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Abstract

Event history data arise in studies where a collection of individuals, each experi-
encing certain events or moving among a finite number of states, is followed over a
period of time. The data consist of the number, time, type and sequence of events
experienced by individuals, although the data are often incompletely observed. One
example of such data comes from classical survival analysis, where individuals move
from one state to the other, such as from alive to dead, or from healthy to diseased.
The general event history data may contain information on events of multiple types
or repeated occurrences of the same event (recurrent events).

The purpose of this thesis is to present methods using piecewise constant rate,
intensity or hazard functions for event history data when events are interval-censored.
These methods do not rely too heavily on parametric assumptions, and they are
easier to implement than the nonparametric methods. In particular, we discuss the
methods using piecewise constant rate, intensity or hazard functions for two types
of event history data; one is interval-grouped recurrent events, the other is current
status data and doubly-censored data.

Interval-grouped recurrent event data arise in longitudinal studies where sub-
Jjects repeatedly experience a specific event and the events are observed only in
the form of counts for intervals which can vary across subjects. We present two
approaches for estimating the mean and rate functions of the recurrent event pro-
cesses. One is mixed Poisson process estimation. Another is a robust method that
requires only specification of the mean structure and covariance structure among

recurrent event counts. Piecewise constant rate functions are incorporated in both
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approaches. The two approaches are compared in a simulation study and in an
example involving superficial bladder tumors in humans.

In many studies, interest focuses on the time between two successive events,
the initiating event and the subsequent event. Current status data arise when the
time of the initiating event is observed, but the only information for the subsequent
event is whether it has occurred sometime between the initiating event and a single
subsequent monitoring time. Doubly-censored data refer to data where both events
are not observed directly, but are both interval-censored, or the initiating event is
interval-censored and the subsequent event is right censored. We discuss methods
with piecewise constant parametrization to estimate the survival function of the
time between the two events for current status data and doubly-censored data.
Different regression models are also developed. Simulation results show that our
methods are robust to model misspecification. These methods are also applied to
a data set from an AIDS study.

Finally, we explore the issue of getting smoother estimates of intensity, rate
or hazard functions. A penalized likelihood approach is applied to the piecewise
constant models. It is shown in a simulation study that this approach provides
satisfactory estimates of the intensity, rate or hazard functions when events are

interval-censored.
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Chapter 1

Introduction

1.1 Event History Data

Event history data arise in studies where a collection of individuals, each experi-
encing certain events or moving among a finite number of states, is followed over
a period. The data consist of the number, time, type and sequence of events (i.e.,
changes of states) experienced by individuals. This type of data is quite common
in areas such as medicine, reliability, manufacturing, sociology, and demography.
Some examples are: in clinical trials, the study of multi-type recurrent skin lesions
(Abu-Libdeh et al., 1990); in animal carcinogenicity experiments, the recurrence of
tumors on rats (Lawless, 1987b); in the study of acquired immunodeficiency syn-
drome (AIDS), the estimation of the incubation period of AIDS (Bacchetti, 1990;
Bacchetti and Jewell, 1991; Frydman, 1995); in manufacturing, the estimation of the
rate of automobile warranty claims (Kalbfleisch et al., 1991; Lawless and Nadeau,
1995).
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The study of event history data is a fairly broad area (e.g., Andersen et al.,
1993). A well-known sub-field of this area is classical survival analysis, which
involves individuals moving from one state to the other, such as from alive to dead,
or from healthy to diseased. This thesis discusses more complicated event history
data which may contain events of several types or recurrent events. We deal with
so-called incomplete data. In particular, our main objective is to provide methods
for situations where events are interval-censored, i.e., where the events are known
only to lie in certain time intervals. Examples illustrating such data are given

below.

1.1.1 Incidence of Nausea

The nausea data set, described by Thall and Lachin (1988), was from the Na-
tional Cooperative Gallstone Study (NCGS). The NCGS was a multicenter, double-
masked, placebo-controlled clinical trial. Patients with cholesterol gallstones were
randomly assigned to one of the three groups: high-dose chenodiol, low-dose chen-
odiol or placebo. Patients were scheduled to visit their clinical center at successive
follow-up dates and to report the number of episodes of nausea since their last
visit. Since patients were often early, late, or missed scheduled visits, the actual
visit times were irregular. One objective of the study was to assess the impact of
treatment on the incidence of nausea.

The data set given by Thall and Lachin (1988) consists of the successive visit-
times and the counts of episodes of nausea in each successive time interval during

the first year of follow-up. The patients involved had floating gallstones, and were
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either in the high-dose chenodiol or in placebo groups. In this example, each patient
could experience more than one occurrence of the same type of event. Moreover,
the exact occurrence times of nausea were unknown; instead, only the counts in

successive intervals were known.

1.1.2 Bladder Tumor Data

Byar (1980) discussed a randomized clinical trial for patients with bladder cancer;
see also Sun and Wei (1996). All patients, who had superficial bladder tumors at the
time of entering the trial, had their tumors removed and were assigned randomly
to one of three treatments: placebo pills, pyridoxine, or thiotepa. At subsequent
follow-up visits any tumors noticed were removed and the treatment was continued.
The data consist of the months from the beginning of the study until each visit, the
number of tumors present at each visit, the number of initial tumors at the time of
randomization in the trial and the diameter of the largest of these tumors, for each

patient. Once again, the exact times of tumor occurrence are not known.

1.1.3 A Rodent Tumorigenicity Experiment

Lindsey and Ryan (1993) presented a data set from a rodent tumorigenicity exper-
iment conducted by the National Center for Toxicological Research. In this study,
female mice were randomized to a control group or one of seven treatment groups,
where the treatments are the known carcinogen 2-AAF at different dose levels .
The onsets of tumors cannot be observed directly; instead, tumor presence can be

detected only at the time of death or sacrifice. Hence the data set only consisted
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of numbers of deaths and sacrifices with and without tumors for each of five tumor
types. The dose effect on tumor occurrence rate is one of the research interests. In
this example, each mouse might experience several types of events, and the times

of tumor onsets were only known to be in an interval.

1.1.4 Toronto Sexual Contact Study

The Toronto Sexual Contact Study (see Coates et al., 1990; Yan and Lawless,
1992; Sun, 1995), conducted between 1984 and 1991, was a follow-up study of men
infected with the human immunodeficiency virus(HIV). Two hundred and forty
nine healthy homosexual or bisexual men who had at least one sexual contact
with men diagnosed with AIDS were recruited into the study cohort between 1984
and 1985. Among them, 143 men were HIV positive at the time of recruitment,
and 16 men seroconverted (ie, became HIV positive) during the study. We shall
discuss only these 159 HIV positive subjects in this thesis. It was presumed that
these men contracted the virus from their homosexual partners who had AIDS.
For the subjects who were HIV positive at enrollment, the time of HIV infection
was assumed to lie in the interval [Xy;, Xg:] defined by the dates of the subject’s
first and last sexual contacts with his sexual partner (index case). For the subjects
who seroconverted during the study, the HIV infection time was considered to be
observed and equal to the seroconversion time, although the actual HIV infection
time was slightly earlier. Of the 159 subjects, only 49 were diagnosed with AIDS
during the study and the times of AIDS diagnosis were known; the other subjects
were AIDS-free by the date of last follow-up. The ages of subjects at the time of
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enrollment were recorded as a covariate.

In these examples, each subject can experience more than one occurrence of the
same type of event, or each subject can experience several types of events. More-
over, the exact times at which the events occur may not be observed; that is, the
data may be under some kind of interval-censoring, specified more precisely in Sec-
tion 1.4. The purpose of this thesis is to develop relatively simple and appropriate
methods for such event history data. We will mainly focus on two kinds of incom-
plete event history data; one is interval-grouped recurrent event data, such as in
the incidence of nausea example, and the other is so-called doubly-censored data
such as in the Toronto Sexual Contact Study example. We develop methodology
based on piecewise-constant intensity, hazard or rate functions which is robust and
rather easy to use. We will briefly review the literature on event history analysis in
Section 1.2, introduce the methods we propose to develop for event history data in
Section 1.3, and discuss some patterns of censoring and truncation in Section 1.4.
Finally in Section 1.5, we will specify the objectives of the thesis and give the plan

for the remaining chapters.

1.2 Review of Literature

The main objectives of event history analysis include the following:
1 (a) to estimate occurrence (incidence) rates of the events of interest;
or

1 (b) to estimate the conditional occurrence rates (intensities) of the events
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given the previous history;

2 (a) to assess covariate effects on the occurrence rates of the events;

or

2 (b) to assess covariate effects on the conditional occurrence rates of the events
given the previous history.

Methodology in classical survival analysis where there is a single event for each
subject has been discussed by many authors (e.g., Kalbfleisch and Prentice, 1980;
Lawless, 1982; Cox and Oakes, 1984). Approaches include Cox’s partial likelihood
analysis (Cox, 1972a) for the semiparametric proportional hazard models, paramet-
ric and nonparametric methods based on accelerated failure time models, and so
on. In the following we will briefly review models for more general event history
data, such as recurrent events or multiple types of events.

Let us consider a single subject. Suppose a type of event may repeatedly occur
to this subject. Let N(t) be the number of events occurred over time period (0, ],
and T} < T2 < ... be the occurrence times, where the T};’s are measured from the
same time origin for this subject. The multiple types of events can be described by
a multivariate process {IN(¢)} = {(Ni(¢),..., Nx(t))}, where N;(t) is the number
of events of type j occurred for a subject up to time £. Assume the occurrence time
sequence for the jth type of eventsis Tj; < Tjp < ....

Models for event history data include intensity-based stochastic models and
marginal models. We will discuss intensity-based stochastic models first, then
marginal models. Finally we will mention frailty models which involve random
effects.
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1.2.1 Intensity-Based Stochastic Models

Full or complete models for event occurrence can be specified in terms of event
intensity functions (Aalen, 1978; Fleming and Harrington, 1991; Andersen et al.,
1993). These specify the complete probabilistic structure of the event processes.
The conditional intensity function for a simple type of recurrent event can be in-
terpreted as the instantaneous occurrence rate of the event at time ¢, conditional

on H: which is the process history up to just before time £. That is,

At H) = Jim Pr{N(t) - N(’:‘, —h) =1H}

H; may include previous events, covariate values, and possible censoring up to time
t. In an intensity based model, A(¢; H,) is specified to be of some particular form.
Let us consider the case of recurrent events.

A modulated nonhomogeneous Poisson process model with multiplicative in-
tensity structure assumes that {N(¢)} is a Poisson process with intensity function
A(t; He) = Ao(t)g(2(t); B). Here Ao(t) is a nonnegative deterministic function, z(t)
may include the values of fixed and time dependent covariates, and g is a positive
valued smooth function.

A modulated renewal process model (Cox, 1972b) on the other hand assumes
that the intensity function is of the form A(¢; Hy) = Ao(t — tn(e-))g(2(2); B)- I 2(2)
is further assumed to be a time-independent covariate, the renewal process implies
that the intensity function can be expressed in terms of inter-event times, since
t —tn(e-) is the time since last event.

Aalen (1978); Fleming and Harrington (1991); Andersen et al. (1993) discussed
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multivariate counting processes with a multiplicative intensity assumption. Let
{N(t)} be a multivariate counting process, where IN(¢) = (Ny(¢),. .., Ni(t}). The

intensity function for the jth component is defined as

A;(t; Hy) = lim Pril;() - Nf}ft —h) = {H}

The multiplicative intensity assumption states that \;(¢; H:) = «;(¢; Z(¢))Y;(¢8),
where a;(t; Z(t)) is a nonnegative function depending on parameters and covariate
values, and Y; is a predictable function, which means the value of Y;(t) is fixed
Jjust before ¢; also assume Y; does not involve parameters. Usually Y;(£) contains
information about whether or not the subject is at risk for the jth event occurrence.

So-called multi-state models are used to describe situations where events for
individuals correspond to changes of their “state” in life. A continuous time finite
state Markov model (e.g., Ross, 1983; Andersen et al., 1993) requires that for each
individual, transitions between states follows a Markov process; i.e., the conditional
probability of transition from one state to another depends only on the current
time and state occupied, not on the previous process history. Let X (¢) be the state
occupied at time ¢ by a given subject. The Markov process {X(¢)} satisfies, for

arbitrary times 0 < s < ¢,

Pr{X(t) = j|X(s) =1, X(r),0 < r < s} = Pr{X(t) = j| X (s) =1}



INTRODUCTION 9

The transition intensity of moving from State ¢ to State j at time ¢ is defined as
Qij(t) = flil—% PT{X(t) = ][X(t - h) = i}/h.

Definitions of the transition intensities may more generally include covariates. Con-
tinuous time Markov models have been widely applied to event history data (e.g.,
Andersen et al., 1993).

A semi-Markov process model (e.g., Ross, 1983; Andersen et al., 1993) requires
that the conditicnal probability of a transition from one state to another at time
t depends only on the current state occupied and the time since that state was

entered. They are also widely used in some areas.

1.2.2 Marginal Models

Conditional or intensity-based models focus on the distribution of a process variable
y. at time ¢, conditioned on the process history H; up to . In contrast, marginal
models focus on the distributions f(y¢|z;), where y; is a response variable associated
with the process at time ¢, and z is a covariate vector at time ¢. More generally one
can consider responses (and covariates) associated with time intervals, for example
the number of events in an interval, or outcomes at two or more specified points of
time. Often the first two moments of the y;s, that is , the mean u, = E(y:|2:) and
covariance matrix Var(y.|z) conditional on covariates, are modeled (e.g., Thall,
1988; Thall and Vail, 1990; Lawless and Nadeau, 1995). Another approach is to
model the marginal hazard function of specific event times (e.g., Wei et al., 1989;

Liang et al., 1993; Lin, 1994). For a counting process, where N(t) is the number
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of events occurred up to time £ and 2(¢) is an “external” covariate process that
is not influenced by the event process {N ()}, the mean function of the counting
process is the expected number of events in the corresponding time interval, that is,
u(t|z(t)) = E{N(t)|z(s), s < t}. The rate function p(t|z(%)) is defined as p(t|z(t)) =
dp(tl(2))/dt.

Ware et al. (1988) discussed the distinction between marginal models and
conditional models in a multi-state framework related to a study about asthma

symptoms. Lawless (1995) discussed marginal and conditional models for recurrent

events.

1.2.3 Frailty Models

Observed covariates are often used to explain or model heterogeneity in event oc-
currences across different individuals. Another characteristic of event history data
is the existence of unobserved individual heterogeneity, or inter-individual varia-
tion not explained by the observed covariates. This individual-level heterogeneity
is often termed frailty in event history analysis. The sources of such heterogeneity
include biological differences, unobserved or unrecorded environmental conditions,
unobserved covariates, covariates measured subject to error, and so on. In the
multivariate case, the latent variable or variables induce both correlation among
the counts and extra-Poisson variation. A statistical model which includes random
effects representing frailties is often called a frailty model in event history analysis.
Usually the frailties are assumed to be time-constant, independent of covariates,

and to act multiplicatively on the baseline intensity.
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Frailty models have received considerable attention in the literature. They have
been used to deal with the correlation among recurrent event times experienced by
the same subject, or the association among event times in a subgroup of subjects,
for example, siblings, or husbands and wives (Klein, 1992). Pickles and Crouchley
(1994) gave a review of frailty models in survival and event history data. Aalen
(1994) showed different ways to model frailty in survival analysis. Clayton (1994)
discussed different methods for the analysis of recurrent event data and showed that
frailty models can be seen as instances of generalized linear mixed models. Ander-
sen et al. (1993) presented frailty model construction and maximum likelihood
estimation for counting processes. Lawless (1987b) discussed frailty for Poisson
models, and Aalen and Husebye (1991) and Follmann and Goldberg (1988) for
renewal models.

Ignoring frailty effects often results in biased estimates of covariate effects, or
biased estimates of risk of failure. Follmann and Goldberg (1988) gave an example
where the ignorance of frailty resulted in a spurious decreasing hazard rate for

observed failure times.

1.3 Owur methods for event history data

The basic idea of our methods is to use a so called weakly parametric form, in par-
ticular, a piecewise constant form, for baseline intensity, rate or hazard functions.
That is, there is a pre-specified sequence of constants 0 = ap < @; < < a, < 00,
such that a baseline event intensity (or rate, or hazard) Ao(t) = px for t € Ax =

(az-1, ax). Using a weakly parametric form for a baseline intensity avoids strong
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parametric assumptions and gives a reasonable approximation to the true base-
line intensity function. Moreover, weakly parametric models avoid many problems
associated with non-parametric methods for incomplete event history data.
Piecewise constant parametrization has been applied to the study of event his-
tory data by many authors; we mention a few related to our work. Lindsey and
Ryan (1993) developed a three-state illness-death model using piecewise constant
baseline transition intensity. Schluchter and Jackson (1989) considered a piece-
wise constant hazard model for right-censored survival data when covariates are
categorical and partially observed. Carstensen (1996) discussed fitting of regres-
sion models with piecewise constant hazards to interval censored survival data, and
implemented the models in standard statistical software. Kim (1997) discussed
application of the EM algorithm to find maximum likelihood estimates for the pa-
rameters in a piecewise constant hazard model for interval-censored survival data.
Hu and Lawless (1996) used piecewise constant models for recurrent events.
Under the piecewise constant intensity assumption, the estimated intensities
may vary substantially between adjacent intervals when the number of pieces is
large. A smoothed estimate of intensities can be obtained by maximizing the pe-

nalized log-likelihood function

log(L) — (1/2)¢J(p), (20,

where L is the likelihood function based on the data, J measures the roughness
of the baseline intensity function, and { is a tuning constant. Penalized likelihood

balances smoothness of the intensity function against the fit to the data. Green and
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Silverman (1994) gave an overview of the roughness penalty approach (including
penalized likelihood) to a wide range of smoothing problems. Examples of appli-
cation of penalized likelihood approach in event history analysis include Bacchetti
(1990), and Bacchetti and Jewell (1991), who discussed estimation of the incubation
period of AIDS using penalized likelihood; and Fusaro et al. (1996), who discussed

maximum penalized likelthood estimation of hazard functions.

1.4 Patterns of Censoring and Truncation

It is necessary to consider how the data on events for an individual are observed in
order to provide valid inference. Since we have to stop observation at some time
T, or we may not start observation from the time origin of the event process, or
we may not observe the event process continuously, some information about events
may be missed. This creates “incomplete” data. Censoring and truncation are
common ways to create “incomplete” data on events.

There is a considerable amount of discussion on censoring and truncation pat-
terns in the literature (e.g., Aalen and Husebye, 1991; Andersen et al., 1993). In
the following we briefly discuss some patterns of censoring and truncation in event
history data. These patterns are: right censoring, left censoring, interval censoring,
right truncation, and left truncation.

If we stop observing the event process of an individual at time 77, we say that
the event process is right-censored. If 7; is fixed in advance, or a random variable
independent of the event process, or a random variable depending only on earlier

observations of the event process, we say that 7; is a stopping time and the right-



INTRODUCTION 14

censoring is non-informative. The censoring time 7, can be treated as if it is fixed.

If we start observing the event process of an individual at time V that is larger
than the time origin of the event process, we say the event process is left-censored.
If a lifetime is left-censored, we know only that the lifetime is less than the time of
starting observation. An inference based on the event process alone is valid only if
V is a stopping time. The baboon descent data, given by Andersen et al. (1993),
was an example of left censoring. Troops of baboons in Kenya sleep in the trees
and descend for foraging at some time of the day. Observers often arrive later in
the day than this descent and they can only know that descent happened before
their arrival.

Interval-censoring refers to the case that the event process of an individual is
only observed at discrete times ¢; < t; < ... over some time interval [rg,71]. In the
incidence of nausea example in Section 1.1.1, the episodes of nausea are interval-
censored.

Truncation is more generally a selection or sampling effect. With truncation,
an individual is observed over a time interval [ry,71] conditional on some event A
having occurred. If event A has not occurred, we would not observe this individual
at all or we would not include this individual in the sample. In particular, the
lifetime T} for individual ¢ is left-truncated if the condition for observing T: is
T: > V;, for some V;. For example, in the Toronto Sexual Contact Study, the
AIDS times were left-truncated since only men who had not been diagnosed with
AIDS were allowed to enter into the study. Similarly, the lifetime T; for individual

¢ is right-truncated if the condition for observing T is T; < V;, for some V;. For
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example, in a transfusion-related AIDS study, suppose an individual was infected
with HIV at time T}, developed AIDS at time T3, and the closing date of the study
was 7. Suppose also that only subjects who had AIDS by time r were entered
into the study. The incubation time X = T; — T} is then observed conditional on

X <7 —T,. Kalbfleisch and Lawless (1989) discuss this setup in detail.

1.5 Plan of the thesis

In summary, the purpose of this thesis is to present methods using piecewise con-
stant rate, intensity or hazard functions for event history data when events are
interval-censored. In particular, we discuss the methods using piecewise constant
rate, intensity or hazard functions for two types of event history data; one is interval-
grouped recurrent events, the other is current status data and doubly-censored data.

Since we may not know the distributional form of the event times before anal-
ysis, we do not want to make a strong parametric assumption on the distribution.
It is also desirable to have methods that are robust to the distributional form. The
purely nonparametric or semiparametric methods satisfy this robustness require-
ment, but they are often hard to implement and standard errors of estimators are
hard to obtain. The piecewise constant models can be considered as a compromise
between the strongly parametric models and the purely nonparametric models.
They are robust and relatively easy to implement. When the focus of our analysis
is on the regression effect or the mean function of the event process, a piecewise con-
stant model with a small number of pieces can be used; when we want to estimate

the intensity, rate or hazard functions, a model with more pieces can be used with
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smoothing. The piecewise constant models can also serve as a tool for goodness of
fit. By comparing the fit of a parametric model with the fit of a piecewise constant
model, we can see how the parametric model fits to the data.

The plan for the rest of the thesis is as follows. Chapter 2 presents methods
to estimate the mean functions for recurrent events and covariate effects based on
mixed Poisson processes and estimating equations. Both methods use a piecewise
constant intensity or rate function. These methods are compared in a simulation
study and in an example involving superficial bladder tumors in humans. Chapter 3
considers analysis of current status data and doubly-censored data using piecewise
constant hazard functions. The performance of the weakly parametric models is as-
sessed in a simulation study and in an example from HIV/AIDS studies. Chapter 4
discusses the application of penalized likelihood techniques to produce smoothed
estimates of intensity, rate or hazard functions for interval-grouped recurrent events
and doubly-censored data. It is shown in a simulation study that this approach pro-
vides satisfactory estimates of the intensity, rate or hazard functions when events
are interval-censored. Chapter 5 gives a summary for this thesis and discusses some

related areas for further research.



Chapter 2

Analysis of Interval-Grouped

Recurrent Event Data

2.1 Introduction

Studies in which individual subjects or units may experience recurrent events are
common in many areas. For situations in which the exact times of event occurrence
and covariates are observed there are well known methods of analysis based on point
or counting processes (e.g., Andersen et al., 1993; Lawless, 1995). However, Thall
(1988), Thall and Lachin (1988) and others have discussed problems where only
the numbers of events occurring in successive time intervals are known for each
subject; moreover, the time intervals may vary from subject to subject. Thall and
Lachin (1988) give an example where the recurrent events are episodes of nausea
in a clinical trial for patients with gallstones. Another example is a bladder cancer
study discussed by Byar (1980) in which superficial bladder tumors were observed

17
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and then removed at each visit to a clinic by a patient. Some authors refer to such
data as panel count data, but we shall refer to them as interval-grouped recurrent
events.

The problems may be discussed formally as follows. Let N;(t) denote the number
of events occurring for subject 7 (2 = 1,...,m) over the continuous time interval
(0,t], and let z; denote an associated p x 1 vector of covariates. For subject 1,
we observe z; and ny; = N;(b;) — Ni(b;;-;), the number of events in the interval
B;; = (bij—1,b;5],7 = 1,...,k;, where k; is the number of intervals for which subject
t is observed, and 0 = by < by < -=- < by; = 7:. The interval endpoints b;; can be
fixed or random, but they have to satisfy some conditions in order to make valid
inference. These conditions are discussed in the next section. Our objective is to
analyze the event occurrence processes, conditional on the z;’s.

Methods which do not rely too heavily on parametric assumptions or the precise
nature of the event processes are frequently useful. Lawless and Nadeau (1995) have
presented methodology for analyzing mean and rate functions, defined respectively
by '

Ai(8) = B{N:(t)}, Ai(t) = A(t). (2.1)

They consider multiplicative specifications such as the log linear model where

M(£) = do(t) exp(218), (2.2)

where 3 is a p x 1 regression parameter and Ao(t) is an arbitrary baseline rate

function. Their methods assume only the validity of (2.1) and (2.2), and not that
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the recurrent events follow any specific type of process. However, they require that
event times be observed.

Thall and Lachin (1988), Sun and Kalbfleisch (1993) and Sun and Kalbfleisch
(1995) described nonparametric methods for estimating and comparing mean and
rate functions in the case of interval-grouped data. However, their methods do
not deal with general covariates and confidence interval estimation is problematic.
Thall (1988) considered a parametric mixed Poisson model which deals with co-
variates. He adopted an intensity function with a form of ezp( f?jﬁ(l) + XTpt),
where f;; is a vector of known functions of time (no parameters are involved), and
X ; is a vector of baseline covariates. He also approximated the expected count for
a given observation interval by the product of the interval length and the intensity
function value at the midpoint of the interval. Thall and Vail (1990) discussed a
generalized estimating equation approach for longitudinal count data. They as-
sumed that each expected count yu;; depended on covariates X;; and a vector of
known functions of time f(7;;) through the form of g(u;;) = f(r;)TBM + X ?jﬁ(z),
while the covariance matrix V for counts (ni1,---,ni;) was modelled parametri-
cally, involving 8™, B® and some exira parameters. Staniswalis et al. (1997)
extend Thall’s (1988) approach by allowing Aq(%) to be nonparametric and employ-
ing a smoothing technique for its estimation. Sun and Matthews (1997) and Sun
and Wei (1996) considered semiparametric estimation of regression parameters but
not baseline rate functions.

The purpose of this chapter is to present methodology based on (2.1) and (2.2)

for the general situation. We avoid strong parametric assumptions about Ag(%) and
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the need for complicated smoothing methods by using a piecewise constant form.
This yields a different mean structure than those in Thall (1988) and Thall and
Vail (1990). It is of course a theme of this thesis that the use of piecewise-constant
intensity, rate and hazard functions avoids many problems associated with non-
and semi-parametric methods for incomplete survival and event history data, while
giving a high degree of robustness. Extensions to consider other forms than (2.2)
for the regression specification are straightforward. We also avoid the Poisson pro-
cess assumptions made by several authors by considering both mixed Poisson pro-
cesses and robust methods. Finally, we investigate the robustness of the piecewise-
constant formulation when the true underlying intensity is actually smooth, and
compare two methods of estimating variance function parameters.

The remainder of this chapter is as follows. In Section 2.2 we develop meth-
ods for mixed Poisson processes with piecewise constant baseline rate functions.
Although a specific process is assumed in this section, it is one which has been
frequently found to be plausible. Section 2.3 presents robust methods that do not
require that the event processes be mixed Poisson (or anything else). Section 2.4
presents a simulation study that assesses the performance and robustness of the
methods of Section 2.2 and Section 2.3. Section 2.5 considers an example, and
Section 2.6 concludes with some extensions of the methodology and suggestions for

further work.
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2.2 Mixed Poisson process estimation

We assume in this section that {N;(t),t > 0}, ¢ =1,...,m, are independent mixed
Poisson processes (Lawless, 1987b; Thall, 1988). That is, conditional on «a; and
covariate z;, {N;(t),t > 0} is a nonhomogeneous Poisson process with intensity
function

At; @, 2:) = axo(t) exp(2iB), (2:3)

where the o;’s are independent and identically distributed unobserved “frailty”
variables with mean one and variance v; we will assume in this section that the a;’s
follow a Gamma distribution. We take Ag(t) to be a piecewise constant baseline rate
function, i.e., Ag() = pi for ¢t € Ar = (@k-1,ax}, where0 =gy < a; <--- < a, <
is a pre-specified sequence of constants. Typically a model with r in the range of
4 — 10 proves satisfactory. This range of r values gives flexible models with a fairly
low-dimensional parameter. Qur experience with the example in Section 5 and
simulations has indicated that estimates of 3, Ag(t), the frailty variance parameter
and their standard errors change very little once r is increased beyond 8 or 10. The

mean function for this model is
Ai(t) = Ao(t) exp(ziB), (2.4)

where Ao(t) = X7, pruw(t), and ux(f) = max(0, min(ag,t) — ar—;) is the length of
the intersection of the interval (0, ] with the interval Ax. Similarly, if we define y;; =
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E{N(bi;) — N(b:j—1)}, then p;; = po;exp(ziB), where pos; = iz pruc(i, j), and
uk(i, J) = max(O, min(ak, b;,') - ma.x(ak_l, b,:j_l))

is the length of the intersection of interval B;; with interval A;.
To provide valid statistical analysis, we need to make assumptions concerning
the relationship of the observation times and the event processes. The conditions

derived by Gruger et al. (1991) are modified to meet our need here. We first define
H-':J. = {bﬂ’ Ni1,y---, bij’ nij}s Ht',j— = {bil) MNi1y-- -y bfj}y
and note that

ki k;
P(Hu |, z:) = [] P(nij|Hij-, o, z:) [T P(bii| Hijor, i, 23)
j=1 i=1

= LiLa. (2.5)

We also let g{asv) = ar* ‘ezp(—a:/v)/{v*/*T(1/v)} be the density function
of the Gamma distribution with mean 1 and variance v. Then the term L; =
Jo? Liag(ou;v)dey is the likelihood based on the data for the zth subject if the fol-

lowing two conditions are satisfied:

1. The probability of having n;; occurrences of the event in the interval Bjj,

given the history H; ;-, is independent of the previous observation times, i.e.,

P(ni|H; j—, 0, 2:) = P(nijlna, - . ., ne i, o, 25).
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2. P(b;j|H; j-1, i, z;) is independent of a; and does not contain parameters of

interest, i.e., (p,3,v), where p = (p1,..-,p+)-

These conditions do not require that the b;;’s be independent of the event processes.
Instead, a conditional independence as in 1. is required; the current observation
time b;; can depend on previous observation times by, . - ., b; j—1 and previous counts
M1, ..., N4,j—1 but not on the “current” count n;;. Thus, if a patient could anticipate
that there was likely to be a large number of event occurrences during the current
interval and went to the clinic for an early examination, conditions above would no
longer hold.

If only the first condition is satisfied, L; is a partial likelihood based on the ith
subject, and inferences about the parameters may still be based upon it. However,
we shall assume both conditions are satisfied and make inference about (p,3,v)
based on the likelihood function L = Iz, L:.

Since

L:= /om H exp(—aupi;)(cipi;)™ g(au; v)das, (2.6)

Jj=1

L can be simplified as

m k; nij I‘(n,-, + l/v)vﬂi.
L < H{H Hij T(L/0)(L + vje ot il 2.7

=1 j=1

where y; = Z:f":l pi; and n; = Zf;l n;;. Therefore, the log-likelihood function is

Up,B,v) = DY nilogu:; + nilogv + log D(ns. + 1/v)

i=l j

—logF(1/v) — (ni. + 1/v) log(1 + vu:), (2.8)
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The likelihood score functions for (p,3,v) are

ol m ki Ni; — Hij )U i,' z!
ZE( Hij) k(”J)exp( B) _

3_P; i=1 j=1 Fii
m . — o Yul(i !
Zv(n,. #x.)lul(:;)e"l’(zﬁ), k=1,...,7 (2.9)
=1 :
al Z Zia(ni, — i)
al &, n— -2 .
5 = ;{m-{-v log(1+vp:)}
t=1 s=1

The likelihood equations 8[/8p, = 0, 01/38, = 0, dl/8v = 0 can be solved by
Newton’s method or Fisher’s scoring method. An alternative that is slower to
converge but which avoids occasional divergence problems is the EM algorithm
(Dempster et al., 1977), which we now outline. Let n;j; be the (unobserved) number
of events in the interval A N B;; and consider the a;’s as data as well. Denote
Hije = prur(?, J) exp(2i8). Then the full log-likelihood based on the a;’s and n;j’s

is lrat(p, B,v) = lputr1(v) + Lpunt 2(P, B), where

!
lana(v) = —mllogl(l/v) + =]+ v 'logas — o], (2.12)
m k r m ’
lat2(P,B) = YD murlog e — Y cppi.- (2.13)
i=1 j=1 k=1 =1

Denote 8 = (pT,8%,v)T. Given a current estimate 8, the E-step computes

lE,l(v) = E(lfu".l(v)lnijvj =1,... 1k1'ai =1,...,m, 0(0))1
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lE,z(P,ﬁ) = E(lfuII,Z(prﬁ)‘nt’j:j = 1: R kiai = la ---, M, 6(0))'

This gives (2.12) and (2.13) with the n;;’s, a;'s and log a;’s replaced with estimates

k'S, a;'s and Iojgh;x;’s, which are defined as follows:

gk = ngp (i, 5)/{ o w3, 5)}
=1

& = Cu/Ci, and loga; = ¥(Cy) — logCiy, where Cyq = ni + 1/v©@, Ciy =
4 +1/9© and 9 (¢) = dlog I'(t)/dt. This yields

lg1(v) = —mlog['(1/v) +logv/v] + Zv"lﬂo?m — o], (2-14)
lg2(p,B) =323 5 Ak log(pie) — 3 @ipsi.. (2.15)

The M-step maximizes (2.14) and (2.15) in v and (p,B) respectively. We iter-
ate between the E-step and the M-step until convergence is achieved. We claim
that convergence is obtained if two consecutive values of the parameters and log-
likelihood differ very little. In detail, we stop iterations if

162 ~ 67

ISk%raicﬁl lel(co)l + 10_5' s 6,

and
[1(6™) — 1(6)] <
(10| +10-5 —

2

where €, and ¢, are small positive numbers. We let €; = €, = 10™* in the procedures

here.
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The EM algorithm, like other general optimization algorithms, is not guaranteed
to converge, and if it does, may not give the global maximum. See Dempster
et al. (1977) and Wu (1983) for discussions. However, we can choose different
starting values to see if they produce the same parameter estimates. If this is the
case, we have some confidence that we have obtained the maximum. The speed
of convergence for the EM algorithm depends on the shape of the likelihood, the
number of parameters, starting values, the accuracy desired and other factors. With
the convergence criteria above we found that very little computer time was needed
to compute estimates. For a sample of size 85 and with recurrent counts varying
from 1 to 38 it typically took about 150 — 200 iterations to compute the estimates
and their covariance matrix in a mixed Poisson process model with up to 10 pieces.
Computation was programmed in FORTRAN.

When the maximum likelihcod estimates (iJ,B,'&) are obtained, inferences can
be based on the asymptotic distributions of likelihood ratio statistics or the asymp-
totic distributions of Wald statistics. The latter require second derivatives of the
log likelihood (e.g., Lawless, 1987b), which are easily obtained. By noting that
E(—8%1/3vdp) = 0 and E(—8%1/8v3B) = 0 we see that (p,3) and © are asymp-

totically independent.

2.3 Robust estimation

The methods in the previous section assume that the event processes are mixed
Poisson. In this section, we present robust methods that do not need the Poisson

assumption. These methods model the mean and the covariance matrix of the
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count responses within a subject. A group of generalized estimating equations is
constructed and solved to get the estimates of the parameters. The assumptions
about the observation process made in Section 2.2 are retained.

We assume pu;; = E(nij) is given by
Hij = po,ij exp(zi8), (2.16)

where po:; = Yr_; prur(t,j) as defined in the previous section. The ‘working’

covariance matrix for n; = (ng, -~ -, 7, )T will have the following form:
V= cov(n:) = Ci +oppef, (2.17)

where C; = diag(u:) and p; = (g, -~ pix;)T- This is the covariance matrix for
the mixed Poisson model of Section 2.2, but the methods below are robust to the
form of V';. Other forms that are plausible for specific applications can equally well
be used.

Letting D; = dp;/8(pT,BT), we define the generalized estimating equations for
p and B as follows (c.f. McCullagh and Nelder 1989, Chap.9):

U, =Y DIvs; =0, (2.18)

=1

where S; = n; — ;. These give two subsets of equations:

Y Uns
U, = A (2.19)

m
i=1 U12i



CHAPTER 2. INTERVAL-GROUPED RECURRENT EVENT 28

where
Use = exp(zi8) (; o=ty j) - Litely, +)) (220)
Ui = ), (2.21)
where w(3,7) = (u1(3,7), - - -, % (3, 7))7, and u(i, +) = T, u(i, 7).

One way to estimate p and 3 is to adopt working covariance matrices V'; based
on a specified value of v. In particular, one could use the value v = 0, in which
case V; is the covariance matrix from a Poisson process for the events. The equa-
tions (2.18) are readily solved, for example by Newton’s method, to give estimates
p and B. It follows from standard results for estimating equations (e.g., White,
1982; Breslow, 1990) that under mild conditions on the event processes and the
observational scheme, the estimators p and B and other estimators below are con-
sistent and asymptotically normally distributed as m -+ co. The types of conditions
needed are discussed in references such as Kaufmann (1987) and McCullagh and
Nelder (1989). In particular, the observation scheme should ensure that the eigen-
values of the information matrix analogue mGy, 11 in (2.26) increase without limit
as m — oo. Inferences about p or B can be based on the asymptotic normal distri-
bution for m!/? ((b - )T, (B - ﬁ)T)T, whose covariance matrix may be estimated
consistently by (2.30).

Alternatively, we may choose to use working covariance matrices which include

one or more unknown dispersion parameters v. To estimate v in (2.17), we propose



CHAPTER 2. INTERVAL-GROUPED RECURRENT EVENT 29

to use the following moment equation:

U, = iw;{(n;. —w ) —a?} =0, (2.22)

=1

where ¢? = var(n;) = p; + vp?, and the w; are selected weights. We consider the
choices (a) w; = 1/a?, (b) w; = 1, (c) w; = p?/o}. They correspond to weights
used in estimating equations for mixed Poisson regression models (Dean, 1991).

The estimates p, B and ¥ can be obtained by iterating between (2.20), (2.21)
and (2.22). We first update (p,3) by a modified Fisher scoring approach:

T T = - -
(b7, 80TYT = (p07, 3OT)" L (3> DTV (p®, 30, ) D;}

=1
{3 DIV (p,89,v9)5:(p, 3O}, (2.23)
=1
then v is updated by
@ =@ _ V2 Ua(p®, B1), (@), (2.24)

dv 'pn,BY yo

We iterate between the two steps until (p,3,v) converges.
If the Vis are correct, p, B and ¥ are comsistent and asymptotically normal
as m — oo, under an extension of conditions mentioned above. The asymptotic

T can be consistently estimated

. . - =T -
covariance matrix of m/3(p% — pT,B8" — BT, 5 —v)
by

G:Xp,B,5)HnGT(p,B,7), (2.25)
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where

G, G,
Gm — m,11 12 , (2.26)

Gm,21 Gm,22

with

Gmu = m 'Y DIV'D;=mE{-0U/0(p",8%)},

Gm,lz = 0= m"lE{—aUl/av,}

Gm,Zl = m—l Zwi(l + zvl‘i.)_—;“;lr_ = m_lE{—aUZ/a(prv ﬁr)}w
=1 a(p iﬂ )
Cmz2 = m™' Y wipl =m 1 E{-38U,/dv},
=1
H, = mlcow(U), (2.27)
and H,, is estimated by
H.=| L1 o 12 , (2.28)
Hm,21 Hm,22
with
H.,. = m') (DiV;'S:STV;'Dy),
Hpnw = m*Y DIV Saw(ni — pi)? — o2,
o~ —~T
Hm,zl = Hm,j_z:
Hpzo = m™t > wi(n: — pi)? — o2 (229)

These matrices are evaluated at (5,3, 7).
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When the Vs are correct, the asymptotic covariance matrix of mY/ 3pT —
pT,BT — BT)T is more efficiently estimated by G;:u(ﬁ,ﬁ,6)ﬁ'm,11G;ﬁ1(b,B,ﬁ),
where ﬁm,u = Hm'u(f),,[:},ﬁ), and H,, is partitioned in the same fashion as G,,.
Since Hp,y; = Gpn; when the Vs are correct, the variance estimate reduces
to G;:n(ﬁ,ﬁ,ii). When the Vs are incorrect, p and B are still consistent and
asymptotically normal. The asymptotic covariance matrix can then be consistently

estimated by (e.g., Liang and Zeger, 1986)
G;fll(bvﬁ)ﬁ)ﬁmvuc;;’ﬁl(ﬁr ﬁ71-’)7 (2'30)

which is the submatrix of (2.25) pertaining to (5,8). To guard against misspecifi-
cation of V7, this estimate is recommended for general use.

Confidence intervals or tests about parameters or functions thereof can be based
on the approximate normality of (bT,ﬁT, 7)T when samples are sufficiently large.
In the next section we provide some simulation results to assess the performance

of these methods.

2.4 Simulation study

A simulation study was carried out to assess the performance of the methods of Sec-
tion 2.2 and 2.3. In particular, we wanted to (i) see how well the piecewise-constant
rate functions allows us to estimate a continuous, smooth mean function, (ii) how
well the estimating equation (GEE) methods of Section 2.3 performed compared

to maximum likelihood methods, and (iii) how well normal approximations and co-
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variance estimates used to obtain confidence intervals perform. With this in mind
we generated interval-grouped recurrent event data from a mixed Poisson process

with a “Weibull” baseline rate function Ag(t) = v6£*~? in the following way:

1. Generate independent Gamma variables ), .. ., @, with mean 1 and variance

v

2. For given o, covariate z; = (z;,. .., z;p), regression coefficient 3, and group-
ing interval endpoints b;;’s, generate independent Poisson variables n;; with

means
pij = asexp(z{B){Aa(b;;) — Ao(bij-1)}, 7=1,....k; i=1,...,m

where Aq(t) = £,

We selected sample size and the values of parameters and covariates to reflect
situations commonly encountered in practice. However, only the case of 1 covariate
(p=1) was considered. The simulation settings were as follows:

(1) m=90;

(2) One third of the z’s were each of —1,0,1;

(3) Sequences of observation times b;;’s are preset and do not depend on covari-
ate values. For the thirty subjects with z; = —1, we let the first 6 subjects be
observed at times ¢ = 1,4,7,12,18; the next 15 subjects are observed at ¢ =
2,5,9,14,21,28, 35; thelast 9 subjects are observed at t = 1, 3, 8, 14, 20, 26, 32, 38, 44,
50. We set the sequences of observation times among subjects with covariate values

0 or 1 the same way.
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(4) Eight different settings of the other parameters were considered. They are:

(a) y=0.8,§=05,=15,v=0.5; (b) y=10.8,6 =05,8=1.5,v =0.2;

(¢)y=08,=10,=15,v=0.5;(d) y=10.8,0 =10, =1.5,v = 0.2;

(e)y=0.8,6=0.5,8=10.375,v =0.5; (f) y=0.8,6d =0.5,8 = 0.375,v = 0.2;

(g) y=108,§ =1.0,8=0.375,v =0.5; (h) vy =10.8,§ = 1.0,8 = 0.375,v = 0.2.

These parameter values generate values of y; that range from a low of .76 to a
high of 179. For each setting the values of y; for the 9 combinations {—1,0,1} x
{18,35,50} of z; and 7; are as follows:

(2) and (b). 0.76,1.06,1.26,3.39,4.73.5.66, 15.2, 21.2, 25 .4;
(c) and (d). 3.21,6.25,8.93,14.4, 28, 40, 64.5, 125, 179;

(e) and (f). 2.33,3.25,3.39,3.89,4.73,4.94, 5.66, 6.89, 8.23;
(g) and (h). 9.90,14.4,19.2,21.0,27.5, 28, 40, 40.7, 58.2.

For each setting we generated 100 samples. The parameters 3, v, and Aq(£),
were estimated by four approaches: (I) maximum likelihood of Section 2 based on
a mixed Poisson process (gamma-Poisson) with a piecewise-constant rate function,
(II) the GEE approach of Section 3 with a piecewise-constant rate function, (III)
maximum likelihood based on a mixed Poisson process with a Weibull rate function,
(IV) the GEE approach with a Weibull rate function. The cut points a; used in (I)
and (IT) were 0, 5, 10,15, 20, 25, 30,40, 50, so there were 8 pieces in the rate function.
For methods II and IV two estimating equations for v were considered: (2.22) with
(1) wi = pf/of or (2) w; = 1/o?. This gave us a chance to compare estimating

functions for variance parameters, as in Dean (1991).
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There is very little difference in the averages across the estimation methods, and
all indicate little bias. Tables 2.1-2.4 show average values of Ag(25), Ao(48), B and %
for settings (a), (b), (g) and (h); results for the other settings were similar. Here “A”
denotes either maximum likelihood or robust estimates, as indicated. The adoption
of a piecewise constant baseline rate function also gives a close approximation to
the maximum likelihood estimate based on the correct smooth model, as far as
estimation of the mean function Aq(¢) is concerned. For example, Figure 2.1 shows
the average of estimates Ao(t) based on the piecewise constant and smooth rate
functions for case (a), along with the true mean function. The piecewise-constant
model differs only in the time interval (0, 5); this is due to the high true rate near
t = 0, and could be alleviated by splitting the interval (0,5) into 2 or 3 pieces.

Tables 2.1-2.4 also present the empirical standard errors of Ao(25), Ao(48), B,
9, and their average standard errors based on asymptotic theory estimates. For
maximum likelihood approaches, standard errors are computed from the inverse
of the expected information matrix; for the GEE approaches, standard errors are
computed from the ‘sandwich’ type variance estimates (2.25). The approaches
using piecewise-constant rates (I,II-1,II-2) and approaches using the true Weibull
rate function (Approach ITI, IV-1, IV-2) have little difference in the averages of B,
U, se(ﬁ) and se(?); they also produce similar estimates for Ag(t) when £ is not too
small. Approaches III, IV-1,IV-2 are only slightly more efficient for Ao(%).

The averages of the standard errors based on asymptotic theory are quite close
to the empirical standard errors of the estimates. There is also no difference in the

performance of the two methods of estimation of the variance parameter v (methods
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1 and 2 in the tables); they correspond to weight functions (c) and (a), respectively,
following (2.22). We note for interest that weight function (b) did not agree quite
as well.

We also examined the empirical coverage of 90% and 95% confidence intervals
for Ao(25), Ao(48), B and v based on normal approximations. Bearing in mind the
small number of simulation runs (100), there were no major discrepancies between
actual and nominal coverage for Ag(25), Ag(48) and B. There were discrepancies
for v when the GEE approach with variance estimate (2.25) was used. Coverage of
confidence intervals for v based on the GEE approach are improved slightly by using
normal approximations for log(4) rather than ¥. Table 2.5 and 2.6 show sample
results for parameter settings (a2) and (g). However, as has been demonstrated for
the simpler but closely related case of mixed Poisson regression, confidence interval
estimation of v is problematic in many situations and deserves further study; see
Section 4 of Lawless (1987a). Tests of the null hypothesis v = 0 are also of interest,
and equally deserve further study. Ng and Cook (1997) discuss score tests developed
by them and earlier authors for the mixed Poisson process case. As far as estimation
of the regression coefficients and baseline mean function are concerned, the difficulty
of confidence interval estimation of v has little effect in most practical situations.

To summarize, the use of a piece-wise constant baseline rate function provides
excellent estimation of regression coefficients and mean functions and, for scenarios
similar to those in the simulations, confidence intervals based on normal approxima-
tions perform well. It seems likely that these properties will hold for other scenarios

in which there are moderately many subjects (say 50 or more) and where not too
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many subjects have very small expected counts. In other situations, additional

checks by simulation are recommended.

2.5 An example

The bladder cancer data (see, Byar, 1980) are described in Chapter 1. The data are
interval-censored recurrent event data. Details about how the b;;’s were determined
are not given in the references cited. We assume that they satisfy conditions 1 and
2 of Section 2.2.

In the following analysis, we consider only patients in the placebo or thiotepa
groups. There are 47 and 38 patients in the placebo group and thiotepa group,
respectively. The time in study for each patient ranged from one month to 53
months, and the number of visits for each patient ranged from one to 38. Figure 2.2
gives a scatter plot of the total number of tumors present against the time in study
for each patient. We notice that there is a fairly large number of patients with no
tumor present.

Mixed Poisson processes with piecewise-constant rates were fitted to the data.

We divided the whole study period (0,53] into 8 pieces, with the cut points
0,5.5,10.5, 15.5,20.5, 25.5, 30.5,40.5, 53.

This made the first 6 intervals of nearly equal length and the last two longer, since
there were fewer subjects at risk for the last two intervals. We define the following

variables: for the ith patient, z;; = 1, if the patient is in the thiotepa group, z; = 0,
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otherwise; z;; is the number of initial tumors present at randomization; z; is the
diameter (in centimeters) of the largest initial tumor. Table 2.7 lists the MLEs and
the standard errors based on the asymptotic distributions of the MLEs, as discussed
in Section 2.

The robust estimation procedure of Section 3 was also applied to this data
set. Table 2.7 also lists the robust estimates and their standard errors based on
the robust ‘sandwich’ type variance estimates (2.25). We used w; = y?fof in U,
(2.22).

We notice that the mixed Poisson process models and the generalized estimating
equation approach produce similar estimates for p and 3. Based on either approach,
we conclude that patients in the thiotepa group have lower rate of tumor recurrence
than patients in the placebo group, and patients with a large number of initial
tumors have higher rate of tumor recurrence if all other conditions are the same.
The estimates of v and their standard errors differ somewhat. As has been noted by
Breslow (1990) and others, the maximum likelihood estimation of v is not robust to
departures from the assumed mixed Poisson model (here, gamma-Poisson), whereas
the robust procedures are, assuming satisfactory specification of the rate function.
Consequently we prefer the robust estimate of v, and standard errors for the other
parameters that are based on it.

Residual plots based on the n;’s were constructed to check the fit of our models.

‘Anscombe’ residuals were used, defined as

3(n2® — @l*)

= , 2.31
20:/°(1 + o:)1/2 (2.31)
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where n; and j; are the observed and the estimated numbers of tumors present
for Patient 2, respectively. The justification for using e; was that the Anscombe
residual is less skewed than the Pearson residual for Poisson variables, and should
retain this property for negative binomial variables. Figure 2.3 shows the plot of e;
against the estimated number of tumors z; based on the mixed Poisson model. We
notice that all e;’s are between -1 and 2 except one value; there is no clear pattern
except the following: there is one isolated point (corresponding to patient #16)
with a large estimated number of tumors; moreover, a curve is observed at the left
bottom of the plot, which corresponds to the observations with n; = 0. Plots of e;
against covariates z; and z, were also examined. None of the plots indicates major
problems with the model. A more detailed assessment of fit based on the interval
counts for each subject also does not reveal major problems, though the sparseness
of the data makes formal tests difficult.

We also fitted models to the data after deleting observation #16. There are
some changes in the estimates of parameters and their standard errors, but the
significance level for B does not change much. Finally, in view of the large number
of subjects (38) with n; = 0, we computed the estimated frequency of patients with
n; = 0; it is 35.6 under the mixed Poisson model, and does not indicate any lack

of fit.

2.6 Concluding remarks

Models with piecewise-constant intensities, rates or hazard functions provide an

attractive approach in problems involving failure times or recurrent events when
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data are interval-censored, double-censored, or truncated in some way. In those
situations purely non- or semi-parametric methods are often difficult to implement
or to use for purposes of testing or interval estimation (e.g., Sun and Kalbfleisch,
1993, 1995; Jewell et al, 1994). In this chapter we have examined the case of
interval-grouped recurrent events in some detail.

The simulations in Section 2.4 were done under the assumption of mixed Pois-
son processes, and the robust methods performed essentially as well as maximum
likelihood. In fact, for the negative binomial model of Section 2.2, which was used
for the simulations, the maximum likelithood estimating functions (2.9) and (2.10)
for p and B are the same as the robust estimating functions from (2.20) and (2.21),
and are valid beyond mixed Poisson processes. However, variance estimation and
confidence intervals based on maximum likelihood are non-robust, and consequently
we recommend using the robust procedures if there is any doubt as to the under-
lying processes. These observations and recommendations are similar to those of
Lawless (1987a) and Breslow (1990) in the context of ordinary regression analysis
of counts.

The robust methods of Section 2.3 and the Poisson process-based methods of
Section 2.2 are both readily extended to deal with other problems. For example,
Hu and Lawless (1996) consider the estimation of rate and mean functions from
zero-truncated recurrent event data; the methods here could be adapted to the
case where the data are also interval-grouped. Similarly, discrete mixture models
such as the ZAP or ZIP models of Lambert (1992) and Heilbron (1989) can be

handled rather easily; these authors used Poisson process assumptions which are
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often best avoided because of the likelihood of overdispersion. It should be noted
that in cases involving selection or truncation, such as when only individuals with
at least one event are observed (Hu and Lawless, 1996), it is straightforward to
develop methods based on Poisson mixtures as in Section 2.2, but usually difficult
to develop methods analogous to those in Section 2.3.

In most practical situations it is satisfactory to use piecewise-constant intensities
with 410 pieces. However, where smoother rate function estimates are desired, an
alternative is to increase the number of pieces substantially and use penalized like-
lihood approach (e.g., Bacchetti, 1990; Green and Silverman, 1994). This approach
is studied in Chapter 4. Other approaches include kernel functions (Staniswalis
et al., 1997) and B-splines (Rosenberg, 1995), which give smooth rate functions.
Staniswalis et al. (1997) examine a kernel smoothing approach in a semiparametric
regression model for the applications in this chapter. They apply the generalized
profile likelihood method of Severini and Wong (1992) to get the estimates of the
baseline rate function and covariate effects. Their procedure provides desirable
estimates of the hazard function, but it is computationally intensive. Rosenberg
(1995) models the baseline hazard as a linear combination of cubic B-splines. In
principle, this approach is very similar to the piecewise constant hazard approach
because both are weakly parametric models. As the number of knots or cut-points
increases, both the spline estimates and the smoothed piecewise constant estimates
of the intensity functions would have similar values.

In our approaches, we assume the number and location of the cut-points are

pre-specified. An alternative way is to allow them to be selected based on data.
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Rosenberg (1995) proposes choosing the number and location of the knots in the
B-spline approach based on Akaike’s information criterion (Akaike, 1973). It can
also be used to choose the number and location of the cut-points in the piecewise
constant hazard models.

We have seen that our methods work well for the simulated data sets with
m = 90, one covariate and eight pieces in the piecewise constant models. In the
example of bladder cancer data, we have also'seen that our methods can handle
the case of three covariates easily with m = 85. We anticipate that a data set
with a larger sample size and a vector of 4 or 5§ covariates will not bring significant

numerical problems.
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Table 2.1: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (a) v = 0.8,
6 =0.5, =15, v=0.5, Ao(25) =4, Ap(48) = 5.543
I II-1 I1-2 IIT Iv-1 Iv-2
Aq(25) 4.007 | 4.006 | 4.007 | 4.004 | 4.003 | 4.004
se(Ao(25)) | 0.4033 { 0.3935 | 0.3939 | 0.3945 | 0.3866 | 0 .3870
e.se(Ao(25)) | 0.3826 | 0.3825 | 0.3824 | 0.3793 | 0.3790 | 0.3789
Ao(48) 5.550 | 5.549 | 5551 | 5552 | 5.551 | 5.552
se(Ao(48)) | 0.5508 | 0.5421 | 0.5427 | 0.5469 | 0.5368 | 0 .5374
e.se(Aq(48)) | 0.5269 | 0.5266 | 0.5264 { 0.5239 | 0.5235 | 0.5233
f'} 1.5043 | 1.5045 | 1.5041 | 1.5042 | 1.5045 | 1.5041
se(3) 0.1229 } 0.1202 | 0.1205 } 0.1229 | 0.1202 | 0.1204
e.se(,@) 0.1214 | 0.1202 | 0.1217 | 0.1214 { 0.1218 | 0.1217
v 0.4902 | 0.4788 | 0.4743 | 0.4899 | 0.4782 | 0.4736
se(?) 0.1068 | 0.1068 | 0.1153 | 0.1067 | 0.1067 | 0.1151
e.se(?) 0.1027 | 0.1210 ] 0.1390 | 0.1028 | 0.1209 | 0.1390
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Table 2.2: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (b) v = 0.8,
§=10.5,08=15 =02 Ag(25) =4, Ao(48) = 5.543
I II-1 I1-2 104 V-1 | Tv-=2
Ao(25) 4.002 | 4.002 | 4.003 | 3.993 | 3.993 | 3.994
se(Ao(25)) | 0.329 | 0.327 | 0.328 | 0.318 | 0.317 | 0.318
e.se(Ao(25)) | 0.3318 | 0.3322 | 0.3316 | 0.3081 | 0.3085 | 0.3079
Ao(48) 9.542 | 5.542 | 5.543 | 5.536 | 5.535 | 5.537
se(Ao(48)) | 0.445 | 0.444 | 0.444 | 0.440 | 0.439 | 0.440
e.se(Ag(48)) | 0.439 | 0.439 | 0.438 | 0.4257 | 0.426 | 0.425
B 1.5025 | 1.5026 | 1.5020 | 1.5025 | 1.5025 | 1.5020
se(B) 0.0968 | 0.0963 | 0.0966 | 0.0968 | 0.0963 | 0.0966
e.se(3) 0.0989 | 0.0989 | 0.0990 | 0.0989 | 0.0990 | 0.0991
v 0.198 | 0.195 | 0.198 | 0.198 | 0.196 | 0.198
se(?) 0.0544 | 0.0517 | 0.0611 | 0.0545 | 0.0518 | 0.0612
e.se(?) 0.0538 | 0.0606 | 0.0653 | 0.0538 | 0.0605 | 0.0652
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Table 2.3: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (g) v = 0.8,
§=10,8=0.375 v =0.5, Ag(25) = 20, Ao(48) = 38.4
I 01 | II-2 I | Iv-l | IV-2
Ao(25) 19.88 | 19.88 | 19.88 | 19.90 | 19.90 | 19.90
se(Ag(25)) | 1.56 | 1.55 | 155 | 1.53 | 1.52 | 1.52
ese(Ao(25)) | 1.65 | 1.65 | 1.65 | 1.58 | 1.58 | 1.58
Ao(48) 38.26 | 38.26 | 38.26 | 38.27 | 38.26 | 38.27
se(Ao(48)) | 2.96 | 294 | 294 | 294 | 292 | 292
ese(Ao(48)) | 3.10 | 3.10 | 3.10 | 311 | 311 | 3.11
B 0.373 | 0.373 | 0.373 | 0.373 | 0.373 | 0.373
se(B) 0.0939 | 0.0931 | 0.0931 | 0.0939 | 0.0931 | 0.0931
ese(B) |0.0816 | 0.0816 | 0.0816 | 0.0816 | 0.0816 | 0.0817
b 0.489 | 0.484 | 0.485 | 0.489 | 0.485 | 0.485

se(?) 0.0763 | 0.0839 | 0.0840 | 0.0763 | 0.0840 | 0.0841
e.se(?) 0.0700 | 0.104 | 0.104 | 0.0699 | 0.104 | 0.105
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Table 2.4: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (k) v = 0.8,
d=1.0, 8 =0.375, v = 0.2, Ao(25) = 20, Ao(48) = 38.4

i -1 | 2 | OO | IV-1 | 1v-2

Ao(25) 20.21 | 20.21 | 20.21 | 20.27 | 20.27 | 20.27
se(Ao(25)) | 1.10 | 1.08 | 1.08 | 1.05 | 1.04 | 1.04
e.se(Ag(25)) | 1.03 | 1.03 | 1.03 | 0.951 | 0.951 | 0.950
Ao(483) 38.91 | 38.91 | 38.91 | 38.89 | 38.89 | 38.89
se(Ao(48)) | 2.04 | 202 | 202 | 201 | 2000 | 2.00
e.se(Ao(48)) | 1.80 | 1.80 | 1.80 | 1.86 | 1.86 | 1.86
B 0.3701 | 0.3702 | 0.3701 | 0.3701 | 0.3702 | 0.3701
se(B) 0.0631 | 0.0620 | 0.0620 | 0.0631 | 0.0620 | 0.0620
ese(8) |0.0728 | 0.0729 | 0.0729 | 0.0728 | 0.0729 | 0.0729
D 0.200 | 0.197 | 0.197 | 0.200 | 0.197 | 0.197
se(?) 0.0352 | 0.0359 | 0.0361 | 0.0352 | 0.0359 | 0.0361
ese(d) | 0.0373 | 0.0396 | 0.0395 | 0.0372 | 0.0394 | 0.0393

I -1 | 12 I | Iv-1 | Iv-2

100(1 —c) || 9590 |95 |90 |95 90 | 95 | 90 | 95 | 90 | 95 | 90
Ao(25) || 94|91 [94 |02 (949294919592 95092
Ao(48) (|95 [91[95 (9095|9095 |91 |94 | 91|94 |91
B 93 (89 [94 |83 |94 (88 |93 |89 |94 |88 | 94 | 88

v 95 |91 [ 87 |83 |88 |87 | 95|91 |87 |83 | 88 | 87
Tog v 94 |92 |88 |84 |91 |88 |94 |92 | 88 | 84 | 89 | 88

Table 2.5: The actual coverage probabilities(x100) of (1 — «) confidence intervals
based on 100 samples for setting (a)
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Table 2.6: The actual coverage probabilities(x100) of (1 — «) confidence intervals
based on 100 samples for setting (g)

I II-1 I1-2 I Iv-1 Iv-2
100(1 — ) 9590} 95|90 | 95|90 |95 |90}95|90 95|90
Ao(25) 92 191)92]90)92|90]92]91(192|91|92|91
Aq(48) 92 1899218992189 |92!89|92|89 92|89
B 96192 (97|92 |97(92)96|91|97 92|97 |92
v 95192 |84 |77 |84 |77]96)92|85|77|85 |77
log v 98 192 |87 82|88 |82|98 92|87 |82]88|82

Table 2.7: Maximum likelihood estimates in the mixed Poisson process models
(p,B,?) and using generalized estimating equations (p,3, %)

p
intgval {0,5.5] | (5.5,10.5] | (10.5,15.5] | (15.5,20.5] | (20.5,25.5] | (25.5,30.5] | (30.5, 40.5] | (40.5,53
p 0.134 0.0722 0.0895 0.0657 0.142 0.0798 0.118 0.0430
se(p) 0.060 0.034 0.042 0.032 0.065 0.040 0.054 0.024
P 0.134 0.0725 0.0900 0.0661 0.143 0.0795 0.117 0.0429
se{p) 0.059 0.038 0.054 0.037 0.073 0.042 0.061 0.029
B
paraineter B B> Bs
J¢ -1.220 | 0.379 | -0.00998
se(B) 0.376 | 0.104 | 0.129
B -1.211 | 0.376 | -0.00931
se(3) 0.320 | 0.0872 | 0.105
v
ML | GEE
estimate | 2.37 | 1.85
se 0.50 | 0.40
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number of events

Time

Figure 2.1: The true baseline mean function and its estimates for setting (a). The
solid curve is the true baseline mean function; the dotted curve is the estimated
mean function based on Approach I; the dashed curve, which is indistinguishable
from the solid curve, is the estimated mean function based on Approach III.
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Figure 2.2: Scatter plot of the total number of tumors for each patient against time
in study
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Figure 2.3: Plot of the standardized residual e; against the expected number of
tumors present, based on a mixed Poisson model



CHAPTER 2. INTERVAL-GROUPED RECURRENT EVENT 50

2.7 Appendix

Tables 2.8 to 2.11 present the sample average of estimates and the estimated stan-
dard errors, and the empirical standard errors for simulation in settings (c), (d),
(e) and (f)-

Tables 2.12 to 2.17 present the empirical coverage of 90% and 95% confidence
intervals based on simulations in settings (b), (¢}, (d), (e), (f) and (h).

Table 2.8: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (c) v = 0.8,
§=10,8=15v=05 A¢(25) = 20, Ag(48) = 38.4
I II-1 I1-2 III V-l | IV-2
Ao(25) 19.773 | 19.773 | 19.774 | 19.725 | 19.725 | 19.726
se(Ao(25)) | 1.568 | 1.536 | 1.536 | 1.544 | 1.517 | 1.518
e.se(Ag(25)) | 1.601 | 1.603 | 1.603 | 1.584 | 1.585 | 1.585
Ao(48) 37.890 | 37.890 | 37.892 | 37.899 | 37.899 { 37.901
se(Ao(48)) | 2.976 | 2.928 | 2.928 | 2.967 | 2.917 | 2.917
e.se(Ao(48)) | 2.979 | 2.981 | 2.981 | 2.994 | 2.9967 | 2.996
B 1.4905 | 1.4905 | 1.4904 | 1.4905 | 1.4905 | 1.4904
se(B) 0.0970 | 0.0950 | 0.0950 | 0.0969 | 0.0950 | 0.0950
e.se(8) 0.0985 | 0.0984 | 0.0984 | 0.0984 | 0.0984 | 0.0984
v 0.480 | 0.462 | 0.462 | 0.480 | 0.462 | 0.462
se(7) 0.0782 | 0.0818 | 0.0824 | 0.0782 | 0.0818 | 0.0824
e.se(?) 0.0667 | 0.0806 | 0.0828 | 0.0668 | 0.0807 | 0.0829
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Table 2.9: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (d) ¥ = 0.8,
§=10,08=15 v =02, Ao(25) = 20, Ao(48) = 38.4
I II-1 II-2 118 V-1 | IV-2
Ao (25) 19.952 | 19.950 | 19.952 | 20.002 | 20.000 | 20.001
se(Aog(25)) | 1.101 | 1.110 | 1.110 | 1.075 | 1.081 | 1.081
e.se(Ao(25)) | 0.951 | 0.951 | 0.951 | 0.947 | 0.947 | 0.947
Ao(48) 38.43 | 38.43 | 38.43 | 38.40 | 38.39 | 38.40
se(Ao(48)) | 2.077 | 2.082 | 2.084 | 2.062 | 2.070 | 2.071
e.se(Ao(48)) | 1.868 | 1.868 | 1.868 | 1.832 | 1.832 | 1.833
B8 1.500 | 1.500 | 1.500 | 1.500 | 1.500 | 1.500
se(B) 0.0668 | 0.0660 | 0.0661 | 0.0668 | 0.0660 | 0.0661
v 0.191 | 0.190 | 0.191 | 0.191 | 0.190 | 0.191

se(7) 0.0353 | 0.6362 | 0.0381 | 0.0353 | 0.0363 | 0.0382
e.se(?) 0.0365 | 0.0357 | 0.0371 | 0.0366 | 0.0360 | 0.0373
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Table 2.10: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (e) v = 0.8,
§=0.5, 8 =0.375 v =0.5, Ag(25) = 4, Ao(48) = 5.543

I 1 | o2 | oI | IvV-1 | Iv=2

Ao(25) 3.940 | 3.940 | 3.940 | 3.936 | 3.936 | 3.936
se(Ao(25)) | 0.365 | 0.363 | 0.363 | 0.348 | 0.345 | 0.345
e.se(Ao(25)) | 0.376 | 0.376 | 0.376 | 0.352 | 0.352 | 0.352
Ao(48) 5450 | 5.450 | 5.451 | 5.452 | 5.452 | 5.453
se(Ao(48)) | 0.489 | 0.484 | 0.484 | 0.482 | 0.478 | 0.478
e.se(Ao(48)) | 0.468 | 0.468 | 0.468 | 0.476 | 0.476 | 0.476
B 0.3654 | 0.3654 | 0.3653 | 0.3655 | 0.3655 | 0.3655
se(B) 0.108 | 0.107 | 0.107 | 0.108 | 0.107 | 0.107
ese(B) | 0.0982 | 0.0981 | 0.982 | 0.0979 | 0.0979 | 0.0979
% 0.470 | 0.458 | 0.459 | 0.471 | 0.459 | 0.460
se(0) 0.108 | 0.109 | 0.110 | 0.108 | 0.109 | 0.110
e.se(0) 0.109 | 0.127 | 0.130 | 0.108 | 0.127 | 0.129
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Table 2.11: The sample average of estimates and estimated standard errors based
on asymptotic theory, and the empirical standard errors, in setting (f) v = 0.8,

§=0.5,0=0.375 v = 0.2, Ao(25) = 4, Ao(48) = 5.543
I -1 | -2 | OO0 | Iv-1l | Iv-2
Ao(25) 3.993 | 3.993 | 3.993 | 3.968 | 3.968 | 3.968
se(Ao(25)) | 0.293 | 0.290 | 0.290 | 0.270 | 0.268 | 0.268
e.se(Ao(25)) | 0.336 | 0.336 | 0.336 | 0.297 | 0.297 | 0.297
Ao(48) 5.490 | 5.490 | 5.490 | 5.493 | 5.493 | 5494
se(Ao(48)) | 0.382 | 0.378 | 0.378 | 0.373 | 0.372 | 0.372
e.se(Ao(48)) | 0.416 | 0.416 | 0.416 | 0.411 | 0.411 | 0.411
& 0.3661 | 0.3661 | 0.3661 | 0.3662 | 0.3662 | 0.3662

T

se(B) 0.0827 | 0.0824 | 0.0825 | 0.0827 | 0.0824 | 0.0825
e.se(83) 0.0883 | 0.0882 | 0.0881 | 0.0883 | 0.0882 | 0.0881

v 0.187 | 0.186 | 0.185 | 0.187 | 0.186 | 0.185
se(?) 0.0613 | 0.0606 | 0.0616 | 0.0613 | 0.0605 | 0.0614

e.se(?) 0.0640 { 0.0659 | 0.0656 | 0.0638 | 0.0657 | 0.0653

Table 2.12: The actual coverage probabilities(x100) of (1 — a) confidence intervals
based on 100 samples for setting (b)

I II-1 -2 III V-1 Iv-2
100(1 — ) || 95190 |95 ({90 95|90 |95]|90 |95 |90 |95]90
Ao(25) 97 {89 {96 |87 {96 |87196|94 (96 (9296|092
Ao(48) 96 192 |96 |88 )96 |88]96)94)96]9196 (91
B 96 18919591195 |91|96|89[95]|91|95](91
v 95 (91190}85]96|89{95[91|90|84|96]|90
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Table 2.13: The actual coverage probabilities(x100) of (1 — ) confidence intervals
based on 100 samples for setting (c)

I II-1 I1-2 oI IV-1 Iv-2
100(1 ~ ) |95 (90 {95 {90 |95 {90 {9590 |95 90|95 |90
Ao(25) 9218691841918 |92}82|92]|81]9281
Ao(48) 93 {83194 }83|94(183)93|83)93)|82)93)82
B 95|85 |93 83|93 8395|8593 |83[93]83
v 94193189 |80|89|80)94|93|88|80|89 |78

Table 2.14: The actual coverage probabilities(x100) of (1 — a) confidence intervals
based on 100 samples for setting (d)

I II-1 I1-2 III V-1 IV-2
100(1 —a) }} 95|90 {95 |90 | 95|90 ]|95]|90]95|90]|95]|90
Ao(25) 98 |95 |98 |96 |98 |96 |97 | 95} 97 | 94 | 97 | 94
Ao (48) 97 194 |96 [ 93 {96 |93 |97 |95 |97 {94 | 97 | 94
B 90 |89 |91 {8891 (88|90 |89 |91 )88 91|88
v 90 |86 |8 |83 |87 |8 |90 |82)85 |83 87|84

Table 2.15: The actual coverage probabilities(x100) of (1 — a) confidence intervals
based on 100 samples for setting (e)

i -1 | 02 | IO | IV | V2
100(1 — ) || 95 |90 | 95 [ 90 | 95 ] 90 [ 95 | 90 | 95 | 90 | 95 | 90
Ao(25) || 948893 | 89|93 |89 |94 |89 | 94 | 89 | 94 | 89
Ao(48) || 94(92 |93 92|93 92|93 |88 |93 |88 |93 |88
B 97 |94 | 97 | 92 |97 |92 | 97 | 94 | 97 | 93 | 97 | 93

v 90 |87 | 81 | 75 | 84 | 77| 80 | 87 | 83 | 74 | & | 76
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Table 2.16: The actual coverage probabilities(x100) of (1 — a) confidence intervals
based on 100 samples for setting (f)

I 1I-1 1I-2 III IV-1 IV-2
100(1 — ) {1 95|90 [95 /9095|9095 |[90|95 |90 |95 |90
Ao(25) 93 18391 |83{91}83|92(89}91}190}91)90
Ao(48) 94 | 871928192 |8 |91 |87 91|87 |91|87
B 94 | 87194 |8 |94 |86 |94 | 88 {94 [ 86 | 94 | 86
v 90 | 87 |87 |82 |87 |82}|90)87)|8682|85 )83

Table 2.17: The actual coverage probabilities(x100) of (1 — @) confidence intervals
based on 100 samples for setting (h)

i -1 -2 I | IVl | IV-2
100(1 —a) || 95 |90 | 95 ] 90 | 95 | 90 | 95 | 90 [ 95 | 90 | 95 ] 90
Ao(25) || 95|93 |95 92|95 |92 |96 |91 |97 ]91]097 |91
Ao(48) |97 |92 |97 [ 93|97 |93 |97 |90 |97 |90 | 97 | 90
B 92 |87 |91 | 87 |91 | 87 |92 | 86 | 91 | 87 | 91 | 87

v 94 |90 |92 | 85 | 93 | 87 |94 |91 | 92 | 86 | 93 | 86




Chapter 3

Analysis of Current Status Data

and Doubly-censored Data

3.1 Introduction

In many studies, it is of interest to estimate the distribution function of the time
between two successive events, termed the initiating event and subsequent event.
Let I and J represent the occurrence times of the two events, respectively, then
T = J — I is the time between the two events. We assume in this chapter that
I and T are independent. If both I and J are observed directly, estimation of
distribution of T' can be readily obtained. However, it is not an easy task when
one or both events are not directly observed. The analysis of current status data
and doubly-censored data fall into this category of data collection. Current status
data arise when the time of the initiating event is observed directly, but for the

subsequent event the only information is whether or not it has occurred by a single
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monitoring time B. This type of data is often collected in a survey or census,
where respondents are asked about their age and whether a certain event (usually
an important one, such as first marriage) has occurred.

A more complicated data structure occurs when both events are not observed
directly; instead, we observe only whether either or both events have occurred at
the single monitoring time B. This is called doubly-censored current status data,
an extreme case of doubly-censored data. For example, in the Partners’ Study
described by Jewell et al. (1994), the initiating event is infection of an individual
with HIV, and the subsequent event is the subsequent infection of a sexual partner
of this individual. If the only information we know is that the first infection time
lies in a time interval (A, B) and whether the second infection has occurred at time
B, the data are doubly censored current status data. General doubly-censored
data refer to the situation where either or both events are not observed directly,
but rather the initiating event time is only known to lie in an interval, and the
subsequent event time is interval-censored or right censored. The data structures
can also include covariates in these problems.

Current status data and doubly censored data have attracted comsiderable at-
tention. Diamond and Mcdonald (1992) have discussed advantages and disadvan-
tages of current status data and have reviewed the fitting of parametric proportional
hazard models, parametric accelerated life models and semiparametric proportional
hazard models to such data. Since the larger number of parameters in the semi-
parametric approach may create difficulties in model fitting, they suggest using a

spline form for a suitable transformation of the baseline cumulative hazard func-
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tion. Sun and Kalbfleisch (1993) discussed statistical methods for current status
data coming from point processes. Jewell and van der Laan (1996) have reviewed
both parametric and semiparametric methods for extensions of current status data,
such as doubly censored current status data and current status information on more
complicated stochastic processes. They have pointed out that nonparametric max-
imum likelihood estimation (NPMLE) of the distribution function G of T =J — I
in the doubly censored current status data case can be obtained by viewing the
model as a nonparametric mixture estimation problem; however, the NPMLE of
G may be inconsistent. De Gruttola and Lagakos (1989) have proposed methods
for analyzing general doubly censored data in the absence of covariates. Kim et al.
(1993) have generalized the results of De Gruttola and Lagakos (1989) to incor-
porate covariates. However, they assume that I and T are discrete. Sun (1995)
proposed a self-consistency algorithm to obtain the non- parametric estimation of
a distribution function with truncated and doubly censored data.

In this chapter, we intend to develop weakly parametric methods for current
status data and doubly censored data by assuming a piecewise constant form for
the hazard function of 7. In more detail, we assume that there is a pre-specified
sequence of constants a; =0 < a; <... < a, < @r41 = 0o that divide the time axis
into 7 intervals, and assume that the hazard function ho(¢) of T is constant within

interval A; = (ak, ag+1]: let ho(t) = pr for t € A;. The cumulative hazard function



CHAPTER 3. CURRENT STATUS DATA & DOUBLY-CENSORED DATA 59

is Ho(t) = 321, prur(t), where

0 if ¢ S ar
'"'k(t) = t— ar if ar <t < apyqr (3-1)

Qr4+1 — ar  otherwise

The survival function of T' is So(t) = P(T > t) = ezp(— Ho(t)), and the cumulative
distribution function of T" is Go(t) = 1 — Sp(t) = 1 — exp(—Ho(t)).

The advantage of using a piecewise constant form for the hazard function is
that it avoids the difficulty in estimating standard errors of estimates in purely
non-parametric models and at the same time provides a more flexible model than
most puameﬁc models.

Covariate effects can be assessed by using regression models. Different regression
models are considered for current status data and doubly censored data in this

chapter.

3.2 Standard Current Status Data

3.2.1 Estimate of a CDF in the absence of covariates

First we describe the data structure of standard current status data in more detail.
Following Jewell and van der Laan (1996), suppose that there are n independent
subjects (or n pairs of subjects) in our study. For subject %, at recruitment time
(or interview) time B;, we know that the initiating event has already occurred and

this event time I; is observed. The subject is checked at monitoring time B; to see
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whether the subsequent event J; has occurred or not. Thus we observe whether the
time between the two events T; = J; — I; is < B; — I; or > B; — I;. We assume that
the initiating event time I; and the time between the two events T; are independent,
and the monitoring time B; is also independent of I; and T;. The data consists of
observations (C;,d;),2=1,...,n where C; = B; — I;, and §; = 1if J; < B; and is
zero otherwise. Therefore fort =1,...,n, 1 —§; is a Bernoulli variate with success
probability p; = Pr(l —é; = 1) = P; = 5¢(C;), where Sp(t) is the survival function
of T'. The likelihood function based on the data (conditional on the observed values
of the Cy’s)is L = [I*,(1— P;)% P}~%_ Suppose m is the number of distinct C;’s, and
the m distinct values of Ci’s are C(;) < C(z) < ... < C(m)- Let s(;) denote the subset
of indices corresponding to Cy;); that is, Subject j is in set s(), if C; = Cy;). Let the
size of 5(;) be k;, let P;) = So(C(;)), and let Y; = ¥, 8;. Then the likelihood can be
simplified to L = [T, (1 — P;)% P(j’i-y"- The sufficient statistics are (Y1,---,Ym).
Therefore for the model with piecewise constant intensity the number of ai’s can
be no more than m, and the location of a’s is restricted by the location of C(;’s.
More specifically, in order to be able to estimate all pr (by that, I mean the set of
the likelihood equations has unique solution for p;’s), ax’s must satisfy the following
necessary conditions: (1) The last interval A, = (a,,o0) contains at least one C;,
or equivalently, a, < C(m). (2) There must be at least one C{;) in the union of any
two consecutive intervals, i.e., (ak, ary2), for £k =1,...,r — 1, assuming a,,; = oo.

Proof of Condition (1). If the last interval A, does not contain any of the C;’s, i.e.,
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ar 2 Cm)- So u(Cgy) =0, for any k=1,...,m. So

r r—1
Py = ezp{— Y pju;j(Cir))} = exp{— D _ piu;j(Cwr))},
J=1 =1

for k = 1,...,m. So the likelihood function does not involve p,. p, cannot be
estimated from this model.

Proof of Condition (2). If K =r — 1, then by Condition (1), there must be at least
one C(;) in the last interval (a,, 00), so there must be at least one C;) in the interval
(@r-1,00). Suppose that k < r— 1, and there are C(y), . .., C(m,) in interval (ay, ax],
no Cj’s in interval (ag,ar42), and there are Cim,),.-.,Cm) in interval [ar42,00),

where m; < m. We have

k-1

P(j) = e:z:p{— Zplul(c(j))}t j = 17 see My, (3'2)
I=1
k-1

Py = ezp{- Z pi(aitr — a1) — pr(ar+r — ar) — pr+1(@r+z — ars1) }

=1

ezp{— Y pu(C;))}, j=mi+1,...,m.
{=k+2

So pr and pr4+; cannot be estimated separately. To see it, we compute the likelihood

equations for pi and pry,. The likelihood functions are

OlogL. =& 1 0F;
=) [k -Y/(1 — Py))lo——="%, i=1,...,r 3.3
api ; ] J/( (:))]P(j) ap; ( )
Since
240,
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9P ;)

apk = _(ak+1 - ak)P(j)1 j =m; + 11 <se, M,

the likelihood equation for py is

dlogL =
Gpr = ~(av1—ax) 3 [k = 3/ (1~ Py)] = 0. (3.4)
I=my

Similarly, we can show the likelihood equation for pry; is

OlogL bd
3 o9 = —(Gry2 — Gri1) Z [kJ' -Y;/(1 - P(J'))] =0. (3-5)
Ph+1 j=my

Both equations are the same. So there cannot be an unique solution to the set of

the likelihood equations unless other assumptions are made.

If m is large, we can choose © between 5 to 10 and let each Ay, interval contain

some C(;’s.

The log-likelihood function is

log L =Y (:log(l — P:) + (1 — &) log P},

i=1

where P; = ezp{— Y7_; prux(C:)}. The score function is

BIOgL Z“:].—(S,—.P,@P,
Op = (L—F)P: 0px
= —ue(Ci)(1 - 6: — B)

= > -

= i(&uk(c’i)/(l - P;) - uk(Ci)), (3'6)

=1

I




CHAPTER 3. CURRENT STATUS DATA & DOUBLY-CENSORED DATA 63

The second derivatives of the log-likelihood function are

d*log L 2. 6: Pug(Ci)u;(Cr)
= — , 3.7
8pr0p; gl (1-F)y G0
k,j = 1,...,r. (3.8)

Therefore, the (k, j) entry of the Fisher information matrix is

azliﬂ) _ i Pru(Ci)ui(C) i (3.9)

E(—
( BprOp; i=1 1-5

The maximum likelihood estimates of pi’s can be found using the Newton-Raphson
algorithm. Since we have log P; = log(So(C:)) = — Xi=; prux(C;), the model is a
generalized linear model with logarithmic link function and Bernoulli distribution.
The parameters p; can therefore also be estimated by many statistical programs,

such as SAS or Splus. Let j; be the estimates. The survival function So(¢) can be

estimated by .§'0(t) = exp(— Yi=y Arur(t)).

3.2.2 Regression models

If we have recorded a vector of baseline covariates z; = (z;y, ---, z;,) for Subject 1,
the relationship between the time T and the covariates can be studied. Carstensen
(1996) has discussed several regression models with piecewise constant hazards in
the context of interval censored lifetime data. Since standard current status data
is a special case of interval censored lifetime data, the models discussed there can
be applied to standard current status data. We briefly describe the fitting of these

models for current status data.
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The additive excess risk model assumes a hazard function h(t|z:) = ho(2) + 2.3,
with the constraint ho(t) 4+ z; > 0. The likelihood function is

L=T[1- P)%P%, (3.10)

i=1

where P; = §(C;|z;) and

S(t|z:) = exp {— g prur(t) — i:ﬁ,-(z‘-,-t)} .

i=1

This model is also a generalized linear model with logarithmic link function and
Bernoulli distribution.

The proportional hazard model (multiplicative relative risk model) has a hazard
function h(t|z;) = ho(t)ezp(z8). The likelihood function has the same form as
(3.10), but with S(t|2;) = exp {—Hy(t) exp(z:3)}. The parameter estimates can
be obtained by an iteration procedure given by Carstensen (1996), or by Newton’s
method.

The fully parametric and semi parametric accelerated failure time models (AFT)
for current status data or interval censored lifetime data are discussed by some
authors such as Diamond and Mcdonald (1992), Rabinowitz et al. (1995), and
Jewell and van der Laan (1996). We outline some ideas on an accelerated failure
time model with a piecewise constant denmsity in a finite interval for the random

errors. We assume that

logT: =zB +¢, (3.11)

where ¢;'s are independent random errors whose common density function is sym-
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metric about zero and piecewise constant in interval [a;,a,4;]. In detail, we as-
sume that r is an odd number, (a,,-- -, ar41) are pre-specified constants, such that

@r = —@r4z-k. Let Ar = (ax, ar41]- The density function of € is given by

£(8) fe ft€eAror Ay r,k=1,---,(r+1),
0 ft>aport<a;
So fr = fr4a—k, k=1,---,7+1. fr must satisfy the constraint 3;_; fr(ar1 —ar) =

1. The number of distinct parameters is (r — 1)/2. The cumulative distribution

function of ¢; is F(t) = > r—; frur(t). Thus

P-r(é"- = 1) = P‘I‘(G, < log C{ — Z:‘B)

= F(log C; — z!8) = i: frur(log C; — z:3).
k=1

The likelihood function can be obtained as before and an optimization algorithm

can be used to get the maximum likelihood estimates.

3.2.3 Simulated examples

To illustrate the proposed methods, we applied the methods to several simulated
datasets. Since for the standard current status data, the initiating event time I is
observed, we need only to consider the induction time T' = J — I, the observation
time for T', which is C = B—1I, and possibly a covariate vector z. This is equivalent
to setting / =0, T = J and C = B. The way of generating data was very similar

to the one in Shiboski (1998). That is, (1) a single covariate z was generated from
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a Bernoulli distribution with p = 0.5; (2) observation times C were generated from
a uniform [0,1] distribution; (3) failure times T were generated from a Weibull

proportional hazard model, such that the hazard function is of the form,

h(t|z) = afy(t/7)*"" exp(2B).

The value of the indicator variable § was determined according to the observed T
and C. Both the value of § and the value of vy were set at one. Three values were
used for a: 0.5,1.1,2. A dataset of size 100 was generated for each value of a.

We focus on estimation of the regression coefficient 3. The proportional hazard
models with a piecewise constant baseline hazard function and a Weibull base-
line hazard function were fitted to each dataset. The downhill simplex method
due to Nelder and Mead (see, Press et al,, 1990) was used to get the maximum
likelihood estimates of the parameters. The number of pieces was set to be five
or ten, with cutoff points being 0,0.2,0.4,0.6,0.8 for the five-piece model and
0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 for the ten-piece model.

The estimates of 3, the estimated standard errors (based on the Fisher infor-
mation matrix) and the log-likelihood values at the maximum likelihood estimates
are given in Table 3.1. Both piecewise constant models give very similar values of
(3. These values are also reasonably close to the estimates given by the Weibull
model. It suggests that estimates of 8 are robust to the number of pieces used in
the piecewise constant models. However, the piecewise constant models are less

efficient than the Weibull model (the true parametric model) for estimating £.
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Table 3.1: Estimation of regression parameter 8 based on proportional hazard
models with piecewise constant hazard and Weibull hazard.

a=05]|a=11]a=20
Weibull B—pB| -0.157 | 0.0168 | -0.238
se(B) | 0275 | 0320 | 0.341
-logl | 55.66 | 50.86 | 45.12
PC (5 pieces) | 8 — 8 | -0.00206 | 0.0358 | -0.216
se(B) | 0.305 | 0.342 | 0.358
JlogL | 55.19 | 50.05 | 44.73
PC (10 pieces) | A — 4 | -0.0208 | 0.0951 | -0.187
se(B) | 0.306 0.358 | 0.367
logL | 54.34 | 4827 | 42.68

3.3 Doubly Censored Current Status Data

As we have pointed out in Section 3.1, doubly censored current status data arise
when the initiating event time [ is known only to be in an interval (X1, Xg), and
it is also observed whether or not the subsequent event has occurred at time B;
that is, we observe § = 1if J < B,and § =0if J > B. Let T = J - I. We
make the following assumptions: (1) I and T are independent; (2) the observation
times and censoring times are independent of [ and T'; (3) the distribution of I
is known. Let W(Z) and w(t) be the cumulative distribution function (CDF) and
density function for I respectively. Our goal is to estimate the survival function (call
it So(t)) of the time between the two event times, based on an independent sample
(Xiri, Xpi, B;, 6;), for i = 1,...,n. If a vector of baseline covariates is measured for

each subject, we can also study the effect of covariates on the distribution of T'.
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3.3.1 A piecewise constant hazard model

Suppose we have n independent observations (Xi:, Xg:, B;,8:), 2 = 1,...,n. We
assume that Xp; < B;, for ¢ = 1,...,n. Under the assumptions (1) to (3), the
likelihood is L = [I%, (1 — P;)% P}~%, where P; = Pr(J; > Bi|I; € [Xr:, Xr:]). Now

for simplicity, drop the index ¢ and just use P. It is easy to see that
P=[""s(B “(z)d 3.12
_/XL o(B — z)w™(z)dz, (3-12)

where w*(z) = w(z)/ [ ,ﬁ“ w(t)dt is the conditional density of [ in interval [ X, Xg].
We assume w*(z) is known. If we further assume that w" is uniform on the given

interval (X, Xg], P can be simplified as

P

Il

/X i" So(B — z)dz/(Xp — Xz)

B-Xr
= /B .. So(z)dz/(Xr — Xz). (3.13)

—*R

In particular, if Xp = B,
Xr-Xr
P= /0 So(z)dz/(Xr — Xz).

Under the assumption of a piecewise constant hazard for T', we have Sy(t) =
exp(—Ho(t)) = exp(— Xi_; pruc(t)), where Hy(t), pr and ur(t) are defined in Sec-
tion 3.1. For a; < ¢ < ajyy, let P(tla;) = Pr(T > t|T > a;) = So(t)/So(a;) =
exp(—pj(t — a;)). We compute f; So(z)dz for a given constant ¢ > 0. There exists

an integer j(c), such that a;) < ¢ < aj)+1, and 1 < j(c) < r. It can be shown
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that

i(e)-1

[ Se@)ds = Y p7*[Salas) — Solasa)] + o [Salasia) — Sol]
7(e)—1

= Y. p; So(a;)[1 — P(ajsila;)] + o35 Solase)[l — P(claje)]

i=1

= 3 Solas)lL — ezp(—prus(e))]. (3.14)

=1

3.3.2 Regression Models

Suppose for each subject, we also observe z;, a vector of covariates that is related
to the distribution of T'. The likelihood is still given by L = [I%,(1 — P;)% P!~%,
where P; = Pr(J; > Xp:|I; € [Xy:, Xgi], 2:), if the observation time B; = Xg;. The
additive excess risk model assumes a hazard function h(t|z:) = ho(t) + z28. So we

have

S(tl2:) = eap(—Ho(t) — t48) = eap(— 3 (pr + 2iBYur(t)) = So(t)ezp(—tz3),

k=1
and
c i(e)—-1
[ stz = 75 (o + 481 S(aslz0lL — exp(~(o; + ) ases — as)

+ (pit) + 2iB) ' S(aj()|z:)[1 — exp(—(pji(e) + 2:B)(c — aj)))],

where j(c) is an integer, such that ajy) < ¢ < @j()41, and 1 < j(¢) < r. Thus
Py = [{RX0 S (tz)dt/ (Xns — Xiz).

A derivative-free optimization method, such as the downhill simplex method
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due to Nelder and Mead (see, Press et al, 1990), can be applied to obtain the
maximum likelihood estimates of (p,3). In fact, this is the method we used in our

simulations and examples in Chapter 3.

The proportional hazard model assumes a hazard function for 7 is

h(t|z:) = ho(t)ezp(ziB). (3.15)

Let d; = ezp(zB), then S(c|z:) = So(c)¥ = ezp(—Ho(c)d;)- Suppose cis in interval

(@j(e)» @i(e)+1)s

IS(c,z:) = /o © 5(t|z:)dt (3.16)
i(e)—1
= z; p7 A [S(ajlz:) — S(ajiilz:)] + Pyt [S(ajq|2:) — S(cl=:)]
J:
i{e)—-1 i1
= Y pjrditezp(— Y prdi| Ar))[1 — ezp(—p;d:| A;])]
ij=1 k=1
- i(e)-1
+ prgditezp(— Y prdi(artr — a))[l — ezp(—pjdi(c — ajq)]
k=1
= Y pr'd;S(ar|z:)[1 — exp(—prdiur(c))]-
k=1

IS(c,0) = J5 So(t)dt. So P; = IS(Xp: — Xri, 2:)/(Xg: — Xi:) for the proportional
hazard model.

The score functions for either regression model are:

(3.17)

OlogL _ 2": (1—6;— P,) 0P
9pr = B(1—PF) op’
E o= 1,...,r (3.18)
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dlogL (1—46;— P)oF;
o6 :5_:1 Py g (3.19)
j = l, e ,r. (3.20)

The Fisher Information matrix is

In Iy
[21 122

Ip =

where the (k, j) element of I;; is

8%logL ~ 9P; 0P;

= 3.21
B(= 3PkaP;) 2 dpx Op;’ (3:21)
the (k,j) element of I}, is
azlogL = 0P, JP;
- 3.22
3008, = 2 5 98; (3-22)
the (k,j) element of I3, is
3zlogL =, 9P; OP;
E(— 3.23
(~38:08;) = 2 39 365 (3:23)

and Ip; = If,. The derivatives of P;’s with respect to pi’s and 8;’s for the propor-
tional hazard model are given in an appendix in Section 3.8.
The maximum likelihood estimates of (p,3) can be obtained by Fisher’s scoring

method. An alternative is to use a derivative-free optimization method.
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3.4 General Doubly Censored Data

We now consider data with general double censoring and left truncation. First we
introduce some notation. Suppose there are n independent subjects in our study
and that Subject ¢ is enrolled at time FE;. One of the conditions to be included
in the study is that the subsequent event time J; has not occurred at the time
of enrollment E;; that is, J; > E;. The initiating event time I; is observed to be
in interval [Xi;, Xg:;]. The subsequent event time J; is observed to be in interval
[Jri, Jri], where Jr: > E;. Let T: = J; — I;, and assume I; and T} are independent
and continuous. Let W;(z), w;(z) be the cumulative distribution function and
density function of I;, respectively, for z € (0, 0). Let G;(t), Si(2), g:(¢) and h:(t)
be the cumaulative distribution function, survival function, density function and
hazard function of T}.

Assuming that I;’s do not contain information on the distribution of T3, the

likelihood function conditional on I; € [Xz:, Xg:] and J; > E; is

B R wi(2)[Sd(JL: — ) — Si(Jps — z)]dz
L=1I S22 wi(z)Si(B: — z)dz ’

(3.24)

i=1

where w}(z) = wi(z)/ f)’&' wi(z)dz, X1z: < z < Xp;, is the density of I; conditional
on I; € {Xri, Xr:]. We assume S;(z) =0if z < 0.

If E; < Xj;, there is no truncation, and the denominator of the likelihood

function is 1. Also, the case of right-censored J;’s can be treated as a special case

of our general formulation with Jr: = co. Suppose g;(t) is the density function of
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T:. The likelihood function can be written as

L= fI S22 wi(z)g:(Jr: — )5 Si(Jp — ) ¥de
= fff' wi(z)S:(B: — z)dz

(3.25)

3

where §; is the censoring indicator for J;. &; = 1 if Jr; is the observed value for J;
d; = 0 if Jr; is the observed censoring time.

In the rest of this section, we assume that w}(z) is known.

3.4.1 A piecewise constant hazard model

We assume that w?(z) is uniform over interval [Xj;, Xr:]. The baseline hazard
function for T is a piecewise constant function ho(t) = pi, if t € Ak, where Ar =
(ar,ars1] and 0 = a3 < a2 < ... < @, < @r4; = o0 is a sequence of pre-fixed
constants. We also observe a vector of covariates z; for each subject. We assume the
covariate effect on the hazard function of T is multiplicative, that is, a proportional

hazard model is used:

h(t|z:) = ho(t)ezp(z.8). (3.26)

Let Go, So and go be the baseline cumulative distribution function, survival func-
tion, and density function. Recall that So(t) = exp(—Ho(t)) = exp(— Xr=; prux(t)),
Go(t) = 1—S0(t), go(t) = ho(t)exp(—Ho(t)), where u(t) is defined in formula (3.1).

Now we compute the log-likelihood based on (3.25). It can be written as

loglh = i[log(Bh-) — log(B5:)], (3.27)

=1
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where

1 Xp; §:
;= ——— h(Jp: — z|2:)% S (T — z]2:)d
B = w3 Jr. MU~z S(Jni — olz)d
1 Jri—Xgi 5
= — h :)5S :)d
% /J,L‘__Xm (z]2:)% S (|2:)dz
1 5
= = (S(J — Xp:lz:) — S(Jrz — Xpilz:)]*
X, 0 o — Xralz) (Jo: — X1l z:)]

[IS(Jp: — X, 25) — IS(Jri — Xriy 2:)]7 75, (3.28)
1

Xri
. S . — z|z;)d
By; X — X1 /;{“ S(E; — z|z;)dz

1 E.'—XLiS d
= Xm - Xz [s.--xﬂ,- S

1
= —-—_—— i — iy 21 — IS Ei—X iy Zi}], 3.29
XRi —XL,'[IS(E XL, zZ ) ( Riy Z )] ( )

where I5(c, z) is defined in (3.16). So

logl, = i:{&;log[S(JL; — Xnilzi) — S(Jp: — Xiilz:))

+(l — 5{)log[I5(J[,g - Xz, z,-) — IS(JL.; - XR;, z;)]

—log[IS(E{ - XL;, z;) - IS(E{ - XR;, Z{)]}. (3.30)

3.4.2 Computation

The maximum likelihood estimates (MLEs) of pi’s can be obtained by maximizing
the log likelihood function. This can be achieved by a derivative-free optimization
method, or an optimization method using derivatives. The method we used is the

downhill simplex method due to Nelder and Mead (see Press et al., 1990). After

MLEs are obtained, the standard errors of the estimates can be derived from the
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observed information matrix, that is, the minus second derivative matrix of the log

likelihood function with respect to the parameters, evaluated at the MLEs. We

give the first and second derivatives here.

To simplify our notation, let

Ca = I15(J: — Xri, %),
Ci2 = IS(Jp: — Xp:, 2:),
Ciz = IS(E; — Xpi, 2:),
Cia = IS(E; — Xp:, 2:),
Cis = S(J: — Xrilz:),
Cis = S(Jp: — Xr:|2:)-

Then

logL = Z{J;Iog(C;s — Cis) + (1 — 8:)log(Cyy — Ci2) — log(Cia — Cia) }-

i=1

The first derivatives of logL with respect to p and 3 are:

alogL _ z{ 80,5 66’;6) (1 - 5.;) 30{1 60,-2
o~ E'Cis—Cis 39 Opr Ca—Ci Opc  Ope
_ 1 0Cm 08Ciy
Cis — Ci4 Opr  Opi 2
OlogL — Z{ 3015 60.'5) + (1- 5,) a9Cy _ 9C;
9B; Cis — Czs 0B;  0B; Ci ~Ci2 0B; aB;

=1

1 8Cs  8Cu
Cia—Ci 0B;  9B;

)}

)

)

(3.31)
(3.32)
(3.33)
(3.34)
(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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The second derivatives of logL with respect to p and 3 are:

8%logL
9p}

0%logL
dpiOp;

for k # 7,
d*logL
0pr0B;

3 Cgs a 20{6

d;

0Cs 60{6)2

‘;{ Cis — C (B2 ~ ) T (Ca-Ca)om  Om

(1-4) (520‘1 _ 320;2) __(@=4) (aCil _ aCiz)Z.
Ca—Ca 8pi  O0pf " (Ca—Cz)* Opr Ope
1 82Cz 0%°Cy 1 30,3 30,4
— 3.40
Ca—Cal 0t ~ 0% ) T Ga—Co) pe o) 140
3 01,5 a C"1.6
g{ C,s aPkBPJ 5pkapj
_ 5; (3C=s _ 30{6)(3@5 _ 30{6)
(Cis —Ci)*" Opr Opr ' 0Op;  Op;
1—-4; 8*Cy . 8%*C;,
Cii — Ci2 " Ope8p;  OprOp;
_ (1 - Ji) 6051 _ 60{2)(3051 _ 36’;2)
(Ca—Ci)* 0pr  Opr " 0Op;  Op;
1 9Cs  9°Ca
(Cis — Cis) "0prOp;  OpiOp;
1 30,3 9Cy ., 8C; O8Cy4
T Ca—Car O~ B \Bp; ~ Bp; (3.41)
i 0Cs _ 8C
2{ Cs — Ca \9p:0B; ~ 3p205;)
_ d; 9Cis aCis)(acis _ 6C:'6)
(Cis —Cis)?" Opr Opr "> 0B;  9PB;
JLob (#Ch _ 8Ca
Cia —Ci2 0pe0B;  Opr0P;
__(1-8) 8Cy 8Ca 8Ca _ 8Ca,
(Ca—C)*" 0pr Opr"" 8B; 8B;
1 #Ca  Cu
(Cis — Ci) aﬂkaﬁ: apkaﬁ:i
1 6013 8014 60,3 30;4
(C;S _ 04)2( Apr )( aﬁj aﬁj )}1 (342)
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8%logL 2 8 Cis 0%*Ci
9Br0B; ,_1{ Cis — 016 aﬁkaﬁ, 5ﬂk6,8_,,-)
_ d; 9Cis 50{6)(30is . aCis)
(Cis - Cis)z aﬁk aﬁk aﬂj 6,3,-
L 1—4; 9*Cy _ 9%C;, )
Ci — Cip 0B:0B;  0PBx0B;

_ (1 - 6{) (60{1 6012 )( actl aCiZ)
(Cil - Ciz)z aﬂk 8 3,3, 3,31'
_ 1 8%*Cy3 . 8*Ci )
(Cis - Ci4) 3ﬂk3ﬂg aﬂkaﬁj
1 dC;5 80;4 0C;z 0Cy
(Cl3 - 14)2 aﬁk aﬂk )( aﬂ.‘i B aﬁ] )}. (3‘43)

3.4.3 A Weibull regression model

Suppose for example that T; follows a Weibull distribution with a hazard function
hi(t; z:) = ho(t) exp(zi8), and ho(t) = ay~*t*~'. The baseline survival function
is So(t) = exp{—(¢/7)*}. We still assume that w?(z) is uniform over interval
(Xri, Xri]. For the same data structure as in 3.4.1, the log likelihood based on

observed data is

logL = Z{J{IOQ[S(JM i XR{IZ;‘) - S(JL, - XLilz;)]

=1

+(1 - 5;)109[[5(.]&: - Xr: z;) — IS(JL; - Xri, z;)]

—lOg[IS(E; - XL;, z,') - IS(E‘ - XR;, z,—)]}. (3.44)
Now S(t{z;) = exp(—(t/7)*d;), where d; = ezp(zi3).

I5(t,2) = [ exp{~(/7)*d:}d
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(¢/7)7d;
= Lyaye [ exp(—y)yH=tdy

= (v/a)(1/d:)/°T(1/a) P(1/ e, (£/7)*d:), (3.45)

where

P(a,z) = (1/T(a)) [o "yt levdy

is the incomplete Gamma function. Notice that
L(a +1,z)P(a + 1,z) = al'(a,z)P(a,z) — exp(—z)z°.

The formulas for derivatives of S(¢|z;) and IS5(t, 2;) are in an appendix (Sec-
tion 3.8). These are used to obtain variance estimates for the parameters. An

alternative would be to use numerical derivatives or the alternative covariance ma-

trix estimate

. n 8logL;, BlogL; \ "
V )ﬁ =( ) b

=1

based on the fact that

OlogL;, OlogL; p| OlogL;
E[( 56 (a6 ) | =P\ 20067

3.5 A Simulation Study

We conduct a simulation study to assess the performance of the piecewise constant

hazard models and to examine the effect of the lengths of the intervals for the first

event (I;) on estimation.
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Figure 3.1: Hazard functions, cumulative hazard functions, density functions and
survival functions of Weibull and log-logistic distributions used in the simulation.
Solid lines~Weibull; dotted lines-log logistic

We mimic an AIDS cohort study in our simulation set-up. Suppose subjects
are under periodic examination (screening) to check whether the first event has
occurred or not during time interval (0,7]. The periodic examination times are
w,2w,...,mw, where m = 7/w. Once a subject has experienced the first event
between two comsecutive screening times, this subject is followed up from the
screening time right after the first event time, until the end of the study pe-

riod B (B > ) to check when the second event occurs. We only consider sub-
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jects with first events occurred during interval (0,7]. The sample size is chosen
to be n = 100. The data are generated in the following steps. (1) We gener-
ate the first event times I;, 7 = 1,...,n from the uniform distribution on inter-
val [0,7]. (2) We generate T:, 2 = 1,...,n, from a continuous distribution with
CDF G(t). (3) Let J; = I; + T; be the second event time for subject z. There
are three forms of outcomes. The first one is that both I; and J; (I; < J;) are
known only to be in interval (kw,(k + 1)w], for some k = 1,...,m — 1; the sec-
ond is that I; is only known to be in interval (kw,(k + 1)w] (for some k), and
Ji > (k4 1)w is observed exactly; the third is that I; is known only to be in interval
(kw, (k + 1)w] (for some k), and J; is known only to be greater than B. Therefore
the observed data vector for subject ¢ is (Xr:, Xri, JLi, 011, 82:), where Xr: = kw,
Xri = (k + 1)w, Jp; = maz(Xpi, min(J;, B)), 61s = 1 if J; > Xg:; 81: = 0 other-
wise. dz; = 1 if J; < B; §,; = 0 otherwise. So, (1) for the first outcome, Xr; = kw,
Xp: = Jpi = (k+ 1)w,81; = 0, 6 = 1; (2) for the second outcome, Xr; = kw,
Xpri = (b + 1w, Jp: = J;, §1: = §2: = 1; (3) for the third outcome, Xz; = kw,
Xpi=(k+1)w, J; = B, é;; =1, §2; = 0.

We set 7 = 6. Two distributions are considered for T}'s, the time between the
two events, a Weibull distribution with CDF G(t) = 1 — ezp(—(t/v)*), where
7 = 9.434, a = 1.8; a log-logistic distribution with CDF G(¢) = 1 — 1/(1 +
(7¢)*), where v = 0.1368365, a = 2.515052. The parameters in the log-logistic
distribution were chosen to make it have the same first and third quartiles as the
given Weibull distribution. The plots of the hazard functions, cumulative hazard

functions, density functions and survival functions of the given Weibull and log-
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logistic distributions are given in Figure 3.1.

Two values of w are used: 1 or 6. The end of follow-up time is B = 7/2 +
G~1(0.9), which gives 17.99 for the Weibull distribution, and 20.507 for the log-
logistic distribution. It results in four cases: (1) T" follows a Weibull distribution,
w =1, B =17.99; (2) T follows a Weibull distribution, w = 6, B = 17.99; (3) T
follows a log-logistic distribution, w = 1, B = 20.507; (4) T follows a log-logistic
distribution, w = 6, B = 20.507. For each case, 500 data sets were generated.

The likelihood based on the observed data is similar to (3.25) but without the

truncation:

n Xo:
Xi:

i=1

S(Jp; — z)iC=%dyr(2)dz

n XR.' ) . .
=11 /X ) h(Jg: — oY% S ( Ty — )

i=1

[1 — S(Xr: — z)]#0) () de, (3.46)

where g(t), h(t), G(¢) and S(t) are density function, hazard function, cumulative
distribution function and survival function of the T}’s, respectively; wi(z) is the
density of I; conditional on I; € [Xr:, Xr:]. Here since I; follows a Uniform distri-
bution, wi(z) = 1/(Xa: — Xz2), for = € [Xzi, Xril.

The likelihood function can also be expressed in the following form:

1 1 - .
L = H —}(Ri_'—XLz[S(JLt - XR;) - S(JL‘I- — XM)]Jl.Jzu

=1

[XR; — X — IS(XR, — XL;)]J"-(I—J")
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[IS(Joi — Xp:) — IS(JLi — XR;)]‘;“(]‘*&""), (3.47)

where I5(t) = [; S(z)dz.
The corresponding log-likelihood function (ignoring a constant term) is

logL = 251552;10g [S(JL, —XR,) - S(JL; - XL,)]

=1

-{-Z(l - 51,-)52;10g [XR,_ —Xri — IS(Xm —_ XL.)]

=1
+251,;(1 — 82:)log [IS(Jpi — X)) — IS(Joi — Xri)],s
i=1
= Y (61:02:10g(Cis — Cis) + (1 — 81:)85:log(Xr: — Xzi — Cir)
=1
+61:(1 — 632) log(Caa — Cia), (3.48)

where Cj, Ciz, Cis, Cis are defined in equations (3.31), to (3.36); Ciz is defined as

Ciz = IS(Xpi — X1i, z:).

In general, suppose 0 is the p-dimensional parameter in the distribution of 7}’s.

The first derivatives of log L with respect to 9 is

6log L _ ki [ 51,'52,' 3C{5 _ 60’,-6
b Cis —Ci \ 00, 00
_ (1 —61:)d2c O0Cir | 61:i(1—83;) (0C  OCi
Xri — Xp: — Cir 06¢ * Ca—Ciz \ 96 90 L (349)
E = 1,...,p.

i=1
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The second derivatives of log L are

O*log L z“: d1:0; 320{5 _ 320{6)
56:00, — 2= Cw—Cr 5689, ~ 56:06;
1 (aC,-s aG,—s) (30;5 aC;s)]

Cis—Cis \ 86 06 ) \ 86;  06;
_ i (1 — 614)d2: 0*Cir 4 1 0C;7 0C;7
2 Xr: ~ Xz; — Crr | 96206; T X — Xgz — Cor 06, 59;

Z 51:(1 522) azczl azciz
£ Ch — Ca aekaa " 56,09
1 60,1 60‘2 60{1 30;2
- — - 3.5
Cia — Ci; ( e 1% 00 ) ( a9; 06 ; )]’ (3.50)
k,j = 1,...,p.

In particular, for the piecewise constant hazard model, the first derivatives of

log L with respect to the p's are

I

BlogL i[ 61,'62; (60{5 _ 60;,6)
dpr iZiCs—Cis \Opr Opr
(L -6 8Cir  61:(1 —82) [8C; 30;2)
_ - . (3.51
Xpi — Xpi — Cizr Opr + Ca—Ci \Opx Opr L (351)
k = 1,...,r

The second derivatives of log L are

62 IOgL _ hid 51,'52; 620,'5 820;6
Opidp; ~ =i Cis— Cis OpiBp;  Opidp;
1 9Cis OCs 9Cis 0Cy
" Cis—Css (apk B apk) (ap,- - ap,-)]

_ i (1 — 814)82: [ 0%Cyiz 1 0C;z 30;7]
i=1 XR; - XL; - C;_7 3pk3p,- XR; - XL; - 0;7 apk ap_-,'
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Figure 3.2: Estimates of the true Weibull hazard function (dotted curve) by a
piecewise constant model (solid line) and by a Weibull model (dashed curve), for a

simulated example in Case 1.

Z 61:(1 62:) 6 Cxl 620;2
Ca — Ciz 3pk3p, ~ OpkOp;
1 aCi 86’;2) (30,-1 60’;3)
_ _ - , 3.52
Ca — ( Opr  Opx dp;  Op;j ] (3:52)

kj = 1,...,r.

For each data set, we estimate the hazard function parameters by maximum
likelihood, based on a piecewise constant hazard model and on a Weibull hazard

model. The number of pieces is five in the piecewise constant hazard model. The



CHAPTER 3. CURRENT STATUS DATA & DOUBLY-CENSORED DATA 85

1,0

0.8

survival function
0.6

0.4

'l

0.2

Figure 3.3: Estimates of the true Weibull survival function (dotted curve) by a
piecewise constant model (solid line) and by a Weibull model (dashed curve), for
the same data used in the previous figure.
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values of the ar’s in each case are chosen to be the 20th, 40th, 60th, 80th percentiles
of the true distribution of T. The optimization method we used is the downhill
simplex method due to Nelder and Mead (Press et al., 1990) and it was programmed
in FORTRAN.

The estimates for the survival function of T' at the true 5th, 25th, 50th, 75th and
95th percentiles of T" are obtained. For piecewise constant hazard models, the sur-
vival function value of T at a given point t is estimated by .ST(\t) = exp{— i, Arur(t)},
and the asymptotic variance of .ST(?) is estimated by d-method, which gives us
var(S(E) = ($(£))2uT (¢)cov(p)u(t), where cov(p) is the estimated covariance ma-
trix for p. For Weibull models, let S,(t; a,v) = exp{—(¢/7)*} be the survival

function of a Weibull distribution with parameter a and v, and let
cul(t; 1) = (95u(t)/e, 8S.(£)/07) = ((¢/)* log(t/7), —(a/7)(t/7)%) .

The survival function value of T at a given point ¢ is estimated by S (t) = Su(t; &, %),
and the asymptotic variance of $(t) is estimated by var(5(¢)) = (8w (t))zé'cov(&, ¥)é,
where cov(&, ) is the estimated covariance matrix for (&, ). The asymptotic stan-
dard error of § (t) is obtained by taking square root of var($ ().

Figure 3.2 displays the true Weibull hazard function and its estimates by a
piecewise constant model and a Weibull model for a simulated example in Case 1.
Figure 3.3 gives the corresponding survival function and its estimates for the same
example.

The bias, asymptotic standard error (ASE) and sample standard error (SE) for

the estimates of survival functions at the five points for the four settings are given in
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Table 3.2: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T" at five points based on 500 simulations, in
Case 1: Weibull distribution, w =1, B = 17.99

P-C model

t S(t) | Bias (x10°%) | ASE (x10%) | SE (x103)
1.8116 | 0.95 -36.5 19.6 18.6
4.7216 | 0.75 4.86 38.2 35.8
7.6960 | 0.5 -0.417 435.9 43.2
11.311 | 0.25 0.125 40.7 39.8
17.3548 | 0.05 6.38 25.9 27.0

Weibull model

t S(t) | Bias (x10%) | ASE (x10%) | SE (x10%)
1.8116 | 0.95 -0.193 14.6 13.8
4.7216 | 0.75 1.27 36.0 34.0
7.6960 | 0.5 0.951 40.9 39.0
11.311 | 0.25 -0.439 36.7 36.1
17.3548 | 0.05 0.727 19.4 19.7

Table 3.2 to Table 3.5. The bias is the sample mean of the 500 individual differences
between S (t) and S(¢t). The ASE is the sample mean of 500 individual standard
errors based on the asymptotic theory for the maximum likelihood estimator, using
the inverse of the observed information matrix (the second derivative matrix of
log-likelihood with respect to parameters, evaluated at the estimates). The SE is
the sample standard error of the 500 estimates of S(£).

By comparing the results for piecewise constant hazard models and Weibull
models in Table 3.2 and Table 3.3, we can see that when the data come from
a Weibull model, the estimates given by Weibull models have smaller bias and
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Table 3.3: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T at five points based on 500 simulations, in
Case 2: Weibull distribution, w =6, B = 17.99

P-C model

t S(t) | Bias (x10%) | ASE (x10°) | SE (x10%)
1.8116 | 0.95 -24.1 33.7 34.1
4.7216 | 0.75 18.7 46.5 46.0
7.6960 { 0.5 -9.03 58.5 54.4
11.311 | 0.25 3.65 59.9 55.8
17.3548 | 0.05 5.37 38.5 35.4

Weibull model

t S(t) | Bias (x10%) | ASE (x10%) | SE (x10%)
1.8116 | 0.95 -0.606 18.2 17.8
4.7216 | 0.75 1.87 42.7 41.3
7.6960 | 0.5 1.79 45.1 43.4
11.311 | 0.25 -0.509 38.7 37.6
17.3548 | 0.05 0.698 21.7 214

standard errors, because the Weibull model is the true model for the data. In
Table 3.2, the relative difference of bias (and standard errors) between the Weibull
models and the piecewise constant models is not very big for estimation of S(¢) in
the middle range (from 25th percentile to 75th percentile of the true model), but it is
bigger for estimation of S(t) at the two ends (for 5th percentile and 95th percentile).
In Table 3.3, where interval censoring of I is more severe, the relative difference of
bias (and standard errors) between the Weibull models and the piecewise constant
models is bigger for estimation of S(¢) in the whole range. These results confirm

that using a fully parametric model is more favorable than a piecewise constant
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Table 3.4: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T at five points based on 500 simulations, in
Case 3: log-logistic distribution, w = 1,B = 20.507

P-C model

t S(t) | Bias (x10%) | ASE (x10%) | SE (x10%)
2.2665 | 0.95 -49.9 23.0 21.7
4.7216 | 0.75 10.7 37.6 35.1
7.3080 0.5 2.00 45.8 43.2
11.311 | 0.25 2.80 40.5 40.0
23.5634 | 0.05 -5.36 22.7 24.3

‘Weibull model

¢ S(t) | Bias (x10%) | ASE (x10%) | SE (x10%)
2.2665 | 0.95 -31.9 19.8 15.1
4.7216 | 0.75 -3.29 35.8 28.1
7.3080 0.5 44.0 40.8 36.2
11.311 | 0.25 31.2 37.5 40.9
23.5634 | 0.05 -35.0 8.71 10.5

model when the true parametric model is known, and the purpose is to estimate
the survival function values. The piecewise constant models with just 5 pieces here
give reasonably good estimates of survival function values in the middle range, but
they may not give satisfactory estimates of survival function values for the tails.
In particular, piecewise constant models with 5 cut points at the Oth, 20th, 40th,
60th, and 80th percentiles here under-estimate the survival function value at the
5th percentile. A reason is that the estimated hazard 5, in the first interval from 0
to 20th percentile is close to the average of hazard function in this interval, so gy
over estimates the hazard in the sub-interval from 0 to 5th percentile (see Figure
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Table 3.5: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T' at five points based on 500 simulations, in
Case 4: log-logistic distribution, w = 6,B = 20.507

P-C model

t S(t) | Bias (x10%) | ASE (x103%) | SE (x10%)
2.2665 | 0.95 -28.7 40.4 442
4.7216 | 0.75 30.5 46.6 46.3
7.3080 | 0.5 -8.24 56.8 53.8
11.311 | 0.25 0.0364 44 6 44.5
23.5634 | 0.05 -3.74 26.9 27.4

Weibull model

t S(t) | Bias (x10°%) | ASE (x10%) | SE (x10%)
2.2665 | 0.95 -45.7 26.3 23.3
4.7216 | 0.75 -22.5 42 6 37.2
7.3080 0.5 29.8 44 8 40.7
11.311 | 0.25 30.6 38.9 40.1
23.5634 | 0.05 -30.5 11.6 12.9

3.2). We note that these problems can to some extent be overcome by using more
pieces and smoothing for the piecewise model, as described in Chapter 4.

The results in Tables 3.4 and 3.5 are based on data generated from the log-
logistic model for T'; the Weibull and piecewise constant hazard models are still
used to fit the data. They show that when we do not know which distribution the
data come from, the piecewise constant model gives better estimates of the survival
function values in the middle range than a wrongly specified fully parametric model.
Both the piecewise constant model and the fully parametric model do not really

give satisfactory estimates of survival function values for the left tail in these cases.
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We thus see that the piecewise constant models are more robust against the model
misspecification. To get good estimates of survival function values in the left tail,
we need more pieces and smoothing in the piecewise constant models, which we
discuss in the next chapter.

By comparing results in Table 3.2 against these in Table 3.3, and results in
Table 3.4 against these in Table 3.5, we can see that when there are more frequent
examinations for the initiating event, the estimates from both Weibull models and
piecewise constant models are less variable, as we would expect. The bias of esti-
mates in the middle range of T given by the piecewise constant models increases
when the number of the periodic examination times for the first event changes from
6 to 1. It suggests that piecewise constant models with a small number of pieces and
no smoothing are more sensitive to the heavy interval censoring than a correctly

specified fully parametric model.

3.6 Example: Toronto Sexual Contact Study

In this section, we apply the methods discussed in previous sections to the Toronto
Sexual Contact Study, described in Chapter 1. The data are doubly censored. The
HIV infection times for most subjects were interval-censored; the AIDS diagnosis
times were left truncated by the dates of enrollment since only men who had not
been diagnosed with AIDS were eligible for entry into the study; and the AIDS
diagnosis times for 110 subjects were right censored by the end of follow-up.

We set up the indicator variables d;; and d»;, where §;; = 1 if the subject was

diagnosed with AIDS during the study, 0 otherwise, §,; = 1 if the subject was HIV
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positive at the time of enrollment, 0 otherwise. The data can then be divided into
four groups. The first group (n; = 15, with §;; = 0, d2; = 0) consists of subjects who
became HIV positive during the study and were AIDS-free at the end of follow-up;
the second group (n; = 1, with §;; = 1, §;; = 0) consists of subjects who became
HIV positive during the study and were diagnosed with AIDS during the study;
the third group (nsz = 95, with &;; = 0, §; = 1) cousists of subjects who were
HIV positive at enrollment and were AIDS-free at the end of follow-up; the fourth
group (ng = 48, with d;; = 1, §; = 1) consists of subjects who were HIV positive
at enrollment and were diagnosed with AIDS during the study.

We focus on getting an estimate for the distribution of the incubation period
from HIV infection to AIDS diagnosis. We apply the piecewise-constant hazard
models to the data. That is, we assume that T}, the time between the HIV infection
and AIDS diagnosis has a piecewise constant hazard, as discussed in the early
sections of this chapter; the distribution of the time to HIV infection is assumed to
be known and I; and T; are independent. Under these assumptions, the likelihood

contribution from the ith subject is

L; = S:i(Jpi— L;)A-0a0=8dg g . _ [)5:0-82)
f)}ffz? w;(z)S;(JLi - Z)d:c (1-81:)d2:

f;({:‘ w}(z)g:i(Jp: — z)dz 81:82:
ff:: wE‘(z)S,-(E,. - :B)dz )

(3.53)

where S; and g; are the survival function and the density function of T}, and w?(z) =
wi(z)/ [%7 wi(u)du is the conditional density of I; on interval [Xz:, Xri].
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If we assume that T;’s follow a common distribution S(t), and w? is uniform

over interval [Xy:, Xg:], L: can be written as

L; = §(Jp: — L;)-00-82) g . [)1i(1-82:)
IS(JLi — X5, 0) — IS(JL‘: — Xri, 0) (1-817)d2;
IS(E: — X1;,0) — IS(E; — Xg:,0)

SUL: — Xg:) — S(pi — Xp) ™™ (3.54)
IS(E: — Xz.,0) — 15(E: — Xr:,0) ' '

For the special case of X;; = Xg; in Groups Three and Four, we treat I; as ob-
served at X7;, and replace the corresponding likelihood contribution by S(Jz: —
Xr:)/S(E; ~ X1:) in Group Three and by g(Jg; — X1:)/S(E: — X1:) in Group Four.
The log likelihood can be written as log L = 3%, log L;.

A piecewise constant model with 6 pieces was fitted to the data without any
covariates. The cutoff points are 0.0,500.0, 1000.0, 1500.0, 2200.0, 2700.0. The max-
imum likelihood estimates of the hazards and estimated standard errors based on
the observed information matrix are listed in Table (3.6). A Weibull model with
survivor function S(¢; a,v) = exp{—(¢/7)*} was also fitted to the data. The maxi-
mum likelihood estimates are & = 1.7724, 4 = 3715.1. The corresponding estimated
standard errors are se(&) = 0.2902, se(¥) = 365.0.

Table 3.6: Estimates and standard errors of the hazards in a piecewise constant
hazard model

Interval (0, 500] | (500,iG00] | (1000,1500] | (1500,2200] | (2200,2700} | (2700, oo]
Pk (X10™%) 0.4597 1.840 1.492 2.841 2.142 7.855
se(pr) (x10~1) | 0.4544 0.6793 0.6481 0.7939 1.315 3.335
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Figure 3.4 gives the estimate of CDF of T by the Weibull model (solid curve)
and the estimate by the above piecewise constant model. We notice the discrepancy
in the right tail, but observe that there are few subjects with observed £;’s which
could be larger than 2500 days. The two models give similar estimates of the median

incubation time.
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Figure 3.4: The solid line is the estimated CDF of T based on a Weibull model; the
dotted line is the estimated CDF of T based on a piecewise constant hazard model
with 6 pieces.
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3.7 Discussion

In this chapter, we have discussed models with piecewise constant hazard functions
for current status data and doubly censored data. Maximum likelihood estimation
of the survival function of the induction time and covariate effects is developed.
The use of these methods is illustrated by simulated examples and an example
from an AIDS study. The performance of these methods are also demonstrated by
a simulation study.

In the simulated examples for the standard current status data, we have shown
that the piecewise constant models provide reasonable estimates of the regression
coefficient and the corresponding estimated standard errors. The estimates of the
regression coefficient and the corresponding estimated standard errors are robust
to the number of pieces used in the piecewise constant models.

The simulation study in Section 3.5 assumes a Weibull or log-logistic distribution
for the induction time and no covariates involved. The models with a piecewise
constant hazard function or 2 Weibull hazard function were fitted. Results show
that use of piecewise constant hazard functions with five to ten pieces can provide
good estimates of the survival functions when time is not too small, no matter
what is the true distribution of the induction time. On the other hand, the Weibull
models do not do well in estimating the survival function when the induction times
are from a log-logistic distribution. Therefore the piecewise constant models are
robust to the distributional form of the induction time and are recommended to
use when we have doubt about the distributional form of the induction time. The

estimates of the standard errors can be constructed using the observed information
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matrices of the parameter estimates.
A more thorough investigation can be carried out by assessing the performance
of the piecewise constant models in the doubly-censored data when covariates are

present. A known distribution other than the uniform distribution can also be

considered for the initiating event [.

3.8 Appendix

For the proportional hazard model with piecewise constant baseline hazard in Sec-
tion 3.2.2, Section 3.3.2 and Section 3.4, the definitions of d; and S(c|z;) can be
found just before formula 3.16, and I.5(c, z;) is given in formula (3.16). The deriva-

tives of d; and S(¢|z;) with respect to p;’s and B;’s are the following:

d': = eXp(Z:-ﬂ), (3.55)
ad;
55; = dizik, (3.56)
32di prosncd ¥ .o
oB; (3.57)
BS(tIZ,) _ . )
o —u(t)diS(t]2:), (3.58)
‘Z*%f_f) = —dizi;Ho(t) S(t|z:), (5.59)
325(t|z;) _
Pmdp; ur(t)u;(t)d; S(¢2:), (3.60)
825 (t|=;
6ﬁ,fal;j) = —dizazi; Ho(t)S(t|z:) + d2ziezi; HE(£) S (8| 2:), (3.61)
2 -
F*S(tlz) _ —d;z;5ur () S (b 2:) + dF zi5ur(8) Ho(t) S (¢ 2:). (3.62)

0prOp;
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The derivatives of I.S(c, z;) with respect to pi’s and B’s are the following:

o = -3 e SaalslL ~ eopl—pediua(o)]

—pi2d; S (ak]2:)[1 — ezp(—pediur(c))]

+pic ' ur(c) S (ar|z:)ezp(—prdiur(c)), (3-63)
TL = —aIS(e,20 + 5 3 wa(o)S(anlzemp(—padiualc)

- ipglziiHO(aq)S(aqlzi) 11— ezp(—pqatq(c)di)], (3.64)
32 Z3i r
T = S ptulan)deS (el — enpl(—pediug(e))]
k q=1

+2p;:3d71 S (ar|z:)[1 — exp(—prdiur(c))]

—2p7 *ur(c) S (ar|z:) exp(—prdiur(c))

—px diui (c) S (ar|z:)ezp(—prdiur(c)), (3.65)
8%I5(c, z; L
_?apk(ij')- = (;P; ur(ag)u;i(aqg)diS(ag|z:)[1 — exp(—podiug(c))]

+p;7 *ur(az)S(aj|2:)[1 — ezp(—pidiui(c))]

+p5 *uj(ar) S (ar|2:)[1 — ezp(—prdiui(c))]

—p; tur(az)u;(c)d:S(as)z:)ezp(—p;diui(c))

—pr wi(ar)ur(c)d: S (ax|z:)exp(—prdiuc(c)), (3.66)
for k # j,
*IS(c,z;)
—aﬁ:B-J:— = +z;_,-z,-kIS(c, z,-)

+2ize Y Py Ho(ag) S (ag|2:)[1 — exp(—pydiug(c))]

q=1

sz 3 1q(€) S (ag) 2:) ep(—poditialc))

g=1
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9*15(c, z;)
Oprf;

sz 3 p7 B2 (aq) S (agl )L — eop(—peditig(c)]

q=1

~dizijzn S uglc) Ho(ag)S(aglz)ezn(—peditg(c))

q9=1

~diziza 3 peud(e)S(aglz:)erp(—poditg(c)), (3.67)

q=1

= diz; 3 p; ue(ag) Ho(ag) S(aglz:){1 — exp(—podiug(c))]

q=1

~diziy 3 wn(ag)ua(€) S(agl22)ezp( ~podita(c)
+pi d; " 25 (arl2:)[1 — ezp(—prdiur(c))]
+pe (P71 — 1)zij Ho(ar) S (ar|:)[L — ezp(—prdiur(c))]

—(pr" + diur(c))zijun(c) S(ak|z:)exp(—prdiur(c)).  (3.68)

For a Weibull model discussed in Section 3.4.3, I.5(¢, z;) is given in formula (3.45),

and S(t|z;) and d; are defined just before formula (3.45). The derivatives of S(t[z;)

and IS(t, z;) with respect to a and v are the following:

85 (t|z:)
Oa
95 (t|=z:)
O
95 (t|z:)
0P
9%S5(t)z:)
da?
9%5(t|=z:)
Oady
%S (t|=:)
02

= —5(t|2:) Ho(t)d:log(t/), (3.69)
= S(t|z:;)dia/vHo(t), (3.70)
= —S5(t|z:)Ho(t)d;z, (3.71)

= S(¢|z:) Ho(t)d:(log(¢/7))*(d: Ho(t) — 1),
= S(tz:) Ho(t)ds/v[1 + adog(t/)(1 — d:Ho(2))}, (3.72)

= S(tlz:)dia/y* Ho(t)[dixHo(t) —  — 1], (3.73)



%S (t]z:)
7B
%S (tlz;)
Baaﬂk
85 (t|z;)
008
0IS(t, z;)
da

BIS(¢, z;)
o7

BZIS(t, Z;)

da?

9*IS(t, z;)
dady

6215(t, z;)
0v?

S(tl:) Ho(t) o/ vdszalL — s Ho(2)],
S (¢lz2) Ho(t) log (t/y) dezaxld: Ho(t) — 11,

5 (81:) Ho(¢) s zsslds Ho(8) — 1],

~ [ S(al=:) Ho(s)dslog(z/7)d=

—dey [ eap(—deu)u log udu,

/  S(z|2:) Ho(z ) dice/ vd

&T(1/a+ 1)P(L/e + 1, (t/7)*d)

& *[a D (1/ @) P(1/ e, (¢/7)%) — (¢/7)S(t|z:)],
[ S(alz:) Ho(w)di(tog(a/7))1diHo() — 1]de
dey [ emp(—diu)u* (logu)*{du” ~ du,

[} Salz) Ho(@)1 + alog(z/4)(1 - do(z)))de

d; ‘/:h ezp(—u*d;)u*[1 + alog u(l — d;u*)]dx,

= diafy? /Ot S(z|z:)Ho(z)[d:iaHo(z) — 1)dz
77D (1 e + 2) P(1a + 2, (/7)%d:)

—(+ 1)I'(1/a+ 1)}P(L/a + 1, (t/7)%d:)]
~dia/y(t[v)+* S (t]=:).
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Chapter 4

Smoothing in Estimation of Rate

and Hazard Functions

4.1 Smoothing using a roughness-penalized like-

lihood approach

In previous chapters we have discussed methods using piecewise constant intensity,
rate or hazard functions for interval-grouped recurrent event data and doubly-
censored data. We have noticed that for the purpose of estimating covariate effects
and mean function or survival function, a small number of pieces can usually do
well. However, if our goal is to estimate intensity, rate or hazard functions, a larger
number of pieces is normally required. In addition, estimates of survival, mean
or cumulative hazard functions for small and large ¢ values is often not very good

when only a few pieces are used. Using a large number of parameters makes the

100
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estimation problem ill-posed (O’Sullivan, 1986) in the sense that small changes in
the data may lead to large changes in the estimate. It also yields very "wiggly”
estimates, and the likelihood may often not have a unique maximum. A commeon
strategy to overcome the difficulties is to maximize a roughness-penalized likelihood
(see, e.g., Bacchetti, 1990; Bacchetti and Jewell, 1991; Green and Silverman, 1994).
The general form of a penalized log-likelihood is

log(L) — (1/2)¢R, (=0, (4.1)

where L is the likelihood based on observed data, R is a penalty function represent-
ing the roughness of the hazard function, and ( is a tuning constant that determines
the relative importance of L and R. For models with piecewise constant intensity,
rate or hazard functions, R is usually chosen to be the the sum of squared second

differences among the piecewise constant intensity, rate or hazard:

r—-2

R(p) = > (pr — 2pr41 + pry2)’ = pTKp, (4.2)

k=1

where pi’s are piecewise constant intensity, rate or hazard values, and K is the
corresponding penalty matrix. The penalized likelihood technique balances its fit
to the data against the prior knowledge that rougher estimates are less plausible
(Bacchetti, 1990), and it can be interpreted from a Bayesian viewpoint.

The estimate produced by maximizing a roughness-penalized likelihood is called
a maximum penalized likelihood estimate (MPLE). There are different ways to
compute MPLE. For éxample, Bacchetti (1990) proposed using an EM algorithm
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to maximize a roughness-penalized likelihood in estimating HIV infection rates and
AIDS incubation distribution in a discrete time setting. He also used bootstrap
simulations to get confidence intervals for infection rates. As pointed out by Se-
gal et al. (1994), variance estimates for maximum penalized likelihood estimates
(MPLE:s) can be obtained by treating the penalized likelihood as a usual likelihood
and inverting the observed information matrices. These estimates are derived by
Silverman (1985) using a Bayesian model. He showed that these estimates are the
posterior variance matrices for multivariate normal data. Segal et al. (1994) also
developed a procedure for obtaining these variance matrices when the MPLEs are
obtained through an EM algorithm.

The tuning constant { can be chosen by visually examining the smoothness of
the estimates over a plausible range of { values (e.g., Bacchetti, 1990; Fusaro et al.,
1996), or by an automatic procedure based on some generalized cross-validation
criterion (e.g., Marschner, 1997; Joly et al., 1998).

The above penalized likelihood technique is not the only technique for smooth-
ing. Other techniques include kernel smoothing (e.g., Staniswalis et al, 1997),
weighted locally linear smoothers (e.g., Cleveland, 1979), or spline functions (e.g.,
Joly et al., 1998). However, we will focus on the penalized likelihood technique in
this chapter. In the rest of this chapter, we discuss the application of the penalized
likelihood technique to produce smoothed estimates of intensity, rate or hazard

functions for recurrent event data, current status data and doubly-censored data.
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4.2 Smoothing in estimation of intensity or rate
function for interval-grouped recurrent event

data

For the interval-grouped recurrent event data, we assume that the event process is
a mixed Poisson process as in Chapter 2. The intensity for event recurrence is py
for time interval A; = (@g-;,ax], where Ap’s are of equal length. We choose R to

be the sum of squared second differences among rates:

r—2
R(p) =D (pr — 2pr41 + prs2)’ = pTKp, (4.3)
k=1
where K is equal to WTW with tridiagonal such that wrg = 1, werer = —2,

W k2 = 1.

Therefore the penalized log-likelihood is

= _‘iZnﬁ log pi; + ni log v +log T'(n;, + 1/v) — log ['(1/v)

— (ni. + 1/v)log(1 +vp:) — (1/2)(p" Kp. (4.4)

Our goal is to obtain the maximum penalized likelihood estimate (MPLE) of

(p:ﬁav) by mmzmg IPC'
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The first derivatives of [, with respect to parameters are

al,. al

Bp - '6—p'—CKP,

Obe _ Ol

B ~ 3B’

Al a1

By = B (45)

The minus second order derivatives of l,. with respect to parameters are

—,.  —OP
dpept  Bpipr

+(Ku, klI=1,...,7 (4.6)

=% —3%Upe —8%lpe —3%p. —3%1 . .
d 555, B35 Dpiie’ Bhiae? —du+—» which are the same as the corresponding

minus second order derivatives of the observed log-likelihood.
We apply a two-step algorithm to get MPLE. Suppose the current parameter

values are (p(©, B9 4(9). At Step one we update (p, 3) by Fisher’s scoring method:

wr g\ _ (07 gor\T
(P BNT)" = (07, 897) +

B —8%L,,
B(p®T, B3 o0, GO )T

Olpe
a(p©®,B30)y’

F (4.7)
and at Step two v is updated by

—o,.._, ol
@21 Gp@- (4.8)

v = 5© 4 {
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We iterate between the two steps. The stopping rule is defined as follows: Let

1 0);
o —pe|

lp
é; = max ——
PR 0 40001

o 185 =B

k (0) ’
1B’ +0.001
[ — @)

~ v 4.0.001°

d3 (4.9)

and d4 is the maximum absolute value of the penalized score functions evaluated at
the updated parameters. If max(éd;,d2,9d3) < ¢ and 44 < €, where ¢, ¢; are small
positive numbers, then stop iterations and claim that MPLE is found. Here we use

€ = 1.0 x 10_6 and €2 = 1.0 x 10_4.

4.2.1 An example

We apply the penalized likelihood approach to the bladder cancer data discussed in
Chapter 2. We divided the whole study period (0, 53] into 53 pieces of equal length.
Recall that covariate z; is the treatment indicator; z; = 1 if the patient is in the
thiotepa group; z; = 0 if the patient is in the placebo group. z; is the number
of initial tumors present at randomization; 2; is the diameter (in centimeters) of
the largest initial tumor. z; and z; were centered before entering the estimation
procedure. Figure 4.1 shows the estimates of the baseline rate function using the
penalized likelihood method with different degrees of smoothness. ¢ = 1.0 x 10*
produces rates with oscillations. { = 1.0 x 10° gives rates that are reasonably
smooth. ¢ = 1.0 x 10° gives rates that have little curvature.

Setting ¢ = 1.0 x 10° gives 8 = (—0.9207,0.3567, 0.0043), with standard errors
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Figure 4.1: Monthly baseline recurrence rates estimated by penalized likelihood

method with { = 1.0 x 10* (solid curve), { = 1.0 x 10° (short dashed curve), and
¢ = 1.0 x 10° (bold dots).

(0.37,0.105,0.13). The variance of the random effect is estimated as 2.43, with
standard error 0.500.



CHAPTER 4. SMOOTHING 107

4.3 Smoothing in estimation of hazard functions
for current status data and doubly-censored

data

We will consider the doubly-censored data in this section, although the procedure
for current status data is very similar. The penalized log-likelihood function for

doubly-censored data is:

where K is the penalty matrix as defined before, {(p, 3) is the log-likelihood based
on observed data, p is the piecewise hazard. The maximum penalized likelihood
estimate (MPLE) of (p,) can be obtained by maximizing l,.. A derivative- free
method (e.g., the downhill simplex method of Nelder and Mead, see Press et al.
(1990)) can be applied to achieve this goal.

4.3.1 A Simulation Study

To assess the performance of the MPLE:s in piecewise constant models, we carry out
a simulation study for doubly-censored data. The design of the study is the same
as the one in Section 3.5, with the same four cases. We fit models with piecewise
constant hazards for T'. The number of pieces is 25 and the values of endpoints ax’s
are chosen to be the percentiles of the true distribution of 7' that corresponci to
CDF values 0,0.036,0.072,...,0.864. The penalized likelihood technique was used
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to get MPLEs of the hazard function. The tuning constant is set to be 10* after
trying several different { values for a simulated data set in Case 4. For this data
set, Figure 4.2 shows the the true log-logistic hazard function and its estimates by
piecewise constant models with tuning constant being 10* or 10°, and its estimate
by a Weibull model. We can see that the two estimates by piecewise constant
models are very close in the middle but slightly different at the tails. Both give a
very good approximation to the true hazard function in the range of roughly (3, 12],
but are not as good for the tails (where there is little data). The estimated hazard
from the Weibull model can not of course match the pattern of the true hazard
function.

Figure 4.3 gives the estimates of survival function for the same data set. Clearly,
piecewise constant models with both tuning parameters give good estimates to the
true survival function, but the Weibull model does not do so well, especially in the
middle range of T'.

Tables 4.1 to 4.4 give the bias, asymptotic standard error (ASE) and sam-
ple standard error (SE) for the estimates of survival functions at five points (5th,
25th,50th, 75th and 95th percentiles of the true distribution) for the four cases. The
asymptotic standard errors are the square roots of the the diagonal elements of the
estimated asymptotic variance matrix, which is computed as the inverse matrix of
the minus second partials of the penalized log likelihood function. The piecewise
constant models with smoothing give good estimates for survival functions. We
notice that the asymptotic standard errors of the 5(t)’s are larger than the sample

standard errors. This suggests that asymptotic standard errors based on the minus
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second derivative matrices of the penalized log-likelihood are not valid. See the
discussion in the following section. We suggest using the bootstrap estimates of the
standard errors instead.

Figure 4.4 shows the 95% pointwise confidence interval for the true hazard
function for Case 4, based on 0.025th and 0.975th quantiles of individual estimates
of pi.’s in the 500 simulations. The interval covers the true hazard function, except
very close to t = 0. The interval is quite narrow in the middle, but becomes wider
for t greater than 14, indicating a lack of information for the hazard when ¢ is larger

than 14.

Table 4.1: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T' at five points based on 500 simulations, in
Case 1: Weibull distribution, w =1, B =17.99

P-C model
t S(t) | Bias (x10°) | ASE (x10°) | SE (x10%)
1.8116 | 0.95 -3.02 23.1 18.2
4.7216 | 0.75 1.24 39.8 24.0
7.6960 0.5 0.460 47.3 22.4
11.311 | 0.25 -1.73 39.9 6.54
17.3548 | 0.05 3.35 24.5 6.85

4.4 Discussion

In Section 4.3.1, we noticed the discrepancy between the the asymptotic standard
errors (ASE) and the sample standard errors (SSE) for 5(¢). Based on Tables 4.1
to 4.4, the ASE is always larger than the SSE and the ratio of ASE over SSE can
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Figure 4.2: Estimates of the true log-logistic hazard function (points) by piecewise
constant models with tuning constant { = 10* (solid line) or { = 10° (dotted line),
and by a Weibull model (dashed curve), for a simulated example in Case 4.

be as high as 5. It indicates that the ASE based on the minus second derivative
matrix of the penalized log-likelihood function is not valid.

An alternative approach is to compute a bootstrap estimate of standard errors
(e.g., Efron and Tibshirani, 1993). Suppose we have a sample of size n, ¥ =
(1,Y,...,Y,) and we have computed an estimate of S(¢) for some time ¢£. The
estimate is denoted as S(t). Now we want to compute the bootstrap standard error

of § (t). The steps are the following. First we generate M independent bootstrap
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Figure 4.3: Estimates of the true log-logistic survival function (points) by piecewise
constant models with tuning constant { = 10* (solid line) or { = 10° (dashed line),
and by a Weibull model (dotted curve), for the same data set used in the previous

figure.

samples Y™, ..., Y™ where a bootstrap sample Y** is a random sample of size
n drawn with replacement from the original sample Y. Then for the kth bootstrap
sample, we compute an estimate of S(t), call it 5’,‘;(t). Finally we compute the
empirical standard deviation of the M samples and use it as an estimate for the

standard error of $(¢).

M -
ses = [3_(5(t) — 57(8))*/(M — )%,

k=1
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Figure 4.4: The dotted curve represents the true log-logistic hazard function used
in simulations for Case 4. The solid line represents the average values of the 500
estimated hazard functions by a piecewise constant model. The dashed lines are
the 0.025th and 0.975th percentiles of the 500 individual estimated hazard pieces

by the piecewise constant model.
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Table 4.2: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T' at five points based on 500 simulations, in
Case 2: Weibull distribution, w = 6, B = 17.99

P-C model
t S(t) | Bias (x10%) | ASE (x10%) | SE (x10°%)
1.8116 | 0.95 -13.8 40.3 27.1
4.7216 | 0.75 2.19 47.6 34.9
7.6960 0.5 1.61 52.8 33.0
11.311 | 0.25 -4.54 42.5 10.8
17.3548 | 0.05 3.76 27.0 12.8

where 5*(t) = L =M, 5i(¢).

We generated five datasets of size 100 as in Case 1 of the simulation study
in Section 4.3.1. For each dataset, we fitted a piecewise constant model with 25
pieces and the maximum penalized likelihood estimates of p were computed with
tuning parameter ¢ = 10%. $(t), where t is one of the 5th, 25th, 50th, 75th, 95th
percentiles, was computed as in Section 4.3.1. Then the bootstrap estimates of
the standard errors for §(¢) were computed based on 100 bootstrap samples for
each dataset. The results are listed in Table 4.5. We can see that the bootstrap
estimates of the standard errors of S(t) are reasonably close to the sample standard
errors of §(t) based on 500 samples in Table 4.1. This suggests that the bootstrap
estimates of the standard errors are valid for this setting, and we recommend the
use of bootstrap estimates of the standard errors when the maximum penalized
likelihood approach is used. However, since we just computed a few examples here,

more Intensive study on the standard error estimates is required to support our
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Table 4.3: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T' at five points based on 500 simulations, in
Case 3: log-logistic distribution, w = 1,B = 20.507

P-C model
t S(t) | Bias (x10°) | ASE (x10%) | SE (x10%)
2.2665 { 0.95 0.187 23.6 20.3
47216 ; 0.75 6.86 38.2 27.5
7.3080 0.5 2.81 46.7 194
11.311 | 0.25 0.446 40.3 7.91
23.5634 | 0.05 -8.34 24.3 10.7

recommendation.
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Table 4.4: Bias, asymptotic standard error (ASE) and sample standard error (SE)
of estimates of survival function for T at five points based on 500 simulations, in
Case 4: log-logistic distribution, w = 6,B = 20.507

P-C model
t S(t) | Bias (x10%) | ASE (x10°%) | SE (x103)
2.2665 | 0.95 -14.4 44.0 32.6
4.7216 | 0.75 6.15 47.4 41.2
7.3080 | 0.5 0.413 52.1 26.8
11.311 | 0.25 -4.41 41.9 11.1
23.5634 | 0.05 -8.01 25.2 15.5

Table 4.5: Bootstrap estimates {x10%) of the standard errors of $(£) based on
piecewise consvant hazard models for five datasets

t (S| I | O ]IV] Vv
1.8116 | 0.95 | 17.0 | 18.3 | 27.6 | 184 | 22.3
47216 | 0.75 | 21.4 | 27.7 | 31.6 | 32.2 | 37.8
7.6960 | 0.50 | 22.4 | 26.1 | 25.3 | 29.9 | 31.7
11.311 | 0.25 | 8.00 | 6.72 | 9.63 | 12.0 | 8.69
17.3548 | 0.05 | 9.37 | 6.18 | 7.12 | 106 | 7.79




Chapter 5

Conclusion and Further Research

5.1 Conclusion

In this thesis, we have discussed models with piecewise constant hazard, intensity
or rate functions for event history data when event times are interval-censored, par-
ticularly for interval-grouped recurrent event data, current status data and doubly
censored data.

We have presented two approaches for the interval-grouped recurrent event data.
One is mixed Poisson process estimation; the other is a robust method that requires
only specification of the mean structure and covariance structure among recurrent
event counts. Both approaches incorporate piecewise constant rate functions. The
robust method performs as well as the maximum likelihood method. However,
variance estimation and confidence intervals based on maximum likelihood are non-
robust, and the robust method should be used if the event process may not be a

mixed Poisson process. The use of piecewise constant rate functions with just

116
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five to ten pieces provides excellent estimation of regression coefficients and mean
functions.

We have developed methods that use piecewise constant hazard functions to
estimate the distribution function of the induction time for standard current status
data and doubly censored data. Regression models are also developed to assess
covariate effects. Maximum likelihood estimates are obtained using a derivative-
free optimization method. Our study shows that piecewise constant hazard models
with five to ten pieces can provide good estimates of regression coefficients and
survival functions when the time is not too small. These models are robust to the
distributional form of the induction time. Therefore we recommend the use of the
piecewise constant hazard models if we have any doubt about the distributional
form of the induction time.

We have also investigated smoothing by the penalized likelihood approach. It
is shown that combining smoothing and the piecewise constant models with more
pieces can provide good estimates for the intensity, rate or hazard functions. Again
this method is robust to the distributional form of the event time.

In summary, we recommend use of piecewise constant rate or hazard functions
for event history data when event times are interval-censored and when we have
doubt about the true form of rate functions or hazard functions. A model with five
to ten pieces is usually good enough for the estimation of regression coefficients,
mean functions or survival functions. For the estimation of rate functions or hazard
functions, we recommend using of smoothing in a piecewise constant model with

more pieces.
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5.2 Further Research

There is further work to be done in this area. We outline some related problems

in Section 5.2.1 and an extension of our method to zero-truncated recurrent event

data in Section 5.2.2.

5.2.1 Some related problems

(1) Valid estimates of variation for maximum penalized likelihood estimates in the
piecewise constant models.

In Chapter 4, we noticed that the standard errors for estimates derived from
the minus second derivative matrices of the penalized log-likelihood may not be
valid. Our solution to this problem is to use a bootstrap estimate of the standard
error. However, it would be interesting to investigate the asymptotic theory of the
maximum penalized likelihood estimates (MPLEs) in the piecewise constant models
and derive an estimate of the covariance matrix of the MPLEs.

(2) Construction of confidence intervals for intensity, rate, or hazard functions
when penalized likelihood approach is used.

This problem is closely related to the first problem. In Chapter 4, we constructed
pointwise confidence intervals for hazard functions based on percentiles of estimated
hazard function values in simulations. It would be useful to study whether we can
construct confidence intervals based on asymptotic theory of the estimates and
what are the coverage properties of these confidence intervals,

(3) Developing some diagnostic tools for model checking.

It is important to assess the model we have fitted. In Chapter 2, we have
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defined some residuals for the interval-censored recurrent event data. However, for
the current status data and doubly censored data, it is difficult to define appropriate
residuals, since lifetimes are never observed exactly for these data.

(4) An automatic procedure to choose the tuning constant in the penalized
likelihood approach.

The tuning constant ¢ in the penalized likelihood controls the level of smooth-
ing. In our examples it was chosen by visually examining the smoothness of the
estimates over some plausible values of (. An automatic procedure of selecting ¢
would be useful. Marschner (1997) proposed choosing the tuning constants by min-
imizing a generalized cross-validation statistic A/k?, where A is the (unpenalized)
deviance corresponding to the penalized likelihood estimates and k is the degree of
freedom as defined in Green (1987). However, this procedure requires the penalty
matrices to be of a certain form, and under this condition, the maximization of the
penalized likelihood is equivalent to fitting a model where the parameters are cubic
spline functions. Joly et al. (1998) selected the tuning constants by maximizing an
approximate cross-validation score based on log-likelihood. Their approach requires
approximating the solution of the maximum of the penalized likelihood on a basis
of splines. So none of their formulations apply directly to our situation, since we

do not want to assume p to be a spline function.

5.2.2 Zero-truncated recurrent event data

Hu and Lawless (1996) have considered estimation from zero-truncated recurrent

event data where the event process {N;(£),t > 0} of the ¢th unit has an observation
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window (0, ;] and the process is unknown to the observer unless at least one event
has occurred in (0,7;]. The total number of units under consideration is M but
the value of M is unknown. The available data include the time of events t;;
(7 = 2,...,n;) and end of observation time 7; for unit 7z, ¢ = 1,...,m. Hu and
Lawless (1996) have proposed several approaches to estimate the rate and mean
functions, including zero-truncated Poisson process models with piecewise constant
rate assumption. Below we outline application of mixed Poisson process models to
the problem.

We assume that {N;(t),t > 0},7=1,...,m, are independent Poisson processes
with intensity function o;Ao(t), wherer «;,7 = 1,...,n are independent Gamma
variables with mean 1 and variance v. Let G(z) be the CDF of a and A(t) =
Ji A(s)ds be the cumulative intensity function. A(t) is also the mean function of
{N:(t)}. The likelihood based on observed data £;;,7 = 1,...,ni(n; > 0) and =,

t=1,...,mis

L = ]:[ L; = P'I‘Ob{til, ... ,t,-n_.ln; > 0,‘7‘;}

=1

o Joo ITGe; Ao(tig) ol exp(—asho(7:))dG(ex)
I o —ep(Cashotr)ldG () 51
It can be simplified as
o I Ae(t)v™ [T, (v + k — 1) (5.2)

L= @ ohe(m)) 7 - DA T ohalr)™

=1

Suppose a piecewise constant intensity function is used, that is, Ao(t) = p&, if

t € (@, @41}, for 0 = a; < a3 < ... < a,. Then Ao(t) = Y7, prur(t), where
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ui(t) = maz(0, min(ar+1,t) — ax)). The log-likelihood function is

U= 3305 Gi(ti)log pr + 3 log v
i=1 j=1 k=1 =1
+Y > log(vt+k—1) =3 n:log(l + vAo(r))
=1 k=1 =1
— > log((L +vho(m))H" — 1), (5.3)
=1

where &;(t) = 1 if t € (a, ar+1]; Ox(t) = 0 otherwise. The log-likelihood function
can be maximized by a derivative-free optimization algorithm to get the maximum
likelihood estimates of (pi,---,pr,v). The estimate of the mean function can be
computed as Ao(t) = Sf_, Arux(t). Inference can made based on the asymptotic

normality of the maximum likelihood estimates.
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