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Abstract 

The effective and efficient remediation of contaminated groundwater sites requires site specific 

information regarding the physical, chemical and biological properties of the aquifer (e.g., 

hydraulic conductivity, porosity, ion exchange capacity, redox capacity, and biodegradation 

potential).  Hydrogeological parameters are known to vary both laterally and vertically; therefore 

to support the design of a remedial treatment system, aquifer parameter estimates specific to the 

site must be obtained.  Ex situ parameter estimation methods for biological or chemical 

properties may not provide estimates representative of field conditions; however, recent work 

with partitioning inter-well tracer tests (PITTs) and push-pull tests indicate that in situ 

approaches present a potential opportunity to identify aquifer parameters.  Building on the dipole 

flow test (DFT) and the dipole flow and tracer test (DFTT), the dipole flow and reactive tracer 

test (DFRTT) has been proposed as in situ aquifer parameter estimation method.  The test setup 

consists of three inflatable packers isolating two chambers in a cased well.  A pump moves water 

at a constant flow rate from the aquifer into one chamber and transfers the water to the other 

chamber where it returns to the aquifer.  Once steady-state flow conditions have been reached, a 

suite of reactive tracers are released into the injection stream and the tracer concentrations are 

monitored in the extraction chamber to create the breakthrough curves (BTCs).  It is envisioned 

that tracer BTCs generated in the field can be analyzed with a suitable simulation model to 

estimate the required aquifer parameters (e.g., distribution coefficient, intrinsic degradation rate 

coefficient).  The overall goal of this thesis was to demonstrate the ability of a prototype dipole 

system to produce tracer BTCs in conventional wells installed in an unconfined sandy aquifer.   

The Waterloo dipole probe was constructed with characteristic dimensions L = 0.22 m and Δ = 

0.08 m and field tested in 6 conventional monitoring wells (with and without filter packs) 

installed at CFB Borden.  DFTs conducted at 0.10 m increments along the length of the screen of 

non-filter packed monitoring wells provided similar estimates of radial hydraulic conductivity 
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(Kr) to slug tests and literature values.  In general, good agreement was found between the Kr 

profiles obtained from the individual chamber pressure drawup and drawdown which provide 

more representative estimate of Kr than the use of the combined chamber ( C
rK ) profile.  This 

result was also supported by the results of numerical simulations which indicated the drawdown 

and drawup measurements are functions not only of the K field across the chamber but also of 

the K field in the vicinity of the chamber.  The geometric mean C
rK  estimated in the filter packed 

wells was approximately an order of magnitude greater than the mean C
rK  estimate for the non-

filter packed wells.  In addition, less variability observed in the Kr estimates in the filter packed 

monitoring wells compared to the Kr estimates in the non-filter packed wells.  This indicates 

short-circuiting through the skin zone (hydraulic conductivity Ks) is more pronounced in the 

DFTs completed with the prototype dipole probe in the filter packed monitoring wells than the 

non-filter packed wells.   

A total of 46 DFTTs were completed in the monitoring wells at CFB Borden to investigate the 

properties of the BTCs.  The shape of the BTC for a conservative tracer is affected by test set up 

parameters, well construction, and aquifer formation properties.  The BTCs from the DFTTs 

completed in the non-filter pack monitoring wells were categorized into four “type curves” based 

on the curve properties (time to peak, peak concentration, etc.).  The differences between the 

type curves were largely defined by the ratio of K between the skin zone and the aquifer (Ks/Kr).   

In order for aquifer parameters to be estimated from the BTC of a DFTT, one must have 

confidence the BTC is representative of the aquifer conditions.  The series of DFTTs completed 

to assess the repeatability of the BTCs demonstrate portions of the DFTT BTCs are repeatable 

and that Type 1 and Type 2 BTCs showed similar times to peak concentration between DFTTs.  

The BTCs from DFTTs completed at the same locations but at different flow rates can be scaled 

to produce similar BTCs.  The peak of the field BTCs was largely defined by the aquifer 

properties and not affected by tracer recirculation; however, tracer recirculation was important 
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for controlling the shape of the tail of the BTC.  Longer durations of tracer injection were found 

to increase and delay the peak concentration of the BTC consistent with theory.   

The differences between the BTCs of DFTTs completed in filter packed wells and non-filter 

pack wells emphasize the importance of well construction on the interpretation of DFTT BTCs.  

The importance of trace recirculation on the shape of the BTCs for DFTTs in filter packed wells 

was demonstrated by DFTTs completed with and without tracer recirculation.  Successive peaks 

on the recirculatory BTC were not visible on the non-recirculation BTC indicating the initial 

concentration peak was recirculated through the filter pack.  The DFTTs completed in the filter 

packed wells may or may not include tracer movement through the aquifer in addition to tracer 

movement through the filter pack. 

The dipole flow and reactive tracer test (DFRTT) has been proposed as a method to obtain site 

specific in situ estimates of aquifer parameters to aid in the design of a remedial system for a 

contaminated site.  Now that a series of DFTT BTCs have been generated, the DFRTT model 

will be used to estimate the aquifer parameters.  To continue the work outlined in this thesis, 

DFRTTs are planned for well-documented contaminated sites.  A field trial has also been 

proposed for the use of the dipole apparatus to deliver chemical oxidants at a source zone of a 

contaminated site. 
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Chapter 1 Introduction 

The effective and efficient remediation of contaminated groundwater sites requires site specific 

information regarding the physical, chemical and biological properties of the aquifer (e.g., 

hydraulic conductivity, porosity, ion exchange capacity, redox capacity, and biodegradation 

potential).  Hydraulic conductivity, which governs the rate at which a fluid can move through a 

medium, is known to vary both laterally and vertically (e.g., Molz et al., 1994; Butler, 2005; 

Zemansky et al., 2005; Dietrich et al., 2008), while biodegradation rates can vary due to 

differences in sediment texture, pH, temperature, microbial populations, carbon, oxygen and 

other nutrient availability (Schroth et al., 1998; Sandrin et al., 2004).  To support the design of a 

remedial treatment system, aquifer parameter estimates specific to the site must be obtained.  The 

use of literature values results in uncertain and potentially overly conservative predictions of 

remediation performance and may lead to unnecessarily cautious risk assessment and costly 

remediation strategies (Thomson et al., 2005).  

Current methods for the direction measurement of aquifer parameters are typically divided into 

ex situ and in situ techniques.  Ex situ measurement techniques involve the removal of aquifer 

material from the impacted site for laboratory analysis.  Although the materials can be tested to 

determine aquifer properties such as hydraulic conductivity, porosity, ion exchange capacity and 

biodegradation potential, ex situ techniques may provide parameter estimates not representative 

of the aquifer material due to the reduction of sample integrity during collection, transport, and 

laboratory setup and testing.  Numerous in situ techniques are available for estimating aquifer 

physical and geologic characteristics (e.g., hydraulic conductivity, storativity, porosity, and 

fracture zones); however, few in situ methods are available to estimate biological or chemical 

properties.  The main advantage to choosing an in situ technique over an ex situ technique is the 

opportunity to collect information over multiple depths and locations across an impacted site 

while minimizing disturbance to the aquifer material sample.  Further advantages of in situ 

techniques are assessment at the relevant scale of the parameter variation and real-time analysis 

of collected data.  Recent work with partitioning inter-well tracer tests (PITTs) and push-pull 

tests indicate that in situ approaches present a potential opportunity to identify additional aquifer 

parameters.   
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A PITT consists of the simultaneous injection of several tracers with different partitioning 

coefficients at one or more injection wells and the subsequent measurement of tracer 

concentrations at one or more monitoring wells to estimate the presence of non-aqueous phase 

liquids (NAPLs) (Jin et al., 1995).  Typically, PITTs are conducted prior to and post source zone 

treatment to quantify the effectiveness of the remediation activities (e.g., Cain et al., 2000; 

Meinardus et al., 2002).  The logistical and cost constraints tend to restrict the use of PITTs 

despite significant advances in their design and post-test analysis methods.  Push-pull tests have 

been used to quantify microbial metabolic activities (Istok et al., 1997) and in situ reaction rate 

parameters (Haggerty et al., 1998) in petroleum contaminated aquifers.  Push-pull tests have also 

recently been used to estimate the natural oxidant demand of an aquifer (Mumford et al., 2004) 

and TCE degradation rates and permanganate consumption rates (Ko et al., 2007).  One of the 

major disadvantages to using the push-pull test to estimate aquifer properties is the need to 

determine groundwater velocity direction and magnitude during the test as they are responsible 

for transporting the injected solution down-gradient of the monitoring well during the reaction 

phase. 

Butler (2005) summarizes existing methods to estimate hydraulic conductivity (K) using in situ 

hydraulic tests (slug tests, borehole flowmeter tests, and dipole flow tests) and describes the 

ongoing development of direct push methods to rapidly estimate the vertical variations in K.  The 

slug test is a simple field method which provides a K estimate which is the thickness weighted 

average of the materials along the well screen (Butler et al., 1994).  Packers can be used to 

isolate sections of the well screen for slug testing in order to determine a vertical profile of K.  K 

estimates from another hydraulic test, the borehole flowmeter test (BFT), may not be 

representative of the formation due to flow bypassing the flowmeter through short circuiting 

through the skin zone (Boman et al., 1997).  The dipole flow test (DFT) is a single-well 

hydraulic test consisting of three inflatable packers isolating two chambers in a cased well 

(Figure 1.1) and is used to estimate the vertical distribution of the radial hydraulic conductivity 

(Kr) in the vicinity of a test borehole.  A submersible pump located in the central packer moves 

water at a constant flow rate from the aquifer into one chamber and transfers the water to the 

other chamber where it returns to the aquifer (Kabala, 1993).  Pressure transducers located in 

each chamber monitor pressure changes (drawup and drawdown) which are used in conjunction 
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with a simple analytical model to estimate Kr.  Numerous DFTs have been conducted in various 

diameter wells with different dipole configurations and flow rates and estimated Kr profiles 

generated from DFTs have shown similar trends and values to K estimates obtained through 

grain size analysis, permeameters, sieve analyses, flowmeters, and pump tests (Zlotnik et al., 

1998; Zlotnik et al., 2001; Zlotnik et al., 2003).   

Sutton et al. (2000) proposed an extension to the DFT by adding a conservative tracer; thus 

creating a dipole flow and tracer test (DFTT).  The DFTT works in a similar fashion to the DFT 

except when a steady-state flow field has been established, a conservative tracer is released into 

the injection chamber and the tracer concentration is monitored in the extraction chamber.  The 

tracer is re-circulated since the extracted tracer solution is re-injected into injection chamber.  

Sutton et al. (2000) suggested that a combination of the chamber pressure changes and key 

properties of the tracer breakthrough curve (BTC) could be used to estimate the Kr and the 

longitudinal dispersivity (αL) along the DFT flowpaths.   

Recently, the dipole flow and reactive tracer test (DFRTT) has been proposed as in situ aquifer 

parameter estimation method (Thomson et al., 2005) and has a similar setup to the DFTT except 

that in addition to conservative tracer a suite of reactive tracers (i.e., sorbing, degrading, 

biodegrading, etc.) are injected either as a spike or for an extended period of time.  The 

concentrations of the tracers and their breakdown products are monitored in the extraction 

chamber to produce a number of tracer BTCs.  It is envisioned that these BTCs can then be 

analyzed with a suitable simulation model to estimate the required aquifer parameters (Thomson 

et al., 2005; Reiha, 2006).  The difference between a conservative tracer BTC and a reactive 

tracer BTC will depend on the nature of the reactive tracer injected.  For example a sorbing 

tracer such as trichlorofluoromethane will result in a retarded BTC relative to the conservative 

tracer, while a biodegrading tracer is expected to produce a BTC that shows signs of degradation 

relative to the conservative tracer BTC.  These BTCs can be interpreted using simulation models 

in conjunction with optimization tools to estimate the value of controlling parameter(s) such as 

the distribution coefficient for the sorption process or the intrinsic degradation rate coefficient 

for the biodegradation process.  
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1.1 Thesis objectives  

The objectives of this thesis are to: 

1. Design, construct, and field test a prototype dipole probe to perform DFTs and DFRTTs; 

2. Demonstrate the use of the developed prototype dipole probe as a site characterization 

tool to provide detailed vertical profiles of Kr in conventional monitoring wells; and 

3. Investigate the ability of the developed prototype dipole probe and DFTT to produce 

conservative BTCs and investigate the sensitivity of the BTCs to changes in operational 

parameters. 

The results from this research effort will be used as the framework for ongoing research 

exploring the utility of reactive tracers to characterize key aquifer properties in situ. 

1.2 Thesis scope  

To satisfy the thesis objectives stated above, a dipole probe prototype was constructed and tested, 

and then used in a series of both DFT and DFTT experiments performed at Canadian Forces 

Base (CFB) Borden.  The relevant background, methods, and results and discussion follow in 

Chapter 2 and Chapter 3.  Chapter 2 focuses on the use of the prototype dipole system with DFTs 

as a site characterization tool for estimating the vertical variations in Kr while Chapter 3 deals 

with work on the DFTTs.  Both Chapter 2 and Chapter 3 are structured as initial manuscript 

drafts and as such are relatively stand-alone; hence some information is repeated throughout this 

thesis.  Finally, Chapter 4 presents major findings and outlines recommendations for future 

research.  DFT results not discussed in Chapter 2 are presented in Appendix A.  Results of all 

tracer tests are presented in Appendix B, and preliminary work with DFRTTs is summarized in 

Appendix C.   
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Figure 1.1 The dipole flow test (DFT) as originally proposed by Kabala (1993). 
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Chapter 2 Dipole Flow Tests (DFTs) 

2.1 Introduction 

Hydraulic conductivity (K) governs the rate at which a fluid can move through a porous medium 

and is a function of the properties of both the fluid and the medium.  K is known to vary both 

laterally and vertically (e.g., Molz et al., 1994; Butler, 2005; Zemansky et al., 2005; Dietrich et 

al., 2008) and therefore the spatial variations in K across a site govern the advective transport of 

a contaminant.  Appropriate site characterization to determine site-specific hydraulic features 

(e.g., high or low K zones) is required to understand contaminant transport at a given site and 

develop a remedial approach.  

The K of an aquifer can be estimated in the laboratory as well as the field.  Laboratory methods, 

including permeameters and grain size analysis (e.g., Hazen, 1911), may not provide K estimates 

representative of field conditions (e.g., Taylor et al., 1990; Butler, 2005).  Pumping tests can be 

used to estimate K for the zone of influence but provide limited insight into the small-scale 

variations of K.  Butler (2005) summarizes existing methods to estimate K (slug tests, borehole 

flowmeter tests, and dipole flow tests) and describes the ongoing development of direct push 

methods to rapidly estimate the vertical variations in K. 

The slug test, which monitors the recovery of a water column in a well after a rapid change in 

head, is a simple field method for estimating K near a well.  The rapid change in head can be 

caused by the addition or displacement of a known volume of water and changes in head are 

monitored with a pressure transducer.  Conventional slug test analyses include the Hvroselv 

analysis (1951), the Bouwer and Rice analysis (Bouwer et al., 1976; Bouwer, 1989) and the 

Cooper, Bredehoeft and Papadopulos analysis (Cooper et al., 1967), while more recent 

developments (e.g., Hyder et al., 1994) incorporate the effects of partial well penetration, 

anisotropy and a finite radius well skin.  Butler et al. (1996) provides numerous suggestions to 

improve the quality of slug test K estimates including appropriate well construction and 

development procedures.  The K estimate provided by a slug test is a thickness weighted average 

of the materials along the well screen (Butler et al., 1994).  Packers can be used to isolate 

sections of the well screen for slug testing (e.g., Zemansky et al., 2005; Ross et al., 2007) in 
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order to determine a vertical profile of K (termed multi-level slug tests (MLSTs), straddle-packer 

tests or double-packer tests).     

The borehole flowmeter test (BFT) involves pumping a well at a constant rate and measuring the 

vertical velocity profile.  The K at a given location is estimated from the difference in flow 

between measurement points.  This analysis relies on the assumption of horizontal flow towards 

the well (Butler, 2005).  Boman et al. (1997) note the difficulties in conducting BFTs in filter 

packed wells due to significant vertical flow in the filter pack and flow bypassing the flowmeter 

due to short circuiting through the filter pack.  

Direct-push techniques for K estimation have the advantage that monitoring wells are not 

required.  The direct-push injection logger (DPIL) consists of a small diameter rod with a screen 

near the tip.  To perform a DPIL K test, tool advancement stops and the resistance to water 

injection is measured by an aboveground pressure transducer.  The DPIL is a rapid method for 

the estimation of K however it can provide only semi-quantitative K estimates through 

regressions with K estimates provided by other methods (Dietrich et al., 2008).  The direct push 

permeameter (DPP) uses a similar tool to the DPIL however the pressure transducers are 

mounted on the tool near the screen.  The delicate nature of the pressure transducers limits the 

DPP to stratigraphy where the tool can be pushed by a direct push rig (Butler et al., 2007). 

The dipole flow test (DFT) is a single-well hydraulic test consisting of three inflatable packers 

isolating two chambers in a cased well and is used to estimate the vertical distribution of the 

radial (Kr) and vertical (Kz) hydraulic conductivity, and the specific storativity (Ss) in the vicinity 

of a test borehole.  A submersible pump located in the central packer moves water at a constant 

flow rate from the aquifer into one chamber and transfers the water to the other chamber where it 

returns to the aquifer (Figure 2.1).  Pressure transducers located in each chamber monitor 

pressure changes (drawup and drawdown).  To estimate the hydraulic aquifer parameters (Kr, Kz 

and Ss) the transient chamber pressure changes are matched to type curves generated from an 

analytical solution (Kabala, 1993).  Zlotnik et al. (1996) observed that the chamber pressures 

during a DFT reached steady-state quickly and suggested that the following could be used to 

estimate Kr  
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where Is  and Es  are the steady-state absolute pressure head difference in the injection and 

extraction chamber respectively, rw is the internal well radius, e = 2.718…, 2Δ is the chamber 

length, 2L is the dipole shoulder defined as the distance between chamber centers (L = D + Δ), 

and 2D is the dipole chamber separation.  The function Φ(λ) increases from 0.5 to 1.0 as λ 

increases and the anisotropy ratio a must either be assumed or known prior to the test.   

Numerous field studies of the DFT have been conducted in various diameter wells with different 

dipole configurations and flow rates (Table 2.1).  Estimated Kr profiles generated from DFTs 

have shown similar trends and values to K estimates obtained through grain size analysis, 

permeameters, sieve analyses, flowmeters, and pump tests (Zlotnik et al., 1998; Zlotnik et al., 

2001).  Analysis of the individual chamber pressure changes ( Is  or Es ) can provide estimates of 

Kr in the immediate vicinity of the chamber ( I
rK  or E

rK ).  Zlotnik et al. (2003) also conducted 

DFTs, MLSTs and BFTs in order to compare estimates of Kr.  The DFT I
rK  and E

rK  estimates 

were found to be closely correlated (0.97 < r2 < 0.99) when compared at the same depth 

(comparison of two DFTs).  The DFT E
rK  estimates were also closely correlated to the MLSTs 

(0.96 < r2 < 0.98) conducted at the same depth and with the same screen length; however, the 

DFT results were less well correlated to the BFT results either due the BFT not being able to 

physically isolate the test interval, the difference in support volume between the hydraulic tests 

or violations of the assumptions inherent in the BFT analysis.  Most recently, Zlotnik et al. 

(2007) reported the use of the DFT in a laboratory setting to investigate the effects of entrapped 

air on the K estimate. 

One potential problem with the DFT is the short-circuiting of flow through the disturbed zone or 

well skin (hydraulic conductivity Ks).  Since the DFT induces a predominantly vertical flow 

field, the well skin may be more pronounced in the DFT than in other single-borehole tests 

(Kabala, 1993; Zlotnik et al., 1998).  In a series of DFTs performed in filter-packed wells in a 
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heterogeneous highly permeable aquifer Zlotnik et al. (2001) observed a slight skin effect; 

however, similar Kr estimates were obtained for wells where geotextile rings were installed to 

prevent short-circuiting suggesting that at least in this aquifer the role of the well skin was 

minimal.  Xiang et al. (1997) investigated numerically the effect of Ks on the estimation of 

anisotropy ratios and found the estimated a ratio decreased when Ks/Kr increased.  Peursem et al. 

(1999) used a mathematical analysis based on Stokes’ stream functions to quantify the effect of a 

higher Ks zone near the well and observed that the presence of the higher Ks reduced the radial 

extent of the streamlines and that this effect was more pronounced for short distances between 

the chambers (i.e., low L).   

Sutton et al. (2000) proposed an extension to the DFT by adding a conservative tracer; thus 

creating a dipole flow and tracer test (DFTT).  The DFTT works in a similar fashion to the DFT 

except when a steady-state flow field has been established, a conservative tracer is released into 

the injection chamber and the tracer concentration is monitored in the extraction chamber.  

Recent efforts have built upon the flow system of the DFTT and suggested the use of reactive 

tracers to develop a new test for chemical and microbial aquifer parameters (Thomson et al., 

2005; Reiha, 2006; Roos et al., 2008).  The proposed test, termed the dipole flow and reactive 

tracer test (DFRTT), injects a suite of reactive tracers into the DFT flow field and uses a 

numerical model to interpret the breakthrough curves to estimate the desired aquifer parameters.  

The DFRTTs would be conducted in specific zones of K depending on the desired aquifer 

properties; DFRTTs could also be used to obtain a spatially averaged estimate of an aquifer 

parameter at a larger scale, consistent with objectives of bulk characterization.  For example, if 

one was interested in the sorbing properties of an aquifer, a DFRTT could be completed with 

sorbing tracers across a lower K layer.  The lower K layer would be identified with a series of 

DFTs, completed with the same dipole tool as the DFRTT, to estimate the vertical variation in K.  

The purpose of this paper is to demonstrate the use of a DFT as a site characterization tool to 

estimate small-scale variations in K. 
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2.2 Field site, materials and methods 

2.2.1 Field site  

The field site for the DFTs reported in this paper is located at Canadian Forces Base (CFB) 

Borden, ~80 km northwest of Toronto, Ontario, Canada.  The aquifer at this location is 

unconfined and consists of glacio-lacustrine deposits of fine to medium sand with porosity 0.40 

(Brewster et al., 1995; Sneddon et al., 2002).  Mean K estimates for this aquifer range from 8.0 

x10-5 m/s (ln(K) variance 0.24 to 0.37) (Sudicky, 1986; Woodbury et al., 1991) for constant-head 

tests performed on homogenized core material to 2.6 x10-5 m/s (ln(K) variance 1.1) for constant-

head tests performed on intact soil cores (Tomlinson et al., 2003).  Reported horizontal 

correlation lengths range from 1.8 m to 8.3 m and vertical correlation lengths range from 0.16 m 

to 0.26 m (Woodbury et al., 1991; Tomlinson et al., 2003).  Tomlinson et al. (2003) completed 

slug tests whose K estimates ranged from 3.8 x10-6 m/s to 6.1 x10-5 m/s with a geometric mean 

of 2.5 x10-5 m/s.  Other slug test K estimates for the aquifer have ranged from 3.0 x10-5 to 6.0 

x10-5 m/s (Nwankwor et al., 1984).  Aquifer K estimates from a pumping test ranged from 1.4 

x10-4 m/s to 2.2 x10-4 m/s (Nwankwor et al., 1984).  Although the aquifer is relatively 

homogeneous, distinct horizontal bedding features at the cm scale have been observed (Mackay 

et al., 1986; Brewster et al., 1995).  The sand unit is underlain by an aquitard comprised of silts 

and clays ~9 m below ground surface (bgs) (MacFarlane et al., 1983).   

Six 5.1 cm diameter PVC monitoring wells (MW-3 to MW-8) were installed to a depth of 5.5 m 

bgs and completed with a 3 m screen (0.010” slot).  The wells are evenly spaced over an area of 

~1000 m2.  Four wells (MW-3, MW-5, MW-6 and MW-8) were installed using a jetting 

technique where a hollow steel casing (~7 cm ID) was hammered into the sandy aquifer material 

and the interior of the casing was flushed with water to remove the aquifer solids.  The aquifer 

material was allowed to collapse around the inserted PVC monitoring well when the steel casing 

was removed (Kueper et al., 1993; Tomlinson et al., 2003) thereby creating a well with a no 

artificial filter pack.  The remaining two wells (MW-4 and MW-7) were installed following a 

similar jetting technique with a larger steel casing (~13 cm ID) to allow the installation of a 5.1 

cm radius artificial filter pack (d50 of 0.85 mm).  The K of the filter pack material (Ks) was 

estimated using the Hazen equation (Hazen, 1911) to be ~3 x10-3 m/s, 2 orders of magnitude 
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larger than the native aquifer material.  Each monitoring well was developed by repeatedly 

surging and pumping until the extracted water was clear of sediment. 

2.2.2 Dipole system 

The prototype dipole probe consists of three rubber inflatable packers with brass end caps 

separated by two chambers (Figure 2.2).  The packers are separated by adjustable spacer rods to 

create the injection and extraction chambers.  The characteristic dimensions of the Waterloo 

prototype dipole probe are L = 0.22 m and Δ = 0.079 m.  A 3.2 mm (1/8 in) HDPE inflation line 

connects the packers to a valve and pressure gage at ground surface.  Two vented pressure 

transducers (Huba Control, Type 680 with range 0 – 2500 cm H20) are mounted in the packers 

and connect to the chambers with 6.35 mm (¼ in) stainless steel tubing.  The current measured 

by the transducers are recorded every second by a data logger (Onset Computer Corporation, 

H21-002) and used to determine the changes in chamber pressures.  The peristaltic pump (Cole 

Parmer, K-07553-70) which controls the DFT is located at the surface.  This dipole probe 

prototype was designed for use with DFRTTs where samples of the extracted solution will be 

collected aboveground; therefore, the pump is located at the surface instead of within the central 

packer as originally conceived by Kabala (1993).   

The choice of packer length was dictated by the prevention of packer circumvention which 

occurs when water is drawn into the chambers from the well screen above or below the packers.  

Increased vertical flow due to packer circumvention will overestimate the K of the aquifer and 

underestimate the extent of the vertical variations in K (Butler et al., 1994).  Following 

recommendations by Zlotnik et al. (2003) and Cole et al. (1994), a packer length to packer radius 

ratio >10 was selected for this dipole probe design.  

2.2.3 Field methodology 

Slug tests – Slug tests were completed in each of the six monitoring wells (MW-3 through  

MW-8).  A minimum of six slug tests were completed at each well using two different slugs to 

ensure the K estimates were independent of the initial displacement (H0) and to investigate 

changing well skin effects.  Both falling head and rising head slug tests were completed to ensure 

the K estimate was not related to the direction of flow.  The pressure changes in the monitoring 

well were measured with a pressure transducer (Onset Computer, U20-001-01) located below the 
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submerged slugs.  The pressure transducer data was analyzed following the Bouwer and Rice 

method (Bouwer et al., 1976; Bouwer, 1989) to estimate a mean K ( SLUGK ) along the monitoring 

well screen.  

DFTs – DFTs were conducted at 0.10 m increments along the 3 m screen of each monitoring 

well.  At each location tested in the naturally developed monitoring wells, DFTs were completed 

at three different flow rates.  For the filter packed monitoring wells, DFTs were completed at a 

single flow rate due to limitations of the peristaltic pump.  The flow rates for the DFTs ranged 

from 350 to 1460 mL/min.  C
rK  (Kr estimated using pressure head change data from both dipole 

chambers) was estimated from Equation (1) developed by Zlotnik et al. (1998).  Smaller scale 

estimates for Kr ( I
rK  or E

rK ) were also estimated using only the injection ( Is ) or extraction  

( Es ) pressure head changes (Zlotnik et al., 2001).  Prior to conducting the DFTs, the monitoring 

wells were re-developed until the extracted groundwater was clear.  To provide insight into the 

drawup and drawdown values obtained during the field DFTs, simulations were performed using 

the hydraulic head and flow component of the existing DFRTT interpretation model (Thomson et 

al., 2005; Thomson, 2009).  The DFRTT interpretation model is a high-resolution two-

dimensional radially symmetric model consisting of two major components: a steady-state 

groundwater flow component and a reactive transport component (Thomson et al., 2005; Reiha, 

2006). 

2.3 Results and discussion 

2.3.1 Slug tests 

The slug test estimates for K ( SLUGK ) were not related to the size of the initial displacement (H0), 

the order in which the tests were conducted, or the direction of water flow (i.e., rising head vs. 

falling head). The SLUGK  estimates for the non-filter packed wells ranged from 1.9 x10-5 (MW-8) 

to 4.1 x10-5 (MW-3) m/s with a geometric mean of 2.7 x10-5 m/s (Table 2.2).  The mean 

coefficient of variation for the SLUGK  estimates was 0.05.  The SLUGK  estimates are almost 

identical to the geometric mean slug test K estimate (2.5 x10-5 m/s) of Tomlinson et al. (2003) 

and similar to the K estimates of Sudicky (1986); differences between the SLUGK  estimates and 
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the previous K estimates may be attributed to different testing locations in the aquifer.  Similar 

estimates for SLUGK   were obtained for the filter-packed wells (geometric mean 3.3 x10-5 m/s) 

indicating that the slug test was not sensitive to the presence of the filter pack presumably due to 

the horizontal flow field created during the test (Figure 2.3).   

2.3.2 Dipole flow tests 

The geometric mean C
rK  for the non-filter packed monitoring wells ranged from 1.5 x10-5 m/s 

(MW-8) to 5.8 x10-5 m/s (MW-3).  The minimum and maximum C
rK  were 7.6 x10-6 m/s (4.3 m 

bgs MW-8) and 9.3 x10-5 m/s (4.2 m bgs MW-3), respectively.  Previous work at CFB Borden 

has shown the stratigraphy consists of medium grained sand with some interbedding; therefore 

only a small range of K values was expected.  For example, working with permeameters of 

undisturbed soil cores (5 cm), Tomlinson et al.’s (2003) K estimates ranged from 1.9 x10-7 m/s to 

1.6 x10-3 m/s.  The smaller K range estimated by the DFT is attributed to the averaging effect due 

to the DFT’s larger scale of measurement (2.2 m (10aL) in the radial direction and 0.90 m (4L) in 

vertical direction) (Zlotnik et al., 1996).  The DFT I
rK  and E

rK  estimates provide a smaller scale 

measurement of Kr than C
rK .  E

rK  ranged from 6.7 x10-6 m/s (4.3 m bgs MW-8) to 1.4 x10-4 m/s 

(3.9 m bgs MW-3) while the overall geometric mean for each monitoring well ranged from 1.5 

x10-5 m/s (MW-8) to 6.7 x10-5 m/s (MW-3).   

The slug test K estimates for a given monitoring well typically corresponded to the higher DFT 

Kr estimates (Table 2.2).  For example, SLUGK  for MW-5 was estimated to be 4.5 x10-5 m/s while 

the DFT C
rK  estimate ranged from 1.3 x10-5 m/s to 4.4 x10-5 m/s (Figure 2.4).  This is significant 

in that these results suggest the slug test is more influenced by higher K layers rather than lower 

K layers.  This is supported by the results of previous numerical simulations which indicate the 

estimated K for a slug test will be a thickness-weighted arithmetic mean of the Kr of the 

individual layers (Butler et al., 1994).   

As initially noted by Zlotnik et al. (2001), the drawup and drawdown of a given DFT can be used 

to find chamber specific estimates for Kr.  Using the chamber specific interpretation of the 

pressure changes, two Kr profiles ( I
rK  and E

rK ) can be obtained from the same series of DFTs  
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for a given monitoring well.  In this manner, the DFTs can “self-verify” by comparing the two 

profiles ((Zlotnik et al., 2003).  In general, good visual agreement was found between the I
rK  

and E
rK  for the DFTs completed at in the non-filter packed wells (Figure 2.4(a-d)). 

The DFTs completed in the filter packed monitoring wells MW-4 and MW-7 show a more 

uniform K profile (CV of 0.14) (Figure 2.4(e and f)) than the K profiles of the non-filter packed 

monitoring wells (Figure 2.4(a-d)).  The geometric mean C
rK  estimated from the DFTs for wells 

MW-4 and MW-7 was 4.8 x10-4 m/s (standard deviation 7.4 x10-5 m/s), an order of magnitude 

greater than the geometric mean C
rK  of the non-filter packed wells (2.5 x10-5 m/s).  There is also 

an order of magnitude difference between the MW-4 SLUGK  estimate (5.0 x10-5 m/s) and the 

mean MW-4 DFT C
rK  estimate (5.0 x10-4 m/s).  The mean K for a well at CFB Borden is not 

known to vary by an order of magnitude over a short lateral distance so the difference in the K 

estimates is most likely due to the presence of the artificial filter pack.  As the DFT induces a 

predominantly vertical flow field, short-circuiting through the disturbed zone (hydraulic 

conductivity Ks) may be more pronounced in the DFT than in other single-borehole tests 

(Kabala, 1993; Zlotnik et al., 1998).  Therefore, a DFT completed with the current dimensions of 

the Waterloo dipole probe prototype (L 0.22 m and Δ 0.08 m) in a filter packed 5.1 cm diameter 

monitoring well will be measuring a combination of the K of the filter pack and the aquifer.   

2.3.3 Pressure change analysis 

Based on Equation (1) and the data shown in Figure 2.5(a), there exists a linear relationship 

between ( Is  + Es ) (sum of the absolute drawup ( Is ) and the absolute drawdown ( Es )) and flow 

rate.  The linear relationship also extends to the drawup or drawdown in the individual chambers 

and flow rate (not shown).  However, the difference between the drawup and drawdown  

( Is  - Es ) changes as a function of flow rate (Figure 2.5(b)) while the ratio ( Is  / Es ) remains 

relatively constant (not shown).  At some depths, the difference between the drawdown and 

drawup ( Is  - Es ) increases with increasing Q while at others, the difference remains constant.  

The constant difference between drawdown and drawup seems to occur at higher conductivity 

layers (Figure 2.5(c)).  Differences in the drawup and drawdown values during a DFT are 

therefore an indication of aquifer heterogeneity.  For example, the presence of a higher 
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conductivity region in the vicinity of the extraction chamber results in less drawdown than the 

drawup measured in the injection chamber.  Indelman et al. (1997) demonstrated numerically the 

pressure change in the dipole probe chamber is an amalgamation of the layers in the vicinity of 

the chamber and is therefore representative of the equivalent K of the formation at that location. 

To provide insight into the drawup and drawdown values obtained during the field DFTs, 

simulations were performed using the hydraulic head and flow component of the existing 

DFRTT interpretation model (Thomson et al., 2005; Thomson, 2009).  The flow component of 

the model can include a well skin and the effect of horizontal layers on the dipole flow field.  

Sudicky (1986) and Tomlinson et al. (2003) provide data that show that K at CFB Borden can 

vary by an order of magnitude over a vertical distance of 5 cm.  To estimate the effect of 

horizontal layers or zones near a dipole tool on the Kr estimates from a DFT, Kr layers (hydraulic 

conductivity KL) were simulated within an isotropic aquifer with a Kr of 7.0 x10-5 m/s.  The 

thickness of the simulated layers was chosen to be equal to Δ (0.0785 m), half the chamber 

length of the prototype dipole probe.  Simulations were performed with a high KL (3.5 x10-4 m/s) 

layer and low KL layer (1.4 x10-5 m/s) where the layers were simulated at half an order of 

magnitude higher or lower than the aquifer Kr.  The DFRTT model simulated the chamber 

pressure changes ( Is  and Es ) as would be captured by the pressure transducers as a DFT was 

completed at different distances above and below the high or low K layer.  The simulated Is  and 

Es  values were then used to calculate a C
rK  profile (as well as E

rK  and I
rK  profiles) from 

Equation (1) (Figure 2.6). 

Without the KL layer present, the aquifer Kr calculated from the simulated Is  and Es values was 

estimated to be 5.7 x10-5 m/s (slightly less than the simulated aquifer Kr 7.0 x10-5 m/s).  

Examining the E
rK  profile when there is a high Kr layer within the domain (Figure 2.6(a)), the 

E
rK  profile shows an increasing estimate of Kr as the dipole apparatus approaches the higher Kr 

layer.  (Note that the Kr profiles in Figure 2.6 are plotted against depth where the KL layer is 

centered at zero).  The I
rK  and E

rK  profiles were similar for each set of simulations; therefore 

for clarity, only one profile is shown on Figure 2.6.  The maximum E
rK  estimated was 1.2 x10-4 

m/s for a KL simulated at 3.5 x10-4 m/s (Figure 2.6(a)); the measured E
rK  is not expected to 
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estimate the simulated KL as only half the chamber was covered by the KL layer and therefore the 

Is  and Es  will be a function of both the aquifer Kr and the layer KL.  In addition to the K field 

directly adjacent to the chambers, the simulated Is  and Es  values sense the K field above and 

below the dipole chambers.  For this series of simulations, if the dipole center is within 0.6 m of 

the KL layer, Is  and Es  values are affected and the Kr estimate changes (Figure 2.6).  For the 

simulations with the low KL layer, similar results to the high KL layer were obtained for the E
rK  

profile (Figure 2.6(b)).  The minimum E
rK  estimated was 3.7 x10-5 m/s when KL was simulated 

at 1.4 x10-5 m/s.  The C
rK  profile is a combination of both the Is  and Es  (drawup and 

drawdown) measurements and as such provides a less representative Kr profile than I
rK  and  

E
rK .  This can be observed directly from Figure 2.6(a-b)) where the C

rK  profile estimates two 

high (or low) Kr zones above and below the actual KL layer.  Similar Kr profiles were obtained 

when KL was simulated at an order of magnitude different than the background aquifer Kr (data 

not shown).  It is also interesting to note the chamber pressure changes are similar whether the 

top or bottom portion of the chamber lies across the KL layer.   

If the aquifer was completely homogenous, the chamber drawup and drawdown of a DFT would 

be identical and the difference between the drawdown and drawup ( Is  - Es ) would plot against 

Kr as a vertical line.  That the plot of ( Is  - Es ) against Kr (Figure 2.5(c) does not show vertical 

lines is an indication of aquifer heterogeneity.   

The hydraulic modeling confirms the I
rK  and E

rK  profiles provide more representative estimates 

of Kr than the C
rK  profile.  The drawdown and drawup measurements are functions not only of 

the K field across the chamber but also of the K field in the vicinity of the chamber.  Therefore, 

the Kr estimates should not be taken as point measurements (although they are often plotted as 

such) and care should be taken in the interpretation of the C
rK  profile in layered systems.   

2.3.4 Spacing of K estimates 

The DFTs were completed at 0.10 m intervals in the monitoring wells at CFB Borden in order to 

provide profiles of the vertical variation of Kr.  Given that K is not known to vary widely at CFB 

Borden, the 0.10 m spacing of the Kr estimates may not have been required to sufficiently 
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characterize the vertical hydraulic profile.  To demonstrate different measurement intervals, the 

summary statistics for E
rK  profiles of MW-6 at 0.20 m, 0.30 m, 0.40 m, and 0.50 m intervals are 

shown in Table 2.3 and the 0.20 m and 0.50 m intervals are shown on Figure 2.7(a) and (b).  

Collecting K estimates at 0.20 m intervals instead of 0.10 m shows similar variability in the data 

(0.10 m standard deviation 8.7 x10-6 m/s to 0.20 m standard deviation 8.3 x10-6 m/s).  The two 
E
rK  profiles show the same general trends on Figure 2.7a.  Further increasing the measurement 

interval to 0.30 m does not greatly alter the mean (2.1 x10-5 m/s) or standard deviation of the E
rK  

estimates (8.4 x10-6 m/s).  The E
rK  profile for the 0.30 m interval DFTs has the same general 

trend of the 0.10 m measurements; however, the small scale variations are not captured (data not 

shown).  Further increasing the measurement interval (0.40 and 0.50m) and thereby decreasing 

the number of K estimates for the monitoring well, increased the CV of the data (Table 2.3).  

Again, the small scale variations of the E
rK  profile are not captured at the higher measurement 

intervals (Figure 2.7(b)).  Based on the results of the DFT interval analysis, 0.20 m intervals 

appears to be the minimum interval for Kr profiles in the Borden aquifer for the current setup of 

the Waterloo dipole probe prototype.  A different site with a more complex heterogeneous 

stratigraphy may require a more detailed Kr profile to fully characterize the K field around the 

monitoring well. 

2.4 Conclusions 

The spatial variations of K across a given site govern the advective transport of a contaminant.  A 

series of DFTs, a single-well test which estimates the vertical distributions of the Kr, were 

completed to quantify small-scale variations in Kr in a relatively homogeneous aquifer.  The 

DFTs conducted at 0.10 m increments along the length of the screen of non-filter packed 

monitoring wells provided similar estimates of K to slug tests and literature values.  In general, 

good agreement was found between the injection I
rK  and extraction E

rK  profiles which provide 

a more representative estimate of K than the use of the C
rK  profile.  This result was also 

supported by the dipole simulations which indicated the pressure drawdown and drawup 

measurements are functions not only of the K field across the chamber but also of the K field in 

the vicinity of the chamber.  Therefore, the K estimates should not be taken as point 

measurements but rather as measurements at scale 2L (0.4 m).   
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The mean C
rK  estimated in the filter packed wells was approximately an order of magnitude 

greater than the mean C
rK  estimate for the non-filter packed wells.  Higher variability in Kr 

estimates was also observed in the non-filter packed than the filter packed monitoring wells.  As 

the DFT induces a predominantly vertical flow field, short-circuiting through the skin zone 

(hydraulic conductivity Ks) is more pronounced in the DFT performed in the filter packed wells.  

The slug test may be less sensitive to the skin effect than the DFT due to its primarily horizontal 

flow pattern. 
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Figure 2.1.  The dipole flow test (DFT) as proposed by Kabala (1993). 
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Figure 2.2.  Schematic of the Waterloo prototype dipole probe and tracer test setup (arrows 
indicate tracer flow direction).  Scale is exaggerated 3x in the horizontal direction. 
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Figure 2.4.  KBR estimates from slug tests and C
rK , I

rK  and E
rK  estimates from DFTs completed at 

0.10 m intervals in non-filter packed wells MW-3 (a), MW-5 (b), MW-6 (c), and MW-8 (d) and filter 
packed wells MW-4 (e) and MW-7 (f). 
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Table 2.1. Summary of setup parameters for published DFTs completed with symmetric dipole 
probes. 

 

 

Table 2.2.  K estimates from the slug tests ( SLUGK ) and DFTs ( C
rK , I

rK  and E
rK ). 

  MW-3 MW-5 MW-6 MW-8 MW-4 MW-7 

KC 5.8E-05 2.3E-05 1.9E-05 1.5E-05 4.9E-04 4.9E-04 

CV 0.45 0.43 0.33 0.51 0.14 0.25 

KI 5.3E-05 2.5E-05 1.9E-05 1.7E-05 4.2E-04 3.6E-04 

CV 0.53 0.65 0.43 0.50 0.18 0.18 

KE 6.7E-05 2.5E-05 2.2E-05 1.5E-05 6.4E-04 7.2E-04 

CV 0.46 0.51 0.40 0.85 0.30 0.34 

KSLUG 4.1E-05 3.2E-05 2.0E-05 1.9E-05 3.7E-05 2.9E-05 

CV 0.03 0.04 0.05 0.07 0.04 0.05 

 

 

Table 2.3.  E
rK  summary statistics for DFTs completed at 0.10 m, 0.20 m, 0.30 m, 0.40, and 0.50 m 

intervals in monitoring well MW-6 at CFB Borden.   
DFT Interval 0.10 m 0.20 m 0.30 m 0.40 m 0.50 m 

Geometric mean (m/s) 2.2E-05 2.2E-05 2.1E-05 2.1E-05 2.0E-05 

Standard deviation (m/s) 8.7E-06 8.3E-06 8.0E-06 1.0E-05 1.0E-05 

Coefficient of variation 0.40 0.37 0.37 0.49 0.50 

Skew -0.04 -0.26 -0.20 -0.04 -0.16 

  

L (m) Δ (m) rw (m) Q (m3/day) Is  (m) Es  (m) EI ss +  (m) Reference 

0.27 0.25 

0.051 15 - 40 - - 0.5 - 2.0 (Zlotnik et al., 1998) 0.31 0.33 

0.40 0.34 

0.30 0.55 
0.063 96 0.3 - 5.0 0.3 - 5.0 - (Hvilshoj et al., 2000) 

0.30 0.48 

0.84 0.43 0.057 26.6 - 28.2 1.46 – 1.49 1.52 – 1.83 2.98 – 3.29 (Sutton et al., 2000) 

0.39 0.25 
0.075 36.5 - 43.6 .003 - .37 .003 - .37 0.04 - 0.58 (Zlotnik et al., 2001) 

0.53 0.25 

0.62 0.34 0.051 - - - - (Zlotnik et al., 2003) 

0.53 0.25 
0.051 13.7 – 28.6 - - 0.35 – 1.30 (Zlotnik et al., 2007) 

0.60 0.25 

0.22 0.08 0.025 0.43 - 1.01 0.07 – 3.93 0.03 – 2.95 0.04 – 6.47 This study 
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Chapter 3 Dipole Flow and Tracer Tests (DFTTs) 

3.1 Introduction 

The effective and efficient remediation of contaminated groundwater sites requires site specific 

information regarding the physical, chemical and biological properties of the aquifer (e.g., 

hydraulic conductivity, porosity, ion exchange capacity, redox capacity, and biodegradation 

potential).  Hydraulic conductivity is known to vary both laterally and vertically (e.g., Molz et 

al., 1994; Butler, 2005; Zemansky et al., 2005; Dietrich et al., 2008), while biodegradation rates 

can vary due to differences in sediment texture, pH, temperature, microbial populations, carbon, 

oxygen and other nutrient availability (Schroth et al., 1998; Sandrin et al., 2004).  To support the 

design of a remedial treatment system, aquifer parameter estimates specific to the site must be 

obtained.  The use of literature values results in uncertain and potentially overly conservative 

predictions of remediation performance and may lead to unnecessarily cautious risk assessment 

and costly remediation strategies (Thomson et al., 2005).  

Current aquifer parameter estimation methods are typically divided into ex situ and in situ 

techniques.  Ex situ measurement techniques involve the removal of aquifer material from the 

impacted site for laboratory analysis.  Although the materials can be tested to determine aquifer 

properties such as hydraulic conductivity, porosity, ion exchange capacity and biodegradation 

potential, ex situ techniques may provide parameter estimates not representative of the aquifer 

material due to the reduction of sample integrity during collection, transport, and laboratory 

setup and testing.  Numerous in situ techniques are available for estimating aquifer physical and 

geologic characteristics (e.g., hydraulic conductivity, storativity, porosity, and fracture zones); 

however, few in situ methods are available to estimate biological or chemical properties.  The 

main advantage to choosing an in situ technique over an ex situ technique is the opportunity to 

perform in situ techniques over multiple depths and locations across an impacted site while 

minimizing disturbance to the aquifer material sample.  Recent work with partitioning inter-well 

tracer tests (PITTs) and push-pull tests indicate that in situ approaches present a potential 

opportunity to identify additional aquifer parameters.   

A PITT consists of the simultaneous injection of several tracers with different partitioning 

coefficients at one or more injection wells and the subsequent measurement of tracer 
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concentrations at one or more monitoring wells to estimate the presence of non-aqueous phase 

liquids (NAPLs) (Jin et al., 1995).  Typically, PITTs are conducted prior to and post source zone 

treatment to quantify the effectiveness of the remediation activities (e.g., Cain et al., 2000; 

Meinardus et al., 2002).  The logistical and cost constraints tend to restrict the use of PITTs 

despite significant advances in their design and post-test analysis methods.  Push-pull tests have 

been used to quantify microbial metabolic activities (Istok et al., 1997) and in situ reaction rate 

coefficients (Haggerty et al., 1998) in petroleum contaminated aquifers.  Push-pull tests have 

also recently been used to estimate the natural oxidant demand of an aquifer (Mumford et al., 

2004) and TCE degradation rates and permanganate consumption rates (Ko et al., 2007).  One of 

the major disadvantages to using the push-pull test to estimate aquifer properties is the need to 

determine groundwater velocity direction and magnitude during the test as they are responsible 

for transporting the injected solution down-gradient of the monitoring well during the reaction 

phase. 

The dipole flow test (DFT) is a single-well hydraulic test consisting of three inflatable packers 

isolating two chambers in a cased well and is used to estimate the vertical distribution of the 

radial (Kr) and vertical (Kz) hydraulic conductivity, and the specific storativity (Ss) in the vicinity 

of a test borehole.  A submersible pump located in the central packer moves water at a constant 

flow rate from the aquifer into one chamber and transfers the water to the other chamber where it 

returns to the aquifer.  Pressure transducers located in each chamber monitor pressure changes 

(drawup and drawdown).  To estimate the hydraulic aquifer parameters (Kr, Kz and Ss) the 

transient chamber pressure changes are matched to type curves generated from an analytical 

solution (Kabala, 1993).  Zlotnik et al. (1996) observed that the chamber pressures during a DFT 

reached steady-state quickly and suggested that the following could be used to estimate Kr  
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where Is  and Es  are the steady-state absolute pressure head difference in the injection and 

extraction chamber respectively, rw is the internal well radius, e = 2.718…, 2Δ is the chamber 
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length, 2L is the dipole shoulder defined as the distance between chamber centers (L = D + Δ), 

and 2D is the dipole chamber separation.  The function Φ(λ) increases from 0.5 to 1.0 as λ 

increases and the anisotropy ratio a must either be assumed or known prior to the test.  

Numerous DFTs have been conducted in various diameter wells with different dipole 

configurations and flow rates.  Estimated Kr profiles generated from DFTs have shown similar 

trends and values to K estimates obtained through grain size analysis, permeameters, sieve 

analyses, flowmeters, and pump tests (Zlotnik et al., 1998; Zlotnik et al., 2001).  Analysis of the 

individual chamber pressure changes ( Is  or Es ) can provide estimates of Kr in the immediate 

vicinity of the chamber ( I
rK  or E

rK ).  One potential problem with the DFT is the short-circuiting 

of flow through the disturbed zone or well skin (hydraulic conductivity Ks).  Since the DFT 

induces a predominantly vertical flow field, the well skin may be more pronounced in the DFT 

than in other single-borehole tests (Kabala, 1993; Zlotnik et al., 1998).  In a series of DFTs 

performed in filter-packed wells in a heterogeneous highly permeable aquifer Zlotnik et al. 

(2001) observed a slight skin effect; however, similar Kr estimates were obtained for wells where 

geotextile rings were installed to prevent short-circuiting suggesting that at least in this aquifer 

the role of the well skin was minimal.   

Sutton et al. (2000) proposed an extension to the DFT by adding a conservative tracer; thus 

creating a dipole flow and tracer test (DFTT).  The DFTT works in a similar fashion to the DFT 

except when a steady-state flow field has been established, a conservative tracer is released into 

the injection chamber and the tracer concentration is monitored in the extraction chamber.  The 

tracer is re-circulated since the extracted tracer solution is re-injected into injection chamber.  

Sutton et al. (2000) suggested that a combination of the chamber pressure changes and key 

properties of the tracer breakthrough curve (BTC) could be used to estimate the Kr and Kz, and 

the longitudinal dispersivity (αL) along the DFT flowpaths.  Using a combination of analytical 

flow and transport models, Sutton et al. (2000) showed that only 10% of the flow exiting from 

the injection chamber was responsible for the BTC peak concentration while the remaining 90% 

of the flow governed the shape of the BTC tail.  As a consequence, the time to peak 

concentration and the peak concentration of the tracer were not affected by tracer recirculation.  

Field testing of the DFTT was performed in 12 cm diameter wells using a probe consisting of a 

0.81 m central packer and two 0.61 m packers (L = 0.84 m and Δ = 0.43 m) with a fluorescent 
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tracer.  The tracer BTCs exhibited numerous concentrations peaks which were attributed to some 

tracer movement through the well skin followed by the bulk of the tracer transport through the 

aquifer.  In non-filter pack wells, the peak concentration arrival time was similar to the arrival 

time predicted by the numerical simulations (Sutton et al., 2000).  

Recently, the dipole flow and reactive tracer test (DFRTT) has been proposed as in situ aquifer 

parameter estimation method (Thomson et al., 2005) and has a similar setup to the DFTT except 

that in addition to conservative tracer a suite of reactive tracers (i.e., sorbing, degrading, 

biodegrading, etc.) are injected either as a spike or for an extended period of time.  The 

concentrations of the tracers and their breakdown products are monitored in the extraction 

chamber to produce a number of tracer BTCs.  It is envisioned that these BTCs can then be 

analyzed with a suitable simulation model to estimate the required aquifer parameters (Thomson 

et al., 2005; Reiha, 2006).  The difference between a conservative tracer BTC and a reactive 

tracer BTC will depend on the nature of the reactive tracer injected.  For example a sorbing 

tracer such as trichlorofluoromethane will result in a retarded BTC relative to the conservative 

tracer, while a biodegrading tracer is expected to produce a BTC that shows signs of degradation 

relative to the conservative tracer BTC.  These BTCs can be interpreted using simulation models 

in conjunction with optimization tools to estimate the value of controlling parameter(s) such as 

the distribution coefficient for the sorption process or the intrinsic degradation rate coefficient 

for the biodegradation process.  

The purpose of the investigation described in this paper was to demonstrate the ability of a 

prototype dipole system to produce conservative tracer BTCs in conventional wells installed in a 

relatively homogeneous unconfined sandy aquifer.  In particular, we were interested in the ability 

of our dipole system to produce repeatable BTCs at a given depth in a well, and the sensitivity of 

the DFTT BTCs to hydraulic conductivity variations along a single well and between wells, and 

to changes in operational parameters (flow rate, dipole dimensions, tracer injection duration, 

tracer recirculation, and natural or sand-packed wells).  The results from this effort are now 

being used as the framework for our ongoing research effort exploring the utility of reactive 

tracers to characterize key aquifer properties in situ. 
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3.2 Field site, materials and methods 

3.2.1 Field site 

The field site for the testing reported in this paper is located at Canadian Forces Base (CFB) 

Borden, ~80 km northwest of Toronto, Ontario, Canada.  The aquifer at this location is 

unconfined and consists of glacio-lacustrine deposits of fine to medium sand with porosity 0.40 

(Brewster et al., 1995; Sneddon et al., 2002) and an organic carbon content of 0.2 mg/g (Mackay 

et al., 1986).  Mean hydraulic conductivity estimates for this aquifer range from 8.0 x10-5 m/s 

(Sudicky, 1986) for constant-head tests performed on homogenized core material to 2.6 x10-5 

m/s for constant-head tests performed on intact soil cores (Tomlinson et al., 2003).  Although the 

aquifer is relatively homogeneous, distinct horizontal bedding features at the cm scale have been 

observed (Mackay et al., 1986; Brewster et al., 1995).  The sand unit is underlain by an aquitard 

comprised of silts and clays ~9 m below ground surface (bgs) (MacFarlane et al., 1983).   

Six 5.1 cm diameter PVC monitoring wells (MW-3 to MW-8) were installed to a depth of 5.5 m 

bgs and completed with a 3 m screen (0.010” slot).  The wells are evenly spaced over an area of 

~1000 m2.  Four wells (MW-3, MW-5, MW-6 and MW-8) were installed using a jetting 

technique where a hollow steel casing (~7 cm ID) was hammered into the sandy aquifer material 

and interior of the casing was flushed with water to remove the aquifer material.  The aquifer 

material was allowed to collapse around the inserted PVC monitoring well when the steel casing 

was removed (Kueper et al., 1993; Tomlinson et al., 2003) thereby creating a well with a no 

artificial filter pack.  The remaining two wells (MW-4 and MW-7) were installed following a 

similar jetting technique with a larger steel casing (~13 cm ID) to allow the installation of a 5.1 

cm radius artificial filter pack (d50 of 0.85 mm).  The hydraulic conductivity of the filter pack 

material (Ks) was estimated using the Hazen equation (Hazen, 1911) to be ~3 x10-3 m/s.  Each 

monitoring well was developed by repeatedly surging and pumping until the extracted water was 

clear of sediment.  

3.2.2 Dipole system 

Belowground dipole tool – The prototype dipole probe consists of three rubber inflatable 

packers with brass end caps separated by two chambers (Figure 3.1).  The packers are separated 

by adjustable spacer rods to create the injection and extraction chambers.  The characteristic 
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dimensions of the Waterloo prototype dipole probe are L = 0.22 m and Δ = 0.079 m.  A 3.2 mm 

(1/8 in) HDPE inflation line connects the packers to a valve and pressure gage at ground surface.  

Two vented pressure transducers (Huba Control, Type 680 with range 0 – 2500 cm H2O) are 

mounted in the packers and connect to the chambers with 6.35 mm (¼ in) stainless steel tubing.  

The current measured by the transducers was recorded every second by a data logger (Onset 

Computer Corporation, H21-002) and used to determine the changes in chamber pressures. 

The choice of packer length was dictated by the prevention of packer circumvention which 

occurs when water is drawn into the chambers from the well screen above or below the packers.  

Increased vertical flow due to packer circumvention will overestimate the K of the aquifer and 

underestimate the extent of the vertical variations in K (Butler et al., 1994).  Following 

recommendations by Zlotnik et al. (2003) and Cole et al. (1994), a packer length to packer radius 

ratio >10 was selected for this dipole probe design.  

Aboveground DFTT control and monitoring equipment – The surface equipment controls 

and monitors the injection and extraction streams (Figure 3.2).  The peristaltic pump (Cole 

Parmer, K-07553-70) draws water from the extraction chamber through the 6.35 mm (1/4 in) ID 

HDPE extraction line and passes it through the fluorometer (Turner Designs, 10-AU-005-CE).  If 

a fluorescent tracer is used the fluorometer can provide almost continuous measurements.  

Downstream of the fluorometer a sampling port is available to manually sample the extracted 

groundwater, and an acrylic flow-through cell (constructed by the University of Waterloo), with 

ports for four probes, provides in-line monitoring.  For the tests performed in this investigation, 

in-line probes were selected to monitor dissolved oxygen (DO), pH, electrical conductivity (EC), 

and oxidation reduction potential (ORP) (Thermo Orion, 083005MD, 9106BNWP, 013010MD, 

and 9678BNWP, respectively).  Each probe is connected to a meter (Themo Orion, 1219000 or 

1215000) which transmits data to a field notebook computer every 15 seconds.  A syringe pump 

(Cole-Parmer, K-75900-00) is used to inject the tracer solutions into the injected groundwater 

through a three-way valve at a prescribed flow rate for a given duration.  To ensure complete 

mixing of the injected tracer solution a static inline mixer (Cole-Parmer, K-04668-04) was 

placed downstream of the syringe pump.  Finally, prior to being injected into the dipole probe 

injection chamber, a sampling port is available to manually sample the injected solution. 
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3.2.3 Field methodology 

To investigate the properties of the conservative tracer BTCs, DFTTs were completed to assess 

the repeatability of the BTCs as well as the sensitivity of the BTCs to hydraulic conductivity 

variations along a single well and between wells, and to changes in operational parameters (flow 

rate, dipole dimensions, tracer injection duration, tracer recirculation, and natural or filter-packed 

wells). 

DFTs were conducted at 10 cm increments to establish the vertical distribution of Kr along the 3 

m screen of the monitoring wells.  At each location tested in the non-filter packed monitoring 

wells, DFTs were completed at three different flow rates.  For the filter packed monitoring wells, 

DFTs were completed at a single flow rate due to limitations of the peristaltic pump.  The flow 

rates for the DFTs ranged from 347 to 1455 mL/min and Kr was estimated from Equation (1) 

developed by Zlotnik et al. (1998).  Smaller scale estimates for Kr ( I
rK  or E

rK ) were also 

calculated using only the injection ( Is ) or extraction ( Es ) pressure head changes (Zlotnik et al., 

2001). 

Before conducting a DFTT at a specific depth in a monitoring well, the well was re-developed by 

pumping until the water was clear and the fluorometer readings had stabilized.  The packers of 

the dipole probe were inflated to ~200 kPa (30 psi) at the desired test depth in the monitoring 

well and then the peristaltic pump was powered on at the specified flow rate.  After the dipole 

flow field reached steady-state conditions (constant pressure transducer readings for ~5 min), the 

injection valve was turned and the syringe pump injected the tracer into the injection line (Figure 

3.2) for a specified period of time.  Samples of the injected solution at the downstream 

monitoring port were collected during the tracer injection phase (10 mL samples collected every 

2 – 10 min depending on the fluorometer readings).  In addition to the online monitoring of the 

extracted solution with the fluorometer and probes, periodic samples of the extracted solution 

were collected throughout the DFTT to complement the BTC produced by the fluorometer.  

Flow rates selected for the DFTTs ranged from 320 to 1860 mL/min.  For DFTTs completed 

without tracer recirculation, the extracted solution was collected in a holding tank and a second 

pump, operating at the extraction flow rate, pumped clean water from a holding tank into the 

injection line.  The effect of the dipole probe dimensions was investigated by modifying the 
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prototype by reducing L from 0.22 to 0.18 m, and Δ from 0.079 to 0.05 m.  DFTTs were 

completed in both the non-filter pack and artificial filter pack wells. 

The conservative tracer injection solutions were prepared using NaBr (Fisher Scientific) at 

concentrations ranging from 6,500 to 20,000 mg/L as Br-, and either rhodamine WT (Cole-

Parmer) or sulforhodamine B (Sigma-Aldrich) at concentrations from 50 to 75 mg/L.  Bromide 

was selected as a conservative tracer due to its low sorption and low concentrations in natural 

ground waters (Davis et al., 1980; Mackay et al., 1986; LeBlanc et al., 1991).  The fluorescent 

dyes were chosen due to the low detection limits and ease of detection in the field with a 

fluorometer (Davis et al., 1980; Smart et al., 1998).  Rhodamine WT (RWT) is one of the most 

commonly used fluorescent dyes in groundwater tracer studies and has been used as both a 

conservative (Pang et al., 1998) and sorbing tracer (Sabatini et al., 1991).  Rhodamine WT 

consists of two isomers with different sorption characteristics (Shiau et al., 1993; Sutton et al., 

2001) which may make tracer BTC interpretation more difficult.  Sulforhodamine B (SRB) (also 

known as acid rhodamine B) sorbs less than rhodamine WT (Kasnavia et al., 1999). 

Fluorescent dye concentrations of the extracted solution were measured directly in the field with 

the fluorometer set up for continuous flow monitoring.  Fluorescent dye concentrations of the 

collected samples were measured in the laboratory with the fluorometer in discrete sample mode.  

The fluorometer was calibrated with a 25 ppb solution (MDL 0.1 ppb).  Bromide concentrations 

were determined by ion chromatography (IC) (Dionex AS18 4 x 250 mm column; 29 mM 

potassium hydroxide eluent; 1.0 mL/min flow rate) with a MDL of 1.0 mg/L.  Bromide standards 

were prepared with a 7 point calibration curve (1 – 100 mg/L).  Repeat measurements of the 10 

mg/L calibration standard were used throughout all IC runs to ensure accurate bromide 

measurements. 

3.3 Expected breakthrough curve (BTC) behaviour 

Given the hydraulic conductivity and porosity of the CFB Borden aquifer are well established 

and the dipole probe configuration and operating parameters can be controlled, it was of interest 

to investigate the expected behaviour of conservative tracer BTCs using an existing DFRTT 

simulation model.  The DFRTT model was developed as a high-resolution two-dimensional 

radially symmetric finite volume model consisting of two major components: a steady-state 
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groundwater flow component and a reactive transport component (Thomson et al., 2005).  The 

model was designed so that it could provide an accurate representation of key first-order 

processes (e.g., biodegradation rate), have the ability to conform to a variety of field 

configurations and site conditions, and be able to handle a range of input parameters.  The major 

assumptions used to develop this model are: (1) homogeneous aquifer parameters in the vicinity 

of the test well, and (2) the ambient groundwater flow field does not affect the dipole flow field.  

For more details regarding the DFRTT model, the interested reader is referred to Thomson 

(2009). 

The hydrogeological and dipole system parameters used as the base case simulation are listed in 

Table 3.1.  The base case BTC (Figure 3.3(a)) shows a time to peak of 51 min and a peak 

concentration of 0.0063.  Figure 3.3(a) also shows how the base case BTC is affected by an 

increase or decrease in flow rate, the higher flow rate shifted the BTC to the left and increasing 

the peak concentration to 0.0088, and the lower flow rate shifting the curve to the right and 

reducing the peak concentration to 0.0038.  The impact of tracer recirculation (Figure 3.3(b)) has 

minimal impact on the peak concentration but affects the shape of the BTC tail.  Figure 3.3(c) 

demonstrates that increasing the tracer injection duration by a factor of 5 (from 2 min to 10 min) 

has a pronounced effect on the time to peak and peak concentration of the tracer BTC.  The 

streamfunctions for the base case dimensions of the dipole probe and a smaller dipole probe  

(L = 0.18 m and Δ = 0.05 m) are shown on Figure 3.3(f).  The shorter distance between the 

chambers of the smaller dipole probe pulls the streamlines closer to the well casing and produces 

a BTC with a shorter time to peak Figure 3.3(e).   

Preliminary simulations were also performed to investigate the effect of the well skin on the 

shape of the BTC.  Numerous concentrations peaks have been observed on field-measured    

tracer BTCs which have been attributed to some tracer movement through the well skin followed 

by the bulk of the tracer transport through the aquifer (Sutton et al., 2000).  Holding the radius of 

the well skin constant (rs 6.4 mm) and increasing the Ks/Kr ratio produces BTCs with 

progressively more skin effect (Figure 3.3(d)).   
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3.4 Dipole flow and tracer test (DFTT) results 

A total of 46 DFTTs were completed in the monitoring wells at CFB Borden to investigate the 

properties of the BTCs.  Test setup parameters for the DFTTs discussed in this paper are 

presented in Table 3.2.  Definite tracer breakthrough in the extraction chamber was observed 

during all DFTTs, indicating that a dipole flow field was created between the two chambers of 

the dipole apparatus.  Of the 46 DFTTs, 6 DFTTs were completed without tracer recirculation to 

investigate the role tracer recirculation plays on the shape of the BTC.  BTCs were completed 

with a variety of tracer injection periods (13 DFTTs with 10 min injection, 7 DFTTs with 5 min 

injection, 22 DFTTs with 2 min injection and 3 DFTTs with 1 min injection).  To compare the 

effect of the dipole tool dimensions, 14 DFTTs were completed with the smaller version of the 

dipole tool.  Five tests were conducted in a filter packed monitoring well and the remainder in 

the non-filter packed wells. 

To distinguish the DFTTs, each test was labelled with the monitoring well number, the depth of 

the dipole center bgs at which the DFTT was completed and the test number at that aquifer 

location.  As an example, DFTT 6-4.3-C was completed in well MW-6 at 4.3 m bgs and was the 

third DFTT completed at that location.  The BTCs are plotted as C/C0 where C0 is the 

concentration of the mixed injected tracer as estimated from samples collected from the port after 

the in-line mixer (Figure 3.2).  In order to compare BTCs of various DFTTs conducted at 

different flow rates, we scaled the tracer concentration by cQtM 0  and non-dimensionalize the 

time (tD) by dividing by the characteristic time tc, defined as 
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where lc is the distance between the edges of the extraction and injection chambers (2L - 2Δ), vc 

is the characteristic pore-scale velocity along the chamber face, and M0 is the injected tracer 

mass (Sutton et al., 2000).  Theoretically, scaled BTCs should have a similar time to peak 

concentration, magnitude of the peak concentration and shape of the falling limb.  In addition to 

the BTCs, the cumulative mass curves (CMCs) are also used to provide a measure of the amount 

of injected tracer recovered in the extraction chamber. 
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The fluorometer was an important monitoring tool for the breakthrough of the conservative 

fluorescing tracers since data could be obtained every second and used to produce detailed 

BTCs.  In the absence of a fluorometer, the EC probe provided a good indication of relative 

bromide concentrations at the beginning of the DFTT; however, the calibration drifted and the 

conductivity readings increased during the constant or diminishing tail of the BTCs.  The 

effluent pH remained constant during each DFTT.  Due to pressure pulses from the peristaltic 

pump, the DO probe was removed from the flow-through cell and dissolved oxygen 

concentrations were measured by collecting a discrete sample from the sampling valve and 

measuring the DO concentration in a small flow cell at a lower flow rate.  The DO concentration 

in the groundwater were low (typically 0.5 – 2 mg/L) and highly variable.  The EH measurements 

from the ORP probe typically started high and decreased during a conservative DFTT which 

indicates the length of time required for the ORP probe to equilibrate.  The EH measurements 

may also have been affected by the streaming effect of the flowing water in the flow-through cell 

(Nordstrom et al., 2005). 

3.4.1 Hydraulic profiles 

DFTs were performed at 0.10 m intervals and Kr was estimated using Equation (1) and the steady 

state pressure head changes.  The estimated DFT C
rK  (combined chamber Kr estimates) profiles 

are shown on Figure 3.4.  Despite the small area over which the wells are located, different Kr 

profiles are observed.  For example, a lower Kr zone is observed in the upper portion of the 

screened interval of MW-3 and MW-6, but not in MW-8 despite this wells being separated ~50 

m.  The overall geometric mean E
rK  for each monitoring well varied from 1.5 x10-5 m/s (MW-8) 

to 2.2 x10-5 m/s (MW-6) and 6.7 x10-5 m/s (MW-3).  The minimum and maximum E
rK  

encountered were 6.7 x10-6 m/s (dipole center at 4.29 m bgs MW-8) and 1.4 x10-4 m/s (3.86 m 

bgs MW-3), respectively.  The range of E
rK  values (max E

rK  – min E
rK ) encountered in each 

monitoring well varied from 2.8 x10-5 m/s (MW-6) to 1.1 x10-4 m/s (MW-3).   

3.4.2  “Type” or response curves 

The observed DFTT BTCs can be categorized into four “type curves” based on the shape of the 

conservative tracer BTC which is affected by flow rate, tracer injection duration, the presence of 

an artificial or naturally developed filter pack and aquifer properties including hydraulic 
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conductivity and porosity.  BTC tailing is often observed during tracer tests (including tests other 

than DFTTs) due to aquifer heterogeneities (Luo et al., 2007; Riva et al., 2008).  Key properties 

that define the shape of a BTC are the time to the maximum or peak concentration as well as the 

magnitude of the peak concentration (as C/C0).  An additional parameter is the time to tracer 

front as defined as the time to 10% of the peak concentration and is a measure of dispersivity.  

The time to the well skin peak concentration and the magnitude of the skin peak are also 

important for characterizing the well skin in the vicinity of a DFTT. 

Type 1 BTC - The Type 1 BTC is characterized by a small initial peak followed by a higher 

peak (Figure 3.5(a)).  The initial small peak results from tracer transport through a small 

disturbed zone around the monitoring well casing, while the second higher peak captures the 

bulk of the tracer movement through the aquifer.  The results of dipole simulations indicate Type 

1 BTCs are produced when there is only a small difference in K between the skin zone and the 

aquifer (Ks/Kr only slightly greater than one) (Figure 3.3(d)).  Alternatively, the radius of the 

developed zone around the monitoring well casing is small and therefore the majority of the 

injected tracer travels through the aquifer.   

Type 2 BTC - The Type 2 BTC is characterized by a rapid concentration peak which decreases 

quickly and the tail of the BTC flattens out to a fairly constant value (Figure 3.5(b)).  Due to the 

rapid arrival time in the extraction chamber (tD < 5), the Type 2 BTC response is dominated by 

tracer transport through the well skin.  The arrival of tracer transported through the undisturbed 

aquifer may be masked by the dominant skin effect.   

Type 3 BTC - Type 3 BTCs are characterized by at least two high concentration peaks (Figure 

3.5(c)).  A typical Type 3 curve has a rapid skin peak followed by an aquifer peak of similar 

magnitude.  The Type 3 BTC is similar to the Type 1 curve; however, the peak magnitudes are 

different.  The greater mass tracer transport through the skin zone of the Type 3 BTC results 

from a more permeable skin zone than the Type 1 BTC (Figure 3.3(d)).  As initially noted by 

Roos et al. (2008), the DFTT BTCs are sensitive to variations in the ratio Ks/Kr.  Some of the 

BTCs classed as Type 3 exhibit more than two concentration peaks.  As the DFTTs are operated 

in recirculation mode, the additional peaks may be caused by recirculation of the injected tracers.   



 

38 

 

Type 4 BTC - The Type 4 BTC is characterized by a rapid concentration peak followed by a 

rapid drop off to a constant concentration (Figure 3.5(d)).  Type 4 BTCs appear similar to Type 2 

BTCs; however, the Type 4 response does not follow the exponential decay to the constant 

concentration.  The constant concentration of the tail is supported by tracer recirculation through 

the aquifer and the skin zone of the monitoring well.   

Of the 36 BTCs observed from the DFTTs completed in the non-filter packed monitoring wells, 

14 BTCs were classified as Type 1 BTCs, 10 as Type 2 BTCs, 9 as Type 3 BTCs and 3 as Type 

4 BTCs.  To aid in classifying the type curves, the BTC dimensionless times to peak tracer 

concentration, skin peak and tracer front are shown on Figure 3.6(a-c).  The skin peaks typically 

arrive at the extraction chamber less than 5tD while the times to peak vary from 6.8tD to 22.9tD 

(preceded by the times to tracer front).  The Type 1 and Type 3 BTCs can be easily differentiated 

from the Type 2 BTCs by the length of time between the skin peak and the aquifer peak.  For 

example, the Type 1 DFTTs completed at 4.3 m bgs in MW-6 show a skin peak at ~2.8tD, a 

tracer front at 6.2tD and a tracer peak at ~12tD while the Type 2 BTCs of the DFTTs completed at 

3.3 m bgs are characterized by a time to tracer peak at 2.1tD.  

3.4.3 Relation of tracer breakthrough curves (BTCs) to hydraulic conductivity (K) field 

The shape of the dipole flow field for a given dipole apparatus is governed by the hydraulic 

conductivity field surrounding the monitoring well (Zlotnik et al., 1994; Zlotnik et al., 1996; 

Xiang et al., 1997; Reiha, 2006) and will therefore affect tracer transport during a DFTT.  For 

example, the presence of a lower hydraulic conductivity layer near one of the chambers will 

‘shift’ the flow field away from the lower hydraulic conductivity layer.  A lower hydraulic 

conductivity layer between the dipole chambers will cause the flow path to extend further into 

the aquifer delaying the peak of the BTC.  If a more permeable layer falls across the injection 

chamber, the time to peak could be shortened (less travel time) or the peak concentration less 

(tracer injected further into aquifer).      

As noted in section 3.4.1, the geometric mean Kr differs slightly between the three non-filter 

packed wells with the mean Kr estimate at MW-3 higher than at MW-6 or MW-8.  The majority 

of the DFTTs completed in monitoring well MW-3 followed an ideal Type 1 BTC with a small 

skin peak followed by a higher aquifer peak.  Since the shape of the BTC is sensitive to the ratio 
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of Ks/Kr, if the aquifer is more permeable at the location of MW-3, there may be less inducement 

for skin zone creation either during monitoring well installation or development.  Therefore, the 

majority of the injected tracer migrates through the undisturbed aquifer and only a small 

percentage of the injected tracer short circuits through the skin zone.  Based on the Kr profiles 

obtained through the DFTs (Figure 3.4), MW-8 is located in a less permeable area than MW-3 

and MW-6.  None of the BTCs obtained from the DFTTs completed in MW-8 followed the ideal 

Type 1 BTC.  While the entire screen length was not tested, the results of the 8 DFTTs in MW-8 

suggest the well is more heavily influenced by the well skin than either MW-3 or MW-6.  The 

dominance of the skin zone may be due to the increased resistance to flow in a low K zone or 

may be a result of the development of a more prominent natural filter pack around the well 

casing as the small grain size materials are removed from the skin zone during well development.   

As expected from the results of supporting numerical simulations, the presence of lower K zones 

within the dipole flow field affects the shape of the BTC.  DFTT 3-4.3-A does not follow a Type 

1 BTC response despite the fact that DFTTs 3-4.0-A, B, and C (completed above) and DFTT 3-

5.0-A (completed below) follow a Type 1 BTC response.  The hydraulic profile of MW-3 

(Figure 3.4 (a)) indicates a low K layer present across the center of the dipole tool for DFTT 3-

4.3-A.  This low K layer would have affected the shape of the dipole flow field and thus affected 

the shape of the DFTT BTC.  The series of DFTTs completed at 3.3 m bgs in MW-6 (6-3.3-A 

through H) produced Type 2 BTCs heavily dominated by the skin effect.  This may be due to the 

MW-6 Kr profile (Figure 3.4(b)) which indicates a lower K zone present across the upper 

injection chamber of the dipole tool during these DFTTs.  Since the flow field was deflected 

away from this low K zone, a short circuit near the well casing is produced that yields a Type 2 

BTC.   

3.4.4 Repeatability of dipole flow and tracer test (DFTT) breakthrough curves (BTCs) 

To assess the ability of the DFTT to generate repeatable BTCs at the same depth within a given 

monitoring well, two series of DFTTs were performed.  The first series (DFTTs 3-3.8-A, 3-3.8-

B, and 3-3.8-C), which has a Type 1 BTC response, was completed at a depth of 3.8 m bgs in 

monitoring well MW-3 using a flow rate of ~540 mL/min.  The BTCs from this series are shown 

in Figure 3.7(a) and indicate that portions of the tracer BTCs are repeatable.  Some of the 

variability between the MW-3 DFTT BTCs is due to the use of discrete samples to build the 
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BTC and hence the resolution of the BTC is not as high as the BTCs represented by data from 

the fluorometer.  Nevertheless, a comparison of the BTCs shows similar times to peak 

concentration (7.6tD) and similar magnitudes of peak concentration (~0.13) (Figure 3.7(a)).  The 

rising limb of the aquifer peak of the BTC shows a similar shape for each DFTT however there is 

some difference in the falling limbs.  The tail of the BTCs for tests 3-3.8-A and 3-3.8-C follow a 

straight line (slope -1.86 x10-4) while the tail of BTC 3-4-3.0-B initially follows the same sloped 

line but then deviates to follow a plateau (slope -1.04x10-4).  While the sample resolution at early 

time in the DFTT is low (samples collected every 5 min), the three MW-3 BTCs seem to show 

early skin peaks (3-3.8-A is a possible exception).  As noted in section 3.4.2, the skin peak is a 

function of tracer transport along the flow paths closest to the well casing in the skin zone.  The 

hydraulic properties of the skin zone (e.g., Ks) may change depending on activities in the 

monitoring well (e.g., further well development, pumping, and other DFTTs).  The differences in 

the BTCs may be caused by changes in the well skin as the well becomes more developed.  If 

more tracer is transported through the well skin than less tracer will be available for aquifer 

characterization.  Note however that, despite the differences in the BTCs, the CMCs are very 

similar between the DFTTs (Figure 3.7(b)). 

The second series to examine the repeatability of DFTT BTCs was conducted in MW-6 (DFTTs 

6-3.3-D, 6-3.3-E, and 6-3.3-F) at a flow rate of ~590 mL/min and produced a Type 2 BTC 

(Figure 3.7(c)).  The MW-6 DFTT BTCs show similar times to peak concentration (~6 min) and 

varying magnitudes of peak concentration (0.03 – 0.065).  The early BTC peak is created by 

tracer movement through the skin zone around the well casing.  Therefore the varying 

magnitudes of peak concentration are a reflection of the variable nature of the skin zone.  Since 

only 10 to 13% of the flow is involved in the peak concentration (Sutton et al., 2000; Reiha, 

2006), small-scale heterogeneities present in the injection chamber can create large differences in 

the peak concentration.  This is supported by the differences in CMCs for the MW-6 DFTTs 

(Figure 3.7(d)) which show similar shapes in the early mass arrival; however, the magnitude of 

the early mass arrival increases with the order in which the DFTTs were completed (i.e., 6-3.3-F 

was the last DFTT of the series to be performed and has the highest peak and most tracer mass 

transport of the three DFTTs).  This increase in tracer transport in the skin zone seems to suggest 
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the skin zone around the well casing is becoming more prominent with increased activity in the 

monitoring well. 

The two series of DFTTs completed to assess the repeatability of the BTCs demonstrate that 

portions of the DFTT BTCs are repeatable.  The Type 1 and Type 2 BTCs showed similar times 

to peak concentration between DFTTs.  The Type 1 BTCs showed similar magnitudes of peak 

concentration; however the early skin concentration peaks were not as repeatable between the 

DFTTs.  This is similar to the differing magnitudes of the peak concentration for Type 2 DFTs 

which emphasizes the influence of the skin zone on the BTC shape, especially for the Type 2 

BTC. 

3.4.5 Influence of flow rate 

Given that the dipole flow field is defined by the aquifer properties and the dimensions of the 

dipole apparatus, changing the flow rate of a DFTT does not affect the spatial distribution of the 

flow field but will affect tracer transport velocity and the shape of the BTC.  In order to be able 

to compare BTCs of DFTTs completed at different flow rates, we use Equation (5) to define a 

dimensionless time scale and scale the tracer concentration. 

The effect of flow rate (360, 550 and 710 mL/min) on the shape of a Type 1 BTC was 

investigated at a depth of 4.9 m bgs in MW-3 (DFTTs 3-4.9-C, 3-4.9-D, and 3-4.9-B, 

respectively).  As expected from numerical simulations (Figure 3.3(a)), the BTCs of the DFTTs 

completed at higher flow rates show earlier times to peak concentration and greater magnitudes 

of peak concentration.  The time to the skin peak also decreases as the flow rate increases 

however the magnitude of the peak skin concentration is more related to the heterogeneity of the 

skin zone than the flow rate.  When the BTCs are scaled, the times to peak concentration 

(~12.4tD) and times to skin peak (~3.4tD) are similar between DFTTs (Figure 3.8(c)).  The scaled 

magnitude of the peak concentration (0.027) is similar for the DFTTs completed at 550 and 710 

mL/min (DFTTs 3-4.9-D and 3-4.9-B) however the 360 mL/min DFTT has a scaled peak 

concentration of 0.033.  One possible reason for the discrepancy between the tests is increased 

dispersion at lower flow rates.  The magnitudes of the skin peak concentration also vary between 

DFTTs.  The most pronounced skin peak was observed on the 500 mL/min BTC (DFTT 3-4.9-

D).  DFTT 3-4.9-D was the most recent DFTT to be completed at this aquifer location.  As the 
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skin peak captures the movement of the tracer through a developed zone around the monitoring 

well casing, a more prominent developed zone may have been created around the casing of MW-

3 during well development activities.  Examining the CMCs (Figure 3.8(b)), more tracer mass 

was observed in the extraction chamber during the duration of the tests for DFTTs completed at 

higher flow rates as expected; however, the scaled CMCs are similar in shape indicating the 

tracer is following the same flow paths for each DFTT at that location despite the different flow 

rates (Figure 3.8(d)).   

The effect of flow rate on the shape of a Type 2 BTC is less dramatic than the effect on a Type 1 

BTC.  Three DFTTs were completed at flow rates 420, 600, and 800 mL/min at a depth of 3.3 m 

bgs in MW-6 (DFTTs 6-3.3-G, 6-3.3-D, and 6-3.3-H, respectively).  Slight differences between 

the times to peak concentration can be observed on the BTCs (Figure 3.9(a)) as the time to peak 

decreased from 11.0 min for the 420 mL/min DFTT to 5.0 min for the 800 mL/min DFTT.  

Similar to the Type 1 BTCs discussed above, scaling the BTCs shows similar times to peak 

concentration (~1.8tD) (Figure 3.9(c)); however some differences are apparent between the 

DFTT BTCs.  A second peak (15.4 min or 3.8tD) is visible on the BTC of DFTT 6-3.3-D, which 

is likely due to tracer recirculation through the skin zone as the time to the second peak is 

approximately double that of the initial peak.  As the bulk of the Type 2 BTC is defined by tracer 

travel through the skin zone, the CMCs for these DFTTs (Figure 3.9(b) and (d)) are less similar 

to each other than for the Type 1 BTCs (Figure 3.8(d)) due to the varying nature of the skin zone. 

DFTTs can be completed at higher flow rates than the 500 mL/min typically chosen for the tests 

reported in this paper.  Conducting a DFTT at a higher flow rate would allow more tests to be 

completed in the same amount of time.  Although Sutton et al. (2000) employed a 19,000 

mL/min flow rate with a larger dipole (L = 0.84 m and Δ = 0.43 m), at high flow rates there may 

be concerns about mobilizing the fine grained fraction of the aquifer (Zlotnik et al., 2001).  An 

additional concern for tests completed with reactive tracers at high flow rates may be the contact 

required for tracer sorption to aquifer materials or for tracer degradation.  Therefore there is an 

upper limit to the flow rate for a given DFTT or DFRTT.  To examine the influence of a higher 

flow rate for our dipole prototype system, DFTT 6-4.3-C was completed at 1350 mL/min, the 

maximum flow rate of the peristaltic pump at that aquifer location.  The BTC follows a typical 

Type 1 curve (Figure 3.10(a)) with a rapid low concentration skin peak followed by the main 
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aquifer peak.  As expected, the BTC peak arrives more quickly than the peak of DFTT 6-4.3-A 

(750 mL/min) and more mass is returned to the chamber in the same amount of time (Figure 

3.10b).  The scaled BTCs (Figure 3.10c) show similar dimensionless times to peak (12.5tD).  

Slight differences in the falling limb of the BTCs are observed.  These differences between the 

BTCs are possibly due to the effect of the flow rate.  The scaling CMCs indicates that a similar 

mass of recirculated tracer (60% of the injected tracer mass) arrived at the extraction chamber 

within the same dimensionless time period (90tD) for the two DFTTs.  This indicates that 

repeatable DFTTs can be completed with the Waterloo dipole probe at CFB Borden to a flow 

rate of at least 1350 mL/min.  The maximum flow rate at which representative conservative 

BTCs could be obtained under similar conditions (apparatus dimensions, aquifer parameters) was 

not determined.   

Field testing at CFB Borden has found that BTCs of DFTTs completed at the same aquifer 

locations but at different flow rates can be scaled to produce similar BTCs.  Both Type 1 and 

Type 2 BTCs can be scaled; however, more variability was found for the Type 2 BTC than the 

Type 1 BTCs.  Repeatable DFTT BTCs were obtained with the Waterloo dipole probe at CFB 

Borden at flow rates up to 1350 mL/min, indicating that conservative DFTTs can be completed 

in less time in the Borden aquifer; however the maximum flow rate was not determined.   

3.4.6 Tracer recirculation 

The results from dipole simulation efforts have shown the magnitude of the peak concentration 

of the BTC is not affected by the recirculation of the injected tracer for DFTTs in non-filter pack 

wells (Figure 3.3(b)).  It is simplest from a practical point of view in the field to conduct the 

DFTT with tracer recirculation where the extracted solution is subsequently re-injected into the 

dipole flow field.  However, at times it may be simpler to interpret the shape of the BTCs from 

DFTTs completed without tracer recirculation as the tails are a reflection of only a single tracer 

injection. 

To assess the effect of tracer recirculation on the observed BTCs collected as part of this 

investigation, a series of recirculation and non-recirculation DFTTs were completed at the same 

aquifer locations.  DFTT 3-4.9-E, completed without tracer recirculation, serves as a comparison 

to DFTTs 3-4.9-B, 3-4.9-C, and 3-4.9-D completed with tracer recirculation.  The general shape 
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of the tracer BTC at this aquifer location (4.9 m bgs in monitoring well MW-3) is a Type 1 curve 

characterized by a small early skin peak followed by a greater aquifer peak (Figure 3.11(a)).  The 

BTC of DFTT 3-4.9-E follows those of the recirculating DFTTs until ~25tD (105 min) when it 

diverges (Figure 3.11(a)).  This is consistent with simulation efforts (Figure 3.3(b)).  The CMC 

for the non-recirculating DFTT also diverges at 25tD (105 min) (Figure 3.11(b)) indicating that 

the peak of the observed BTC was largely defined by the aquifer properties and not affected by 

tracer recirculation.  Furthermore, the recirculation of the tracer which created the early skin 

peak on the BTC did not affect the overall shape of the aquifer peak of the BTC.  The small 

amount of tracer that did travel through the well skin would have been re-injected and only a 

small fraction of that re-injected tracer would have followed the short circuit flow path.   

Similar to the Type 1 BTC discussed above, non-reciculatory DFTTs 8-4.9-B and 8-4.9-C were 

completed to compare the effects of recirculation against a Type 2 DFTT with tracer 

recirculation (8-4.9-D).  The BTCs for all three DFTTs show early skin peaks (2tD); however the 

magnitude of the skin peak concentrations differs between the tests in a manner similar to that 

observed during the repeatability tests in MW-6.  As expected, more tracer mass is observed in 

the extraction chamber for recirculatory DFTT 8-4.9-D (60%) than for non-recirculatory DFTTs 

8-4.9-B and 8-4.9-C (45%) at 53tD (Figure 3.11(d)).  The CMCs diverge in shape at ~20tD 

indicating the lengthy tail of the recirculatory BTCs is supported by tracer recirculation.   

For Type 1 BTCs, the peak is largely defined by the aquifer properties and not affected by tracer 

recirculation.  Although some of the early skin peak tracer mass will re-circulate due to its short 

travel distance, this small amount of tracer is not enough to affect the shape of the BTC.  The 

peak of Type 2 BTCs are more affected by the well skin properties and is therefore vulnerable to 

changes in the skin zone.  Nevertheless, the CMCs of the recirculatory and non-recirculatory 

DFTTs do diverge in shape indicating the lengthy tail of the recirculatory BTCs is supported by 

tracer recirculation.  If a long test is desired (e.g., for a biodegrading tracer), a recirculatory 

DFTT may be preferred over a DFTT without tracer recirculation. 

3.4.7 Duration of tracer injection  

To initiate a DFTT the selected tracer(s) may be added as a spike or as a continuous injection.  

The results of numerical simulations have shown a longer tracer injection period produces a BTC 
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with a higher and later concentration peak (Figure 3.3(c)).  To investigate the effect of the 

duration of the tracer injection, DFTTs 6-3.3-D and 6-3.3-E were completed with a 2 min (0.5tD) 

tracer injection while DFTT 6-3.3-C was completed with a 10 min (1.8tD) tracer injection period.  

The same mass of tracer was injected for each test; however the rate at which the tracer was 

injected was varied.  The scaled BTCs have similar Type 2 curve shapes in that the BTCs are 

dominated by a skin peak (Figure 3.12(a)).  However, the time to peak of DFTT 6-3.3-C (0.5tD) 

is greater than the time to peak of DFTTs 6-3.3-D and 6-3.3-E (0.25tD).  As expected, the longer 

tracer injection duration spreads out the tracer mass resulting in a delayed and lower peak 

concentration.  It is not expected that the difference in tracer injection rates (25 mL/min vs 5 

mL/min) affect the shape of the BTCs.  Note that the scaling method developed by Sutton et al. 

(2000) does not account for the effect of the injection duration.  The CMCs for the DFTTs 

indicate the longer tracer injection period (DFTT 6-3.3-C) has mass arriving more quickly than 

the shorter injection period (Figure 3.12(b)).  This result may not be a function of the tracer 

injection duration but rather the variability of the developed zone around the well casing at this 

location observed during the repeatability tests described in section 3.4.4 (Figure 3.7(d)).  

The effect of longer tracer injection on a Type 1 curve was investigated with DFTTs 3-4.9-D (2 

min (0.5tD) tracer injection) and 3-4.9-F (10 min (2.3tD) tracer injection) completed at 4.9 m bgs 

in monitoring well MW-3.  Both BTCs follow a Type 1 curve however the time to peak 

concentration of DFTT 3-4.9-F (14tD) lags that of DFTT 3-4.9-D (12.5tD) (Figure 3.12(c)).  It is 

also interesting to note similar lag times between the respective skin peaks of the BTCs.  Similar 

to the BTCs, the CMCs are comparable in shape (Figure 3.12(d)) however the CMC of the 

longer injection DFTT (3-4.9-F) lags that of the shorter injection DFTT (3-4.9-D).  Slightly less 

tracer mass returned to the extraction chamber for the longer tracer injection (3-4.9-F) than the 

shorter injection.   

As expected, the longer duration of tracer injection delays the peak concentration of the BTC for 

both the Type 1 and Type 2 curves.  The early skin peak of the longer injection period Type 1 

BTC was also delayed relative to the shorter injection period BTC.  While the CMCs for the 

Type 2 curves are difficult to interpret due to the variability of the developed zone, the CMC for 

the Type 1 curves show delayed tracer mass arrival for longer injection periods.   
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3.4.8 Dipole probe dimensions 

The dimensions of the dipole apparatus (and the aquifer anisotropy) determine the dipole flow 

field and therefore the portion of the aquifer characterized by the DFTT BTC.  The results of 

numerical simulations show that increasing L, half the distance between chamber centers, 

increases the time to peak concentration and decreases the magnitude of the peak concentration 

(Figure 3.3(e)).  The shape of the BTC is also more sensitive to the L dimension of the dipole 

probe than Δ, the half chamber length (Reiha, 2006).  To compare the effect of the dipole probe 

dimensions, DFTTs were completed with two configurations of the dipole probe prototype.  The 

base case dipole probe had slightly longer chambers (Δ = 0.08 m) and chamber spacing (L = 0.22 

m) than the modified dipole probe (L = 0.18 m and Δ = 0.05 m).   

The BTCs for DFTTs 3-3.8-A and 3-3.8-B, completed with the smaller modified probe, show 

earlier times to peak (8tD) than the BTC for DFTT 3-3.8-D (15tD) completed with the larger base 

case probe (Figure 3.13(a)).  All three DFTTs were completed at similar flow rates (~540 

mL/min) with the dipole probe center located at 3.8 m bgs in monitoring well MW-3.  The 

magnitude of the peak concentration is greater for the smaller probe DFTTs (0.07) than the larger 

base case probe (0.04).  The differences in the CMCs between the DFTTs (Figure 3.13(b)) also 

indicate the injected tracer is following different flow paths through the aquifer.    Due to the 

difference in the L dimension of the probes, the tracer injected in the smaller probe DFTTs 

appears more quickly in the extraction chamber and more mass is recovered during the DFTT 

(Figure 3.13(b)).  This is supported by Figure 3.3(f) which shows the simulated flow lines of the 

smaller probe drawn closer to the well than the flow lines for the larger dipole probe.  Although 

Sutton et al. (2000) scaling method is supposed to account for differences in L, Figure 3.13(a) 

and Figure 3.13(b) indicate slightly different portions of the aquifer are sampled during these 

DFTTs with different probe dimensions.   

3.4.9 Filter packed wells 

Until now, the analysis has been limited to non-filter pack monitoring wells and has not included 

a discussion of the monitoring wells installed with artificial filter packs.  Figure 3.14(a) shows a 

comparison between the BTCs for DFTTs completed in an artificial filter packed well (DFTT 4-

3.4-A) and a non-filter pack monitoring well (DFTT 3-4.9-A).  The two DFTTs were conducted 

at similar flow rates (~560 mL/min).  Although the BTCs are not directly comparable as the 
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DFTTs were completed in different monitoring wells, the differences in the time to peak 

concentration as well as the magnitude of the peak concentration emphasize the difference in 

tracer flow between the two types of monitoring wells.  Similar to the BTCs presented by Sutton 

et al. (2000), the BTC for the DFTT conducted in the filter packed well had a much faster peak 

concentration arrival time than the BTCs in the non-filter packed wells.  Monitoring wells 

installed with  artificial filter packs are designed so the Ks is greater than the Kr of the aquifer to 

increase water flow to the monitoring well (Driscoll, 1986).  The radius of the skin zone (rs) will 

also be much greater (at a minimum the borehole diameter) for an artificially filter packed well 

than for a non-filter pack monitoring well.  Due to the increase in the skin zone parameters (Ks 

and rs) between the two monitoring well types, rapid and high concentration peaks were expected 

in the filter packed wells. 

The CMCs also illustrated the differences between the two DFTTs (data not shown).  During the 

first 15 min of DFTT 4-3.2-A completed at 3.2 m bgs in filter packed monitoring well MW-4, 

50% of the injected tracer mass had already travelled from the injection chamber to the 

extraction chamber.  In comparison, no tracer was visible in the extraction chamber of the non-

filter pack well at 15 min.  At the end of the DFTT, 211% and 0.2% of the injected tracer mass 

had been observed in the extraction chamber for the filter packed and non-filter pack wells, 

respectively.  The high percentage of tracer return during the DFTT in the filter packed well is 

due to cumulative tracer recirculation.  The difference in the cumulative mass is due to the 

difference in flow paths between the two different types of monitoring wells.  Although obvious 

recycled tracer peaks are not visible on the BTC, that 211% of the injected tracer mass was 

observed in the extraction chamber confirms the tracer was recirculating within the dipole flow 

system established in the filter packed well.   

To investigate the portion of the BTC that is recirculation in filter packed wells, DFTTs were 

completed with and without recirculation at 4.9 m bgs in monitoring well MW-4 (Figure 

3.14(b)).  The recirculation DFTT 4-4.9-A is characterized by an early time to peak (1.5tD) 

followed by a three successively lower tracer peaks.  The non-recirculation DFTT BTC 4-4.9-B 

is characterized by the same early time to peak (1.5tD) but does not show the three successive 

peaks of the recirculation DFTT (Figure 3.14(b)).  The two BTCs diverge before the second 

concentration peak (2tD).  The differences between these two BTCs confirms Sutton et al.’s 
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(2000) hypothesis that the multiple peaks observed on BTCs in filter packed wells are due to 

tracer recirculation.  As expected, the CMC of the recirculation DFTT continues to rise after 

diverging from the non-recirculation CMC (data not shown).  It is interesting to note that 

although recirculation was not present during DFTT 4-5.1-B, the CMC still reached ~100% of 

the injected tracer mass.  This indicates the bulk of the tracer mass flows through the filter pack 

and little tracer mass flows through the aquifer as longer arrival times are expected for tracer 

travel through the aquifer.   

The differences between the BTCs of DFTTs completed in filter packed wells and non-filter 

pack wells emphasize the importance of well construction on the interpretation of DFTT BTCs.  

The differences in the BTCs completed at the same location demonstrate the importance of tracer 

recirculation in the DFTTs completed in filter packed wells.  Successive peaks are not a signal of 

tracer movement through the aquifer, rather they are the initial concentration peak recirculated 

through the filter pack.  In order to separate the two aquifer signal from the recirculation signal, 

DFTTs can be completed with and without tracer recirculation (as was done in this case).  The 

DFTTs completed in the filter packed wells may or may not include tracer movement through 

the aquifer in addition to tracer movement through the filter pack.  However, as initially noted by 

Sutton et al. (2000), DFTTs in filter packed wells can yield estimates of Ks and rs which will 

allow other aquifer characterization methods to provide more accurate estimates of aquifer 

formation parameters. 

3.5 Conclusions 

The dipole flow and reactive tracer test (DFRTT) has been proposed as in situ aquifer parameter 

estimation method.  The DFRTT involves the injection of a suite of reactive and conservative 

tracers into one chamber of the dipole apparatus and the subsequent monitoring of the tracer 

concentrations in the other chamber to produce the BTCs.  To estimate the aquifer parameters, 

the BTCs are analyzed with the DFRTT model.  The aquifer parameters estimated will depend 

on the nature of the reactive tracers injected.  For example, the use of biodegrading tracers will 

yield biodegradation information that will aid in assessing the feasibility of selecting monitored 

natural attenuation as a remedial strategy rather than other more costly techniques.   
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The dipole apparatus was constructed at the University of Waterloo and field tested to estimate 

hydraulic profiles and complete 46 DFTTs at CFB Borden.  The shape of the BTC for a 

conservative tracer is affected by test set up parameters, well construction and aquifer formation 

properties.  The BTCs from the DFTTs completed in the non-filter pack monitoring wells can be 

categorized into four “type curves” based on the curve properties (time to peak, peak 

concentration, etc.).  The differences between the type curves are largely defined by the ratio of 

K between the skin zone and the aquifer (Ks/Kr).   

In order for aquifer parameters to be estimated from the BTC of a DFTT, one must have 

confidence the BTC is representative of the aquifer conditions.  One measure of confidence is the 

repeatability of the BTC: for a given DFTT setup at a specific location, will the shape of the 

BTC be consistent between tests?  The series of DFTTs completed to assess the repeatability of 

the BTCs demonstrate portions of the DFTT BTCs are repeatable and the Type 1 and Type 2 

BTCs showed similar times to peak concentration between DFTTs.  Field testing at CFB Borden 

found that BTCs of DFTTs completed at the same locations but at different flow rates can be 

scaled by the method suggested by Sutton et al. (2000) to produce similar BTCs.  Investigating 

the effect of tracer recirculation, it was found the peak of the field BTCs was largely defined by 

the aquifer properties and not affected by tracer recirculation; however tracer recirculation was 

important for controlling the shape of the tail of the BTC.  Longer durations of tracer injection 

were found to delay the peak concentration of the BTC.   

The differences between the BTCs of DFTTs completed in filter packed wells and non-filter 

pack wells emphasize the importance of well construction on the interpretation of DFTT BTCs.  

The differences in the BTCs completed at the same location demonstrate the importance of tracer 

recirculation in the DFTTs completed in filter packed wells.  Successive peaks on the 

recirculatory BTC were not visible on the non-recirculation BTC indicating the initial 

concentration peak was recirculated through the filter pack.  The DFTTs completed in the filter 

packed wells may or may not include tracer movement through the aquifer in addition to tracer 

movement through the filter pack.  However, as initially noted by Sutton et al. (2000), DFTTs in 

filter packed wells can yield estimates of Ks and rs which will allow other aquifer 

characterization methods to provide more accurate estimates of aquifer formation parameters. 
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Figure 3.1.  Schematic of the Waterloo prototype dipole probe (arrows indicate tracer flow 
direction).  Scale is exaggerated 3x in the horizontal direction. 
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Figure 3.4.  C
rK  profiles for MW-3 (a), MW-6 (b), and MW-8 (c) showing the showing the location of the DFTTs.   
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Figure 3.6.  Dimensionless times (tD) to tracer skin, front and peak plotted against depth for 
monitoring wells MW-3 (a), MW-6 (b), and MW-8 (c).   
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Figure 3.7.  BTCs (a) and CMCs (b) for DFTTs completed at similar flow rates (~540 mL/min) at a 
depth of 3.8 m bgs in MW-3 (DFTTs 3-3.8-A, 3-3.8-B, and 3-3.8-C).  BTCs (c) and CMCs (d) for 
DFTTs completed at similar flow rates (~590 mL/min) at a depth of 3.3 m bgs in MW-6 (DFTTs 6-
3.3-D, 6-3.3-E and 6-3.3-F). 
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Figure 3.13.  Scaled tracer BTCs (a) and CMCs (b) for DFTTs completed with the smaller dipole 
probe (solid lines DFTT 3-3.8-A and 3-3.8-B) and larger dipole probe (dashed line DFTT 3-3.8-D).  
DFTTs were completed at similar flow rates (~540 mL/min) with the probe centers located at 3.8 m 
bgs in MW-3. 

 
 



 

 

Figure 3.
and non-f
DFTTs co
MW-4.   

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.  (a) Com
filter packed
ompleted wit

parison of B
d MW-3 (DFT
th (DFTT 4-4

TCs for DFT
TT 3-4.9-A) 
4.9-A) and w

63 

TTs complete
flow rate 560

without (4-4.9

ed in filter pa
0 mL/min.  (b
9-B) tracer re

acked MW-4
b) Comparis
ecirculation 

4 (DFTT 4-3.
son of BTCs 
in filter pack

 

.2-A) 
for 
ked 



 

64 

 

Table 3.1  Base case values for parameters for numerical simulations of DFTTs. 

Parameter Description Value Unit Reference 

L dipole shoulder 0.222 m  Waterloo dipole probe prototype 

Δ half dipole chamber 0.0785 m  Waterloo dipole probe prototype 

rw well radius 0.0254 m  - 

Q flow rate 500 mL/min  - 

tinj tracer injection time 2 min - 

Kr radial hydraulic conductivity 2.5 x10-5 m/s  Geometric mean estimated by CFB Borden DFTs 

Kz vertical hydraulic conductivity 2.5 x10-5 m/s  Assuming aquifer is isotropic 

θ porosity 0.40 -  (Brewster et al., 1995; Sneddon et al., 2002) 

αL longitudinal dispersivity 0.01 m  (Sudicky et al., 1983) 

 

 

 

Table 3.2  DFTT setup and selected results for the DFTTs discussed in this paper.    

Test ID L/Δ1 Q 
(mL/min) R2 sE 

(cm) 
sI  

(cm) KC (m/s) Qinj 
(mL/min) 

RWT 
(mg/L) 

SRB 
(mg/L) 

Br- 
(mg/L) 

Vinj 
(mL) 

tinj 
(min) 

BTC 
Type 

3-3.8-A S 560 Y 26.7 10.3 7.4E-05 27 50 - 6,500 250 9.3 1 
3-3.8-B S 515 Y 29.7 14.9 6.1E-05 27 - - 10,000 250 9.3 1 
3-3.8-C S 540 Y 19.1 20.5 6.9E-05 30 50 - - 300 10.0 1 
3-3.8-D W 543 Y 16.1 28.2 5.5E-05 25 - 50 15,000 50 2.0 1 
3-4.9-B W 706 Y 22.6 31.4 5.9E-05 25 50 - 10,000 50 2.0 1 
3-4.9-C W 359 Y 10.2 16.1 6.2E-05 25 - 50 20,000 50 2.0 1 
3-4.9-D W 553 Y 20.2 20.0 6.2E-05 25 - 50 15,000 50 2.0 1 
3-4.9-E W 551 N 22.4 23.8 5.4E-05 25 - 50 15,000 50 2.0 1 
3-4.9-F W 553 Y 7.8 9.7 1.4E-04 5 - 50 15,000 50 10.0 1 
4-3.2-A S 560 Y 1.8 2.2 6.9E-04 27 50 - 6,500 250 9.3 2 
4-4.9-A W 650 Y 4.4 6.2 2.8E-04 10 - 50 15,000 10 1.0 2 
4-4.9-B W 650 N 8.9 0.9 3.0E-04 10 - 50 15,000 10 1.0 2 
6-3.3-C W 398 Y 32.6 52.6 2.1E-05 5 - 50 20,000 50 10.0 2 
6-3.3-D W 591 Y 51.4 81.6 2.0E-05 25 - 50 20,000 50 2.0 2 
6-3.3-E W 589 Y 48.4 91.1 1.9E-05 25 - 50 15,000 50 2.0 2 
6-3.3-F W 592 Y 26.6 51.1 3.4E-05 25 - 50 15,000 50 2.0 2 
6-3.3-G W 422 Y 40.8 49.6 2.1E-05 25 - 50 15,000 50 2.0 2 
6-3.3-H W 800 Y 22.4 84.8 3.4E-05 25 - 50 15,000 50 2.0 2 
6-4.3-A W 754 Y 42.0 85.9 2.7E-05 25 75 - 20,000 50 2.0 1 
6-4.3-C W 1354 Y 106.3 99.2 3.0E-05 25 - 50 15,000 50 2.0 1 
8-4.9-B W 589 N 166.7 133.4 8.8E-06 25 - 50 15,000 50 2.0 3 
8-4.9-C W 590 N 155.1 136.7 9.1E-06 25 - 50 15,000 50 2.0 3 
8-4.9-D W 592 Y 117.9 119.4 1.1E-05 25 - 50 15,000 50 2.0 3 

1 S – smaller modified dipole probe;  W – Waterloo dipole probe prototype 
2 Y – tracer recirculation; N – no tracer recirculation  
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Chapter 4 Conclusions and Recommendations 

4.1 Dipole flow test (DFT) conclusions 

A series of DFTs, a single-well test which estimates the vertical distributions of the Kr, were 

completed to quantify small-scale variations in Kr in a relatively homogeneous aquifer.  The 

DFTs conducted at 0.10 m increments along the length of the screen of non-filter packed 

monitoring wells provided similar estimates of K to slug tests and literature values.  In general, 

good agreement was found between the injection I
rK  and extraction E

rK  profiles which provide 

a more representative estimate of K than the use of the C
rK  profile.  This result was also 

supported by the dipole simulations which indicated the pressure drawdown and drawup 

measurements are functions not only of the K field across the chamber but also of the K field in 

the vicinity of the chamber.  Therefore, the K estimates should not be taken as point 

measurements but rather as measurements at scale 2L (0.4 m).   

The mean C
rK  estimated in the filter packed wells was approximately an order of magnitude less 

than the mean C
rK  estimate for the non-filter packed wells.  Higher variability in Kr estimates 

was also observed in the non-filter packed than the filter packed monitoring wells.  As the DFT 

induces a predominantly vertical flow field, short-circuiting through the skin zone (hydraulic 

conductivity Ks) is more pronounced in the DFT performed in the filter packed wells.  The slug 

test may be less sensitive to the skin effect than the DFT due to its primarily horizontal flow 

pattern.  These results indicate short-circuiting through the skin zone (hydraulic conductivity Ks) 

is more pronounced in the DFTs completed with the prototype dipole probe in the filter packed 

monitoring wells than the non-filter packed wells. 

The Kr profiles were measured in order to determine intervals for completing the DFRTTs, 

small-scale tracer tests completed within the same flow field as the DFT estimates.  Due to the 

small scale of the DFRTTs, the BTCs are sensitive to variations in the K field.    Based on the 

results of the DFT interval analysis, 0.20 m intervals appears to be the minimum interval for Kr 

profiles at CFB Borden for the DFRTT at the scale of the Waterloo dipole probe prototype.  For 

DFRTTs completed at a different site with a more heterogeneous stratigraphy, a more detailed Kr 

profile may be required to fully characterize the K field around the monitoring well.  Note that 
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changing the scale of the dipole probe (L or Δ) may change the measurement interval required in 

the Kr profile.   

4.2 Dipole flow and tracer test (DFTT) conclusions 

The dipole flow and reactive tracer test (DFRTT) has been proposed as in situ aquifer parameter 

estimation method.  The DFRTT involves the injection of a suite of reactive and conservative 

tracers into one chamber of the dipole apparatus and the subsequent monitoring of the tracer 

concentrations in the other chamber to produce the BTCs.  To estimate the aquifer parameters, 

the BTCs are analyzed with the DFRTT model.  The aquifer parameters estimated will depend 

on the nature of the reactive tracers injected.  .   

The dipole apparatus was constructed at the University of Waterloo and field tested to estimate 

hydraulic profiles and complete 46 DFTTs at CFB Borden.  The shape of the BTC for a 

conservative tracer is affected by test set up parameters, well construction and aquifer formation 

properties.  The BTCs from the DFTTs completed in the non-filter pack monitoring wells can be 

categorized into four “type curves” based on the curve properties (time to peak, peak 

concentration, etc.).  The differences between the type curves are largely defined by the ratio of 

K between the skin zone and the aquifer (Ks/Kr).   

In order for aquifer parameters to be estimated from the BTC of a DFTT, one must have 

confidence the BTC is representative of the aquifer conditions.  One measure of confidence is the 

repeatability of the BTC: for a given DFTT setup at a specific location, will the shape of the 

BTC be consistent between tests?  The series of DFTTs completed to assess the repeatability of 

the BTCs demonstrate portions of the DFTT BTCs are repeatable and the Type 1 and Type 2 

BTCs showed similar times to peak concentration between DFTTs.  BTCs from DFTTs 

completed at the same locations but at different flow rates can be scaled (by the method 

suggested by Sutton et al. (2000)) to produce similar BTCs.  Investigating the effect of tracer 

recirculation, it was found the peak of the field BTCs was largely defined by the aquifer 

properties and not affected by tracer recirculation; however tracer recirculation was important for 

controlling the shape of the tail of the BTC.  Longer durations of tracer injection were found to 

increase and delay the peak concentration of the BTC, as expected from numerical simulations.   
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The differences between the BTCs of DFTTs completed in filter packed wells and non-filter 

pack wells emphasize the importance of well construction on the interpretation of DFTT BTCs.  

The differences in the BTCs completed at the same location demonstrate the importance of tracer 

recirculation in the DFTTs completed in filter packed wells.  Successive peaks on the 

recirculatory BTC were not visible on the non-recirculation BTC indicating the initial 

concentration peak was recirculated through the filter pack.  The DFTTs completed in the filter 

packed wells may or may not include tracer movement through the aquifer in addition to tracer 

movement through the filter pack.  However, as initially noted by Sutton et al. (2000), DFTTs in 

filter packed wells can yield estimates of Ks and rs which will allow other aquifer 

characterization methods to provide more accurate estimates of aquifer formation parameters. 

The dipole flow and reactive tracer test (DFRTT) has been proposed as a method to obtain site 

specific in situ estimates of aquifer parameters to aid in the design of a remedial system for a 

contaminated site.  The BTCs generated during this study were found to be repeatable and 

behaved as expected from numerical simulations.  The DFRTT model will subsequently be used 

to provide estimates of aquifer parameters based on the field BTCs.   

4.3 Recommendations 

This research focused on the field implementation of the DFT and DFTT.  The following 

recommendations are made for extending the results of this study:   

- Increase the L dimension of the dipole probe prototype when completing DFTs, DFTTs, 

or DFRTTs in filter packed wells to decrease the effect of the skin zone on the BTC; 

- Complete a parameter estimation and sensitivity analysis for the generated BTCs to 

confirm if the DFTT BTCs are sufficiently repeatable to provide accurate parameter 

estimates; 

- Acquire a sorbing tracer that would meet with regulatory approval for the DFRTTs.  For 

the biodegradation DFRTTs, complete tests of longer duration with two tracer injections 

to provide an acclimation period for the microbial community in the aquifer.  Once 

DFRTTs can be reproduced at CFB Borden, complete DFRTTs at well-documented 

contaminated sites; and 
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- Investigate the effect of much longer tracer injection periods (at least one hour) on tracer 

movement through the dipole flow field.  This would be in support of using the dipole 

probe to deliver chemical oxidants at a contaminated site. 
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Appendix A – Dipole Flow Test (DFT) Data  

 

Table A.1.  E
rK  summary statistics for DFTs completed at 0.10 m, 0.20 m, 0.30 m, 0.40, and 0.50 m 

intervals in MW-3 at CFB Borden.   

DFT Interval 0.10 m 0.20 m 0.30 m 0.40 m 0.50 m 

Geometric mean (m/s) 6.7E-05 6.8E-05 6.7E-05 6.4E-05 6.8E-05 
Standard deviation (m/s) 3.1E-05 3.3E-05 2.9E-05 2.7E-05 4.1E-05 

Coefficient of variation 0.46 0.48 0.44 0.43 0.61 
Skew 0.14 0.39 0.09 -0.47 0.77 

Kurtosis 0.25 0.91 -0.64 -1.26 0.31 

 
 
 
Table A.2.  E

rK  summary statistics for DFTs completed at 0.10 m, 0.20 m, 0.30 m, 0.40, and 0.50 m 
intervals in MW-5 at CFB Borden.   

DFT Interval 0.10 m 0.20 m 0.30 m 0.40 m 0.50 m 

Geometric mean (m/s) 2.5E-05 2.5E-05 2.6E-05 2.4E-05 2.2E-05 
Standard deviation (m/s) 1.3E-05 1.3E-05 1.6E-05 1.2E-05 1.3E-05 

Coefficient of variation 0.51 0.51 0.59 0.49 0.58 
Skew 0.56 0.27 0.49 0.40 0.43 

Kurtosis -0.76 -1.53 -1.09 -1.57 -1.51 

 
 
 
Table A.3.  E

rK  summary statistics for DFTs completed at 0.10 m, 0.20 m, 0.30 m, 0.40, and 0.50 m 
intervals in MW-6 at CFB Borden.   

DFT Interval 0.10 m 0.20 m 0.30 m 0.40 m 0.50 m 

Geometric mean (m/s) 2.20E-05 2.23E-05 2.15E-05 2.07E-05 2.04E-05 
Standard deviation (m/s) 8.67E-06 8.33E-06 8.00E-06 1.01E-05 1.03E-05 

Coefficient of variation 0.40 0.37 0.37 0.49 0.50 
Skew -0.036 -0.258 -0.198 -0.039 -0.156 

Kurtosis -1.071 -1.187 -1.536 -1.712 -1.829 
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Table A.4.  E
rK  summary statistics for DFTs completed at 0.10 m, 0.20 m, 0.30 m, 0.40, and 0.50 m 

intervals in MW-8 at CFB Borden.   

DFT Interval 0.10 m 0.20 m 0.30 m 0.40 m 0.50 m 

Geometric mean (m/s) 1.5E-05 1.5E-05 1.7E-05 1.5E-05 1.5E-05 
Standard deviation (m/s) 1.3E-05 1.3E-05 1.4E-05 1.5E-05 1.6E-05 

Coefficient of variation 0.85 0.86 0.81 0.96 1.10 
Skew 1.61 1.38 1.35 1.61 1.34 

Kurtosis 2.34 1.20 1.50 1.72 0.78 

 
 
 
Table A.5.  E

rK  summary statistics for DFTs completed at 0.10 m, 0.20 m, 0.30 m, 0.40, and 0.50 m 
intervals in MW-4 at CFB Borden.   

DFT Interval 0.10 m 0.20 m 0.30 m 0.40 m 0.50 m 

Geometric mean (m/s) 6.4E-04 6.9E-04 6.7E-04 7.4E-04 7.1E-04 
Standard deviation (m/s) 2.0E-04 2.2E-04 2.4E-04 2.4E-04 2.9E-04 

Coefficient of variation 0.31 0.32 0.35 0.32 0.41 
Skew 0.24 0.20 1.10 0.91 0.93 

Kurtosis 1.01 1.20 2.12 1.86 -0.40 

 
 
 
Table A.6.  E

rK  summary statistics for DFTs completed at 0.10 m, 0.20 m, 0.30 m, 0.40, and 0.50 m 
intervals in MW-7 at CFB Borden.   

DFT Interval 0.10 m 0.20 m 0.30 m 0.40 m 0.50 m 

Geometric mean (m/s) 7.2E-04 6.6E-04 6.5E-04 8.6E-04 7.0E-04 
Standard deviation (m/s) 2.6E-04 2.0E-04 1.8E-04 3.2E-04 1.7E-04 

Coefficient of variation 0.36 0.30 0.28 0.37 0.24 
Skew 0.70 1.41 0.58 -0.21 -1.47 

Kurtosis -0.37 3.11 -0.06 -0.48 3.10 
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Figure A.1. DFT E
rK  estimates for monitoring well MW-3 from DFTs completed at 0.20 m (a), 0.30 

m (b), 0.40 m (c), and 0.50 m (d) intervals.  DFT E
rK estimates at 0.10 m intervals shown as gray line 

and mean E
rK  for well shown in red.   



 

77 

 

 

Figure A.2. DFT E
rK  estimates for monitoring well MW-5 from DFTs completed at 0.20 m (a), 0.30 

m (b), 0.40 m (c), and 0.50 m (d) intervals.  DFT E
rK estimates at 0.10 m intervals shown as gray line 

and mean E
rK  for well shown in red.   
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Figure A.3. DFT E
rK  estimates for monitoring well MW-6 from DFTs completed at 0.20 m (a), 0.30 

m (b), 0.40 m (c), and 0.50 m (d) intervals.  DFT E
rK estimates at 0.10 m intervals shown as gray line 

and mean E
rK  for well shown in red.   
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Figure A.4. DFT E
rK  estimates for monitoring well MW-8 from DFTs completed at 0.20 m (a), 0.30 

m (b), 0.40 m (c), and 0.50 m (d) intervals.  DFT E
rK estimates at 0.10 m intervals shown as gray line 

and mean E
rK  for well shown in red.   
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Figure A.5. DFT E
rK  estimates for monitoring well MW-4 from DFTs completed at 0.20 m (a), 0.30 

m (b), 0.40 m (c), and 0.50 m (d) intervals.  DFT E
rK estimates at 0.10 m intervals shown as gray line 

and mean E
rK  for well shown in red.   
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Figure A.6. DFT E
rK  estimates for monitoring well MW-7 from DFTs completed at 0.20 m (a), 0.30 

m (b), 0.40 m (c), and 0.50 m (d) intervals.  DFT E
rK estimates at 0.10 m intervals shown as gray line 

and mean E
rK  for well shown in red.   
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Appendix B – Dipole Flow and Tracer Test (DFTT) Data 

Appendix B contains plots of all the BTCs for the DFTTs completed in the monitoring wells at 

CFB Borden (Figure B.1 to Figure B.44).  Data collected from the probes (pH, EC, DO, and Eh) 

during the DFTTs are also shown on the figures.  DFTT setup and some properties of the BTCs 

are summarized in Tables B.1 – B.3.  
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Table B.1.  Field setup parameters for the DFTTs completed at CFB Borden.   

Test ID Date L/Δ Q 
(mL/min) 

tc 
(min) R sI 

(cm) 
sE 

(cm) 
sI + sE 
(cm) 

Kr 
(m/s) 

3-2.9-A 20-Jun-07 S 320 7.42 Y 22.8 56.4 79.3 2.0E-05 
3-3.2-A 20-Jun-07 S 320 7.42 Y 15.1 17.4 32.5 4.8E-05 
3-3.2-B 22-Jun-07 S 560 4.24 Y 35.0 26.6 61.6 4.4E-05 
3-3.2-C 9-Jul-08 W 392 6.05 Y 22.3 16.7 39.0 4.5E-05 
3-3.2-D 21-Aug-08 W 386 6.15 N 22.4 22.1 44.5 3.9E-05 
3-3.7-A 21-Nov-07 W 550 4.31 Y 3.9 23.4 27.3 9.2E-05 
3-3.8-A 22-Jun-07 S 560 4.24 Y 26.7 10.3 37.0 7.4E-05 
3-3.8-B 25-Jun-07 S 515 4.61 Y 29.7 14.9 44.5 6.1E-05 
3-3.8-C 28-Jun-07 S 540 4.39 Y 19.1 20.5 39.6 6.9E-05 
3-3.8-D 13-Aug-08 W 543 4.37 Y 16.1 28.2 44.3 5.5E-05 
3-4.3-A 6-Dec-07 W 550 4.24 Y 19.0 15.7 34.7 7.3E-05 
3-4.9-A 27-Nov-07 W 550 4.31 Y 9.8 19.5 29.3 8.5E-05 
3-4.9-B 4-Jun-08 W 706 3.36 Y 22.6 31.4 53.9 5.9E-05 
3-4.9-C 24-Jul-08 W 359 6.60 Y 10.2 16.1 26.3 6.2E-05 
3-4.9-D 11-Aug-08 W 553 4.29 Y 20.2 20.0 40.2 6.2E-05 
3-4.9-E 21-Aug-08 W 551 4.30 N 22.4 23.8 46.2 5.4E-05 
3-4.9-F 1-Oct-08 W 553 4.29 Y 7.8 9.7 17.4 1.4E-04 
4-3.2-A 23-Jun-07 S 560 4.24 Y 1.8 2.2 4.0 6.9E-04 
4-3.2-B 26-Jun-07 S 1860 1.28 Y 14.4 1.2 15.5 3.3E-04 
4-3.6-A 7-Dec-07 W 546 4.35 Y 1.1 2.1 3.2 7.6E-04 
4-4.9-A 10-Oct-08 W 650 3.65 Y 4.4 6.2 10.6 2.8E-04 
4-4.9-B 10-Oct-08 W 650 3.65 N 8.9 0.9 9.8 3.0E-04 
6-2.9-A 23-Jun-07 S 560 4.24 Y 111.6 69.7 181.3 1.5E-05 
6-2.9-B 27-Jun-07 S 1840 1.29 Y 13.6 118.6 132.2 6.9E-05 
6-3.1-A 21-Jun-07 S 560 4.24 Y 103.6 31.9 135.6 2.0E-05 
6-3.3-A 26-Jun-07 S 1040 2.28 Y 137.7 151.6 289.3 1.8E-05 
6-3.3-B 29-Nov-07 W 589 4.03 Y 39.9 76.2 116.1 2.3E-05 
6-3.3-C 24-Jul-08 W 398 5.97 Y 32.6 52.6 85.2 2.1E-05 
6-3.3-D 7-Aug-08 W 591 4.02 Y 51.4 81.6 133.0 2.0E-05 
6-3.3-E 11-Aug-08 W 589 4.03 Y 48.4 91.1 139.5 1.9E-05 
6-3.3-F 17-Sep-08 W 592 4.01 Y 26.6 51.1 77.7 3.4E-05 
6-3.3-G 6-Oct-08 W 422 5.62 Y 40.8 49.6 90.4 2.1E-05 
6-3.3-H 15-Oct-08 W 800 2.97 Y 22.4 84.8 107.2 3.4E-05 
6-4.3-A 5-Dec-07 W 754 3.15 Y 42.0 85.9 127.9 2.7E-05 
6-4.3-B 23-May-08 W 494 4.81 Y 42.7 48.4 91.1 2.4E-05 
6-4.3-C 26-Aug-08 W 1354 1.75 Y 106.3 99.2 205.5 3.0E-05 
6-4.9-A 13-Dec-07 W 516 4.60 Y 82.2 41.3 123.6 1.9E-05 
6-4.9-B 19-Aug-08 W 751 3.16 N 134.6 38.4 173.0 2.0E-05 
8-2.8-A 27-Jun-07 S 1860 1.28 Y 1.5 38.7 40.2 2.3E-04 
8-3.2-A 18-Jun-08 W 383 6.25 Y 39.0 17.1 56.1 3.0E-05 
8-3.8-A 27-Jun-07 S 1860 1.28 Y 162.4 189.8 352.1 2.6E-05 
8-4.6-A 18-Jun-08 W 386 6.14 Y 59.1 76.0 135.1 1.3E-05 
8-4.9-A 12-Dec-07 W 590 4.02 Y 153.8 88.3 242.1 1.1E-05 
8-4.9-B 26-Aug-08 W 589 4.03 N 166.7 133.4 300.1 8.8E-06 
8-4.9-C 8-Oct-08 W 590 4.02 N 155.1 136.7 291.8 9.1E-06 
8-4.9-D 20-Oct-08 W 592 4.01 Y 117.9 119.4 237.3 1.1E-05 
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Table B.2.  Summary of tracer injection parameters for the DFTTs completed at CFB Borden. 

Test ID Qinj 
(mL/min) 

% tracer 
injection 
to flow 

RWT 
(mg/L) 

SRB 
(mg/L) 

Bromide 
(mg/L) 

Acetate 
(mg/L) 

Toluene 
(mg/L) 

Tracer 
volume 

(mL) 
tinj 

(min) 

3-2.9-A 10 3.1% 1 - 6,500 - - 50 5.0 
3-3.2-A 10 3.1% 1 - 6,500 - - 50 5.0 
3-3.2-B 5 0.9% 50 - 6,500 - - 50 10.0 
3-3.2-C 5 1.3% 75 - 20,000 20,000 - 50 10.0 
3-3.2-D 5 1.3% - 50 15,000 - - 50 10.0 
3-3.7-A 5 0.9% 50 - 1,000 - - 50 10.0 
3-3.8-A 27 4.8% 50 - 6,500 - - 250 9.3 
3-3.8-B 27 5.2% - - 10,000 10,000 - 250 9.3 
3-3.8-C 30 5.6% ~50 - - - 500 300 10.0 
3-3.8-D 25 5.6% - 50 15,000 - - 50 2.0 
3-4.3-A 25 4.5% 75 - 20,000 ~10,000 - 50 2.0 
3-4.9-A 25 4.5% 50 - 1,000 - - 50 2.0 
3-4.9-B 25 3.5% 50 - 10,000 - - 50 2.0 
3-4.9-C 25 7.0% - 50 20,000 20,000 - 50 2.0 
3-4.9-D 25 4.5% - 50 15,000 - - 50 2.0 
3-4.9-E 25 4.5% - 50 15,000 - - 50 2.0 
3-4.9-F 5 0.9% - 50 15,000 - - 50 10.0 
4-3.2-A 27 4.8% 50 - 6,500 - - 250 9.3 
4-3.2-B 100 5.4% - - 10,000 10,000 - 500 5.0 
4-3.6-A 25 4.6% 75 - 20,000 ~10,000 - 50 2.0 
4-4.9-A 10 1.5% - 50 15,000 - - 10 1.0 
4-4.9-B 10 1.5% - 50 15,000 - - 10 1.0 
6-2.9-A 27.5 4.9% 50 - 6,500 - - 250 9.1 
6-2.9-B 103 5.6% ~50 - 10,000 10,000 - 500 4.9 
6-3.1-A 5 0.9% 50 - 6,500 - - 50 10.0 
6-3.3-A 50 4.8% - - 10,000 10,000 - 500 10.0 
6-3.3-B 25 4.2% 50 - 1,500 - - 52 2.1 
6-3.3-C 5 1.3% - 50 20,000 20,000 - 50 10.0 
6-3.3-D 25 4.2% - 50 20,000 20,000 - 50 2.0 
6-3.3-E 25 4.2% - 50 15,000 - - 50 2.0 
6-3.3-F 25 4.2% - 50 15,000 - - 50 2.0 
6-3.3-G 25 5.9% - 50 15,000 - 50 2.0 
6-3.3-H 25 3.1% - 50 15,000 - 50 2.0 
6-4.3-A 25 3.3% 75 - 20,000 - - 50 2.0 
6-4.3-B 25 5.1% 50 - 10,000 - - 25 1.0 
6-4.3-C 25 1.8% - 50 15,000 - - 50 2.0 
6-4.9-A 25 4.8% 75 - 20,000 20,000 - 50 2.0 
6-4.9-B 25 3.3% - 50 15,000 - - 50 2.0 
8-2.8-A 100 5.4% 50 - 6,500 - - 500 5.0 
8-3.2-A 5 1.3% 50 - 10,000 ~7500 - 50 10.0 
8-3.8-A 100 5.4% 50 - 6,500 - - 500 5.0 
8-4.6-A 5 1.3% 50 - 10,000 ~7500 - 25.5 5.1 
8-4.9-A 25 4.2% 75 - 20,000 20,000 - 50 2.0 
8-4.9-B 25 4.2% - 50 15,000 - - 50 2.0 
8-4.9-C 25 4.2% - 50 15,000 - - 50 2.0 
8-4.9-D 25 4.2% - 50 15,000 - - 50 2.0 
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Table B.3.  Selected BTC properties for the DFTTs completed at CFB Borden. 

Test ID 
Time to 

skin 
(min) 

Time to 
front 
(min) 

Time to 
peak 
(min) 

Time to 
return 
(min) 

max 
M/Mo 

Time to 
skin 

Time to 
front 

Time to 
peak 

Time to 
return 

Time to 
max 

M/Mo 
Type 

3-2.9-A - - - - - - - - - - - 
3-3.2-A - - - - - - - - - - - 
3-3.2-B 15.0 15.0 >240 0.53 3.5 - 3.5 >56 57 3 
3-3.2-C 18.9 - 71.6 >1740 1.34 3.1 - 11.8 >288 288 3 
3-3.2-D 17.0 - 66.9 > 240 0.16 2.8 - 10.9 > 39 39 3 
3-3.7-A 22.7 57.0 98.9 >210 0.17 5.3 13.2 22.9 >49 49 1 
3-3.8-A - 15.0 35.0 >230 1.24 - 3.5 8.3 >54 54 1 
3-3.8-B 5.0 16.5 35.0 >170 1.03 1.1 3.6 7.6 >37 37 1 
3-3.8-C 5.0 15.0 30.0 >220 - 1.1 3.4 6.8 >50 50 1 
3-3.8-D 10.2 42.7 62.4 >300 0.94 2.3 9.8 14.3 >69 69 1 
3-4.3-A 12.5 47.0 >280 0.20 2.9 - 11.1 >67 67 - 
3-4.9-A 22.1 40.6 57.1 >156 0.19 5.1 9.4 13.2 36.2 >36 1 
3-4.9-B 14.3 32.3 44.6 >420 1.14 4.3 9.6 13.3 >125 125 1 
3-4.9-C 21.7 58.7 79.8 >300 0.61 3.3 8.9 12.1 >45 45 1 
3-4.9-D 11.4 40.2 51.1 >300 0.75 2.7 9.4 11.9 >70 70 1 
3-4.9-E 15.0 41.3 57.9 >240 0.51 3.5 9.6 13.5 >57 57 1 
3-4.9-F 17.4 44.5 58.3 >300 0.73 4.0 10.4 13.6 >70 70 1 
4-3.2-A 10.0 3.0 10.0 56 2.11 2.4 0.7 2.4 13.2 33 2 
4-3.2-B 6.0 1.0 6.0 21 2.51 4.7 0.8 4.7 16.5 180 2 
4-3.6-A 8.0 4.3 8.0 269 3.02 1.8 1.0 1.8 61.9 69 2 
4-4.9-A 5.5 4.1 5.5 47 4.20 1.5 1.1 1.5 13.0 34 2 
4-4.9-B 5.5 3.5 5.5 11 1.09 1.5 1.0 1.5 2.9 16 2 
6-2.9-A 12.5 - 12.5 >200 0.55 2.9 - 2.9 >47 47 4 
6-2.9-B 6.0 - 6.0 >90 1.37 4.7 - 4.7 >70 70 4 
6-3.1-A - - - - - - - - - - - 
6-3.3-A 10.0 - 10.0 >145 0.15 4.4 - 4.4 >64 64 2 
6-3.3-B 7.6 - 7.6 > 180 0.14 1.9 - 1.9 >45 45 2 
6-3.3-C 14.5 - 14.5 50 0.19 2.4 - 2.4 8.4 30 2 
6-3.3-D 6.8 - 6.8 21 0.21 1.7 - 1.7 5.2 75 2 
6-3.3-E 6.0 - 6.0 21 0.21 1.5 - 1.5 5.3 75 2 
6-3.3-F 5.5 - 5.5 15 0.26 1.4 - 1.4 3.8 60 2 
6-3.3-G 11.0 - 11.0 37 0.35 2.0 - 2.0 6.6 49 2 
6-3.3-H 5.0 - 5.0 14 0.25 1.7 - 1.7 4.7 81 2 
6-4.3-A 8.8 20.1 40.0 >301 0.62 2.8 6.4 12.7 >96 96 1 
6-4.3-B - - - - - - - - 1 
6-4.3-C 4.9 10.6 20.1 171 0.71 2.8 6.0 11.5 97.6 137 1 
6-4.9-A 7.7 - 52.4 > 300 0.60 1.7 - 11.4 >65 65 3 
6-4.9-B 5.8 - 43.3 >240 0.67 1.8 - 13.7 >76 76 3 
8-2.8-A 10.0 - 30.0 80 0.44 7.8 - 23.5 62.7 94 - 
8-3.2-A 20.7 - 20.7 >400 0.43 3.3 - 3.3 >64 64 3 
8-3.8-A 5.0 - 5.0 >90 0.53 3.9 - 3.9 >71 71 2 
8-4.6-A 13.0 - 13.0 37 0.14 2.1 - 2.1 6.0 13.3 2 
8-4.9-A 6.0 - 38.3 > 211 0.60 1.5 - 9.5 >53 53 4 
8-4.9-B 5.2 - 29.3 >240 0.49 1.3 - 7.3 >60 60 3 
8-4.9-C 6.0 - 35.6 >240 0.48 1.5 - 8.8 >60 60.0 3 
8-4.9-D 5.3 - 33.1 >240 0.60 1.3 - 8.2 >60 60.0 3 
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Figure B.1.  BTCs for DFTT 3-3.2-B. 
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Figure B.2.  BTCs and monitoring data for first 300 min of DFTT 3-3.2-C. 
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Figure B.3.  BTCs and monitoring data for complete 1800 min of DFTT 3-3.2-C. 
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Figure B.4.  BTCs and monitoring data for DFTT 3-3.2-D. 
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Figure B.5.  BTCs and monitoring data for DFTT 3-3.7-A. 
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Figure B.6.  BTCs for DFTT 3-3.8-A. 
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Figure B.7.  BTCs and monitoring data for DFTT 3-3.8-B. 
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Figure B.8.  BTCs and monitoring data for DFTT 3-3.8-C. 
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Figure B.9.  BTCs and monitoring data for DFTT 3-3.8-D. 
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Figure B.10.  BTCs and monitoring data for DFTT 3-4.3-A. 
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Figure B.11.  BTCs and monitoring data for DFTT 3-4.9-A. 
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Figure B.12.  BTCs and monitoring data for DFTT 3-4.9-B. 



 

98 

 

 

Figure B.13.  BTCs and monitoring data for DFTT 3-4.9-C. 
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Figure B.14.  BTCs and monitoring data for DFTT 3-4.9-D. 



 

100 

 

 

Figure B.15.  BTCs and monitoring data for DFTT 3-4.9-E. 
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Figure B.16.  BTCs and monitoring data for DFTT 3-4.9-F. 



 

102 

 

 

Figure B.17.  BTCs for DFTT 6-2.9-A. 
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Figure B.18.  BTCs and monitoring data for DFTT 6-2.9-B. 
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Figure B.19.  BTCs and monitoring data for DFTT 6-3.3-A. 
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Figure B.20.  BTCs and monitoring data for DFTT 6-3.3-B. 
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Figure B.21.  BTCs and monitoring data for DFTT 6-3.3-C. 
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Figure B.22.  BTCs and monitoring data for DFTT 6-3.3-D. 
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Figure B.23.  BTCs and monitoring data for DFTT 6-3.3-E. 
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Figure B.24.  BTCs and monitoring data for DFTT 6-3.3-F. 
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Figure B.25.  BTCs and monitoring data for DFTT 6-3.3-G. 
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Figure B.26.  BTCs and monitoring data for DFTT 6-3.3-H. 
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Figure B.27.  BTCs and monitoring data for DFTT 6-4.3-A. 
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Figure B.28.  BTCs and monitoring data for DFTT 6-4.3-B. 
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Figure B.29.  BTCs and monitoring data for DFTT 6-4.3-C. 
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Figure B.30.  BTCs and monitoring data for DFTT 6-4.9-A. 
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Figure B.31.  BTCs and monitoring data for DFTT 6-4.9-B. 
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Figure B.32.  BTCs and monitoring data for DFTT 8-2.8-A. 
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Figure B.33.  BTCs and monitoring data for DFTT 8-3.2-A. 
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Figure B.34.  BTCs and monitoring data for DFTT 8-3.8-A. 
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Figure B.35.  BTCs and monitoring data for DFTT 8-4.6-A. 
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Figure B.36.  BTCs and monitoring data for DFTT 8-4.9-A. 
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Figure B.37.  BTCs and monitoring data for DFTT 8-3.8-B. 
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Figure B.38.  BTCs and monitoring data for DFTT 8-3.8-C. 
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Figure B.39.  BTCs and monitoring data for DFTT 8-3.8-D. 
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Figure B.40.  BTCs for DFTT 4-3.2-A. 
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Figure B.41.  BTCs and monitoring data for DFTT 4-3.2-B. 
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Figure B.42.  BTCs and monitoring data for DFTT 4-3.6-A. 



 

128 

 

 

Figure B.43.  BTCs and monitoring data for DFTT 4-4.9-A. 
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Figure B.44.  BTCs and monitoring data for DFTT 4-4.9-B. 
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Appendix C – Preliminary Work with the Dipole Flow and  
Reactive Tracer Test (DFRTT) 

C.1 Reactive tracer selection 

The acetate ion [CH3COO]- has been used during in situ remediation projects as a carbon source 

(e.g., Anderson et al., 2003).  It is one of the lower molecular weight organic acid intermediary 

degradation products which may be present in natural ground waters.   Therefore if acetate is 

introduced as a tracer, the rate of degradation may be representative of the existing microbial 

population (Kleikemper et al., 2002).  Under denitrifying conditions in an unconfined 

glaciofluvial outwash deposit in Switzerland, the first-order rate coefficient for acetate was 

estimated to be 0.70 ± 0.05 day-1 via a push-pull test (Pombo et al., 2002).  Similar estimates for 

the acetate first-order rate coefficient (0.60 ± 0.06 day-1) were obtained in the same aquifer 

under sulfate-reducing conditions (Kleikemper et al., 2002). 

Toluene [C6H5CH3] is a colourless liquid denser than water (density 0.8669 g/mL at 20°C) 

(ATSDR, 2000).  The solubility of toluene in water is limited to 534.8 mg/L at 25°C (ATSDR, 

2000) which has implications for the concentration of the tracer stock to be injected in a DFRTT.  

Laboratory experiments report log Kow 2.72 for toluene (ATSDR, 2000).  Reported retardation 

coefficients have ranged from 1.4 in a column experiment (MacQuarrie et al., 1990) to 1.6 at a 

field site (Mackay et al., 2006).  Mackay et al. (2006) estimated the pseudo-first order 

degradation rate for toluene to be 1.03 day-1.   

C.2 Results - dipole flow and tracer test with biodegrading tracer 

A biodegrading tracer BTC is expected to have a lower concentration tail than the conservative 

tracer BTC (Reiha, 2006).  The DFRTT model would then interpret the BTCs and provide an 

estimate for the biodegradation rate of acetate at that location in the aquifer.  Short DFRTTs (~4 

hours) show no acetate degradation but show acetate agrees well with conservative bromide 

tracer (data not shown).  As noted in section C.1, using a push-pull test the first-order rate 

coefficient for acetate was estimated to be 0.70 ± 0.05 day-1 under denitrifying conditions 

(Pombo et al., 2002).   
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To provide enough time for microbial assimilation of acetate, a 30 h DFRTT (3-3.2-C) was 

completed to estimate the biodegradation rate.  Conservative tracers rhodamine WT and bromide 

were injected simultaneously with acetate to provide a basis for comparison as well as to provide 

a field indicator for tracer breakthrough.  The conservative BTC of DFRTT 3-3.4-A is 

characterized by a series of three high concentration peaks (tD 3, 7, and 12) followed by a long 

tail (Figure C.1(a)).  The acetate BTC shows no evidence of biodegradation when compared to 

the conservative tracer BTCs.  The CMCs for acetate and rhodamine WT are similar (Figure 

C.1(b)) which also provides evidence for the lack of biodegradation.  Possible reasons for this 

lack of biodegradation are insufficient acclimation to the acetate substrate by the microbial 

population.  The dissolved oxygen levels (Figure C.1(a)) in the vicinity of the DFRTT may not 

have been high enough to support rapid acetate assimilation. 

C.3 Results - dipole flow and tracer test with sorbing tracer 

The peak concentration of sorbing tracer is expected to be delayed compared to a conservative 

tracer (Reiha, 2006).  The DFRTT model would then interpret the conservative and sorbing 

BTCs and provide an estimate for the sorptive properties of the aquifer (e.g., fraction of organic 

carbon) at that location.   

A sorbing DFRTT (3-3.8-C) was completed in monitoring well MW-3 using toluene and 

rhodamine WT as sorbing and conservative tracers, respectively.  The rhodamine WT and 

toluene BTCs have similar times to peak concentration and similar peak concentrations (Figure 

C.2).  This indicates limited sorption occurred during the DFRTT.  The only potential indicator 

of sorption may be the different slopes of the tail of the BTC (RWT -2.12 x10-4 ;  

toluene -2.20 x10-4) however the differences between the tails of the two BTCs could also be 

accounted for by aquifer heterogeneity.  The limited sorption in the Borden aquifer is not 

unexpected as the fraction of organic carbon is low (0.2 mg/g) (Mackay et al., 1986).  Although 

it seems unlikely due to the short duration of the DFRTT, it is possible some of the toluene may 

have been biodegraded aerobically.  During the DFRTT, the dissolved oxygen concentration 

dropped from 3.5 mg/L to 1.0 mg/L which may be the result of aerobic biodegradation; however, 

as acetate was not readily biodegraded during a longer DFTT (section C.2), it is unlikely toluene 
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would be degraded during this short tracer test.  The decrease in dissolved oxygen concentrations 

is then attributed to variability in the aquifer and instrumentation. 

Due to the nature of the materials used in the construction of the dipole apparatus, some sorption 

of toluene was expected to occur with the pump tubing, the extraction and injection lines and the 

packer rubber.  This sorption was not visible in the toluene BTC.  As a DFRTT with toluene as a 

sorptive tracer would not receive regulatory approval, a search for a suitable organic sorbing 

tracer is underway.  Once a potential tracer has been found, an additional dipole apparatus will 

be constructed with the use of less sorptive materials.   

In selecting the flow rate for the DFRTT at 540 mL/min, it was assumed the flow rate was low 

enough not to have an effect on the shape of the BTC; however it is possible the flow rate may 

not have been low enough to allow enough contact time between the toluene tracer and the 

sorptive sites in the aquifer.  In a column experiment, Weigand and Totsche (1998) found 

sorption of dissolved organic matter was affected by flow rate.  At higher flow rates  

(1.87 mL/min), the reduced contact time between the dissolved organic matter and the soil 

reduced the amount of sorption and changed the shape of the BTC obtained at the lower flow 

rate (0.95 mL/min). 
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Figure C.1.  Tracer BTCs (a) and CMCs (b) for DFRTT 3-3.2-C completed with acetate as a 
biodegrading tracer. 
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Figure C.2.  Tracer BTCs for DFRTT 3-3.8-C completed with toluene as a sorbing tracer. 
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