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Abstract 

Autoregressive (AR) models have been shown to be effective models of speech sig- 

nal. However, although it is the most common mode1 of speech, an AR process 

excited by white noise for speech enhancement, fails to capture the effects of source 

excitation, especidy the quasi periodic nature of voiced speech. Speech synthesis 

researchers have long recognized this ~roblern and have developed a variety of so- 

phisticated excitation models. Such models have yet to make an impact in speech 

enhancement. We have concentrated our research on mod+g the conventional 

white noise excited AR model for various speech classes and on establishing perfor- 

mance benchmarks by studying speech-enhancement, using the proposed models, in 

det ail for individual phonemes under arbitrarily well-characterized circums tances. 

We have proposed three different types of impulsive excitation models for an 

AR model for various phoneme classes based on the type of excitation with which 

each class is associated. For voiced speech, the &ect of the glottal excitation is 

simulated by a train of impulses spaced according to pitch periods. For unvoiced 

stops and unvoiced afEicates, the excitation source is modeled by a single impulse 

marking the instant of the onset of the burst and a white noise term. For voiced 

stops and voiced atfncates, a mixed excitation of the plosive driving term and a 

quasi-periodic train of impulses are used. For voiced fricatives a mixed excitation 

of white noise and a quasi-periodic train of impulses separated by pitch periods 

is used. In each case, impulsive AR models outperformed th& white-noise-driven 

counterparts. 

The success of the tentative impulsive excitation models has motivated us to- 



wards applying a more sophisticated excitation model. We have chosen one of the 

mos t common excitation source models, the four-parameter model of Fant , Lil- 

jencrants and Lin[l], which is also known as an LF  model and applied it to the 

enhancement of individual voiced phonemes. We have proposed a novel two step 

op timization algorithm for estimating the parameters for an LF model. Among the 

AR models with three different types of excitation models (a conventional white- 

noise excitation, an impulsive excitation and an LF model), the LF excitation 

model yields the best performance in speech enhuicement in terms of the output 

signal-to-noise ratios (SNRs). 
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Chapter 1 

Introduction 

T h i s  thesis de& with the problem of modeling speech for enhancement purposes. 

Our approach, in general, involves model-based speech enhancement [4] in which 

prior stochastic models of the clean speech and of the corrnpting noise are used 

for estimation of clean (de-noised) speech fiom nois y speech. Clearly, accurate 

estimation requires that these models be robust and faithfd representations of 

reality. By far the two most popular modeIs for speech are Hidden Maxkov models 

(HMM) and white noise driven autoregressive (AR) models. We shall discuss the 

limitations of such models and enhancement systems based on such models. ki this 

thesis, we s h d  focus our research entirely on m 0 d i . g  the white noise excited AR 

mode1 based on the concept of the source-filter theory of speech production [3]. 

Section 1.1 of this chapter presents a general overview of speech enhancernent 

research that has been carried out so far. Section 1.2 discusses motivations, objec- 

tives and contributions of this thesis. Finally, Section 1.3 outlines the organization 

of this thesis. 
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1.1 Overview of Speech Enhancement Techniques 

Broadly speaking, the field of speech enhancement is interested in addressing three 

(not necessarily compatible) objectives [4] : (a) the improvement of the percep tual 

quality of noisy speech, (b) the immunization of speech encoders against input 

noise[5, 61, and (c) the improvement of the performance of speech recognition sys- 

tems in the presence of noise[7, 81. This thesis investigates the fist of these. In 

our context, the speech enhancement problem concerns the estimation of "clean" 

(de-noised) speech J(t) 6om noisy speech z( t ) .  Speech enhancement has applica- 

tions in a wide variety of speech communication contexts where the quality or the 

intelligibility of speech has been degraded by the presence of background noise. For 

example, cellular radio telephone systems are plagued not only by background noise 

but also by channel noise. Public telephones suEer from environmental disturbances 

of t heir location. Air-ground communication sys tems are corrup ted with cockpit 

noise. Moreover the hearing impaired require an increase of between 2.5 and 12 dB 

signal-t+noise ratio to achieve similar speech discrimination capabilities to those 

of normal hearing [9]. These problems call for the use of speech enhancement. 

Researchers have been working on devising an efficient wôy to extract clean 

speech fiom noisy speech for the last 30 years. Two broad divisions of speech en- 

hancement techniques are non-parametric and paramehic mode1 based approaches 

[IO]. One of the pop& digital signal processing (DSP) non-parametnc techniques 

for speech enhancement is spectral subtraction [ll, 121. In 1979, Lim and Oppen- 

heim [13] presented an overview of contemporary speech enhancement techniques. 

They inferred that spectral subtraction was the most efncient in enhancing speech 

cormpted by uncorrelated additive noise. The spectral subtraction method esti- 

mates the Fourier transforrn of the dean signal by removing an estimate of the 
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power spectral density of the noise signal. The basic advantage of this approach 

is the implementation simplicity and low computational complexïty[9]. One major 

drawback of this technique is the annoying nonstationary "musical noisen which is 

the residual noise consisting of narrow-band signals with t h e  varying amplitudes 

and frequencies[4]. A number of modifications of the basic spectral subtraction ap- 

proach have been proposed to alleviate the effects of the musical noiseL4, 12,14, 151. 

Ephraim et d.[16] have proposed a signal subspace approach for speech enhance- 

ment. The basic principle of the signal subspace is to decompose the noisy signal 

space into a signal-plus-noise subspace and a noise subspace. After rernoval of the 

noise subspace: the clean signal is estimated fiom the remaining subspace. They 

have show- that the spectral subtraction is a special case of this approach. This 

work provides a theoretical basis for the spectral subtraction approach which is a 

special case of this signal subspace approach. 

The parametric mode1 based approaches have been well received in speech en- 

hancement. One example of such models are AR models 117, 18, 191 which have 

widely been used for representing speech. Lim and Oppenheim [20] have used max- 

imum a poste rio^ (MAP) estimation techniques for estimating AR parameters for 

the speech signal contaminated by additive white Gaussian noise. Hansen et al. 

[21] have used similar iterative MAP estimation techniques as in [20] followed by 

imposition of intefiame and intraframe constraints upon the speech spectra. Such 

constraint s introduce more speech-like formant traject ories and reduce h m e -  to- 

fiame pole jitter and were applied using line spectral pair transformation of the AR 

parameters, 

Hidden Markov modehg [22,23,4] is another common means of pararnetrically 

modeling speech. An HMM assumes that speech is composed of a set of statisti- 

cally independent subsonrces, where each kbsonrce repreçents a particdar class 
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of statistically similar sounds [4]. The transition fkom one subsource to another 

is controlled by a fist-order hidden Markov chaui. The KMM based Wiener filter 

[24,25, 9, 261 has been a popular choice for robust automatic speech enhancement. 

Ephraim et al. [24] have used a MAP approach that utilizes the expectation- 

maJamization (EM) algorithm to estimate the clean signal from the noisy speech. 

Ephraim [25, 261 has used the *um mean square Enor (MMSE) method that 

gives better enhancement results compared with that of MAP estimation which 

needs to iterate many times to achieve an acceptable result [9]. The MMSE based 

HMM is modified further by Sameti [9,27] by incorporating multiple state-mixture 

based models for speech and noise. This model also incorporates the dynamic na- 

ture of the speech signal based on work done by Deng et al. [28, 291. [30] uses 

cepstral domnin modesng of speech and noise processes with MMSE method. 

Dynamic filtering techniques, such as Kalman filtering, also provide a good 

estimate of clean speech given noisy speech. The K h a n  filter is based on a state- 

space approach whereby a process state equation models the dynamics of the speech 

signal generation process and an observation state equation models the noisy signal. 

Paliwal et al. [31] have shown that a autoregressive (AR) model based Kalman filter 

and the delayed Kalman filter perform better than that of the stationary and the 

nonstationary Wiener filters. Gibson et id. [6] have implemented AR model based 

scalar and vector Kalman fiters for both white and colored measurement noise 

assumptions for both speech enhancement and coding. As with any mode1 based 

enhancement, the parameter estimation problem remains a big issue for AR model 

based Kaknan filters when only noisy speech is adable[32, 33, 341. [32] uses 

power spectral density of speech signals to calculate the AR parameters. The EM 

algorithm has been used by [35, 33, 341 for iterative parameter estimation. Lee et 

al. [36] have proposed a K h a n  filter algorithm with a hidden fXta model (HFM) 
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of the clean speech signal. The HFM is an AR mode1 with its parameters associated 

wit h fmt-order Markov chain. 

In this thesis, we review AR model based K a h a n  filter [31: 61 and HMM based 

Wiener filter [25, 26, 91, which provide us with insights for the problems associated 

with an AR and an HMM model for speech. In the following section, we discuss 

the motivations that led to modifications of the conventional white noise excited 

AR model. 

1.2 Thesis Motivations, Objectives and 

Contribut ions 

In this section, we first present our motivations that fùeled our interest in using 

voice source models for speech enhancement. We then discuss our objectives and 

foIlow with an outline of the contributions of this thesis. 

1.2.1 Motivations 

An AR model excited by a white noise process[l7: 191 has traditiondy been a 

favorite choice for modeling speech. One of the advantages of this type of AR 

model is the existence of efficient parameter estimation procedures known as lin- 

ear predictive (LP) analysis. Secondly, a white noise excited AR model provides 

an approximate representation of all speech types, including voiced and unvoiced 

speech[l7]. Findy, such AR models have a state space representation that can be 

used with the K h a n  m e r  algorithms for estimaking de-noised speech from noisy 

speech. The main limitation of the white noise driven AR model is that it fails 
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to take into account the effects of the voice source especially in the case of voiced 

speech. This jlaw, which is quite evident in quasi-periodic AR residds,  has been 

one of the motivations behind our interest in mo-g a white noise driven AR 

model. The development of the source-filter theory of speech production initially 

proposed by Fa431 also has an impact on our research. According to this h e a r  

speech production theory[56, 57, 581, speech signal or pressure wave, measured at 

a microphone, is produced by the cornbined effects of the voice source excitation, 

vocal tract articulation and radiation fkom the lips or nostrils. This theory also 

provided good motivation for proposing different models for various speech types 

based on the nature of the associated excitation. The concept of the source-flter 

theory has been well utilized in speech analysis and synthesis. A precise and versa- 

tile model of the voice source is vital for production of naturd sounding synthetic 

speech [37]. A number of deterrninistic voice source models have been proposed for 

speech synthesis and analysis [38, 39, 11. Such deterministic models also provided 

good motivation for adding a source excitation model to the white noise dnven AR 

model. 

1.2.2 Objectives 

One of the two main objectives of this thesis is to propose alternative appro- 

priate models for various speech types. Another objective is to establish perfor- 

mance benchmarks or limits by studying speech-enhancement in d e t d  for individ- 

ual phoneme classes under arbitrarily well-characterized circumstances . For mod- 

e h g  the glottal excitation we s h d  be making explicit assumptions about h o w n  

pitch locations for voiced speech. We s h d  be using clean speech for estimating AR 

and K h a n  flter parameters. Although such circumstances might appear artScid, 

they are essential in unders t anding the intrinsic factors which limit enhancement 
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performance - an understanding which may improve enhancement algorithrns in 

much broader, less constrained conditions. 

1.2.3 Contributions 

One of the contributions of this thesis is the comparative study of HMMs and 

AR models. We have investigated advantages and drawbacks of the state-of-the- 

art HMM based and AR model based enhancement systems. Some of the signifi- 

cant contributions of this thesis are implementing impulsive models for individual 

phoneme classes. Impulsive AR models include impulsive driving terms which are 

tentative models for the excitation source. For voiced speech, glot ta1 excitation 

is modeled by a train of impulses spaced according to pitch periods. For voiced 

stops and voiced f i c a t e s ,  the voiced excitation is modeled by an impulse train 

and plosive excitation is modeled by a single pulse rnarking the onset of the burst 

and white noise. Unvaiced stops and unvoiced &kates use the plosive excitation 

term. We have demonstrated the appropriateness of our models by applying such 

models to a wide variee of phonemes. We also have clearly demonstrated the Limits 

to performance for Kalman filter based enhancement by making a number of model 

assertions and parameter assumptions. Impulsive models have shown remarkable 

improvement s in output signal-tenoise ratios ( S m )  over the conventional AR 

model driven by white noise. 

The success of impulsive AR models over the conventional white noise driven AR 

models has motivated us to use a more sophisticated model for the voice source. An- 

other significant contribution is the proposal of using an L F  based model for voiced 

speech. An LI? mode1 is based on the glottal mode1 proposed by Fant, Liljencrants 

and Lin[l]. The LF mode1 has been well received in speech synthesis and analysis 
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for a long time, but it has yet to make an impact on speech enhancement. Param- 

eter estimation problems associated with an LF model for speech enhancement are 

completely different fkom those of speech synthesis. A novel parameter estimation 

procedure has been proposed for LF models for speech enhancement. Finally, we 

dso discuss the limits to performance for LF  model based Kalman filter. 

1.3 Thesis Organization 

Chapter 2 presents the background relevant to impulsive and LF model based AR 

models for speech enhancement. It begins with a brief introduction to the type 

of speech enhancement problem we are interested in this thesis. It then briefly 

introduces the white noise excited AR model ând the Wiener filter. The next 

two sections discuss RMM and K a h a n  filter based systems. Next, we review the 

anatomy and physiology of the human speech production system followed by the 

discussion of the phonemes used in North American English. Findy, we present 

a concise description of the TIMIT database used to supply the speech data for 

enhancement. 

Chapter 3 proposes and implements impulsive AR models for speech enhance- 

ment. We begin by discussing the drawbacks of a white noise excited AR model, 

followed by a review of the performance of the two state-of-the-art speech enhance- 

ment systems: AR model based Kalman filter and KMM based Weiner filter. The 

next section reviews the production mechanism of Mnous phoneme classes. We 

propose impulsive AR models for various phoneme classes in the next section. The 

next three sections discuss the Kalman fdter algorithms, the AR parameter esti- 

mation techniques for impulsive models and the model assertions and assumptions. 

Finally, enhancement resdt s for impulsive models are present ed and discussed. 



Chapter 4 concentrates on proposing and implementing an L F  excitation model 

for voiced speech enhancement. This chapter begins by motivating a need for more 

sophis ticat ed exit  ation models compared to tentative impulsive models. The next 

section reviews some of the voice source used in speech synthesis, and discusses 

the feasibility of the LF  voice source model for speech enhancement, fdowed by 

a discussion of an L F  model. Next, we propose an optimization procedure for LF 

parameter estimation. Finally, the results for LF model based enhancement are 

presented and discussed- 

Chapter 5 summarizes the results of this thesis and presents a number of 

directions for firture research. 



Chapter 2 

Background 

T h e  main objective of this chapter is to motivate a foundation for voice source 

model based enhancement. Section 2.1 discusses the speech enhancement problem 

in general while Section 2.2 presents the white noise driven autoregressive model 

most comrnonly used in speech processing. As mentioned in Chapter 1, we s h d  

be comparing performances of the state-of-the-art IfMM based Wiener filter and 

AR model based Kalman filter systems in Chapter 3. Section 2.3 therefore briefly 

mentions Wiener filtering before reviewing HMM based system in Section 2.4. Sec- 

tion 2.5 is dedicated to i:he autoregressive model based Kalrnan filter. As we shall 

be proposing voice source model based enhancement system (in Chapters 3 and 

4) based on the production mechanism of the smallest speech units (phonemes or 

phones), we discuss the speech production system in Section 2.6. We briefly men- 

tion the phonemes used in North American English in Section 2.7. Finally, Section 

2.8 discusses the TIMIT database in concise manner as we s h d  be using the speech 

data fkom the TIMIT database. 
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2.1 Speech Enhancement Problem 

Speech enhancement deals with minimi&ing effects of noise on speech by improving 

the perceptual quality of noisy speech, improving the performance of machine rec- 

ognizers in a noisy environment or immiiniRing speech codas against input noise[4]. 

As mentioned in Chapter 1 in this thesis, we s h d  be dealing with only with the f i s t  

type of speech enhancement problem. Let { z ( t ) ) :  z ( t )  E R be a random process 

modeling the noisy speech. Let { ~ ( t ) ) ,  x ( t )  E W denote a random process model- 

ing the clean speech while let {v( t ) ) ,  v ( t )  E W be a random process representing 

measurement noise modeled as a Gaussian white noise. Let us assume that 

and that { x ( t ) )  and { v ( t ) )  are statistically independent and that {v ( t ) )  is a white 

Gaussian process with a zero mean and a variance of g:. The speech enhancement 

problem, in the context of this thesis, concenis the estimation of the clean speech 

z ( t )  from the noisy speech e ( t ) ,  given a model for clean speech and a model noisy 

speech. As pointed out by (2.1): in this thesis we s h d  only be dealing with additive 

noise, or more specificdy, with additive Gaussian white noise. The two models, 

used for representing speech discussed in this chapter, are an Autoregressive (AR) 

rnodel and an Hidden Markov model (HMM). Our research is concentrated on 

mo=g the excitation term associated with an AR model. We present in the 

following section, a detailed discussion an AR model with white noise excitation. 

2.2 Autoregressive (AR) Speech Mode1 

ki this section, we present AR or dl-pole model which is one of the most popular 

models fur representing speech waveform[l9, 17, 401. This model is based on an 
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acoustic analysis of speech production system[l?, 21. The popularity of the AR 

mode1 stems £iom its sirnpliciky, and because the human vocal tract during voicing 

can be modeled by an all-pole system[i7]. Furthermore, although unvoiced speech 

and nasals introduce zeros into the system, since the zeros of the transfer function 

of the vocal tract lie inside the unit circle, [17] they can be approximated by an 

all-pole system with sufficiently many poles. In such model, a speech sample is 

approximated as a linear combination of past speech samples and a white noise 

term. Let us assume that the clean speech sequence x ( t )  is generated according to 

an &th order AR model, 

where w(t) is a zero mean, white Gaussian process with variance O: and ai is the 

ith AR coefficient. ~ ( t ) ,  also known as process noise. 

Another advantage of an AR model is that its parameters can be estimated 

accurately using the method of linear predictive(lP) analysis. Among many for- 

mulations of LP analysis, the covariance method [17, 191 and the autocorrelation 

method [19, 22, 171 have been used extensively in speech processing. I t  has been 

shown in [17] that a predictor order of 12 gives a reasonable estirnate for all speech 

types. Finally, because (2.2) can be rewritten in state-space fom, the K h a n  filter 

can be used to compute the optimal estimates 2(t) of x(t) [31, 61. 

2.3 Wiener Filter 

Wiener filter based enhancement algorithms have been used widely in speech be- 

cause of the simplicity of implernenting the Wiener filter[l%, 41,4]. A Wiener filter, 

represented by the coefficient vector W accepts a noisy signal z(t) and yields the 
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minimum mean squared estimate (MMSE) Î ( t )  of a desired signal x ( t ) .  An O p  

timum solution for the coefficients is obtained by mean square estimation (MSE) 

only when the input signal is stationary.The filter output is given by 

where the filter input vector z(t)= = [ ~ ( t ) ,  ~ ( t  - l), . . . , z ( t  - J - l)] and the Wiener 

filter coe6cient vector wT = [Wo, Wl ; . . . , WJ-l]. The estimation error signd is 

given by 

e ( t )  = z ( t )  - g ( t )  = z ( t )  - w z T ( t )  (2 -4 )  

while the mean squared estimation error is given by, 

where & [ O ]  denotes the expectation, R, = &[zT( t ) z ( t ) ]  is the correlation matrix 

of the noisy signal and r, = E[zT( t )x ( t ) ]  denotes the cross correlation vector of 

the desired and input noisy signals. The coefficients of the filter, obtained by 

minimizing the mean squared error E[e2 (j)] with respect to filter coefficient vector 

W, are given by 

W = RZr= (2-6) 

The system of equations in (2.6) are known as Wiener-Hopf equations [42]. 

The basic Wiener-Hopf equations in (2.6) can only be applied to stationary 

signals. For nonstationary speech signals, a number of methods have been proposed 

based on short-time power spectra [9,31]. These nonstationary Wiener filters can be 

used only for the signals which are stationary over a small segment of time. We s h d  

not go into details on fiequency domain formulation of Wiener filter theory [42, 411 

but rather just present the formulation frequently used in speech enhancement. For 
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the uncorrelated signal x ( t )  with the noise v ( t )  in ( 2 4 ,  the autocorrelation mat& 

Rzz of the noisy signal is given by, 

and the cross correlation vector r, is expressed as 

where &, and R, respectively are autocorrelation matrices for clean signal and 

noise. Substituting (2.7) and (2.8) into Wiener-Hopf equations (2.6), gives an 

optimal linear filter coefficients for noise filtering, 

Applying a Fourier transform to both sides of (2.91, we obtain a very useW formu- 

lation of Wiener filter used in speech enhancement, the transfer function H(3w) for 

a Wiener filter is given by [9, 131, 

where S&J) and Svv(w) denote the clean speech and noise spectra. We s h d  be 

using this form of Wiener filter given by (2.10) with the hidden Markov mode1 

based enhancement system which is discussed in the following section. 

2.4 HiddenMarkovModel(HMM) BasedSpeech 

Enhancement 

One popdar parametnc statistical model for speech is the hidden Markov model 

(HMM) [22, 24, 25, 261. Before reviewing an H M .  in detail, we d e h e  some of 
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n r - i th state 

Figure 2.1: A f d y  connected three state HMM structure. 

the very basic concepts of stochastic processes that form the basis for an HMM. 

An HMM, is a double layered finite state stochastic process where the selection 

of states of an observable process is governed by a hidden Markov chain. A f is t  

order Markov chah is a stochastic process where the conditional distribution of any 

future state given the past states and the present state, is independent of the past 

states and dependent only on the present state [43]. Based on the state-to-state 

transition, there are various configurations for RMMs. One such configuration is 

an ergodic m. By ergodic HMM we mean that every state can be reached from 

every other state of the model in a finite number of steps[22]. Figure 2.1 shows 

a three state ergodic or M y  connected HMM structure. Another example of the 

KMM stmcture is the left-right HMM is usudy characterized by the number of 

states, the number of mixtures, in model where transitions are dowed only fkom 

a left to a right state. In an HMM, each state dependent probability distribution 

(PD) can be chosen to be a mixture of Gaussian or any other type of PD. An  HMM 

is usudy characterized by the number of states, the number of mixtures, the initial 
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transition probability, the transition ~robabilities for one state to another and the 

mixture coefficient S. 

HMMs have long been used as a reliable statistical model for speech as it can 

model the nom tationary nature of speech by transition between different s tates. 

A large number of states can be used to represent different spectral prototypes of 

speech. As mentioned earlier a state dependent probability density can be chosen 

to be a mixture of Gaussian probability densities. An advantage of such representa- 

tions is that we get finer models of speech data(41. In the case of speech recognition, 

a separate left-right model is used to characterize the temporal structure of every 

speech unit which may be a phoneme or a word[9]. As each model contains the 

ordered sequence of stochastic properties corresponding to a particular speech unit, 

transitions kom a higher indexed to a lower indexed state is prohibited. In a left- 

right model if exactly similar speech properties, Le., exactly similar speech units 

occur in diffkrent kames of tirne they are acsigned to different states. The reason 

behind using a left-right model is that the objective in speech recognition is to 

fhd models with maximal separation so that they give as different likelihoods as 

possible for pattern recognition purposes. For speech enhancement, we have dif- 

ferent objectives and thus the modeling problem is different from that of speech 

recognition[9]. We need two distinct modek for clean speech and for noise to esti- 

mate the de-noised speech fiom the noisy speech. We require that an HMM extracts 

the general spectral properties of dean speech regardless of the phoneme, word or 

sentence. This is done to differentiate the speech fiom the noise. Hence, we need 

to only model the averaged out or the global characteristics of speech and noise. 

Unlike speech recognition there are no constraints on the transition probabilities in 

enhancement models i.e. an ergodic HMM model c m  be used for enhancement. 

Let us present the parameters that are used to characterize an ergodic auto- 
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regressive (AR) EEMM [9] : 

O Ns, the number of states [Si, &,. . . , SNs] i~ the model. 

0 N,, the number of mixtures [Ml,  M2,. . . , MN,] per state. 

The set of initial probability distributions, irh,, = {ri)  where 

where so is the state at t h e  O. 

The set of the state transition probabilities, h = Ch.,-,.,) where 

where st is the state at time t. 

The set of mixture weights, c = (L,~,} where 

where &,l,, expresses the probability of choosing the mixture mt given that 

the process is in state st. 

a = { a k l j )  with a k l j  being the AR parameter set of a zero-mean &th order 

Gaussian AR output process correspondhg to state and k t u r e  pair ( j ,  k), 

~ h e r e  a k l j  = { a k l j ( 0 ) l  a k l j ( 1 )  9 -**, a k I i ( N - ) ,  O&), a k l j ( 0 )  = 1, being the 

variance for i ; j  = 1,2, ..., Ns and X: = l,2, ..., N,. 

. Thus let A, = (?rh,,, h, c7 a), be the parameter set for Gaussian AR HMM 

modeling the clean speech x while A, = (7rh,,, h, c, a), be the parameter set 

for Gaussian AR HMM modeling the noise v .  
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There are two steps in HMM based enhancernent (details in Chapter 3). First 

HMMs are trained (discussed in the foUowing section) for clean speech and noise. 

Then the noise model together with the clean speech model is used to filter out 

the noise fiom the noisy signal. 'ï'wo distortion measuses cornmonly used in HMM 

based speech enhancement are the minimum mean square error (MMSE) [25,26,9] 

and the maximum a posteriori (MAP) [24] estimation. It has been shown in [4, 91 

that MMSE estimation has computational advantages over MAP estimation based 

enhancement. Thus we shall only discuss the MMSE estimation associated with 

HMM proposed in [25]. 

2.4.1 Training HMMs for Clean Speech and Noise 

A Let r={rt, t = O , .  . . , T - 11, q E IRK be a sample function of the noisy speech, 
A where W K  represents K dimensional Euclidean space (fiame-length) . Let x={xt, t = 

A 
0: . . . , T - 1). xt E !RK and v={vt, t = O , .  . . , T - 11, vt E !RK respectively represent 

sample functions of the clean speech and the noise process. z? x and v are related to 

each other according to equation 2.1, where x and v are statistically independent. 

Let pX,(x) and pXv(v) be the PDF of a Gaussian AR HMM for the clean signal 
A 

and noise respectively. Let s={st, t = O,. . . , T - 11, st E 1,.  . . , IVs, be a sequence 
A of states corresponding to x and let rn={rnt, t = O, - . . , T - 11, mt E 1, . . . , N, be 

a sequence mixtures corresponding to (s, x). The PX,(%) is given by [25, 91, 
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where b(xtlrnt, st)  is the PDF of the output vector xt given (mt ,  st).  For N,th order 

AR process with zero mean. if K > N,, we have 1441, 

where B is the autocorrelation function defined as, 

K-n-1 IV=-n-1 
rt (n) = Cr=o xt ( l ) ~ t ( l +  n) and ~ k ,  j(n) = hk. i(Z) h k  i(Z + n)  are autocor- 

relation sequences for 1 5 L 5 Nm and 1 5 i , j  5 Ns. 

As we have dehed a complete parameter set A, = (xhmm, h, c, a )  for an AR 

HMM process for d e a n  speech, we are now Mt  with the problem of given a training 

sequence x, how do we obtain a maximum likelihood ( M L )  estimate of the parameter 

set A, = (xhmml h, C, a): that is, 

This mammization is usually carried out by using the Baum algorithm [25]. 

An approxhate maximum likelihood estimate of the parameter set can also be 

obtained using segmental k-means method [9] when the double sum in (2.18) is 

dominated by a single state and mixture sequence and the parameter set can be 

maximized dong that dominant sequence, that is, 

q CpAZ(s,  m, x). 
s,m,Xz 

The segmental k-means method being computationdy more efficient than the 

Baum algofi th  [9], we have used it in our work for parameter estimation for 

IIMM. A good initial mode1 is required for k-means reestimation method as it only 
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cornputes a local maximum of an objective function (given by (2.19)). The ini- 

tial model for segmental k-means method is obtained from vector quantization of 

the training data using the generalized Lloyd aIgorithm(GLA) with Itakura-Saito 

distortion measure[g, 451. The training procedure for HMM consists of two main 

steps. namely, vector quantization (VQ) and segment al k-means (SKM) method 

for estimating the parameter sets A, and X, for the clean speech and noise models 

respectively. 

Vector Quantization (VQ) 

The generalized Lloyd algorithm is used to design a (N' x N,) VQ code-book for an 

HMM with Ns states and N, mixtures. Codewords are successively split, starting 

fiom the centroid of the training data, until an Ns entry code-book is obtained. 

Each code-word consists of the AR parameter set and the gain term associated with 

them. In each step, the code-word with the largest residual energy is selected to be 

split by perturbing by two srnall values to obtain two new AR models. To ensure 

the stability of the perturbed models, the reflection coeficients associated with the 

AR models are f is t  calculated and then multi_nlied by two numbers close to 1, 

finally the corresponding AR models are obt ained from these perturbed reflection 

coefficients [9]. After each perturbation GLA (details in [45]) is used to optimize the 

code-book. This process of splitting and optimization is carried out until desired 

size Ns is reached. 

The mixtures within each state codeword are determined using the same iter- 

ative procedure with the AR models initially in the parent partition. Thus, an 

initial estimate for the AR parameters of Ns state and N, mixture HMM is ob- 

tained. Then the training data is clustered using the estimated code-words and 

then the initial estimate for (rhmm , h, C, a) parameters is obtained from the relative 
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fkequencies at which the initial state. state transition and mixture component are 

chosen. 

Segment al k-Means Algorit hm (SKM) 

We are going to discuss the algorithm for modeling with N number of training se- 

quences of speech data. Given N training sequences of speech data, an approximate 

maximum ItkeShood estimate of the parameter set A, is obtained using the SKM 

algorithm [46]. The parameter set is estimated along with the most like1y sequence 

of states and mixture components. The objective function we expect to mruemize 

The maximization of (2.20) is carried out in two stages. First starting with an 

initial niodel Xx, the optimal state and mixture sequence (sztmzt) for the nth 

token is obtained using a Viterbi algorithm [22]. Viterbi search gives the optimal 

state and mixture sequence for each training sequence using the following metric 

path, 

Once the optimal path is obtained the model parameters are re-estimated in the 

second stage of maximization. The parameter re-estimation 



CHAPTER 2. BACKGROUND 

where Pt,, ( j ,  k)  is the probability of being in state j and choosing mixture k at 

time t given the model Xx and x, while Pt,,(i7 j, k) is the probability of transition 

&om state i at time t - 1 to state j at  time t given the model Ax and x,. These 

probabilities can be calculated using the forward-backward algorithm[24]. This 

process of alternative maximîzation is carried out until the convergence of (2.20). 

2.4.2 HMM Based Minimum Mean Square Error (MMSE) 

Enhancement 

The HMM based MMSE enhancement system [9, 251 we are going to discuss, uses 

a multiple state and mixture noise model to accomodate non-stationarity in noise. 

The system is designed to determine an estimate Zt of clean speech x,, where 

We shall not go into the detailed derivation of which is estimated using the 

fornard algorithm in [25] but rather present the solution as, 

where Pt(j, la,& 61~:) is the posterior probability of speech state j and mixture It ,  

and noise state E and mixture 6 at time t given the noisy signal 26. 



CHAPTER 2. BACKGROUND 

In (2.26) we notice that the MMSE estimator of xt given zh is a weighted sum 

of the individual MMSE estimators of the output processes generated by the clean 

speech EFMM, where the weights are the probabïiities that the individual estima- 

tors are the correct ones for the given noisy signal [9]. The exact evaluation of 

E{xt lzt. st = jl mt = k, nt = E ,  pt = b} is not trivial. It has been shown by Ephraim 

[25] that if the variances of the innovation process of the AR sources are assumed to 

be circulant: £ { g ( x t )  (q, st = j7  mt = k, nt = &pt = 6) can be given by the Wiener 

filter where xt = {X,(L): L = 0 , l :  ..., K - 1)? Xt(h) being the kth cornponent of the 

discrete Fourier transform(DFT) of zt. 

There are two major problems in HMM for speech enhancement [9]. First, such 

a mode1 requires a large number of states to accomodate rapidly varying speech 

signals. This increases the compntational complexity together with the risk of 

afFecting the performance of HMM for slow Miying speech signals. Second problem 

in HMM is that since a constant mean is assumed for the observation probability 

within each state and different states have different mean d u e s ,  the continuity of 

speech features is Sected. We shall be discussing the performance of MMSE based 

EIMM speech enhancement in the following chapter. 

2.5 The Kalman Filter Based Speech 

Enhancement 

The fact that AR state-space models for speech can be used with the K h a n  filter 

has given good motivation for using the K h a n  filter for speech enhancement[6,31]. 

As we s h d  be using, in next two chapters, the K a h a n  filter as an estimator, we 

present an extensive derivation of the K h a n  filter algorithms[47, 42, 481. The 

Kalman filtering problem for a linear dynamic system is formulated in terms of h o  
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basic equations: the process equation that describes the dynamics of the system in 

terms of a state vector and the measurement equation that describes measurement 

noise incurred in the system. 

Let an N,-dimensional parameter vector x ( t )  denote the state of the dismete- 

time. linear, dynirmical system and let z ( t )  denote the obsenred data of the system 

at time t. The canonical state space modd for the AR model in (2.2)  is given by 

[6, 311, 

x ( t )  = F x ( t  - 1 )  + Gw(t )  (2.27)  

where ~ ( t ) ~  = [ x ( t  - Nz + 1 )  x ( t  - N, + 2) . . . , x ( t ) ]  and x( t )  = O for t  5 0. 

the state-transition matrix F is given by 

where the a ~ ,  is the N,th order AR coefficient, and the process matrix G is given 

and the observation model for (2.1)  is given by, 

where the observation matrix is given by, 

The noise sequences { w ( t ) )  and {v(t)) are zero mean Gaussian white noise processes 

with variances q, = oz and q, = O: respectively and are uncorrelated. For aU t 
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and k, we can write, 

If x ( t )  and z ( t )  are assumed to be be jointly Gaussian the Kalman filter is a 

estimator which gives optimal estimate of the x ( t )  given the noisy data {z ( t ) ,  z(t - 

1). . . .). For such Gaussian distribution, the optimal estimate is the MMSE estimate 

given by 

k(tlt)  = E[x(t )  ( z ( t ) ,  z(t - 1) . . .] (2.32) 

The corresponding state estimation error covariance Zx( t l t )  is then defined as: 

where ex(tlt) = ~ ( t l t )  - j l ( t [ ~ ! ) ~  is the state estimation error. Similarly, the one 

step predicted error of x ( t ( t )  is ~, ( t j t  - 1) = x(t1t) - f (tlt - 1 )  and sssociated error 

covariance matrix C ,  (t lt - 1) is defined as 

In solving the K h a n  filtering problem, we shall use the innovation approach that 

takes advantage of a special stochastic process called the innovation process [49,42] 

which we s h d  introduce in the following section. 

2.5.1 The Innovations Process 

Let i ( t l t  - 1) be MMSE estimate of the observation z( t )  at  time n given all the past 

observations upto t h e  n - 1, that is, given z(l), 2(2), . . . , z(t - 1). i (t lt  - 1) is also 



known as one-step prediction of r(t) .  We can now d e h e  the forward prediction 

error as, 

e,(tlt - 1)  = z ( t )  - i(tlt - 1)  (2.35) 

According to the principle of orthogonaliky[42]. ~ ( t l t  - 1 )  is orthogonal to all past 

measurements. i.e. to {z(l), .  . . ,z(t-1)). In (2.35) we see that the new information 

about the measurement r f t )  at t h e  t is accommodated in the forward prediction 

error ~.(tlt - 1).  Hence, the name innovation for r)(t) = ez(tlt - 1) .  The innovation 

process is a stochastic process that has the following properties [42]: 

The innovation q ( t )  associated with the observation r ( t )  ~t time n is orthog- 

onal to al1 past observations, 

The i~znovation process consists of orthogonal random variables, 

There is one-to-one correspondence between the obseniations ( r ( l ) ,  z (2 ) ,  . . . , z(t-  

1 ) )  and the innovation process {1)(1), r ] (2) ,  . . . , ~ ( t  - 1)).  

2.5.2 State Variable Estimation 

According to the measurement model (2.28), there is a linear relationship between 

the state vector x(t) and observation ~ ( t ) .  Since there is one to one correspon- 

dence between the observations and the innovation process as stated in the previ- 

ous section, x(t) must be linearly related to the innovation q(t)  associated with the 

observation z(t) .  Again for a Gaussian time-varying process, the optimal MMSE 
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estimator is linear [50]. Thus, we can express the MMSE estimate, of the state 

vector x ( t ) ,  k ( t l t )  as linear combinations of the innovation sequence, that is, 

where { B t ( k ) }  is a set of N,-dimensional vector to be determined. According to the 

principle of orthogonality[42], in order for the cost h c t i o n  to attain its minimum 

value in the mean square sense, the state estimation enor g (t  lt ) and the observation 

z ( t )  are orthogonal. Thus. according to the properties of the innovations: the state 

estimation error must dso be orthogonal to the innovation q ( t ) ,  that is, 

Using (2.38) and (2.37), we rewrite (2.39)  as, 

where r, = E{q(k)2)  is the zero-lag autocorrelation for ~(k). Substituting (2.40) 

and (2.27) in (2.38) and making use of the fact that E{w(k)q(k) )  = O for O 5 k 5 t ,  

we express the MMSE estimate for x( t l t )  as, 

and since according to (2.35) and (2.28), the innovation ~ ( t )  and ~ ( t )  are related 

by, 
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we define the state vector estimate as, 

From (2.44) we observe that the MMSE estimate of the state of a h e a r  dynamical 

system can be estimated by adding a correction term {r;q(t)) to the product of the 

previous state estimate %(t - llt - 1) and the state transition rnatrix F. Thus K is 

reffered to as Kalman gain. 

2.5.3 Kalman Gain 

ki this section, we express the Kalman gain r; in a convenient form for computation[42, 

47, 501. We rewrite the expression for the Kalrnan gain, by substituting for x(t  - 1 )  

and the innovation q( t )  = HE&+ - 1) + v(t) ;  as, 

As ~ , ( t ( t  - 1 )  and x(t - 1 )  are orthogonal, 

where the one step state prediction error covariance C,(tlt - 1) is given by, 

and state estimation error covariance C,(tlt) is given by, 
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2.5.4 Summary of Kalman Filter Algorit hms 

We sumrnarize Kalman Filter Algorïthms[42, 48, 501 in this section. 

Priors: 

Prediction Steps: 

k(tlt - 1) = FX(t - Ilt - 1) 

Ex(tlt - 1) = F X x ( t  - llt - 1 ) ~ ~  + G ~ , G ~  

Update Steps: 

x(tlt) = n ( t p  - 1) + ~ ( t ) [ ~ ( t )  - ~ ~ k ( t l t  - I)] 

a(t(t) = [I - R ( t ) ~ * ] ~ , ( t l t  - 1) 

The speech sarnple estimate î at time t is h d y  found by, 

The simplicity of Kalman filter algorithm makes it an attractive candidate over a . 

more complex EIMM based system. The problem with this sort of implementation 

of K h a n  filter is that we are using (2.2) for modeling speech signals. This model is 

not a good mode1 for representing all speech types. Thus, AR parameters estimated 

with this model affect the enhancement capability of K h a n  filter. Gibson et al. 

[6] have presented a Kalman filter formulation for colored noise. But it was fouml 

that the colored noise formulation gave only minor improvement at the cost of 

increased implement ation cornplexit y. 
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2.6 Speech Production System 

In order to have a good mode1 for representing the speech signal, we need to have a 

good understanding of the process of speech production. In the following subsection, 

we present a concise description of the anatomy and physiology of speech production 

[51, 2, 521. 

2.6.1 Anatomy and Physiology of the Human Speech 

Production 

The speech production apparatus is comprised of tkee major anatomical subsys- 

tems [51]: the respiratory, the laryngeal and the articulatory subsystem. Figure 

2.2 depicts the speech production system. The respiratory subsystem is composed 

of the lungs, trachea or windpipe, diaphragm and the chest cavity. The Larynx 

and pharyngeal cavity or throat constitutes the laryngeal subsysterns. The artic- 

ulatory subsystem includes the oral cavity and the nasal cavity. The oral cavity 

is comprised of velum, tongue, lips, jaw and teeth. In speech processing technical 

discussions, the vocal tract is referred to the combination of the larynx, the pharyn- 

geal cavity and the oral cavity. The nasal tract begins at the velum and tesminates 

at the nos trils. 

The respiratory subsystem behaves likes an air pump, supplying the aerody- 

namic energy for the other two subsystems. In speech processing, the basic aero- 

dynamic parameters are air volume, flow, pressure and resistance [51]. The main 

contribution of the respiratory subsystem for speech production is that when a 

speaker inhales air by muscular adjustments that causes in increase in volume of 

the respiratory system, the lungs then release air by combinations of passive re- 
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Figure 2.2: An illustration of the human speech 

VeIum 

Hard palate 

Nasai caviiy 

Nostril 
U P ~  

Tongue 
Teeth 
Oral cavify 

J a w  

~awng=d 
CaVitY 

ml= 
Esophagus 

Trac hea 

production sys tem after [2] 

coi1 and muscular adjustments. Air release depends on the volume of air in the 

lungs and aerodynamic requirements. The laryngeal subsystem acts as a passage 

for air flow from the respiratory subsystem to the articulatory subsystem. In the 

laryngeal subsystem, the larynx consists of various cartilages and muscles. For 

speech production, of particular importance are a pair of flexible bands of muscle 

and mucus membrane called vocal folds, stretching fiom the thyroid cartilage in 

the fiont to the arytenoids cartilages at the rear. The vocal folds vibrate to lend 

a periodic excitation for production of certain speech types which we will discuss 

in Chapter 3. The vocal folds corne together or separate respectively to close or 

open the laryngeal airway. The opeaing between the vocal folds is known as the 
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Phonemes 

/ail/ /owl 
/ad /a01 

laal Conso an& r 
I 

l I I 
NasaIs Stops Fricatives ~pi'tion Adcates 

/m/ I I /h/ /jh/ 

Figure 2.3: Classification of Phonemes in American English 

glottis. The articulatory subsystem stretches fkom the top of the larynx up to the 

lips and nose through which the acoustic energy can escape. The articulators are 

rnovable structures that shape the vocal tract, deterxnining its resonant properties. 

This si~hsystem also provides an obstruction for some cases or generates noise for 

certain speech types. 

2.7 Phonemes and Phones 

Let us fkst define some of the very basic speech representing units. A sequence of 

various sound n n i t s  constitnte a speech signal. These sound units are manipulated 

by the language d e s  known as linguistics[2]. The sound units, used as basic the* 
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re tical unit s for expressing linguis tic meaning are cded  phonemes. Each p honeme 

has a unique set of articulatory gestures. These articulatory gestures s p e c e  the 

type and location of speech excitation and the position or rnovement of the vocal 

tract articulators. h American English, there are 42 phonemes [2]: [52]. These 

phonemes are divided into four broad classes: Vowels, Diphthongs, Semivowels and 

Consonants as shown in Table 2.3. Consonants include five classes of phonemes: 

Nasals. Stops. Fricatives, Afnicates and Aspiration. A phoneme is considered as 

continuant if it is produced by a steady-state vocal tract configuration excited by 

appropriate source. Vowels, Fricatives, m i c a t e s  and Aspiration are continuant 

phoneme classes. The remaining phoneme classes are produced by varying vocal 

tract configuration. 

As the definition of a phoneme goes, it can be considered as an ideal unit 

of sound with a set corresponding articulatory gestures. But in reality, accents, 

gender, coarticulatory effects etc. al l  give rise to nriability of the same phoneme. 

Thus, fkom an acoustical point of view, a phoneme basically represents a class of 

sounds with similar meaning. The actual sounds units, generated wMe speaking, 

are referred to as phones in speech literature [2]. 

2.8 TIMIT Database 

Since in this thesis we s h d  be using speech data from the TIMIT database, we 

present a brief overview of this database Ln this section. TIMIT is an acoustic- 

phonetic speech corpus designed to  provide speech data for the acquisition of 

acoustic-phonetic knowledge and for the development and evaluation of speech 

processing systems[53]. It is prepared by the National Institnte of Standards and 

Technology (NIST) with sponsorship from the Defense Advanced Research Projects 
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Agency - Information Science and Technology Office (DARPA-ISTO ) . TIMIT con- 

sists of a total of 6300 sentences, 10 sentences spoken by each of 630 male and 

female speakers from 8 major dialect regions of the United States. The speech 

data in the TIMIT is divided into two broad groups: train and test for training 

and testing purposes. Each group is further subdivided into eight dialect groups. 

There are four Mes associated with each sentence data: a wave file (.wav), a text 

file (.txt), a word file (.wrd) and a phone file (.phn). The wave file consists of 

waveform speech data with a header. The speech waveforms are digitized at the 

sampling rate of 16 klIz and are stored in the binary format. The text fde contains 

the associated orthographie transcriptions of the words in a sentence. The word file 

is composed of the time-aligned word transcriptions while the phone file consists of 

the tirne-aligned phonetic transcription. More detailed description of the TIMIT 

phonetic lexicon c m  be found in [53]. Finally, in the table 2.1 and 2.2 we present 

the TIMIT phonetic transcription to be used consistently in this thesis. 
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Phone 

type 

stops 

Fricatives 

Nasals 

Example 

word 

bee 

day 

gay 

Pea 

tea 

ke y 

muddy. dirty 

joke 

choke 
-- 

sea 

she 

zone 

azure 

fin 

t hin 

van 

then 

m o m  

noon 

sing 

bottom 

button 

washiigton 

winner 

Phonetic 

transcription 

BCL B iy 

DCL D ey 

GCL G ey 

PCL P iy 

TCL T iy 

KCL K iy 

m ah DX iy, dcl d er DX iy 

DCL JH ow kcl k 

TCL CH ow kcl k 

S iy 

SH iy 

Z ow n 

ae ZH er 

F i h n  

T K i h n  

V ae n 

D H e n  

M a M  

N uw N 

s ih NG 

b aa tcl t EM 

b a h q E N  

w a a  sh ENG tcl t ax n 

w ih NX axr 

Table 2.1: Phonetic transcription used in the TIMIT database for Stops, Affricates, 

Fricatives and Nasals. 
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Semivowels 

Aspiration 

Vowels iy 

ih 

eh 

eY 

ae 

aa 

aw 

aY 

ah 

ao 

OY 

OW 

uh 

uw 

U X  

er 

ax 

ix 

axr 

ax-h 

lay 

bot tle 

=Y 

WaY 

yacht 

hay 

ahead 

beet 

bit 

bet 

bai t 

bat 

bott 

bout 

bite 

but 

bought 

boy 

boat 

book 

boot 

toot 

bird 

about 

debit 

butter 

suspect 

- -  - 

L eY 

bcl b aa tcl t EL 

R ey 

W eY 

Y aa tcl t 

eY 

ax HV eh dcl d 

bcl b IY tcl t 

bcl b IH tcl t 

bcl b EH tcl t 

bcl b EY tcl t 

bd  b AE tcl t 

bci b AA tcl t 

bcl b AW tcl t 

bcl b AY tcl t 

bcl b AH tcl t 

bcL b A 0  tcl t 

bcl b OY 

bcl b OW tcl t 

bcl b U H  kcl k 

bcl b UW tcl t 

tcl t UX tcl t 

bcl b ER dcl d 

f i  bcl b aw tcl t 

dcl d eh bcl b M. tcl t 

bcl b ah dx AXR 

s AX-H s pcl p eh kcl k tcl t 

Table 2.2: Phonetic transcription used in the TIMIT database for Semivowels, 

Aspiration and Vowels. 



Chapter 3 

Impulsive AR Models for Speech 

Enhancernent 

T h i s  chapter introduces and impkments AR models with impulsive excitation 

models for various speech types. Section 3.2 studies and compares the performance 

of the state-of-the-art HMM mode1 based and AR enhancement systems. Section 3.2 

also motivates us to review the production mechanisms for various phoneme classes 

in Section 3.3. Section 3.4 presents models for each phoneme class. Sections 3.5 and 

3 -6 discuss the Kalman filter algorithrns and AR parameter estimation techniques 

for impulsive models. Section 3.7 presents the assertions and assumptions made by 

impulsive models. Section 3.8 discusses experimentd results for various phoneme 

classes. Finally, Section 3.10 presents tables for enhancement results. 
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3.1 Introduction 

One of our objectives is to determine to what extent we can produce a &good3 

model for representing a speech signal. This has rnotivated us in Section 3.2 to 

have a careful look at the speech models used by two very popular state of the 

art enhancement systems: HMM based Wiener filter and AR mode1 based Kalman 

filter. Because of the simplicity (explained in detail in Section 2.2) of a white noise 

dnven AR model for speech we have chosen to focus our attention towards an AR 

model used by the Kalman filter. According to linear speech production theory[3], 

speech signal or pressure wave, measured at a microphone, is produced by the com- 

bined effects of the voice source excitation, vocal tract articulation and radiation 

from the lips or nostrils. An AR mode1 driven by white noise, used for speech 

enhancement, fails to capture the effects of the excitation source and radiation, 

especially in the case of the voiced speech. This has rnotivated us to include a rele- 

vant dnving term in the conventional AR model. We intend to develop models for 

representing each phoneme class by takuig into account the production mechanism 

of that class. We discuss the production mechanism of different phonemes classes 

in Section 3.3 whfle in Section 3.4 we introduce the developed models. Because of 

inclusion of impulses in the speech model we shall not be able to use conventional 

AR parameter estimation procedures. Section 3.6 explains impulse synchronous AR 

parameter estimation procedure. We shall be testing the developed models with 

the performance of the K a h a n  filter. In Section 3.5 we briefly mention the Kaknan 

filter algorithms. As one of our objectives is to establish limits to performance for 

the K h a n  filter, we s h d  be making a number of assertions and assumptions for 

our proposed models which are discussed in Section 3.7. In Section 3.8 we present 

and discuss the results. We shall be using output SNRs as objective measures of 
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enhancement while for subjective measures we shall be observing the plots of the 

time waveforms and residuals of the AR estimation process. 

3.2 Review of the State of the Art Enhancement 

Systems 

The main reason for reviewing the two very popular state of the art speech enhance- 

ment systems is to present motivations that led into applying impulsive models for 

various speech types. In this section, we review the results obtained by using an 

HMM based system[25,9] and an AR model based Kalman filter [3l. 61. The speech 

data is taken from the TIMIT database. A global measure of SNR is used as ob- 

jective evaluation criterion. The 

SNR = 

output SNR was calculated by, 

10 log CL x2 (t)  

CL[+) - WI2 
where J is the length of the speech signal. Subjective evaluation of the results 

is based on human hearing perception and inspection of spectrograms. We have 

&st listened to the clean speech and noisy speech then followed by the enhanced 

speech. The Q u m  of Perception(Q0P) was divided into four categories on the 

scale of score=5, namely- excellent (score=5), good (score=4), fair (score=3) and 

poor (below 3) (91. We have also inspected spectrograms of the clean speech, noisy 

speech and enhanced speech. 

3.2.1 System Overview 

The HMM based enhancement system was used in enhanhg speech signals which 

have been degraded by white noise a t  signal-to-noise ratio(SNR) values of 5,10, 15 
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FiND OüTPüT - PDFSUSb'G C A i W T E  A U  

NOISE & SPEECH WIENER FILTERS 

SOlSE MODEL 

SOlSE MODEL ADAPTATION 

Figure 3.1: HMM based enhancement system, after [9]. 

dB. The speech data used was selected from the sentences in the TIMIT database. 

One hundred sentences, spoken by 15 different speakers with a sampling fiequency 

of 16k&, were used for training the clean speech model. Four sentences spoken by 

4 mesent speakers were used for enhancernent purpose. The speech material and 

the speakers used for training were different from those used for testing. Training 

was done using non-overlapped kames while enhancement was done using 50% 

overlapping of adjacent &ames. The clean signal was modeled with a 5 state 5 

mixture EIMM while each noise type was modeled with a 3 state 3 mixture EMM. 

A block diagram of the implemented system is shown in Figure 3.1. First 

autocorrelation coefficients, of each fiame of the noisy signal, are extracted. These 

coefficients are then fed into the noise adaptation model. The non-speech intervals 
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of the noisy speech are detected by this model and a Viterbi forward dgorithm 

is performed on noise data osing three diaerent types of noise rnodels. Then the 

ILkelihood for each noise model is calculated and the model associated with the 

highest likelihood is selected. Using the selected noise HMM parameters and the 

clean speech model, the preprocessed noisy speech is fed into the MMSE forward 

algorithm which generates the weights for the Wiener filters [9]. In the mean 

time, al1 Wiener fiiters for each combination of the state and mixtures pairs in the 

speech and noise models are calculated. A single weighted Hter is constructed for 

each kame of noisy speech using the calculated Hter weights and the pre-trained 

Wiener filters. The filtering of the noisy signal is carried out using the weighted 

filter. The output is the spectral magnitude of the enhanced speech signal. Using 

this magnitude together with the noisy speech's phase information, an inverse FFT 

is peâormed to ob tain the time-domain enhanced speech. 

Kalman filter dgorithm, given by (2.54) to (2.59), is used to estimate the clean 

speech signal fkom the noisy speech for each Game length of 256 data points. 

K a h a n  filtering algoritluns require the knowledge of AR coefficients, and a:. 

The AR coefficients of the noisy speech are computed using the covariance method 

[17, 181. The residud white noise component w(i) is calculated using (2.2). The 

variance o: of this residual t h e  series is then computed. We have used (3.2) to 

compute 0;. 

For the fist fiame, the date vector is initialized as f (O (O) = O and the corne- 

sponding error covariance is initialized as &(OIO) = [ O ] K x K .  Then the one-step 

state prediction estimate and the corresponding error covariance given by (2.54) 

and (2.55) are estimated respectively. This is followed by update steps through 

evaluations of the Kalman gain (given by (2.56)), state estimation (2.57) and the 

corresponding st ate estimation error covariances (2.58). The speech sample esti- 
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Table 3.1: Enhancement results averaged over four sentences for HMh4 based 

Wiener filt er . 

h p u t  S N R  

in dB 

5 

10 

15 

mate is found by using (2.59). For the following kames the state vector and the 

correspondhg error cwariance are initialized using th& last values fkom the pre- 

vious fkaxne. 

Output SNR 

in dB 

10.969 

12.097 

15.515 

3.2.2 Enhancement Results 

Enhancement results, for HMM based system, averaged over four sentences are 

shown in Table 3.1. Overd QOP was found to be equal to the scale of 3 or fair. 

There were some interruptions or discontinuities present in the enhanced speech 

signal. These d-opouts were due to filtering of the speech data especially fricatives, 

stops or &cates which were mistaken as noise by the modei. Figure 3.2, 3.3 

and 3.4 respectively show the spectrogrsms for the clean speech, the noisy speech 

and enhanced speech. The dropouts are also quite evident in the spectrogram for 

enhanced speech in Figure 3.4. 

As mentioned in the previous chapter, there are two major limitations associated 

with FIMMs for speech enhancement [9]. For accommodating rapidly varying speech 

signals, it requires a large number of states. This in~eases  the computational 



CHAPTER 3. IMPULSTVE AR MODELS FOR SPEECH ENHANCEM%NT 43 

Figure 3.2: Spectrogram of the part of the original clean test speech signal "It was 

exposed to a high velocity gas jet". 

Figure 3.3: Spectrogram of the noisy test utterance, corrupted with white noise at 

SNR of 5 dB. 
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Figure 3.4: Spectrogram of the enhanced speech using HMM based enhancement 

system. 

Figure 3.5: Spectrogram of the enhanced speech using Kalman filter based enhance- 

ment system. 
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complexity (e-g., Nsz x N,x x Nsv x N,v in (2.26) for each fiame) in the model 

together with the risk of afEecting the performance of HMM for slowly w i n g  

speech signals. The second problem with HMMs is that even with the higher 

number of states, the continuity of the speech signal is greatly affected. This is due 

to fact that discrete number of states and mixtures are used to represent the speech 

features. Whenever there is a big jump fkom one state-mixture pair to another, the 

continuity of the speech signal deteriorates. 

Averaged results for four test utterances for the AR model based K h a n  fil- 

ter are shown in the Table 3.2 for various AR orders and input SNRs. Increasing 

AR order provides better modeling of speech signals to some extent. But after 

a certain AR order the output SNR does not change much which indicates AR 

models' limitations on modeling the speech signals. The output SNR values indi- 

cate considerable amount of improvement over that for HMM. The QOP for the 

enhanced speech was fomd to be equal to the scale of 3.8-4. The enhanced speech 

signals were more pleasant sounding compared to that for =S. There was slight 

noise present in enhanced speech. Figure 3.5 shows the spectrogtam for enhanced 

speech. We observe that Figure 3.5 in general more resembles the spectrogram for 

the clean signal in Figure 3.2 compared to that for HMM in Figure 3.4. In Figure 

3.5, we observe that unlike Figure 3.4, spectra corresponding to Mcatives and stops 

have been well preserved. In Figure 3.5 we notice some noise present in the high 

fkequency region. 

The flaws in this AR model (2.2) become apparent when the model residuals, 

are examined, as shown in Figure 3.6. The mode1 in 2.2 asserts that these resid- 

uals should be white (random), an assertion which is flatly contradicted by the 
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Figure 3.6: Plots of AR residuals for four voiced speech phones: (a) front vowel 

/ae/, (b) diphthong /ay/, (c) semivowel Ir/, (d) nasal /n/. The mode1 (2.2) predicts 

that each of these signals be white (randorn) - clearly incorrect. 
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lpc Order 

Table 3.2: Results averaged over four sentences for AR model based Kalman filter. 

figure, since obvious quasi-periodic (deterministic) components are present in each 

of the four phones shown. The remainder of this thesis investigates more consistent 

alternatives to w(t)  in (2.2). 

3.3 Speech Sound Types 

Prior to developing new models for various speech classes we s h d  review various 

phoneme classes [52, 510 21 that have been characterized based on the positions 

and movement of speech articulators, type of excitation, transient properties of 

their time wavefoniis and frequency domain properties. For phonemic or phonetic 

transcription we shall be using the same convention that used in the TIMIT lexicon. 

Vowels are produced by exciting a steady-state vocal tract configuration with quasi- 

periodic pulses of air [52]. Quasi-periodic pulses are produced when air fiom the 

respiratory subsystem is forced through the glottis, the tension of the vocal cords 
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Front Back 

Figure 3.7: Position of the tongue in the oral cavity during the production of the 

vowels , aft er [2] . 

are adjusted so that they begin to vibrate and cause periodic interruption of the 

subglottal d o w .  The variation in the cross-sectional area dong the vocal tract 

determines the resonant fkequencies known as formants of dinerent vowels. T k e e  

factors that influence formant frequency locations for vowels are: the overd length 

of the pharyngeal-oral tract. the location of the tract and the narrowness of the 

constrictions [2]. The &st three formant fiequencies can be used to roughly charac- 

terize vowels. The terrn roqIJy  is applied here as some variability is to be expected 

among the speakers producing the same vowels. 0th- factors used for acousticdy 

identeng the vowels are specha, durations and formant bandwidths. Vowels are 

classified into three groups by the position of the tongue and the degree of con- 

striction at that position. Figure 3.7 shows Front, Central and Back vowels. The 

vowels are differentiated within each group by the degree to which the tongue is 
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raised towards the palate. 

3.3.2 Diphthongs 

A diphthong is a dynamic sound that starts at or near the articulatory position of 

one target vowel and moves to or towards the position for another target vowel [52, 

511. The first target vowel is usually longer than the the latter one but the transition 

between the targets is longer than either of the targets [2]. There exïsts some 

discrepancy about drawing sharp distinction between a diphthong and two adjacent 

distinct voweIs. The four universdy recognized dipht hongs in North Amencan 

Englisk include /ey/ (as in "bay"), /ay/ (as in "buy"), /aw/ (as in "how") and 

/oy/ (as in "toy7). Even though a diphthong represents transition from one vowel 

to anotker, it is often the case that neither target vowel is actually reached. 

3.3.3 Semivowels 

Semivowels consisting of four phonemes /w/, Il/, /r/, /y/ are divided into two 

groups: &des (/w/ & /y/) and liquids (/1/ & /ri). Semivowels have glottal exci- 

tation that produces well defined formant structure like vowels but unlike vowels 

formmt structure is gradudy changing due to a constriction in the vocal tract. 

The degree of constriction is smder than that in vowels but large enough not to 

produce any turbulence. A glide is defined as a vocalic syllable nucleus consisting of 

one target position with corresponding formant transitions toward and away fkom 

the target [2]. Liquids also have spectral characteristics similar to vowels but are 

usually weaker than most vowek due to their more constricted vocal tract. The 

acoustic properties of semivowels are strongly aaécted by the context in which they 

occur. 
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The nasal consonants /ml, /n/ and /ng/ are produced by the glottal excitation 

of an open nasal cavity and the oral cavity constricted at some point at the front. 

The velum is lowered to permit the sound propagation through the nasal cavity. 

The oral cavity, being acoustically coupled to the pharynx and the nasal cavity? 

serves a resonant cavity by capturing energy at certain natural fkequencies. These 

resonant fiequemies of the oral cavity emerge as anti-resonances or zeros of sound 

transmission [52]. Nasal formants and formants of the adjacent vowels have wider 

bandwidth or more highly damped compared to those of the vowels. This is caused 

by the fact that heat conduction and viscous losses are greater as inner surface of 

the nasal tract has large surface area. 

The three nasals have three different areas of constriction dong the oral cavity. 

For /m/ the constriction is at the iips (labial constriction), /n/ has constriction 

at the back of the teeth with the tongue resting at the gum ridge (&O known as 

alveolar cons triction) while for /ng/ the constriction is in the fiont of the velum 

(velar constriction). 

3.3.5 E'ricat ives 

Fricatives are characterized by the formation of narrow constriction at  some location 

in the vocal tract, by the development of turbulent air stream and by the generation 

of noise. Fricatives are divided into uxivoiced hicatives and voiced fncatives based 

on the mode of excitation of the vocal tract. The unvoiced fricatives include /f/, 

/th/, /s/ and /sh/ while /v/, /a/, /z/ and /zh/ constitnte the voiced fricatives. 

Unvoiced fikatives are produced by exciting the vocal tract by a steady air flow 

that becomes turbulent in a region of constriction. The constriction divides the 
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vocal tract into two cavities. The cavity preceding the constriction then becornes 

a noise source due to turbulence. The speech sounds are radiated fkom the fiont 

cavity whereas the back cavity traps energy as in the case of nasals introducing anti- 

resoxiances into the speech output [52]. The location of the constnction determines 

the uttered fricative. For /f/ the constriction is labiodentd (upper jaw teeth on 

lower lip), /th/ has interdental (tonpe behind fiont teeth) constnction, for /s/ it 

is alveolar and /sh/ has palatal (tongue resting on hard or soft palate) constriction. 

Voiced fricatives have both turbulent noise source at the constriction and quasi 

periodic glot ta1 excitation of the vocal tract. Because of these two types of exci- 

tations, their spectra may show both periodicity (to some extent) and frication. 

Voiced fricatives /v/, /&/, /z/ and /zh/ are the counterparts of unvoiced fnca- 

tives If/, /th/, / s /  and /sh/ respectively, as far as the location of the constriction 

is concerned. 

3.3.6 Stops 

Stops are, also as in the case of fricatives, classiiied into unvoiced and voiced stops. 

Stops are noncontinuaat speech signals produced by the total closure of the vocal 

tract during which a pressure builds up and sudden release of this pressure. This 

Spe of excitation is also known as plosive. The closure can  be referred to as bilabial 

(/p/ and /b/), alveolar (/t/ and Id/) and velar (/k/ and /g/). 

Unvoiced stops /pl ,  /t/  and /k/ are produced by abmpt release of air pressure 

that builds up during the vocal tract occlusion. The air release, marked by a short 

i n t e d  of frication, is followed by a steady air %ow fkom the glottis known as 

aspiration. The %cation and aspiration are together known as stop release. The 

interval preceding the stop release is known as stop gap or closure. 
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Voiced stops /b/, /d/ and /g/ not only have plosive excitation but also a glottal 

excitation that continues throughout the closure and release. During the closure 

some amount of low fkequency energy may be radiated through the walls of the 

throat [2] as the vocal cords keep vibrating. This is indicated by a voice bar in the 

frequency region in the spectral analysis. 

3.3.7 Affricates 

Afhicates are non-continuant sounds having a palatal place of articulation. Af- 

fncates /jh/ and /ch/ are produced by the transition fiom a stop to a fricative. As 

in stops, &cates are produced with the total closure of the vocal tract. Similar 

to fiicativesl affricates have a period of Mcation. But the Ecation intenml tends 

to be shorter than that for fricatives [51]. The unvoiced &cate /ch/ is produced 

by a transition hom unvoiced stop /t/  to unvoiced fkicative /sh/ while the voiced 

&cate /jh/ is created by a transition from voiced stop /d/ to voiced fricative 

/zh/- 

3.4 Models for Phoneme Classes 

While reviewing the Kahan filter based enhancement system we have seen that a 

single AR modd has been used to represent the speech signal. As each phoneme 

class has a different production mechanism, it is more appropriate to use ditferent 

models for various phonemes instead of using a single mode1 for a whole utterance 

that is composed of various phoneme classes. In this section, we present models for 

various phoneme classes considering the type of excitation each class is associated 

with and closely observing conventional white noise excited AR residual plots. 
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3.4.1 Model for Voiced Speech 

According to the acous tic theory of speech production[54], speech involves a source 

h c t i o n  and a vocal-tract filtering process. The output of the filtering process is 

speech pressure signal which is related to the volume velocity at the lips through a 

radiation term [17, 55, 541. In speech synthesis, the combined effects of the excita- 

tion source, vocal-tract filter and radiation is modeled by an AR process where AR 

coefficients account for the filtering action of the vocal tract, the radiation and the 

excitation. The obvious flaw with the conventional autoregressive model in (2.2), 

for speech enhancement, is that the vocal tract is modeled as being driven by white 

noise, whereas vowels, diphthongs, semivowels and nasals all have quasi-periodic 

glot ta1 pulse excitation of the vocal tract. Quasi-periodic pulses are produced when 

air is forced through the glottis, causing the vocal cords to vibrate and periodicdy 

interrupt the subglottal airflow. It is befitting to introduce a forcing term that 

models the glottal excitation in AR model for voiced speech. 

We can begin to account for a quasi-periodic glottal excitation by mod-g 

the AR forcing fimction to ob tain 

i-1 

where a,,, is the amplitude of the driving 

impulses: 

%(t) = C w 
3 

term, and where u,(t) is a train of 

- ti) (3.4) 

where the times tj. mark the times of the glottal pulses. The impulse train u,(t) 

in (3.3) is simulating the effects of the voiced excitation source. Snch an impd- 

sive source function is extremely simplified approximation of the cornplex source 

function involved in speech production[l7, 541. The main reason for using such 



a tentative model (impulsive source function) is that we intend to investigate the 

effect of inclusion of the appropriate forcing fnnction in an AR model for speech 

enhancement. Impulsive models, if successfd over the conventional white noise 

driven AR model, may be replaced by more sophisticated source models used in 

speech synthesis. 

The state-space model for speech given by (2.27) needs to be rnodified for the de- 

terministic driving term u, (t ). The state space model for voiced speech represented 

by (3.3) is given by, 

where the input distribution matrix DI E RN= is defined as, 

Transition and process matrices denoted by F and G are the same as those defined 

for (2.27). hclusion of the dnving term not only changes the conventional AR 

parameter estimation procedures discussed in Section 2.2 but also the assertions 

made by the model. We s h d  be discussing such issues in Sections 3.6 and3.7 

respectively. The observation model however remains the same as (2.28), i.e. 

as we have the same assumptions for additive Gaussian white measurement noise 

v(t) .  

3.4.2 ModeIs for Fricatives 

Unvoiced fricatives have turbulent noiselilre excitation also known as unvoiced exci- 

tation due to airflow tkough a narrow constriction. We need a model for frication 
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noise source for representing such phonemes. The white noise term w( t )  in the 

model given by the AR model in (2.2) is adequate for representing the d e c t  of the 

frication source[l?]. The process state space model for unvoiced Gicatives is given 

The observation state space model is the same as in (3.6). 

Voiced fricatives can be represented by (3.3) as they have both unvoiced and 

voiced excitation. The state space models are the same as given by (3.5) and (3.6). 

3.4.3 Models for Stops and Affricates 

The stops have the following acoustic sequence, 

< closure >< h s t  >< f r i ca t i a  >< asp i ra t ia ( f  OT unva'ced stops) > (3.8) 

The stops have plosive excitation which is caused by a buildup of air pressure behind 

a completely closed part of the vocal tract ensued by a sudden release of this air 

pressure. For the unvoiced stops, the stop release can be modeled by a white term 

w (t) and onset of the burst after the stop closure can tentatively be modeled by an 

impulsive driving term ~ , ~ , ~ ~ ( t ) .  The model for unvoiced stops is given by 

where a,,, is the amplitude of the driving term and u,,,,(t) i s  a single 

impulse marking the onset of the burst i.e., 
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where t is the t h e  at which the burst occurs. The state space model for (refllls) 

is then given by, 

where Drstq = DI is the input distribution matrix for u,,, ( t ) .  

The voiced stops have both plosive and voiced excitations. The voiced excitation 

is tentatively modeled by u,(t) which is a train of impulses separated by the pitch 

periods while the plosive excitation can be modeled in the same way as the unvoiced 

stops by a white noise term ~ ( t j  and a single impulse ubJtOp(t) = b(t - t j )  rnarking 

the onset of the burst at t j -  The rnodel for the voiced stops is given by, 

where a,,, and a,,, are respectively the amplitudes of the driving terms u, ( t )  

and u,~,,, (t).  The state space model for (3.12) is then given by, 

where D,,.t, E R~~ is the input distribution matrix for uru,,,(t) defined as, 

As mentioned earlier Afkicates are non-continuant sounds produced by a tran- 

sition fkom a stop to a fricative. Hence a i c a t e  /jh/ is represented by the same 

model as for voiced stops while /ch/ shares the model for unvoiced stops. 
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3.5 Kalman Filt er Algorit hms for Impulsive S t ate 

Space Models 

We s h d  be using the Kalman flter algorithms for filtering additive white noise 

v(t) f?om noisy speech r(t) .  The measurement model is given by (3.6). We have 

defmed separate models for various classes of phonemes. We s h d  use these process 

models for Kalrnan filter dgorithms. The Priors for the K h a n  filter remains the 

same as those for white-noise excitation AR model i.e., 

In the Prediction Steps, due to the inclusion of the driving terms in the process 

models for the voiced speech speech sounds, the voiced Ecatives and the stops 

the one-step state prediction X(tlt - 1) will have various forms according to the 

corresponding process mociel. For the mode1 in (3.5) for the voiced speech (e.g. 

vowels, semivowels, diphthongs,nasals) and voiced fricatives, the one step state 

prediction is given by, 

jr(tlt - 1) = F%(t - llt - 1) +  DU,(^) 

For the unvoiced stop model in (3.11), the state prediction is given by, 

%(tlt - 1) = F f ( t  - llt - 1) + DrntOp~I,top(t) 

The one step state prediction for voiced stop model in (3.13) is given by, 

f (tlt - 1) = F*(t - Ilt - 1) + D,u,(t) + Dlvntop~,,,,,(t) 

Finally the for the unvoiced fricatives, the state prediction remains the same as in 

(2.54) i.e., 

%(t(t - 1) = F#(t - llt - 1) (3.19) 
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The one-step state prediction enor is given by 

The Update Steps remain the same as white noise excited AR based K h a n  

filter, 

~ ( t )  = FE,(tlt  - l ) H [ q ,  + EZTzx(tlt - 1)H]-' (3.21) 

f ( t [ t )  = %(t [ t  - 1) + ~ ( t )  [ ~ ( t )  - ~~f ( t l t  - 1)] (3.22) 

Z(tlt) = [1 - ~ ( t ) ~ ~ ] ~ , ( t l t  - 1 )  (3.23) 

The speech sample estimate Î at time t is given by, 

5( t )  = ~ ~ î ( t  [ t )  (3.24) 

3.6 Parameter Estimation for Impulsive AR Mode1 

The inclusion of the weighted excitation term in (3.3) ,  (3.9) and (3.12) implies that 

the conventional covariance LP analysis[l7], which applies to (2 .2) ,  needs to be 

modified. The principle of covariance LP analysis is just parameter estimation to 

ml i im ize  a leas t-squares criterion 

where K is length of the speech segment (fiame) being processed, and where the 

enor is given by the mode1 residual for (3.3) 

The optimal parameters are found by finding the roots of the squared error (3.25), 
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leading to a set of Linear equations: 

which is easily solved, using the Cholesky decomposition, for the unknowns â = 

[âi? . . . , âJT and â,, . The terms in the square matrix are the correlation te-s: 

Q(i, R) the cross-correlation matrix of clean speech given by, 

the cross-correlation between clean speech and the excitation, and 

the energy (zero-lag autocorrelation) of the excitation u,. In the same way AR 

parameters for (3.9) and (3.12) can be estimated. 

3.7 Mode1 Assertions and Parameters 

Assumptions 

As main objectives were to corne up with appropriate models for various speech 

types and study enhancemerit limits of the AR model based Kalman fdter, we have 

made a number of model assertions and explicit assumptions. The fist assertion 

we have made for our models is that phoneme boundaries are known. Phonemes, 

used for testing our speech models, were extracted fiom (20) sentences spoken by 10 

female and 10 male speakers from the TIMIT data base. Phoneme boundaries given 
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in the TIMTT base were initidy used to accomplish this separation, followed by 

the inspection of spectrograms and temporal plots of each sentence to corroborate 

the exact phoneme boundaries. We have used clean speech for estimating AR 

parameters and noise covariances for the Kalman filter. 

For our impulsive models we have explicitly assumed that pitch locations for the 

voiced speech and impulse locations for the stop bursts are known. Even though a 

number of automatic pitch detection dgorithrns [52, 21 are available, there always 

exists a room for error in the results obtained by using these algorithms. The 

times are approximated manually &om the residual signal (3.2) in which the pulses 

are conspicuous, followed by an automated local peak-finder to guarantee accurate 

positioning. 

3.8 Experimental Results 

Each speech signal, representing a single phoneme, is segmented into frames of 

K = 256 data points. The KaLnan filter was used as the estimation algorithm, 

using one of the four diffesent models in (2.2), (3.3), (3.9) and (3.12). The speech 

signals were corrupted with additive white noise to an SNR of 5 dB; for each signal 

the identical noise process was added, so that output SNR results are meaningfdly 

comparable. 

3.8.1 Voiced Speech 

A total of 80 phone tokens for the voiced speech vowels, diphthongs, semivowels 

and nasals were tested with the impulsive AR model in (3.3). For the voiced speech 

we have used lpc order of 10 in generd. Figure 3.8 shows the impulse-AR residuals 



C W T E R  3. UMPULSPVE AR MODELS FOR SPEECH ENHANCEMENT 61 

Figure 3.8: AR residuals for the impulsive model 3.3 for the voiced phonemes of 

Figure 3.6. The residual peaks have become narrower and shorter compared to 

those in Figure 3.6 but still are noticable. 
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Phone l-- 
Front vowels 

Mid vowels 

Back vowels 

Semivowels 

Nasals 

II Diphthongs 

Output Sm in dB 

white noise 

AR model 

- .  . . - .. - .. 

Output S N R  in dB 

impulsive 

AR model 

Table 3.3: Averaged enhancement results for voiced speech for the input SNR of 5 

dB and the lpc order of 10. 

given by (3.26) for the same four phonemes of Figure 3.6. In general the residual 

pulses in Figure 3.8 are thinner or narrower and shorter than those in Figure 3.6, 

but stiu conspicuously present. Impulsive driving term partidy fails to model the 

voice source excitation of the vocal tract. The reason being the peaks in the residual 

usually do not consist of a single impulse rather have a very narrow triangular shape 

with more than one adjacent peaks (usually two or three). We also observe a distinct 

trigonometric shape between the sharp spikes. Such facts strongly indicate that the 

eEects of the glottal source may simply not be a train of impulses but rather may be 

a quasi-periodic pulse. This is confirmed by the Iiterature on voice source models 

and glottal pulse models (discussed in detail in Chapter 4). Table 3.3 compares the 

averaged output SNRs for voiced speech tokens. We observe that improvement in 

output SNRs is consistent for the impulsive AR model over the white noise driven 

AR model. Table 3.4 shows averaged improvements in output SNRs for impulsive 

AR model over the conventional white noise driven AR model for various lpc orders 
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Front Vowek 

Change in Output SNR in dB 

for the Ipc Order 

Mid Voweis 

Change in Output SNR in dB 

for the lpc Order 

8 10 12 14 

Input SNR 

in dB 

Back VoweIs Diphthongs 

Change in Output SNR in dB 

for the Ipc Order 

Input SNR 

in dB 

Change in Output SNR in dB 

for the lpc Order 

Input SNR 

in dB 

Semivowels 

Change in Output SNR in dB 

for the Ipc Order 

8 10 12 14 

Change in Output SNR in dB 

for the lpc Order 

8 10  12 14 

Table 3.4: Averaged improvements in output SN. for the white noise AR model 

and impulsive AR model for voiced speech classes. 
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Phone 

class 

Fricatives 

Unvoiced fricatives 

Voiced stops 

Unvoiced stops 

AfEicat es 

Unvoiced fiicatives 

Output SNR in dB 

white noise 

AR model 

Output SNR in dB 

impulsive 

AR model 

not applicable 

10.0493 

8.088 

7.314 

8.524 

10.0493 

Table 3.5: Averaged enhancement results for the consonants for the input SNR of 

5 dB. 

and input SNRs. For aLl the voiced speech types the improvement is maximum for 

the input SNR of O dB. The improvement in output SNRs dso increase linearly with 

lpc order. The diphthongs show highest improvement in output SNRs compared 

to other voiced speech types. The main reason behind this is that diphthongs are 

very long phonemes with large number of pitch periods. Hence, the effect of the 

impulsive driving term is stronger compared to 0th- phonemes. 

3.8.2 Consonants 

Table 3.5 shows averaged results for 30 consonant phones. In general impulsive 

models yield higher output SNRs compared to those for the conventional white 

noise excited AR model. Analysis of the results for individual classes is presented 

as follows. Unvoiced fiicatives use the conventional white noise excited AR model. 
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We have used Ipc order of 12 in this case. Table 3.12 in Appendix:A shows the 

results for unvoiced fricatives indicating consistent irnprovements in output SNRs 

from the input SNR of 5 dB. 

Voiced Gicatives have been represented by the same impulsive model in (3.3) as 

in the voiced speech case. One problem encountered in applying such a model was 

in identïf$ng the pitch locations for some of the voiced fricatives as they do not 

show marked periodicity as in the case of other voiced speech types such as vowels 

or diphthongs. Thus using the white noise excited AR model is recommended for 

the unvoiced Scatives. The results for voiced ficicatives are shown in Table 3.13 

in Appendix:A. As expected, Impulsive AR model gives better enhancement than 

conventional white noise excited AR model. The residuals do not show marked 

periodicity in this case. 

Table 3.14 in AppendixA presents enhancement results for unvoiced stops, 

voiced stops and afkicates. In general impulsive model works better than white 

noise driven AR model. But in some of the cases for the stops (e.g. /b/ in Table 

3.14) we have found AR models do not work well at a l l  in the sense the output 

SNRs for both white noise driven AR and impulsive AR models were less than the 

input SNR of 5 dB. This can be explained by the fact that stops have complex 

acoustic sequence as given by (3.8) and trying to model such a sequence with an 

d-pole model may not be pertinent. Modehg of the stops may reqnire further 

investigation. Same arguments, ss in case of the stops, can be made for modeling 

the e c a t e s  which also possess too complex acoustic sequences for AR models. 
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3.9 Conclusions 

This chapter has demonstrated the application of the impulsive AR models for 

speech enhancement. The conventional white noise excited AR model for speech 

fails to account for the excitation source especially in the case of the voiced speech. 

As various speech classes have different forms of source excitations we have aptly 

proposed impulsive AR models with ditferent driving terms for various classes of 

phonemes. We have represented voiced speech types such as vowels, diphthongs, 

semivowels, nasals and voiced fikatives by an AR model driven by impdsive train 

time modulated by the pitch periods and white noise. Unvoiced fricatives were 

modeled by traditional white noise driven AR model. For unvoiced stops and 

unvoiced &cates we have used an AR model driven by a single impulse at the 

instant of the burst onset and white noise. For voiced stops and voiced affricates, we 

have proposed an AR model both with an impulsive train for voicing, a single burst 

impulse and white noise. In each case, especially in case of the voiced speech, the 

Kalman filter wit h impulsive AR models clearly outperformed t hat with traditional 

white noise AR model. 

One major flaw of the impulsive models is that they are too simplistic for simu- 

lating the complex speech excitations. We have come to this conclusion by inspect- 

ing impulsive A R  residuals. Especidy in the case of voiced speech we have observed 

the marked presence of quasi-periodic pulses in the residuds. This drawback of the 

impulsive models is also confirmed by Speech S ynthesis literature where a number of 

more sophisticated source models[38, 56, 57, 58, 59, 391 replacing impulsive models 

have been proposed for producing natural sounding synthetic speech. Such facts 

present greatly motivate us towards using more complex rnodel for representing 

effects of the voice source in Chapter 4. 
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3.10 Appendix A: Details of Enhancement 

Result s 

Phone 

context 

iy69si682_econornicalZy-y 

iy32si1386f he-e 

ih13sz378near-i  

ih49si1386,unit-i 

ih4sx396-f i s h i  

2'1=29si1386z'maginatio71i2 

ix17si l386negot iat ionjo 

i x 3 1 s i 6 8 2 ~ d y , y  

eh9si682Ahey-e 

e h 4 2 s i 6 8 2 a r e a ~ l  

eh58si682_economicalZy_e 

ae26sz36imaginaf i o n a l  

aellsz396-began-a 

ae6sx86hispanic-a 

SNR in dB 

white noise 

AR mode1 

SNR in dB 

Impulsive 

AR mode1 

9.106 

10.576 

9.108 

10.078 

9.263 

8.102 

9.137 

8.675 

9.241 

9.917 

8.287 

9.310 

8.815 

8.192 

Table 3.6: Enhancement Results for the Ekont Vowels for the input S N R  of 5 dB 

and Ipc order of 10. Phone context iy69si682-ecmmically-y implies that /iy/ is 

the 69th phone from the sentence si682 and is taken from the word ecaomical ly  

corresponding to the Ietter y. 
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Phone Phone 

cont ext 

- 

SNR in dB 

white noise 

AR mode1 

SNR in dB 

Impulsive 

AR mode1 

Table 3.7: Enhancement Results for the Mid VoweE for the input SNR of 5 dB and 

the lpc order of 10. 
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Phone Phone 

context 

SNR in dB 

white noise 

AR model 

SNR in dB 

Impulsive 

AR model 

Table 3.8: Enhancernent Results for the Back Voweh for the input SNR of 5 dB 

and the lpc order of 10. 
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Phone 

/Y/ 

/Y/ 

/Y/ 

/w / 
/w / 
/w/ 

/r / 
/ / 
/r/ 

/l/ 

/ v  

/ i l  

/d l  

Phone 

cont ext 

SNR in dB 

white noise 

AR mode1 

SNR in dB 

Impulsive 

AR mode1 

10.062 

8.329 

8.515 

10.614 

9.602 

10.680 

9 .IO5 

9.115 

9.376 

8.739 

8.849 

9.707 

9 -435 

Table 3.9: Enhancement Results for the Semivowels for the input S N R  of 5 dB and 

the lpc order of 10. 
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Phone 

context 

m l s z 9 6 m a s q u e r a d e m  

m l l s x 3 7 8 - j i m m  

m 6 4 s i 6 8 2 ~ c m o m i c a l l y m  

m 4 4 s z 3 9 6 s m d l m  

n 1 2 s z 3 7 8 ~ z e a r - n  

n 2 2 s x 9 6 i m a g i n a t i o n n  

n30se396 ,on~z  

n g 5 6 s i 6 8 2 d e c l i n h g n g  

n g 5 7 s i l 3 8 6 s i n g I e ~ l g  

ng42si8 1 l -coagzdatingng 

SNR in dB 

white noise 

AR modet 

SNR in dB 

Impulsive 

AR model 

10.860 

9 -409 

9.457 

9.079 

9.633 

10.271 

9.688 

7.855 

10.227 

8.322 

Table 3.10: Enhancement Resdts for the Nasals for the input SNR of 5 dB and the 

lpc order of 10. 
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Phone 

/yu/ 

/es/ 

/ey/ 

/ey/ 

/ay/ 

/as/ 

/ay/ 

/ay/ 

/OY/ 

/OY/ 

/OY/ 

Phone 

context 

SNR in dB 

white noise 

AR mode1 

SNR in dB 

Impulsive 

AR modd 

9.694 

9.143 

8.452 

10.643 

10 4 9  

10.070 

9.590 

9.521 

10.105 

11.077 

10.270 

Table 3.11: Enhancement Results for the Diphthongs for the input S N R  of 5 dB 

and the Ipc order of 10. 
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Phone 

/ f/ 
/ f/ 
/s/ 

/s/ 

/s/ 

Phone 

context 

SNR in dB 

white noise 

AR mode1 

Table 3.12: Enhancement Results for Unvoiced F~catives for the input SNR of 5 

dB and the Ipc order of 12. 

Phone 

context 

u18sx210neuer-v 

dhlsz396-the-th 

dhlsxl l93he-th 

dh53si1386-withf h 

r36sx378museum_s 

z44si1386-ass 

SNR in dB 

white noise 

AR mode1 

SNR in dB 

Impulsive 

AR mode1 

Table 3.13: Enhancement Resdts for the Voiced Fricatives for the input SNR of 5 

dB and the lpc order of 10. t indicates that pitch periods could not be identified. 
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Phone Phone 

conte 

- -- 

SNR in dB 

white noise 

AR model 

SNR in dB 

Impulsive 

AR model 

Table 3.14: Enhancement Results for the Stops and the Affricates for the input 

S N R  of 5 dB and the Ipc order of 10. 



Chapter 4 

LF Mode1 for Enhancernent of 

Voiced Speech 

This  chapter proposes and implements an L F  model based AR. model for voiced 

speech enhancement. Section 4.1 discusses the drawbacks of white noise and im- 

pulse driven AR models and motivates the application of an LF voice source model 

commonly used in speech synthesis and analysis, for speech enhancement. Sub- 

section 4.2.1 briefly reviews some of the popular glottal and source models used 

in speech synthesis while Subsection 4 - 2 2  discusses the LF  model in detail. The 

parameter estimation problem, for an LF  model for speech enhancement, is dis- 

cussed in detail in Section 4.3. Section 4.4 discusses the results obtained by LF 

model based enhancement. Section 4.5 gives a conclusion about LF based AR 

model in speech enhancement. Section 4.6 contains the tables for LF  model based 

enhancernent resdts . 
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4.1 Introduction 

An AR model driven by white noise, traditionally used for speech enhancement 

does not take account of the effects of excitation sources for some of the phoneme 

classes especially those have voiced exi t  ation. In Chap ter 3, we have used a number 

of impulsive AR models for various phoneme classes based on the correspondhg 

excitation types. Xmpulsive AR models consist of impulsive deterministic terms 

which also are the very simple tentative models for the efFects of the excitation 

source. For voiced speech, the effects of glottal excitation was simdated by a train 

of impulses spaced by pitch periods. For unvoiced stops and unvoiced affricates, 

plosive excitation was modeled by a single impulse marking the instant of the 

onset of the burst and white noise. For voiced stops and voiced e c a t e s ,  a mixed 

excitation of a plosive driving term and a quasi-periodic train of impulses were 

proposed. For voiced fricatives a mixed excitation of white noise and a quasi- 

periodic train of impulses separated by pitch periods was proposed. Impulsive 

models despite their simplicity yielded considerable improvements in the output 

S m .  

in the case of the voiced speech classes such as vowels, sernivowels, di~hthongs 

and nasals, residuals for impulsive AR model as shown in Figure 3.8 show consid- 

erable periodicity even though residual impulses have become narrower and shorter 

compared to those in white noise excited AR residuals in Figure 3.6. We also ob- 

serve a continuous curve between the quasi periodic spikes. Such facts strongly 

suggest that an impulsive model is too simple a model for speech. To be sure, 

in speech synthesis and analysis, the modeling of the voice source has been well 

studied[60, 37, 56, 57, 58, 39, 381. In fact, AR residuals in Fignre 3.8 indicate a 

quasi-periodic shape which resembles that of voice source used in speech synthesis. 
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Such facts have strongly motivated us to belief that models for voice source pulses 

have good potential for to be applied for speech enhancement. In the following 

section, we review some of the significant glottal pulse and voice source models 

proposed and implemented in speech synthesis and analysis. We &O present the 

reasons for selecting an LF model for speech enhancement followed by a detailed 

discussion of the model. 

4.2 Voice Source Models 

An impulsive model is a highly simplified approximation of the human voice. In- 

deed, impulsive-driven systems were found to make poor speech synthesizers, so 

the synthesis field has proposed a number of more complex glottal pulse models[38, 

59. 56, 57, 58, 391 for producing more natural sounding speech. In speech synthesis 

literature the volume velocity of the air flow is referred to as glottal pulses and the 

derivative of the glottal puises are known as voice source pulses. The next subsec- 

tion briefly reviews some of the voice source models used in speech synthesis and 

analysis . 

4.2.1 Review of Voice Source Models 

Rosenberg [38] has proposed a number of glottal pulse models with adjustable 

amplitude, width and skew. These glottal pulse models were used to study their 

efFects on the quality of vowels. Of alI these models, one pulse shape shown in 

Figure 4 4 a )  consists of two trigonometric segments with a slope discontinuity 

at  the closure. This model is referred to as the Rosenberg rnodel and has had 

significant effect on speech synthesis researchers at the time because of capability 
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(i) GIolfal pulse 

(ii) Source pulse 

(a) R-Mode1 

(c) Ananfhapadmanabha 
Model 

(0 Glottal pulse 

(ii) Source pulse 

(b) F - M o d d  

(d) L-mode1 for voice source 

Figure 4.1: Models for glottal and voice source pulses. 
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of producing better qualiQ synthetic speech compared to other models[59]. The 

Rosenberg mode1 for glottal %ow is specified by three parameters: TP the portion 

of the pulse with positive slope, TN the portion of the pulse with negative slope 

and A, the amplitude of the glottd pulse. The Rosenberg source pulse model, in 

Figure 4.la(ii). has abrupt discontinuity at the glottal dosure and shape of the 

source pulse model in the vicinity of the closure is sinusoidal. For these reasons, 

the Rosenberg model is not suit able for fit ting AR residual spikes in Figure 3.6. 

Fant has proposed another three parameter model referred to as the F-mode1 

by introducing an independent control of the discontinuity a t  the closing phase 

of the source pulse[57] as shown in Figure 4.l(b). The three parameter models 

though economical f d e d  to capture the wide variations of the glottal pulse shapes. 

Another major flaw of the three parameter models was that abrupt discontinuity at 

the glottal closure which does not d o w  for an incomplete dosure of the vocal folds 

or for a residual phase to proceed towards the dosure after the discontinuity[i]. For 

similar reasons as in the case of the Rosenberg model, the F-mode1 is not feasible 

for application in speech enhancement . 

Ananthapadmanabha introduced a five parameter mode1 of the voice source 

rather than glot ta1 pulse as shown in Figure 4.l(c) which models various variations 

of the source pulse with a terminal return phase[59, 391. The return phase in this 

case is modeled as a parabolic function which tracks abduction states of the vocal 

folds. The five parameter model does not have disadvantage of the discontinuity at 

the closure. But as the pulse shape at the closure does not have a sharp peak as 

in the case of the AR residuals, makes the modd Iess desirable as a candidate for 

representing the driving term in an AR model. 

The most popdar model for voice source referred to as the LF model as shown 

in Figure 4.2. It was developed in two stages. In the first stage, Liljencrants 
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Figure 4.2: The LF deterministic excitation model. 

proposed a tkee  parameter model of voice source based on F-mode1 [l, 59, 391 

as shown in Figure 4.l(d). This model is referred to as L-model. The Gmodel 

model has the advantage of flow continuity whereas the F-mode1 consists of two 

portions one with positive slope and the other with negative slope. But main flaw 

in an L-mode1 is the abrupt flow termination. In the latter stage the L-model was 

modified by Fant, Liljencrants and Lin[l] by introducing a gradua1 flow termination 

modeled by an exponential function. This new modified model is known as an LF 

model. The reason behind the populat-ity of an LF model is that it provides an 

overd fit to commonly encountered voices source pulse shapes in speech synthesis 

and analysis with a mimimum numbers of parameters and is flexible in its ab* 

to match extreme cases of phone variablities[l]. Of all the voice source models 

reviewed so far, we observe strong similady in shape for the AR residual pulses 

in Figure 3.6 and that for the LF model. In fact AR residual spikes resemble the 

shape of the LF model amund the kstant of the glottal closure. These facts have 
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motivated us to choose the L F  mode1 for representing the effects of the voice source 

in an AR model for the voiced speech. In the following subsection we discuss the 

LI? model in details. 

The four parameter LF model[l] proposed by Fant , Liljencrants and Lin has widely 

been used practicdy in speech synthesis and theoretically in speech analysis[37]. 

The LF excitation model, sketched in Figure 4.2: is the derivative of the LF glottal 

pulse fimction, and is parameterized in terms of 

t ,  - the fiindamental period, 

t ,  - the instant of maximum flow. 

t, - the instant of maximum glottal closing, and 

ta - exponential recovery time constant. 

These four parameters are related to each other by a condition that net flow gain 

within a fundamental period be zero. 

The LF modd is then given by 

where a, ,û satise the transcendental equations 

leading to the revised AR rnodel 
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The AR model in (4.2) has glottal excitation modeled by a train pulses modeled 

by LF model given by (4.1) and time modulated by pitch periods. There is difference 

in the way the speech rnodels are used in speech synthesis and enhancement. For 

speech synthesis, we have a prior model using which we generate a sample path. 

For speech estimation, we observe a noisy version of a speech signal and try to 

fit it to a prior model. This makes the modd parameter estimation problem in 

speech enhancement Werent from that in speech synthesis. Section 4.3 discusses 

and proposes an optimization algorithm for LF parameter estimation. 

4.3 Parameter Estimation for LF Mode1 

The main challenge with using model u,,(t) in (4.2) is the need to estimate the 

seven parameters t,, te' t,; ta, a. /3 and a,,, . Only a- v=,, enters the problem linearly, 

so it is solved using least-squares as described in Section 3.6. Since A R  residual 

peaks coincide with the maximum glot t al closure[37], the point of maximum glot ta1 

closing te is set to coincide with the impulsive points t j  as described in Subsection 

3.4.1, leaving five remaining parameters to be fonnd by nonlinearly optimizing the 

mean-squared error CK in (3.25) and the output SNR via coordinate optimization. 

We have developed a technique for automatic fitting of the five L F  parameters 

t,: te, ta, a and B to the AR residuals using coordinate optimization. The Opti- 

mization procedure is carried out in two stages as Uustrated in Figwe 4.3. We 

have obtained pitch locations using AR residuals as descrïbed in Section 3.7. Good 

initial estimates of the parameters is crucial for our optimization algorithm. In the 

first stage of op timization, initial estimates of the parameters are obtained using 

Minimum Finder A.gorithm(ME'A) developed by Brent [6 11. The MFA combines 

golden section search and successive parabolic search algorithms(detai1s in [61]) to 
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Speech Signa1 
I 

t 
Inmal Estimates 

Coordincrte Optimiz@ion 
with MFA 

Minfmizing Squared 
AR Residual 

Coordinate Optimization 
with Grid Search 

Algoriftim MaximWng 
Output SNR 

t 
Final Esiïrnates 

Figure 4.3: Flow chart for LF model parameter estimation. 

i-k(n+l) i-kn .......... i-2k i-k 
1 I 

T I I I 

Glid Search until OSNR > OSNBk(n+l) ~ r i d  Search until O S N % ~ >  oSN~+k(n+l) 
i- kn 

Choose index haf maximtzes OSNR 

Figure 4.4: Illustration of the Grid Search Algorithm(GSA). OSNR is the output 

SNR, i is the initial estimate of the parameter at which GSA starts, k is the size of 

grid and n is the number steps fkom i at which a maximum is reached. Search may 

continue in either or both directions mt i l  maxima are found. Algorithm selects the 

index that gives the maximum OSNR. 
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h d  a local minimum of a function in a given interval on which it  (the h c t i o n )  is 

defined. We have used the function fminu in Matlab based on MFA for obtaining 

the initial estimates of the LF parameters. The MFA requires the specifications 

of an upper bound, a Iower bound and a termination tolerance for each of the 

parameters to be es timated and uses the mean-squared AR residual given by, 

as cost fùnction to be minimized. The termination tolerance gives the desired 

Iength of the final interval on which the cost function is to be minimized. We 

have set the termination tolerance to a value of 10-4 (found empirically which is 

also the default value used by Matlab) for al l  the parameters. The bounds on each 

parameter were estimated by exhaustive testing for a wide range of parameter values 

for minimizing the cost function in (4.3). It was found that it  was necessary to use 

multiple bounds on the parameters. For optimization? the MFA searches dong 

one parameter coordinate while keeping rest of the parameters constant. Then 

it updates the estimated parameter and continues the search procedure in other 

coordinates until all the parameters have been estimated. The order in which the 

LF parameters were estimated was t,, te, ta' cr and finally P.  

Using initial estimates of the LF parameters, another op timization procedure 

known as grid search algorithm(GSA) via coordinate descent is applied to obtain 

the final estimates of the parameters. The GSA is illustrated in Figure 4.4. For 

each coordinate the GSA starts at i the initial estirnate for that coordinate found 

by MFA while keeping other parameters constant at their initial estimate. Search 

for the maximum OSNR (output SNR) starts with either incrementing or decre- 

rnenting i by the grid size k for that particular parameter and may continue until 

the maximum OSNR is reached. In certain cases where OSN& happens to be in 
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Figure 4.5: AR residuals for Front Vowel /ae/ for one & m e :  (a) White noise driven 

AR estimation error with fitted LF model and (b) LF model driven AR estimation 

error- 
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a valley between two peaks, GSA may search in both directions as shown in Figure 

4.4. F i n d y  GSA selects the index that gives the maximum OSNR. 

As mentioned earlier, we have used multiple bound sets for estimating the pa- 

rameters. The optimization algorithm starts with each set of bounds, h d s  the 

initial estimates using the MFA and the final estirnates using the GSA for that 

bound set. The parameter-estimate set, which gives the maximum output S m ,  

is h d y  selected. Figure 4.5(a) shows AR residuals for Front Vowel /ae/ for one 

frame (256 samples) fitted with LF pulse model by our optimization algorithm. 

L F  model dr iva  residuals shown in Figure 4.5(b) show that the first spike has 

completely been eliminated and the second spike has been reduced in amplitude 

for almost 50% compared to that shown in Figure 4.5(a). The main reason behind 

the second spike not being completely eliminated is that the LF parameters were 

estimated by fitting the LF p S e  train with the AR residuals over the entire length 

of the speech signal. This was done to keep the computational complexity as low 

as possible. 

4.4 Results 

A total of 50 voiced speech phones were taken fiom TIMIT database for an LF 

model based speech enhancement. In order to assess enhancement limits we l e m  

the model parameters separately for each phone as in Chapter 2. Model assertions 

and parameter assumptions described in Section 3.7 also apply in an LF model 

based AR model. E'rame length of 256 speech samples was used. Noisy signals 

were created by adding white noise to an SNR of 5dB. The K h a n  filter algorithm 

described in Section 3.5 was applied. 

Figure 4.6 shows the AR-LF residuals, paralleling the earlier results of Fig- 
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ures 3.6 and 3.8. In moving fiom the purely impulsive to the LF model, the top 

two panels (front vowel and diphthong), in particdar, show a reduction and thin- 

ning of residual spikes and exhibit less deterministic stnicture. A close examination 

of the figures reveals a substantial limitation in u, which begins to be addressed in 

v,,: an impulse b(t) is exactly one sample wide, whereas the width of the residual 

spikes in Figure 3.6 and of the peak in u,, are clearly sampling-rate dependent, and 

are fkequently, although not always, more than one sample in width. A similar issue 

can be raised in terms of sampling origin: a single glottal burst may, depending 

on the sampling origin, be captured as a single impulse or as two smder  impulses. 

An impulse-train u, cannot properly address this issue, whereas u,, is a continu- 

ous signal and lends itself naturally to resampling. The third panel (Figure 3.6(c)) 

showing the residuals for the semivowel /r/ still exhibits a periodic component to 

considerable extent. This shows shortcoming of our optimization algonthm which 

fails to find a good fit of the LF pulse in such case. The two main reasons, that can 

be associated with the poor parameter estimation, are usage of improper bound set 

for initial estimates and optimization over the entire length of the speech signal. 

The fourth panel (Figure 3.6(d)) for the nasal /n/ shows periodicity to extremely 

small extent. But again as for the nasals the effects of the voice source cancels out 

by the zeros in the nasal cavity, they do not possess conspicuous periodic trend in 

the residuals . 

To assess the models more objectively, Tables 4.2, 4.3, 4.4, 4.5 and 4.6 and 4.7 

in AppendkB present results obtained for the &ont vowels, the mid vowels, the 

back vowels, the diphthongs, the semivowels and the nasals respectively. Table 4.1 

summarizes the SNR improvement for each of the three proposed models, tested on 

fifty different voiced phones. Most import antly, consis tent and nontrivial improve 

ments in SNR are realized, first by the impulsive model, then additiondy by the 



LF model? for al2 voiced phones tes ted. The L F  mode1 based AR mode1 achieves an 

average improvement of 1.271 dE? in output SNR over that for white noise driven 

AR model. Due to the assertions and the assumptions made by the model, the 

output SNRs dso indicate the M t s  to performance of the Kalman filter. Among 

aU the phoneme classes, the eont vowek yield the highest improvement of 1-98? 

dB over the conventional AR model. Some of the diphthongs in Table 4.5 have 

very small improvements in the output SNRs with LF mode1 over its impulsive 

counterpart. One of the reasons may be due to that fact that we are optimizing L F  

parameters by fitting a long train of LF pulses with a long train of quasi periodic 

AR residual spikes. Another reason may be associated the problem associated with 

the sampling of the LF model. The parameter te of LF mode1 was made to coïncide 

with pitch periods i.e. with the peaks of the AR residud. But while sampling LF 

model, we must have missed adjacent peaks which contributes low output SNRs. 

4.5 Conclusions 

This chapter has clearly estabfished the applicability of an AR model excited by an 

L F  mode1 for voiced speech enhancement purposes. The effects of the voice source 

is modeled as an LF pulse train t h e  modulated by pitch periods of the voiced 

speech. Main challenge in ushg an LF voice model lies in its accurate parameter 

estimation. The instant of m&um glottal dosure, te is made to coincide with 

the pitch location. For the rest five of LF parameters, we have ~roposed a two step 

optimization algorithm which finds the best fit of LF voice source pulses to AR 

residuals. In the fmt  stage, initial estimates are found using a Minimum Finder 

Algorithm (MFA) proposed by Brent [Gl]. The initial estimates are then used to 

compute final estimates using grid search algorithm (GSA) via coordinate descent. 



CHAPTER 4. LF MODEL FOR ENHANCEMENT OF VOI%ED SPEECH 89 

Figure 4.6: AR residuals for the LF mode1 (4.2) for the voiced phones of Fig- 

ures 3.6, 3.8. The residual spikes either have been retrenched or eliminated com- 

pared to their white noise driven and impulse driven counterpsrts. 
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Phone 

class 
-- -- 

Front vowels 

Mid vowels 

Back vowels 

Semivowels 

Nasals 

Diphthongs 

Mean over 

all phoneme 

classes 

Output SNR in dB 

white noise AR 

AR model 

Output SNR in dB 

impulsive 

AR model 

Output SNR in dB 

L F  model-based 

AR mode1 

Table 4.1: Averaged enhancement resdts for voiced speech phones for input SNR 

of 5 dB and lpc order of 10. 
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We have obtained very promising results with LF m ~ d d  based AR model for voiced 

speech. In cornparison of white noise-driven, impulsive and LF model based AR 

model. the LF mode1 based enhancement gave the best results. 

One very important point worth mentioning is that AR-LF residuah are non- 

white i-e. exhibit periodicity to some extent. This may be partly due to the fact that 

L F  parameter optimization is carried out over the entire speech duration which rnay 

result in sampling of the residual spikes at wrong instances. Hence LF parameter 

optimization over a single pitch period at a tirne would alleviate the presence of 

deterministic spikes in the AR residuals at increased cost of the computational 

compIexity. Another reason behind the presence of spikes in the AR residuals may 

be due to the effects of secondary excitations after the glottal closure[62, 631. These 

facts present various directions for future research. 
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4.6 Appendix B: Details of Enhancement Results 

Phone 

context 

iy32si1386-the-e 

iy16sz378Ahe-e 

ih49si1386-unit i  

i z17s i l386-nego t ia t im io  

eh9si682-theyz 

eh42si682,aread 

eh58si682-ecmmically_e 

ae26sz96- imaginat i rna1 

SNR in dB 

white noise 

AR niodel 

10.399 

8.174 

9.216 

8.589 

8.542 

8.713 

7.635 

8.062 

Table 4.2: Enhancement results for the Front Vowels for input SNR of 5 dB and 

lpc order of 10. 

SNRindB 

impulsive 

AR model 

10.576 

8.639 

10.078 

9.137 

9-241 

9.917 

8.287 

9.310 

SNRindB 

Lf model based 

AR mode1 

10.946 

8.907 

10.680 

9.550 

9.530 

10.443 

8.659 

10.042 



CHAPTER 4. LF MODEL FOR ENHANCEmNT OF VOICED SPEECH 93 

Phone 

context 

SNR in dl3 

white noise 

AR mode1 

SNR in dB 

impulsive 

AR model 

SNR in dB 

Lf model based 

AR model 

Table 4.3: Enhancement results for the Mid Vowels for the input SNR of 5 dB and 

the lpc order of 10. 
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Phone 

context 

SNR in dB 

white noise 

AR mode1 

SNR in dB 

impulsive 

AR mode1 

SNR in dB 

Lf model based 

AR model 

Table 4.4: Enhancement results for the Back Vowels for the input SNR of 5 dB and 

the lpc order of 10. 
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Phone 

context 

SNR in dB 

white noise 

AR model 

SNR in dB 

impulsive 

AR model 

Sm in dB 

Lf model based 

AR mode1 

Table 4.5: Enhancement results for the Diphthongs for the input SNR of 5 dB and 

the Ipc order of 10. 
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Phone 

context 

SNR in dB 

white noise 

AR model 

SNFtindB 

Lf model based 

AR model 

- 

Phone 

/Y/ 

/w / 
/w/ 

/r/ 

1.1 
/1/ 

/el/ 

SNR in dB 

impulsive 

AR model 

Table 4.6: Enhancement results for the Semivowels for the input SNR of 5 dB and 

the Ipc order of 10. 

226~x378-archeologica[ll 

e233sx378-archeologicalJ2 

Phone 

context 

rnllsx378-jimm 

m64si682-economicaIZym 

rn44sz396-smdm 

n22sx96-imaginationn 

n30sx396-on2 

ng56si682-dediningng 

-- 

SNR in dB 

white noise 

AR model 

8.885 

8.716 

9.010 

9.983 

9.202 

6.868 

8.941 

9.368 

SNR in dB 

impulsive 

AR model 

9.707 

9.435 

SNR in dB 

Lf model based 

AR model 

Table 4.7: Enhancement results for the Nasals for the input SNR of 5 dB and the 

lpc order of 10. 



Chapter 5 

Contributions and Future 

Research 

This chapter reviews the contributions of this thesis and discusses possible avenues 

for future research. 

5.1 Thesis Contributions 

The main objectives of this thesis were to find an appropriate model for representing 

speech for enhancement purposes and to establish the limits to performances for 

enhancement systems using such a model. The main concentration of this thesis 

has been on rnodifjrhg the white noise driven A R  model which does not include 

the ef5ects of the excitation source especially in the case of the voiced speech. AR 

model based Kalman filter has been used to  estimate de-noised speech fkoom noisy 

speech. 
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Chapter 3 demonstrated applicability of impulsive AR models for the voiced 

speech the stops and db-icates. Impulsive AR models include deterministic im- 

pulsive driving terms which are tentative models for the &ects of the excitation. 

The efEects of the glottal excitation is simulated by a train of impulses separated 

by pitch periods. The unvoiced stops and the unvoiced &cates have plosive ex- 

citation modeled by a single impulse at the onset of the burst and white noise. 

Excitation for the voiced stops and the voiced f i c a t e s  is modeled by both an 

impulsive train time spaced by pitch periods, a single impulse at the onset of the 

burst and white noise. Impulsive AR models always yielded higher output SNRs 

cornpared to that for white noise excited AR model. This chapter also discusses the 

flaws of impdsive models thereby motivating need for more sophis ticated model for 

source excitation. 

Chapter 4 contributed a deeper understanding of the modeling of the voice 

source excitation for voiced speech enhancement. This chap ter establishes the fea- 

sibility of LF models for voice source in AR models for speech enhancement. The 

main challenge for using an LF model is the parameter estimation problem. An 

optimization algorithm, which finds the best fit for the L F  pulse sequence with AR 

residuals, was proposed. This algorithm computes initial estimates using a mini- 

mum finder a lgof i th  via coorduiate descent. The initial estirnates are then used 

by a grid search algorithm to give final estimates via coordinate descent. Proposed 

Lf model based AR model and optimization algorithm was used for enhancing noisy 

voiced speech phones. An extensive comparative study, of conventional AR model 

driven by white noise with impulsive and LF model based AR models, infers that 

AR model excited by LF model outperforms its counterparts. 
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5.2 Future Research 

Some of the interesting directions for future research are listed in the following 

subsections. 

5.2.1 Parameter Estimation fkom Noisy Speech 

As one our objectives has been to study the limits to performance for the K h a n  

filter based enhancement, we have used clean speech to estimate the AR parameters, 

process noise and measurement noise covariances. This assumption was necessary 

to as optimum K a h a n  filtering requires the accurate knowledge of the noise covari- 

ances and AR parameters. IR reality ofken is the case when o d y  the noisy speech is 

a d a b l e  for processing. A number of methods have been proposed for ident+g 

the noise covariances fkom the noisy speech[64, 65, 661. Various methods utilizing 

EM algorithm have also been used for estimating AR parameters and the noise 

covariances fkom the noisy speech[67, 68, 351. One useful extension of our work 

would be to estimate the impulsive and LF model based K a l m a  filter parameters 

60m the noisy speech using msting methods. 

5.2.2 Parameter Estimation for LF Mode1 

LF parameter estimation problem has been addressed long since but in speech 

s ynthesis perspective[t ?,69, 701. We have solved the parameter estimation problem 

for LF model using a coordinate optimization algorithm. Our algonthm was found 

to be sensitive to the upper and lower bounds for each parameter which are reqnired 

to be specified for MFA. Alternative estimation procedures for enhancement can be 

realized using a d a b l e  optimization algorithms['ll, 72,731. One possible alternative 
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method can be developed using steepest descent algorithm that can optimize in 

multiple dimension. 

5.2.3 Autornated Pitch Detection 

Manual pitch detection was necessary for studying the limits to performance of the 

K h a n  filter. Pitch detection was done manudy from the residual signal (3.2) in 

which the pulses are conspicuous, followed by an automated local peak-finder to 

parantee accurate positioning. In order to apply the proposed models to robust 

continuous speech enhancement it is necessary to automate the pitch detection 

process. Pitch detection problem has been well studied in speech analysis [74]. 

Using one of the available pitch detection algorithms may open up a window of 

opportunities for our proposed models in real life speech enhancement applications. 

5.2.4 Various Types of Measurement Noise 

We have used the assumption that clean speech is corrupted by additive white noise 

as given by 2.1. The measnrement white noise used for our experiments has been 

artificially simulated. It may be a good challenge to use noise encountered in red 

life which may be white, colored or non-stationary for the mode1 given by 2.1. 

5.2.5 Subjective Measure of Enhanced Speech 

For evaluating enhanced speech we have used output S N R  as objective measure 

and while as subjective measure we have inspected the temporal plots of clean, 

noisy, enhanced speech and AR residuds. It remains to be determined how much 

irnprovement has been made when hearing is used as subjective memure. 
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5.2.6 Furt her Investigation of the Driving Term 

One poblem with Impulsive and LF mode1 based enhancernent is that we require 

a prion' knowledge of the pitch period. In the case of voiced fricatives, voiced 

stops or voiced afEicate sometime it was very f i c u l t  to idente the pitch periods 

from AR residuals as such speech types do not show marked periodicity due to 

pole-zero cancelation unlike the vowels, semivowels, dipht hongs or nasals. This 

discrepancy leaves a vast room for investigating production mechanism of the source 

and modeling of voiced consonants for enhancement. 

In this thesis for voiced speech we have assumed glottal excitation occurring 

at the glottal dosure[37]. The LF mode1 based AR residuals show the presence a 

number of quasi-periodic negative and positive spikes. Thus even when the speech 

is clearly periodic it rnay be too simplistic to assume only one form of driving term 

in an entire pitch period[63]. In fact there is some evidence in speech synthesis that 

apart from the main excitation at the glottal closure there may be secondary excita- 

tions after the glottal closure and at the glottal opening at the opening phase[62]. 

Such fact s present good motivations for introducing multiple excitations during 

within a single pitch period for voiced speech. 

Another interesthg extension of our work wodd to d e ~ v e  the excitation wav& 

form directly from the speech waveform. This has been done in a number of 

speech synthesis and analysis literature in order to produce natural sounding speech 

[63,75,76,77,78,55,79]. Such methods rnay rectify the modeling emors introduced 

by the Impulsive or the LF models. 
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