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Abstract

In this thesis, modeling and optimization in the field of storage management under

stochastic condition will be investigated using two different methodologies: Simulation

Optimization Techniques (SOT), which are usually categorized in the area of Reinforce-

ment Learning (RL), and Nonlinear Modeling Techniques (NMT).

For the first set of methods, simulation plays a fundamental role in evaluating the con-

trol policy: learning techniques are used to deliver sub-optimal policies at the end of a

learning process. These iterative methods use the interaction of agents with the stochas-

tic environment through taking actions and observing different states. To converge to

the steady-state condition where policies and value functions do not change significantly

with the continuation of the learning process, all or most important states must be vis-

ited sufficiently. This might be prohibitively time-consuming for large-scale problems.

To make these techniques more efficient both in terms of computation time and robust

optimal policies, the idea of Opposition-Based Learning (OBL-Type I and Type II) is

employed to modify/extend popular RL techniques including Q-Learning, Q(λ), sarsa,

and sarsa(λ). Several new algorithms are developed using this idea. It is also illustrated

that, function approximation techniques such as neural networks can contribute to the

process of learning. The state-of-the-art implementations usually consider the maximiza-

tion of expected value of accumulated reward. Extending these techniques to consider

risk and solving some well-known control problems are important contributions of this

thesis.

Furthermore, the new nonlinear modeling for reservoir management using indicator func-

tions and randomized policy introduced by Fletcher and Ponnambalam, is extended to

stochastic releases in multi-reservoir systems. In this extension, two different approaches

for defining the release policies are proposed. In addition, the main restriction of con-

sidering the normal distribution for inflow is relaxed by using a beta-equivalent general

distribution. A five-reservoir case study from India is used to demonstrate the benefits

of these new developments. Using a warehouse management problem as an example,

application of the proposed method to other storage management problems is outlined.
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Chapter 1

Introduction

Efficient storage management requires optimal policies that manage storage volumes and

releases and aim to maximize benefits or minimize costs. Many of the information used

in storage management optimization models are affected by stochastic uncertainty. In

addition, nonlinearity, and the large scale nature of this problem makes the solution

process challenging [1]. Numerous mathematical and heuristic optimization or simula-

tion techniques have been developed in the past for storage management optimization;

however, most of them suffer from excessive computational expenses. Most of these

techniques have included varieties of simplifications and approximations which usually

make the operating policies suboptimal in practice. Labadie [2] believes that the future

prospects for implementing reservoir optimization models depends on strong connections

with simulation techniques and using heuristic methods.

In the following sections, the optimization models will be described for reservoir man-

agement problems that can be used for warehousing management application as well.

Some important concepts and the optimization model which is usually used for these

problems will be presented. In the last section, the thesis outline and its contributions

will be outlined.

1
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1.1 Problem description

In most storage applications, the main objective of optimization is to find a policy (or an

operating rule) that will optimize the productivity and the efficiency of storage operations

for short, medium, or long periods under some stochastic situations described later.

In most surface water resource management problems all or some combinations of the

following can be simultaneously considered in the objective function:

• Hydropower generation

• Irrigation or municipal industrial water supply

• Recreational enhancement

• Water quality control

• Controlling shoreline encroachment

• Flood control

• Navigation

• Fish and wildlife enhancement

A warehouse in production planning or supply chain plays the role of buffer storage to

fill the gap between supply and demand [3]. In the warehousing problem, as another

example of storage management, the problem is to find a policy to minimize the total of

the following costs:

1. the fixed ordering cost;

2. the transportation cost;

3. the cost of holding products;

4. the capital cost;
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5. the lost-sale cost (the cost related to demands which have not been met); and

6. the cost of stockouts (excessive items or products that should be returned or sold

in an open market for cheaper prices).

In other storage management applications, analogous objective functions should be con-

sidered. The main state variable in all these problems is the storage, which is bounded by

minimum and maximum values. However, the terminologies, interacting variables or pa-

rameters, and definitions might be different. In this thesis, we concentrate on reservoir

applications but also extend the developed stochastic models and techniques to ware-

housing problems in order to demonstrate that these methods are applicable to other

storage applications.

In the following subsections, important terminologies and concepts which are widely used

in the literature of optimization or simulation techniques for reservoir and warehousing

management will be discussed.

1.1.1 Uncertainty

In optimization and simulation, some of the parameters or uncontrolled variables are

considered as random variables. The characteristics of these variables need to be de-

termined to solve the problem. Unregulated inflows, net evaporations, hydrologic, and

economic parameters and system demands are often considered as random variables in

reservoir management [2, 4]. Of course, in some cases these variables could be considered

deterministic. For example, if the inflows of some rivers are not highly variable, their

expectation can be used in the optimization or simulation model [5]. In many real-world

applications of reservoir management, especially when we are dealing with power gener-

ation or supplying water needed for irrigation, the price of water is also a very important

parameter whose randomness should be taken into account in the operational model.

In warehousing problems, both demand and supply should be considered stochastic;

however, in most cases demand is the main random variable in the system model [3, 6].
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1.1.2 Operating policy

There are two policy types in the literature of reservoir management: Open-loop and

closed-loop. Based on the original definition [7, 8], a policy is called an open-loop policy

if the corresponding optimization or simulation model does not consider the future un-

certainty. In other words, if the optimal decisions are not functions of the system state

(e.g., storage volume or previous inflow), it is called an open-loop policy; otherwise, the

policy is closed-loop [2].

An operating policy/rule for N storage reservoirs and T periods in a cycle (e.g., twelve

months in a year), which is usually created based on optimization or simulation algo-

rithms, is usually categorized into one of two types [2, 9] in which f̄(t, st) is the operating

policy with respect to period t and storage volume in that period, st. The two types are:

• release-based: The amount of water to be released from each individual reservoir

or supplier with consideration of the current state at the time of decision-making.

As it is clear in the following function, for each state-period pair, a specific release

(dt) has to be determined:

dt = f̄(t, st).

• storage-based: storage level at the end of each period of each individual reservoir

given the current state at the time of decision-making. This is denoted by st+1 for

each state-period pair via the following function:

st+1 = f̄(t, st).

These two types of policy definitions are easily extendable to the warehousing problem in

which dt is the number of items to be ordered from either external (supplier) or internal

(warehouse or retailers) sources. In this thesis, only the release-based policy is considered.

1.1.3 Performance measurement in reservoir problems

To measure the performance of reservoir operations, three different criteria are usually

incorporated in objective functions [2]:
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• Efficiency: This corresponds to maximizing or minimizing the summation of dis-

counted income or cost during planning and designing periods as well as real-time

operation. In stochastic problems, this criterion would be adjusted accordingly.

• Survivability: If the goal of reservoir management is to maximize the total dis-

counted income, this criterion should guarantee that the future income is higher

than minimum level considered.

• Sustainability: This can be measured by a weighted combination of reliability,

resilience, and vulnerability. Reliability is related to the number of failures and

indicates the average of time that the system runs without failure. Resilience is

pertinent to the expectation of time distance between a step with failure and the

next step without failure, indicating how fast the system recovered from the failure.

Vulnerability is the expectation of time distance between two successive failures.

The failure is determined based on various economic, environmental, ecological, or

social criteria. In general, a reservoir with more reliability and resilience and less

vulnerability is more sustainable [10]. For example, in irrigation, resilience has an

important effect on crop yield, and must be considered in the objective function

[11].

1.1.4 Illustration of two multi-storage applications

Depending on geography and purposes, different configurations of reservoirs are con-

structed. The interrelation between these reservoirs could be serial, parallel, or a com-

bination of both (see Figure 1.1). In many real-world applications, the whole structure

of the system has to satisfy a specific demand in the downstream reservoirs. It means

that the releases of these reservoirs are only utilized to meet the total demand including

irrigation, municipal water supply, etc. However, in some problems, in addition to the

policy that these demands have to be satisfied by the downstream reservoirs, each indi-

vidual reservoir upstream has to assist in meeting a portion of the whole demand. For

example, there is a powerplant corresponding to each reservoir having a responsibility
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to generate power. It is clear that the water released to generate hydroelectric power

in each reservoir is again conducted to downstream reservoirs for other purposes [12].

It is worth mentioning that a portion of release in some reservoirs in the configuration

can be assigned for other purposes because of existing water-sharing agreements between

different states or governments [13].

 

1 

4 

3 

2 

Inflow Inflow 

Inflow 

Inflow 

Release  

Release  

Release  

Release  

Release  

Figure 1.1: A four-reservoir configuration with demand downstream

Figure 1.2 demonstrates a schematic example of a warehousing problem in which there

are three different entities: 1- Supplier, 2-Distribution Center (DC), 3- Depot or Retailer.

Suppliers in the supply chain can supply the needed items to distribution centers. The

distribution center, which is sometimes called the warehouse in the literature, obtains

the ordered quantity from suppliers or from other distribution centers to satisfy the de-

mands for some smaller storage spaces, called retailers or depots, in their downstream.

In the real world, distribution centers could be connected to each other; however, there
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is usually no connection between retailers and suppliers.

 

Suppliers 

DC1 DC2 

Retailer 1 Retailer 2 

Demand  Demand  

Order  Order  

Order  Order  

Order  

Order  

Order  Order  
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1 2 

3 4 

Figure 1.2: A schematic representation of a multi-echelon warehousing problem

1.2 Modeling formulation

In the following subsections, objective functions and constraints for storages and opti-

mization models will be described.

1.2.1 Objectives

If systems under study are deterministic, a general form of the objective function in a

multi-storage application can be written as [9, 12]
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f(ut) =
N∑

i=1

N∑
j=1

T∑
t=1

f t
ij(s

t
i, u

t
ij, D

t
i), (1.1)

where f is the cost or revenue function which could be a function of st
i (the storage

volume of reservoir i or the current stock of warehouse i), ut
ij (the amount of release

from reservoir i to reservoir j, or the number of items to be ordered by warehouse j

from source i), and Dt
i (the demand given for source i in period t). N is the number of

storages in the system model.

1.2.2 Constraints

The constraints in the optimization model of storage management applications can be

summarized as follows:

Balance equations

These equality constraints impose the conservation of mass (in appropriate unit) with

respect to inputs and outputs of storages:

st+1
i = st

i −
ND∑

l=1, l 6=i

ut
il × δil + I t

i − νt
i +

NU∑
l=1, l 6=i

ut
li × δli

∀ i = 1 · · · N & t = 1 · · · T,
(1.2)

where I t
i is the amount of inflow to every storage i in period t, νt

i is the loss at storage

i in period t, and ut
il is the amount of controlled inflow from storage i to storage l in

period t, ND is the number of downstream reservoirs, and NU is the number of upstream

reservoirs. δij, an element of the routing matrix, can be defined as follows:

δij =

 1 if ith storage is physically connected to jth storage

0 otherwise.
(1.3)

Losses in the above formulation can be represented as a percentage of the storage level
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at the end of each period. However, in many applications, it is expressed as a function

of average storage in a period [4, 9].

In warehousing problems, I t
i is input to warehouses or retailers, defined as the number

of items received by source i from suppliers, which is usually considered deterministic,

and
N∑
l

ut
ilδil can be replaced by Dt

i as a stochastic demand of source i in period t.

Maximum and minimum storages

The following constraints in the reservoir management application provide flood con-

trol (or stockout control in warehousing problems) while considering some aspects of

recreation or assuring a minimum level for powerplant operation.

st
i,MIN ≤ st

i ≤ st
i,MAX ∀ i = 1 · · · N ; t = 1 · · · T, (1.4)

where st
i,MAX and st

i,MIN are the maximum and minimum level of storage i in period t,

respectively.

Maximum and minimum releases

In reservoir applications, the purpose of these constraints are to provide a suitable water

quality for the existence of wildlife and fish, and to prevent floods downstream. In

warehousing applications, these are the limitations for the items to be ordered,

Rt
i,MIN ≤

N∑
l=1

ut
il × δil ≤ Rt

i,MAX ∀ i = 1 · · · N ; t = 1 · · · T (1.5)

where Rt
i,MAX and Rt

i,MIN are the maximum and minimum releases from reservoir i or the

maximum or minimum items that can be ordered from source i in period t, respectively.

1.3 The contributions and the thesis outline

The final goal in storage management applications is usually to find an optimal operating

policy with respect to some physical constraints in a stochastic situation, such that the
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respective objective functions are optimized. Most modeling techniques in this area use

some types of simplification or estimation to cope with the stochastic situation. More-

over, the optimization approaches such as discrete dynamic programming, a well-known

technique for stochastic problems, suffer from the curse of dimensionality, that is, when

there are more than two or three storages, the optimization problem is impossible to solve.

The goals in this thesis are to propose 1) new learning techniques based on simula-

tion and 2) new nonlinear models that do not suffer from curse of dimensionality when

applied to multi-storage management problems in a stochastic environment.

It is also demonstrated that how to apply Reinforcement Learning (RL) techniques,

as simulation-based and adaptive approaches, to storage management application. Fur-

thermore, to speed up the process of learning, two Opposition-Based Learning (OBL)

schemes will be proposed to improve four Reinforcement Learning (RL) techniques.

Although RL techniques, which could be implemented based on simulation (off-line)

or interactions with the real environment (on-line), can be applied in multi-storage ap-

plications, they still suffer from the slow convergence and high deviation in results for

large-scale problems. One way to make these learning techniques applicable is to use the

Aggregation-Decomposition (A/D) methods proposed by Turgeon [14], by Ponnambalam

and Adams [13], or by Archibald et al. [15]. The A/D technique decomposes the whole

problem into different subproblems, where each subproblem is composed of only two

reservoirs: the actual reservoir and an aggregated one. Ponnambalam and Adams [13]

proposed a method to weight the aggregated reservoir in every subproblem by finding

coefficients through simulation. To apply RL techniques using A/D in an appropriate

way, we need to know these coefficients before implementing RL techniques. We propose

to use the Fletcher-Ponnambalam (FP) stochastic models [16] to find the respective co-

efficients which can be used for aggregated reservoirs in applying RL techniques using

A/D. Moreover, to make these nonlinear models more general, they will be extended

to multi-storage applications with a stochastic release policy where the distribution of
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inflows or demands are not normally distributed.

It is worth mentioning that the developed models and techniques will be described and

experimentally verified using reservoir applications. In one part of this thesis RL tech-

niques are also applied to a grid world problem as a popular example in RL. A model

for warehouse management problems, which is analogous to reservoir management prob-

lems, is also developed.

Chapter 2 will be assigned to the background and literature review of relevant research on

multi-reservoir and multi-echelon warehousing problems. In Chapter 3, simulation-based

and nonlinear model-based optimization methodologies for single- and multi-storage ap-

plications, including reservoir and warehouse problems will be proposed. These methods

will be applied to single and multi-reservoir applications in addition to a grid-world

problem in Chapter 4. A case study with five reservoirs is also presented here. The

conclusions and future work is summarized in Chapter 5.



Chapter 2

Background and Literature Review

2.1 Introduction

The complex problem of reservoir operations management can be broken down into three

stages: 1) planning, 2) designing, and 3) real time operations. All three stages are fully

related, such that the outputs of one stage would be utilized as inputs to another and vice

versa [1]. The purpose of the planning stage is to find the optimal capacity, considering

random demands and inflows. The final solution of this stage, along with inflows, are

then used in the design stage to find monthly releases. Having obtained the sequence of

decisions with respect to the maximization of the yield in the design stage, the operating

rules are constructed and used as a guideline in real time operations to determine releases

in a shorter time scale such as hourly or daily. This is schematically shown in Figure 2.1.

In general, to optimize the operations of multi-reservoirs in an uncertain situation, two

types of stochastic programming are used: implicit and explicit stochastic programming.

In implicit modeling, a long synthetic sequence of data corresponding to random vari-

ables such as inflow or net evaporation is generated, using forecasting methods based on

existing knowledge and the history of the system. These data, as representatives of the

stochastic behavior of the environment, are then considered as inputs in deterministic

optimization to be solved. The main advantage of this method is that the generated

12
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Figure 3.1: Various problems In the management of reservoirs[Ponnambalam; 2002] 

Figure 2.1: Various Operating Horizons in the management of reservoirs [1]

data would represent many aspects of stochastic relations, including spatial or temporal

correlations. The main disadvantage is that the optimal operating rules, which are used

to conduct the operations of the system in the real-time operations, are based on the

assumed hydrologic time series [2].

In the explicit stochastic type of formulation, instead of using the synthetic data of the

time series, the probability distributions of random variables are used to incorporate the

stochastic nature of the environment in the model. However, in contrast to the implicit

stochastic formulation, models in explicit methods may be complex, and in some meth-

ods like dynamic programming excessive computing time may be needed [17]. Figure 2.2

represents a schematic view of using both the implicit and the explicit type of program-

ming in optimizing the operations of reservoir systems.

Many different algorithms for these two schemes have been developed: Linear Pro-

gramming (LP), Nonlinear Programming (NLP), Dynamic Programming (DP) [4], and

Simulation-Optimization Techniques (SOT) [18] are the major tools being used. Because

reservoir management is a broad area, the survey is performed only for some of the rel-

evant methods that are related to multi-reservoir systems.
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(b) explicit [2]

Moreover, because the reinforcement learning and nonlinear modeling techniques are

used to develop the new methods in storage management, some sections at the end

of this chapter will present detailed background information on relevant concepts and

mathematical formulations.

2.2 Implicit stochastic approaches

In the following subsections, a few important implicit stochastic linear and nonlinear

optimization methods, applied in multi-reservoir case studies, are reviewed.

2.2.1 Linear Programming (LP)

Linear programming is a powerful method, when a solution exists, it provides a global

solution, and is widely used for the operation of multi-reservoir systems with linear

objective functions and constraints. Draper and Adamowski [19] and Bechard et al. [20]

used linear programming to find the optimal solution for the management of 17 and 22
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reservoirs, respectively. However, they encountered huge computational burdens. Hiew

et al. [21] applied this technique in optimizing seven reservoirs in Colorado. Crawley and

Dandy [22] have applied piecewise linear approximation in a multi-reservoir configuration

to maximize the yield of the system for a specific reliability, an issue considered in this

thesis.

2.2.2 Nonlinear Programming (NLP)

In many applications of multi-reservoir operations planning, linear techniques are not

applicable due to the existence of nonlinear and non-separable relations in objective

functions and/or constraints. The feasible regions are generally non-convex. In this

situation, various nonlinear algorithms such as Successive Linear Programming (SLP),

Successive Quadratic Programming (SQP), and other techniques have been considered

to solve the problem. If these functions are not differentiable, using nonlinear methods

might be difficult [23].

Among different nonlinear methods in large-scale multi-reservoir planning, SLP has led

to reasonable results in many real-world applications, both in terms of computational

requirements and optimality of final solution [24, 25]. SLP uses the two first terms of

Taylor’s series to linearize the nonlinear objective function, while SQP uses the first three

terms. In both methods, first order linearization of nonlinear constraints are considered.

SQP methods required more CPU time compared to SLP [25]. Therefore, in many cases,

especially when objective function and/or constraints are nearly linear in the region of

interest, SLP is used.

2.2.3 Dynamic Programming (DP)

Dynamic programming (DP) is an optimization technique to cope with the nonlinear,

non-convex, and discontinuous nature of problems. This method was formulated by

Bellman [26]. DP breaks the larger problem into a sequence of connected smaller sub-

problems; only one subproblem is solved at any instant with the solution available from
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the rest of the subproblems.

To apply an implicit stochastic DP in a reservoir application, a finite sequence of in-

flows and evaporations over all time horizons is generated. Then, a deterministic DP

is implemented for this time horizon [4, 5]. The main difficulty in DP which makes it

harder to apply in large-scale applications is the curse of dimensionality. To overcome

this drawback in the context of implicit stochastic programming, some versions of Dis-

crete Dynamic Programming (DDP) with various approximations have been proposed:

1-DP with Successive Approximation (DPSA) [27], 2-Incremental Dynamic Program-

ming (IDP) [28], and 3-Multi-level Incremental Dynamic Programming (MIDP) [29].

The purpose of DPSA is to reduce the number of system states in every iteration of

the DDP method, such that it converges to a specific solution after a finite number of

iterations [27, 30]. Larson and Korsak [27, 30] used the DPSA in a standard problem

composed of four reservoirs, to optimize the power generation in each reservoir. In IDP,

which has been proposed to improve the solution of DPSA, the method should be started

with an initial admissible trajectory over the time horizon T . However, in contrast to

DPSA, the state variables corresponding to all reservoirs are active. This method has

been used to tackle the four-reservoir application [31].

MIDP is the combination of IDP and DPSA. It consists of several levels, such that the

number of active states in each level are different. Nopmongcol and Askew [29] applied

this method in the four-reservoir case study solved by Larson [27]. All these revisions

have lost some important advantages of DDP in practical applications, such as the glob-

ality of the optimal solution.

2.3 Explicit stochastic approaches

In the following subsections, a few relevant explicit stochastic optimization methods

applied in multi-reservoir case studies are reviewed.
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2.3.1 Stochastic Dynamic Programming (SDP)

Stochastic Dynamic Programming (SDP) is another way to directly incorporate stochas-

ticity of system parameters into the model [26, 32]. The final solution of SDP is an

operating policy including decisions for all possible combinations of states in reservoirs.

As mentioned, the probability distribution of inflows directly influences the model in

SDP. The state of the system is usually divided into some specific discrete values, and

the recursive function, which is a function of the state and the decision taken, is updated

in every iteration.

There are two ways for finding the maximum or minimum in terms of Bellman optimality

and Bellman equation: value iteration, and policy iteration. The process of finding the

solution in these two techniques is performed iteratively such that in each iteration two

steps are taken: policy evaluation and policy improvement.

There are very few methods based on SDP in literature to cope with large-scale water re-

source management. Turgeon [14] proposed a method called Aggregation Decomposition

Dynamic Programming (A/D-DP). This method, which has been specifically applied in

some serial or parallel reservoirs, decomposes the whole reservoir system into two reser-

voirs: actual and aggregated reservoir. Then, a SDP is used to solve the problem with

two state variables, including the state of the actual reservoir (e.g. storage of the reser-

voir) and the state of the aggregated reservoir, which is the combination of all states in

downstream reservoirs (e.g. the summation of all storages in downstream reservoirs).

Ponnambalam and Adams [13] proposed a Multilevel Approximation Dynamic Program-

ming (MAM-DP) method based on A/D-DP and MIDP. In this new technique, each

stage could be composed of more than one reservoir as actual reservoirs. It is also appli-

cable to different sets of arrangement of reservoirs. Although it seems that the solution

of these methods is very close to the global solution, the effectiveness of these algorithms

are really problem-dependent.
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Value iteration in SDP

In the value iteration approach of discrete SDP, the value function (V t(i)) as the max-

imum accumulated reward from period t to termination for given state i) is obtained

based on the optimality equation proposed by Bellman [26] as:

V t(i) = max
a∈A(i)

[
Ret

i(a) + γ ×
∑
j

P t
ij(a)× V t+1(j)

]
,

(2.1)

where Ret
i(a), the expected immediate reward, is given by,

Ret
i(a) =

∑
j

P t
ij(a) × rt

ij(a), (2.2)

where P t
ij(a) is the probability of transition from state i to state j when an action a in

period t is taken, rt
ij(a) is the reward function pertinent to action a for transition from

state i to state j in period t, A(i) is the set of admissible actions for this state, and γ

is a discount factor. Equation 2.1 is solved from the back, i.e., t : T − 1, · · · 1. At any

given time, only the problem of time t is solved while the solution from time t+ 1 to the

end is available in the value function V t+1
j , ∀ j. This equation is also the basis for the

RL techniques explained later.

2.3.2 Chance-Constrained Programming (CCP)

Chance-Constrained Programming (CCP), which was initially introduced by Charnes and

Cooper [33], is a common and popular technique in the modeling of stochastic problems.

Revelle et al. [34] has applied this technique in reservoir management by incorporat-

ing a linear decision rule into the formulation. In this method, the constraints of the

continuity equation (balance equation) and the storage boundaries are combined using

statistical information of inflow, and constitute a set of new constraints, which are com-

pletely independent of the stochastic parameter in every period. However, Stendinger

and Strycharczyk [35] describe serious disadvantages of this method, especially its pes-

simistic solutions.
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2.3.3 Stochastic programming

Stochastic Linear Programming (SP) is a specific type of stochastic programming, which

is usually called two-stage stochastic linear programming with recourse function, because

it models the uncertain situation in a linear fashion. Two-Stage Stochastic Programming

(TSP) is another version of stochastic programming which is similar to SP, with nonlinear

chance constraints and a nonlinear objective function, and may have variance terms in

the objective function [36].

In SP or TSP, there are two sets of decision variables. The objective function is composed

of two main terms: the cost minimization(or the revenue maximization) with respect to

first-stage decisions, and the expected value of cost (revenue) corresponding to the future

random variable realizations [37]. The main disadvantage of this scenario-based method

is that the number of constraints which include random variables will usually increase

with the number of scenarios. Therefore, using this kind of modeling is limited in real-

world problems [38]. Of course, this difficulty could be alleviated by using the Benders

decomposition method [39], in which the original problem is divided into subproblems

and a master problem which actively coordinate together to obtain the optimal policy.

This method is also called dual dynamic programming.

2.3.4 Fletcher-Ponnambalam (FP) model

This method was initially developed and implemented for decision-making in single and

multi-reservoir applications over the long term, by Fletcher and Ponnambalam [16, 40], in

order to consider the stochastic nature of inflow. Two main assumptions were considered

in the respective stochastic models: that the releases are deterministic, and that the

inflows to reservoirs are normally distributed. Fletcher-Ponnambalam have extended this

type of modeling for the randomized release policy (the release policy in every period

depends on the previous storage which is a random variable) in a single reservoir case

study [40]. Zhang and Ponnambalam [41] extended this kind of modeling to short- or

medium-term operations where the initial storage volume is assumed known, and both

inflow and water discharge prices are considered stochastic, to find a short-term policy
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for the Lake Nipigon reservoir system in Ontario, Canada. With this technique, the

probabilities of spills and deficits are embedded into the model without adding any new

variables. Furthermore, in contrast to the SP method, no discretization is needed to

consider the uncertainties of inflow and price. In this thesis, further explanations of this

method will be presented.

2.4 Reinforcement Learning (RL) methods

The intuition behind these methods is to combine simulation with optimization in a way

that they become adaptive and model-free. It means that these methods can start with-

out any knowledge of the environment and can cope well with dynamic environments, in

which the stochastic features of random variables are changing. In practice, this means

that there is no need for transition probability matrix as required in the SDP method

Using Reinforcement Learning (RL) as a problem-solver dates back to the years of cyber-

netics and associated work in the field of psychology and statistics. In fact, the core idea

of what we today call RL in engineering applications has been derived from Thorndike’s

work [42], which involved studying the behavior of animals in the field of psychology.

He believed that actions followed by suitable results in a specific situation create a good

experience for the animal, so that if this situation is repeated, it has a higher tendency

to choose them. RL is actually looking for best behaviors in different situations of a

dynamic system, through interacting with the environment without any explicit teacher.

In other words, RL is a solution for optimal control processes in which the agent or

decision-maker wants to find an optimal policy. Because the RL technique can perform

using simulation, some researchers have chosen other names for RL: Simulation-based

dynamic programming [18], neuro-dynamic programming [43]. Further details can be

found in related books and papers [18, 43, 44, 45, 46].

Lamond and Boukhtouta [47] applied Neuro-Dynamic Programing (NDP) in a single

reservoir case study for generating hydropower. They demonstrated that CPU time for

the NDP method is less than the respective time for dynamic programming. Mahootchi et

al. [48] applied Q-Learning as one of the RL techniques to a single-reservoir management.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21

Lee [49] and Lee and Labadie [50] use this learning technique to tackle a two-reservoir

application in which K-means clustering is used for variables’ discretization. They used

all possible actions as a set of admissible actions in a two-reservoir case study. This

might make the applicability of this learning method inefficient, because some actions in

some states are practically impossible. Moreover, it could be computationally expensive

for multi-reservoir applications. Improvement to RL techniques will be presented later

in this thesis.

2.5 Important RL concepts and techniques

In the following subsections, some important concepts, in addition to four different learn-

ing methods, are described.

2.5.1 RL and supervised learning

The learning in RL is compared to other types of learning techniques, such as supervised

learning, in which the learning process is based on an external teacher. In many studies,

the differences between supervised and reinforcement learning has been blurred [51, 52];

Klopf [53] criticized supervised learning. He believed that adaptive behavior is being

missed in supervised learning. Given this idea, Barto and Sutton [54] specified a clear

boundary between these two types of learning. In general, in supervised learning, the

agent tries to create the desired output in each situation; however, in RL, there are

no desired outputs, and the agent selects an action from admissible actions through

comparing their consequences.

2.5.2 RL components

There are four main components in any RL system: policy, reward, value function, and

model. A model is optional but depends on the situations as discussed later. The policy

is a mapping from state to the decision to be made. The reward is the immediate or
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delayed response of the environment to the action taken by the agent. The value function,

which is defined for an action-state pair, takes into account the accumulative reward from

the starting point of RL. In other words, the value function, in contrast to the reward

function, specifies the gain of the system for a given action-state pair after a long run.

Indeed, the value functions can be calculated using the reward function accumulated by a

discount factor. They can be also available either analytically or through simulation. The

model component of RL determines the next state and the reward of the environment

based on a mathematical function. Figure 2.3 illustrates a schematic perspective of RL.
 

Agent 

Environment 

reward 
action 

state 

Figure 2.3: The schematic view of Reinforcement Learning

2.5.3 Policies for taking action

The policy of taking action is actually a trade-off between exploration (taking an action

randomly) and exploitation (taking the best action), which leads to four common action

policies in the literature: random, greedy, ε-greedy, and Softmax [18, 45].

In the random policy, there is no action preference. This means that the probability of

choosing any action is the same and equals to 1
|A(i)| , where A(i) is the set of admissible

actions for state i, and |A(i)| is denoted as the number of actions in this set.

In the greedy policy, the agent has to pick the best one among all admissible actions

in each iteration, with respect to the last estimate of the action-value function for all

admissible actions in the respective state.

In the ε-greedy policy, greedy actions are chosen most of the time; however, once in a
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while, the agent tries to choose an action in the set of admissible actions with probability

of ε/|A(i)| where ε is the probability of taking non-greedy actions.

In contrast to the greedy policy, the softmax policy derived from the Boltzman’s distri-

bution can be defined in which the proportion of exploration versus exploitation changes

as the process of learning continues. In this policy, the probabilities of choosing actions

in every iteration are based on the following formula:

P (a) =
eQ(i,a)/τ∑

b∈|A(i)|
eQ(i,b)/τ

, (2.3)

where τ is a positive number called temperature and Q(i, a) is the action-value function

for a given state i when the action a is taken. When the temperature is high, the

probabilities of taking all actions are the same, while a low temperature causes higher

probabilities of actions with high action-value functions.

2.5.4 Q-Learning method

Q-Learning has been derived from the formulation of Stochastic Dynamic programming

(SDP) [18, 32, 44]. The value function in SDP is substituted with an action-value func-

tion, which is a value defined for every pair of action-states, instead of every state in the

value function. This method uses the Robbins-Monro algorithm [55] to estimate action-

value functions pertinent to all possible pairs of action-state in a step-by-step fashion

after realizing sufficient observations [43].

The criterion, which the agent has to consider for taking action, is the accumulated re-

wards or the value function. The value function here has the same meaning as in the

conventional method of SDP with two main parts: immediate reward and accumulated

reward. Because in RL the learning process is implemented by direct interaction with the

environment, value functions have to be updated after each interaction. This is similar

to asynchronous dynamic programming, in which the latest updated value functions of

states can be considered for updating the value functions of other states in the same

iteration.

To find an updated value function based on equation 2.1, all admissible actions in the
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respective state and period must be tested with respect to this equation, and the best

value is chosen as a new value function. Therefore, we can introduce another terminology

called action-value function, Q(i, a). This value demonstrates the expected accumulated

reward when a decision maker starts from state i and takes action a. Using these new

values, the formulation of SDP in Equation 2.1 can be written as follows [32, 45]:

Qt(i, a) = Ret
i(a) + γ

∑
j

P t
(ij)(a)Qt+1(j, b∗),

=
∑
j

pt
ij(a)×

(
rt
ij(a) + γ × max

b∈A(j)
Qt+1(j, b)

)
,

= E[rt
ij(a) + γ max

b∈A(j)
Qt+1(j, b)],

(2.4)

where E is the expectation operator, rt
ij(a) is the immediate reward in period t when

the action a is taken for transition from state i to state j, and b and b∗ are admissible

actions and the best one with respect to the next state j, respectively. This is the same

formulation for SDP, except that it is expressed in terms of the action-value function.

Let us explain the algorithm of Robbins-Monro [55] for calculating the average of a

sequence of data iteratively. Suppose we have a sequence of data X1, X2, X3, · · · Xn,

Xn+1. If the average of the first n input is denoted by X̄n , and the (n+ 1)th observation

is Xn+1, the average of the new sequence of data in terms of the current average and the

new occurrence is given by:

X̄n+1 = X̄n +
1

n+ 1
× (Xn+1 − X̄n) =

n+1∑
i=1

Xi

n+ 1
. (2.5)

Based on this rule, it is simple to find a new formulation as follows:

Qt(i, a) := Qt(i, a) + 1
NOV (i,a)

× [rt
ij(a) + γ max

b∈A(j)
Qt+1(j, b)−Qt(i, a)], (2.6)

where NOV (i, a) is the number of observations of the action-state pair (i, a). We can
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also substitute 1
NOV (i,a)

with α, called the learning parameter:

Qt(i, a) := Qt(i, a) + α × [rt
ij(a) + γ max

b∈A(j)
Qt+1(j, b) − Qt(i, a)]. (2.7)

This is called the Q-Learning method, developed by Watkins [44], in which the transi-

tion probabilities are removed. In other words, this is a model-free algorithm in which

the transition probabilities are not used for updating the action values. Moreover, Q-

Learning is an off-policy method in RL in which the behavior policy, the policy which

is used to generate behavior during the learning process, is different from the estima-

tion policy, the policy which is updated or evaluated and supposed to be considered

as an operating policy in the real-time decision-making [45]. It should be noted that

one iteration in Q-Learning and other learning methods explained later starts from an

action-state pair (i, a) and obtains a new action-state pair (j, b) from where the next

iteration will start. Moreover, an episode comprises a certain number of iterations that

should be determined before the learning process is started.

2.5.5 Sarsa method

Sarsa is an on-policy Temporal-Difference (TD) learning technique in RL, which means

that the same action policy π used for taking action in the current state i (the policy

that generates behavior) is used for choosing the action in the next state j in order to

update the respective action-value function in one iteration [45]. Therefore, there is a

transition from one action-state pair (i, a) to another action-state pair (j, a′) in every

iteration. However, in Q-learning the transition is defined from one action-state pair

(i, a) to the next state j in which the greedy action is chosen for updating Qt(i, a). The

general formulation of sarsa is given as follows:

Qt(i, a) := (1− α)Qt(i, a) + α[rt
ij(a) + γQt+1(j, a′)], (2.8)

where a and a′ are two actions chosen from the action policy π.
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2.5.6 Sarsa(λ) method

Sarsa(λ), which is an on-policy learning technique like sarsa, uses an eligibility trace

(The trace forms the memory parameters pertinent to eligible action-state pairs whose

corresponding action-value functions can be updated [45].) The parameter λ, along with

the discount factor γ, plays a decaying role in the eligibility trace to put more weight

on those states which have been recently visited. The eligibility trace as a function of

state, s, and action, a, should be incremented for the state visited and the action taken

in the current iteration, and updated with γλ for all action-state pairs after editing the

action-value functions. This process of learning should be iteratively performed using

these eligibility traces, and continued until the convergence criteria are satisfied [45].

Analogous to sarsa, this technique uses a quintuple consisting of an action a, in current

state i, observing reward r, and next state j, and taking another action a′. The initial

values of action-value functions, Q(i, a), and eligibility traces, e(i, a), should be set to

zero at the start of the learning. One iteration of the sarsa method is demonstrated in

Algorithm 1 [45].

2.5.7 Q(λ) method

Q(λ) is an off-policy RL method in which the behavior, or the exploratory policy, is

different from the estimation policy, which is evaluated or improved during the learning

process [44]. The value of eligibility traces are updated if the next action is the same as

that obtained by the greedy policy; otherwise, the updating process is only performed

for the action taken in that iteration, as in Q-Learning, and the eligibility traces for

all action-state pairs set to zero. In other words, the eligibility traces are exponentially

smoothed in every iteration except when the next action is not greedy in which all eligi-

bility traces set to zero
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Algorithm 1 One iteration of sarsa(λ) for the action-state pair (i, a)

1: find Temporal-Difference (TD) error as

∆ = rt
ij(a) + γQt(j, a′)−Qt(i, a)

2: set the eligibility trace for this pair

e(i, a) = e(i, a) + 1

3: perform for all action-state pairs (l, b) (∀ l ∈ {all possible states} & b ∈ A(l))

3-1) update Qt(l, b)

Qt(l, b) := Qt(l, b) + α×∆× e(l, b)

3-2) update eligibility traces

e(l, b) = γ × λ× e(l, b)

4: (i, a) ← (j, a′)

2.6 Opposition-Based Learning (OBL)

Opposition-Based Learning (OBL) schemes, which were introduced by Tizhoosh [56, 57],

could be suitable approaches to speed up the process of learning in RL. It has been

also shown that using this scheme in, for example, Genetic Algorithms (GA), Neural

Networks (NN), and Reinforcement Learning (RL), can generally speed up the training

process [56, 58, 59, 60]. The intuition behind this learning methodology is to use the

inherent oppositional relationships in the system to update the agent’s knowledge more

frequently. However, the efficiency of OBL is generally problem-dependent.

In most search algorithms, such as GA and learning techniques such as NN, we usually

start from a single or a set of random points in the domain of input variables, and continue

with some other operations based on a specific criterion until an optimal or near-optimal

solution has been found. If the starting points are close enough to a optimal solution, we

might converge to the optimum within a few iterations; however, finding a good starting

solution is hard. A higher rate of convergence in these applications is essential, and an
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ongoing research area in literature. The opposition corresponding to a point could be

defined in two different ways: type I and type II [61]. In type I, the opposite point is

calculated based on lower and upper bounds of the search interval:

y̆ = ymax + ymin − y, (2.9)

where y={y1, y2, · · · ym}, is a vector of m input features, ymax={ymax
1 , ymax

2 , · · · yxmax
m }

and ymin={ymin
1 , ymin

2 , · · · ymin
m } are two vectors of corresponding lower and upper bounds

for each feature respectively, and y̆ is the opposite vector of y. Suppose we are going to

find the optimum solution for a monotonic function f(·) in one dimensional problem and

a specific domain by two different approaches: 1) take a random point y1 and evaluate

it along with its opposite, y̆1, simultaneously using the respective evaluation function; 2)

take the second random point y2 and compare its evaluation with the evaluation of the

first random point in every iteration. Based on the theorem called Central Opposition

for a one-dimensional space and proved by Rahnamayan et al. [62], the probability of

closeness of the opposite y̆1 to the optimal solution yo (assuming that there is at least one

optimal solution) is higher than the probability pertinent to the second random variable

y2 (all three variables y1, y2, and y̆1 are considered simultaneously).

Pr (|y̆1 − yo| < |y2 − yo|) > Pr (|y2 − yo| < |y̆1 − yo|) . (2.10)

This mathematical result demonstrates that type I opposition may guide the agent or

learner to reach the optimal solution faster. The authors [62] also provide experimental

results confirming the theorem.

Another version of the opposition, called the type II opposition scheme, utilizes the value

of the objective function or approximation functions to find the opposite point [61]. In

other words, in contrast to the type I scheme in which the opposites are calculated using

the variable domain y, in type II, they are computed via the evaluation of function f(y).

Moreover, to enjoy the advantage of Type II opposition-based learning, function f(y) is

not needed to be monotonic. The way of finding opposite action is mathematically given

in the following equation [61]:

y̆ ∈ {y̆i|f̌(y̆i) = max
j
f̌(yj) + min

j
f̌(yj)− f̌(yi)}, (2.11)
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where f̌(y) is the value function or the approximate value function in point y, and

minf̌(y) and maxf̌(y) are the lower and upper bounds of the corresponding function,

respectively. For example, at the early stage of the learning process, there are only

a few approximations, which might not be accurate enough to be considered as value

functions. However, Equation 2.11 assists the agent to use this partial knowledge to

extract the opposites. It should be noted that as the learning continues, the agent might

find different opposites for a similar situation.

2.7 Risk consideration in RL techniques

In a stochastic environment where the Markovian assumption is reasonable, the main

target in all learning methods is usually to maximize or minimize the expected value of a

predefined objective function; however, this decision-making does not consider risk [63].

Bessa [64] developed a method by using two-pass SDP, in which the risk is considered.

Heger [63] presented an expected value-variance criterion to consider this fact in the ob-

jective function as a risk minimization technique in SDP, where all transition probabilities

are known. He developed a method similar to Q-Learning called Q̂-Learning which used

a minmax criterion to find the action-value functions. The risk in Q̂-Learning is much

more important than the expected value criterion, such that the optimal policy would

be a conservative policy at the end, which is not always favoured by decision makers.

This way of considering risk is called the worst-case control, and its respective stationary

policy is called a risk-avoiding policy [65], which means that the agent considers the most

unlikely accumulated reward for determining the action-value function. It usually results

in a very pessimistic average of benefit or cost at the end of the learning process [65].

There are other techniques, called risk-sensitive control, in which the risk is embedded

into the objective function. The ccBeta method which is presented by Pendrith and

Ryan [66] falls into this category.

Neuneier and Mihatsch [65] presented another risk-sensitive control framework. They

created a new variable called χk for weighting the accumulated reward in different iter-

ations.
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Variance-Penalized RL is another way of considering risk in the RL methods [67, 68].

Geibel [67] also uses a risk-penalized method and represents its applicability in a grid

world problem. In this technique, a new variance term with a risk-aversion parameter

should be added to the standard formulation of the action-value function in different RL

methods. The variance, like the other expected-value term, should be trained during

the learning process. Sato and Kobayashi [68] developed a method for training the vari-

ance of action-value functions in finance applications as a penalty term in the objective

function. The optimality equations cannot be applied for this new objective function

and some appropriate assessment should be performed to determine a better policy in

each episode or iteration (e.g., using simulation). This technique, like other risk-sensitive

techniques, is used for finance applications which might make the generalization of the

risk consideration limited. In this thesis, we develop an alternative method for including

risk.

2.8 Two-stage Stochastic Programming (TSP)

To model a storage management problem with two stochastic variables, namely, inflow

and water discharge price based on Two-stage Stochastic Programming (TSP), we should

define scenarios’ corresponding probabilities to cover different possible situations of these

two variables in the future:

Scenario 1 : Ćt,1, Í t,1 ⇒ P t,1,

Scenario 2 : Ćt,2, Í t,2 ⇒ P t,2,
...

...
...

...

Scenario N : Ćt,N1 , Í t,N1 ⇒ P t,N1,

where Ćt,l and Í t,l are the price and inflow considered for the lth scenario during period

t, respectively, P t,l is the probability of lth scenario of inflow in period t, and N1 is the

number of scenarios. The number of scenarios is chosen based on the sensitivity of the
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solution. At the beginning, N1, for example, is small (e.g., N1=30) and then N1 is in-

creased until the solution does not change significantly.

In a single reservoir application, only the continuity constraints that include stochastic

inflows are substituted with a set of new constraints based on the existing scenarios for

every period t as follows:

st+1 − st + ut + SF t,1 − SU t,1 = Í t,1,

st+1 − st + ut + SF t,2 − SU t,2 = Í t,2,
...

...
...

...
...

...

st+1 − st + ut + SF t,N1 − SU t,N1 = Í t,N1 ,

Here, ut is the release in period t, and SF t,l and SU t,l are second-stage decisions corre-

sponding to either shortage or surplus, respectively, that may occur for the lth scenario

inflow. We assume that the corresponding cost for shortfall, CSF t, is equal to Cs ( Cs

is the benefit for keeping high storages, a term defined as zeroth order approximation of

a power generation function, as described in [9]). The cost for surplus, CSU t, is equal

to E(ct), the expected value of price corresponding to releases. Hence, the objective

function in SP is given by

max
ut,st
{f t(st, ut)} =

max
ut,st

{
T∑

t=1

{E(Ct)× ut + Cs × st −
N1∑
l=1

P t
l (CSF t × SF t,l + CSU t × SU t,l)}

}
. (2.12)

The obvious disadvantage of this method is the large increases in the size of the problem

with increase in the number of random variables and periods.
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2.9 Fletcher-Ponnambalam (FP) model

A new continuity equation for a single-reservoir case study based on indicator functions

is given by [40]

st = {st−1 + Ī t + ηt − ut}1[st
min,st

max](ŝ
t) + {st

min}1(−∞,st
min)(ŝ

t)}

+ {st
max}1(st

max,∞)(ŝ
t)},

(2.13)

where Ī t is the natural mean of inflow, ηt is a zero-mean random component, and 1[·](·)

are binary indicator functions or random variables which are defined as follows:

1[st
min, st

max](ŝ
t) = 1 if st

min ≤ ŝt ≤ st
max,

1[st
min, st

max](ŝ
t) = 0 otherwise,

(2.14)

1(−∞, st
min)(ŝ

t) = 1 if −∞ < ŝt < st
min,

1(−∞, st
min)(ŝ

t) = 0 otherwise,
(2.15)

1(st
max, ∞)(ŝ

t) = 1 if st
max < ŝt <∞,

1(st
max, ∞)(ŝ

t) = 0 otherwise.
(2.16)

It should be noted that Equation 2.13 can be written in a different way using minimum

and maximum operator as follows:

st = min
{
st

max, max
(
st

min, st−1 + I t + ηt − ut
)}
. (2.17)

Conceptually, there is no difference between the equations 2.13 and 2.17; however, the

expected values of indicator functions in the Equation 2.13 represent the probabilities of

containment, shortage, and spill, respectively, and this form is used in this thesis

By taking expectations of Equation 2.13, using the stochastic release policy (ut = kt+st−1

in which kt is the deterministic part of release in period t), the first and second moments of

storage (given below) are substituted for mass balance and storage boundaries constraints

in the reservoir model. This model can be solved by constrained nonlinear optimization
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algorithms. These new constraints based on the use of normal distribution are as follows

[40]:

E(st) = (I t − kt) ·
{

1
2

[
erf

(
[st

max−(Īt−kt)]

[2V ar(ηt)]1/2

)
− erf

(
[st

min−(It−kt)]

[2V ar(ηt)]1/2

)]}

− ( [V ar(ηt)](1/2)
√

2π
) ·

{
exp

(
−1

2
[st

max−(Īt−kt)]2

V ar(ηt)

)
− exp

(
−1

2

[st
min−(Īt−kt)]2

V ar(ηt)

)}

+ (st
min) ·

{
1
2

[
1 + erf

(
[st

min−(Īt−kt)]

[2V ar(ηt)]1/2

)]}

+ (st
max) ·

{
1
2

[
1− erf

(
[st

max−(Īt−kt)]

[2V ar(ηt)]1/2

)]}
,

(2.18)

where the term in the first set of curly brackets estimates the probability of containment,

the term in the third set of brackets estimates the probability of deficit, and the term in

the fourth set of brackets estimates the probability of spill.

E(st
i)

2 = [(Ī t − kt)2 − V ar(ηt)] ·
{

1
2

[
erf

(
[st

max−(Īt−kt)]

[2V ar(ηt)]1/2

)
− erf

(
[st

min−(Īt−kt)]

[2V ar(ηt)]1/2

) ]}

+2(Ī t − kt) · (−[V ar(ηt)](1/2)
√

2π
)
{

exp
(
−1

2
[st

max−(Īt−kt)]2

V ar(ηt)

)
− exp

(
−1

2

[st
min−(Īt−kt)]2

V ar(ηt
i)

)}

− [V ar(ηt)](1/2)
√

2π
) ·

{
[st

max − (Ī t − kt)] · exp
(
−1

2
[st

max−(Īt−kt)]2

V ar(ηt)

)

−[st
min − (Ī t − kt)] · exp

(
−1

2

[st
min−(Īt−kt)]2

V ar(ηt)

)}

+(st
min)2 ·

{
1
2

[
1 + erf

(
[st

min−(Īt−kt)]

[2V ar(ηt)]1/2

)]}
+ (st

max)2 ·
{

1
2

[
1− erf

(
[st

max−(Īt−kt)]

[2V ar(ηt)]1/2

)]}
,

(2.19)

Here, erf is the error function which can be computed by the following equation:

erf(x) =
2√
π

∫ x

0

e−t2dt. (2.20)

Since both stochastic variables, namely the price (explicitly) and the inflow (implicitly

via storage volume), have influence on determining the value of objective function in FP,
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the objective function can be presented as follows [41]:

max
E(st),ut

{
f t(E(st), ut)

}
= max

E(st),ut

{
T∑

t=1

(E(Ct)× ut + Cs × E(st))

}
. (2.21)

In this thesis, extension of this method for multi-storage systems will be presented.

2.10 Warehousing problem

The purpose of the warehousing optimization problem is to achieve an optimal order

policy, the quantity of products to be ordered or bought from a supplier outside of the

defined system or other storage spaces, such that it minimizes the total cost.

This is analogous to what is considered in reservoir management; however, the following

interpretations should be established:

1. The decision in reservoir management is defined as the amount of water to be

released that should be released; however, it is the quantity of items to be ordered

in the warehousing problem. In other words, the decision is an output entity with

a negative sign in the mass balance equation for reservoir applications, but it is an

input entity with a positive sign in the respective warehousing balance equation.

2. Stockouts in warehouse can be interpreted as spillage in reservoir management. It

can be manipulated by decision makers to be returned to suppliers or conducted

to other storage spaces (other warehouses); however, the spillage in reservoir ap-

plication is out of control which might be considered as available water in other

reservoirs or cause some losses due to floods downstream.

3. Lost-sale in warehousing process is equivalent to shortage in reservoir management.

The release in this situation should be revised with respect to the boundary condi-

tion of minimum storage level; however, the ordered quantity in warehousing does

not change when the lost-sale situation happens.
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4. The set of reservoirs in a configuration are usually all the same: that is, they can

receive stochastic inflows from sources outside the defined system, and can poten-

tially satisfy the external demands (i.e., the demands from outside of the defined

system) in their downstream. However, in the warehousing problem, there exist

distribution centers (usually called warehouses in the literature) which can be fully

connected to each other. These storage centers obtain the ordered quantity from

some external sources (suppliers) or other distribution centers. They satisfy the de-

mands for smaller storage spaces called retailers or depots in their downstream (i.e.,

there is usually no connection between retailers and suppliers). In some problems,

transshipments between retailers are allowed (e.g., a retailer can sell stockouts or its

existing products to other retailers). Moreover, the stochastic demands that should

be characterized (i.e., finding the distribution function, mean, or standard devia-

tion) for the optimization model are specified in the lowest level (retailers level).

However, the features of the random demands for distribution centers should be

calculated in terms of demand at the retailers, which are physically connected to

these distribution centers.

We only focus on the literature review of multi-echelon warehousing management prob-

lems in this section. Chen and Ghosh [69] introduced Hierarchical, Distributed, Dynamic,

Inventory (HDDI) management based on simulation techniques in which there is no lim-

itation for the number of warehouses and retailers. The expected values of the normally-

distributed retailer levels are considered as actual demands. In this system, there are

bi-directional flows between all neighbor retailers and one single warehouse, and orders

from other warehouses only occur in the emergency (shortage) situations. This kind

of simulation could be very complex and time consuming where the number of entities

are enormous. Gupta and Maranas [70] developed deterministic and stochastic tactical

logistics models for decision making in a intermediate time-step (e.g., between 1 and 2

years) to satisfy the demands for inventory management. They believe that considering

all parameters as constant values is too far from reality. Moreover, the optimal decision

policy obtained through these optimization models cannot respond well to what happens
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in the real world, which is usually dynamic and stochastic. They divided the whole tac-

tical stochastic models into two main categories: scenario-based approach (implicit) and

distribution-based approach (explicit). They used the first approach under a normality

assumption to model the stochastic situation in order to find the optimal operational

policy in supply chain networks composed of six different entities or sites (warehouses

or plants). Kljajic et al. [3] applied a simulation technique by considering several differ-

ent strategies in a real-world case study to find the optimal operational strategy. The

historical data which are supposed to be a suitable representation for real situation are

used to generate sufficient samples for implementing the simulation. Chen and Lee [71]

models a warehousing scheduling problem with a multi-objective function in which both

demand and price are stochastic variables. The scenario-based approach is used to handle

the stochasticity of demand and fuzzy variables are set for prices. The ultimate model

is a mixed-integer nonlinear programming problem with normally-distributed stochastic

variables. Monthatipkul and Yenradee [6] developed a mixed-integer programing model

for a supply chain management application with one warehouse and multiple identical

retailers, called Inventory/Distribution Plan, in which the mean and the standard de-

viation of demand are used in constructing the stochastic models. In this formulation,

the constraint of safe stock using the demand variance is a crucial factor. The models

developed later on also consider this aspect.

2.11 Summary

In this chapter, relevant research articles, including a few different optimization or simu-

lation techniques applied for multi-reservoir or multi-echelon warehousing problems, have

been reviewed. Many similar methods are utilized to tackle both storage applications

in the stochastic situation in which some of them relied on simplifications of stochastic

variables (e.g., using only the mean of stochastic variables to cover the stochasticity).

Moreover, most of these techniques cannot cope well in large-scale real-world problems.

In the next chapter, we introduce improvements to RL techniques and new nonlinear

models for storage management problems.



Chapter 3

Simulation-Based Methods and

Nonlinear Models

3.1 Introduction

In this chapter, we will introduce selected Reinforcement Learning (RL) techniques to

be used in storage management problems. Furthermore, several nonlinear models which

have been originally developed by Fletcher and Ponnambalam [16] are extended for

optimal operations optimization of single and multi-reservoir systems. The Gaussianity

assumption in these models is relaxed and two different stochastic release policies are

proposed.

3.2 RL techniques for storage management

In the following subsections, we will explain how to apply RL techniques in single- and

multi-storage management applications.

37
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3.2.1 Taking actions and making decisions

The constraints in the optimization model for storage management, including boundary

conditions for storages and releases explained in section 1.2, play the key role in determin-

ing the set of admissible actions and the possible states. States are usually the storage

volumes of reservoir, or the current stock in a warehousing problem, at the beginning of

each time period. When the agent takes an action at as a target amount of water or items

to be ordered from the set of admissible actions using an action policy (e.g., ε-greedy), it

should wait to receive some signals as feedback from the environment. These signals are

the immediate reward and the next storage volume. The reward is determined by the

reward function which is usually given as a part of the problem definition. However, the

next state, given st, will be determined using the balance equation in a single reservoir

application as:

st+1 = st + I t − νt − at. (3.1)

Inflow to reservoir, I t, and the evaporation, νt, from it are random variables, and hence

the next period storage value is random. It is clear that the agent takes an action only

based on the current state, without having any information about the future. Therefore,

the amount of release to be chosen or the amount of items to be ordered is not necessarily

the same thing that actually occurs in reality. To make a distinction between these two

concepts, the following definitions are assumed:

1. Release taken (a = u): the amount of water to be released

2. Release occurred (ϑ ): the release that actually occurs due to physical constraints

As the environment is stochastic, the respective immediate reward, which is usually

calculated based on the release which occurred and the end-of-period storage, might

vary for the same action-state pair observed in different iterations.
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3.2.2 Admissible actions

In multireservoir problems, for each time period, agent should choose an action among

candidate actions, which are called possible actions. In other words, possible actions may

be defined as a set of all discrete values of the control variable (release or the amount of

items to be ordered) which are within the range between minimum and maximum release

volumes (demands) for reservoir i, (Rt
i,min and Rt

i,max). Given the maximum number of

discrete release volumes in each period for every reservoir i as Gi, one may determine

the set of discrete possible actions as follows:

All possible actions =
{
at

i,gi
|at

i = Rt
min +

(Rt
max−Rt

min)

Gi−1
(gi − 1)

}
, (3.2)

for i = 1, · · · , N and gi = 1, · · · , Gi,

where at
i,gi

is the gith possible action in reservoir i in period t. In the case of having

multiple outlets from one storage, possible actions for each outlet should be separately

determined with respect to the maximum and minimum release volumes (demand) of

that outlet.

The agent may pick an action from this set at each time period based on one action pol-

icy. In problems with small action-state spaces, extended simulation helps to explore all

possible actions at different states. However, the convergence may be quite slow and per-

haps intractable in multi-reservoir systems with numerous state variables. Furthermore,

some of those actions are physically infeasible. In order to eliminate these infeasible

actions from the set of admissible actions and to make this set more compact, they can

be determined when inflow (demand) is fixed in the balance equation (Equation 1.2), for

example using the historical data. Depending on whether the lower or upper bound of

the inflow (demand) bound is active, the set of admissible actions associated with any

storage volume (stock) may fall into two types: 1) optimistic (e.g., considering maximum

inflow and minimum evaporation in Equation 1.2 ), or 2) pessimistic (e.g., considering

minimum inflow and maximum evaporation in Equation 1.2). In multi-reservoir appli-

cations, in addition to precipitation and runoff flowing to each reservoir, the releases

from other reservoirs should be considered. Algorithm 2 demonstrates the process of
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finding the admissible action in these two schemes in multi-reservoir cases which has to

be applied from the most upstream reservoir to the downstream ones.

3.2.3 Optimal policy and updating action-value function

An agent takes an action using an action policy which is built on action-value functions.

After receiving the reward from the environment, the agent updates the action-value

function related to the previous state and takes a new action. For the starting point,

arbitrary values should be considered for all action-value functions Q(i, a) (e.g., Q(i, a) =

0, for all states i, and actions a). In each iteration at least one value should be updated.

Assuming that the agent observes storage st = i and takes action at, based on the

balance equation (Equation 1.2) and the value of the stochastic variables, the next storage

becomes st+1 = j (in the case of violating the maximum or the minimum level of storage

volume in the next period, j = st+1
max or j = st+1

min). The action-value functions are updated

as follows:

Qt(i, a) := Qt(i, a) + α × [rt
ij(a) + γ max

b∈A(j)
Qt+1(j, b)−Qt(i, a)] (3.3)

where rt
ij(a) is the immediate reward when action a is taken for transition from state i

to state j in period t.

Although the transition from one storage to another is continuous and is controlled by

the balance equation (Equation 1.2), there is no guarantee that the current or next stor-

age is exactly one of the discrete values. An easy way to tackle this problem is to find

the closest discrete value to the current or next storage. However, this seems to be error-

prone because the respective storage only partially belongs to this state. To increase the

accuracy, we might use a linear or nonlinear interpolation. To interpolate linearly, firstly,

we have to find two successive values i and i + 1, which are the closest discrete values

to the current storage. Finally, the degrees of closeness of the storage to these bound-

aries can be simply computed (e.g., w1 and w2 in a single-reservoir case study such that

w1+w2=1). Algorithm 3 demonstrates the process of updating action-value functions in

a single reservoir case study, which is easily extendable to multi-reservoir cases.
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Algorithm 2 : Finding admissible actions in reservoir management

1: Compute minimum and maximum inflow, I t
i,min and I t

i,max, and minimum and max-

imum evaporation, νt
i,max and νt

i,min for all reservoirs (i = 1 · · ·N)

pessimistic

 P (I t
i ≤ I t

i,min) = ε1,

P (νt
i ≤ νt

i,max) = 1− ε2,

optimistic

 P (I t
i ≤ I t

i,max) = 1 − ε1,

P (νt
i ≤ νt

i,min) = ε2,

where ε1 and ε2 are two parameters in [0,1] which have to be determined before the

learning process is started

2: Find all possible actions using Equation 3.2

3: In an optimistic scenario, find the end-of-period storages using all possible actions
st+1

i = s̄t
i,ji

+ I t
i,max − νt

i,min − at
i,gi

+
N∑

l=1,l 6=i

u∗tli × δli,

u∗tli = max{at
l,gi′
|st+1

l ≥ st+1
l,min, s̄

t
l,jl
},

for i = 1, · · · , N , ji = 1, · · · , Ji, gi = 1, · · · , Gi

where s̄t
i,ji

is jth
i discrete value of storage in reservoir i, Ji is the number of discretiza-

tions for storage level in reservoir i, u∗tli is the maximum release flowing to reservoir

i from reservoir l in period t, and st+1
i is the end-of-period storage in reservoir i.

4: In a optimistic scenario, find admissible actions

A(i, ji) = {at
i,gi
|st+1

i ≥ st+1
i,min, s̄

t
i,ji
},

for i = 1 · · · N, ji = 1 · · · , Ji, gi = 1 · · ·Gi.

5: In a pessimistic scenario, perform steps 3, 4 after changing I t
i,max and νt

i,min to I t
i,min

and νt
i,max; respectively, and change maximization to minimization for finding u∗tl,i.
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Algorithm 3 : Updating action-value functions using interpolation (single-reservoir)

1: Take the closest discrete value of storage to the actual current storage st
i

during period t

2: Compute the next storage volume using the balance equation (Equation 1.2)

and other boundary constraints

3: Find two successive discrete values which are the closest values to the

next storage (j and j + 1)

4: Find w1 and w2 using using proper interpolation for st+1

5: Perform interpolation for the next storage

Qt
z = Qt(i, a) + α[rt

ij(a) + γ max
b∈A(j′)

Qt+1(j′, b)−Qt(i, a)],

j′ = (j − 1) + z & z = 1, 2

6: Update the action-value function

Qt(i, a) =
2∑

z=1

wz ×Qt
z.

7: Perform interpolation for the current storage st. Consider i and i+ 1 as two

consecutive boundaries for the current storage and w′
1 and w′

2 as proper weights

Qt
zz′ = Qt(i′, a) + αw′

z′ [r
t
ij(a) + γ max

b∈A(j′)
Qt+1(j′, b)−Qt(i′, a)],

i′ = (i− 1) + z′, j′ = (j − 1) + z, z = 1, 2 & z′ = 1, 2.

8: Update action-value function

Qt(i′, a) =
2∑

z=1

wz ×Qt
zz′ for z′ = 1, 2.
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As seen in Algorithm 3, because the new learning rate (α× w′) is smaller than α, it

might slow the learning process; however, it is likely to lead to more accurate results

than the situation in which only one action-value function is updated.

3.3 Opposition in storage management

RL techniques are some learning approaches in which a single or multiple agents could

be trained through interaction with stochastic or deterministic environments, such that

an optimal or near-optimal policy can be extracted. The most advantageous aspect of

these techniques is their model-free basis which makes them very attractive and useful

in real-world and on-line training applications. However, to converge to a steady state

[44], all states and actions should be infinitely (sufficiently) visited. This may take too

much time in real-world applications. Therefore, the question may arise how to achieve

an optimal solution with fewer interactions. Different opposition-based learning schemes

might be a useful answer to this question.

3.3.1 Opposite action/state in RL techniques

The following assumptions for applying the Opposition-Based Learning (OBL) are evi-

dent:

• the immediate or delayed reward is usually extracted from the problem definition

and called a reward function.

• the transition function (balance equation in 1.2) in which some of components are

random variables is given as a priori system knowledge.

• there is no dependency between the action taken and the values realized for stochas-

tic parameters in every iteration. This means that the agent is capable of determin-

ing what happens (meaning what is the next state) if it chooses a different action
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(e.g., opposite action) after realizing the values of the respective random variables

in every iteration.

In RL techniques in which the updating process is performed based on the action taken

and the state (current or next state), the opposite could be defined for these two elements.

Two kinds of opposition can be considered for opposite action ă or opposite state s̆ as

follows [57]:

1. Type I opposite: Opposite action ă and opposite state s̆ are defined based on

their corresponding domain boundaries

ă = amax + amin − a, (3.4)

s̆ = smax + smin − s, (3.5)

where smin, smax are the minimum and maximum value of state variable, and amin

and amax are the minimum and maximum value of admissible action, respectively.

2. Type II opposite: Opposite action ă and opposite state s̆ are defined using the

action-value functions [57]:

ă ∈ {ă|Qt(i, ă) ≈ max
b
Qt(i, b) + min

b
Qt(i, b)−Qt(i, a)}, (3.6)

s̆i ∈ {sj|min
sj

(ρ(si,sj))}, (3.7)

where Q(i,a) is an evaluation for the expected value of the accumulated reward if

the agent starts with state i, takes action a, and follows a specific policy. ρ is a

criterion showing the degree of similarity between current state and other states,

calculated as follows:

ρ(si,sj) = 1−
P

k∈A(i)

|Q(si,ak)−Q(sj ,ak)|
P

k∈A(i)

max{Q(si,ak),Q(sj ,ak)} , (3.8)

For example, if ρ equals to one for two different states si and sj, it indicates that

they can be classified as equivalent states. To find the opposite state s̆ using
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Equation 3.7, the minimum ρ with respect to all states should be considered. It

is obvious that in the case of zero denominator in Equation 3.8 the opposite state

cannot be well defined.

3.3.2 A new type II opposition learning

With respect to type II opposition, the action-value functions play a substantial role in

finding the opposite action and state. However, the majority of action-value functions

have zero value at the very beginning of the learning process or may have not been ob-

served a sufficient number of times. Therefore, the opposites are not accurate enough.

To increase the accuracy of finding the actual opposite action/state, some kind of func-

tion approximation, such as a feed-forward Multi-Layer Perceptron networks (MLP),

Fuzzy Rule-Based modeling (FRB), or any other approach to function approximation

could be used. In this type of opposition mining, regular learning is performed for some

limited time in order to obtain initial information about the behavior of the system and

specifically action-value functions. The information related to action-state pairs which

are visited during learning can be employed as sample data for training the function ap-

proximations. Using other action-state pairs as testing data, new knowledge or a set of

new action-value functions are extracted. In other words, we can introduce an “opposite

agent” which is not actually taking any action. The knowledge provided by the function

approximation can be used to create a set of new action-value functions which then are

used for finding the opposite actions/states.

Another key point for the function approximation is how to choose the training data from

the whole set of action-state pairs and their respective action-value functions. There is a

simple way in which we can find an average over all observations related to action-state

pairs at each time period. This value could be a basis for determining the set of training

data, such that all pairs observed equal to or greater than this limit are considered as

training data at that time. However, this limit might create some errors if, for example,

the policy used to take an action is ε-greedy with a small ε, or completely greedy. Based

on the nature of these policies, only a few actions might be taken most of the time, and
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the rest are only picked a few times or not at all. In other words, the average limit might

be biased toward the action-state pairs which have been visited many times. Therefore,

there is a considerable possibility of missing some important information pertinent to

other action-state pairs.

One simple way to tackle this problem is to store the percentage of changes for all

action-value functions in every iteration. The reinforcement agent could initialize all

these values to one at the beginning of the learning process and then keep tracking the

changes for all action-value functions between two consecutive iterations, as illustrated

in the following equation:

pt
Q(i,a) =

|Qt
k(i,a)−Qt

k−1(i,a)|
Qt

k−1(i,a)
, if Qt

k−1(i, a) 6= 0 (3.9)

where pt
Q(i,a) is the percentage of change for the action-value function related to action-

state pair (i, a) during period t and Qt
k(i, a) is the action-value function for that pair in

the kth iteration of the learning process.

In general, the action-state pairs which are more observed during the learning process

can be chosen as training data. Therefore, taking an average over all these values could

be a good limit to separate the training and testing data. Of course, there is a possibility

that the percentage values corresponding to some action-state pairs become higher than

one. This implies that some of the action-value functions have significantly changed in

some iterations, which might indicate that they are only visited few times. These values

could be considered as outliers based on some criteria and eliminated from the respective

set used for computing the average. Figure 3.1 illustrates this scheme.

After obtaining the output of the approximation section, the appropriate method should

be employed to generate new knowledge (new evaluation functions) for all action-state

pairs (e.g., consider the actual action value functions for the training data and approxi-

mates ones for the testing data or use all approximate one).
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Figure 3.1: Type II opposition mining using function approximation

3.3.3 Opposition-based Q-Learning

The agent in Q-Learning updates its knowledge after each interaction with the envi-

ronment using the signals it receives (immediate reward, r) and depending on the new

situation (state, st+1 or j), it makes another admissible decision (taking action, a) based

on the new information acquired (e.g., new action-value functions, Q(i, a) and updated

policy, π). After receiving the reward and observing the new state, the agent can easily

obtain the information pertinent to the stochastic parameters. Since the reward is usu-

ally a function of action, state, and the stochastic parameters, the agent can calculate

the opposite reward r̆ when the opposite action is chosen. The opposite state j̆ could be

derived using the transition function as well (e.g., the balance equation in 1.2).

The analogous updating step for action-state pair could be implemented for the opposite

action-state pair as follows:

Qt(i, ă) := (1− ᾰ)Qt(i, ă) + ᾰ[rt
ij(ă) + γ max

b∈A(j̆)
Qt+1(j̆, b)], (3.10)

where ᾰ is the learning parameter for the opposite action.

The question may arise why only opposite action or opposite state should be tried,

when we could consider all admissible actions or possible current states within the above



CHAPTER 3. SIMULATION-BASED METHODS AND NONLINEAR MODELS 48

assumptions and update all respective action-value functions. The answer is simple: it

is computationally expensive (in most real cases even impossible) to consider all actions

or states in every iteration. Moreover, the combination of some actions and states with

the specific value of stochastic parameter which occurred in that iteration would rarely

happen in reality, and it might, therefore, cause some errors in the assessment of value

function. We would actually like to use less updating of action-value functions in each

iteration with the maximum effect on speeding up the learning process. In other words,

we are interested in using the negative correlation between both action and opposite

action, or state and opposite state, to discover something new which can be embedded

into the current system knowledge in addition to those which have been experienced via

observations in all iterations.

3.3.4 Opposition-based sarsa

Sarsa is an on-policy technique in RL, in which the agent follows the same policy π in

the next iteration. In other words, the agent uses the behavior policy to make a decision

and the same policy for improving the action value functions.

Suppose we want to develop the opposition version of the Sarsa technique based on the

action and its opposite. Two opposite actions should be created: one is related to the

action in the current state and another should be pertinent to the action for the next

state where the opposite action is considered for the current state. The opposite action

for the current state is easily computable because the agent has access to the action

taken in the current state. However, it does not know what is the actual action for the

opposite of the next state because it only takes an action for the next state. To tackle

this problem, the agent should utilize some knowledge regarding the action taken in the

next state. If this action is greedy, the actual action in the opposite of the next state

will also be greedy. Otherwise, the same action can be considered as an actual action

for this state if the set of admissible actions for both states is the same. In the case of

different sizes, normalization can be performed to find the actual action for the opposite

of the next sate.
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Algorithm 4 Finding opposite actions in on-policy learning methods for ε-greedy policy

1: Set the admissible action for all possible states

2: Take action a in state i = st using the ε-greedy policy and observe next state j = st+1

and immediate reward rt
ij(a)

3: Take action a′ (using the ε-greedy policy) in state j and store the action number, k′

4: Find the opposite action ă (type I or type II opposite) for current state i

5: Find the opposite of the next state j̆ when choosing ă for i using transition function

(e.g., the balance equation in 1.2)

j̆ = ĝ(i, ă)

6: Find the greedy action for the next state

a′∗ = arg max
b∈A(j)

Qt+1(j, b)

7: If a′ = a′∗, find the greedy action, â′, for j̆

â′ = arg max
b∈A(ǰ)

Qt+1(ǰ, b),

8: If a′ 6= a′∗, find the following ratio

Γ =
k′

|A(j)|

9: Find Γ̆ as follows

Γ̆ = Γ× |A(j̆)|

10: Find the closest action number in the set of admissible action, Aj̆, to Γ̆ and consider

as â′

11: Use â′ and one of type I or type II opposition schemes to find the opposite action,

ă′, for j̆
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3.3.5 Opposition-based sarsa(λ) and Q(λ)

These two techniques in RL use eligibility traces as basic mechanisms in an RL technique

to update more action-value functions in every iteration. The parameter λ, along with

discount factor γ, play a decaying role in the eligibility traces to put more weight on

those states which have been recently visited.

In order to make these two techniques computationally efficient in a problem with large

state spaces, we could augment these methods with an additional condition on the value

of eligibility trace. That is, the step of updating for every action-state pair is performed

if e(i, a) > ε1 in which ε1 is a positive small value; otherwise, the respective value of

e(i, a) should be set to zero and deleted from the eligibility trace. In other words, the

updating process is only performed for those action-state pairs in which the corresponding

eligibility traces have values larger than zero or a small predefined value, say ε.

To develop the opposition version of Sarsa(λ) and Q(λ), we have to define a new eligibility

trace related to opposite action or state, ĕ(i, a). After finding the opposite action or state

using Algorithm 4, the processes of setting the eligibility trace and updating the action

value function should be repeated for the opposite action or state with respect to all

elements in the opposite eligibility trace. There is a possibility that some action-value

functions are updated multiple times in one iteration, because those action-state pairs

are the members of both regular and opposite eligibility traces with values larger than

ε1. We assume that the process of updating is initially performed for action and state

and then continued with the opposites. The complete process of Sarsa(λ) and Q(λ) for

opposite action is represented in Algorithm 5. The analogous method can be performed

for the opposite state.

3.4 New approaches for risk consideration

Mahootchi et al. [72] developed a new method to find the variance of the discounted

accumulated reward for Q-Learning in an off-line learning and demonstrated its applica-

bility in a single reservoir case study. In the following, we are going to extend this new
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Algorithm 5 Opposition-Based Q(λ) and Sarsa(λ) for opposite action

1: Initialize Qt(i, a), e(i, a) = 0, ĕ(i, a) = 0, and ε1 = small positive value

2: Initialize the eligibility traces matrix and its opposite, e(·), ĕ(·)

3: Start an episode with an initial state, i = st,

4: Take action a, observe j = st+1, rt
ij(a) and choose another action a′ with policy π

5: Q(λ) : find a∗ = arg max
b∈A(j)

Qt+1(j, b)

Sarsa(λ): consider a∗ = a′

6: Calculate ∆ = rt
ij(a) + γQt+1(j, a∗)−Qt(i, a)

7: Set e(i, a) = e(i, a) + 1

8: Append a new column including action, state, and the value of eligibility trace to

e(·) or update the value of respective eligibility trace

9: Perform for all i and a in e(·):
9-1) Qt(i, a) := Qt(i, a) + α∆e(i, a)

9-2) Q(λ) : e(i, a) = γλe(i, a) if a′ = a∗

e(i, a) = 0 ; otherwise

Sarsa(λ): e(i, a) = γλe(i, a)

9-3) if e(i, a) > ε1, update e(i, a); otherwise, delete the respective column from e(·)
10: Choose the opposite action ă for i, find the next state j̆ using transition function,

find opposite action ă′ using Algorithm 4, and find the opposite reward r̆

11: Q(λ): find ă∗ = arg max
b∈A(j̆)

Qt+1(j̆, b)

Sarsa(λ): consider ă∗ = ă′

12: ∆̆ = rt
ij(ă) + γQt+1(j̆, ă∗)−Qt(i, ă)

13: Set ĕ(i, ă) = ĕ(i, ă) + 1

14: Add opposite action, state, and the value of eligibility trace to ĕ(·) or update it

15: Perform for all i and a in ĕ(·):
15-1 Qt(i, a) := Qt(i, a) + α∆̆ĕ(i, ă)

15-2) Q(λ) : ĕ(i, a) = γλĕ(i, a) if ă′ = ă∗,

ĕ(i, a) = 0 otherwise

Sarsa(λ): ĕ(i, a) = γλĕ(i, a)

15-3) if ĕ(i, a) > ε1, update ĕ(i, a); otherwise, delete the respective column from ĕ(·)
16: Set a = a′ and s = s′ and go to the next step of the episode

17: Perform the process for all episodes
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methodology to the mentioned RL methods for off- and on-line learning. Recall that Q-

Learning is a way to approximate the expected value of accumulated reward for different

action-state pairs based on the Robbins-Monro algorithm [55]. Using this algorithm, we

are able to update the expected value of random variable in an iterative way with every

new observation. Therefore, in equation Qt(i, a) = E[rt
ij(a) + max

b∈A(j)
Qt+1(j, b)], the term

inside E can be considered as random, so that the general formulation of Q-Learning

is created. Now we can use the same algorithm to establish a new formulation called

squared-action-value function, Q2(i, a). This new equation approximates the expected

value of [rt
ij(a) + max

b∈A(j)
Qt+1(j, b)]2 as follows:

Q2t(i, a) := Q2t(i, a) + α

(
[rt

ij(a) + max
b∈A(j)

Qt+1(j, b)]2 −Q2t(i, a)

)
. (3.11)

Having these values in every step of the learning process gives the opportunity for the

agent to know something about the variance of accumulated reward, such that they can

be utilized to find the policy with risk consideration or risk-sensitive policy [65]. In

this thesis, the standard deviation is used as a measure of risk because minimizing the

standard deviation minimizes the risk. This is a well-known approach, for example, as

in [36]. The standard deviation for every action-state pair can be easily approximated

in every iteration:

σt(i, a) =
√
Q2t(i, a)−Qt(i, a)2. (3.12)

The reinforcement agent uses a greedy or an ε-greedy policy to take an action in every

interaction with the environment. The agent actually updates its knowledge in terms of

both action-value and squared-action-value functions. After converging to the stationary

situation, the following formulation is considered to find the optimal policy for every

state i in period t with respect to expected value of accumulated reward/punishment

and its variance simultaneously:

a∗t = arg max
a
{Qt(i, a)− βσt(i, a)}, (3.13)

where β is called the “risk-aversion factor”. Indeed, the value of this factor changes how

influential risk is compared to the average accumulated reward in deriving the operating
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policy.

Of course, this is an off-line training because it uses simulation with some synthetic data,

generated by forecasting methods or existing historical data, as training data.

If the on-line training is implemented (real-time decision-making), a policy such as greedy

or ε-greedy should be constructed based on both the action-value function Qt(i, a) and its

variance (σ2)t(i, a) (or the standard deviation σt(i, a)) in every iteration. For example,

if the agent would like to take or choose a greedy action in a ε-greedy policy, it should

make a decision based on a new evaluation function (Q′)t(i, a) defined as follows:

(Q′)t(i, a) = Qt(i, a)− βσt(i, a). (3.14)

In many real-world applications, off-line learning can be performed first to obtain some

initial knowledge about the system, and then on-line learning using this knowledge can

be started with real data [73, 74]. Q-Learning, Sarsa, Q(λ), and Sarsa(λ) in an off-line

and on-line scheme with consideration of standard deviation of accumulated reward, are

illustrated in Algorithms 6-7.

3.5 FP model with stochastic releases, Approach 1

As explained in section 2.3, there are two main assumptions pertinent to original FP [16]

models for reservoir application in a stochastic situation:

1. The optimization model is constructed based on the open-loop policy in which the

release is deterministic.

2. inflows into the reservoir are assumed to be normally distributed.

The first assumption can be quite unrealistic in many situations. For instance, in the case

of water reservoir management, when the reservoir is almost full, operators would prefer

to release more water than they normally do to prevent a possible flood from happening

downstream causing damage. Or, when the amount of stored water is in short supply,

operators should consider hedging (that is, releasing less water than normal). Therefore,
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Algorithm 6 Q-Learning/Sarsa with variance consideration

1: Initialize Qt(i, a), Q2t(i, a)

2: Set the value of risk-aversion factor β

3: Determine admissible action A for all states

4: Start an episode with an initial state i = s

5: Compute evaluation functions for the current state i

off-line: (Q′)t(i, b) = Qt(i, b) ∀b ∈ A(i)

on-line: (Q′)t(i, b) = {Qt(i, b)− β
√

[Q2t(i, b)−Qt(i, b)2]} ∀b ∈ A(i)

6: Take an action a in state i using policy π (e.g., ε-greedy policy with respect to

(Q′)t(i, a) for all a∈ A(i)) and observe r and j = st+1

7: Sarsa: Choose action a′ in state j using policy π (e.g., ε-greedy policy with

respect to (Q′)t(j, a) for all a′∈ A(j))

8: Update the following functions

Q-Learning

Qt(i, a) := Qt(i, a) + α[rt
ij(a) + γQt+1(j, argmax

b∈Aj
(Q′)t+1(j, b))−Qt(i, a)]

Q2t(i, a) := Q2t(i, a) + α{[rt
ij(a) + γQt+1(j, argmax

b∈Aj
(Q′)t+1(j, b))]2 −Q2t(i, a)}

Sarsa

Qt(i, a) := Qt(i, a) + α[rt
ij(a) +Qt+1(j, a′)−Qt(i, a)]

Q2t(i, a) := Q2t(i, a) + α{[rt
ij(a) +Qt+1(j, a′)]2 −Q2t(i, a)}

9: Set i = j, a = a′ for Sarsa, and go to the next step of the episode

10: Perform the process for the next episode

11: The operating policy with risk consideration in every iteration can be approximated

using Equation 3.13
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Algorithm 7 Q(λ)/Sarsa(λ) with variance consideration

1: Initialize Qt(i, a), Q2t(i, a), e(i, a) = 0, e(·), and ε = small value

2: Set the value of risk-aversion factor β

3: Determine admissible actions A(·) for all states

4: Start an episode with an initial state i = s,

5: Compute evaluation functions for the current state i

off-line: (Q′)t(i, b) = Qt(i, b) ∀b ∈ A(i)

on-line: (Q′)t(i, b) = {Qt(i, b)− β
√

[Q2t(i, b)−Qt(i, b)2]} ∀b ∈ A(i)

6: Take action a in state i using policy π (e.g., ε-greedy policy with respect to

(Q′)t(i, a) for all a∈ A(i)) and observe rt and j = st+1

7: Choose action a′ in state j using policy π (e.g., ε-greedy policy with respect to

(Q′)t+1(i, a) for all a′∈ A(j))

8: Q(λ) : find a∗ = arg max
b∈A(j)

(Q′)t+1(j, b)

Sarsa(λ): consider a∗ = a′

9: ∆ = rt
ij(a) + γQt+1(j, a∗) −Qt(i, a)

10: ∆2 = [rt
ij(a) + γQt+1(j, a∗)]2 −Qt(i, a)

11: Set e(i, a) = e(i, a) + 1

12: Append a new column including action, state, and the value of trace to e(·) or

update the value of the respective eligibility trace

13: Perform for all i and a in matrix e(·):
13-1) Qt(i, a) := Qt(i, a) + α∆e(i, a)

13-2) Q2t(i, a) := Q2t(i, a) + α∆2e(i, a)

13-3) Q(λ): e(i, a) = γλe(i, a) if a′ = a∗

e(i, a) = 0 otherwise

Sarsa( λ): e(i, a) = γλe(i, a)

13-4) if e(i, a) > ε, update e(i, a); otherwise, delete the respective column from

e(·) (the matrix including all eligibility traces bigger than ε)

14: Set i = j and a = a′ go to the next step of the episode

15: Perform the process for the next episode

16: The operating policy with risk consideration in every iteration can be approximated

using Equation 3.13
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the optimum release policy should be a function of current storage, which makes the

release stochastic because the storage is a random variable. Therefore, the new stochastic

release in the optimization model can be introduced as follows:

ut
ij = kt

ij + st−1
i , (3.15)

where ut
ij is the total release and kt

ij is the deterministic part, both from reservoir i to

reservoir j in period t, and st−1
i is the end-of-period storage in period t− 1.

The extension of this enhanced FP model [40] to multi-reservoirs for the case of stochastic

releases is developed first for a two-reservoir problem with serial and parallel configuration

(Figure 3.2), and will then be generalized for multi reservoirs.

Recall that, in the FP model developed for deterministic releases, the inflow has been
 

  S1
 

  S2 

  S2   S1 

I1 

I2 

I1 I2 

u1 u2 

u1 

u2 

b a 

1 

2 

1 2 

Figure 3.2: Two-reservoir case study a)parallel, b)serial

divided into two components, one for the natural mean of inflow (Ī t
i ), and an another for

zero-mean random component (ηt
i).

Let us start with the easiest configuration, namely, the two parallel reservoirs in Part a

of Figure 3.2. The formulation which represents the dynamics of reservoirs uses the mass

balance equations, the respective indicator functions, which embody the reliability and
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the failure probabilities, and the stochastic release in Equation 3.15. It can be written

as the following:

st
i = {Ī t

i + ηt
i − kt

ii}1[st
i,min,st

i,max](ŝ
t
i) + {st

i,min}1(−∞,st
i,min)(ŝ

t
i)

+ {st
i,max}1(st

i,max,∞)(ŝ
t
i),

(3.16)

where

st
i : the end-of-period storage level of reservoir i in period t,

kt
ii : the deterministic part of the total release from reservoir i to all downstream

reservoirs (a decision variable in the optimization problem),

st
i,min : the minimum storage level of ith reservoir in period t,

st
i,max : the maximum storage level of ith reservoir in period t,

ŝt
i : the end-of-period available water

(ŝt
i = st−1

i + Ī t
i + ηt

i − (kt
ii + st−1

i ) = Ī t
i + ηt

i − kt
ii),

1[ , ] : the indicator functions as zero-one random variables pertinent to reliability and

failure conditions.

Indicator functions for the two parallel reservoirs configuration are set to one or zero

using the following rules

1[st
i,min,st

i,max](ŝ
t
i) = 1 if st

i,min ≤ ŝt
i ≤ st

i,max or st
i,min − Ī t

i + kt
ii ≤ ηt

i ≤ st
i,max − Ī t

i + kt
ii,

1[st
i,min,st

i,max](ŝ
t
i) = 0 otherwise,

1(−∞,st
i,min)(ŝ

t
i) = 1 if ηt

i < st
i,min − Ī t

i + kt
ii,

1(−∞,st
i,min)(ŝ

t
i) = 0 otherwise,

1(st
i,max,∞)(ŝ

t
i) = 1 if ηt

i > st
i,max − Ī t

i + kt
ii,

1(st
i,max,∞)(ŝ

t
i) = 0 otherwise.

The first and the second moment equations for storage of each reservoir, respectively, are:

E(st
i) = E

[
{Ī t

i + ηt
i − kt

ii}1[st
i,min,st

i,max](ŝ
t
i)

]
+ {st

i,min}E
[
1(−∞,st

i,min)(ŝ
t
i)

]

+ {st
i,max}E

[
1(st

i,max,∞)(ŝ
t
i)

]
,

(3.17)
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E(st
i)

2 = E
[
{(Ī t

i − kt
ii)

2 + (ηt
i)

2 + 2ηt
i(Ī

t
i − kt

i)}1[st
i,min,st

i,max](ŝ
t
i)

]

+ {(st
i,min)2}E

[
1(−∞,st

i,min)(ŝ
t
i)

]
+ {(st

i,max)2}E
[
1(st

i,max,∞)(ŝ
t
i)

]
.

(3.18)

Since the new ŝt
i is independent from the previous storage level st−1

i (i.e., storage level does

not influence future inflow, a reasonable assumption for most reservoirs), the expected

value of indicator functions can be easily written as

E
[
1[st

i,min,st
i,max](ŝ

t
i)

]
= Pr(st

i,min − Ī t
i + kt

ii ≤ ηt
i ≤ st

i,min − Ī t
i + kt

i)

=

∫ st
i,max−Īt

i +kt
ii

st
i,min−̄It

i +kt
i

fIt
i
(ηt

i) dη
t
i ,

(3.19)

E
[
1(−∞,st

i,min)(ŝ
t
i)

]
= Pr(ηt

i < st
i,min − Ī t

i + kt
ii) =

∫ st
i,min−Īt

i +kt
ii

−∞
fηt

i
(ηt

i) dη
t
i , (3.20)

E
[
1(st

i,max,∞)(ŝ
t
i)

]
= Pr(ηt

i > st
i,max − Ī t

i + kt
ii) =

∫ ∞

st
i,max−Īt

i +kt
ii

fηt
i
(ηt

i) dη
t
i . (3.21)

For the time being, it is assumed that the inflows are normally and independently dis-

tributed (the normality assumption will be relaxed later in Section 3.7); therefore, the

first and the second moments for both parallel reservoirs are analogous and are similar

to the ones in [40] and can be written as

E(st
i) = (Ī t

i − kt
ii) ·

{
1
2

[
erf

(
[st

i,max−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

)
− erf

(
[st

i,min−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

)]}

− (
[V ar(ηt

i)]
(1/2)

√
2π

) ·
{

exp
(
−1

2

[st
i,max−(Īt

i−kt
ii)]

2

V ar(ηt
i)

)
− exp

(
−1

2

[st
i,min−(Īt

i−kt
ii)]

2

V ar(ηt
i)

)}

+ (st
i,min) ·

{
1
2

[
1 + erf

(
[st

i,min−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

)]}

+ (st
i,max) ·

{
1
2

[
1− erf

(
[st

i,max−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

)]}
,

(3.22)
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E(st
i)

2 =

[(Ī t
i − kt

ii)
2 − V ar(ηt

i)] ·
{

1
2

[
erf

(
[st

i,max−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

)
− erf

(
[st

i,min−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

) ]}

+2(Ī t
i − kt

ii) · (
−[V ar(ηt

i)]
(1/2)

√
2π

)
{

exp
(
−1

2

[st
i,max−(Īt

i−kt
ii)]

2

V ar(ηt
i)

)
− exp

(
−1

2

[st
i,min−(Īt

i−kt
ii)]

2

V ar(ηt
i)

)}

− [V ar(ηt
i)]

(1/2)

√
2π

) ·
{

[st
i,max − (Ī t

i − kt
ii)] · exp

(
−1

2

[st
i,max−(Īt

i−kt
ii)]

2

V ar(ηt
i)

)

−[st
i,min − (I t

i − kt
ii)] · exp

(
−1

2

[st
i,min−(Īt

i−kt
ii)]

2

V ar(ηt
i)

)}

+(st
i,min)2 ·

{
1
2

[
1 + erf

(
[st

i,min−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

)]}
+ (st

i,max)2 ·
{

1
2

[
1− erf

(
[st

i,max−(Īt
i−kt

ii)]

[2V ar(ηt
i)]

1/2

)]}
,

(3.23)

where V ar(ηt
i) is the variance of inflow in reservoir i during period t and erf is the error

function. As observed in the parallel configuration, the moments for both reservoirs are

exactly the same as in the single reservoir problem, because there is no physical relation

between these two reservoirs.

However, in the serial configuration (Part b of Figure 3.2), the moments depend on the

release flowing from the upstream reservoir. In other words, if this release, which is called

ut
12 in our formulations, is considered based on the release policy (i.e., ut

12 = kt
12 + st−1

1 ),

the end-of-period storage in the second reservoir (st
2) will depend on two stochastic

variables, which include the previous storage of the first reservoir (st−1
1 ) and the net

inflow into the second reservoir (Ī t
2 + ηt

2). This fact is shown in Equation 3.24 using the

mass conservation equation for the second reservoir.

st
2 = st−1

2 + Ī t
2 + ηt

2 + ut
12 − (kt

22 + st−1
2 ) = Ī t

2 + ηt
2 + kt

12 + st−1
1 − kt

22. (3.24)

It should be noted that the spillage and shortage situations which affect the amount of

release flowing to the downstream reservoir are not considered in ut
12.

The moments for the upstream-most reservoirs are the same as reservoirs in parallel

configuration; however, we have to approximate the release to the downstream reservoir,
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analogous to what Fletcher and Ponnambalam have done in [16] for multi-reservoir prob-

lem, with deterministic releases.

Let us start with the expected value of indicator functions pertinent to the second reser-

voir when the storage is within the bounds and then extend it to other indicator functions:

E
[
1[st

2,min,st
2,max](ŝ

t
2)

]
= Pr

{
st
2,min − Ī t

2 − ut
12 + kt

22 ≤ ηt
2 ≤ st

2,min − Ī t
2 − ut

12 + kt
22

}
= Pr

{
st
2,min − Ī t

2 − kt
12 − st−1

1 + kt
22 ≤ ηt

2 ≤ st
2,min − Ī t

2 − kt
12 − st−1

1 + kt
22

}

=

∫ st
1,max

st
1,min

∫ st
2,max−Īt

2−kt
12−st−1

1 +kt
22

st
2,min−Īt

2−kt
12−st−1

1 +kt
22

f(ηt
2,st−1

1 )(η
t
2, s

t−1
1 ) dηt

2ds
t−1
1 .

(3.25)

We can reasonably assume that the end-of-period storage in period t − 1 for the first

reservoir is independent from the natural inflow into the second reservoir, and the above

equation can be therefore expressed as:

E
[
1[st

2,min,st
2,max](ŝ

t
2)

]
=

∫ st
1,max

st
1,min

[∫ st
2,max−Īt

2−kt
12−st−1

1 +kt
22

st
2,min−Īt

2−kt
12−st−1

1 +kt
22

fηt
2
(ηt

2) dη
t
2

]
fst−1

1
(st−1

1 ) dst−1
1

= E
{
Pr[st

2,min − Ī t
2 − kt

12 − st−1
1 + kt

22 ≤ ηt
2 ≤ st

2,max − Ī t
2 − kt

12 − st−1
1 + kt

22]
}
.

(3.26)

Using the first order approximation of Taylor’s series for deriving the above expected

value leads to the following equation

E
[
1[st

2,min,st
2,max](ŝ

t
2)

]
≈

Pr[st
2,min − Ī t

2 − kt
12 − E(st−1

1 ) + kt
22 ≤ ηt

2 ≤ st
2,max − Ī t

2 − kt
12 − E(st−1

1 ) + kt
22].

(3.27)

This process can be repeated for other indicator functions pertinent to the second reser-

voir
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E
[
1(−∞,st

2,min)(ŝ
t
2)

]
≈ Pr[ηt

2 < st
2,min − Ī t

2 − kt
12 − E(st−1

1 ) + kt
22], (3.28)

E
[
1(st

2,max,∞)(ŝ
t
2)

]
≈ Pr[ηt

2 > st
2,max − Ī t

2 − kt
12 − E(st−1

1 ) + kt
22]. (3.29)

Therefore, the related moments for the second reservoir can be written as follows, where

Kt
22 = kt

12 + E(st−1
1 )− kt

22,

E(st
2) =

[
Ī t
2 +Kt

22

]
·
{

1
2

[
erf

(
[st

2,max−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

)
− erf

(
[st

2,min−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

)]}

−(
[V ar(ηt

2)](1/2)
√

2π
) ·

{
exp

(
−1

2

[st
2,max−(Īt

2+Kt
22)]2

V ar(ηt
2)

)
− exp

(
−1

2

[st
2,min−(Īt

2+Kt
22)]2

V ar(ηt
2)

)}

+(st
2,min) ·

{
1
2

[
1 + erf

(
[st

2,min−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

)]}
+ (st

2,max) ·
{

1
2

[
1− erf

(
[st

2,max−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

)]}
,

(3.30)

E(st
2)

2 =

[
(Ī t

2 +Kt
22)

2 − V ar(ηt
2)

]
·
{

1
2

[
erf

(
[st

2,max−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

)
− erf

(
[st

2,min−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

) ]}

+2(Ī t
2 +Kt

22) · (
−[V ar(ηt

2)](1/2)
√

2π
)
{

exp
(
−1

2

[st
2,max−(Īt

2+Kt
22)]2

V ar(ηt
2)

)
− exp

(
−1

2

[st
2,min−(Īt

2+Kt
22)]2

V ar(ηt
2)

)}

− [V ar(ηt
2)](1/2)

√
2π

) ·
{

[st
2,max − (Ī t

2 +Kt
22)] · exp

(
−1

2

[st
2,max−(Īt

2+Kt
22)]2

V ar(ηt
2)

)

−[st
2,min − (Ī t

2 +Kt
22)] · exp

(
−1

2

[st
2,min−(Īt

2+Kt
22)]2

V ar(ηt
2)

)}

+(st
2,min)2 ·

{
1
2

[
1 + erf

(
[st

2,min−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

)]}
+ (st

2,max)2 ·
{

1
2

[
1− erf

(
[st

2,max−(Īt
2+Kt

22)]

[2V ar(ηt
2)]1/2

)]}
.

(3.31)
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As can be seen in Equation 3.30 or 3.31, the only difference in the moment equations in

terms of mathematical notation compared to what is in equations 3.22 or 3.23 for parallel

reservoirs is that k is replaced by K.

It can be demonstrated that, if N − 1 reservoirs are physically connected to another

reservoir (e.g., reservoir N in Figure 3.3 ), the moments for that reservoir will be written

in the same way as equations 3.30 and 3.31 by setting the variable K as follows:

Kt
NN = [kt

1N) + E(st−1
1 )] + [kt

2N) + E(st−1
2 )] + · · ·+ [kt

(N−1)N + E(st−1
N−1)]− kt

NN

=
N−1∑
j=1

[kt
jN + E(st−1

j )]− kt
NN .

(3.32)

In this formula, the capital K related to reservoir N consists of two components: the

 

  sN-1

 

  sN 

  s2   s1 
…. 

Figure 3.3: N physically connected reservoirs to one reservoir

deterministic part of release for this reservoir (kt
NN), and the total water released into this

reservoir from others (
N−1∑
j=1

(kt
jN + E(st−1

j )), based on the release-route matrix explained

later. In latter sections, a new approximation approach is suggested for these combined

releases.

For the sake of notation, it is assumed that all reservoirs are physically connected to

each other; therefore, given N reservoirs in the system model, all possible releases, and

deterministic parts of releases can be introduced as two different matrices denoted as U
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and K, respectively, whose elements can be represented as follows: ut
ij : = ut

ij × δij,

kt
ij : = kt

ij × δij,
∀ i, j = 1, · · ·N (3.33)

It is also necessary to find the percentage of water released from the upstream reservoir

to each downstream reservoir. The respective percentage of flows can be approximated

using the following equation:

ψt
ij =



kt
ij+E(st

i)

kt
ii+E(st

i)
if kt

ii + E(st
i) 6= 0

δij

[
NP

j
δij ]−1

if kt
ii + E(st

i) = 0 & i 6= j & δij 6= 0

1 if kt
ii + E(st

i) = 0 & i = j

0 otherwise

. (3.34)

For example, in the case of two serial reservoirs, because the total water released from the

first reservoir is available as an input into the second reservoir, ψt
12 = 1 for all periods.

The objective function in storage management is usually a function of release and the

end-of-period storage (z = f(ut, st)). These two variables in the new model are random

variables, and their expected values need to be considered in the objective function. The

expected value of water released E(u) can be approximated as

E(ut
ij) = kt

ij + E(st−1
i ). (3.35)

The deficit or spillage situation are not considered here. This assumption will be relaxed

in later sections.

The lower and upper bounds of the releases are:

Rt
ij,min ≤ ut

ij ≤ Rt
ij,max ⇒ Rt

ij,min ≤ kt
ij + st−1

i ≤ Rt
ij,max, (3.36)

where Rt
ij,min and Rt

ij,max are the minimum and maximum releases flowing from reservoir

i to j in period t, respectively.

As mentioned above, the release in our new model is stochastic because it is a function

of previous storage, which is a random variable. Chance-constrained programming is

commonly used to tackle these bounds in optimization problems where the distribution
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of the respective random variables is known. This method, therefore, cannot be used

for the stochastic release in our system model, because the distribution of storage is

unknown. One way to control the releases to be within their maximum and minimum

values is to substitute the release in Equation 3.36 with its expected value and change

the lower and upper bounds (Equation 3.37):

Rt
ij,min + ht

i ≤ E(ut
ij) ≤ Rt

ij,max − ht
i. (3.37)

E(ut
i,j) can be calculated by using Equation 3.35, and ht

i is a constant value which can be

substituted with the standard deviation of releases or storage calculated using Equation

3.35 as follows:

ht
i =

√
E(st

i)
2 − [E(st

i)]
2 = σ(st

i), (3.38)

A set of boundary conditions should be set for the expected value of storage levels E(st
i)

and the deterministic part of releases (kt
ij) similarly:

st
i,min + ht

i ≤ E(st
i) ≤ st

i,max − ht
i, (3.39)

Rt
ij,min − st

i,max ≤ kt
ij ≤ Rt

ij,max − st
i,min. (3.40)

The constraint for balancing the total outflow with outflows to other reservoirs can be

written as:

kt
ii + E(st−1

i )−
N∑

j=1,j 6=i

[kt
ij + E(st−1

i )] = 0. (3.41)

In the above model for multi-reservoir applications, the deficit and spillage situations

have not been directly considered in finding the expected value of the release. A more

precise approximation in which these two situations are incorporated in the formulation

of the expected value of release is proposed in the next section. The corresponding FP

optimization model is described in the case study application in chapter 4

3.6 FP model with stochastic releases, Approach 2

In the first approach in the previous section, the expected value of release has been

substituted with kt
ij + E(st−1

i ), which we call the Upstream Mean Releases with lower
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accuracy. The following two choices would be better approximations, in which case we

refer to them as the Upstream Mean Releases with higher accuracy (the releases in this

method are calculated using various probabilities):

1. where spilled water does not flow to other reservoirs, the release is:

ut
ij =



kt
ij + st−1

i if L ≤ ηt
i ≤ U,

kt
ij + st−1

i if ηt
i > U,

ψt
ij ×

[
(−st

i,min + st−1
i + Ī t

i + ηt
i +

N∑
l=1 & l 6=i

ut
li

]
if ηt

i < L,

(3.42)

where ψt
ij is the percentage value obtained from Equation 3.34 for every release

from reservoir i to reservoir j, L and U are lower and upper bounds which can be

written as:


L = st

i,min − Ī t
i + kt

ii −
N∑

l=1 l 6=i

ut
li,

U = st
i,max − Ī t

i + kt
ii −

N∑
l=1 l 6=i

ut
li.

(3.43)

Using the first order approximation of Taylor’s series, the expected value of release

can be expressed as:

E(ut
ij) = [kt

ij + E(st−1
i )]×


∫ ∞

st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

fηt
i
(ηt

i) dη
t
i


+ ψt

ij ×

{ [
−st

i,min + E(st−1
i ) + Ī t

i +
N∑

l=1,l 6=i

[E(ut
li)]

]

×

∫ st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

−∞
fηt

i
(ηt

i) dη
t
i



+

∫ st
i,min−Īt

i−kt
ii+

NP

l=1 l6=i
E(ut

li)

−∞
ηt

ifηt
i
(ηt

i) dη
t
i

 .

(3.44)
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2. When spills from upstream reservoirs are additional inflows, the release is:

ut
ij =



kt
ij + st−1

i if L ≤ ηt
i ≤ U,

ψt
ij ×

[
−st

i,max + st−1
i + Ī t

i + ηt
i +

N∑
l=1 & l 6=i

ut
li

]
if ηt

i > U,

ψt
ij ×

[
−st

i,min + st−1
i + Ī t

i + ηt
i +

N∑
l=1 & l 6=i

ut
li

]
if ηt

i < L.

. (3.45)

Using the first order approximation of Taylor’s series, the expected value of release

can be expressed as:

E(ut
ij) =

[
kt

ij + E(st−1
i )

]
×


∫ st

i,max−Īt
i +kt

ii−
NP

l=1 l6=i
E(ut

li)

st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

fηt
i
(ηt

i) dη
t
i


+ψt

ij ×

{ [
−st

i,min + E(st−1
i ) + Ī t

i +
N∑

l=1,l 6=i

E(ut
li)

]

×

∫ st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

−∞
fηt

i
(ηt

i) dη
t
i



+

∫ st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

−∞
ηt

ifηt
i
(ηt

i) dη
t
i


+ψt

ij ×

{ [
−st

i,max + E(st−1
i ) + Ī t

i +
N∑

l=1,l 6=i

E(ut
li)

]

×

∫ ∞

st
i,max−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

fηt
i
(ηt

i) dη
t
i



+

∫ ∞

st
i,max−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

ηt
ifηt

i
(ηt

i) dη
t
i

 .

(3.46)

If spillage causes some losses (e.g., destruction or flood) downstream, the expected

value of benefit or cost might be calculated instead as in Appendix B.
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The first moment for the second reservoir in two serial reservoirs (Part b of Figure 3.2)

is derived using these new estimations for the expected value of the releases (Equations

3.44 and 3.46) in Appendix C.

The expected value of release should be initially derived for the most-upstream reservoirs

where the natural inflow is the only stochastic input variable, and there are no releases

coming from others. In other words, before setting the equations (i.e., constraints and

the related terms in the objective function) for every reservoir, the expected value of

releases pertinent to those reservoirs which start upstream of that reservoir should be

first calculated.

In the above optimization models, the release policy pertinent to every reservoir only

depends on its storage level, as a random variable with unknown distribution (ut
ij =

kt
ij + st

i). There is another approach to create the stochasticity in the release policy such

that the storage levels of all directly-connected upstream reservoirs to every reservoir are

involved in the decision-making, in addition to its own storage. This extension of the FP

model will be highlighted in Appendix D.

Until now, in the two approaches of the FP model, inflows have been assumed to be

normally-distributed. In the next section, this assumption will be relaxed by using a

generalized distribution called the Double-Bounded Probability Distribution Function

(DB-PDF) [75].

3.7 FP model with non-Gaussian distribution

In this section, a generalized beta-equivalent distribution developed by Kumaraswamy

[75] is substituted for the Gaussian distribution. Before getting into the detail of this

method, a brief introduction of this distribution is presented in the next section.

A summary of Double-Bounded Probability Density Function (DB-PDF)

Kumaraswamy [75] suggested a beta-equivalent distribution function which he called the

Double-Bounded Probability Density Function (DB-PDF). This is now more commonly
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called the Kumaraswamy distribution [76]. This function is able to consider different

varieties of shapes of distributions for random variables with lower and upper bounds.

For a more recent review of this distribution, see Jones [76]. The general form of the

density function for random process z using four different parameters κ1, κ2, zmin, zmax

is represented as follows

f(x) = κ1κ2x
κ1−1(1− xκ1)κ2−1,

x = z−zmin

zmax−zmin
x ∈ [0, 1],

(3.47)

where κ1 and κ2 are two parameters playing the main role to create different functions

such as exponential- or normal-shape distribution, and zmin and zmax are respectively

the lower and upper bounds of random variable z.

Deriving the Double-Bounded Cumulative Density Function (DB-CDF) from the den-

sity function (equation 3.47 ) is a very straightforward calculation, unlike in the Beta

distribution, which can be written as

F (x) = 1− (1− xκ1)κ2 . (3.48)

The nth moment of x can be computed using the following equation:

x̄n =
[(n/κ1)!](κ2!)

(n/κ1 + κ2)!
=

[Γ(n/κ1 + 1)](Γ(κ2 + 1))

Γ(n/κ1 + κ2 + 1)
= κ2 ×B(n/κ1 + 1, κ2), (3.49)

where B(·) is the beta function.

With historical or simulated data for random variables, all parameters in the probability

functions can be computed using either Algorithm 8 or 9 described here. Algorithm 8

was developed based on the method in [75].

The advantage of DB-PDF is the simple analytical forms for its DB-CDF, unlike the

numerical integral required for beta CDF.

The formulation of non-Gaussian model

Using the historical data for inflows in one of Algorithms 8 or 9, the different parameters

including κ1, κ2, which specify the shape of distribution, and zmax and zmin, which are
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Algorithm 8 : Finding parameters of DB-PDF using moments

1: Calculate first four empirical moments from random samples z (empirical moments)

z̄n = mean(zn) for n = 1, · · · , 4.

2: Calculate theoretical moments as a function of four parameters κ1, κ2, zmin, zmax

z̄′ = zmin + x̄ ∗ ξ,

z̄′2 = z2
min + 2x̄ξzmin + x̄2ξ2,

z̄′3 = z3
min + 3x̄ξz2

min + 3x̄2zminξ
2 + x̄3ξ3,

z̄′4 = z4
min + 4x̄ξz3

min + 6x̄2z2
minξ

2 + 4x̄3zminξ
3 + x̄4ξ4,

where ξ=zmax-zmin and x̄n can be calculated using Equation 3.49.

3: Estimate the parameters using theoretical and empirical moments (e.g., least squares

method).

the estimations of the minimum and maximum of the inflow in real data, respectively, are

determined for all time periods. Depending on the value of κ1 and κ2, the distributions

of inflow will vary from one period to another (e.g., in November, the inflow may have an

exponential behavior and it changes to normal in December) while they have been con-

sidered normal for all periods in the previous models. Moreover, in our new formulation,

in contrast to the other three models, inflow is not split into constant and random values

(Ī t
i , the mean of inflow, and ηt

i , a zero-mean random variable). Here, I t
i plays the role of

inflow as a random variable. Because the density and cumulative probability functions

in this new distribution are the function of new random variable x, the moments should

be computed using the following linear transformation

xt
i =

I t
i − zt

min

zt
max − zt

min

⇒ I t
i = xt

i · (zt
max − zt

min) + zt
min. (3.50)

Suppose that the total water flowing from upstream to downstream reservoirs is de-
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Algorithm 9 : Finding parameters of DB-CDF using an empirical CDF

1: Sort the data (the samples of z as a random variable) in an ascending order, i.e.,

z1 ≤ z2 ≤ · · · ≤ zM .

2: An empirical CDF such as

F̂ (zj) =
j

M + 1
for j = 1, · · · ,M.,

is formulated.

3: Use these estimations to create a new data set ẑ based on the inverse function of

Equation 3.48

ẑj = zmin + (zmax− zmin)[1− (1− F̂ (zj))
1/κ2 ]1/κ1 for j = 1, · · · ,M

4: Estimate the parameters using zj and ẑj and a suitable norm (e.g., least squares

method) .

termined using the release policy based on Approach 1 (no deficit and spillage included

in the release policy that is ut
ij = kt

ij + st
i ), the dynamics can be written as:

st
i =

{
xt

i · (zt
i,max − zt

i,min) + zt
i,min − kt

ii +
N∑

l=1 l 6=i

(kt
li + st−1

li )

}
· 1[st

i,min,st
i,max](ŝ

t
i)

+ {st
i,min} · 1(−∞,st

i,min)(ŝ
t
i) + {st

i,max} · 1(st
i,max,∞)(ŝ

t
i).

(3.51)

The moments can be derived analogous to what have been performed in other models;

however, at the moment, numerical integrations are used. The following formulations

represent the moments as constraints in this type of modeling

E(st
i) =

[
zt

i,min +Kt
i

]
·
∫ L2

L1

fxt
i
(xt

i) dx
t
i +

[
zt

i,max − zt
i,min

] ∫ L2

L1

x · fxt
i
(xt

i) dx
t
i

+
[
st

i,min

]
·
∫ L1

0

fxt
i
(xt

i) dx
t
i +

[
st

i,max

]
·
∫ 1

L2

fxt
i
(xt

i) dx
t
i,

(3.52)
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E(st
i)

2 =
[
zt

i,min +Kt
i

]2 ·
∫ L2

L1

fxt
i
(xt

i) dx
t
i + 2

[
zt

i,max − zt
i,min

]
·
[
Kt

i + zt
i,min

]

×
∫ L2

L1

x · fxt
i
(xt

i) dx
t
i + 2

[
zt

i,max − zt
i,min

]2
∫ L2

L1

x2 · fxt
i
(xt

i) dx
t
i

+
{
st

i,min

}2 ·
∫ L1

0

fxt
i
(xt

i) dx
t
i +

{
st

i,max

}2 ·
∫ 1

L2

fxt
i
(xt

i) dx
t
i,

(3.53)

where Kt
i can be calculated using Equation 3.32 and the lower and upper bounds, L1

and L2, are


L1 =

St
i,min+Kt

i−zt
i,min

zt
i,max−zi,min

,

L2 =
St

i,max+Kt
i−zt

i,min

zt
i,max−zi,min

.

Because of using approximation techniques in finding zt
i,min and zt

i,max, the transformed

lower and upper bounds (L1 and L2) in the above integrals might be invalid (i.e., the

lower or upper bound becomes less than zero or higher than one) because they are ap-

proximated during the optimization process. To overcome this issue, the following rules

should be considered in setting the bounds:



L1 < 0 ⇒ L1 = 0,

L2 ≤ 0 ⇒ L1 = L2 = 0 ⇒
∫ L2

L1

[· · · ] = 0,

L2 > 1 ⇒ L2 = 1,

L1 ≥ 1 ⇒ L1 = L2 = 1. ⇒
∫ L2

L1

[· · · ] = 0

Moreover, if the bounds get the maximum and minimum values (i.e., L1 = 0 and L2 = 1),

the analytical procedure using Equation 3.49 can be performed to calculate the integrals
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in the moments equations. The numerical integrals in all experimental results in the

later section are calculated using “quadgk” of Matlab.

So far, we only applied the FP models in reservoir management case studies. In the next

section, we would like to demonstrate how to use these techniques to model a warehouse

problem.

3.8 FP model in warehouse management

As has been mentioned in Chapter 2, the purpose of a warehouse optimization problem

is to determine an ordering policy such that it minimizes the total cost.

In most traditional warehousing problems, the ordering time, in addition to ordered

quantity, is considered as a decision variable, because of existing randomness in the lead

time variable. However, if this variable is deterministic, the ordered quantity can play

the role of sole decision variable. Given this assumption, the stochastic decision can be

defined based on one of the approaches developed for stochastic release. For example,

the stochastic decision based on Approach 1 can be written as follows:

ut
ij = kt

ij − st−1
j , (3.54)

where st−1
j is equivalent to storage level j for which the order has been placed.

Figures 3.4 illustrates networks consisting of four distribution centers, with some retailers

in their downstream in which each retailer has one demand point.

The solid triangles and rectangles represent the various storage spaces (the distribution

centers and the retailers, respectively) which are supposed to be involved in the optimiza-

tion problem. The dotted rectangles in the most-upstream layers, which are denoted as

external sources (suppliers), are assumed to be unlimited resources (e.g., open markets)

which can supply the amount of quantities ordered from distribution centers. Other

dotted rectangles in the most-downstream layer of the networks are demand points with

stochastic demands. The bidirectional arrows indicate possible transfer between two

storage spaces. The unidirectional arrows, on the other hand, illustrate the flows of

products or items from one place to another where the reverse flows are meaningless
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Figure 3.4: The network of warehouses and retailers

(e.g., flows from distribution centers toward external sources) or have not been defined

for some feasibility reasons. Furthermore, because the suppliers and the demand points

are not going to be managed in the optimization problem, they are called virtual spaces.

The balance equation in the warehousing problem is similar to the reservoir application;

however, it can be written for distribution centers and retailers in a different way as

follows:

distribution center: St+1
i = St

i + ut
ii −Dt

i , (3.55)

retailer: st+1
j = st

j + ut
jj − dt

j, (3.56)

where Dt
i and dt

j are the stochastic demands for Distribution center i and retailers j,

respectively, and ut
ii or ut

jj are the total quantity ordered by source i or j from other
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sources. The stochastic demands for distribution centers are quite different from those

used in the moment equations for retailers, since the features of the stochastic demands

such as mean, standard deviation, or density function are given as inputs for retailers,

rather than for distribution centers. In other words, the stochastic demands at the

retailers should be transformed to the upper levels where distribution centers are. The

following approximation formula might be used for finding the stochastic demands for

these storage spaces in the case of no connection between retailers, and assuming that

each retailer can send an order only to one distribution center:

Dt
i =

N∑
l=1 & l 6=i

(dt
l − st−1

l )× δil, (3.57)

Dt
i , as the stochastic demand in distribution center i, is calculated using all stochastic

demands (dt
l for l = 1 · · ·N) which can place orders with source i and δij, as an element

of the routing in warehousing, can be defined in a similar fashion to that of reservoirs as

follows:

δij =

 1 if jth source can place an order from ith source

0 otherwise.
(3.58)

When the retailers can place orders with different distribution centers, their demands

might be distributed between all respective distribution centers in a proper way.

As it is clear, the summation of some random variables appear in Equation 3.57. Based on

the normality assumption for all demands in the FP model in Approach 1, the respective

summation can be assumed to be a normal distribution with the following statistical

features

E(Dt
i) =

N∑
l=1 l 6=i

[
E(dt

l)− E(st−1
l )

]
× δil,

σ2(Dt
i) =

N∑
l=1 l 6=i

{σ2(dt
l) +

σ2(st
l)︷ ︸︸ ︷

[E(st−1
l )2 −

(
E(st−1

l )
)2

]} × δil,

(3.59)

The respective expected value of all indicator functions and the related integrals in the

first and the second moments can be computed analogous to what was done in the
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previous sections.

In the case of Non-Gaussianity of demands, the suitable distributions should be fitted

using one of the Algorithms 8 or 9 described in section 3.7. The fitting process for

distribution centers should be implemented for the summation of all demands of the

respective retailers.

3.9 Summary

In this chapter, we demonstrated how to apply RL techniques in storage management

and developed type I and type II opposition schemes to speed up the learning process of

RL techniques. A new version of type II opposition learning using knowledge extracted

from a trained neural network was introduced. We also presented a new methodology

to find the variance of the discounted accumulated reward and embedded it with risk-

aversion factor β into the standard objective function for all learning methods under

investigation.

Nonlinear stochastic FP models have been developed for multi-storage applications using

different approaches for finding the expected value of releases from upstream reservoirs

(the quantity of items to be ordered in warehousing problems). Moreover, the normality

assumption in the original FP models has been relaxed by using a beta-equivalent dis-

tribution.

In the next chapter, these techniques will be tested on various case studies.



Chapter 4

Experimental Results

4.1 Introduction

In the following sections, both RL techniques and FP models are applied to some reservoir

applications, single- and multi-reservoir, as a proper representation of storage manage-

ment problems. Furthermore, to investigate the efficiency of developed opposition-based

RL techniques under risk consideration, a grid-world problem as a common example in

the RL literature is chosen for the experimental results.

4.2 RL methods

To verify that the RL techniques using their opposition-based versions can speed up the

process of learning, two different applications are considered: A grid-world application

with a stochastic environment which is a typical example in RL [59, 77], and a single

reservoir application as a practical problem as an example of storage management [16,

40, 41]. We will also demonstrate how to minimize risk, in addition to maximizing the

expected value of accumulated reward, as the formal objective function of RL techniques

for these two case studies.

The following assumptions are used for both applications:

76
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• We have only focused on opposite actions based on type I in the first application

and type II for the second application. However, these experiments could be per-

formed for opposite action and opposite state simultaneously using both opposition

schemes.

• The learning parameter α in the grid-world application changes at a rate of 1
N

(

α < 1) during the learning process and N is the number of observations for each

action-state pair (N > 1). However, the learning rate α is constant in the reservoir

application.

• In both applications, we assumed that there is no dependency between the action

taken and the values of random variables specified after each interaction with the

environment.

• In order to assess the efficiency of the learning methods, we used the SDP method to

generate global optimum policies for both applications and compared these methods

in terms of selected performance criteria obtained through the simulation using

respective stationary or optimal policies.

• The parameter λ in Q(λ) and sarsa(λ) is set to 0.5 for both applications. The

parameter λ = 0 corresponds to Q-Learning and λ=1 corresponds to full Monte-

Carlo simulation .

4.2.1 Grid-world application

The stochastic grid-world application (Figure 4.1) is chosen from the website prepared by

Poole in 2003 [77], with a 10×10 grid with standard moves including up, down, right, and

left by one square. If the agent takes one of these actions, there exists a chance of 70%

of going in that direction (true direction); however, there is a 30% chance of choosing

another from the three remaining actions with an equal probability (about 10% for each

action). The agent is punished with -1 if it hits the outside border of the grid. There

is no punishment or reward for other cells, except those which are illustrated in Table
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Table 4.1: Reward/punishment for 10× 10 grid-world

cells (9,8) (8,3) (4,5) (4,8)

Reward/punishment 10 3 -5 -10

4.1. The agent receives reward or punishment right after taking every action in these

respective cells (states) shown in the table. Moreover, it is assumed that if the agent

receives reward, it will jump randomly to one of the corners. The objective function here

is to maximize the accumulated reward for all possible states (i.e., finding the maximum

value functions for all given states).

We made one change to this problem to make it more complex:

• instead of having a standard move, we consider King’s moves [45] including eight

different directions as shown in Figure 4.1.

As shown in Figure 4.1, the actions are labeled in a specific fashion, such that the result

for opposite action based on type I is the same as Equation 2.9 for finding the opposite

action. For example, if the action up (action number 1) is chosen, its opposite using this

equation will be 1 + 8− 1 = 8 or down (action number 8).

Another issue in this problem is to find the next state when the opposite action is chosen.

Actually, it should be extracted using the action taken by the agent. Two situations

might occur:

• If the agent went in the desired direction, it can be reasonably assumed that the

agent goes in the desired direction if the opposite action is chosen.

• If the agent did not go in the desired direction for the action taken, it can be

assumed that the agent goes in the wrong direction if it takes the opposite action.

Assume that the agent takes an action, but it goes in an undesired direction in one

iteration. The agent can memorize this direction, and use this knowledge to find

out what would happen if it took the opposite action in that iteration.
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Figure 4.1: Grid-world application with king’s moves

We have used a simulation program to evaluate the sub-optimal or the trained policy

(i.e., the policy evaluation step) to calculate the following performance criteria:

• The Distance of Action-Value functions (DAV): the action-value functions

and value function are again approximated using the stationary policies extracted

at the end of the learning process through a simulation routine. The distance

between these approximations and the true value functions extracted by SDP can

be a new criterion. This can be mathematically formulated as follows:

D =
∑

i

|V π′(i)− V π(i)|, (4.1)

where π′ is the stationary policy at the end of the learning technique, π is the

optimal policy extracted by SDP, and V represents the value function.

It is obvious that the smaller the distance, the higher the performance of the re-

spective technique.
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• The Expected Reward (EXR): one way to measure the performance of a sta-

tionary or optimal policy is to find the expected value of reward for each episode.

An episode in most Markov Decision Processes (MDPs) such as grid-word applica-

tions is defined based on the goal states (also called terminal or absorbing states).

Usually, when the agent reaches one of these states, one episode is completed and

the next episode should be started. In the respective experimental results, 100

iterations constitute one episode.

• The Summation of Standard deviation (SOS): In the case of minimizing risk

in addition to maximizing average accumulated reward, the standard deviation of

accumulated discounted reward is obtained through Equation 3.12. The summa-

tion of all variances pertinent to the actions of trained policy could be used to

measure the extent of variability of the accumulated discounted reward:

D =
∑

i

σ(i, aπ′) (4.2)

where σ(i, aπ′) is the standard deviation of accumulated reward for state i and

action a taken by policy π′ which has been derived from the learning process.

Since we are using random data generation in the learning process in our grid-world

application, the policy and the value functions could be different at the end of each

complete learning episode/period. Therefore, to have a better assessment, we performed

the learning process and the evaluation step multiple times (here is 20 times) for each

set of learning parameters, and calculated the mean and variance.

Other experimental settings are given as follows:

• We chose a ε-greedy policy with arbitrary value, say ε = 0.2, and a Boltzmann

policy in which the temperature parameter τ was initialized with the maximum

number of episodes, for example, as in Table  lTAB:3, decayed by two after each

episode, and set to one if it became zero or negative.
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Table 4.2: Performance criteria for SDP in a 10× 10 grid world application

Criterion DAV EXR

domain ranges 292.8±42.33 83.8±2.1

average 302 84.2

Standard deviation 25.86 1.4

• Because the immediate reward for most action-state pairs is zero (immediate re-

ward is zero for all moves except those which lead to squares shown in Table 4.1),

most action-value functions are not updated at the beginning of learning. There-

fore, to increase the accuracy of the learning, the learning step α only changes if

the pertinent action-value function is updated to a non-zero value; otherwise the

number of observations for that action-state pair does not affect α.

• The performance of each learning method and its opposition version are compared

based on the median and the range. Alternatively, the mean and the standard

deviation are used for comparisons.

• Table 4.2 shows the respective performance criteria pertinent to SDP in which

the optimal policy is used in a simulation routine for multiple times using differ-

ent sequence of data. DAV denotes the total distance between the true and the

approximate value functions obtained through the optimization and the simula-

tion, respectively. It can be used as an upper bound for computing the mentioned

criteria.

As demonstrated in Tables 4.3 and 4.4, for two small and large number of episodes (20 and

200), the type I opposition learning has considerably contributed to the improvement in

speed and the accuracy of the learning process in both learning methods (Q-Learning and

Q(λ)), in which the respective performance criteria are better than the regular learning.

The opposition superiority is also demonstrated in Figures 4.2 and 4.3 for the distance

of action-value functions (DAV), for the two learning methods with different numbers of

episodes.
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Based on observations in the experiments, and partially illustrated in the tables and

figures, the advantages of the opposition learning schemes become apparent especially

during the early stage of learning (episodes less than 20). This means that a desired ac-

curacy can be achieved in a shorter time, which is equivalent to algorithm acceleration.

Moreover, it seems that a Boltzmann policy has better results compared to a ε-greedy

one. The reason might be that since the reward in this application only propagates

through some limited cells (states (9, 8) and (8, 3)), it takes time to influence other cells

with longer distances from these cells. Therefore, it turns out that the learning process

in this case (with delayed reward) needs more exploration than exploitation, especially

at the beginning of the learning process. The Boltzmann policy, with the possibility of

tuning the temperature parameter τ to set the extent of exploration and exploitation,

could increase the accuracy of learning for both small and large numbers of episodes.

The results in Tables 4.3 and 4.4, in which the best option for each criterion is specified

in bold, verifies this fact for most defined performance criteria in terms of the variation

domains in both Q-Learning and Q(λ).

Furthermore, the results of performance criteria for learning methods using a Boltzmann

policy are close to upper boundary values for a grid world application, obtained from

SDP and shown in Table 4.2.

Table 4.3: Performance criteria of Q-Learning in a 10× 10 grid world application

Episode 20 200

Criterion DAV EXR DAV EXR

ε-greedy QLR 593±109 24.9±13.9 352±45 72±7.4

OQLR-I 459±55 46.4±14.2 349±51 76.2±4.8

Boltzmann QLR 615.1±52 24.6±8.4v 286±52 75±5.3

OQLR-I 479±58 40.59±11.4 307±43 81.1±3.6

QLR: Q-Learning, OQLR-I: Type I Opposition Q-Learning

In the case of penalizing objective function with variance in an off-line learning situa-

tion, the average distances of action-value function (DAV) and average summations of
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Figure 4.2: DAV in Q-Learning for grid world application
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Figure 4.3: DAV in Q(λ) for grid world application
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Table 4.4: Performance criteria of Q(λ) in a 10× 10 grid world application

Episode 20 200

Criterion DAV EXR DAV EXR

ε-greedy QLA 636±80.5 15±20.1 348±48 71.1±5.9

OQLA-I 519±41 39.4±8.2 333±35 73.1±3.5

Boltzmann QLA 558±41 33.1±16 309±40 77.1±2.1

OQLA-I 506±128 42.7±18.3 288±47 81.1±2.4

QLA: Q(λ), OQLA-I: Type I Opposition Q(λ)

standard deviation (SOS) have a decreasing trend as the risk-aversion factor β increases.

Figures 4.4-4.5 illustrate these relatively smooth decreasing curves for both mentioned

criteria.

It is also obvious that the results related to risk-neutral control (β=0) are almost the

same in terms of different performance criteria for all policies derived from both learning

methods and their opposition versions. However, by embedding the variance term into

the objective function and increasing β, some changes in these performance measures

(their domain ranges) in favor of opposition learning schemes have appeared. For exam-

ple, the opposition versions for both learning methods have superior results in terms of

DAV for all βs compared to the regular learning methods (Figure 4.4). A more interest-

ing point in this figure is that the respective opposition version of Q(λ) has the best value

of DAV (i.e., the lowest one) for all βs considered in our experiments, and even better

values for SOS criterion compared to regular Q(λ) for some βs (e.g., where β = 0.8, the

values of DAV and SOS for regular Q(λ) are 465.8 and 108.53, while they are 449.9 and

101.38 for type-I opposition version of Q(λ), respectively). Table 4.5 demonstrates the

changing domain of the average expected reward (EXR) in a risk penalizing objective

function. These results also verify the relative preference for opposition Q(λ), OQLA,

compared to Q-Learning.
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Figure 4.4: DAV for risk consideration in grid world application
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Figure 4.5: SOS for risk consideration in grid world application
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4.2.2 Reservoir management

In this section, a single-reservoir application from Fletcher and Ponnambalam [16] is

investigated in two different situations:

1. Inflow is the only stochastic variable in the system model. In this situation, all

mentioned RL techniques with their opposition versions are compared to each other.

The purpose of these experiments is to demonstrate the effect of opposition-based

learning in speeding up the learning process, and to find out which RL techniques

have more efficient solutions. All respective comparisons are also performed where

the risk is embedded into the mathematical models.

2. In addition to inflow, the energy price is considered as a stochastic variable due

to price deregulation and market privatization. In this more complex situation,

the efficiency of Q-Learning in RL versus two other types of traditional techniques,

including Two-Stage Stochastic Programming (TSP) and Fletcher-Ponnambalam

(FP) modeling technique (with and without risk consideration), are compared.

One cycle in this problem is one complete year with 12 months. Minimum and maximum

Storage and Release in different months of the year are given in Table 4.6.

Table 4.6: Maximum and minimum storage and release, average inflow, and demand

Month

Value

m3 1 2 3 4 5 6 7 8 9 10 11 12

Max. storage 8 8 8 8 8 8 8 8 8 8 8 8

Min. storage 1 1 1 1 1 1 1 1 1 1 1 1

Max. release 4 4 6 6 7.5 12 8.5 8.5 6 5 4 4

Min. release 0 0 0 0 0 0 0 0 0 0 0 0

Average inflow 3.4 3.7 5 5 7 6.5 6 5.5 4.3 4.2 4 3.7
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Inflows of different months in a year are normally distributed and given in Table 4.6.

Evaporation from the reservoir is ignored.

The objective function in Fletcher’s model [16] is to maximize the total net benefit from

releases. The benefit of release per/unit is given in Table 4.7.

Table 4.7: The benefit of release per unit for each month of a year

Month 1 2 3 4 5 6 7 8 9 10 11 12

Benefit 1.4 1.1 1.0 1.0 1.2 1.8 2.5 2.2 2.0 1.8 2.2 1.8

When prices are stochastic, they are normally distributed and values in Table 4.7 repre-

sent the expected values of prices.

To compare the performance of the policies for four different learning methods, Q-

Learning, Q(λ), sarsa, and sarsa(λ), the following criteria can be extracted from the

simulation:

• The average of annual benefit (µB),

• The standard deviation of annual benefit (σB),

• The coefficient of variation (C.O.V = σB

µB
).

Other assumptions for this problem are summarized as follows:

• Storage volume as a state variable of the system and water release as the main

decision variable (action) were discretized into 7 and 55 equal intervals, respectively.

Therefore, the number of possible states was 8, and the number of total possible

actions taken by the agent became 56.

• Immediate reward in this application is the product of the actual release (ut) and

the price per unit (ct) in every time period. Where the inflow is the only stochastic
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variable , the immediate reward has to be normalized in order to make the train-

ing of Neural Networks (NN), as explained below, more accurate when applying

the type II opposition-based learning. The normalization is performed using the

maximum value of ut and ct in every iteration as

r =
ut × ct

max
t
{Rt

max} ×max
t
{ct}

.

This is done to minimize problems arising from the training data not being a

complete representation of the entire data.

• The number of years in each episode was set to 30.

• A Multi-Layer Perceptron (MLP) with one hidden layer and 20 nodes was used

to approximate the respective action-value functions in order to find the type II

opposite action using Equation 3.6. The tangent-sigmoid transfer function is used

in every node including hidden and output layers and all desired outputs (action-

value functions) are normalized in order to have values between -1 and 1. The

gradient descent backpropagation technique is also used to train the network. The

training process is performed using the Matlab(R) toolbox.

• In order to demonstrate the accuracy and efficiency of all methods, the extracted

stationary policies were simulated for 2000 years under the same conditions in which

the learning and optimization parts have been performed. Furthermore, because

of using simulation, and of the possibility of ending up with different values for the

respective criteria, each experiment was performed 10 times and the averages of all

values were then used for comparison.

• C.O.V=0.3, for inflows.

• To find the admissible actions for every state, the optimistic scheme (in which

the maximum inflow in every period is considered in the mass balance equation

(Equation 1.2)) was employed [48].

• The agent takes actions according to an ε-greedy policy with ε = 0.1 as in [48].
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• In the case of considering risk where inflow is the only random variable, we added

the standard deviation of action-value function, instead of variance to the objective

function, because mean and standard deviation have similar scale of values. Risk-

aversion factor β in this situation varied from 0.1, as a low risk-penalizing objective

function, to 3, as a high risk-penalizing one, for all learning methods. However,

when the price in addition to inflow is stochastic (the second situation), the variance

is directly embedded into the objective functions and β ranges between zero and

30 in order to see all possible average annual benefits.

• In order to make sure that all action-state pairs will be sufficiently visited in the

risk-penalizing objective function, we considered a large value for the number of

episodes, equivalent to 900. The first training of the neural network was performed

at the 100th episode and repeated every 100th episode thereafter. In every training

a set of new data for training and testing based on the action-value functions was

fed to the network.

• The target performance (the total average benefit), where inflow is the only stochas-

tic variable, was set to 102.27. This performance was obtained through the simu-

lation using the optimal policy extracted from the SDP method.

• In the version of opposition-based learning, the type I opposite action was extracted

(Equation 3.4) before the first training of the function approximation, and then

the opposite was chosen using a type II scheme (Equation 3.6) with approximate

functions until the end of learning. Moreover, the training and testing data were

produced using the average number of observations for all action-state pairs.

Inflows as uncertain

Figures 4.6-4.7 compare different learning methods and their type II opposition ver-

sions. As could be expected, the regular or opposition versions of sarsa (SLR) and

sarsa(λ) (SLA) have lower average annual benefit compared to Q-Learning (QLR) and

Q(λ) (QLA) for episodes 50 to 1500.
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Furthermore, despite having a significant jump in Q(λ) compared to Q-Learning in the

number of episodes equivalent to 50 in the regular learning (95.02 versus 91.69), Q(λ)

produces slightly better results in terms of the average criterion for all episodes in both

learning types, regular and opposition-based. However, their average annual benefits

get closer as the number of episodes increases, such that for the maximum number of

episodes, say 1500, they are almost the same (µ ≈101). This might imply that the op-

position learning scheme should be partially performed at the beginning of the learning

process.

Moreover, the opposition versions of all learning methods have better results for a small

number of episodes (e.g., 50 episodes). As shown in Figure 4.7, the variability of average

reward for the opposition version of all four learning methods, especially for Q-Learning

and Q(λ), are remarkably small compared to regular learning, illustrated in Figure 4.6

(i.e., the opposition version is more robust).

By embedding the risk into the respective objective function and increasing the value of

the risk-aversion factor β, we expect to observe a decreasing trend in average and stan-

dard deviation of annual benefit during the simulation using the policies extracted from

the learning part in the same situation. Tables 4.8-4.9, which illustrate the changing

domain of these two criteria for both Q-Learning and Q(λ) for different β values, verify

this fact.

Inflows and prices as uncertain

Now, we would like to compare Q-Learning as a well-known technique in RL with Two-

Stage Stochastic Programming (TSP) and Fletcher-Ponnambalam (FP) models as non-

linear optimization models in which the stochastic nature of two different random vari-

ables (inflow and price) are explicitly embedded into their mathematical formulation.

Moreover, the linear objective function used in our experiments related to this situation is

the zeroth order approximation of Taylor’s series for energy function, which is presented
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Figure 4.6: The comparison of average annual benefit in regular learning methods for

reservoir application
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Figure 4.7: The comparison of average annual benefit in type II opposition learning

methods for reservoir application
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by Loucks et al. [9]. It can be written as:

max
st,ut

{
f t(st, ut)

}
= max

st,ut

{
T∑

t=1

(ut × Ct + Cs × st)

}
, (4.3)

where ut is the amount of release during period t, Ct is the unit price of water released

during period t, and Cs is the constant value for storage volume which is equivalent to

0.1 in the experiments.

Objective function with risk consideration

By adding the risk terms in the objective function of Equation 2.12 in two-stage pro-

gramming, the formulation will not be linear anymore (it is called Two-Stage Stochastic

Programming (TSP)). This new objective function can be written as:

max
ut,st
{f t(st, ut)} =

max
ut,st

{
T∑

t=1

{(E(Ct)× ut + Cs × st − µt
N1)− β × [(σt

N1)
2 + σ2(Ct)× (ut)2]}

}
,

(4.4)

where σ2(Ct) is the variance of water price and µt
N1 and (σt

N1)
2 are defined as follows:

µt
N1 =

N1∑
l=1

P t,l × (CSF t × SF t,l + CSU t × SU t,l), (4.5)

(σt
N1)

2 =
N1∑
l=1

P t,l[(CSF t × SF t,l + CSU t × SU t,l)− µt
N1]

2. (4.6)

To minimize the variance or the standard deviation simultaneously with the expected

value of benefits in the FP model, a new term should be added to Equation 2.21:

max
E(st),ut

{f t(E(st), ut)} =

max
E(st),ut

{
T∑

t=1

{E(Ct)× ut + Cs × E(st)− β × [σ2(Ct)× (ut)2 + C2
s × σ2(st)]}

}
.

(4.7)

The objective function in the learning methods is also calculated through Equation 3.11.
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Assumptions and comparison results

Choosing a range between 0.01 and 0.5 for values of coefficient of variation of both

random variables, we have investigated the results of TSP, FP, and Q-Learning (QLR)

in terms of policy obtained from the optimization or learning phase, and results acquired

from the simulation, in three main categories:

• low uncertainty for inflow with increasing uncertainty in price;

• low uncertainty for price with increasing uncertainty in inflow;

• increasing uncertainties of both inflow and price.

Table 4.10 demonstrates 9 different sets of uncertainties (coefficients of variation) for

price and inflow covering the above three categories. Moreover, to achieve appropriate

Table 4.10: The set of coefficients of variation for inflow and price

Set No.

Stochastic

parameter 1 2 3 4 5 6 7 8 9

Inflow 0.01 0.01 0.01 0.2 0.4 0.5 0.2 0.4 0.5

Price 0.01 0.2 0.5 0.01 0.01 0.01 0.2 0.4 0.5

performances in the simulation using the policy resulting from Q-Learning for different

uncertainties specified in Table 4.10, the total number of episodes and the learning rate

α have been set in such a way that the maximum annual average and minimum vari-

ance are achieved. It seems that for high uncertainties of price or inflow, lower learning

rates and higher repetitions (the total number of episodes performed in learning process)

are more suitable. However, for low uncertainties, the learning rate and the number of

repetitions can be reasonably high and low, respectively. Therefore, to obtain a suitable

policy, the values of these parameters have been set and shown in Table 4.11.

The action policy used in the learning process is ε-greedy with ε=0.1. Table 4.12 demon-

strates the values of average annual benefit, its standard deviations, and the coefficients
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Table 4.11: Learning parameter and the number of repetitions in Q-Learning

Uncertainty for price or inflow

parameter <0.3 0.3≤ and <0.5 =0.5

Learning parameter 0.5 0.35 0.3

Total number of episodes 1000 2000 2000

of variation obtained through the simulation for three methods TSP, FP, and Q-Learning

(QLR) in the mentioned categories (Table 4.10). There is no risk involved in the objec-

tive function; that is, the risk aversion factor β in the respective term in the objective

function equals to zero.

Table 4.12: Performance criteria of TSP method for three categories

Set 1 2 3 4 5 6 7 8 9

Average 108.9 110.32 95.8 102 102.3 99.8 104.1 81.3 62.3

TSP σ 0.54 7.34 13 7.3 11.78 10 10.1 9.15 8.1

Cov 0.005 0.066 0.136 0.072 0.115 0.1 0.097 0.113 0.13

Average 108.43 108.27 108.48 - 101.9 98.05 - 101.64 97.97

FP σ 0.43 7.44 18.26 Not feasible 9.43 11.29 Not feasible 17.03 20.6

Cov 0.004 0.069 0.169 - 0.093 0.115 - 0.167 0.21

Average 107.44 104.89 102.82 105.36 102.21 100.15 104.37 99.4 97.46

QLR σ 1.9 6.6 15.12 5.49 10.27 12.35 8.53 15.15 18.38

Cov 0.018 0.063 0.147 0.052 0.101 0.123 0.082 0.152 0.189

As seen in Table 4.12, Q-Learning for most coefficients of variation of price and inflow

has comparable results with those criteria obtained through the two other optimization

techniques. However, the performance criteria in both the FP model and the Q-Learning

method are closer to each other (e.g., for the higher uncertainty coefficients for price and

inflow = 0.5 (set No. 9)), µ=97.46 and σ=18.38 in Q-Learning, µ=97.97 and σ=20.6

for FP, and µ=62.3 and σ=8.1 for TSP). Moreover, Q-Learning has a feasible solution

for all different categories, whereas it seems that the constrained optimization method

in fmincon of MATLAB(R) cannot solve the FP model in some cases (e.g., where the

coefficients of variation for inflow and price are 0.2 and 0.01, respectively).

The trade-off of average accumulated reward versus the standard deviation is illustrated

in Figure 4.8 for the three methods. This figure demonstrates that to obtain a specific
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annual average benefit, we should properly set the risk factor, β, in the objective func-

tion of each stochastic method. Furthermore, it shows that all three methods give almost

the same standard deviation during the simulation when their average annual benefits

are identical, even though the release decisions are not the same. It also indicates that

QLR, as a Monte Carlo-based optimization technique, can consider stochasticity and risk

minimization as being as accurate as two other stochastic methods, which are promising

results. The TSP method also uses scenarios like the QLR method, but it is not chosen

further in this thesis. The FP method results are similar to QLR and will be consid-

ered further in this thesis, because this model does not need scenarios and is an explicit

method.
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4.3 FP method

To investigate the performance of the FP method, we have chosen a large-scale prob-

lem, namely, the multi-reservoir system in India called the Parambikulam-Aliyar Project

(PAP) [78]. Firstly, to study the various methods in detail, just the first two reservoirs

in a serial configuration of the Parambikulam-Aligar Project (PAP) was chosen as the

first case-study. Finally, to demonstrate the applicability of these types of modeling for

large-scale applications in a stochastic situation, the modeling and the optimization part

are performed for the entire system composed of a five-reservoir system from the PAP

case study, and results are presented and discussed in the last section.

4.3.1 PAP case study

The PAP project is composed of nine reservoirs which are interconnected through dif-

ferent tunnels and canals (30km tunnels and 240km canals). The main purpose of this

project was to satisfy the existing irrigation demands in the most-downstream reservoirs

for two states (Tamilnadu and Kerala) by diverting the surplus flows of the rivers whose

waters emanate from the western slopes of the Anamalai mountains. This system is also

utilized to generate power at many dams and tunnels. The system is simplified to five

reservoirs as illustrated in Figure 4.9 [78]. The numbers inside triangles in Figures 4.9

represent the active capacities, which can be considered as the maximum storage volume.

Furthermore, the minimum storage volumes are assumed to be zero for all reservoirs and

periods. Other necessary information which is mostly obtained from [78] are summarized

as follows:

Inflows

The hydrological data are available for the period of 1971-1982 on a monthly basis for

the five reservoirs. Tables 4.13-4.14 illustrate the statistical values for all five reservoirs.

These observations can also be used to find the suitable distribution functions of inflows

using one of the algorithms in the previous chapter (Algorithm 8 or 9) and are described
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later.

Furthermore, based on the nature of PAP case study, there are high correlations be-

Table 4.13: The means of inflows

reservoir periods

1 2 3 4 5 6 7 8 9 10 11 12

TS (1) 117.3 143 62.3 31.2 20.8 11.7 4.5 4.8 5.2 4.8 7.5 61.6

PA (2) 85.5 99.8 56 44.8 34.2 17.5 10.3 7.6 6.3 5.5 6.8 38.6

AL (3) 39.2 49.8 28.2 27.3 25.8 20.6 9.4 7.3 6.2 3.3 3.9 16.4

TI (4) 1.3 2.1 1.8 6.3 9.3 8.9 3 2.1 2.1 1.8 1.8 1.3

KS (5) 42.1 47.4 22.1 16.2 12.7 17.4 14.8 5.3 5.3 4.3 5.6 19.7

Table 4.14: The standard deviations of inflows

reservoir periods

1 2 3 4 5 6 7 8 9 10 11 12

TS (1) 48.1 87.1 29.9 8.7 5.7 1.8 1.6 2.5 2.3 2 5 46.6

PA (2) 25.1 73.6 45.1 21.8 19 11.9 15.2 13.2 7.6 5.8 7.7 27.7

AL (3) 16.7 25. 8.8 9.4 15.1 17.5 5.2 3.6 4.1 3 3.9 9.5

TI (4) 1.7 1.9 2.1 7 11.9 8.8 2.3 2.4 2.5 2 1.5 1.3

KS (5) 10.4 20 13.7 5.5 3.6 10.1 10.2 3.4 3.7 1.7 3.3 15.1

tween the first reservoir (Tamilnadu Sholayar reservoir) and the second (Parambikalami

and Tunacadavu-Peruvarippallam reservoirs), third (Lower Aliyar reservoir), and fifth

reservoir (Kerala Sholayar reservoir) in terms of natural inflows.

Generating inflows

The Double-Bounded Probability Density Functions (DBPDF) are fitted based on the

historical data. Inflows are generated using these fitted distributions. It should be noted
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that these fitted distributions are not usually normal-like as illustrated in Figure 4.10

for some typical months. Moreover, the fitted Double-Bounded CDFs (DBCDFs) are

suitably matched to those CDFs approximated from the historical data (DCDFs) (see

Figure 4.11 for example).
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Figure 4.10: The probability density functions for reservoirs in some months

Because the CDFs are integrals, the differences are smoothed out, unlike in the PDFs.

However, in FP models and simulations, CDFs are used.
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Figure 4.11: Cumulative Distribution Functions (CDF) obtained based on: 1-Normal dis-

tribution (NCDF), 2-Double-Bounded distribution (DBCDF), and 3-Empirical (ECDF)
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Objective function and respective coefficients

The objective function is defined as

Z(ut) =
N∑

i=1

N∑
j=1

T∑
t=1

cti × ut
ij, (4.8)

where cti is the benefit per unit which is given in Table 4.15.

Table 4.15: The benefit per unit release

reservoir periods

1 2 3 4 5 6 7 8 9 10 11 12

TS (1) 0.6 1 1 0.05 0.2 0.2 0 0 0 0 0 0

PA (2) 0.8 0.9 1 0.4 0.4 0.7 0.8 0.8 0.8 0 0 0

AL (3) 0.25 0.35 0.35 0.25 0.35 0.3 0.3 0.3 0 0 0.2 0.25

TI (4) 0.55 0.9 1 0.22 0.28 0.42 0.58 0.62 0.44 0 0 0

KS (5) 0.1 0.25 0.3 0.22 0.25 0.4 0.5 0.4 0.4 0.3 0.2 0.2

Moreover, it is assumed that any spillage from reservoirs do not affect the value of

the objective function. Furthermore, based on the nature of PAP case study, 20% loss

should be considered for all releases flowing to the fourth reservoir (Tirumurthy) from

the third reservoir (Paramabikulam reservoir) because of the long tunnel used for water

flow between these reservoirs.

Boundary conditions for release

The lower release bounds are set to zero for all periods. Table 4.16 also illustrates

the upper bounds for all different connections in PAP case study (i.e., the release from

reservoir i to reservoir j). It is assumed that these bounds are the same for twelve

months. The diagonal elements in this table indicate the total maximum releases for

each of the five reservoirs.
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Table 4.16: The upper bounds of release

reservoir TS PA AL TI KS

TS (1) 173.62 123.9 - - 49.72

PA (2) - 115.4 57.70 57.7 -

AL (3) - - 49.23 - -

TI (4) - - - 105.12 -

KS (5) - - - - 66.67

Initialization

As described in Chapter 3, there exist three types of variables in the optimization problem

of the FP method:

1. expected value of storage volume, E(st
i);

2. the variance of storage volume, σ2(st
i);

3. the constant part of the release from i to j, kt
ij.

A simulation of policy from [78] is done to set the initialization for variables in items 1

and 2. The initial values for the third variable, kt
ij can be set using the following formula:

kt
ij = ut

ij − E(st
i),

where ut
ij is the release policy used in the simulation program for initialization.

4.3.2 Evaluation criteria

Having considered that the objective function in our problem is to maximize the expected

value of total annual benefit, the following performance criteria can be extracted from

simulation to compare the various models:
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• the average of annual benefit (µB),

• the standard deviation of annual benefit (σB),

• the ratio of annual standard deviation to annual average of benefit (cov = σB

µB
),

• the distance between statistical features of storages estimated from the simulation

to those corresponding features extracted from the optimization process for every

individual reservoir i as:

the absolute value distance for expected values: DOEi =
T∑

t=1

|Ê(st
i)− E(st

i)|,

the absolute value distance for standard deviations: DOSi =
T∑

t=1

|σ̂(st
i)− σ(st

i)|,
(4.9)

where Ê(st
i) and σ̂(st

i) are the expected value and the standard deviation of storage

obtained from the simulation for reservoir i, respectively, and E(st
i) and σ(st

i) are the

corresponding statistical features obtained from the optimization. This measures how

well the estimation calculated in the optimization compares with the calculated values

in the simulation.

Because the Cumulative Distribution Functions (CDFs) are used to calculate first and

second moments of storages, the two main constraints in FP optimization models, the

models are highly nonlinear and non-convex. Therefore, these models might be sensitive

to initial solutions. Given this fact, the optimization and simulation process can be re-

peated multiple times (e.g., 30 times) with different initial solutions (e.g., randomly gen-

erated) and the maximum and the range of benefits (max(µB) and max(µB)−min(µB))

are used for comparison.

Furthermore, another optimization method is formulated where all integrals in moment

equations in Chapter 3 can be calculated through Monte Carlo simulation in every iter-

ation of the optimization, which is called the Monte Carlo-based optimization approach.

The average and the standard deviation of benefit obtained through this method can be

used as criteria for comparison.
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Complexity

Finding the complexity of nonlinear non-convex optimization problems is very difficult,

and is rarely investigated in the literature [79]. However, finding the number of con-

straints and variables as a function of the number of reservoirs might give us a better

idea about the computational time or the complexity of the problem.

In terms of variables, adding one reservoir to an existing set of system reservoirs creates

3 × T new variables for the optimization problem. The number of equality constraints

are a function of N (N is the number of reservoirs). Therefore, the order of complexity

in terms of the size of the problem is O(NT ).

4.3.3 Two-reservoir case study

In order to demonstrate the results of all the mentioned performance criteria in a shorter

CPU time, the first two reservoirs of the PAP case study (Reservoirs 1 and 2) which are

serially connected to each other have been chosen. The following parameters are tuned

for the experiments:

1. The optimum release policy obtained from the optimization process is simulated

for 4000 years to extract the performance criteria. The results were found to be

insensitive after this length of time for simulation. The number of years used in

simulation in every iteration of the Monte Carlo-based optimization is 150 years.

2. All optimization processes are performed using “fmincon” in the Matlab(R) tool-

box.

Under the Gaussian assumption, two different approaches for computing the expected

value of release have been introduced. To simplify the way of demonstrating results,

these FP-based model approaches are abbreviated as follows:

• GS1: Gaussian distribution function, Approach 1 (using upstream mean releases

with lower accuracy)
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• GS2: Gaussian distribution function, Approach 2 (using upstream mean releases

with higher accuracy).

Relaxing the Gaussian assumption and using the Double-Bounded (DB) probability dis-

tribution function, two new FP-based models are created which are titled as follows:

• DB1: DB distribution function, Approach 1 (using upstream mean releases with

lower accuracy),

• DB2: DB distribution function, Approach 2 (using upstream mean releases with

higher accuracy).

Each of the above two FP-based models has the Monte Carlo-based optimization version

which can be analogously named as (stochastic inflows are generated using the DBPDF

fit)

• MC1: Monte Carlo-based optimization, Approach 1 (using upstream mean releases

with lower accuracy),

• MC2: Monte Carlo-based optimization, Approach 2 (using upstream mean releases

with higher accuracy).

The means, standard deviations, and coefficients of variation, obtained from the simula-

tion of the system for the objective function in Equation 4.8 corresponding to different

models, are summarized in Table 4.17. Regarding the results in this table, the following

facts can be highlighted

• All models constructed using DBPDF seem to have comparable performance with

those models which use Gaussian distributions or simulation

• The results for models based on Approach 2 for calculating the expected value of

releases are superior to those based on Approach 1;
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Table 4.17: The performance criteria for FP-based models

FP model based on

criteria Gaussian Non-Gaussian Monte Carlo

GS1 GS2 DB1 DB2 MC1 MC2

µB 855.4 922.39 890.16 951.1 892.6 935.3

σB 163.4 156.1 175.4 138.1 131.7 130.7

(C.O.V )B 0.19 0.17 0.2 0.15 0.15 0.14

µB: Aver. benefit, σB: Std. of benefit, and

(C.O.V )B: Coefficient of variation of benefit (σB

µB
)

• As it has been previously mentioned, the performance criteria related to Monte

Carlo-based optimization models can be a reliable basis to check the validity of

other models. As can be seen, the results for all performance criteria in both

Gaussian- and non-Gaussian-based problems are quite comparable to those which

are extracted from the corresponding Monte Carlo-based optimization models.

However, these Monte Carlo-based optimization take about five times more CPU

time than others.

In terms of the closeness of the optimization model results to the simulation results (the

expected values and the standard deviations of storages, SOS and DOE, for all peri-

ods), Table 4.18 demonstrates the respective performance criteria (Equations 4.9) for

all mentioned models in both reservoirs of the case study. Note here that simulation is

performed using optimal release decisions derived from the corresponding optimization

model. Overall, the DB2 seems to be a better method in terms of the proximity of the

solutions for storage moments calculated in FP models and the corresponding simulation.

So far, all investigations are made based on a single run, in which the respective optimiza-

tion processes for all different FP models are started with the initial solution obtained

from [78]. To assess the sensitivity of different FP-based models to initial solutions, all

experiments have been performed thirty times, in each of which a random initial release
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Table 4.18: The total distance between optimization and simulation results

FP model based on

Res. Criteria Gaussian Non-Gaussian Monte Carlo

GS1 GS2 DB1 DB2 MC1 MC2

TS (1) DOE1 44.2 41.9 21.7 53.2 54 66.3

DOS1 380.5 373.6 20.1 21.8 26.3 38.1

PA (2) DOE2 201.7 51.6 150.1 61.9 45.4 50.2

DOS2 129.1 111.7 208.5 101.2 67.4 70.8

policy is generated. The maximum expected values, in addition to the respective stan-

dard deviation obtained through the simulation, can be used for comparison of different

modeling techniques. Moreover, the range of variability of expected values of benefit can

also be utilized to measure the sensitivity of FP models to initial solutions (Table 4.19).

Table 4.19: The expected value and the standard deviation of annual benefit with dif-

ferent initializations
FP model based on

criteria Gaussian Non-Gaussian Monte Carlo

GS1 GS2 DB1 DB2 MC1 MC2

[max(µB), (C.O.V )∗B ] [901.55, 0.19] [965.08, 0.16] [899.4, 0.2] [964.26, 0.17] [957.97, 0.17] [952.82, 0.17]

range∗ 267.87 185.88 256.92 342.83 326.89 145.83

∗range=max(µB)−min(µB) , ∗(C.O.V )B=Coefficient of variation ( σB
µB

)

As expected, using Approach 2, where the expected values of upstream reservoir releases

are calculated more accurately, leads to better performance. Moreover, the averages of

the Gaussian- and non-Gaussian-based FP models using the same release approach are

close to each other.
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4.3.4 Five-reservoir case study-PAP

Because the Monte Carlo-based optimization version of FP models are computation-

ally expensive, we only considered the FP models based on two different approaches for

Gaussian and non-Gaussian distribution functions in the five-reservoir case study. The

performances related to the benefit obtained in simulation are summarized in Table 4.20

in which every experiment is run thirty times.

Table 4.20: The average expected value and the standard deviation of annual benefit-

PAP
FP model based on

criteria Gaussian Non-Gaussian

GS1 GS2 DB1 DB2

[max(µB), (C.O.V )∗B ] [1215.7, 0.1499] [1436.4, 0.1449] [1227.3, 0.1925] [1324.5, 0.1448]

range∗ 166.6 855.01 363.73 354.49

*range=max(µB)−min(µB), *(C.O.V )B=Coefficient of variation ( σB
µB

)

Analogous to the performances in the two-reservoir case study, the performances pre-

sented in Table 4.20 also verify that the optimization processes related to both Gaussian-

and non-Gaussian-based FP models lead to close performance at the end of simulation

when the average annual benefit is a little bit better for Gaussian-based FP model using

Approach 2.

As previously noted, there is no assumption of the distribution of random storages for

calculating the moments in FP models. Figure 4.12 demonstrates histograms of storages

for some months in the five reservoirs. These values in these histograms are from simula-

tion using a policy obtained from the optimization process. The figure demonstrates the

complexity of distribution of storages which are unknown at the time of optimization.

In spite of the non-Gaussian inflows (Figure 4.10), the Gaussian-based model does as

well as the DB-PDF-based model. This is due to the need for the use of CDFs which

smooth the differences between various distributions.

It might be appropriate to compare the expected value and the standard deviation of

storages obtained through the optimization and the simulation in different FP mod-
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Figure 4.12: The histograms of storage volume for some months in the PAP system

els using Equation 4.9. Figures 4.13 and 4.15 illustrate the average expected values of

storage from the optimal solutions in the optimization and the corresponding estimated

values from the simulation for the non-Gaussian-based FP models. As can be observed,

these averages match well for the model using Approach 2. However, there are some

differences in the standard deviations of storages as presented in Figures 4.14-4.16. This

might be due to the existence of correlations between storages which are not taken into

consideration in the current models, which should be pursued in future.
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Figure 4.13: Comparing the expected value of storage obtained through the optimization

and the simulation for PAP case study (non-Gaussian-based FP model, Approach 1)
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Figure 4.14: Comparing the standard deviation of storage obtained through the optimiza-

tion and the simulation for PAP case study (non-Gaussian-based FP model, Approach

1)



CHAPTER 4. EXPERIMENTAL RESULTS 114

0 2 4 6 8 10 12
0

50

100

150

period

ex
pe

ct
ed

 v
al

ue
 o

f 
st

or
ag

e
Reservoir 1

0 2 4 6 8 10 12
100

200

300

400

period

ex
pe

ct
ed

 v
al

ue
 o

f 
st

or
ag

e

Reservoir 2

0 2 4 6 8 10 12
50

60

70

80

90

100

period

ex
pe

ct
ed

 v
al

ue
 o

f 
st

or
ag

e

Reservoir 3

0 2 4 6 8 10 12
0

10

20

30

40

period

ex
pe

ct
ed

 v
al

ue
 o

f 
st

or
ag

e

reservoir 4

 

 

0 2 4 6 8 10 12
0

50

100

150

period

ex
pe

ct
ed

 v
al

ue
 o

f 
st

or
ag

e

Reservoir 5

Optimization
Simulation

Figure 4.15: Comparing the expected value of storage obtained through the optimization

and the simulation for PAP case study (non-Gaussian-based FP model, Approach 2)
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Figure 4.16: Comparing the standard deviation of storage obtained through the optimiza-

tion and the simulation for PAP case study (non-Gaussian-based FP model, Approach

2)
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4.4 Summary

In this chapter, we investigated the performance of developed RL methods in two dif-

ferent case studies: a 10 × 10 grid-world application with delayed reward, and a single

reservoir application with immediate reward, where inflows and prices are uncertain. A

new version of type II opposition-based learning was developed in which a multi layer per-

ceptron (MLP) is employed for function approximation. We have shown that both types

of OBL schemes in both case studies (grid-world and reservoir applications) have good

results. In applying FP models to a multi-reservoir system, two different approaches for

finding the expected value of release based on Gaussian and non-Gaussian assumptions

were tested on two case studies. The following points can be summarized:

• Using Approach 2 leads to a better average annual benefit and less standard devia-

tion of annual benefit in some cases; however, it is computationally more expensive

compared to Approach 1 (e.g., in the five-reservoir case study with Gaussian-based

model, Approach 2 takes about three times more CPU time than Approach 1).

• There was no assumption for the distribution of storages, however, the mean of

the storages as part of optimal solutions in the optimization process matches the

corresponding values estimated through the simulation.

• By looking at the performance criteria in the two-reservoir case study, the non-

Gaussian-based models may provide better solutions; however, it has analogous

performance to Gaussian-based models in the five-reservoir case study.

• In this case study, inflows are not normally-distributed, however, the optimal policy

and the performance criteria corresponding to Gaussian-based models were not far

from those obtained through the Monte Carlo-based and non-Gaussian-based FP

models.



Chapter 5

Summary and Conclusions

The main objective in this thesis was to develop optimization methods to determine opti-

mal policies in multi-storage applications operating in a stochastic environment. Discrete

dynamic programming based techniques can solve multi-storage problems using aggrega-

tion/decomposition techniques for reducing dimensionality. In the first part, we focused

on Reinforcement Learning (RL) techniques, which are based on discrete dynamic pro-

gramming, as adaptive and model-free methodologies to tackle these problems. Four pop-

ular RL techniques including Q-Learning and Q(λ) as off-policy, and sarsa and sarsa(λ)

as on-policy techniques have been used. There are several contributions in this part

which can be summarized as follows:

• Demonstration of how to apply these four RL techniques to storage management

applications is presented. Moreover, to find the set of admissible actions, two

different schemes were suggested: optimistic and pessimistic. The updating process

of action-value functions were also accomplished using a weighting scheme. Type I

and type II opposition schemes for these four learning techniques to speed up the

learning process are employed. A new type II opposition approach using function

approximation has also been proposed to assist the decision-maker in finding the

opposites.

• These learning techniques usually consider the expected value of accumulated re-
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ward (value function) to make a decision or to find a policy. This criterion alone

cannot be reliable for decision-making in many cases, and risk should be considered.

A new methodology to consider risk in learning methods was developed.

In addition, in this thesis, a new nonlinear optimization modeling technique developed by

Fletcher and Ponnambalam for single reservoir was extended to solve multi-storage op-

timization problems. Also, the Gaussian-distribution limitation on inflows was removed

to a more general distribution. Finally, as an illustration of extension of this work to

other storage management cases, a warehouse management problem was modeled.

In order to demonstrate the efficiency of the respective optimization models, the learning

techniques, and their proposed extensions, the following applications have been consid-

ered for the experimental results:

• a single reservoir case study with uncertainties in prices and inflows,

• a two-reservoir case study,

• a five-reservoir case study located in India.

It should be noted that all performance criteria (e.g., the average, the standard deviation,

the coefficient of variation of annual benefit, ...) have been obtained through a simulation

routine using the corresponding policies derived from learning methods (e.g., Q-Learning,

sarsa, ...) and TSP and FP optimization methods.

To assess the learning methods in the single reservoir, Stochastic Dynamic Programming

(SDP) techniques for both applications have been used in which the global optimal

decision policies can be provided. The following achievements can be pointed out:

1. Using opposition schemes in the investigated learning methods, specially in the

early stage of learning process, causes a fast convergence to the steady state sit-

uation. Moreover, the respective performance criteria using the policies derived

from the opposition-based learning process with a small number of episodes are
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reasonably close to SDP results; in contrast in regular learning methods, the re-

sults close to SDP are obtained after almost four times the number of episodes in

opposition-based learning methods.

2. Because the learning methods are based on the simulations of the random variables,

the optimal policy at the end of the learning process (where the action-value func-

tions converge to the steady state situation), and the corresponding performance

criteria could vary. Using opposition schemes in the learning process decreases the

variability of policies and the corresponding performance criteria when the respec-

tive learning process is repeated multiple times (i.e., using opposition schemes in

the learning methods makes them more robust).

3. The trade-off of standard deviation versus expected benefit in all the three methods,

namely, Q-learning, TSP, and FP traverses a similar curve. This curve assists a

decision-maker to choose an optimal policy considering risk, which is represented

by standard deviation.

In the two-reservoir case study, a Monte-Carlo-based optimization technique has been

employed. In this technique, all respective integrals in the first and the second moments

of storages in FP models are approximated using a Monte-Carlo simulation. In the

five-reservoir case study, running the Monte-Carlo-based optimization technique is too

time-consuming; therefore, only the Gaussian- and the non-Gaussian-based FP models

are considered for performing the optimization process. Moreover, because of using Cu-

mulative Distribution Functions (CDF) in approximating the moment equations, the FP

models are non-convex which implies that the optimization process could be sensitive to

initial solutions. Therefore, the optimizations have been performed with different random

initial solutions multiple times. The best solution among all different local optima at the

end of optimization process is opted for comparison (e.g., the best performance criteria

of Gaussian-based are compared to the best ones pertinent to non-Gaussian-based FP

models). The following achievements can be summarized:
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1. The performance criteria for two- and five-reservoir case studies confirm that the

second approach of calculating the expected value of releases (the upstream mean

releases with higher accuracy) always leads to superior results for Gaussian and non-

Gaussian-based FP models in terms of average and standard deviation of annual

benefits.

2. The optimal expected value and the variance of storages as decision variables in

FP models are reasonably matched to the corresponding values obtained through

simulation. However, the expected values of storages are better matched compared

to the variances.

All the mentioned methods have advantages and disadvantages which can be summarized

as follows:

1. TSP is easier and more general to be applied in the stochastic storage management

problems; however, it could exponentially increase the size of the optimization

problems that need to be solved.

2. All learning methods can be performed in an off-line (simulation) and an on-line

(real-time decision-making) situation. They are model-free which means that the

transition probabilities are not needed. The learning processes are incremental

which indicates that they can be continued forever. However, the implementation of

these techniques for multi-storage applications requires approximation techniques

to reduce the model dimensionality.

3. There is no discretization in FP models which make this technique more attractive

to be applied in multi-storage applications. Moreover, the probabilities of spill and

empty are available. However, the optimization model is non-convex.

5.1 Future work

1. Applying RL techniques for multi-reservoir or multi-storage applications could be

time-consuming, or computationally impossible in some cases. The Aggregation-
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Decomposition (A/D) methods presented by Turgeon [14] and Ponnambalam and

Adams [13] can be used in RL techniques.

2. In FP models, the first and the second moment of storage have been used as

constraints. However, correlations between storages were not considered and which

could increase the accuracy of results.



Appendix A

An initial policy for PAP

Table A.1: The mean of releases resulting from a steady-state simulation performed using

the rule curve sets for PAP

from/to periods

1 2 3 4 5 6 7 8 9 10 11 12

1 to 2 44.6 74.8 71.5 5 18.6 14.4 0 0 0 0 0 6.9

1 to 5 54.4 30 10 10 10 9.9 14.4 4.3 7.8 9.5 11.3 18.8

2 to 3 9.4 10 0 9.2 9.2 0 0 0 0 0 0 0

2 to 4 70 80 96.2 29.9 29.8 61.3 68.6 63.5 52.8 0 0 0

*3 to 3 23.4 33.3 33.2 25 34 28.5 26.3 22.8 0 0 15.7 21.3

*4 to 4 52 83.5 87.6 25 29.6 37.7 43.9 45.3 35.4 0 0 0

*5 to 5 11 26 29 22 24 39 50 41 42 28.6 18.5 20

* i to i means the total release from reservoir i
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Appendix B

The cost function with spills loss

The expected benefit of the release from reservoir i to reservoir j in period t, E(ctij), can

be computed as:

E(ctij) = f t
1(A1) + f t

1(A2) + f t
2(A3), (B.1)

where A1, A2 are the actual releases and A3 is the spillage (the controlled release is

subtracted from the total release) and f(.) is the corresponding loss or revenue function.

These parameters can be therefore computed as:

Where st
i is within bounds,

A1 = [kt
ij + E(st−1

i )] ·


∫ ∞

st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

fηt
i
(ηt

i) dη
t
i

 ,
(B.2)
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Where st
i is less than minimum storage,

A2 = ψt
ij ×

{ [
−st

i,min + E(st−1
i ) + Ī t

i +
N∑

l=1,l 6=i

E(ut
li)

]

×

∫ st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

−∞
fηt

i
(ηt

i) dη
t
i



+

∫ st
i,min−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

−∞
ηt

ifηt
i
(ηt

i) dη
t
i

 ,

(B.3)

Where st
i is higher than maximum storage,

A3 = ψt
ij ×




total release with spillage︷ ︸︸ ︷

−st
i,max + E(st−1

i ) + Ī t
i +

N∑
l=1,l 6=i

E(ut
li)−

controlled release︷ ︸︸ ︷(
kt

ii + E(st−1
i )

)


×

∫ ∞

st
i,max−Īt

i +kt
ii−
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l=1 l6=i
E(ut

li)

fηt
i
(ηt

i) dη
t
i
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+

∫ ∞

st
i,max−Īt

i +kt
ii−

NP

l=1 l6=i
E(ut

li)

ηt
ifηt

i
(ηt

i) dη
t
i

 .

(B.4)

As can be seen, because the controlled release is the same for both situations of which

the end-of-period storage is within the containment or higher than maximum level, the

upper bound of the integral in term A1 is set to infinity. On the other hand, the portion

of water which is overflowed is calculated in term A3 by subtracting the release based on

the policy from the total release with spillage included. This is also quite common in real

world case studies of storage management, that terms A1 and A2 are treated with the

same cost function while term A3, which has usually a negative impact on the objective

function, is treated with a different cost function.



Appendix C

Moment equations for two serial

reservoirs

The first moment of storage for the second reservoir in the case of two serial reservoirs

(Part b of Figure 3.2) using the new estimations obtained for the expected value of

releases in Equations 3.44 and 3.46 can be written as:

E(st
2) =

[Ī t
2 − kt

11 + E(ut
12)] ·

{
1
2

[
erf

(
[st

2,max−(Īt
2−kt

11+E(ut
12))]

[2V ar(ηt
2)]1/2

)
− erf

(
[st

2,min−(Īt
2−kt

11+E(ut
12))]

[2V ar(ηt
2)]1/2

)]}

−(
[V ar(ηt

2)](1/2)
√

2π
) ·

{
exp

(
−1

2

[st
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2−kt
11+E(ut

12))]2

V ar(ηt
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)
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(
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2
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2−kt
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12))]2

V ar(ηt
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{
1
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(
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{
1
2

[
1− erf

(
[st
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2−kt

11+E(ut
12))]

[2V ar(ηt
2)]1/2

)]}
.

(C.1)

Suppose that the spillage from the upstream reservoir would also be available for the

downstream one without any losses; therefore, the second choice in equation 3.46 can be
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used for finding E(ut
12) as:
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(C.2)

As previously mentioned, it can be quite reasonable to consider spillage as available water

in a downstream reservoir. However, it is inappropriate to take the spillage into account

as a potential variable creating benefit. The spillage usually causes a negative impact

because it might lead to flooding and other damage (e.g., irrigation-related downstream),

or in an optimistic view, it does not affect the objective function. For the latest case,

the expected value of release which is going to be used in the objective function should

be calculated based on the first choice in Equation 3.44. This expected value of release

for the first reservoir in the serial case study can be calculated as:

E(ut
12) =

[
kt

12 + E(st−1
1 )

]
·
{

1
2

[
1− erf
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(C.3)



Appendix D

FP method: A new stochastic

release policy

In Equation 3.15, the release policy is assumed to depend only on the storage level

of the reservoir considered. This is an inefficient policy, because the storage levels in

other reservoirs might be sufficient in that period to play a supportive role for demand

points downstream. To tackle this issue, a new policy can be introduced in which the

stochastic release depends, in addition to its own storage, on the storage levels of all

physically-connected upstream reservoirs. This policy can be written as

ut
ij = kt

ij +
N∑

l=1

st
i × δli, (D.1)

where δli = 1, if the lth reservoir is connected to the ith reservoir, otherwise, δli = 0. The

dynamics of reservoirs with respect to the new stochastic policy can be written as:

st
i =

{
Ī t
i + ηt

i + st−1
i −

(
kt

ii +
N∑

l=1

[st−1
i × δli]

)
+

N∑
l=1

ut
li

}
· 1[st

i,min,st
i,max](ŝ

t
i)

+ {st
i,min} · 1(−∞,st

i,min)(ŝ
t
i) + {st

i,max} · 1(st
i,max,∞)(ŝ

t
i).

(D.2)

For instance, the dynamic for the downstream reservoir in a two-serial-reservoirs appli-

cation (Part b of Figure 3.2) can be expressed as:
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st
2 = {Ī t

2 + ηt
2 + st−1

2 +

ut
12︷ ︸︸ ︷

(kt
12 + st−1

1 )−

ut
22︷ ︸︸ ︷

(kt
22 + st−1

1 + st−1
2 )}1[st

2,min,st
2,max](ŝ

t
2)

+ {st
i,min}1(−∞,st

2,min)(ŝ
t
2) + {st

2,max}1(st
2,max,∞)(ŝ

t
2)

= {Ī t
2 + ηt

2 + kt
12 − kt

22}1[st
2,min,st

2,max](ŝ
t
2) + {st

2,min}1(−∞,st
2,min)(ŝ

t
2)

+ {st
i,max}1(st

2,max,∞)(ŝ
t
2).

(D.3)

In terms of mathematical notation, the moments using the new policy are the same as

Equations 3.30 and 3.31 in which Kt
2 = kt

12 − kt
22.

As previously mentioned, the expected value of releases in Equations 3.44 or 3.46 can

be considered as an input to reservoirs downstream, subject to an existing physical

connection between them. In this case, the first term in Equation D.3 depends on the

previous end-of-period storage level. The dynamic in this situation can be written for

the second reservoir of our example as:

st
22 = {Ī t

2 + ηt
2 + E(ut

12)− (kt
22 + st−1

1 )}1[st
2,min,st

2,max](ŝ
t
2) + {st

2,min}1(−∞,st
2,min)(ŝ

t
2)

+ {st
2,max}1(st

2,max,∞)(ŝ
t
2).

(D.4)

The following equation is used to find the second moment:

(st
2)

2 = {Ī t
2 + ηt

2 + E(ut
12)− (kt

22 + st−1
1 )}21[st

2,min,st
i,max](ŝ

t
2) + {st

2,min}21(−∞,st
2,min)(ŝ

t
2)

+ {st
2,max}21(st

2,max,∞)(ŝ
t
2).

(D.5)

As can be seen in the above formulation, the dynamic only depends on st
12 as a random

variable. By taking the expectation from these equations and using the first order ap-

proximation of Taylor’s series analogous to what has been explained in section 3.5, the

first and the second moments can be calculated. However, it should be noted that in

taking the expectation of the first term in Equation D.5, E(st
1)

2 should be substituted
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with [E(st
1)]

2 as follows:

E{Ī t
2+E(ut

12)−(kt
22+s

t−1
1 )}2 =⇒ {Ī t

2+E(ut
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2−(kt
22+E(st−1

1 ))}2
+V ar(st
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−

(
E(st

1)
)2

+ E(st
1)

2 .

Using this revision, the second moment can be written as:
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The second moment can be generalized for multi reservoir cases as:
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t
i)

)

+ {st
i,max}2E

(
1(st

i,max,∞)(ŝ
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