 69 Be(5), wB(4), rS(2), stM 13 
3560 MW* 3 1 r w ) ,  4 
3586 HWA 12 0 0 

Sample plot DS8 is characterized as having a hardwood/softwood overstory and a 

hardwood softwood understory (Table 6.2). DS8 has the largest number of clusters generated 

in this study with 23 (Table 8.1). Table 8.7 presents the agreement between the image 

generated estimates of cover class and the field collected tree data. Agreement between the 

image generated classified clusters and the field data is found in 15 of 23 instances, with 4 

clusters failing to have any trees present. Equal success is found in matching field data to 

image data for both HW and MW cover classes. A low count of trees outside of any cluster, 

with 49 of 55 trees being found within a cluster, relates a strong geometric match between the 

image data and the field data stored in a raster GIs. 



Table 8.7. Summary of DSS image cluster data and field collected 
cluster data. Cluster from segmentation, class from reflectance, number 
of pixels in clusters from image data, trees per cluster and total trees per 
cluster from fusion with GIs data (where * denotes matching class, 
Adenotes non-matching class; n=55, n in clusters=49) 
Cluster Class # Pixels in Cluster Trees / Cluster Total trees I Cluster 

0.0 U S  170 NA NA 
HWk 
HW* 
HW* 
HW* 
HWA 
HW* 
HW* 
MW* 
HW* 
MW* 
HW* 
Hw* 
HW* 
MWA 
MW* 
MWA 
MWA 
MW* 
MWA 
MWA 
MW* 
MWA 
MWA 

Sample plot DS9 is characterized as having a hardwood overstory and a softwood 

understory (Table 6.2). Table 8.8 presents the agreement between the image generated 

estimates of cover class and the field collected tree data. Agreement between the image 

generated classified clusters and the field data is found in 11 of 17 instances, with 3 clusters 

failing to have any trees present. Matching between image clusters classified as MW and the 

field data appears problematic, which may be based upon the contrast between overstory and 

understory vegetation. All 27 trees recorded in the field are found within image generated 

clusters, although 3 clusters are found to have no trees present. The presence of all 27 trees 



within clusters for this low density sample plot relates a good geometric match between the 

image and field collected data. 

Table 8.8. Summary of DS9 image cluster data and field 
collected cluster data. Cluster from segmentation, class from 
reflectance, number of pixels in clusters from image data, trees 
per cluster and total trees per cluster from fusion with GIs data 
(where * denotes matching class, "denotes non-matching class; 
n=27, n in clusters=27) 
Cluster Class # Pixels in Cluster TreedCluster Total trees / Cluster 

0 US 189 NA NA 
HW* 
HW" 
HW* 
MW" 
Hw* 
HW* 
HwA 
HWA 
HW* 
HW* 
MWA 
HW* 
MWA 
w* 
HW* 
w* 
MWA 

- -- - 

Sample plot DS 10 is characterized as having a hardwood overstory and a softwood 

understory (Table 6.2). Table 8.9 presents the agreement between the image generated 

estimates of cover class and the field collected tree data. Agreement between the image 

generated classified clusters and the field data is found in 9 of 1 1 instances, with no clusters 

failing to have any trees present. Yet, although there are no clusters with no trees present, 

there are 17 trees which are in the sample plot which are not accounted for in an image based 

cluster. The geometric match between the image and the field data may be suboptimal, with 



the homogeneity of the sample plot vegetation allowing for the strong matching between the 

image and field data. 

Table 8.9. Summary of DSlO image cluster data and field collected 
duster data. Cluster from segmentation, class from reflectance, 
number of pixels in clusters from image data, trees per cluster and 
total trees per cluster from fusion with GIs data (where * denotes 
matching class, "denotes non-matching class; 11351, n in clusters=34) 

Cluster Class # Pixels in Cluster Trees / Cluster Total trees / Cluster 
0 US 270 NA NA 

1706 HW* 14 wB(3), stM 4 
1718 W* 43 rM(31, wB(3) 6 
f 734 HWA 11 rM, wB, sP 3 
1782 MWA 16 rM(2), wB 3 
1789 E-IW* 2 wB 1 
1 798 HW* 14 rM(3) 3 
1836 HW* 14 wB(2) 2 
1854 HW* 13 wB, rM(3) 4 
1 925 HW* 19 wB(4) 4 
1937 HW* 14 rM 1 
1958 HW* 12 wB(3) 3 



8.4.1. Section Results and Discussion 

In general the matching between the trees present in the image generated clusters and the 

field collected data was good considering the limitations of the study. This statement of 

efficacy is based upon limitations of the method, such as the wide spectral range eligible for 

inclusion in a particular cluster and the complex mixed forest composition present. The 

method described is not one which is intended to be automated and implemented at the 

current stage of development, it is more intended as an investigation of the utility of a cluster 

based approach to object grouping. Both the spatial and spectral data available at an image 

spatial resolution of im are providing information to enable the generation and classification 

of image based clusters. The results demonstrated here indicate promise in the technique and 

a need for further investigation. A future investigation would benefit from utilization of a 

forest of simple structure with an exact knowledge of tree locations, based upon ground or 

tree markers. The ability to classify and distinguish objects at lm spatial resolution is limited; 

a cluster based approach acknowledges the complexity of the forest and the limitations 

imposed through remote sensing instrumentation. The provision of a cover class to vegetation 

objects may prove useful as a model input, such as in the estimation of leaf area index. 



9. ESTIMATION OF FOREST LA1 

Chapter Objective: Develop and test a methodology to combine existing 
information extraction techniques with the Getis statistic to 
allow for estimat/on of the forest biophysical parameter leaf 
area index (LAI). 

9. I. INTRODUCTION 

The ability to estimate LA1 from spectral response is strong up to an LA1 of 

approximately 3 (Gong et al., 1992), after which an asymptote is normally encountered 

(Wulder et al., 1996a). The flattening of the relationship is due to the inability of NDVI, 

generated from a nadir remote sensing instrument, to sense increases in foliage overlap (Baret 

and Guyot, 1991) as forest complexity increases. As a result, additional information is 

required which still undergoes change as the forest increases in complexity. Forest spatial 

structure varies through levels of forest development (Waring and Schlesinger, 1985). Image 

spatial information may capture some of the variability in forest structure (St-Onge and 

Cavayas, 1997). Digital image processing provides spatial measures which characterize the 

spatial neighbourhood of a pixel, such as, digital image texture (Wulder, et al., 1998) and 

image semivariance (Cohen, et al., 1990; Franklin and McDermid, 1993) capture information 

relating to the variability around a pixel related to the forest structure. 

In this research an alternate approach is presented to the estimation of LAI. Clusters 

generated based upon spatial dependence characteristics are composed of regions of image 

spatial structural similarity. This image spatial structural similarity is understood to be related 

to the forest structure that is being sensed with the remote sensing instrument. Generation of 

clusters allows for an increase in the likelihood that the pixels selected for incorporation in the 

empirical estimation of LA1 are indeed the foliage unit suspected. Image spectral response in 



the clusters was compared to field collected spectral information which allowed for a broad 

image object classification into general cover classes, such as deciduous, coniferous, and 

mixed, for inclusion in the computation of LAI. The image spatial information dictates the 

regions from which pixels are selected for spectral data, while the textural information is 

collected to represent the region around the pixel, not merely within the object. This allows 

for the characteristics of the local region to be incorporated in the empirical estimation of 

LAI. 

8.2. ESTiMATiON OF LAI FROM THE SPECTRAL RESPONSE 
WITHIN TREE CLUSTERS 

The previous studies have demonstrated the synergy between spatial and spectral 

information present in remotely sensed imagery of forests. In this section we will further 

explore the role of spatial and spectral information in the estimation of LAI. Two techniques 

will be demonstrated with the first using both spatial and spectral information, and the second 

utilizing knowledge of the local maximum LA1 and spatial information. The first technique is 

related to previous works (Wulder, et al., 1996a; 1998), while the second technique is based 

upon the hypothesis that the foliage extent present in an area, as indicated with canopy 

closure, may be used to scale maximum LA1 to that present in a particular area. 

The prediction of LA1 for clusters based upon spectral and spatial information requires 

the following steps: 

Gr spatial dependence values generated (Section 7.2.2) 

generation of tree clusters from spatial information (Section 7.3) 

mean spectral values extracted for each polygon (Section 8.4) 

assign cover classes to the clusters (Section 8.4), 

estimate the leaf area for each cluster, 

rate LA1 estimate based upon the size of the cluster, and 

sum the leaf areas for each cluster to generate a LA1 for the plot. 



In Table 9.1 we present the results of the estimation of LA1 for the study plot DS5. 

The results for the remaining plots may be found in Appendix 3. The leaf area for each 

cluster is estimated through the generation of a mean NDVI to represent each cluster which is 

then used as an input to a LA1 predictive equation. The predictive equations for LA1 are 

based upon a study of the regional LAI of the Fundy Model Forest (Wulder, 1998a), where, 

Hardwood LA1 - (2.99 * NDVI) + 5.34 

Mixed Wood LA1 - (2.47 * NDVI) + 5.94 

Softwood LA1 = (-5.05 * NDVI) + 1 1.44 

The NDVI values are found to be of limited range, resulting in regression results that are 

also of a limited range. The use of the spectral values from within vegetation clusters appears 

to have further limited the range of NDVI values. The size of the cluster is valuable 

information that enables the spatial information relating the proportion of the stand occupied 

by the cluster to be included in the estimation of LAI. 

Table 9.1. Computation of leaf area for sample plot DS5, from cluster mean NDVI 
and cluster spatial extent (total number of pixels = 400) 
Cluster Cluster NDVI Class Pixels/Cluster LA Pixels per cluster/ LAKluster Plot LA1 

Total 
0 0.8 1 US I 08 0.27 

The above procedure for estimating LA1 from the NDVI values found within the 

spatial dependence generated clusters is undertaken for all forest plots. Table 9.2 presents a 



comparison of the field based estimates of LA1 with those computed from the spectral 

characteristics found within clusters. The difference between the field and image based 

estimates of LA1 are found to be statistically insignificant. Yet, as the mean difference and 

deviation demonstrate the estimates are variable. 

Table 9.2. Comparison of field based to image cluster 
estimates of LAI. (Critical t = i2.23, DF = 10, a = 0.092) 

Plot Field LA1 Image Cluster LA1 Difference between field - 
and cluster LAIs 

DS5 4.93 4.93 0.72 

average absolute deviation 1.40 
t-statistic 0.3 1 

The ability to estimate crown closure provides an indication of the areal extent of the 

vegetation. Knowledge of the proportion of an area which is vegetated may allow for the 

estimation of LA1 through rating of the maximum expected LAI. In the previous examples 

where LA1 was estimated from a species specific equation utilizing NDVI as an input, the 

input range of NDM is small. The NDVI range within clusters is found to be small resulting 

in small alterations of the computed LAI. Rather than use an LA1 estimation model based 

upon NDVI, the proportion of area within clusters may be multiplied by the maximum 

expected regional LA1 of 7.75 for the FMF region, that is based upon a deciduous-mixed 

wood species composition (Wulder, 1998a). Table 9.3 presents for comparison to Table 9.1 

the LA1 estimation results based upon a static leaf area of 7.75. The remainder of the tables 

demonstrating the estimation of LA1 from image spatial information and a standardized LA1 

are found in Appendix 4. 



Table 93. Computation of leaf area for sample plot DS5, from a standardized leaf 
area and cluster spatial extent (total number of pixels = 400) 

Cluster Cluster NDVI Class Pixels/Cluster LA Pixels per cluster/ LAfCluster Plot LA1 
Toral 

0 0.8 1 US 108 0.27 
3427 0.79 HW 24 7.75 0.06 0.47 
3444 0.8 1 HW 27 7.75 0.07 0.52 
3495 0.8 1 HW 8 7.75 0.02 0.16 
3497 0.77 MW 19 7.75 0.05 0.37 
3523 0.85 HW 2 7.75 0.0 1 0.04 
3534 0.8 1 HW 24 7.75 0.06 0.47 
3563 0.8 1 HW 32 7.75 0.08 0.62 
3579 0.63 WW 2 1 7.75 0.05 0.41 
3622 0.75 MW 24 7.75 0.06 0.47 
3623 0.82 HW 25 7.75 0.06 0.48 
3646 0.79 HW 29 7.75 0.07 0.56 
3700 0.8 1 HW 40 7.75 0.10 0.78 
3714 0.80 HW 18 7.75 0.05 0.35 5.7 

Table 9.4 presents a comparison of proportional LA1 with the aforementioned image 

cluster LA1 estimates which required knowledge of cover class for input of NDVI into the 

proper LA1 estimation equation. As related in the comparison of the average difference and 

deviation from the field data, the LA1 estimates for both the "Image Cluster" spectral and the 

"Proportional" LAI estimation techniques are similar. Both of the estimation techniques are 

not found to be significantly different from the estimate of LA1 made from the field data. 

Table 9.4. Comparison of image cluster generated LA1 with 
proportional LAI. The difference between the estimate and the field 
data is noted in parenthesis. (Critical t = f2.228, Dl? = 10, a = 0.05/2) 

Plot Field LA1 Image Cluster LA1 Proportional LAI 
DS5 4.93 5.6 (0.67) 5.7 (0.77) 
DS6 5.87 4.8 (- 1.07) 4.8 (- 1.07) 
DS7 6.88 4.2 (-2.68) 4.2 (-2.68) 
DS8 5.25 4.7 (-0.55) 4.8 (-0.45) 
DS9 3.28 4.3 (1.02) 4.4 (1.12) 
DS 10 4.30 2.9 (- 1.4) 3.0 (-1.3) 

average absolute deviation 1.39 
I-statistic 0.1 03 



The LA1 values predicted with structural information alone, the proportional LAI 

values, are nearly identical to the image cluster LA1 estimates which required a cover class 

specific input of NDVI. Yet, similar deviations from the field LA1 estimates are found for 

both estimation methods. This may be due to the spatial component, as a function of the 

clusters, being included in both estimation techniques. Due to the similarity of the results, the 

Proportional LA1 estimation technique shows promise for further analysis. The estimation of 

LA1 from spatial data indicates potential for estimation of LA1 from panchromatic data, and as 

a parsimonious solution to the estimation of LA1 fiom spatial information. 

9.3. CHAPTER SUMMARY 

After a review of previous work in the estimation of LA1 from spectral and spatial 

information, two new methods for the estimation of LA1 are presented. The first method 

demonstrates the estimation of LA1 based upon spectral and spatial information. In the 

second example Gi* clusters generated to represent image spatial dependency are classified for 

cover class and then processed with an appropriate equation to estimate LAI. The estimates 

of LA1 from both techniques are found to be within approximately f 1.4. As all field estimates 

of LA1 are greater than 3, the results are promising, yet not of sufficient accuracy for 

addressing ecological issues or for up-scaling. The ability to estimate LAI based on 

vegetation spatial extent and knowledge of regional LA1 indicates that estimates of LA1 may 

be made from satellite collected panchromatic data. 



Chapter Objective: Discuss issues raised through the presentation of the thesis to 
provide a context for the conclusions. 

10.1. Introduction 

The goal of this thesis is to: 

investigate alternate methods for the estimation of forest inventory and 
biophyslcd parameters based upon spatial i n f ~ i u n  extracttion through 
digital image processing of high spatial resolution rnultispectral imagery. 

The investigation of alternate methods for the estimation of forest inventory and biophysical 

parameters both acknowledges the variety of existing methods while also attempting to 

address potential shortcomings. Currently, there is a rich "tool box" of image analysis tools 

and techniques available for forest information extraction, yet often situations exist where 

algorithm performance is weak. The investigation and development of additional, or 

complementary, "tools" is intended to enhance the existing suite of methods. As has been 

demonstrated in the review of existing image processing techniques there is no one analysis 

procedure that can be universally or routinely applied. The relationship between forest 

complexity and the ability to capture this complexity from digital imagery for analysis is a 

problematic pursuit requiring the union of an appropriate match between image spatial 

resolution and analysis technique. As a result, additional tools for the analysis of forest 

structural parameters are a valuable remote sensing research pursuit. The following sub- 

sections are intended to provide depth to the preceding chapters with a discussion of key 

topics gr0uped.a~ following, spatial dependence processing, measures of spatial dependence, a 

comparison of spatial and spectral approaches, and a discussion of research limitations 

accompanied with recommendations. 



10.2. Spatial Dependence Processing 

Following the introduction of the necessary statistical background is a discussion of 

spatial dependence characteristics and context. Initially the characteristics will be presented 

generically and then in the context of remotely sensed data. A statistical process is 

understood to be stationary if the distribution function is not altered when the distance is 

altered. The distance is the area around an individual point which is included in the 

assessment. Stationary processes are also said to be spatially homogeneous, as the space 

process-homogeneity is related to the distance between the values under consideration (Bailey 

and Gatrell, 1995). It follows that spatial dependence is a special case of spatial homogeneity 

as identifiable spatial units are related and found to be similar to data for other neighbouring 

spatial units in a spatially identifiable way (Getis, 1994). Measures of spatial autocol~elation 

are often used to provide an indication of spatial dependence (Ord and Getis, 1995). 

The exploration of spatial dependence has been identified as a critical area for future 

research upon spatially representative GIs data (Sinton, 1992). This statement is based upon 

the conception of the spatial dependence between entities as providing additional and valuable 

information. This concept may be extended to remotely sensed data as both site and situation 

indicate unique spatial characteristics. The site, or pixel, has a location, and at that location 

the pixel is found in a particular situation. Each pixel may have an associated attribute which 

describes it's spatial dependence characteristics. Spatial dependence infomation may 

accordingly be generated to indicate the site and situation of an individual pixel (Getis, 1994). 

The processing of remotely sensed data to generate spatial dependence information is related 

to kernel approaches for density estimation (Bailey and Gatrell, 1995). In consideration of 

remotely sensed data individual points are pixels. The distance of consideration may be 



thought of as the size of a kernel around an individual pixel. Remotely sensed data are 

commonly found to be non-stationary, that is, the distribution characteristics change with 

changing areas of consideration. As a result, variability of spatial dependence is expected as a 

characteristic of remotely sensed data. 

Autocorrelation characteristics of remotely sensed imagery are summarized in Section 

5.2 and the pertinent literature is presented in Table 5.1. A variety of techniques to 

characterize remotely sensed image spatial characteristics have been developed, such as image 

co-occurrence (Haralick, 1 973, 1 979), scanline techniques (Labovitz and Masuoka, I 984), and 

semivariograms (Curran and Atkinson, 1998). In the body of spatial statistical literature, not 

commonly applied to remotely sensed imagery, there may be found an alternate approach to 

the assessment of spatial dependence. The approaches generally have an understood 

statistical distribution and an associated suite of assumptions. Examples of these approaches 

are measured by Moran's I, Geary's c, and the suite of G statistics. Moran's I and Geary's c 

were initially developed as global statistics but have been adapted to allow for local 

computation (Anselin, 1994). A discussion of the rationale for the selection of G,' for further 

investigation is presented in the following. 

The suite of G statistics (Getis and Ord, 1992; Ord and Getis, 1995) were developed 

for the investigation of local patterns potentially present in spatial data. Getis (1 994) 

subsequently applied an unstandardized version of G; in conjunction with an analysis of 

variance measure to characterize the spatial dependence trends exhibited. The value of such 

an approach was noted by Vu'ulder and Boots (1 998b) who altered a standardized version of 

~ i *  to process remotely sensed imagery. Subsequent investigations were undertaken upon 

Landsat TM data (Wulder and Boots, 1998a), and SSMII passive microwave data (Derksen, et 

01.. 1998ab). This current study allowed for an unprecedented investigation of the spatial 



dependence of spectral values of high spatial resolution imagery with a direct measure of local 

spatial dependence. Understanding of the spatial dependence characteristics of remotely 

sensed data allows for the attachment of an attribute relating information about the site and 

situation of an individual pixel, which is useful supplementary image information. Through 

the development and computation of ~f the investigation of the local spatial dependence 

characteristics on a per-pixel basis presented in the thesis is unique. The application of G: to 

investigate forest structural parameters is undertaken to assess the characteristics and utility of 

spatial dependence information. (A discussion of limitations and recornmeidations related to 

the estimation of forest structural characteristics in this thesis is presented in the Section 10.5.) 

10.3. Measures of Spatial Dependence 

Spatial dependence describes the relationship between neighbouring pixels. 

Characterization of the relationship between pixels has led to the development of a variety 

methods to measure spatial dependence, such as second-order statistical co-occurrence, image 

semivariance, and more recently, local indicators of spatial association. In this section, a 

selection of measures of spatial dependence are described. Following the description of the 

range of measures of spatial dependence, the rationale for development and introduction of the 

measure of spatial dependence G; to the remote sensing and forestry communities is 

presented. 

Second-order statistical co-occurrence (Haralick, 1973, 1979) and image semivariance 

(Curran and Atkinson, 1998) are the most common methods for characterizing image spatial 

characteristics. Second-order statistical co-occurrence provides an indication of the 

relationship between digital numbers in a feature space which is then used as a measure of 

local characteristics. Second-order statistical co-occurrence is valuable for the description of 

image textural features. A second-order statistical measure is so defined as it is not made 
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directly upon the numbers under consideration. In the computation of co-occurrence values, 

pixel digital numbers are placed into a co-occurrence matrix from which the actual second- 

order statistical co-occurrence measure is derived. The placement of values into the co- 

occurrence matrix is undertaken by defining a set of parameters to indicate the pixel 

interrelationships. The parameters required are window size, angle for comparison, direction, 

quantization level, and step size. Once the parameters are defined each pixel in the image is 

consistently assessed. Within the predefined window, each pixel is compared based upon the 

user defined rules for angle of comparison, direction, and step size. Co-occurrence is said to 

happen and an increment is added to the co-occurrence matrix relating the numbers which are 

found together at the location within the window based upon the comparison rules. The 

quantization level is important as it defines the bounds of the co-occurrence matrix, for 
' 

example 8 bit data may have a range of co-occurrence from 2', or the 256 values from 0 to 

255. Once the pixel inter-relationships have been processed based upon the defined co- 

occurrence rules the values within the co-occurrence matrix are processed to provide an 

indication of possible relationships such as entropy, homogeneity, contrast, dissimilarity, 

mean, and standard deviation (Haralick 1979). Differing results may be expected from co- 

occurrence based upon changes may to any of the rules for inclusion in the co-occurrence 

matrix. The selection of window size is particularly problematic (Franklin, et al., 1996). An 

additional short coming of co-occurrence processing is the inability of the statistical 

representations of the co-occurrence matrix to indicate the actual spatial relationships 

measured. The co-occurrence relationships are computed upon the entire matrix resulting in 

an inability to relate what spatial inter-relationships are occurring between the input digital 

numbers. 



Semivariance is a measure of the variance found between pixels of a remotely sensed 

image. A description of semivariance computation and application is presented in Section 

4.7. In summary, the spatial domain found at a pixel location may be computed based upon 

changes in the variance found around a particular pixel location. The ability to characterize 

the region of spatial dependence around a pixel has been a valuable addition to the remote 

sensing tool box. As summarized, studies using semivariance may compute semivariance 

along a single transect (Woodcock, et al., 1988b) or in multiple directions around a pixel 

(Wulder, eta!., 1998). A shortcoming with semivariance is that it is a positive valued 

hnction that indicates a region of spatial dependence without reference to the values 

processed. Yet, semivariance and the structurally based information derived is unique and 

versatile in remote sensing studies (Curran and Atkinson, 1998). The versatility and utility of 

semivariance for providing image structural information related to the structure of the 

remotely sensed surfaces leads researchers to either enhance semivariance analysis or to seek 

complementary measures. Local indicators of spatial association (Anselin, 1 995) and the 

suite of G statistics (Getis and Ord, 1992) provide information that describes the relationship 

between an observation and the values around that observation and are seen as a logical 

complement to semivariance and a research opportunity worthy of further investigation. 

According to the characterization by Anselin (1995, p. 94) a local indicator of spatial 

association (LISA) is a statistic that meets the following requirements, 

1. the LISA for each observation gives an indication of the extent of significant spatial 

clustering of similar values found around that observation; 

2. the sum of LISAs for all observations is proportional to a global indicator of spatial 

association. 



While a measure of spatial association, the suite of G statistics are not a considered as a LISA 

in the terminology due to the lack of a relationship to a global statistic of spatial association. 

The requirement of a relationship to a global measure of association is not problematic in the 

identification of significant local clusters. Moran's I, and Geary's c can be transformed to 

meet the LISA criteria and this is demonstrated in an application and compared to G; by 

Anselin (1995). The local Moran's I is a standardized normal value, with positive values 

representing a spatial cluster of similar values and negative values indicating a clustering of 

dissimilar values. In comparison, positive ~ i *  values indicate an association of high values, 

while negative G: values indicate a clustering of low values (Ord and Getis, 1994). Based 

upon the information inferred from the statistics, and in the context of processing of remotely 

sensed imagery, G; initially appeared more applicable to the generation of information from 

remotely sensed imagery than a local Moran's I .  As neither has been applied in a per-pixel 

basis upon high spatial resolution remotely sensed data, algorithm development and 

programming was required. The utility of G: in a remote sensing context has indicated the 

potential for adaptation of the local Moran's I to enable processing of remotely sensed 

imagery. 

The G: statistic is a means of generating information to characterize the level of 

spatial dependence associated with a location. In the case of remotely sensed imagery the 

locations are pixels. A full description of the background, computation, and application of G; 

comprises Chapter 5. Applying the method presented by Wulder and Boots (1998b), an 

image of spatial dependence values may be computed from original image spectral values. 

The result is that for each pixel the strength of spatial association (or spatial autocorrelation) 

and the magnitude of the input values is quantified. Clusters of high values are noted with a 

positive sign while clustering of low values is denoted with a negative sign. Also stored is 



information indicating the distance at which G: is maximized, previously noted as MGD - the 

Maximized Getis Distance. The absolute maximum value of G; indicates the size of the 

spatial domain found around a particular pixel. 

Provision of each pixel in an image with a value relating the strength of association to 

its neighbours while also indicating the magnitude of input values allow techniques to be 

developed which exploit both spectral and spatial characteristics of the imagery. As noted 

earlier, computation of image semivariance is a useful image processing technique to generate 

a value, such as the range, which indicates the size of the region of spatial dependence through 

consideration of the relationship between values along a transect. The computation of ~ i *  is 

undertaken to indicate the strength of the association, or the level of autocorrelation, found 

within the range. Comparison of the links between G; and the semivariance range is 

problematic based upon factors such as how each is computed and what is being measured. 

G; is computed within a square kernel and represented by the absolute maximum value, while 

semivariance is computed along a transect and is by nature a positive valued function. 

Further, visual plot comparisons between proportional values and direct data measures 

illustrate relationships of little spatial meaning. 

A unique feature of G; is the underpinnings of a statistical distribution. As presented 

in Section 5.3, G: is based upon knowledge of a known mean and variance. While G; is 

based upon global mean and variance values, global stationarity is not required for 

computation. The G: values generated for an entire image are not necessarily normally 

distributed; it is at the individual location, or pixel level, that normality occurs. A minimum 

of 8 values are required at a location for the assumption of normality to hold (Grifith, eta!., 

1996). In comparison to other measures of spatial dependence, such as second-order spatial 

co-occumnce, this is unique. Second-order statistical co-occurrence requires the user 



intervention for a number of parameters, such as angle, step size, direction, quantization level, 

window size, and choice of which statistic to compute from the co-occurrence matrix to 

represent the relationships. For one-off studies this is likely not too large an issue, but in 

cases when attempting to characterize the spatial relationships between multiple image dates, 

the second-order statistical co-occurrence settings may no longer hold. Small changes in 

spectral values may alter the co-occumnce results. In comparison to G:, it is postulated that 

small changes in digital number values are minimized, as the spatial relationships still hold 

although the relative values of the digital numbers may have changed. 

When processing G; the relationship between the input digital numbers and resultant 

G; values is strong. The high correlation's are due to the nature of the computation of G;. 

Consider what G: relates; the strength of spatial dependence, and the magnitude of the values 

found to be dependent. The provision of a sign to the G; values to represent the magnitude of 

the association results in the fact that high digital numbers have positive signs that may also 

be high values, conversely, low digital numbers have negative signs that may also be low 

numbers. This situation results in high correlation's between the spectral and G; values. The 

result is that computation of G; acts as a moving proportion filter transforming the original 

spectral values to relate both the character of the initial spectral features while also providing 

information related to the level of spatial association present at a particular location. The data 

transformation indicates the potential of building clusters from spatial objects generated out of 

the spectral data. For example, a shortcoming noted for the well developed and successful 

valley following techniques is the erroneous division of individual objects that contain 

spectral variability (Gougeon, 1995a). To reduce this problem the imageq is often 

preprocessed with a mean filter, or additional rules are added to the crown delineation 

procedures based upon factors such as inter-pixel curvature (Held and Billings, 1998). The 



availability of a smoothing function based upon spatial dependence may also aid in future 

development of rules for influencing crown delineation. The work presented in this thesis 

may provide some insights to researchers implementing valley following techniques upon 

deciduous forest cover. 

10.4. Comparison of information Extraction Approaches 

Measures of forest structure may be estimated based upon spectral or spatial information 

extraction approaches. The estimation of forest structure characteristics based upon spectral 

relationships implies a meaningful relationship between the spectral response and forest 

structure. Spatial information extraction approaches to the extraction of forest structural 

information are based upon the spatial inter-relationships of the pixel values. Further, 

approaches which acknowledge the complexity of remotely sensed representation of forests 

have resulted in hybrid approaches to information extraction. The clustering approach, based 

upon spatial dependence, demonstrated in this thesis may be considered a new and separate 

approach. In this sub-section, an overview and comparison of the varied approaches to forest 

structural information extraction from remotely sensed data are presented. A variety of 

outstanding issues, such as the effect of the modifiable areal unit problem and the effect of 

different cover types, especially hardwoods, are also presented. 

1 0 m 4 m l m  Spectral Approaches 

Spectral approaches to the estimation of forest inventory and biophysical parameters, are 

commonly empirical in nature, and use the spectral values found at a location to relate to the 

ground measured properties at the same location. These spectral approaches to the estimation 

of forest inventory and biophysical parameters are based upon an understanding of the 

reflectance characteristics of vegetation. For example, vegetation absorbs visible 

electromagnetic radiation while scattering near infrared radiation (Curran, 1980). This is a 



result of pigments, especially chlorophyll, which absorb visible wavelengths, while the air- 

water interfaces between the intercellular spaces and cell walls cause multiple refraction, 

resulting in high net reflectance values in the near-infrared wavelengths (Gausman, 1977). 

The reflectance characteristics are generally distinct for each surface cover type and are 

thought of as spectral signatures (Avery and Berlin, 1992). 

In the estimation of forest stand parameters, relationships may be developed empirically or 

deterministically. Empirical approaches ar" based upon relating, often through regression, 

field measured parameters to the spectral response found at the same location. There are a 

variety of examples using mid-resolution imagery, pixels greater than 10m spatial resolution, 

for the empirical estimation of forest inventory (Franklin, 1986; Danson, 1987; De Wulf, et 

al., 199 1 )  and biophysical parameters (Spanner, et al., 1990; Fassnacht, et a!., 1997). In the 

case of forest inventory parameters, success is generally limited by the low resolution of the 

sensors utilized. The estimation of biophysical parameters, such as LAI, is hindered by both 

low spatial resolution and an asymptote of the relationship between LA1 and spectral 

information at approximately 3 (Peterson, et aL, 1987). 

Landsat TM has a spatial resolution of 30m which allows for regional estimation of forest 

stand parameters. A standard full scene measures 185 x 175 km resulting in regional coverage 

of approximately 3 1,450 km2 (Avery and Berlin, 1992). The trade-off for the regional 

coverage, is the spatial resolution, which results in estimates of forest stand parameters which 

are often of too low an accuracy for operation forest management. The interpretation of the 

suitability of a particular accuracy level depends on the goals of a particular analysis. In 

comparing spectral values to basal area and biomass, Franklin et al. (1 986) found that 

correlations are strongly dependent upon the spectral channel, with the strongest relationships 

found in TM 1,2, and 3. Danson (1 987) applied SPOT-1 HRV imagery to correlate digital 



numbers to a suite of forest stand parameters. Significant correlations were found for density, 

mean DBH, mean height, and age, but not for canopy closure. One of the findings of this 

study was that variation in efficacy in the estimation of forest stand parameters is not a 

function of vegetation amount, but is due to the amount of shadow found within the canopy. 

De Wulf et al. (1990), also using SPOT imagery, found moderate relationships between forest 

stand parameters and both infrared and panchromatic spectral response. Model inversion was 

also undertaken to estimate the suite of forest stand parameters. The stand parameters with 

the greatest influence upon shadowing within the canopy, stand density and canopy height, are 

reported to have reasonable accuracies of between 60 to 70 percent. Estimation of forest 

biophysical parameters, such as volume (Gemmel, 1995), biomass (Franklin, 1 986), and LA1 

(Spanner, et al., 1 990), all reach an asymptote, where the digital information changes little 

while the parameter still increases. Fassnacht et nl. (1 997) found in regression relationships 

between LA1 and image spectral response variability in success related to species 

composition. The LA1 of conifer species was measured within a range of r' from 0.69 to 0.73, 

while the best relationship found for hardwoods was an r' of 0.35. 

Empirical estimation of forest parameters with high resolution imagery of less than IOm 

spatial resolution is a less established methodology with differing limitations. The lower 

resolution techniques consider the forest in terms of multiple objects within a single pixel, 

whereas the higher resolution techniques deal with a higher variance environment. In the high 

variance environment abrupt changes in digital numbers can occur as the pixel contents 

change from tree to between tree reflectance. In the lower variance environment, the changes 

in pixel contents occur more slowly as the transition areas are often contained within pixels. 

As a result, new techniques have been developed to address the variance rich environment 

present with high resolution imagery. The estimation of forest parameters with high spatial 



resolution imagery spectral values is an active research area. Techniques have been 

investigated which utilize the spectral information present in high spatial resolution imagery 

for the estimation of forest inventory (Baulies and Pons, 1995) and biophysical parameters 

(Smith, et aL, 1991 b; Spanner, et al., 1994; Seed and King, 1997). In acknowledgement of 

the difficulties inherent in undertaking a forest inventory with high spatial resolution 

multispectral data Leckie et al. (1 995) present a methodology which prepares digital data for 

visual interpretation. Baulies and Pons (1995) attempt a spectral approach to forest inventory 

parameter extraction and cover type mapping. The spatial resolution of the casi data for the 

study by Baulies and Pons was 5 x 5m with a dominant vegetation cover type of coniferous 

pines. Multiple regression relationships developed from one flight line were applied to an 

adjacent flight line. A discussion of the results of the application of the relationships to the 

adjacent flight line illustrates a correlation of 0.87 for crown closure (p = 0.01), while for 

density an insignificant correlation is found. Based upon the study parameters, such as cover 

type and image spatial resolution, Baulies and Pons indicate that spectral response can only be 

related to forest structural parameters when there is a homogeneous spatial distribution. The 

homogeneous spatial distribution desired may be related to image,spatiai resolution, 5m data 

is an L-resolution environment with each pixel containing a variety of objects. An increase in 

spatial resolution allows for the imaging of an H-resolution environment, where each object is 

composed of a number of pixels. The availability of H-resolution data has not led to a variety 

of studies based upon empirical spectral estimation of inventory parameters. The variance 

rich H-resolution data has more commonly been approached spatially or with combined 

spatial and spectral analyses. 

Forest biophysical parameters have seen more success with spectral estimation with high 

spatial resolution data. An early empirical study by Smith et al. (1991 b) related optically 



collected LA1 values to pixels with a spatial resolution of either 1.58 to 2.34m on a side, over 

an LAI range of 2.6 to 9.5. The straight empirical relating of digital numbers to LA1 values 

were found to corroborate lower the spatial resolution results reported by Peterson et al. 

(1 987) and Spanner et al. (1990), that correlations may be found but are limited by an 

asymptotic relationship. In an empirical study based upon the spectral characteristics of 

shadow, rather than tree spectral features, Seed and King (1997) report promising results. The 

shadows between trees are broken into three components based upon user defined thresholds 

and are used to develop multivariate regression relationships with LA1 as the dependant 

variable. Undertaking image analysis upon 0.25m spatial resolution digital camera data, over 

an LA1 range of 1 . I  2 to 4.92, an R~ of 0.90 with a standard error of 0.34 is reported, with a 

sample size of 15 plots. 

10.4.2. Spatial Approaches 

While infomation extraction from spectral data is often undertaken, the use of spatial 

information to determine forest structural parameters is becoming increasingly common. 

Information extraction approaches based upon spatial data are based upon the premise that 

forest structural information is captured in the image spatial structure. The image spatial 

structure refers to the way in which pixels are related to one-another, not solely on the 

magnitude of the actual pixel digital numbers. In a spatial approach, it is the way pixels are 

found together, not merely the digital number that is important. As a result, the knowledge of 

the relationship between image spatial resolution in relation to the size of the image object of 

interest is often required. 

Spatial information extraction approaches generally require a greater level of processing 

than spectral approaches as a greater number of pixels are involved. Mid-resolution imagery 

has a been processed for forest inventory and biophysical estimates based upon techniques 



such as texture (Kushwaha, et al., 1994), and image semivariance (Cohen, et al., 1990). 

Kushwaha et al. (1994), following the efforts of Peddle and Franklin (1 991) integrate texture 

to improve the results of multispectral image classifications. These results demonstrate the 

relationship between forest structure and cover type. Semivariance is a means by which the 

link between forest structure and cover type may be further explored. Cohen et al. (1990) 

applied image semivariance to a set of image spatial resolutions including 1, 10, and 30m. 

The spatial variability of coniferous forest cover varied in relation to the image spatial 

resolution. At a spatial resolution of 1 rn the semivariogram ranges were best related to mean 

tree canopy size. At a spatial resolution of 1 Om the semivariance indicated only whether tree 

canopy sizes were less than 1 Om or between 10 and 20m. With a spatial resolution of 30m 

only the sills of the semivariograms related any forest structural information, even though the 

differences between the sills were small. Based upon these results, the potential for 

semivariance processing of high spatial resolution imagery is indicated. The low variance 

environment present in mid-resolution imagery hampers the efficacy of textural and 

semivariance processing. Examples of the utility of semivariance processing of high spatial 

resolution imagery are provided by Uvesque and King (1996) and St-Onge and Cavayas 

(1995). Uvesque and King (1 996) present a multi-scale analysis illustrating the relationship 

between information content and image semivariance. Uvesque and King (1 996) indicate that 

individual tree crown closure and the semivariance range have a 0.80 correlation when 

processing 0.25 metre resolution imagery, while a decrease in correlation between 

semivariance range and crown closure to -0.16 occurs with 0.5 metre resolution imagery. St- 

Onge and Cavayas ( 1  995) have utilized the information inherent in the directional variograrn 

as a method to estimate the stocking and height of forest stands. St-Onge and Cavayas (1 995) 

found that the relationship between actual and predicted stand level values changed little with 



a change in image spatial resolution from 0.36 to 2.16m. The robust nature of the directional 

semivariance technique for characterizing forest structure indicated the possibility for creation 

of absolute spatial signatures, as the spatial structure is not hampered by radiometric factors. 

High spatial resolution imagery has enabled the development of a variety of spatial 

information extraction techniques. 

High spatial resolution imagery provides an image environment rich in spatial 

information. The spatial structure contained in high spatial resolution digital imagery is a 

function of the size and distribution of objects within the imagery. The availability of high 

spatial resolution imagery has allowed for the investigation of the utility of spatial information 

in the estimation of forest stand parameters. The most common approaches to extract forest 

inventory and biophysical parameters from high spatial resolution imagery based upon spatial 

information are, texture (Gougeon and Wong, 1986; Section 4.3), image semivariance 

(Evesque and King, 1996; Section 4.7), local maxima filtering (Hay, et al., 1996; Walsworth 

and King, 1997; Section 4.4), and valley following (Gougeon, 1995a; Section 4.4). In an 

early study of the relationship between texture and forest stand parameters, Gougeon and 

Wong (1986) present a segmentation approach based upon texture segmentation and region 

growing. Local maxima filtering is considered as a spatial information extraction approach 

as it is based upon the spatial context of where a pixel is found. Local maxima filtering may 

indicate tree locations for the development of object specific textural classifications (Hay, et 

al., 1 W6), to indicate stem locations to estimate density (Burnett, et al., 1998), or to provide 

seed points for the generation of tree objects (Walsworth and King, 1998). Walsworth and 

King (1 998) applied a radiance peak filter to isolate individual tree locations, with further 

steps taken to ensure the accuracy of these locations. The transitions between stems, 

computed from automata and Markov transition matrices, demonstrate differing forest 



structural information content for pixel based and neighborhood based estimates. Changes in 

forest composition over time are captured in the neighbourhood based estimates of forest 

structure. 

10.4.3. Hybrid Approaches 

This sub-section on hybrid approaches is intended to present combinations of spatial and 

spectral information extraction. The two previous sections described the nature of both 

spectral and spatial information content in the context of a remotely sensed image. In short, 

the spectral approaches tend to attempt to account for characteristics related to vegetation 

content, while spatial approaches tend to relate structural information. As a result, the 

combination of both spectral and spatial information appears desirable in attempting to 

explain forest structure. 

In Section 4.3.1, a summary of the union of spectral and spatial information is presented. 

Described is the work of Wulder et al. (1 996a, 1998), which is an investigation of the 

relationship between LAI, NDVI, and texture. Wulder et al. (1996a) assessed the change in 

variance explained with empirical estimation equations with LA1 as the dependant variable. 

The independent variables were combinations of NDVI and first- and second-order texture 

variables generated upon 2m spatial resolution casi imagery. The ability to estimate LA1 

based solely upon spectral information generated a bivariate value of 0.67 with a standard 

emor of 0.70 over an LA1 range of 2.39 to 7.05. For the same range of LAI, texture alone only 

accounted for an I of 0.56 and a standard error of 0.77. The combination of the spectral and 

textural information for the complete range of LAI, resulted in a multivariate R' of 0.92 with a 

standard error of 0.68. Stratification by species demonstrated the association of accuracy with 

LA1 range. The deciduous stands in the study occupied a limited LA1 range of 2.39 to 3.70 

and had a larger proportion of the variance in the empirical relationships explained than for 



conifers which occupied a larger LA1 range from 3.45 to 7.05. While not as large an amount 

of the variance was explained for the conifers, the results are nevertheless encouraging as the 

entire range of LA1 values is above the usual asymptote of 3. Shortcomings with this study 

were identified as sub-optimal texture measures and small sample size. As a result, a follow- 

up study was undertaken upon deciduous mixed-woods with l m  spatial resolution casi 

imagery (Wulder, et al., 1998). In this study the range of deciduous LA1 spans from 4.5 to 

7, resulting in weaker relationships than were found in the previous study. The initial 

bivariate relationship between LA1 and spectral data resulted in an r2 of 0.42, which increased 

to an R' of 0.61 with the integration of texture. The computation and selection of texture 

measures is often problematic. First-order texture measures, those computed directly from the 

image spectral values, best improved regression relationships involving homogeneous 

surfaces. Second-order texture measures, those computed from a transformation of spectral 

values (such as co-occurrence), explained the greatest amount of variance when involving 

heterogeneous surfaces. In an attempt to integrate the proven ability of semivariance to 

differentiate subtleties in forest structure, a new texture measure was developed based upon 

discrete locations extracted from variograms. Semivariance moment texture measures are 

sensitive to the spatial characteristics of the stand such as crown closure and density and as a 

result are useful in the estimation of a variety of cover types. 

An additional exploration of the relationship been forest stand LA1 and textural 

information is presented by Olthof and King (1997). Imagery of a high spatial resolution of 

0.25m, over an LAI range of 1.2 to 4.9, sensed over a stand dominated by hardwood species 

were used in this study. Correlation relationships were developed with and without texture, 

with more of the model variance explained when including texture. For example, the 

following correlation relationships are present between LA1 and the dependant variables: near 



infrared reflectance (r = 0.56), texture from measure of co-occurrence contrast (r = 0.64), near 

infrared reflectance and texture (0.79). These results corroborate those of Wulder et al., 

(1996a, 1998) further demonstrating the utility of the combination of spectral and spatial 

information. 

Yuan et al. (1 991) investigated changes in the structure of sugar maples based upon 

spectral and textural analysis of multispectral aerial videography. Spectral and textural 

features computed for individual trees were compared through correlation to manually 

interpreted colour and colour infrared photography. Indices were developed from the imagery 

and photos to relate forest decline. These results were also found to be compatible with 

ground surveys. As a result, the authors stated that the aerial video data is appropriate for 

analysis of maple decline on a single tree basis. 

10.4D4D Clustering Approaches 

Clustering is an approach by which pixels identified as representing a single discernable 

object are joined. The single discemable object, in the context of this research, may be 

characterized by a situation such as, a single large tree sensed with high spatial resolution 

imagery, a group of trees that are layered by dominance, or trees that are close together but 

undiscemable in lower resolution imagery. As a result, image spatial resolution is an 

important consideration when undertaking a clustering approach. The conceptual frame of 

clustering, as opposed to segmentation, is that it is a process of building image objects from 

seed points based upon similarity, rather than splitting objects found to be dissimilar. 

Clustering approaches are complementary to existing segmentation and image processing 

techniques. In a forestry context, clustering acknowledges forest complexity and limitations 

based upon image resolution. 



In this thesis a clustering approach based upon statistically generated spatial dependence is 

developed (Chapter 7). This clustering approach was developed to account for the spatial 

structure of forest canopies composed of both coniferous and deciduous trees as represented 

by im spatial resolution multi-spectral imagery. Factors such as the large size, irregular 

shapes, and overlapping that occur within and between deciduous crowns indicated a need for 

investigation of alternate approaches to delineate crowns than those developed for coniferous 

tree species. This clustering approach based upon spatial dependence does not require the 

user input of threshold values for qualification of a given pixel to a cluster, the clustering is 

based upon the similarity of neighbouring pixels. A key component of this research is the 

development of a statistically robust clustering approach. The derivation of forest inventory 

and structural parameters faced a variety of limitations, which will be discussed in a following 

section (Section 10.5). Despite the study limitations, several observations are made: the 

clusters generated represent unique spatial information; the clusters are related to the size and 

distribution of trees within the imagery; the clusters are related to the amount of crown closure 

present; density is difficult to measure with clusters; leaf area index may be computed from 

the combination of spatial and spectral information, as well as, from spatial information alone. 

In this research the cluster development was based upon as little user intervention as possible, 

allowing for local spatial similarity to dictate the size, shape, and number of clusters. 

Intervention of additional rules, such as size and shape limits, or threshold specifications, may 

allow for an improved cluster integrity in relation to the field measured data. Following is a 

summary of the primary findings of the spatial dependence clustering approach to object 

determination for estimation of forest structural parameters. 



Section 7.2.4 presents the data to support the statement that clusters generated represent 

unique spatial information. The spatial distribution of spectral values is illustrated through a 

series of tables and plots. For example, it is shown that, 

image spatial structure relates to the size of objects found in forest imagery which is 

also related to the spatial resolution, 

image spectral values have a unique distribution in the spatial domain, and 

image spatial processes are not all operating at the same scale. 

These statements provide a context for research through indication of the complexity present 

in the spatial dependence characteristics present in a forested area. A related study undemken 

to generate spatial dependence information, represented by G:, upon Landsat TM data 

produced clusters which explored stand level characteristics (Wulder and Boots, 1998b). In 

contrast, the clusters generated in this present study, as a function of the image spatial 

resolution, grouped pixels representing individual or groups of trees. 

As mentioned, cluster generation is a function of image spatial resolution and the forest 

structure under investigation. As a result, the forest characteristics present and represented at 

a spatial resolution of i m result in mixed pixels and clusters composed of more than one tree. 

The presence of more than one tree within a cluster results in a limited ability to estimate 

forest stand density (Section 8.2). Crown closure, in contrast, is represented moderately well 

with tree objects based upon spatial dependence (Section 8.3). The small sample size limits 

the confidence in relating the results, which found for clusters generated upon infrared data, 

an absolute difference of 0.56 to the field data, with a standard deviation 0.07. In general, the 

cluster based estimates of crown closure are found within approximately 10 percent of field 

based estimates. These accuracies must be weighted against the small possible range of 

crown closures and the large relative error. 



A statistical clustering approach was undertaken to place each tree object into a cover 

type class (Section 8.4). The typing of cover class varied in success by plot. The method 

used to place objects in clusters was good considering the limitations of the study but would 

not be repeated in a subsequent analysis. 

Leaf area index was estimated using two techniques, one which required an input of 

cover type to aid in the selection of the most appropriate LA1 estimation equation, while the 

second used a regional stand for maximum LA1 and rated the estimate based upon areal 

contribution of the objects within the plot area (Chapter 9). The caveats of the previously 

mentioned interpretation based upon sample size are also present for this analysis. The 

estimates of LA1 from both techniques are found to be within approximately k1.4. As all field 

estimates of LAI are greater than 3, the results are promising, yet not of sufficient accuracy for 

addressing ecological issues or for up-scaling. The ability to estimate LA1 based on 

vegetation spatial extent and knowledge of regional LAI indicates that estimates of LAI may 

be made from satellite collected panchromatic data. 

In reference to the field data available for this study, the relationships betweemthe 

image generated clusters and forest inventory and stmctural parameters are not conclusive, 

nevertheless a worthwhile approach appears to be under development. The spatial 

dependence data may be used to generate clusters or be used as attribute data to describe 

pixels to be utilized by techniques such as valley following or threshold based approaches. 

The use of spatial dependence information in concert with valley following methods will 

allow for increased knowledge of the pixel inter-relationships to be integrated as a possible 

qualification rule. In threshold based clustering approaches, spatial dependence information 

may be used as a rule to allow for relaxation of threshold boundaries. 



In a recent work, Culvenor et al. (1998) present a threshold clustering approach based 

upon 2m spatial resolution digital multi-spectral video data. The rationale for the clustering 

approach is based upon the forest structural characteristics found to occur in Australian native 

forests. The clustering approach was developed to account for low foliage density and 

complex crown structure and to allow for a minimization of crown segmentation. The 

approach developed is referred tct as the Tree Identification and Delineation Algorithm 

(TIDA). The generation of tree clusters from TIDA is based upon identification of maxima 

and minima pixels, of an infrared image channel, to represent crown centroids and crown 

edges. A user defined parameter is used to calculate a threshold value for acceptance or 

rejection of a pixel's membership to the crown under consideration. Pixels are clustered into 

a given crown object if the reflectance present is greater than the defined threshold value and 

is not already identified as a boundary pixel. This process is repeated for all pixels until all 

have been added to a crown or have been found spectrally invalid. A sensitivity analysis was 

undertaken to assess the efficacy of the approach by comparing a stand constructed from 

geometrical optical properties to the remotely collected imagery. The maximum number of 

trees identified by TIDA was 92% at an off-nadir viewing angle of 2 degrees. The optimum 

crown delineation was achieved at mid-day with the average crown area reported as 61 m2 for 

the imagery and 67m2 for the simulated data. It is noted, however, that in this case no attempt 

is made to distinguish between vegetation and non-vegetation pixels; therefore, improved 

results may be possible for this procedure. 

The utility of the TIDA clustering approach has been identified as appropriate for the 

characterization of Australian forest cover types and is the subject of further investigation. 

The TIDA tree clustering results have been compared to forest type and structure maps 

produced through the interpretation of 1 : 25,000 colour air photos (Preston, el al., 1998). In 



this study a comparison of estimates of species, tree size and density, tree development index, 

and height, among others, from multispectral video are compared to the values determined 

from air photo interpretation. The estimates made from the digital multispectral video 

incorporating the TIDA clusters explained approximately 20% more variance than the 

parameter estimates determined from air photo interpretation. The success of this 

methodology prompted the authors to state in their conclusions, 

Despite these operational constraints the research presented in this paper is sufficient 

to indicate that an entirely new approach to forest mapping is becoming available. 

Mapping of detailed forest attributes, based on tree clusters and high resolution 

imagery, will require a major rethink of procedures for mapping, monitoring, and field 

assessment of forests (Preston, et al., 19%). 

The cluster based approach to looking at forests is seen to incorporate the importance of both 

forest species and structural characteristics. As a result, the clustering approach needs to be 

assessed over a variety of forest cover types, and an assessment of costs and timing is also 

necessary to determine a measure of model reliability. 

10.45. Comparison of Approaches 

In discussion of some of the factors which affect the remote sensing of forests, the most 

appropriate image analysis technique is shown to be related to cover type (Section 3.4). In 

summary, Strahler et al. (1986) present some of the primary concepts in remote sensing, 

which is then built upon by Woodcock and Strahler (1 987) through illustration of the 

importance of scale in selection of image analysis approach. Single pixel based approaches 

may be appropriate for homogeneous entities, while methods that account for spatial pattern 

are suitable for more heterogeneous surfaces, such as forests. As a result, the image analysis 

approach is related to surface cover and heterogeneity, which limits the universal application 

of any methodology. The selection of an image processing approach should be based upon an 



understanding of the relationship between image spatial resolution, tree species, tree size, and 

tree distribution. In the previous sections, addressing the efficacy of a variety of spatial, 

spectral, hybrid, and clustering approaches for forest structural information extraction, the 

relationship between image spatial resolution, tree species, tree size, and tree distribution is 

demonstrated. The direct comparison between studies is problematic, as the conditions 

present in each study vary. The variation may not be primarily a function of the approach 

undertaken, but due to differences in conditions resulting from differing spatial resolution, 

spectral resolution, temporal resolution, forest cover type, crown closure, or stand density. 

10.4.6. Information Extraction from Mixed- and Hardwood Forests 

This section will summarize the utility of the previously presented approaches in reference 

to cover type. As presented by Fassnacht et al. (1997) the ability to characterize softwoods is 

greater than that of hardwoods. Much of the previous research has focused upon softwoods, 

with the more difficult to characterize hardwoods subject to fewer research initiatives. 

Hardwood tree species are characterized by large and overlapping crowns. The presence 

of large and overlapping crowns is problematic for construction of methods for parameter 

estimation from remotely sensed data. For example, Fassnacht et al. (1997) found in 

regression relationships between LA1 and image spectral response, accuracy related to species 

composition, with the LA1 of conifer species measured within a range of from 0.69 to 0.73, 

while the best relationship fmnd for hardwoods was an r' of 0.35. A variety of detailed 

calibration projects have been undertaken to assess the nature of deciduous spectral response 

based upon vegetation indices and particular spectral locations (Vogelmann, et at., 1993), 

seasonal variability (Blackbum and Milton, I995), spectral directionality (Milton, et al., 

1994). and in relation to the local ecology (Blackbum and Milton, 1995-568). Multi-date casi 

imagery was collected to produce a map of canopy gaps which was used to quantify the 



character of the canopy gaps and tree canopy (Blackbum and Milton, 1995). This information 

was used to assess the relative ecological status of the different forests. 

A variety of approaches have been applied to extract deciduous forest structural 

information from high spatial resolution remotely sensed imagery. A number of the 

approaches have been presented in previous sections, and will be described here. Following is 

also a selection of additional research undertaken to relate the structural characteristics of 

deciduous forests. The accuracy generated from the classification of 2.5m spatial resolution 

cnsi data has been shown to be sensitive to view angle geometry and terrain effects (Franklin, 

et al., 1991). Aerial videography has also been applied in the classification of deciduous 

forests (Slaymaker, et al., 1996). This classification of deciduous forests, flown in transects 

to characterize a sub-sample of the larger area, was undertaken to provide validation for a 

Landsat TM based classification program. The increased spatial resolution of the aerial video 

data over the Landsat TM allowed for the re-labeling of classes generated upon the Landsat 

TM data. 

Following is a summary of the previousIy mentioned studies to use image processing of 

high spatial resolution imagery to assess forest structure. Spectral estimation of the LA1 of 

deciduous forests is reported on by Seed and King (1 997) in an empirical study based upon 

the spectral characteristics of shadow, rather than tree spectral features. Image analysis of 

0.25m spatial resolution digital camera data, over an LA1 range of 1.12 to 4.92, an R' of 0.90 

with a standard error of 0.34 was reported, with a sample size of 15 plots. Spatial estimation 

of crown closure, utilizing semivariance is presented by Evesque and King (1 996). 

Individual tree crown closure and the semivariance range have a 0.80 correlation when 

processing 0.25 metre resolution imagery, while a decrease in correlation between 

semivariance range and crown closure to 4.16 occurs with 0.5 metre resolution imagery. 



Radiance peak filtering exploits the spatial relationship to indicate tree crown locations. 

Walsworth and King (1 998) applied a radiance peak filter applied to isolate individual tree 

locations, with further steps taken to ensure the accuracy of these locations. Changes in forest 

composition over time are captured in the neighbourhood based estimates of forest structure. 

The estimation of LA1 from spectral information alone, and including textural information is 

undertaken by Wulder et al. (1996a, 1998) and Olthof and King (1 997). In Wulder et al. 

(1996a) the deciduous stands in the study occupied a limited LA1 range of 2.39 to 3.70 and 

had a larger proportion of the variance in the empirical relationships explained than for 

conifers which occupied a larger LA1 range from 3.45 to 7.05. A follow-up study was 

undertaken upon deciduous mixed-woods with l m  spatial rescllution casi imagery (Wulder, et 

al., 1998) with a range of deciduous LA1 from 4 . 5  to 7, resulting in weaker relationships 

than were found in the previous study. The initial bivariate relationship between LA1 and 

spectral data resulted in an ? of 0.42, which increased to an R' of 0.61 with the integration of 

texture. An additional exploration of the relationship been forest stand LA1 and textural 

information is presented by Olthof and King (1997). Imagery of a high spatial resolution of 

0.25m over an LA1 range of 1.2 to 4.9 sensed over a stand dominated by hardwood species 

were used in this study. The following correlation relationships are present between LA1 and 

the dependant variables: near infrared reflectance (r = 0.56), texture from measure of co- 

occurrence contrast (r = 0.64), near infrared reluctance and texture (0.79). These results 

corroborate those of Wulder et al., (1996a, 1998) further demonstrating the utility of the 

combining of spectral and spatial information. Using a different approach, Yuan et al. (1 991 ) 

investigate changes in the structure of sugar maples based upon spectral and textural analysis 

of multispectral aerial videography. Indices are developed from the imagery and photos to 

successfully relate forest decline. These approaches demonstrate the variety of methods 



which may be undertaken to assess the structure of deciduous forests. Radar data has also 

been utilized to assess the structure of deciduous forests (Ustin, at al., 1991; Mead and 

McIntosh, 1991 ; Wu, 1987). 

10.4.7. Modifiable Areal Unit Problem 

In discussion of the factors which affect the remote sensing of forest canopies (Section 

3.4), the following issues are discussed: spectral response of forest canopies (Section 3.4.1), 

scale in remote sensing (Section 3.4.2), the nature of models in remote sensing (Section 

3.4.3), and scale and the representation of geographic data (Section 3.4.4). In the dicussion of 

scale and the represtation of geographic data, the issue of the modifiable areal unit problem, or 

MAW, is introduced. In brief the MAUP is comprised of two key issues, 

a variety of different results may be computed for the same data as it is increasingly 

aggregated (scale problem), and 

the data may also be aggregated in a variety of ways (aggregation problem). 

The scale problem refers to the variation of results that can be obtained when the same areal 

data are combined into progressively larger units of analysis, and indicates a failure to 

discriminate the objects of geographical inquiry. The aggregation problem arises from the 

large number of ways in which these areal units can be combined, and reflects a failure to 

understand the processes at work between scales. The integrity of the analysis is dependent 

upon the knowledgeable integration of the data during analysis through an understanding of 

the geographical phenomenon taking place and the scale of the initial data collection. 

The MAUP is deserving of further disccusion due to the effects of spatial aggregation 

and scale upon what information is represented by remotely sesend imagery at different 

scales. In the context of this thesis, spatial information is applied to generate objects, yet the 

compostition of the objects is a function of the image spatial resolution. The information 



content that is available from the image processing of remotely sensed imagery is related to 

the spatial resolution of the data. This point can be best illustrated using the results of Cohen, 

et al. (1 990) and Uvesque and King (1 996). 

Cohen et al. (1 990) applied image semivariance to a set of image spatial resolutions 

including 1, 10, and 30m. The spatial variability of coniferous forest cover varied in relation 

to the image spatial resolution. At a spatial resolution of lm the semivariogram ranges were 

best related to mean tree canopy size. At a spatial resolution of 10m the semivariance 

indicated only whether tree canopy sizes were less than I Om or between 1 0 and 20m. With a 

spatial resolution of 30m only the sills of the semivariograms related any forest structural 

information, even though the differences between the sills were small. In a multi-scale study 

undertaken by Uvesque and King (1996), a strong correlation of 0.80 is evident between 

individual tree crown closure and the semivariance range upon 0.25m resolution imagery, yet 

when the imagery is degraded to a spatial resolution of 0.50 there is a decrease in correlation 

between semivariance range and crown closure to -0.16. In contrast to the individual tree 

based predictions, St-Onge and Cavayas (1 995) found that the relationship between actual and 

predicted values of stand based measures changed little with a change in image spatial 

resolution from 0.36 to 2.16m. The robust nature of the directional semivariance technique 

for characterizing forest stand structure indicated to the authors the possibility for creation of 

absolute spatial signatures, as the spatial structure is not hampered by radiometric factors. 

These results indicate the complex nature of forest structure and the current lack of a single 

commonly accepted approach. 

in applying spatial dependence to generate objects, the effects of the MAUP must be 

considered. In this thesis, based upon lm spatial resolution imagery, the spatial dependence 

characteristics of the imagery resulted in the generation of objects representing individual or 



groups of trees. Using the same techniques upon Landsat TM data, the objects generated 

represent forest stands (Wulder and Boots, 1998b). 

10.4.8. Context of Thesis Research in Field 

The intention of this sub-section is to indicate where the research presented in this thesis 

fits in the larger context of high spatial resolution remote sensing of forest structure. No 

single study can be expected to answer all the outstanding issues in the high spatial resolution 

remote sensing of forest structure, but each study can act to make small but significant 

contributions. The body of work cited in the previous sections are all important in clarifying 

the complex interpretation of high spatial resolution imagery. The interpretation of high 

spatial resolution imagery to address issues in forestry has been likened to the programming 

of an artificial intelligence, 

Photointerpretation is an art as well as a science, so teaching a computer to recognize 

individual trees successfully is akin to teaching Deep Blue to play competitive chess - 

not impossible, but not easy either (McGraw, et al., 1998). 

The complexity of the digital interpretation of high spatial resolution imagery, while not 

impossible, requires flexibility. The ability to adapt to changing conditions, related to factors 

such as differing image spatial resolutions, cover types, densities, etc., requires an 

understanding of a variety of approaches. Often the image characteristics dictate the 

information content, requiring the analyst to either choose the image specification carefully 

beforehand or to be able to adapt to tlie resultant image spatial structure. The growing toolbox 

of image processing approaches appropriate for high spatial resolution imagery is indicative 

of a maturing application area. The work undertaken in this thesis allows for a new way of 

understanding the relationships found in high spatial resolution imagery. The ability to 

characterize a pixel location with attribute information relating the spatial dependence of that 



pixel is useful information. In this thesis, the spatial dependence information was used to 

generate objects which were subsequently related to forest structural parameters. The limited 

field data hampers the interpretation of object relationships to the forest structural parameters, 

yet it is evident that spatial dependence, with little user intervention, is sensitive to forest 

structural information represented by image spatial structure. 

10.5. Research Limitations and Recommendations 

To address the objectives stated in the introduction of this thesis, a variety of tasks were 

undertaken. To investigate the forest structural issues of importance in this thesis, an 

understanding and implementation of a wide array of subject areas was necessary, such as 

computer programming, image processing, field spectroscopy, airborne multispectral 

scanning, spectral physics, global positioning systems, spatial statistics, geographic 

information systems, and forest mensuration. Forests are varied and complex ecosystems. 

The ability to measure andlor estimate characteristics related to forests faces a variety of 

limitations. The key limitations present in this research are presented in this sub-section 

accompanied with recommendations on how improvements may be made. The primary 

limitations of the research undertaken in this thesis are, number of plots, image spatial 

resolution, and other potential sources of error. 

10.5.1. Number of Plots 

The number of plots available for analysis in this study is a key limitation. The available 

six plots may be considered not sufficient for full statistical validation of the relationships 

found. Recommendations for future research efforts are an increased number of plots for 

ground validation. To enable a greater number of plots, field sampling techniques utilized 

may be improved upon. The mensuration of plots for inventory parameters is a time 

consuming process due to the intensity and rigour of the sampling. The measurement of LA1 

20 1 



for this study required the generation of new allometric relationships between leaf area and 

sapwood cross sectional area at breast height. In a subsequent study these new locally 

appropriate equations could be used without the need for the expensive and time consuming 

development. Also, optical approaches to the estimation of LA1 have improved allowing for 

an alternate LA1 sampling technique. 

10.5.2. Image Spatial Resolution 

The image spatial resolution available for the analysis undertaken in this study was 1 x 

Im. As has been presented through the discussion, the information content that is available is 

a function of the relationship between image spatial resolution and the size and distribution of 

the tree crowns. The pixel based representation of tree crowns is also limited by the inegular 

shape of the tree crowns and the differing tree heights. In this study, the 1 m spatial resolution 

pixels were found to be both spectrally mixed and pure. The cluster based approach 

undertaken in this study was intended to account for the spectral situation of both mixed and 

pure pixels. A clustering based approach is an attempt to extract the most information 

possible from the lm spatial resolution data, found at the threshold between H- and Ld 

resolution. The difficulty to delineate individual trees in this study location with lm spatial 

resolution data indicates some possible limitations for lm spatial resolution satellites. 

Further, forest structure generated from tree clusters is likely unable to account for the 

variability occurring within tree crowns. Higher spatial resolution imagery may allow for 

forest structure to be derived from the clustering found within an individual tree crown. 

10.53. Potential Sources of Error 

In a large and integrated project the sources of error are plentiful. The strategy employed 

in this thesis to avoid aggregation of error is to minimize the error at each stage of analysis. 

In the previous discussion section, the time and monetary expenses associated with the 



collection of field validation data was discussed. A particularly expensive process is the 

generation of allometric equations between sapwood cross-sectional area and leaf area. For 

this study we developed new allometric equations for the most common species in the study 

area. For species which occurred less often we relied upon allometric equations found in the 

peer reviewed literature. While the estimates of LA1 made from these equations are good, the 

intensity of the field data collection to derive sapwood cross-sectional areas limited the extent 

of the field data campaign. In some instances the bivariate regressions between the intensive 

and summary field data sample may have produced sub-optimal LA1 results for a particular 

tree within a plot. The difficulty and expense associated with the application and 

development of allometric equations spawned the development of optical methods for the 

estimation of LA1 (Section 3.3.1 -2). 

The matching of clusters to the field plots is also a problematic area (Section 7.4). The 

variability of tree heights and the complex dominance regimes result in overlap of foliage as 

well as shadowing of trees. Mixed pixels add to this problem through the obscuring of the 

edges between where a tree begins and ends. Further, the construction of a digital plot map 

accentuates the problems with relating the field and image data. Analog approaches permit 

analysis with more flexibility in the comparison of the field and image data. The spatial 

relationships between pixels processed with an algorithm that generates G; vaiues for each 

pixel provides an indication of the distribution of vegetation in an area. A prediction of forest 

objects is made fkom the G? values and is tested for agreement with ground collected data 

representing the canopy. Problems are found in the matching of the continuous ground data to 

the discrete objects. The compiling of errors which occurs when converting continuous 

ground measurements to a discrete pixel based mask hampers the ability for comparison. The 

physical characteristics which govern the spectral reflectance of a stand result in a differing 



vision of the stand than is expected from ground data. The remotely sensed mosaic of shadow 

and reflectance is difficult to compare to the ground data. High spatial resolution data may 

aid in improving the ability to match the field data precisely to the image data. A vector 

based approach to the development of a ground validation tree map may also reduce the errors 

introduced by gridding the tree data. An understanding of the clusters not as tree objects, but 

as radiometric objects may also improve the interpretation. Understanding of the clusters as 

radiometric objects, subject to view angle effects as a function of the forest structure and 

imaging geometry, may allow for interpretation of the clusters as relating the structure over 

plots and stands, and not necessarily of individual trees. View angle effects may have also 

contributed to introduction of error in the data. In designing the study an attempt was made to 

have the plots well centred in the flight line. Flight path navigation errors may have caused 

plots to be less than perfectly centred. For future satellite borne instruments, view angle 

effects should be kept to a minimum through the high orbit altitudes (do0 km depending on 

the sensor) resulting in small angular differences. 

The plots selected for measurement in this study had a limited range of values. The 

conditions present in the study forest region are indicative of the common forest types present 

yet not of a sufficient range conducive to extensive modeling. When selecting plots, the final 

conditions are estimated, but not exactly known until measurement is complete. As there is a 

short window of opportunity for measurement of the field validation sites, in concert with the 

airborne data acquisition, the resultant sample may not be exactly as desired. Long term 

analysis of sites within a single region would allow for an increased knowledge based from 

which to select plots. Plots which meet desired conditions may be re-measured on subsequent 

imaging campaigns, while plots found as undesirable may be dropped in favour of a more 

representative sample. 



10.6. Potential Modifications to GI' 
As stated earlier in this thesis, the application of local spatial statistics to remotely 

sensed data is a nascent approach. Accordingly, there are still many questions remaining to 

the utility of local spatial statistics in the processing of remotely sensed data. The 

implementation of G: in this thesis is not an exclusive form. Changes may be made to the 

manner in which G; is computed and implemented. Following is a variety of modifications 

that may be made to alter the information content offered through the computation of the local 

spatial statistic of G:. Examples of potential modifications to the computation of G,* are 

alterations such as, allowing for distances of greater than four, customization of the weights 

matrix, non-square windows, image sub-setting, and implementation in concert with 

semivariance. Further research would also be appropriate to compare G; to another measure 

of local spatial association, such as Moran's I. Investigation of G: with through a range of 

image spatial resolutions and on a variety of surface cover types is also of interest. 

Allowing for distances larger than 4, which in the current context is a 9x9 window, 

would allow for discrimination of larger regions of association. Larger regions of association 

may indicate the presence of different spatial processes. Non-square windows may also allow 

for the integrity of the pixel of interest to be better maintained. Any assumptions that dictate 

an altered window shape will alter the spatial associations indicated and may create a bias. 

Further, customization of the weights matrix is also a possibility. Currently the weights 

matrix is binary, which allows a pixel either to be included in computation or not. The 

weights in the diagonals may be altered to better represent the physical ground distances that 

are being incorporated. The weights matrix may also be altered to either accentuate or 

diminish the effect of pixels at a particular location in reference to the central pixel of interest. 

As the computation of G: is based upon global measures of variability, an image pre- 



segmentation may be undertaken to dictate regions of homogeneity to be considered as the 

population for the generation of the global statistics to enable a maximization of the values. 

The notion of an image pre-segmentation indicates the potential to compute G: in concert 

with semivariance. The approach of St-Onge and Cavayas (1 993, utilizing directional 

semivariance, illustrates a structurally sensitive image segmentation procedure. Computation 

of G: within the segmented regions would allow for the range of standardized G; values to be 

related to similar structural characteristics. An additional exercise that would provide insights 

into the values generated by G: would be a comparison to a local measure of spatial 

dependence such as Moran's I. The link between local Moran's I values measured at the first 

lag and global Moran's I could through comparison to G: enable an investigation of local 

spatial statistics within different levels of non-stationarity, 



11. CONCLUSIONS 

Chapter Objective: Synthesize the results of the combination of spectral and 
spatial information extraction techniques on forests of complex 
multi-species structure and relate these findings back to the 
primary thesis objective 

Globally, forests are the most widely distributed ecosystem which, as a result, affect 

the lives of most humans daily, either as an economic good or an environmental regulator. 

Approximately 40% of Earth is forested, of which 10% is in Canada, accounting for 5 1 % of 

the Canadian landscape. The diversity of the interests upon which the presence or absence of 

forests has an effect indicates the need for responsible stewardship of forests. The number of 

high spatial resolution optical remote sensing satellites that are soon to be launched will 

increase the availability of imagery for the monitoring of forest structure. This technological 

advancement is timely as current forest management practices have been altered to reflect the 

need for sustainable ecosystem level management. The findings presented in this thesis, 

based upon an analysis of lm spatial resolution-data, provide a variety of insights to the type 

of data that will be collected with the forthcoming high spatial resolution satellites. 

In the initial thesis chapters we provide a summary of the methods by which remote 

sensing may be applied in forestry while also indicating the various limitations that are faced. 

The application of spatial statistics to high spatial resolution imagery is explored as a means 

of increasing the information which may be extracted from digital images. The Getis statistic 

is presented as a means to extract information which relates the strength of pixel inter- 

dependence and the magnitude of the values which are present. The Getis statistic also 

enabled the extraction of the spatial distribution of spectral values within image space. The 

spatial dependence information is then applied as a means to generate clusters representing 

groups of similar vegetation. The image structure at the high spatial resolution of lm is 



capturing 2 representation of the actual forest structure which enables the estimation of forest 

inventory and biophysical parameters. 

The low accuracy level with which forest structural parameters have often been 

estimated in the past is partly due to low image spatial resolution, such as for the 30m 

Landsat. A large pixel is often composed of a number of surface features, resulting in a . 

spectral value which is due to the reflectance characteristics of all surface features within that 

pixel. In the case of small pixels, a portion of a surface feature may be represented by a single 

pixel. When a single pixel represents a portion of a surface object, the potential to isolate 

distinct surface features exists. At the i m spatial resolution analyzed in this thesis, the image 

objects of interest are of a variety of sizes. The variability in size of the image objects, in this 

case the trees, is important as few of the trees are large enough to enable digital reconstruction 

with a number of pixels. As a result, techniques suitable for either high or low spatial 

resolution data are not universally applicable. Spatial statistics, such as the Getis statistic, 

allow for an image processing means to isolate distinct surface features, such as the generation 

of distinct image objects into clusters, representing individual or groups of trees. 

Tree clusters are a means to deal with the inevitable foliage overlap which occurs 

within complex mixed and deciduous forest stands. The generation of image objects, clusters, 

is necessary to deal with the presence of spectrally mixed pixels. The ability to estimate forest 

inventory and biophysical parameters from image clusters generated from spatially dependent 

image features is tested in this thesis. The inventory parameter of crown closure is 

successfully estimated from image clusters, yet the grouping of trees into clusters causes 

mixed results when estimating stem counts. The assignment of a cover class of each cluster is 

also undertaken. The knowledge of cluster cover class has enabled the estimation of leaf area 

index. Further, spatial information alone may be used to estimate LA1 with knowledge of the 

regional maximum LAI. The ability to use image spatial information to assist in the 

selection of pixels appropriate for the extraction of spectral information improved the 

reliability of the empirical models through the input of consistently derived data. 



Based upon the primary thesis objective to, 

Investigate alternate methods for the estimation of forest inventory and 
biophysical parameters based upon spatial information extraction through 
digital image processing of high spatial rc~solution mulfispectral imagery 

the following material is presented to summarize the thesis contents, results, and 

accomplishments. An initial presentation of the importance of forests globally and in Canada 

illustrated the vast coverage and the importance of forests in the regulation of the atmosphere 

and climate to provide context for the thesis. Analysis of forest structure, either in the context 

of forest inventory or biophysical parameters, is a means for the characterization of forests to 

allow for monitoring. 

Techniques for the measurement of forest structure may be undertaken at the field 

level or from remotely sensed imagery. Measurement techniques from remotely sensed data 

are often based upon either image spectral or spatial data. In this thesis we presented the use 

of spatial information, as measured with the Getis statistic, as a means to extract forest 

structural information. In consideration of the limitations present in this study, the Getis 

statistic results provided an illustration of the spatial distribution of spectral values in image 

space. The spatial dependence information generated from the image spectral values enabled 

the generation of vegetation clusters. The spatial dependence information generated with the 

Getis statistics appears complementary to spatial techniques which have been previously 

applied to remotely sensed imagery, such as semivariance. The spatial dependence clusters are 

a representation of the forest structure as a function of the spatial resolution of the imagery. 

The clusters generated from the spatial dependence clusters are also suitable for labeling with 

a forest cover-type. In general, the matching between the trees present in the image generated 

clusters and the field collected data was good. Based upon both the spatial and spectral data 



available, at an image spatial resolution of lm, information is present to enable the generation 

and classification of image based clusters. 

In this thesis, in the context of the issues presented in the discussion chapter, we also 

estimated the forest inventory parameters of crown closure and stand density. The areal 

extent of the spatial dependence generated clusters allowed for estimates of crown closure to 

within +lo% of field based closure measures. The same level of success was not found in the 

estimation of stand density, due to the stratified multilevel forest present in the study area. 

Yet, the relationship between the field collected crown class data and the image generated 

cluster data indicate complementary information content. Knowledge of the stand crown class 

regime provided a variety of insights to the clusters that are generated from the field data. 

Based upon the complex stand structure, and due to the presence of deciduous and coniferous 

trees, individual stem counting at a lm spatial resolution is problematic. 

As a representation of forest biophysical structural in this thesis we estimated leaf area 

index (LAI). Through the application of two new methods we are able to estimate LA1 to 

within f 1.4, for a range of field measured LA1 from ~ 3 . 2 8  to 6.88. The estimation of LA1 is 

undertaken from a combination of spectral and spatial data, as follows: 

1. extraction of spectral information, in the form of the vegetation index NDVI, from 

within spectrally classified Gi* clusters as an input to a species specific LA1 

estimation equation. 

2. combination of crown closure inforrnation relating the areal extent of local 

vegetation extent with maximum regional LAI. This is the most parsimonious 

technique, which also shows potential for estimation of LA1 with high spatial 

resolution satellite sensors. 

This research focused upon which forest inventory and biophysical parameters may be 

extracted from 1 m spatial resolution imagery of deciduous and mixed forests. The complexity 



of the digital image data collected with remote sensing instruments, as a result of the 

landscape cover and spatial resolution, requires the availability of a number of methods to 

approach a problem. Analysis of the potential of Gi* spatial dependence information has 

served to identify an additional method for the estimation of forest inventory and biophysical 

parameters based upon spatial information extraction through digital image processing of high 

spatial resolution multispectral imagery. The results presented in this thesis indicate a 

valuable information source available from the analysis of the spatial information inherent to 

remotely sensed data. Spatial and spectral characteristics extracted from digital remotely 

sensed imagery are a rich and complementary information source, resulting in many 

opportunities for both pure research and applications development. 





12. FUTURE RESEARCH 

Chapter Objective: proposition of a future research agenda based upon the results 
generated and discussed in this thesis. 

The future composition of forests that may result due to the effects of climate , 

variability can currently only be hypothesized upon. The ability to monitor changes in forest 

structure will provide the ability to assess forests from a measurement baseline and monitor 

changes against this baseline. The techniques made possible through the collection of 

remotely sensed data and image processing improve the ability to evaluate changes in forest 

structure. The incorporation of techniques and methods from forest science and inventory 

with H-resolution imagery is providing for unique approaches to unsolved problems. The 

spatial distribution of Canadian forests in terms of species and related structure is complex at 

the local scale. Improvements at the local scale translate to an increased accuracy of data 

scaled to represent a region. Due to the economic and scientific importance of Canadian 

forests, any effort to improve upon the ability to characterize forests is worthwhile. 

Based upon continuation of the primary thesis objective, to develop improved methods 

for assessing forest inventory and biophysical parameters with remotely sensed data, the 

following research potential is evident: 

further investigation, with improved field data, will attempt to address the ability to 

partition forest layers of overstory and understory with a spatial dependence clustering 

technique 

data collection above a forest which has had the understory removed to enable 

calibration of understory contribution to forest spectral response 

crown delineation of deciduous and mixed stands on H-resolution imagery utilizing 

spatial information 



using fine resolution, aerial images as training for analyzing satellite imagery to 

estimate LA1 

estimates of mean crown size may be used as an input to the inversion of geometrical 

optical models (Woodcock, et al., 1997) 

spatial autocorrelation as ancillary data in both H- and L-resolution image classification 

use of spatial dependence information to create fuzzy boundaries around L-resolution 

image objects 

scale dependency of spatial autocorrelation assessed on multi-scale imagery of conifer, 

deciduous and mixed forests, wi-th cmi, SPOT, Landsat TM, and AVHRR. 

assessing the impact of spatial resolution on LA1 estimation using remote sensing data 

the relationship between spatial resolution and forest structure properties affecting LA1 

estimation 

application of landscape ecology techniques to high spatial resolution image objects 

invert the approach of this study, which clustered high pixel values, and generate 

clusters to estimate the extent and spectral characteristics of stand shadow fractions. 

The utility of image based spatial information is not limited to high spatial resolution 

imagery. The discretization of a continuous surface into a grid of regularly sized and shaped 

pixels will result in spatial dependence between neighbouring pixels regardless of the scale. 

As a result, spatial information such as the Getis statistic, may prove to be valuable as an 

information source at a variety of scales in a remote sensing context. 
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APPENDIX 

Appendix I. Data Collection in Supporf of Airborne Remote 
Sensing 

The required needs of a particular mission will dictate the mode of operation to be utilized, the 

desired resolution, flight line azimuth and location, desired illumination conditions, and 

acceptable flight conditions (Wulder, et al., 1996d). Once the mission parameters have been 

decided upon, data collection may begin. A typical mission is divided into pre-, during-, and 

post-flight portions to enable a summary of necessary mission components to be presented. 

Table 2.10 presents an outline of what to be aware of when contracting out an airborne 

multispectral scanner. The level of table detail would be greater if all the instrument operator 

concerns were also displayed. 



Table Al.l .  General issues to address for successful image acquisition (from 
Wulder, et al., 1996d) 

Pre-flight 
Location of flight iine(s) 

azimuth 
length 

Survey GCPs and/or Markers 

Resolution 
elevation (across track pixel size) 
aircraft velocity (along track pixel size) 

Spatial mode: 
selection of bands and bandwidths 

Spectral mode 
number of look directions 
where to locate the looks 
bandwidth of the scene recovery channel 

Enhanced spectral mode 
spectral resolution (eg, 1.9nm, 3.8nm ... 1 1.4nm+) 
spatial coverage (eg, 101 adjacent looks, 203 ... 5 1 1) 

During flight 
Collection of atmospheric data 

collection of pseudo invariant features (PIFs) 
operatiodmonitoring of the Incident Light Sensor mounted on aircraft 
weather conditions (eg, calm, clear, solar position ...) 

Dark data acquisition for improved radiometric quality (automatic with the motorized aperture 
lens) 

Optimize Signal Levels 
25 to 75% of full scale 

Geometric positioning data 
GPS base station data collection, for possible differential correction 

Post flight 
Image Quality Assurance 

Radiometric Corrections 
conversion to spectral radiance units (SRU) 

Spectral reflectance determination 
processing of Incident Light Sensor (ILS) data 
incorporation of PIFs 

Geometric Corrections and Bundle Adjustments 
differential correction of the airborne GPS data with the base station data 
GPS, aircraft attitude measurements and casi imagery time synchronization 
terrain height corrections using a digital elevation model 
remove sensor alignment offsets 
creation of a geocoded/orthorectified grid 



Appendix 2. Within Cluster Spectral Values for Each Study Site (All 
Plots) 

Table A2.1. Cluster ID, mean spectral values for each channel, and 
assigned class for sample plot DS5 

Cluster CASI 1 CASI2 CASI3 CAS14 CASH Class ' 

0 14.5 4.5 3.1 19.9 40.8 US 
3427 22.5 7.3 5.3 33.0 60.3 HW 
3 444 21.1 7.0 5.3 33.7 65.6 HW 
3495 22.8 6.9 4.9 33.9 62.4 HW 
3497 26.0 8.7 6.0 40.3 68.0 MW 
3523 17.0 4.5 3.0 25 .O 53.5 HW 
3534 19.8 6.5 4.8 3 I .5 62.0 W 
3563 22.8 6.9 4.8 34.2 63.5 HW 
3579 25.3 12.2 10.2 33.6 52.9 HW 
3622 26.1 8.7 6.1 37.2 60.0 MW 
3623 21.0 6.7 4.7 33.2 67.4 HW 
3646 23.4 7.7 5.7 34.1 63.6 H W .  
3700 23.0 7.1 5.2 35.8 68.2 HW 
371 4 22.3 7.0 5.1 34.9 63.6 HW 

Table A2.2. Cluster ID, mean spectral values for each channel, and 
assigned class for sample plot DS6 

Cluster CASI 1 CASI2 CASI3 CAS14 CASIS Class 
0 16.1 5.7 4.4 21.9 40.1 US 

3056 28.2 9.3 6.8 443.4 67.6 HW 
3068 23.0 7.6 5.8 34.2 66.7 HW 
307 1 24.1 7.7 5.7 34.8 63.8 HW 
3099 21.6 7.0 5.3 3 1.8 60.7 MW 
3 125 19.1 7.4 5.8 30.9 56.4 MW 
3176 26.7 8.6 6.1 38.9 65.1 HW 
3242 18.8 6.1 4.4 28.8 5 1.9 MW 
3263 22.9 8.2 6.1 35.4 60.9 MW 
3296 24.5 8.1 6.0 37.4 63.7 HW 
3320 27.8 8.2 6.0 41.6 70.0 HW 
3321 25.4 7.8 5.5 37.5 65.4 HW 
3338 21.5 5.8 4.0 25.8 50.5 MW 
3339 24.3 7.3 5.1 33.1 55.9 MW 



Table A2.3. Cluster ID, mean spectral values for each channel, and 
assigned class for sample plot DS7 

Cluster CASl1 CASI2 CASI3 CASI4 CASI5 Class 
0 21.1 7.2 5.2 27.0 44.2 US 

3332 21.3 8 .O 6.0 33.7 56.0 MW 
3352 33.3 11.1 7.5 46.4 7 1.4 HW 
3390 3 1.1 10.1 6.7 42.9 64.5 HW 
3427 26.4 8.0 5.2 3 1.8 46.5 MW 
3442 33.6 11.0 7.2 50.6 75.1 HW 
3459 35.4 11.3 7.5 50.5 72.3 HW 
3460 28.4 9.4 6.7 40.3 67.3 MW 
3560 30.3 10.1 6.8 44.6 68.1 MW 
3586 30.7 11.7 8.7 42.1 63.7 HW 

Table A2.4. Cluster ID, mean spectral values for each channel, and 
assigned class for sample plot DS8 

Cluster CASI f CASI2 CASI3 CASI4 CASIS Class 
0 17.3 6.1 4.6 24.3 44.7 US 

2929 29.8 9.2 6.2 40.4 65.2 HW 
2960 43.6 16.4 10.0 61.1 70.6 HW 
2973 23.4 8.2 6.2 36.4 63.6 HW 
2974 28.1 9.1 6.5 41.4 65.5 HW 
299 1 30.8 10.6 7.0 40.9 60.1 H W  
3005 24.2 8.3 6.0 38.4 64.1 HW 
3040 27.8 9.2 6.4 39.4 61.0 HW 
304 1 18.5 7.0 5.5 26.4 50.9 MW 
3058 23.5 8.4 6.1 35.5 60.3 HW 
3069 23.4 7.8 5.9 36.6 63.1 MW 
3086 17.7 6.7 5.6 28.9 54.7 HW 
31 14 24.0 7.0 5.3 36.7 63.7 HW 
31 15 26.6 8.8 6.2 38.5 61.3 H W  
31 17 18.4 6.9 5.5 29.9 57.4 MW 
3158 19.5 7.5 5.7 30. I 55.8 MW 
3161 17.5 6.2 5.0 25.3 5 1 .I MW 
3175 21.8 8.2 6.2 34.8 59.0 MW 
3 I92 18.1 6.7 5.1 26.0 48.9 MW 
32 13 21.5 7.7 5.8 33.2 60.8 MW 
3237 16.3 5.2 3.8 21.7 47.0 MW 
3260 22.2 8.2 6.0 33.9 60.4 MW 
326 1 19.4 7.1 5.4 29.5 61.1 MW 
3307 19.9 7.1 5.5 32.0 61.0 MW 



Table A2.5. Cluster ID, mean spectral values for each channel, and 
assigned class for sample plot DS9 

Cluster CASI 1 CASI2 CASI3 CAS14 CASI5 Class 
0 15.10 5.60 4.20 19.90 35.70 US 

402 1 28.60 9.80 6.80 39.80 59.90 HW 
4022 26.00 10.70 8.30 36.30 54.60 HW 
4067 20.90 7.80 5.60 3 1.70 53.90 HW 
4089 17.10 5.10 3 -90 21.00 41.40 MW 
4097 28.30 10.20 7.00 39.90 59.60 HW 
4111 25.30 8.30 5 .90 34.30 55.00 HW 
41 13 28.00 10.00 7.00 37.00 60.00 HW 
41 53 22.80 8.80 6.40 35.40 55.60 HW 
4167 25.50 9.00 6.40 36.50 59.80 HW 
41 83 2 1.60 8.50 6.70 3 1 .OO 57.60 HW 
41 84 17.00 6.00 5.00 25.00 49.00 MW 
41 86 24.70 8.30 5.90 37.00 60.50 HW 
4206 19.50 6.30 4.60 25.30 43.90 MW 
42 15 25.60 8.90 6.30 35.60 59.10 HW 
4266 2 1.80 7.20 5.10 3 1.60 53.10 HW 
4275 25.60 8.60 6.10 35.60 55.30 HW 
4309 17.30 6.80 4.50 24.00 41.80 MW 

Table A2.6. Cluster ID, mean spectral values for each channel, and 
assigned class for sample plot DSlO 

Cluster CASI 1 CASI2 CASI3 CASI4 CASIS Class 
0 21.6' 7.6 5.6 29.1 47.9 US 

1 706 26.6 11.4 8.6 36.8 62.6 HW 
1718 28.3 8.8 6.2 40.9 67.8 HW 
1734 31.2 11.7 8.1 44.5 60.7 HW 
1782 26.1 7.8 5.4 34.0 54.4 MW 
1789 28.5 9.5 6.5 41.5 60.5 HW * 

1798 29.8 10.0 6.8 43.4 63.9 HW 
1836 33.6 10.6 7.2 48.6 71.6 HW 
1854 28.2 10.0 7.0 41.5 61.6 HW 
1925 33.5 11.3 7.2 46.2 58.3 HW 
1937 31.2 10.4 6.9 41.6 58.7 HW 
1958 29.8 9.8 6.6 43.0 63.4 HW 



Appendix 3. LA1 from NDVl and Clusters, Plots DS6 to DS10 

Table A3.1. Computation of leaf area for sample plot DS6, from cluster mean 
NDVI and cluster spatial extent (total number of pixels = 380) 

Cluster Cluster Class Pixels/Cluster LA Pixels per cluster/ LAICluster Plot LA1 
NDVI Total 

0 0.75 US 1 43 0.38 0 

Table A3.2. Computation of leaf area for sample plot DS7, from cluster mean NDVI 
and cluster spatial extent (total number of pixels = 400) 

Cluster Cluster NDVI Class PixeldCluster LA Pixels per cluster1 LA/Cluster Plot LAI 
Total 

0 0.72 US 182 0.45 0 



Table A3.3. Computation of leaf area for sample plot DS8, from cluster mean NDVI 
and cluster spatial extent (total number of pixels = 420) 

Cluster Cluster NDVI Class PixeldCluster LA Pixels per cluster/ LA/Cluster Plot LA1 
Total 

0 0.76 US 1 70 0.38 0 



Table A3.4. Computation of leaf area for sample plot DS9, from cluster mean NDVI 
and cluster spatial extent (total number of pixels = 420) 

Cluster Cluster NDVI Class Pixels/Cluster LA Pixels per cluster1 LAICluster Plot LA1 
Total 

0 0.73 US 189 0.43 0 
402 1 0.72 HW 34 7.49 0.08 0.58 
4022 0.68 HW 7 7.38 0.02 0.12 
4067 0,75 HW 14 7.58 0.03 0.24 
4089 0.78 MW 7 7.87 0.02 0.12 
4097 0.7 1 HW I0 7.46 0.02 0.17 
4111 0.74 HW 23 7.56 0.05 0.39 
41 13 0.7 1 HW 1 7.48 0.00 0.02 
41 53 0.73 HW 5 7.53 0.0 1 0.09 
4167 0.74 HW 10 7.56 0.02 0.17 
4183 0.75 HW 18 7.57 0.04 0.3 1 
4184 0.78 MW 1 7.87 0.00 0.02 
41 86 0.76 HW 34 7.62 0.08 0.59 
4206 0,75 MW 15 7.79 0.03 0.26 
4215 0.74 HW 25 7.55 0.06 0.43 
4266 0.76 W 17 7.62 0.04 0.29 
4275 0.73 HW 28 7.53 0.06 0.48 
4309 0.72 MW 4 7.72 0.0 1 0.07 4.3 

Table A3.5. Computation of leaf area for sample plot DSlO, from cluster mean NDVI 
and cluster spatial extent (total number of pixels = 420) 

Cluster Cluster M)VI CIass PixeIsfCluster LA Pixels per cluster/ LAlCIuster Plot LA1 
Total 

0 0.73 US 270 0.6 1 0 
1706 0.69 HW 14 7.41 0.03 0.23 
1718 0.77 HW 43 7.64 0.10 0.74 
1734 0.67 HW 11 7.36 0.02 0.18 
1782 0.75 MW 16 7.80 0.04 0.28 
1789 0.73 HW 2 7.52 0.00 0.03 
1798 0.73 HW 14 7.53 0.03 0.24 
1836 0.74 HW 14 7.56 0.03 0.24 
1854 0.72 HW 13 7.50 0.03 0.22 
1925 0.68 HW 19 7.37 0.04 0.32 
1937 0.70 HW 14 7.43 0.03 0.24 
1958 0.74 HW 12 7.54 0.03 0.20 2.9 



Appendix 4. LAI from Standardized LA and Clusters, Plots DS6 to 
DSIO 

Table A4.1. Computation of leaf area for sample plot DS6, from cluster mean 
NDVI and cluster spatial extent (total number of pixels = 380) 

Cluster Cluster Class Pixels/Cluster LA Pixels per cluster1 LAICluster Plot LA1 
NDVI Total 

0 0.75 US 1 43 0.38 0 

Table A43. Computation of leaf area for sample plot DS7, from a standardized leaf 
area and cluster spatial extent (total number of pixels = 400) 

Cluster CIuster NDVI Class Pixels/Ciuster LA Pixels per cluster1 LAICluster Plot LA1 



Table A43. Computation of leaf area for sample plot DS8, from a standardized leaf 
area and cluster spatial extent (total number of pixels = 420) 

Cluster Cluster NDVI Class PixelsfCluster LA Pixels per cluster/ LAlCluster Plot LA1 



Table A4.4. Computation of leaf area for sample plot DS9, from a standardized leaf 
area and cluster spatial extent (total number of pixels = 420) 

Cluster Cluster NDVI Class Pixels/Cluster LA Pixels per cluster1 LAKluster Plot LA1 
Total 

0 0.73 US 189 0.43 0 
402 1 0.72 HW 34 7.75 0.08 0.60 
4022 0.68 HW 7 5.75 0.02 0.12 
4067 0.75 HW 14 7.75 0.03 0.25 
4089 0.78 MW 7 7.75 0.02 0.12 
4097 0.7 1 HW 10 7.75 0.02 0.18 
4111 0.74 HW 23 7.75 0.05 0.40 
41 13 0.7 1 HW 1 7.75 0.00 0.02 
41 53 0.73 HW 5 7.75 0.0 1 0.09 
4167 0.74 HW I0 7.75 0.02 0.18 
41 83 0.75 HW 18 7.75 0.04 0.32 
41 84 0.78 MW I 7.75 0.00 0.02 
41 86 0.76 HW 3 4 7.75 0.08 0.60 
4206 0.75 M W  15 7.75 0.03 0.26 
42 15 0.74 HW 25 7.75 0.06 0.44 
4266 0.76 HW 17 7.75 0.04 0.30 
4275 0.73 HW 28 7.75 0.06 0.49 
4309 0.72 M W  4 7.75 0.0 1 0.07 4.4 

Table A4.5. Computation of leaf area for sample plot DS10, from a standardized leaf 
area and cluster spatial extent (total number of pixels = 420) 

Cluster Cluster NDVI Class PixelsICluster LA Pixels per cluster/ LA/Cluster Plot LA1 




