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Abstract 

Event history data aise in studies where a collection of individuah, each experi- 

encing certain events or moving among a finite number of States, is followed over a 

period of time. The data consist of the number, time, type and sequence of events 

experienced by individu&, although the data are often incompletely observed. One 

example of such data cornes from classical survival andysis, where individu& move 

fkom one state to the other, such as from alive to dead, or fiom healthy to diseased. 

The general event history data may contain information on events of multiple types 

or repeated occurrences of the same event (recurrent events) . 

The purpose of this thesis is to present methods using piecewise constant rate, 

intensity or hazard functions for event history data when events are interval-censored. 

These methods do not rely too heavily on parametnc assumptions, and they are 

easier to Mplement than the nonparametric methods. In particular, we discuss the 

methods using piecewise constant rate, intensity or hazard functions for two types 

of event history data; one is interval-grouped recurrent events, the other is curent 

status data and doubly-censored data. 

Interval-grouped recurrent event data arise in longitudinal studies where sub- 

jects repeatedly experience a specific event and the events are observed only in 

the form of counts for intervals which can vary across subjects. We present two 

approaches for estimating the mean and rate fnnctions of the recurrent event pro- 

cesses. One is mixed Poisson process estimation. Another is a robnst method that 

requires only specification of the mean structure and covariance structure among 

recurrent event counts. Piecewise constant rate functions are incorporated in both 



approaches. The two approaches are compared in a simulation study and in an 

example involving superficial bladder tumors in humans. 

In many studies, interest focuses on the time between two successive events, 

the initiating event and the subsequent event. Current status data arise when the 

time of the initiating event is observed, but the only information for the subsequent 

event is whether it has occurred sometime between the initiating event and a single 

subsequent monitoring time. Doubly-censoxed data refer to data where both events 

are not obswed directly, but are both interval-censored, or the initiating event is 

intend-censored and the subsequent event is right censored. We discuss methods 

with piecewise constant parametrization to estimate the survival function of the 

time between the two events for current status data and doubly-censored data. 

Ditferent regression models are also developed. Simulation results show that our 

methods are robust to mode1 misspecification. These methods are also applied to 

a data set &om an AIDS study. 

Finally, we explore the issue of getting smoother estimates of intensity, rate 

or hazard functions. A penalized likelihood approach is applied to the piecewise 

constant models. It is shown in a simulation study that this approach provides 

satisfactory estimates of the intensity, rate or hazard fnnctions when events are 

interval-censored. 
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Chapter 1 

Introduction 

Event History Data 

Event history data arise in studies where a collection of individuals, each experi- 

encing certain events or moving among a finite number of states, is followed over 

a period. The data consist of the number, time, type and sequence of events (k, 

changes of states) experienced by individuals. This type of data is quite common 

in axeas such as medicine, reliability, manufacturing, sociology, and dernography. 

Some examples are: in clinical trials, the study of mdti-type recurrent skin lesions 

( Abu-Lib deh et al, 1990) ; in animal carcinogenicity experiment s, the recurrence of 

tumors on rats (Lawless, 1987b); in the study of acquired imrnunodeficiency syn- 

drome (AIDS), the estimation of the incubation period of A I D S  (Bacchetti, 1990; 

Bacchetti and Jewell, 1991; Frydman, 1995); in manufactnring, the estimation of the 

rate of automobile warranty daims (Kalb3eÏsch e t  al., 1991; Lawless and Nadeau, 

1995). 



INTRODUCTION 

The study of event history data is a fairly broad area (e-g., Andersen et al., 

1993). A wd-known sub-field of this area is classical survival analysis, which 

involves individuals moving from one state to the other, such as fkom alive to dead, 

or from healthy to diseased. This thesis discusses more complicated event history 

data which may contain events of several types or recurrent events. We deal with 

so-called incomplete data. In particular, our main objective is to provide methods 

for situations where events are inted-censored, i.e., where the events are known 

only to lie in certain tirne intenals. Examples illustrating such data are given 

below. 

1.1.1 Incidence of Nausea 

The nausea data set, described by T h d  and Lachin (1988), was fiom the Na- 

tional Cooperative Gahtone Study (NCGS). The NCGS was a multicenter, double- 

masked, placebo-controlled clinical trial. Patients with cholesterol gallstones were 

randomly assîgned to one of the three groups: high-dose chenodiol, low-dose chen- 

odiol or placebo. Patients were scheduled to visit their clinical center at successive 

follow-up dates and to report the number of episodes of nausea since their last 

visit. Since patients were often early, late, or missed scheduled visits, the actual 

visit times were irregular. One objective of the study was to assess the impact of 

treatrnent on the incidence of nausea. 

The data set given by Thall and Lachin (1988) consists of the successive visit- 

times and the counts of episodes of nausea in each successive time interval during 

the first yea.  of follow-up. The patients involved had floating gahtones, and were 
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either in the high-dose chenodiol or in placebo gronps. In this example, each patient 

could experience more than one occurrence of the same type of event. Moreover, 

the exact occurrence times of nausea were unknown; instead, only the counts in 

successive intervals were known. 

1.1.2 Bladder Tumor Data 

Byar (1980) discussed a randomized dinical trial for patients with bladder cancer; 

see also Sun and Wei (1996). AU patients, who had superficial bladder tumors at the 

time of entering the trial, had th& tumors removed and were assigned randody 

to one of three treatments: placebo pills, pyridoxine, or thiotepa. At  subsequent 

follow-up visits any tumors noticed were removed and the treatment was continued. 

The data consist of the months from the beginning of the study until each visit, the 

number of tumors present at each visit, the number of initial tumors at the time of 

randomization in the trial and the diameter of the largest of these tumors, for each 

patient. Once again, the exact times of tumor occurrence are not known. 

1.1.3 A Rodent Tumorigenicity Experiment 

Lindsey and Ryan (1993) presented a data set fkom a rodent tumorigenicity exper- 

iment conducted by the National Center for Toxicological Research. In this study, 

female mice were randomized to a control group or one of seven treatment groups, 

where the treatments are the known carcinogen PAAF at ditferent dose levels . 
The omets of tumors cannot be observed dlectly; instead, tnmor presence can be 

detected only at the time of death or sacrifice. Hence the data set only consisted 



of numbers of deaths and sacrifices with and without tumors for each of five tumor 

types. The dose d e c t  on tumor occurrence rate is one of the research interests. IR 

this example, each mouse might experienee several types of events, and the times 

of tumor onsets were only known to be in an i n t e d  

1.1.4 Toronto Sexual Contact Study 

The Toronto Sewal Contact Study (see Coates e t  al., 1990; Yan and Lawless, 

1992; Sun, 1995), conducted between 1984 and 1991, was a follow-up study of men 

infected with the human immunodeficiency virus(HIV). Two hundred and forty 

nine healthy homosexual or bisexual men who had at least one sexual contact 

with men diagnosed with AIDS were recruited into the study cohort between 1984 

and 1985. Among thern, 143 men were HIV positive at the time of recruitment, 

and 16 men seroconverted (ie, became HIV positive) during the study. We shall 

discuss only these 159 HIV positive subjects in this thesis. It was presumed that 

these men contracted the Wus fiom their homosexual partners who had AIDS. 

For the subjects who were HIV positive at enrobent,  the t h e  of HIV infection 

was assumed to  lie in khe interval [XG, XR;] defined by the dates of the subject's 

h s t  and last sexual contacts with his sexual partner (index case). For the subjects 

who seroconverted during the study, the BN infection t h e  was considered to be 

observed and equal to the seroconversion tirne, although the actual H I '  infection 

time was slightly earlier. Of the 159 subjects, only 49 were diagnosed with AIDS 

during the study and the times of AIDS diagnosis were known; the other subjects 

were AIDS-free by the date of 1 s t  follow-np. The ages of subjects at the tirne of 
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enrollment were recorded as a covariate. 

In these examples, each subject can experience more than one occurrence of the 

same type of event, or each subject can experience several types of events. More- 

over, the exact times at which the events occur may not be observed; that is, the 

data may be under some kind of intd-censoring,  s p e d e d  more precisely in Sec- 

tion 1.4. The parpose of this thesis is to develop relatively simple and appropriate 

methods for such event history data. We will mainly focus on two kïnds of incom- 

plete event history data; one is interval-grouped recurrent event data, such as in 

the incidence of nausea example, and the other is so-called doubly-censored data 

such as in the Toronto Semal Contact Stndy example. We develop methodology 

based on piecewise-constant intensity, hazard or rate fimctions which is robust and 

rather easy to use. We will briefly review the literature on event history analysis in 

Section 1.2, introduce the methods we propose to develop for event history data in 

Section 1.3, and discuss some patterns of censoring and truncation in Section 1.4. 

Finally in Section 1.5, we will specifjr the objectives of the thesis and give the plan 

for the remaining chapters. 

1.2 Review of Literature 

The main objectives of event history analysis include the foIlowing : 

1 (a) to estimate occurrence (incidence) rates of the events of interest; 

or 

1 (b) to estimate the conditional occurrence rates (intensities) of the events 



given the previous history; 

2 (a) to assess covariate effects on the occurrence rates of the events; 

or 

2 (b) to assess covariate dec t s  on the conditional occurrence rates of the events 

given the previous histo~y. 

Methodology in classical survival analysis where there is a single event for each 

subject has been discussed by many authors (e.g., Kalbfleisch and Prentice, 1980; 

Lawless, 1982; Cox and Oakes , 1984). Approaches include Cox's partial likelihood 

analysis (Cox, 1972a) for the semiparametric proportional hazard models, paramet- 

ric and nonparametric methods based on accelerated failure time models, and so 

on. In the following we will bnefly review models for more general event history 

data, such as recurrent events or multiple types of events. 

Let us consider a single subject. Suppose a type of event may repeatedly occur 

to  this subject. Let N ( t )  be the number of events occurred over time period (O, t ] ,  

and Tl < Ta < . . . be the occurrence times, where the Ti's are measured fkom the 

same tirne origin for this subject. The multiple types of events can be described by 

a multivariate pmcess {N(t ) )  = {(Nl(t), . . . , N k ( t ) ) ) ,  where Nj( t )  is the number 

of events of type j occurred for a subject up to t h e  t. Assume the occurrence time 

sequence for the jth type of events is Tjl < Tj2 < . . .. 

Models for event history data include intensity-based stochastic models and 

marginal models. We will discuss intensity-based stochastic models h s t  , then 

marginal models. F indy  we will mention fÎailty models which involve random 

efFects. 



INTROD UCTION 

1.2.1 Intensity-Based Stochastic Models 

Full or complete models for event occurrence can be specified in terrns of event 

intensity functions (Aalen, 1978; Fleming and Harrington, 1991; Andersen et al., 

1993). These specfi the cornplete probabilistic structure of the event processes. 

The conditional intensity function for a simple type of recurrent event can be in- 

terpreted as the instantaneous occurrence rate of the event at time t ,  conditional 

on which is the process history up to just before time t. That is, 

Ht may indude previous events, covariate dues ,  and possible censoring up to t h e  

t. In an intensity based modd, X(t; HL) is specified to be of some particular form. 

Let us consider the case of recurrent events. 

A modulated nonhomogeneous Poisson process model with multiplicative in- 

tensity structure assumes that { N ( t ) )  is a Poisson process with intensity function 

A(t ;  Ht) = Xo(t)g(z(t); P ) .  Here &(t) is a nomegative deterministic function, z(t) 

may indude the values of fixed and time dependent covariates, and g is a positive 

valued smooth fimction. 

A modulated renewal process model (Cox, 1972b) on the other hand assumes 

that the intensity fimction is of the form X(t; Hf) = &(t - tN~t-))g(a(t); p). If z(t)  

is further assumed to be a tirneindependent covariate, the renewal process impIies 

that the intensity function can be expressed in t e r m s  of inter-event times, since 

t - t~( t - )  is the time since 1 s t  event. 

Aden (1978); Fleming and Harrington (1991); Andersen et d (1993) discussed 
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multivariate counting processes with a multiplicative intensity assumption. Let 

{N(t)) be a multivariate counting process, where N ( t )  = (IV&), . . . , Nc(t)). The 

intensity function for the j t h  component is defined as 

The multiplicative intensity assnmption states that Aj(t; Ht) = aj(ti Z(t))Yj(t), 

where aj(t; Z( t ) )  is a nomegative fûnction depending on parameters and covariate 

valoes, and E;- is a predictable function, which means the value of %(t) is fixed 

just before t; also assume 5 does not involve parameters. Usually E;-(t) contains 

information about whether or not the subject is at risk for the jth event occurrence. 

So-called multi-state models are used to describe situations where events for 

individuals correspond to changes of th& "state" in life. A continuous time finite 

state Markov model (e-g., Ross, 1983; Andersen et  a l ,  1993) requires that for each 

individual, transitions between states foUows a Markov process; i.e., the conditional 

probability of transition from one state to another depends o d y  on the cunent 

t h e  and state oceupied, not on the previous process history. Let X(t)  be the state 

occupied at time t  by a given subject. The Markov process { X ( t ) )  satisfies, for 

arbitrary times O 5 s 5 t ,  

Pr{X(t)  = jlX(s) = i, X(T), O 5 T < S) = Pr{X(t) = j(X(s) = i). 
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The transition intensity of moving fiom State i to State j at time t is defined as 

Definitions of the transition intensities may more generally indude covariates. Con- 

tinuous time Markov models have been widely applied to event history data (e-g., 

Andersen et  al., 1993). 

A semi-Markov process mode1 (e-g., Ross, 1983; Andersen et al., 1993) requires 

that the conditional probability of a transition fiom one state to another at tirne 

t depends only on the current state occupied and the time since that state was 

entered. They are also widely used in some areas. 

1.2.2 Marginal M o  dels 

Conditional or intensity-based models focus on the distribution of a process variable 

yt at time t, conditioned on the process history Ht up to t. In contrast, marginal 

models focus on the disfibutions f (yt ( q ) ,  where yt is a response variable associated 

with the process at time t, and Q is a conriate vector at time t. More generdy one 

can consider responses (and covariates) associated with time intenmls, for example 

the number of events in an interval, or outcornes at h o  or more specified points of 

time. Often the first two moments of the yis, that is , the mean pt = E ( ~ ~ 1 % ~ )  and 

covariance matrix V ~ T  (yt lzt) conditional on covariates, are modeled (e.g., T h d ,  

1988; T h d  and Vail, 1990; Lawless and Nadeau, 1995). Another approach is to 

mode1 the marginal hazard function of s p e d c  event times (e-g., Wei et al., 1989; 

Liang et al., 1993; Lin, 1994). For a counting process, where N ( t )  is the number 
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of events occurred up to time t and z( t )  is an "external" covariate process that 

is not influenced by the event process { N ( t ) ) ,  the mean fimction of the counting 

process is the expected number of events in the corresponding t h e  intenml, that is, 

p( t l z ( t ) )  = E { N ( t )  l a (s ) ,  s 5 t). The rate fmction ~ ( t l z ( t ) )  is defined as p ( t l r ( t ) )  = 

Q(W) )Pt- 
Ware et  al. (1988) discussed the distinction between marginal models and 

conditional models in a multi-state framework related to a study about asthma 

symptoms. Lawless (1995) discussed marginal and conditional models for recurrent 

event S. 

1.2.3 Frailty Models 

Observed covariates are often used to explain or model heterogeneity in event oc- 

currences across different individu&. h o  ther characteristic of event his tory data 

is the existence of uno bserved individual het erogeneity, or inter-individual varia- 

tion not explained by the obsemed covariates. This individual-level heterogeneity 

is often termed fkailty in event history andysis. The sources of such heterogeneiw 

indude biological differences, unobserved or nnrecorded environment al conditions, 

unobserved covariates, covariates rneasured subject to error, and so on. In the 

multivariate case, the latent variable or variables induce both correlation among 

the count s and extra-Poisson variation. A st  atistical mo del which indudes random 

effects representing fiailties is ofken c d e d  a Bailty model in event history analysis. 

Usually the fiailties are assumed to be tirne-constant, independent of covaxiates, 

and to act multiplicatively on the baseline intensity. 
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Frailty models have received considerable attention in the literature. They have 

been used to deal with the correlation among recurrent event times experienced by 

the same subject, or the association among event times in a subgroup of subjects, 

for examph, siblings, or husbands and wives (Klein, 1992). Pickles and Crouchley 

(1994) gave a review of frailty models in survival and event history data. Aden 

(1994) showed different ways to model fiailty in survival analysis. Clayton (1994) 

discussed different methods for the analysis of recurrent event data and showed that 

frailty models can be seen as instances of generalized linear mixed models. Ander- 

sen et al. (1993) presented fi* model construction and maximum likelihood 

es tirnation for counting processes. Lawless (1987b) discussed fkailty for Poisson 

models, and Aalen and Husebye (1991) and F o h a n n  and Goldberg (1988) for 

renewal models. 

Ignoring frailty dec t s  often results in biased estimates of covariate effects, or 

biased estimates of risk of failue. Follmann and Goldberg (1988) gave an example 

where the ignorance of fiailty resulted in a spurious decreasing hazard rate for 

observed failure t k e s .  

1.3 Our methods for event history data 

The basic idea of our methods is to use a so called weakly parametnc form, in par- 

ticular, a piecewise constant form, for baseline intensity, rate or hazard functions. 

That is, there is a pre-spedied sequence of constants O = a0 < ai < < a, < 00, 

such that a baseline event intensity (or rate, or hazard) A&) = pk for t E Ak = 

( u ~ - ~ ,  ai]. Using a weakly parametric f o m  for a baseline intensity avoids strong 



parametric assumptions and gives a reasonable approximation to the true base- 

line intensity function. Moreover, weakly parametric models avoid many problems 

associated with non-parametric methods for incomplete event history data. 

Piecewise constant parametrization has been applied to the study of event his- 

tory data by many authors; we mention a few related to our work. Lindsey and 

Ryan (1993) developed a three-state fiess-death model using piecewise constant 

baseline transition intensity. Schluchter and Jackson (1989) considered a piece- 

wise constant hazard model for right-censored survival data when covariates are 

categorical and partially observed. Carstensen (1996) discussed fitting of regres- 

sion modek with piecewise constant hazards to interval censored survival data, and 

implemented the models in standard statistical software. Kim (1997) discussed 

application of the EM algorithm to find maximum likelihood estimates for the pa- 

rameters in a piecewise constant hazard model for interval-censored survival data. 

Hu and Lawless (1996) used piecewise constant models for recnrrent events. 

Under the piecewise constant intensity assumption, the estimated intensities 

may vary substantially between adjacent intervals when the number of pieces is 

large. A smoothed estimate of intensities can be obtained by maximizing the pe- 

nalized log-likeliho od fimction 

where L is the likelihood function based on the data, J measures the roughness 

of the baseline intensity function, and ( is a tuning constant. Penalized 1Lkehhood 

balances smoothness of the intensity function against the fit to the data. Green and 



Silverman (1994) gave an oveMew of the roughness penalty approach (induding 

penalized likelihood) to a wide range of smoothing problems. Examples of appli- 

cation of penalized likelihood approach in event history analysis inchde Bacchetti 

(1990), and Bacchetti and Jewell(1991), who discussed estimation of the incubation 

period of AIDS using penalized likelihood; and Fusaro et al. (1996), who discussed 

maximum penalized Likelihood estimation of hazard hctions. 

1.4 Patterns of Censoring and Truncation 

It is necessary to consider how the data on events for an individual are observed in 

order to provide valid inference. Since we have to stop observation at some time 

T ,  or we may not start observation 5om the time ongin of the event process, or 

Hie may not observe the event process continuously, some information about events 

may be missed. This creates "incompleten data. Censoring and tnincation are 

common ways to create L'incomplete" data on events. 

There is a considerable amount of discussion on censoring and truncation pat- 

terns in the fiterature (e-g., Aden and Husebye, 1991; Andersen et al., 1993). In 

the following we briefly discuss some patterns of censoring and tnincation in event 

his tory data. These patterns are: right censoring, left censoring , interval censoring, 

right truncation, and leR truncation. 

If we stop observing the event process of an individual at time TI, we Say that 

the event process is right-censored. If r1 is fked in advance, or a random variable 

independent of the event process, or a random variable depending only on earlier 

observations of the event process, we Say that TI is a stopping time and the right- 
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c e n s o ~ g  is non-informative- The censoring time 71 can be treated as if it is h e d .  

If we start observing the event process of an individaal at tirne V that is larger 

than the time ongui  of the event process, we Say the event process is left-censored. 

If a lifetime is le&-censored, we know only that the lifetime is less than the time of 

starting observation. An inference based on the event process alone is valid only if 

V is a stopping time. The baboon descent data, given by Andersen et al. (1993), 

was an example of left censoring. Troops of baboons in Kenya sleep in the trees 

and descend for foraging at some time of the day. Observers often arrive later in 

the day than this descent and they can only know that descent happened before 

Interval-censoring refers to the case that the event process of an individual is 

o d y  obsenred at discrete times t i  < ta < . . . over some time interval [TO, r1]. h the 

incidence of nausea example in Section 1.1.1, the episodes of nausea are i n t d -  

censored. 

Truncation is more generally a selection or sampling effect. With truncation, 

an individual is observed over a thne interval [TO, ri] conditional on some event A 

having occmed. If event A has not occurred, we wodd not observe this individual 

at ail or we wodd not include this individual in the sample. In particular, the 

lifetime Ti for individual i is le f t -bca ted  if the condition for observing Ti is 

Ti > Ky for some K. For example, in the Toronto Sexual Contact Study, the 

AIDS times were left-truncated since ody men who had not been diagnosed with 

AIDS were allowed to enter into the study. Similady, the lifetime for individual 

i is right-truncated if the condition for observing Ti is Ti < g, for some K. For 
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example, in a transfusion-related AIDS study, suppose an individual was infected 

with EEV at time Tl, developed AIDS at time Tz, and the dosing date of the study 

was r. Suppose also that only subjects who had AIDS by time r were entered 

into the study. The incubation time X = T2 - Tl is then observed conditional on 

X 5 r -Tl. Kalbfleisch and Lawless (1989) discnss this setup in detail. 

1.5 Plan of the thesis 

In summary, the purpose of this thesis is to present methods using piecewise con- 

stant rate, intensity or hazard functions for event history data when events are 

interval-censored. In particular, we discuss the methods using piecewise constant 

rate, intensity or hazard functions for two types of event history data; one is interval- 

grouped recurrent events, the other is current status data and doubly-censored data. 

Since we may not know the distributional form of the event times before anal- 

ysis, we do not want to make a strong parametric assumption on the distribution. 

It is ako desirable to have methods that are robust to the distributional form. The 

pnrely nonparametric or semiparametric methods satisfy this robustness require- 

ment, but they are often hard to implement and standard errors of estimators are 

hard to obtain. The piecewise constant models can be considered as a compromise 

between the strongly parametnc models and the purely nonparametric models. 

They are robust and relatively easy to implement. When the focus of our analysis 

is on the regression effect or the mean function of the event process, a piecewise con- 

stant model with a s m d  number of pieces can be used; when we want to estimate 

the intensity, rate or hazard functions, a model with more pieces can be used with 



smoothing. The piecewise constant models can also serve as a tool for goodness of 

fit. By comparing the fit of a parametric model wïth the fit of a piecewise constant 

model, we can see how the parametric mode1 fits to the data. 

The plan for the rest of the thesis is as follows. Chapter 2 presents methods 

to estimate the mean h c t i o n s  for recurrent events and covariate effects based on 

mixed Poisson processes and estimating equations. Both methods use a piecewise 

constant intensity or rate function. These methods are compared in a simulation 

study and in an example involving superficial bladder tumors in humans. Chapter 3 

considers analysis of current status data and doubly-censored data using piecewise 

constant hazard functions. The performance of the weakly parametric models is as- 

sessed in a simulation study and in an example fkom KiV/AIDS studies. Chapter 4 

discusses the application of penalized likelihood techniques to produce smoothed 

es timates of intensi ty, rate or hazard functions for intenial-grouped recurrent event s 

and doubly-censored data. It is shown in a simulation study that this approach pro- 

vides satisfactory estimates of the intensity, rate or hazard functions when events 

are interval-censored. Chap ter 5 gives a summary for this thesis and discusses some 

related areas for further research. 



Chapter 2 

Analysis of Interval-Grouped 

Recurrent Event Data 

Introduction 

Studies in which individual subjects or units rnay experience recnrrent events are 

common in many areas. For situations in which the exact times of event occurrence 

and covariates are obsenred there are well known methods of analysis based on point 

or counting processes (e-g., Andersen et al., 1993; Lawless, 1995). However, Th& 

(1988), T h d  and Lachin (1988) and others have discussed problems where only 

the numbers of events occnrring in successive time intenmls are known for each 

subject; moreover, the time intervals may vary fiom subject to subject. T h d  and 

Lachin (1988) give an example where the recurrent events are episodes of nausea 

in a clinical trial for patients with gallstones. Another example is a bladder cancer 

study discussed by Byar (1980) in which superficial bladder turnors were observed 
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and then removed a t  each visit to a clinic by a patient. Some authors refer to such 

data as panel count data, but we s h d  refer to them as interval-grouped recurrent 

events. 

The problems may be discussed formally as follows. Let Ni@) denote the number 

of events occurring for subject i (i = 1,. . . , rn) over the continuons tirne interval 

(O, t ] ,  and let Li denote an associated p x 1 vector of covariates. For subject i, 

we observe ri and n, = Ni(bij) - Ni(bi,j-l),  the number of events in the intenml 

BG = ( b i j - l ,  b i j ] ,  j = 1, . . . , k;, where k is the nnmber of intervals for w h i ~ h  subject 

i is observed, and O = bio c bil < - < biki = T;. The interval endpoints bij can be 

h e d  or random, but they have to satis& some conditions in order to make valid 

inference. These conditions are discussed in the next section. Our objective is to 

analyze the event occurrence processes, conditional on the %;'S. 

Methods which do not rely too heavily on parametric assumptions or the precise 

nature of the event processes are frequently usefid. Lawless and Nadeau (1995) have 

presented methodology for analyzing mean and rate functions, defmed respectively 

by 

&(t)  = E{N;( t ) ) ,  A , ( t )  = A:.(t). (2-1) 

They consider multiplicative specifications such as the log linear model where 

where p is a p x l regression parameter and &(t) is an arbitrary baseline rate 

function. Their methods assume only the validity of (2.1) and (2.2), and not that 



the recurrent events follow any speciIîc type of process. However, they requte that 

event times be observed. 

T h d  and Lachin (1988), Sun and Kalbfleisch (1993) and Sun and Kdbfleisch 

(1995) describ ed nonparametric methods for estimating and comparing mean and 

rate functions in the case of interval-grouped data. Howeva, their methods do 

not ded with general covariates and confidence kitenral estimation is problematic. 

T h d  (1988) considered a parametric mixed Poisson mode1 which de& with co- 

variates. He adopted an intensity function with a f o m  of ezp(f + x?@~)), 

where f i j  is a vector of known functions of time (no parameters are involved), and 

Xi is a vector of baseline covariates. He &O approlemated the expected count for 

a given observation i n t d  by the product of the interval length and the intensity 

function d u e  at the midpoint of the interval. Thall and Vail (1990) discussed a 

generalized estimating equation approach for longitudinal comt data. They as- 

sumed that each expected count p, depended on covariates Xe and a vector of 

kno- functions of time f (T,) thro~gh the f ~ -  of g ( ~ ~ )  = f ( T ~ ~ ) ~ P ' ' )  + X $ P ( ~ ) ,  

while the covariance matrix V for counts (ni=, - - - , n+k) was modded parametri- 

cdy, involving ~ ( ' 1 ,  and some extra parameters. Staniswalis e t  al. (1997) 

extend Thall's (1988) approach by allowing A. ( t )  to be nonparametnc and employ- 

ing a smoothing technique for its estimation. Sun and Matthews (1997) and Sun 

and Wei (1996) considered semiparametnc estimation of regression parameters but 

not baseline rate functions, 

The purpose of this chapter is to present methodology based on (2.1) and (2.2) 

for the general situation. We avoid strong parametric a s s ~ p t i o n s  about A o ( t )  and 
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the need for complicated smoothing methods by using a piecewise constant form. 

This yields a dlfferent mean structure than those in Thall (1988) and T h d  and 

Vail (1990). It is of course a theme of this thesis that the use of piecewise-constant 

intensity, rate and hazard fhctions avoids many problerns associated with non- 

and semi-parametric methods for incomplete survival and event history data, while 

giving a high degree of robustness. Extensions to consider o tha  forms than (2.2) 

for the regression specification are straighfforward. We also avoid the Poisson pro- 

cess assumptions made by several anthors by considering both mixed Poisson pro- 

cesses and robust methods. Findy, we investigate the robustness of the piecewise- 

constant formulation when the true underlying intensity is actually smooth, and 

compare two methods of estimating variance h c t i o n  paramet ers. 

The remainder of this chapter is as foIlows. In Section 2.2 we develop meth- 

ods for mixed Poisson processes with piecewise constant baseline rate functions. 

Although a specific process is assumed in this section, it is one which has been 

frequently found to be plausible. Section 2.3 presents robust methods that do not 

require that the event processes be mixed Poisson (or anything else). Section 2.4 

presents a simulation study that assesses the performance and robustness of the 

methods of Section 2.2 and Section 2.3. Section 2.5 considers an example, and 

Section 2.6 concludes with some extensions of the methodology and suggestions for 

fUrther work. 
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2.2 Mixed Poisson process estimation 

We assume in this section that {Ni(t), t 2 O), i = 1, . . . , m, are independent mixed 

Poisson processes (Lawless, 1987b; Thall, 1988). That is, conditional on a< and 

covariate ri, {N<(t), t 2 O) is a nonhomogeneous Poisson process with intensity 

function 

q t ;  a, l;) = *A0 (t) exp(@), (2-3) 

where the ai's are independent and identicalIy distributed unobserved "fiailty" 

variables with mean one and variance v ;  we will assume in this section that the cr;'s 

follow a G a m m a  distribution. We take Xo(t) to be a piecewise constant badine rate 

function, i-e., A&) = pi, for t E Ak = (ai-1, ai], where O = a0 < ai < - < a, < oo 

is a pre-specified sequence of constants. Typically a rnodel with T in the range of 

4 - 10 proves satisfactory. This range of T values gives flexible models with a faidy 

Iow-dimensional parameter. Our experience with the example in Section 5 and 

simulations has indicated that estimates of P ,  A. (t)  , the 6ailty Mnance parameter 

and thei. standard errors change very little once r is increased beyond 8 or 10. The 

mean function for this modd is 

where & (t) = C1;=, pkub(t), and u&) = max(0, min(ak, t) - ai-i) is the length of 

the intersection of the i n t d  (O, t] with the interval Ak. Similady, if we define c(, = 



is the length of the intersection of interval Be with interval Ai. 

To provide d d  statistical analysis, we need to make assumptions concerning 

the relationship of the observation times and the event processes. The conditions 

derived by Gruger et al. (1991) are modified to meet our need here. We first define 

and note that 

We &O let g ( ÿ ; u )  = C Y ~ / ~ - ' ~ Z ~ ( - ~ / V ) / { V ~ ~ ~ ~ ( ~ / V ) )  be the density function 

of the Gamma distribution with mean 1 and variance v. Then the te= Li = 

Jo Liag(%;v)dw is the likelihood based on the data for the ith subject if the fol- 

lowing two conditions are satidied: 

1. The probability of having n;i occurrences of the event in the interval Bq, 

given the history Hi, j- ,  is independent of the previous observation times, i.e., 
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2. P(b, IHi, j-1, cri, a;) is independent of o;. and does not contain parameters of 

interest, i.e., (p ,  P ,  v ) ,  where p = ( p l ,  . . . , p,)'. 

These conditions do not require that the bij's be independent of the event processes. 

Instead, a conditional independence as in 1. is required; the current observation 

thne bij can depend on previous observation times bàr, - - . , bij-1 and previous C O U ~ ~ S  

nii,. . . , ni.j-1 but not on the "current" count nij. Thus, if a patient could anticipate 

that there was likely to be a large number of event occurrences during the current 

interval and went to the c h i c  for an early examination, conditions above would no 

longer hold. 

If only the first condition is satisfied, Li is a partial likelihood based on the ith 

subject, and inferences about the parameters may stiU be based upon it. However, 

we shall assume both conditions are satisfied and make inference about (p ,  P ,  v )  
based on the Iikelihood 

Since 

L; = 

function L = HE1 Là- 

L can be simplified as 

where pi* = c>!~ pij and %. = x& W .  Therefore, the log-likelihood function is 
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The Iikelihood score functions for (p,  P ,  v) are 

The likelihood equations dl /apk  = 0, allap. = 0, aZ/av = O can be solved by 

Newton's method or Fisher's scoring method. An alternative that is slower to 

converge but which avoids occasional divergence problems is the EM algorithm 

(Dempster et al., 1977), which we now outline. Let nGk be the (unobserved) number 

of events in the interval Ak n B, and consider the a;% as data as well. Denote 

Pi jk  = p ~ ~ ~ l k ( i , j )  exp(@). Then the fd log-likelihood based on the CG'S and nijkYs 

is z f d ~ ( ~ , p , ~ )  = ~full,l(v) f ~ f u Z l , t ( ~ ~ P ) >  whme 

Denote 8 = pT, Given a current estimate @(O), the Es tep  cornputes 



This gives (2.12) and (2.13) with the nijk7s, w's and log aiYs replaced with estimates 

nTk7s, 3 s  and logai's, which are d e h e d  as follows: 

+ l/v(O) and $(t) = dlog r(t)/dt. This yidds 

i j k  s 

The M-step maximizes (2.14) and (2.15) in v and ( p , P )  respectively. 

ate between the E-step and the M-step ~ t i l  convergence is achieved. We daim 

that convergence is obtained if two consecutive values of the parameters and log- 

likelihood ditfer very little. In detail, we stop iterations if 

max 
l e p  - ef'i < €1, 

199+pf1  pf)p'l+ 10-5 

and 

where cl and r2 are small positive numbers. We let €1 = e2 = in the procedures 

here. 



The EM algorith,  like 0th- general optimization algorithrns, is not guaranteed 

to converge, and if it does, may not give the global maximum. See Dempster 

et al. (1977) and Wu (1983) for discussions. However, we can choose different 

starting values to see if they produce the same parameter estimates. If this is the 

case, we have some confidence that we have obtained the maximum. The speed 

of convergence for the EM algorithm depends on the shape of the likelihood, the 

number of parameters, starting values, the accuracy desired and other factors. With 

the convergence criteria above we found that very little cornputer time was needed 

to compute estimates. For a sample of size 85 and with recunent counts varying 

from 1 to 38 it Spically took about 150 - 200 iterations to compute the estimates 

and their covariance matrix in a rnixed Poisson process model with up to 10 pieces. 

Cornputation was programmed in FORTRAN. 

When the maximum likelihcod estimates ($,b,Û) are obtained, inferences can 

be based on the asymptotic distributions of lÏkelihood ratio statistics or the asymp- 

totic distributions of Wald statistics. The latter require second derivatives of the 

log likelihood (e.g., Lawless, 1987b), which are easily obtained. By noting that 

E(-a21/dvap) = O and E(-821/av@3) = O we see that (@,& and û are asymp- 

toticdy independent. 

2.3 Robust estimation 

The methods in the previous section assume that the event processes are mixed 

Poisson. In this section, we present robnst methods that do not need the Poisson 

assumption. These methods model the mean and the covariance mat& of the 



count responses within a subject. A group of generalized estimating equations is 

constructed and solved to get the estimates of the parameters. The assumptions 

about the observation process made in Section 2.2 are retained. 

We assume pq = E ( n i j )  is given by  

where h , i j  = Cki pkuk( i ,  j) as defined in the previous section. The 'working' 

covariance matrix for ni = (nîl, - - , n;k)T will have the following form: 

where Ci = d i a g ( p i )  and ~ c ,  = (pa, , /!.Liki)=. This is the covariance matrix for 

the mLced Poisson model of Section 2.2, but the methods below are robust to the 

f o m  of Vi .  Other forms that are plausible for spe&c applications can equdy well 

be used. 

Letting Di = a p i / a ( p T , ~ T ) ,  we define the generalized estimating equations for 

p and p as follows (cf. McCullagh and Nelder 1989, Chap.9) : 

where Si = ni - pi. These give two subsets of equations: 
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where 

( - - ( i ,  +) 
Pij 1 + v ~ i ,  

where u(i , j)  = (ul(i,j),  - - , ur(i7 j ) )= ,  a d  ~ ( i ,  +) = x>=l u(i , j)* 

One way to estimate p and p is to adopt working covariance matrices Vi  based 

on a specified value of v. In particdar, one could use the value v = O, in which 

case Vi is the covariance matrix fiom a Poisson process for the events. The equa- 

tions (2.18) are readily solved, for example by Newton's method, to give estimates 

3 and 6. It follows from standard results for estimating equations (e-g., White, 

1982; Breslow, 1990) that under mild conditions on the event processes and the 

observational scheme, the estimators $ and P and other estimators below are con- 

sistent and asymptotically normdy distributed as m + oo. The types of conditions 

needed are discussed in references such as Kaufmann (1987) and McCullagh and 

Nelder (1989). In particular, the obsenmtion scheme should ensure that the eigen- 

values of the information matrix andogue mG,,li in (2.26) increase without limit 

as rn -t os. Merences about p or /3 c m  be based on the asymptotic normal distri- 

bution for mli2 ((3 - P ) ~ ,  (b - p ) ~ ) ~ ,  whoçe covariance rnatrix may be estimated 

consistently by (2.30). 

Alternatively, we may choose to use working covariance matrices which include 

one or more nnknown dispersion parameters v.  To estimate v in (ZN), we propose 
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to use the following moment equation: 

where O: = var (nL)  = + vp:-, and the wi are selected weights. We consider the 

choices (a) wi = I/o:, (b)  wi = 1, (c) wi = p:/c:. They correspond to weights 

used in estimating equations for mixed Poisson regession models (Dean, 1991). 

The estimates 3, P and 6 can be obtained by iterating between (2.20),  (2.21) 

and (2.22).  We first update (p, P )  by a modXed Fisher scoring approach: 

then v is updated by 

We iterate between the two steps until (p ,  P,  v) converges. 

If the Ks are correct, 5, p and B are consistent and asymptotically normal 

as rn + w, under an extension of conditions mentioned above. The asymptotic 
-T 

covariance matrix of m112(pT - pT, p - pT, ii - v)= can be consistently estimated 

by 

~;n'ce, P ,  ~ ) É T , G ~ ( A B ,  O), (2.25) 



where 

with 

Hm = ~ - ' C O V  (U)  , 

and Hm is estimated by 

with 

These matrices are evahated at ( f i .  P ,  5 ) .  
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variance estimates used to obtain confidence intervals perform. With this in mind 

we generated interval-grouped recurrent event data fiom a mixed Poisson process 

with a "Weibdn baseline rate function Xo (t) = $t6-l in the following way: 

1. Generate independent Gamma variables al, . . . , a, with mean 1 and variance 

2. For given ai, covariate zi = (zil, . . . , r+) , regression coefficient p , and group- 

ing interval endpoints bij's, generate independent Poisson variables n, with 

means 

where Ao(t) = 4yt6 

We selected sample size and the values of parameters and covariates to reflect 

situations commody enconntered in practice. However, only the case of 1 covariate 

(p=l) was considered. The simulation settings were as follows: 

(1) m=90; 

(2) One third of the ri's were each of -1,0,1; 

(3) Sequences of observation times bij7s are preset and do not depend on covari- 

ate values. For the thirty subjects with zi = -1, we let the first 6 subjects be 

observed at times t = 1,4,7,12,18; the next 15 subjects are observed at t = 

2,5,9,14,21,28,35; the last 9 subjects are observed at t = 1,3,8,14,20,26,32,38,44, 

50. We set the sequenees of observation times among subjects with covariate values 

O or 1 the same way. 



(4) Eight different settings of the 0th- parameters were considered. They are: 

(a) 7=0.8,8=0.5,/3=1.5,~=0.5; (b) 7=0 .8 ,b=0 .5 ,P=1 .5 ,~  =0.2; 

(c)7=0.8,d=1.0,/?=1.5,~=0.5; ( d ) ~ = 0 . 8 , b = l . O , ~ = 1 . 5 , ~ = 0 . 2 ;  

(e) 7 = 0.8, b = 0.5,P = 0 . 3 7 5 , ~  = 0.5; (f) 7 = 0.8,6 = 0.5J = 0.375,~ = 0.2; 

(g) 7 = 0.8, d = 1.0,P = 0.375,~ = 0.5; (h) 7 = 0.8, b = l.O,P = 0.375,~ = 0.2. 

These parameter values generate values of p i  that range fiom a low of -76 to a 

high of 179. For each setting the d u e s  of pi- for the 9 combinations {-1,0,1) x 

{18,35,50) of zi and .i; are as follows: 

(a) and (b). 0.76,1.06,1.26,3.39,4.73.5.66,15.2,21.2,25.4; 

( c )  and (d). 3.21,6.25,8.93,14.4,28,40,64.5,125,179; 

(e) and (f). 2.33,3.25,3.39,3.89,4.73,4.94,5.66,6.89,8.23; 

(g) and (h). 9.90,14.4,19.2,21.0,27.5,28,40,40.7,58.2. 

For each setting we generated 100 samples. The parameters ,û, v ,  and A@), 

were estimated by four approaches: (1) maximum likelihood of Section 2 based on 

a mixed Poisson process (gamma-Poisson) with a piecewise-constant rate function, 

(II) the GEE approach of Section 3 with a piecewise-constant rate fimction, (III) 

maximum likelihood based on a mixed Poisson process with a Weibull rate function, 

(IV) the GEE approach with a Weibull rate fimction. The cut points ab used in (1) 

and (II) were 0,5,10,15,20,25,30,40,50, so there were 8 pieces in the rate fimction. 

For methods II and TV two estimating equations for v were considered: (2.22) with 

(1) w; = p:/a: or (2) w; = l/oz. This gave us a chance to compare estimating 

hinctions for variance parameters, as in Dean (1991). 



There is very lit tle Merence in the averages across the estimation methods, and 

all indicate little bias. Tables 2.1-2.4 show average values of ~ ~ 3 5 1 ,  h0-(48), and it 

for settings (a), (b), (g) and (h); results for the other settings were similar. Here "A" 

denotes either maximum likelihood or robust estimates, as indicated. The adoption 

of a piecewise constant baseline rate fnnction also gives a close approximation to 

the maximum likelihood estimate based on the correct smooth model, as far as 

estimation of the mean function Ao(t) is concemed. For example, Figure 2.1 shows 

the average of estimates Âo(t) based on the piecewise constant and smooth rate 

functions for case (a), dong with the true mean function. The piecewise-constant 

model differs only in the time intenml (0,5); this is due to the high true rate near 

t = 0, and could be deviated by splitting the intenral (0,5) into 2 or 3 pieces. 

Tables 2.1-2.4 also present the empirical standard errors of fio(z5), &38), 8, 
5 ,  and their average standard errors based on asymptotic theory estimates. For 

mxcimum likelihood approaches, standard mors are computed from the inverse 

of the expected information mat* for the GEE approaches, standard errors are 

computed from the 'sandwich' type variance estimates (2.25). The approaches 

using piecewise-constant rates &II-1,II-2) and approaches using the true Weibd 

rate function (Approach III, ni-1, IV-2) have Little Werence in the averages of b, 
6, se(& and se($); they also produce simila estimates for &(t) when t is not too 

small. Approaches III, IV-1,IV-2 are only slightly more efficient for &(t). 

The averages of the standard mors based on asymptotic theory are quite close 

to the empirical standard errors of the estimates. There is also no difference in the 

performance of the two methods of estimation of the variance parameter v (methods 



1 and 2 in the tables); they correspond to weight functions (c) and (a), respectively, 

following (2.22). We note for interest that weight fanction (b) did not agree quite 

as weU. 

We also examined the empirical coverage of 90% and 95% confidence intervals 

for A0(25), A0(48), P and v based on normal approximations. Bearing in mind the 

s m d  number of simulation nuis (100), there were no major discrepancies between 

actual and nominal coverage for A0(25), A0 (48) and ,B. There were discrepancies 

for v when the GEE approach with Mnance estimate (2.25) was used. Coverage of 

confidence intervals for v basecl on the GEE approach are improved slightly by using 

normal approximations for log(+) rather than 6. Table 2.5 and 2.6 show sample 

results for parameter settings (a) and (g). However, as has been demonstrated for 

the simpler but dosely related case of m k d  Poisson regression, confidence interval 

estimation of v is problematic in many situations and deserves further study; see 

Section 4 of Lawless (1987a). Tests of the n d  hypothesis v = O are &O of interest, 

and equally deserve f'ther study. Ng and Cook (1997) discuss score tests developed 

by them and earlier authors for the mixed Poisson process case. As far as estimation 

of the regression coefficients and baseline mean fnnction are concerned, the difnculty 

of confidence interval estimation of v has little effect in most practical situations. 

To summarize, the use of a piece-wise constant baseline rate function provides 

excellent estimation of regression coefficients and mean functions and, for scenarios 

similar to those in the simulations, confidence intervals based on normal approxima- 

tions perform w d .  It seems likely that these properties will hold for other scenarios 

in which there are moderately many snbjects (say 50 or more) and where not too 
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many subjects have very s m d  expected counts. In other situations, additional 

checks by simulation are recommended. 

2.5 An example 

The bladder cancer data (see, Byar, 1980) are described in Chapter 1. The data are 

interval-censored recurrent event data. Details about how the bG's were determined 

are not given in the references cited. We assume that they satis6 conditions 1 and 

2 of Section 2.2. 

In the following analysis, we consider only patients in the placebo or thiotepa 

groups. There are 47 and 38 patients in the placebo group and thiotepa group, 

respectively. The time in study for each patient ranged korn one month to 53 

months, and the number of visits for each patient ranged &om one to 38. Figure 2.2 

gives a scatter plot of the total number of tumors present against the t h e  in study 

for each patient. We notice that there is a fairly large number of patients with no 

tumor present . 

Mixed Poisson processes with piecewiseconstant rates were fitted to the data. 

We divided the whole study period (0, 531 into 8 pieces, with the cut points 

This made the &st 6 intenmls of nearly equal length and the last two longer, since 

there were fewer subjects at risk for the last two intervals. We define the following 

variables: for the ith patient, yl = 1, if the patient is in the thiotepa group, = 0, 



othenvise; zi2 is the number of initial tumors present at randomization; ~3 is the 

diameter (in centimetas) of the largest initial tumor. Table 2.7 lists the MLEs and 

the standard mors  based on the asymptotic distributions of the MLEs, as discussed 

in Section 2. 

The robust estimation procedure of Section 3 was &O applied to this data 

set. Table 2.7 also bsts the robust estimates and their standard mors  based on 

the robust 'sandwich' type variance estimates (2.25). We used w; = p:/c: in U2 

(2.22). 

We notice that the mixed Poisson process models and the generalized estimating 

equation approach produce simila estimates for p and P. Based on either approach, 

we conclude that patients in the thiotepa group have lower rate of tumor recurrence 

than patients in the placebo group, and patients with a large number of initial 

tumors have higher rate of tumor recurrence if all other conditions are the same. 

The estimates of v and their standard errors d8er  somewhat. As has been noted by 

Breslow (1990) and others, the maximum likelihood estimation of v is not robust to 

departures fkom the assumed mixed Poisson mode1 (here, gamma-Poisson), whereas 

the robust procedures are, assuming satisfactory specification of the rate function. 

Consequently we prefer the robust estimate of v, and standard mors for the other 

parameters that are based on it, 

Residual plots based on the ni-'s were canstructed to check the fit of our models. 

'Anscombe' residuals were used, dehed  as 



where ni- and pi are the observed and the estimated numbers of tumors present 

for Patient i, respectively. The justification for using e; was that the Anscombe 

residual is less skewed than the Pearson residual for Poisson variables, and should 

retain this property for negative binomial variables. Figure 2.3 shows the plot of ei 

against the estimated number of tumors pi- based on the mixed Poisson model. We 

notice that all e;'s are between -1 and 2 except one value; there is no clear pattern 

except the following: there is one isolated point (corresponding to patient #16) 

with a large estimated number of tumors; moreover, a c w e  is observed at the left 

bottom of the plot, which corresponds to the observations with nr = O. Plots of e; 

against covarïates zl and r z  were also examined. None of the plots indicates major 

problems with the model. A more detailed assessrnent of fit based on the interval 

counts for each subject also does not reveal major problems, though the sparseness 

of the data makes formal tests difficult. 

We also fitted models to the data after deleting observation #16. There are 

some changes in the estimates of parameters and their standard errors, but the 

significance level for B does not change much. Findy, in view of the large number 

of subjects (38) with n;. = O, we computed the estimated 5equency of patients with 

n;. = O; it is 35.6 under the mixed Poisson model, and does not indicate any lack 

of fit. 

2.6 Concluding remarks 

Models with piecewis+constant intensities, rates or hazard fnnctions provide an 

attractive approach in problems involving failure times or recurrent events when 
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data are interval-censored, double-censored, or truncated in some way. In those 

situations purely non- or semi-parametrk methods are often difEcult to implement 

or to use for purposes of testing or interval estimation (e-g., Sun and KalbfLeisch, 

1993, 1995; Jewell e t  al., 1994). In this chapter we have examined the case of 

interval-grouped recurrent events in some detail. 

The simulations in Section 2.4 were done under the assumption of rnixed Pois- 

son processes, and the robust rnethods performed essentially as well as maximiun 

likelihood. In fact, for the negative binomial mode1 of Section 2.2, which was used 

for the simulations, the maximum likelihood estimating functions (2.9) and (2.10) 

for p and p are the same as the robust estimating functions from (2.20) and (2.21), 

and are valid beyond mived Poisson processes. Eowever, variance estimation and 

confidence intervals based on maximum likelihood are non-robust, and consequently 

we recommend using the robust procedures if there is any donbt as to the under- 

lying processes. These observations and recommendations are similar to those of 

Lawless (1987a) and Breslow (1990) in the context of ordinary regression analysis 

of count S. 

The robust methods of Section 2.3 and the Poisson process-based methods of 

Section 2.2 are both readily extended to deal with other problems. For example, 

Ru and Lawless (1996) consider the estimation of rate and mean functions from 

zero-truncated recurrent event data; the methods here could be adapted to the 

case where the data are also intenal-grouped. Similady, discrete mixture models 

such as the ZAP or ZIP models of Lambert (1992) and Heilbron (1989) can be 

handled rather easily; these authors used Poisson process assumptions which are 



often best avoided because of the iikelihood of overdispersion. It should be noted 

that in cases involving selection or truncation, such as when only individu& with 

at least one event are observed (Hu- and Lawless, l996), it is straightforward to 

develop methods based on Poisson mixtures as in Section 2.2, but usudly difncult 

to develop methods analogous to those in Section 2.3. 

In most practical situations it is satisfactory to use piecewise-constant intensities 

with 4- 10 pieces. However, where smoother rate function estimates are desired, an 

alternative is to increase the number of pieces substantially and use penalized like- 

lihood approach (e-g., Bacchetti, 1990; Green and Silverman, 1994). This approach 

is studied in Chapter 4. Other approaches indude kernel functions (Staniswalis 

et al., 1997) and B-sphes (Rosenberg, 1995), which give smooth rate functions. 

S taniswalis et al. (1997) examine a kernel smoothing approach in a semiparametric 

regression mode1 for the applications in this chapter. They apply the generalized 

profile likelihood method of Severini and Wong (1992) to get the estimates of the 

baseline rate function and covariate effects. Their procedure provides desirable 

estimates of the hazard function, but it is computationdy intensive. Rosenberg 

(1995) models the baseline hazard as a linear combination of cubic B-splines. In 

principle, this approach is very similar to the piecewise constant hazard approach 

because both are weakly parametric models. As the number of knots or cut-points 

increases, both the spline estimates and the smoothed piecewise constant estimates 

of the intensity fùnctions would have similar values. 

In our approaches, we assume the number and location of the cut-points are 

pre-specified. An alternative way is to allow them to be selected based on data. 



Rosenberg (1995) proposes choosing the number and location of the h o t s  in the 

B-spline approach based on Akaike's information criterion (Akaike, 1973). It can 

also be used to choose the number and location of the cut-points in the piecewise 

constant hazard models. 

We have seen that our methods work well for the simulated data sets with 

m = 90, one covariate and eight pieces in the piecewise constant models. In the 

example of bladder cancer data, we have &O- seen that our methods can handle 

the case of three covariates easily with rn = 85. We anticipate that a data set 

with a larger sample size and a ~rector of 4 or 5 covariates will not bring significant 

numerical problems. 



Table 2.1: The sample average of estimates and estimated standard errors based 
on asymptotic theory, and the empirical standard errors, in setting (a) 7 = 0.8, 
b = 0.5, ,û = 1.5, v = 0.5, Ao(25) = 4, &(48) = 5.543 

- 
I 1 II- 1 

4.006 
0.3935 
0.3825 
5.549 
0.5421 
0.5266 
1.5045 
0.1202 
0.1202 
0.4788 

- - 
110 (25) 

se(AO(25)) - 
e.se(Ao(25)) - - 
Ao (48) 

4.007 
0.4033 
0.3826 
5.550 

II-2 
4.007 
0.3939 
0.3824 
5.551 
0.5427 
0.5264 
1.5041 
0.1205 
0.1217 
0.4743 

se(AO(48)) - -/- 
e.se(Ao(48)) - 

P 
se(P2 

e.se(/?) 
h 

v 

I I I  
4.004 
0.3945 
0.3793 
5.552 - - - -  

0.5469 
0.5239 
1.5042 
0.1229 
0.1214 
0.4899 

IV-1 
4.003 
0.3866 
0.3790 
5.551 

0.5368 
0.5235 
1.5045 
0.1202 
0.1218 
0.4782 

0.5508 
0.5269 
1.5043 
0.1229 
0.1214 
0.4902 

IV-2 

4.004 
O -3870 
0.3789 
5.552 

O .5374 
0.5233 
1.5041 
0.1204 
0.1217 
0.4736 



Table 2.2: The sample average of estimates and estimated standard errors based 
on asymptotic theory, and the empirical standard errors, in setting (b) 7 = 0.8, 
6 = 0.5, B = 1.5, v = 0.2, no(%) = 4, A0(48) = 5.543 



Table 2.3: The sample average of estimates and estimated standard errors based 
on asymptotic theory, and the empirical standard mors ,  in setting (g) 7 = 0.8, 
6 = 1.0, /3 = 0.375, v = 0.5, A0(25) = 20, A0(48) = 38.4 

- - 
Ao(25) - - 

se(Ao(25)) -- 
e.se(Ao(25)) - - 

h o  (48) - - 

I 
19.88 
1.56 
1.65 

38-26 

II-1 
19.88 
1.55 
1.65 

38.26 

se(Ao(48)) - - 
e.se(Ao(48)) - 

P 
se(Pj 

e.se(p) 
CI 

v 

se(û) 
e.se(G) 

LI-2 
19.88 
1.55 
1.65 

38.26 

III 
19-90 
1.53 
1.58 

38.27 
2.94 
3.11 
0.373 

0.0939 
0.0816 
0.489 

0.0763 
0.0699 

IV-i 

19.90 
1.52 
1.58 

38.26 

rv-2 
19.90 
1.52 
1.58 

38.27 
2.92 
3.11 

0.373 
0.0931 
0.0816 
0.485 
0-0840 
0.104 

2.94 
3.10 

0.373 
0.0931 
0.0816 
0.485 

0.0840 
0.104 

2.96 
3.10 

0.373 
0.0939 
0.0816 
0.489 

O -0763 
00.700 

2.92 
3.11 
0.373 

0.0931 
0.0817 
0.485 

0.0841 
0.105 

2.94 
3.10 

0.373 
0.0931 
0.0816 
0.484 

O .O839 
0.104 



Table 2.4: The sample average of estimates and estimated standard m o r s  based 
on asymptotic theory, and the empirical standard errors, in setting (h) 7 = 0.8, 
6 = 1.0, ,B = 0.375, v = 0.2, &(25) = 20, A0(48) = 38.4 

Table 2.5: The actual coverage probabilities(x100) of (1 - a) confidence intends 
based on 100 samples for setting (a) 

P 

lOo(1-a) 
h o  (25) 
Ao(48) 

P 
v 

log v 

I 
95 
94 
95 
93 
95 
94 

90 
91 
91 
89 
91 
92 

II-I 
95 
94 
95 
94 

90 
92 
90 
88 

II-2 
95 
94 
95 
94 
88 
91 

90 
92 
90 
88 
87 
88 

87 
88 

III IV-2 

83 
84 

95 
94 
95 
93 
95 _ _ _ - - - - - - -  
94 

IV-1 
95 
95 
94 
94 
88 
89 

90 
91 
91 
89 
91 
92 

95 
95 
94 
94 
87 
88 

90 
9 2 '  
91 
88 
87 
88 - 

90 
92 
91 
88 
83 
84 



Table 
based 

2.6: The actual coverage probabilities(x100) of (1 - a) confidence int 
on 100 samples for setting (g) 

Table 2.7: Maximum Libelihood estimates in the mixed 
( ~ ~ 6 ,  î) and using generalized estimating equations (e, 6, 

P 

Poisson pro cess 

1 1 ML 1 GEE 1 

parameter 
B -1.220 

P z  
0.379 

P 3  

-0.00998 



Figure 2.1: The tnie baseline mean function and its estimates for setting (a). The 
solid cuve is the true baseline mean function; the dotted curve is the estimated 
mean fnnction based on Approach 1; the dashed curve, which is indistinguishable 
from the solid c w e ,  is the estimated mean function based on Approach III. 
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Figure 2.2: Scatter plot of the total number of tumors for each patient against tirne 
in study 



Figure 2.3: Plot of the standardized residual ei against the expected number of 
tumors present, based on a mixed Poisson mode1 
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2.7 Appendix 

Tables 2.8 to 2.11 present the sample average of estimates and the estimated stan- 

dard errors, and the empirical standard mors  for simulation in settings (c ) ,  (d), 

(4 zmd (f) - 
Tables 2.12 to 2.17 present the empincal coverage of 90% and 95% confidence 

i n t d  based on simulations in settings (b), ( c ) ,  (d), (e), (f) and (h). 

Table 2.8: The sample average of estimates and estimated standard errors based 
on asymptotic theory, and the empirical standard errors, in setting (c) 7 = 0.8, 
6 = 1.0, p = 1.5, v = 0.5, A0(25) = 20, &(48) = 38.4 



Table 2.9: The sample average of estimates and estimated standard errors based 
on asymptotic theory, and the empîrical standard mors,  in setting (d) 7 = 0.8, 
S = 1.0, = 1.5, v = 0.2, Ao(25) = 20, A0(48) = 38.4 
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Table 2.10: The sample average of estimates and estimated standard mor s  based 
on asymptotic theory, and the empirical standard errors, in setting (e)  7 = 0.8, 
d = 0.5, P = 0.375, v = 0.5, Ao(25) = 4, Ao(48) = 5.543 

- - 
Ao (25) - 

se(Ao(25)) - - 
e.se(Ao(25)) - + 

110 (48) - - 
se(Ao(48)) - 

e.se(Ao(48)) - 
P 

se@ 

e.se(p) 
û 

1 
3.940 
0.365 
0.376 
5.450 
0.489 
0.468 

0.3654 
0.108 

0.0982 
0.470 

II-1 
3.940 
0.363 
0.376 
5.450 
0.484 
0.468 

0.3654 
0.107 

0.0981 
0.458 

se (G) 
e.se(G) 

0.109 
0.127 

0.108 
0.109 

II-2 ( rn IV-1 
3.936 
0.345 
0.352 
5.452 
0.478 
0.476 

0.3655 
0.107 

0.0979 
0-459 

3.940 
0.363 
0.376 
5.451 
0.484 , 

0.110 
0.130 

IV-2 
3.936 
0.345 
0.352 
5.453 
0.478 
0.476 

0.3655 
0.107 
0.0979 
0.460 

0-109 
0.127 

3.936 
0.348 
0.352 
5.452 
0.482 

0.108 
0.108 

0.110 
0-129 

0.468 
0.3653 
0-107 
0.982 
0.459 

0.476 
0.3655 
0.108 

0.0979 
0.471 



Table 2.12: The actual coverage probabilities(x100) of (1 - a) confidence intervals 
based on 100 samples for setting (b) 

Table 2.11: The sample average of estimates and estimated standard mors based 
on asymptotic theory, and the empirical standard ersors, in setting (f) -y = 0.8, 
6 = 0.5, P = 0.375, v = 0.2, &(25) = 4, Ao(48) = 5.543 

r 

.̂-@-!) 
se(Ao(25)) - - 

e.se(Ao(25)) 

fGe$8> 
se(Ao(48)) 

# A 

e.se(b(48)) - 
P 

se(P2 
e.se(p) 

CC 

v 

se(G) 
me(??) 

100(1 -a) 
Ao(25) 
Ao(48) 

P 
v 

1 

3.993 
0.293 
0.336 
5.490 
0.382 
0.416 

0.3661 
0.0827 
0.0883 
0.187 

0.0613 
00.640 

II-1 
3.993 
0.290 
0.336 
5.490 
0.378 
0.416 

0.3661 
0.0824 
0.0882 
0.186 

0.0606 
0.0659 

n-2 
3.993 
0.290 
0.336 
5.490 
0.378 
0.416 

0.3661 
0.0825 
0.0881 
0.185 
0.0616 
0.0656 

I 1 11-1 

III 
3.968 
0.270 
0.297 
5.493 
0.373 
0.411 

0.3662 
0.0827 
0.0883 
0.187 

0.0613 
0.0638 

IN-1 
3.968 
0.268 
0.297 
5.493 
0.372 
0.411 

0.3662 
0.0824 
0.0882 
0-186 
0.0605 
0.0657 

95 
97 
96 
96 
95 

II-2 III 

IV-2 

3.968 
0.268 
0.297 
5.494 
0.372 
0.411 

0.3662 
0.0825 
0.0881 
0.185 

0.0614 
0.0653 

95 
96 
96 
95 
96 

95 
96 
96 
96 
95 

90 
89 
92 
89 
91 

90 
87 
88 
91 
89 

90 
94 
94 
89 
9 1  

IV-1 
95 
96 
96 
95 
90 

rv-2 
95 
96 
96 
95 
90 

90 
92 
91 
91 
84 

95 
96 
96 
95 
96 

90 
87 
88 
91 
85 

90 
92 
91 
91 
90 



Table 2.13: The actual coverage probabilities(x100) of (1 - a) confidence intervals 
based on 100 samples for setting (c) 

Table 2.14: The actual coverage probabilities(x100) of (1 - a) confidence intervals 
based on 100 samples for setting (d) 

lOO(1 -a) 
b(25) 
&(48) 

P 

Table 
based 

2.15: The actual coverage probabilities(x100) of (1 - a) confidence int 
on LOO samples for setting (e) 

P 97 94 97 92 97 92 97 94 97 93 97 93 
v 90 87 81 75 84 77 89 87 83 74 85 76 

IV-1 1 
95 
92 
93 

93 

95 

1 92 
( 93 

89 

XI-2 IV-2 

89 

II-1 

v 1) 

90 
81 
82 

90 
86 
83 

195 
80 

95 
91 
94 

III 
95 
92 
93 

80 

95 
91 
94 

94 
85 

90 
84 
83 

93 

95 
92 
93 

90 
81 
82 

90 
84 
83 

93 
80 

83 

90 
82 
83 

94 89 
83 

78 
83 95 93 

93 
83 

88 
85 93 



Table 2.16: The actnal coverage probabilities(xlOO) of (1 - a) confidence intervaE 
based on 100 samples for setting (f) 

Table 2.17: The actual coverage probabilities(xlOO) of (1 - a) confidence inter& 
based on 100 samples for setting (h) 



Chapter 3 

Analysis of Current Status Data 

and Doubly-censored Data 

3.1 Introduction 

In many studies, it is of interest to estimate the distribution h c t i o n  of the time 

between two successive events, termed the initiating event and subsequent event. 

Let I and J represent the occurrence times of the two events, respectively, then 

T = J - I is the time between the two events. We assume in this chapter that 

1 and T are independent. If both 1 and J are observed directly, estimation of 

distribution of T can be readily obtained. However, it is not an easy task when 

one or both events are not directly observed. The analysis of current status data 

and doubly-censored data f a  into this category of data collection. Current status 

data arise when the time of the initiating event is observed directly, but for the 

subsequent event the only information is whether or not it has occurred by a single 
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monitoring time B. This type of data is often collected in a survey or census, 

where respondents are asked about their age and whether a certain event (usudy 

an important one, such as fbst mariage) has occmred. 

A more complicated data structure occurs when both events are not observed 

directly; instead, we observe only whether either or both events have occurred a t  

the single monitoring time B. This is called doubly-censored current status data, 

an extreme case of doubly-censored data. For example, in the Partners' Study 

described by JewelX et al. (l994), the initiating event is infection of an individual 

with HIV, and the subsequent event is the subsequent infection of a sexual partner 

of this individual. If the only information we know is that the first infection time 

lies in a t h e  interval (A,  B) and whether the second infection has occurred at t h e  

B, the data are doubly censored current status data. General doubly-censored 

data refer to the situation where either or both events are not observed directly, 

but rather the initiating event time is only known to lie in an interval, and the 

subsequent event t h e  is interval-censored or right censored. The data structures 

c a n  also include covariates in these problems. 

Current status data and doubly censored data have attracted considerable at- 

tention. Diamond and Mcdonald (1992) have discussed advantages and disadvan- 

tages of current status data and have reviewed the fitting of parametric proportional 

hazard models, parametric accelerated life models and semiparametnc proportional 

hazard models to such data. Since the larger number of parameters in the semi- 

parametric approach may create diaiculties in mode1 fitting, they suggest using a 

spline form for a suitable transformation of the baseline cumulative hazard func- 
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tion. Sun and Kalbfleisch (1993) discussed statistical methods for m e n t  status 

data coming £kom point processes. JewelI and van der Laan (1996) have reviewed 

both parametnc and semiparametric methods for extensions of current status data, 

such as doubly censored current status data and current status information on more 

complicated stochastic processes. They have pointed out that nonparametric max- 

imum likelihood estimation (NPMLE) of the distribution fûnction G of T = J - I 

in the doubly censored current status data case can be obtained by viewing the 

mode1 as a nonparametric mixture estimation ~roblern; however, the NPMLE of 

G may be inconsistent. De Gruttola and Lagakos (1989) have proposed methods 

for analyzing general doubly censored data in the absence of covariates. Kim et  al. 

(1993) have generalized the resdts of De Gruttola and Lagakos (1989) to incor- 

porate covariates. However, they assume that 1 and T are disnete. Sun (1995) 

proposed a self-consistency algorithm to obtain the non- parametric estimation of 

a distribution function with tnuicated and doubly censored data. 

In this chapter, we intend to develop weakly parametric methods for current 

status data and doubly censored data by assuming a piecewise constant form for 

the hazard fùnction of T. In more detail, we assume that there is a pre-specified 

sequence of constants ai = O c a2 < . . . < a, < a,+i = m that divide the time axis 

into T intenmls, and assume that the hazard function ho(t) of T is constant within 

interval Ak = (ak, ak+& let h&) = pk for t E Ah. The cumulative hazard function 
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is HO ( t )  = Chi p k u k ( t ) ,  where 

O i f t s a k  

u&) = t - ak if ak < t  < ak+l  

ak+i - ak otherwise 

The survival function of T is &(t) = P (T > t) = exp(- Ho(t)) ,  and the cumulative 

distribution function of T is Go(t) = 1 - So(t) = 1 - exp(-Elo@)). 

The advantage of using a piecewise constant form for the hazard function is 

that it avoids the difficdty in estimating standard errors of estimates in purely 

non-parametric models and at the same time provides a more flexible rnodel than 

mos t parametric models . 

Conriate effects can be assessed by using regression rnodels. DSerent regression 

models are considered for current status data and doubly censored data in this 

chapter. 

3.2 Standard Current Status Data 

3.2.1 Estimate of a CDF in the absence of covariates 

First we describe the data structure of standard cutrent status data in more detail. 

Following J e w d  and van der Laan (l996), suppose that there are n independent 

subjects (or n pairs of subjects) in our study. For subject i, at recniitment time 

(or interview) tirne Bi, we know that the initiating event has akeady occurred and 

this event t h e  Ii is observed. The subject is checked at monitoring thne Bi to see 
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whether the subsequent event Ji has occurred or not. Thns we observe whether the 

time between the two events Ti = Ji - I; is 5 Bi - 1; or > - ri. We assume that 

the initiating event time 1; and the time between the two events Ti are independent, 

and the monitoring time Bi is also independent of Ii and TI. The data consists of 

observations (Ci, &), i = 1,. . . , n where Ci = Bi - I;, and & = 1 if Ji 5 Bi a d  is 

zero otherwise. Therefore for i = 1, . . . , n, 1 - $ is a Bernoulli variate with success 

probability p; = P+(1- & = 1) = f i  = So (Ci), where So ( t)  is the survival function 

of T. The likelihood h c t i o n  based on the data (conditional on the observed values 

of the Ci's) is L = n;=, (1 -pi)'' P/-&~. Suppose m is the number of distinct Ci's, and 

the rn distinct values of Ci's are C(,) < C(2) < - . . < C(+ Let s(;) denote the subset 

of indices corresponding to C(;); that is, Subject j is in set s(i), if Cj = C(;). Let the 

size of s(;) be Ir;, let P(il = So(C(q), and let Y;- = Cie.; Ji. Then the likeLihood can be 

simplified to L = nG,(l - PLi))' P$-'- The sufncient statistics are (Yi, , Y,). 

Therefore for the rnodel with piecewise constant intensity the number of ai's can 

be no more than m, and the location of ai's is restricted by the location of 'S. 

More specifically, in order to be able to estimate all p i  (by that, 1 mean the set of 

the likelihood equations has unique solution for p&), aiYs must satisfy the following 

necessary conditions: (1) The last interval A, = (aT, m) contains at least one Ci, 

or equivalently, a, < C(,). (2) There must be at least one CG) in the union of any 

two consecutive intervals, Le., (ak, art2), for k = 1, . . . , r - 1, assnming ~ + i  = oo. 

Proof of Condition (1). If the last interval A, does not contain any of the Ci'sy i-e., 
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a, 2 C(,)- So u,(C(k)) = 0, for any k = 1, ..., m. So 

for k = 1, ..., m. So the Likelihood function does not involve p,. p, cannot be 

estimated fkom this modd. 

Proof of Condition (2). If k = r - 1, then by Condition (1), there must be at least 

one Cg-) in the last interval (a,, co), so there must be at least one C(jl in the i n t d  

(aT+ m). Suppose that 6 < r - 1, and there are C(+. . . , C(,,) in i n t d  (al, a h ] ,  

no CiYs in interval (ak, ak+2), and there are Ccm,), . . . , C(,) in interval [ a ~ = + ~ ,  m), 

where ml < m. We have 

So p i  and pk+l cannot be estimated separately. To see it, we compute the likelihood 

equations for ph and The likelihood functions are 
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the likelihood equation for ph is 

Similarly, we can show the Ekelihood equation for pk+l is 

Both equations are the same. So there cannot be an unique solution to the set of 

the likelihood equations unless other assumptions are made. 

If rn is large, we c m  choose T between 5 to 10 and let each Ae interval contain 

some C(;) 'S. 

The log-likelihood function is 

where Pi = ezp{-  pkuk(Ci)). The score function is 
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The second derivatives of the log-Likelihood h c t i o n  are 

a2l0g L " 6iPiuk (ci) uj (ci) = -C 
a ~ k a ~ i  k l  (1-Pi)= y 

Therefore, the (k, j )  entry of the Fisher information matrix is 

The maximum Wrelihood estimates of phYs can be found using the Newton-Raphson 

algorithm. Since we have log Pi = log(So(Ci)) = - xi=, pkui(CI), the model is a 

generalized h e a r  model with logarithmic link function and Bernoulli distribution. 

The parameters pk can therefore also be estimated by many statistical programs, 

such as SAS or Splus. Let p k  be the estimates. The survival fimction So(t) can be 
A 

estimated by So ( t )  = exp(- rk, bkuk(t)). 

3 -2.2 Regression models 

If we have recorded a vector of baseline covariates zi = (Q, , zip) for Subject i, 

the relationship betweea the time T and the covariates can be studied. Carstemen 

(1996) has discussed several regression models with piecewise constant hazards in 

the context of interval censored lifetime data. Since standard current status data 

is a special case of interval censored lifetime data, the models discussed there can 

be applied to standard current status data. We briefiy describe the fitting of these 

models for current status data. 



CHAPTER 3. CURRENT STATUS DATA QG DOUBLY-CENSORED DATA 64 

The additive excess risk model assumes a hazard function h(t 1%;) = ho( t )  + zp, 
with the constraint ho( t )  + zi 2 O. The likelihood function is 

where Pi = S(Cilzi) and 

This model is also a generalized linear model with Iogarithmic 1Lik fwlction and 

Bernoulli distribution. 

The proportional hazard mode1 (multiplicative relative risk model) has a hazard 

function h(tjri) = hû( t )exp(z@) .  The Likelihood function has the same form as 

(3.10), but with S(t 1%:) = exp {-&(t) exp(zp)) . The parameter estimates can 

be obtained by an iteration procedure given by Carstensen (1996), or by Newton's 

method. 

The M y  parametric and semi parametric accelerated failwe t h e  models (AFT) 

for current status data or interval censored lifetime data are discussed by some 

authors such as Diamond and Mcdonald (1992), Rabinowitz et al. (1995), and 

Jewell and van der Laan (1996). We outline some ideas on an accelerated failme 

time model with a piecewise constant density in a finite intenml for the random 

mors. We assume that 

log Ti = ~ $ 3  + q, 

where E;'S are independent random errors whose common density fanction is sym- 
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metric about zero and piecewise constant in interval [al,  a,+l]. In detail, we as- 

sume that r is an odd number, (a l ,  - - - , a,+i) are pre-specified constants, such that 

ak = -a,+z-k. Let Ai = (ak, ah+& The density fûnction of E is given by 

So fk = fr+z-k, k = 1, - , r + 1. fk must satisfy the constraint CD1 fk(ak+l -ak) = 

1. The number of distinct parameters is (r - 1) /2 .  The cumulative distribution 

function of is F ( t )  = CL=, f . u k ( t ) .  Thus 

The likelihood function can be obtained as before and an optimization algorithm 

can be used to get the maximum Iikelihood estimates. 

3.2.3 Simulated examples 

To illustrate the proposed methods, we applied the methods to several simulated 

datasets. Since for the standard current status data, the initiating event time I is 

observed, we need only to consider the indnction time T = J - 1, the observation 

time for T, which is C = B - 1, and possibly a coMnate vector z. This is equivalent 

to setting 1 = O, T = J and C = B. The way of generathg data was very similar 

to the one in Shiboski (1998). That is, (1) a single covariate z was generated fiom 
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a Bernoulli distribution with p = 0.5; (2) observation times C were generated from 

a uniform [O,1] distribution; (3) failure times T were generated fiom a Weibd 

proportional hazard model, such that the hazard function is of the form, 

The value of the indicator variable cf was determined according to the observed T 

and C. Both the value of P and the value of 7 were set at one. Three values were 

used for a: 0.5,1.1,2. A dataset of size 100 was generated for each value of a. 

We focus on estimation of the regession coefEcient P. The proportional hazarà 

modeLs with a piecewise constant badine hazard fimction and a Weibd base- 

line hazard function were fitted to each dataset. The downhill simplex method 

due to Nelder and Mead (see, Press e t  al., 1990) was used to get the maximum 

likelihood estimates of the parameters. The number of pieces was set to be five 

or ten, with cutoff points being 0,0.2,0.4,0.6,0.8 for the five-piece modd and 

0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 for the ten-piece model. 

The estimates of B, the estimated standard errors (based on the Fisher infor- 

mation matrix) and the log-likelihood values at the m d m u m  likelihood estimates 

are given in Table 3.1. Both piecewise constant models give very similar values of 

b. These values are ais0 reasonably dose to the estimates given by the Weibull 

model. It suggests that estimates of P are robust to the number of pieces used in 

the piecewise constant models. However, the piecewise constant models are less 

efficient than the Weibd model (the true parametric model) for estimating p. 
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Table 3.1: Estimation of regression parameter P based on proportional h a z ~ d  
models with piecewise constant hazard and Weibd hazard. 

3.3 Doubly Censored Current Status Data 

As we have pointed out in Section 3.1, doubly censored current status data arise 

when the initiating event time I is known only to be in an i n t d  (XL, XR), and 

it is also observed whether or not the subsequent event has occurred at t h e  B; 

that is, we observe b = 1 if J 5 B, and d = O if J > B. Let T = J - 1. We 

make the following assumptions: (1) 1 and T are independent; (2) the observation 

times and censoring times are independent of I and T; (3) the distribution of 1 

is known. Let W(t )  and w ( t )  be the cumulative distribution function (CDF) and 

density function for 1 respectively. Our goal is to estimate the survival function ( c d  

it So(t)) of the time between the two event times, based on an independent sample 

(XG, Xm, Bi, Ji), for i = 1,. . . , n. If a vector of badine  covariates is measured for 

each subject, we can &O study the efFect of covariates on the distribution of T. 

W;eibd P - P  
a! = 0.5 
-0.157 
0.275 
55.66 

-0.00206 
0.305 
55.19 
-0.0208 
0.306 
54.34 

PC (5 pieces) 

PC (10 pieces) 

se(p) 
C 

-10gL a 

P - P ,. 
se(p) 
-10gL 

P - P 
L 

se(p) 
-10gL 

a = 1.1 
0.0168 --- 
0.320 
50.86 
0.0358 
0.342 
50.05 
0.0951 
0.358 
48.27 

a! = 2.0 
-0.238 
O -341 
45.12 
-0.216 
0.358 
44.73 
-0.187 
0.367 
42.68 
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3.3.1 A piecewise constant hazard mode1 

Suppose we have n independent observations (XG, XE, Bi, Ji), i = 1, . . . , n. We 

assume that XRi 5 Bi, for i = 1,. . . , n. Under the assumptions (1) to (3), the 

likelihood is L = n:'L, (1 - P;'-", where P; = Pr (Ji > Bil 4 E [X=, XE])  - NOW 

for simplicity, drop the index i and just use P. It is easy to see that 

where w*(z )  = w ( z ) /  J* w(t)dt  is the conditional density of I in interval LXL, XR]. 

We assume w*(x) is known. I f  we further assume that w* is uniform on the given 

interval [XL,XR], P can be simplified as 

Under the assumption of a piecewise constant hazard for T, we have So(t) = 

exp(-Ho(t)) = exp (- CL, piu&)), where HO (t) ,  pk and ui ( t )  are defined in Sec- 

tion 3-1. For aj 5 t 5 aj+,, let P( t (a j )  = PT(T > tlT > a j )  = So(t) /So(aj)  = 

ezp(-pj(t - aj)) .  W e  cornpute Ji S o ( ~ ) d x  for a given constant c > O. There exists 

an intega j(c),  such that aj(c) < c 5 aj(c)+i, and 1 < j (c)  5 T .  It can be shown 
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t hat 

3.3 -2 Regression Models 

Suppose for each subject, we also observe zi, a vector of conriates that is related 

to the distribution of T. The likelihood is still given by L = nT=,(l - P~)'~P/- '~ ,  

where Pi = Pr(Ji > X=lIi E [Xfi ,XRi],  r i ) ,  if the observation time Bi = XRi- The 

additive excess risk mode1 assumes a hazard fhction h(t lzi) = ho(t) + rp. So we 

have 

and 

where j (c )  is an integer, such that aj(,. < c 5 aj(,)+l, and 1 < j ( c )  5 r. Thus 

f i  = ~ , " ~ i - X a i  S (t  [z;) dt/ (XRi - Xfi ) .  

A derivative-fkee optimization method, snch as the downhill simplex method 
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due to Nelder and Mead (see, Press et al., 1990), can be appLied to obtain the 

maximum likelihood estimates of (p ,P ) .  ki fact, this is the method we used in our 

simulations and examples in Chapter 3. 

The proportional hazard model assumes a hazard function for Ti is 

Let d; = exp(@), then S(c1r;) = S O ( C ) ~ ~  = ezp(-Ho(=)&). Suppose c is in interval 

TS(c, O) = J: &(t) di?. SO Pi = IS(XRi - X', zi )  /(XX - XLi) for the proportiond 

hazard modd. 

The score functions for either regession model are: 
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dlogL - - (1 - & - Pi) - aPi w, 

The Fisher Information matrix is 

where the (k, j )  element of b1 is 

the (k,j) element of 112 is 

the (k, j )  element of 122 is 

and Izl = Ii,. The derivatives of Pi's with respect to pr's and pj's for the propor- 

tional hazard model are given in an appendix in Section 3.8. 

The maximum likelihood estimates of (p, P )  can be ob tained by Fisher's scoring 

method. An alternative is to use a derivativefkee optimization method. 
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3.4 General Doubly Censored Data 

We now consider data with general double censoring and left tnincation. First we 

introduce some notation. Suppose there are n independent subjects in our study 

and that Subject i is enrolled a t  time E;. One of the conditions to be included 

in the study is that the subsequent event time Ji has not occurred at the time 

of enrollment Ei; that is, Ji > Ei. The initiating event time 4 is observed to be 

in interval [XG,XRi]. The subsequent event time Ji is observed to be in intenral 

[JG, J X ] ,  where JLi > E;. Let Ti = Ji - l;, and assume 1. and are independent 

and continuous. Let W;(x), w ; ( x )  be the cumulative distribution function and 

density function of Ir, respectively, for x E (O, 00). Let Gi(t), S;(t), gi(t) and hi( t )  

be the cumulative distribution function, swvival function, density fimction and 

hazard fiuiction of Ti. 

Assuming that 1;'s do not contain information on the distribution of Ti:-, the 

likelihood function conditional on là E [XLii XE] and Ji > Ei is 

where W: (z) = w~(x) / J ~ E  w ~ ( z )  d ~ ,  XLI < z < XE, is the density of li conditional 

on là E [Xf i ,XRI] .  We assume Sà(x) = O if x 5 0. 

If Ei < X f i ,  there is no tnincation, and the denominator of the likelihood 

function is 1. Also, the case of right-censored Ji's can be treated as a special case 

of our general formulation with JR; = 00. Suppose gi(t) is the density fimction of 



CHAPTER 3. CURRENT STATUS DATA & DOUBLY-CENSORED DATA 73 

Ti. The likelihood fiuiction can be written as 

where Ji is the censoring indicator for Ji. Ji = 1 if JL; is the observed value for Ji; 

Ji = O if JLi is the observed censoring tirne. 

In the rest of this section, we assume that uf(x) is known. 

3.4.1 A piecewise constant hazard model 

We assume that wi(x) is uniform over interval [XG, XX]. The baseline hazard 

function for T is a piecewise constant fnnction ho(t) = pk, if t E Ai, where Ai = 

(ak, u ~ + ~ ]  and O = al < a2 < . . . < a, < a,+1 = m is a sequence of pre-fixed 

constants. We also observe a vector of conriates ri for each subject. We assume the 

covariate ef5ect on the hazard fimction of T is multiplicative, that is, a proportional 

hazard model is used: 

h(t 1 = ho ( t)  e x p ( z 3 ) .  (3.26) 

Let Go, So and go be the basehe cumulative distribution function, s r i n n d  func- 

tion, and density function. Recall that &(t) = ezp(-Ho(t) )  = exp(- xi=, pkuk(t)), 

Go@) = 1 - So ( t )  , = ho (t)exp(- Ho(t ) ) ,  where uk(t) is defmed in formula (3.1). 

Now we compute the log-Iikelihood based on (3 .%). It can be written as 
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where 

where IS(c, x )  is dehed in (3.16). So 

3.4.2 Computation 

The maximum lilcelihood estimates (MLEs) of pk's can be obtained by maxhizing 

the log likelihood fünction. This can be achieved by a derivative-free optimization 

method, or an optimization method using derivatives. The method we used is the 

downhill simplex method due to Nelder and Mead (see Press et al., 1990). After 

MLEs are obtained, the standard errors of the estimates can be derived from the 
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observed information ma&, that is, the minus second derivative matrix of the log 

likelihood function with respect to the parameters, evaluated at the MLEs. We 

give the f is t  and second derivatives here. 

To simplifY our notation, let 

The firsr. derivatives of ZogL with respect to p and B are: 
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The second derivatives of ZogL with respect t o  p and P are: 

1 (aci3 aci4 a ~ ,  acâ4 + -- 
( ~ a  - ~ i 4 ) ~  aplt %)(= - -+Y a ~ j  

1 + ac, a c .  ac, ac, 
(Ca - c&)'(,,L - ap,)(a~, - -&)y 
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3.4.3 A Weibull regression mode1 

Suppose for example that Ti follows a Weibdl distribution with a hazard function 

hi(t; ri) = h,(t) exp(~;p) ,  and ho(t) = cq-ata-'. The baseline suvival function 

is So(t) = exp{-(t17)"). We still assume that wz(x) is uniform over intenral 

[XG,X~;]. For the same data structure as in 3.4.1, the log likelihood based on 

observed data is 

-log[lS(Ei - X& r;) - IS(Ei - XE> ~ i ) ] ) .  
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where 

is the incomplete Gamma function. Notice that 

The formulas for derivatives of S(t Iri) and IS(t,  z;) are in an appendix (Sec- 

tion 3.8). These are used to obtain variance estimates for the parameters. An 

alternative would be to use numerical derivatives or the alternative covariance ma- 

trix estimate 

based on the fact that 

3.5 A Simulation Study 

We conduct a simulation study to assess the performance of the piecewise constant 

hazard modeh and to examine the efFect of the lengths of the i n t d  for the first 

event (1;) on estimation. 
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Figure 3.1: Hazard functions, cumulative hazard fünctions, density functions and 
survival functions of Weibull and log-logistic distributions used in the simulation. 
Solid lines-Weibull; dot ted lines-log logistic 

We mimic an AIDS cohort study in our simulation set-up. Suppose subjects 

are under periodic examination (screening) to check whether the first event has 

occuned or not during time interval (O, r]. The periodic examination times are 

w ,  2w, . . . , mw, where m = r/w. Once a subject has experienced the &st  event 

between two consecutive screening times, this subject is followed up fkom the 

screening time right after the first event t h e ,  until the end of the study pe- 

riod B (B > T )  to check when the second event occurs. We only consider sub- 
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jects with first events occwed during i n t d  (O,r]. The sample size is chosen 

to be n = 100. The data are generated in the following steps. (1) We gener- 

ate the first event tirnes ri, i = 1,. . . , n from the uniform distribution on inter- 

val [O, r] . (2) We generate Ti, i = 1, . . . , n, hom a continuous distribution with 

CDF G(t). (3) Let Ji = 1; + Ti be the second event time for subject i. There 

are three forms of outcornes. The first one is that both 1; and Ji (ri < Ji) are 

known only to be in interval (Lw, (k + l)w], for some k = 1,. . . ,rn - 1; the sec- 

ond is that Ii is only known to be in interval (km, (k + l)w] (for some k), and 

Ji > (k + l)w is observed exactly; the third is that ri is known only to be in intenal 

(Xw , (k + l)w] (for some k), and Ji is known only to be greater than B. Therefore 

the observed data vector for subject i is (XLi, XRI, JLI, JI;, J2;), where XL; = kw, 

x~ i  = ( X :  + l ) ~ ,  JLi = maz(XRi,mZn(Jà, B)), Jli = 1 if Ji > XKi; 61; = O other- 

Wise- 62; = 1 if Ji 5 B; 62; = O otherwise. So, (1) for the f i s t  outcornel Xti = Lw7 

XE = Jfi = (k + 1 ) ~ , 6 ~ ~  = O, Jzi = 1; (2) for the second outcome, XE = kw, 

Xx = (k + 1 ) w ,  JLi = Ji, J1i = J2i = 1; (3) for the third outcome, XLi = kw, 

XE = (k + I)w7 Jfi = B7 bli = 1, Jzi = 0. 

We set T = 6. Two distributions are considered for Ti's, the time between the 

two events, a Weibd distribution with GDF G(t )  = 1 - e ~ p ( - ( t / 7 ) ~ ) ,  where 

7 = 9.434, cr = 1.8; a log-logistic distribution with CDF G(t )  = 1 - 1/(1 + 
(7t)"), where 7 = 0.1368365, a = 2.515052. The parameters in the log-logistic 

distribution were chosen to make i t  have the same first and thLd quartiles as the 

given Weibd distribution. The plots of the hazard functions, cumulative hazard 

functions, density h c t i o n s  and survival functions of the given Weibd and log- 
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logistic distributions are given in Figure 3 .l. 

Two values of w are used: 1 or 6. The end of follow-up time is B = r / 2  + 
G-' (0.9), which gives 17.99 for the Weibd distnbution, and 20.507 for the log- 

logistic distribution. It  results in four cases: (1) T follows a Weïbd distribution, 

w = 1, B = 17.99; (2) T follows a W&bd distribution, w = 6, B = 17.99; (3) T 

follows a log-logistic distribution, w = 1, B = 20.507; (4) T follows a log-logistic 

distribution, w = 6, B = 20.507. For each case, 500 data sets were generated. 

The likelihood based on the observed data is similar to (3.25) but without the 

truncation: 

[I - S(X= - z)lJ2i(l-Jti) w,' (x) d~ , 

where g ( t ) ,  h(t), G(t) and S(t)  are density function, hazard function, c u d a t i v e  

distribution function and survival function of the Ti's, respectively; wl (x )  is the 

density 

bution, 

The 

of Ii conditional on 1; E [XG, XE]. Here since 4 follows a U d o r m  distri- 

w;(x) = l/(XRi - X&)> for Z E [XL17XRi]. 

Ilkelihood function can &O be expressed in the following fom: 
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where IS( t )  = J,'S(x)dx. 

The corresponding log-likelihood fùnction (ignoring a constant term) is 

(3 -48) 

where Cil, Ci2, Ci5, Ca axe defined in equations (XII), to (3.36); Ci7 is defined as 

In general, suppose 8 is the pdimensional parameter in the distribution of T'k. 

The first derivatives of log L with respect to 8 is 
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The second derivatives of log L are 

az log L - - " JI<&; a2Ci5 a2CS 
I ( - 

a o k a e  i=1 ' ci5 - ci6 BBkBBj 8ekaOj ) 

In particular, for the piecewise constant hazard modd, the first derivatives of 

log L with respect to the pk's are 

The second derivatives of log L are 
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Figure 3.2: Estimates of the true Weibd hazard fimction (dotted c m )  by a 
piecewise constant model (solid line) and by a Weibull rnodel (dashed curve), for a 
simulated example in Case 1. 

For each data set, we estimate the hazard function parameters by maximum 

likelihood, based on a piecewise constant hazard modd and on a Weibd hazard 

model. The number of pieces is five in the piecewise constant hazard modd. The 
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Figure 3.3: Estimates of the hue Weibd survival function (dotted curve) by a 
piecewise constant model (solid line) and by a Weibull model (dashed c w e ) ,  for 
the same data used in the previous figure. 



CHAPTER 3. CURRENT STATUS DATA & DO UBLY-CENSORED DATA 86 

values of the akTs in each case are chosen to be the 20th, 40th, 6Oth, 80th percentiles 

of the h u e  distribution of T. The optimization method we used is the downhill 

simplex method due to Nelder and Mead (Press et al., 1990) and it was programmed 

in FORTRAN. 

The estimates for the survival function of T at the true 5tb, 25th, 50th, 75th and 

95th percentiles of T are obtained. For piecewise constant hazaxd rnodels, the sur- 

vival fùnction value of T at a given point t is estimated by s?) = ={- CZi FEU&)),  

and the asymptotic variance of S(t) is estimated by 6-method, which gives us 

v=T(s(~)  = ( ~ ? ) ) ~ u ~ ( t )  cov(&)u(t)  , where cm ( f i )  is the estimated covariance ma- 

trix for 5. For Weibull models, let Sw(t;a,7) = exp{-(t/7)") be the sumival 

function of a Weibd distribution with parameter a and 7, and let 

The survival function value of T at a given point t is estimated by S( t )  = &(t; â, r),  
and the asymptotic variance of S( t )  is estimated by vcr+(3(t) )  = (2, (t))2f 'cou(&, j)2, 

where m(â, f )  is the estimated covariance matrix for (â., q).  The asymptotic stan- 

dard error of S( t )  is obtained by taking square mot of vaT($(t)). 

Figure 3.2 displays the true Weibd hazard h c t i o n  and its estimates by a 

piecewise constant model and a Weibull model for a simulated example in Case 1. 

Figure 3.3 gives the corresponding survival function and its estimates for the same 

example. 

The bias, asymptotic standard error (ASE) and sample standard enor (SE) for 

the estimates of s u r v i d  functions at the five points for the four settings are given in 
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Table 3.2: Bias, asymptotic standard error (ASE) and sample standard error (SE) 
of estimates of survïval function for T at five points based on 500 simulations, in 
Case 1: Weibd distribution, w = 1, B = 17.99 

P-C model 

Table 3.2 to Table 3.5. The bias is the sample mean of the 500 individual differences 

t 
1.8116 

Weibull model 

between ~ ( t )  and S(t). The ASE is the sample mean of 500 individual standard 

Bias ( x 103) 
-36.5 

S(t) 
0.95 

mors based on the asymptotic theory for the maximum Iïkelihood estimator, using 

t 
1.8116 
4.7216 
7.6960 
11.311 
17.3548 

the inverse of the observed information matrix (the second derivative matrix of 

ASE ( X  103) 
19.6 

ASE (x103) 
14-6 
36.0 
40.9 
36.7 
19.4 

log-likelihood with respect to parameters, evaluated at the estimates). The SE is 

the sample standard error of the 500 estimates of S(t). 

SE ( x 103) 
18.6 

S(t) 
0.95 
0.75 
0.5 
0.25 
0.05 

S E  (x103) 
13.8 
34.0 
39.0 
36.1 
19.7 

By comparing the results for piecewise constant hazard models and Weibull 

models in Table 3.2 and Table 3.3, we can see that when the data corne fkom 

Bias (x103) 
-0.193 
1.27 

0.951 
-0.439 
0.727 

a Weibd model, the estimates &en by Weibull models have smaller bias and 
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Table 3.3: Bias, asymptotic standard error (ASE) and sample standard error (SE) 
of estimates of survival function for T at five points based on 500 simulations, in 
Case 2: Weibd  distribution, w = 6, B = 17.99 

P-C model 

Weibull model 

1 t 
1-8116 
4.7216 
7.6960 
11.311 
17.3548 

standard errors, because the Weibd model is the true mode1 for the data. In 

Table 3.2, the relative merence of bias (and standard errors) between the Weibd 

models and the piecewise constant modek is not very big for estimation of S(t) in 

the middle range (fiom 25th percentile to 75th percentile of the true model), but it is 

bigger for estimation of S(t )  at the h o  ends (for 5th percentile and 95th percentile). 

In Table 3.3, where interval censoring of I is more severe, the relative difference of 

bias (and standard errors) between the Weibull models and the piecewise constant 

models is bigger for estimation of S(t) in the whole range. These results confirm 

that using a fully parametric model is more favorable than a piecewise constant 

S(t) 
0.95 
0.75 
0.5 
0.25 
0.05 

r 

t 
1.8116 
4.7216 
7.6960 
11.311 

Bias (x103) 
-24.1 
18.7 
-9.03 
3.65 
5.37 

S(t) 
0.95 
0.75 
0.5 
0.25 

17.3548 1 0.05 
* 

ASE ( x 103) 
33.7 
46-5 
58.5 
59.9 
38.5 

Bias ( x IO3) 
-0.606 
1.87 
1-79 

-0.509 

SE (x103) 
34.1 
46 .O 
54.4 
55.8 
35.4 

0.698 

ASE (X 103) 
18-2 
42.7 
45.1 
38.7 

SE (x 103) 
17.8 
41.3 
43 -4 
37.6 

21.7 21.4 
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Table 3.4: Bias, asymptotic standard error (ASE) and sample standard error (SE) 
of estimates of survival function for T at five points based on 500 simulations, in 
Case 3: log-logistic distribution, w = 1,B = 20.507 

P-C model 

Weibull model 

t 
2.2665 
4.7216 
7.3080 
11.311 

23.5634 

model when the tnie parametric model is known, and the purpose is to estimate 

the survival b c t i o n  values. The piecewise constant models with just 5 pieces here 

give reasonably good estimates of survival function values in the middle range, but 

they may not give satisfactory estimates of survival fünction values for the tails. 

In particular, piecewise constant mod& witb 5 cut points at the Oth, 20th, 40th, 

60th, and 80th percentiles here under-estimate the sumival fùnction vahe at the 

5th percentile. A reason is that the estimated hazard jil in the first interval fiom 0 

to 20th percentile is close to the average of hazard funetion in this interval, so il 

S(t) 
0.95 
0.75 
0.5 

0.25 
0.05 

t 
2.2665 
4.7216 

over estimates the hazard in the sub-interval from O to 5th percentile (see Figure 

Bias ( X  IO3) 
-49.9 
10.7 
2.00 
2.80 
-5.36 

S(t) 
0.95 
0.75 

ASE ( X  103) 
23.0 
37.6 
45.8 
40.5 
22.7 

Bias (x103) 
-31.9 
-3.29 

7.3080 
11.311 

23.5634 

SE ( x  IO3) 
21.7 
35.1 
43.2 
40.0 
24.3 

31.2 
-35.0 

0.5 
0.25 
0.05 

ASE (x103) 
19.8 
35.8 

SE ( x  lo3) - 
15-1 
28.1 

37.5 
8.71 

36-2 
40.9 
10-5 
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Table 3.5: Bias, asymptotic standard error (ASE) and sample standard error (SE) 
of estimates of survival b c t i o n  for T at five points based on 500 simulations, in 
Case 4: log-Iogistic distribution, w = 6,B = 20.507 

P-C model 

W;eibull rnodel 

t 
2.2665 
4.7216 

3.2). We note that these problems can to some extent be overcome by using more 

pieces and smoothing for the piecewise model, as described in Chapter 4. 

The results in Tables 3.4 and 3.5 are based on data geaerated from the log- 

logistic rnodel for T; the Weibd  and piecewise constant hazard models are still 

used to fit the data. They show that when we do not know which distribution the 

data corne from, the piecewise constant model gives better estimates of the survival 

function &es in the middle range than a wrongly specified M y  parametric modd. 

Both the piecewise constant model and the M y  parametric rnodel do not r e d y  

give satisfactory estimates of snrvivd function values for the left tail in these cases. 

S(t) 
0.95 
0.75 

t 
2.2665 

Bias ( x  IO3) ----- 
-28.7 
30.5 

S(t) 
0.95 

ASE ( x 103) 
40.4 
46.6 

Bias (x103) 
-45.7 

SE ( x 103) 
44.2 
46.3 

ASE (x103) 
26.3 

SE ( x 103) 
23.3 
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We thus see that the piecewise constant models are more robust against the model 

misspecification. To get good estimates of survival function values in the left tail, 

we need more pieces and smoothing in the piecewise constant modehi, which we 

discuss in the next chapter. 

By comparing results in Table 3.2 against these in Table 3.3, and results in 

Table 3.4 against these in Table 3.5, we can see that when there are more fiequent 

examinations for the initiating event, the estimates fiom both Weibd models and 

piecewise constant models are less variable, as we would expect. The bias of esti- 

mates in the middle range of T given by the piecewise constant models increases 

when the number of the periodic examination times for the first event changes f?om 

6 to 1. It suggests that piecewise constant models with a s m d  number of pieces and 

no smoothing are more sensitive to the heavy interval censoring than a correctly 

specified fully parametric model. 

3.6 Example: Toronto Sexual Contact Study 

ki this section, we apply the methods discussed in previous sections to the Toronto 

Sexual Contact Study, described in Chapter 1. The data are doubly censored. The 

HIV infection times for mos t sub ject s were int erval-censored; the AID S diagnosis 

times were left truncated by the dates of enrollment since only men who had not 

been diagnosed with AIDS were eligible for entry into the study; and the AIDS 

diagnosis times for 110 subjects were right censored by the end of follow-up. 

We set up the indicator variables JI; and c f z i ,  where c f l i  = 1 if the subject was 

diagnosed with AIDS during the study, O otherwise, bzi = 1 if the subject was HIV 
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positive at the time of enrobent, O otherwise. The data can then be divided into 

four group. The first group (ni = 15, with 61; = O, bZi = O) consists of subjects who 

became HIV positive during the study and were AIDS-free at the end of follow-up; 

the second group (nz = 1, with JI; = 1, = O) consists of subjects who became 

HIV positive during the study and were diagnosed with AIDS during the study; 

the third group (n3 = 95, with bli = O, &; = 1) consists of subjects who were 

HIV positive at enrollment and were AIDS-f?ee at the end of follow-up; the fourth 

group (n4 = 48, with Jli = 1, = 1) consists of subjects who were HN positive 

at enrollment and were diagnosed with AIDS during the study. 

We focus on getting an estimate for the distribution of the incubation penod 

from HIV infection to AIDS diagnosis. W e  apply the piecewise-constant hazard 

models to the data. That is, we assume that Ti, the time between the EW infection 

and AIDS diagnosis has a piecewise constant hazard, as discussed in the early 

sections of this chapter; the distribution of the time to RN infection is assumed to 

be known and 1; and Ti are independent. Under these assumptions, the libelihood 

contribution fkom the ith subject is 

where Si and gi are the swival  function and the density function of z, and w;'(x) = 

w;(z) / J'F w ~ ( u )  du is the conditional density of li on interval [X&, XRI] - 



CHAPTER 3. C U . T  STATUS DATA & DOUBLY-CENSORED DATA 93 

If we assume that Ti's follow a common distribution S(t) ,  and wt is uniform 

over int erval [XL;, Xm], Li can be writ t en as 

For the special case of XLi = XE in Groups T h e e  and Four, we treat li as ob- 

served at XLi7 and replace the corresponding likelihood contribution by S(JLi - 

XL;) /S(Ei  - X L ~ )  in Group Three and by g(JLi - XL;) /S(E;  - X f i )  in Group Four. 

The log likelihood can be written as log L = EL, log Li. 

A piecewise constant model with 6 pieces was fitted to the data without any 

covariates. The cutoff points are 0.0,500.0,1000.0,1500.0,2200.0,2700.0. T h e  max- 

imum likelihood estimates of the hazards and estimated standard errors based on 

the observed information matrix are listed in Table (3.6). A Weibull model with 

survivor function S(t;  a,7) = exp{ - ( t / 7 )" )  was also fitted to the data. The maxi- 

mum likelihood estimates are ô: = 1.7724, j = 3715.1. T h e  corresponding estimated 

standard errors are se(&) = 0.2902, se(?) = 365.0. 

Table 3.6: Estimates and standard errors of the hazards in a piecewise constant 
hazard model 
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Figure 3.4 gives the estimate of CDF of T by the Weibull model (solid cuve) 

and the estimate by the above piecewise constant model. We notice the discrepancy 

in the nght tail, but observe that there are few subjects with observed tiYs which 

could be larger than 2500 days. The two models give similar estimates of the median 

incubation t h e .  

I , 
O 

I I 1 

1 O00 2000 3000 4000 
Tirne since HIV infection (days) 

Figure 3.4: The solid line is the estimated CDF of T based on a Weibd modd; the 
dotted line is the estimated CDF of T based on a piecewise constant hazard model 
with 6 pieces. 
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3.7 Discussion 

In this chapter, we have discussed models with piecewise constant hazard fnnctions 

for current status data and doubly censored data. Maximum likelihood estimation 

of the survival function of the induction time and covariate effects is devdoped- 

The use of these methods is Uustrated by simulated examples and an example 

from an AIDS study. The performance of these methods are also demonstrated by 

a simulation study. 

In the simulated examples for the standard current status data, we have shown 

that the piecewise constant models provide reasonable estimates of the regression 

coefficient and the corresponding estimated standard mors. The estimates of the 

regression coefficient and the corresponding estimated standard errors are robust 

to the number of pieces used in the piecewise constant models. 

The simulation study in Section 3.5 assumes a Weibull or log-logistic distribution 

for the induction time and no covariates involved. The models with a piecewise 

constant hazard fimction or a W;eibull hazard h c t i o n  were fitted. Results show 

that use of piecewise constant hazard functions with five to ten pieces can provide 

good estimates of the suvival fùnctions when time is not too small, no matter 

what is the trne distribution of the induction tirne. On the other hand, the Weibull 

models do not do well in estimating the survival function when the induction times 

are from a log-logistic distribution. Therefore the piecewise constant models are 

robust to the distributional form of the induction t h e  and are recommended to 

use when we have doubt about the distributional form of the induction tirne. The 

estimates of the standard errors can be constructed using the observed information 
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matrices of the parameter estimates. 

A more thorough investigation can be canied out by assessing the performance 

of the piecewise constant models in the doubly-censored data when covariates are 

present. A known distribution other than the uniform distribution can also be 

considered for the initiating event 1. 

3.8 Appendix 

For the proportional hazard model with piecewise constant basehe hazard in Sec- 

tion 3.2.2, Section 3.3.2 and Section 3.4, the definitions of d; and s ( ~ [ % ~ )  can be 

found just before formula 3.16, and IS(c, si) is given in formula (3.16). The deriva- 

tives of di and S( t ( r i )  with respect to pk7s and a's are the following: 
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The derivatives of IS(c, ri) with respect to pi 's  and Pk7s are the following: 

for L # j, 
a2rs(~, - - 

aP&j 
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(3.67) 

11 

For a Weibd mode1 discussed in Section 3.4.3, IS(t ,  ri) is given in formula (3.45), 

and S(t lri) and c& are defined just before formula (3.45).  The derivatives of S(t Iri) 

and IS( t ,  G) &th respect to a! and 7 are the following: 
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Chapter 4 

Smoothing in Estimation of Rate 

and Hazard Functions 

4.1 Smoothing using a roughness-penalized like- 

lihood approach 

In previous chapters we have discussed methods using piecewise constant intensity, 

rate or hazard hinctions for interval-grouped recurrent event data and doubly- 

censored data. We have noticed that for the purpose of estimating covariate effects 

and mean function or su rv id  function, a srnall number of pieces can usually do 

wd. However, if our goal is to estimate intensity, rate or hazard fùnctions, a Iarger 

number of pieces is n o m d y  requled. In acldition, estimates of survival, mean 

or cumulative hazard functions for s m d  and large t values is often not very good 

when only a few pieces are used. Using a large number of parameters makes the 



estimation problem a-posed (O'Sullivan, 1986) in the sense that s m d  changes in 

the data may lead to large changes in the estimate. It also yields very "wiggly" 

estimates, and the likelihood may often not have a unique maximum. A common 

strategy to overcome the difEculties is to manmize a roughness-penalized likelihood 

(see, e.g., Bacchetti, 1990; Bacchetti and Jewell, 1991; Green and Silverman, 1994). 

The generd form of a penalized log-likelihood is 

where L is the likelihood based on obswed data, R is a penalty function represent- 

ing the roughness of the hazard function, and C is a tuning constant that determines 

the relative importance of L and R. For models with piecewise constant intensity, 

rate or hazard functions, R is usually chosen to be the the sum of squared second 

differences among the piecewise cons tant intensity, rate or hazard: 

where pk's are piecewise constant intensity, rate or hazard values, and K is the 

correspondhg penalty ma&. The penalized likelihood technique balances its fit 

to the data against the pnor knowledge that rougher estimates are l e s  plausible 

(Bacchetti, 1990), and it can be interpreted fiom a Bayesian viewpoint. 

The estirnate produced by maximizing a roughness-penalized likelihood is called 

a maximum penalized Iikelihood estimate (MPLE). There are difFerent ways to 

compute MPLE. For example, Bacchetti (1990) proposed using an EM algorithm 
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to maximize a roughness-penalized likelihood in es timating EiIV infection rates and 

AIDS incubation distribution in a discrete time setting. He also used bootstrap 

siniulations to get confidence intervals for infection rates. As pointed out by Se- 

gal et  al. (1994), variance estimates for maximum penalized lik&ood estimates 

(MPLEs) can be obtained by treating the penalized likelihood as a usual likelihood 

and inverting the observed information matrices. These estimates are derived by 

Silverman (1985) using a Bayesian model. He showed that these estimates are the 

posterior variance matrices for multivariate normal data. Segd et al. (1994) also 

developed a procednre for obtaining these variance matrices when the MPLEs are 

obtained through an EM algorithm. 

The tuning constant C can be chosen by visually examining the smoothness of 

the estimates over a plausible range of C values (e.g., Bacchetti, 1990; Fusaro et al., 

1996), or by an automatic procedure based on some generalized cross-validation 

criterion (e-g., Marschner, 1997; Joly et al*, 1998). 

The above penalized likelihood technique is not the only technique for smooth- 

ing. Other techniques indude kemel smoothing (e-g., Staniswalis et al-, 1997), 

weighted locally linear smoothers (e.g., Cleveland, W ' g ) ,  or s p h e  fnnctions (e.g., 

Joly et al., 1998). However, we will focus on the penalized Likelihood technique in 

this chapter. In the rest of this chapter, we discuss the application of the penalized 

Likelihood technique to produce smoothed estimates of intensity, rate or hazard 

functions for recurrent event data, curent status data and doubly-censored data. 
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4.2 Smoothing in estimation of intensity or rate 

function for interval-grouped recurrent event 

data 

For the interval-groqed recurrent event data, we assume that the event process is 

a mked Poisson process as in Chapter 2. The intensity for event recurrence is ph 

for time interval Ak = (ak-l, ak], where A& are of eqnal length. W e  choose R to  

be the sum of squared second differences among rates: 

where K is equal to W*W with tridiagonal such that wk,k = 1, w k t + ~  = -2, 

W k , k + ~  = 1. 

Therefore the penalized log-likelihood is 

Our goal is to obtain the maximum penalized likelihood estimate (MPLE) of 

( P ~ P I v )  by maximihg [,- 



The first denvatives of 1, with respect to parameters are 

The minus second order derivatives of I ,  with respect to parameters are 

-az&,, -azr,, -azI,, -a2[,, -a24,, 
and apkaal apkapt > apkav 9 apkav 3 av2 7 which are the same as the corresponding 

minus second order derivatives of the observed log-likelibood. 

We apply a two-step algonthm to get MPLE. Suppose the current parameter 

values are (p(0) ,  P(O), do)). At Step one we update (p ,  P )  by Fisherk scoring method: 

and at  Step two v is updated by 



We iterate between the two steps. The stopping rule is defined as folIows: Let 

i p f )  - j 
SI = max " + 0.001' 

& = max 
pp - pp1 
pp)~ + 0.001 ' 

and S4 is the maximum absolute value of the penalized score functions evaluated at 

the updated parameters. If max(&, S2, 63) 5 €1 and 64 5 €2, where €1, €2 are small 

positive numbers, then stop iterations and claim that MPLE is found. Here we use 

= 1.0 x  IO-^ Eq = 1.0 X 1 r4 .  

4.2.1 An example 

We apply the penalized likelihood approach to the bIadder cancer data discussed in 

Chapter 2. We divided the whole study period (0, 531 into 53 pieces of equal length. 

R e c d  that covariate z( is the treatment indicator; = 1 if the patient is in the 

thiotepa group; ril = O if the patient is in the placebo group. ziz is the number 

of initial tumors present at randomization; r;3 is the diameter (in centimeters) of 

the largest initial tumor. zz and 23 were centered before entering the estimation 

procedure. Figure 4.1 shows the estimates of the baseline rate function using the 

penalized likelihood method with Merent degrees of smoothness. = 1.0 x 10' 

produces rates with osdations. C = 1.0 x IO5 gives rates that are reasonably 

smooth. C = 1.0 x 106 gives rates that have little curvature. 

Setting C = 1.0 x 10' gives fi  = (-0.9207,0.3567,0.0043), with standard mors 



month 

Figure 4.1: Monthly baseline recurrence rates estimated by penalized UEelihood 
method with C = 1.0 x IO4 (solid curve), < = 1.0 x I O 5  (short dashed curve), and 
C = 1.0 x 10' (bold dots). 

(0.37,0.105,0.13)- The variance of the random effect is estimated as 2.43, with 

standard error 0 -5 00. 
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4.3 Smoothing in estimation of hazard functions 

for current s t a t  us data and doubly-censored 

data 

We will consider the doubly-censored data in this section, although the procedure 

for curent status data is very similar. The penalized log-likelihood fimction for 

doubly-censored data is: 

where K is the penalty matrix as defined before, Z(p,B) is the log-likelihood based 

on observed data, p is the piecewise hazard. The maximum penalized likelihood 

estimate (MPLE) of (p ,  B) can be obtained by maJrimizing 2,. A derivative- free 

method (e.g., the downhill simplex method of Nelder and Mead, see Press et al. 

(1990)) can be applied to  achieve this goal. 

4.3.1 A Simulation Study 

To assess the performance of the MPLEs in piecewise constant modds, we cany ont 

a simulation study for doubly-censored data. The design of the study is the same 

as the one in Section 3.5, with the same four cases. We fit models with piecewise 

constant hazards for T. The number of pieces is 25 and the values of endpoints ak7s 

are chosen to be the percentiles of the mie  distribution of T that correspond to 

CDF values 0,0.036,0.072, . . . ,0.864. The penalized likelihood technique was used 



to get MPLEs of the hazard h c t i o n .  The tuning constant is set to be 104 after 

trying several different (' values for a simulated data set in Case 4. For this data 

set, Figure 4.2 shows the the true log-logistic hazard function and its estimates by 

piecewise constant models with tuning constant being IO4 or 105, and its estimate 

by a Weibull model. We can see that the two estimates by piecewise constant 

models are very close in the middle but slightly mixent  at the tails. Both give a 

very good approximation to the true hazard function in the range of roughly (3,121, 

but are not as good for the tails (where there is little data). The estimated hazard 

fkom the Weibd model can not of course match the pattern of the true hazard 

function. 

Figure 4.3 gives the estimates of survival h c t i o n  for the same data set. Clearly, 

piecewise constant models with both tuning parameters give good estimates to the 

true sunrivd function, but the Weibull model does not do so well, especially in the 

middle range of T. 

Tables 4.1 to 4.4 give the bias, asymptotic standard error (ASE) and sam- 

ple standard error (SE) for the estimates of survival functions at five points @th, 

25th,50th, 75th and 95th percentiles of the tme distribution) for the four cases. The 

asymptotic standard errors are the square roots of the the diagonal elements of the 

estimated asymptotic Mnance mat&, which is computed as the inverse rnatrix of 

the minus second parti& of the penalized log likelihood function. The piecewise 

constant models with smoothing give good estirnates for sumival functions. We 

notice that the asymptotic standard errors of the S(t)'s are larger than the sample 

standard mors. This suggests that asymptotic standard errors based on the minus 



second derivative matrices of the penalized log-likelihood are not valid. See the 

discussion in the folIowing section. We suggest using the bootstrap estimates of the 

standard errors instead. 

Figwe 4.4 shows the 95% pointwise confidence interval for the true hazard 

h c t i o n  for Case 4, based on 0.025th and O.975th quantiles of individual estimates 

of pk's in the 500 simulations. The interval covers the true hazard function, excep t 

very close to t = O. The interval is quite narrow in the middle, but becomes wider 

for t greater than 14, indicating a lack of information for the hazard when t is larger 

Table 4.1: Bias, asymptotic standard error (ASE) and sample standard error (SE) 
of estimates of survival function for T at five points based on 500 simulations, in 
Case 1: Weibull distribution, w = 1, B = 17.99 

P-C model 

4.4 Discussion 

t 
1.8116 
4.7216 

In Section 4.3.1, we noticed the discrepancy between the the asymptotic standard 

errors (ASE) and the sample standard errors (SSE) for S(t). Based on Tables 4.1 

to 4.4, the ASE is always larger than the SSE and the ratio of ASE over SSE can 

S(t) 
0.95 
0.75 

Bias (x103) 
-3 .O2 
1.24 

ASE ( X  103) 
23.1 
39.8 

SE (x103) 
18.2 
24.0 

' 
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Figure 4.2: Estimates of the tme log-logistic hazard function (points) by piecewise 
constant models with tuning constant C = 104 (soLid line) or C = 10' (dotted line), 
and by a Weibull mode1 (dashed curve), for a simulated example in Case 4. 

be as high as 5. It indicates that the ASE based on the minus second derivative 

matrix of the penalized log-Likelihood function is not valid. 

An alternative approach is to compute a bootstrap estimate of standard errors 

(e.g., Efron and Tibshirani, 1993). Suppose we have a sample of size n, Y = 

(Yi, &, . . . , Y,) and we have computed an estimate of S(t) for some time t .  The 

estimate is denoted as $t). Now we want to cornpute the bootstrap standard error 

of S( t ) .  The steps are the following. First we generate M independent bootstrap 



Figure 4.3: Estimates of the trne log-logistic sunrival function (points) by piecewise 
constant models with tuning constant C = 104 (solid line) or C = IO5 (dashed line), 
and by a Weibd rnodel (dotted curve) , for the same data set used in the previons 
figure. 

samples Y *', . . . , Y * M ,  where a bootstrap sample is a random sample of size 

n drawn with replacement fkom the original sample Y. Then for the kth bootstrap 

sample, we compute an estimate of S(t), c d  it >i(t). Finally we compute the 

empirical standard deviation of the M samples and use it as an estimate for the 

standard error of S( t ) .  
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Figure 4.4: The dotted cunre represents the true log-Iogistic hazard fiinction used 
in simulations for Case 4. The solid h e  represents the average values of the 500 
estimated hazard fùnctions by a piecewise constant model. The dashed lines are 
the 0.025th and 0.975th percentiles of the 500 individual estimated hazard pieces 
by the piecewise constant model. 



Table 4.2: Bias, asymptotic standard error (ASE) and sarnple standard error (SE) 
of estimates of sumival function for T at five points based on 500 simulations, in 
Case 2: Weibd distribution, w = 6, B = 17.99 

P-C mode1 

t 1 S(t) 1 Bias ( x l o 3 )  1 ASE (x103) 1 SE ( x 1 0 3 )  1 

where S:(t) = 5 zEl &(t).  

We generated five datasets of size 100 as in Case 1 of the simulation study 

in Section 4.3.1. For each dataset, we fitted a piecewise constant mode1 with 25 

pieces and the maximum penalized likelihood estimates of p were computed with 

tuning parameter (' = I O 4 .  S ( t ) ,  where t is one of the 5th, 25th, 50th, 75th, 95th 

percentiles, was computed as in Section 4.3.1. Then the bootstrap estimates of 

the standard errors for S( t )  were computed based on 100 bootstrap samples for 

each dataset. The results are listed in Table 4.5. We c m  see that the bootstrap 

estimates of the standard errors of S(t) are reasonably close to the sample standard 

errors of S(t)  based on 500 samples in Table 4.1. This suggests that the bootstrap 

estimates of the standard mors  are valid for this setting, and we recornmend the 

use of bootstrap estimates of the standard errors when the maximum penalized 

likelihood approach is used. However, since we just computed a few examples here, 

more intensive study on the standard error estimates is requted to support out 
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Table 4.3: Bias, asymptotic standard error (ASE) and sample standard error (SE) 
of estimates of survival function for T at five points based on 500 simulations, in 
Case 3: log-logistic disfzibution, w = l,B = 20.507 

P-C mode1 

t 
2.2665 

S(t) 
0.95 

B i s  ( X  103) 
0.187 

ASE (x103) 
23 -6 

SE (x103) 
20.3 
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Table 4.4: Bias, asymptotic standard error (ASE) and sample standard error (SE) 
of estimates of survival h c t i o n  for T at five points based on 500 simulations, in 
Case 4: log-logistic distribution, w = 6,B = 20.507 

Table 4.5: Bootstrap estimates (x103) of the standard errors of S( t )  based on 

P-C mode1 

piecewise constant hazard models for five datasets 

t 
2.2665 
4.7216 
7.3080 
11.311 
23.5534 

S ( t )  
0.95 
0.75 
0.5 

0.25 
0.05 

SE ( x 103) 
32.6 
41.2 
26.8 
11.1 
15.5 

Bias ( x 103) 
-14-4 
6.15 
O -413 
-4.41 
-8.01 

ASE ( x IO3) 
44.0 
47.4 
52.1 
41.9 
25 -2 



Chapter 5 

Conclusion and Furt her Research 

5.1 Conclusion 

In this thesis, we have discussed models with piecewise constant hazard, intensity 

or rate functions for event history data when event times are interval-censored, par-. 

ticularly for intenml-group ed recurrent event data, current s t atus data and doubly 

censored data. 

We have presented two approaches for the interval-grouped recment event data. 

One is mixed Poisson process estimation; the other is a robust method that requires 

only specification of the mean structure and covariance structure among recurrent 

event couds. Both approaches incorporate piecewise constant rate functions. The 

robust method performs as well as the m k u m  likelihood method. However, 

variance estimation and confidence intervals based on maximum LikeZihood are non- 

robust, and the robust method should be used if the event process may not be a 

mixed Poisson process. The use of piecewise constant rate functions with just 
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five to ten pieces provides excellent estimation of regression coefficients and mean 

funct ions, 

We have developed methods that use piecewise constant hazard functions to 

estimate the distribution fimction of the induction tirne for standard current status 

data and doubly censored data. Regression models are &O developed to assess 

covariate effects. Maximum likelihoo d es timat es are ob t ained using a derivative- 

f?ee optimization method. Our study shows that piecewise constant hazard models 

with five to ten pieces can provide good estimates of regression coefficients and 

survival b c t i o n s  when the time is not too s m d .  These rnodels are robust to the 

distributional form of the induction time. Therefore we recommend the use of the 

piecewise constant hazard models if we have any doubt about the distributional 

form of the induction tirne. 

We have also investigated smoothlig by the penalized likelihood approach. It 

is shown that combining smoothing and the piecewise constant modelç with more 

pieces c m  provide good estimates for the intensity, rate or hazard functions. Again 

this method is robust to the distributional form of the event time. 

In summary, we recommend use of piecewise constant rate or hazard functions 

for event history data when event times are interval-censored and when we have 

doubt about the true form of rate fùnctions or hazard hct ions .  A model with five 

to ten pieces is usually good enough for the estimation of regression coefficients, 

mean b c t i o n s  or survival functions. For the estimation of rate b c t i o n s  or hazard 

functions, we recommcnd using of smoothing in a piecewise constant model with 

more pieces. 
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5.2 Further Research 

There is further work to be done in this area. We outline some related probIems 

in Section 5.2.1 and an extension of our method to zero-truncated recurrent event 

data in Section 5.2.2. 

5.2.1 Some related problems 

(1) VaIid estimates of variation for maximum penalized Uelihood estimates in the 

piecewise constant models. 

In Chapter 4, we noticed that the standard mors  for estimates derived fkom 

the minus second derivative matrices of the penalized log-likelihood may not be 

valid. Our solution to this problem is to use a bootstrap estimate of the standvd 

error. However, it would be interesting to investigate the asymptotic theory of the 

maximum penalized Iikelihood estimates (MPLEs) in the piecewise constant modek 

and derive an estimate of the covariance matrix of the MPLEs. 

(2) Construction of confidence intervals for intensity, rate, or hazard functions 

when penalized Lkelihood approach is used. 

This pro blem is closely related to the e s t  problem. In Chap ter 4, we constructed 

pointwise confidence intervais for hazard functions based on percentiles of estimated 

hazard function values in simulations. It would be usefd to study whether we can 

construct confidence intervals based on asymptotic theory of the estimates and 

what are the coverage properties of these confidence intervals. 

(3) Developing some diagnostic tooh for model checking. 

It is important to assess the model we have fitted. In Chapter 2, we have 
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defined some residuals for the interval-censored recurrent event data. However, for 

the current status data and doubly censored data, it is ditfcult to define appropriate 

residuals, since lifetimes are never observed exactly for these data. 

(4) -An automatic procedure to choose the tuniPg constant in the penalized 

likelihood approach. 

The tuning constant C in the penalized likelihood controls the level of smooth- 

ing. In our examples it was chosen by visudy examining the smoothness of the 

estimates over some plausible values of (. An automatic procedure of selecting Ç 

would be usefd. Marschner (1997) proposed choosing the tuning constants by min- 

imizing a generalized cross-validation statistic A/k2, where A is the (unpenalized) 

deviance corresponding to the penalized Ilkefihood estimates and k is the degree of 

fkeedom as dehed  in Green (1987). However, this procedure requires the penalty 

matrices to be of a certain form, and under this condition, the manmization of the 

penalized likelihood is equivalent to fitting a model whae the parameters are cubic 

spline fünctions. Joly e t  al. (1998) selected the tuning constants by ma;lcimizing an 

approximate cross-validation score based on log-likelihood. Their approach requires 

approximating the solution of the maximum of the penalized likelihood on a basis 

of splines. So none of their formulations apply directly to our situation, since we 

do not want to assume pk to be a spline function. 

5.2.2 Zero-truncated recurrent event data 

Hu and Lawless (1996) have considered estimation fkom zero-tnincated recurrent 

event data where the ment process {Ni ( t ) ,  t > O) of the ith unit has an observation 
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window (O, and the process is unknown to the observer unless at least one event 

has occurred in (O, ri]. The total number of units under consideration is M but 

the value of M is unknown. The avaihble data indude the tirne of events tij  

( j  = 2, . . . , ni) and end of observation time Ti for unit i, i = 1, . . . , m. Hu and 

Lawless (1996) have proposed several approaches to estimate the rate and mean 

functions, including zero-truncated Poisson process models with piecewise constant 

rate assumption. Below we outline application of mixed Poisson process models to 

the problem. 

We assume that {N;(t), t  > O), i = 1, . . . , rn, are independent Poisson processes 

with intensity function a;Xo(t), wherer cq, i = 1,. . . , n are independent Gamma 

variables with mean 1 and variance v. Let G ( x )  be the CDF of a and A(t)  = 

Jt X(s)ds be the cumulative intensity function. A(t) is also the mean function of 

{N( t ) ) .  The likelihood based on observed data t,, j  = 1, . . . , ni(ni > 0 )  and Ti, 

i =  1, ..., m i s  

It can be simplified as 

Suppose a piecewise constant intensity fùnction is used, that is, A&) = pk,  if 

t E ( a ~ ,  for O = al < a2 < . . . < %. Then A&) = CLl pkuk(t), where 
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uk(t) = m a x ( 0 ,  min(ak+l, t )  - ai ) ) .  The log-likelihood function is 

where bk (t) = 1 if t E (ak, ak+~]; &(t) = O otherwise. The log-likelihood function 

can be maJBmized by a derivative-fiee optimization algorithm to get the maximum 

likelihood estimates of ( p l ,  - . . , p,, v). The estimate of the mean function can be 

computed as Âo(t) = CR=1 AU&). Inference c m  made based on the asymptotic 

normality of the maximum likelihood estimates. 
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