
  

Neuromuscular Clinical Decision Support 

using Motor Unit Potentials Characterized 

by ‘Pattern Discovery’ 
 

 

 

by 

 

 

Lou Joseph Pino 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Systems Design Engineering 

 

 

 

Waterloo, Ontario, Canada, 2008 

 

 

©Lou J. Pino 2008 

 



 

 ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 



 

 iii 

 

Abstract 

Objectives: Based on the analysis of electromyographic (EMG) data muscles are often characterized 

as normal or affected by a neuromuscular disease process. A clinical decision support system (CDSS) 

for the electrophysiological characterization of muscles by analyzing motor unit potentials (MUPs) 

was developed to assist physicians and researchers with the diagnosis, treatment & management of 

neuromuscular disorders and analyzed against criteria for use in a clinical setting.  

Methods: Quantitative MUP data extracted from various muscles from control subjects and patients 

from a number of clinics was used to compare the sensitivity, specificity, and accuracy of a number of 

different clinical decision support methods. The CDSS developed in this work known as AMC-PD 

has three components: MUP characterization using Pattern Discovery (PD), muscle characterization 

by taking the average of MUP characterizations and calibrated muscle characterizations. 

Results: The results demonstrated that AMC-PD achieved higher accuracy than conventional means 

and outlier analysis. Duration, thickness and number of turns were the most discriminative MUP 

features for characterizing the muscles studied in this work. 

Conclusions: AMC-PD achieved higher accuracy than conventional means and outlier analysis. 

Muscle characterization performed using AMC-PD can facilitate the determination of “possible”, 

“probable”, or “definite” levels of disease whereas the conventional means and outlier methods can 

only provide a dichotomous “normal” or “abnormal” decision. Therefore, AMC-PD can be directly 

used to support clinical decisions related to initial diagnosis as well as treatment and management 

over time. Decisions are based on facts and not impressions giving electromyography a more reliable 

role in the diagnosis, management, and treatment of neuromuscular disorders. AMC-PD based 

calibrated muscle characterization can help make electrophysiological examinations more accurate 

and objective. 
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Chapter 1 

Introduction 

A clinical decision support method for the electrophysiological characterization of muscles to assist 

physicians and researchers with the diagnosis, treatment & management of neuromuscular disorders 

is developed and analyzed against criteria for use in a clinical setting. The method is transparent, and 

more accurate than the conventional decision support discussed in the literature. 

1.1 Electromyographic Examination 

Muscles are composed of groups of motor units. A motor unit (MU) is a motor neuron and the muscle 

fibers it innervates. A motor neuron is composed of dendrites that attach to other neurons, a cell body 

that houses a single nucleus and a single axon that terminates into multiple axonal twigs - each twig 

synapses with a muscle fiber in a region known as the neuromuscular junction (NMJ).  

A motor neuron propagates impulses from the brain or spinal cord to muscle fibers to facilitate 

contraction of a MU.  The top portion of Figure 1.1 shows a representation of the anatomy of a motor 

unit and a needle electrode in close proximity to the motor unit.  The depolarization of a motor neuron 

will depolarize all of the muscle fibers that it innervates. The depolarization of a muscle fiber is 

known as a muscle fiber potential (MFP). The sum of all of the spatially and temporally dispersed 

MFPs arising from a depolarized MU generates changes in the voltage field in the extracellular 

volume surrounding the MU.  The size and shape of the voltage field detected over time is a function 

of the morphology, physiology and the position of the electrode relative to the MU. The voltage field 

detected from an active MU is known as a motor unit potential (MUP). A series of depolarizations 

generated by one motor neuron (shown as Dirac Delta Impulse Trains in Figure 1.1) will generate a 

series of MUPs which is known as a motor unit potential train (MUPT). The superposition of voltage 

fields generated by active MUs that are detected by a needle or surface electrode is called the 
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Physiological electromyographic (EMG) signal in Figure 1.1. Figure 1.1 shows that the number of 

MUPTs detected is p .   The Physiological EMG signal is denoted by ( )Ftmp ,  which is a function of 

time (t) and force of muscular contraction (F). Instrumentation introduces noise denoted by ( )tn  and 

the detected EMG signal is also affected by the filter characteristics denoted by )(tr of the 

instrumentation which leads to the observable EMG signal denoted ( )Ftm ,  at the bottom of Figure 

1.1. Neuromuscular disorders change the morphology and physiology of MUs causing changes in 

their activation patterns and MUP shapes and thus the EMG signals that they produce.  

There are two broad categories of disorders that affect neuromuscular systems: myopathic and 

neuropathic. Myopathic disorders occur when muscle fibers die or atrophy, e.g. Muscular Dystrophy. 

Neuropathic disorders occur when motor neurons die and the remaining surviving motor neurons re-

innervate orphaned muscle fibers, e.g. Amyotrophic Lateral Sclerosis (Lou Gehrig’s disease).   Figure 

1.2 shows that in general the size and shape of MUPs detected from muscles affected by a myopathic 

disorder are smaller and more complex while the shapes of MUPs detected from neuropathic muscles 

are larger and more complex compared to MUPs detected from normal muscles. However, in practice 

there is a great deal of ambiguity in the interpretation of MUPs detected from a muscle as MUPs that 

appear normal, myopathic and neuropathic can be detected from any muscle regardless of its 

condition [1].  This ambiguity exists because of how widely muscle structure and needle position can 

vary. 

In current clinical practice the status quo characterization of muscle is mostly done using 

qualitative auditory and visual analysis of needle-detected EMG signals detected during low-level 

muscle contractions and focuses on the analysis of individual MUP shapes and MU discharge 

patterns. In auditory analysis a clinician listens for the frequency and amplitude of the clicks and 

crackles made by amplified EMG signals. The auditory patterns reflect the recruitment of MUs and 
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the shape of MUP waveforms - both of which can be used to infer the presence or absence of 

underlying disease processes. Auditory analysis is usually done alongside a visual inspection of the 

EMG signal. Visual inspection tools use triggering in an attempt to isolate MUPs detected from the 

same MU. The triggered MUP waveforms are superimposed and displayed in real time.  Qualitative 

visual inspection is a rough eyeball estimate of the shape of MUPs and how these compare to the 

expectation of being normal. According to several psychological studies qualitative examination is 

ambiguous and prone to misinterpretation [2, 3]. Both of these qualitative methods are crude with 

poor sensitivity and specificity, as well, they are lacking in providing objective quantitative data from 

which longitudinal comparisons can be easily made. For example, a recent study authored by Kendall 

showed that faculty and residents (blind to the underlying diagnosis of radiculopathy) using video 

recorded needle based examinations had an overall agreement of only 46.9% with the actual diagnosis 

[4].  

Quantitative electromyography (QEMG) is the process of detecting and quantitatively analyzing 

EMG signals for the extraction of clinically useful information. Through the use of EMG signal 

decomposition a comprehensive set of features can be accurately measured and displayed leaving a 

large amount of information to be interpreted. QEMG is not used as frequently as qualitative EMG in 

clinics. The author believes that interpretation of the exhaustive set of statistics generated by 

quantitative analysis of EMG signals can be improved by transforming the statistics into clinically 

useful knowledge.  
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Figure  1.1 Model of the composition of an EMG signal.  (From J. V. Basmajian, Muscles 

Alive: Their Functions Revealed by Electromyography. ,4 th ed. - ed. Baltimore: Williams & 

Wilkins, 1978, pp. xi, 495 p.) 
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Figure  1.2 Effects of Disease on Motor Units & Motor Unit Potentials 

Below the letter A in the figure is an example of two normal MUs and a MUP detected from one of 

the MUs. The circle to the right of the letter A is the cross-section of the muscle showing the 

individual muscle fibres belonging to each MU. Below the letter B is an example of two MUs being 

affected by a neuropathic disorder and the MUP detected from the MU shaded dark. Below the letter 

C is an example of two MUs being affected by a myopathic disorder and the MUP detected from the 

MU shaded dark. (From E. Stalberg and B. Falck, "The role of electromyography in neurology," 

Electroencephalography and Clinical Neurophysiology, vol. 103, pp. 579-598, 12. 1997.) 
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1.2 Objective & Approach 

Characterization is a clinical term referring to the discernment, description or attribution of 

distinguishing traits [5]. Figure 1.3 below shows the information flow in a QEMG based examination 

that is to be augmented by the proposed Clinical Decision Support System (CDSS). Starting at the top 

a disease process may affect a muscle’s morphology and physiology. An EMG signal is detected 

using an electrode that is inserted into a muscle. The signal is detected while the patient voluntarily 

contracts the muscle being examined. The method of QEMG analysis to be used in this work is the 

process of isolating MUPs that comprise the EMG signal and then extracting features of the shapes of 

the isolated MUPs.  The step after QEMG shows the CDSS that provides a characterization of the 

extracted features for the muscle from which they were detected. It is shaded to show that this is the 

focus of the proposed research. The physician analyzes the characterization and then can infer if a 

disease is affecting a muscle and its level of involvement. The effect of a disease over time will be 

able to be tracked with the aid of the proposed CDSS.  

The objective of this work is to augment existing QEMG techniques with a decision support 

system that transforms QEMG generated statistics into a concise muscle characterization that 

improves the ability of physicians to decide upon an appropriate clinical action. Pattern recognition 

techniques will be used to develop a characterization system. A system that has excellent sensitivity 

(true positives) and specificity (true negatives) when used to characterize muscle disorders would be a 

valuable addition to clinical practice.  

The CDSS developed in this work analyzes QEMG statistics to report the characterization of a 

single muscle. The CDSS has three components: MUP characterization, muscle characterization and 

calibrated muscle characterization.  MUP characterization calculates a set of conditional probabilities 

that a MUP is abnormal and normal given the features of the MUP detected from a muscle under 
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examination. Combining a set of MUP characterizations provides an overall muscle characterization. 

A muscle characterization is a set of scores representing the degree to which a muscle is normal and 

abnormal. The third component of the CDSS converts scores into calibrated muscle characterization 

conditional probabilities that accurately reflect the reliability or confidence of an individual 

characterization. In other words, a calibrated muscle characterization score of 80% probability of 

abnormality means that 80% of muscles that receive that conditional probability are truly abnormal.  

Calibrated conditional probabilities will help clinicians understand the level of confidence a CDSS 

has in its categorization of normality and abnormality of a muscle under examination.  

1.3 Overview of the Thesis 

Chapter 2 reviews QEMG methods used for muscle examination in clinical settings. The different 

methods are compared to justify focusing on MUP analysis. Then existing MUP characterization 

methods are described as well as existing muscle characterization methods that use MUP features. A 

section in Chapter 2 provides the requirements that CDSSs in general need to possess. These 

requirements guided the development and evaluation of the CDSS in this work.  Chapter 2 ends by 

describing potential pattern recognition techniques and discusses their suitably for use as MUP 

characterization methods against the CDSS requirements.  

Chapter 3 describes the various MUP data sets that were used to evaluate the CDSS developed for 

this work. The set of MUP features are defined as well as the measures used to evaluate the 

performance of the CDSS.  

Chapter 4 describes the MUP Characterization method used in this work known as Pattern 

Discovery (PD). The performance of PD was compared to other classifiers that are commonly used 

for medical diagnosis.  
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Chapter 5 analyzes the performance of various methods used for muscle characterization. 

Combining conditional probabilities, calculated by pattern recognition based MUP Characterization 

methods, into muscle characterizations are known as probabilistic muscle characterization methods. 

The performance of a number of probabilistic muscle characterization methods are compared with 

conventional muscle characterization techniques across an exhaustive set of feature sets and for the 

various MUP data sets.  

Chapter 6 describes another muscle characterization method – the Z transform. Then a method of 

calibrating muscle characterizations that converts raw muscle characterization scores into conditional 

probabilities is described. The performance of the calibration method was compared across two 

different muscle characterization methods, AMC-PD and ZT-PD using all of the MUP data sets.  
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Figure  1.3 Information Flow to Characterize a Muscle 
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Chapter 2 

Background and Related Work 

2.1 Quantitative EMG Overview 

Quantitative EMG (QEMG) is the use of quantitative based methods to analyze and extract features 

from EMG signals to augment the determination of underlying disease processes. QEMG analysis 

offers objective, quantitative analysis that can allow comparisons with reference data collected from 

subjects of the same age and gender as the patient. There are four main approaches for quantitatively 

studying the electrical activity of muscles contracted voluntarily by the patient. The first approach 

known as MUP analysis is based on studying the shapes and sizes of isolated MUPs. The second 

approach is based on studying the composite EMG signal also known as the interference pattern (IP). 

The third approach estimates the number of motor units in a muscle. The fourth examines the stability 

of the operation of the neuromuscular junction. 

2.1.1 MUP Analysis 

The contraction of a muscle leads to the discharge of recruited motor units. A sustained contraction at 

a constant level of force leads to the repeated discharge of these MUs. The series of MUPs associated 

with a MU is known as a MUP train. The composite EMG signal is the superposition of all of the 

MUP trains of active MUs. Neuromuscular disorders change the morphology and physiology of MUs 

causing changes in their activation patterns and MUP shape and size.  As well the orientation and 

proximity of the electrode relative to the active MUs affects the size and shape of detected MUPs.  

Several techniques are available for the extraction and analysis of isolated MUP waveforms. One 

that is in current widespread use is amplitude triggering. MUPs that exceed an amplitude threshold 

can be triggered for view on a screen. This method is used to capture a set of MUPs that exceeds an 

amplitude threshold. To capture MUPs of differing amplitude a window trigger mechanism was 
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developed [6]. MUPs whose peak amplitude falls within a specified range can be isolated for view on 

a screen. Repeated triggering of MUPs that fall within this range can be averaged to remove noise 

from interfering MUPs not belonging to the MUP train of interest. However, MUPs detected from 

different MUs whose peak amplitude falls in the same range may also trigger the display making it 

harder to isolate MUP trains. Amplitude triggering requires a great deal of time and patient 

cooperation if a large number of MUPs are to be sampled.  

Another method of isolating MUPs is known as decomposition based MUP analysis. This method 

involves the detection, clustering and then the supervised classification of MUPs into MUP trains [7]. 

A MUP is detected when it exceeds threshold levels - usually based on amplitude and slope. MUPs in 

the first several seconds (initialization interval) of the EMG signal are clustered using the K-means 

algorithm. The clustering algorithm produces an estimate for the number of active motor units and a 

prototypical shape of their MUPs. Supervised classification places each detected MUP into a MUP 

train based on a certainty measure. In addition to using shape information the expected firing 

behaviour of MUs are estimated and used to determine if a candidate MUP belongs to a MUP train.  

In this way MUPs with similar shapes but created by different MUs can be differentiated by 

comparing their respective patterns of occurrence. MUPs classified as belonging to the same train that 

exceed a certainty threshold are averaged to form the MUP template for that train. It is this template 

that is measured to extract features representative of that MUP train.  

 

2.1.2 Interference Pattern Assessment 

EMG signals detected from a muscle during moderate to high levels of contraction are composed of 

large numbers of MUPTs that are superimposed. As such, an EMG signal is also known as an 

Interference Pattern (IP). The density and amplitude of an IP can be used to estimate MU recruitment 
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and firing rates. There are two computer-aided methods for analyzing an IP: frequency and time 

domain analysis [8].  

Frequency Domain Analysis 

The power spectrum of an IP can be used to infer features from the MUPs that comprise the IP. 

MUPs detected from myopathic MUs tend to be complex, have short durations and fast rise times as 

compared to MUPs indicative of normal MUPs. This will be reflected in the power spectrum as 

higher frequency components. MUPs detected from neuropathic MUs tend to have long durations and 

slow rise times as compared to MUPs indicative of normal MUPs. This will be reflected in the power 

spectrum as lower frequency components. The specificity and sensitivity of frequency domain 

analysis is poorer than time domain analysis because of the higher variability of an IP’s frequency 

spectrum. 

Time Domain Analysis 

Time domain analysis is based on the number of local peaks and valleys and the amplitude between 

successive peaks of opposite polarity. A peak is a turn if the amplitude to the next peak of opposite 

polarity exceeds a threshold of 25 or 50 µV. The amplitude of a turn is the difference in voltage 

between successive peaks of opposite polarity. One method of turns analysis considers the ratio of the 

number of turns (NT) to the mean amplitude (MA) of all of the turns. In general, a high NT/MA ratio 

is indicative of myopathy and a low ratio is indicative of neuropathy. Figure 2.1 provides a diagram 

that helps to explain how MA and NT are calculated.   
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Figure  2.1 Time Domain Analysis of an IP Signal 

A letter T with a number refers to a turn.  A letter S with a number refers to a segment of the IP that 

occurs between two successive turns. A letter A with a number refers to the amplitude of a segment. 

So as an example, A1 is the amplitude of S1, i.e. the segment from turn 1 (T1) to turn 2 (T2). Mean 

amplitude (MA) is calculated across all segments and NT is the total number of turns. (From SD 

Nandedkar, DB Sanders, EV Stalberg: Simulation and analysis of the electromyographic interference 

pattern in normal muscle. Part II: Activity, upper centile amplitude, and number of small segments.  

Muscle Nerve. 1986 Jul-Aug;9(6):486-90).  

2.1.3 Motor Unit Number Estimation 

Neuropathic disorders can decrease the number of motor units in muscles. An estimate of the number 

of motor units in a muscle suspected of a neuropathic disorder can be useful in tracking the progress 

of a disorder and or effectiveness of its treatment. A pair of EMG signals, one detected using a 

surface electrode and the other using an intramuscular needle electrode, are used together to estimate 
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the number of motor units in a muscle. A motor nerve bundle is electrically stimulated with sufficient 

intensity to ensure all motor neurons leading to the muscle under test are depolarized.  The surface 

EMG signal detected above the muscle under test is called a Compound Muscle Action Potential 

(CMAP). MUPs detected in the intramuscular needle EMG signal underneath the surface electrode 

are classified into separate trains where each train is believed to be detected from the same motor 

unit.  The set of firings of intramuscular detected MUPs belonging to the same train are used as 

triggers for locating intervals in the surface-detected signal. The set of intervals are ensemble 

averaged to extract the surface MUP (SMUP) corresponding to the intramuscular MUP train. The 

peak-to-peak amplitude of each SMUP is calculated. The average peak-to-peak amplitude is 

determined across all of the SMUPs. The number of motor units in the muscle under test is estimated 

by dividing the peak-to-peak amplitude of the CMAP signal by the average peak-to-peak amplitude 

of the SMUPs [7]. 

 

2.1.4 Muscle Fiber Jitter 

Jitter is measured by using the action potential of one muscle fiber as a reference and measuring the 

variability in time of the action potential of a second muscle fiber from the same motor unit [9]. 

Increased jitter is a clinical sign of a defective neuromuscular junction (NMJ). In a normal NMJ, there 

is an excess of acetylcholine (ACh) in the pre-synaptic terminal that can bind with numerous healthy 

post-synaptic ACh receptors leading to a depolarization of the muscle fiber. A defective NMJ occurs 

when either ACh or healthy ACh receptors are lacking leading to increased variability in time 

required to bind sufficient ACh to the post-synaptic membrane in sufficient quantities to depolarize 

the muscle fiber. In some cases, the number of ACh bindings is insufficient to cause a depolarization 

to occur at all thus blocking is said to occur.   



 

 15 

     Increased jitter is often a sign of myasthenia gravis - a disorder that affects NMJs. Myasthenia 

gravis is caused by circulating antibodies that inhibit ACh receptors in the post-synaptic membrane 

from binding with ACh. 

2.1.5 Comparison of the QEMG Techniques 

Isolated MUP analysis can provide direct information about MU size, MU fiber density, the 

performance of neuromuscular junctions, the temporal dispersion of muscle fiber action potentials 

and MU firing behaviour. Time domain based IP EMG analysis can provide indirect information 

about the size of MUs.  IP QEMG can be useful for examining disease processes that affect MUs that 

are active only at higher levels of force since isolated MUP analysis becomes more difficult at higher 

levels of contraction. However for most disease processes isolated MUP QEMG provides a more 

comprehensive set of MU features [8].  

Motor Unit Number Estimation (MUNE) is useful when a neuropathic disorder is known or 

suspected to evaluate the extent of MU loss and to determine the effectiveness of treatments. MUNE 

is not likely to be used for an initial electrophysiological examination if the state of a patient’s 

neuromuscular systems is unknown, i.e. normal, myopathic or neuropathic or if the specific muscles 

affected in a patient are unknown. 

Analysis of jitter is only useful for diseases affecting the NMJ.  

2.2 MUP and Neuromuscular Characterization 

Section 2.1 gave an overview of QEMG techniques. This section provides further background for the 

MUP analysis method (2.1.1) used as the basis for the development and analysis of the CDSS which 

is the focus of this thesis. This work will use statistics generated by decomposition based MUP 

analysis, specifically features associated with MUP size and shape and use these feature values for the 
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characterization of MUPs. Other QEMG methods can be included in future work as sources of 

additional information for determining an overall muscle characterization. 

In general, QEMG decomposition based examination can be thought of as having three phases: 1) 

Data Acquisition, 2) Information Extraction: measurements and statistics determined from the data 

and 3) Interpretation: interpreting the information to reach conclusions. The interpretation phase can 

be thought of as having three steps: a) characterization of individual MUPs; b) integration of 

individual MUP characterizations into a muscle characterization and c) inference by a clinician as to 

whether a disorder is affecting the muscle or not, and if so, the type of disorder (myopathic or 

neuropathic) and its level of involvement. In contrast to the qualitative interpretation currently used in 

QEMG examinations, quantitative interpretation can facilitate the objective measurement of the 

degree of involvement of a neuromuscular disorder. This work addresses steps 3 a) and b) of the 

interpretation phase by describing and evaluating characterization processes that provide quantitative 

interpretation of information commonly extracted from individual MUPs during a QEMG 

examination. 

2.2.1 Existing MUP Characterization Techniques 

This work uses automated interpretation of quantitative shape-based isolated MUP features for the 

characterization of a muscle.   Methods in the literature for the characterization of individual MUPs, 

i.e. step 3 a) of the interpretation phase of a QEMG examination, are described in this section. 

Typically, the literature discusses how feature values for a set of MUPs detected from a single muscle 

can be combined into a muscle characterization using just three categories: myopathic, normal or 

neuropathic. These three categories provide an initial step towards a useful, robust neuromuscular 

CDSS. 

The literature describes a number of different processes for characterizing MUPs. Pattichis et al. 

[10] applied artificial neural network (ANN) models to the classification of MUPs sampled from the 
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biceps brachii muscle of 14 normal patients, 16 neuropathic and 14 myopathic patients. The data was 

divided into 24 training sets and 20 test sets. For each set, the means and standard deviations of 7 

features (duration, spike duration, amplitude, area, spike area, number of phases and number of turns) 

of the MUPs belonging to each muscle were determined. An error rate of 10 to 20% was achieved 

depending on the specific ANN architecture used. For instance, the ANN architecture that had 40 

neurons in the first hidden layer and 10 neurons in the second hidden layer achieved an error rate of 

10%. The authors found that ANNs easily tended towards over-fitting i.e., it was difficult to achieve 

generalization, the ability of the ANN to correctly classify unknown cases based on the training data. 

ANN models are not transparent because they do not reveal how they reach their conclusions. The 

large number of neurons means that a large number of arithmetic operations are used to transform the 

features making ANNs essentially black box classifiers. 

Pfeiffer and Kunze [1, 11] used Fisher’s Linear Discriminant Analysis (LDA) to determine the 

probability of the abnormality of each MUP (i.e. MUP characterization). The technique estimated the 

conditional probabilities (one for each category) of a MUP being detected from a muscle with a given 

category of disorder.   

In [1, 11], the discriminant model was trained based on 363 MUPs from 15 normal muscles, 467 

MUPs from 16 myopathic muscles and 463 MUPs from 23 neuropathic muscles using duration, area, 

turns count and center frequency as the features. The error rates using a single MUP for muscle 

characterization were 52.9% for myopathic disorders, 44.2% for neuropathic disorders and 35.2% for 

normal muscles with sample sizes of 1676, 714 and 2636 MUPs respectively. According to Pfeiffer & 

Kunze [1, 11], the high error rate could have been reduced if samples acquired during periods, 2 years 

apart were done in a more consistent manner. 

The method developed by Pfeiffer and Kunze determines a numeric probability of a MUP being 

detected from a normal, myopathic and neuropathic muscle. This allows a set of MUPs sampled from 
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a muscle to be quantitatively turned into a neuromuscular characterization. Despite the sampling 

problems experienced during testing, LDA is a successful method for MUP characterization. 

However, because of the arithmetic transformation of the features, LDA is not as transparent as 

classifiers that provide logical relationships between the features. 

2.2.2 Existing Muscle Characterization Techniques 

This section summarizes methods found in the literature describing how information across a set of 

MUPs detected from a muscle under test can be combined into a characterization of that muscle, i.e. 

step 3 b) of the interpretation phase of a QEMG examination.  There are two main methods for 

combining MUP statistics into a muscle characterization: means/outlier analysis and probabilistic 

methods. The means/outlier method is done by comparing the mean of a set of MUP feature values 

that are below or above normative limits and or by counting the number of outliers [12, 13]. 

Probabilistic methods were first introduced by Pfeiffer [1] who used Bayes’ rule to characterize 

muscles by combining for each MUP detected their conditional probabilities of being detected in a 

healthy muscle or one with a specific disorder. Analysis of individual MUP feature values lacks 

sufficient information to accurately characterize a muscle so Bayesian aggregation provides a 

statistically robust method for combining the feature values of several MUPs acquired from a muscle. 

Stewart et al. developed and evaluated a computer based system for acquiring MUPs, measuring 

their features and inferring a diagnosis (or characterization) [13] called the Means method. The mean 

and standard deviations of amplitude, area and thickness (area-to-amplitude ratio) values for sets of 

MUPs acquired from 68 normal subjects (18 - 62 years old) were calculated. The percentage of 

polyphasic and polyturn MUPs detected from these subjects was calculated as well. The normal range 

was defined as mean +/- 2 standard deviations. The method classifies a muscle as myopathic if one or 

more of the mean feature values falls below the normal range and classifies the muscle as neuropathic 

if one or more of the features falls above the normal range. The method was tested with MUPs 
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detected from 50 patients with known myopathic and 55 patients with known neuropathic disorders. 

The error rate for characterizing patients as being affected by myopathic muscles was 44% and the 

neuropathic error rate was 36.7%.   

Stalberg et al. developed the Outlier method for characterization of muscles [12]. The goal of the 

method was to increase accuracy and reduce the number of MUPs that needed to be collected during a 

qualitative EMG examination. The method uses either extremely low or high feature values of MUPs, 

i.e. outliers to determine abnormality. The method uses the 5th and 95th percentiles of the third 

smallest and third highest set of values per feature collected from muscles to establish the low and 

high outlier threshold values. A muscle under test is declared myopathic if it has three or more low 

outliers of the same feature value or neuropathic if it has three or more high outliers of the same 

feature value.   

2.3 Generic Requirements for Clinical Decision Support Systems (CDSS) 

The following requirements are based on ideas developed by Kononenko [14] and Sprogar et al. [15] 

who describe a set of requirements needed for machine learning systems used in medical decision 

support. These requirements were used to guide the development and evaluation of the muscle CDSS 

described in this work. 

1) Transparent: Characterizations need to be presented in a manner that allows a clinician to 

understand how a characterization was determined. This is especially important when faced with an 

unexpected characterization that contradicts a physician’s initial expectation or intuition. A 

physician’s knowledge of the basis of a characterization is critical to the confidence in its veracity. A 

system’s ability to explain its characterizations or output is an important part of a physician’s 

acceptance of the system [16]. According to Feng [17] transparency to users requires that a 

characterization system provide logical versus arithmetic expressions of the features. Operators such 

as “and”, “or” and “if-then” are preferred to provide connections between feature values used to 



 

 20 

explain classifications. These expressions are valuable since they provide meaningful explanations to 

human experts and are more easily evaluated.  

2) Accurate: Characterizations need to maximize both specificity and sensitivity beyond what is 

typically achieved through routine subjective analysis of an EMG signal.  This is essential if the 

approach is to be considered useful by clinicians.  

3) Report Confidence: A confidence measure reports the degree to which a characterization 

suggested by a classifier is likely to match the ‘true’ underlying characterization. It is intended to help 

clinicians minimize errors. A confidence measure is meant to minimize the number of situations 

where a characterization system makes a correct suggestion but is ignored by a physician. A 

confidence measure can also help avoid situations where a physician accepts an incorrect suggestion 

made by a characterization system if he/she over-trusts the characterization.  

4) Numeric Characterization Value: Characterizations need to be presented as numeric measures 

supporting or refuting each category under consideration, e.g. probabilities. The numeric scale can be 

ordinal but it is preferably that it has continuous values. A numeric MUP characterization will allow a 

method to combine individual MUP characterizations into an overall neuromuscular characterization.  

5) Mixed Mode Multi-Variate Features and Interdependency: Analyzing a single feature of a 

MUP has poor discriminatory power because of the wide range of values for any one MUP feature 

and the substantial overlap in the distributions of MUP features reflective of normal versus a diseased 

neuromuscular system [18]. Discriminatory power can be increased when multiple feature values are 

considered simultaneously [19]. For instance, a MUP with high amplitude only provides evidence that 

it was detected from a neuropathic muscle if it also has long duration.  

MUP characterization must be able to handle various mixed mode multi-variate data types that 

include numeric, Boolean, nominal and or ordinal. Numeric data can be continuous or discrete. 

Nominal data values are non-numeric, descriptive or use categorical labels. For instance the patient is 
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“normal” is an example of nominal data. Ordinal data values define a position or rank. For instance 

the patient “is weak” is an example of ordinal data. The system needs to handle any underlying joint 

probability distribution of the features used for characterization. A classifier needs to capture 

dependencies among the features. Clinical patterns that offer important clues to the type of a 

neuromuscular disorder often combine different data types. For instance, proximal muscles (nominal) 

affected by weakness (ordinal via MRC strength scale) with little or no wasting (ordinal) are often an 

indication of a myopathy [20] (nominal). Nominal data types provide a means of capturing more data 

relevant to the examination. In cases where there is a great deal of imprecision or subjectivity, a 

nominal description can provide useful additional information. For instance, the grading of strength 

on the MRC scale of 0 to 5 can be augmented with a description such as the smoothness (or lack 

thereof) of the contraction.  

6) Generalization: A MUP characterization system needs to accurately classify novel patterns that 

have not appeared in the training data. Classifiers that have been ‘tuned’ to the training data (i.e. over-

fitting) can achieve low error rates based on testing of the training data. However, they are unlikely to 

perform well for MUPs that have not been seen before or were not included in the training data [19].  

7) Handle Missing Data. A MUP characterization system needs to be able to handle missing feature 

values both in the training data and in the data extracted from the muscle under consideration without 

adversely affecting the outcome of a characterization. 

2.4 Possible Classification Methods 

Methods to characterize a neuromuscular system and to measure the degree of involvement of a 

disorder require a MUP characterization process that is accurate, allows the basis of it decisions to be 

easily understood, produces a numeric value in support of or refutation of a characterization, and is 

able to achieve generalization. Existing MUP and muscle Characterization techniques do not 
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completely satisfy these important requirements. It is hypothesized, that a classifier using pattern 

recognition techniques can meet these requirements. This section discusses the suitability of various 

classification methods based on the requirements in Section 2. 3.  

2.4.1  1st Order Logic 

A rule in first order logic is a sentence that is composed of quantifiers, variables, constants and 

functions that are connected with logical operators. A knowledge domain can be built up by asserting 

a set of rules that are known to be true. A query can be asked of the knowledge domain and a first 

order logic system will return true, false or unknown for a given query. Measurements that are 

continuous random variables must be converted to logic symbols using quantization techniques. In 

general it is difficult for a classifier based on 1st order logic to calculate probabilities. Therefore these 

systems are not suitable for the CDSS under consideration. 

KANDID [21] is an example of a decision support system that uses first order logic whose 

acronym stands for Knowledge-based Assistant for Neuromuscular DIsorder Diagnosis. It is used to 

plan and manage nerve conduction studies as well as diagnosis and reporting of neuromuscular 

disorders. 

2.4.2 Bayesian Networks  

A Bayesian network is a directed graph where each node represents a feature. Sets of arrows connect 

pairs of nodes where an arrow from node 1X to node 2X  means that 1X  is a parent of 2X . Each 

node stores a table of conditional probabilities where the parent nodes are the given features of a 

conditional probability.  The conditional probability table associated with a node provides the effect 

of the state of the parents on the probability outcome of the node. A Bayesian network can provide an 

estimate of the joint probability density function for a classification problem. The joint probability of 

a set of feature values occurring is given by the notation ( )nn vXvXvXP === ,,, 2211 K  where 
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ii vX =  means that feature iX has taken on the value iv . A probability prediction for 

( )nvvvP ,,, 21 K can be calculated as follows [22]: 

( ) ( )( )∏
=

=
n

i

iin XparentsXPvvvP
1

21 |,,, K   (2.1) 

where ( )iXparents  represents the values of the features of parent nodes of node iX  

An example of a muscle disorder decision support system based on Bayesian Networks is called 

MUNIN [23]. MUNIN stands for MUscle & Nerve Inference Network. There are four layers in its 

Bayesian Network leading from the underlying disorders to the findings. At the top layer are the 

muscular disorders. The second layer is the impacts of the disorders on the physiology of a muscle. 

The third layer is the impact on the physiology of a muscle as well. Layers two and three are both 

required for physiological factors in the event that more than one disorder is present at one time. The 

last layer represents the findings as determined by clinical tests, instruments, and doctor examination 

or patient reports. The major limitation of MUNIN is that it requires human medical expertise in 

determining the conditional probability tables. Machine learning techniques can be applied to learn 

the optimal structure of a Bayesian network from training data, however, the problem is considered 

intractable because of the large space of possible network structures to be searched [22, 24]. 

Machine learning is more efficient for Naïve Bayesian Networks. A Naïve Bayesian (NB) 

classifier is built by assuming that all of the features are conditionally independent of each other. A 

NB classifier is rather simplified in that it doesn’t reveal any interdependencies among the features. 

The NB classifier produces a score 
ks for each category by taking the product of the conditional 

probabilities of each feature whose value falls within a pre-defined interval [19].  The scores are 

normalized resulting in a set of conditional probabilities that sum to 1.  It is a discrete classifier since 

it handles nominal and discrete data types and requires continuous features to be quantized. A NB 
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classifier cannot uncover the underlying distribution of the data nor easily provide a transparent 

explanation. Therefore a naïve Bayesian network is unlikely to uncover the underlying distribution of 

the data as well as a full network. NB classifiers can be augmented so that they provide some 

transparency by reporting the individual contribution of each feature towards the probability that an 

observation belongs to a category [25]. 

 

2.4.3 Decision Trees 

A decision tree (DT) is a structure of tests done on the feature values of a test instance that leads to a 

classification. Each node in a tree specifies a test to be made on a single feature. The first node of the 

tree is known as the root node. Each branch coming out of the node is labeled with the outcome of the 

test applied at the node. When a leaf of the tree is reached the value specified by the leaf, i.e. the 

category is returned as the result to a query made using feature values. It can handle discrete features, 

Boolean, nominal and ordinal. Continuous features need to be quantized. A DT can produce a 

conditional probability estimate of the category given a test instance. Specific high order interactions 

are difficult to uncover because a decision tree is built by considering one feature at a time. DTs can 

be augmented so that rules can be extracted by tracing the path taken through the tree. Since a single 

feature at a time is tested this does not readily reveal relationships among the features [26].  

There are a number of algorithms that will build decision trees based on labeled training data. 

One of the most popular is Quinlan’s [27] ID3 algorithm for constructing decision trees. The 

discriminatory power of a feature can be determined by calculating the entropy [19] of the various 

categories that match the feature value that the emerging branch of the node represents. Entropy 

provided by a node can be thought as the impurity across all of the branches emerging from a node 

where each branch represents a specific feature value – higher entropy corresponds to higher levels of 

impurity.  In a two category system impurity in a branch is the ratio of the number of instances of 
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training data of the category with the greatest number of instances over all instances of data appearing 

in that branch. So if each branch had only instances of training data belonging to a single category 

then each branch would have zero impurities, i.e. zero entropy. Therefore a feature where each branch 

has no impurities would contribute high classification accuracy to a DT.   The process for inducing a 

decision tree from training data starts by calculating the impurity for each feature. The feature with 

the lowest level of impurity is chosen to be the first test in the tree since it has the highest 

classification accuracy. This algorithm is applied iteratively to the other features until the leaves of 

the tree are reached. 

The C4.5 algorithm is an extension to ID3 that adds abilities such as handling missing data, 

pruning of decision trees, rule derivation and the quantization of feature value ranges [19]. These 

improvements lead to decision trees that are smaller and often achieve higher classification accuracy. 

Decision trees can provide a conditional probability estimate of a category given a set of feature 

values by counting the number of instances of a category that appear in a leaf node. In general, 

decision trees provide poor probability estimates for two reasons [28]. First, decision tree induction 

methods try to make leaves homogeneous so observed probabilities in leaves are biased towards zero 

or one. Second, the estimates have high variance because often the numbers of training examples in a 

leaf are small leading to observed frequencies that are not statistically reliable. 

A decision tree does not give insight into the relationship among features [26]. Specific high 

order interactions are difficult to uncover because a decision tree is built by splitting one variable at a 

time.  

Physicians typically agree that the first node in a decision tree is the most important question 

[14]. The first node in a tree induced from training data may not reflect the most important diagnostic 

question because a feature is chosen based on reducing node impurity. Also a pruned tree does not 

allow a physician to look at the contribution of all of the features in making a diagnosis.   
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2.4.4 Artificial Neural Networks 

A popular tool in pattern recognition is the artificial neural network (ANN). Inspired by an 

understanding of the human brain an artificial neuron is composed of input links, input function, an 

activation function and an output [22]. A single layer of neurons can be arranged to provide a single 

linear decision boundary.  Multiple layers of neurons can be arranged to provide multiple linear 

decision boundaries and can be used to represent a wide range of decision functions.  ANNs are not 

totally transparent in that they cannot easily provide an explanation for their conclusions that are 

directly understood.  

2.4.5 Fisher’s Linear Discriminant Analysis  

Fisher’s Linear Discriminant Analysis (LDA) is an approach that selects a set of features 

associated to each category, that can maximally distinguish among different categories or classes i.e. 

maximize the ratio of  (variance between categories) / ( variance within categories) [29]. The 

coefficients of the functions are unit vectors that maximize the above ratio. The number of 

discriminant functions is:  min (#classes-1, #parameters). So with K number of classes there are (K-1) 

number of discriminant functions, unless the number of features is less than (K-1). Discriminant 

functions rotate and scale the training data to maximize the distance between categories. Each 

instance in a set of training data can be transformed into a set of discriminant coordinates using the 

learned discriminant functions.  The center of a category can be estimated by calculating the mean of 

the discriminate coordinates of a set of training data. The distance to the category centroid is used to 

estimate whether a test instance belongs to a specific category or not. An example of two discriminant 

functions called D1 and D2 with three features F1-3 are shown below. 

 

D1 = v11*F1 + v21*F2 + v31*F3 (2.2) 

D2 = v12*F1 + v22*F2 + v32*F3 (2.3) 
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vij is the coefficient for the ith feature for the jth discriminant function 

 

The coefficients vij are determined by maximizing the covariance between the categories in the 

training data over the covariance within the categories. This is subject to the condition that the 

coefficients v are unit vectors otherwise the maximum is unbounded.  

 

λ=
Wvv

Bvv
T

T

  (2.4) 

 

B is the between categories covariance matrix and W is the within categories covariance matrix. The 

B & W matrices can be calculated from the training data. Taking the first derivative of the above 

equation with respect to v and solving leads to the solution of v.  

Pfeiffer and Kunze [1, 11] applied LDA to characterize MUPs by calculating the probability that 

a particular MUP was detected from a myopathic, normal, or neuropathic muscle.  Each MUP in the 

training data is mapped to a set of discriminant coordinates ( )21 , DD  by applying the discriminant 

functions to the feature values of the MUPs. Test MUPs are classified by finding the Euclidean 

distance to the centroid of the set of discriminant coordinates in the training data of each category. 

The test MUP is classified to the category whose centroid has the minimum distance to the test MUP.  

2.4.6 Pattern Discovery 

Information-theory based statistical inference can be used for the detection of significant patterns. 

Wong and Wang [30-33] describe the use of information theory based pattern discovery (PD) for 

classification. Their classification algorithm is composed of three parts: discovery of significant 

patterns, rule selection and classification.  
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A significant pattern is said to occur when a set of feature values occurs together more often than 

expected assuming a random occurrence.  For continuous data, a range of feature values is quantized 

into a natural language label as is used in the clinic: e.g. small, medium or large. A statistical test of 

significance determines if a significant pattern has occurred. Patterns that include a category label can 

be used as rules for classification. The order of a rule is determined by the number of features, 

including the category label, found in a pattern. An example of a 4th order rule is a MUP 1:labeled 

myopathic  with 2: low amplitude, 3: low duration and 4: high number of turns. 

An information theoretic measure called weight of evidence (WOE) represents the discriminatory 

power of a rule. A rule may be statistically significant but the WOE is needed to determine if the rule 

provides negative, neutral or positive evidence to refute or support a classification. A large negative 

WOE score means that the category suggested by the rule is highly unlikely to occur. A large positive 

WOE score means that the category suggested by the rule is highly likely to occur. Rules with WOE 

scores near zero neither support nor refute the likelihood of the classification. Section 4.1 will discuss 

this technique in more detail. 

The rules used for classifying an observation are selected starting with the highest order rule first 

and accumulating its WOE. The features used in the highest order rule are then excluded and the rule 

with an equal or lower order is found and its WOE is added to the total. This process is continued 

until no more rules are found or all of the features have been considered. PD is a flexible 

classification system because a prediction of a category can be made on any subset of the features 

describing an observation. The system can also classify new observations that have missing data.   

It is  hypothesized that a PD classifier can meet most of the requirements discussed in Section 2.3 

because it has the following advantages over existing classification methods: a) able to discover 

multivariate rules comprised of mixed mode features, b) transparent because it can reveal the 

significant patterns, discovered as a set of feature values, which contributed most significantly to the 
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classification, c) the ability to handle any underlying probability density and d) the ability to classify 

new observations that have missing data. It can easily handle discrete features. For instance 

observations made by a physician about a patient’s symptoms are often discrete, unordered (nominal) 

variables that can be defined by a finite alphabet.   

 



 

 30 

Chapter 3 

MUP Features, MUP Data and Performance Measures 

This chapter defines the features measured from MUP templates and describes the different MUP 

data sets used in this work. The MUP data sets are organized by the type of decomposition system 

used to establish MUP templates either DQEMG or Multi-MUP. The chapter ends by defining the 

type of measures used to evaluate the performance of different characterization systems.  

3.1 Definition of MUP Features 

The following definitions are from [34] unless otherwise noted. Refer to Figure 3.1 for a graphical 

depiction of many of the features defined below. 

Duration (ms) is defined as the time between starting point (onset) and end-point of a MUP. These 

points are often determined by deviation from the baseline and exceeding a minimum slope criterion. 

The onset and end markers defined by automatic algorithms need to be inspected manually by a 

human operator and sometimes may need to be reset.  

Spike duration (ms)  is defined as the time between the first and last positive peaks of the MUP.  

Amplitude (µV) of a MUP is the difference in voltage from the maximal negative to the maximal 

positive peak within the duration of a MUP.  

Area (µV·ms) is calculated from the rectified MUP signal within the duration.  

Thickness (ms) is defined by area-to-amplitude ratio (AAR) [35].  

Size Index is a logarithmic function of thickness and amplitude that is related to the size and shape of 

a MUP [36, 37].  

A phase is the part of a MUP that falls between baseline crossings and exceeds a minimal amplitude 

threshold. The number of phases is counted within the duration.  
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A turn is a local peak, either negative or positive in the MUP waveform. Peaks generated by noise are 

excluded by defining a turn as a peak that exceeds a minimum voltage change between successive 

peaks. 

 

Figure  3.1 MUP Feature Depictions (From D.W. Stashuk, T.J. Doherty: "Normal Motor 

Unit Action Potential" in Neuromuscular Function and Disease , vol. 1, W. F. Brown, C. F. 

Bolton and M. J. Aminoff, Eds. Philadelphia, PA: Elsevier Science, 2002, pp. 291-310.) 

3.2 DQEMG Decomposed MUP Data 

MUP data described in this Section were estimated by decomposing EMG signals using DQEMG [7]. 

DQEMG typically finds 51 isolated MUPs produced by a single motor unit, aligns them using 

maximum slope, and uses a median trimmed average to form the MUP template. DQEMG uses a 25 

µV threshold to define a turn and a phase has to have amplitude of at least 20 µV and duration of at 

least 240 µs. A revised Size Index (rSI) was used for MUP data decomposed by DQEMG and was 

calculated by ( )( ) ( )( )
msmV thicknessamprSI 1010 log8.1log ⋅+=  [37]. 
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3.2.1 Simulated Data 

EMG signals were simulated using a physiologically-based model [38] to help examine the 

relationship between level of involvement and MUP characterization performance. The simulator was 

extended to also allow simulation of the affects of neuropathic and myopathic disorders [39].   To 

simulate a neuropathy, motor units are reorganized progressing from random motor neuron death to 

random re-innervation of orphaned fibers by nearby surviving motor neurons. To simulate 

inflammatory myopathy, a small percentage of randomly selected healthy fibers are “infected” and 

atrophied by a small fraction, and a smaller proportion are hypertrophied by a small fraction. This 

process is iterated by infecting additional fibers, and atrophying and hypertrophying the newly and 

previously infected fibers until the prescribed level of involvement is reached. A fiber is considered 

non-functioning (i.e. dead) when its diameter is below a critical threshold.  

The simulator models the recruitment of motor units necessary to bring the level of force 

produced by a diseased muscle up to a prescribed percentage of the maximal voluntary contraction 

(MVC) force of a healthy muscle. Therefore, a simulated muscle that is normal, or with 25% or 75% 

motor unit loss at 10% MVC are each modeled as if producing close to the same force. EMG signals 

detected using a concentric needle at various intramuscular positions of several different muscles 

during approximately 7 to 10% MVC contractions were simulated and then decomposed into MUP 

templates.  This method mimics the completion of several EMG studies across different individuals 

and includes levels of background MUP interference and noise typical of clinical studies. A 

comparison done by Hamilton-Wright and Stashuk [38] of the quantitative analysis of simulated 

versus real healthy decomposed MUPs shows good correspondence. 

In total, 500 MUPs were extracted from simulated EMG signals of normal muscle, 500 from 

myopathic muscle and 500 from neuropathic muscle. The myopathic/neuropathic MUPs, in 

approximately equal proportion, were simulated to come from muscles with 25%, 50% and 75% 
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muscle-fiber/motor-unit loss. Each MUP was labeled as either normal, myopathic or neuropathic 

allowing comparison with the literature that use these labels [1, 10, 11] .   

3.2.2 London Health Sciences (LHS) MUP Data 

Control and neuropathic MUPs were sampled from the biceps-brachii and first dorsal interosseous 

(FDI) muscles.  In total, 1649 MUPs from 54 muscles were sampled from 16 healthy control subjects 

(aged 27 ± 4 years) and 427 MUPs from 22 muscles were sampled from 14 patients, including 9 

patients (aged 52 ± 12 years) with clinically probable or definite amyotrophic lateral sclerosis as 

defined by the revised El Escorial criteria [40] and 5 patients (aged 37 ± 11 years) with Charcot-

Marie-Tooth Disease Type 1X confirmed via genetic testing. 

A disposable concentric needle electrode (Model N53153; Teca Corp., Hawthorne, NY) was used 

to acquire EMG signals during 30 s voluntary isometric contractions performed at between 10% and 

20% of each individual subjects’ maximal voluntary contraction using DQEMG on a Neuroscan 

Comperio (Neuroscan Medical Systems, El Paso, Texas) with a bandpass of 10 Hz–10 kHz at a 

sampling rate of 31.2 kHz as previously described [41-43].   

3.2.3 Rigshospitalet (Rigs) Data 

A standard concentric needle electrode was used to acquire EMG signals for 11.2 seconds during 

voluntary contraction of various muscles and then amplified by a high impedance differential 

amplifier (DISA, 15C01) and analog band-pass filtered with high and low pass filters set at 2 Hz and 

10 kHz. The EMG signals were sampled and digitized at a sampling frequency of 23437.5 Hz with 16 

bit resolution (Motorola DSP56ADC16). 

MUP data was acquired from biceps muscles to establish control data. MUP data was acquired 

from primarily biceps and vastus medialis muscles from patients with different types of myopathy 

(various forms of dystrophy, polymyositis and unknown myopathies) and ALS. MUP data was also 
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acquired from FDI, APB (Abductor pollicis brevis), and TA (Tibialis Anterior) muscles of patients. 

More information about this data is available in [44]. 

3.3 Multi-MUP Decomposed MUP Data 

The data described in this section was obtained by decomposing EMG signals using the multi-MUP 

technique described previously [45, 46] where many different individual MUPs, detected at a single 

needle insertion point, that are deemed to belong to the same MUP train by a shape based classifier 

are averaged. The mean and SD of time points of the set of MUPs are calculated. The MUP template 

is calculated by excluding points that lie outside the ±1 SD in the time point average. The Multi-MUP 

system has many similarities with DQEMG. However, a drawback of the Multi-MUP system is its 

inability to capture MUPs with long risetimes according to Miki Nikolic who has had extensive lab 

experience with the system [44].  Another difference between Multi-MUP and DQEMG is the 50 µV 

[45] threshold for defining a turn compared to the 25 µV threshold used by DQEMG. Multi-MUP 

also defines size index (SI) as ( ) ( )msmV thicknessampSI +⋅= )(10log2  [36]. 

3.3.1 University of Ljubljana External Anal Sphincter (EAS) MUP Data 

Quantitative MUP data from a group of 86 (58 men) patients [46] (Podnar, et al. 2002) (called patient-

sensitivity) was used to study sensitivity. Data from a group of 77 (49 female) control subjects [47] 

(Podnar. 2004) (called control-specificity) was used to study specificity, and data from a separate 

group of control subjects sampled from 64 control subjects [46] (Podnar, et al. 2002) (called control-

reference) was used to establish normative thresholds. The patients had cauda equina or conus 

medullaris lesion. The control-specificity group consisted of subjects referred for minor pelvic floor 

dysfunction but whose examination showed no neuromuscular or other related disorders. The 

normative thresholds of the control-reference data were set at +/- 2 SD for the means and at the 5th-
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95th percentiles for outliers and were previously published [46] (Podnar, et al. 2002). The diagnosis of 

the subjects and patients was made as per standard clinical practice reported previously [45, 47-49].  

Intramuscular EMG signals were detected using a concentric needle electrode and a commercial 

EMG system (Keypoint; Alpine Biomed Neurodiagnostics, Skovlunde, Denmark) with a bandpass of 

5 Hz–10 kHz as previously described [50] (Podnar and Vodusek. 1999). Using the multi-MUP 

technique described previously (Podnar, et al. 2002, Stålberg, et al. 1995) individual MUP waveforms 

were estimated and their feature values calculated [46].  

 

3.3.2 University of Ljubljana Biceps MUP Data 

EMG signals were acquired from 33 biceps muscles of healthy subjects and 30 biceps muscles from 

patients with a genetic diagnosis of facioscapulohumeral muscular dystrophy (FSHD) using a 

standard concentric EMG needle, and a commercially available EMG system (Keypoint; Medtronic 

Functional Diagnostics, Skovlunde, Denmark) with standard settings (filters: 5 Hz to 10 kHz) [51]. 

Sampling of a muscle continued until at least 20 different MUPs per muscle were decomposed using 

multi-MUP analysis. 

3.4 Distribution of MUP Thickness Feature among Categories 

The distribution of MUP thickness values for each category for the data used in this thesis was 

estimated using a Parzen window technique using a Gaussian kernel.  The distributions were used to 

represent the separation of the data across the different categories to gauge the difficulty in accurately 

characterizing the data. Categories that are more separated should be easier to characterize accurately 

than categories that are less separated.  Thickness was chosen as the feature to represent separation 

because it is thought to be highly discriminative [35, 52]. Other features showed similar distributions 

per category and data set.  
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Figures 3.2 and 3.3 show the estimated distributions of thickness for the simulated and Rigs data 

respectively. They show that myopathic data has the lowest mean thickness followed by normal and 

then neuropathic data. This is expected because myopathic data tends to have the thinnest MUPs 

followed by thicker normal and then neuropathic MUPs. Figure 3.2 shows that the variance of 

myopathic and neuropathic data is larger than that of normal which is expected. Figure 3.4 and 3.5 

show the estimated distributions of thickness for the LHS and EAS data respectively where the 

normal category has a lower mean and variance than the neuropathic category.   

The mean  and standard deviation of thickness values for the Rigs, LHS, and the Ljubljana biceps 

data (LJUB-Biceps) shown in Table 3.1 are similar for respective categories.  The mean and standard 

deviation of thickness values for the Rigs data compared to the LHS data shown in Table 3.1 are 

slightly different.  

All of the data sets have a great deal of overlap in the distributions of thickness values among the 

different categories as expected according to [18] but there is some separation in the data among the 

categories. However, the EAS data does not have a great deal of separation between its categories as 

shown by how closely the distributions align in Figure 3.5 and the small distance value of the EAS 

data compared to the other data sets as shown in Table 3.1. All of the other data sets have more 

separation between categories than compared to the EAS data. The LHS and Ljubljana-biceps data 

had very similar distances while the Rigs data had the greatest separation of all the MUP data sets as 

shown in Table 3.1. It is expected that the EAS data will have lower characterization accuracy and the 

Rigs data set will have higher characterization accuracy than the other MUP data sets based on 

distance between categories of their thickness distributions 
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Figure  3.2 Estimated Distribution of Thickness - Simulated Data 
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Figure  3.3 Estimated Distribution of Thickness - Rigs Data 

 



 

 38 

-1 0 1 2 3 4 5

LHS thick

 

 

NORM

NEUR

  

Figure  3.4 Estimated Distribution of Thickness - LHS Data 
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Figure  3.5 Estimated Distribution of Thickness - EAS Data 
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Table  3.1 Mean, Standard Deviation and Distance of Thickness Distributions 

DATA mean SD mean SD mean SD Distance

SIM 0.91 0.35 1.03 0.20 1.23 0.27 0.38

RIGS 1.06 0.54 1.41 0.55 2.36 1.25 0.52

LHS 1.36 0.48 1.82 0.58 0.43

EAS 0.85 0.37 0.94 0.46 0.11

LJUB-Bicep 1.03 0.45 1.40 0.45 0.42

MYO NORM NEUR

 

The distance shown in the last column in Table 3.1 for the two-category distributions was calculated 

by ( ) ( )2121 σσ +−= mmD  where im is the mean for category i and iσ was the standard deviation 

of category i. Distance for the three-category distributions was calculated by taking the average across 

all combinations of two-category distances.  

 

3.5 Performance Measures 

When analyzing the EAS, LHS and Ljubljana biceps data that had only two categories, sensitivity 

and specificity were the terms used to describe per category accuracy. Sensitivity for the EAS and 

LHS data was defined as the total number of muscles characterized as neuropathic divided by the 

total number of ‘true’ neuropathic, i.e. patient muscles. Sensitivity for the Ljubljana biceps data was 

defined as the total number of muscles characterized as myopathic divided by the total number of 

‘true’ myopathic, i.e. patient muscles. Specificity was defined as the total number of muscles 

characterized as normal divided by the total number of ‘true’ normal, control muscles. Accuracy was 

defined as the average of sensitivity and specificity. The traditional definition of accuracy (true 

negatives + true positives)/(all muscles tested) was not used because it is biased towards the category 

that has the largest number of test muscles to be characterized. The traditional accuracy measure 

would be skewed by an unequal proportion of controls to patients. For instance, the traditional 

accuracy measure would under weigh any results for the patients if there were fewer patients than 

controls. 
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The term sensitivity-specificity deviation (SSD) was defined as: 

( ) 2/)()( 22
SpecASensASSD −+−=   (3.1) 

where  A  is accuracy - the mean of specificity and sensitivity. 

Sens  is sensitivity, and  

Spec  is specificity,  

For data sets with three categories, i.e. Rigs and simulated data, overall accuracy A was the mean 

across per-category accuracies, i.e. kA  is the accuracy for category ky  – the number of observations 

of category ky  that were classified as ky divided by the total number of observations with ‘true’ 

category ky . The SSD for three categories is then:  

( ) 3/)()()( 222
neurnormmyo AAAAAASSD −+−+−=  (3.2) 

where  myoA , normA and neurA are the accuracies for the myopathic, normal and neuropathic categories 

respectively. 

SSD was used to determine how well a characterization method maximized/balanced both specificity 

and sensitivity. 
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Chapter 4 

MUP Characterization  

This chapter describes the Pattern Discovery method in detail and then applies it for the 

characterization of MUPs. The PD method was evaluated and compared to other pattern recognition 

techniques using the criteria for a CDSS described in Section 2.3.  

4.1 Pattern Discovery Based Classification.  

A MUP can be characterized using Pattern Discovery (PD) by discovering rules in a set of training 

data. Further information about this PD method can be found in [30-32, 53]. Given a training data set 

with N MUP samples, a MUP X  is described by M features },,{ 1 Mxx L=X  where each feature 

Mixi ≤≤1  is a random variable. Each feature can take on a value from its discrete alphabet 

},,{ 1 im

iii ααα K=  where im is the number of characters in the alphabet of the ith feature. A primary 

event occurs when a single feature ix takes on a value from iα . The pth primary event is denoted by 

][ p

iix α=  or simplified to ipx . rX is an r
th order event that contains r primary events. A set of 

category labels },,,{ ,1 Kk yyy LL contains K  labels and Kk ≤≤1 . The number of features, 

including a category label, determines the order of an event.  An example of a 4th order event would 

be a MUP from a neuropathic muscle, i.e. labeled neuropathic, with high amplitude, high duration 

and a high number of turns. For continuous data, the range of feature values can be divided into pre-

defined intervals, i.e. quantized, and each interval labeled in a natural language as is often used in the 

clinic: e.g. small, medium, or large. If the number of observations (denoted by sX
o ) of an event is 

significantly higher or lower than the number of expected observations (denoted by sX
e ) assuming 

randomly distributed data then an event is said to be a pattern when it passes a test of statistical 
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significance using the adjusted residual sX
d [30] and the number of expected observations exceeds a 

threshold (usually sX
e = 5) to ensure statistical robustness. The expected number of observations is 

given by: 

),Pr(∏
∈

=⋅=
s

ip

s

xx

p

iix
XNe α  (4.1) 

where N is the number of MUPs and NoX
ipx

p

ii == )Pr( α  

Equation 4.1 calculates the expected number of observations based on the NULL hypothesis that the 

feature values comprising an event are independent. An event is called a pattern when the NULL 

hypothesis is rejected by testing using adjusted residual. The adjusted residual is calculated by first 

finding the standardized residual. 

s

ss

s

X

XX

X
e

eo
z

−
=   (4.2) 

The standardized residual is considered to have a Gaussian distribution when the asymptotic variance 

of s
X

z is close to one, otherwise the standardized residual has to be adjusted to a Gaussian 

distribution with a variance of one. This adjusted residual is expressed by: 

,
s

s

s

X

X

X
v

z
d =    (4.3) 

where s
X

v is the maximum likelihood estimate of the variance of s
X

z  

A positive pattern occurs if 96.1>s
X

d at 95% confidence level. 

A negative pattern occurs if 96.1−<s
X

d at 95% confidence level. 

If the pattern contains a category label then it is a rule. Because they contain category labels and are 

significant based on a statistical test, rules can be used for characterization. The discriminatory power 
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of the lth  thr order rule, r

lX , can be determined by its weight of evidence (WOE), which is the odds 

of a sample MUP,  which has a subset of feature values that match the feature values of  r

lX , 

belonging to category ky versus not belonging to ky .  

)|(

)|(
log2

k

r

l

k

r

l

yMUPXP

yMUPXP
WOE

≠

=
=   (4.4) 

where: 

MUP = ky ,  MUP is detected in a muscle of category ky  . 

MUP ≠ ky ,  MUP is detected in a muscle not of category ky .  

P(X | Y)  the probability of X occurring given that Y has occurred – a conditional probability. 

r

lX    an thr order pattern, where l  is an index indicating the lth, rth order pattern. 

Note that the range of (4.4) is +∞<<∞− WOE .  A rule labeled ky  with positive WOE provides 

support for the category ky .  A rule supporting a label other than ky will have a negative WOE and 

provides refutation for the category ky . The strength of the support (or refutation) is proportional to 

the absolute value of the WOE.  An thr  order rule where Mr <  is called a component rule. The 

union of disjoint component rules of the same category, i.e. the union of the set of component rules 

with no overlapping features, discovered in a MUP is called a compound rule and is denoted by *
kx .  

There is one compound rule per category per MUP and the category is denoted by the subscript k 

in *
kx . 

The weight of evidence for a category for a MUP under test is the sum of the WOEs of each 

component rule that belongs to the compound rule associated with the MUP under test.  The total 
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WOE provides either support or refutation of category ky . The PD classifier calculates K weights of 

evidence (one for each category) for each MUP under test.  

 

4.2 Evaluation of MUP Characterization Methods 

The performance of several classifiers used to characterize the simulated MUP data (Section 3.2.1) 

and LHS MUP data (Section 3.2.2) were evaluated. 

4.2.1 Other Classifiers Considered for MUP Characterization 

The classification performance of three other classifiers was compared with the PD classifier: two 

discrete classifiers – Weka J48 DT and Weka NB; and one continuous – LDA. Although not as 

transparent as the other classifiers, LDA was chosen for comparison because it was previously used 

for MUP classification [1, 11]. DT and NB classifiers were chosen because they are commonly used 

in medical decision support, are regarded as being transparent [14, 26], and can handle nominal data. 

The DT and NB classification error rates were determined using the algorithms of the Weka explorer 

system [24]. A Matlab function, RAFisher2CDA [54], was modified to calculate the Fisher 

discriminants used for LDA classification.   

4.2.2 Training and Testing  

Thirty trials were conducted using the PD, LDA, DT, and NB classifiers with the simulated MUP data 

partitioned into different sets of training and test data. There was a complete separation of training 

and test data for each trial. Three hundred samples from each category were randomly chosen for 

training per trial for a total of 900 training samples. Each trial used the same training and test data for 

the different classification methods. After the training data was chosen, the remaining data was used 

to test the classifiers to establish classification performance. A mean classification error rate and 

standard deviation was calculated to determine classifier performance. This process was repeated for 
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the LHS MUP data except the LHS data consists of two categories and so 600 training samples per 

trial were used.  

The classifiers used the following MUP features: amplitude, duration, phases, turns and thickness 

otherwise known as area-to-amplitude ratio (AAR). Except for LDA, which requires continuous data, 

the MUP data was quantized into intervals before being used for classification. The discrete 

classifiers (PD, DT and NB) were all presented with the same quantized training and testing data sets. 

This prevented NB and DT from using their own quantization methods so that the effects of 

quantization on classification accuracy were not a factor in the comparison. Using only three intervals 

keeps the number of rules and the size of the decision tree to a reasonable size; and features can be 

easily translated into linguistic labels such as low, medium, and high which is conceptually consistent 

with clinical practice. As well, three intervals help to simplify the visual patterns that explain the 

results leading to diagrams that are easily recognized and understood by clinicians. The natural 

logarithm of amplitude was taken before determining the linear discriminant functions to minimize its 

skewness. Prior to quantization none of the features were transformed for PD, DT, and NB 

classification. 

The classification error rate of using a single MUP to characterize a muscle was examined. The 

per category error rate was defined as the number of MUPs that incorrectly predicted the muscle 

category divided by the total number of MUPs detected from muscles of that category. 

 

4.3 Results LHS MUP Data 

PD had an average error rate (and standard deviation) of 30.3% (1.8%), LDA 29.0% (2.1%), DT 

30.1% (2.1%) and NB 29.8% (1.8%) across thirty trials. All four characterization methods had similar 

error rates with no statistically significant differences between each other according to the Tukey post 

hoc test at a significance level of 0.05. Table 4.1 shows NB had the highest sensitivity and LDA had 



 

 46 

the highest specificity and accuracy. However, PD had a significantly lower SSD compared to the 

other methods. J48 had the next best SSD, which was about 2 times the SSD of the PD method.  

4.4 Results Simulated MUP Data 

PD had an average error rate (and standard deviation) of 24.3% (1.2%), LDA 23.1% (1.4%), DT 

24.6% (1.2%) and NB 27.0% (1.4%) across thirty trials. A Tukey post hoc test showed that LDA had 

a significant improvement at the 0.05 level compared to the other classifiers. PD and DT did not have 

statistically significant differences between each other according to the Tukey post hoc test at a 

significance level of 0.05. The Tukey post hoc test between the other classifiers and NB showed that 

it had a significant decrease in performance at the 0.05 level.  

Tables 4.2 and 4.3 show the confusion matrix for PD and LDA simulated MUP data 

classifications respectively. The confusion matrices shown were determined as an average of the 

confusion matrices across the thirty trials. The Tables show that the per category error rates for 

simulated normal and neuropathic are similar with a dramatic improvement for simulated myopathic 

data. 

 If only normal and neuropathic simulated MUP data error rates are compared, Table 4.2 shows 

an average error rate across two categories of 29% for the PD classifier and Table 3 shows a two 

category error rate of 28.8% for the LDA classifier, which are very similar to the error rates of the 

LHS data of 30.3% and 29.0% respectively. Note that the LHS data did not include any myopathic 

data.  

Figure 4.1 shows that as the level of simulated involvement increased, the classification error rate 

decreased for MUPs detected from simulated myopathic and neuropathic muscles. Neuropathic 

MUPs had error rates of 48%, 30%, and 21% for levels of involvement of 25%, 50%, and 75% 

respectively. Myopathic MUPs had error rates of 22%, 13%, and 7% for levels of involvement of 

25%, 50% and 75% respectively.  



 

 47 

Table  4.1 Sensitivity/Specificity and Accuracy of Characterization of LHS MUP Data 

Sensitivity Specificity Accuracy SSD

PD 71.7% 67.8% 69.7% 1.9%

LDA 65.8% 76.2% 71.0% 5.2%

J48 66.3% 73.5% 69.9% 3.6%

NB 75.7% 64.8% 70.2% 5.4%  

 

The results in Table 4.1 are the mean sensitivity, specificity, and accuracy across thirty trials for the LHS MUP 

data. The SSD is based on the means shown in Table 4.1. The training data for each trial consisted of three 

hundred randomly chosen samples from each category for a total of 600 samples. After the training data was 

chosen, the remaining data was used to test the classifiers to establish classification performance. Each trial 

used the same training and test data across the different classification methods. 

 

Table  4.2  Pattern Discovery Confusion Matrix (simulated MUP data) 

True Class Myopathic Normal Neuropathic per class error rate

Myopathic 170 20 10 15%

Normal 20 144 36 28%

Neuropathic 21 39 140 30%

Classified as

 

 

The PD confusion matrix shows that myopathic simulated MUPs had the lowest per-category classification 

error rate of 15%. The neuropathic MUPs had the highest per-category error rate at 30%. This confusion matrix 

shows the expected per-category distribution of errors. The probability of error that a MUP detected from a 

myopathic muscle is misclassified as normal is 2 times greater than being misclassified as neuropathic (20/200 

versus 10/200). A similar trend appears for neuropathic data where the probability of error of a MUP being 

misclassified as normal is about 2 times greater than being misclassified as myopathic (39/200 versus 21/200). 
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Table  4.3 LDA Confusion Matrix (simulated MUP data) 

True Class Myopathic Normal Neuropathic

per class 

error rate

Myopathic 176 20 4 12%

Normal 17 138 45 31%

Neuropathic 15 38 147 27%

Classified as

 

 

 

The LDA confusion matrix shows that there was an increase in the error rate for normal classifications from 

28% to 31% and a decrease in error rate from 30% to 27% for neuropathic classifications compared to the PD 

classifier. The confusion matrix for LDA shows the expected distribution for incorrectly classified MUPs 

detected from muscles with disorders is 5 times greater for normal than myopathic and about 2.5 times greater 

for normal than neuropathic. 
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Figure  4.1 Error Rate vs. Level of Involvement for Simulated MUPs 
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4.5 Discussion MUP Characterization 

Table 4.4 summarizes a comparison of the studied classifiers for four of the identified requirements 

based on the study results and consideration of the known properties of each classifier. PD has an 

advantage with respect to transparency. All four methods have similar accuracy. PD, DT and NB can 

handle mixed mode data types while LDA cannot because of its inability to handle nominal data. All 

four classifiers can produce a numeric value for characterization.  In addition, while the 

computational effort required for training for each method can be significant, it is done offline prior to 

clinical use and only needs to be done once. The computational effort for characterization expended 

by each method is similar and not consequentially different from current QEMG examinations. 

Figures 4.2 to 4.4 are example PD characterizations of three different LHS MUPs and Figure 4.5 

is an example characterization of a simulated MUP. The reporting of the component rules that support 

each characterization demonstrates the transparency of PD characterization. Furthermore, the rules 

discovered by PD are consistent with currently used diagnostic criteria [34, 35, 55, 56] (see Table 

4.5).  These MUP characterizations demonstrate that the PD classifier is capable of capturing 

knowledge consistent with current practice and expressing it in transparent, understandable terms. 

The knowledge is captured while simultaneously considering multiple feature values and expressed 

using common clinical terminology. 

PD characterization provides a transparent explanation of the set of features weighted by their 

contribution, using both negative and positive rules that refute or support characterization towards the 

various categories. The system is able to objectively calculate the WOE that a MUP was detected 

from a normal or neuropathic muscle. This reduces the mental workload of the clinician, which 

should reduce the number of errors in both individual MUP characterizations as well as overall 

muscle characterizations. This leads to the expectation that examining clinicians will make fewer 

errors.   
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The error rate of the LDA and PD method based on normal and neuropathic LHS MUP data is 

about 25% lower than the error rate achieved in Pfeiffer’s work [1].  Pfeiffer’s data [1], collected two 

years apart, was not done consistently. It is not expected that PD will achieve better accuracy than 

LDA. If PD were tested using the data set in [1] performance similar to LDA would be expected. 

PD’s advantage however is transparency.  

DT, NB and PD based classifiers are suitable for use in MUP characterization; however, PD has 

an advantage over DT and NB based on its transparency. The low error rate of the LDA method helps 

to confirm Pfeiffer’s conclusion that LDA classification is an accurate method [1]. However, LDA is 

not very transparent and cannot easily handle nominal data types – an important requirement in 

extending a clinical decision support system to handle other clinical observations. DT classifiers use 

an error reduction based training algorithm and therefore provide rules that are used to minimize 

classification error. This can lead to over-fitting problems. NB and DT methods, as mentioned 

previously, cannot find relationships among multiple features. PD rules are determined through 

observation of statistically significant relationships in the training data without considering 

classification accuracy and capture the dependencies among features using hypothesis testing. 

Although accuracy across the four methods did not differ significantly for the LHS MUP data, PD 

had a significant advantage in its ability to maximize both sensitivity and specificity.  A clinic with 

unknown “costs” for false negative and false positive characterizations would favour a 

characterization method that maximized both sensitivity and specificity.  

The characterization methods had similar error rates for LHS MUP data, and simulated normal 

and neuropathic MUPs. This suggests that the simulator can be useful for studying the relationships 

between level of involvement and characterization performance for normal and neuropathic MUPs. 

However, the lower error rates achieved by the LDA and PD methods for simulated myopathic versus 

neuropathic data may be an artifact of the simulator. The simulator does not deal with changing 
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muscle density or structure.  A separate study using clinical data from both inflammatory and non-

inflammatory myopathic disorders is needed. Overall the error rate for the simulated MUP data was 

lower than the LHS MUP data because of the excellent performance of the simulated myopathic data. 

The similar performance of the methods for characterizing normal and neuropathic categories is 

consistent with the similarity in distance between the distribution of thickness values for the normal 

and neuropathic categories of the LHS and simulated MUP data as discussed in Section 3.4. If only 

the normal and neuropathic categories of the simulated MUP data were compared to the LHS data 

then the distance between these categories was 0.43 for both the simulated and LHS MUP data 

calculated using data from Table 3.1.   

Although the results shown by Figure 4.1 are for simulated MUP data, they are consistent with 

the expectation that as a disease affects a greater portion of a muscle the probability of detecting 

MUPs that reflect the effects of the disorder increases thus reducing the number of errors made when 

categorizing MUPs detected from muscles with higher levels of involvement of a disorder. On the 

other hand, the reduced probability of detecting a MUP that reflects the affects of a disorder on a 

muscle during the early stages of involvement suggest that further development of QEMG methods, 

to combine MUP characterizations and/or use other QEMG based features, is needed to improve both 

the specificity and sensitivity with which a muscle can be characterized.  Chapter 5 studies two 

methods for combining MUP characterizations using the LHS and other MUP data sets described in 

Chapter 3. 
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Table  4.4  Summary of Classifiers' Fit to Requirements 

Requirement PD LDA DT NB 

Transparency ∗∗∗∗  ∗∗  ∗∗∗  ∗∗∗  

Accuracy ∗∗∗  ∗∗∗  ∗∗∗  ∗∗∗  

Mixed –Mode Data ∗∗∗∗  ∗∗  ∗∗∗∗  ∗∗∗∗  

Numeric Characterization ∗∗∗∗  ∗∗∗∗  ∗∗∗∗  ∗∗∗∗  

 

Number of stars: Four – excellent, three – good, two – fair, one – poor. Accuracy ratings are based on the error 

rate discussed in the results. Transparency is based on the classifier’s ability to report strength of 

support/refutation of a subset of features. Ability to handle mixed mode data and produce a numeric 

characterization scores are based on examining the methodology of the classifiers. 

 

4.5.1 Conclusions  

Unlike the other classifiers investigated, the PD classifier is able to explain itself by reporting the 

sets of feature values, along with a strength-of-evidence measure, supporting or refuting its 

characterizations.  This work has demonstrated that the PD classifier meets the requirements for 

normal and neuropathic MUP characterization through its abilities to report its characterizations in a 

transparent manner, handle mixed mode data, discover dependencies among features, provide 

numerical characterization values, and achieve a similar level of characterization accuracy as state of 

the art classification methods. The PD classifier shows promise as a clinically useful method of 

providing numerical inputs to the next step of the interpretation phase of a QEMG examination 

(muscle characterization based on more than one MUP).  

The PD classifier succeeds in interpreting the information extracted from quantitative MUP 

analysis and transforming it into knowledge that is consistent with current clinical practice. This 

demonstrates that the transparency provided by the PD classifier can be valuable for the capture and 

expression of knowledge useful to a clinician. 
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Characterization of the LHS and simulated, normal and neuropathic, MUP data had very similar 

error rates. These results provide encouragement to develop and evaluate a PD method for 

quantifying the level of involvement of a neuromuscular disorder – ultimately fulfilling one of the 

roles for future QEMG examinations envisioned by Swash [57]. 

Chapter 5 will focus on evaluating methods that combine MUP characterizations obtained using 

PD into muscle characterizations.  
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Figure  4.2 Evidence Supporting Characterization of LHS MUP 1352 as normal. 

 

The upper lefts of Figures 4.2-4.5 show MUP templates each of which is the median-trimmed average 

of 51 isolated MUP firings deemed by DQEMG to belong to the same MUP train. Each of the MUP 

templates is displayed using the same scale. The y scale is in microvolts and the x scale is 

milliseconds. The upper right box of each Figure shows the result of quantization of the five MUP 

features into a low, medium or high quantization interval along with their continuous values prior to 

quantization. For instance in Figure 4.2 MUP 1352 is quantized as follows: thickness (AAR) of 1.35 

is medium, 2 turns are low, 2 phases are low, duration of 10.2 ms is medium and amplitude of 353 µV 

is medium. The next two bar plots underneath show the component rules providing evidence for or 

against the MUP being detected from a normal or neuropathic muscle respectively. Features 

belonging to the same component rule are indicated by using the same line style (e.g. solid, dashed, 

dotted etc.). A component rule is positive if the bars go to the right from the vertical line and a 

component rule is negative if the bars are left of the vertical. The x-axis for a negative rule is also 
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marked with a negative sign for low, medium and high to emphasize that these are rules refuting the 

characterization. 

The bar graph marked as ‘Patterns Supporting Normal’ shows that all of the features formed a 

single component rule since they are all solid leading to a WOE of 1.58 that MUP 1352 was detected 

from a normal muscle. The bar graph marked as ‘Patterns Supporting Neuropathic’ shows a single 

component rule for neuropathy. The component rule indicated by the solid line refuting neuropathic is 

composed of medium thickness (AAR), and low turns and has a WOE of -1.49.  Since the WOE for 

normal has the highest value – this MUP was characterized as being detected from a normal muscle. 
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Figure  4.3 Evidence Supporting Characterization of LHS MUP 1676 as Normal. 

The bar graph in Figure 4.3 titled as ‘Patterns Supporting Normal’ shows two component rules 

making up a compound rule for normal – one rule as a solid line, the other as a dashed line. The 

component rule indicated by the solid line supporting normal is composed of low thickness (AAR), 

low turns, low phases and high amplitude. The other component rule indicated by a dashed line is 

composed of high duration and refutes normal with a WOE of -1.21.  In the ‘Patterns Supporting 

Neuropathic’ bar graph there are two component rules. The component rule indicated by the solid line 

with low thickness (AAR), low turns, and low phases has a negative WOE of -2.22. The other 

component rule indicated by a dashed line is composed of high duration and has a WOE of 1.21.  In 

total, the WOE for being detected from a normal muscle is less than one at 0.28, and from a 

neuropathic muscle -1.02. The spread between the highest WOE and the second highest WOE for 

MUP 1676 is 1.3. This indicates a slightly lower level of confidence towards a classification for 

normal of MUP 1676 than MUP 1352 whose WOE spread was 3.07. 
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Figure  4.4 Evidence Supporting Characterization of LHS MUP 1584 as Neuropathic. 

The bar graph in Figure 4.4 titled as ‘Patterns Supporting Neuropathic’ shows a compound rule 

comprised of two component rules that provide evidence that MUP 1584 was detected from a 

neuropathic muscle. A component rule (dashed line) of high amplitude provides a WOE of 1.05 and a 

component rule (solid line) of high thickness (AAR), high turns, low phases, and high duration 

provides a WOE of 1.28. In total, the two component rules provide WOE of 2.33 that this MUP was 

detected from a neuropathic muscle. 
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Figure  4.5 Evidence Supporting Characterization of Simulated MUP 1676 as Myopathic 

The bar graph in Figure 4.5 titled as ‘Patterns Supporting Myopathic’ shows that the WOE of the first 

component rule indicated by a solid line of low thickness (AAR), high turns, high phases and low 

duration plus the WOE from the second component rule (dashed line) of low amplitude provides a 

total WOE of 5.24 that MUP 522 was detected from a myopathic muscle. The compound rules 

supporting normal and neuropathic both have a large spread (10.26 and 8.16 respectively) below the 

WOE value for myopathic; an indication of high confidence that this MUP was detected from a 

myopathic muscle. 
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Table  4.5  Current Clinical Criteria for MUP Characterization 

# Rule Description Indication of Source 
1 decreased duration, decreased amplitude, polyphasic myopathy [56] 
2 decreased AAR myopathy [35] 
3 increased duration, increased amplitude, polyphasic neuropathy [56] 
4 increased amplitude (and/or area) with normal or increased AAR neuropathy [35] 
5 increased amplitude, high number of turns, may not be polyphasic neuropathy [34] 

 

LHS MUP 1352 (Figure 4.2) with medium duration and amplitude, low number of turns, low phases and 

medium thickness (AAR) was characterized by the PD classifier as being normal. LHS MUP 1584 (Figure 4.4) 

with high duration and amplitude, low phases and high turns and high thickness (AAR) was characterized by 

the PD classifier as being neuropathic agreeing with rules 4 and 5. Simulated MUP 522 (Figure 4.5) with low 

duration and amplitude, high numbers of turns and phases and low thickness (AAR) was characterized by PD as 

being myopathic agreeing with rules 1 and 2. 
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Chapter 5 

Muscle Characterization  

Individual MUP characterizations lack sufficient information to accurately characterize a muscle; as 

such, multiple MUP characterizations need to be combined to provide an accurate muscle 

characterization. In this chapter we examine two methods for calculating muscle characterization 

measures: arithmetic mean and Bayes’ rule.  Given a set of MUPs detected from a muscle under 

examination, the information provided by each MUP can be combined into a Probabilistic muscle 

characterization. An example of a probabilistic muscle characterization is a 79% probability the 

muscle is neuropathic and a 21% probability the muscle is normal given the set of MUP 

characterizations based on the MUPs detected from that particular muscle.   

5.1 Estimating MUP Conditional Probabilities   

A muscle under test can be characterized by combining the set of characterizations of the MUPs 

detected from it. Consider that the clinical state of a muscle can be assigned to one of K specific 

categories with labels },,,{ ,1 Kk yyy LL  (i.e. myopathic, normal, or neuropathic). In this work, the 

characterization of a MUP is defined by a set of K MUP conditional probabilities, one for each 

category. Each MUP conditional probability )|( MUPyP k  measures the probability of category yk 

given the detected MUP. Therefore a MUP characterization can be expressed as a set of conditional 

probabilities ( ) ( ){ }
iKi MUPyPMUPyP ||1 K . 

5.1.1 Compound Rule Conditional Probability for PD 

The WOE that PD produces needs to be expressed as a conditional probability to obtain a muscle 

characterization.  This conditional probability is called the Compound Rule Conditional Probability 

(CRCP). The CRCP [52, 58, 59] is an estimate of the conditional probability that MUPi was detected 
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in a muscle of category ky  given the occurrence of the feature values associated with the compound 

rule *
kx and is expressed as  
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where:  

ki yMUP = ,  iMUP  was detected in a muscle of category ky  (i.e. a normal or neuropathic 

muscle). 

*
kx   Compound rule associated with category ky . 

*
kxMUP = ,  MUP feature values that match the compound rule *

kx  (i.e. a set of quantized 

feature values)  

WOE  Weight of Evidence of the compound rule *
kx  supporting or refuting 

category ky . 

)(0 kyP  ,  prior probability of category ky . 

Equation 5.1 is derived in Appendix A.  

The conditional probability of category ky given detected MUPi can be estimated using the 

following normalization so that the conditional probabilities across all categories given iMUP  sum to 

one: 
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Table 5.1 provides example component rules for estimating ( )ik MUPyP |  assuming that the features 

amplitude, duration, area, thickness, and size index are used for characterizing a MUP using two 

categories: normal or neuropathic. In this example, each of the feature values are quantized into one 

of five intervals called very low, low, medium, high, and very high. Also, a prior probability of 0.5 is 

assumed for each category. A MUP with very high amplitude, low duration, very high area, low 

thickness, and high size index is compared against the rules that were created by the training data. 

Two component rules are found for the normal category and two component rules are found for the 

neuropathic category and are shown in Table 5.1. The WOE for a component rule is calculated by 

counting the number of instances in the training data that match the rule’s category and counting the 

number of MUPs in the training data that do not match the rule’s category to empirically determine 

the probabilities of belonging to that category and not belonging to that category. For instance, the 

first rule in Table 5.1 has 200 MUPs with very high amplitude and low thickness labeled neuropathic 

and 100 MUPs with very high amplitude and low thickness labeled normal in training data that has 

1000 MUPs in total for each category and so using equation 4.4: 
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WOE  

The compound rule that refutes the normal category has a WOE of -3.7 (found by summing the two 

component rules for normal). Note that the WOE refutes normal because it is negative. Using 

equation 5.1 the CRCP for normal for this MUP is 0.0714. The compound rule that supports the 

neuropathic category has a WOE of 1.61 with a CRCP of 0.75325. Using Equation 5.2 to normalize 

the Compound Rule Conditional Probabilities to add to 1 results in a MUP Characterization of 

P(Normal | MUP) = 0.08 and P(Neuropathic | MUP) = 0.92. 

Further details of the Pattern Discovery based method for MUP characterization [52, 58, 59] are 

available in Chapter 4. 
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Table  5.1 Example Rules for Calculating a MUP Characterization 

Component Rule Category WOE 

Very high amplitude and low thickness Normal -1 

Low duration and very high area Normal -2.7 

Very high amplitude and very high area Neuropathic 2.61 

Low thickness and high size index Neuropathic -1 

  

 

5.1.2 LDA Based MUP Characterization 

Probability estimates of MUP features under test were found by assuming that the feature values 

were Gaussian distributed [1, 11]. LDA Minimum Euclidean Distance (MED) assumes that each 

category has equal covariance and calculates the conditional probability of each category given a test 

iMUP  ( ( )ik MUPyP |  ) by finding the Euclidean distance of the discriminant coordinates of the test 

MUP to the centroid of the set of discriminant coordinates in the training data of each category and 

then calculating the probability assuming Gaussian distribution.  

5.2 Muscle Characterization Methods 

Probabilistic muscle characterization was compared to conventional muscle characterization methods.  

5.2.1 Probabilistic Muscle Characterization  

Two probabilistic methods for combining MUP characterizations were evaluated in this chapter: 

arithmetic mean and Bayes’ rule.  
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Arithmetic Mean Muscle Characterization 

The arithmetic mean characterization measure calculated for a muscle category was done by 

taking the arithmetic mean of the set of MUP characterizations of that category and is called 

Arithmetic Mean Muscle Characterization (AMC) and is calculated by 

N

MUPyP

yAMC

N

i

ik

k

∑
== 1

)|(
)(  (5.3) 

where for Equations 5.3 & 5.4: 

ky     muscle category, i.e. myopathic, normal or neuropathic. 

( )ik MUPyP |  the MUP characterization value for category ky  of the th
i MUP 

detected from the muscle under test. 

N     Number of MUPs detected from the muscle under test. 

Bayes’ Rule Muscle Characterization 

In previous work Pfeiffer used Bayes’ rule to combine MUP characterizations into a muscle 

characterization that consisted of a conditional probability that a muscle belonged to a particular 

category (i.e., neuropathic vs. myopathic) given the set of MUP characterizations [1]. A Bayes’ rule 

muscle characterization measure calculated for a muscle category is done using Bayes’ rule for 

multiple pieces of evidence, where each piece of evidence is a MUP characterization of that category 

and assuming each MUP characterization is conditionally independent of each other [1, 19, 52]. This 

is called Bayes’-rule Muscle Characterization (BMC) and is calculated by 
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Equation 5.4 assumes that the prior probabilities used are the same for each category to obtain an 

unbiased muscle characterization that is based solely on the electrophysiological evidence provided 

by the detected MUPs. The author believes that each MUP is adding independent information except 

in those cases where more than one MUP is detected from the same MU. The derivation for Equation 

5.4 is found in Appendix B and Figure 5.1 provides a graphical explanation for Equation 5.4. 

X
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Figure  5.1 Bayes’ Rule Muscle Characterization (BMC) 

The pie charts on the left hand side show the characterizations of MUPs detected from the same 

muscle for a scenario with three muscle categories (myopathic, normal and neuropathic).  Each 

category is represented by a colour; medium grey is myopathic, light grey is normal and black is 

neuropathic. The proportion of a pie is the conditional probability of a category given a detected 

MUP, e.g. the upper left pie shows a MUP that has approximately 50% probability of being detected 
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from a myopathic muscle, a 20% probability of being detected from a normal muscle and 30% 

probability of being detected from a neuropathic muscle. The product of the conditional probabilities 

of the MUPs for each category was calculated and the probability of a muscle belonging to a category 

given the set of MUP characterizations is determined using Equation 5.4. The larger pie chart on the 

right hand side shows the muscle characterization given the set of MUPs, approximately 38% 

myopathic, 53% normal and 9% neuropathic in this example. 

 

5.2.2 Conventional Muscle Analysis: Means and Outlier Method 

Stewart et al. developed and evaluated a technique where, given a set of MUP features, a muscle 

category is determined by comparing the mean value of each MUP feature, calculated across MUPs 

detected from a muscle under examination, to its corresponding normative threshold values [13]. The 

Means method calculates the mean normative threshold value using all the MUPs sampled from 

control muscles from which greater than 15 MUPs were detected. Threshold values for each feature 

are calculated using sets of 15 or more MUPs detected from the corresponding muscle of a pool of 

control subjects. For each set of 15 or more MUPs the mean of the feature values is calculated 

resulting in a mean value per feature per muscle. The overall mean and the standard deviation of the 

means are then calculated for each feature across the set of mean values per muscle. (Note: the overall 

mean and the standard deviation of the means for each feature are obtained from the set of mean 

values of the control muscles and not across all MUPs.) The threshold values used for the Means 

method for each feature are defined as the overall mean ±2 standard deviations of the means.  For this 

work, muscles were categorized as myopathic when one or more mean feature value fell below a 

threshold value of the normative range and neuropathic when one or more mean feature value fell 

above the threshold value of the normative range. 
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Stalberg developed a method for categorizing a muscle by counting the number of outliers of 

each MUP feature from the set of the first 20 MUPs detected from a muscle under study [12]. A MUP 

feature value is considered an outlier if it is below or above the low and high outlier thresholds for 

that feature, respectively. The first 20 MUPs detected from each muscle in the pool of control 

subjects are used to determine outlier thresholds for each feature. Muscles with less than 20 detected 

MUPs are not used for establishing outlier thresholds. For each muscle and for each feature, the set of 

feature values of the first 20 MUPs is sorted in ascending order and the third lowest and the third 

highest value are added to a set of low and high outliers for that feature, respectively. The lower 

outlier threshold for a feature is the 5th percentile of the set of low outliers and the high outlier 

threshold is the 95th percentile of the set of high outliers. A muscle under examination for which there 

are three or more outlying MUP feature values of the same feature each below the lower outlier 

threshold is categorized myopathic. A muscle is categorized as neuropathic if three or more outlying 

MUP feature values of the same feature were above the higher outlier threshold.   

As an additional method for muscle categorization the Means and Outlier methods are combined 

as in [47] and called the Combined method.  If either the Means or Outlier method or both declares a 

myopathic/neuropathic abnormality, then the Combined method categorizes the muscle as 

myopathic/neuropathic. 

The Means, Outlier and the Combined methods are referred to as the conventional methods.  

 

5.3 EAS MUP Data  

The Bayes’ rule characterization method was used to analyze the EAS MUP data described in Section 

3.3.1 and compared to the performance of the conventional methods. PD and LDA MED were used to 

provide MUP characterizations for the Bayes’ rule method. BMC-PD refers to using Bayes’ rule 
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using PD based MUP characterizations and BMC-LDA refers to using Bayes’ rule using LDA MED 

based MUP characterizations. 

5.3.1 Training, Testing, Features 

EAS MUP Training 

Performance of the BMC and the conventional methods vary depending on the data used for 

training.  In this study, only control-reference data was used for training of the conventional methods, 

whereas control-reference and patient-sensitivity data was used for training of the BMC methods. 

Performance for all of the methods was determined across ten different trials using randomly chosen 

training data. The training data for a single trial of the conventional methods consisted of 116 control-

reference muscles for the Means method and 100 control-reference muscles for the Outlier method. 

The training data for the BMC methods used all of the MUPs, from all of the 126 control-reference 

muscles and an equal number of MUPs sampled from the patient-sensitivity data by randomly 

selecting muscles and using their MUPs for training resulting in a mean number of 134 muscles being 

drawn from the patient-sensitivity data across the 10 trials.  Table 5.2 summarizes the number of 

MUPs per muscle and the number of muscles used for training the various methods. 

Table  5.2 Number of MUPs and Muscles used for Training: EAS MUP Data 

Method 

Minimum 

# of MUPs 

per muscle 

# of MUPs in 

muscle used for 

training 

# control-reference 

muscles used for 

training * 

# patient-sensitivity 

muscles used for 

training * 

Mean 15 All 116 0 

Outlier 20 First 20 100 0 

Bayesian 1 All 126 134 

The Mean method calculates the Mean threshold value using all of the MUPs in muscles with greater 

than or equal to fifteen MUPs. The Outlier method uses the first twenty MUPs in muscles with 
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greater than or equal to twenty MUPs to calculate the Outlier threshold. The BMC methods uses all of 

the MUPs in a muscle for training regardless of the number MUPs detected.  

*The fourth and fifth column of this Table refers to the number of control-reference and patient-

sensitivity muscles used for training in the ten trial scenario as described in Section 5.3.1. 

EAS MUP Testing 

Only muscles from the control-specificity and patient-sensitivity groups with greater than twenty 

MUPs were used for testing. For each trial, all of the 113 muscles with 20 or more MUPs from the 

control-specificity data were used to measure specificity and all of the muscles that did not have any 

MUPs selected for training from the patient-sensitivity group, mean of 57 muscles across the 10 trials, 

were used to measure the sensitivity. For each trial, the same set of test muscles was used across the 

conventional and BMC methods to ensure fair comparison. The number of true negatives and true 

positives from each test were accumulated to arrive at the overall specificity and sensitivity results for 

each of the methods.  

Values for the following MUP features were input to the different methods: amplitude, duration, 

area, number of phases, number of turns and spike duration [45, 48] as well as thickness otherwise 

known as area-to-amplitude ratio (AAR) [35] and size index (SI) [36]. All possible combinations of 

features taken two, three and four at a time were selected from the eight possible features to form 

feature sets. Each feature set was then used for evaluating the performance of the BMC-PD, BMC-

LDA and conventional methods as described above.  

5.3.2 EAS MUP Results 

Table 5.3 shows the mean sensitivity, specificity, accuracy, and SSD across all possible feature sets 

comprised of two, three or four features.  
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The conventional methods had lower mean accuracy and greater difference between sensitivity 

and specificity than the BMC methods as highlighted by the large SSD values of the conventional 

methods in Table 5.3. As the number of features used for characterization increased, sensitivity 

increased while specificity decreased for the conventional methods, e.g. for the Outlier method 

sensitivity increased from 33.5% to 47% and specificity decreased from 83.1% to 74.2% for two and 

four features per set respectively.  

With the BMC methods sensitivity and specificity were steadier than the conventional methods as 

the number of features used for characterization increased. The sensitivity for the BMC-LDA method 

increased by 1.3% and specificity for the BMC-LDA method increased by 0.2% with four features in 

a set as compared to two features in a set as shown in Table 5.3. The BMC-LDA method had a 

significant improvement in accuracy compared to the BMC-PD method according to a paired t-test 

across the feature sets in Table 5.3 at a significance level of 0.05. 

Table 5.4 shows the best five feature sets as sorted by accuracy for each method. The 

conventional methods favoured area, thickness, and turns as the most discriminative features, since 

they occur most frequently in the top five sets. The BMC–PD favoured thickness, size index, and 

turns and the BMC–LDA method favoured thickness, and turns as the most discriminative features 

because of how often they occurred in the top five feature sets. The top five features sets for the 

Means method had very poor sensitivity but high specificity leading to an SSD of about 20%. The 

combined method had the best sensitivity and accuracy of the conventional methods when looking at 

the five best feature sets in Table 5.4. The best sensitivity of the BMC methods was ten percent 

higher than the best sensitivity of the combined method. The best specificity of the combined method 

was four percent higher than the best specificity of the BMC methods when looking at the five best 

feature sets in Table 5.4. The top five features of the combined method had lower accuracy than the 

BMC–LDA and BMC–PD methods. 
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5.3.3 Robustness of Best Feature Sets 

To examine the effects of different clinics using different data for training, the best performing 

feature set of each method was selected for further analysis by executing 100 trials with a reduced 

number of control and patient muscles used for training and an increased number of patient muscles 

used for testing.   For the BMC methods, for each trial, muscles of the control-reference data set were 

randomly selected until approximately 75% of its MUPs were selected. An equal number of MUPs 

per trial were also randomly sampled from the patient-sensitivity data by random muscle selection. 

The mean number of muscles used for training the BMC methods across all of the trials was 95 from 

the control-specificity data and 101 from the patient-sensitivity data. For the conventional methods, 

for each trial, a subset of the control-reference muscles chosen for training the BMC methods that met 

the criteria as shown in the second column of Table 5.2 were selected to calculate the mean and 

outlier threshold values. The mean number of muscles used for training the Mean and the Outlier 

methods across all of the trials was 88 and 76 respectively from the control-reference data. The test 

data per trial was selected using muscles not used for training resulting in 113 muscles being tested in 

the control-specificity data and a mean of 83 muscles across the 100 trials for the patient-sensitivity 

data. 

Table 5.5 addresses the robustness of the methods by showing how performance varied for the 

best feature set of each method across a larger number of trials of different randomly chosen training 

data that was used to determine the results in Table 5.4. The results in Table 5.5 were determined 

using 100 trials and approximately 75% of the training data while Table 5.4 used 10 trials and 100% 

of the training data. For each feature set used, the standard deviation of sensitivity and specificity 

across the 100 trials is reported. Standard deviation across 100 trials does not appear to be 

significantly different than the SD shown in Table 5.4 for the best feature sets. Table 5.5 shows an 

expected reduction in accuracy because of the reduced amount of training data used compared to 
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Table 5.4. The difference in accuracy of Table 5.5 compared to Table 5.4  is shown in brackets for 

each method: Mean (-0.2%), Outlier (-1%), Combined (-0.7%), BMC-PD (-1.5%), BMC-LDA (-2%).  

 

 

 

Table  5.3 Average Performance across All Possible Feature Combinations of EAS Data 

Mean SD Mean SD Mean SD

Sens. 29.2% 4.1% 35.1% 4.1% 39.2% 3.5%

Spec. 90.5% 2.9% 87.6% 2.8% 85.3% 2.7%

Acc. 59.9% 2.0% 61.4% 1.7% 62.2% 1.7%

SSD 30.6% 3.0% 26.2% 3.1% 23.1% 2.6%

Sens. 33.5% 7.4% 41.3% 6.8% 47.0% 6.3%

Spec. 83.1% 5.6% 78.0% 4.9% 74.2% 4.2%

Acc. 58.3% 1.9% 59.7% 1.6% 60.6% 1.5%

SSD 24.8% 6.3% 18.3% 5.7% 13.6% 5.1%

Sens. 41.3% 5.5% 49.6% 5.4% 55.2% 5.1%

Spec. 80.0% 5.5% 74.4% 4.9% 70.1% 4.2%

Acc. 60.7% 2.2% 62.0% 2.0% 62.6% 2.0%

SSD 19.3% 5.0% 12.4% 4.7% 7.7% 4.0%

Sens. 68.1% 5.3% 65.4% 4.6% 63.6% 5.2%

Spec. 57.2% 7.0% 61.4% 4.6% 61.6% 3.7%

Acc. 62.6% 2.6% 63.4% 1.9% 62.6% 2.4%

SSD 7.2% 4.2% 4.6% 2.5% 4.5% 1.6%

Sens. 65.3% 3.5% 66.0% 3.3% 66.6% 2.7%

Spec. 63.1% 4.1% 63.1% 2.8% 63.3% 2.2%

Acc. 64.2% 2.0% 64.5% 1.9% 64.9% 1.3%

SSD 3.8% 1.4% 3.4% 1.1% 3.4% 1.0%

BMC-LDA

Mean

Outlier

Combined

BMC-PD

# Features used for testing 

Method
Two Three Four

 

BMC–PD represents Bayesian method using PD to estimate conditional MUP probabilities. 

BMC–LDA represents Bayesian method using LDA to estimate conditional MUP probabilities. 

The standard deviation (SD) is calculated across the different feature sets 
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Table  5.4 Five Most Accurate Feature Sets per Method: EAS MUP Data 

Method Feature Sets Sens (%)
SD (ten 

trials)
Spec (%)

SD (ten 

trials)
Acc (%)

SD (ten 

trials)
SSD (%)

SD (ten 

trials)

area/thick/phases 45.5% 5.3% 86.7% 0.0% 66.2% 2.7% 20.5% 2.7%

area/thick/turns 43.3% 5.6% 88.5% 0.0% 65.9% 2.8% 22.6% 2.8%

area/thick/SI/phases 44.7% 4.4% 86.7% 0.0% 65.7% 2.2% 21.0% 2.2%

area/thick/phases/turns 46.4% 4.9% 85.0% 0.0% 65.6% 2.5% 19.3% 2.5%

area/thick/turns/spike_dur 44.2% 3.7% 86.7% 0.0% 65.4% 1.8% 21.3% 1.8%

dur/area/phases/turns 53.2% 4.1% 75.2% 0.0% 64.2% 2.1% 11.0% 2.1%

area/thick/SI/turns 57.5% 4.6% 69.9% 0.0% 63.7% 2.3% 6.2% 2.3%

area/thick/turns 56.7% 5.0% 70.8% 0.0% 63.7% 2.5% 7.1% 2.5%

thick/SI/turns/spike_dur 57.5% 5.1% 69.9% 0.0% 63.7% 2.6% 6.2% 2.6%

area/thick/turns/spike_dur 57.4% 6.7% 69.9% 0.0% 63.7% 3.3% 6.2% 3.3%

dur/area/phases/turns 61.9% 4.2% 71.7% 0.0% 66.8% 2.1% 4.9% 2.1%

area/thick/phases/turns 63.9% 4.6% 69.0% 0.0% 66.5% 2.3% 2.9% 1.7%

area/thick/turns/spike_dur 63.9% 6.1% 69.0% 0.0% 66.5% 3.1% 3.2% 2.3%

area/thick/turns 62.1% 5.0% 70.8% 0.0% 66.4% 2.5% 4.5% 2.3%

thick/SI/turns/spike_dur 63.8% 3.6% 69.0% 0.0% 66.4% 1.8% 2.8% 1.5%

SI/phases/spike_dur 71.2% 5.9% 63.5% 4.0% 67.4% 2.0% 4.3% 4.1%

area/thick/phases/turns 68.1% 6.6% 66.5% 3.7% 67.3% 2.5% 3.8% 2.7%

thick/SI/phases/turns 69.1% 3.5% 65.5% 2.1% 67.3% 1.9% 2.0% 2.0%

area/thick/SI/turns 70.9% 5.9% 63.6% 3.2% 67.2% 3.8% 3.6% 2.8%

thick/SI/turns 72.0% 8.6% 61.4% 3.7% 66.7% 3.3% 7.1% 2.9%

thick/phases/turns 74.1% 2.7% 66.2% 1.7% 70.2% 1.5% 4.0% 1.8%

dur/turns 71.8% 6.4% 64.9% 1.8% 68.3% 2.8% 4.1% 2.9%

area/thick/SI/turns 70.3% 6.8% 65.5% 1.7% 67.8% 3.4% 3.4% 2.5%

thick/turns 67.8% 6.2% 67.8% 1.6% 67.8% 2.8% 2.8% 2.2%

area/thick/turns 70.2% 5.0% 65.2% 1.2% 67.7% 2.2% 2.6% 2.8%

BMC - LDA 

Mean

Outlier

Combined

BMC - PD

 

 

 

 

 

Table  5.5 Performance of the Best Feature Sets Across 100 Trials: EAS MUP Data 

Method Feature Sets Sens (%)
SD (100 

trials)
Spec (%)

SD (100 

trials)
Acc (%)

SD (100 

trials)
SSD (%)

SD (100 

trials)

Mean area/thick/phases 45.5% 5.3% 86.6% 2.0% 66.0% 2.2% 20.6% 3.3%

Outlier dur/area/phases/turns 50.6% 4.5% 75.8% 2.0% 63.2% 2.0% 12.6% 2.8%

Combined dur/area/phases/turns 60.1% 4.0% 72.1% 1.9% 66.1% 1.9% 6.1% 2.4%

BMC-PD SI/phases/spike_dur 68.4% 5.6% 63.5% 4.5% 65.9% 2.0% 4.2% 3.2%

BMC- LDA thick/phases/turns 71.1% 4.6% 65.3% 2.8% 68.2% 2.2% 3.5% 2.4%  
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5.4 LHS MUP Data  

5.4.1 LHS  MUP Data Training, Testing, Features 

The LHS MUP data described in Section 3.2.2 was studied in this subsection. Performance for all 

of the methods was determined across ten different trials using randomly chosen training data. Only 

control muscles were selected for training the conventional methods, whereas muscles from both 

control and patient groups were used for training of the Probabilistic methods. Within a trial, all 

muscles were tested one at a time. All of the patient muscles, except the patient muscle under test, 

were used for training of the Probabilistic methods and the muscle under test was classified (or 

categorized) as being of the category with the maximum muscle characterization value.  A set of 

control muscles were selected at random until the number of MUPs in the patient training data 

equaled the number of MUPs from the control muscles. The set of control muscles used for training 

of the Means method and the control muscles used for training the Probabilistic method were the 

same per trial. All muscles in the control data had 20 or greater MUPs except one muscle that had 19 

MUPs.  The set of control muscles used for training the Outlier method was identical to that used for 

training the Means and Probabilistic methods with the exception of trials that included the muscle 

with 19 MUPs. It had to be excluded from the Outlier method training since it requires 20 or greater 

MUPs. .  

All muscles in the data were used for testing of the conventional and Probabilistic methods 

regardless of the number of MUPs detected per muscle. Values for the following QEMG-MUP 

features were input to each of the different methods: amplitude, duration, area, number of phases, 

number of turns [7]. In addition, thickness [35] and revised size index (rSI) [37] were also used as 

features. All possible combinations of feature sets taken two, three, four and five at a time were 

examined for sensitivity, specificity and accuracy to determine which combination of features used 

simultaneously is the best choice for a sensitive and specific muscle categorization. Each different 
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feature set was subjected to ten trials, where the set of training data used per trial was the same from 

feature set to feature set.  The sensitivity across 22 muscles and the specificity across 54 muscles 

were recorded for each trial.  Accuracy and SSD were then calculated for each trial. AMC-PD and 

BMC-PD refers to using the AMC and BMC methods respectively with PD based MUP 

characterizations. AMC-PD, BMC-PD Probabilistic muscle characterization and the conventional 

methods were studied using the LHS MUP data. 

5.4.2 LHS MUP Data Results 

Table 5.6 shows the mean sensitivity, specificity, accuracy, and SSD across all possible feature sets 

comprised of two, three, four or five features.  

When the results across all feature sets of five were compared, the last column of Table 5.6, the 

AMC-PD Probabilistic method had the highest mean accuracy of 84.5% followed by the Means and 

BMC-PD method whose mean accuracies were 80.3% and 78.8% respectively. The Outlier and 

Combined methods had lower mean accuracy than the Means and Probabilistic methods regardless of 

the number of features in a feature set.  As the number of features used for categorization increased, 

sensitivity increased while specificity decreased for the conventional methods. For example, the 

Outlier method sensitivity increased from 56.8% to 75.9% and specificity decreased from 79.2%% to 

63.2% for two and five features per set respectively. In general, the conventional methods had a 

greater difference between sensitivity and specificity as highlighted by their larger SSD values in 

Table 5.6 compared to the Probabilistic methods. With the Probabilistic methods, sensitivity and 

specificity both increased and demonstrated greater consistency, unlike the conventional methods, as 

the number of features used for categorization increased, e.g. for the AMC-PD method sensitivity 

increased by 3.3% while specificity increased by 5.3% when comparing results of two features per set 

to five features per set. 
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Table 5.7 shows the best five feature sets as sorted by accuracy for each method. The AMC-PD 

method had the feature set with the highest accuracy of 86.3% with 1.1% and 3.3% higher accuracy 

than the BMC-PD and Means method respectively. The AMC-PD method had the feature set with the 

lowest SSD value of 1.8% among all of the top five feature sets of the methods. Also the AMC-PD 

method appears to be more robust against variations in the training data as shown by the generally 

lower SD of accuracy for the top five feature sets. 

The accuracy of the best feature set of the AMC-PD method (86.3%) was higher than that of the 

AMC-LDA and BMC-LDA which were 83.9% and 82.1% respectively.  

All of the feature sets were sorted according to accuracy. A paired t-test was conducted between 

the most accurate feature set and each subsequent feature set in the ordered list starting with the 

second most accurate, to find the feature sets whose accuracy was not different at a 5% level of 

significance.  In Table 5.8 “# feat sets” refers to the number of feature sets per method that had the 

same accuracy at a 5% level of significance. Table 5.8 shows the number of occurrences of each 

individual feature in the feature sets whose accuracy did not differ significantly. Table 5.8 shows that 

the AMC-PD method favoured duration, area and thickness as the most discriminative features while 

the BMC-PD method favoured area, thickness and number of turns and the Means method favoured 

phases, amplitude and area based on the number occurrences in the feature sets whose accuracy did 

not vary significantly. The number of feature sets per method whose accuracy did not vary 

significantly was higher for the AMC-PD and Means methods at 20 and 21 feature sets respectively 

as compared to the other methods. 

Data for the FDI muscle from a patient with a neuropathic disorder, selected from the data 

described in Section 3.2.2, was used to demonstrate the Probabilistic muscle characterization methods 

(see Figure 5.2).  Along the left edge of Figure 5.2, the template waveform and characterization of 

each of the 13 MUPs detected from the FDI muscle are shown. Each MUP characterization is 
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represented by a pie chart where the black area is proportional to the conditional probability that the 

MUP was detected in a neuropathic muscle and the grey area is proportional to the conditional 

probability that the MUP was detected in a normal muscle. The 13 MUPs were sorted in order from 

highest conditional probability of being neuropathic to lowest. For the AMC-PD method the MUP 

characterization values per category were averaged (see Equation 5.3), resulting in a characterization 

measure of 82% in support of a neuropathic condition and 18% in support of a normal condition.  

Using equation 5.4, the BMC-PD method calculated a characterization measure of 100% in support of 

a neuropathic condition and 0% in support of a normal condition.  In both cases this muscle is 

correctly categorized as neuropathic.  The legend has a vertical bar showing the scale that 

corresponds to 1000 µV.  MUP 13 is useful for establishing relative scale because it is the sole MUP 

in the set whose probability of being detected in a normal muscle was higher than being detected in a 

neuropathic muscle. MUPs 1 - 12 in Figure 5.2 have relatively large amplitudes compared to MUP 

13.  

Using the same muscle as in Figure 5.2, Figure 5.3 demonstrates the Means and Outlier methods. 

The asterisk in each plot is where the mean for each feature value for the muscle under examination 

fall. Figure 5.3 shows that mean values of area and thickness are greater than 2 SD above the 

normative training data indicating a neuropathic condition. The Table headed Outlier method in 

Figure 5.3 shows that area and thickness each have three or greater outliers which are both indications 

of neuropathic muscle.  As such, both methods correctly categorize this muscle as neuropathic. 
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Figure  5.2  Example FDI Muscle Characterization using Probabilistic Methods 

Clinician Probabilistic Method 

• qualitative • quantitative 

• prone to bias • objective 

• estimations based on examiner experience • MUP characterization estimation based on 

number of  occurrences in exemplary 

training data 

• large cognitive effort needed to 

simultaneously consider multiple feature 

values across many MUPs   

• computer automated 

Data from an FDI muscle whose actual diagnosis is neuropathic was used to demonstrate the 

Probabilistic muscle characterization methods in Figure 5.2. The graphics above can also be used as 

an analogy of how clinicians qualitatively examine EMG signals.  How a clinician performs a 
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qualitative electromyographic examination as compared to the probabilistic method is shown in the 

table in the caption under Figure 5.2. The MUP characterizations in Figure 5.2 were calculated using 

PD with duration, area, and thickness feature values. Area in pie charts shaded in black and grey are 

proportional to neuropathic and normal conditional probabilities respectively.  

 

 

Figure  5.3 Example of Means and Outlier Analysis of an FDI Muscle 

Figure 5.3 demonstrates the Means and Outlier methods using the same muscle as in Figure 5.2. 

The curves for the Means method were drawn assuming a Gaussian distribution of the feature values 

of the MUPs detected from normal muscles.  The mean and standard deviation parameters used for 

drawing the curves were calculated using the mean and standard deviation of feature values as 

described in Section 5.2.2 for the Means method.  The curves are meant to provide an indication of 

the variance of each feature value and not represent their actual distributions because the feature 
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values are not exactly Gaussian distributed, but assumed to be Gaussian for Means analysis. The 

dashed vertical line to the right of the mean of each curve is the mean plus two SD, i.e. the upper 

threshold of the normative training data. The asterisk in each plot is where the mean for each feature 

value for the muscle under examination fell. The mean value of duration across MUPs detected from 

the test muscle is less than 2 SD so it falls in the normative range. The means of area and thickness of 

the test muscle are 12.4 and 2.8 SD higher than the mean value of the normative training data for each 

feature respectively indicating a neuropathic condition. The Table headed Outlier method in Figure 

5.3 shows that area and thickness each have three or greater outliers which are both indications of 

neuropathic muscle.  As such, both methods correctly categorize this muscle as neuropathic. 

 

 

 

Table  5.6 Average Performance Across All Possible Feature Sets: LHS MUP Data 

Method Mean SD Mean SD Mean SD Mean SD

Sens. 76.2% 7.9% 79.1% 2.6% 79.9% 2.6% 79.5% 2.6%

Spec. 84.2% 7.5% 87.1% 3.4% 88.1% 2.8% 89.5% 2.2%

Acc. 80.2% 7.5% 83.1% 2.3% 84.0% 1.6% 84.5% 0.9%

SSD 4.2% 1.8% 4.2% 1.7% 4.3% 1.8% 5.1% 1.9%

Sens. 76.7% 8.2% 80.2% 3.4% 80.0% 4.0% 77.4% 3.9%

Spec. 82.9% 7.1% 83.4% 4.3% 81.2% 4.2% 80.2% 4.1%

Acc. 79.8% 7.3% 81.8% 2.2% 80.6% 2.7% 78.8% 2.7%

SSD 3.5% 2.0% 3.3% 1.7% 3.5% 1.5% 4.2% 1.2%

Sens. 66.4% 10.3% 73.6% 3.7% 77.0% 2.6% 79.2% 2.0%

Spec. 89.4% 2.1% 86.2% 2.0% 83.6% 1.9% 81.3% 1.7%

Acc. 77.9% 4.8% 79.9% 1.7% 80.3% 1.2% 80.3% 1.1%

SSD 11.5% 5.7% 6.3% 2.4% 3.7% 1.4% 2.6% 0.6%

Sens. 56.8% 14.3% 66.7% 9.1% 72.4% 5.9% 75.9% 4.1%

Spec. 79.2% 4.3% 72.6% 3.9% 67.4% 3.5% 63.2% 3.0%

Acc. 68.0% 6.4% 69.7% 4.4% 69.9% 3.3% 69.5% 2.5%

SSD 11.4% 8.3% 5.2% 3.9% 4.3% 1.5% 6.6% 2.1%

Sens. 71.1% 12.2% 79.2% 4.9% 83.1% 2.8% 85.4% 1.9%

Spec. 74.2% 4.5% 66.7% 3.9% 61.0% 3.3% 56.6% 2.7%

Acc. 72.6% 5.0% 72.9% 2.7% 72.1% 2.2% 71.0% 1.8%

SSD 5.2% 6.0% 6.8% 2.3% 11.0% 2.2% 14.4% 1.5%

# Features used for testing

AMC-PD

Two Three Four Five

Mean

Outlier

Combined

BMC-PD

 

 



 

 81 

Sensitivity increased and specificity decreased for each conventional method (Means, Outlier and 

Combined) as the number of features used for categorization increased. Sensitivity and specificity 

increased or remained steady for the AMC-PD Probabilistic method as the number of features used 

for categorization increased. 

 

Table  5.7 Five Most Accurate Feature Sets per Method: LHS MUP Data 

Method Feature Sets Sens (%) Sens SD Spec (%) Spec SD Acc (%) Acc SD SSD SSD SD

dur      area     thick    phases   turns 84.5% 2.3% 88.1% 1.6% 86.3% 1.5% 1.8% 1.3%

dur      area     thick    turns 83.2% 3.1% 89.3% 2.4% 86.2% 1.8% 3.2% 1.9%

dur      area     thick    phases 84.1% 3.2% 87.8% 2.2% 85.9% 1.8% 2.1% 1.7%

amp      dur      thick    SI       turns 81.8% 2.1% 90.0% 1.0% 85.9% 1.0% 4.1% 1.4%

dur      area     thick    SI 81.8% 3.0% 90.0% 1.6% 85.9% 2.1% 4.1% 1.2%

area     thick    turns 81.4% 3.4% 89.1% 2.5% 85.2% 2.7% 3.9% 1.3%

area     thick 81.4% 3.4% 88.7% 2.5% 85.0% 2.7% 3.7% 1.3%

area     phases   turns 80.5% 2.2% 88.1% 2.0% 84.3% 1.5% 3.8% 1.5%

area     phases 81.4% 3.4% 87.2% 1.8% 84.3% 1.9% 2.9% 1.9%

amp      dur      area     turns 85.5% 4.7% 83.0% 3.2% 84.2% 3.2% 2.2% 1.5%

amp      thick    phases 79.5% 3.9% 86.5% 2.1% 83.0% 2.0% 3.5% 2.4%

amp      area     thick    phases 80.9% 4.2% 84.8% 2.3% 82.9% 2.1% 2.1% 2.5%

amp      dur      area     phases 80.0% 5.7% 85.2% 1.7% 82.6% 2.3% 3.2% 3.0%

amp      dur      phases 77.7% 5.4% 87.4% 1.5% 82.6% 2.2% 5.0% 3.1%

amp      area     thick    SI       phases 80.9% 4.2% 83.9% 2.3% 82.4% 2.2% 2.0% 2.1%

area     SI       turns 77.3% 6.4% 78.0% 3.5% 77.6% 3.3% 3.4% 1.7%

area     SI       phases 77.3% 6.4% 78.0% 3.1% 77.6% 3.6% 3.1% 1.6%

area     SI 72.7% 6.4% 82.2% 3.5% 77.5% 3.5% 5.2% 3.1%

SI       turns 73.6% 5.6% 80.4% 3.3% 77.0% 3.5% 3.6% 2.7%

SI       phases 73.2% 6.2% 80.4% 2.9% 76.8% 3.9% 3.6% 2.9%

area     SI       phases 84.5% 5.3% 73.7% 2.9% 79.1% 3.0% 5.4% 3.1%

SI       phases 79.5% 5.4% 77.2% 2.6% 78.4% 3.2% 2.4% 1.5%

area     SI 80.0% 5.3% 76.5% 3.3% 78.2% 3.0% 2.6% 2.5%

area     phases 76.4% 5.2% 79.1% 2.6% 77.7% 2.3% 2.6% 2.5%

amp      SI       phases 85.5% 6.7% 69.6% 3.0% 77.5% 4.6% 7.9% 2.4%

AMC-

PD

Mean

Outlier

Com-

bined

BMC-

PD
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Table  5.8 Number of Occurrences per Feature in Best Feature Sets: LHS MUP Data 

AMC-PD BMC-PD MEAN Outlier Combined

amp      8 5 14 1 3

dur      19 5 10 0 0

area     18 10 14 5 5

thick    13 7 10 0 0

SI       8 5 10 8 8

phases   6 4 21 5 5

turns    9 7 0 4 2

# feat sets 20 15 21 8 9  

The number of occurrences of each individual feature in the feature sets whose accuracy did not differ 

significantly from the most accurate feature set is shown per each method. The term “# feat sets” 

refers to the number of feature sets per method that had the same accuracy at a 5% level of 

significance. 

 

 

5.5 Rigs MUP Data Results 

The MUP data described in Section 3.2.3 was studied in this section. The AMC characterization 

method was used to analyze the Rigs MUP data and compared to the performance of the conventional 

methods. PD was used to provide MUP characterizations for the AMC rule method. AMC-PD refers 

to using the AMC method using PD based MUP characterizations. 

The same process of training and testing and selecting muscles per trial described in Section 5.4 (LHS 

MUP data) was used for the Rigs MUP data.  

Table 5.9 shows the mean per-category accuracy, overall accuracy, and SSD across all possible 

feature sets comprised of two to five features.  

The conventional methods had lower mean overall accuracy and larger SSD values than the 

AMC-PD method as seen in Table 5.9. Across all feature sets of five, AMC-PD had 10% greater 

accuracy and less than half the SSD than the Mean method which had the highest accuracy of the 

conventional methods.  As the number of features used for characterization increased, myopathic and 
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neuropathic accuracy increased while normal accuracy decreased for the conventional methods, e.g. 

for the Mean method myopathic accuracy increased from 62% to 75% and normal accuracy decreased 

from 89% to 73% for two and five features respectively. With AMC-PD average myopathic accuracy 

increased from 77% to 84% while average neuropathic accuracy remained at 95% across all feature 

sets of two to all feature sets of five. Average normal accuracy increased for the AMC-PD method as 

the number of features increased unlike the conventional methods.  

Table 5.10 shows the best five feature sets as sorted by accuracy for each method. The best 

feature set of the AMC-PD method had 7% higher accuracy than the best feature set of the Mean 

method. The Mean method achieved significantly lower myopathic accuracy than the AMC-PD 

resulting in high values of SSD of the Mean method compared to the AMC-PD method whose SSD 

ranged from 2% to 4%.  All of the feature sets were ranked according to accuracy. A paired t-test was 

conducted between the most accurate feature set and each subsequent feature sets in the ordered list 

starting with the second most accurate, to find the feature sets whose accuracy was not different at a 

5% level of significance.  The Mean methods favoured SI, area, thickness, and turns as the most 

discriminative features, since they occur most frequently in the feature sets whose accuracy did not 

differ significantly. The AMC-PD method favoured thickness, turns and duration as the most 

discriminative features of the feature sets not differing significantly in accuracy.  



 

 84 

Table  5.9 Average Performance Across All Possible Feature Sets: Rigs MUP Data 

Mean SD Mean SD Mean SD Mean SD

myo 62% 12% 69% 8% 73% 7% 75% 5%

norm 89% 9% 84% 10% 78% 10% 73% 9%

neur 93% 12% 97% 2% 98% 1% 98% 1%

overall 81% 7% 84% 3% 83% 3% 82% 3%

SSD 16% 5% 13% 3% 13% 2% 13% 2%

myo 42% 8% 51% 5% 55% 4% 57% 3%

norm 74% 5% 69% 6% 66% 6% 63% 5%

neur 87% 12% 92% 3% 93% 1% 93% 1%

overall 68% 6% 70% 3% 71% 2% 71% 2%

SSD 20% 4% 17% 2% 17% 2% 16% 1%

myo 60% 11% 63% 7% 65% 5% 65% 5%

norm 69% 7% 61% 8% 56% 7% 51% 6%

neur 93% 14% 97% 3% 98% 2% 98% 1%

overall 74% 8% 74% 3% 73% 2% 71% 2%

SSD 16% 2% 18% 2% 19% 2% 20% 2%

myo 77% 14% 83% 7% 85% 5% 84% 5%

norm 87% 8% 90% 8% 93% 7% 95% 5%

neur 95% 3% 95% 4% 95% 3% 95% 3%

overall 86% 6% 89% 4% 91% 3% 92% 3%

SSD 10% 5% 7% 3% 6% 2% 6% 2%

# Features used for testing

Mean

Outlier

Four Five

Combined

AMC-PD

Two Three

Method

 

 

Table  5.10 Five Most Accurate Feature Sets per Method: Rigs MUP Data 

Method Feature Sets myo

SD (ten 

trials) norm

SD (ten 

trials) neur

SD (ten 

trials) overall

SD (ten 

trials) SSD

SD (ten 

trials)

area     SI       phases 70% 5% 99% 3% 100% 0% 90% 2% 14% 2%

SI       turns 74% 6% 94% 5% 99% 2% 89% 3% 11% 2%

SI       phases 68% 7% 100% 0% 98% 2% 89% 2% 15% 3%

dur      area     SI       turns 82% 5% 83% 7% 100% 0% 88% 2% 9% 2%

area     SI       turns 72% 3% 93% 7% 100% 0% 88% 3% 12% 1%

amp      dur      area     turns 58% 8% 80% 0% 93% 1% 77% 2% 15% 3%

amp      area     turns 57% 9% 80% 0% 93% 1% 76% 3% 15% 4%

area     turns 56% 7% 80% 0% 93% 1% 76% 2% 15% 3%

amp      dur      turns 57% 9% 80% 0% 90% 2% 76% 3% 14% 4%

dur      area     turns 54% 8% 80% 0% 93% 1% 76% 3% 16% 4%

thick    SI 74% 6% 70% 0% 100% 0% 81% 2% 14% 1%

dur      area 60% 6% 79% 3% 100% 0% 80% 3% 17% 2%

dur      area     turns 65% 8% 73% 7% 100% 0% 79% 4% 15% 3%

dur      SI 66% 7% 70% 0% 100% 0% 79% 2% 15% 2%

dur      area     SI 66% 7% 69% 3% 100% 0% 78% 3% 15% 2%

amp      dur      thick    phases   turns 95% 0% 100% 0% 96% 0% 97% 0% 2% 0%

dur      thick    turns 95% 0% 100% 0% 96% 0% 97% 0% 2% 0%

dur      area     thick    phases   turns 92% 3% 100% 0% 98% 3% 97% 1% 4% 2%

amp      thick    turns 95% 0% 94% 7% 100% 0% 96% 2% 4% 2%

dur      thick    phases   turns 94% 2% 100% 0% 95% 2% 96% 1% 3% 1%

Mean

Outlier

Combined

AMC-PD
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5.6 University of Ljubljana Biceps MUP Data 

The performance of the conventional method was compared against the AMC-PD method on the 

Ljubljana biceps MUP data described in Section 3.3.2. This section will also examine the effect of 

using different methods for establishing the normative limits for the Mean method. Previous work in 

this section examined the mean across pooled muscle data (the set of mean muscle values per feature)   

± 2 SD as was discussed in Section 5.2.2. This section also discusses the effect of using broader limits 

for the Mean method by taking the 5th and 95th and then 2.5th and 97.5th percentiles of the pooled 

muscle means because Podnar et al. examined the effect of broader limits of the Mean method on 

sensitivity using the Ljubljana biceps MUP data set studied in this section [51]. The same set of 

features were used as defined for the EAS MUP data in Section 5.4.1 except spike duration was not 

used for testing of the biceps MUP data because it was not available for many of the muscles. 

5.6.1 Ljubljana Biceps Data Results 

The conventional methods had lower mean accuracy and greater difference between sensitivity 

and specificity than the AMC-PD method as highlighted by the large SSD values of the conventional 

methods in Table 5.11. As the number of features used for characterization increased, sensitivity 

increased while specificity decreased for the conventional methods, e.g. for the Mean 2.5th to 97.5th 

percentile method sensitivity increased from 27.1.5% to 58.8% and specificity decreased from 93.9% 

to 84.6% for one and five features per set respectively. The AMC-PD mean sensitivity and specificity 

both increased as the number of features per set increased to 83.3% mean sensitivity, 89.5% mean 

specificity and mean accuracy of 86.4% across all sets of five features.  

Table 5.12 shows the best five feature sets per method as sorted by accuracy. The most accurate 

feature set of the AMC-PD method was 10% more accurate than the best feature set of the Combined 

method which had the highest accuracy of the conventional methods. All of the feature sets were 
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sorted according to accuracy. A paired t-test was conducted between the most accurate feature set and 

each subsequent feature set in the ordered list starting with the second most accurate, to find the 

feature sets whose accuracy was not different at a 5% level of significance.  AMC-PD favoured 

thickness, area and duration as the most discriminative features. The combined method had the 

feature set with the highest accuracy of the conventional methods.  The combined method favoured 

thickness, area and SI as the most discriminative feature sets. 

Table  5.11 Average Performance Across All Possible Feature Sets: Ljubljana Biceps MUP Data 

Mean SD Mean SD Mean SD Mean SD Mean SD

Sens. 18.6% 20.9% 31.5% 19.6% 40.2% 16.6% 46.1% 13.6% 50.2% 11.1%

Spec. 96.5% 1.1% 93.9% 1.7% 91.8% 2.1% 90.0% 2.1% 88.2% 2.0%

Acc. 57.6% 10.7% 62.7% 10.0% 66.0% 8.3% 68.0% 6.6% 69.2% 5.3%

SSD 38.9% 10.2% 31.2% 9.7% 25.8% 8.4% 21.9% 7.1% 19.0% 5.9%

Sens. 33.8% 24.8% 51.4% 17.5% 60.6% 11.3% 65.4% 7.8% 68.1% 6.0%

Spec. 89.1% 2.4% 81.9% 2.3% 77.1% 2.3% 73.9% 2.2% 71.6% 1.9%

Acc. 61.5% 11.5% 66.7% 8.4% 68.9% 5.8% 69.6% 4.2% 69.8% 3.4%

SSD 27.6% 13.3% 15.3% 9.2% 8.5% 5.6% 4.9% 3.3% 3.2% 1.9%

Sens. 27.1% 23.0% 41.9% 17.7% 50.0% 13.6% 55.0% 11.6% 58.8% 10.0%

Spec. 93.9% 3.0% 90.3% 2.6% 88.0% 2.6% 86.1% 2.5% 84.6% 2.1%

Acc. 60.5% 10.2% 66.1% 8.0% 69.0% 6.2% 70.6% 5.3% 71.7% 4.6%

SSD 33.4% 12.9% 24.2% 9.8% 19.0% 7.6% 15.6% 6.5% 12.9% 5.6%

Sens. 28.6% 26.5% 44.4% 22.7% 53.5% 19.0% 59.2% 15.6% 63.0% 11.4%

Spec. 89.3% 3.9% 82.3% 3.6% 77.5% 3.6% 73.9% 3.5% 71.1% 3.0%

Acc. 58.9% 11.9% 63.4% 10.4% 65.5% 8.7% 66.6% 7.0% 67.0% 5.0%

SSD 30.4% 14.7% 19.1% 12.3% 12.7% 9.7% 8.9% 7.4% 6.0% 4.9%

Sens. 32.8% 28.8% 50.4% 22.7% 59.8% 17.6% 65.1% 13.8% 68.2% 10.1%

Spec. 86.6% 4.2% 78.0% 3.5% 72.3% 3.4% 68.1% 3.4% 65.0% 3.0%

Acc. 59.7% 12.8% 64.2% 10.7% 66.0% 8.7% 66.6% 7.0% 66.6% 5.4%

SSD 26.9% 16.1% 14.4% 11.5% 8.4% 7.2% 5.8% 4.7% 4.7% 3.2%

Sens. 72.8% 12.0% 79.4% 6.1% 80.3% 4.8% 80.8% 4.2% 83.3% 4.5%

Spec. 70.3% 17.0% 79.0% 11.6% 85.4% 8.1% 89.5% 4.7% 89.5% 4.0%

Acc. 71.5% 13.7% 79.2% 8.4% 82.8% 5.7% 85.2% 3.7% 86.4% 2.6%

SSD 3.5% 4.2% 3.0% 2.6% 3.7% 2.3% 4.6% 2.0% 4.1% 1.9%

Combined

AMC-PD

# Features used for testing

Method

Five

Mean +/- 2SD

Mean 5th to 95th pctle

Mean                     

2.5th to 97.5th pctle

One Two Three Four

OUTLIER
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Table  5.12 Five Most Accurate Feature Sets per Method: Ljubljana Biceps MUP Data 

Method Feature Sets Sens (%) Sens SD Spec (%) Spec SD Acc (%) Acc SD SSD SSD SD

dur      area     thick    SI 59% 3% 94% 0% 77% 2% 17% 2%

area     thick    SI 59% 3% 94% 0% 77% 2% 17% 2%

dur      thick    SI 59% 3% 94% 0% 77% 2% 17% 2%

thick    SI 59% 3% 94% 0% 77% 2% 17% 2%

thick 56% 3% 97% 0% 76% 2% 20% 2%

thick    SI 72% 4% 85% 0% 78% 2% 6% 2%

area     thick    SI 73% 5% 82% 1% 77% 3% 4% 2%

thick    SI       turns 72% 4% 82% 0% 77% 2% 5% 2%

area     thick 71% 7% 82% 1% 76% 3% 5% 3%

area     thick    SI       turns 73% 5% 78% 1% 76% 3% 3% 1%

dur      area     thick    SI       turns 66% 4% 88% 0% 77% 2% 11% 2%

area     thick    SI       turns 66% 4% 88% 0% 77% 2% 11% 2%

dur      area     thick    turns 66% 4% 88% 0% 77% 2% 11% 2%

dur      area     thick    SI 66% 4% 88% 0% 77% 2% 11% 2%

area     thick    SI 66% 4% 88% 0% 77% 2% 11% 2%

thick 69% 6% 88% 0% 79% 3% 9% 3%

thick    turns 69% 6% 85% 0% 77% 3% 8% 3%

area     thick    SI 72% 4% 82% 0% 77% 2% 5% 2%

thick    SI 72% 4% 82% 0% 77% 2% 5% 2%

area     thick 72% 4% 82% 0% 77% 2% 5% 2%

thick 75% 4% 85% 0% 80% 2% 5% 2%

area     thick    SI 79% 6% 79% 0% 79% 3% 2% 2%

thick    SI 79% 4% 79% 0% 79% 2% 2% 1%

area     thick 79% 4% 79% 0% 79% 2% 2% 1%

thick    turns 75% 4% 82% 0% 79% 2% 4% 1%

dur      area     thick    phases   turns 87% 2% 94% 1% 90% 1% 3% 1%

dur      area     thick    phases 87% 2% 94% 1% 90% 1% 3% 1%

dur      area     thick    turns 87% 0% 93% 1% 90% 1% 3% 1%

dur      area     thick 87% 0% 93% 1% 90% 1% 3% 1%

thick    SI       turns 86% 3% 94% 1% 90% 2% 4% 2%

Combined

AMC-PD

Mean +/- 2SD

MEAN 5th to 95th pctle

MEAN 2.5th to 97.5th pctle

OUTLIER

 

 

5.7 Discussion of Muscle Characterizations 

MUPs with specific feature values (i.e. large area, large amplitude, many turns) can in principle be 

detected in a myopathic, normal or neuropathic muscle, however, with different probabilities. In 

general, single MUPs are nonspecific for different disease states of a muscle. Instead, it is the balance 

or combination of MUP conditional probabilities across a set of MUPs detected in a muscle under 

examination that provides the information regarding the likelihood of the muscle being myopathic, 

normal or neuropathic. Evaluation of a set of MUPs allows the degree to which a diagnostic concept 

matches the set of detected MUPs to be assessed. To be accurate, MUP-based muscle characterization 

must be based on multiple observations that are uncertain, taken by themselves. 
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5.7.1 Comparison of Probabilistic and Qualitative Methods 

Probabilistic muscle characterization is analogous to standard medical practice where a clinician 

qualitatively combines evidence presented by detected MUPs. During qualitative EMG examinations, 

a clinician characterizes each MUP detected and then combines these observations into an overall 

muscle characterization. Probabilistic muscle characterization is based on the same reasoning as used 

for qualitative EMG decisions. 

Probabilistic muscle characterization resembles the methods clinicians use to qualitatively 

examine needle EMG signals. First, a clinician subjectively assesses the similarity of a specific MUP 

under examination to MUPs detected in muscles of specific categories and then implicitly forms an 

estimate of the probability of detecting this MUP in a muscle of a specific category. This is similar to 

the MUP characterizations represented by the smaller pie charts in Figure 5.2. Next the clinician 

combines the probability estimates of all MUPs examined to formulate an overall muscle 

characterization – similar to the muscle characterization represented by the larger pie chart to the right 

in Figure 5.2. However, a clinician may be prone to making biased decisions because they may look 

for MUPs that confirm a pre-conceived expectation or assign lesser importance to MUPs that 

contradict an expectation. As well, there is a possibility of quickly jumping to an incorrect conclusion 

based on the observation of a single MUP feature, (e.g. it is common to associate increased MUP 

amplitude with a neuropathic condition). Probabilistic muscle characterization is a quantitative 

method that uses unbiased MUP characterizations that are estimated by simultaneously considering 

multiple MUP features and based on numbers of occurrences in exemplary training data.  A summary 

of the differences between clinicians using qualitative analysis and Probabilistic methods is provided 

in the caption of Figure 5.2. 

The author believes that skilled electromyographers can achieve similar levels of accuracy as the 

Probabilistic methods during a qualitative examination implying that they can both correctly estimate 
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the MUP conditional probabilities for each MUP (one probability per MUP per category) and can 

successfully combine these probabilities into a single decision. However, it is expected that the speed 

and accuracy with which electromyographers master both of these difficult to acquire skills can be 

increased through the feedback provided by quantitative MUP and muscle characterization. Taking 

into account multiple features simultaneously is a cognitive burden for the electromyographer using 

qualitative methods whereas it is an inherent aspect of Probabilistic muscle characterization. 

5.7.2 Specific MUP Data Sets 

EAS MUP Data 

As the number of features used for characterization increased, sensitivity increased while specificity 

decreased for the conventional methods and remained steady for the BMC-PD method. 

In previous work done by Podnar, area and turns individually had high sensitivity and duration 

had high specificity with the EAS data [47]. When using area, duration and turns simultaneously, 

BMC-LDA method had an almost three percent improvement in accuracy over the combined method 

as shown in Table 5.13. The Means method had very poor sensitivity and very high specificity. Table 

5.13 also shows that this work achieved similar results to those of Podnar [47] in implementing 

conventional analysis.   

Regardless of the method, thickness and turns appeared often in the top five feature sets as 

determined by accuracy. This work agrees with findings reported by Nandedkar et al. for limb 

muscles [35] suggesting that thickness improves accuracy more than area or duration alone but 

disagrees with previous analysis [47, 60] done on the EAS MUP data described in Section 3.3.1 that 

did not find thickness to be more discriminative than area and duration. Previous work using this EAS 

MUP data did not find thickness to be discriminative because not all combinations of feature sets 

were tested in [47, 60]. 
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The BMC–PD method was not as accurate as the BMC–LDA method in the study of the EAS 

MUP data. As shown in Chapter 4, the PD method was marginally less accurate in characterizing 

MUPs than the LDA method. However, the PD method for MUP characterization can provide useful 

information in some cases when used in combination with the BMC–LDA method. An event is 

significant when it occurs more often than expected assuming random occurrence. The significant 

events can be used by the PD method to determine sets of feature values that contributed most to the 

characterization of individual MUPs [61] and can be useful in explaining the basis of a 

characterization of a MUP (i.e. transparency). Although transparency was not the focus of the muscle 

characterization study conducted in Chapter 5, it is important to note that the transparent 

characterization of a MUP can be valuable in situations where the characterization of a MUP 

contradicts a clinician’s initial judgment. In addition, the BMC-PD method is useful for 

characterizing nominal valued features – an ability the LDA method does not have. 

LHS MUP Data 

The AMC-PD method had the highest accuracy across all of the methods evaluated at 86.2%. As the 

number of features used for characterization increased, sensitivity increased while specificity 

decreased for the conventional methods and remained steady for the AMC-PD method. The AMC-

LDA method had slightly lower accuracy than the AMC-PD method. AMC-PD method favoured 

area, duration and thickness as the most discriminative features. 

Rigs MUP Data 

The AMC-PD method had the highest accuracy across all of the methods evaluated at 97%. As the 

number of features used for characterization increased, myopathic and neuropathic accuracy 

increased while normal accuracy decreased for the conventional methods and all three categories 

remained steady or increased for the AMC-PD method. The AMC-PD method favoured duration, 

thickness and turns as the most discriminative features. 
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Ljubljana Biceps MUP Data 

The AMC-PD method at 90% had the highest accuracy across all of the methods evaluated. As the 

number of features used for characterization increased, sensitivity increased while specificity 

decreased for the conventional methods. AMC-PD method favoured area, duration and thickness as 

the most discriminative features. 

5.7.3 Comparison Across MUP Data Sets 

As discussed in Section 3.4 the EAS MUP data set does not have a great deal of separation 

between its categories while the other data sets have a reasonable separation distance.  The accuracy 

of characterizing the EAS MUP data was the lowest and the Rigs MUP data accuracy was the highest 

across all of the MUP data sets consistent with the separation distance of the distributions represented 

by their thickness values as shown in Table 3.1.  

 The BMC–LDA method had better accuracy with lower variance across different feature sets for 

the EAS MUP data than the BMC-PD method. This suggests that the BMC–LDA method may 

provide better estimates of the MUP conditional probabilities than the BMC–PD method for closely 

separated data.  Even though LDA works best for continuous feature values, it was successful in 

using information provided by integer valued features such as number of phases and number of turns 

for the EAS MUP data. 

When there is a reasonable spread in distance between categories as is the case for the LHS MUP 

data, the AMC-PD or BMC-PD methods provided higher accuracy than the AMC-LDA or BMC-

LDA methods. Also AMC-PD based characterization has higher accuracy than BMC-PD methods for 

MUP data sets with reasonable distance of separation.   

AMC-PD performed consistently while the conventional methods performance was not 

consistent across the MUP data sets. The Mean method did not perform well using either the EAS or 

Ljubljana biceps MUP data. For the EAS MUP data the Mean method had very poor sensitivity, i.e. 
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39% average sensitivity across all sets of four features shown in Table 5.3 and a sensitivity of 45.5% 

with the best feature set as shown in Table 5.4.  For Ljubljana biceps MUP data the Mean method 

(using ± 2SD normative limits) had poor sensitivity of 59% with the best feature set as shown in 

Table 5.12. Table 5.12 shows that the sensitivity of the Mean method improves when using wider 

normative limits (5th to 95th percentile), however, the improved sensitivity comes at the cost of 

reduced specificity. Performance of the Mean method did improve for the LHS and Rigs MUP data; 

however, its performance did not exceed the performance of the AMC-PD method. The performance 

of the outlier and the combined conventional methods also had inconsistent performance across the 

MUP data sets. The probabilistic methods performed better than conventional methods across all of 

the MUP data sets. Also sensitivity, specificity and or per category accuracy remained high for the 

AMC-PD and BMC-PD methods regardless of the number of features used for characterization.  

Thickness appeared in all and duration in all but one MUP data set as discriminative features. This 

suggests that duration and thickness should at the very least be included as features in the 

development of a CDSS regardless of the type of muscle or the suspected disease process affecting a 

muscle under examination. 

 

5.7.4 Advantages of the AMC-PD Method 

Pattern Discovery used three intervals to quantize feature values for the LHS and Ljubljana 

biceps MUP data and five intervals to quantize feature values for the EAS and Rigs MUP data. PD 

performed well relative to the other MUP characterization methods examined. Using a small number 

of intervals helps to simplify the visual patterns that explain the results leading to diagrams that are 

easily recognized and understood by clinicians (see Chapter 4). Using a small number of intervals, 

e.g. three, results in a wider range of feature values that are considered small, medium or large. This 



 

 93 

suggests that for AMC-PD muscle characterization high levels of precision in placing the onset and 

end markers that define the durations of MUPs is not required to ultimately achieve a high level of 

muscle categorization accuracy.  

The results in Table 5.5 provide some indication that the Probabilistic methods are robust to 

changing the size of the training data and varying the composition of the training data. 

A better balance between sensitivity and specificity was obtained by the Probabilistic methods (as 

shown by the lower SSD values) as compared to the conventional methods. This was most likely a 

result of using pattern classification techniques for estimating conditional probabilities of the MUPs. 

Training data from both categories are used so that more information is used for the estimation of 

MUP conditional probabilities.  

Probabilistic muscle characterization is as accurate, or more accurate, than the conventional 

quantitative methods. Probabilistic muscle characterization facilitates the determination of “possible” 

(likely), “probable” (more likely), or “definite” (most likely) levels of pathology [47] whereas the 

conventional methods are based on hypothesis testing and the number of criteria present which is a 

dichotomous “normal” or “abnormal” decision. One can see from Figure 5.2 that the clinician using 

AMC-PD could define numerical intervals that are based on a continuous scale corresponding to 

“possible”, “probable”, or “definite” levels of pathology. AMC-PD is based on quantitative data and 

can be directly used to support clinical decisions related to initial diagnosis as well as treatment and 

management over time. A system based on Probabilistic characterization can also formally combine 

other relevant clinical information to the case at hand such as the characterization of other muscles, 

and non-electrophysiological measurements, symptoms, and or test results. 

The sensitivity and specificity of conventional analysis varied considerably as the number of 

features used for characterization increased. The results showed the dramatic increase in sensitivity as 

the number of features used for the conventional methods increased accompanied by a dramatic 
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decrease in specificity. However, the Probabilistic methods did not vary as the number of features 

used for characterization changed. This property allows more flexibility in the choice of feature sets 

when implementing a system based on Probabilistic methods. 

The conventional Means and Outlier method required a minimum of twenty detected MUPs [47, 

52] testing of a muscle. In this thesis, all of the muscles were tested regardless of the number of 

MUPs detected per muscle except for the EAS MUP data. Allowing all muscles to be tested 

regardless of the number of MUPs detected does not require that the clinician keep looking until a 

minimum of twenty MUPs are found – a potentially difficult task in muscles where a neuropathic 

process reduces the number of motor units.  Note that the AMC-PD method requires a smaller 

number of MUPs to be detected to test a muscle. 

It is expected that Probabilistic characterization can make electrophysiological examinations 

more objective and accurate for most electromyographers. AMC-PD provides more diagnostic 

information than what is provided by conventional muscle characterization techniques. In addition, 

Probabilistic methods are potentially able to provide measures that strongly correlate with the level of 

involvement of a disorder.  Another measure that may strongly correlate with the level of 

involvement of a disorder is described in Chapter 6. The next step performed by the CDSS is to 

convert the scores produced by muscle characterization into well calibrated conditional probabilities 

of a muscle category given the set of detected MUPs and is covered in Chapter 6. 



 

 95 

 

 

 

Table  5.13 Comparison of Area, Duration and Turns Performance: EAS MUP Data 

Sens Spec Acc Sens Spec Acc

Mean 36.4% 86.7% 61.6% 38.0% 88.0% 63.0%

Outlier 46.2% 75.2% 60.6% 43.0% 81.0% 62.0%

Combined 54.2% 73.5% 63.8% 51.0% 79.0% 65.0%

B - PD 70.0% 59.6% 64.8% NA NA NA

B - LDA 66.7% 66.5% 66.6% NA NA NA

Dur/Area/Turns This Work Dur/Area/Turns
 (Podnar. 2004)
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Chapter 6 

Calibrated Muscle Characterization 

Previous chapters have focused on the accuracy muscle characterization as ratios of predicted 

categories to true categories in sets of test data. A muscle characterization produces a score 

ks between 0 and 1 for each category ky . Characterization accuracy can be expressed as the 

conditional probability of the predicted category, i.e. the category with the largest score value, given 

that the category of a muscle is true as shown in equation 6.1.  

( )trueykissP kik =≠∀> |  (6.1) 

Characterization accuracy is useful information when clinicians are evaluating the performance of 

clinical decision support systems. Chapter 5 has shown that the AMC and BMC methods are accurate 

as defined by equation 6.1 but there was no evaluation of whether the scores ks  produced by the 

AMC and BMC methods were correlated with the level of confidence. A score ks  that is well 

correlated with level of confidence means that the score ks  reflects the probability that the 

characterization is true. Intuitively, if we consider all of the muscles characterized with a score of 

ks =.8, then 80% of these muscles should actually be of the category k. Scores produced by the BMC 

method often saturate to either 0 or 1 as the number of MUPs used for characterization increases, see 

Appendix C for an explanation, so the BMC method is not considered to be well calibrated.  

This chapter will discuss another muscle characterization method known as the Z-transform (ZT) 

method to compare the performance of its calibrated muscle characterizations to the AMC method. 

The chapter will then discuss a method for calibrating scores ks  and then evaluate calibrated scores 

produced from AMC and ZT muscle characterizations. 
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6.1 Z -Transform Muscle Characterization 

The Z transform assumes that the conditional probabilities that comprise MUP characterizations are 

Gaussian distributed. The conditional probability of category c given iMUP  is 

called ( )ici MUPccategoryPP |== . Each ciP  is converted into a normalized z score by subtracting 

the mean across all ciP  and dividing by the standard deviation across all ciP  as shown by equation 6.3. 

The z scores ciZ are Gaussian distributed with a mean of zero and a standard deviation of 1. 

σ

µ−
= ci

ci

P
Z   (6.3) 

where 

µ  is the mean across all ciP . 

σ is the standard deviation across all ciP . 

The z scores ( ciZ ) are summed across a single category and divided by the standard deviation of the 

sum which is the square root of the number of MUPs as shown by: 

NZZ
N

i

cimc ∑
=

=
1

  (6.4) 

where 

mcZ is the Z-transform of category c of muscle m across N  MUPs. 

N is the number of MUPs in muscle m . 

The value mcZ is then transformed into a probability )|( mcP by looking up the probability value in 

the Gaussian cumulative density function. More information about the Z-transform can be found in 

[62]. In the rest of this chapter the notation ky will be used to denote a category as has been used 
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earlier in this document. A muscle characterization calculated by the ZT method is a set of 

conditional probabilities.  

Appendix D has a proof that shows that the Z transform of MUP characterizations estimated 

using PD have the same rankings of categories as sorted by their muscle characterization scores as 

compared to the AMC-PD method on a per muscle basis because the Z transform performs a linear 

operation on the AMC-PD characterization. This means that the Z transform method has identical 

sensitivity and specificity as the AMC-PD method for a given MUP data set. A pilot test showed that 

the ZT-PD method had identical sensitivity and specificity as the AMC-PD method using simulated 

MUP data. 

6.2 Category Membership Probability 

The characterization measures calculated by the AMC, BMC or ZT method of a muscle MUS  can be 

thought of as scores ( )MUSsk  for each category ky . Equation (6.2) is called the empirical class 

membership probability [63]. It is equal to the number of muscles with score s that belong to category 

ky divided by the total number of muscles with score s. 

( )( )
( )

( ) ( )kkskks

kks

kk
ynyn

yn
sMUSstrueyP

≠+=

=
=== |  (6.2) 

where  

( )MUSsk  is the score of category ky of muscle MUS   

kks yn =  is the number of muscles with score sMUSsk =)(  whose true category ky=    

kks yn ≠  is the number of muscles with score sMUSsk =)( whose true category ky≠    

A plot of ( )( )sMUSsyP kk =|  versus the score s is called a reliability diagram [64].  A muscle 

characterization method is well calibrated if ( )( )sMUSsyP kk =|  converges to the score 
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value ( )MUSsk . In other words, a muscle characterization method is well calibrated if all points fall 

on the y=x line of the reliability diagram, i.e. the score is well correlated to the level of confidence*.  

In this work, ks  denotes un-calibrated and kŝ denotes calibrated scores. A reliability diagram is 

drawn for each category of a muscle characterization method. A function ( )kk syP |ˆ  is learned for a 

muscle characterization method by finding a fit to the points drawn in its corresponding reliability 

diagrams. An un-calibrated score  ks  is calibrated by changing its value to ( )kkk syPs |ˆˆ = . This 

chapter examines the reliability diagrams of muscle characterization scores and describes the method 

for calibrating the scores in further detail.  

 

6.3 Calibration Method 

The reliability diagram is used for plotting the empirical category membership probability versus 

score for binary (2 category) classification problems. A binary classifier considers an example 

positive if it is a member of the category or negative otherwise. In a multiple category case a 

reliability diagram is drawn for each category where the category under consideration is the positive 

category and all the other categories are considered negative categories. Representing a multiple 

category problem as a set of binary problems is called the one-against-all approach [63].  

                                                      

* Reliability diagrams are often used in the literature to determine the reliability of probability of 

precipitation (POP) estimates provided by weather forecasters [64]. The y value of a reliability diagram for POP 

estimates is determined by counting the number of days precipitation actually fell on those days that the 

POP=x% divided by the total number of days that the POP=x%. The POP values are located on the x-axis. So, 

as an example, a well calibrated POP means that precipitation fell on 40% of all days that the POP value was 

40%.  
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Mapping scores into probability estimates requires learning a mapping for each category. 

Category membership probabilities ( )sMUSsyP ikk =)(|  are learned by using muscles that actually 

belong to the category as positive categories and all other muscles belonging to the other categories as 

negative. A reliability diagram plots the following set of points for 

category ky ( )( ))(,)(| ikikk MUSsMUSsyP .  

A classification system is well behaved if its scores are well ranked, i.e. if 

)()( jkik MUSsMUSs >  then )|()|( jkik MUSyPMUSyP > . A classifier that ranks well is 

isotonic (monotonically non-decreasing).  Therefore a mapping function that is learned also needs to 

be isotonic.  A common way of learning an isotonic function is called the pair-adjacent-violators 

(PAV) algorithm [63]. This method can take a set of points ( )( ))(,)(| ikikk MUSsMUSsyP  and 

learn an isotonic function ( )kk syP |ˆ  that fits the data using mean-squared error criteria. 

The PAV algorithm learns a function ( )kk syP |ˆ  as follows. The set of category membership 

probabilities ( ){ }N

ikik syP 1|
=

 is ordered according to the ranking of their respective scores, in 

mathematical notation ( ) ( )KK 11 +−
≤≤≤

ikkiik sss .  

If ( ) ( )( )1|| −≥ ikkkik syPsyP  then these two points are isotonic and ( ) ( )kikkik syPsyP ||ˆ = . If 

( ) ( )( )1|| −< ikkkik syPsyP  then the two points are known as pair adjacent violators and are both 

replaced by their average i.e. ( ) ( )( ) ( ) ( )( )( ) 2|||ˆ|ˆ
11 −− +== ikkkikikkkik syPsyPsyPsyP . The new 

estimate is checked against previous estimates to ensure that the function has remained isotonic. If 

not, then previous estimates are replaced by averaging until the set becomes isotonic. A Matlab 

function called IsoMeans supplied by Lutz Dumbgen [65] was used to implement the PAV algorithm.  
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A score is calibrated by assigning ( )kkk syPs |ˆˆ = , i.e. looking up the y value in the learned 

isotonic functions that correspond to the score. At this stage in the calibration process, the set of 

calibrated scores kŝ  are unnormalized because the sum across all categories is not likely to equal 1. 

These calibrated and unnormalized scores are normalized by dividing each score kŝ  by the sum of 

scores across all categories, i.e. ∑
k

kk ss ˆˆ resulting in normalized calibrated conditional probabilities. 

Figure 6.1 displays an example calibration. The pie chart at the bottom shows an un-calibrated 

muscle characterization of 0.1 myopathic, 0.2 normal, and 0.7 neuropathic. Isotonic functions have 

been learned per category using training data and are labeled ( )scoremyoP |ˆ , ( )scorenormP |ˆ  and 

( )scoreneurP |ˆ  in Figure 6.1 for the myopathic, normal and neuropathic categories respectively.  

The calibrated and unnormalized score for a category is determined by finding the y value associated 

with the un-calibrated score in the isotonic function of that category. This results in calibrated and 

unnormalized scores of 0.03 myopathic, 0.1 normal and 0.85 neuropathic. These scores are 

normalized resulting in a calibrated muscle characterization of 3.1% myopathic, 10.2% normal and 

86.7% neuropathic as shown in the top pie chart. Reliability diagrams for calibrated muscle 

characterizations can be drawn based on the calibrated normalized scores and performance can be 

checked by how close their reliability diagrams approach the y=x line. 
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Figure  6.1  Example of Calibrating Muscle Characterization Scores 

 

6.3.1 Generating Reliability Curves 

Three hundred different runs of training data were created by randomly choosing 450 out of 500 

simulated MUPs per run per category to produce 135,000 MUP characterizations per category. The 

MUP data was characterized using PD to produce three conditional probabilities for each MUP. In 

total, 405,000 MUP characterizations were generated. Equal number of virtual muscle data per 

category was created by randomly selecting MUP characterizations out of the 135,000 MUP 
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characterizations. Four different sets of 60,000 virtual muscles per category were created where each 

set was composed of 1, 2, 5 and 10 MUPs respectively per virtual muscle. The sets that had 1 and 2 

MUPs per virtual muscle were generated without replacement from the pool of MUP 

characterizations as 135,000 MUP characterizations is greater than 2 x 60,000. However, sets that had 

5 and 10 MUPs per virtual muscle were sampled with replacement from the pool of MUP 

characterizations. Reliability diagrams of average muscle characterization were compared to Z-

Transform muscle characterizations for each of the four sets and per category.  

The same process described in the previous paragraph was repeated for the remaining MUP data 

sets described in Chapter 3 and was done by randomly choosing approximately 90% of the available 

MUPs per training run and repeating until 135,000 MUP characterizations per category were 

generated. Four sets of 60,000 virtual muscles per category were generated for each MUP data set 

where each set was composed of 1, 2, 5 and 10 MUPs respectively per virtual muscle. Reliability 

diagrams for virtual muscles with greater than 10 MUPs were not drawn because of the tendency of 

the reliability curves to saturate into sharp sigmoid shapes resembling the shape just before, during, 

and after the rising edge of a square wave. 

Reliability diagrams were drawn by using equation 6.2 for the un-calibrated and calibrated scores.   

The mean square error of un-calibrated scores denoted uncalMSE  and calibrated scores 

denoted calMSE were calculated across all N points in a reliability diagram by squaring the difference 

of each category membership probability to its score and dividing by the number of points as follows: 

( )
( )( )

N

ssyP

yMSE

N

i

kikik

kuncal

∑
=

−

= 1

2|
  (6.3) 

( )
( )( )

N

ssyP

yMSE

N

i

kikik

kcal

∑
=

−

= 1

2ˆˆ|
  (6.4) 
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6.4 Calibrated Muscle Characterization Results 

Un-calibrated MSE increases as the number of MUPs per virtual muscle increases regardless of the 

data set studied as shown in Tables 6.1 to 6.5. A line fitted through the un-calibrated data points in the 

reliability diagrams resembles a sigmoid shape where the slope of the middle section of the sigmoid 

increases as the number of MUPs per virtual muscle increases. Regardless of the category the MSE 

for every MUP data set becomes smaller for calibrated data in the reliability diagrams as compared to 

the un-calibrated data.  

The MSE of the ZT muscle characterization method did not differ a great deal from the MSE of 

the AMC method for MUP data sets that had two categories (LHS, EAS and LJUB-Biceps) as shown 

in Tables 6.1 to 6.3. A line fitted through the points in the reliability diagrams shows that both the 

calibrated AMC and ZT methods approximately follow the y=x line. Figures 6.2 and 6.3 show the 

reliability diagrams for neuropathic data using the AMC method for the EAS and LHS MUP data 

respectively.  

The MSE of the un-calibrated and calibrated ZT muscle characterization method was usually less 

than the MSE of the un-calibrated and calibrated AMC method for MUP data sets that had three 

categories (simulated and Rigs) for virtual muscles with 5 and 10 MUPs as shown in Tables 6.4 and 

6.5. For the simulated MUP data the MSE of the calibrated ZT method averaged about 60% and 42% 

of the MSE of the calibrated AMC method across the categories for 5 and 10 MUPs per virtual 

muscle respectively for the simulated MUP data.   A line fitted through the points in the reliability 

diagrams showed that the ZT method follows closer to the y=x line than the AMC method when 

comparing results for the same number of MUPs per virtual muscle for the simulated data. For the 

Rigs MUP data the MSE of the calibrated ZT method was less than the calibrated AMC method 
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except for the Neuropathic category. Figures 6.4 and 6.5 show the reliability diagrams for the 

calibrated AMC and ZT methods for the Rigs myopathic and neuropathic categories respectively. As 

shown in Table 6.4 the greatest decrease in MSE of the ZT method as compared to the AMC method 

for the calibrated neuropathic scores occurred when using 10 MUPs per virtual muscle. The majority 

of the points as shown in Figure 6.5 for virtual muscles of 5 and 10 MUPs are clustered towards 0 or 

1 for both the calibrated AMC and ZT methods thus not leaving a great deal of points in between to 

get a good sampling of  the range of scores.  
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Figure  6.2 Reliability Diagrams for Un-calibrated & Calibrated Neuropathic EAS MUP data 

Characterizations using AMC 
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Figure  6.3 Reliability Diagrams for Un-calibrated & Calibrated Neuropathic LHS MUP Data 

Characterizations using AMC 
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Figure  6.4 Reliability Diagrams for Calibrated Myopathic  Rigs MUP Data Characterizations 

using AMC & ZT 
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Figure  6.5 Reliability Diagrams for Calibrated Neuropathic  Rigs MUP Data Characterizations 

using AMC & ZT 
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Table  6.1 MSE of Calibrated & Un-calibrated LHS MUP Data 

x10E-3 AMC ZT AMC ZT

NORM1 6.9 4.2 1.7 2.2

NORM2 10.6 11.6 0.7 0.7

NORM5 59.3 54.7 0.6 0.6

NORM10 98.5 96.7 0.3 0.3

NEUR1 6.2 3.0 1.6 1.6

NEUR2 10.6 11.6 0.8 0.8

NEUR5 59.3 54.7 0.6 0.6

NEUR10 98.5 96.7 0.3 0.3

Uncalibrated Calibrated

MSE of LHS Data

 

 

Table  6.2 MSE of Calibrated  & Un-calibrated EAS MUP Data 

x10E-3 AMC ZT AMC ZT

NORM1 1.2 1.1 0.8 0.8

NORM2 3.5 4.0 1.6 1.6

NORM5 17.2 19.7 1.0 1.0

NORM10 39.6 46.5 1.0 1.0

NEUR1 1.3 1.2 0.9 1.0

NEUR2 3.5 4.0 1.3 1.3

NEUR5 17.2 19.7 1.1 1.1

NEUR10 39.6 46.5 1.1 1.1

CalibratedUncalibrated 

MSE of EAS  Data

 

 

 

Table  6.3  MSE of Calibrated & Un-calibrated Ljubljana Biceps MUP Data 

x10E-3 AMC ZT AMC ZT

MYO1 3.8 2.8 1.9 1.9

MYO2 11.3 12.4 0.7 0.7

MYO5 61.6 61.3 0.6 0.6

MYO10 108.5 118.6 0.3 0.3

NORM1 3.7 2.7 1.1 1.1

NORM2 11.3 12.3 1.2 1.2

NORM5 61.6 61.3 0.5 0.5

NORM10 108.5 118.6 0.6 0.6

MSE of LJUB-Biceps Data
Uncalibrated Calibrated
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Table  6.4 MSE of Calibrated and Un-calibrated Simulated MUP Data 

x 10E-3 AMC ZT AMC ZT

MYO1 2.2 2.5 1.2 1.4

MYO2 15.9 14.2 1.5 1.3

MYO5 57.2 29.2 0.9 0.6

MYO10 78.8 28.2 1.0 0.4

NORM1 1.5 2.9 1.1 1.2

NORM2 16.6 14.0 1.4 1.5

NORM5 66.8 37.8 1.7 0.9

NORM10 103.1 44.6 2.1 0.8

NEUR1 3.0 3.5 1.1 1.3

NEUR2 13.6 12.4 1.2 1.1

NEUR5 52.8 25.0 1.2 0.7

NEUR10 76.7 24.6 2.1 1.0

Uncalibrated Calibrated 

MSE SIMULATED DATA

 

 

 

Table  6.5 MSE of Un-calibrated  & Calibrated Rigs MUP Data 

x 10E-3 AMC ZT AMC ZT

MYO1 1.0 2.2 0.8 0.8

MYO2 10.4 9.1 1.4 1.3

MYO5 47.3 26.3 3.1 1.8

MYO10 80.3 43.0 5.8 2.2

NORM1 1.2 0.9 0.7 0.5

NORM2 10.1 7.7 1.2 1.3

NORM5 51.4 32.0 2.7 1.7

NORM10 92.9 55.2 4.5 1.8

NEUR1 2.6 2.2 0.7 0.8

NEUR2 11.5 9.7 1.2 1.4

NEUR5 51.6 21.4 1.0 1.1

NEUR10 73.5 20.8 1.3 1.9

MSE Rigs Data
Uncalibrated Calibrated

 

 

6.5 Discussion 

Based on the results the AMC or ZT method for muscle characterization are recommended.  The ZT   

method achieves the lowest MSE scores for the three category data sets and equals the performance 
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of the AMC method for two category data sets. The neuropathic category of the Rigs MUP data was 

the only data where the ZT method performed slightly worse than the AMC method. The author of 

this thesis believes that this is due to the polarized clustering of points by the ZT to be near zero or 1 

so that not enough points in between 0 and 1 remained to get a robust measure of MSE. 

The method presented in this chapter appears to calculate calibrated scores that are reliable, i.e. 

reflective of their true underlying conditional probabilities. A clinician would have greater trust in a 

system that produces reliable conditional probabilities fulfilling an important requirement of a CDSS 

– Section 2.3 under “Report Confidence”. A clinic could establish a threshold of conditional 

probability that needs to be exceeded before declaring an abnormality. Calibrated conditional 

probability could be quantized into “possible”, “probable”, or “definite” levels of abnormality useful 

information for helping a clinician decide whether further testing is required or whether treatment can 

be applied.   In addition, calibrated conditional probabilities could be an indication of the level of 

involvement of a disorder and could be used to examine the effectiveness of treatments in 

longitudinal studies.  A system that produces reliable conditional probabilities is also transparent in 

that the system reports for each muscle characterization its level of confidence.  

The low MSE scores shown in Tables 6.1 to 6.5 for un-calibrated scores of muscle 

characterizations using 1 MUP and the upper left reliability diagrams of Figure 6.2 and 6.3 show that 

the un-calibrated PD scores are well calibrated by how close the reliability diagram follows the y=x 

line. The un-calibrated scores of muscle characterizations using greater than 1 MUP are not reflective 

of their underlying conditional probabilities as shown by the increasingly sharper sigmoid shapes and 

higher MSE values as the number of MUPs used for muscle characterization increases.  

The un-calibrated reliability diagrams in Figure 6.2 show the effect of data that does not have a 

great deal of separation between categories. Because of the ambiguity of the EAS MUP data set there 

were very few scores lower than 0.4 and scores greater than 0.7. For data sets with good separation 
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between categories there appears to be a more uniform distribution of points across all values of 

scores as shown in the un-calibrated column of Figure 6.3. 

It appears from the results that the performance of calibrating three category data sets (simulated 

and Rigs) is poorer than two category data sets (EAS, LHS and LJUB-Biceps) especially as the 

number of MUPs per muscle increases. The method proposed in this chapter considers one category 

at a time to draw binary reliability diagrams and then learning an isotonic function. It seemed to work 

well for the two category data sets because the mapping occurs between one-dimensional spaces. In 

reality, the three category case is a mapping of a two-dimensional space to another two-dimensional 

space. Breaking the three category problem into separate one-dimensional problems and the 

normalization has likely led to a loss of information and therefore poorer results than for the two 

category data sets. 

6.5.1 Application 

The following is an initial proposal as to how a clinic conducting EMG examinations could provide 

calibrated muscle characterizations. A clinic would have control over their labeled training data. 

Examinations using the CDSS would be consistent with their definition of abnormality.   

Training Phase 

1. Collect MUP data from patients visiting the clinic. 

2. Patients with confirmed diagnosis could have their MUP data labeled as myopathic or 

neuropathic. 

3. Confirmed healthy subjects are used to establish normal data to have a definition of 100% 

normal. It is recommended that subjects referred to the clinic for neuromuscular symptoms 

and then cleared by the clinic as being healthy are not to be used to establish normal training 

data as their data may not be representative of a healthy subject. 
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4. Features extracted from MUPs are pooled into the following sets: myopathic, normal and 

neuropathic. 

5. Random selection as described in Section 6.3.1 with the pooled MUP data (step 4 above) is 

used to generate a reliability curve for each category and for the following numbers of MUPs 

per virtual muscle { }10,9,,2,1 Kεn . 

6. An isotonic function is learned from the reliability curves generated in step 5 leading to thirty 

learned functions (3 categories x 10 different sets of n MUPs/virtual muscle). 

Clinical Examination of a Patient 

1. A muscle from a patient under examination is characterized using the ZT-PD method. The 

number of MUPs n detected and used for characterization is noted. 

2. The set of isotonic functions learned during the training phase that correspond to n MUPs are 

used to obtain a calibrated muscle characterization. 

 

There are unresolved issues with the process discussed above. Usually greater than 10 MUPs will be 

detected from a muscle under examination. Drawing reliability curves for greater than 10 MUPs is 

not recommended because they saturate into a sharp sigmoid shape with a slope of the rising edge 

approaching infinity. This saturated sigmoid shape would lead to calibrated scores of either 0, 

indeterminate (for portion approaching infinite slope) or 1. The MSE of reliability diagrams of 

calibrated scores cannot be accurately determined because the calibrated scores are clustered at either 

0 or 1 and the entire range of scores is not sufficiently sampled to obtain a statistically robust MSE 

(see reliability diagram bottom right of Figure 6.3 for an example).  

Here are some possible strategies for doing calibrated muscle characterizations when the number 

of MUPs detected per muscle is greater than 10. The following strategies need to be tested for 
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accuracy as in chapter 5 and for the MSE of their calibrated reliability curves as described in this 

chapter. 

• Use only 10 randomly selected MUPs to use for calibration or 

• Rank the MUP characterizations by their MUP conditional probabilities of the 

category with the highest score. Divide the ordered set of MUP characterizations into 

sets of 10 and calibrate each set. Average the calibrated scores across these sets to 

produce an overall calibrated muscle characterization or 

• Use the functions learned for 10=n  to calibrate any raw muscle characterization 

score where 10>n  or 

• Generate reliability curves for all values of n up to a upper limit say 60 and use the 

appropriate learned function. 
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Chapter 7 

Conclusions 

This work recommends using PD based MUP characterizations and transforming a set of MUP 

characterizations into a muscle characterization using the AMC or Z-transform method. Finally, 

AMC or the ZT transform can be calibrated by learning an isotonic function for each category using 

the PAV algorithm and then converting the score into a calibrated conditional probability of a 

neuromuscular category given the MUPs detected from a muscle.  

The AMC-PD or ZT-PD method can be directly used to support clinical decisions related to initial 

diagnosis as well as treatment and management over time. Decisions are based on facts and not 

impressions giving electromyography a more reliable role in the diagnosis, management, and 

treatment of neuromuscular disorders. AMC-PD or ZT-PD based muscle characterization can help 

make electrophysiological examinations more accurate and objective. 

7.1 Success in Meeting the Requirements  

This work cannot completely answer the question: does the CDSS improve a clinician’s 

performance? This question is more important than determining the accuracy of the characterizations 

provided by a CDSS as a stand-alone system and is addressed in the Future work section of this 

chapter. The function of the CDSS is to provide a characterization. It is the role of the clinician to 

transform the characterization into a categorization. Currently clinicians use mostly manual methods 

to recognize patterns created by MUP features and MU activation. The acceptance of a CDSS by 

clinicians depends on its ability to provide a new point of view that reveals rules or relationships 

easily seen as well as not easily seen by their current methods. 
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The section will provide conclusions on the recommended CDSS design against the requirements 

listed in Section 2.3.  

7.1.1 Transparency 

MUP characterization using PD was found to be transparent because it explained its characterizations 

by reporting sets of feature values along with a strength-of-evidence measure supporting or refuting 

its characterizations. Calibrated muscle characterizations methods in this work can explain their 

characterizations by ranking the MUPs as sorted by conditional probability of the category with the 

highest characterization measure. Muscle characterizations were not as transparent as individual MUP 

characterizations because muscle characterizations require a large amount of information to be 

integrated into an underlying explanation, see for example Figure 5.2.  

7.1.2 Accuracy 

AMC-PD based muscle characterizations had higher sensitivity and specificity than conventional 

muscle characterization methods. It uses the same information available during qualitative 

examination except it produces consistent, objective evidence while not being dependent on intuition, 

and biased by other sources of information. As a decision support system, it can aid an 

electromyographer in a single but important step of an EMG examination and can provide an 

objective record over time that facilitates longitudinal studies.  

7.1.3 Confidence 

According to the reliability curves in Chapter 6, the AMC-PD or ZT-PD method can be calibrated 

into a probability estimate that corresponds to confidence. Clinicians can understand the reliability of 

an individual characterization and perhaps use confidence thresholds to declare that a patient has an 

abnormality, e.g. only calibrated probability estimates of greater than 90% should confirm the 
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presence of a category of abnormality and estimates of less than 90% require further testing or 

revision of the hypothesis as to the underlying cause of a patient’s symptoms. 

7.1.4 Generalization 

The methods for training and testing were done using jackknifing across a number of different trials. 

As well, several different MUP data sets were studied. The AMC-PD and hence the ZT-PD method is 

accurate across different MUP data sets - even for data such as the EAS MUP data set that does not 

have a great deal of separation between the categories.  

7.1.5 Handle Missing Data 

The effect of missing data was not studied in this work. 

 

7.2 Research Contributions 

In the author’s opinion, the original contributions of this work are: 

1. Methods for doing PD based MUP characterizations were implemented and evaluated. 

2. Methods for AMC-PD based muscle characterizations were developed and evaluated. The AMC-

PD method exceeds the performance of conventional muscle characterization techniques as per 

the requirements of a CDSS. 

3. The PAV method for calibrating the AMC-PD and ZT-PD muscle characterization methods were 

implemented and evaluated.  

4. An equation for transforming WOE into conditional probabilities was derived. 

5. The thesis suggests that different muscle types can be pooled together for training and testing data 

and found to provide reasonable accuracy. 

6. A graphical method of displaying MUP characterizations in a transparent manner was developed. 
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7.3 Future Work 

7.3.1 Graphical User Interface (GUI) 

The methods developed and recommended in this work should be built into a system capable of being 

used in a clinical setting.  Feedback about the usability and effectiveness of CDSS prototypes with the 

developed GUI should be sought from clinicians that conduct EMG examinations.  

7.3.2 ZT-PD Method 

Other MUP data sets that have three or more categories should be examined as to the reliability 

diagrams produced by the AMC and ZT methods. The ZT method may provide better calibrated 

conditional probabilities than the AMC method in terms of low MSE score in a reliability diagram as 

the number of categories to be characterized increases. 

If the ZT method does not perform well for greater than three categories then finding a method 

that can perform well for higher dimensional calibration may be a worthwhile research project. 

 

7.3.3 Transparent Muscle Characterization 

Although a demonstration of the transparency of MUP characterizations was provided, a method that 

can provide a transparent muscle characterization would be useful.  

7.3.4 Correlation to Level of Involvement 

The characterization measures of the AMC method showed excellent correlation to level of 

involvement of neuropathic and myopathic neuromuscular disorders when analyzing 

electromyographic signals based on the simulated MUP data described in this thesis[66]. Verifying 

that the calibrated conditional probability estimates produced are correlated with the level of 
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involvement of a disorder for clinical data would be useful. This is challenging because it is difficult 

to accurately know the level of a disorder for a real muscle. 

7.3.5 Addition of Other Electrophysiological Features 

Other features should be considered and evaluated. Both new shape and or size based features as well 

as features derived from firing patterns of MUs. As well, integrating results from other QEMG 

methods into an overall system may be possible and useful. 

7.3.6 Examination of Accuracy versus Number of MUPs 

It would be worthwhile to examine the effect of using less than the total number of MUPS detected to 

determine a muscle characterization and to see the effect of reducing the number of MUPs on 

accuracy. This may allow clinicians to complete examinations more quickly if they can obtain an 

accurate muscle characterization with fewer MUPs.  

7.3.7 Clinical Evaluation 

Friedman et al. describes the results of a trial on how two different CDSS systems enhance or 

degrade diagnostic reasoning [67]. The study describes a consultation as positive when the clinician 

made a correct diagnosis after a CDSS consultation but did not include it in their initial diagnosis of 

the same data. A consultation is negative when the clinician made the correct diagnosis in their initial 

diagnosis but reversed it after consultation with the CDSS. There should be a net gain of positive 

consultations versus negative consultations to consider the CDSS as a success in enhancing 

diagnostic reasoning. A trial like one described by Friedman et al. is recommended as future work.  
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Appendix A 

Derivation of Compound Rule Conditional Probability for PD 

MUP =  yk  MUP was detected in a muscle of category ky  

MUP ≠  yk  MUP was not detected in a muscle of category ky  

*
kx   compound rule associated with category ky  

WOE   Weight of Evidence 

 

Definition of WOE. 
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Definition of conditional probability. 
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Total Law of Probability. 
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Sum of all prior probabilities equals 1. 
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Sub A.2 into A.6 
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( ) ( )( )
( ) ( ) ( )( )kkkk

kkk

yMUPxPxPyMUPP

yMUPPyMUPxP
WOE

=−⋅=

=−⋅=
=

,

1,
log

**

*

2  (A.8) 

)(

)(1

k

k

yMUPP

yMUPP
lettingNow

=

=−
=Φ   (A.9) 

Sub A.9 into A.8 

( )
( ) ( )










=−

Φ⋅=
=

kkk

kk

yMUPxPxP

yMUPxP
WOE

,

,
log

*2   (A.10) 

Divide numerator and denominator of A.10 by ( )kk yMUPxP =,  
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Appendix B 

 Derivation of Bayes Rule for Multiple Pieces of Evidence 

In both (Pfeiffer. 1999) and this paper, we are using Bayes theorem for combining the evidence of 

multiple MUPs. All of the feature values of a single MUP can be thought of as a single piece of 

evidence e. Pfeiffer used the recursive form of Bayes theorem which is used to update the posterior 

probability as new evidence appears. In this paper, the form of Bayes formulae that is used is called 

“Bayes Theorem for Multiple Pieces of Evidence” and is identical to the recursive form of Bayes 

theorem when all pieces of evidence have been collected and the recursion is finished. Below shows 

how Bayes theorem is derived for multiple pieces of evidence under the assumption that each piece of 

evidence is conditionally independent of the other pieces of evidence. First, we start with Bayes 

theorem for a single piece of evidence and multiple categories. More information about Bayes 

Theorem for multiple pieces of evidence can be found in: 

Duda R, Hart PE. Pattern Classification. 2nd edition. John Wiley and Sons, Inc. 2001.  

 

Bayes Theorem – One piece of evidence & Multiple Categories 

 

i
Y = Category i, { }1, ,i K∈ K  

e   = Single piece of evidence 

 

( )
( ) ( )|

|
( )

i i

i

P e Y P Y
P Y e

P e

⋅
=  (B.1) 

 

Total Law of Probability assuming each category forms a disjoint set, e.g. a muscle in the training 

data can only belong to one category. 
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Bayes Theorem – Multiple pieces of evidence & Multiple Categories 

 

i
Y = Category i, { }1, ,i K∈ K  

j
e    = Piece of evidence j, { }1, ,j n∈ K  
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Total Law of Probability assuming each category forms a disjoint set. 
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If we assume conditional independence of the evidence, i.e. the pieces of evidence are statistically 

independent given a category then: 
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Equation B.8 above shows the form of Bayes theorem for multiple pieces of evidence when the pieces 

of evidence are statistically independent given a category.  

 

Derivation of Bayes Rule for Muscle Characterization 

Start with equation B.8 and substitute in muscle category and MUPs for pieces of evidence. 
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Rearrange Bayes rules for a single piece of evidence 
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Sub B.10 into B.9 

 

( )
( )

( ) ( )
( )

( )
( ) ( )

( )∑ ∏

∏

= =

=











 ⋅

⋅

==
K

j

N

i j

iij

j

N

i k

iik

k

nk

yP

MUPPMUPyP
yP

yP

MUPPMUPyP
yP

MUPMUPMUPyMUSP

1 1 0
0

1 0
0

21
|

|

,,| K     (B.11) 

 

Assume that all prior probabilities are equal, i.e. ( ) ( ) ( ) KyPyPyP K 102010 ==== K  

 

Then B.11 reduces to B.12. Each MUP is assumed to provide independent information 
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Appendix C 

Saturation of Bayes’ Muscle Characterization 

 

Appendix C shows that the Bayesian muscle characterization technique converges to 1 or 0 as the 

number of MUPs used for characterization increases.  

 

Two category { }21, yy muscle categorization will be considered.  

 

Say that we start with the following MUP characterization for a muscle: 

 

( ) ε+= 5.0| 11 MUPyP  (C.1) 

( ) ε−= 5.0| 12 MUPyP  (C.2) 

 

N MUPs are found such that they all have the same MUP characterizations: 

 

( ) ( ) ( ) ε+==== 5.0||| 12111 NMUPyPMUPyPMUPyP K   (C.3) 

( ) ( ) ( ) ε−==== 5.0||| 22212 NMUPyPMUPyPMUPyP K   (C.4) 

 

Using Equation 5.4 and setting its denominator = den  
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NN
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| 11
1  (C.5) 

 

{ }( ) ( ) ( )
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MUPyP
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NN
ε−
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| 12
2  (C.6) 

 

Consider the ratio of C.5 to C.6 to consider how quickly one conditional probability grows with 

respect to the other as N increases.  
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N

R 
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





−

+
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ε
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 (C.7) 

 

Equation C.7 shows that R approaches ∞ as N approaches ∞ for positives values of ε . This means 

that C.5 approaches 1 and C.6 approaches 0. 
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Appendix D 

Proof that Z-transform Provides Same Ranking as Averaging 

Appendix D is a proof that shows that the Z transform of MUP characterizations has the same ranking 

of categories as sorted by their muscle characterization scores as compared to the AMC-PD method 

on a per muscle basis. 

First the formulae for AMC muscle characterization for category k from equation 5.3. 

N

P

AMC

N

i

ki

k

∑
== 1  (D.1) 

The Z transform of category k across N MUPs from equation 6.3 and 6.4. 
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Re-arranging D.2 
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D.3 can be re-written where ba, are constants. 

bPaZ
N

i

kik −= ∑
=1

  (D.4) 

So if: KAMCAMCAMC <<< K21  

then KZZZ <<< K21  because D.4 is a linear scaling and shifting of kAMC . Hence AMC  has 

the same ranking as Z transform across categories for a given muscle characterization. 
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