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Abstract

Autoregressive (AR) models have been shown to be effective models of speech sig-
nal. However, although it is the most common model of speech, an AR process
excited by white noise for speech enhancement, fails to capture the effects of source
excitation, especially the quasi periodic nature of voiced speech. Speech synthesis
researchers have long recognized this problem and have developed a variety of so-
phisticated excitation models. Such models have yet to make an impact in speech
enhancement. We have concentrated our research on modifying the conventional
white noise excited AR model for various speech classes and on establishing perfor-
mance benchmarks by studying speech-enhancement, using the proposed models, in

detail for individual phonemes under arbitrarily well-characterized circumstances.

We have proposed three different types of impulsive excitation models for an
AR model for various phoneme classes based on the type of excitation with which
each class is associated. For voiced speech, the effect of the glottal excitation is
simulated by a train of impulses spaced according to pitch periods. For unvoiced
stops and unvoiced affricates, the excitation source is modeled by a single impulse
marking the instant of the onset of the burst and a white noise term. For voiced
stops and voiced affricates, a mixed excitation of the plosive driving term and a
quasi-periodic train of impulses are used. For voiced fricatives a mixed excitation
of white noise and a quasi-periodic train of impulses separated by pitch periods
is used. In each case, impulsive AR models outperformed their white-noise-driven

counterparts.

The success of the tentative impulsive excitation models has motivated us to-

v



wards applying a more sophisticated excitation model. We have chosen one of the
most common excitation source models, the four-parameter model of Fant, Lil-
Jencrants and Lin[l], which is also known as an LF model and applied it to the
enhancement of individual voiced phonemes. We have proposed a novel two step
optimization algorithm for estimating the parameters for an LF model. Among the
AR models with three different types of excitation models (a conventional white-
noise excitation, an impulsive excitation and an LF model), the LF excitation
model yields the best performance in speech enhancement in terms of the output

signal-to-noise ratios (SNRs).
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Chapter 1

Introduction

This thesis deals with the problem of modeling speech for enhancement purposes.
Our approach, in general, involves model-based speech enhancement [4] in which
prior stochastic models of the clean speech and of the corrupting noise are used
for estimation of clean (de-noised) speech from noisy speech. Clearly, accurate
estimation requires that these models be robust and faithful representations of
reality. By far the two most popular models for speech are Hidden Markov models
(HMM) and white noise driven autoregressive (AR) models. We shall discuss the
limitations of such models and enhancement systems based on such models. In this
thesis, we shall focus our research entirely on modifying the white noise excited AR
model based on the concept of the source-filter theory of speech production [3].

Section 1.1 of this chapter presents a general overview of speech enhancement
research that has been carried out so far. Section 1.2 discusses motivations, objec-
tives and contributions of this thesis. Finally, Section 1.3 outlines the organization

of this thesis.
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1.1 Overview of Speech Enhancement Techniques

Broadly speaking, the field of speech enhancement is interested in addressing three
(not necessarily compatible) objectives [4]: (a) the improvement of the perceptual
quality of noisy speech, (b) the immunization of speech encoders against input
noise[5, 6], and (c) the improvement of the performance of speech recognition sys-
tems in the presence of noise(7, 8]. This thesis investigates the first of these. In
our context, the speech enhancement problem concerns the estimation of “clean”
(de-noised) speech Z(t) from noisy speech z(t). Speech enhancement has applica-
tions in a wide variety of speech communication contexts where the quality or the
intelligibility of speech has been degraded by the presence of background noise. For
example, cellular radio telephone systems are plagued not only by background noise
but also by channel noise. Public telephones suffer from environmental disturbances
of their location. Air-ground communication systems are corrupted with cockpit
noise. Moreover the hearing impaired require an increase of between 2.5 and 12 dB
signal-to-noise ratio to achieve similar speech discrimination capabilities to those

of normal hearing [9]. These problems call for the use of speech enhancement.

Researchers have been working on devising an efficient way to extract clean
speech from noisy speech for the last 30 years. Two broad divisions of speech en-
hancement techniques are non-parametric and parametric model based approaches
[10]. One of the popular digital signal processing (DSP) non-parametric techniques
for speech enhancement is spectral subtraction [11, 12]. In 1979, Lim and Oppen-
heim [13] presented an overview of contemporary speech enhancement techniques.
They inferred that spectral subtraction was the most efficient in enhancing speech
corrupted by uncorrelated additive noise. The spectral subtraction method esti-

mates the Fourier transform of the clean signal by removing an estimate of the
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power spectral density of the noise signal. The basic advantage of this approach
is the implementation simplicity and low computational complexity[9]. One major
drawback of this technique is the annoying nonstationary “musical noise” which is
the residual noise consisting of narrow-band signals with time varying amplitudes
and frequencies[4]. A number of modifications of the basic spectral subtraction ap-
proach have been proposed to alleviate the effects of the musical noise[4, 12, 14, 15].
Ephraim et al.[16] have proposed a signal subspace approach for speech enhance-
ment. The basic principle of the signal subspace is to decompose the noisy signal
space into a signal-plus-noise subspace and a noise subspace. After removal of the
noise subspace, the clean signal is estimated from the remaining subspace. They
have shown that the spectral subtraction is a special case of this approach. This
work provides a theoretical basis for the spectral subtraction approach which is a

special case of this signal subspace approach.

The parametric model based approaches have been well received in speech en-
hancement. One example of such models are AR models {17, 18, 19] which have
widely been used for representing speech. Lim and Oppenheim {20] have used max-
imum a posteriori (MAP) estimation techniques for estimating AR parameters for
the speech signal contaminated by additive white Gaussian noise. Hansen et al.
[21] have used similar iterative MAP estimation techniques as in [20] followed by
imposition of interframe and intraframe constraints upon the speech spectra. Such
constraints introduce more speech-like formant trajectories and reduce frame-to-
frame pole jitter and were applied using line spectral pair transformation of the AR

parameters.
Hidden Markov modeling [22, 23, 4] is another common means of parametrically

modeling speech. An HMM assumes that speech is composed of a set of statisti-

cally independent subsources, where each subsource represents a particular class
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of statistically similar sounds [4]. The transition from one subsource to another
is controlled by a first-order hidden Markov chain. The HMM based Wiener filter
(24, 25, 9, 26] has been a popular choice for robust automatic speech enhancement.
Ephraim et al. [24] have used a MAP approach that utilizes the expectation-
maximization (EM) algorithm to estimate the clean signal from the noisy speech.
Ephraim [25, 26] has used the minimum mean square error (MMSE) method that
gives better enhancement results compared with that of MAP estimation which
needs to iterate many times to achieve an acceptable result [9]. The MMSE based
HMM is modified further by Sameti [9, 27] by incorporating multiple state-mixture
based models for speech and noise. This model also incorporates the dynamic na-
ture of the speech signal based on work done by Deng et al. [28, 29]. [30] uses

cepstral domain modeling of speech and noise processes with MMSE method.

Dynamic filtering techniques, such as Kalman filtering, also provide a good
estimate of clean speech given noisy speech. The Kalman filter is based on a state-
space approach whereby a process state equation models the dynamics of the speech
signal generation process and an observation state equation models the noisy signal.
Paliwal et al. [31] have shown that a autoregressive (AR) model based Kalman filter
and the delayed Kalman filter perform better than that of the stationary and the
nonstationary Wiener filters. Gibson et al. [6] have implemented AR model based
scalar and vector Kalman filters for both white and colored measurement noise
assumptions for both speech enhancement and coding. As with any model based
enhancement, the parameter estimation problem remains a big issue for AR model
based Kalman filters when only noisy speech is available[32, 33, 34]. [32] uses
power spectral density of speech signals to calculate the AR parameters. The EM
algorithm has been used by [35, 33, 34] for iterative parameter estimation. Lee et
al. [36] have proposed a Kalman filter algorithm with a hidden filter model (HFM)
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of the clean speech signal. The HFM is an AR model with its parameters associated

with first-order Markov chain.

In this thesis, we review AR model based Kalman filter [31, 6] and HMM based
Wiener filter [25, 26, 9], which provide us with insights for the problems associated
with an AR and an HMM model for speech. In the following section, we discuss
the motivations that led to modifications of the conventional white noise excited

AR model.

1.2 Thesis Motivations, Objectives and

Contributions

In this section, we first present our motivations that fueled our interest in using
voice source models for speech enhancement. We then discuss our objectives and

follow with an outline of the contributions of this thesis.

1.2.1 Motivations

An AR model excited by a white noise process[17, 19] has traditionally been a
favorite choice for modeling speech. One of the advantages of this type of AR
model is the existence of efficient parameter estimation procedures known as lin-
ear predictive (LP) analysis. Secondly, a white noise excited AR model provides
an approximate representation of all speech types, including voiced and unvoiced
speech{17]. Finally, such AR models have a state space representation that can be
used with the Kalman filter algorithms for estimating de-noised speech from noisy
speech. The main limitation of the white noise driven AR model is that it fails
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to take into account the effects of the voice source especially in the case of voiced
speech. This flaw, which is quite evident in quasi-periodic AR residuvals, has been
one of the motivations behind our interest in modifying a white noise driven AR
model. The development of the source-filter theory of speech production initially
proposed by Fant[3] also has an impact on our research. According to this linear
speech production theory[56, 57, 58], speech signal or pressure wave, measured at
a microphone, is produced by the combined effects of the voice source excitation,
vocal tract articulation and radiation from the lips or nostrils. This theory also
provided good motivation for proposing different models for various speech types
based on the nature of the associated excitation. The concept of the source-filter
theory has been well utilized in speech analysis and synthesis. A precise and versa-
tile model of the voice source is vital for production of natural sounding synthetic
speech [37]. A number of deterministic voice source models have been proposed for
speech synthesis and analysis {38, 39, 1]. Such deterministic models also provided
good motivation for adding a source excitation model to the white noise driven AR

model.

1.2.2 Objectives

One of the two main objectives of this thesis is to propose alternative appro-
priate models for various speech types. Another objective is to establish perfor-
mance benchmarks or limits by studying speech-enhancement in detail for individ-
ual phoneme classes under arbitrarily well-characterized circumstances. For mod-
eling the glottal excitation we shall be making explicit assumptions about known
pitch locations for voiced speech. We shall be using clean speech for estimating AR
and Kalman filter parameters. Although such circumstances might appear artificial,

they are essential in understanding the intrinsic factors which limit enhancement
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performance — an understanding which may improve enhancement algorithms in

much broader, less constrained conditions.

1.2.3 Contributions

One of the contributions of this thesis is the comparative study of HMMs and
AR models. We have investigated advantages and drawbacks of the state-of-the-
art HMM based and AR model based enhancement systems. Some of the signifi-
cant contributions of this thesis are implementing impulsive models for individual
phoneme classes. Impulsive AR models include impulsive driving terms which are
tentative models for the excitation source. For voiced speech, glottal excitation
is modeled by a train of impulses spaced according to pitch periods. For voiced
stops and voiced affricates, the voiced excitation is modeled by an impulse train
and plosive excitation is modeled by a single pulse marking the onset of the burst
and white noise. Unvoiced stops and unvoiced affricates use the plosive excitation
term. We have demonstrated the appropriateness of our models by applying such
models to a wide variety of phonemes. We also have clearly demonstrated the limits
to performance for Kalman filter based enhancement by making a number of model
assertions and parameter assumptions. Impulsive models have shown remarkable
improvements in output signal-to-noise ratios (SNRs) over the conventional AR

model driven by white noise.

The success of impulsive AR models over the conventional white noise driven AR
models has motivated us to use a more sophisticated model for the voice source. An-
other significant contribution is the proposal of using an LF based model for voiced
speech. An LF model is based on the glottal model proposed by Fant, Liljencrants
and Lin[l]. The LF model has been well received in speech synthesis and analysis
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for a long time, but it has yet to make an impact on speech enhancement. Param-
eter estimation problems associated with an LF model for speech enhancement are
completely different from those of speech synthesis. A novel parameter estimation
procedure has been proposed for LF models for speech enhancement. Finally, we

also discuss the limits to performance for LF model based Kalman filter.

1.3 Thesis Organization

Chapter 2 presents the background relevant to impulsive and LF model based AR
models for speech enhancement. It begins with a brief introduction to the type
of speech enhancement problem we are interested in this thesis. It then briefly
introduces the white noise excited AR model and the Wiener filter. The next
two sections discuss HMM and Kalman filter based systems. Next, we review the
anatomy and physiology of the human speech production system followed by the
discussion of the phonemes used in North American English. Finally, we present
a concise description of the TIMIT database used to supply the speech data for

enhancement.

Chapter 3 proposes and implements impulsive AR models for speech enhance-
ment. We begin by discussing the drawbacks of a white noise excited AR model,
followed by a review of the performance of the two state-of-the-art speech enhance-
ment systems: AR model based Kalman filter and HMM based Weiner filter. The
next section reviews the production mechanism of various phoneme classes. We
propose impulsive AR models for various phoneme classes in the next section. The
next three sections discuss the Kalman filter algorithms, the AR parameter esti-
mation techniques for impulsive models and the model assertions and assumptions.

Finally, enhancement results for impulsive models are presented and discussed.
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Chapter 4 concentrates on proposing and implementing an LF excitation model
for voiced speech enhancement. This chapter begins by motivating a need for more
sophisticated excitation models compared to tentative impulsive models. The next
section reviews some of the voice source used in speech synthesis, and discusses
the feasibility of the LF voice source model for speech enhancement, followed by
a discussion of an LF model. Next, we propose an optimization procedure for LF

parameter estimation. Finally, the results for LF model based enhancement are

presented and discussed.

Chapter 5 summarizes the results of this thesis and presents a number of

directions for future research.



Chapter 2

Background

The main objective of this chapter is to motivate a foundation for voice source
model based enhancement. Section 2.1 discusses the speech enhancement problem
in general while Section 2.2 presents the white noise driven autoregressive model
most commonly used in speech processing. As mentioned in Chapter 1, we shall
be comparing performances of the state-of-the-art HMM based Wiener filter and
AR model based Kalman filter systems in Chapter 3. Section 2.3 therefore briefly
mentions Wiener filtering before reviewing HMM based system in Section 2.4. Sec-
tion 2.5 is dedicated to the autoregressive model based Kalman filter. As we shall
be proposing voice source model based enhancement system (in Chapters 3 and
4) based on the production mechanism of the smallest speech units (phonemes or
phones), we discuss the speech production system in Section 2.6. We briefly men-
tion the phonemes used in North American English in Section 2.7. Finally, Section
2.8 discusses the TIMIT database in concise manner as we shall be using the speech

data from the TIMIT database.

10
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2.1 Speech Enhancement Problem

Speech enhancement deals with minimizing effects of noise on speech by improving
the perceptual quality of noisy speech, improving the performance of machine rec-
ognizers in a noisy environment or immunizing speech coders against input noise[4].
As mentioned in Chapter 1 in this thesis, we shall be dealing with only with the first
type of speech enhancement problem. Let {z(¢)},z(t) € R be a random process
modeling the noisy speech. Let {z(¢)},z(f) € R denote a random process model-
ing the clean speech while let {v(¢)},v(¢) € R be a random process representing

measurement noise modeled as a Gaussian white noise. Let us assume that
z(t)=z(t)+v(t) 0<t<T (2.1)

and that {z(¢)} and {v(¢)} are statistically independent and that {v(¢)} is a white
Gaussian process with a zero mean and a variance of ¢2. The speech enhancement
problem, in the context of this thesis, concerns the estimation of the clean speech
z(t) from the noisy speech z(t), given a model for clean speech and a model noisy
speech. As pointed out by (2.1), in this thesis we shall only be dealing with additive
noise, or more specifically, with additive Gaussian white noise. The two models,
used for representing speech discussed in this chapter, are an Autoregressive (AR)
model and an Hidden Markov model (HMM). Our research is concentrated on
modifying the excitation term associated with an AR model. We present in the

following section, a detailed discussion an AR model with white noise excitation.

2.2 Autoregressive (AR) Speech Model

In this section, we present AR or all-pole model which is one of the most popular
models for representing speech waveform(19, 17, 40]. This model is based on an
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acoustic analysis of speech production system(17, 2]. The popularity of the AR
model stems from its simplicity, and because the human vocal tract during voicing
can be modeled by an all-pole system[17]. Furthermore, although unvoiced speech
and nasals introduce zeros into the system, since the zeros of the transfer function
of the vocal tract lie inside the unit circle, [17] they can be approximated by an
all-pole system with sufficiently many poles. In such model, a speech sample is
approximated as a linear combination of past speech samples and a white noise
term. Let us assume that the clean speech sequence z(t) is generated according to
an N.th order AR model,
Nz
z(t) = > a:z(t — ) +w(t) (2.2)
i=1
where w(t) is a zero mean, white Gaussian process with variance o2 and q; is the

ith AR coefficient. w(t), also known as process noise.

Another advantage of an AR model is that its parameters can be estimated
accurately using the method of linear predictive(LP) analysis. Among many for-
mulations of LP analysis, the covariance method (17, 19] and the autocorrelation
method [19, 22, 17] have been used extensively in speech processing. It has been
shown in [17] that a predictor order of 12 gives a reasonable estimate for all speech
types. Finally, because (2.2) can be rewritten in state-space form, the Kalman filter
can be used to compute the optimal estimates Z(¢) of z(¢) [31, 6].

2.3 Wiener Filter

Wiener filter based enhancement algorithms have been used widely in speech be-
cause of the simplicity of implementing the Wiener filter13, 41, 4]. A Wiener filter,
represented by the coefficient vector W accepts a noisy signal z(¢) and yields the
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minimum mean squared estimate (MMSE) z(t) of a desired signal z(¢). An Op-
timum solution for the coeflicients is obtained by mean square estimation (MSE)
only when the input signal is stationary.The filter output is given by

J-1

2(t) = Y Wiz(t — i) = Wz (¢) (2.3)

i=0
where the filter input vector z(¢)T = [z(¢), z(t —1), ..., z(t —J —1)] and the Wiener
filter coefficient vector W% = [Wo, Wi,..., W;_;]. The estimation error signal is
given by

e(t) = z(t) — &(t) = =(t) — WzL(¢) (2.4)
while the mean squared estimation error is given by,
E[e*(t)] = E[z(t) — W2T (¢)]* = E[z(¢)*] — 2Wr,, + WR,,WT (2.5)

where £[] denotes the expectation, R.. = £[z%(¢)z(¢)] is the correlation matrix
of the noisy signal and r,, = £[zT(¢)z(t)] denotes the cross correlation vector of
the desired and input noisy signals. The coefficients of the filter, obtained by
minimizing the mean squared error £[e?(7)] with respect to filter coefficient vector
W, are given by

W =R]'r., (2.6)

The system of equations in (2.6) are known as Wiener-Hopf equations [42].

The basic Wiener-Hopf equations in (2.6) can only be applied to stationary
signals. For nonstationary speech signals, a number of methods have been proposed
based on short-time power spectra [9, 31]. These nonstationary Wiener filters can be
used only for the signals which are stationary over a small segment of time. We shall
not go into details on frequency domain formulation of Wiener filter theory [42, 41]

but rather just present the formulation frequently used in speech enhancement. For
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the uncorrelated signal z(t) with the noise v(¢) in (2.1), the autocorrelation matrix

R.. of the noisy signal is given by,
R.. = Rz + Ry (2.7)
and the cross correlation vector r.. is expressed as
CFzz = Czz (2.8)

where R.. and R,, respectively are autocorrelation matrices for clean signal and
noise. Substituting (2.7) and (2.8) into Wiener-Hopf equations (2.6), gives an

optimal linear filter coefficients for noise filtering,
W = (Rf.:z + Ruv)—lrzz (2'9)

Applying a Fourier transform to both sides of (2.9), we obtain a very useful formu-
lation of Wiener filter used in speech enhancement, the transfer function H (jw) for
a Wiener filter is given by (9, 13],

_ Szz(w)
W(w) = Slw) + 50a(@) (2.10)

where S;.(w) and S,,(w) denote the clean speech and noise spectra. We shall be

using this form of Wiener filter given by (2.10) with the hidden Markov model

based enhancement system which is discussed in the following section.

2.4 Hidden Markov Model (HMM) Based Speech

Enhancement

One popular parametric statistical model for speech is the hidden Markov model
(HMM) [22, 24, 25, 26]. Before reviewing an HMM in detail, we define some of
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Si == [ th state
hix—=" transition probability
Jfrom the state i to k

Figure 2.1: A fully connected three state HMM structure.

the very basic concepts of stochastic processes that form the basis for an HMM.
An HMM, is a double layered finite state stochastic process where the selection
of states of an observable process is governed by a hidden Markov chain. A first
order Markov chain is a stochastic process where the conditional distribution of any
future state given the past states and the present state, is independent of the past
states and dependent only on the present state [43]. Based on the state-to-state
transition, there are various configurations for HMMs. One such configuration is
an ergodic HMM. By ergodic HMM we mean that every state can be reached from
every other state of the model in a finite number of steps[22]. Figure 2.1 shows
a three state ergodic or fully connected HMM structure. Another example of the
HMM structure is the left-right HMM is usually characterized by the number of
states, the number of mixtures, in model where transitions are allowed only from
a left to a right state. In an HMM, each state dependent probability distribution
(PD) can be chosen to be a mixture of Gaussian or any other type of PD. An HMM
is usually characterized by the number of states, the number of mixtures, the initial
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transition probability, the transition probabilities for one state to another and the

mixture coefficients.

HMMs have long been used as a reliable statistical model for speech as it can
model the nonstationary nature of speech by transition between different states.
A large number of states can be used to represent different spectral prototypes of
speech. As mentioned earlier a state dependent probability density can be chosen
to be a mixture of Gaussian probability densities. An advantage of such representa-
tions is that we get finer models of speech data[4]. In the case of speech recognition,
a separate left-right model is used to characterize the temporal structure of every
speech unit which may be a phoneme or a word[9]. As each model contains the
ordered sequence of stochastic properties corresponding to a particular speech unit,
transitions from a higher indexed to a lower indexed state is prohibited. In a left-
right model if exactly similar speech properties, i.e., exactly similar speech units
occur in different frames of time they are assigned to different states. The reason
behind using a left-right model is that the objective in speech recognition is to
find models with maximal separation so that they give as different likelihoods as
possible for pattern recognition purposes. For speech enhancement, we have dif-
ferent objectives and thus the modeling problem is different from that of speech
recognition[9]. We need two distinct models for clean speech and for noise to esti-
mate the de-noised speech from the noisy speech. We require that an HMM extracts
the general spectral properties of clean speech regardless of the phoneme, word or
sentence. This is done to differentiate the speech from the noise. Hence, we need
to only model the averaged out or the global characteristics of speech and noise.
Unlike speech recognition there are no constraints on the transition probabilities in

enhancement models i.e. an ergodic HMM model can be used for enhancement.

Let us present the parameters that are used to characterize an ergodic auto-
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regressive (AR) HMM [9]:

e Ng, the number of states [S1,S2,...,Sn,] in the model.
o N, the number of mixtures [M;, M, ..., My,,] per state.
e The set of initial probability distributions, @pmm = {m;} where
ey = P(s0=35:), 1<z< Ng ' (2.11)
where sg is the state at time 0.
o The set of the state transition probabilities, A = {h,,_,, } where
Rey_rse = P(se = Sjlse-1=5;), 1<1,7<Ng (2.12)
where s, is the state at time t.
e The set of mixture weights, ¢ = {cn,[s, } Where
Crmelse = P(me = Mi|se = S;), 1<k< Ny, 1<j<Ns (2.13)

where ¢, |5, expresses the probability of choosing the mixture m; given that

the process is in state s;.

e a = {ai;} with ay; being the AR parameter set of a zero-mean N, th order
Gaussian AR output process corresponding to state and mixture pair (7, k),
where ay; = {aklj(O),aklj(l),...,ak,,-(N,,.),a',":lj}, api(0) = 1, o-;:la' being the

variance for 7,7 = 1,2,...,Nsand £ =1,2,..., N,..

e Thus let A\; = (Thmm, h,C, @) be the parameter set for Gaussian AR HMM
modeling the clean speech = while A, = (Tmm, k, ¢, @), be the parameter set

for Gaussian AR HMM modeling the noise v.
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There are two steps in HMM based enhancement (details in Chapter 3). First
HMMs are trained (discussed in the following section)} for clean speech and noise.
Then the noise model together with the clean speech model is used to filter out
the noise from the noisy signal. Two distortion measures commonly used in HMM
based speech enhancement are the minimum mean square error (MMSE) [25, 26, 9]
and the maximum a posteriori (MAP) [24] estimation. It has been shown in [4, 9]
that MMSE estimation has computational advantages over MAP estimation based

enhancement. Thus we shall only discuss the MMSE estimation associated with
HMM proposed in [25].

2.4.1 Training HMMs for Clean Speech and Noise

Let zé{z,,t =0,...,T — 1},z € RX be a sample function of the noisy speech,
where R¥ represents K dimensional Euclidean space (frame-length). Let :cé{:z:t, t=
0,...,7—1},z, € RX and vé{vt,t =0,...,T —1},v. € R¥X respectively represent
sample functions of the clean speech and the noise process. z, z and v are related to
each other according to equation 2.1, where £ and v are statistically independent.
Let pAz(z) and p)\,(v) be the PDF of a Gaussian AR HMM for the clean signal
and noise respectively. Let sé:{st,t =0,...,7 —1},s; € 1,..., Ns, be a sequence
of states corresponding to z and let mg{mt,t =0,...,T—1},m, €1,...,N,, be
a sequence mixtures corresponding to (s,z). The pA.(z) is given by [25, 9],

Prz(z) = D) pA(s,m,z) (2.14)
T~-1
= ZZ{Q Peaey 5t CrmelocD( ez, 56)} (2:15)
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where b(z.|m., s;) is the PDF of the output vector z; given (m, s;). For N th order
AR process with zero mean, if K 3> N,, we have {44],

— 202.
badme, ) = 2L 2] (216)

where B is the autocorrelation function defined as,

Nz
B £ 1,(0)ri5(0) + 2 3 re(m)rrs(n), (2.17)
n=1
re(n) = SEG ! ze()ze(l + 1) and 7 j(n) = Sieg ™ he j({) Ak j({ +n) are autocor-

relation sequences for 1 < k< N, and 1 <1z,j < Ns.

As we have defined a complete parameter set Ay = (Thmm,h,c,a) for an AR
HMM process for clean speech, we are now left with the problem of given a training
sequence z, how do we obtain a maximum likelihood (ML) estimate of the parameter

set Az = (Thmm, R, ¢, a), that is,
maxlnp,, (z) = rrﬁxlnX‘:;pn(s,m,z) (2.18)

This maximization is usually carried out by using the Baum algorithm [25].
An approximate maximum likelihood estimate of the parameter set can also be
obtained using segmental k-means method [9] when the double sum in (2.18) is
dominated by a single state and mixture sequence and the parameter set can be
maximized along that dominant sequence, that is,

max In ) Y prs(s,m,z). (2.19)

3 MAT

The segmental k-means method being computationally more efficient than the
Baum algorithm [9], we have used it in our work for parameter estimation for

HMM. A good initial model is required for k-means reestimation method as it only
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computes a local maximum of an objective function (given by (2.19)). The ini-
tial model for segmental k-means method is obtained from vector quantization of
the training data using the generalized Lloyd algorithm(GLA) with Itakura-Saito
distortion measure[9, 45]. The training procedure for HMM consists of two main
steps, namely, vector quantization (VQ) and segmental k-means (SKM) method
for estimating the parameter sets A, and A, for the clean speech and noise models

respectively.

Vector Quantization (VQ)

The generalized Lloyd algorithm is used to design a (Ns x N;,) VQ code-book for an
HMM with Ng states and N, mixtures. Codewords are successively split, starting
from the centroid of the training data. until an Ng entry code-book is obtained.
Each code-word consists of the AR parameter set and the gain term associated with
them. In each step, the code-word with the largest residual energy is selected to be
split by perturbing by two small values to obtain two new AR models. To ensure
the stability of the perturbed models, the reflection coefficients associated with the
AR models are first calculated and then multinlied by two numbers close to 1,
finally the corresponding AR models are obtained from these perturbed reflection
coeflicients [9]. After each perturbation GLA (details in [45]) is used to optimize the
code-book. This process of splitting and optimization is carried out until desired

size Ng is reached.

The mixtures within each state codeword are determined using the same iter-
ative procedure with the AR models initially in the parent partition. Thus, an
initial estimate for the AR parameters of Ng state and N,, mixture HMM is ob-
tained. Then the training data is clustered using the estimated code-words and

then the initial estimate for (%pmm, k, ¢, @) parameters is obtained from the relative
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frequencies at which the initial state. state transition and mixture component are

chosen.

Segmental k-Means Algorithm (SKM)

We are going to discuss the algorithm for modeling with N number of training se-
quences of speech data. Given N training sequences of speech data, an approximate
maximum likelihood estimate of the parameter set A, is obtained using the SKM
algorithm [46]. The parameter set is estimated along with the most likely sequence
of states and mixture components. The objective function we expect to maximize
in this case is (9],

N
Inpaz(s,m,z) = Zlnp,\z(sn,mn, Zn). (2.20)

n=1l

The maximization of (2.20) is carried out in two stages. First starting with an
initial model Az, the optimal state and mixture sequence (sP*mZ*) for the nth
token is obtained using a Viterbi algorithm [22]. Viterbi search gives the optimal
state and mixture sequence for each training sequence using the following metric

path,

In 7; + In cpy; + In b(yonlmon = k, 800 =3) t =0
Ina;; +Incy; +Ind(yenlmun =k, sen=73) 1 <t< Ty (2.21)

Once the optimal path is obtained the model parameters are re-estimated in the

second stage of maximization. The parameter re-estimation formulae being,
N Nl'l

Z > Pon(d k) (2-22)

n_l k=1
Tn—1
a::j _ Zn_l t_ -21};-1 Pt.n("’ Ja ) (2'23)
| 21—1 1 E: R Pen(i, 5, K)
’ 2t=1 Pt,n(]: k)
Cri; - (2.24
Wi = Z n_l 3'21_1 Pt'ﬂ(]w k) )
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where P,.(j,k) is the probability of being in state j and choosing mixture & at
time ¢ given the model Az and z, while P, ,(7. 7, k) is the probability of transition
from state ¢ at time £ — 1 to state j at time ¢ given the model Az and z,. These
probabilities can be calculated using the forward-backward algorithm[24]. This

process of alternative maximization is carried out until the convergence of (2.20).

2.4.2 HMM Based Minimum Mean Square Error (MMSE)

Enhancement

The HMM based MMSE enhancement system [9, 25] we are going to discuss, uses
a multiple state and mixture noise model to accomodate non-stationarity in noise.

The system is designed to determine an estimate Z, of clean speech z., where

e = g{ztlzf)}

= [zm(zilz)

fztpa\l(zg)pl\v(zé - $6)d$5 (2 25)
I Prs(28)Pro(2f — z6)dzh '

We shall not go into the detailed derivation of Z; which is estimated using the
forward algorithm in [25] but rather present the solution as,

Nsz Npnz Nsv Nyu
Ty = Z z Z Z Pt(j: k*)f’ levg)g{ztlzty St =j1 e, = kv St, = 6, My, = 6}7
=1 k=1 &=1 é=i
(2.26)
where P;(7,k,&,68|28) is the posterior probability of speech state 7 and mixture %,

and noise state £ and mixture § at time ¢ given the noisy signal z§.
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In (2.26) we notice that the MMSE estimator of z; given z§ is a weighted sum
of the individual MMSE estimators of the output processes generated by the clean
speech HMM, where the weights are the probabilities that the individual estima-
tors are the correct ones for the given noisy signal [9]. The exact evaluation of
E{z¢|zt. 3¢ = j.ms = k,n, = £, p. = 8} is not trivial. It has been shown by Ephraim
[25] that if the variances of the innovation process of the AR sources are assumed to
be circulant, E{g(z.)|z:, s+ = j,m: = k,n; = £,p: = &} can be given by the Wiener
filter where z, = {X,(k),k =0,1,..., K — 1}, Xi(k) being the kth component of the

discrete Fourier transform(DFT) of z,.

There are two major problems in HMM for speech enhancement [9]. First, such
a model requires a large number of states to accomodate rapidly varying speech
signals. This increases the computational complexity together with the risk of
affecting the performance of HMM for slow varying speech signals. Second problem
in HMM is that since a constant mean is assumed for the observation probability
within each state and different states have different mean values, the continuity of
speech features is affected. We shall be discussing the performance of MMSE based
HMM speech enhancement in the following chapter.

2.5 The Kalman Filter Based Speech

Enhancement

The fact that AR state-space models for speech can be used with the Kalman filter
has given good motivation for using the Kalman filter for speech enhancement|6, 31].
As we shall be using, in next two chapters, the Kalman filter as an estimator, we
present an extensive derivation of the Kalman filter algorithms[47, 42, 48]. The
Kalman filtering problem for a linear dynamic system is formulated in terms of two
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basic equations: the process equation that describes the dynamics of the system in
terms of a state vector and the measurement equation that describes measurement

noise incurred in the system.

Let an N,-dimensional parameter vector x(£) denote the state of the discrete-
time, linear, dynamical system and let z() denote the observed data of the system
at time t. The canonical state space model for the AR model in (2.2) is given by
[6. 31],

x(t) = Fx(t ~ 1) + Guw(t) (2.27)
where x(¢)T = [z(t — Nz + 1) z(t — N, +2) .... =(t)] and x(t) =0 for t <0,
the state-transition matrix F is given by

(0 1 0 ...0 0
0 0 1 ... 0 0
F = :
0 0 0 ... 01
i aN, aN.-1 @aN.-2 ... G2 Qa1 ]

where the ay, is the N th order AR coefficient, and the process matrix G is given
by.
T
G=[O 0 ... 00 1]

and the observation model for (2.1) is given by,
z(t) = H x(t) + v(¢) (2.28)
where the observation matrix is given by,
H=G

The noise sequences {w(t)} and {v(¢)} are zero mean Gaussian white noise processes

with variances ¢, = 02 and g, = o2 respectively and are uncorrelated. For all ¢
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and &, we can write,

Elw(t)} =0, E{wt)w(k)} = quier (2.29)
E{v(t)} =0, E{v(t)v(k)} = gudr (2.30)
E{w(t)v(k)} =0, E{z(t)v(k)}=0. (2.31)

If x(t) and 2z(t) are assumed to be be jointly Gaussian the Kalman filter is a
estimator which gives optimal estimate of the x(t) given the noisy data {z(¢), z(t —
1),...}. For such Gaussian distribution, the optimal estimate is the MMSE estimate

given by

x(tlt) = E[x(¢)|2(t), z(t — 1),.. ] (2.32)
The corresponding state estimation error covariance X, (t|t) is then defined as,
B (tlt) = E{ex(tlt)ex(tlt)T} (2.33)

where e.(t|t) = x(t|t) — X(£|t)T is the state estimation error. Similarly, the one
step predicted error of x(¢|t) is ex(t[t — 1) = x(¢|t) — X(¢|¢ — 1) and associated error

covariance matrix Xy (t|t — 1) is defined as
B (tt — 1) = E{ex(tlt — 1)ec(t]t — 1)T} (2.34)

In solving the Kalman filtering problem, we shall use the innovation approach that
takes advantage of a special stochastic process called the innovation process [49, 42]

which we shall introduce in the following section.

2.5.1 The Innovations Process

Let z(t|t —1) be MMSE estimate of the observation z(t) at time n given all the past
observations upto time n — 1, that is, given 2z(1),2(2), ..., z(¢ —1). z(¢[t —1) is also
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known as one-step prediction of z(t). We can now define the forward prediction
error as,

e (bt — 1) = z(t) — 2(t|t — 1) (2.35)

According to the principle of orthogonality[42], €.(¢|t — 1) is orthogonal to all past
measurements, i.e. to {z(1)....,z(t-1)}. In (2.35) we see that the new information
about the measurement z{t) at time ¢ is accommodated in the forward prediction
error €;(t|t — 1). Hence, the name innovation for 7(t) = €,(tjt — 1). The innovation

process is a stochastic process that has the following properties [42]:

e The innovation n(t) assoctated with the observation z(t) ct time n is orthog-

onal to all past observations,

En(t)z(k)] =0, 1<k<t—1 (2.36)

o The innovation process consists of orthogonal random variables,

ElEmk)] =0, 1<k<t—1 (2.37)

e There is one-to-one correspondence between the observations {z(1), z2(2), ..., z(t—

1)} and the innovation process {n(1),7(2),...,n(t —1)}.

2.5.2 State Variable Estimation

According to the measurement model (2.28), there is a linear relationship between
the state vector x(t) and observation z(f). Since there is one to one correspon-
dence between the observations and the innovation process as stated in the previ-
ous section, x(t) must be linearly related to the innovation 7(t) associated with the

observation z(t). Again for a Gaussian time-varying process, the optimal MMSE
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estimator is linear [50]. Thus, we can express the MMSE estimate, of the state
vector x(t), X(t|t) as linear combinations of the innovation sequence, that is,
¢
%(tt) = 3 Be(k)n(k) (2.38)
k=1

where {B¢(k)} is a set of N_-dimensional vector to be determined. According to the
principle of orthogonality[42], in order for the cost function to attain its minimum
value in the mean square sense, the state estimation error ex(¢|t) and the observation
z(t) are orthogonal. Thus, according to the properties of the innovations, the state

estimation error must also be orthogonal to the innovation 7(t), that is,

E{ex(tlt)n(k)} = E{x() — x(¢[t))}n(k) (2.39)
= 0 k=1,2,...,¢t

Using (2.38) and (2.37), we rewrite (2.39) as,
B.(k) = E{x(t — L)n(k)}r;" (2.40)

where r, = £{n(k)?} is the zero-lag autocorrelation for n(k). Substituting (2.40)
and (2.27) in (2.38) and making use of the fact that E{w(k)n(k)} =0for 0 < k < ¢,
we express the MMSE estimate for x(t{t) as,

%(t|t) = Fx(t|t — 1) + E{x(t — L)n(t)}r; 'n(t) (2.41)
Defining,
&= E{x(t — )n(t)}r;? (2.42)

and since according to (2.35) and (2.28), the innovation 7n(t) and z(t) are related

by,
n(t) = z(t) — HFx(t — 1]t — 1) (2.43)



CHAPTER 2. BACKGROUND 28

we define the state vector estimate as,

%(tt) = Fx(t—1jt —1) — s(t)[z(t) — HTFx(t — 1|t - 1)] (2.44)

Fx(t — 1t — 1) — sn(2) (2.45)

From (2.44) we observe that the MMSE estimate of the state of a linear dynamical
system can be estimated by adding a correction term {x7n(t)} to the product of the
previous state estimate %(¢t — 1|t — 1) and the state transition matrix F. Thus & is

reffered to as Kalman gain.

2.5.83 Kalman Gain

In this section, we express the Kalman gain & in a convenient form for computation[42,
47, 50]. We rewrite the expression for the Kalman gain, by substituting for x(¢ —1)
and the innovation 7(t) = He,(¢t|t — 1) + v(¢), as,

£ = E{x(t)e.(t]t — 1)} Hr* (2.46)

As e.(t|t — 1) and x(f — 1) are orthogonal,

£ = Ee(t|t — 1)Te (|t — 1)}Hr" (2.47)
= B(tlt —1)r;? (2.48)
= Xi(t|t — H[H ()t — H + ¢, (2-49)

where the one step state prediction error covariance X (¢|t — 1) is given by,
Bi(t|t —1) = F2, (¢t — 1|t — 1)FT + G¢,GT (2.50)
and state estimation error covariance X (t|t) is given by,

Se(tlt) = [I — s(&)HT|Z(t)t - 1) (2.51)
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2.5.4 Summary of Kalman Filter Algorithms

We summarize Kalman Filter Algorithms[42, 48, 50] in this section.

Priors:
%(0j0) = O (2.52)
B.(000) = [0]n.xn. (2.53)

Prediction Steps:
x(tlt—1) = Fx(t — 1|t — 1) (2.54)
Su(tlt — 1) = FE, (¢t — 1|t — 1)FT + G¢, GT (2.55)

Update Steps:

k(t) = FE (¢t ~ 1) H[q, + HT S, (¢t — 1)H] ! (2.56)
%(t|E) = x(tt — 1) + s(t)[2(t) — HTx(¢]t — 1)) (2.57)
B(tt) = [[ — w(¢)HT | Se(t]t ~ 1) (2.58)

The speech sample estimate £ at time ¢ is finally found by,
&(t) = HIx(¢]t) (2.59)

The simplicity of Kalman filter algorithm makes it an attractive candidate over a
more complex HMM based system. The problem with this sort of implementation
of Kalman filter is that we are using (2.2) for modeling speech signals. This model is
not a good model for representing all speech types. Thus, AR parameters estimated
with this model affect the enhancement capability of Kalman filter. Gibson et al.
(6] have presented a Kalman filter formulation for colored noise. But it was found
that the colored noise formulation gave only minor improvement at the cost of

increased implementation complexity.



CHAPTER 2. BACKGROUND 30

2.6 Speech Production System

In order to have a good model for representing the speech signal, we need to have a
good understanding of the process of speech production. In the following subsection,
we present a concise description of the anatomy and physiology of speech production

51, 2, 52].

2.6.1 Anatomy and Physiology of the Human Speech

Production

The speech production apparatus is comprised of three major anatomical subsys-
tems [51]: the respiratory, the laryngeal and the articulatory subsystem. Figure
2.2 depicts the speech production system. The respiratory subsystem is composed
of the lungs, trachea or windpipe, diaphragm and the chest cavity. The Larynx
and pharyngeal cavity or throat constitutes the laryngeal subsystems. The artic-
ulatory subsystem includes the oral cavity and the nasal cavity. The oral cavity
is comprised of velum, tongue, lips, jaw and teeth. In speech processing technical
discussions, the vocal tract is referred to the combination of the larynx, the pharyn-
geal cavity and the oral cavity. The nasal tract begins at the velum and terminates
at the nostrils.

The respiratory subsystem behaves likes an air pump, supplying the aerody-
namic energy for the other two subsystems. In speech processing, the basic aero-
dynamic parameters are air volume, flow, pressure and resistance [51]. The main
contribution of the respiratory subsystem for speech production is that when a
speaker inhales air by muscular adjustments that causes in increase in volume of

the respiratory system, the lungs then release air by combinations of passive re-
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Figure 2.2: An illustration of the human speech production system after [2]

coil and muscular adjustments. Air release depends on the volume of air in the
lungs and aerodynamic requirements. The laryngeal subsystem acts as a passage
for air flow from the respiratory subsystem to the articulatory subsystem. In the
laryngeal subsystem, the larynx comsists of various cartilages and muscles. For
speech production, of particular importance are a pair of flexible bands of muscle
and mucus membrane called vocal folds, stretching from the thyroid cartilage in
the front to the arytenoids cartilages at the rear. The vocal folds vibrate to lend
a periodic excitation for production of certain speech types which we will discuss
in Chapter 3. The vocal folds come together or separate respectively to close or

open the laryngeal airway. The opening between the vocal folds is known as the
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Phonrmes
F' o
Vowels Diphthongs  Semivowels
ley/
| | fay/ 1 iqui Glid
Front Mid Back Liquids 1des
v ler/ fuw/ foy/ It/ fwi
iyl fax/ Jub/ ey Iyl
feh/  jaby Jow/
lae/ fao/ [
Jaa/ Consopants
l ] irati Afﬁlcates
Nasals Stops Fricatives Aspiration AT
/m/ M/ hn/
n/ Iclv/
/ng/ Voiced Unvoiced Voiced Unvoiced
o/ fp/ vt /f
fd/ v /dh/ /th/
lef A Iz Is/
/zh/ Ish/

Figure 2.3: Classification of Phonemes in American English

glottis. The articulatory subsystem stretches from the top of the larynx up to the
lips and nose through which the acoustic energy can escape. The articulators are
movable structures that shape the vocal tract, determining its resonant properties.
This subsystem also provides an obstruction for some cases or generates noise for

certain speech types.

2.7 Phonemes and Phones

Let us first define some of the very basic speech representing units. A sequence of
various sound units constitute a speech signal. These sound units are manipulated

by the language rules known as linguistics[2]. The sound units, used as basic theo-
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retical units for expressing linguistic meaning are called phonemes. Each phoneme
has a unique set of articulatory gestures. These articulatory gestures specify the
type and location of speech excitation and the position or movement of the vocal
tract articulators. In American English, there are 42 phonemes [2], [52]. These
phonemes are divided into four broad classes: Vowels, Diphthongs, Semivowels and
Consonants as shown in Table 2.3. Consonants include five classes of phonemes:
Nasals, Stops, Fricatives, Affricates and Aspiration. A phoneme is considered as
continuant if it is produced by a steady-state vocal tract configuration excited by
appropriate source. Vowels, Fricatives, Affricates and Aspiration are continuant
phoneme classes. The remaining phoneme classes are produced by varying vocal

tract configuration.

As the definition of a phoneme goes, it can be considered as an ideal unit
of sound with a set corresponding articulatory gestures. But in reality, accents,
gender, coarticulatory effects etc. all give rise to variability of the same phoneme.
Thus, from an acoustical point of view, a phoneme basically represents a class of
sounds with similar meaning. The actual sounds units, generated while speaking,

are referred to as phones in speech literature [2].

2.8 TIMIT Database

Since in this thesis we shall be using speech data from the TIMIT database, we
present a brief overview of this database in this section. TIMIT is an acoustic-
phonetic speech corpus designed to provide speech data for the acquisition of
acoustic-phonetic knowledge and for the development and evaluation of speech
processing systems[53]. It is prepared by the National Institute of Standards and
Technology (NIST) with sponsorship from the Defense Advanced Research Projects
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Agency - Information Science and Technology Office (DARPA-ISTO). TIMIT con-
sists of a total of 6300 sentences, 10 sentences spoken by each of 630 male and
female speakers from 8 major dialect regions of the United States. The speech
data in the TIMIT is divided into two broad groups: train and test for training
and testing purposes. Each group is further subdivided into eight dialect groups.
There are four files associated with each sentence data: a wave file (.wav), a text
file (.txt), a word file (.wrd) and a phone file (.phn). The wave file consists of
waveform speech data with a header. The speech waveforms are digitized at the
sampling rate of 16 kHz and are stored in the binary format. The text file contains
the associated orthographic transcriptions of the words in a sentence. The word file
is composed of the time-aligned word transcriptions while the phone file consists of
the time-aligned phonetic transcription. More detailed description of the TIMIT
phonetic lexicon can be found in [53]. Finally, in the table 2.1 and 2.2 we present
the TIMIT phonetic transcription to be used consistently in this thesis.
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Phone Symbol | Example Phonetic
type word transcription
Stops b bee BCL B iy
d day DCL D ey
g gay GCL G ey
p pea PCL P iy
t tea TCL T iy
k key KCL K iy
dx muddy. dirty | m ah DX iy, dcl d er DX iy
Affricates jh joke DCL JH ow kel k
ch choke TCL CH ow kcl k
Fricatives s sea Siy
sh she SH iy
z zone Zown
zh azure ae ZH er
f fin Fihn
th thin THihn
v van Vaen
dh then DHen
Nasals m mom Maa M
n noon Nuw N
ng sing s ih NG
em bottom b aa tcl t EM
en button b ah q EN
eng washington w aa sh ENG tcl t ax n
nx winner w ih NX axr

35

Table 2.1: Phonetic transcription used in the TIMIT database for Stops, Affricates,

Fricatives and Nasals.
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Semivowels 1 lay Ley

el | bottle | belbaatcl t EL

r ray Rey

w way W ey

y yacht Yaatclt

Aspiration | hh | hay HH ey
hv | ahead | axHV ehdcld
Vowels iy | beet bel b IY tel t

th { bit bel b IH tcl t

eh | bet bcl b EH tcl t

ey | bait bd bEY tcl t

ae | bat bel b AE tel t

aa | bott bclb AA tcl ¢
aw | bout bcl b AW tcl &
ay | bite betb AY tel ¢

ah | but bel b AH tel t

ao | bought | bcl b AO tcl ¢

oy | boy bel b OY

ow | boat bel b OW ¢tcl ¢
uh | book bcl b UH kel k
uw | boot bel b UW tcl ¢t
ux | toot tcl t UX tcl t

er | bird bl b ER del d
ax | about | AX bcl bawtclt
ix | debit dcldeh bl b IX tel t
axr | butter | bcl b ah dx AXR

ax-h | suspect { s AX-Hspclpehkcl ktclt

36

Table 2.2: Phonetic transcription used in the TIMIT database for Semivowels,

Aspiration and Vowels.



Chapter 3

Impulsive AR Models for Speech

Enhancement

This chapter introduces and implements AR models with impulsive excitation
models for various speech types. Section 3.2 studies and compares the performance
of the state-of-the-art HMM model based and AR enhancement systems. Section 3.2
also motivates us to review the production mechanisms for various phoneme classes
in Section 3.3. Section 3.4 presents models for each phoneme class. Sections 3.5 and
3.6 discuss the Kalman filter algorithms and AR parameter estimation techniques
for impulsive models. Section 3.7 presents the assertions and assumptions made by
impulsive models. Section 3.8 discusses experimental results for various phoneme

classes. Finally, Section 3.10 presents tables for enhancement results.

37
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3.1 Introduction

One of our objectives is to determine to what extent we can produce a “good”
model for representing a speech signal. This has motivated us in Section 3.2 to
have a careful look at the speech models used by two very popular state of the
art enhancement systems: HMM based Wiener filter and AR model based Kalman
filter. Because of the simplicity (explained in detail in Section 2.2) of a white noise
driven AR model for speech we have chosen to focus our attention towards an AR
model used by the Kalman filter. According to linear speech production theory(3],
speech signal or pressure wave, measured at a microphone, is produced by the com-
bined effects of the voice source excitation, vocal tract articulation and radiation
from the lips or nostrils. An AR model driven by white noise, used for speech
enhancement, fails to capture the effects of the excitation source and radiation,
especially in the case of the voiced speech. This has motivated us to include a rele-
vant driving term in the conventional AR model. We intend to develop models for
representing each phoneme class by taking into account the production mechanism
of that class. We discuss the production mechanism of different phonemes classes
in Section 3.3 while in Section 3.4 we introduce the developed models. Because of
inclusion of impulses in the speech model we shall not be able to use conventional
AR parameter estimation procedures. Section 3.6 explains impulse synchronous AR
parameter estimation procedure. We shall be testing the developed models with
the performance of the Kalman filter. In Section 3.5 we briefly mention the Kalman
filter algorithms. As one of our objectives is to establish limits to performance for
the Kalman filter, we shall be making a number of assertions and assumptions for
our proposed models which are discussed in Section 3.7. In Section 3.8 we present

and discuss the results. We shall be using output SNRs as objective measures of
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enhancement while for subjective measures we shall be observing the plots of the

time waveforms and residuals of the AR estimation process.

3.2 Review of the State of the Art Enhancement

Systems

The main reason for reviewing the two very popular state of the art speech enhance-
ment systems is to present motivations that led into applying impulsive models for
various speech types. In this section, we review the results obtained by using an
HMM based system|[25, 9] and an AR model based Kalman filter[31, 6]. The speech
data is taken from the TIMIT database. A global measure of SNR is used as ob-
jective evaluation criterion. The output SNR was calculated by,
Ef:x z*(t)
Tiliz(t) — ()]
where J is the length of the speech signal. Subjective evaluation of the results

SNR = 10log

(3.1)

is based on human hearing perception and inspection of spectrograms. We have
first listened to the clean speech and noisy speech then followed by the enhanced
speech. The Quality of Perception(QOP) was divided into four categories on the
scale of score=5, namely- excellent (score=5), good (score=4), fair (score=3) and
poor (below 3) [9]. We have also inspected spectrograms of the clean speech, noisy
speech and enhanced speech.

3.2.1 System Overview

The HMM based enhancement system was used in enhancing speech signals which
have been degraded by white noise at signal-to-noise ratio(SNR.) values of 5, 10, 15
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Figure 3.1: HMM based enhancement system, after [9].

dB. The speech data used was selected from the sentences in the TIMIT database.
One hundred sentences, spoken by 15 different speakers with a sampling frequency
of 16kHz, were used for training the clean speech model. Four sentences spoken by
4 different speakers were used for enhancement purpose. The speech material and
the speakers used for training were different from those used for testing. Training
was done using non-overlapped frames while enhancement was done using 50%
overlapping of adjacent frames. The clean signal was modeled with a 5 state 5
mixture HMM while each noise type was modeled with a 3 state 3 mixture HMM.

A block diagram of the implemented system is shown in Figure 3.1. First
autocorrelation coefficients, of each frame of the noisy signal, are extracted. These

coefficients are then fed into the noise adaptation model. The non-speech intervals
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of the noisy speech are detected by this model and a Viterbi forward algorithm
is performed on noise data using three different types of noise models. Then the
likelihood for each noise model is calculated and the model associated with the
highest likelihood is selected. Using the selected noise HMM parameters and the
clean speech model, the preprocessed noisy speech is fed into the MMSE forward
algorithm which generates the weights for the Wiener filters [9]. In the mean
time, all Wiener filters for each combination of the state and mixtures pairs in the
speech and noise models are calculated. A single weighted filter is constructed for
each frame of noisy speech using the calculated filter weights and the pre-trained
Wiener filters. The filtering of the noisy signal is carried out using the weighted
filter. The output is the spectral magnitude of the enhanced speech signal. Using
this magnitude together with the noisy speech’s phase information, an inverse FFT

is performed to obtain the time-domain enhanced speech.

Kalman filter algorithm, given by (2.54) to (2.59}, is used to estimate the clean
speech signal from the noisy speech for each frame length of 256 data points.
Kalman filtering algorithms require the knowledge of AR, coefficients, 02 and 2.
The AR coefficients of the noisy speech are computed using the covariance method
[17, 18]. The residual white noise component w(Z) is calculated using (2.2). The
variance o2 of this residual time series is then computed. We have used (3.2) to

compute o?2.

For the first frame, the state vector is initialized as %X(0|0) = O and the corre-
sponding error covariance is initialized as Z.(0[0) = [0]xxx. Then the one-step
state prediction estimate and the corresponding error covariance given by (2.54)
and (2.55) are estimated respectively. This is followed by update steps through
evaluations of the Kalman gain (given by (2.56)), state estimation (2.57) and the

corresponding state estimation error covariances (2.58). The speech sample esti-
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Input SNR | Output SNR
in dB in dB
5 10.969
10 12.097
15 15.515

Table 3.1: Enhancement results averaged over four sentences for HMM based
Wiener filter.

mate is found by using (2.59). For the following frames the state vector and the
corresponding error covariance are initialized using their last values from the pre-

vious frame.

3.2.2 Enhancement Results

Enhancement results, for HMM based system, averaged over four sentences are
shown in Table 3.1. Overall QOP was found to be equal to the scale of 3 or fair.
There were some interruptions or discontinuities present in the enhanced speech
signal. These dropouts were due to filtering of the speech data especially fricatives,
stops or affricates which were mistaken as noise by the model. Figure 3.2, 3.3
and 3.4 respectively show the spectrograms for the clean speech, the noisy speech
and enhanced speech. The dropouts are also quite evident in the spectrogram for

enhanced speech in Figure 3.4.

As mentioned in the previous chapter, there are two major limitations associated
with HMMs for speech enhancement [9]. For accommodating rapidly varying speech

signals, it requires a large number of states. This increases the computational
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Figure 3.2: Spectrogram of the part of the original clean test speech signal “It was
exposed to a high velocity gas jet”.

Figure 3.3: Spectrogram of the noisy test utterance, corrupted with white noise at
SNR of 5 dB.
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Figure 3.4: Spectrogram of the enhanced speech using HMM based enhancement

system.

Figure 3.5: Spectrogram of the enhanced speech using Kalman filter based enhance-

ment system.
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complexity (e.g., Nsz X N,z X Nsv x N,v in (2.26) for each frame) in the model
together with the risk of affecting the performance of HMM for slowly varying
speech signals. The second problem with HMMs is that even with the higher
number of states, the continuity of the speech signal is greatly affected. This is due
to fact that discrete number of states and mixtures are used to represent the speech
features. Whenever there is a big jump from one state-mixture pair to another, the

continuity of the speech signal deteriorates.

Averaged results for four test utterances for the AR model based Kalman fil-
ter are shown in the Table 3.2 for various AR orders and input SNRs. Increasing
AR order provides better modeling of speech signals to some extent. But after
a certain AR order the output SNR does not change much which indicates AR
models’ limitations on modeling the speech signals. The output SNR values indi-
cate considerable amount of improvement over that for HMM. The QOP for the
enhanced speech was found to be equal to the scale of 3.8-4. The enhanced speech
signals were more pleasant sounding compared to that for HHMs. There was slight
noise present in enhanced speech. Figure 3.5 shows the spectrogram for enhanced
speech. We observe that Figure 3.5 in general more resembles the spectrogram for
the clean signal in Figui'e 3.2 compared to that for HMM in Figure 3.4. In Figure
3.5, we observe that unlike Figure 3.4, spectra corresponding to fricatives and stops
have been well preserved. In Figure 3.5 we notice some noise present in the high

frequency region.

The flaws in this AR model (2.2) become apparent when the model residuals,

N
z(t) — > aiz(t — i) (3.2)

=1
are examined, as shown in Figure 3.6. The model in 2.2 asserts that these resid-

uals should be white (random), an assertion which is flatly contradicted by the
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Figure 3.6: Plots of AR residuals for four voiced speech phones: (a) front vowel
/ae/, (b) diphthong /ay/, (c) semivowel /r/, (d) nasal /n/. The model (2.2) predicts
that each of these signals be white (random) — clearly incorrect.
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Input SNR. Ipc Order
in dB 8 10 12
) 11.109 dB | 11.140 dB | 11.183 dB
10 14.542 dB | 14.578 dB | 14.625 dB
15 18.306 dB | 18.343 dB | 18.385 dB

Table 3.2: Results averaged over four sentences for AR model based Kalman filter.

figure, since obvious quasi-periodic (deterministic) components are present in each
of the four phones shown. The remainder of this thesis investigates more consistent

alternatives to w(£) in (2.2).

3.3 Speech Sound Types

Prior to developing new models for various speech classes we shall review various
phoneme classes [52, 51, 2] that have been characterized based on the positions
and movement of speech articulators, type of excitation, transient properties of
their time waveforms and frequency domain properties. For phonemic or phonetic

transcription we shall be using the same convention that used in the TIMIT lexicon.

3.3.1 Vowels

Vowels are produced by exciting a steady-state vocal tract configuration with quasi-
periodic pulses of air [52]. Quasi-periodic pulses are produced when air from the
respiratory subsystem is forced through the glottis, the tension of the vocal cords
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Figure 3.7: Position of the tongue in the oral cavity during the production of the
vowels, after [2].

are adjusted so that they begin to vibrate and cause periodic interruption of the
subglottal airflow. The variation in the cross-sectional area along the vocal tract
determines the resonant frequencies known as formants of different vowels. Three
factors that influence formant frequency locations for vowels are: the overall length
of the pharyngeal-oral tract, the location of the tract and the narrowness of the
constrictions [2]. The first three formant frequencies can be used to roughly charac-
terize vowels. The term roughly is applied here as some variability is to be expected
among the speakers producing the same vowels. Other factors used for acoustically
identifying the vowels are spectra, durations and formant bandwidths. Vowels are
classified into three groups by the position of the tongue and the degree of con-
striction at that position. Figure 3.7 shows Front, Central and Back vowels. The
vowels are differentiated within each group by the degree to which the tongue is
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raised towards the palate.

3.3.2 Diphthongs

A diphthong is a dynamic sound that starts at or near the articulatory position of
one target vowel and moves to or towards the position for another target vowel [52,
51]. The first target vowel is usually longer than the the latter one but the transition
between the targets is longer than either of the targets [2]. There exists some
discrepancy about drawing sharp distinction between a diphthong and two adjacent
distinct vowels. The four universally recognized diphthongs in North American
English include /ey/ (as in “bay”), /ay/ (as in “buy”), /aw/ (as in “how”) and
/oy/ (as in “toy™). Even though a diphthong represents transition from one vowel

to another, it is often the case that neither target vowel is actually reached.

3.3.3 Semivowels

Semivowels consisting of four phonemes /w/, /1/, /r/, /y/ are divided into two
groups: glides (/w/ & /y/) and liquids (/1/ & /r/). Semivowels have glottal exci-
tation that produces well defined formant structure like vowels but unlike vowels
formant structure is gradually changing due to a constriction in the vocal tract.
The degree of constriction is smaller than that in vowels but large enough not to
produce any turbulence. A glide is defined as a vocalic syllable nucleus consisting of
one target position with corresponding formant transitions toward and away from
the target [2]. Liquids also have spectral characteristics similar to vowels but are
usually weaker than most vowels due to their more constricted vocal tract. The
acoustic properties of semivowels are strongly affected by the context in which they

occur.
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3.3.4 Nasals

The nasal consonants /m/, /n/ and /ng/ are produced by the glottal excitation
of an open nasal cavity and the oral cavity constricted at some point at the front.
The velum is lowered to permit the sound propagation through the nasal cavity.
The oral cavity, being acoustically coupled to the pharynx and the nasal cavity,
serves a resonant cavity by capturing energy at certain natural frequencies. These
resonant frequencies of the oral cavity emerge as anti-resonances or zeros of sound
transmission [52]. Nasal formants and formants of the adjacent vowels have wider
bandwidth or more highly damped compared to those of the vowels. This is caused
by the fact that heat conduction and viscous losses are greater as inner surface of

the nasal tract has large surface area.

The three nasals have three different areas of constriction along the oral cavity.
For /m/ the constriction is at the lips (labial constriction), /n/ has comnstriction
at the back of the teeth with the tongue resting at the gum ridge (also known as
alveolar constriction) while for /ng/ the constriction is in the front of the velum

(velar constriction).

3.3.5 Fricatives

Fricatives are characterized by the formation of narrow constriction at some location
in the vocal tract, by the development of turbulent air stream and by the generation
of noise. Fricatives are divided into unvoiced fricatives and voiced fricatives based
on the mode of excitation of the vocal tract. The unvoiced fricatives include /f/,

/th/, [s/ and /sh/ while /v/, /dh/, /z/ and [zh/ constitute the voiced fricatives.

Unvoiced fricatives are produced by exciting the vocal tract by a steady air flow

that becomes turbulent in a region of constriction. The constriction divides the
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vocal tract into two cavities. The cavity preceding the constriction then becomes
a noise source due to turbulence. The speech sounds are radiated from the front
cavity whereas the back cavity traps energy as in the case of nasals introducing anti-
resonances into the speech output [52]. The location of the constriction determines
the uttered fricative. For /f/ the comstriction is labiodental (upper jaw teeth on
lower lip), /th/ has interdental (tongue behind front teeth) constriction, for /s/ it
is alveolar and /sh/ has palatal (tongue resting on hard or soft palate) constriction.

Voiced fricatives have both turbulent noise source at the constriction and quasi
periodic glottal excitation of the vocal tract. Because of these two types of exci-
tations, their spectra may show both periodicity (to some extent) and frication.
Voiced fricatives /v/, /dh/, /z/ and /zh/ are the counterparts of unvoiced frica-
tives /f/, /th/, /s/ and [sh/ respectively, as far as the location of the constriction

is concerned.

3.3.6 Stops

Stops are, also as in the case of fricatives, classified into unvoiced and voiced stops.
Stops are noncontinuant speech signals produced by the total closure of the vocal
tract during which a pressure builds up and sudden release of this pressure. This
type of excitation is also known as plosive. The closure can be referred to as bilabial

(/p/ and /b/), alveolar (/t/ and /d/) and velar (/k/ and /g/).

Unvoiced stops /p/, /t/ and /k/ are produced by abrupt release of air pressure
that builds up during the vocal tract occlusion. The air release, marked by a short
interval of frication, is followed by a steady air flow from the glottis known as
aspiration. The frication and aspiration are together known as stop release. The

interval preceding the stop release is known as stop gap or closure.
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Voiced stops /b/, /d/ and /g/ not only have plosive excitation but also a glottal
excitation that continues throughout the closure and release. During the closure
some amount of low frequency energy may be radiated through the walls of the
throat [2] as the vocal cords keep vibrating. This is indicated by a voice bar in the

frequency region in the spectral analysis.

3.3.7 Affricates

Affricates are non-continuant sounds having a palatal place of articulation. Af-
fricates /jh/ and /ch/ are produced by the transition from a stop to a fricative. As
in stops, affricates are produced with the total closure of the vocal tract. Similar
to fricatives, affricates have a period of frication. But the frication interval tends
to be shorter than that for fricatives [51]. The unvoiced affricate /ch/ is produced
by a transition from unvoiced stop /t/ to unvoiced fricative /sh/ while the voiced

affricate /jh/ is created by a transition from voiced stop /d/ to voiced fricative
/zh/.

3.4 Models for Phoneme Classes

While reviewing the Kalman filter based enhancement system we have seen that a
single AR model has been used to represent the speech signal. As each phoneme
class has a different production mechanism, it is more appropriate to use different
models for various phonemes instead of using a single model for a whole utterance
that is composed of various phoneme classes. In this section, we present models for
various phoneme classes considering the type of excitation each class is associated

with and closely observing conventional white noise excited AR residual plots.
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3.4.1 Model for Voiced Speech

According to the acoustic theory of speech production[54], speech involves a source
function and a vocal-tract filtering process. The output of the filtering process is
speech pressure signal which is related to the volume velocity at the lips through a
radiation term [17, 55, 54]. In speech synthesis, the combined effects of the excita-
tion source, vocal-tract filter and radiation is modeled by an AR process where AR,
coefficients account for the filtering action of the vocal tract, the radiation and the
excitation. The obvious flaw with the conventional autoregressive model in (2.2),
for speech enhancement, is that the vocal tract is modeled as being driven by white
noise, whereas vowels, diphthongs, semivowels and nasals all have quasi-periodic
glottal pulse excitation of the vocal tract. Quasi-periodic pulses are produced when
air is forced through the glottis, causing the vocal cords to vibrate and periodically
interrupt the subglottal airflow. It is befitting to introduce a forcing term that
models the glottal excitation in AR model for voiced speech.

We can begin to account for a quasi-periodic glottal excitation by modifying
the AR forcing function to obtain
N
z(t) = Eaix(t —i)+ w(t) + G'N,+1u1(t) (3.3)

=1

where a,_,, is the amplitude of the driving term, and where u,(¢) is a train of

+1

impulses:

u,(t) = E é(t — tj) (34)

where the times ¢; mark the times of the glottal pulses. The impulse train ()
in (3.3) is simulating the effects of the voiced excitation source. Such an impul-
sive source function is extremely simplified approximation of the complex source

function involved in speech production[l7, 54]. The main reason for using such
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a tentative model (impulsive source function) is that we intend to investigate the
effect of inclusion of the appropriate forcing function in an AR model for speech
enhancement. Impulsive models, if successful over the conventional white noise
driven AR model, may be replaced by more sophisticated source models used in
speech synthesis.

The state-space model for speech given by (2.27) needs to be modified for the de-
terministic driving term u,(t). The state space model for voiced speech represented

by (3.3) is given by,
x(¢) = Fx(t — 1) + Gu(t) + D u,(t) (3.5)
where the input distribution matrix D, € R+ is defined as,

T
D,=[0 0 ...00 aN,+1] :

Transition and process matrices denoted by F and G are the same as those defined
for (2.27). Inclusion of the driving term not only changes the conventional AR
parameter estimation procedures discussed in Section 2.2 but also the assertions
made by the model. We shall be discussing such issues in Sections 3.6 and3.7

respectively. The observation model however remains the same as (2.28), i.e.
z(t) = HTx(t) + v(¢) (3.6)

as we have the same assumptions for additive Gaussian white measurement noise

v(t).

3.4.2 Models for Fricatives

Unvoiced fricatives have turbulent noiselike excitation also known as unvoiced exci-

tation due to airflow through a narrow constriction. We need a model for frication
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noise source for representing such phonemes. The white noise term w(t) in the
model given by the AR model in (2.2) is adequate for representing the effect of the
frication source{l7]. The process state space model for unvoiced fricatives is given
by,

x(t) = Fx(t — 1) + Guw(¢) (3.7

The observation state space model is the same as in (3.6).

Voiced fricatives can be represented by (3.3) as they have both unvoiced and

voiced excitation. The state space models are the same as given by (3.5) and (3.6).

3.4.3 Models for Stops and Affricates

The stops have the following acoustic sequence,
< closure >< burst >< frication >< aspiration(for unvoiced stops) > (3.8)

The stops have plosive excitation which is caused by a buildup of air pressure behind
a completely closed part of the vocal tract ensued by a sudden release of this air
pressure. For the unvoiced stops, the stop release can be modeled by a white term
w(t) and onset of the burst after the stop closure can tentatively be modeled by an

impulsive driving term wu,,,,,(t). The model for unvoiced stops is given by

N
z(t) = Za,—:c(t —1) 4+ w(t)+ a.N=+lum°p(t) (3.9)
=1
where a,,_,, is the amplitude of the driving term u,,,,(t), and u,,,(¢) is 2 single

impulse marking the onset of the burst i.e.,

Up,eop(t) = 0(E — £5) (3.10)
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where t; is the time at which the burst occurs. The state space model for (refI1ls)

is then given by,
x(t) = Fx(t — 1) + Gw(t) + D stop¥,.., (t) (3.11)

where D ,t0p = D, 1s the input distribution matrix for u,,,,,(¢).

The voiced stops have both plosive and voiced excitations. The voiced excitation
is tentatively modeled by »,(¢) which is a train of impulses separated by the pitch
periods while the plosive excitation can be modeled in the same way as the unvoiced
stops by a white noise term w(¢) and a single impulse u,,,,,(t) = §(¢ — £;) marking
the onset of the burst at ;. The model for the voiced stops is given by,

N:

x(t) = Z a‘iz(t - i) + W(t) + aN:-{»lu'I(t) + aN:+2uIv3top(t) (3‘12)
i=1
where a,_ ., and a, , are respectively the amplitudes of the driving terms u,(t)
and u,,,...(t). The state space model for (3.12) is then given by,

X(t) = Fx(t - 1) + Gw(t) + Dlul(t) + Dlv’toPuIvuop(t) (3'13)
where D, yut0p € RY= is the input distribution matrix for «,,,, »(t) defined as,

T
D,,,,top=[0 0 ... 00 GN,+2] :

As mentioned earlier Affricates are non-continuant sounds produced by a tran-
sition from a stop to a fricative. Hence affricate /jh/ is represented by the same

model as for voiced stops while /ch/ shares the model for unvoiced stops.
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3.5 Kalman Filter Algorithms for Impulsive State
Space Models

We shall be using the Kalman filter algorithms for filtering additive white noise
v(t) from noisy speech z(t). The measurement model is given by (3.6). We have
defined separate models for various classes of phonemes. We shall use these process
models for Kalman filter algorithms. The Priors for the Kalman filter remains the

same as those for white-noise excitation AR model i.e.,
%(0j0) = O (3.14)
Zx(0[0) = [0]n.xn. (3-15)
In the Prediction Steps, due to the inclusion of the driving terms in the process
models for the voiced speech speech sounds, the voiced fricatives and the stops
the one-step state prediction %(t|t — 1) will have various forms according to the
corresponding process model. For the model in (3.5) for the voiced speech (e.g.
vowels, semivowels, diphthongs,nasals) and voiced fricatives, the one step state
prediction is given by,
X(t|t — 1) = Fx(t — 1|t — 1) + Du,(t) (3.16)
For the unvoiced stop model in (3.11), the state prediction is given by,
®(t|t — 1) = FX(t — 1|t — 1) + D seopu,,,,,(t) (3.17)
The one step state prediction for voiced stop model in (3.13) is given by,
i(tlt - 1) = Fi(t - llt - 1) + Dlul(t) + DI"-"toPulvuop(t) (3‘18)

Finally the for the unvoiced fricatives, the state prediction remains the same as in
(2.54) i.e.,
X(tt—1)=Fx(t—1]t—1) (3.19)
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The one-step state prediction error is given by
Te(tt — 1) = FB. (¢t — 1|t — 1)FT + G, GT (3-20)

The Update Steps remain the same as white noise excited AR based Kalman
filter,

K(t) = FE(t|t — 1)H[g, + HT =, (¢t — 1)H] ™! (3.21)
®(t|t) = %(¢]t — 1) + x(t)[z(t) — HT (¢t — 1)] (3.22)
E(tt) = [I — w(t)HT |2 (t|t — 1) (3.23)

The speech sample estimate Z at time ¢ is given by,

&(t) = HT % (t|t) (3.24)

3.6 Parameter Estimation for Impulsive AR Model

The inclusion of the weighted excitation term in (3.3), (3.9) and (3.12) implies that
the conventional covariance LP analysis{17], which applies to (2.2), needs to be
modified. The principle of covariance LP analysis is just parameter estimation to

minimize a least-squares criterion
K-1

Cx =3 &)’ (3.25)

t=0
where K is length of the speech segment (frame) being processed, and where the
error is given by the model residual for (3.3)

N
e(t) = z(t) — > arz(t — i) +a,_,, %, (t) (3.26)

=1
The optimal parameters are found by finding the roots of the squared error (3.25),

OCk . 9Ck
= < N, = 27
o =0 1Si<N & T 0 (3.27)
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leading to a set of linear equations:

[cﬁ(i,k) lp(i,c))] [ a } _ [ (3, 0) ] (3.28)
oT(i,0) R, ay.,, ©(0,0)

which is easily solved, using the Cholesky decomposition, for the unknowns a4 =
[@1....,a,]T and &,,,. The terms in the square matrix are the correlation terms:
®(i, k) the cross-correlation matrix of clean speech given by,
K-1
(i k)= D> z(t —i)z(t — k) (3.29)
t=0
K-1
(i, k) = D z(t —i)u,(t — k) (3.30)

t=0
the cross-correlation between clean speech and the excitation, and
K-1
Ry =) u,(t)? (3-31)
t=0

the energy (zero-lag autocorrelation) of the excitation u,. In the same way AR

parameters for (3.9) and (3.12) can be estimated.

3.7 Model Assertions and Parameters

Assumptions

As main objectives were to come up with appropriate models for various speech
types and study enhancemert limits of the AR model based Kalman filter, we have
made a number of model assertions and explicit assumptions. The first assertion
we have made for our models is that phoneme boundaries are known. Phonemes,
used for testing our speech models, were extracted from (20) sentences spoken by 10

female and 10 male speakers from the TIMIT data base. Phoneme boundaries given
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in the TIMIT base were initially used to accomplish this separation, followed by
the inspection of spectrograms and temporal plots of each sentence to corroborate
the exact phoneme boundaries. We have used clean speech for estimating AR

parameters and noise covariances for the Kalman filter.

For our impulsive models we have explicitly assumed that pitch locations for the
voiced speech and impulse locations for the stop bursts are known. Even though a
number of automatic pitch detection algorithms [52, 2] are available, there always
exists a room for error in the results obtained by using these algorithms. The
times are approximated manually from the residual signal (3.2) in which the pulses
are conspicuous, followed by an automated local peak-finder to guarantee accurate

positioning.

3.8 Experimental Results

Each speech signal, representing a single phoneme, is segmented into frames of
K = 256 data points. The Kalman filter was used as the estimation algorithm,
using one of the four different models in (2.2), (3.3), (3.9) and (3.12). The speech
signals were corrupted with additive white noise to an SNR of 5 dB; for each signal
the identical noise process was added, so that output SNR. results are meaningfully

comparable.

3.8.1 Voiced Speech

A total of 80 phone tokens for the voiced speech vowels, diphthongs, semivowels
and nasals were tested with the impulsive AR model in (3.3). For the voiced speech
we have used Ipc order of 10 in general. Figure 3.8 shows the impulse-AR residuals
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Figure 3.8: AR residuals for the impulsive model 3.3 for the voiced phonemes of
Figure 3.6. The residual peaks have become narrower and shorter compared to

those in Figure 3.6 but still are noticable.
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Output SNR in dB | Output SNR in dB

Phone white noise impulsive

class AR model AR model
Front vowels 8.492 9.129
Mid vowels 8.893 9.5614
Back vowels 9.515 10.158
Semivowels 9.087 9.568
Nasals 9.042 9.480
Diphthongs 9.206 9.910

Table 3.3: Averaged enhancement results for voiced speech for the input SNR of 5
dB and the lpc order of 10.

given by (3.26) for the same four phonemes of Figure 3.6. In general the residual
pulses in Figure 3.8 are thinner or narrower and shorter than those in Figure 3.6,
but still conspicuously present. Impulsive driving term partially fails to model the
voice source excitation of the vocal tract. The reason being the peaks in the residual
usually do not consist of a single impulse rather have a very narrow triangular shape
with more than one adjacent peaks (usually two or three). We also observe a distinct
trigonometric shape between the sharp spikes. Such facts strongly indicate that the
effects of the glottal source may simply not be a train of impulses but rather may be
a quasi-periodic pulse. This is confirmed by the literature on voice source models
and glottal pulse models (discussed in detail in Chapter 4). Table 3.3 compares the
averaged output SNRs for voiced speech tokens. We observe that improvement in
output SNRs is consistent for the impulsive AR model over the white noise driven
AR model. Table 3.4 shows averaged improvements in output SNRs for impulsive

AR model over the conventional white noise driven AR model for various lpc orders
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Front Vowels Mid Vowels
Input SNR | Change in Qutput SNR in dB | Change in Output SNR in dB
for the lpc Order for the lpc Order
in dB 8 10 12 14 8 10 12 14
0 0.816 | 0.962 | 1.076 | 1.261 | 0.875 | 0.954 | 1.033 | 1.232
5 0.569 | 0.689 | 0.790 | 0.920 | 0.615 | 0.674 | 0.739 | 0.907
10 0.378 | 0.473 | 0.550 | 0.643 | 0.425 | 0.471 | 0.524 | 0.659
15 0.233 | 0.301 | 0.352 | 0.415 | 0.280 | 0.314 | 0.353 | 0.454
Back Vowels Diphthongs
Input SNR | Change in OQutput SNR in dB | Change in Output SNR in dB
for the Ipc Order for the Ipc Order
in dB 8 10 12 14 8 10 12 14
0 0.899 { 1.013 | 1.070 | 1.251 | 0.907 | 1.062 | 1.168 | 1.318
5 0.622 | 0.699 | 0.736 | 0.882 | 0.655 | 0.765 | 0.859 | 0.995
10 0.434 | 0.488 | 0.514 | 0.628 | 0.458 | 0.537 | 0.609 | 0.721
15 0.304 | 0.343 | 0.366 | 0.455 | 0.299 | 0.357 | 0.405 [ 0.489
Semivowels Nasals
Input SNR | Change in Output SNR in dB | Change in Output SNR in dB
for the Ipc Order for the Ipc Order
in dB 8 10 12 14 8 10 12 14
0 0.704 | 0.778 | 0.852 | 0.932 | 0.594 | 0.608 | 0.639 | 0.644
5 0.507 | 0.563 | 0.622 | 0.688 | 0.431 | 0.438 | 0.460 | 0.466
10 0.352 | 0.394 | 0.443 | 0.496 | 0.307 | 0.313 | 0.330 | 0.336
15 0.238 | 0.269 | 0.313 | 0.353 | 0.204 | 0.211 | 0.225 | 0.230

Table 3.4: Averaged improvements in output SNR for the white noise AR model
and impulsive AR model for voiced speech classes.
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Ipc Output SNR in dB | Output SNR in dB

order Phone white noise impulsive
class AR model AR model

12 Fricatives 7.0488 not applicable

12 | Unvoiced fricatives 9.537 10.0493

10 Voiced stops 7.59 8.088

10 Unvoiced stops 7.174 7.314

10 Affricates 8.417 8.524

12 | Unvoiced fricatives 9.537 10.0493

Table 3.5: Averaged enhancement results for the consonants for the input SNR of
5 dB.

and input SNRs. For all the voiced speech types the improvement is maximum for
the input SNR of 0 dB. The improvement in output SNRs also increase linearly with
Ipc order. The diphthongs show highest improvement in output SNRs compared
to other voiced speech types. The main reason behind this is that diphthongs are
very long phonemes with large number of pitch periods. Hence, the effect of the

impulsive driving term is stronger compared to other phonemes.

3.8.2 Consonants

Table 3.5 shows averaged results for 30 consonant phones. In general impulsive
models yield higher output SNRs compared to those for the conventional white
noise excited AR model. Analysis of the results for individual classes is presented

as follows. Unvoiced fricatives use the conventional white noise excited AR model.
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We have used Ipc order of 12 in this case. Table 3.12 in Appendix:A shows the
results for unvoiced fricatives indicating consistent improvements in output SNRs

from the input SNR of 5 dB.

Voiced fricatives have been represented by the same impulsive model in (3.3) as
in the voiced speech case. One problem encountered in applying such a model was
in identifying the pitch locations for some of the voiced fricatives as they do not
show marked periodicity as in the case of other voiced speech types such as vowels
or diphthongs. Thus using the white noise excited AR model is recommended for
the unvoiced fricatives. The results for voiced fricatives are shown in Table 3.13
in Appendix:A. As expected, Impulsive AR model gives better enhancement than
conventional white noise excited AR model. The residuals do not show marked

periodicity in this case.

Table 3.14 in Appendix:A presents enhancement results for unvoiced stops,
voiced stops and affricates. In general impulsive model works better than white
noise driven AR model. But in some of the cases for the stops (e.g. /b/ in Table
3.14) we have found AR models do not work well at all in the sense the output
SNRs for both white noise driven AR and impulsive AR models were less than the
input SNR of 5 dB. This can be explained by the fact that stops have complex
acoustic sequence as given by (3.8) and trying to model such a sequence with an
all-pole model may not be pertinent. Modeling of the stops may require further
investigation. Same arguments, as in case of the stops, can be made for modeling

the affricates which also possess too complex acoustic sequences for AR models.
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3.9 Conclusions

This chapter has demonstrated the application of the impulsive AR models for
speech enhancement. The conventional white noise excited AR model for speech
fails to account for the excitation source especially in the case of the voiced speech.
As various speech classes have different forms of source excitations we have aptly
proposed impulsive AR models with different driving terms for various classes of
phonemes. We have represented voiced speech types such as vowels, diphthongs,
semivowels, nasals and voiced fricatives by an AR model driven by impulsive train
time modulated by the pitch periods and white noise. Unvoiced fricatives were
modeled by traditional white noise driven AR model. For unvoiced stops and
unvoiced affricates we have used an AR model driven by a single impulse at the
instant of the burst onset and white noise. For voiced stops and voiced affricates, we
have proposed an AR model both with an impulsive train for voicing, a single burst
impulse and white noise. In each case, especially in case of the voiced speech, the
Kalman filter with impulsive AR models clearly outperformed that with traditional
white noise AR model.

One major flaw of the impulsive models is that they are too simplistic for simu-
lating the complex speech excitations. We have come to this conclusion by inspect-
ing impulsive AR residuals. Especially in the case of voiced speech we have observed
the marked presence of quasi-periodic pulses in the residuals. This drawback of the
impulsive models is also confirmed by Speech Synthesis literature where a number of
more sophisticated source models[38, 56, 57, 58, 59, 39] replacing impulsive models
have been proposed for producing natural sounding synthetic speech. Such facts
present greatly motivate us towards using more complex model for representing

effects of the voice source in Chapter 4.
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3.10 Appendix A: Details of Enhancement
Results

SNR in dB | SNR in dB

Phone Phone white noise | Impulsive

- context AR model | AR model
[iy/ 1y6951682_economically_y 8.455 9.106
/iy/ 1y32s11386 the_e 10.399 10.576
/ih/ th13s52378_near_i 8.587 9.108
/ih/ ih495i1386 unit_i 9.216 10.078
/ih/ th4sz396_fish_: 9.077 9.263
/ix/ | iz29si1386 imagination. i2 7.250 8.102
/ix/ | 1z17si1386_negotiation _io 8.589 9.137
/ix/ 123151682 only_y 8.097 8.675
/eh/ eh9si682_they_e 8.542 9.241
/eh/ eh42si1682._area_al 8.713 9.917
/eh/ | eh58si682_economically_e 7.635 8.287
/ae/ ae26sz96_tmagination_al 8.062 9.310
[ae/ aellsz396. began._a 8.542 8.815
/ae/ ae6s286_hispanic_a 7.731 8.192

Table 3.6: Enhancement Results for the Front Vowels for the input SNR of 5 dB
and Ipc order of 10. Phone context iy69si682_economically y implies that /[iy/ is
the 69th phone from the sentence s2682 and is taken from the word economically

corresponding to the letter y.
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SNR in dB | SNR in dB

Phone Phone white noise | Impulsive

context AR model | AR model
/ah/ ahl12sz119 was_a 9.791 10.729
/ah/ | ah38s5z378 museum _u2 8.259 8.811
/ah/ ah21s296_ones_o 8.292 9.171
/ah/ | ah24sz86 _color ful ol 9.142 9.587
/ah/ ahl3si1051_are_ah 8.929 9.850
[ax/ az29sz119_apology._ol 8.917 9.400
/ax/ az2s52396 the_e 8.716 9.164
/ax/ az4lsz396 the e 8.066 8.375
/ax/ az65i682 o ften_e 8.938 9.700
Jaxr/ azrl7sz86_are_ar 8.349 8.891
/axr/ | azrl19sz210_never_er 9.331 9.849
/er/ er34s5z396 _sur face_ur 9.278 9.663
Jer/ er21lsz210_ worked_er 9.393 10.137

Table 3.7: Enhancement Results for the Mid Vowels for the input SNR of 5 dB and
the Ipc order of 10.
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SNR. in dB | SNR in dB
Phone Phone white noise | Impulsive
context AR model | AR model
J/uh/ uh28s286 _color ful u 9.833 10.096
Jux/ uzl4sz86_costume_u 8.172 8.735
Jux/ uzlb5sal_suit_o 7.938 8.419
Juh/ uh1552396 to_0 8.468 8.819
[ow/ | ow12si1386_negotiations_ol 9.755 10.502
[ow/ ow28s51682 _only_o 10.497 11.218
fow/ ow9sz119_misquote uo 9.791 10.729
[fow/ ow2sa2_dont_o 9.219 10.110
[ao/ 2029s52396_0 f o 9.478 10.043
[ao/ ao2si682_often_o 10.130 11.124
Jao/ ao025sal_wash_a 9.308 9.763
Jao/ 2025511051 _supporters_o 9.618 10.105
/ao/ 025571051 _northern_o 8.970 9.501
[aa/ aa32sz119_apology ol 9.224 10.515
/aa/ aal0sz96 parties.a 8.398 9.236
[aa/ aa355:1386 bargain_al 9.121 10.069
[aa/ aallsal dark._a 8.532 8.920
/aa/ aal3sz210. cart_a 9.402 10.039

Table 3.8: Enhancement Results for the Back Vowels for the input SNR of 5 dB
and the lpc order of 10.
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SNR in dB | SNR in dB

Phone Phone white noise | Impulsive

context AR model | AR model
/y/ y645i1386_union_i 9.425 10.062
/y/ y34salyear, 7.764 8.329
/y/ y7sal,our, 8.293 8.515
/w/ w515i1386_with_w 9.967 10.614
/w/ w24sal wash_w 9.363 9.602
/w/ w20sz96_ones_o 9.781 10.680
/t/ r10si682_are_r 9.101 9.105
/t/ 72052396 _frantically_r 8.940 9.115
/t/ r11sz96_parties_r 8.398 9.376
/1/ [3051682_only 1 8.243 8.739
/1/ [1652396 leap L 8.715 8.849
/1/ [2652378_archeological I1 8.941 9.707
/el/ | el33s5z378_archeological 12 9.368 9.435

Table 3.9: Enhancement Results for the Semivowels for the input SNR of 5 dB and
the Ipc order of 10.
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SNR in dB | SNR in dB

Phone Phone white noise | Impulsive

context AR model | AR model
/m/ mlsz96_masquerade_m 10.664 10.860
/m/ mllsz378_jim.m 8.885 9.409
/m/ | m64si682_economically-m 8.716 9.457
/m/ m44sz396 _small_m 9.010 9.079
/n/ nl2sz378_near_n 9.395 9.633
/n/ n22s296_imagination_n 9.983 10.271
/n/ n30s2396._on.n 9.202 9.688
/ng/ ng56s:682_declining_ng 6.868 7.855
/ng/ ng57511386 single ng 9.663 10.227
/ng/ | ng42si811 _coagulating ng 8.042 8.322

Table 3.10: Enhancement Results for the Nasals for the input SNR of 5 dB and the
lpc order of 10.
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SNR in dB | SNR in dB

Phone Phone white noise | Impulsive

context AR model | AR model
/yu/ yul8sz378 new_ew 9.106 9.694
/ey/ | eyTsz96_masquerade_a2 8.106 9.143
/ey/ ey47s2396 lake 8.3113 8.452
/ey/ eyl2si682_able, 9.612 10.643
/ay/ ey455:1386_a, 9.492 10.449
[ay/ ay535:1682_declining;1 9.136 10.070
/ay/ ay6si1739 time6 i 8.781 9.590
Jay/ ay21sz86_guite_ui 8.806 9.521
Joy/ oy2lsa2_oily_ ot 9.376 10.105
Joy/ oy Tsz196_oysters_oy 10.696 11.077
Joy/ oyTsz210_toy oy 9.850 10.270

Table 3.11: Enhancement Results for the Diphthongs for the input SNR of 5 dB
and the Ipc order of 10.
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SNR in dB
Phone Phone white noise
context AR model
/t/ f3s1682_often_f 6.206
/t/ f3s2396_fish_f 6.429

/s/ | s3sz96.dat_masquerade_s 7.365
/s/ 5652378 saw_s 7.886

/s/ | sh32sz96_imagination_sh 7.358

Table 3.12: Enhancement Results for Unvoiced Fricatives for the input SNR of 5
dB and the lpc order of 12.

SNR in dB | SNR in dB
Phone Phone white noise | Impulsive
context AR model | AR model
/v/ v18s52210_never_v 8.154 8.777
/dh/ dh1sz396 the_th 8.458 *
/dh/ dhlsz119_the_th 10.856 11.217
/dh/ | dh53si1386 with th 9.601 10.154
/z/ | 236s2378_museum_s 7.631 *
/z/ 244511386 as_s 6.931 *

Table 3.13: Enhancement Results for the Voiced Fricatives for the input SNR of §
dB and the lpc order of 10. * indicates that pitch periods could not be identified.
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SNR in dB | SNR in dB
Phone Phone white noise | Impulsive
context AR model | AR meodel
/p/ pl0sz96 _parties_p 5.349 5.437
/p/ p55z86 _hispanic_p 6.821 6.969
/t/ t17sz96 taz £ 9.792 9.837
/k/ k6051682 _economically ¢ 6.461 6.609
/k/ | k23s2378_archeological ch 7.450 7.718
/b/ 03351682 onlybecause b 4.404 5.795
/b/ b7sc396_began.b 3.343 3.376
/b/ b1451682_able b 9.373 9.794
/b/ b20si811 terrible b 11.819 11.718
/d/ d452196_howdo_d 8.87 9.20
/d/ 426571386 industry.d 5.902 7.154
/g/ g10s2396_began_g 8.586 9.2133
/g/ 92052682 _toget_g 6.302 6.547
/g/ 938571386 bargains_g 9.767 9.997
/i/ Jh9sz378_jim_j 8.520 8.537
[i/ Jh4sz378 just_j 8.921 9.051
/ch/ ch5sz378 church_ch 7.812 7.985

Table 3.14: Enhancement Results for the Stops and the Affricates for the input

SNR of 5 dB and the lpc order of 10.




Chapter 4

LF Model for Enhancement of
Voiced Speech

This chapter proposes and implements an LF model based AR. model for voiced
speech enhancement. Section 4.1 discusses the drawbacks of white noise and im-
pulse driven AR models and motivates the application of an LF voice source model
commonly used in speech synthesis and analysis, for speech enhancement. Sub-
section 4.2.1 briefly reviews some of the popular glottal and source models used
in speech synthesis while Subsection 4.2.2 discusses the LF model in detail. The
parameter estimation problem, for an LF model for speech enhancement, is dis-
cussed in detail in Section 4.3. Section 4.4 discusses the results obtained by LF
model based enhancement. Section 4.5 gives a conclusion about LF based AR
model in speech enhancement. Section 4.6 contains the tables for LF model based

enhancement results.
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4.1 Introduction

An AR model driven by white noise, traditionally used for speech enhancement
does not take account of the effects of excitation sources for some of the phoneme
classes especially those have voiced excitation. In Chapter 3, we have used a number
of impulsive AR models for various phoneme classes based on the corresponding
excitation types. Impulsive AR models consist of impulsive deterministic terms
which also are the very simple tentative models for the effects of the excitation
source. For voiced speech, the effects of glottal excitation was simulated by a train
of impulses spaced by pitch periods. For unvoiced stops and unvoiced affricates,
plosive excitation was modeled by a single impulse marking the instant of the
onset of the burst and white noise. For voiced stops and voiced affricates, a mixed
excitation of a plosive driving term and a quasi-periodic train of impulses were
proposed. For voiced fricatives a mixed excitation of white noise and a quasi-
periodic train of impulses separated by pitch periods was proposed. Impulsive
models despite their simplicity yielded considerable improvements in the output

SNRs.

In the case of the voiced speech classes such as vowels, semivowels, diphthongs
and nasals, residuals for impulsive AR. model as shown in Figure 3.8 show consid-
erable periodicity even though residual impulses have become narrower and shorter
compared to those in white noise excited AR residuals in Figure 3.6. We also ob-
serve a continuous curve between the quasi periodic spikes. Such facts strongly
suggest that an impulsive model is too simple a model for speech. To be sure,
in speech synthesis and analysis, the modeling of the voice source has been well
studied[60, 37, 56, 57, 58, 39, 38]. In fact, AR residuals in Figure 3.8 indicate a

quasi-periodic shape which resembles that of voice source used in speech synthesis.
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Such facts have strongly motivated us to belief that models for voice source pulses
have good potential for to be applied for speech enhancement. In the following
section, we review some of the significant glottal pulse and voice source models
proposed and implemented in speech synthesis and analysis. We also present the
reasons for selecting an LF model for speech enhancement followed by a detailed

discussion of the model.

4.2 Voice Source Models

An impulsive model is a highly simplified approximation of the human voice. In-
deed, impulsive-driven systems were found to make poor speech synthesizers, so
the synthesis field has proposed a number of more complex glottal pulse models[38,
59. 56, 57, 58, 39] for producing more natural sounding speech. In speech synthesis
literature the volume velocity of the air flow is referred to as glottal pulses and the
derivative of the glottal pulses are known as voice source pulses. The next subsec-
tion briefly reviews some of the voice source models used in speech synthesis and

analysis.

4.2.1 Review of Voice Source Models

Rosenberg [38] has proposed a number of glottal pulse models with adjustable
amplitude, width and skew. These glottal pulse models were used to study their
effects on the quality of vowels. Of all these models, one pulse shape shown in
Figure 4.1(a) consists of two trigonometric segments with a slope discontinuity
at the closure. This model is referred to as the Rosenberg model and has had
significant effect on speech synthesis researchers at the time because of capability
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Figure 4.1: Models for glottal and voice source pulses.
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of producing better quality synthetic speech compared to other models[59]. The
Rosenberg model for glottal flow is specified by three parameters: TP the portion
of the pulse with positive slope, TN the portion of the pulse with negative slope
and A, the amplitude of the glottal pulse. The Rosenberg source pulse model, in
Figure 4.la(ii}, has abrupt discontinuity at the glottal closure and shape of the
source pulse model in the vicinity of the closure is sinusoidal. For these reasons,

the Rosenberg model is not suitable for fitting AR residual spikes in Figure 3.6.

Fant has proposed another three parameter model referred to as the F-model
by introducing an independent control of the discontinuity at the closing phase
of the source pulse[57] as shown in Figure 4.1(b). The three parameter models
though economical failed to capture the wide variations of the glottal pulse shapes.
Another major flaw of the three parameter models was that abrupt discontinuity at
the glottal closure which does not allow for an incomplete closure of the vocal folds
or for a residual phase to proceed towards the closure after the discontinuity{l]. For
similar reasons as in the case of the Rosenberg model, the F-model is not feasible

for application in speech enhancement .

Ananthapadmanabha introduced a five parameter model of the voice source
rather than glottal pulse as shown in Figure 4.1(c) which models various variations
of the source pulse with a terminal return phase[59, 39]. The return phase in this
case is modeled as a parabolic function which tracks abduction states of the vocal
folds. The five parameter model does not have disadvantage of the discontinuity at
the closure. But as the pulse shape at the closure does not have a sharp peak as
in the case of the AR residuals, makes the model less desirable as a candidate for

representing the driving term in an AR model.

The most popular model for voice source referred to as the LF model as shown

in Figure 4.2. It was developed in two stages. In the first stage, Liljencrants
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Figure 4.2: The LF deterministic excitation model.

proposed a three parameter model of voice source based on F-model [1, 59, 39]
as shown in Figure 4.1(d). This model is referred to as L-model. The L-model
model has the advantage of flow continuity whereas the F-model consists of two
portions one with positive slope and the other with negative slope. But main flaw
in an L-model is the abrupt flow termination. In the latter stage the L-model was
modified by Fant, Liljencrants and Lin[1] by introducing a gradual flow termination
modeled by an exponential function. This new modified model is known as an LF
model. The reason behind the popularity of an LF model is that it provides an
overall fit to commonly encountered voices source pulse shapes in speech synthesis
and analysis with a mimimum numbers of parameters and is flexible in its ability
to match extreme cases of phone variablities[1]. Of all the voice source models
reviewed so far, we observe strong similarity in shape for the AR residual pulses
in Figure 3.6 and that for the LF model. In fact AR residual spikes resemble the
shape of the LF model around the instant of the glottal closure. These facts have



CHAPTER 4. LF MODEL FOR ENHANCEMENT OF VOICED SPEECH 81

motivated us to choose the LF model for representing the effects of the voice source
in an AR model for the voiced speech. In the following subsection we discuss the

LF model in details.

4.2.2 LF Model

The four parameter LF model[l] proposed by Fant, Liljencrants and Lin has widely
been used practically in speech synthesis and theoretically in speech analysis[37].
The LF excitation model, sketched in Figure 4.2, is the derivative of the LF glottal

pulse function, and is parameterized in terms of

t. - the fundamental period,
t, - the instant of maximum flow,
te - the instant of maximum glottal closing, and

t. - exponential recovery time constant.
These four parameters are related to each other by a condition that net flow gain
within a fundamental period be zero.

The LF model is then given by

®) e*tsin w,t t<te (4.1)
u = .
e FhlemBleta) _ =Bt ¢ <t <t,

where a, [ satisfy the transcendental equations
1 — e-ﬁ(tc-te) — IBtG
e“te sin(wt. [t,) = —1,

leading to the revised AR model

2(t) = S @il — )+ w(t) + apr,0 (8). (42)

i=1
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The AR model in (4.2) has glottal excitation modeled by a train pulses modeled
by LF model given by (4.1) and time modulated by pitch periods. There is difference
in the way the speech models are used in speech synthesis and enhancement. For
speech synthesis, we have a prior model using which we generate a sample path.
For speech estimation, we observe a noisy version of a speech signal and try to
fit it to a prior model. This makes the model parameter estimation problem in
speech enhancement different from that in speech synthesis. Section 4.3 discusses

and proposes an optimization algorithm for LF parameter estimation.

4.3 Parameter Estimation for LF Model

The main challenge with using model u .(t) in (4.2) is the need to estimate the
seven parameters £, t.. tp. ta, @, 3 and Coir- Only a,_,, enters the problem linearly,
so it is solved using least-squares as described in Section 3.6. Since AR residual
peaks coincide with the maximum glottal closure[37], the point of maximum glottal
closing t. is set to coincide with the impulsive points ¢; as described in Subsection
3.4.1, leaving five remaining parameters to be found by nonlinearly optimizing the
mean-squared error Ck in (3.25) and the output SNR. via coordinate optimization.

We have developed a technique for automatic fitting of the five LF parameters
te, te, ta, @ and B to the AR residuals using coordinate optimization. The Opti-
mization procedure is carried out in two stages as illustrated in Figure 4.3. We
have obtained pitch locations using AR residuals as described in Section 3.7. Good
initial estimates of the parameters is crucial for our optimization algorithm. In the
first stage of optimization, initial estimates of the parameters are obtained using
Minimum Finder Algorithm(MFA) developed by Brent(61]. The MFA combines
golden section search and successive parabolic search algorithms(details in [61]) to
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Figure 4.3: Flow chart for LF model parameter estimation.
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Figure 4.4: Mlustration of the Grid Search Algorithm(GSA). OSNR is the output
SNR, 7 is the initial estimate of the parameter at which GSA starts, k is the size of
grid and 7 is the number steps from ¢ at which a maximum is reached. Search may
continue in either or both directions until maxima are found. Algorithm selects the

index that gives the maximum OSNR.



CHAPTER 4. LF MODEL FOR ENHANCEMENT OF VOICED SPEECH 84

find a local minimum of a function in a given interval on which it (the function) is
defined. We have used the function fminu in Matlab based on MFA for obtaining
the initial estimates of the LF parameters. The MFA requires the specifications
of an upper bound, a lower bound and a termination tolerance for each of the
parameters to be estimated and uses the mean-squared AR residual given by,

1 K-1

Vo Z e€(t) = = ; [=(2) - gakz(f =)+ dy, v (E)] (4.3)
as cost function to be minimized. The termination tolerance gives the desired
length of the final interval on which the cost function is to be minimized. We
have set the termination tolerance to a value of 10~* (found empirically which is
also the default value used by Matlab) for all the parameters. The bounds on each
parameter were estimated by exhaustive testing for a wide range of parameter values
for minimizing the cost function in {4.3). It was found that it was necessary to use
multiple bounds on the parameters. For optimization, the MFA searches along
one parameter coordinate while keeping rest of the parameters constant. Then
it updates the estimated parameter and continues the search procedure in other

coordinates until all the parameters have been estimated. The order in which the

LF parameters were estimated was ¢., t, t,. @ and finally 8.

Using initial estimates of the LF parameters, another optimization procedure
known as grid search algorithm(GSA) via coordinate descent is applied to obtain
the final estimates of the parameters. The GSA is illustrated in Figure 4.4. For
each coordinate the GSA starts at ¢ the initial estimate for that coordinate found
by MFA while keeping other parameters constant at their initial estimate. Search
for the maximum OSNR (output SNR) starts with either incrementing or decre-
menting ¢ by the grid size k for that particular parameter and may continue until

the maximum OSNR is reached. In certain cases where OS NR; happens to be in
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a valley between two peaks, GSA may search in both directions as shown in Figure
4.4. Finally GSA selects the index that gives the maximum OSNR.

As mentioned earlier, we have used multiple bound sets for estimating the pa-
rameters. The optimization algorithm starts with each set of bounds, finds the
initial estimates using the MFA and the final estimates using the GSA for that
bound set. The parameter-estimate set, which gives the maximum output SNR,
is finally selected. Figure 4.5(a) shows AR residuals for Front Vowel /ae/ for one
frame (256 samples) fitted with LF pulse model by our optimization algorithm.
LF model driven residuals shown in Figure 4.5(b) show that the first spike has
completely been eliminated and the second spike has been reduced in amplitude
for almost 50% compared to that shown in Figure 4.5(a). The main reason behind
the second spike not being completely eliminated is that the LF parameters were
estimated by fitting the LF pulse train with the AR residuals over the entire length
of the speech signal. This was done to keep the computational complexity as low

as possible.

4.4 Results

A total of 50 voiced speech phones were taken from TIMIT database for an LF
model based speech enhancement. In order to assess enhancement limits we learn
the model parameters separately for each phone as in Chapter 2. Model assertions
and parameter assumptions described in Section 3.7 also apply in an LF model
based AR model. Frame length of 256 speech samples was used. Noisy signals
were created by adding white noise to an SNR of 5dB. The Kalman filter algorithm
described in Section 3.5 was applied.

Figure 4.6 shows the AR-LF residuals, paralleling the earlier results of Fig-
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ures 3.6 and 3.8. In moving from the purely impulsive to the LF model, the top
two panels (front vowel and diphthong), in particular, show a reduction and thin-
ning of residual spikes and exhibit less deterministic structure. A close examination
of the figures reveals a substantial limitation in u, which begins to be addressed in
u,.: an impulse §(¢) is exactly one sample wide, whereas the width of the residual
spikes in Figure 3.6 and of the peak in u, . are clearly sampling-rate dependent, and
are frequently, although not always, more than one sample in width. A similar issue
can be raised in terms of sampling origin: a single glottal burst may, depending
on the sampling origin, be captured as a single impulse or as two smaller impulses.
An impulse-train u, cannot properly address this issue, whereas u, . is a continu-
ous signal and lends itself naturally to resampling. The third panel (Figure 3.6(c))
showing the residuals for the semivowel /r/ still exhibits a periodic component to
considerable extent. This shows shortcoming of our optimization algorithm which
fails to find a good fit of the LF pulse in such case. The two main reasons, that can
be associated with the poor parameter estimation, are usage of improper bound set
for initial estimates and optimization over the entire length of the speech signal.
The fourth panel (Figure 3.6(d)) for the nasal /n/ shows periodicity to extremely
small extent. But again as for the nasals the effects of the voice source cancels out
by the zeros in the nasal cavity, they do not possess conspicuous periodic trend in

the residuals.

To assess the models more objectively, Tables 4.2, 4.3, 4.4, 4.5 and 4.6 and 4.7
in Appendix:B present results obtained for the front vowels, the mid vowels, the
back vowels, the diphthongs, the semivowels and the nasals respectively. Table 4.1
summarizes the SNR. improvement for each of the three proposed models, tested on
fifty different voiced phones. Most importantly, consistent and nontrivial improve-

ments in SNR are realized, first by the impulsive model, then additionally by the
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LF model, for all voiced phones tested. The LF model based AR model achieves an
average improvement of 1.271 dB in output SNR over that for white noise driven
AR model. Due to the assertions and the assumptions made by the model, the
output SNRs also indicate the limits to performance of the Kalman filter. Among
all the phoneme classes, the front vowels yield the highest improvement of 1.987
dB over the conventional AR model. Some of the diphthongs in Table 4.5 have
very small improvements in the output SNRs with LF model over its impulsive
counterpart. One of the reasons may be due to that fact that we are optimizing LF
parameters by fitting a long train of LF pulses with a long train of quasi periodic
AR residual spikes. Another reason may be associated the problem associated with
the sampling of the LF model. The parameter t. of LF model was made to coincide
with pitch periods i.e. with the peaks of the AR residual. But while sampling LF

model, we must have missed adjacent peaks which contributes low output SNRs.

4.5 Conclusions

This chapter has clearly established the applicability of an AR model excited by an
LF model for voiced speech enhancement purposes. The effects of the voice source
is modeled as an LF pulse train time modulated by pitch periods of the voiced
speech. Main challenge in using an LF voice model lies in its accurate parameter
estimation. The instant of maximum glottal closure, ¢, is made to coincide with
the pitch location. For the rest five of LF parameters, we have proposed a two step
optimization algorithm which finds the best fit of LF voice source pulses to AR
residuals. In the first stage, initial estimates are found using a Minimum Finder
Algorithm (MFA) proposed by Brent[61]. The initial estimates are then used to
compute final estimates using grid search algorithm (GSA) via coordinate descent.
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Figure 4.6: AR residuals for the LF model (4.2) for the voiced phones of Fig-
ures 3.6, 3.8. The residual spikes either have been retrenched or eliminated com-

pared to their white noise driven and impulse driven counterparts.
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Output SNR in dB | Output SNR in dB | Output SNR in dB
Phone white noise AR impulsive LF model-based
class AR model AR model AR model
Front vowels 8.666 9.398 10.653
Mid vowels 9.181 9.677 10.068
Back vowels 9.245 9.835 10.640
Semivowels 9.121 9.633 10.216
Nasals 8.777 9.293 9.651
Diphthongs 9.332 10.128 10.490
Mean over
all phoneme 9.115 9.625 10.386
classes

Table 4.1: Averaged enhancement results for voiced speech phones for input SNR
of 5 dB and lpc order of 10.
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We have obtained very promising results with LF mcdel based AR model for voiced
speech. In comparison of white noise-driven, impulsive and LF model based AR
model, the LF model based enhancement gave the best results.

One very important point worth mentioning is that AR-LF residuals are non-
white i.e. exhibit periodicity to some extent. This may be partly due to the fact that
LF parameter optimization is carried out over the entire speech duration which may
result in sampling of the residual spikes at wrong instances. Hence LF parameter
optimization over a single pitch period at a time would alleviate the presence of
deterministic spikes in the AR residuals at increased cost of the computational
complexity. Another reason behind the presence of spikes in the AR residuals may
be due to the effects of secondary excitations after the glottal closure[62, 63]. These

facts present various directions for future research.
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4.6 Appendix B: Details of Enhancement Results

SNR in dB | SNR in dB SNR in dB
Phone Phone white noise | impulsive | Lf model based

context AR model | AR model AR model
Jiy/ iy325i1386_the_e 10.399 10.576 10.946
/iy/ 1y16sx378_thee 8.174 8.639 8.907
/ih/ 1h49511386 _unit_z 9.216 10.078 10.680
/ix/ | iz17si1386_negotiation io 8.589 9.137 9.550
/eh/ eh9s1682_they. e 8.542 9.241 9.530
/eh/ eh4251682_area_al 8.713 9.917 10.443
/eh/ | eh5851682_economically_ e 7.635 8.287 8.659
[ae/ | ae26sz96_imagination._al 8.062 9.310 10.042

Table 4.2: Enhancement results for the Front Vowels for input SNR of 5 dB and
Ipc order of 10.
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SNR in dB | SNR in dB SNR in dB
Phone Phone white noise { impulsive | Lf model based

context AR model | AR model AR model
/ah/ ahl2sz119_ was_a 9.791 10.729 11.062
J/ah/ | ah38s5z378_museum u2 8.259 8.811 9.034
/ah/ | ah24sz86_color ful ol 9.142 9.587 9.760
/ah/ ahl13s:1051_are_ah 8.929 9.850 10.534
Jax/ | az29sz119_apology_ol 8.917 9.400 9.937
Jax/ az6si682_often. e 8.938 9.700 10.249
Jer/ | er34sz396_surface_ur 9.278 9.663 9.905

Table 4.3: Enhancement results for the Mid Vowels for the input SNR of 5 dB and
the lpc order of 10.
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SNR in dB | SNR in dB SNR in dB
Phone Phone white noise | impulsive | Lf model based

context AR model | AR model AR model
/uh/ ©h283z86 _color ful u 9.833 10.096 10.342
Jux/ vz 145286 _costume. u 8.172 8.735 9.904
Jux/ uzl5sal_suit_o 7.938 8.419 9.899
Jow/ ow28s1682_only_o 10.497 11.218 11.679
Jfow/ | ow9szl1l9_misquote uo 9.791 10.729 11.513
Jao/ @029sz396_Of_o 9.478 10.043 11.570
[ao/ | a025511051 _supporters_o 9.618 10.105 10.508
[ao/ a02si1051_northern_o 8.970 9.501 10.215
[aa/ aal0sz96_parties_a 8.398 9.236 9.651
/aa/ | aa35s¢1386_bargain_al 9.121 10.069 11.460
[aa/ aal3sz210_cart.a 9.402 10.039 10.307

Table 4.4: Enhancement results for the Back Vowels for the input SNR. of 5 dB and
the Ipc order of 10.
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SNR in dB | SNR in dB SNR in dB
Phone Phone white noise | impulsive | Lf model based

context AR model | AR model AR model
[yu/ yul8sz378_new_ew 9.106 9.694 10.035
/ey/ | eyTsz96_masquerade. a2 8.106 9.143 9.584
Jey/ eyl12st682_able, 9.612 10.643 10.980
[ay/ ay53s:1682_declining;1 9.136 10.070 10.426
[ay/ ay6st1739 timeb 1 8.781 9.590 10.560
[oy/ oy21sa2_oily oi 9.376 10.105 10.413
Joy/ oy7sz196 _oysters.oy 10.696 11.077 11.482
[oy/ oy7sz210_toy oy 9.850 10.270 10.440

Table 4.5: Enhancement results for the Diphthongs for the input SNR of 5 dB and
the lpc order of 10.
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SNR in dB | SNR in dB SNR in dB
Phone Phone white noise | impulsive | Lf model based

context AR model | AR model AR model
/y/ y7sal,our, 8.293 8.515 8.714
Jw/ w51s:1386. .with_w 9.967 10.614 11.247
/w/ w20s8296_ones_o 9.781 10.680 11.086
/t/ r10s:682_are_r 9.101 9.105 10.385
/t/ 1115296 _parties_r 8.398 9.376 9.774
/1/ 12652378 _archeological 11 8.941 9.707 10.580
[el/ | el33s2378 _archeological 12 9.368 9.435 9.728

Table 4.6: Enhancement results for the Semivowels for the input SNR of 5 dB and

the Ipc order of 10.

SNR in dB | SNR in dB SNR in dB
Phone Phone white noise | impulsive | Lf model based

context AR model | AR model AR model
/m/ mllsz378_jim.m 8.885 9.409 9.618
/m/ | m64si682_economically m 8.716 9.457 9.844
/m/ m44sz396_small_m 9.010 9.079 9.867
/n/ n22sz96_tmaginationn 9.983 10.271 10.632
/n/ 1n30s2396_on_n 9.202 9.688 9.946
/ng/ 19561682 _declining.ng 6.868 7.855 8.001

Table 4.7: Enhancement results for the Nasals for the input SNR. of 5 dB and the

Ipc order of 10.




Chapter 5

Contributions and Future

Research

This chapter reviews the contributions of this thesis and discusses possible avenues

for future research.

5.1 Thesis Contributions

The main objectives of this thesis were to find an appropriate model for representing
speech for enhancement purposes and to establish the limits to performances for
enhancement systems using such a model. The main concentration of this thesis
has been on modifying the white noise driven AR model which does not include
the effects of the excitation source especially in the case of the voiced speech. AR
model based Kalman filter has been used to estimate de-noised speech from noisy

speech.
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Chapter 3 demonstrated applicability of impulsive AR models for the voiced
speech the stops and affricates. Impulsive AR models include deterministic im-
pulsive driving terms which are tentative models for the effects of the excitation.
The effects of the glottal excitation is simulated by a train of impulses separated
by pitch periods. The unvoiced stops and the unvoiced affricates have plosive ex-
citation modeled by a single impulse at the onset of the burst and white noise.
Excitation for the voiced stops and the voiced affricates is modeled by both an
impulsive train time spaced by pitch periods, a single impulse at the onset of the
burst and white noise. Impulsive AR models always yielded higher output SNRs
compared to that for white noise excited AR model. This chapter also discusses the
flaws of impulsive models thereby motivating need for more sophisticated model for

source excitation.

Chapter 4 contributed a deeper understanding of the modeling of the voice
source excitation for voiced speech enhancement. This chapter establishes the fea-
sibility of LF models for voice source in AR models for speech enhancement. The
main challenge for using an LF model is the parameter estimation problem. An
optimization algorithm, which finds the best fit for the LF pulse sequence with AR
residuals, was proposed. This algorithm computes initial estimates using a mini-
mum finder algorithm via coordinate descent. The initial estimates are then used
by a grid search algorithm to give final estimates via coordinate descent. Proposed
Lf model based AR model and optimization algorithm was used for enhancing noisy
voiced speech phones. An extensive comparative study, of conventional AR model
driven by white noise with impulsive and LF model based AR models, infers that
AR model excited by LF model outperforms its counterparts.
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5.2 Future Research

Some of the interesting directions for future research are listed in the following

subsections.

5.2.1 Parameter Estimation from Noisy Speech

As one our objectives has been to study the limits to performance for the Kalman
filter based enhancement, we have used clean speech to estimate the AR parameters,
process noise and measurement noise covariances. This assumption was necessary
to as optimum Kalman filtering requires the accurate knowledge of the noise covari-
ances and AR parameters. In reality often is the case when only the noisy speech is
available for processing. A number of methods have been proposed for identifying
the noise covariances from the noisy speech[64, 65, 66]. Various methods utilizing
EM algorithm have also been used for estimating AR parameters and the noise
covariances from the noisy speech[67, 68, 35]. One useful extension of our work
would be to estimate the impulsive and LF model based Kalman filter parameters

from the noisy speech using existing methods.

5.2.2 Parameter Estimation for LF Model

LF parameter estimation problem has been addressed long since but in speech
synthesis perspective[37, 69, T0]. We have solved the parameter estimation problem
for LF model using a coordinate optimization algorithm. Qur algorithm was found
to be sensitive to the upper and lower bounds for each parameter which are required
to be specified for MFA. Alternative estimation procedures for enhancement can be

realized using available optimization algorithms[71, 72, 73]. One possible alternative
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method can be developed using steepest descent algorithm that can optimize in

multiple dimension.

5.2.3 Automated Pitch Detection

Manual pitch detection was necessary for studying the limits to performance of the
Kalman filter. Pitch detection was done manually from the residual signal (3.2) in
which the pulses are conspicuous, followed by an automated local peak-finder to
guarantee accurate positioning. In order to apply the proposed models to robust
continuous speech enhancement it is necessary to automate the pitch detection
process. Pitch detection problem has been well studied in speech analysis[74].
Using one of the available pitch detection algorithms may open up a window of

opportunities for our proposed models in real life speech enhancement applications.

5.2.4 Various Types of Measurement Noise

We have used the assumption that clean speech is corrupted by additive white noise
as given by 2.1. The measurement white noise used for our experiments has been
artificially simulated. It may be a good challenge to use noise encountered in real

life which may be white, colored or non-stationary for the model given by 2.1.

5.2.5 Subjective Measure of Enhanced Speech

For evaluating enhanced speech we have used output SNR as objective measure
and while as subjective measure we have inspected the temporal plots of clean,
noisy, enhanced speech and AR residuals. It remains to be determined how much

improvement has been made when hearing is used as subjective measure.
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5.2.6 Further Investigation of the Driving Term

One problem with Impulsive and LF model based enhancement is that we require
a priort knowledge of the pitch period. In the case of voiced fricatives, voiced
stops or voiced affricate sometime it was very difficult to identify the pitch periods
from AR residuals as such speech types do not show marked periodicity due to
pole-zero cancelation unlike the vowels, semivowels, diphthongs or nasals. This
discrepancy leaves a vast room for investigating production mechanism of the source

and modeling of voiced consonants for enhancement.

In this thesis for voiced speech we have assumed glottal excitation occurring
at the glottal closure[37]. The LF model based AR residuals show the presence a
number of quasi-periodic negative and positive spikes. Thus even when the speech
is clearly periodic it may be too simplistic to assume only one form of driving term
in an entire pitch period[63]. In fact there is some evidence in speech synthesis that
apart from the main excitation at the glottal closure there may be secondary excita-
tions after the glottal closure and at the glottal opening at the opening phase[62].
Such facts present good motivations for introducing multiple excitations during

within a single pitch period for voiced speech.

Another interesting extension of our work would to derive the excitation wave-
form directly from the speech waveform. This has been done in a number of
speech synthesis and analysis literature in order to produce natural sounding speech
[63, 75,76, 77, 78, 55, 79]. Such methods may rectify the modeling errors introduced
by the Impulsive or the LF models.
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