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Abstract

The motivation of this thesis is to understand how nodes can cooperate in a
particular relay channel, say a relay channel with orthogonal link between relay
and destination. We are especially interested in the scenario where relay cannot
decode the message sent because the coding rate is too large vis-a-vis what it can
handle, and try to investigate the optimality of compress-and-forward strategy for
this scenario.

Specifically, noting that relay’s compression is based on the unconditional dis-
tribution of its observation, it is natural to ask if relay can do better if it utilizes the
source’s codebook information, such that the performance of the relay network is
improved? To answer this key question, we need to find the posterior Conditional
Distribution of channel Output given Codebook Information (namely CDOCI) for
the channel between source and relay.

Firstly, we model it as Binary Symmetric Channel (BSC) and show that under
the now standard random coding framework, if the input distribution is uniform,
then with high probability, the CDOCI is asymptotically uniform when coding rate
is greater than the channel capacity and the block length is sufficiently large. Then
it is shown that under the discrete memoryless channel (DMC), for those strongly
typical output sequences, with high probability, the CDOCI is also asymptotically
uniform and close to the unconditional distribution, for rate above capacity and
sufficiently large block length. These results implicate that relay can hardly do
better with codebook information used. To confirm this implication, we show
that for sufficiently large block length, the rate needed for relay to forward its
observation when the codebook information is utilized approaches the rate needed
when the relay simply ignore the codebook information, if the coding rate at source
is larger than channel capacity.

Now the answer to the above key question is apparent: in the cases of BSC
and DMC, even if the relay tries to utilize the information obtained by knowing
the codebook used at the source, it can hardly do better than simply ignore the
codebook information. Therefore, the compress-and-forward strategy is kind of
optimal in this sense, under the random coding framework.
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Chapter 1

Introduction

1.1 Problems and Motivations

Consider a randomly generated codebook for a Binary Symmetric Channel (BSC)
shown in Figure 1.1, as in the seminal approach of Shannon [1]. Our result is to show
that, if the input distribution is uniform, the conditional distribution of channel
output sequence at the receiver end Y given the full information of the random
codebook used at the source end X is asymptotically uniform with high probability
when coding rate is greater than the channel capacity and the block length is
sufficiently large. (For simplicity, we use the abbreviation CDOCI standing for the
Conditional Distribution of channel Output given Codebook Information throughout
this thesis.)

p

p

p
pX Y

Figure 1.1: A binary symmetric channel.

To extend this result and get a general understanding of CDOCI, we then con-
sider the Discrete Memoryless Channel (DMC), as depicted in Figure 1.2. We
show that for those strongly typical output sequences, with high probability, the
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CDOCI is also asymptotically uniform and close to the unconditional distribution,
for rate above capacity and sufficiently large block length.

Encoder
Message Channel

p(y|x)
X n Y n

Decoder
Estimate 

W of Message

Figure 1.2: A discrete memoryless channel.

Our motivation to study this issue is to understand how nodes can cooperate in
networks of the sort shown in Figure 1.3. This particular system shown contains a
relay. The source node 1 wants to wirelessly send information to node 3, while node
2 is a relay that is available to help. Suppose that the channel between relay and
destination is a wired channel, or more generally a channel that is “orthogonal” to
channels 1–2 and 1–3, say one that transmits on a different frequency band. As the
cut in Figure 1.3 shows, this network can be regarded as a broadcast channel from
node 1 to node 2 and node 3, with output Y2 and Y3 respectively. Also assume that
p(y2, y3|x1) = p(y2|x1)· (y3|x1), so that the node 2 and node 3 obtain independent
observations (given the message sent). As shown in Cover and El Gamal [2], if
relay can decode the codeword sent by source, and link 1–2 is better than link 1–3,
then relay should decode-and-forward and fortunately this strategy achieves the
capacity.

X1 Y3

Y2

Figure 1.3: A relay channel with orthogonal link between relay and destination.

In this thesis, however, we are interested in the opposite scenario where relay
cannot decode the message sent because the coding rate is too large vis-a-vis what
it can handle. Cover and El Gamal also proposed their second strategy in [2] for
this scenario, which is now often called compress-and-forward . The idea of
compress-and-forward strategy is that the relay node 2 transmits a quantized and
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compressed version Ŷ2 of its channel output Y2 to the destination node 3 and node
3 decodes by making use of both Ŷ2 and its own output Y3. Specifically, what the
relay does in this strategy is simply quantizing what it has received according to
the distribution of channel output and using Wyner-Ziv source coding to exploit
side information at the destination [3].

Notice that in this strategy, relay’s compression is based on the unconditional
distribution of the output of channel 1–2. However, the fact is that different
randomly generated codebooks might result in different distributions of the output
for channel 1–2 at the relay. An extreme example is when all the codewords in
the randomly generated codebook happen to be the same, many outputs might
very unlikely occur and the number of “possible” outputs might reduce dramati-
cally, meaning that the relay only need to take care of those possible outputs and
the compression performance can be easily improved compared to compress-and-
forward strategy. So, up to now, a fundamental question naturally comes out: Can
the relay do better compression if it utilizes the codebook information,
such that the performance of the relay network is improved? In an-
other word, is there any gain for the relay to compress its observation
“wisely” by exploiting the knowledge which specific codebook is used at
the source end? This is the key question we want to explore in this thesis.

To answer this question, obviously, we need to find the conditional distribution
of output for channel 1–2. (A related reference studying the conditional entropy
of the jointly typical set is [4].) Specifically, given that the relay knows the code-
book used at the source, is the output’s conditional distribution the same as the
unconditional distribution? As mentioned in the beginning, for BSC whose in-
put distribution is uniform, the CDOCI of each output sequence is asymptotically
uniform and approaching the unconditional distribution with high probability for
rate above capacity and sufficiently large block length, and hence the compression
performance can be hardly improved. For the general DMC, the CDOCI of the
strongly typical output sequences is also asymptotically uniform and approaching
the unconditional distribution for rate above capacity and sufficiently large block
length. Noting that the the typical sequence set contains most of the probability,
so the behavior of typical sequences dominates that of the ensemble and therefore
the compression performance could be hardly improved either.

To strengthen our judgement, we study the rate needed for the relay to forward
its observation under DMC scenario. It is shown that for sufficiently large block
length, the rate needed when the codebook information is utilized approaches the
rate needed when the relay simply ignore the codebook information, if the coding
rate at source end is larger than Shannon capacity.

Now, the answer to the key question is apparent: even if the relay tries to utilize
the information obtained by knowing the specific codebook used at the source end,
it can hardly do better than simply ignore the codebook information. Therefore,
under the random coding framework, the compress-and-forward strategy is kind of
optimal in this sense.

3



1.2 Contributions

• Motivated by the relay problem depicted in Figure 1.3, we study the condi-
tional distribution of channel output given codebook information when coding
rate is greater than Shannon capacity, for both the binary symmetric channel
and discrete memoryless channel. We show that with high probability, the
CDOCI is asymptotically uniform and approaching the unconditional distri-
bution when the block length is sufficiently large. This implicates that we
can hardly do better than compress-and-forward strategy even if we let the
relay compress its observation utilizing codebook information.

• For the general discrete memoryless channel, we characterize the rate needed
for the relay to forward its observation. By showing that the rates needed
are asymptotically the same no matter whether the relay utilize the codebook
information or not, the above implication on the optimality of compress-and-
forward is strengthened.

• As a by-product of studying the relay problem and CDOCI, we show that
it is impossible to transmit at rate above capacity using the technique of
random coding in the sense that with high probability the error probability
will go to 1 for rate greater than capacity. This can be regarded as a strong
converse to channel coding theorem under the now standard random codebook
construction shema.

• It is worth to point out that although we aim to study the relay problem, our
results and proof method may provide a new way to understand the random
coding framework and consider other problems. On one hand, the property
of the uniformity of CDOCI for rate greater than capacity may find future
other applications in the field of information theory. On the other hand, the
proposal of typical codebook set in the proof allows us to focus on the typical
codebooks and analyze the behavior of them, as we have done for the typical
sequences. This method of thinking is different from the classical way of
analyzing averaged over all the codebooks, and adds additional insight to the
random coding.

1.3 Thesis Outline

This thesis is organized as follows:

In Chapter 2, we give a review of the preliminaries of network information the-
ory. As the prerequisite knowledge for the later discussion, we introduce some
classical results in single-user information theory, such as the concepts and proper-
ties of weak typicality and strong typicality and channel capacity. Then we present
several multi-user communication problems, including distributed source coding,
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multiple access channels, broadcast channels and relay channels. With an empha-
sis on relay channels, we particularly review two strategies: decode-and-forward
and compress-and-forward.

In Chapter 3, we model the channel between source and relay with binary sym-
metric channel and focus on the CDOCI. By describing the geometric distribution
of codewords in the signal space, we propose the concept of typical codebook for
the binary symmetric channel and show the probability of typical codebook goes
to 1. Then, under the typical codebook, we study the CDOCI by accumulating
the probability contributions from the codewords. It is shown that the CDOCI is
asymptotically uniform with high probability for rate greater than capacity and
sufficiently large block length. This indicates that the relay cannot do better even
if it utilize the codebook information to compress the observation.

In Chapter 4, the CDOCI for general discrete memoryless channel is fully ex-
plored. We use the technique of strong version of typicality to define the typical
codebook set for discrete memoryless channel, which is shown to take most prob-
ability. Similarly with the binary symmetric channel, we obtain that for those
strongly typical output, the CDOCI is asymptotically uniform with high probabil-
ity for rate greater than capacity and sufficiently large block length. This again
demonstrates the futility of attempt for relay to utilize the codebook information
and achieve better compression performance. To confirm our judgement, we partic-
ularly find the rate needed for the relay to forward its observation with codebook
information used. Since this rate is asymptotically equal to the rate needed with
codebook information unused, our judgement is strengthened. Besides, as a by-
product of studying CDOCI, we give a strong converse of channel coding theorem
under random coding framework.

Finally, we conclude this thesis and propose the possible future work to be done
in Chapter 5.

5



Chapter 2

Preliminaries of Network
Information Theory

2.1 Basic Tools and Results in Classical Informa-

tion Theory

In this section, we mainly introduce some basic and important tools and results in
information theory, which will be used throughout this thesis.

2.1.1 Weak Typicality

We introduce the definitions of weak typicality and jointly weak typicality, as well
as the well-known asymptotic equipartition property. All these results with their
proofs can be found in [5].

Weakly Typical Sequences

Definition 2.1.1. The typical set A
(n)
ε with respect to p(x) is the set of sequences

(x1, x2, . . . , xn) ∈ X n with the property

2−n[H(X)+ε] ≤ p(x1, x2, . . . , xn) ≤ 2−n[H(X)−ε]. (2.1)

Theorem 2.1.1 (Asymptotic Equipartition Property(AEP)). Let Xn be a sequence
of length n drawn i.i.d. according to p(xn) = Πn

i=1p(xi), then:

1. Pr(A
(n)
ε ) > 1− ε for n sufficiently large.

2. |A(n)
ε | ≤ 2n[H(X)+ε], where |A| denotes the number of elements in the set A.

3. |A(n)
ε | ≥ (1− ε)2n[H(X)−ε] for n sufficiently large.

Proof. The proof is based on the Law of Large Numbers and one can find the details
in [5].
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Jointly Weakly Typical Sequences

Definition 2.1.2. The set A
(n)
ε of jointly typical sequence (xn, yn) with respect to

the distribution p(x, y) is the set of n-sequences satisfying∣∣∣∣− 1

n
log p(xn)−H(X)

∣∣∣∣ ≤ ε, (2.2)∣∣∣∣− 1

n
log p(yn)−H(Y )

∣∣∣∣ ≤ ε, (2.3)∣∣∣∣− 1

n
log p(xn, yn)−H(X, Y )

∣∣∣∣ ≤ ε, (2.4)

(2.5)

where

p(xn, yn) =
n∏
i=1

p(xi, yi). (2.6)

Theorem 2.1.2 (Joint AEP). Let (Xn, Y n) be sequences of length n drawn i.i.d.
according to p(xn, yn) = Πn

i=1p(xi, yi), then:

1. Pr((Xn, Y n) ∈ A(n)
ε )→ 1,as n→∞.

2. |A(n)
ε | ≤ 2n[H(X,Y )+ε] and |A(n)

ε | ≥ (1− ε)2n[H(X,Y )−ε] for sufficiently large n.

3. If (X̃n, Ỹ n) ∼ p(xn)p(yn), then

Pr((X̃n, Ỹ n) ∈ A(n)
ε ) ≤ 2−n[I(X;Y )−3ε], (2.7)

also, for sufficiently large n,

Pr((X̃n, Ỹ n) ∈ A(n)
ε ) ≥ (1− ε)2−n[I(X;Y )+3ε]. (2.8)

2.1.2 Strong Typicality

We give the definitions of strong typicality, strongly joint typicality, and condition-
ally strong typicality. For detailed discussion on strong typicality and the properties
of strong typicality, see the book by Csiszár and Körner [21].

Strong Typicality

Definition 2.1.3. A sequence xn ∈ X n is said to be ε-strongly typical with respect
to a distribution p(x) on X if:

1. For all a ∈ X with p(a) > 0, we have∣∣∣∣ 1nN(a|xn)− p(a)

∣∣∣∣ < ε

|X |
(2.9)
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2. For all a ∈ X with p(a) = 0, N(a|xn) = 0.

where N(a|xn) is the number of occurrences of the symbol a in the sequence xn.

The set of sequences xn ∈ X n such that xn is strongly typical is called the
strongly typical set and is denoted by A

∗(n)
ε (X) or A

∗(n)
ε when the random variable

is understood from the context.

Theorem 2.1.3 (Strong AEP).

Pr(A∗(n)
ε )→ 1, as n→∞. (2.10)

Proposition 2.1.1. For any xn ∈ X n, if xn ∈ A∗(n)
ε (X), then xn ∈ A(n)

δ (X), where
δ → 0, as ε→ 0.

Strongly Joint Typicality

Definition 2.1.4. A pair of sequences (xn, yn) ∈ X n × Yn is said to be ε-strongly
jointly typical with respect to a distribution p(x, y) on X × Y if:

1. For all (a, b) ∈ X × Y with p(a, b) > 0, we have∣∣∣∣ 1nN(a, b|xn, yn)− p(a, b)
∣∣∣∣ < ε

|X ||Y|
(2.11)

2. For all (a, b) ∈ X × Y with p(a, b) = 0, N(a, b|xn, yn) = 0.

where N(a, b|xn, yn) is the number of occurrences of pair (a, b) in the pair of
sequences (xn, yn).

Theorem 2.1.4 (Consistency). If (xn, yn) ∈ A∗(n)
ε (X, Y ), then xn ∈ A∗(n)

ε (X) and

yn ∈ A∗(n)
ε (Y ).

Conditionally Strong Typicality

Definition 2.1.5. A sequence yn ∈ Yn is said to be ε-strongly conditionally typical
with the sequence xn with respect to a conditional distribution V (·|·) if:

1. For all (a, b) ∈ X × Y with V (b|a) > 0, we have

1

n
|N(a, b|xn, yn)− V (b|a)N(a|xn)| < ε

|Y|+ 1
(2.12)

2. For all (a, b) ∈ X × Y with V (b|a) = 0, N(a, b|xn, yn) = 0.
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The set of such sequences is called the conditionally typical set and it is denoted
by A

∗(n)
ε (Y |xn).

Theorem 2.1.5. Let Y n be a sequence of length n generated with respect to the
sequence xn and a conditional distribution V (·|·), then

Pr(Y n ∈ A(n)
ε (Y |xn))→ 1, as n→∞. (2.13)

Theorem 2.1.6. If xn ∈ A∗(n)
ε1 (X) and yn ∈ A∗(n)

ε2 (Y |xn), then (xn, yn) ∈ A∗(n)
ε (X, Y ),

where ε→ 0 as ε1 → 0 and ε2 → 0.

Proof. See the proof in the book by Csiszár and Körner [21].

Theorem 2.1.7. There exists a sequence ε(n) → 0 respectively for A
(n)
ε(n)(X),

A
(n)
ε(n)(X, Y ), A

∗(n)
ε(n)(X), A

∗(n)
ε(n)(X, Y ) and A

∗(n)
ε(n)(Y |xn) so that the probabilities of

all these typical sets go to 1 as n→∞.

Claim 2.1.1. We use the the same convention in [21] throughout this thesis, i.e.,
in the asymptotic analysis, without reassertion, we use ε-typical sequences with
ε = ε(n) such that

ε(n)→ 0 and
√
n · ε(n)→∞ as n→∞. (2.14)

Remark 2.1.1. In (2.14), the constraint ε(n)→ 0 is useful for the precise asymp-
totic analysis, i.e., to make ε diminish to 0 as n grows, while the necessity of the
constraint

√
n · ε(n) → ∞ can be seen by lower bounding the probability of typical

set using Chebyshev’s inequality. In other words, the convention to choose ε(n)
not only makes it possible to get rid of the undesired effect of the quantity ε in the
asymptotic analysis, but also ensures the probability of typical set still goes to 1.
For details, see (2.9), CONVENTION 2.11, LEMMA 2.12 and LEMMA 2.13 in
[21].

2.1.3 Channel Capacity

One of the most fundamental questions in information theory is: what is the ul-
timate transmission rate of communication. Channel coding theorem is the very
answer to this question. It says that there always exsits a maximum achievable rate
for a channel, called the channel capacity, below which the reliable communication
can be implemented while above which the reliable communication is impossible.
Moreover, it is fortunate that we have an elegant expression for the channel capac-
ity. Take the discrete memoryless channel shown in Figure 1.2 for an example and
we have the following theorem:

Theorem 2.1.8 (The Channel Coding Theorem). The capacity of a discrete mem-
oryless channel p(y|x) is defined as

9



C = max
p(x)

I(X;Y ), (2.15)

where X and Y are respectively the input and the output of the channel, and the
maximum is taken over all input distributions p(x). Information can be transmitted
as reliably as desired if and only if the rate is below the capacity C.

Random Coding and Achievability

At the first glance, the result is rather counter-intuitive. How can one correct all the
errors introduced by the noisy channel and implement the reliable communication?
To prove the achievability, we need some ideas which are firstly stated by Shannon
in his original 1948 paper [1]. These original ideas are as follows:

Firstly, we allow a vanishing probability of error instead of requiring zero prob-
ability of error. Secondly, to put the law of large numbers into effect, we use the
channel many times instead of only once. And finally, we randomly generate the
codebook and calculate the probability of error averaged over the code ensemble.
By showing the error probability averaged over all the codebooks goes to 0, we
argue that there exists at least one good code with vanishing probability of error.

Converse

The capacity becomes a good dividing point not only because of the achievability
part but also because we cannot achieve an arbitrarily low error probability at rates
above capacity, which is just the converse part. To prove the converse, we need the
Fano’s Inequality and the details can be found in [5]. This converse is sometimes
called the weak converse to channel coding theorem.

Moreover, a strong converse to the channel coding theorem can be proved, which
states that for rates above capacity, the probability of error goes exponentially to
1 [22]. However, as stated in [22], since the strong converse is proved under block
code scenario, compared to weak converse, it does not necessarily preclude the
possibility of reliable transmission at rates above capacity. But this result still
add some insight into the nature of channel capacity. Similarly, in Section 4.4, we
provide a proof to the strong converse under random coding framework.

To summarize this subsection, we know that the channel coding theorem consists
of two parts: achievability and converse. The idea of random coding is employed to
prove the achievability and the converse can be proved by using Fano’s Inequality.
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2.2 A Brief Review of Several Triumphs in Multi-

user Information Theory

In this section, we consider several multi-user communication models, including
distributed source coding, multiple access channel and broadcast channel. Partic-
ularly, the relay channel will be discussed in details in the next section. As a quick
review, all the results will be given directly without proof.

2.2.1 Distributed Source Coding

Slepian-Wolf Coding

We know that a rate R > H(X) is sufficient to encode the source X. Now, consider
the source coding problem presented in the Figure 2.1, whereX and Y are correlated
but encoded separately. It is natural to ask what is the sufficient rate pairs for the
decoder to reconstruct both X and Y .

X, Y
X,Y

X 

Y

R1

R2

Figure 2.1: Slepian-Wolf Coding.

To accurate formulate and solve the distributed source coding problem, we use
the following definition:

Definition 2.2.1. A rate pair (R1, R2) is said to be achievable if there exists a

sequence of ((2nR1 , 2nR2), n) distributed source codes with probability of error P
(n)
e →

0, and the closure of the set of achievable rate pairs is called the achievable rate
region.

Slepian and Wolf gave the answer to this problem in their famous and funda-
mental paper [6], which is now often called Slepian-Wolf Theorem.
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Theorem 2.2.1 (Slepian-Wolf Theorem). For the distributed source coding problem
for the source (X, Y ) drawn i.i.d. ∼ p(x, y), the achievable rate region is given by

R1 ≥ H(X|Y ), (2.16)

R2 ≥ H(Y |X), (2.17)

R1 +R2 ≥ H(X, Y ). (2.18)

Random Binning and Achievability

The Slepian-Wolf Theorem was then extended to jointly ergodic sources by
Cover [7]. In his paper, Cover used a binning argument, which has evolved to one
of the most significant techniques beyond Shannon’s random coding.

Briefly speaking, the technique is to randomly assign 2nH(X) and 2nH(Y ) typical
sequences to 2nR1 and 2nR2 indexed bins respectively, such that there are 2n(H(X)−R1)

or 2n(H(Y )−R2) sequences in each bin. Given a realization xn ( or yn), the encoder
just simply transmits the index of the bin containing xn ( or yn) and the decoder use
the method of jointly decoding, i.e., find the jointly typical pair (xn, yn) contained
in the bins corresponding to the received bin index. Readily we can see that, if
R1 + R2 > H(X, Y ), then the probability that there exists another jointly typical
sequence pair can be driven to 0 as n → ∞. This is the idea of random binning
and the outline of the achievability of Slepian-Wolf Theorem.

Wyner-Ziv Rate Distortion Function

We know that R(D) is sufficient to describe X within distortion D. What if the
side information Y is given? Formally, we have the following result:

Let (X, Y ) be drawn i.i.d. ∼ p(x, y) and d(·, ·) be a distortion measure. Y is
directly available to the decoder as the side information.

RWZ(D) = min I(X;W |Y ) (2.19)

where the minimization is taken over all W such that W → X → Y forms a Markov
Chain and all the functions f : Y ×W → X̂ with Ed(f(W,Y ), X) ≤ D.

Basically, the Wyner-Ziv coding consists of two parts: quantizing as in the
classical rate-distortion theory and random binning as in the Slepian-Wolf coding.
The reader is referred to Wyner and Ziv [3] for the details of the proof. The Wyner-
Ziv coding is employed in the compress-and-forward strategy for the relay channel
problem, which will be discussed in 2.3.2.

2.2.2 Multiple Access Channel

The first multi-user channel we study is the multiple access channel, depicted in Fig-
ure 2.2, where sender 1 chooses an index W1 uniformly from the set {1, 2, · · · , 2nR1}
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Figure 2.2: The multiple access channel.

and sends the corresponding codeword over the channel and sender 2 does likewise
simultaneously.

A rate pair (R1, R2) is said to be achievable for the multiple access channel if

there exists a sequence of ((2nR1 , 2nR2), n) codes with P
(n)
e → 0, and the closure of

the set of achievable rate pairs is called the capacity region. The multiple access
channel capacity region was found by Ahlswede [8] and Liao [9] and is stated as
follows:

Theorem 2.2.2. The capacity region of a multiple access channel is given by the
convex hull of all (R1, R2) satisfying

R1 ≤ I(X1;Y |X2), (2.20)

R2 ≤ I(X2;Y |X1), (2.21)

R1 +R2 ≤ I(X1, X2;Y ) (2.22)

for some product distribution p1(x1)p2(x2) on X1 ×X2.

2.2.3 Broadcast Channel

The broadcast channel was firstly introduced by Cover in [10]. This channel de-
scribes the scenario where there is one sender and multiple (two or more) receivers,
as illustrated in Figure 2.3. About this channel, one main concern is to find out
the capacity region. Although the capacity region for general broadcast channels
is still unknown, it has been made clear for some special classes, for example, the
degraded broadcast channels [11], [12], [13].

Definition 2.2.2. A broadcast channel is said to be physically degraded if

p(y1, y2|x) = p(y1|x)p(y2|x). (2.23)
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Figure 2.3: The broadcast channel.

A broadcast channel is said to be stochastically degraded if its conditional marginal
distributions are the same as that of a physically degraded broadcast channel.

Since the capacity region of a broadcast channel depends only on the conditional
marginal distributions p(y1|x) and p(y2|x) [5], both the physically degraded and the
stochastically degraded broadcast channels have the same capacity region if they
share the same conditional marginal distributions. The capacity region of degraded
broadcast channel was first conjectured by Cover in [10], and then proved to be
achievable by Bergmans [11], using the idea of superposition coding. Finally
Bergmans [13] and Gallager [12] established the converse.

Theorem 2.2.3. The capacity region for sending independent information over the
degraded broadcast channel X → Y1 → Y2 is the convex hull of the closure of all
(R1, R2) satisfying

R2 ≤ I(U ;Y2), (2.24)

R1 ≤ I(X;Y1|U) (2.25)

for some joint distribution p(u)p(x|u)p(y1, y2|x), where the auxiliary random vari-
able U has cardinality bounded by |U| ≤ min{|X |, |Y1|, |Y2|}.

2.3 Relay Channel

The relay channel was introduced in the pioneering work of van der Meulen [14] [15].
A general model for the three-node discrete memoryless relay channel is depicted
in Figure 2.4, where the relay and the source cooperate to resolve the receiver’s
uncertainty. One can easily find that this channel can be regarded as a combination
of a broadcast channel(from source to relay and destination) and a multiple access
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channel(from source and relay to destination). In fact, even this simplest relay
channel is complex enough such that after several decades’ effort, the exact capacity
is still unknown except several special cases like physically degraded relay channel,
which will be shown later. However, some substantial advances on this channel
were made by Cover and El Gamal in their 1979 work [2], where two fundamental
coding strategies, namely, Decode-and-Forward (DF) and Compress-and-Forward
(CF), were developed.

W
W X

p y, y1|x, x1
Y

Y1 X1

Figure 2.4: The relay channel.

2.3.1 Decode-and-Forward

Before proceeding to the two coding strategies mentioned above, we first introduce
the concept of degraded relay channel, whose capacity has been established and
can be achieved by decode-and-forward coding strategy.

Definition 2.3.1. The relay channel (X × X1, p(y, y1|x, x1),Y × Y1) is said to be
degraded if relay receiver y1 is better than the ultimate receiver y in the sense that

p(y, y1|x, x1) = p(y1|x, x1)p(y|y1, x1). (2.26)

Theorem 2.3.1. The capacity C of the degraded relay channel is given by

C = sup
p(x,x1)

min{I(X,X1|Y ); I(X;Y1|X1)} (2.27)

where the supremum is over all joint distributions p(x, x1) on X × X1.

Outline of proof. Directly applying the max-flow-min-cut theorem for general multi-
terminal networks to the relay channel, an upper bound of the capacity is obtained,
i.e., for any relay channel, the capacity is bounded by

C ≤ sup
p(x,x1)

min{I(X,X1|Y ); I(X;Y, Y1|X1)}. (2.28)
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Notice that due to degradedness, I(X;Y, Y1|X1) = I(X;Y1|X1), which estab-
lishes the converse part of Theorem 2.3.1.

To achieve the capacity in Theorem 2.3.1, we need to employ the decode-and-
forward coding strategy. Briefly, this strategy involves a combination of random
coding, Slepian-Wolf binning, superposition coding and block Markov encoding at
the relay and source and we provide an outline as follows:

• Random coding and binning: First randomly generate 2nR0 i.i.d. sequences
according to p(xn1 ) = Πn

i=1p(x1i), indexed as xn1 (s), s ∈ [1, 2nR0 ] and for each
xn1 (s), generate 2nR conditionally independent sequences xn(w|s), w ∈ [1, 2nR]
according to p(xn|xn1 (s)) = Πn

i=1p(xi|x1i(s)). Then randomly distribute the
indexes 1, · · · , 2nR to 2nR0 bins S1, · · · , S2nR0 such that each message index w
is corresponding to a bin index s, i.e., contained in the bin Ss.

• Encoding: At block i, let wi be the new index to be sent and assume wi−1 ∈
Ssi . The source sends xn(wi|si) while the relay estimates wi−1 by ˆ̂wi−1 and

sends xn1 (ˆ̂si) assuming ˆ̂wi−1 ∈ Sˆ̂si
.

• Decoding: At the end of block i, the decoding is implemented as follows:

1. Upon estimating si by ˆ̂si and receiving yn1 (i), the relay claims that
the message ˆ̂wi−1 = w is sent iff there exists a unique w such that
(xn(w|ˆ̂si), yn1 , xn1 (ˆ̂si)) are jointly typical. This decoding error probability
can be arbitrarily small if R < I(X;Y1|X1).

2. Upon receiving yn(i), the receiver claims that the message ŝi = s is sent
iff there exists a unique s such that (yn, xn1 (s)) are jointly typical. This
decoding error probability can be arbitrarily small if R0 < I(X1;Y ).

3. The receiver calculates his ambiguity set L(yn(i − 1)) consisting of all
wi−1 such that (xn(wi−1|ŝi−1), yn(i−1), xn1 (ŝi−1)) are jointly typical. As-
suming that si is decoded successfully, the receiver claims that ŵi−1 = w
is sent iff there exists a unique w ∈ Ssi∩L(yn(i−1)). This decoding error
probability can be arbitrarily small if R < I(X;Y |X1) +R0. Obviously,
the receiver is always one block behind. In B blocks of transmission,
a sequence of B − 1 indices will be sent, resulting in the actual rate
R(B − 1)/B is arbitrarily close to R as B → ∞. Combining all the
above, we have R < min{I(X;Y1|X1), I(X1;Y ) + I(X;Y |X1)}, which
makes the achievability part of Theorem 2.3.1.

Remark 2.3.1. Note that although the above decode-and-forward strategy is used
to achieve the capacity of degraded relay channel, it can apply to arbitrary relay
channel. The difference is that the degradedness property is needed to justify that
the maximum achievable rate by decode-and-forward is indeed the capacity, while in
the case of general relay channel no such claim can be made.
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2.3.2 Compress-and-Forward

We are now in a position to discuss the nature of the general relay channel, whose
capacity, unfortunately, is undetermined yet. However, an achievable rate is pro-
posed based on compress-and-forward strategy:

Theorem 2.3.2. The rate R∗ is achievable for any discrete memoryless relay chan-
nel, where

R∗ = sup I(X; Ŷ1, Y |X1) (2.29)

subject to the constraint

I(X1;Y ) ≥ I(Y1; Ŷ1|Y,X1) (2.30)

where the supremum is over all joint distributions

p(x, x1, y, y1, ŷ1) = p(x)p(x1)p(y, y1|x, x1)p(ŷ1|x1, y1) (2.31)

and Ŷ1 has a finite range.

Outline of proof. Still, a block Markov Encoding is used, i.e., at the end of block i,
the x1 information is used to resolve the uncertainty of the receiver about wi−1.

• Random coding and binning: Randomly generate 2nR0 sequences according
to p(xn1 ) = Πn

i=1p(x1i), indexed as xn1 (s), s ∈ [1, 2nR0 ] and 2nR sequences
according to p(xn) = Πn

i=1p(xi), indexed as xn(w), w ∈ [1, 2nR]. For each

xn1 (s), generate 2nR̂ sequences according to p(ŷn1 |xn1 (s)) = Πp(ŷ1i|x1i(s)),
where p(ŷ1|x1) = Σx,y1,yp(ŷ1|x1, y1)p(x)p(y1, y|x, x1), indexed as ŷn1 (z|s), z ∈
[1, 2nR̂], s ∈ [1, 2nR0 ]. Then randomly distribute the indexes 1, · · · , 2nR̂ to
2nR0 bins S1, · · · , S2nR0 .

• Encoding: At block i, let wi be the new index to be sent and assume

(ŷn1 (zi−1|si−1), yn1 (i− 1), xn1 (si−1))

are jointly typical and zi−1 ∈ Ssi . The codeword pair (xn(wi), x
n
1 (si)) are sent.

• Decoding: At the end of block i, the decoding is implemented as follows:

1. Upon receiving yn(i), the receiver claims that the message ŝi = s is sent
iff there exists a unique s such that (yn, xn1 (s)) are jointly typical. This
decoding error probability can be arbitrarily small if R0 < I(X1;Y ).

2. The receiver calculates a set L(yn(i − 1)) consisting of all z such that
(ŷn1 (z|ŝi−1), xn1 (ŝi−1), yn(i − 1)) are jointly typical. The receiver claims
that zi−1 is sent in block i− 1 if ẑi−1 ∈ Ssi ∩L(yn(i− 1)). This decoding
error probability can be arbitrarily small if R̂ < I(Ŷ1;Y |X1) +R0.
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3. The receiver declares that ŵi−1 was sent in block i− 1 if

(xn(ŵi−1), ŷn1 (ẑi−1|ŝi−1), xn1 (ŝi−1), yn(i− 1))

are jointly typical. This decoding error probability can be arbitrarily
small if R < I(X; Ŷ1, Y |X1).

4. Upon receiving yn1 (i), the relay declares that z is “received” if

(ŷn1 (z|ŝi), xn1 (ŝi), y
n
1 (i))

are jointly typical. There will exist such a z if R̂ > I(Y1; Ŷ1|X1). Com-
bining all the above, we obtain the constraint I(X1;Y ) ≥ I(Y1; Ŷ1|Y,X1).
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Chapter 3

A Geometric Approach to the
CDOCI for Binary Symmetric
Channel

3.1 Modeling with Binary Symmetric Channel

and Results

Assume that both the channel 1–2 and 1–3 in Figure 1.3 are binary symmetric
channels as shown in Figure 1.1, with crossover probability p and q respectively.
We do such an assumption because the BSC, on one hand, is the simplest model
of noisy channel and easy for analysis, but still captures most of the complexity of
the general problem on the other hand. Since the main concern in this thesis is
about the relay’s behavior, we will focus on the channel 1–2 and directly analyze
the single user binary symmetric channel depicted in Figure 1.1 instead. Without
loss of generality, we assume the error probability p < 1

2
in the following discussion.

To transmit at a rate R, consider a random codebook generated by selecting
a distribution p(x) on the input alphabet X = {0, 1} and generating 2nR i.i.d.
random codewords. To accurately formulate the problem, we use the following
notation.

Notation 3.1.1. The n-dimensional signal space for the n-used binary symmetric
channel is defined as

An := {an(1) = 000 · · · 00, an(2) = 000 · · · 01, · · · ,
an(2n − 1) = 111 · · · 10, an(2n) = 111 · · · 11︸ ︷︷ ︸

n bits

}, (3.1)

where each element in An consists of n bits.

Note that both the input and output sequences for the n-used binary symmetric
channel exist in this discrete n-dimensional signal space.
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Notation 3.1.2. The codebook corresponding to rate R under n-dimensional signal
space for the binary symmetric channel is defined as

C(n,R) := {Xn(w) ∈ An, w = 1, · · · , 2nR}, (3.2)

where each of the 2nR sequences in C(n,R) represents a codeword of length n, ran-
domly generated according to the distribution,

p(xn) =
n∏
i=1

p(xi). (3.3)

From the classical information theory [5], we readily get the conclusion that the
capacity of binary symmetric channel is C = 1 − H(p), and it is achieved when
pX(0) = pX(1) = 1

2
. Using the above notation, we have a vivid geometric inter-

pretation of capacity and the method of typical set decoding for binary symmetric
channel. Consider the following sequence of events, all of which happen in the
n-dimensional signal space An:

1. Choose 2nR sequences from An to form the codebook. As mentioned above,
pX(0) = pX(1) = 1

2
is required to achieve the capacity. In words, from the geo-

metric point of view, the capacity is achieved only if we unbiasedly choose 2nR

codewords at random from the signal space An to form the codebook, which
means that each sequence in An is equally likely to become one codeword in
the codebook. Formally, to achieve the capacity of Binary Symmetric Chan-
nel, the codebook C(n,R) should be so formed that Pr(Xn(w) = an(i)) = 1

2n
,

for any w ∈ {1, · · · , 2nR} and any i ∈ {1, · · · , 2n}. For the purpose of achiev-
ing capacity, self-evidently, we generate the codebook in this way throughout
this chapter.

2. The codebook is then revealed to both sender and receiver. Equivalently,
both the source and destination now know which sequences in An are chosen
as codewords to form the codebook so as to be potential to send.

3. The sender X picks a message W uniformly, i.e., Pr(W = w) = 2−nR for any
w ∈ {1, · · · , 2nR}, and transmits the corresponding codeword xn(W ).

4. Over the channel, the transmitted codeword is “mapped” into another se-
quence Y n in An, according to the distribution:

p(yn|xn(w)) =
n∏
i=1

p(yi|xi(w)). (3.4)

5. Upon receiving Y n, generally, decoder Y forms the ε-jointly typical set,

Aε(Y
n) :=

{
w : xn(w) ∈ C(n,R), (xn(w), Y n) are ε-jointly typical

}
. (3.5)
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If the jointly typical set has essentially only one codeword in the sense that

lim
n→∞

EC(n,R)(Pr(|Aε(Y n)| = 1|C(n,R))) = 1 (3.6)

for any small ε, then with high probability Y can decode correctly when the
block length is sufficiently large and the corresponding rate R is said to be
achievable. The capacity is defined as the supremum of all achievable rates.

Particularly, under the case of BSC, it can be shown that the decoder can
form the jointly typical set geometrically by searching the codewords whose
Hamming Distance with Y n is between n(p− ε) and n(p+ ε). Specifically, we
have the following proposition.

Proposition 3.1.1. For the Binary Symmetric Channel, decoder Y can form
ε-jointly typical set based on its observation and codebook by

Aε(Y
n) :=

{
w : xn(w) ∈ C(n,R), n(p− ε1) ≤ dH(xn(w), Y n) ≤ n(p+ ε1)

}
(3.7)

where dH(·, ·) denotes the Hamming Distance, which is the number of bits
where two sequences differ from each other, and ε1 → 0 as ε→ 0

Proof. According to (3.5), the ε-jointly typical set consists of every codeword
xn satisfying the constraint∣∣∣∣ 1n log p(Y n|xn) +H(Y |X)

∣∣∣∣ ≤ ε (3.8)

(a)⇐⇒
∣∣∣∣ 1n log pdH(xn(w),Y n)(1− p)n−dH(xn(w),Y n) +H(Y |X)

∣∣∣∣ ≤ ε (3.9)

(b)⇐⇒
∣∣∣∣ 1n log pdH(xn(w),Y n)(1− p)n−dH(xn(w),Y n) +H(p)

∣∣∣∣ ≤ ε (3.10)

(c)⇐⇒
∣∣∣∣ 1n [dH log p+ (n− dH) log(1− p)]− p log p− (1− p) log(1− p)

∣∣∣∣ ≤ ε

(3.11)

(d)⇐⇒
∣∣∣∣(dHn − p

)
log

p

1− p

∣∣∣∣ ≤ ε (3.12)

(e)⇐⇒ n

(
p− ε

| log p
1−p |

)
≤ dH ≤ n

(
p+

ε

| log p
1−p |

)
(3.13)

where
“(a)” holds since p(yn|xn(w)) =

∏n
i=1 p(yi|xi(w)) and we calculate this prod-

uct of probabilities by introducing Hamming distance and categorizing the n
terms in the product into two classes: flipped bits(corresponding to pdH(xn(w),Y n))
and unflipped bits(corresponding to (1− p)n−dH(xn(w),Y n));
“(b)” follows from the fact that H(Y |X) = H(Y ⊕X|X) = H(p);
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“(c)” follows from extending terms according to the definition of entropy;
“(d)” follows after some simple calculations;
“(e)” gives the explicit constraint to the Hamming distance.
Let ε1 = ε

| log p
1−p |

and notice that ε1 → 0 as ε → 0, which completes the

proof.

Now, we are interested in the following conditional probabilities,

Pr(Y n = an(i)|C(n,R)), for any i ∈ {1, 2, · · · , 2n},

especially when coding rate R is greater than C. These probabilities are random
variables depending on the random codebook C(n,R) and they are of pivotal im-
portance in the sense that when n is sufficiently large, if there exists some kinds
of codebooks with non-negligible probability, such that given these codebooks the
above conditional probabilities of the 2n sequences in An to be output is not uni-
formly distributed, then we may do better than the compress-and-forward strategy!
Equivalently, if we utilize the knowledge which codebook is used at sender to fig-
ure out that the conditional distribution of channel output is not uniform, then
we should use this posterior conditional distribution to do the quantization and
Wyner-Ziv coding. However, if the posterior conditional distribution is uniform
for sufficiently large n, there is no gain to exploit the codebook information and
the compress-and-forward strategy is asymptotically optimal in this sense. In fact,
when R is greater than C, we have the following surprising result.

For simplicity, we say f(n) asymptotically equivalent to g(n), denoted by f(n) ∼
g(n) if for any small ε > 0,

g(n)(1− ε) < f(n) < g(n)(1 + ε) (3.14)

for sufficiently large n, i.e.,

lim
n→∞

f(n)

g(n)
= 1 (3.15)

or
f(n) = g(n) + o(g(n)). (3.16)

Let Ui denote the event that Pr(Y n = an(i)|C(n,R)) ∼ 1
2n

, then obviously
⋂2n

i=1 Ui
represents that the conditional distribution of channel output given codebook in-
formation is asymptotically uniform.

Theorem 3.1.1. For any small δ > 0,

Pr

(
2n⋂
i=1

Ui

)
> 1− δ, (3.17)

when R is greater than C and n is sufficiently large.
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Figure 3.1: Low density of codewords and nonuniform distribution of output.

3.2 Proof via a Geometric Approach

At a first glance, theorem 3.1.1 seems contradictory to our intuition. Intuitively,
over the channel, different codebook structures might result in different distribu-
tions of output sequences, and seemingly the distribution could never be always
uniform for sufficiently large n. Indeed the intuition is right under some certain
circumstance, and just consider the case where R < C. Obviously, for any ε > 0,
the set of sequences having Hamming distance less than n(p+ ε) with a codeword
is mostly likely mapped into from that codeword (precisely with high probability
when n is sufficiency large). So intuitively, when R < C, as shown in Figure 3.1,
since the density of codewords scattered in An is so low that many sequences can
hardly be mapped into from these codewords and hence the posterior conditional
distribution is not uniform.

However, when R > C, the intuition is not true any longer and theorem 3.1.1
holds now. Note here the capacity C plays a role of good threshold again, as in
the classical channel coding theorem [1]. We show theorem 3.1.1 via a geometric
approach by two steps:

• Firstly, we define a class of codebooks as typical codebooks, where the 2nR

codewords are approximately uniformly scattered over the n-dimensional sig-
nal space An with density 2nR

2n
. Using the powerful tool Vapnik-Chervonekis

Theorem [16], [17], we show the typical codebook appears with high proba-
bility for sufficiently large n.

• Then, the asymptotically uniform distribution of output is shown when typical
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codebook is used at the sender, and this is sufficient as a proof of theorem 3.1.1
since the typical codebooks are with high probability when n is sufficiently
large.

3.2.1 Typical Codebooks for BSC

To define the typical codebook and show it accounts for high probability, we need
to recall some relevant definitions and Vapnik-Chervonekis Theorem:

Definition 3.2.1. A Range Space is a pair (X,F), where X is a set and F is a
family of subsets of X.

Definition 3.2.2. For any A ⊆ X, we define PF(A), the projection of F on A, as
{F ∩ A : F ∈ F}.

Definition 3.2.3. We say that A is shattered by F if PF(A) = 2A, i.e., if the
projection of F on A includes all possible subsets of A.

Definition 3.2.4. The VC-dimension of F , denoted by VC-d(F) is the cardinality
of the largest set A that F shatters. If arbitrarily large finite sets are shattered, the
VC dimension of F is infinite.

Theorem 3.2.1 (The Vapnik-Chervonekis Theorem). If F is a set of finite VC-
dimension and {Yj} is a sequence of n i.i.d. random variables with common prob-
ability distribution P , then for every ε, δ > 0

Prob

{
sup
F∈F

∣∣∣∣∣ 1n
n∑
j=1

I(Yj ∈ F )− P (F )

∣∣∣∣∣ ≤ ε

}
> 1− δ (3.18)

whenever

n > max

{
8VC-d(F)

ε
log2

16e

ε
,
4

ε
log2

2

δ

}
(3.19)

Proof. The proof of theorem 3.2.1 is referred to [16], [17] and omitted here, and
some applications can be found in [18], [19] and [20].

The following notations are useful for us to utilize the above tool and define the
typical codebooks:

Notation 3.2.1.
Fs(i) := {an ∈ An : dH(an, an(i)) = s} (3.20)

where i ∈ {1, · · · , 2n}, s ∈ {0, · · · , n}.

Notation 3.2.2.
Fs := {Fs(i), i ∈ {1, · · · , 2n}} (3.21)

where s ∈ {0, · · · , n}.
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Geometrically, Fs(i) consists of all the sequences on the surface of the Hamming
sphere, whose center is an(i) and radius is Hamming distance s, and Fs is the set
of all Fs(i), for i ∈ {1, · · · , 2n}.

Note that by definition 3.2.1, the pair (An,Fs) is a range space, for any s ∈
{0, · · · , n}, and we have the following lemma.

Lemma 3.2.1. For a fixed dimension n, VC-d(Fs) ≤ n, for any s ∈ {0, · · · , n}.

Proof. Assume VC-d(Fs) > n, then there exists a set A′ ⊆ An such that |{Fs ∩
A′, Fs ∈ Fs}| = 2VC-d(Fs) > 2n. However, since |Fs| = 2n, obviously |{Fs ∩ A,Fs ∈
Fs}| ≤ 2n, for any A ⊆ An, which is contradictory with the assumption and hence
lemma 3.2.1 is proved.

Remark 3.2.1. Although the bound in lemma 3.2.1 seems loose, it is a sufficiently
good upper bound for our needs, as we will show soon.

Now, we are in a position to define the typical codebook set and show it is with
high probability when n is sufficiently large. The typical codebook for the n-used
binary symmetric channel is defined as the codebook in the way such that from
the view of any specific sequence an(i) in An, the number of codewords which has
Hamming distance s with an(i) in a typical codebook is approximately proportional
to the total number of all the sequences with Hamming distance s far away from
an(i). To accurately describe it, let N(i, s|C(n,R)) denote the number of codewords
which have Hamming distance s with sequence an(i) given the codebook C(n,R).

Definition 3.2.5.

T (C(n,R)) :={
C(n,R) : sup

Fs(i)∈Fs

∣∣∣∣∣N(i, s|C(n,R))

2nR
−
(
n
s

)
2n

∣∣∣∣∣ ≤ ∆snR

2nR
, for any s ∈ {0, · · · , n}

}
(3.22)

where ∆s = max{8VC-d(Fs), 16e}.

Theorem 3.2.2. For a binary symmetric channel, generate the codebook C(n,R) at
random according to the distribution pX(0) = pX(1) = 1

2
, then

Pr(C(n,R) ∈ T (C(n,R)))→ 1 as n→∞. (3.23)

Note that the typical codebook implicates a good uniform geometric distribution
of codewords from the view of any sequence in An, therefore, to prove Theorem
3.2.2, we need to consider the probability of a class of 2n simultaneously happening
events, which invokes a sort of uniform convergence (in probability) of law of large
numbers over the entire class. To achieve this, we resort to the Vapnik-Chervonekis
Theorem. And fortunately, as lemma 3.2.1 shows, for a fixed dimension n, the
VC-d(Fs) is finite, which is a sufficient condition for the uniform convergence in
the weak law of large numbers. The formal proof is as following:
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Proof. Consider all the codewords in a random codebook {Xn(w), w ∈ {1, · · · , 2nR}}.
Notice that the 2nR codewords are actually a sequence of random variables with
the common distribution P (Xn = an(i)) = 1/2n, for any i ∈ {1, · · · , 2n}.

Now consider the range space (An,Fs). According to the definition of Fs(i),

we easily get P (Xn ∈ Fs(i)) =
(ns)
2n

. Recall that Fs(i) represents the surface of
the Hamming sphere with center at an(i) and radius s, and then the intuition is
clear: since we choose every codeword uniformly and randomly over the signal
space, the probability that a codeword is on a specific Hamming sphere’s surface is
proportional to its volume

(
n
s

)
.

Since the VC-d(Fs) is finite for a fixed dimension n, we are justified to use
the Vapnik-Chervonekis theorem. To satisfy (3.19), let ε = δ = ∆snR

2nR
, then the

Vapnik-Chervonekis theorem states that

P

{
sup

Fs(i)∈Fs

∣∣∣∣∣
∑2nR

w=1 I(Xn(w) ∈ Fs(i), Xn(w) ∈ C(n,R))

2nR
−
(
n
s

)
2n

∣∣∣∣∣ ≤ ∆snR

2nR

}
> 1−∆snR

2nR

(3.24)
where ∆s = max{8VC-d(Fs), 16e}.

Observing that

N(i, s|C(n,R)) =
2nR∑
w=1

I(Xn(w) ∈ Fs(i), Xn(w) ∈ C(n,R)), (3.25)

we have

Pr

{
sup

Fs(i)∈Fs

∣∣∣∣∣N(i, s|C(n,R))

2nR
−
(
n
s

)
2n

∣∣∣∣∣ ≤ ∆snR

2nR

}
> 1− ∆snR

2nR
(3.26)

where ∆s = max{8VC-d(Fs), 16e}.

Define

Es :=

{
sup

Fs(i)∈Fs

∣∣∣∣∣N(i, s|C(n,R))

2nR
−
(
n
s

)
2n

∣∣∣∣∣ > ∆snR

2nR

}
,∀s ∈ {0, · · · , n}, (3.27)

and then we have

Pr{C(n,R) /∈ T (C(n,R))} (3.28)

=Pr

(
n⋃
s=0

Es

)
(3.29)

≤
n∑
s=0

Pr(Es) (3.30)
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≤
n∑
s=0

∆snR

2nR
(3.31)

≤(n+ 1)∆nR

2nR
(3.32)

where ∆ := max{8n, 16e} according to lemma 3.2.1.

Hence,
Pr{C(n,R) ∈ T (C(n,R))} → 1, as n→∞, (3.33)

and this completes the proof of theorem 3.2.2.

3.2.2 Asymptotically Uniform CDOCI for BSC

To prove theorem 3.1.1, the following two lemmas are useful.

Lemma 3.2.2. Letting xn be any given channel input for the BSC, and Y n be the
output, we have, for any small ε > 0, Pr(dH(xn, Y n) ∈ [n(p− ε), n(p+ ε)])→ 1 as
n→∞.

Proof. Note that the binary symmetric channel can be represented as

Y = X ⊕N, (3.34)

where N is the noise random variable with distribution pN(1) = p and pN(0) = 1−p.
Readily, we get E[N ] = p and V ar(N) = p(1− p).

For any small ε > 0,

Pr(dH(xn, Y n) ∈ [n(p− ε), n(p+ ε)]) (3.35)

=Pr

(
n∑
i=1

Ni ∈ [n(p− ε), n(p+ ε)]

)
(3.36)

=Pr

(∣∣∣∣∑n
i=1Ni

n
− p
∣∣∣∣ ≤ ε

)
(3.37)

(a)

≥1− V ar(N)

nε2
(3.38)

→1, as n→∞, (3.39)

where “(a)” follows from Chebyshev’s Inequality and this finishes the proof.

Remark 3.2.2. For simplicity, from now on, we use Hε to denote the event that
dH(xn, Y n) ∈ [n(p−ε), n(p+ε)] for any given xn. Note that although the dH(xn, Y n)
is a quantity related to xn, it essentially describes the effect of channel noise, and
whether the event Hε happens is independent of which specific sequence xn is. This
observation is important for the calculation later.

27



Lemma 3.2.3.

Pr

(
2n⋂
i=1

Ui

∣∣∣∣∣Hε, C(n,R) ∈ T (C(n,R))

)
= 1 (3.40)

when R is greater than C and n is sufficiently large.

Proof. Firstly, consider Pr(Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R))) for any i ∈ {1, · · · , 2n}.
We will try to give both the tight lower bound and upper bound to this probability.

Pr(Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R))) (3.41)

(a)
=

2nR∑
w=1

P (Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R)), xn(w) is sent)

· P (xn(w) is sent|Hε, C(n,R) ∈ T (C(n,R))) (3.42)

(b)
=

1

2nR

2nR∑
w=1

P (Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R)), xn(w) is sent) (3.43)

(c)
=

1

2nR

∑
dH(xn(w),Y n)∈[n(p−ε),n(p+ε)]

P (Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R)), xn(w) is sent)

(3.44)

(d)
=

1

2nR

n(p+ε)∑
s=n(p−ε)

N(i, s|C(n,R) ∈ T (C(n,R))) · ps(1− p)n−s∑n(p+ε)
s=n(p−ε)

(
n
s

)
ps(1− p)n−s

(3.45)

(e)

≥ 1

2nR

n(p+ε)∑
s=n(p−ε)

[
2nR(ns)

2n
−∆snR

]
ps(1− p)n−s∑n(p+ε)

s=n(p−ε)
(
n
s

)
ps(1− p)n−s

(3.46)

=
1

2n
− φ2

φ1

, (3.47)

where

φ1 :=

n(p+ε)∑
s=n(p−ε)

(
n

s

)
ps(1− p)n−s, (3.48)

φ2 :=
nR

2nR

n(p+ε)∑
s=n(p−ε)

∆sp
s(1− p)n−s. (3.49)

“(a)” follows from the Law of Total Probability. We do this kind of transforma-
tion since we want to accumulate the contributions from all the codewords in the
codebook to the probability for an(i) to be channel output.

“(b)” follows from the fact that W is uniformly distributed and the events Hε

and C(n,R) ∈ T (C(n,R)) are independent of the choice of index W . Actually, the
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event C(n,R) ∈ T (C(n,R)) is just a description of the codebook and hence has nothing
to do with which index to be sent. Hε is also an independent event according to
remark 3.2.2.

“(c)” holds because of the condition Hε. Having known that dH(xn, Y n) ∈
[n(p−ε), n(p+ε)], it is justified to only count in the contributions from the effective
codewords, which are those codewords have Hamming distance between n(p − ε)
and n(p+ ε) with Y n.

“(d)” allows us to accumulate the contributions from the effective codewords
shell-by-shell.

“(e)” follows from the definition of typical codebook.

For φ1, consider a Bernoulli Random Variable Z with probability p to be 0 and
1 − p to be 1. In this specific case, after some simple calculation, we can get the
ε1-typical sequence set

Anε1(Z) = {zn : N(0|zn) ∈ [n(p− ε), n(p+ ε)]}, (3.50)

where N(0|zn) denotes the number of 0 in sequence zn and ε → 0, as ε1 → 0.
Besides, according to AEP, for any small ε1 > 0,

Pr(Zn ∈ Anε1(Z))→ 1, as n→ 0. (3.51)

Therefore, for any small ε > 0

n(p+ε)∑
s=n(p−ε)

(
n

s

)
ps(1− p)n−s =

∑
zn∈Anε1 (Z)

p(zn)→ 1, as n→ 0, (3.52)

and φ1 = 1− o(1).

For φ2, consider the following series of inequalities (or equations):

φ2

(a)

≤ nR

2nR
∆

n(p+ε)∑
s=n(p−ε)

ps(1− p)n−s (3.53)

(b)

≤ nR

2nR
∆ · 2nε · pn(p−ε)(1− p)n−n(p−ε) (3.54)

(c)
=
nR

2nR
∆ · 2nε · pnp(1− p)n−np · p−nε(1− p)nε (3.55)

(d)
=

nR

2nR
∆ · 2nε · 2−nH(p) · 2nε log 1−p

p (3.56)

(e)
=

nR ·∆ · 2nε
2n(R+H(p)−ε log 1−p

p
)
, (3.57)

where
“(a)” follows from lemma 3.2.1 and ∆ = max{8n, 16e};
“(b)” gives a upper bound to the summation by taking s = n(p− ε);
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“(c)” follows from extending the terms;
“(d)” follows from the definition of entropy;
“(e)” gives an explicit expression to analyze the exponent.

Combining all the above, for any i ∈ {1, · · · , 2n} and for any small ε > 0,

Pr(Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R))) (3.58)

≥ 1

2n
− φ2

φ1

(3.59)

≥ 1

2n
− nR ·∆ · 2nε

(1− o(1))2n(R+H(p)−ε log 1−p
p

)
(3.60)

≥ 1

2n
(1− o(1)) (3.61)

as long as R+H(p)−ε log 1−p
p
> 1, i.e., R > 1−H(p)+ε′, where ε′ := ε log 1−p

p
> 0.

Note that ε′ can be driven to 0 by letting ε→ 0, and therefore, (3.61) holds as long
as R > C and n is sufficiently large.

Similarly, we can show that when R > C and n is sufficiently large, for any
i ∈ {1, · · · , 2n},

Pr(Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R))) ≤ 1

2n
(1 + o(1)) (3.62)

and hence

Pr(Y n = an(i)|Hε, C(n,R) ∈ T (C(n,R))) ∼ 1

2n
. (3.63)

Therefore, lemma 3.2.3 is proved.

Until now, the proof to theorem 3.1.1 is obvious:

Proof of theorem 3.1.1. For any small δ > 0, when R > C and n is sufficiently
large,

Pr

(
2n⋂
i=1

Ui

)
(3.64)

=Pr

(
2n⋂
i=1

Ui

∣∣∣∣∣C(n,R) ∈ T (C(n,R))

)
Pr
(
C(n,R) ∈ T (C(n,R))

)
+Pr

(
2n⋂
i=1

Ui

∣∣∣∣∣C(n,R) /∈ T (C(n,R))

)
Pr
(
C(n,R) /∈ T (C(n,R))

)
(3.65)

≥Pr

(
2n⋂
i=1

Ui

∣∣∣∣∣C(n,R) ∈ T (C(n,R))

)
Pr
(
C(n,R) ∈ T (C(n,R))

)
(3.66)
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=P

(
2n⋂
i=1

Ui

∣∣∣∣∣Hε, C(n,R) ∈ T (C(n,R))

)
P (Hε)Pr

(
C(n,R) ∈ T (C(n,R))

)
+P

(
2n⋂
i=1

Ui

∣∣∣∣∣Hc
ε , C(n,R) ∈ T (C(n,R))

)
P (Hc

ε )Pr
(
C(n,R) ∈ T (C(n,R))

)
(3.67)

≥P

(
2n⋂
i=1

Ui

∣∣∣∣∣Hε, C(n,R) ∈ T (C(n,R))

)
P (Hε)P

(
C(n,R) ∈ T (C(n,R))

)
(3.68)

>1 · (1− δ) · (1− δ) (3.69)

=1− δ1 (3.70)

where δ1 := 2δ − δ2. Noting that δ1 can be driven to 0 by letting δ → 0, this
completes the proof.
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Chapter 4

A General Characterization of the
CDOCI for DMC and A Proof of
the Strong Converse to Channel
Coding Theorem

In this chapter, we focus on the Discrete Memoryless Channel. We give a general
characterization of the CDOCI, calculate the rate needed for the relay to forward its
observation, and present a strong converse to the channel coding theorem under the
random coding framework. In section 4.1, we formally formulate the problem, and
point out for those strongly typical output sequences, the CDOCI is asymptotically
uniform and approaching the unconditional distribution with high probability when
R > C and n is sufficiently large. Then, we prove this result in section 4.2. In
section 4.3 we confirm that there is no gain to utilize the codebook information
in the sense that the rate needed for the relay to forward its observation doesn’t
decrease. Finally, in section 4.4 we show by the random coding technique, the error
probability goes to 1 with high probability when R > C.

4.1 Problem Formulation for Discrete Memory-

less Channel and Results

Consider a discrete memoryless channel defined by a conditional distribution p(y|x)
for y ∈ Y and x ∈ X , as depicted in Figure 1.2. To transmit at a rate R, consider a
random codebook generated by selecting a distribution on the input alphabet, p(x),
and generating 2nR i.i.d random codewords. Paralleling the content in Chapter 3,
we use the following definitions and notations for DMC.

Notation 4.1.1. The n-dimensional input signal space and output signal space for
the n-used discrete memoryless channel are denoted as X n and Yn respectively.
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Definition 4.1.1. The nth extension of the discrete memoryless channel (without
feedback) is the channel (X n, p(yn|xn),Yn), where

p(yn|xn) =
n∏
i=1

p(yi|xi) (4.1)

Notation 4.1.2. The codebook corresponding to rate R for the nth extension of the
discrete memoryless channel is defined as

C(n,R) := {Xn(w) ∈ X n, w = 1, · · · , 2nR}, (4.2)

where each of the 2nR sequences in C(n,R) represents a codeword of length n, ran-
domly generated according to the distribution,

p(xn) =
n∏
i=1

p(xi). (4.3)

For a fixed input distribution p(x), we can get the output distribution

p(y) =
∑
x∈X

p(x, y) =
∑
x∈X

p(x)p(y|x) (4.4)

and then we have the ε-strongly typical input and output sequence set for the n-
used discrete memoryless channel, A

∗(n)
ε (X) and A

∗(n)
ε (Y ), respectively. To facilitate

the analysis, we arbitrarily order the elements in both ε-strongly typical sets and
denote them by xnε (i), for i ∈ {1, · · · , L(n)

ε } and ynε (i), for i ∈ {1, · · · ,M (n)
ε }, where

L
(n)
ε = |A∗(n)

ε (X)| and M
(n)
ε = |A∗(n)

ε (Y )|.
Our result is that given p(x), the CDOCI for the strongly typical output se-

quences is asymptotically uniform and approaching the unconditional distribution
with high probability, when R > C and the block length is sufficiently large.

We now define the same notation as that in [5] to express equality to the first
order in the exponent.

Notation 4.1.3. We say an and bn are equal to the first order in the exponent,
denoted by an

.
= bn, if

lim
n→∞

1

n
log

an
bn

= 0. (4.5)

Using this notation, we can now restate our results as for R > C and sufficiently
large n,

p(ynε (i)|C(n,R))
.
= p(ynε (i))

.
= 2−nH(Y ),∀ i ∈ {1, . . . ,M (n)

ε } (4.6)

with high probability.

Formally, given p(x), letting

Ui =
{
p(ynε (i)|C(n,R))

.
= 2−nH(Y )

}
, for any i ∈ {1, . . . ,M (n)

ε }, (4.7)

we have the following theorem:
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Theorem 4.1.1. For any small δ > 0

Pr

M
(n)
ε⋂
i=1

Ui

 > 1− δ, (4.8)

when n is sufficiently large and R > C.

4.2 A General Proof of the Uniform CDOCI

Similarly in Chapter 3, we prove theorem 4.1.1 by defining the typical codebooks
and focus on the CDOCI given the typical codebooks. In 4.2.1, we define the typical
codebook, and then show the typical codebooks are with high probability, while in
4.2.2, we finish the proof of theorem 4.1.1. Moreover, the further discussion on the
uniform CDOCI is given in 4.2.3.

4.2.1 Typical Codebooks for DMC

To define the typical codebook set for the discrete memoryless channel and show
it contains most of the probability, we need a fundamental result on the size of
conditionally typical set, which is the the following lemma 4.2.1.

Lemma 4.2.1. Given a joint distribution p(x, y), for any yn such that there exsits

at least one pair (xn, yn) ∈ A∗(n)
ε , the set of sequences xn such that (xn, yn) ∈ A∗(n)

ε

satisfies
2n(H(X|Y )−ε1) ≤ |{xn : (xn, yn) ∈ A∗(n)

ε }| ≤ 2n(H(X|Y )+ε1), (4.9)

where ε1 goes to 0 as ε→ 0 and n→∞.

Proof. This lemma corresponds to equation (13.168) on page 372 in the Cover’s
book [5] except exchanging the position of xn and yn. See the outline of proof in
[5] and the details are omitted here.

Due to the above lemma, we have the following theorem, which bounds the
probability that a randomly chosen sequence is jointly typical with a fixed typical
sequence.

Theorem 4.2.1. Let X1, X2, . . . , Xn be drawn i.i.d. ∼ p(x). For yn ∈ A∗(n)
ε (Y ),

the probability that (Xn, yn) ∈ A∗(n)
ε is bounded by

2−n(I(X;Y )+ε
′
) ≤ Pr((Xn, yn) ∈ A∗(n)

ε ) ≤ 2−n(I(X;Y )−ε′ ), (4.10)

where ε
′

goes to 0 as ε→ 0 and n→∞.
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Proof.

Pr((Xn, yn) ∈ A∗(n)
ε ) (4.11)

=
∑

xn∈{xn:(xn,yn)∈A∗(n)
ε }

p(xn) (4.12)

≤
∑

xn∈{xn:(xn,yn)∈A∗(n)
ε }

2−n(H(X)−ε1) (4.13)

≤2n(H(X|Y )+ε2)2−n(H(X)−ε1) (4.14)

=2−n(I(X;Y )−ε′ ) (4.15)

where ε1, ε2 and ε
′

all go to 0 as n→∞. Similarly,

Pr((Xn, yn) ∈ A∗(n)
ε ) ≥ 2−n(I(X;Y )+ε

′
) (4.16)

and hence

2−n(I(X;Y )+ε
′
) ≤ Pr((Xn, yn) ∈ A∗(n)

ε ) ≤ 2−n(I(X;Y )−ε′ ). (4.17)

To formally define the typical codebook, we use the following notation:

Notation 4.2.1.

Fε(i) :=
{
xn ∈ A∗(n)

ε (X) : ynε (i) ∈ A∗(n)
ε (Y |xn)

}
,∀ i ∈ {1, · · · ,M (n)

ε };

(4.18)

Fε := {Fε(i), i ∈ {1, · · · ,M (n)
ε }; (4.19)

Pε(i) := P (Xn ∈ Fε(i)); (4.20)

Nε(i|C(n,R)) :=
2nR∑
w=1

I(Xn(w) ∈ Fε(i), Xn(w) ∈ C(n,R)); (4.21)

N∗ε (C(n,R)) =
2nR∑
w=1

I(Xn(w) ∈ A∗(n)
ε , Xn(w) ∈ C(n,R)). (4.22)

Noting that (X n,Fε) forms a range space, we have the following definition of
typical codebooks for discrete memoryless channel.

Definition 4.2.1.

T (C(n,R)) =

C
(n,R) :

sup
Fε(i)∈Fε

∣∣∣∣Nε(i|C(n,R))

2nR
− Pε(i)

∣∣∣∣ ≤ ∆εnR

2nR∣∣∣∣N∗ε (C(n,R))

2nR
− P (Xn ∈ A∗(n)

ε (X))

∣∣∣∣ ≤ n

2nR/2

 (4.23)

where ∆ε := max{8VC-d(Fε), 16e}.
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Theorem 4.2.2. For a discrete memoryless channel, generate the codebook C(n,R)

at random according to the distribution p(x), then

Pr(C(n,R) ∈ T (C(n,R)))→ 1 as n→∞. (4.24)

Similar to the proof of Theorem 3.2.2, we need to employ the Vapnik-Chervonekis
Theorem to show Theorem 4.2.2 holds and hence a finite VC dimension of Fε is
desired. For this reason, we introduce a lemma first.

Lemma 4.2.2. For a fixed dimension n, VC-d(Fε) ≤ n(H(Y ) + ε
′
), where ε

′
goes

to 0 as ε→ 0 and n→∞.

Proof. According to the definition of Fε and the property of typical sequence set,
we have

2n(H(Y )−ε′ ) ≤ |Fε| = |A∗(n)
ε (Y )| ≤ 2n(H(Y )+ε

′
), (4.25)

where ε
′ → 0 as ε → 0 and n → ∞. Using the same idea as the proof of Lemma

3.2.1, we can readily get this lemma. Note for a fixed n, VC-d(Fε) is finite, which
ensures us be able to utilize the Vapnik-Chervonekis Theorem safely.

Proof of Theorem 4.2.2. Noticing that a typical codebooks satisfies two constraints
in Definition 4.2.1, we will prove Theorem 4.2.2 by showing a random codebook
satisfies each constraint with high probability.

For the given p(x), consider all the codewords in a random codebook Xn(w),
w ∈ {1, · · · , 2nR}, which are a sequence of random variables with the common
distribution p(xn) = Πn

i=1p(xi). Employing the Vapnik-Chervonekis theorem under
the range space (X n,Fε) and observing that

Nε(i|C(n,R)) =
2nR∑
w=1

I(Xn(w) ∈ Fε(i), Xn(w) ∈ C(n,R)), (4.26)

we have

Pr

{
sup

Fε(i)∈Fε

∣∣∣∣Nε(i|C(n,R))

2nR
− Pε(i)

∣∣∣∣ ≤ ∆εnR

2nR

}
> 1− ∆εnR

2nR
(4.27)

where ∆ε = max{8VC-d(Fε), 16e}.
Therefore, letting ∆ = max{8n(H(Y ) + ε

′
), 16e} according to lemma 4.2.2, it

follows that

Pr

{
sup

Fε(i)∈Fε

∣∣∣∣Nε(i|C(n,R))

2nR
− Pε(i)

∣∣∣∣ ≤ ∆εnR

2nR

}
(4.28)

≥1− ∆εnR

2nR
(4.29)

≥1− ∆nR

2nR
(4.30)
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→1 as n→∞. (4.31)

Until now, we prove a random codebook satisfies the first constraint of typ-
ical codebook with high probability and we consider the second constraint be-
low. Let Bε(w) = I(Xn(w) ∈ A

∗(n)
ε , Xn(w) ∈ C(n,R)) for w ∈ {1, · · · , 2nR}, then

Bε(1), Bε(2), · · · , Bε(2
nR) are a sequence of i.i.d. random variables with common

distribution:

Bε =

{
1 if Xn ∈ A∗(n)

ε

0 if Xn /∈ A∗(n)
ε

(4.32)

Readily, we have E[Bε] = P (Xn ∈ A∗(n)
ε ) and V ar(Bε) = P (Xn ∈ A∗(n)

ε )(1 −
P (Xn ∈ A∗(n)

ε )) ≤ 1.

By Chebyshev’s Inequality, we have for any δ > 0,

P

{∣∣∣∣∣
∑2nR

w=1 Bε(w)

2nR
− P (Xn ∈ A∗(n)

ε )

∣∣∣∣∣ ≥ δ

}
≤ V ar(B)

2nRδ2
≤ 1

2nRδ2
. (4.33)

Noting N∗ε (C(n,R)) =
∑2nR

w=1Bε(w) and replacing the δ in (4.33) by n

2
nR
2

, we have

P

{∣∣N∗ε (C(n,R))− P (Xn ∈ A∗(n)
ε )

∣∣ ≥ n

2
nR
2

}
≤ 1

2nR( n
2nR/2

)2
=

1

n2
→ 0, as n→∞.

(4.34)

Combining (4.31) and (4.34), by union bound, we have

Pr(C(n,R) /∈ T (C(n,R))) (4.35)

≤Pr

{
sup

Fε(i)∈Fε

∣∣∣∣Nε(i|C(n,R))

2nR
− Pε(i)

∣∣∣∣ ≥ ∆εnR

2nR

}

+ Pr

{∣∣∣∣N∗ε (C(n,R))

2nR
− P (Xn ∈ A∗(n)

ε (X))

∣∣∣∣ ≥ n

2nR/2

}
(4.36)

→0 as n→∞, (4.37)

which completes the proof of theorem 4.2.2.

4.2.2 Asymptotically Uniform CDOCI for DMC

Notation 4.2.2. We say an is greater than or equal to bn to the first order in the
exponent, denoted by an

.

≥ bn, if

lim
n→∞

1

n
log

an
bn
≥ 0; (4.38)
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and an is less than or equal to bn to the first order in the exponent, denoted by
an

.

≤ bn, if

lim
n→∞

1

n
log

an
bn
≤ 0. (4.39)

Remark 4.2.1. By the above notation, we see that if an
.

≥ bn and an
.

≤ bn, then
an

.
= bn, since

0 ≤ lim
n→∞

1

n
log

an
bn
≤ 0. (4.40)

Theorem 4.2.3. Given a typical codebook is used, assuming the codeword sent is
ε-strongly typical ∼ p(x) and the noise introduced by channel is also “typical”, i.e.,

Xn ∈ A∗(n)
ε (X) and Y n ∈ A∗(n)

ε (Y |xn) for any given xn, (4.41)

then
Pr(Y n = ynε (i))

.
= 2−nH(Y ),∀i ∈ {1, . . . ,M (n)

ε }, (4.42)

when R > I(X;Y ) and n is sufficiently large.

Remark 4.2.2. In fact, the assumption that the codeword sent is a typical sequence
with respect to p(x) is not necessary to give rise to the uniform CDOCI. As we will
see in 4.2.3, we can still get the uniform CDOCI with this assumption eliminated,
but the range of R should be also modified accordingly.

Proof. Let
Cε = {Y n ∈ A∗(n)

ε (Y |xn) for any given xn}, (4.43)

which can be interpreted as the event that the noise is “typical” and hence the
output lies in the conditionally typical set given input xn.

Consider Pr(Y n = ynε (i)|Cε, Xn ∈ A
∗(n)
ε (X), C(n,R) ∈ T (C(n,R))) for any i ∈

{1, · · · ,Mε}. We will try to give the lower bound to this probability.

To accumulate the contributions from all the codewords in the codebook to the
probability for ynε (i) to be channel output, we employ the Law of Total Probability
and have the following equations(or inequalities):

Pr(Y n = ynε (i)|Cε, Xn ∈ A∗(n)
ε (X), C(n,R) ∈ T (C(n,R))) (4.44)

(a)
=

2nR∑
w=1

P (Y n = ynε (i)|Cε, Xn ∈ A∗(n)
ε (X), C(n,R) ∈ T (C(n,R)), Xn = xn(w))

· P (Xn = xn(w)|Cε, Xn ∈ A∗(n)
ε (X), C(n,R) ∈ T (C(n,R))) (4.45)

(b)
=

1 + o(1)

2nR

∑
xn(w)∈A∗(n)

ε

P (Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R)), Xn = xn(w)) (4.46)

(c)

≥ 1

2nR

∑
xn(w)∈Fε(i)

P (Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R)), Xn = xn(w)) (4.47)
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(d)

≥ 1

2nR
Nε(i|C(n,R) ∈ T (C(n,R))) · 2−n[H(Y |X)+ε

′′
] (4.48)

(e)

≥ 1

2nR
(2nR · 2−n[I(X;Y )+ε

′
] −∆εnR) · 2−n[H(Y |X)+ε

′′
] (4.49)

(f)
=2−n[I(X;Y )+ε

′
] · 2−n[H(Y |X)+ε

′′
] − ∆εnR

2nR
· 2−n[H(Y |X)+ε

′′
] (4.50)

(g)
=2−n[H(Y )+ε

′
+ε
′′

] − ∆εnR

2nR
· 2−n[H(Y |X)+ε

′′
] (4.51)

(h)
=2−n[H(Y )+ε

′
+ε
′′

] ·
{

1− ∆εnR

2nR
· 2n[I(X;Y )+ε

′
]

}
(4.52)

where

“(a)” follows from the Law of Total Probability.

“(b)” follows from the fact

Pr(Xn = xn(w)|Xn ∈ A∗(n)
ε (X), Cε, C(n,R) ∈ T (C(n,R)))

=


1

N∗ε (C(n,R) ∈ T (C(n,R)))
for xn(w) ∈ A∗(n)

ε (X)

0 for xn(w) /∈ A∗(n)
ε (X)

. (4.53)

Due to the definition of typical codebooks, we have

N∗ε (C(n,R) ∈ T (C(n,R))) = 2nR(1− o(1)) (4.54)

and then (4.46) follows.

“(c)” allows us to only accumulate the contributions from those codewords in
Fε(i), which we call the codewords of interest. Actually, the codewords of interest
are strongly jointly typical with ynε (i) with respect to p(x, y). This can be seen by
observing that the codewords in Fε(i) are strongly typical with respect to p(x) and
ynε (i) is conditionally strongly typical with them. We will see that the contributions
from the codewords of interest are sufficient to result in a tight lower bound of
p(ynε (i)|Cε, Xn ∈ A∗(n)

ε , C(n,R) ∈ T (C(n,R))).

“(d)” follows from the definition of typical codebooks and gives a lower bound
to the probability contribution from the codeword of interest. Specifically, This
lower bound directly follows from the definition of weakly joint typicality, implied
by the strongly joint typicality, and ε

′′ → 0, as ε→ 0 and n→∞.

“(e)” follows from the definition of typical codebook and gives a lower bound
to the number of codewords of interest, where ε

′ → 0, as ε→ 0 and n→∞.

“(f)” follows from the expansion of terms.

“(g)” follows from the basic definitions and relation of entropy and mutual
information.

Therefore, for any i ∈ {1, · · · ,Mn
ε },

Pr(Y n = ynε (i)|Cε, Xn ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R))) ≥ 2−n[H(Y )+ε

′
+ε
′′

](1− o(1))
(4.55)
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as long as R > I(X;Y )+ ε
′
. Since ε

′ → 0, we have for R > I(X;Y ) and sufficiently
large n,

Pr(Y n = ynε (i)|Cε, Xn ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R)))

.

≥ 2−nH(Y ),∀ i ∈ {1, . . . ,M (n)
ε }.
(4.56)

Similarly, we can derive a tight upper bound, i.e., for R > I(X;Y ) and suffi-
ciently large n,

Pr(Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R)))
.

≤ 2−nH(Y ),∀ i ∈ {1, . . . ,M (n)
ε }, (4.57)

and therefore

Pr(Y n = ynε (i)|Cε, Xn ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R)))

.
= 2−nH(Y ),∀ i ∈ {1, . . . ,M (n)

ε },
(4.58)

which completes the proof of theorem 4.2.3.

Now, we are in a position to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. According to theorem 4.2.3, we readily have

Pr

M
(n)
ε⋂
i=1

Ui

∣∣∣∣∣Cε, Xn ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R))

 = 1. (4.59)

Therefore,

Pr

M
(n)
ε⋂
i=1

Ui

 (4.60)

≥Pr

M
(n)
ε⋂
i=1

Ui, Cε, X
n ∈ A∗(n)

ε , C(n,R) ∈ T (C(n,R))

 (4.61)

=Pr

M
(n)
ε⋂
i=1

Ui

∣∣∣∣∣Cε, Xn ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R))


· Pr

(
Cε, X

n ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R))

)
(4.62)

=Pr
(
Cε, X

n ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R))

)
(4.63)

=1− Pr
((
Cε, X

n ∈ A∗(n)
ε , C(n,R) ∈ T (C(n,R))

)c)
(4.64)

≥1− Pr (Cc
ε )− Pr(Xn ∈ A∗(n)

ε )− Pr
(
C(n,R) /∈ T (C(n,R))

)
(4.65)

→1 (4.66)

as n→∞, which finishes the proof of Theorem 4.1.1.

40



4.2.3 Further Discussion on the Uniform CDOCI

Note in the above analysis, the uniform CDOCI is obtained under the assumption
that the codeword sent is strongly typical ∼ p(x). Actually, this assumption is a
technical one in order to prove Theorem 4.1.1, because in reality, the randomly gen-
erated codebook may contain some nontypical sequences and hence the possibility
that a nontypical codeword is sent always exists. Therefore, it is natural to ask:
what if we eliminate the technical assumption and count in the effect of nontypical
sequences? In fact, the answer is also positive, i.e., we can still get the uniform
CDOCI even if all the sequences in the codebook are treated, except that a higher
rate is needed.

Theorem 4.2.4. Given a typical codebook is used, only assuming the noise intro-
duced by channel is “typical”, i.e.,

Y n ∈ A∗(n)
ε (Y |xn) for any given xn, (4.67)

then
Pr(Y n = ynε (i))

.
= 2−nH(Y ),∀i ∈ {1, . . . ,M (n)

ε }, (4.68)

when R > C and n is sufficiently large.

Methods of Types and a Useful Lemma

To prove theorem 4.2.4, we need to slightly modify the definition of typical code-
book. For this purpose, we use the method of types.

Definition 4.2.2. The type Pxn or (empirical probability distribution) of a sequence
xn is the relative proportion of occurrences of each symbol of X , i.e., Pxn(a) =
N(a|xn)/n, where N(a|xn) is the number of times the symbol a occurs in the se-
quence xn. It is a probability mass function on X .

Definition 4.2.3. Let Pn denote the set of types with denominator n. If P ∈ Pn,
then the set of sequences of length n and type P is called the type class of P , denoted
as T (P ), i.e.,

T (P ) = {xn : Pxn = P}. (4.69)

The power of the method of types essentially arises from the following theorem,
which indicates that the number of types is at most polynomial with n.

Theorem 4.2.5.
|Pn| ≤ (n+ 1)|X | (4.70)

Proof. Notice that each type is actually a vector consisting of |X | components and
each component can at most take n + 1 values, i.e., 0, 1/n, 2/n, · · · , 1. Therefore,
there are at most (n + 1)|X | choices for the type vector, which gives a little loose
but good enough upper bound for our needs, as we will show later.
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To redefine the typical codebook, we need the following additional lemma.

Lemma 4.2.3. Let X1, X2, . . . , Xn be drawn i.i.d. ∼ p(x) = Σyp(x, y) and A
∗(n)
ε,1

denote the strongly typical set with respect to another joint distribution p1(x, y)

having the marginal distribution p(y), i.e., Σxp1(x, y) = p(y). For yn ∈ A∗(n)
ε (Y ),

the probability that (Xn, yn) ∈ A∗(n)
ε,1 is bounded by

Pr((Xn, yn) ∈ A∗(n)
ε,1 ) ≤ 2−n(I1(X;Y )−ε′ ), (4.71)

where I1(X;Y ) is calculated according to joint distribution p1(x, y) and ε
′

goes to 0
as ε→ 0 and n→∞.

Proof. Let us first consider the conditional probability. For yn ∈ A∗(n)
ε,1 (Y ), we have

Pr((Xn, yn) ∈ A∗(n)
ε,1 |Xn ∈ A∗(n)

ε,1 ) (4.72)

=
∑

xn∈{xn:(xn,yn)∈A∗(n)
ε,1 }

p(Xn = xn|Xn ∈ A∗(n)
ε,1 ) (4.73)

≤
∑

xn∈{xn:(xn,yn)∈A∗(n)
ε,1 }

2−n(H1(X)−ε1) (4.74)

≤2n(H1(X|Y )+ε2)2−n(H1(X)−ε1) (4.75)

=2−n(I1(X;Y )−ε′ ) (4.76)

where H1(X), H1(X|Y ), I1(X;Y ) are all information measures calculated according
to joint distribution p1(x, y).

Notice that A
∗(n)
ε,1 (Y ) = A

∗(n)
ε (Y ) due to the same marginal distribution p(y) of

p(x, y) and p1(x, y), so for any yn ∈ A∗(n)
ε (Y ),

Pr((Xn, yn) ∈ A∗(n)
ε,1 ) (4.77)

=Pr((Xn, yn) ∈ A∗(n)
ε,1 , Xn ∈ A∗(n)

ε,1 ) (4.78)

=Pr((Xn, yn) ∈ A∗(n)
ε,1 |Xn ∈ A∗(n)

ε,1 ) · Pr(Xn ∈ A∗(n)
ε,1 ) (4.79)

≤Pr((Xn, yn) ∈ A∗(n)
ε,1 |Xn ∈ A∗(n)

ε,1 ) (4.80)

≤2−n(I1(X;Y )−ε′ ). (4.81)

Categorization of Sequences in X n

Notation 4.2.3. Let Jnε denote the number of types whose type class is not con-
tained in the ε-typical set with respect to p(x), i.e.,

Jnε :=
∣∣{P ∈ Pn : T (P ) * A∗(n)

ε

}∣∣ , (4.82)

where Jnε ≤ |Pn| ≤ (n+1)|X | due to Theorem 4.2.5. Regard these types as probability
mass functions and index them as pj(x), where j ranges from 1 to Jnε .

42



Now, we categorize the sequences in the whole input signal space X n as follows:

Firstly, X n can be divided into two classes, the strongly typical set with respect
to p(x) and the atypical set, denoted by A

∗(n)
ε and A

∗(n)c

ε respectively.

Secondly, in the atypical set A
∗(n)c

ε , the sequences can actually be regarded as
typical with respect to the other distributions. Using notation 4.2.3, we can express
the atypical set as

A∗(n)c

ε ≈
Jnε⋃
j=1

A
∗(n)
ε,j , (4.83)

where A
∗(n)
ε,j is the strongly typical set with respect to the type pj(x), for any

j ∈ {1, · · · , Jnε }. Note that, due to the effect introduced by ε, these ε-typical sets
may not be necessarily disjoint with each other but possibly overlap. However, the
union of them is always approximately equal to A

∗(n)c

ε . Now, clearly, we have the
following partition for X n:

X n = A∗(n)
ε

⋃
∪J

n
ε
j=1A

∗(n)
ε,j , (4.84)

Finally, given the channel p(y|x), one can calculate the joint distribution p(x, y)
and pj(x, y) associated with p(x) and pj(x), and then the marginal distribution
p(y) and pj(y) can also be obtained, where j ∈ {1, · · · , Jnε }. For simplicity and
consistency with pj(·), where j ∈ {1, · · · , Jnε }, we also use p0(·) to denote p(·),
i.e., we will not distinguish the use of p0(·) and p(·) in the later discussion and
calculation. To use p0(·) or p(·) is based on the context to make the discussion or

calculation easy and clear. Fix an yn ∈ A∗(n)
ε (Y ), then the sequences in A

∗(n)
ε (X)

and A
∗(n)
ε,j (X), can be further divided into two classes: those ε-jointly typical with

yn and those not jointly typical with yn, with respect to p(x, y) or pj(x, y), where
j ∈ {1, · · · , Jnε }.

The above categorization is illustrated in Figure 4.1.

Redefining the Typical Codebook

To formally redefine the typical codebook, we use the following notation:

Fε(i) :=
{
xn ∈ X n : ynε (i) ∈ A∗(n)

ε (Y |xn)
}
,∀ i ∈ {1, · · · ,M (n)

ε }, (4.85)

where A
∗(n)
ε (Y |xn) is with respect to the channel transition probability p(y|x). The

interpretation is that ynε (i) lies in the conditionally typical set of each sequence in
Fε(i). In other words, each sequence xn in Fε(i) can reach ynε (i) over a channel with
typical noise, i.e., xn ∈ Fε(i) is at a typical distance with ynε (i).

Based on the above analysis of X n, we can also classify the sequences in Fε(i).
The first class is denoted by

Fε,0(i) :=
{
xn ∈ A∗(n)

ε : ynε (i) ∈ A∗(n)
ε (Y |xn),

}
, ∀ i ∈ {1, · · · ,M (n)

ε }. (4.86)
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Typical sequences 
with respect to 

input distribution p(x)

Sequences 
jointly typical 

with yn    

~  p(x, y)

Non-typical 
sequences 

~  p(x)

Sequences 
not jointly 

typical with 
yn    ~  p(x, y)

… …

Sequences 
jointly typical 

with yn    

~  p1(x, y) Sequences 
not jointly 

typical with 
yn    ~  p1(x, y)

Typical 
sequences 

~  p1(x)

Typical 
~  p2(x)

Typical 
~  p3(x)

Typical 
~  p4(x)

Figure 4.1: The categorization of sequences in X n.

Besides, Fε(i) also includes the sequences not typical ∼ p(x) but typical with
respect to other types. Label these types as pi,k(x), where k ranges from 1 to Kn

ε (i)
and obviously

Kn
ε (i) ≤ Jnε ≤ (n+ 1)|X |. (4.87)

Letting

Fε,k(i) :=
{
xn ∈ A∗(n)

ε,k : ynε (i) ∈ A∗(n)
ε (Y |xn)

}
, (4.88)

where k ∈ {1, · · · , K(n)
ε (i)}, i ∈ {1, · · · ,M (n)

ε }, we can express Fε(i) as

Fε(i) =

Kn
ε (i)⋃
k=0

Fε,k(i). (4.89)

Furthermore, the following notation is useful for the concise definition of typical
codebooks.
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1

2

M

Strongly Typical Output Setn-Dimensional Input Signal Space

F(1)
F(2)

F(M)

Conditionally Typical

Conditionally Typical

Conditionally Typical

……

……

F0(1)
 Typical ~ p(x)

……
Typical ~ p1(x)

F1(1) Typical 
~ p2(x)

Typical 
~ p3(x)F2(1) F3(1)

Figure 4.2: The way to redefine a typical codebook.

Notation 4.2.4.

Fε := {Fε,k(i), i ∈ {1, · · · ,M (n)
ε }, k ∈ {0, · · · , Kn

ε (i)}}; (4.90)

Pε(i, k) := Pr(Xn ∈ Fε,k(i)); (4.91)

Nε(i, k|C(n,R)) :=
2nR∑
w=1

I(Xn(w) ∈ Fε,k(i), Xn(w) ∈ C(n,R)). (4.92)

The relation among A
∗(n)
ε (Y ), X n and Fε and the partition of Fε is depicted

in Figure 4.2, where all the ε’s and n’s are omitted for simplicity. Each sequence
ynε (i) ∈ A∗(n)

ε (Y ) is a ε-strongly typical output sequence and corresponding to a set

Fε(i) in X n. Since A
∗(n)
ε (Y ) consists of M

(n)
ε elements, there are correspondingly

M
(n)
ε sets. Further do the partition within those sets and combine all the sets

together to form the Fε. Moreover, for any i ∈ {1, · · · ,M (n)
ε },

2−n(I(X;Y )+ε0) ≤ Pε(i, 0) ≤ 2−n(I(X;Y )−ε0), (4.93)

and
Pε(i, k) ≤ 2−n(Ik(X;Y )−εk), (4.94)

where ε0 and εk go to 0 as ε→ 0 and n→∞. Also note that each Fε,k(i) is actually
a subset of X n and therefore (X n,Fε) forms a range space.

Based on all the above discussions, we redefine the typical codebooks for discrete
memoryless channel as following:
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Definition 4.2.4.

T (C(n,R)) =

{
C(n,R) : sup

Fε,k(i)∈Fε

∣∣∣∣Nε(i, k|C(n,R))

2nR
− Pε(i, k)

∣∣∣∣ ≤ ∆εnR

2nR

}
(4.95)

where ∆ε := max{8VC-d(Fε), 16e}.

Theorem 4.2.6. For a discrete memoryless channel, generate the codebook C(n,R)

at random according to the distribution p(x), then

Pr(C(n,R) ∈ T (C(n,R)))→ 1 as n→∞. (4.96)

Proof. The cardinality of Fε can be bounded as follows:

|Fε| ≤ ((n+ 1)|X | + 1) · 2n(H(Y )+ε1) := 2n(H(Y )+ε
′
) (4.97)

where ε
′

goes to 0 as ε → 0 and n → ∞, and therefore, for a fixed dimension n,
VC-d(Fε) ≤ n(H(Y ) + ε

′
). Due to the finite VC Dimension, along the same line as

before, it follows the proof of Theorem 4.2.6.

We are now in a position to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. Consider Pr(Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R))) for any
i ∈ {1, · · · ,Mε}. Along the same line as in the proof of theorem 4.2.3, we can
readily get a tight lower bound,

Pr(Y n = ynε (i))
.

≥ 2−nH(Y ),∀i ∈ {1, . . . ,M (n)
ε }, (4.98)

when R > C and n is sufficiently large.

Below, we will try to give a tight upper bound.

Pr(Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R))) (4.99)

(a)
=

1

2nR

2nR∑
w=1

P (Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R)), Xn = xn(w)) (4.100)

(b)
=

1

2nR

∑
xn(w)∈Fε(i)

P (Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R)), Xn = xn(w)) (4.101)

(c)

≤ 1

2nR

Kn
ε (i)∑
k=0

∑
xn(w)∈Fε,k(i)

P (Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R)), Xn = xn(w)) (4.102)

(d)

≤ 1

2nR

Kn
ε (i)∑
k=0

Nε(i, k|C(n,R) ∈ T (C(n,R))) · 2−n[Hk(Y |X)−ε′k]

(1− o(1))
(4.103)

(e)

≤ (1 + o(1))

2nR

Kn
ε (i)∑
k=0

Nε(i, k|C(n,R) ∈ T (C(n,R))) · 2−n[Hk(Y |X)−ε′k] (4.104)
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(f)

≤ (1 + o(1))

2nR

Kn
ε (i)∑
k=0

(2nR · 2−n[Ik(X;Y )−εk] + ∆εnR) · 2−n[Hk(Y |X)−ε′k] (4.105)

(g)
=(1 + o(1))

Kn
ε (i)∑
k=0

{
2−n[H(Y )−εk−ε

′
k] +

∆εnR

2nR
· 2−n[Hk(Y |X)−ε′k]

}
(4.106)

(h)
=(1 + o(1))

Kn
ε (i)∑
k=0

2−n[H(Y )−εk−ε
′
k]

{
1 +

∆εnR

2nR
· 2n[Ik(Y |X)−εk]

}
(4.107)

where

“(a)” follows along the similar line with that in the proof of theorem 4.2.3.

“(b)” follows from the constraint Cε, and excludes the contributions from those
invalid codewords, i.e., the codewords outside the set Fε(i).

“(c)” follows from equation (4.89) and accumulate the contributions from all
the codewords in Fε(i).

“(d)” follows from upper bounding p(ynε (i)|Cε, C(n,R) ∈ T (C(n,R)), Xn = xn(w)),
where xn(w) ∈ Fε,k(i). Specifically, given that xn ∈ Fε,k(i), we know xn is strongly
typical ∼ pk(x). Moreover, according to the condition Cε, y

n
ε (i) is conditionally

strongly typical with xn and hence (xn, ynε (i)) are jointly strongly typical ∼ pk(x, y).
Therefore, it follows that (xn, ynε (i)) are jointly weakly typical where xn ∈ Fε,k(i),
and hence we can easily get the bound for p(ynε (i)|Cε, C(n,R) ∈ T (C(n,R)), Xn =
xn(w)), where ε

′

k → 0, as ε→ 0 and n→∞.

“(f)” follows from the definition of typical codebook and gives a upper bound
to the number of valid codewords, where εk → 0, as ε→ 0 and n→∞.

“(g)” and “(h)” follow from the calculations similar with those in the proof of
theorem 4.2.3.

Now, let us investigate equation (4.107). If R > C = maxp(x) I(X;Y ), then

∀k ∈ {0, · · · , Kn
ε (i)}, i ∈ {1, . . . ,M (n)

ε }, we have

∆εnR

2nR
· 2n[Ik(X;Y )−εk] → 0, as n→∞. (4.108)

Recall that Kn
ε (i) is at most polynomial with n. Therefore, when R > C,

Pr(Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R))) ≤ 2−n[H(Y )−ε′ ] (4.109)

where ε
′ → 0 as n→∞, for any i ∈ {1, . . . ,M (n)

ε }.
Therefore, when R > C and n is sufficiently large,

Pr(Y n = ynε (i)|Cε, C(n,R) ∈ T (C(n,R)))
.

≤ 2−nH(Y ), (4.110)

for any i ∈ {1, . . . ,M (n)
ε } and this completes the proof of Theorem 4.2.4.
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4.3 Rate Needed for the Relay to forward its Ob-

servation

To strengthen our judgement that relay cannot do better compression even if it tries
to utilizes the source’s codebook, we study the rate needed for the relay to forward
its observation under two scenarios: source’s codebook used and not used. For this
purpose, we calculate the conditional entropy of the channel output given codebook
H(Y n|C(n,R)) when R > C. It is shown that the average rate 1

n
H(Y n|C(n,R)) is

asymptotically equal to H(Y ), which is the traditional rate needed for relay to
simply ignore the codebook information and forward its observation.

Formally, we have the following theorem:

Theorem 4.3.1. For the n-th extension of discrete memoryless channel, if the cod-
ing rate is greater than channel capacity, the average rate needed to forward(store)
the channel output with codebook information employed is asymptotically equal to
the rate with codebook information unemployed, i.e., when R > I(X;Y ),

lim
n→∞

1

n
H(Y n|C(n,R)) = H(Y ). (4.111)

Proof. We use definition 4.2.1 and the results shown in section 4.2. First we define
a indicator random variables, i.e., let

I := I(Eε) = I(Xn ∈ A∗(n)
ε , Cε). (4.112)

Then, we consider the conditional entropy of the channel output given codebook
H(Y n|C(n,R)) when R > I(X;Y ). To distinguish the difference between a random
codebook C(n,R) and one of its realizations, we use C to represent the latter.

H(Y n|C(n,R)) (4.113)

(a)

≥H(Y n|I, C(n,R)) (4.114)

=Pr(I = 1) ·H(Y n|I = 1, C(n,R)) + Pr(I = 0)H(Y n|I = 0, C(n,R)) (4.115)

≥Pr(I = 1) ·H(Y n|I = 1, C(n,R)) (4.116)

(b)
=(1− o(1)) ·H(Y n|I = 1, C(n,R)) (4.117)

=(1− o(1)) ·
∑
C

p(C) ·H(Y n|I = 1, C(n,R) = C) (4.118)

≥(1− o(1)) ·
∑

C∈T (C(n,R))

p(C) ·H(Y n|I = 1, C(n,R) = C) (4.119)

(c)
=(1− o(1)) ·

∑
C∈T (C(n,R))

p(C) ·

(∑
yn

p(yn|Eε, C(n,R) = C) log
1

p(yn|Eε, C(n,R) = C)

)
(4.120)
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≥ (1− o(1))

·
∑

C∈T (C(n,R))

p(C) ·

 ∑
yn∈A∗(n)

ε (Y )

p(yn|Eε, C(n,R) = C) log
1

p(yn|Eε, C(n,R) = C)


(4.121)

= (1− o(1))

·
∑

C∈T (C(n,R))

p(C) ·

 ∑
i∈{1,...,M(n)

ε }

p(ynε (i)|Eε, C(n,R) = C) log
1

p(ynε (i)|Eε, C(n,R) = C)


(4.122)

(d)

≥(1− o(1)) ·
∑

C∈T (C(n,R))

p(C) ·

 ∑
i∈{1,...,M(n)

ε }

p(ynε (i)|Eε, C(n,R) = C) log 2n[H(Y )−ε∗]


(4.123)

=n[H(Y )− ε∗] · (1− o(1)) ·
∑

C∈T (C(n,R))

p(C) ·

 ∑
i∈{1,...,M(n)

ε }

p(ynε (i)|Eε, C(n,R) = C)


(4.124)

=n[H(Y )− ε∗] · (1− o(1)) ·
∑

C∈T (C(n,R))

p(C) · Pr(Y n ∈ A∗(n)
ε (Y )|Eε, C(n,R) = C)

(4.125)

(e)

≥n[H(Y )− ε∗] · (1− o(1)) ·
∑

C∈T (C(n,R))

p(C) (4.126)

(f)
=n[H(Y )− ε∗] · (1− o(1)) · (1− o(1)) (4.127)

=n[H(Y )− ε∗] · (1− o(1)) (4.128)

where

“(a)” follows from the fact that conditioning reduces entropy;

“(b)” follows since Pr(Eε)→ 1 as n→∞, for any ε > 0;

“(c)” follows from the definition of conditional entropy;

“(d)” involves upper bounding p(ynε (i)|Eε, C(n,R) = C) by 2−n[H(Y )−ε∗], where
ε∗ → 0 as n→∞;

“(e)” follows the fact that

Pr(Y n ∈ A∗(n)
ε (Y )|Eε, C(n,R) = C) = 1− o(1). (4.129)

“(f)” follows from Pr(C(n,R) ∈ T (C(n,R)))→ 1 as n→∞.

Therefore, when R > I(X;Y ),

lim
n→∞

1

n
H(Y n|C(n,R)) (4.130)
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= lim
n→∞

1

n
(n[H(Y )− ε∗] · (1− o(1))) (4.131)

= lim
n→∞

[H(Y )− ε∗] · (1− o(1)) (4.132)

=H(Y ), (4.133)

which finishes the proof.

4.4 A Proof of the Strong Converse to Chan-

nel Coding Theorem under Random Coding

Framework

From the above discussions, we have seen that the proposal of typical codebooks
and our analysis method provide a new perspective to consider the fundamental
problems, especially those needing to be treated under a specific codebook. This
undoubtedly adds more insight into the random coding schema, compared to the
classical analysis method based on averaging over all codes and ignoring the struc-
ture of a specific code.

As a by-product of studying the relay problem and CDOCI, in this section,
we show that under the now standard random codebook construction shema, we
cannot achieve rate larger than capacity in the sense that with high probability the
error probability associated with a random code is 1 for rate greater than capacity.
Although we cannot claim this eliminates all possibilities to achieve R > C (not
only under the random coding framework) and hence may not be a strict converse
to channel coding theorem, this result, however, again demonstrates the power
of our analysis method to consider the converse part of the information theoretic
problems and may find other future applications.

Let P
(n)
e (C(n,R)) be the average error probability associated with a random code-

book C(n,R). Then it is obvious that P
(n)
e (C(n,R)) is a random variable depending on

the random codebook.

Theorem 4.4.1. The rate greater than channel capacity is not achievable under
the standard random codebook construction shema in the sense that

Pr(P (n)
e (C(n,R)) = 1)→ 1, as n→∞, (4.134)

when R > C.

To prove this theorem, let us introduce some notations and a lemma first.

Let

Ei := {|Aε1(ynε (i))| > 1}, ∀i ∈ {1, . . . ,M (n)
ε }. (4.135)

Obviously, if Ei happens, the size of ε1-jointly typical set formed by decoder for

ynε (i) is greater than 1 and hence an error should be declared. The event ∩M
(n)
ε

i=1 Ei
indicates that if an strongly typical sequence is received, then there is an error.
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Lemma 4.4.1. When the coding rate is larger than channel capacity and the block
length is sufficiently large,

Pr

M
(n)
ε⋂
i=1

Ei

∣∣∣∣∣C(n,R) ∈ T (C(n,R))

 = 1. (4.136)

Proof. Recall the interpretation of Nε(i|C(n,R)). Briefly, Nε(i|C(n,R)) is the number
of codeword in C(n,R), which are jointly typical with ynε (i). Property choose ε1 such
that

|Aε1(ynε (i))| ≥ Nε(i|C(n,R)), ∀i ∈ {1, . . . ,M (n)
ε }. (4.137)

where both ε and ε1 go to 0 as n→∞.

According to the definition of typical codebook, we have when R > C,

Nε(i|C(n,R)) ≥ 2nR2−n[I(X;Y )+ε
′
] −∆εnR→∞, as n→∞. (4.138)

Therefore, for rate larger than capacity and sufficiently large n,

|Aε1(ynε (i))| > 1 ∀i ∈ {1, . . . ,M (n)
ε }, (4.139)

and hence

Pr

M
(n)
ε⋂
i=1

Ei

∣∣∣∣∣C(n,R) ∈ T (C(n,R))

 = 1. (4.140)

Proof of 4.4.1. According to the definition of P
(n)
e (C(n,R)),

P (n)
e (C(n,R)) (4.141)

=Pr(an error is declared|C(n,R)) (4.142)

≥Pr(|Aε1(Y n)| > 1|C(n,R)), (4.143)

and thus we have the following relationship between two events,

{Pr(|Aε1(Y n)| > 1|C(n,R)) = 1} ⊆ {P (n)
e (C(n,R)) = 1}. (4.144)

When R > C, we have

Pr(P (n)
e (C(n,R)) = 1) (4.145)

≥P (P (n)
e (C(n,R)) = 1|C(n,R) ∈ T (C(n,R))) · P (C(n,R) ∈ T (C(n,R))) (4.146)

=(1− o(1))P (P (n)
e (C(n,R)) = 1|C(n,R) ∈ T (C(n,R))) (4.147)

≥(1− o(1))P (P (n)
e (C(n,R)) = 1, Y n ∈ A∗(n)

ε (Y ))|C(n,R) ∈ T (C(n,R))) (4.148)

=(1− o(1))P (P (n)
e (C(n,R)) = 1|C(n,R) ∈ T (C(n,R)), Y n ∈ A∗(n)

ε (Y ))
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· P (Y n ∈ A∗(n)
ε (Y ))|C(n,R) ∈ T (C(n,R))︸ ︷︷ ︸

1−o(1)

(4.149)

(a)
=(1− o(1))Pr(P (n)

e (C(n,R)) = 1|C(n,R) ∈ T (C(n,R)), Y n ∈ A∗(n)
ε (Y )) (4.150)

≥(1− o(1))Pr(Pr(|Aε1(Y n)| > 1|C(n,R)) = 1|C(n,R) ∈ T (C(n,R)), Y n ∈ A∗(n)
ε (Y ))

(4.151)

(b)
=1− o(1) (4.152)

where

“(a)” holds since

P (Y n ∈ A∗(n)
ε (Y )|C(n,R) ∈ T (C(n,R))) (4.153)

≥P (Y n ∈ A∗(n)
ε (Y ), Xn ∈ A∗(n)

ε1
(X)|C(n,R) ∈ T (C(n,R))) (4.154)

=P (Y n ∈ A∗(n)
ε (Y )|Xn ∈ A∗(n)

ε1
(X), C(n,R) ∈ T (C(n,R)))

· P (Xn ∈ A∗(n)
ε1

(X)|C(n,R) ∈ T (C(n,R)))︸ ︷︷ ︸
1−o(1)

(4.155)

→1, as n→∞. (4.156)

“(b)” follows from that

Pr(Pr(|Aε1(Y n)| > 1|C(n,R)) = 1|C(n,R) ∈ T (C(n,R)), Y n ∈ A∗(n)
ε (Y )) = 1 (4.157)

due to Lemma 4.4.1.

Therefore, when R > C,

Pr(P (n)
e (C(n,R)) = 1)→ 1, as n→∞, (4.158)

showing that the rate greater than channel capacity is not achievable under the
standard random codebook construction shema. This completes the proof of The-
orem 4.4.1.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Motivated by the problem of cooperation in networking shown in Figure 1.3, say a
relay channel with orthogonal link between relay and destination, we try to char-
acterize the posterior conditional probability of channel output given the codebook
information when coding rate is larger than channel capacity, for both the BSC and
DMC channel.

It is shown that under both scenarios, with high probability, the conditional
distribution is asymptotically uniform and approaching to the unconditional distri-
bution, when R > C and the block length n is sufficiently large. This implicates
that for this relay problem, if source’s coding rate is greater than what relay can
handle, the compress-and-forward strategy is kind of optimal under the random
coding framework.

Moreover, the above judgement on the optimality of compress-and-forward
strategy is further confirmed by showing that the rates needed for the relay to
forward its observation are asymptotically the same no matter whether the relay
utilize the codebook information or not.

Finally, as a by-product of studying the relay problem, we give a strong con-
verse to the channel coding theorem under the now standard random codebook
construction shema, using the techniques developed in this thesis.

5.2 Future Work

Today, with the pervasion of Internet and the massive demand of wireless broadband
access, network information theory is experiencing a renaissance. Several significant
progresses have been made in this field over the past decade. For example, the
throughput and transport capacity is introduced to analyze the capacity of wireless
networks [18] [19], and a new notion of network coding is proposed and the related
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theory is well developed [23], and so on. However, disappointingly, compared to
the thousands of nodes in the Internet, the size of networks that are completely
understood in network information theory is merely no more than 3. Precisely, even
in the three-node scenario shown in Figure 1.3, much work remains to be done.

In the short run, we hope to extend our results on BSC and DMC to the Additive
White Gaussian Noise (AWGN) channel, i.e., to show that if the input distribution
of the AWGN channel is gaussian, then for those typical output sequences, with
high probability, the CDOCI is asymptotically uniform and approaching to the un-
conditional distribution, for rate above capacity and sufficiently large block length.
Here, the conditional distribution refers to the conditional probability density func-
tion, rather than probability mass function in the DMC scenario.

In the long run, either to improve the current upper bound (converse part) or
lower bound (forward part) to the capacity of relay channels is still a challenge.
For the converse part, even if the compress-and-forward strategy can be shown to
be optimal under random coding framework, whether the standard random coding
is optimal for the relay channel is still not clear. For the forward part, to use the
current techniques and obtain the better performance seems to be a tough task and
a new coding technique may be called for.
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