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ABSTRACT 

A new reactor configuration, the comgated plate reactor, was developed and anaiyzed 

through rigorous radiation field simulation, mass transfer measurement and modeling, 4- 

chiorophenol degradation experiments, as well as degradation kinetics modeling. The novel 

reactor was then applied to remove 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5- 

trkhlorophenol mixtures from water and to pretreat a contaminated groundwater for subsequent 

nihification enhancement. Rat plate as welI as slurry reactor systerns were also run under 

othenvise the same operathg conditions in order to set up performance benchmarks for the 

novel reactor. 

The radiation fields on TiO-coated corrugated and Bat plates were modeled based on 

first principles. A special procedure was developed to calculate the effect of multiple reflection 

on radiative energy absorption. This allowed for the calculation of the local area-specific rate 

of energy absorption (LASREA) on the surfaces of catalyst films. Based on the results of the 

radiation model, the LASREA and the photon absorption efficiency were both found to be quite 

sensitive to the dimensions of the comgated plates. Due to the multiple photon reflection 

between the conjugate wings, corrugated plates possess a superior capability for recapturing 

longer waveiength photons which would otherwise be reflected out of some classic reactors. 

This greatly improved the photon absorption effrciency and the uniformity of the radiation 

distribution on the catalyst films. Cornpared to the flat plate, corrugations enhanced the 

radiation absorption efficiency by up to 50% for UV-A fluorescent Iarnp-powered systems and 

more than 100% for solar-powered systems. 

Mass transfer between the main seeam and the surfaces of comgated as well as flat 

plates was exarnined expenmentally using the benzoic acid dissolution method. Experimental 

results were fitted to several relationships which c m  be used to calculate the average mass 

transfer coefficients of the tested plates under different flow conditions. A mass transfer mode1 

was developed to predict the IocaI mass transfer coefficients on the surfaces of different 



comigated plates. Based on the results of the experiments, mass transfer coefficients were 

identified to be dependent on not only the flow conditions but dso the angle of comgated 

plates. Within the flowrate range examined, one comgated plate showed an enhancement of 

overall mass transfer rates of up to 400% to 600% over that of the flat plate. This enhancement 

was due primarily to the large illuminated catalyst surface area in the new reactor. In addition, 

local mass and photon transfer rates on the comgated plates correlated positively and therefore 

are complementary to each other. This result is favorable since a higher local photon absorption 

rate requires a higher mass transfer rate to avoid mass transfer Limitation. 

Based on the results of Cchlorophenol degradation experirnents, the comgated plate 

reactor was up to 150% more efficient than the flat plate reactor. This energy efficiency was only 

about 15% lower than that of the sluny reactor. A consistent dependency of the degradation rate 

on the angle of the corrugated plate was observed. The optimal angle was identified to be near 

79 Under the conditions examined, the reactions in corrugated plate reactors were found to be 

affected by the transfer of both 4-chiorophenol and oxygen to the catalyst surfaces. 

The novel reactor efficiently mineralized mixtures of Cchlorophenol, 2,4- 

dichlorophenol, and 2,4,5-trichlorophenol. Photocataiytic mineralization of the groundwater 

contarninants was slow even after carbonate and bicarbonate were eliminated by lowering the 

pH. However, nitrification was enhanced significantly after only a shoa period of pretreatment 

in the photoreactor. This indicated the potential for using photocatalysis to remove inhibition 

from biological nitrification systems. 

With only three expenrnentally determined parameters, the new kinetic model 

incorporates reaction kinetics, mass transfer as well as photon transfer. The performance of the 

comgated plate reactors predicted with the model was found to agree with the experimental data 

reasonably well. Comgated plates with smdl angles were predicted to substantially deviate 

the mass transfer limitation in flat plate reactors. Wowever, this limitation cari never be 

esseotially eliminated uniess sufficiently weak radiation sources are adopted. This is probably 

the bottieneck of aqueous phase photocatalysis. 
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CHAPTER 1: INTRODUCTION 

One of the major environmental problems facing aII of us today is the widespread 

presence of persistent and toxic chemicals such as chlorinated organics in surface and gmund 

water bodies and drinking water systems. These chemicais enter the hydrosphere through 

dornestic and industrial discharges, chernical spills, and large scale application of pesticides and 

herbicides. The existence of these chemicals in the environment poses a threat to humans 

because of their toxicity and the potential pollution to Our food chain through bioaccumulation 

(WHO, 1976). As a resuit, increasingly saingent restrictions are being imposed on the release 

of these compounds by various regulatory bodies. 

There exist several physicd processes available through which water may be purified to 

different specifications, such as, carbon adsorption, precipitation, air stripping, membrane 

separation, ion-exchange, and flash evaporation. But none of them is a destructive process, a d  

as a result a further step is required to handle the wastes. In addition, most of these methods are 

not cornpetitive for the removaf of trace amount toxic chemicals from water (Yue, 1993). 

Biological treatrnent has been the most cost-effective and prîmary means for wastewater 

contaminant mineralization for many types of effluents. However, persistent and toxic 

chemicals such as halogenated arornatics, surfactants, herbicides, pesticides, and dyes are known 

to be non-biodegradable (Vandevivere, Bianchi, and Verstraete, 2998; Tanaka and Ichikawa, 

1993; Low, McEvoy, and Matthews, 1991). In addition, there are problems related to the slow 

nature of biological reactions, strict temperature and pH requirements, and difficult sludge 

handling. 

Advanced oxidation processes (AOPs) typically involve treatment with ultraviolet (UV) 

Light, chernical oxidants (Le., O,, H,O,, persulfate), catalyst, or their combinations. These 

processes usually rely on the generation of hydroxyl radicals which are capable of converting 

a wide spectrum of organic chemicals, including those non-biodegradable ones, to relatively 



innocuous end products such as carbon dioxide, water, and inorganic salts (Legrini, Oliveros, 

and Braun, 1993). In H,OJüV, OJüV,  and H20+I03/UV processes, for example, hydroxyl 

radicals are generated through the photolysis of H20, and/or O, under the illumination of UV 

light with waveIengths shorter than 300 nanometers. 

Photocatalysis also belongs to the family of AOPs. In photocatalysis, an oxide 

semiconductor, usuafly TiO,, is photo-exciteb upon absorbing photons with appropriate energy 

levels (wavelength shoner than 387 nm for anatase). The photo-excited semiconductor produces 

electrons and holes (Le., electron vacancy) which c m  migrate to the solid surface and initiate 

a senes of oxidation and reduction reactions that simuItaneously: (1). oxidize toxic organic 

waterhir pollutants; (2). kill microorganisms; and (3). reduce the valence of dissolved metal ions 

(Turchi and Ollis, 1990). 

Photocatalysis is capable of destroying a wide spectmm of water/air pollutants and 

microorganisms. It has many inherent advantages over other AOPs. For example, it can be 

driven by solar W which constitutes 3-5% of total solar energy. It is capable of both oxidation 

and reduction chemistry through which pollutants such as metal ions can be removed. It 

proceeds in both air and water phases. And finaily, it does not require expensive oxidants (Le., 

ozone) and exotic materials (Le., quartz) for UV-A transmission. 

Currently, the major barrier for photocatalysis to obtain wider indusirial acceptance is 

its low overall rate and low energy eficiency due, among other factors, to limited catalyst 

activity, catalyst poisoning and fouling, scavenging of oxidizing agents by non-target species, 

low-order dependency of rates on radiation intensity, and limited capacity to deliver photons and 

reactants to catalyst surfaces (Parent et al., 1996). 

Research into photocatalysis has been very active for the last 15 years. This interesting 

process has been explored for potential use in indoor air purification and disinfection (Goswami, 

Trivedi, and Block, 1997), precious metal recovery (Ollis, Pelizzetti, and Serpone, 199 l), soil 

remediation (Holden et al., 1993), ultrapure water (Prairie et al., 1993) and dnnking water 



(Matthews and McEvoy, 1992) production, industrial water (lin and Rajeshwar, 1997; Blanco 

and Malato, 1994) and groundwater (Mechos and Turchi, 1993) detoxification, and removhg 

inhibition to biodegradation (Bolduc and Anderson, 1997). However, most of the previous work 

was on the degradation of different substances, reaction mechanisrns, kinetics, activities of 

different catalysts, and effects of a few selected environmentai conditions. Research with 

potential use in the development and scale-up of energy-efficient reactor systems is scarce. A 

commercialiy cornpetitive full-scale photocatalytic water detoxification system has not yet been 

generally accepted in practice. 

The objective of this research is to make some contributions to the development of cost- 

effective photocatalytic water detoxification systems and to gain some insight into the 

engineering issues related to the design and operation of such photocatalytic reactors. 

As presented in the following chapters, the above-mentioned objective was achieved by 

analyzing a newly-proposed novel reactor configuration through rigorous radiation simulation, 

mass transfer measurement and modeling, mode1 compound degradation experiments, as well 

as reaction kinetics modeling. This new reactor configuration is a compact imobilized system 

with low pressure drops, offers a large iliuminated catalyst surface area, possesses superior 

capabiIity to recapture refiected photons, has superior mass transfer rates, and can be designed 

for efficient solar UV utilization. 



2.1.1 Semiconductor Photocatalysts 

Band-G~D Theorv 

According to the band theory in solid state physics, the energy levels available for 

valence electrons of single atoms within a crystalline solid are quantized into discrete bands, and 

these bands are separated by regions of forbidden energy, also referred to as band gaps. A band 

filled or partially fdIed with electrons with ground level energy is c d e d  a valence band, while 

an empty higher energy band is called a conduction band. Conductor materials possess 

continuous electronic energy States since their valence bands are either incompletely filled or 

overlapped with a conduction band. Insulators are characterized by a completely fiUed valence 

band and an essentially insumountably great band gap to the conduction band (Wang, 1989). 

The electronic structure of a semiconductor lies between those of a conductor and an insulator 

and valence band electrons can usually be excited to the conduction band when certain level of 

energy is absorbed. This unique characteristic of semiconductors makes them good potentid 

photocatalysts. 

Based on Iaws of photochemistry, only photons with energies greater than the band gap 

energy can result in the excitation of valence band electrons and possible reactions. Absorption 

of photons with lower energies or longer wavelengths usually causes vibrations or rotations of 

semiconductor atoms in the crystalline lattice which leads to energy dissipation in other forms 

such as heat. 



Semiconductor PhotocataIvsf 

In addition to a high photoactivity upon illumination, a desirable photocatdyst for the 

destruction of water contaminants should be (1) resistant to chernical attack over appropriate 

ranges of temperature and pH; (2) non-toxic; (3) insoluble in water; and (4) inexpensive. 

Many semiconductors, including TiO,, have been examined as candidate photocatalysts 

(Fox and Dulay, 1993; Turchi, 1990). Of these solids, BaTiO,, WO,, SiO,, MgO, SnO,, Cr@,, 

MoS2, InZ03, SrTiO,, MgO, Kaolin, N,O, and a-Fe#, al1 show activities lower than that of 

TiOZ (Palmisano et al., 989; Harada, Hisanaga, and Tanaka, 1990; Tanaka and Hisanaga, 1994). 

Only Zn0 was more active than TiO, in photocatalytic oxidation of phenol and nitrophenol 

but a chemicai test for Zn" in the solution was positive (Palmisano et al., 1989). 

Because of its high activity, desirable physical and chernical properties, low cost, and 

availability, TiO, has been the most frequently used catalyst in photocatalysis (Domènech, 

1993). This metal oxide is a n-type serniconductor and also a widely used pigment. The three 

crystalline forms of titaniurn dioxide includ brookite, rutile and anatase. The specific grativities 

of brookite, rutile and anatase are 4170, 4260 and 3840 kgmJ (Perry, Green, and Maloney, 

1984). Both rutile and anatase have been extensively studied as photocataiysts. The lattice 

structure of both rutile and anatase is given in the literature (Linsebigler, Lu, and Yates, 1995). 

The rutile form has a band gap of 3.0 eV and can be excited by light with wavelengths shorter 

than 414 nm, whiie the anatase form has a band gap of 3.2 eV and can be excited by light with 

wavelengths shorter than 387 nrn (Nair, Luo, and Heller, 1993). 

2.1.2 Reaction Mechanism 

As shown in Figure 2-1, in response to illumination by photons with suficient energy, 

electrons in the valence band of TiO, are excited to the conduction band and leave electmnic 

vacancies in the valence band, cailed holes. These conduction band electrons and holes may 





recombine with each other and release the energy as heat, or migrate to the catalyst surface and 

initiate redox reactions which result in the generation of active radicals (i.e., hydroxyl radicais, 

superoxide ion radicais, and perhydroxyl radicais) and the destruction of pollutants (Turchi and 

Oliis, 1990). 

Based on the band-gap and band e d p  positions of titanium dioxide, conduction band 

electrons possess a redox potential of -0.2 eV (Mao, Schoneich, and Asmus, 1991) and are 

capable of reducing substances with potentials lower (or more positive) than -0.2 eV. Valence 

band hoies possess a redox potentid of 2.6-2.8 eV (Schiavello, 1993) and are capable of 

oxidizing species with potentials higher (or more negative) than 2.6 eV. For comparison, the 

redox potential of perhydroxyl radical is 1.7 eV. 

Primarv Oxidizer 

With an oxidizing potential of 2.85 eV (vs. NHE), hydroxyl radical is one of the most 

powerhil oxidizing agents and is believed to be the primary oxidant responsible for the 

heterogeneous photocatalytic oxidation of many chemicals (Schiavello, 1993; Lawless, Serpone, 

and Meisel, 199 1; Terzian et al., 199 1 ; Draper and Fox, 1990; Pelizzetti et al., 1990; Al-Ekabi 

and Serpone, 1988; Okamoto et al., 1985a; Matthews, 1984; Izumi et al., 1980; Jaeger and 

Bard, 1979). Evidence supporting this opinion includes (Turchi and O h ,  1990): (1). ESR and 

photoluminscence work identified hydroxyl radical as the most abundant radical during 

photocatalysis; (2). Necessity of catalyst hydroxylation to allow complete oxidation of organic 

chemicals; (3). The importance of the hydroxyl radical step showed up in kinetic isotope studies; 

and (4). Formation of intermediates similar to those produced in reactions where hydroxyl 

radical is known to be the oxidizing agent. 

Although the cment prevailing view favors hydroxyl radical as the primary oxidizer, the 

contributions of direct hole oxidation, superoxide ion radical oxidation, and electron reduction 

to photocatalysis have also been noted. Kesselman and CO-workers (1995) obtained evidence 



showing direct hole oxidation of acetate and chlorinated acetates accounts for as much as 30% 

of the total degradation. Through quantitatively analyzing the intermediates during 

photocatalytic treatment of quinoline, Cermenati and colleagues deduced that superoxide ion 

radicals were the primary oxidizer. In the photocatalytic decolorization of textile dyes 

(Vinodgopal et al., 1994) and degradation of 2,4,6-ainitrotoluene @ahnemann et al., 1995), 

electron reduction was reported as the initial reaction step. 

Acnially, the hydroxyl radical, hole, superoxide ion radical, perhydroxyl radical, and 

electron generated directly or indirecdy in photocatalysis, all have oxidizing power, reducing 

power or both. Under thermodynamicaily favorabIe conditions, they are al l  capable of 

conuibuting to the photocatalytic degradation of water contaminants. The actual reaction 

scheme and also the primary polutant attacking agent are dependent upon factors such as the 

chernical bond and the redox potentid of the pollutant, the pH and temperature of the system, 

as well as the types and concentrations of electron donors and acceptors. For example, since 

hydroxyl radical is relatively incapable of attacking carbon-chlorine bonds (Legrini, Oliveros, 

and Braun, 1993) and possibly the reducing power of photo-generated electrons is not 

sufficienùy high, carbon tetrachloride could not be mineralized without the addition of extra 

electron donors (Ollis, Pelizzetti, and Serpone, 199 1). This chernical could be mineralized with 

the addition of alcohols, carboxylic acids, and benzene denvatives as electron donors through 

a reductive pathway (Choi and Hoffmann, 1995). 

An Oxidation Reaction Scheme 

Turchi and Ollis (1990) proposed a reaction scheme that is believed to be applicable to 

the photocatalytic mineralization of most of the organic water pollutants. This mechanism could 

be simplified into the following six elernentary steps: 

1. elecaon-hole pair generation upon the absorption of nea. W light (Equation 2-1); 

2. TiO, particle surface hydroxylation and hydration through the adsorption of water 



molecules (Equations 2-2 and 2-3); 

3. hydroxyi radical formation through the trapping of holes at the hydroxylated and 

hydrated sites (Equations 2-4 and 2-5); 

4. adsorption of organic chemicals onto catalyst surface sites (Equation 2-6); 

5. attack of the hydroxyl radical to organic chernicals near the catalyst surface (Equation 

2-7); and, 

6. recombination of electron-hole pairs (Equation 2-8). 



Reactions (2-2) and (2-3) are both themodynamicaily possible, with reaction 2-2 more 

favored at high pH and the other at low pH. In addition to hydroxyl radicds, interactions 

between the photo-generated electrons and holes and adsorbed oxygen can also Iead to the 

formation of superoxide ion radicals, hydrogen peroxide, and perhydroxyl radicals (Equations 

2-9 through 2-13). The ultirnate fate of these active oxygen species was not discussed in the 

report (Turchi and Ollis, 1990). 

2.1.3 Reaction Kinetics 

Since the primary oxidizer, hydroxyl radical, is too reactive to travel far away from the 

catalyst surface (Turchi and Ollis, 1990) before reaction occurs, the redox (electron transfer) 

reactions between hydroxyl radicals and the reactants occur primarily (if not completely) at the 

catalyst surface. The most favorable situation would be with the reactants adsorbed ont0 the 

catalyst surface since the redox reaction requires orbital overlap of the electron donors and 

acceptors. In addition, trapping of the electrons and holes aiso requires the adsorption of oxygen 

and water. Therefore, adsorption is one of the critical processes determinhg the photocatalytic 

reaction rate. Based on the Langmuir isotherm, considenng the adsorption of reactant "i", 

soivent water, as well as other species (i.e., other reactants, intermediates, inhibitive ions), the 

reaction rate of reactant "i" can be expressed by a modified Langmuir-Hinshelwood (L-H) 

equation (adapted fiom Turchi and Ollis, 1989): 

For the photocatalytic oxidation of organics where oxygen is an electron acceptor, the 

reaction rate and Langmuir adsorption constants "Ki and Y--" are dependent on radiation 



intensity on the catalyst surface, oxygen concentration in the reaction medium, nature of the 

species "i", catalyst form, temperature, and pH (Turchi, 1990). The rate constant, "hW, can be 

expressed by Equation (2- 15) below (Chen and Ray. 1998; Turchi and OUis, 1989; OUis, 1985; 

Okarnoto et al., 1985a,b): 

The exponent n is dependene, among other factors, on the radiation intensity on the 

catalyst surface. At low radiation intensities, n equals " 1" while at high radiation intensities it 

is 0.5 (Blake et al., 199 1 ; Ollis, Peliuetti, and Serpone, 199 1). When the radiation intensity is 

so high that the limiting factor becomes the transfer of reactants to the reaction sites (Le., the 

catalyst surface), an increase in radiation intensity will not result in any increase in reaction rates 

(OLlis, Pelizzetti, and Serpone, 199 1). The radiation intensity at which n changes from " 1" to 

"0.5" is a function of the redox system being examined (Parent et al., 1996) and has been 

reported to be between 2 and 170 Wm"(0kamoto et al, 1985b; BIake et al.. 1991; D'Oliveira, 

Al-Sayyed, and Pichat, 1990; Reeves et ai., 1992). 

In addition to the powerrelationship, the rate coefficient and radiation intensity data were 

also fitted into other types of expressions such as (Ray and Beenackers, 1997): 

In this equation, a, b, and k, are constants. As discussed earlier, the reactants need to be 

provided from the bulk of the liquid to the reaction site, the catalyst surface. This requires that 

at steady state the mass transfer rate of any reactant "i", r,, equal the consumption rate of that 

reactant due to the reaction: 

r,=ri = k, (Ci -Cd (2- 1 7) 



Most photocatalytic reactions follow the rnodified L-H relationship as presented above 

(Genscher and Heller, 1992; Lawless, Serpone, and Meisel, 1991; Turchi and Ollis, 1989; 

Mao, Schoneich, and Asmus, 1991). However, there are a few reports in which fmt  order 

kinetics could correlate the data satisfactorily (Lee, 1995; Alberici and Jardim, 1994; Matthews, 

1991; Al-Ekabi and Serpone, 1988; Matthews, 1987a.b; Augugliaro et al., 1993; Okamoto et 

al., 1985b). In addition, Tseng and Huang (1991) found zero order kinetics in their research. 

The disagreement in kinetics does not seem to be related to the nature of the chemicais 

degraded since for the sarne chernical, phenol, an L-H relationship (Matthews, 1988), 1st order 

(Okamoto et al., 198%) as well as zero order kinetics were reported. It may due to the different 

experimental conditions the authors employed. Actually, the L-H kinetics will become pseudo 

first order when the reactant concentration is smciently small (Lee, 1995). On the other hand, 

zero order kinetics could approximate L-H kinetics given sufficiently high reactant 

concentration (Sabin, Turk, and Vogler, 1992). Specific operating problems also seem to have 

interfered with the interpretation of the data. In at least three cases, it is not clear whether or 

not the fnst order kinetics reported were due to m a s  transferlimitation (Matthews, 1987b; 199 1; 

AL-Ekabi and Serpone, 1988). 

2.1.4 Energy Efficiencies 

In photocatalysis, tems available for the evaluation of energy efficiencies include. the 

Electrical Energy per Order (EE/O), the quantum yields, the quantum efficiencies, and the 

Photochernical Ttiermodynamic Efficiency Factor (PTEF). The EED refers to the electrical 

energy consumption for an order of magnitude destruction of the pollutants and it is based on 

the implicit assumption of 1st order kinetics in terms of pollutant concentration (Bolton, Cater, 

and Safanadeh-Amiri, 1992). The quantum yield is defined as the number of molecules reacted 

divided by the number of photons incident on the catalyst surface (Bockeimann et ai., 1993), 



while the quantum efficiency represents the number of molecules reacted divided by the number 

of photons absorbed (Valladares and Bolton, 1993). The PTEF was defined by Serrano and de 

Lasa (1997) as the fraction of the absorbed radiative energy that is used for hydroxyl radical 

generation. Based on the principles of chemical engineering thermodynamics, the upper limits 

of the PTEF were calculated to be between 0.237 and 0.308, depending on the energy levels of 

the absorbed photons (between 300 and 390 nanometers). The PTEF can provide guidance to 

the evaluation of the energy efficiencies of any hydroxyl radical-initiated non-chah 

photochemical reactions. 

As discussed in Section 2.12, photocatalysis consists of several physical and chemical 

steps (Le., generation, recombination, and trapping of conduction band electrons and valence 

band holes; recornbination of trapped electrons and holes; redox reactions at the catalyst surface; 

and adsorption/desorption of species on the catalyst surface) which determine its quantum yield 

(Parent et al., 1996). Depending on the partïcular redox system being investigated, the quantum 

yield has been reported to be more sensitive to different factors governing one or more steps. 

These factors included: the nature and concentrations of the target compound and other species 

in the systern (Turchi and OUis, 1989; Lindner, Theurich, and Bahnemann, 1997), the catalyst 

(Ha and Anderson, 1996; Lindner et al., 1995), electron donors/acceptors (Lindner, Theurich, 

and Bahnemann, 1997), the wavelength of the photons (Stafford, Gray, and Karnat, 1997a) and 

the rate at which photons are absorbed by the catalyst (Hoffmann et aI., 1995). For aqueous 

phase photocatalysis, the quantum yields have been found to be very low and are usually lower 

than 5% (Legrini, Oliveros, and Braun, 1993). 

Several researchers have determined that the dependence of quantum yields on photon 

flux is zero order at low radiation intensities and negative half order at higher radiation 

intensities (Ollis, Pelizzetti, and Serpone, 1991). This is believed to occur because the 

recombination of conduction band electrons and valence band holes follow higher order kinetics 

in tenns of the concentrations of these charge-carriers (Linsebigler, Lu, and Yates, 1995). The 



radiation intensity at which the order changes depends, arnong other factors, on how fast the 

redox reactions proceed. Low order dependence on radiation intensity is observed when the 

redox reactions are slow and cannot use electrons and holes as fast as they are generated (Parent 

et al., 1996). Consequently, adding photons too rapidly results in high concentrations of 

electrons and holes in the catalyst and high recombination rates. For exarnple, a single 

wavelength irradiation at 330 nm with an adsorbed radiation intensity of 1.7 ~ m "  yielded a 

quantum yield of 56% for CHCI, degradation. On the other hand, under same conditions the 

quantum yields was reduced to 2% as the radiation intensity increased to 15 1 Wm-' (Hoffmann 

et ai., 1995). 

For the degradation of Cchlorophenol, the quantum yield was found to have increased 

from 1% to 7% as the wavelength of the absorbed photons changed from 360 nrn to 300 nm 

(Stafford, Gray, and Kamat, 1997a). This indicates that photons with different energy levels 

have different capacity in initiating the redox reactions. Unfortunately, photon incidence rates 

were not kept constant for difTerent mns. In addition, it was dficult to judge from the report 

whether the photon absorption rates were calculated correctly. 

Although photocatalysis is capable of both oxidative and reductive chemistry, it is 

important to remember that these two processes tend to proceed such that electrons and holes 

are consumed at the same rate to keep electrïcal neutrality. Accumulation of either charge- 

carrier, electron or hole, will result in higher recombination rates and therefore lower quantum 

yields (Kennedy and lames, 1996). For the degradation of many organic chemicals using TiO, 

as the catalyst and dissolved oxygen @O) as the oxidant, quantum yields have been found to 

be limited by the accumulation of elecîrons. Therefore, addition of supenor electron acceptors, 

such as H202, can usually result in higher reaction rates and also higher quantum yields WartÏn, 

Lee, and Hoffmann, 1995). 



2.1.5 Intermediates and Extent of Mineralization 

The destruction of essentiaily every type of chemical, including, halogenated 

hydrocarbons, aromatic hydrocarbons, nitrogen-containing heterocycle compounds, hydrogen 

sulfide, surfactants, herbicides, metal complexes, have been demonstrated repeatedly in recently 

years. Lists of these chernicals have been documented by several researchers (Lee, 1995; 

Hoffmann et al., 1995; Lefini, Oliveros, and Braun, 1993). 

Reaction Intermediates 

Information on reaction intermediates is important because their properties will directly 

affect the applicability of photocataiysis as a water decontamination rnethod as weU as the 

possibility of a combined approach. For example, a toxic or recalcibant intemediate may 

prohibit the use of biological treatment as a polishing step in a combined process. 

Unfortunately, information on reaction intermediates is very iïmited to date. This rnay be 

because of the Iow levels of some interrnediates, or the experïmental difticulties. After dl, the 

photocatalytic degradation of some chernicals may not result in stable intermediates. 

In Table 2-1 lists the identified reaction interrnediates during the degradation of a few 

selected chemicals. Of these interrnediates, tnchloroacetic acid, an intermediary product for the 

degradation of perchioroethylene, is known to be toxic to animds (Glaze, Kenneke, and Ferry, 

1993). Actually, the reac tion intermediates for pentachlorophenol, and 2,3,5-tnchlorophenol 

have been proven to be more toxic to microorganisms than their parent compounds (Jardim, 

Moraes, and Takiyama, 1997; Manilal et al., 1992). 



Table 2-1: ExampIes of Intermediates During Photocatalytic Degradation 

Intermediate 

dichloroacetic acid, trichIoroacetic 
acid 

dichloroacetaldehyde 

dichloroacetic acid, 
dichloroace taldehyde 

tetrachlorobenzoquinone, 
tetrachlorohy droquinone 

2,3,5,6-te trachlorophenol, 2,3,5,6- 
tetracMoro, 1,4-benzoquinone, 
2,3,5,6-tetracMoro, 1 ,4-hydroquinone, 

detected but not identified 

detected but not identified 

chlorohydroquinone, chlorophenol 

benzoquinone, 4-chlorocatechol, 
hydroxyhydroquinone, 2,5,4- 
trihydroxybiphenol, phenol, 
hydroquinone 

hydroquinone, 4-chlorocatechol 

hydroquinone, 1,4-benzoquinone 

Reference 

Glaze, Kenneke, and Feny, 
1993 

Ollis et al., 1984 

Glaze, Kenneke, and Ferry, 
1993 

Mills and Hoffmann, 1993 

Jardirn, Moraes, and 
Takiyarna, 1997 

Jardim, Moraes, and 
Takiyarna, 1997 

Jardim, Moraes, and 
Takiyama, 1997 

Jardim, Moraes, and 
Takiyama, 1997 

Ku and Hsieh, 1992 

Trillas, Perd, and 
Domènech, 1996 

- -- 

Lindner, Theurich, and 
Bahnemann, 1997 

Stafford, Gray, and Kamat, 
1997b 

Al-Ekabi et al., 1989 

Ai-Sayyed, D'Oliveira, and 
Pichat, 1991 



As c m  be noted from Table 2-1, for the photocatalytic degradation of the sarne chernical 

(i-e., trichloroethylene, pentachlorophenol, 4-chiorophenol), different intermediates were 

reported by dif5erent researchers. This may indicate (1) different sensitivity of the intermediates 

to different analysis methods, md/or correlations between reaction pathways and the 

experïmentd conditions (Le., radiation source, catdyst, electron donors/acceptors) andor (3) 

different adsorption capabilities of the systems examined. 

For the degradation of Cchlorophenol, aromatic hydroquinone was identified as the 

major intermediate in studies in which HPLC was used (Al-Sayyed, D'Oliveira, and Pichat, 

1991; Mills and Moms, 1993). However, Haarstrick and CO-workers faiIed to detect this 

chernicai with GClMS in their investigation into the photocatalytic degradation of 4- 

chlorophenol and p-toluenesulfonic acid mixture (Haarstrick, Kut, and Heinzle, 1996). In 

another study (Lindner, Theurich, and Bahnemann, 1997), different forms of the TiO, catalyst 

resulted in the detection of dflerent reaction intermediates. Due to the different adsorption 

capacity of reaction intemediates on the catdyst surface, one research group observed a change 

in the relative level of the reaction intermediates by simply changing the catalyst quantity in a 

slurry system (Stafford, Gray, and Kamat, 1997b) 

Estent of Mineralization 

Of a.U the compounds examined to date, the only one that was reported to be resistant 

to complete photocataiytic mineralizaticn is a d n e ,  a representative of s-trimine herbicides 

(high et al., 1995; Chester et al., 1993; Pelizzetti, Minero, and Gratzel, 1991; PeIizzeni et al., 

1990). Addition of peroxydisulfate and penodate did not result in any destruction of the final 

product, cyanuric acid. This was explained by the super-inert nature of cyanurÏc acid which is 

characterized as a symmetric structure with three nitrogen atoms on the aromatic ring and three 

hydroxyl groups attached to the three carbons on the ring. Fortunately, atrazine could be 



essentially detoxified in photocatalysis since cyanuric acid possesses low toxicity (Pelizzetti et 

al-, 1990)- 

Ollis and CO-workers (1984) failed to observe the release of CO2 for the degradation of 

1,3-dichlorobenzene, 1,2-dichiorobenzene, 1,4-dichlorobenzene, and trichloroacetic acid. These 

chernicals were rnineralized later in other labs (Chemseddine and Boehm, 1990; Lee et al., 

1993; Glaze, Kenneke, and Ferry, 1993)- Titanium dioxide of different grades was used in the 

two studies. The results from these studies indicate that for the photocatalytic degradation of 

some chemicals, the right experiment conditions (Le., the catalyst, electron donors/acceptors, 

pH, photon wavelength) are essential. 

Degradation of Com~ound Mixtures 

Wastewaters are usualiy contaminated with more than one kind of poilutant. It is 

therefore important to examine the influence of other poilutants to the photocatalytic degradation 

of the chernical in question. To date, very few studies have been reported in this area. 

Ollis and Turchi (1989) investigated a system of benzene and perchloroethylene (PCE) 

and found that compared to the degradations of the two single compounds, PCE inhibited the 

degradation rate of benzene but the mineralization of PCE was unchanged. Al-Ekabi and CO- 

workers (1 989) studied the degradation of 4CP, 2,4dichIorophenol, and a mixture of these two 

chemicals. It was reported that in the mixed system, the disappearance rate of 4-CP was 

significantIy reduced. Wilkinson (1994) reported resdts on the photocatalytic degradation of 

phenol and 2-chlorobenzoic acid system. Compared to the reaction rates for single component 

systems, the reaction rates dropped approximately 30% for each chernical. 

Since photocataiytic reactions rely on both the photo-generated radicalç and the 

adsorption sites on the catalyst surface, it is unlikely to see the oxidation rate of one compound 

enhanced by the existence of another reactant to be oxidized because of the cornpetition of 

limited adsorption sites and oxidizing radicals. The multi component systems investigated above 

al1 belong to this situation. However, if different chemicals codd go through different pathways 



(Le., oxidative and reductive), a synergistic effect is possible. Prairie and CO-workers (1993) 

reported results on the photocatalytic decontamination of an artificial wastewater with both 

organic chernicals and metai ions. Based on the results, it was concluded that efficient designs 

of photocataiytic systems for wastewater treatrnent must consider both oxidation and reduction 

processes. 

2.1.6 Degradation of Chiorophenols 

The photocataiytic degradation of4-chlorophenol(4-CP) has been examined extensively 

in both slurry systems (Lindner, Theurich, and Behnemann, 1997; Stafford, Gray, and Kamat, 

1997qb; March, Martin, and Saltiel, 1995; Martin, Lee, and Hoffmann, 1995; Martin et al., 

1995; Cunningham and Sedlak, 1994; Mills and Morris, 1993; Al-Sayyed, D'Oliveira, and 

Pichat, 199 1; Tseng and Huang, 199 1; Barbeni, Pramauro, and Pelizzetti, 1986; 1984 ) and 

irnrnobilized systems (Peill and Hoffmann, 1997, 1996,1995; Hofstadler et al., 1994; Al-Ekabi 

et al., 1989; Al-Ekabi and Serpone, 1988; Maahews, 1990,1988,1987a). Hydroxyl radical was 

believed to be the major oxidizer dthough hole capture by 4-CP is aiso thermodynamically 

favorable (Al-Sayyed, D'Oliveira, and Pichat, 199 1). The initial reaction of a photo-generated 

hydroxyl radical with 4-CP occurs through the following paralle1 pathways (Mills and Moms, 

1993; Al-Sayyed, D'Oliveira, and Pichat, 199 1): 

4-CP + 'OH- hydroquinone 

4-CP + 'OH - 4-chlorocatechol 

4-CP + 'OH - 1,4benzoquinone 

4-CP + 'OH - unidentified intermediates 



Tabte 2-2: Previous Studies on 4-Chlorophenol 

Source 

Peill and 
HoFfmann, 1997 

Hofstadler et al., 
1994 

Matthews, 1988 

AT-Ekabi et al., 
1989 

41-Ekabi and 
Serpone, 1988 

Stafford, Gray, and 
Kamat, 1997b 

Lindner, Theurich, 
ind Bahnemann, 
L997 

Experimental Conditions 

optimized Degussa P25-coated 
fibre optic cable reactor; 1 kW 
Xe arc lamp; 190 mL water; 
Co= 13 mgL*' 

Degussa P25-coated glas fibre 
bundles as reactor; irradiated 
from one end with 400 W high 
pressure Hg lamp; Co= 134 
mgL-' 

spiral glass tube reactor with 
Degussa P25 coated inside of 
the tube; 20 W black light Iamp 
at spiral center; pH=3.6; 40 OC; 
Re=1600; 40 mL water; Co= 1 
to 100 mgL-' 

spiral g l a s  tube reactor with 
Degussa P25 coated inside of 
the tube, 6-black light lamps 
around spiral tube; Re=660; 
Tygon tubing 

spiral g l a s  tube reactor with 
Degussa P25 coated inside of 
the tube, 6-black light lamps 
around spird tube; TiOTcoated 
beads packed in an annulus, 
black light lamp at the centre; 
C,=2  mg^-'; Tygon tubing 

annular slurry reactor with 
black light lamp or 450 W 
medium pressure Hg lamp; 
Degussa P25; 0.8 L water; 
c0=32 mgL-' 

slurry reactor; TiO, of different 
grades 

20 

Major Findings 

~,=4.5 hours ; measured @=Ch0 12 
50% UV Iefi after travel lcm 
dong the fibre 

E,=20.6 kJ.mol-'; @=0.002; no 
mass transfer limitation; reaction 
rate decrease when pH increase 
from 3 to 1 1 ; H,O, enhance 
reaction rate 

L-H kinetics; @=0.01 

L-H kinetics; 14-CP]<8 mgL-' : 
close to 1st order; [4-CP]>25 
rngL'': close to zero order 

I st order kinetics; mass transfer 
limited; 
higher radiation intensity resulted 
in dependency of rate on flowrate 
in a larger range 

4-chlorocatechol is better 
adsorbed than 4-CP; 4CC 
concentration depended on light 
intensity TiO, loading, photon 
wavelength, and pH 

- -- .. - 

&0.0035; Pt doping and oxidant 
(i.e., H,02, K,S20J addition had 
no effect 



rable 2-2 cont'd 

Source Emerimental Conditions 

Martin, Lee, and 
Hoffmann, 1995 

25 rnL water with 1 gL-' 
Degussa P25,C0= 13 mgL-' 
4-CP 

March, Martin, and 
Saltiel, 1995 

shallow pond reactor; 1 gL-' 
Ti02; I=35 Wm" 

Cunningham and 
Sedlak, 1994 

30 rnL s1un-y with 2 gL-' 
Degussa P25; photon flux 
1 . 7 ~  10'~-2x 10L8 (3360 nm 

Mills and Moms, 
1993 

125 rnL cylindrical reactor 
irradiated with 6- 16 W black 
light larnps; 0.5 gL-'; Degussa 
P25; 30°C; Co = 128 mgL-'; 
pK=2 

Al-Sayyed, 
D'Oliveira, and 
Pichat, 1991 

90 rnL cylindrical reactor; 2gL-' 
Degussa P25; 125 W high 
pressure Hg lamp radiated from 
reactor bottom; 20 O C ;  C0=20 
mgL-'; pH=3 to 6 

Matthews, 1990b 
spiral g las  tube reactor; 1 gL-' 
Degussa P25; 20 W black light 
lamp at spiral center; pH=3.5; 
40 OC: Re=1400: 40 mL water 

Major Findings 

addition of CIO,; CIO,; IO,; 
S20,", and BrO,- enhanced 
reaction rate 

1 st order kinetics, rate 
coefficient=O. 1 1 min-'; reactor 
performance simulation 

very low catalyst adsorption 
capacity; Ag+ addition enhanced 
rate; zero order to [4-CP] 

L-H kinetics; Ea=16 k.J.mol"; 
@=lm 1 %; r a t e ~ P * ~ ~  for I=2.7-32.7 
~ m - '  ; rate=PJ for B22 wm-'; 
rate depends on oxygen level. 

L-H kinetics with K=O.l3 Lmg-' 
and ka. 15 mgL-'.min-' <P=l%; 
E,=5.5 kJ.mo1-'; pH=3.4-6.0 no 
significant change in reaction 
rate; r=~*' for B 10-20 wmd2 

L-H kinetics 

Results of a recent study suggest that the unidentified reaction intermediates in Equation 

(2-21) are hydroxyhydroquinone, phenol, and 2,5,4-trihydroxybiphenol (Lindner, Theurich, and 

Bahnemann, 1997). This agrees with the results of another study (Al-Sayyed, D'Oliveira, and 

Pichat, 1991) in terms of the total number of detected reaction intermediates. Table 2-2 is a 

sumrnary of the experimental conditions and major findings of selected studies on 4-CP. 

Other chlorophenols that have been examined for photocatalytic degradation are 2,4- 

DCP, 3,5-DCP, 2,3,5-TCP, 2,4,5-TCP, and pentac hlorop henol (Jardim, Moraes, and TalS yama, 

1997; Malato et al., 1997; Trillas, Perd, and Domènech, 1996; Alberici and Jardirn, 1994; Mills 



and Hoffmann, 1993; Ku and Hsieh, 1992; Manilal et al., 1992; Tseng and Huang, 1991; 

Barbeni, Pramauro, and Pelizzetti, 1986). 

2.2. Factors Affecting TiOJW Process Efficiency 

Heterogeneous photocatdysis can be broken into seven unit processes. They are: i. 

transfer of radiation energy fiom the Iight source to the catalyst; ii. photo-induced electron-hole 

generation in the cataiyst; iii. travel of the reactants from buk of the fiuid to the vicinity of 

catalyst surface; iv. adsorption of reactants to sites on catalyst surface; v. redox reactions in the 

vicinity of catalyst surface; vi. desorption of products; and vii. mass transfer of the products 

back to buIk of the fluid. Factors affecting any of these unit processes contribute to 

pho tocatalysis. 

2.2.1 Catalyst F o m  and Modification 

In photocatalysis, the catalyst plays an essential role. It absorbs radiation energy, 

transforrns photons into chemical energy in the formof active radicals, provides the environment 

(the orbital overlap of electron donors and acceptors through adsorption of the reactants and 

trapping of the radicals) for the redox reactions which result in the degradation of water 

contaminants. Factors governing the quality of a photocatalytic catalyst include not only the 

type of substances and its crystalline structures but dso many others such as specific surface 

area, surface hydration. surface ionic condition, surface defectiveness, and irnpuri ties. 

TiO, Form 

Of the three crystalline structures of TiO?, anatase has been shown to be more active as 

a photocatalyst than rutile (Tanaka, Capule, and Esanaga, 199 1; Sclafani, Palmisano, and Davis, 



1990). Anatase will undergo transformation into rutile at temperatures above 610°C (Willcinson, 

1994). This adds the effect of preparation temperature on the catalyst activity. Surface defective 

sites at the surface can also alter the adsorption sites of this semiconductor and therefore its 

performance (Linsebigler, Lu, and Yates, 1995). 

A few commercial TiO, products have been exarnined for their performance as a 

photocatalyst for water decontamination, including Degussa P-25 (Suri et ai., 1993, Nair, Luo, 

and HeIler, 1993)- Fischer Certified Gmde (Ollis et al., 1984), and Hombikat UV- 100 (Lindner 

et al., 1995). Reeves and CO-workers (1992) conducted photocatalytic chemicai decomposition 

with several commercially available Ti02 sarnples and found that Degussa P-25 gives the highest 

reaction rates. This product is a mixture of non-porous rutile (30% ) and anatase (70%) particles 

and possesses a specific surface area of approximately 55 mZg-L (Lee, 1995). This corresponds 

to an average particle diameter of about 30 nm. For the degradation of 4-CP, Degussa P-25 was 

recently proven to be the best Ti02 catalyst (Lindner, Theurich, and Bahnemaon, 1997). For the 

degradation of dichloroacetic acid in a slurry system, however, Hombikat UV- 100 was reported 

to be 4 times more active than P-25 (Lindner et al., 1995). Hombikat W-100 consists of pure 

anatase particles of 10 nrn and possesses a specific surface area of approximately 200 m2g-'. 

So far most researchers used slurry systems in which TiO, particles or aggregates are 

suspended in contaminated water. In such systems, there exists an optimal catalyst loading i n  

t e m  of maximum reaction rates as a result of the compromise between surface area and the 

shielding effect (Augugliaro et al., 1991). This optimal Ioading is apparently correlated with 

other system parameters and has been reported to be around 0.6 to 3.0 gL-' for Degussa P-25 

(Mehrvar, 1998; Augugliaro et al., 1991; Wei and Wan, 1991; Ahmed and OUis, 1984) and 

around 4-5 gL-' for UV-100 (Mehrvar, 1998; Lindner et al., 1995). Slurry systems offer very 

large catalyst surfaces that may be activated through vigorous mixing. This type of system is 

unlikely to suf5er fÎom mass transport-related limitations (Assink and Koster, 1995). Under 

similar conditions, therefore, slurry systems usually provide higher reaction rates compared to 



immobilized systems. Unfominately, a further step is required after treatment for the separation 

of the catalyst from the treated water. 

TiO, has also been used as immobilized on many kinds of materiais using evaporation 

of Ti02 aqueous slumes (Matthews, 1988; Sabate et al., 1991; Al-Ekabi and Serpone, 1988), 

high-temperature thermal decomposi tion of titanium alkoxides (Serpone et al., 1986), or drying 

and calcination of alcohol soliitions of titanium tetraisopropoxide (Murabayashi et al., 1993). 

No immobilization related deactivation was observed to date (Fujishima, 1995). Table 2-3 is 

a surnmary of the materials on which TiO, has been coated successfuIly. 

Post-treatment catdyst-water separation is not required for immobilized systems. 

However, this type of system may suffer from a few other limitations. Compared to slurry 

systems, immobilized systems usually possess much lower catalyst surface areas. This is 

particularly true for conventional photoreactor configurations. In addition, mass transfer may 

become the limiting factor, especially at Iow pollutant concentrations, under high radiation 

intensities, or under unfavorable hydraulic conditions (Ollis, Pelizzetti, Serpone, 199 1; Lepore, 

Pant, and Langford, 1993). Actudly, a few mass transfer lirited cases have been encountered 

(Manhews and McEvoy, 1992; Matthews, 199 1 ; Al-Ekabi and Serpone, 1988; Turchi and OLIis, 

1988). Mass transfer limitations could be alleviated by proper design and operation of the 

immobiiized systems (Sabate et al., 1991). 



Table 2-3: Materials TiO, Immobilized On 

activated carbon I L  
Reference 

Uchida, Itoh, and Yoneyama, 1993 

Fujishima, 1995 

Fujishima, 1995; Aguado, Anderson, and Hill, Jr., 1994 
- - -  

Tada and Tanaka, 1997; Ferniinde2 et al., 1995 

Zhang et al., 1994 
- --- . . .. . 

Pei11 and H o f i a m ,  1997; Hofstadler et A., 1994; Marinangeli and 
Ollis, 1980; 1977 

Serrano and de Lasa, 1997; Pugh et al., 1995; Zhang et al., 1994; Al- 
Ekabi et al., 1993; Pacheco, Watt, and Turchi, 1993 

Kjsov6 et  al., 1998; Ray and Beenackers, 1998; Ohko, Hashimoto, 
and Fujishima, 1997; Freudenhammer et  al., 1997; Lichtin and 
Avudaithai, 1996; Trillas, Peral, and Domènech, 1996; Ogata et al., 
1995; FemAndez et al., 1995; Zhang et al., 1994; Zeltner, Hill, Jr., 
and Anderson, 1993; Sabate et al., 1991; Al-Ekabi and Serpone, 1988; 
Matthews, 1987a 
- - 

Zhang et al., 1994 

Lee, 1995; Zhang et al., 1994; Matthews, 1991; Haarstrick, Kut, and 
Heinzle, 1996 

Ha et al., 1996; Wilkinson, 1994; Fernhdez et al., 1995; Pacheco, 
Watt, and Turchi, 1993 

Low and Matthews, 1990 



Immobilized TiOz particles form a porous film on the parent matenal. These films are 

usually less porous at the two interfaces with the parent material and with the reaction medium. 

Aguado, Anderson, and Hill (1994) studied the degradation of formic acid over T i 0  ceramic 

membranes and reported the following findings: 

1. Only the mass of the TiO, membrane influenced its capacity for radiation absorption; 
. - 
11. Neither the size of the precusor colloid particles from which the membrane is formed 

nor the porosity of the membrane affected W absorption significantly: 

iii. Lambert-Beer relationship can be used to describe UV absorption in TiO, membranes; 

and, 

iv. For a given radiation intensity and membrane porosity, there is a membrane thickness 

which gives the optimal quantum yield. 

This optimal membrane thickness was found to be 0.6 prn for a radiation intensity of 

approximately 1.0 wrn-' (Aguado, Anderson, and Hill, 1994). Ogata and CO-workers 

investigated the effect of TiO, coating thickness on the photodegradation of beef extract and 

peptone (Ogata et al., 1995). They reported that the reaction rate increased proportionally with 

increases in the thickness of the TiO, coating within a range of fiom 0.2 to 1.0 microns. The 

radiation source emits photons at 254 and 185 nm and provided illumination which is equivalent 

to about 100 Wm-2. 

Catalvst Modification 

Low energy efficiency has been the major problem with the commercialization of 

W/Ti02 water decontamination (Parent et al., 1996; Saltiel, Martin, and Goswami, 1992). 

Catalyst activity improvernent through modifications of the TiO, surface is one possibility to 

enhance this efficiency. Three methods have been shown to be effective, including, doping of 

rnetals and other species, surface chelation, and photosensitization. In terms of catdyst doping, 



two precautions should be exercised. First, additional water poIIutant should not be introduced 

into the system. Secondly, dopants are not universally effective in different redox systems 

(Parent et ai., 1996). 

Metal ion doping can improve trapping of the photo excited conduction band electrons 

at the surface whereb y suppressing charge carrier recombination (Hoffmann et al., 1995). Many 

kinds of metals have been tried as dopants. Among others, gold (Gao et al., 1991), silver (Chen 

and Chou, 1994; Konda and Jardim, 1991), palladium (Papp et al., 1993), platinum (Harada, 

Hisanaga, and Tanaka, 1990; Izumi, Fan, and Bard, 1981; Suri et al, 1993) were found to 

enhance quantum yield substantidly for the systems examined. l%Pt- doped Aldrich TiO, 

enhanced the activity of Aldrich Ti02 by 200% to 400% (Suri et al., 1993). Harada and CO- 

workers enhanced the degradation rates of two organophosphoms insecticides by a factor of 10 

through doping of platinum on Ti02 (Harada, Hisanaga, and Tanaka, 1990). 

Some adsorbents, such as activated carbon, clay, or silica (Yoneyama et al., 1994; 

Uchida, Itoh, and Yoneyama 1993) could also enhance photocataiysis by improving the 

adsorption at the catalyst surface. Fu and CO-workers (1996) improved TiO, photoactivity by 

a factor of 300% using silica and ziroconia. Another way to enhance organic adsorption on 

catalyst surface is to render the solid surface hydrophobic (Langford, Lepore, and Persaud, 

1997). 

2.2.2 Radiation Wavelength and Intensity 

The probability for a photon to be absorbed by TiO, and utilized in electron-hole pair 

generation is dependent on its energy level. In order to account for the Merent  capability of 

photons with difTerent energy levels in generating charge-caniers when incident on the catalyst 

surface, a parameter, called the absorption coefficient, has been introduced (Crittenden and 

Zhang, 1995). The absorption and scattering coefficients of titanium dioxide suspensions have 



also been measured (Cabrera, Alfano, and Cassano, 1996). 

The rate of photon absorption by the catalyst should be directly proportional to the 

electron-hole pair generation rate if the fraction of the radiation energy lost due to light transfer 

barriers does not change with radiation intensity. However, as discussed in previous sections, 

this does not necessarily mean that the reaction rate is directiy proportional to radiation intensity, 

due to an enhanced charge-carrier recombination rate and possible mass transfer limitation. 

Actually, photocatalytic reaction rates were usually found to be proportional to radiation 

intensity for low level radiations and to approximately the square root of radiation intensity for 

high level radiations. This relationship is supported by the results of many systems where 

transport was not limited (Ollis, 199 1; D'Oiiveira, Ai-Sayyed. and Pichat, 1990; Okamoto et d., 

1985b). The transition between these two regions is dependent upon the experimental conditions 

and has been reported to be between 2-170 ~ m "  (Okamoto et al, 1985b; Blake et al., 1991; 

D'Oliveira AI-Sayyed, and Pichat, 1990; Reeves et al., 1992). Therefore. large catalyst surface 

areas illuminated by radiation with intensities lower than the transitionai level should be used 

to obtain a moderate reaction rate as well as a high energy efficiency. 

Based on the idea that illumination is not a necessity for al1 the steps in photocatalysis 

except for photoexcitation, Sczechowski tried to use periodic instead of continuous illumination 

to enhance quantum yield (Sczechowski, 1995). Some researchers have operated fluidized bed 

reactors to take advantage of the large catalyst surface area that may be activated as a result of 

the mixing in such systems (Haarstrïck, Kut, and Heinzle, 1996; Lee, 1995). 

2.23 Water, Elecbron Accepton and Donors 

In photocatalysis, catalyst surface hydroxylation is an essential step and the base for 

subsequent redox reactions (Hoffmann et al., 1995; Linsebigler, Lu, and Yates, 1995). Studies 

show rhat water dissociatively adsorbs ont0 the TiO, surface and reacts with the bridging oxygen 



atoms to form two hydroxyl groups. This adsorption is a function of temperature and will drop 

substantially at 77 to 127 OC (Linsebigler, Lu, and Yates, 1995). The results of one study 

indicated that at temperatures above 250 OC, al1 the hydroxyl groups on TiO, surface will be 

removed and the catalyst activity reduced substantially (Munuera, Rives-Amau and Saucedo, 

1979). 

For the photocatalytic oxidation of water pollutants, electron accepton adsorbed on 

catalyst surface are required to trap the excited electrons and thereby fiee the valence band 

holes which initiate the generation of oxidative radicals and the redox reactions on the catalyst 

surface. Oxygen is the most common electron acceptor as it exists naturally and is available at 

no additional cost. In addition, in many cases oxygen is required stoichiometrïca.Uy as a reactant 

for complete mineralization (Hsiao, Lee, and Ollis, 1983). Without oxygen, complete oxidation 

of chloro-organics could not be realized (Sabate et al., 1991; Matthews, 1988; Okamoto et al., 

1985b; Barbeni, Pramauro, and Peliuetti, 1984; Hsiao, Lee, and Ollis, 1983). The dependence 

of the reaction rates on DO level has been given in Equation (2-15). Desired oxygen levels in 

photocatdytic reactors are system specific and depend on, among other factors, radiation 

intensity and the type and amount of the chernical to be degraded. Turchi and Ollis reported 

that sufficient oxygen could be h i s h e d  by purging the reactor with air (Turchi and Ollis, 

1989). Augugliaro and CO-workers found that their system required an oxygen pressure of at 

least 0.5 atmosphere in the reactor head space (Augugliaro et al., 1991). In another case, the 

reaction rate was still oxygen limited even afier the system was purged with oxygen of one 

atmosphere (Okamoto et al., 1985a). Oxygen molecules adsorb ont0 TiO, surfaces through 

partial charge transfer from the surface adsorption site to the oxygen molecule. This adsorption 

decrease with an increase in temperature and the maximum desorption rate occurs at 75 OC 

(Linsebigler, Lu, and Yates, 1995). 

One of the methods to enhance the quantum yield of photocatalytic oxidation processes 

is to add to the reactor electron donors that are superïor to oxygen. This could result in faster 



trapping of the electrons, leaving more holes available to continue the oxidation process 

(Hoffmann et al, 1995). Apparently, a desirable electron acceptor should have a strong oxidizing 

power and cause no need for additional treatment after use. Many kinds of oxidizers have been 

exarnined as potential electron acceptors. Hydrogen peroxide is the one that has been examined 

the most (Matthews, 199 1; Tanaka, Hisanaga, and Harada, 1989). Hydrogen peroxide enhances 

the reaction in two ways. First, it c m  split to produce hydroxyl radical directly by absorbing 

radiations with wavelengths shorter than 300 nm (Peyton and GIaze, 1988). Second, it can 

produce hydroxyl radical through the following reactions: 

&Cl2 c e-='OH+OH' (2-22) 

H201 +O;- = .OH + OH- +OZ (2-23) 

The 0,'- in Equation (2-22) is produced through the interaction between adsorbed oxygen 

and trapped electrons as expressed by Equation (2-10) in section 2.12. H,O, was found to 

enhance the reaction rates substantially in many studies (Matthews, 199 1 ; Tanaka, Hisanaga, and 

Harada, 1989). However, Chemseddine and Boehm (1990) found that -0, inhibits the 

photocatalytic degradation of acetic acid and chloroacetic acids. This was explained to be that 

H,O, occupied the adsorption site for oxygen as weil as for the reactants. 

Martin, Lee, and Hoffmann (1995) examined C10; CIO,, IO,; BrO,', and S20i2 as 

electron acceptors and found that they were a.U capable of increasing the photodegradation rate 

of 4-CP. Their effectiveness followed the order: C10; > IOi  > B Q -  > CIO,. Other oxidants 

that have been examined as electron acceptors include: peroxydisulfate and penodate (Pelizzetti 

et al., 1991) and Oxonea (Al-Ekabi et al., 1993). They were al1 reported to be better electron 

acceptors than oxygen with Oxonea (a potassium peroxymonosulphate compound) being the 

best. 

For those photocatalytic reactions through reductive pathways, the existence of oxidizers 

may be detrimental to the reaction and electron donors may be necessary to initiate or enhance 



the reaction (Choi and Hoffmann, 1995; Bahnemann et al., 1995). For example, Choi and 

Hoffmann used alcohols, carboxyiic acids, and benzene derivatives as electron donors and 

mineralized carbon tetracMoride successfuIly. 

2.2.4 Temperature Effect 

Temperature affects photocatalytic reaction rates by affecting adsorption of water, 

oxygen, and other reaction- related species on the catalyst surface, transport of reactants and 

reaction products to and nom the catalyst surface, the solubility of reaction related species in 

water, and the performance of artificial light sources. 

Within certain temperature ranges, photocatalytic reaction rates were found to increase 

with increases in temperature (Bahnemann, Bockelmann, and Goslich, 199 1; Hofstadler et al., 

1994; AI-Ekabi et al., 1989; Matthews, 1987b; Okamoto, 1985b). The upper Iimits of these 

temperature ranges are believed to be associated with the substantial desorption of water and 

oxygen which occurs around 75°C (Linsebigler, Lu, and Yates, 1995). Compared to 

conventional chemical reactions, photocatalytic reactions have been reported to be Iess sensitive 

to temperature (Fox and Duely, 1993). As can be seen fkom Table 2-2, the activation energy of 

4-CP was found to be as low as 16 M. The output of artificial radiation sources is also 

dependent on temperature, with 30°C being the optimal one for fluorescent Iarnps (Roche, 1993). 

Therefore, appropriate commercial reactor design must alrow for suitable temperature control. 

2.2.5 Mass Transfer Effect 

Photocatdysis invoIves the transfer of reactants, reaction products between the bulk 

liquid and the reaction sites (Le., the catalyst surfaces). For sluny system, no effect of mass 

transfer has been reported so far. This is due to the large interfacial areas of the water and the 



catdyst in such systems. When TiO, is immobilized on stationary solid substrates, the area of 

the waterkatalyst interface wïlI usually be substantially reduced. In addition, reactants have to 

travel a relatively distances and dso a thick stagnant layer before they can reach the reaction 

sites. Under high-level radiation, low reactant concentrations, a d o r  low turbulence conditions, 

the process may be lirnited by mass transfer. It can be deduced from Equation (2-16), mass 

transfer controlled-processes should follow fnst order kinetics with respect to the Limiting 

reactant concentration in the bulk liquid. Al-Ekabi and Serpone examined the photocatalytic 

degradation of chlorinated phenols in two types of reactors. The f i t  reactor included a coiled 

glass tube with TiO, immobilized on the inner surfaces and a fluorescent I m p  placed at the 

center. The second reactor was annular one packes with TiO-coated glass beads and 

illuminated with a fluorescent lamp at the axis. The results from both reactors showed 

dependency of the reaction rate on the liquid fiow rates and first order kinetics was reported 

(Al-Ekabi and Serpone, 1988). Matthews dso reported flow-dependent reaction rates and "first 

order kinetics" with a film reactor (Matthews, I987b). These reactions were considered to be 

mass transfer Iimited (Turchi and Ollis, 1992). Sabate and CO-workers (1991) reported results 

obtained fiom an annular reactor with cataIyst immobilized on the inner wall and illuminated 

from the center. Mass transfer problems were not identified and the reaction fouowed the L-H 

relationship. Mass transfer limitation potential in photocatalytic reaction systems was andyzed 

carefully (Assink and Koster, 1995). It was concluded that unless low radiation intensity andfor 

very high liquid velocities are adopted, particles on which TiO, is coated should be kept smdler 

than 50 pm to avoid mass transfer limitation. Therefore, it is obvious that mass transfer should 

not be overlooked in considering immobilized photoreactors. 



2.3.6 Reaction Inhibition 

Al1 species in the reaction medium, including water, reaction intermediates, reaction 

products, other reactants, and nomeactive components, may sirnultaneously adsorb ont0 catalyst 

surfaces and therefore occupy active reaction sites on a cornpetitive basis (Ollîs, Pelivetti and 

Serpone, 1989). The adsorption of species other than target reactants may therefore inhibit 

photocatalytic reaction rate because those active sites would have been occupied by reactants 

without those other species. Results obtained with multicomponent systems and practical 

wastewaters have clearly confirmed the inhibition as a result of other known compounds 

(Willcinson, 1994; Turchi and OlIis, 1990), COD and suspended solids (Watts et al,, 1994), and 

inorganic ions (Hisao, Lee, and Ollis, 1983; Fujihira, Satoh, and Osa, 1982; Augugliaro et al., 

1991; Mechos and Turchi, 1993; Pacheco, Prairie, and Yellowhorse, 1993; Low, McEvoy, and 

Matthews, 1991). 

Turchi and Oliis (1989) studied the degradation kinetics of perchloroethylene (PCE) and 

benzene mixtures. Their findings indicated that PCE did not affect benzene degradation but 

benzene and its intemediates significantly inhibited the degradation kinetics for PCE. Watts 

and CO-workers (1994) found that photocatalytic degradation of chloroether was completed 

quencned at a soluble COD of 164 mgL". They also found that ammonia-nitrogen of up to 70 

mgL-' showed no apparent inhibition. Perchlorates, and nitrates of 0.1 M showed little 

inhibition, and sulphate and phosphates exhibited noticeable inhibition at 0.00 1 M (Abdullah, 

Low, and Matthews, 1990; Augugliaro et al., 1991; Low, McEvoy, and Matthews, 1991). 

Chloride ion has been identified as an inhibitive species by many researchers (Fujihira, Satoh, 

and Osa, 1982; Hsiao, Lee, and Ollis, 1983; Augugliaro et al., 199 1). As one of the common 

ions in natural water bodies, bicarbonate also inhibits photocatalytic reactions (Pacheco, M e ,  

and Yellowhorse, 1993; Methos and Turchi, 1993; Glaze, Kemeke, and Ferry, 1993). 

Fominately this inhibition could be substantially alieviated by operaihg the reactor at a lower 



pH value (Le., 5.0). This occurs because that the bicarbonate equilibrium shifts to dissolved 

carbon dioxide at Iower pH. 

2.2.7 pH Effect 

The pH of the reaction medium affects surface chemistry and solution kinetics. nie 

overall effect is usually case specifïc and it is difficult to draw any general relationship based 

on the results available to date (Vohra and Davis, 1993). Augugliaro and CO-workers (1993) 

examined the effect of pH on the degradation kinetics of nitrophenol isomes. Okamoto and co- 

workers (1985a) studied the effect of pH on the degradation of phenol and identified an optimal 

pH of 3.5. However, sulfbric acid was used for pH adjustrnent and therefore it is not clear 

whether or not the pH dependency was correlated with sulphate, an inhibitory ion. Ku and Hsieh 

(1992) found that the photocatdytic degradation rate of 2,4-DCP was not apparently affected 

within a pH range fiom 3 to 11. For ammonia degradation, on the other hand, pH was found to 

be a critical parameter (Bonsen et al., 1997). Up to a pH of 7.2, no reaction was obsemed. For 

pH values fiom 7.2 to 9.9, higher pH resulted in higher reaction rates. Wiîhin a range of 3-1 1, 

Auguglian, and CO-workers (1993) reported that the degradation of nitrophenols was enhanced 

at lower pH values. The chemicais used for pH control were sodium hydroxide and s W c  acid. 

It is suggested here that acids and bases that do not have inhibitive effects (i.e., sodium 

hydroxide, nitric acid) to photocatalytic reactions should be used in examining the effects of pH. 

2.3 Photochernical Reactors 

2.3.1 l[Uumlnation Sources and Radiation Transfer Materials 

The radiation source is a critical component of photoreaction systems (Stevens and 



Mound, 1995). For heterogeneous reactors utilizing artXcial Iamps, the type of lamp which 

gives the highest efficiency in the spectrum of interest, yet is compatible with other parts of the 

system, should be of first choice. 

Many different UV sources have been used in previous investigations into photocatalysis, 

including di fferent types of lamps and solar radiation. Artificid UV lamps can be classified into 

low pressure mercury Iarnps, medium pressure mercury lamps, high pressure mercury lamps, 

high pressure xenon lamps, as weIl as fluorescent larnps (Le., low pressure mercury l a p s  with 

phosphorus powders deposited on the inner surface of the lamp tube). Low pressure mercury 

lamps irradiate rays of 185 and 254 nm (Philips Lighting Company, 1998). This type of larnp 

is not a good candidate in photocatalysis because of the ozone generation risk and the difficulty 

in UV-C transmission. High pressure mercury lamps irradiate primady in the UV-A and 

visible light region (Philips Lighting Company, 1998). Compared to low pressure mercury 

Iamps, they are usually more powerhil but may need high voltage for lamps of tubular shape. 

Medium pressure mercury lamps possess characteristics between Iow and high pressure mercury 

lamps. The high pressure xenon lamps are powefil and irradiate with a near continuous 

spectrum over a wide range, comparable to that of solar radiation (Philips Lighting Company, 

1998). Since only the UV part could result in photocatalytic reactions, this type of lamp would 

not be energy efficient. 

FIuorescent lamps usually have outputs from 5 to 100 watts and irradiate in UV-B, W- 

A, or visible region, depending on the phosphor powders applied. Their energy efficiencies are 

typically from 15 to 30%. Fluorescent Iarnps have been popular among photocatalysis 

researchers. In UV-A region, the solar radiation intensity is typically from 15 to 50 Wm-*, 

depending on the location, the cloud cover, and the humidity (Goswami, 1997; Curc6 et 

al., 1996; Turchi and Mehos, 1994). 

Factors that need to be considered in selecting light transmission materials include, light 

transmission efficiency in the interesthg wavelength range, chemical and thermal stability, cost, 
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fabrication potentid, and durability. Figure 2-2 shows the optical properties of a few commonly 

used materials (Rohm and Haas Co., 1985; Rabek, 1983). Quartz is one of the most 

"transparent" solid materials for W light, but it may be too expensive to be used in full-scale 

water treatment systems. Compared to Pyrex glass, acrylic materiais could offer low cost, 

appropriate optical properties, and superior fabrication potential, but they are chemically and 

thermally less stable (Pugh et al., 1995). 

To date, most researchers used Pyrex glas in their studies. In these systems most 

radiation in UV-C and W - B  regions is absorbed by the Pyrex glass wall and dissipated as heat, 

allowing most of UV-A to reach the catalyst surface. However, there are situations in which 

the synergistic effect of photolytic- photocatalytic reactions is simgifkant (Puma and Yue, 1994; 

Matthews and McEvoy, 1992). In these cases, quartz should be considered- 

2.3.2 Mixing of Reactant and Catalyst 

The effects of mixing on the performance of slurry photoreactors have been examined 

by Hacker and Butt (1975). It was reported that mixing will increase the reaction rate if the local 

reaction rate is dependent upon the absorbed radiation energy, the reaction slurry is optically 

thick, and the relative time scale of chernical process to the mixing process is small. This result 

applies to photocatalytic water treatment systems in which Ti02 is suspended in the aqueous 

phase or immobilized on mobile particles. In this type of system, mixing will enhance reaction 

rates since more uniform activation of the catalysts and higher mass transfer rates could be 

expected. 

Because high quantum yield is only possible for radiation of low levels, distribution of 

radiation to a large catalyst surface is acnially the central problem in scaling-up a photocatalytic 

reactor (Ray and Beenackers, 1998). Lee (1995) tried to enhance the degradatior. of phenol by 

utilizing the mixing effect in a fluidized bed photoreactor. Karpel, Sczechowski and CO-worken 



operated a Taylor Vortex photoreactor with larnps located at the center (Karpel et d., 1997; 

Sczechowski, 1995). It was reported that the photocatalytic reaction rate could be enhanced by 

a factor of 3 because of the mXng induced by Taylor Vortex. 

For systerns with Ti02 immobilized on stationary surfaces, mixing could enhance heat 

transfer and the transport of reactants to catalyst surface and the products to liquid bulk. These 

may result in better temperature control and increases in reaction rates for reactions with 

kinetics of higher than zero order. For reactions that suffer fiom product inhibition (Lepore, 

Pant, and Langford, 1993), proper mixing may also alleviate this inhibition. For this type of 

reactor, mixing cannot significantly change the radiation distribution on the cataIyst surfaces 

and the effect of mixing would be limited provided that the system is not transport limited. 

2.3.3 Radiation Modeis 

In photoreactors, transfer of heat and m a s ,  transfer and absorption of photons, 

photocataIytic reactions and other possible reactions (Le., photolytic) are closely interrelated 

processes. Reaction rates contribute to and also depend on the temperature field, the radiation 

field, as well as the concentration field (i.e., the distribution of pollutants, inhibitory ions, 

products, electron donors and acceptors such as 0, and H+ in the reactor). As most 

photochemical reactions are not sensitive to smdl temperature changes, the performance of a 

photoreactor could be approximately determined by mass and radiation balances (Alfano, 

Romero, and Cassano, 1986a). The effect of the Local Volumetric Rate of Energy Absorption 

(LVREA) on reaction rates is the peculiar feature ofall homcgeneous photochemical processes. 

Therefore, effective modeling of the emission, transfer, and absorption of photons is usually the 

key in photoreactor modeLing. 

The fmt step in radiation modeling is the choice of an appropriate radiant energy source 

model. This source model could be a distribution of radiant energy in the vicinity of the reactor 



(Le., reactor wall) or a lamp emission algorithm. Radiation models developed using the first 

approach are classified as incidence models. Those developed using the other approach are 

classified as emission models. Incidence models always contain one or more experimentay 

adjustable parameters which need to be fitted using lab data. For polychromatic radiation 

sources, the absorbed photons at different wavelengths are additive (Cassano et al., 1995). 

Photon transfer in a heterogeneous medium may follow Rayleigh theory, Mie theory, or 

geornetric optics, depending on the physicd dimensions of the inhomogeneities as compared to 

the wavelength of the photons (Cassano et al., 1995). A heterogeneous mediummay be regarded 

as optically homogeneous provided that the smallest inhomogeneities (Le., catalyst particle 

diameter) are sufficiently small as compared to the wavelength of the radiation. Transfer of 

photons through (opticdy) homogeneous media could usually be modeled accurately with the 

Lambert-Beer's law (Rizzuti, 1985) and the pnnciples of geometric optics (Roger and 

Villermaux, 1979). In this case, reflection, rehction, and to some extent diffraction should be 

addressed. Scattering should usuaUy be considered in analyzing photon transfer in 

heterogeneous media. 

Previous work on radiation field modeling in both homogeneous and heterogeneous 

media have been reviewed in detail (Cassano et al., 1995; AIfano, Romero, and Cassano, 

1986a,b). The majoriv of the previous work was performed in homogeneous (Tsekov and 

Smirniotis, 1997; Yokota et al., 1976; Akehata and Shirai, 1972) and heterogeneous (Romero, 

Alfano, and Cassano, 1997; Pasquali et ai., 1996) annula- reactors. Romero, Alfano, and 

Cassano (1997) ngorously simulated the photon absorption and scattering in an anndar slurry 

photocatalytic reactor illuminated with a mercury arc lamp placed at the center. It was observed 

that the calculated profile of the LVREA along the radial coordinate was very steep for TiO, 

loadings comrnonly adopted in photocatdysis studies. The lamp was modeIed as an extense 

source with volumetric emission as recommended in the fiterature (AIfano, Romero, and 

Cassano, l986a). Pasquali and CO-workers (1996) evaluated the radiation field in another annular 



slurry photocatalytic reactor. The illumination source was either mercury arc or metal halide 

fluorescent lamps, which was modeled as a linear source with diffuse emission. The catalyst 

used was TiONAVC grade with an average particle diameter of 11.9 microns. These solid 

particles were modeled as diffbsely reflecting spheres. Experirnental results fitted the model 

well. Compared to the results due to Rornero, Alfano, and Cassano (1997). the profile of the 

LVREA dong the radial coordinate was not steep at dl. In addition, the radiation field was 

found to be insensitive to the scattering distribution function (i.e., angdarly dependent phase 

function). Cabrera, Alfano, and Cassano (1994) calculated the LVREA in a slurry type planar 

reactor illuminated with a medium pressure mercury lamp positioned at the focal axis of a 

parabolic reflector. The volumeaic absorption and scattering coefficients were determined 

experimentally. The scattering distribution function were obtained fiom a model derived fkom 

geomeaic optics that was assumed to respond to a specular, partial reflection process (Siegel and 

Howell, 1992). Maruyama and Nishimoto (1992) demonstrated the use of two-flux model to 

illustrate the radiation intensity profile in heterogeneous photochernical reactors. Compared to 

the rigorous models, this model is simple but serni-empirical in nature. Marinangeli and OIlis 

(1977) modeled the radiation intensity profile in a cataiyst-coated cylindrïcal opticai fibre. 

2.3.4 Reactor Configuration 

Dozens of classical and novel photocatalytic reactor configurations have been proposed 

andor examined to date. Selected information on these photocatalytic reactors are 

summarized in Table 2-4. 

Several groups conducted researches on solar-radiated pilot-scale tubular reactor systems 

(Blanco and Mdato, 1994; Mehos and Turchi, 1993; Pacheo, Prairie, and Yeiiowhorse, 1993). 

ln these systems, aqueous T i 4  slumes were pumped through horizontal borosilicate glass tubes 

located at the foci of solar concentrators. For the treatment of an effluent fkom a resin plant 



(contains phenol, toluene, xylene, phthalic acid, fumaric acid, phenylethylene, etc.). 

photocatalytic method was found to be fuily cornpetitive compared with other AOPs being 

currently used in industry (Pacheo, Prairie, and Yellowhorse, 1993). However, fine TiOz 

particles may exist in the treated water due to the incomplete separation of the cataiyst from the 

treated water (through pond settling). Two major limitations were identified with these 

concentrated solar systems. They are, (1) concentrated solar radiation at the expense of 

concentrators results in higher reaction rates but lower photo-efficiency, and (2) Ti0,-water 

separation is required afler treatment. 

Table 2-4: Previously S tudied Photoreactor Configurations 

l 

Reference Reactor I.D. 

tubular reactor 

U V  Source 
Rio, Form 

solar, slurry 

- -  - 

Blanco and Malato, 1994; Mehos and 
Turchi, 1993; Pacheo, Prairie, and 
Yellowhorse, 1993 

annular reactor 

II Bat plate reactor 

artificial at center 
immobilized or 
slurry 

II spiral glass tube 
reactor 

Chester et al., 1993;Wei and Wan, 199 1 ; 
Okamoto et al., 198Sa 

side, solarfartificid, 
immobiiized 

artificial at center, AI-Ekabi and Serpone, 1988; Matthews, 
irnmobilized 1 1987b 

Il falling film reactor 

Augugiiaro et al., 1995; Wilkinson, 1994; 
Pugh et al., 1995 

double skin 
reactor 

packed bed reactor 

side, solad artificid, 
irnmobilized 

Krfsov6 et al., 1998; Freudenhammer et al., 
1997; mima and Yue, 1994 

so 1 ar, slurry 

solar or &cial at 
center or outside, 
immobilized 

Well et al., 1996 

Dong and Berman, 1996; Zhang, 1994; 
Robertson and Henderson, 1990; Al-Ekabi 
and Serpone, 1989; Matthews, 1987a 



Table 2-4 cont'd II Reactor I.D. UV Source 
/TiO, Form 

artificial at one end (1 monolithic reactor Luo, 1994 

II fibre optic bundle 
reactor 

artificial at end, 
imrnobilized 

Pei11 and Hoffmann, 1995; 
Hofstadler et al., 1994 

Il Taylor vortex 
reactor 

artiFicia1 at center, 
slurry 

- 

Karpel et ai., 1997; Sczechowski, 1995 

fluidized bed 
reactor 

;Irtificial at center or 
outside, 
imrnobilized 

Haarstrick, Kut, and Heinzle, 1996; Lee, 
1995; Brucato et al., 1992; Raupp and 
DibbIe, 1991 

- 

PHOTO-CREC 
reactor 

- 

artificial at center, 
immobilized 

Valladares, 1995; de Lasa and Vailadares, 
1997 

accordion folded 
mesh and flutter 
fibre strand 

- - 

Pacheco, Watt, and Turchi, 1993 solar, irnmobilized 

multiple tube 
reactor 

artificial at end, 
immobilized 

Ray and Beenackers, 1998 

tube light reactor Ti0,-coated thin 
tube lights 

Ray, 1998 

Il turbulent slurry 
reactor 

center, slurry / 
filtration 

Butters and Powell, 1995 

- - 

helical plate /wave 
guide 

- - - -- 

artificial at center, 
immobilized 

artScid, 
immo bilized 

Dong and Berman, 1996 

II finned structure 
reactors 

- 

Say et al., 1998 

membrane type 
reactors 

artificial or solar, 
imrnobilized 

Bischoff, Fain, and S tockdale, 1999; 
Bernian and Grayfer, 1998; Cooper, 1998; 
Gonzalez-Martin, Murphy, and Hodko, 
1998 



Chester, Okamoto and CO-workers exarnined the photocatalytic degradation of organic 

pollutants in annular reactors with the lamp tubes at the center and with TiO, suspended in the 

reaction medium (Wei and Wan, 1991; Okamoto et al., 1985a) or immobilized on the reactor 

wall (Chester et al., 1993). Augugliaro (1995), Wilkinson (1994), and Pugh (1995) used flat 

plate reactors in their studies. Matthews (1987b) used a Ti0,-coated spiral tube wound around 

a lamp in his research. No supenor photo-eEiciency and reactor capacity was reported in these 

studies. 

In falling film reactor systems, the catalyst was immobilized on slabs (Kjsovii et al., 

1998; Freudenhammer et al., 1997; Puma and Yue, 1994) or walls of columns (Puma and Yue, 

1994) dong which liquid films descend. The immobilized catalyst can be illuminateci by either 

solar or artificial radiation sources from one side of the slab (Kjsova et al., 1998; 

Freudenhammer et al., 1997; Puma and Yue, 1994), or by artificial larnps at the center or 

surrounding the column (Puma and Yue, 1994). Puma and Yue (1994) found that the 

configuration with TiO, coated on the internal wall of a colurnn and with the lamp in the middle 

of the column was the most efficient one. Although falling film reactors enjoy many advantages 

such as possible efficient utilization of solar power, they a l l  suffer from low reactor capacity 

as a result of the limited activated catalyst surface area per unit volume of reactors. 

Well and CO-workers (1996) developed a solar powered photocatalytic reactor, called 

double-skin reactor. This is a sluny type reactor in which water Bows through a thin slit 

between two acrylic sheets. While it is capable of utilizing both the direct and diffuse solar W 

rays, some problems were also expenenced (Wel, DilIert, and Bahnemann, 1997). 

Several versions of the packed bed reactors have been reported, differing in the reactor 

body as weU as the packings. Robertson and Henderson (1990) patented a packed bed reactor 

which included an annular packed with Ti0,-coated glass mesh and radiated by a lamp located 

at the center. Al-Ekabi, Serpone (1989). and Matthews (1987a) also performed experiments in 

annular beds but the packings used in their study were Ti0,-coated glass wool and glass beads 



respectively. Zhang (1994) exarnined the degradation of trichloroethylene (TCE) using solar 

irradiated acryIic tubes packed with various Ti0,-coated solid particles. The supported catalysts 

were optimized with respect to catalyst type, catalyst Ioading, silica-based support materiai, 

particle size, catalystkupport bonding, and calcination temperature. The best packing, silica gel 

coated with Pt-dopted anatase, was claimed to be as high as 4 times more active than Pt-dopted 

anatase slurries (Zhang et al., 1994). Since the diameters of the silica gel particles and the 

tubular bed were both very srnail, scale-up potentid and maintenance cost may become a 

problem. Generaily speakuig, packed bed reactors tend to suffer from limited effective catalyst 

surface area per reactor volume due to the opaque nature of TiOz films. Mehrvar (1998) tested 

the degradation of 1.4 dioxane in a column packed with TiOzcoated stainless steel TeIierette. 

At least two Ti0,coated opticd fibre bundle type photoreactors have been exarnined 

(PeiII and Hoffmann, 1995; Hofstadler et ai., 1994). For a Ti0,-coated fused-siiica fibre with 

a diameter of 2 mm and a Iength of 480 mm, 10% of the initiai radiation intensity was obtained 

at the other end when illurninated at one end with a beam of collimated light (Hofstadler et al., 

1994). For the degradation of 4-CP, Peill and Hoffmann reported a quantum yield enhancement 

of 90% over that of a slurry reactor. This type of reactor may not be competitive due to 

problems such as, high cos& of optical fibre bundles and radiation energy loss in photon transfer. 

Taylor vortex photoreactors have been reported in several sources (Karpel et al., 1997; 

Sczechowski, 1995). This type of reactor consists of two CO-axis columns (i.e., a stationary 

outer one and a rotating inner one) with a lamp placed at the axis of the columns. Taylor vortex 

flow pattern of the TiO, slumes in the annulus induced by the rotating inner coiumn, allows the 

suspended TiO, particles periodic exposure to radiation. Since illumination of the active sites 

of the catalyst is necessary only for the electronniole pair generation and the rest of the reaction 

steps cm proceed in the dark, periodic illumination has the potential to effectively activate more 

catalyst particles and therefore enhance quantum yields. Compared to slurry reactors at similar 

conditions, a factor of three increase in quantum yields was reported possible by using Taylor 



vortex (Sczechowski, 1995). An optimal illumination penod of approximately 0.15 seconds has 

been documented in a recent patent (Sczechowski, KovaI, and Noble, 1995). Apparently, Taylor 

vortex reactors have disadvantages such as the added complexity due to the need for moving 

parts and catalyst recovery from water. 

Haantnck and Lee reported results on annular fluidized bed photoreactors in which 

Ti02-coated sand (Lee, 1995) and quartz (Haarstrick, Kut, and Heinzle, 1996) particles were 

"fi uidized" when wastewater was introduced at the bottom of the reactor at certain rates. For the 

degradation of a mixture of 4-CP and p-toIuenesuIfonic acid, the energy efficiency was found 

to be higher than 100 mg of TOC per kWh of power input. However, catalyst activity reduction 

associated with attrition was experienced (Lee, 1995). The random mixing of both fluid and 

TiO-coated particles in fluidized beds could allow more cata3ysts to be illuminated periodically, 

whereby enhancing the quantum yield. Compared to the mixing in Taylor vortex reactors, 

mixing in fluidized bed reactors should usually be less intensive and more randorn than 

controlled. Therefore, the rnixing-associated quantum yield enhancement in a fluidized bed 

reactor is not expected to be greater than that in a Taylor vortex reactor. On the other hand, 

there is no catalyst-water separation problem with fluidized bed reactors. 

Valladares (1995) studied the degradation of phenol and methylene-blue in a new reactor 

configuration (Le., PHOTO-CREC II). This system is actually an annular reactor with a lamp 

placed at the center and 15 conical baskets positioned in the annular. These conical baskets 

were made of perforated stainless steel plates and their surface possess an angle of 45" with 

respect to the axis of the annular and the fluorescent lamp tube. Ti0,-coated g las  meshes were 

fxed on the conical surfaces. For the degradation of Methylene blue, quantum yields of up to 

0.63% were reported. This reactor configuration has been descnbed in more detail in a recent 

patent (de Lasa and Valladares, f 997). 

Pacheco and CO-workers investigated the solar detoxification of trichloroethylene-spiked 

water and compared the performances of an accordion folded mesh (AFM) reactor and a flutter 



strand (FS) reactor (Pacheco, Watt, and Turchi, 1993). The AFM reactor consisted of a tubular 

accordion shaped TQ-coated stainless steel screen in a Pyrex g las  tube. The FS reactor 

consisted of a Pyrex g las  tube in which TiO+oated fiberglass strands were fixed in position 

at the upstrearn end. These strands Butter in fluid flow. Both reacton were placed at the focus 

of a large parabolic trough for illumination. The AFM reactor was reported to perform better 

than the FS reactor. 

Ray and Beenackers (1998) developed and tested a bench scale multiple tube reactor 

(MTR) for the degradation of a soluble acid dye, Special Brilliant Blue (SBB). The structure of 

this reactor resembles that of a shell and tube heat exchanger with the reaction liquid flow 

through the shell side over the outside surfaces of the Ti0,-coated quartz tubes while the photons 

travel dong the tube side via multiple internai reflection. The illumination source, a Iow voltage 

haiogen lamp, was optically positioned in an alurninurn reflector at one end of the reactor. 

Compared to classical reactors, this reactor provides a large activated catalyst areas per unit 

reactor volume. This means potential for higher quantum yield and higher reactor capacity. 

However, the overall energy efficiency of this reactor may not be high due to the absorption of 

effective photons by the aluminum reflector and the tubes (if quartz not used). In addition, 

capital cost also tends to be high because of the necessity to use many tiny, thin, and exotic 

tubes. 

Ray (1998) reported another novel reactor configuration, the tube light reactor (TLR). 

This reactor is essentially a tank in which numerous custom-designed U-shaped tiny fluorescent 

lamps are elaborately packed. Catalysts were immobilized on the surface of these tiny lamps. 

This reactor offers a very large illuminated catalyst surface area per reactor volume and was 

predicted to be effective for absorbing/scattering fluids (Ray, 1998). Unfortunately, these tiny 

larnps require a voltage as high as 1020 volts. Replacement of these Iamps may weil be costiy 

for capital, labour, as well as down-time reasons. In addition, mercury contamination potential 

due to lamp failure may also be a concern for such a system. 



In the US alone. there exist more than ten patents on different photocatalytic reactor 

systems (Bischoff, Fain, and Stockdale, 1999; Berman and Grayfer, 1998; Cooper, 1998; 

Gonzalez-Martin, Murphy, and Hodko, 1998; Say et al., 1998; de Lasa and Valladares, 1997; 

Dong and Berman, 1996; Butters and Powell, 1995; Raupp and Dibble, 1991; Robertson and 

Henderson, 1990). Several of these patented reactor configurations involve the use of cataiyst- 

coated porous elements which are arranged to surround the lamps (Bischoff, Fain, and 

Stockdale, 1999; Berman and Grayfer, 1998: Cooper, 1998; GonzaIez-Martin, Murphy, and 

Hodko, 1998) andor to form a flat structures for solar W utilization (Gonzdez-Martin, 

Murphy, and Hodko, 1998). As one alternative, flat sheets of catdyst-coated porous elements 

were arranged to assume a "sandwich" together with the lamp arrays (Berman and Grayfer, 

1998). 

The turbulent slurry reactor due to Butters and Powell (1995) consists of a turbulent 

slurry reaction systern and catalyst recovery/recycle system in which tiny TiO, particles are 

separated from water through ceramic membrane filtration. The membrane is cleaned 

periodically with backflow air. The systems patented recently by Say and CO-workers (1998) 

are claimed to be compact and efficient for photocatalytic pollutant conversion, dthough no 

expenmental data were reported. These reactors, c d e d  fimed structure reactors, use catalyst- 

coated structures placed in the optical proximity of the illumination source. As one reactor 

configuration, the catalyst supporting structure includes multiple non-intersecting fins onented 

paraIlel to the general flow direction of the fluid Stream. These fuis may be flat, pleated, 

perforated, or porous plates. The light source includes one or more lamps that may penetrate the 

fins. As another configuration, the cataiyst supporting structure includes one or more cylinders 

having pleated inner surfaces with longitudinal l a p s  disposed in the cyhders. The reactors 

due to Dong and Bernian (1996) consist of three distinct configurations. The first configuration 

is actually an annula reactor with a catalyst-coated and curved helical plate positioned in the 

annula space and a lamp at the center. The second configuration is an annula. bed packed with 



catalyst-coated particles and a lamp at the center. The packing was arranged such that the greater 

the distance from the lamp, the greater the fraction of the W that is absorbed per unit 

penetration. The third configuration (wave guide reactor) involves the use of multiple flat 

catdyst supports, placed paralle1 to each other and at a smail angle with respect tu the array of 

the tubular lamps. 

2.3.5 Photoreactor Modeling 

Strictly speaking, the modeling of a photocataIytic reactor based on the fxst pinciples 

requires the simuItaneous sohtion of the momentum, thermal energy, mas ,  as well as radiation 

balance equations. In contrast to photocatalytic reaction processes, reports on photocatayltic 

reactor modeling are rare. To date, there exist only several relatively complete works on 

photocatalytic reactor modeling. Cassano and CO-worken (1995) presented a critical review on 

the fundarnentals and applications of photoreactor analysis and design. Tubular and annular 

reactor configurations were analyzed as examples for simplicity. It was shown that the state of 

the art allows for the precise design of homogeneous photoreactors, if the mass and thermal 

enegy fluxes as weli as the intrinsic reaction kinetics can be predicted with sufficient accuracy. 

However, an equivalent state of the art for heterogeneous photoreactor design is not developed 

yet (Cassano et aI., 1995). 

Cabrera, Alfano, and Cassano (1994) performed ngorous radiation modeling and 

trichIoroethy1ene degradation in a slurry type planar reactor. Mode1 predictions were 

unfortunately not presented together with the experimental data. Ollis and Turchi (1990) 

developed models for the analysis of combined photolytic and catalytic reactions of TiO, slumes 

in annular and falbg füm reactors. The results of this study gave very interesting guidance to 

photoreactor design. However, experimental data were not available for quantitive mode1 

validation. Marinangeli and Oliis (1977) modeled photocatalysis in cyLindrical optical fibres 



based on fundamental pnnciples. Again, no expenmental work was reported. 

There exists in the literature many photoreactor modeling works in which radiation field 

modeling was not performed. Cnttenden and CO-workers (1995) modeled the degradation of 

trichloroethylene in a fixed bed reactor. In their mathematical model, L-H kinetics was assumed. 

The Langmuir rate constant was assumed to be a function of radiation intensity and influent 

organic concentration. Radiation intensity was assumed to be constant throughout the bed. 

Saltiel, Martin, and Goswami (1992) modeled the performance of four types of solar-powered 

photocatalytic reactors (i.e., flat plate, compound parabolic concentrator, east-west and north- 

south one-axis tracking parabolic trough reactors). Reaction kinetics was modeled with L-H 

kinetics and a power Iaw retationship was used to relate illumination to chernicd destruction. 

March, Martin, and Saitiel(1995) simulated a solar-powered recirculation type flat plate slurry 

reac tion. 

2.4. Real Wastewater, Engineering Scale Studies and Cost Estirnates 

Photocatalysis has been shown to be effective in treating many types of non- 

biodegradable real wastewaters, including, contaminated groundwaters (Preis, Krichevskaya, 

and Kharchenko, 1997; Enzweiler et al-, 1994; Pacheco, Prairie, and Yellowhorse, 1993; Mechos 

and Turchi, 1993), resins factory effluent (Blanco and Malato, 1994), textile wastewater 

(Freudenhammer et d., 1997), pharmaceutical plant wastewater (Anheden, Goswami, and 

Svedberg, 1995), distillery wastewater (Zaidi, Goswami, and Wilkie, 1993). and pulp and paper 

wastewater (Turchi, Edmundson, and Ollis, 1989). The results of these studies are important 

since the effects of the non-target species (Le., background COD, inhibitory ions) were 

considered. 

Of these red wastewater treatment demonstrations, four were performed in engineering 

scde systems (EnzweiIer et al., 1994; Blanco and Malato, 1994; Pacheco, Prairie, and 



Yellowhorse, 1993; Mechos and Turchi, 1993). Enzweiler and CO-workers (1994) examined the 

photocatalytic destruction of benzene, ethyl benzene, toluene, and xylene in contaminated 

groundwater in three different types of commercially available systems. The frst two systerns 

were actually the same annular reactors illuminated by fluorescent lamps placed at the axis. The 

annular space was either packed with Ti0,-coated fibre g l a s  mesh (fmt system, irnrnobilized) 

or kept empty (second system, slurry). The third system was a solar-powered slurry one and 

consisted primatily of a glass tube array. Membrane filtration was used to recover the catalyst 

from treated water. It was found that the reaction in the second system was about three times 

faster than in the first system under otherwise identical conditions. In addition, the fixed bed 

(first system) caused a nine-fold increase in the pressure drop over that of second system. Solar 

radiation was estimated to be a cheaper W source for photocatalysis. 

Mechos (1993), Pacheco and CO-workers (1993) demonstrated ground water treatment 

using solar-concentrating parabolic troughs with tubular slurry reactors mounted at the foci. 

Blanco and Malato (1994) treated effluent from a resin factory in a sirnilar system. The results 

of a cost estimate indicated that the photocatalytic treatment systems tested are fully cornpetitive 

compared to other best available technologies (Blanco and Malato, 1994; Mechos and Turchi, 

1993)- Non-concentrating soIar reactors were believed to be more cost-effective due to the 

elimination of the costly parabolic troughs as welI as the enhanced energy efficiency of 

photocatalysis under lower level radiations (Mehos and Turchi, 1993). Some issues ciosely 

related to the economics of photocatalytic water treatment have been discussed (Goswami, 1997; 

OUis, 1988). For systems using artificial lamps, most of the cost is associated with W 

generation (Le., purchasing, powering and servicing the lamps). 

2.5 Combined Chernical and Biological Treatment 

Every wastewater treatment process has its strengths and limitations in terrns of 



applicability, cost, and effectiveness. For example, biological processes are known to be vew 

econornic and reliable for treating most wastewaters (Le., municipal wastewater, food and fami 

processing water). However, these processes suffer fiom a lack of effectiveness for recakitrant 

and inhibitory organics. Chemicai oxidations have been proven to be capable of destroying a 

wide spectrum of contarninants, including recalcitrant and inhibitory organics. But they can be 

very costly due to the non-selective nature, low energy efficiency, andlor the use of oxidants. 

For a certain water treatment tasks, sequential use of chemical and biological methods could 

result in reductions in overail treatrnent cost (Scott and Ollis, 1996). For wastewaters that are 

toxic, inhibitory, or refractory to biological cultures, chemical pretreatment can degrade the 

inhibitory, toxic, and refractory compounds and thereby alleviate or eliminate the toxicity uid 

inhibition. It c m  meanwhile produce smaller, less aromatic, more polar, or more oxygenated 

fragments as intermediates which are mostly biodegradable (Jochimsen and Jekel, 1997). 

Conversely, economic biologicai pretreatment can remove the biogenic water pollutants and 

thereby reduce the oxidant and reactor requirernent in the chemical oxidation step that follows. 

As a potentially cost-effective water treatment strategy, combined biological and 

(photo)chernical oxidation is becoming increasingly popular among the researchers in recent 

years. Heinzle and CO-workers (1992) studied the ozonation and biotreatment of pulp bleaching 

effluents. Cyclic activated sludge pretreatrnent and ozonation were believed to be cost-effective 

options. Tanaka and Ichikawa (1993) reported significant reduction of the toxic effects of 

cationic, anionic, and nonionic surfactants to rnethanogenic bactena through pretreatment with 

TiO, photocatalysis. Yu and Hu (1994) enhanced the biodegradability of chlorophenols through 

ozone treatment. The authors also found that the biological cultures acclimated to the parent 

compounds did not have an advantage in degrading chemicd treatment intermediates. Karrer, 

Ryhiner, and Heinzle (1997) demonstrated a procedure for evaluating the applicability of 

combined biological-chemical treatment. Chernicd consumption per unit removal of dissolved 

organic carbon (chemical and biological steps combined) was recommended as the parameter 



for cost estimation. Bolduc, Hess and CO-workers reported the effectiveness and optimal 

photocatalytic pretreatment times in enhancing the biodegradabilities of 2.4,6-uinitritoluene 

(Hess et ai., 1998) and rn-dichlorobenzene, diphenylamine, and resorcinol (Bolduc and 

Anderson, 1997). Iochimsen and Jekel (1997) investigated the effect of ozonation on the 

subsequent biological treatment of tannery wastewater. The optimal ozone dosage was found 

to be between 1 and 3 grams of ozone per gram of DOC. Relevant issues for the integration of 

biologicai and chernical oxidation processes have been criticaily reviewed (Scott and OlIis, 

1995). 

2.6 Concluding Remarks 

Photocatalysis has been proven to be capable of oxidizing organic water/air pollutants. 

killing rnicroorganisms, and reducing the valence of dissolved metal ions. Important process 

parameters include catdyst form, illumination wavelength and intensity, nature and level of the 

target cornpound, electron acceptors and donors, inhibition due to inorganic ions and non-target 

chemicds, temperature, pH, and mass transfer. Photocatalytic reaction rates typicdly follow L-H 

type kinetics with the rate constant behaving with lower order dependency (usually between 0.5 

and 1) on the radiation intensity on the catalyst surface. 

Limited pilot-scaie results indicate that photocatalysis could be as cost-effective as other 

best available water eeatment technologies. Current state of the art suffers from low energy 

eff~ciency and relatively low fraction of solar energy that can be used (approximately 4%). 

More work on the development of superior photocatalysts, photoreactors, and oxidizing 

agents (i.e., H@J could lead to hi t ful  results. Combined photocatalytic and biological 

approach could potentiaily result in overall cost savings. There is a shortage of studies on the 

development, modeling, and design of novel photocatalytic treatment systerns. No 

experimentally tested photoreactor model, if there is one, is yet published in the literature. 



CHAfTER 3: 4-CHLOROPHENOL DEGRADATION 

In order to set-up benchmarks for the evaluation of different reactor configurations and 

to collect system-specific data for use in reactor modeling, photocatdytic degradation of CCP 

in two classic reactor conf&prations, immobilized flat plate reactor and slurry reactors, were 

performed. The results are summarized in the following sections of this chapter. 

3.1 Materials and Metkods 

3.1.1 Chemicals and Ca talyst 

Reagent grade 4-chlorophenol from BDH Ltd. (England) waç used as the model 

pollutant. This cornpound is also known as 1-chloro4hydroxybenzene or p-chlorophenol. Its 

CAS registry number is 106-48-9. Other chemicals used for HPLC analysis, intermediate 

identification, and pH control include: methanol(99.8%), acetonitde (99.9%), phenol(99%), 

nitric acid, and potassium hydroxide from BDH Inc. (Canada), hydroquinone (99%) and 

resorcinol (99%) from Sigma Chemicais Co. (US), catechol (98%) from BDH Chemicals 

(England), !,4-benzoquinone (98%) from Aldrich Chemical Company (US), and 4- 

chlorocatechol (95-99%)fiom Helix Biotech (Canada ). The water used for al1 the runs was 

deionized water fltered with a Milli-Q system. Degussa P25 TiO, (Arkon, OH, USA) was used 

as the catalyst either suspended in water or immobilized on srainiess steel plates. Based on 

information from the supplier, this product consists of non-porous particles of anatase (70%) and 

rutile (30%) and has a density of 3800 kg m-3, a primary diameter particle of 2 1 nanometers, and 

a specific surface area of fiom 36 to 65 mZg-' . 

4-CP was selected as the primary model compound based on the following 

considerations: 



(1). Chlonnated phenols are a class of common water pollutants originated from industrial 

operations such as coal gasifying, coking, and oil refining (Verschueren, 1983). 

(2). Biodegradation of 4-CP is slow and often requires a long lag penod (Mikesell and Boyd, 

1985). In addition, it is not easy to strip 4-CP out of water since this chernicd has a very 

low Henry's law constant, which is listed in Table 4-4 (Howard, 1989). 

(3). As a water pollutant, 4-CP c m  cause taste at a concentration as low as 0.25 mgL-' and 

odour at 6.4 mgL-'. Water with 4-CF will be toxic to microorganisms and fish if the 

concentration of this compound exceeds 5 mgL? In addition, 4-CP contaminates the 

environment through bioaccumulation (Verschueren, 1983; Howard, 1989). 

(4). 4-CP has been photocatalyticaliy degraded by several research groups. Valuable 

background information makes it possible for the current research to concentrate on 

reactor engineering. 

(5). 4-CP does not absorb electromagnetic radiation with wavelengths longer than 300 nrn. 

Therefore, photolytic reactions wodd be negligible in systerns illurninated by fluorescent 

larnps. This makes it possible to examine photocatalytic reactions alone. 

A procedure for the imrnobilization of Ti02 on stainless steel plate was developed based 

on information from the literature (Ha and Anderson, 1996; Valladares, 1995; Wilkinson, 1994). 

It c m  be summarized into the following steps: (1) Clean thoroughly the steel pIate with 20% 

hydrochlonc acid and aUow it to air dry; (2).  Bake the cleaned plate in an oven at 200 OC for two 

hours; (3). Add gradually Degussa P-25 TiO, into a beaker containing 25% (v/v) aqueous 

methanol solution until the catalyst loading reaches approximately 180 g~-'; (4). With a brush, 

paint the sIurry onto the baked clean steel plate so that it forms as thin as possible a layer but 

opaque to W light; (5). Bake the coated plate in an oven at 300°C for about 5 hours and then 



dlow it to cool in the air. The purpose of step (2) is the generation of an oxidized layer on the 

steel plate surface which was reported to improve the binding between TiO, and the plate (Ha 

and Anderson, 1996). The opaqueness of the film was examined by painting the same s l u q  ont0 

a W transmitting acrylic plate and measuring for W transmission with a radiometer. 

3.1.3 Photoreactor and System Set-up 

Degradations were carried out in reactors created by placing different intemals in a 

rectangular Plexiglas acrylic plastic chamber. The reactor cover was made from a U V  

transmitting Plexiglas (G-WT). Its spectral W transmission is ptotted in Figure 2-2 (Rohm and 

Haas Canada Inc., 1985). A stainless steel screen enclosure packed with glass beads was used 

as a water distributor in the entrance zone of the plastic chamber (before the reaction zone). The 

flat plate reactor consisted of the plastic chamber, the distributor, and a Ti0,-coated flat plate 

(Figures 4-2 and 4-3) in the chamber placed 2.5 cm from the cover. The dimension of the 

catalyst coating was 80 mm by 500 mm. The plate was made from 3/64 inch stainless steel 

sheets (SS-3 14). The slurry system was formed when the artificial wastewater was spiked with 

1 gL-1 TiO?. 

Figure 3-1 shows the experimental system set-up. Illumination was provided with three 

40-watt fluorescent lamps (Philips, TLK40W/IOR) placed above the reactor and in paralle1 with 

the reactor cover. These lamps are built with reflection coatings on half of their inner surfaces 

and auminate only one side. Their emission power at di frent  wavelengths was obtained from 

the supplier and is plotted in Appendix A (Figure A-1). The pump was a centrifugai 

magneticdy-coupled type and ali the water-contacting parts were made from polypropylene. 

The reservoir was made from a 1000 ml-Erlenmeyer flask with ports for inlet, outlet, 

sarnpling. pH probe, dissolved oxygen @O) probe, and themorneter. Oxygen required for the 

reactions was admitted into the reservoir through an opening to the arnbient air. The reservoir 





inlet was built to be tangentid to its wdI so that suffkient aU could be entrained through the 

watedair interface. Temperature was controlled with a water bath. Half-inch C-Bex tubing 

(Cole-Parmer 6424-8 1) was used to connect the components together. 

3.1.4 Experimental Procedure 

During dl the experimental runs, temperature was kept constant at approximately 26.6i- 

0.5 O C  (converted fiom a reading of 80 F). The pH of the reaction medium was monitored but 

not regulated unless othenvise indicated. The dissolved oxygen level in the reaction medium 

was constant at approximately 7.0 mgL? 

Before each experirnental mn, the reactor system was cleaned by pumping deionized 

water through it for about 10 minutes without illumination. As indicated by the optical densities 

of the water, this procedure ailowed the removal of any residual compounds fkom previous runs. 

The system was then drained and 4 litres of prernixed 30 mgLml 4-CP solution was introduced. 

The newly charged water was pumped in the system for 1-5 minutes and dien the larnps were 

switched on. This was recorded as time zero. Sarnples were then taken at different times from 

the reservoir and analysed for UV absorbance at 224 nm, for compositions, andlor for total 

organic carbon (TOC). Al1 the samples were analysed as they were taken without any 

pretreatment except that those from the slurry mn were centrifuged at a speed of 6000 rpm for 

10 minutes to remove the TiO, particles before analysis. 

3.1.5 Analysis Methods 

UV absorbencies of the samples at 224 nm was measured using a Spectronic UVfvisible 

wavelength spectrophotometer (Genesys 2, Milton Roy). At the beginning of the reaction, the 

absorbance was due to the parent chernicd done but afierwards it also included the absorbance 



of the intermediate compounds. Therefore, a Linear relationship between the W absorbance of 

the reaction medium and the parent chernicd concentration does not exist during the course of 

the reaction. However, for a given reaction pathway the time course of the UV absorbance of 

the reaction medium does provide a measure of the overall degradation rate of the W absorbing 

species. 

Composition of the reaction medium was determined with an HPLC system, consisting 

of an LKB Bromrna 2249 Gradient Pump, a Gilson Mode1 401 Diluter, a Gilson Mode1 231 

Sample Injector, a Regis ODS II Reversible Column (15 cm x 4.6 mm i-d., 5 microns), and a 

Gilson Model 1 16 W detector. Integration was done on a Spectra-Physics SP4270 Integrator. 

The eluent contained 45% water, 50% medianol, and 5% acetonieile and was pumped through 

the systern at a flowrate of 0.5 mLmin-'. The detector was set at 225 to 230 nm with sensitivities 

of 0-05 to O. I AUFS. 

TOC (TC-IC) was determined with an Astro 2001 UV-persulphate TOC analyzer or a 

combustion-type TOC andyzer with an infrared detector (TOC-500, Shimadzu Corporation, 

Japan). Radiation intensity was determined with a Spectroline digital radiometer @RC-f OOX, 

Spectronics Corporation, New York) equipped with a DIX-365 sensor. The pH was monitored 

wiih a pH meter manufactured by Bamant Company in Barrington, IL and a VWR gel-filled 

combination electrode produced by TAI Orion Research. DO in the water was determined with 

a YS1 Oxygen Meter (Model 57). The microstructures of the catalyst films were observed under 

a scanning electron microscope manufactured by Joel Ltd., Japan. AU calibration curves are 

attached in Appendix D at the end of the report. 



3.2 Results and Discussions 

3.2.1 System and Catalyst Film Checkup 

In order to obtain reliable experimentd results, interactions other than photocatalytic 

reactions between the mode1 pollutant and the system must be i n ~ i ~ c a n t .  For example, the 

irreversible reactions between the pollutant and system components such as the tubing and the 

reactor wall must be negligible. A few simple tests (Le., reactor material screening tests, tubing 

selection tests, photolysis and catalysis checkups, tracer tests) were therefore performed before 

the start of formal experiments. C-flex tubing and acrylic plastics were selected as the 

connection tubing and reactor material since these two materials showed insignificant physical 

and chemical interaction with 30 mgLL 4-CP aqueous solution. Tygon tubing was found to react 

irreversibly with the artificial wastewater. The 4-CP disappearance due to dark processes (Le., 

reactions with and adsorption by the system components, voIatilization) was found to be less 

than 5% in a time interval of 10 hours. Tracer test resuits indicated that the velociv profile in 

the reactor was close to that of the pIug flow due to the effects of the flow distributor. 

The catalyst films on stainless steel plates were examined for mechanical stability, 

porosity, thickness, surface roughness, and surface metal ions that might have diffused from the 

parent metal during immobilization. 

Two experimental runs were carrïed out in the flat plate reactor using deionized water 

under two representative flowrates. The W absorbance of the sarnples at 300 nm was found 

to be constant at zero dunng the course of these r u s ,  indicating that the catalyst film is 

mechanically stable in the system. 

The average imrnobilized cataiyst weight per unit surface area was evduated by 

weighing the plate before and after immobilization and was found to be about 1 mg TiO, per 

square centimetre of the coating. Figure 3-2 shows three typical SEM images of the catalyst 



Figure 3-2: SEM Images of the TiO, Film 



films. Fiope 3-22 (magnified 250 Urnes) shows the prirnary cracks of the fdm resembling dry 

pond mud. Figure 3-2b shows the pores between the relatively dense clusters of the solid T Q  

particles. Figure 3-2c shows that the thickness of the fiIm is around 10 microns. Based on the 

densig and the mass balance of the semiconductor catalyst, the porosity of the film could be 

estimated to be around 80%. Elernental analysis of the films indicated the existence of a trace 

amount of iron on their surfaces. 

Figure 3-3 depicts the normalized UV absorbance profiles for runs under the same 

expenmental conditions with different catalyst coatings. This figure indicates that the activity 

of the cataiyst films is stable. 

3.2.2 Flat Plate Reactor 

During rnost of the runs, the pH of the reaction medium was monitored and it usuaily 

dropped from an initial value of around 5.5 to about 3.8 near the completion of the reaction. In 

addition, two constant-pH (4 and 5.5) runs were also performed. In these two runs, the pH was 

controlled with potassium hydroxide and nitric acid. Information regarding these two chernicals 

are given in Section 3.3.1. The reaction kinetics of these two runs was comparable to that of the 

runs without pH control. Therefore, the pH effect is negligible over a range fkom 4 to 5.5. 

The degradation kinetics (in terms of UV absorbance, 4-CP concentration, and sarnple 

TOC) was found to follow an L-H type relationship. In terms of concentration, this could be 

expressed by the following two equations, where Equation (3-2) is the integrated form of the rate 

mode1 (3-1). 

V dC --- - K, KC 
A d t  (1+ KC) 



Run Time (Hour) 

Figure 3-3: Repeated 4-CP Degradation, as Measured by Nomalized 
UV Absorbance, for Three Different TiO, Coatùigs 
Rat plate; C ~ 3 0  mgL-'; I=122 ~ r n - ~ ;  Re=43 13 
0 1st coating, 1 st run; 2nd coating, 1st run; Bars: confidence 
interval; 0 2nd coating, 2nd run; 2nd coating. 3rd run 
+ 3rd coating, 1st run; O 3rd coating, 10th run 



In order to examine their chernical compositions, samples were injecteci into the HPLC 

and detected for W absorbance at multiple wavelengths between 200 and 300 nm. Since dl 

aromatic compounds should absorb in this wavelengthrange (Jacob, 1992), al1 aromatic reaction 

intermediates should be detected in this way, within the detection Limits of the HPLC system. 

Five W absorbing reaction intermediates were detected. Cchlorocatechol, hydroquinone, 1,4- 

benzoquinone, catechol, resorcinol, and phenol standards were prepared to i d e n t e  these 

intemediates. The analysis results rejected the existence of catechol, resorcinol, and phenol in 

the samples. 4-chlorocatechol, hydroquinone, and 1,4-benzoquinone were identified as three of 

the intermediates based on retention tirne match up with standards and reaction mechanisrns 

proposed in previous studies (Al-Sayyed, D'Oliveira, and Pichat, 199 1; Al-Ekabi et  al., 1989). 

Figures 3-4 through 3-7 depict the typical expenmental results. The TOCs due to the 

parent cornpound as well as those of the intermediates were calculated based on the 

concentrations of these compounds. The results are plotted in Figure 3-4. The TOC of the 

unknown intermediates was obtained by subtracting the TOCs due to 4CP, 4-chlorocatechol, 

hydroquinone, and 1,4benzoquinone from the measured TOC of the samples. Typical4-CP 

concentrations and TOC data are shown in Figure 3-5 together the lines fined from Equation (3- 

1). Since the ievels of al1 the intermediates were much lower than that of the parent compound 

until 95% of the 4-CP were degraded (see Figure 3 4 ,  they were considered kineticalIy 

negligible in the rest of the report. This allowed the acquisition of 4-CP concentrations from the 

relatively less-scattered UV absorbance data. Figures 3-6 and 3-7 depict the effects of Reynolds 

number and radiation intensity on reaction rates. 

Under high Ievel radiation (i.e., 122 Wnf2 on reactor cover), the reaction was mass 

transfer dependent over the entire fi ow regime examined. It is interesting to note that deviations 
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Figure 3-4: Reactant and Intermediates Profiles, Expressed on a 
Carbon Basis 
Hat plate; I=L22 wrn-*; Red8  13 
0 4-CF; 4CC; 0 HQ; e BQ; + Other 
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Figure 3-5: 4-CP Degradation Kinetics: Nat Plate Reactor 
Re=43 13; I=122 Wa2;  

concentration data; TOC data; Lines: L-H finings 
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Figure 3-6: Effect of Reynolds Number on Degradation Kinetics, as 
Measured by NormaIized UV Absorbance 
Flat plate; Co=30 mgL-'; I=122 Wm'2 
0 Re=43 1; Re=782; 0 Re=1633; Re=2550 
++ Re=34 1 1 ; O R d 8  13; Lines: L-H fittings 
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Figure 3-7: Effect of Radiation Intensity on Degradation Kinetics 
Hat plate; Re=4313; C ~ 3 0   mg^-'; Lines: L-H fimngs 
O I=122 wm"; i I=43 Wm-*; 0 I=15 wrne2; 



from zero order kinetics occur at approximately the same 4-CP concentration dthough the mass 

transfer rates were different. This is because that the transfer of both 4-CP and oxygen (two 

reactants) affect the reaction rate. As 4-CP concentration was initidy much higher than that of 

oxygen (7 mgL-'), the process was actually lirnited by the tramfer of oxygen until the 

concentrations of 4-CP was reduced to such a level that the ratio of their mass transfer rates is 

equal to the stoichiometn'cally defined one. Based on correlations available (Calderbank and 

Moo-Young, 1961; McCabe, Smith, and Harriott, 1993) and the diffusivities of these two 

substances, this corresponds to a 4-CP concentration of around 8.7 mgL-'. Since oxygen 

concentration was kept constant, the degradation should therefore behave zero order kinetics 

with respect to 4-CF when its concentration is higher than about 8.7 mgL-', and change gradually 

to first order as the reaction proceeded fbrther. 

As indicated in Figures 3-5 through 3-7, Equation (3-2) fits the kinetic data for alI the 

individual runs exceptiondy weI1. Therefore, parameters obtained in fitting the kinetic data into 

Equation (3-2) can be conveniently used to calculate reaction rate profiles for the individual 

runs. Based on the calculated reaction rates, measured mass transfer rates (see Chapter 7), and 

reaction stoichiometry (neglecting all the intermediates) average 4-CP and oxygen 

concentrations on the surface of the catalyst film were calculated and plotted in Figures 3-8 and 

3-9 against the main Stream concentrations of 4-CP and oxygen. These resuits agree well with 

the discussions in the last paragraph. Under high radiation level (Le., 122 Wm-2 on reactor 

cover), the reaction was severely limited by the transfer of oxygen from liquid to catalyst films. 

AIthough Equation (3-2) fits the kinetic data exceptionally well, one should be cautious 

in assigning fundamental meanings to the parameters obtained in fitting the data due to the 

interference of mass transfer and parameter correlation. In addition, this model cannot be used 

for reactor scale-up since neither radiation transfer nor mass transfer was considered. Therefore, 

a new model is required. 
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Figure 3-8: Relative Surface Concentration of Reactants as a Function 
of Buk  4-CP Concentration at High-level Radiation 
Hat plate; Re=5813; I=122 Wm*' 
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Figure 3-9: Relative Surface Concentration of Reactants as a Function 
of Buik 4-CP Concentration at Low-Ievel Radiation 
Flat plate; Re58 13; I=15 Wm-2 
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Figure 3-10: 4-CP Degradation Kinetics: Slurry System 
1 gLeL TiOz slurry; Re=43 13; 1 =122 Wm-2 
0 concentration data; TOC data; Lines: L-H fittings 



3.2.3 Shrry Reactor 

The slurry run was conducted under experimental conditions exactly the same as the one 

presented in Figure 3-5. The results are plotted in Figure 3-10. By comparing Figures 3-5 and 

3-10, we can see that the slurry run was approximately 200% faster. Similar findings have been 

reported previously (Enzweiler et al., 1994). This is due to the enormous difference of the 

illuminated catalyst surface area between the two systems. Based on the loading, the density, and 

the size of the catalyst particle aggregates (Ray, 1997). the total surface area of the cataiyst 

aggregates was estirnated to be over 21 m2 in the slurry system. AU catalyst particles may be 

illuminated in a slurry system as they pass through the reactor with the water being treated. 

Therefore, the slurry reactor enjoyed an illuminated TiO, surface area which is up to 525 times 

higher than that in the flat plate reactor tested. 

Based on the model-detennined photon absorption rates (see Chapter 6),  the initial 

quantum efficiency of the flat plate reactor was calculated to be 0.47%. SimiIar information for 

the slurry system was not obtained since the corresponding photon absorption rate was not 

available. It is very difficult to correctly quantify the light absorption in a sIuny system. 

3.3 Concluding Remarks 

30 mgL-' 4-CP contaminated artifïcial wastewater was mineralized in both immobilized 

flat plate and slurry reactors. Five reaction intermediates that absorb UV in the range of 200 to 

300 nm were detected. Three of them were identified to be Cchlorocatechol, hydroquinone, and 

13-benzoquinone. The concentrations of these intermediates were aLl lower than approximately 

3% of the initial 4-CP concentration. 

L-H kinetic mode1 fitted the photocatalytic 4-CP degradation data very welI and was 

therefore used to extract the reaction rates fkom the concentration data. However, one should 



be cautious in assigning fundamental meanings to the parameters fitted using immobilized 

system data. This mode1 cannot be used for photoreactor scale-up either. 

Under otherwise identical experimental conditions, the slurry system was found to be 

200% faster than the immobilized system due to its great TiO, surfaces that can be illuminated. 

Photocataiysis on immobilized TiOz films cm be limited by the transfer of either the 

oxidant (Le., oxygen), the substances being oxidized (Le., 4-CP), andor the reaction products 

between the reaction sites and the main flow Stream. Based on the experimental results, the 

photocataiytic reactions in the fl at plate reactor were initially limited by oxygen transfer and 

shified to 4-CP transfer as the reactions proceeded. 

The T~O? füms immobilized on the stainless steel plate were physically and chemically 

stable during the course of the expenments. They possess a thickness of approximately 10 

microns and a porosity of approximately 80%. Elemental analysis of films indicated the 

existence of a trace amount of iron on its surface. 



C W E R  4: CORRUGATED PLATE REACTOR 

4.1 Materials and Methods 

2,4-dichlorophenol (2-4-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) used in this part 

of the work were both fiom Sigma Chemical Company. Their CAS numbers are 120-83-2 and 

95-95-4 respectively. Dechlorination was examined by analyzing chloride ion concentrations 

in the samples using a Dionex ion chromatograph (IC) equipped with an IONPAC AS4A-SC 4 

mm colurnn and a Dionex CDMII conductivity detector. The eluent was composed of 1.8 mM 

Na,CO, and 1.7rnM NaKCO, (volume ratio of 1:l) and was pumped through the systern at a 

flowrate of 2 rnL min-'. The reagent was 50 mN -0,. Its flowrate was 4 mL m i d .  The 

sample loop volume was 10 PL. Other materiais and methods are described in Section 3.1. The 

operating temperature was kept constant at 26.6 O C .  

4.2 Considerations in Photoreactor Development 

Based on the results in previous studies, photocataiytic reactions follow L-H kinetics in 

terms of the concentrations of the chernicals being degraded with the rate constants showing 

lower order (usually between 0.5 and 1) dependency on radiation intensities. Here, both the 

chernical concentrations and the radiation intensities refer to those at the catalyst surface. The 

overall reaction rate can therefore be obtained by integrating the rate expression over the catalyst 

area in a reactor. 

As a result of the kinetic charactenstics of photocataiytic reactions, a powerful and 

efficient photoreactor must possess: (1) a large catalyst surface area per unit reactor volume, (2) 

the capability to illuminate with reiatively low intensities a large catalyst surface continudly, 

and (3) sufficient mass transfer capacity between the liquid bulk and al1 the reaction sites. In 



addition to catalyst surface area and radiatiodmass transfer, other issues needing to be 

considered in photocatalytic reactor development include: (1) reactor configuration and 

radiation source positions; (2) types and capacities of the Iarnps (if solar energy is not to be 

used); (3) radiation energy absorption, refiaction, scattering. and reflection; (4) catalyst mixing 

for systerns with T i 0  suspended or immobilized on mobile particles; (5) heat transfer and 

temperature control; (6) types and concentrations of target pollutants; (7) matenais for light 

transmission, reactor wall, and catalyst immobilization; and (8) ease of fabrication, operation, 

and maintenance. 

For heterogeneous reactors utilizing artificial lamps, the type of lamp which gives the 

highest efficiency in the spectnirn of interest, yet is compatible &th other parts of the system, 

should be of the first choice. Factors needing to be considered in selecting light transmission 

materials include, light transmission eficiency in the wavelength range of interest, chernical and 

thermal stability, cost, fabrication potential, and durability. Quartz is one of the most 

"transparent" solid materials for W light but it is dso quite expensive. Pyrex is iess expensive 

but this type of glass absorbs UV-C (190 - 280 nm) and UV-B (280 - 320 nm), allowing onIy 

UV-A (320 - 380 nrn) to reach the catalyst surface. The dissipation of W - B  could be of a great 

loss in the overall energy effkiency since rays in this wavelength range may be more effective 

than UV-A rays in activating photocatalytic reactions (Stafford, Gray, and Kamat, 1997a). 

Compared to glass, UV-transmitting acrylic plastics could offer low cost, appropriate optical 

properties (transparent to both W-£3 and W-A), and superior fabrication potential. This 

materid may be subject to attack by some organic chemicals if their concentrations are high. 

Fortunately, photocatalysis is most suitable for detoxifjhg waters contarninated with chemicals 

at low levels, which may not attack acrylic plastics noticeably. 

For systems with TiO, immobilized on stationary surfaces, the effect of mixing on light 

distribution is lirnited. However, it could still enhance the reaction rates owing to increased 

mass and heat transfer. These could in turn improve temperature control and alleviate product 



inhibition if it exists (Lepore, Pant, and Langford, 1993). 

Cost, fabricatability, and chernical stability are among the major considerations in reactor 

construction material selection. Ordinary materids such as stainless steel, carbon stee1, 

aluminum, and plastic could ail be used for the reactor wall. 

4.3 Reactor Configuration and Characteristics 

Figure 4-1 is a sketch of the photoreactor developed and examined in this study. In this 

reactor, the catalyst is immobilized on both sides of the comgated plates. For the treatment of 

a given wastewater Stream, primary parameters that may affect the performance of a CP reactor 

include, construction material, larnps, catalyst film characteristics, "angle" and "depth" of the 

comgated plates, radiation intensity, temperature, and flowrate through the reactor (Reynolds 

number). The advantages of this reactor configuration are summarized as follows: 

(9. 

(ii) . 

(iii) . 

(iv) . 

(VI 

It could provide a high illurninated catalyst surface area per unit volume of the reactor 

and therefore a high capacity. 

As an immobilized system, post treatment catalyst-water separation is not required. 

Sufficiently high rnass transfer rates could hopefidly be obtained by adopting an 

appropriate angle of the comgated plates, by elirninating the narrow corners of these 

plates, by the use of flow-spoilers such as screens, or by operating the reactor in 

(pseudo)turbulent flowrate ranges. 

Temperature in the lamp sleeves could be controlled conveniently through the use of 

forced air venting or natural convection, allowing optimal function of the radiation 

sources. 

It requires relatively low capital costs. Only the lamp sleeves need to be built with W 

transmitting materiai such as glass or acrylics. Stainless or carbon steel or plastics could 

be used for all other parts. The fabrication will be relatively easy since the reactor wall 



and lamp sleeves require Little machining and the comgated plates codd be formed 

conveniently using a press. 

(vi). It could be operated at relatively low costs. The system does not contain any rnoving 

parts. Since the total illurninated surface area of the catalyst fdms would not be affected 

in case some larnps break down, the maintenance requirement is not strict. Since the 

catalyst is immobilized on stationary surfaces, deactivation due to factors such as 

attrition does not exist and a long cataiyst lifetime is possible. The pressure drop of the 

reactor will be relatively low since the whole reactor simulates muki-triangular tube 

bundles. Based on an estimation using the hydraulic radius method the pressure drop 

was as low as 40 pascals per meter of the flow channels (B=0.05 m, a=3S0, Re=930, 

resistance due to the distributor was not included). 

(vii). Maintenance cost will be low since there are no moving parts in the reactor. In addition, 

the comgated plates and larnps could be pulIed out of the reactor easily for catalyst 

regeneration or Iamp replacement when required. 

(viii). It is structuraily flexible. Desired catalyst surface areas and radiation intensities could 

be easily obtained by using TiOicoated comgated plates with different angles and by 

adjusting the number of lamps in each lamp sleeve. The reactor could be built as long 

as desired for optimal effluent quality. 

(ix). It is operationally flexible. The velocity profde across the reactor will be similar to that 

of a packed bed (packed with corrugated plates) which could be close to plug fiow at 

relatively high Reynolds numbers. Meanwhile, if the reactors are used in series, 

controlled back-mixing could be realized by recycling the Buid at certain stages. 

(x). Solar UV could be used to illuminate a comgated plate. 

The illuminated catalyst film areas per unit reactor volume of a few selected reactor 

configurations were estimated and the resuIts are listed in Table 4-1. Based on the estimation 
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Figure 4-1: Schematic of the Corrugated Plate Reactor 



results, only the tube light reactor (Ray 1997) possesses illuminated catalyst film area that is 

higher than those of the CP reactors. However. the tube Iight reactor may not be attractive 

because of the high voltage requirement of the special Iamps. the expected high cost to purchase 

and replace the lamps, and the mercury contamination nsk in case of a lamp failure. 

Table 4-1: T i 4  Film Area per Unit Reactor Volume for Selected Reactors 

II Reactor 
Configuration 

multiple tube reactor 

packed bed reactor t-- 
tube light reactor' r 
CP reactor (cr=lOO, B=5 cm) 

CP reactor (a=7", B=5 cm) 

CP reactor (a=5", B=5 cm) 

CP reactor (a=3S0, B=5 cm) 

- 

Notes 

reactor structure based on Ray and 
Beenackers (1998); assumed distance 
between lamp-sleeve assembly: 0.01 m; 
catalyst immobilized on outer waII of the 
lamp sIeeves 

assumed distance between the lamp-sleeve 
assembly: 0.01 m; catalyst immobilized on 
spherical packing 

based on Ray (1997); catalyst immobilized 
on the wails of the lamps; l a p s  take 75% 
of the reactor volume 

reactor structure shown in Figure 4- 1 ; 
cataiyst immobilized on the surfaces of the 
corrugated plates 

1 speciaI lamps with a diameter of 0.0045 m in direct contact with contaminated water. 
2 assumed illumination source: regular tubular lamp with a diameter of 0.036 m. 
3 exterior diarneter of the lamp sleeve: 0.056 m. 

As a result of the physicai restrictions in a laboratory environment, a Iab version 

corrugated plate (LCP) reactor, as s h o w  in Figure 4-2, was used to collect the data for research 

into the CP reactor. This reactor consists of a plastic chamber, a distributor, and a Ti0,-coated 

corrugated plate. Since the LCP and CP reactors are hydraulically sunilar, data collected using 



LCP R e a c t o r  

E-E 

D-D 

C o r r u g a t e d  P h t e  

Figure 4-2: LCP Reactor Dimensions (mm) 



the LCP reactor can be used to predict the performance of the CP reactor as long as the 

differences in radiation intensity and catalyst film area are considered. 

4.4 Degradation of 4-ChIorophenol 

As the key component of the CP reactor, a comgated plate has three important structural 

parameters. They are the "depth" B, the "haIf angle" a, and the "cap". These parameters dl 

affect the performance of the unit. For example, the deeper the corrugated plate the larger the 

surface area provided but the less uniform the radiation on its surface. A smaller "cap" will 

result in larger surface area but there are limitations due to fabrication and mass transfer 

considerations. Based on the Lambert's Cosine Law, the "angle" is strongly correlated with the 

radiation distribution over the corrugated surface. In this research, the "depth" B, and the "capt' 

were both fixed. The effect of the angles of the corrugated plates and the radiation intensities 

on the photocatalytic reactions was exarnined experimentaily. Comgated plates examined in this 

study are shown in Figure 4-3. 4-CP degradation with each of these plates was performed under 

three different flowrates to determine the m a s  transfer effect. Some typical experimental 

results are summarized in Figures 4-4 and 4-5 together with the lines fitted by Equation (3-2). 

Again the Langmuir Hinshelwood relationship fitted the data very weil. 

As can be seen from Figure 4-4 that the performance of a CP reactor is indeed strongly 

dependent on the angle of the corrugated plate. The 90% degradation times of the flat plate, the 

LCP, and the slurry reactors are calculated based on the experimental data. The resuits are 

sumrnarized in Table 4-2, together with the surface areas of the illuminated catalyst films in 

these reactors. As can be seen ffom this table that one LCP reactor was 150% more efficient 

than the fiat plate reactor (Le., 100-13/5.2*100). However, it is still about 15% less efficient than 

the slurry reactor (Le., 100-4.5/5.2*100). The iliuminated catalyst film area of the best LCP 

reactor (a=3S0) was 10 times greater than that of the flat plate reactor. As shown in Figure 4-5, 



Figure 4-3: FIat and Corrugated Plate Dimensions (mm) 
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Figure 4-4: 4-CP Degradation in Cormgated Plate Reactor at Five 
Different Angles, Compared to Hat Plate and Slurry 
Reactors 
~owrate-23 Lmin-'; C0=30 mgL-'; 1=122 Wm-2 
0 a=3.5"; i a=S0; 0 (~=7"; a=1O0; + a=20° 
o fiat plate reactor; A slurry reactor; Lines: L-H fittings 
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Figure 4-5: Cornparison of 4-CP Degradations in Hat, Slurry and 
Corrugated Plate Reactors 
C0=30 mgL-'; I=l22 Wm'2; O flat plate, fiowrate23 Lmin-' 
i a=3 SO, fiowrate=30 Lmin-' ; 0 slurry reactor, flowrate=23 Lmin" 
Lines: L-H fittings 
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Figure 4-6: Effect of Reynoids Number on Reaction Rate 
a=3S0; Ce30 rngL?; I=122 Wm-2 
0 Re=730; w Re=930; 0 Re=1220; Lines: L-H fittings 



the performance of the LCP reactor was found to approach that of the slurry reactor at a higher 

flowrate. This indicates mass transfer limitations in the LCP reactor. Mass transfer limitation 

is also reflected by the results presented in Figure 4-6. 

Table 4-2: Comparison of Reactor Performance and Illuminated TiO, Areas 

**: Estimated based on a cataiyst loading of 1 gL*', a catalyst specific gravity of 3800 kgrn". and an assumed 
diameter of the catalyst aggregates of 0.3 Pm. 

P 

In order to alleviate mass transfer limitations, stainless steel screens (14 mesh, Ti0,- 

coated and bare) were attached ont0 the flat plate. Screens may enhance the degradation rate 

through enhancing the mass transfer between the catalyst surface and liquid bulk and providing 

more immobilized Ti02 surface. On the other hand, mass transfer resistance dso affects 

adversely the activation of the catalyst irnrnobilized on the flat plate surface by blocking the light 

transfer route. The results in Figure 4-7 indicate that bare screen resulted in a decrease of the 

reaction rate by approximately 35%. WhiIe the Ti02-coated screen enhanced the reaction rate 

by approximately 50% (based on time required for 90% 4-CP reduction). The piece of the 

screen used possess a Ti02-coated surface area of 0.067 m2, 1.65 times that of the flat plate. The 

effect of TiOrcoated screens on the performance of CP reactors was dso exarnined briefly. Two 

runs were performed. Based on the results of these two runs, the effect of the screen on the 

Reactor 

flat plate 

LCP (a=20°) 

LCP (cc=lOO) 

LCP (a=7") 

LCP (a=SO) 

LCP (a=3.S0) 

slurry reactor 

Area of TiO, FiIm (m2) 

0.04 

0.1 15 

0.203 

0.27 1 

0.349 

0.445 

"21.1 

Area Ratio 

1 

2.9 

5.1 

6.8 

8.7 

11.1 

525 

TM fi) 

13 

8.2 

6.6 

6.2 

5.8 

5.2 

4.5 

T, Ratio 

I 

1.6 

2 

2.1 

2.2 

2.5 

2.9 



6 9 12 

Run Time (Hour) 

Figure 4-7: Effect of Screen on Reaction Rate 
Flat plate; Re=43 13; Cp30 mgL-' ; I=122 Wm*'; no screen 

coated screen; 0 uncoated screen; Lines: L-H fittings 



performance of the LCP reactor was not significant. It was very difficult to attach the screens 

on the corrugated plates without losing a noticeable arnount of Ti02 film. 

As a method of estimating the energy efficiencies of the processes in which light is an 

input, Electrical Energy per Order (EWO) has been used widely (Bolton et al., 1996). The EU0 

was defined as the electrical energy (in kilowatts hour) required to mineralize the pollutant in 

one cubic meter of contaminated water by one order of magnitude. Generally speaking, the 

higher the energy efficiency of a system, the lower the EUO. The EE/O can be calculated with 

Equation (4- 1) based on the total lamp power (P, in kW), the reaction time (t, in hour), the total 

volume of the water in the system (V, in m3), and the initial and final pollutant concentrations 

(Co and Cf, in rngLL). For reactions with first order kinetics, the E U 0  offers an unbaised 

evaluation of the energy efficiency of a reactor system. For reactions with other types of 

kinetics, the EE/O becomes a function of the initial polhtant concentration and can only be used 

for rough estimation purposes. 

Table 4-3 shows the EE/O values calculated based on this and previous work on the 

degradation of chlorinated phenols. Although the photocatalytic degradability of all phenolic 

compounds is comparable (Al-Ekabi et al., 1989 and next Section), these values can only be 

used as a rough guidance to the novelty of the reactor systerns examined due to the inconsistency 

of the expenmentd conditions in different studies. As c m  be seen from this table, the newly 

proposed CP reactor offered the best energy efficiency. 



Table 4-3: Reported Energy Efficiencies of a Few Reactor Configurations 

Reactor, Illumination 
Source, compound 

annular slurry, fluorescent lamp, 
phenol 

spiral g lus  coil, fluorescent 
larnp, 4-CP 

spiral g lus  coil, fluorescent 
lamp, phenol 

fibre optics bundle, hÏgh pressure 
mercury, 4-CP 

fluidized bed, medium pressure 
mercury, 4-CP + p- 
toluenesuifonic acid 

annular slurry, fluorescent Iamp, 
4-CP 

Rat plate, fluorescent Iamp, 4-CP 

flat plate with screen, fluorescent 
larnp, 4-CF 

SP reactor, fluorescent larnp, 4- 
2P 

h r r y  reactor, fluorescent lamp, 

- 

I 
- 

- 

- 

- 

1 - 
4 

A - 
1 - 
1 
1 - 

- 
< 

C -- I 

*: Reactive Tygon tubing was used. 
**: Lamp efficiency was assumed to be 17%. 

References 

Okamoto et al., 1985a 

'Matthews, 1987a 

- - 

Al-Ekabi and Serpone, 
1988 

Peill and Hoffmann, 1995 

Haarstrick, Kut, and 
Heinzle, 1996 

Stafford, Gray, and 
Kamat, 1997a 

Based on the model-determined photon absorption rates (see Chapter 6), the initial 

quantum efficiencies of the flat as well as the CP reactors (a=3.5') were calculated to be 0.47% 

and 0.70% respectively. Since as many as 26 hydroxyl radicals are required to mineralize each 

4-CP molecule (Stafford, Gray, and Kamat, 1997b), there exists a quantum efficiency upper lMit 

of 3.85% for 4-CP. This indicates that more than 80% of the photo-generated hydroxyl radicals 



were dissipated as waste in the CP reactor. 

By comparing the EE/O values and the quantum efficiencies, we c m  see that the CF 

reactor (a=3S0) enhanced the E U 0  of the flat plate reactor by 150%. However, the 

corresponding enhancement of the quantum efficiency was only about 50%. This is because that 

the different photon capture capabilities of the fi at and corxugated plates were not considered in 

quantum effciency calculation. 

4.5 Degradation of Chlorophenol Mixtures 

Chlorinated phenol mixtures are a class of widel .y existing water pollutants in the 

environment due to industrial discharges and widespread applications of herbicide and fungicide 

( Al-Ekabi et al., 1989; Verschueren, 1983). In order to examine the photocatalytic degradation 

of highly chlorinated phenols as welI as their mixtures, 4-CP, 2,4-DCP, and 2,4,5-TCP were 

degraded as single compound or equimolar mixtures (with the same initial TOC) in one CP 

reactor (a=3S0). Selected information about these three compounds is summarized in Table 4-4. 

An equimolar mixture of these three compounds was examined previously (Al-Ekabi et 

al., 1989). However, Tygon tubing was used to connect the components of their system. As 

presented in Chapter 3, this material was found in Our tubing screening tests to react irrevenibily 

with 4-CP. A total of four runs was performed in this study. The experimental results are 

presented in Figures 4-8 through 4-12. 

Figure 4-8 shows the degradation kinctics of 4-CP and 2,4-DCP as single compounds, 

Figure 4-9 shows the degradation kinetics of 4-CP and 2,4-DCP mixture, and Figure 4-10 shows 

the concentration profiles of 4-CP, 2,4-DCP, and 2,4,5-TCP during the degradation their 

mixture. Figures 4-1 1 and 4-12 present the TOC reduction and chloride ion production during 

these four experimentd runs. 
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Figure 4-8: Degradation Kinetics of 4-CP and 2,4-DCP as Individual 
Compounds 
CP reactor with a=3S0; Re=930; Co=234 pM 
k122 Wm-'; O 2,4-DCP; 4-CP 
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Figure 4-9: Degradation Kinetics of a 4-CP and 2,4-DCP Mixture 
CP reactor with a=3S0; Re-930; Co=117pM each 
k122 ~ m " ;  0 4-CP; i 2-4-DCP 
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Figure 4-10: Degradation Kinetics of a 4-CP, 2,4-DCP, 
and 2,4,5-TCP Mixture: Concentration Profiles 
CP reactor with u=3S0; Re=930; I=122 Wm-2; 
C0=77.8pM each; 0 4-CP; 2.4-DCP; 0 2,4,5-TCP 
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Figure 4-11: Degradation Kinetics of Different Chlorophenol Mixtures: 
TOC Profdes 
CP reactor with a=3S0; R-930; I=122 Wnf2; 
TOC,=16.8 mgL-' ; 4-CP only; 2,4-DCP onty ; 0 mixture of CCP 
and 2,4-DCP; mixture of 4CP, 2,4-DCP and 2,4,5-TCP 
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Figure 4-12 

2 4 
Run T h e  (Hour) 

: Dechlorination Kinetics of DBerent Chlorophenol 
Mixtures 
CP reactor with a=3 .SO; Re=93C; I=122 Wni2; 
TOC0=16.8 ma-'; O 4-CP only; 0 2,4-DCP only; i mixture of 4-CP 
and 2,4-DCP; mixture of 4-CP, 2,4-DCP and 2,4,5-TCP 



Table 4-4: Physical and Hazardous Properties of the Mode1 Compounds 
(Mackay et al., 1993; Verschueren, 1983; Howard, 1989) 

Chemical Name 

Synon_vms 

Henry's Law 
Constant 
(Pa m3 mol ") 

Molecular Weight 

Melting Point ("C) 

Odour Threshold 1 1.24 1 0.21 1 0.06 

4-chlorophenol 
(4-CP) 

I -chlore-4hydroxybenzene 
p-chlorophenol 

Taste Threshold 1 1.16 1 0.012 1 0.001 

128.56 

43 

Factor 1 1 1 

2-4,- 
dichlorophenol 

2,4-DCP 

The results in Figures 4-8,4-9,4- 1 1, and 4- 12 al1 indicate that the degradation rates of 

these three chlorinated phenols are similar in ternis of phenol concentration or TOC, regardless 

of the degree of chlorination. This finding is favorable since it indicates the advantage in using 

photocatalysis to detoxify highly chiorinated phenols. In addition, expenmentai data collected 

with less toxic phenolic compounds may be used to assess the photocataiytic degradation of 

highly toxic chlonnated phenols. This will ceaainly provide convenience during the experiment. 

The relatively fast rate of 2,4,5-TCP reduction shown in Figure 4-10 rnay be due to the 

adsorption of this compound to the system components. 

2,4,5- 
trichloropheno1 

2,4,5-TCP 

163.01 

45 

197.46 

62 



4.6 Concluding Remarks 

For the degradation of 4-CP, the newly proposed CP reactor resulted in a 150% 

enhancement in capacity and energy efficiency over that of the flat plate reactor. This 

enhancement was due prirnarily to the large illuminated surface area of the catdyst füms in the 

new reactor. The energy efficiency of the CP reactor was only about 15% lower than that of the 

slurry reactor. A catalyst-coated screen was also found to enhance the photocatdyuc 

degradation of 4-CP in the Bat plate reactor by about 50%. The CP reactor still suffen from 

mass transfer limitation. 

For the degradation of phenolic compounds, the CP reactor has the highest energy 

effkiency compared to d l  other immobilized systems examined previously. The CP reactor 

configuration is prornising due to its potentially low capital, and O&M costs, its capability for 

efficient solar UV utilization, and its proven superïor performance. 

The photocatalytic degradation rate of 4-CP, 2,4-DCP, and 2,4,5-trichlorophenol were 

found to be similar in tems of phenol concentration or TOC, regardless of the degree of 

chlorination. Based on this observation, photocatdysis should be more advantageous for use 

in the dechlorination of highly chlorinated phenols. 

Photon efficiency is not as suitable as the EU0 in evaluating the energy efficiencies of 

photoreactor systems as it does not incorporate the efficiency in converting elecaicity or sunlight 

to absorbed photons. However, it could be used to estimate how far the energy efficiency of a 

particular system is fiom its upper limit. 



CHAPTER 5: COMEINED PHOTOCATALYTIC AND BIOLOGICAL 

GROUNDWATER TFEATMENT 

Biological wastewater treatment processes (Le., activated sludge) are relatively less 

expensive but subject to inhibition from toxic compounds. Photocatalysis is capable of 

degrading essentiaily al1 toxic chernicals but suffers from high cost and competitive inhibition 

from many species. Therefore, for the treatment of a real wastewater contaminated by 

biodegradable as well as recalcitrant/toxic chemicds, the two treatment processes may be 

complementary to each other if used in series (Scott and Ollis, 1995). The biological step could 

degrade the biodegradable compounds so that in the next photocatalytic step competitive 

inhibition due to these species is reduced and the oxidation rate of the recalcitrant/toxic 

compounds increased. Altematively, the photocatalytic step could enhance the subsequent 

biological step by breaking-down compounds which wouid othenvise be toxic to the 

microorganisms. In addition, the photocataiytic step could also provide substrates to the next 

biological step in the form of photocatalytic reaction intermediates. A prerequisite to the success 

of such a cornbined system is that the photocatalytic step does not increase the toxicity of the 

wastewater to the microorganisms in the bioreactor. Oxidation reactions usudy go through the 

sequence (Bolduc and Anderson, 1997): 

Organics +Aldehydes + Carboxylic acids --+ Carbon dioxide 

The competitiveness of photocatalysis as a wastewater treatment method can therefore 

be improved by enhancing its energy eficiency as well as by using it as a step in a combined 

photocatdytic/biologicd treatment system (Scott and Ollis, 1995). In addition to the efficiencies 

of the individual steps, another factor affecting the efficiency of a combined 

photocatalytic/biological treatment process is the relative extent of treatment in each step. The 

optimal extent of treatment in the photocatdytic step should be such that it destroys a relatively 



large fraction of the toxic compounds and provide relatively more biodegradable reaction 

intermediates. For the treatment of a given wastewater in a given set of photo- and bio- reacton, 

there should be an optimd residence time in the photoreactor at which the oveml1 treatment cost 

is rninimized. 

In order to examine the potentid for use of the CP reactor in treating red wastewaters 

as a stand-alone method or in combination with bioprocesses, a contarninated groundwater from 

the Uniroyd Chernical plant site in Elmira, Ontario, was studied. The groundwater contained 

high Ievels of ammonia and lower Ievels of organic and inorganic species. Biologicd 

nitrification could not be used directly to convert ammonia to nitrate because of the inhibition 

from the toxic organics. At present, the Uniroyd Chernical plant uses activated carbon 

adsorption to remove the nitrification inhibitors, yielding a groundwater which can then be sent 

for biotreatment. The specific objectives of these tests were, to identiQ suitable operating 

conditions for the CP reactor using the contaminated groundwater, to determine whether 

nitrification inhibition could be removed or reduced using photocatalysis, and to look for a 

relationship between the Iength of photocatalytic pretreatment and the extent of the subsequent 

nitrification. The results are descnbed in the foIlowing sections of this chapter. 

5.1 Materiais and Methods 

5.1.1 Characteristics of the Groundwater 

Table 5-1 is a summary of the typicd characteristics of this water as provided by 

Uniroyal CheMcal. In addition to the species Iisted here, it is believed that the water also 

contains dozens of other substances (especially organic compounds) at levels lower than the 

detection limits. 



Table 5-1: Characteristics of the Contaminated Groundwater 

Organics and Surrogate 
Paramet ers 

chlorobenzene 
formalde hy de 

II Extractables (pgL-l) 

aniline 
benzothiazoIe 
carboxin (oxethiin) 
2-chlorophenol 
4-chloro-3-methylphenol 
2,4-dichlorophenol 
2,6-dichlorophcnol 
di-n-butyl phthlate 
2-mercap tobenzothiazole 
nitrosodiphenylamine 
/dip heny laime 
2,4,5-trichiorophenol 
2,4,6-trichlorophenol 

1) Herbicides (pgL-') 

2,4,5-T 
2,4,5-TP (Silvex) 
Dicamba 

Surrogate Parameters 
(mgL-'1 

Alkalinity (CaCO,) 
COD 
DOC 

Concentration 
Metais and 
Inorganics 

Conductivity 
(Y Sm-9 

Arsenic (As) 
Barium (Ba) 
Calcium (Ca) 
h n  (Fe) 
Lead (Pb) 
Magnesium 
(Mg) 
Manganese (Ms) 
Potassium (K) 
Sodium (Na) 
Strontium (Sr) 
Zinc (Zn) 

Ammonia (N) 
Chloride (Cl) 
Nitrate (N) 
Nitrite (N) 
Sulfates (SO,) 
S ulp hide 
ïotal Cyanide 
:cw 
ïKN 

Concentration 



5.1.2 Experimental Method 

Contaminated groundwater was collected in head space-free glass containers, stored at 

4"C, and used within one or two days of collection. The groundwater was treated in the 

photoreactor under three Scenarios: 

Scenario A: groundwater charged into the photoreactor as it was 

Scenario B: groundwater charged into the photoreactor after its pH lowered to 4.5 

Scenario C: groundwater charged into the photoreactor after its pH lowered to 4.5 and 

addition of hydrogen peroxide (60 mgLL initially). 

Concentrated sulfuric acid instead of nitric acid was used for pH adjustrnent for nitrogen 

balance considerations. The flowrate through the corrugated photoreactor was constant at 23 

Lmin-'. This corresponds to a Reynolds nurnber of 930 for the comgated plate reactor used 

(a=3S0). The radiation intensity at the reactor cover was constant at 122 wm-'. More detailed 

information on the photoreactor, the experimental set-up, and the expenmental procedure are 

desctibed in Section 3.1. 

In order to examine the effect of the extent of photocatalytic pretreaünent on subsequent 

biological nitrification, the groundwater was treated in the photoreactor for different lengths of 

time under Scenario B and sample were taken for various analyses and for nitrification tests. 

The pH was adjusted to 7.5 pnor to biotreatment. 

Nitrification was canied out in 250 mL Erlenmyer flasks within a shaker at 25OC, using 

an inoculum of nitriQing sludge from the existing treatment system. Sludge was added to make 

a concentration of approximately 1000 mgL-'. Samples were taken for desired analyses 72 hours 

after the start of nitrification, 



5.1.3 Analysis Methods 

SarnpIes were analyzed using a W spectrophotometer, a TOC analyzer, HPLC, HACH 

kits (HACH, 1998), andlor a IC for spectral UV absorption, TOC, chemicd analysis, total 

nitrogen (HACH method #10022), nitrate (HACH method #8039), nitrite (HACH method 

#8507), chloride, and sulfate. Amrnonia was measured using an Onon ammonia electrode 

(Mode1 95-12). Information about the spectrophotometer, the TOC analyzer, the IC, and the 

HPLC system is provided in Sections 3.1.5 and 4.1. AU samples fiom the bioreactors (Le., 

flasks) were centrifuged before analyses were performed. 

5.2 Results and Discussions 

5.2.1 Pho tocatalytic Treatment 

The experimental results are presented in Figures 5-1 through 5-4. TOC (Figure 5-1) 

and pH (Figure 5-3) of the samples and concentrations of nitrate (Figure 5-4) and a selected 

compound (the one corresponds to the largest HPLC peak, see Figure 5-2) were recorded during 

the photocatalytic degradation of the groundwater under the three Scenarios described above. 

As can be seen fiom Figure 5- 1, TOCS of the groundwater and concentrations of the selected 

compound decreased less than 20% after 7 hours in the photoreactor under Scenario A. 

Considering the fact that vaponzation to the environment may have also contributed to this 

decrease, the photocatalytic reactions must have been sluggish. This is primarily due to the 

inhibition fkom the carbonate and bicarbonate ions in the groundwater. Similar phenomena have 

been experienced by several researchers (Pacheco, Prairie, and Yellowhorse, 1993; Methos and 

Turchi, 1993; Glaze, Kenneke, and Ferry, 1993). Adjusting the initial pH from around 7 to a 

value of 4.5 (Scenario B) effectively alleviateci this inhibition by driving of€ the alkalinity. 
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Figure 5-1: TOC Reduction During Photocatalytic Groundwater 
Treatment 
CP reactor with a=3S0; Re=930; I=122 Wm-2 
O Water used as was; with pH adjustment 
0 with pH adjustment and H,O, addition 
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Figure 5-2: Degradation of a Selected, UnidenWied Compound During 
Groundwater Pretreatment 
CP reactor with a=3S0; Re30; I=122 Wm-2 

Water used as was; with pH adjustment 
0 with pH adjustment and H20z addition 
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Figure 5-3: Groundwater Pretreatment: pH ProfiIes 
CP reactor with a=3S0; Re=930; I=122 Wm" 
a Water used as was; with pH adjustment 
0 with pH adjustment and H202 addition 
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Figure 5-4: Groundwater Pretreatment: Nitrate Profiles 
CP reactor with a=3S0; Re=930; 1=122 Wme2 
O Water used as was; wiîh pH adjustment 
O with pH adjustrnent and H,O, addition 



Using pH adjustment plus the addition of hydrogen peroxide (Scenario C) enhanced the 

reactions further. By comparing the results in Figures 5-1 and 5-2, we can also observe that 

when the unidenùfied target compound disappeared afier 5 hours in the photoreactor (open 

circles in Figure 5-2) the TOC of the groundwater was reduced by only about 40% (open circles 

in Figure 5- 1). This phenomenon is indicative of the formation of acidic reaction intermediates. 

Existence of species other than the selected compound may dso have contributed to this 

phenornenon. 

The pH patterns s h o w  in Figure 5-3 are quite interesting. As the organic water 

pollutants are oxidized, the pH pattern shouId usually be characterized by a relatively fast initial 

drop followed by slow decrease due to the formation of acidic reaction intermediates and the 

change in the ionic strength of the water as the reactions proceed. Such patterns were observed 

during the degradation of 4-CP spiked de-ionized water (as presented in Chapter 4). However, 

dunng the photocatalytic degradation of the groundwater the pH increased for the frst couple 

of hours and then decreased as the reaction proceeds. Specific reasons for this particular pH 

pattern are unknown and should be examined dunng further work on this groundwater.. 

Nitrate concentrations of the sarnples as fünctions of the run time are presented in Figure 

5-4. Based on the sensitivity of the analytical method (IC) used, the nitrate levels were 

essentially constant dunng these experimental nins and photocatalytic conversion of amrnonia 

to nitrate did not happen. This result agrees with the findings by another research group, where 

photocatalytic nitrification was demonstrated to proceed under basic conditions only (Bonsen 

et al., 1997 ). The levels of sulfate and chloride ions were also examined and they were both 

not found to change significantly during the photocatdytic degradation of the groundwater. 



5.2.2 Biological Nitrifcation 

The results of biological nitrification tests are presented in Figures 5-5 through 5-10. 

Control niirification tests with untreated water, NH,-spîked pure water, and ground water treated 

with the photoreactor lights tumed off, were performed for comparative purposes. The effects 

of photocataiytic pretreatment extent (expressed as times in the photoreactor) on ammonia 

conversion (Figure 5 - 3 ,  TOC levels (Figure 5-6), nitrate and nitrite production (Figures 5-7 and 

5-8), and levels of total nitrogen and a selected compound (Figures 5-9 and 5-10) are discussed 

below. The keys in these figures are: 

"NH, only " : tap water containing on1 y NH, (as NH,Cl) with no pretreatment, as a benchmark 

"3 Off': 

"O Off': 

"Original" : 

" 1 On, etc.": 

test of the sludge's nitrifying capability. 

groundwater pretreated for 3 hours in the photoreactor with the larnps off, 

including pH adjustments. 

groundwater with pH adjustment ody. 

groundwater used as was. 

groundwater pretreated in the photoreactor with lamps on for indicated length of 

time (i-e., 1 hour), including pH adjustments. 

As can be seen in Figure 5-5 that photocatalytic pretreatment has a demonstrable and 

significant effect in irnproving the extent of biologicd nitrification. This effect is sensitive to the 

length of pretreatment time, up to a certain point. Beyond this point there appears to be no 

additional benefit to further pretreatrnent. With a pretreatment t h e  of 6 hours, the extent of 

nitrification was enhanced by a factor of 600%. Biological TOC removal was approxirnately 

the sarne under all test conditions, but there is a trend towards higher removal with longer 

pretreatment times. As expected, the formation of nitrate (Figure 5-7) appears to be consistent 

with arnrnonia disappearance. Figure 5-8 shows a tendency to accumulate nitrite when 
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Figure 5-5: Effect of Photocatalytic Pretreatment on Subsequent 
Nitrification: Ammonia Profdes 
CP reactor with a=3.S0; Re=930; I=122 Wm'2 
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Figure 5-6: Ef'fect of Photocatalytic Pretreatment on Subsequent 
Nitrification: TOC Profides 
CP reactor with a=3S0; Re=-930; I=122 Wm'2 
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Figure 5-7: Effect of Photocataiytic Pretreatment on Subsequent 
Nitrification: Nitrate Profiles 
CP reactor with a=3S0; Re=930; I=122 Wm-2 
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Figure 5-8: Effect of Photocatalytic Pretreatment on Subsequent 
Nitrification: Nitrite Profiles 
CP reactor with a=3.S0; Re=930; I=122 WH2 
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Figure 5-9: Effect of Photocataiytic Pretreatmen t on Subsequent 
Nitrification: Totai Nitrogen P r o f i  
CP reactor with a=3.S0; R-930; I=122 Wm2 
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Figure 5-10: Effect of Photocataiytic Pretreatment on Subsequent 
Nitrification: Profites of a Selected Compound 
CP reactor with a=3.S0; Re=930; I=122 Wni2 



pretreatment is performed for more than 2 hours. This indicated some inhibition of the 

Nitrobacter group by photocatalytic intemediates. This inhibition needs further investigation, 

since it is an undesirable feature in wastewater treatment. Total nitrogen was approximately 

constant during d l  treatments, indicating no denitrifikation or other nitrogen losses were 

occumng. As can be seen fiom Figure 5-10, the unidentified target compound disappears after 

the nitrification tests regardless of the pretreatment conditions. There might be rnany reasons 

for this result (Le., the selected compound being highly biodegradable, volatile, etc.). As the 

compound was not identified, it is difficdt at this point to make further cornments on this issue. 

Dry mass of the microbes were also performed and the results indicated no significant growth 

during any of the tsts. 

Complete nitrification was not achieved in these tests. This may be a consequence of the 

type of short-term test performed, where there was no additional carbon source and no 

significant growth of microbes. These tests c m  therefore be used for only comparative purposes, 

but do not necessarily indicate that full nitrification is not possible. Additional longer-term tests 

under typical operating conditions, with a continuous-fl ow or sequencing batch biotreatment, 

would be required. 

For a full scaie CP reactor with a capacity of 170 ~ h - ' .  assumuig a lamp eficiency of 

17%, an electricity pnce of $0. llkWh, and 80% of W incident to the reactor cover, a lamp price 

of $50/50W larnp, a larnp life time of 7500 (Al-Ekabi and Serpone, 1988) hous, the operating 

cost for treating LOO0 litres of such groundwater in 6 hours could be estimated to be 

approximately $1 1.16, of which 70% are due to the capital cost of the lamps. Costs for pumping 

the water, maintaining the system, as well as purchasing the system (except for the lamps) were 

not included in the estimate. Since larnp-related costs can ail be eliminated in a solar-powered 

system, solar-UV should be considered if this does not result in too great an increase in the 

reactor cost. 



5.3 Concluding Remarks 

Photocatalysis had an impact on the chernical composition of the groundwater, as 

evidenced by the decrease in the TOC and the pH profùes of the samples, and the peaks on the 

HPLC chromatograms of selected (but unidentified) species. The trends of the data indicated 

buiId-up of short chain organic acids. 

Photocatalytic pretreatment was successful in removing a significant fraction of the 

nitrification inhibitors. Up to 60% of the amrnonia nitrogen was niaified after photocatdysis, 

compared to only 10% in control samples that were not pretreated. Therefore, photocatalytic 

pretreatment appears to be a feasible alternative to carbon adsorption for reducing nitrification 

inhibition for the selected groundwater. 

While complete nitrification was not demonstrated, the scope of the project did not allow 

for extensive optirnization of either the photocatalytic pretreatment, or the biologicd nitrification 

tests used here. It is possible that with fûrther study and optimization higher ammonia removal 

levels can be obtained. 

For rough estimation purposes, the capital and operating costs to illuminate the 

photoreactor using lamps corresponds to approximately $0.01 1 per litre of groundwater, using 

a 6 hour residence tirne. 



CHAPTER 6: RADIATION FIELD SIMULATION 

Radiation fields in (pseudo)homogeneous photoreactors have been described using the 

Local Volumetric Rate of Energy Absorption (LVMA). In heterogeneous systems, however, 

a new term called here the Local Area-Specific Rate of Energy Absorption (LASREA) would 

be more appropriate to use as a result of its direct contribution to the kinetics of surface 

reactions. As can be seen fkom Section 2.3.3, previous reports on photocatalysis gave ody  the 

lamps used, the radiation intensity on certain surfaces, or the photon flux determined according 

to actinometry. Rigorous radiation models resulting in the LASREA on a catalyst fdm surface 

have not been developed. Based on the hndarnentals of geometric optics and certain 

assumptions, the LASREAs on cormgated plates were calculated in this work. The results are 

presented in the following sections of this chapter. 

The following assumptions were made in developing the radiation rnodel: 

Photons fail incident on the cover of the LCP reactor in a diffuse way (Le., the specific 

irradiance is proportional to the angle of incidence. See Figure 6-lb). This assumption 

should close to the real situation since dif ise  emission models have been found to be 

suitable for modeling fluorescent larnps (Alfano, Romero, and Cassano, Z986a). 

In UV-A range, solar W possess an irradiance with a direct parallel portion of 20 Wrxi2 

and a diffuse portion of 10 Wm-2. The spectral irradiance increases iïnearly with 

wavelength (see Figure A- 1), being zero at 300 nm and reaching a maximum at 390 MI. 

This assumption is weU supported by the fmdings of several researchers (Goswami, 

1997; Curc6 et al., 1996; Turchi and Mehos, 1994). 

The effect of refiactions when photons penetrate the aidplastic and plastidwater 



interfaces was neglected. 

Once photons strike the reactor cover, they will be either absorbed by the solid material 

or transmitted through it. No photon will be reflected. 

The TiOl film is opaque to W Iight. This is appropriate since the thickness of the film 

is as high as 10 microns (See Figure 3-2c). UV light can only penetrate T i 4  f h  

thinner than a few microns (Schiavello, 1985). 

Photons incident on the TiO, film will be subject to either absorption or coherent 

reflection in a diffüse way (Le.. reflected radiation energy is proportional to the angle of 

reflectance regardless of the angle of incidence. See Figure 641). The spectral 

absorption coefficients of the TiO, film (Figure A-2 in Appendix A) agree with the 

relevant information found in previous research (Zhang, 1994). The reflection function 

is therefore " 1- a(k)". where a(A) is the absorption coefficient for photons with 

wavelength A. This assumption shouid be close to the real situation because the 

roughness of the T i 4  film is greater than the wavelengths of the photons. (Le., 

rnicroscopically rough, see Figures 3-2 and 3-3). 

Mode1 Development and Solution 

Specific spectral intensities on the reactor cover and the plates were calculated based on 

the assumed radiation pattern (i.e., diffuse), the relative power distribution of the lamps as 

provided by the supplier (Figure A-1 in Appendùt A), and the irradiance measured with the 

radiometer. The spectral absorption coefficients of the reactor cover (see Figure A-2 in 

Appendix A) were detennined based on the materiai's spectral W transmission information 

fiom the supplier, the diffuse radiation pattern, and energy balances within a unit hemisphere. 

The radiative energy profiles on the surfaces of the catalyst films were derived using the 

pnnciples of geometric optics and analytical geometry through integration over the surfaces of 



the radiator (i.e., the reactor cover). the refiector (none for fiat plate; conjugate wings for 

corrugated plates), and the wavelengths of the photons. DetaiIed derivation of the radiation 

mode1 is provided in Appendix A. 

Based on the coordinate system in Figure 6-1, the spectral radiative energy incident on 

any point on the upper wing (x', y'. z') of the corrugated plate, due to the radiation from the 

reactor cover, is presented in Equation (6- 1). 

Equation (6-2) shows the relationship between the incident and the absorbed energy at 

wavelength A. 

q ~ - u w ( y ' d )  = Q ( ~ I : ~ J Y ~ , Z ~ )  (6-2) 

Equation (6-3) is valid since the radiation field of the upper and Iower wings of the corrugated 

plate are symmetric to plane: z=0. 

cv l ; - u J ~ w  = I & [ , J Y ~ ~ - z ~  (6-3) 

Equation (6-4) gives the spectral radiative energy incident on the upper wing (point : x', y', 2') 

due to the first reflection from the Iower wing. 

Equation (6-5) gives the spectral radiative energy incident on point (x', y', 2') of the flat plate 

(see Figure 6-1) due to the radiation from the reactor cover. 



Figure 6-1: Coordinate System (a,c) for Cormgated and Hat Plates 
and Diffuse Incidence and Reflection Patterns (b) 
on a TiO, Film 



In these equations, 

d: = ( Z ' C O ~  a - B ) ~  + ( y ' - y ) '  + (2 ' - z )~  

c o s y ,  = ( B - z c o t a ) I d ,  

c o s v ,  = ( B  - z l c o t a )  I d ,  

C O S Y ,  c o s y 5  = 4zz'cos2 ~r 1 d: . and, 

The radiative energy profiles can be obtained fiom the above equations through 

integration over the photon wavelengths. The radiative energy profiles incident on the 

corrugated and flat plates were directly calculated from Equations (6-1) and (6-5). With the 

absorption of photons refiected corn the conjugated wings (for comgated plate) ignored, the 

LASREA profiles on the comgated plates could be directly obtained from Equations (6-1) and 

(6-2). The LASREA of the flat plate was easy to calculate based on Equations (6-2) and (6-5) 

since no refiected photons can be trapped by flat plate. A special procedure was developed and 

used in order to consider the absorption of reflected photons in calculating the LASREA of the 

comgated plates. As detailed in Appendix A, this procedure involves iteration on expressions 

based on Equations (6- 1) through (6-4). The above equations were solved numerically using 

Simpson's method (Rice and Do, 1995). Fortran codes were written and run on a PC cornputer. 

Selected cdculation results are presented and discussed in next section, 

6.3 Results and Discussions 

Figures 6-2 through 6-12 show the calculated typical radiation fields of comgated as 



weli as flat plates. These figures are based on the coordinate system depicted in Figure 6-1- The 

radiation fields of lamp-illuminated corrugated plates are plotted in Figures 6-2 dirough 6-5 

while those of solar-illuminated plates are given in Figures 6-6 through 6-9. The effects of the 

corrugated plate angle on photon absorption and on the average wavelength of the absorbed 

photons are depicted in Figures 6- 10 and 6- 1 1. The LASREA on the flat plate is given in Figure 

6-12. The keys to these figures include: 

"Incidence": the local rate of radiative energy incidences (calculated with 

Equation (6- 1) for lamp-illuminated case), 

"Absorptiodno Recapture": the local rate of radiative incident energy absorption if no 

reflected photon could be captured (calculated with Equation (6- 

2) for lamp-illuminated case), and, 

the local area-specific rate of energy absorption (calculated with 

the procedure described in Appendix AS). 

As can be seen fiom the three-dimensional plots in Figures 6-2 and 6-6, the radiation 

fields of the comgated plates do not change with "Y" except near the two ends of the plates. 

It can also be seen that the LASREA due to solar radiation is rnuch more uniform than that due 

to lamp radiation. This is because of the contribution of the direct paralle1 fiaction of the solar 

UV. Since photocatalytic reactions behave lower order (usually between 0.5 and 1) dependency 

on radiation intensity, a uniform LASREA means higher energy efficiency if the system is not 

lirnited by mass transfer. 

The results show in Figures 6-3,6-4,6-7, and 6-8 indicate severai things. For the same 

radiation intensity on the reactor cover, the average area-specific rate of photon absorption of 

the corrugated plates is dependent on the angles of these plates. The smaller the angle, the lower 

the average area-specific rate of photon absorption. By comparing the "Absorption /no 

Recapture" and the "LASREA" curves in these figures, we can easily see the significance of the 

absorption of the reflected photons. It not only enhanced photon absorption but also rendered 



Figure 6-2: Local Area-Specifc Rate of Energy Absorption on the 
Surface of a Corrugated Plate: Lamp-IlIuminated 
I= 122 Wm*2; a=7*; Coordinate system: see Figure 6-1 



- 

Incidence - a - Absorption /no Recapture - LASREA 

Figure 6-3: Radiation Field on the Surface of a Corrugated Plate: 
Lamp-Illuminated 
I= 122 Wm-2; a=SO; Coordinate system: see Figure 6-1 
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Figure 6-4: Radiation Field on the Surface of a Comgated Plate: 
Lamp-Illuminated 
I= 122 ~ r n - ' ;  a=20°; Coordinate system: see Figure 6-1 



Figure 6-5: Cornparison of the LASREA on the Surfaces of the 
Comgated Plates with Different Angles: Lamp- 
Illuminated 
I= 122 wrn-'; Coordinate system: see Figure 6-1 



Figure 6-6: Local Area-Specific Rate of Energy Absorption on the 
Surface of a Corrugated PIate: SoIar-IUuminated 
I= 30 ~ r n - ~ ;  a=7"; Coordinate system: see Figure 6-1 
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Figure 6-7: Radiation Field on the Surface of a Cormgated Plate: 
Solar-IlIuminated 
I= 30 Wm-'; a=SO; Coordinate system: see Figure 6-1 
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Figure 6-8: Radiation Field on the Surface of a Corrugated Plate: 
Solar- Numinated 
I= 30 Wrn-*; a=20°; Coordinate system: see Figure 6-1 



xW (dimensionless) 

Figure 6-9: Cornparison of the LASREA on the Surfaces of the Ti0,- 
Coated Cormgated Plates with Different Angles: Solar - 
Illumiinated 
I= 30 WmmZ; Coordinate system: see Figure 6-1 



Fluorescent Iamp 

O 30 60 90 120 150 180 

Angle of Cor~gated Plate 

Figure 6-10: Effect of Photon Recaphire on the Radiation Absorption 
Eniciency of the Ti0,-Coated Corrugated Plates 
Angle=2a 
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Figure 6-11: 
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Photons Absorbed by the Ti0,-Coated Cormgated Plates 
Angle-Sa 



Figure 6-12: Local Area-specific Rate of Energy Absorption on the 
Ti0,-Coated Flat Plate: Lamp-Illuminated 
I= 122 wrd; Coordinate system: see Figure 6-1 



the LASREA more uniform. This enhancement is a strong function of the angle of the 

comgated plates (Figures 6-3 vs. 6-4.6-7 vs. 6-8). A srnaIl angle could result in a high photon 

absorption eEciency (Le., absorbedincident energy) but also a less uniform LASREA (Figures 

6-5 and 6-9). 

Figures 6-10 and 6- 1 1 demonstrate the dependency of the photon absorption efficiency 

(Le., absorbedlincident energy) and the average wavelength of absorbed photons, on the angle 

of the comgated plates. As can be seen from Figure 6-10 that most of the radiative energy 

incident on the flat catalyst film (a=90°) wiIi be reflected out of the reactor and dissipated as 

waste. This dissipation is more severe when the reactor is illuminated with sunlight. The 

comgated plate cm result in over 100% enhancernent of the absorption efficiency of the solar 

UV. This enhancement is not as great in lamp-iuuminated systems due to the shortage of direct 

parallei rays and long wavelength photons from the f i  uorescent lamps. Based on these two 

plots, the radiation field is more sensitive to angle of the corrugated plate when it is smaller than 

30". 

Actinometry has been a popular method in determining the quantum yield in 

photoreactors. While these methods may work well for homogeneous systems, they may result 

in vague or even misleading results for heterogeneous systems. For example, if actinometry were 

used for the comgated pIate reactor, the resuIt wouId show that the same amount of radiative 

energy is absorbed by the system regatdless of the angle of the corrugated plates used. Neither 

the effect of multiple reflection nor the effect of the radiation field distribution can be 

determined. Dunng actinometry what is measured is actuaüy the fraction of the radiative energy 

that enters the reactor, not the fraction that is absorbed by the catalyst. For the system examined 

in this study, these methods would result in substantial (up to 150%) underestimation of the 

energy efficiency, depending on the radiation source and angle of the comgated plates. 

Therefore, actinometry may create misleading results and tend to hide the real bottleneck in 

heterogeneous photoreactor systems. 



6.4 Concluding Remarks 

The radiation fields on comgated and flat plates were modeled based on fmt  principles. 

A special procedure was developed to calculate the effect of multiple reflection on radiative 

energy absorption. This allowed for the calculation of the LASREA on the comgated plates. 

Correct calculation of the LASREA is a critical step in the analysis of heterogeneous 

photoreactors since homogeneous actinometry can result in incorrect results. 

Corrugation was proven to cause the capture of longer wavelength U V  radiation that 

would otherwise be reflected out of some classical photoreacton (Le., flat plate). This results 

in higher radiative energy absorption efficiency as well as more uniform LASREA on corrugated 

plate. 

The angle of the comgated plate has a profound effect on the LASREA. The smaller the 

angle, the higher the radiative energy absorption efficiency, but the less uniform the radiation 

distribution. The srnaiIer the angle, the lower the average area-specific rates of photon 

absorption. The radiation field is most sensitive to the angles srnaller than 30" (Le., ccc15"). 

Cornpared to the flat plate, the comgated plate was shown to enhance the catdyst energy 

absorption ericiency for more than 100% for solar UV and 50% for rays from W - A  fluorescent 

lamps. 

The difference of this enhancement is due to the different spectral distribution of these 

two types of radiation sources. Under otherwise the same conditions, the LASREAs on soIar- 

powered corrugated plates are more uniform than those powered by W - A  lamps due to the 

contribution of the direct parailel fraction of the solar UV. 



CHAPTER 7: MASS TRANSFER TO CORRUGATED AND FLAT PLATE 

SURFACES 

Just as in any other heterogeneous process, mass transfer is an inherent step in 

photocatalysis. Mass &ansfer limitations in immobilized systems have been experienced and 

discussed in several previous studies (Assink and Koster, 1995; Turchi and Ollis, 1988). 

Therefore, it is imperative to examine the role of mass transfer in developing, designing, and 

modeling immobilized photocatalytic reactors. There exist several correlations which are 

capable of predicting the mass transfer coefficients in tubular, rectangular, and other types of 

flow channels (McCabe, Smith, and Harriott, 1993; McIsaac, 1995). But such correlations tend 

to be unreliable when the velocity profile is not yet established or when the flow channel 

possesses a cross section with too great an aspect ratio (Le., the ratio of the largest and smallest 

dimension). Experiments were therefore performed in order to examine the mass transfer 

between the main Stream and the wall of the comgated plates. Due to the technical difficulty 

encountered, only average mass transfer rates were measured. Local mass transfer coefficients 

were estimated using a semiempirical model. 

The benzoic acid dissolution method was adopted for the m a s  transfer experiments. 

This method is convenient to use and can usually offer data of good quality due to the suitable 

physical properties of benzoic acid (Harriott and Hamilton, 1965). For example, the magnitude 

of the solubility of benzoic acid in water is such that it is usually possible to keep the acid 

concentration at the center of the flow channel far fiom saturation and to saturate the fluid 

adjacent to the solid surface. Its diffusivity in water is also desirable for being insensitive to 

concentration within the low concentration range that is frequently of interest (Noulty and 



Lealst, 1987). In addition, benzoic acid Iayers with the desired shape and roughness are easy to 

prepare due to the low melting point (122 OC) and the good mechanical properties of the solid 

benzoic acid layers. 

Pnor to the experiments, selected surfaces of the comgated and flat plates were coated 

with a thin acid layer solidified fiom the molten benzoic acid poured onto these surfaces. Dunng 

the experiments, tap water was pumped through the photoreactor at the desired flowrates. Water 

samples were taken from downstrearn of the reactor and analyzed for benzoic acid concentration. 

In order to minimize the experimentd error, sampling time was kept at approximately 30 

seconds and the sample was mixed completely before analysis was perforrned. Afier steady 

States were reached (acid concentration stops changing with time), the acid concentrations were 

recorded for use in calculating the average mass transfer coefficients of the acid-coated area 

under the corresponding flowrates or Reynolds numbers. 

Reagent grade benzoic acid from BDH Inc., Toronto and tap water was used. The 

benzoic acid concentration was determined by measuring the W absorbance of the sarnple at 

226 nm and comparing it with a caiibration curve. The caiibration cuve of the 

spectrophotometer was found to be: Cour = 10.9 3 A BS226,n . During mass transfer measurement 

runs, the water temperature was kept constant at 26.6 OC. The main Stream benzoic acid 

concentration at the exit from the reactor was assumed to be, Cou', the measured average 

concentration during data analyses. For each flow condition (Reynolds number), the mass 

transfer rates and coefficients were obtained based on the following relationship (McISAAC, 

1995): 

ln ' 

(C* -CU") 

The solubility of benzoic acid in water was obtained through interpolation using the data 



reported by Stevens and Mourad (1995). At 26.6 OC, its value was found to be 29.52 mm01 L-'. 

The diffusivities of benzoic acid and 4-CP were estimated to be 10-9 d s "  and 8.9 x10-'O m's-' 

respectively. based on an established method (Lyman, Reehl, and Rosenblatt, 1982; Hayduk and 

Laudie, 1974). The viscosity of the reaction medium and the diffusivity of dissolved oxygen 

were both obtained from Perry's Handbook (Perry, Green, and Maloney, 1984). At 26.6 O C ,  

their values were found to be 0.876 x 105 N - S - ~ - ~  and 2.61 xIO*~ m's-' respectively. 

7.2 Local Mass Transfer Rate Modei 

In ûrder to estimate the mass transfer coefficients at different locations on comgated 

plate surfaces, the following assumptions were made: 

(1). Mass transfer rate does not change dong direction of water flows (Y direction in Figure 

6-1). This assumption is strictiy speaking not tme due to the entrance effect However, 

since the change in X direct is substantially greater, it does give a good approximation 

of the real situation. 

(2) Local mass transfer rate at any point on comgated plates is inversety proportional to the 

distance from that point to the geometric center of the cross section of the comgated 

plate (Figure B- 1)- This assumption should be dose to reality when the flow is laminar 

and the boundary layer extends right to the center of the flow channel. Under turbulent 

flow conditions, the result may show noticeable deviation fkom the real situation. 

Based on these assumptions, a single relationship, showing the local mass transfer 

coefficients on comgated plates as a function of their structural parameters, was deterrnined. 

This is expressed in Equation (7-2) below. The denvation procedure is given in Appendix B in 

detail. 



Because of the entrance effect in this system, the mass transfer rate on the surface of the 

flat plate was expected to change dong the direction the fluid Bows. A linear relationship was 

adopted and its constants were deterrnined using the experimental data. Under the coordinate 

system in Figure 6-1, the result can be written as: 

B cos' ar B sin a c o s a  
)' ln 
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sin a(I + sin a) 
cos a(1 -cos a) 1 + s i n a  

The results of the mass transfer work are sumrnarized in Figures 7-1 through 7-6. 

Reynolds numbers in these figures were calculated based on the hydraulic radius (McCabe, 

Smith, and Harriott, 1993). Figures 7-1 through 7-3 show the Shenvood numbers calculated 

from the expenmental data for flat as well as comgated plates at different flow conditions. 

Results from two representative correlations were dso plotted for comparative purposes. 

Aithough these two correlations represent the situations under well-developed fl ow conditions, 

they can still serve as the benchmarks for discussions. As indicated in Figure 7-1, the 

experimental data are reasonably reproducible and the generai trend agrees with the correlations 

within the larninar flow region. Data with the flat plate (Figure 7-2) dernonstrate substantial 

deviation from both correlations. This is probably due to the entrance effect in this system. 

Under completely larninar flow conditions (Le., RedOO), the entrance effect does not exist and 

the data show Iittle deviation fiom the correlations. As the flowrate increases (i.e., 

500<ReQ100), a boundary layer starts to build up and the region affected extends toward down 

Stream of the plate. Under turbulent flow conditions (i.e., Re>2100), mass transfer was 
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Figure 7-1: Mass Transfer from a Corrugated Plate, Compared to 
Correlations from McISAAC (1995) and McCabe, Smith, 
and Harriott (1993), Showing Reproducibility 
Corrugated plate with a=5O 
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Figure 7-2: Mass Transfer from the Flat Plate, Compared to 
Correlations from McISAAC (1995) and McCabe, Smith, 
and Harriott (1993) 
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Figure 7-3: Mass Transfer from Cormgated Rates with Different 
Angles, Compared to Correlations from McISAAC (1995) 
and McCabe, Smith, and Harriott (1993) 
Cl az3.5"; a=SO; O a=7O; a=lOO; + a=20°; 
O only the bottom half of the a=lOO plate (Oard3/2 under the 

coordinate system in Figure 6-1) was coated with benzoic acid 
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Figure 7-4: Overall Benzoic Acid Transfer Rates 
0 Flat plate; fl a=3.S0; 0 a=SO; a=7"; + a=lOO 
o a=20°; Lines: fitted curves 
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Figure 7-5: Benzoic Acid Transfer Coeffkient and Fitted Cumes 
[7 Hat plate; a=3.S0; 0 a=SO; u=7"; + a=lOO 
O u=20°: Lines: ~redictions of Euuations 7-4 throu~h 7-9. 
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Figure 7-6: Model-Predicted Local Mass Transfer Coefficient 
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relatively insensitive to Ehe flowrate since the full length of the flat plate has become the 

entrance region and the flow is turbulent. The results shown in Figure 7-3 demonstrate a 

consistent decrease of the Shenvood number with the angle of the comgated plates. Therefore, 

it is necessary to be cautious when extending round pipe correlations to pipes with different 

cross sectional shapes through the use of a hydraulic radius. We also deduce fiom this figure 

that the local mass transfer coefficients on comgated plates change considerably with respect 

to "X" under the coordinate system shown in Figure 6-1. 

Figure 7-4 shows the overall mass transfer capability of the flat and comgated plates as 

a function of water flowrate through the reactor. It is indicated that the smdler the angle of the 

comgated plates, the greater the enhancement of mass transfer over that of the flat plate. With 

approximately the same energy consumption of the pump (i-e., pressure drop), the corrugated 

plate can be 600% more efficient in mass transfer compared to the flat plate. For the purpose 

of reactor modeling, the mass trmsfer coefficients data were fitted into polynomials. The 

results are plotted against the Reynolds numbers as Figure 7-5. These fitted polynomiais are 

also given in Equations (7-4) through (7-9). Figure 7-6 depicts the one-dimensional variation 

of the mass transfer coefficient on comgated plates based on Equation (7-2). 



The subscripts refer to either the angle (in degrees) of the comgated plates or flat plate. 

7.4 Concluding Remarks 

Mass transfer between the main Stream and the surfaces of the comgated as weU as flat 

plates was examined experimentally using the benzoic acid dissolution method. Experimental 

results were fitted into several relationships which can be used to calculate the average mass 

transfer coefficients of the tested plates under different fl ow conditions. A mass transfer model 

for these plates was developed based on serni-empirical assumptions. The rnass transfer fields 

over the surfaces of different comgated plates can be estimated using the model. 

Based on the results of the expenments, mass transfer coefficients were identified to be 

dependent on not only Reynolds number but also the angle of the comgated plates. This 

finding revealed the apparent limitation in using the hydraulic radius method for extending round 

pipe correlations to flow channels with triangular cross sectionai shapes. Measured mass 



transfer rates on corrugated plates were found to change considerably in "X" direction of t5e 

coordinate system in Figure 6- 1. 

The mass transfer rate on the surface of the flat plate was found to change dong the 

direction the fluid fiows due probably to the entrance effect. A linear relationship was 

expenmentdly detennined to account for this variation. 



CHAPTER 8: PHOTOREACTOR MODELING 

As can be seen from Section 2.3.5, very few heterogeneous photoreactor models have 

been presented previously. Of the few modeIs reported in the Iiterature, none was tested with 

experimental data. The objective of this work was to develop a simple mode1 wbich may not 

be theoretically impeccable but should be usable in solving some of the engineering problems 

in photocatalysis. This was accomplished by fitting a semi-empincal kuietic mode1 using data 

collected with the flat plate reactor, predicting the performance of CP reactors, and comparing 

the predictions with the experimental resuIts. Details are described in the following sections. 

8.1 Assumptions and Mode1 Development 

For the convenience of mode1 development, the following assurnptions were made: 

(1). There exist only two reactants in the system (Le., parent compound and oxygen) and 

intermediate compounds are kinetically negligible. Based on the results in Chapter 3, 

this assumption is approximately true for 4-CP. 

(2) The system could be rnathematically modelled as a completely mixed batch reactor and 

at any time reactant concentrations in the reservoir and the reactor are identicai. Since 

conversion per pass is sufficiently low (results in Chapter 3), this assumption is 

appropriate (Klausner et al., 1994). 

(3 )  Conversion of the parent compound was due entirely to photocatalytic reactions on the 

catalyst surface. This is supported by the results of photolysis and adsorption blank mm, 

discussed in Chapter 3. 

(4) Degradation kinetics follows the relationship: r,, = k,k,2C,(q Iqd" 

(1 + K,C,)( l+ k,OJ - 

(5) The reaction kinetics expression was proposed based on the following considerations. 
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Surface concentrations were used because the reactions proceed prirnarily on the catalyst 

surfaces instead of in the liquid bu&. The term, CJ(1+K,CJ, was introduced to 

qualitatively reflect "cornpetitive absorption" of the waterand aII the organic compounds 

on the catalyst surface. The exponent "n" was introduced to reflect the effect of photon 

absorption rates. The term, kJ(1 t kt 03, was introduced to reflect the effect of mass 

transfer and the other reactant, oxygen, on the degradation rate. 

(6)  The concentration of the model compound is a function of tirne only and does not change 

with position except in the boundary layer near catalyst surfaces. Because the Iocal area- 

specific rate of energy absorption (LASREA) and mass transfer rates are not uniform 

over the surface of the catalyst fdms, reactant concentrations on the catalyst surface will 

be dependent on both time and location. 

(7) Contribution of the "caps" of the corrugated plates is negligible. 

Based on the above assumptions and the principIes of mass balance, mass transfer, and 

reaction stoichiometry, a new serni-empirical kinetic mode1 was derived. The model is 

summarized in Equation (8-1). The denvation of this model is detaiied in Appendix C. 

where r,, = 
k , k o z C , ( q  1 q,)" 

= k , , ( C - C , )  ,and, 
(1 + K , C , ) ( l +  kOZO,) 

In order to determine the model parameters (Le., 16, K,, and n), a nonlinear regression 
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Figure 8-1: Reactor Performance Mode1 Fitting: Residuai vs. Run Time 
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Figure 8-2: Reactor Performance Mode1 Fitting: Residual vs. 
Concentration 
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Figure 8-3: Kinetic Data and Mode1 Fittings: Mass Transfer Effect 
Hat plate; Ç,=30 mgr1; k122 Wrnq2; O Re=43 1; 
Re=782; 0 Re=1633; Re=2550; O R-3411; o Re=5813 

Lines: reactor mode1 fittings 
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Figure 8-4: Kinetic Data and m0de1 Fittings for Several Radiation 
Levels 
Rat plate; q=30 mgL"; Re=4313; 0 I=122 Wm'2; 
143 Wm-'; 0 I=15 Wm-'; Lines: reactor mode1 fittings 



Figure 8-5: Model-Predicted Oxygen Profile on the Surface of the Hat 
Plate: Lamp-Illuminated 
C=30 mgL-'; Ob =7 mgL-'; Re=43 13; I=122 Wm2 
Coordinate system: see Figure 6-1 



was performed using the Simplex and Runge-Kutta methods (Rice and Do, 1995). Al1 kinetic 

data of 4-CP degradation in the flat plate reactor (as shown in Figures 3-8 and 3-9) were used 

in the regression, The results are presented in the next section. 

8.2 Mode1 Regression Results and Discussions 

The results of the nonlinear regression are surnmarïzed in Table 8-1 and Figures 8-1 

through 8-5. 

Table 8-1: Results of the Nonlinear Regression 

The residuals are plotted in Figures 8-1 and 8-2, against run time and 4-CP concentration 

respectively. No apparent patterns can be observed frorn these two figures. indicating no 

significant structural deficiencies in the models. Figures 8-3 and 8-4 show the kinetic data and 

model fittings for different illumination and water flow conditions. As can be seen fiom these 

two figures, the model accommodated the effects of both flow condition (Reynolds number) and 

radiation intensity consistently well. Reactant concentrations on the catalyst film surfaces were 

also calculated using the fitted model parameters. Figure 8-5 shows a typical initial oxygen 

concentration profde on the catalyst film in the flat plate reactor. The great clifferences between 

the central region and regions near the edges of the flat plate are resulted from the non- 

uniformity of the LASREA on the flat plate. 

Since the tramfer of reactants and photons (as functions of locations on catalyst films and 

flow conditions) were both incorporated in Equation (8-l), this model was able to fit the al1 the 

Mode1 Parameter 

k, 

KI 

n 

Fitted Value 

0.32 1 

R2 

0.573 

0.520 

0.994 
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Figure 8-6: Model-Predicted Kinetic Curves and Experimental Data: 
Effect of Plate Geometry 
q=30 mgL-'; I=122 Wm-2; Fiowrate=23 Lmid' 
Markers: experïrnental data; 0 a=3.S0; i a=5" 
O a=7"; a=lOO; + a=20°; O Hat plate 



Figure 8-7: Model-Predicted Kinetic Curves and Experimental Data: 
Effect of Mass Transfer 
G=30 mgL-' ; I=122 Wm"; Corrugated plate wiîh a=3S0 



O 2 4 6 8 10 

Run Time (Hour) 

Figure 8-8: Model-Predicted Kinetic Curves and Experimental Data: 
Effect of Mass Transfer 
G=30 mg$'; I=122 Wm-'; Corrugated plate with a=lOO 
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Figure 8-9: Model-Predicted Average Oxygen Concentrations on the 
Surfaces of the TiOpCoated Plates, Compared to 
Experimental Data 
C0=30 mgL-'; I=122 Wm-'; O Flat plate 
r a=3.5"; O a=S0; a=7"; + a=lOO; o a=20° 



Figure 8-10: ModeI-Assisted Reactor Analysis: 2D Oxygen Profùe on the 
Surface of a Lamp-Ihminated Cormgated Plate 
a=3.S0; C=30 mgL"; O,., =7 mgCl; Re=930; I=122 Wm-* 

Coordinate system: see Figure 6-1 
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Figure 8- 11 : Model-Assis ted Reactor Analysis: Oxygen Concentration 
Profiles on the Surfaces of the Lamp-nturninated Plates 
C=30 ma- ' ;  0, =7 mgL-'; Flowrate=23 Lmin-'; I =122 Wrn-2 
Coordinate system: see Figure 6-1 
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Figure 8-12: Modei-Assisted Reactor Analysis: Predicted 4-CP 
Degradation in Solar-Powered CP and Flat Plate Reactors 
C+30 mgL-'; SoIar W=30 Wm-'; Flowrate=23 Lmin" 
Note: reactors with a=3.S0 and 7' were predicted to have the 
same performance 



Figure 8-13: Model-Assisted Reactor Analysis: 2D 4-CP Profile on the 
Surface of a SoIar-Illuminated Large Hat Plate 
C= 1 mgL1; 0,=7 mgLe'; I=30 Wm-*; R d 3  13 
Coordinate system: see Figure 6-1 
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data with only three parameters. For the same set of data, the empirical L-H type mode1 

(Equation 3-1) has to be fitted nine times. More important, the new model could be used to 

predict 4-CP degradation in any other immobilized reactor when mass and photon transfer to the 

catalyst surfaces are known. As an example, the degradation of 4-CP in the CP reactor, powered 

by fluorescent lamps or solar U V ,  was simulated with the new model. The results are presented 

in Sections 8.3 and 8.4. 

8.3 Model Prediction Resdts and Discussions 

Based on the local photon absorption rates (Chapter 61, the local m a s  transfer rates 

(Chapter 7), and the fitted model pararneters (Table 8-l), the degradation of 4-CP in LCP 

reactors was estimated using the new reactor model (Equation 8-1). Selected prediction results 

are presented in Figures 8-6 through 8-14, together with expenrnental data where available. 

Since the mode1 predictions were not derived from any experimental data, the degree of 

agreement between the model prediction and the data is indicative of the capability of the model 

in reactor scde-up. 

Figures 8-6 through 8-1 1 show the performances of CP reactors powered with 

fluorescent lamps. As can be seen from Figure 8-6, the effect of the angle of corrugated plates 

was consistently reflected by the mode1 predictions. The deviation of the model predictions from 

the expenmental data appean to be dependent on the angle of the comgated plates (Figures 8-6 

to 8-8). For plates with small angles (Le., a=3S0, 5 O ,  or 7"), the agreement between the 

prediction and the data was relatively good and the deviations of the model prediction from the 

measured concentration data were less than 3.5% of the initial value (Figure 8-6). For plates 

with large angles (i.e., a=lOO and 20°), the model tends to underestirnate the parent compound 

concentration by as high as 10%. The pnmary reason for this underestirnation rnay well be the 

deviation of one mass transfer assumption (Assumption 2 in Section 7.2) fiom reality. For plates 



with larger angles, the expenmental Reynolds numbee were 1860 and 2900 respectively and 

turbdent flow condition must have occurred. Incorporation of the mass transfer coefficient into 

the model allowed the prediction of the effect of mass transfer on degradation rates (Figures 8-7 

and 8-8). 

The effect of water flowrate and the angle of the comgated plates on the overd mass 

transfer condition in the CP reactors (expressed as the average oxygen concentration on the 

surface of the catalyst films) is presented in Figure 8-9. As cm be seen fiom this figure, the 

model was successful in predicting the general trend of the data. As a matter of fact the same 

observation cm be obtained from the model prediction and the expenmental data, Le., the mass 

transfercondition was far more sensitive to the angle of comgated plates than to water ff owrates 

(Reynolds number). This is due to the fact that changing the angle of the corrugated plates 

affects both the mass transfer capability of the reactor (Figure 7-4) and the area-specific rate of 

photon absorption (Figures 6-2 through 6-7) whereas flowrate affects only mass transfer. 

For the convenience of discussion, we define the process as not limited by mass transfer 

when 0/0,r0.9, slightiy limited when 0.7~0/0,<0.9, moderately limited when 0.4~0JO~c0.7, 

severely limited when 0.2<0jObc0.4, and controlled by mass transfer when 0/Obc0.2. Based 

on this cnterion and the results in Figure 8-9, reactions on comgated plates with srnail angles 

(i.e., 01=3S0, SO, 7") were from Iight-y to moderately limited by the transfer of oxygen at the start 

of all the expenmental runs. Reactions on 20" and 40" comgated plates were severely limited 

by mass transfer and the flat plate reactor was actuaily mass transfer controlled. 

The model-predicted local mass transfer conditions (expressed as local oxygen 

concentrations on the surface of the catalyst film) are plotted in Figures 8-10 and 8-1 1. The 

three-dimensional plot shown in Figure 8-10 indicates that "0/ObW does not change signifïcantly 

dong the direction the water ffows in CP reactors. Therefore, sirnilar results for different 

comigated plates are plotted against the other dimension (Figure 8-11). The following 

observations c m  be reveaied from this figure: 



Mass transfer limitation exists in the flat pIate reactors as well as CP reactors. 

Since it is difficult to enhance mass transfer substantially (Le., tenfold 

enhancement) without sacrificing light distribution and absorption, m a s  transfer 

limitation is probably the bottleneck of aqueous phase photocatalysis in 

immobilized systerns. Fortunately, similar obstacles do not exist for air phase 

photocatalysis because substances diffuse millions of times faster in air than in 

water (Perry, Green, and Maloney, 1984). 

Comgated plates of srnail angles (Le., a=3S0) were capable of improving the 

overall mass transfer conditions (Figure 8-9). However, the smaller the angle of 

the corrugated plates, the less uniform the reactant concentrations on catalyst 

surfaces. Based on the mode1 prediction, moderate level mass transfer limitation 

was never eliminated through the use of corrugated plates (Figure 8-1 1). 

It is traditionally believed that a uniform LASREA distribution on the catalyst 

surfaces offers the highest energy efficiency in heterogeneous photocatdysis 

(Ray and Beenackers, 1998). While this is true for slurry systems in which there 

is no mass transfer limitation, it does not generally hold for immobilized systems 

due to the interference of mass transfer. Based on Equation (8-l), the distribution 

of mass transfer and radiative energy absorption must be complimentary to each 

other in an efficient system. This is easy to understand since mass transfer and 

photon absorption are consecutive steps in photocatalysis. An increase in the 

local photon absorption rate won't result in higher reaction rates udess the 

ceactants are transferred to the same site at an increased rate, 

Based on the solar UV defined in Section 6.1 and Appendix A, the performance of solar- 

powered CP reactors was estimated using Equation (8-1). Selected results are presented in 

Figures 8-12 through 8-14. As can be observed by comparing Figure 8-12 with Figure 8-6, the 



performances of CP reactors are similady sensitive to the angles of the corrugated plates, 

regardless of the illumination sources used (fluorescent Iarnps versus solar UV). The CP 

reactors (i-e., a=3S0 and 5") were predicted to be more than 100% more efficient than the flat 

plate reactor (Figure 8-12). The corresponding time required for 90% degradation was 

approximately 16 hours. 

The solar UV was approximately three times weaker than the d i c i a i  W examuied (30 

Wm*' vs. 122 Wm-') and the mass transfer limitation was therefore slight until 4-CP 

concentration becomes very low. The mass transfer conditions on the catdyst surfaces 

(expressed as the 4-CP concentration on surface of the catalyst film at a bulk concentration of 

1 mgL-') are plotted in Figures 8-13 and 8-14. The effect of the angles of the corrugated plates 

is again predicted to be significant, Under the specified 4-CP concentration, the degree of mass 

transfer limitation was from slight to moderate. Compared to the results in Figure 8-1 1, it is 

clear that the reactant concentrations on the surfaces of catalyst films are much more uniforrn 

when the plates are illuminated by solar UV. This is due to the relatively uniform local photon 

absorption rate under solar illumination (Figures 6-3 and 6-4). 

A semi-empirical model was developed to descnbe the heterogeneous photocatalytic 

reactions on immobilized catalyst films. With only three parameters (Le., 16, K,, and n) 

determined by fitting experimentd data, the mode1 could potentially be used in the development, 

design, and optimization of heterogeneous photoreactors. The new model is superior to the 

prevailing simple L-H model in terms of its prediction capability. 

As indicated by the results of the nonlinear regression, the model descnbed the 

degradation of 4-CP in the flat plate reactor very well. The model parameters obtained in the 

regression could be used to predict 4-CP degradation under other mass transfer and illumination 



conditions as !ong as the LASREA and mass transfer profde on the surfaces of the TiO, films 

are known. 

The new model (together with the fitted parameters), predicted the performance of the 

CP reactors reasonably well. As confirmed by the expenmentd data, the effect of water flowrate 

and the angle of the corrugated plates on the overdl reaction rate was clearly reflected by the 

model prediction. The agreement between the experimental data and the mode1 prediction was 

very encouraging. 

For the degradation of 4-CP, the optimal angle of the corrugated plate was predicted to 

be near 7" (Le., c(=3S0), regardless of the radiation sources used (Le., so1ar W or fluorescent 

lamps). 

Comgated plate reactors were predicted to suffer from mass transfer limitations of 

different degrees, depending on the water flow rate and the angle of the cornipated plate. The 

most effective way to alleviate this limitation is the use of corrugated plates of srnaIl angles. 

For systems illuminated by fluorescent lamps, it is essentially impossible to eliminate 

mass transfer limitation on comgated plates unless a weak illumination source is used. This 

happens because the smaller the angle of a comgated plate, the greater the difference of the 

degree of mass transfer limitation on the corrugated plate. The region near the top of the 

comgated plates suffers from more severe mass tramfer limitation. 

The degree of mass transfer limitation on a solar-illuminated comgated plate is 

relatively uniform, thanks to the direct-parallel fraction of the solar irradiation. The time 

required for 90% 4-CP reduction was predicted to be about 16 hours in a solar-powered CP 

reactor. Only slight mass transfer limitation was predicted to occur. 



CHAPTER 9: GENERAL CONCLUSIONS AND 

CONTRIBUTIONS TO ORIGINAL RESEARCH 

Based on the results presented in previous chapten, the following general conclusions 

can be drawn as they relate to the contributions to original research. More specific observations 

have been attached to the end of the corresponding chapters as Concluding Remarks. 

1. The newiy proposed photocatalytic reactor, the corrugated plate reactor, was found to 

be up to 150% faster and energy-efficient than the 8 at plate reactor for the degradation 

of 4-CP. Its EU0 was estimated to be 37 kWh m" and was close to that of the slurry 

system examined. The optimal angle of the corrugated plate was found to be near 7". 

These experimental results, together with the expected low capital, operating, and 

maintenance cost, and good scaie-up potential of the new reactor indicate the novelty of 

the design. The superior performance of the new reactor is due primarily to iü  large 

illuminated catalyst surface area and its great capability to detiver both photons and 

reactants to catalyst surfaces. 

2. Successful application of advanced mathematical methods and geometric optics, together 

with the development of the special procedure allowed for the calculation of the 

LASREA on comgated plates. Multiple reflection was found to result in higher photon 

absorption efficiency as well as more uniform LASREA, which was revealed to be 

dependent strongly on the dimensions of the catalyst support. The photon absorption 

enhancement was calculated to be up to 100% for sola. W and 50% for rays fiom UV-A 

fluorescent larnps. This work is novel since a similar approach was never reported 

previousty and simulation is the only way to obtain the LASREA on catalyst films. 

Widely used actinometry can provide neither the LASREA nor the overdl photon 

absorption rate in a heterogeneous photoreactor. 

3. Within the flowrate range examined, the corrugated plate reactor showed an 

enhancement of overall mass transfer rates of up to 40096 to 600% over that of the flat 



plate reactor. In addition, local mass and photon transfer rates on the comgated plates 

correlated positively and therefore are complementary to each other. This result is 

favourable since a higher local photon absorption rate requires a higher mass transfer 

rate to avoid mass transfer limitation. Uniform LASREA on the cataiyst film becomes 

optimal only if mass &ansfer limitations are eliminated. 

4. With only three parameters fitted with the kinetic data, the new reactor mode1 

incorporates reaction kinetics, mass transfer as well as photon transfer and possesses 

reactor scale-up capability. As indicated by the results of the nonlinear regression, chis 

model described the degradation of 4-CP in the flat pIate reactor very well. The new 

mode1 (together with the fitted parameters), predicted the performance of the comigated 

plate reactors reasonably well. As confirmed by the experimental data, the effect of 

water flowrate and the angle of the comgated plates on the overall reaction rate was 

clearly reflected by the model predictions. The agreement between the experimental data 

and the model predictions was very encouraging. 

5. Corrugated plate reactors were predicted to suffer fiom mass transfer limitations of 

different degrees, depending on the water flow rate and the angle of the comgated plate. 

The most effective way to alleviate this limitation is the use of cormgated plates of small 

angles. However, it is essentially impossible to elirninate m a s  transfer limitations on 

comgated plates unless a weak illumination source is used because the smaller tie angle 

of the corrugated plates, the less uniform the degree of mass transfer limitation on the 

comgated plates. The region near the top of the corrugated plates suffers fiom more 

severe mass transfer limitation. 

6. The degree of mass transfer limitation on a solar-illuminated comgated plate is 

relatively uniform, thanks to the direct-parallel fiaction of the solar irradiation. The time 

required for 90% 4-CP reduction was predicted to be about 16 hours in a solar-powered 

cormgated plate reactor. Only a slight mass transfer limitation was predicted to occur. 

7. Simple Langmuir-Hinshelwood kinetic mode1 fitted the photocatalytic 4-CP degradation 



data very well and was therefore used to extract reaction rate information from the 

kinetic data. However, this mode1 cannot be used for photoreactor scale-up due to the 

shortage of the terms representing the local mass and photon transfer rates on the 

surfaces of catalyst films. 

The TiO, films irnmobilized on the stainless steel plates were physically and chemically 

stable during the course of the experiments. It possesses a thickness of approximately 10 

microns. a porosity of approximately 8096, and a trace amount of iron on its surface. 

The degradation rate of 4-CP, 2,4-dichlorophenol, and 2,4,5-&ichlorophenol were found 

to be similar in terrns of phenol concentration or TOC, regardless of the degree of 

chlorination. This observation indicates the advantage in using photocatalysis to 

detoxify highly chlonnated phenols. 

Photocatalytic mineralization of the contaminants in the selected groundwater was slow 

even after carbonate and bicarbonate were removed. However, nitrification was 

enhanced sieg.ificantïy after only short penods of pretreatment in the photoreactor. The 

capital and operating cos& to illuminate the photoreactor was estimated to be $0.01 1 per 

litre of groundwater pretreated. This indicates the potential for using photocatalysis to 

remove inhibition from biological nitrification systerns. 

Quantum eficiency is not as suitable as the EU0 in evaluating the energy efficiencies 

of photoreactor systems as it does not incorporate the efficiency in converting electricity 

or sunlight to absorbed photons. However, it could be used to estimate how far the 

energy efficiency of any particular system is fiom its upper limit based on the reaction 

mechanism. 

Photocatalysis on irnmobilized TiO, f1ms can be limited by the transfer of either the 

oxidant (Le., oxygen), the substances being oxidized (i.e., 4-CP), andfor the reaction 

products between the reaction sites and the main flow Stream. 



RECOMiMENDATIONS FOR FUTURE WORK 

If future work is conducted in photocatalysis, the following are the possible directions 

in which the project may be extended: 

Photocatalytic air purification and disinfection. Based on the results of this snidy, mass 

transfer limitation is usually a real concern for water phase photocatalysis in 

irnmobilized systems. It is very challenging to eliminate this limitation without 

sacrificing in other respects (Le., pressure drop, photon transfer). Air phase 

photocatalysis is less Iikely to suffer fiom mass transfer problems due to the great 

diffusivity of most substances in the air. In addition, simultaneous detoxification and 

disinfection has market potential. 

Reactor systems suitable for treating color andor turbid streams. These streams are 

absorbing and therefore demand different systems for optimal treatment. The role of 

photolysis may be important for some streams. There is certainly a shortage of research 

in this respect. 

Combined photocatalytic and biological treatment. Based on the result of this study, 

work in this direction may be fniitful. However, the use of artificial wastewater is not 

recomrnended due to the difficulty in applying the results to the treatment of actual 

industrial wastewater. 

Solar-powered systems. Based on the cost estimation result of this study, the cost of 

purchasing, replacing, and operating the artificial Iamps was very high and will affect 

considerably the competitiveness of this technology. This observation agrees with those 

reported previously. 

Reactor modeling. As indicated in the literature review, there exists a shortage of work 

on the development of models which can be used in the development, design, and 

optirnization of heterogeneous photoreactors. 



6 Radiation modeling. There exists a shortage of radiation rnodels in which the effect of 

scattering and reflection are considered. Correct radiation models are the keys for the 

modeling and scale-up of heterogeneous photoreactors since the LASREA can only be 

obtained this way. Actinometry can only be used to measure the overall rate at which 

photons enter the reactor. This method cannot give the overall rate of photon absorption 

(by catalyst film), let alone the LASREA. 

7. New mass transfer model. The mass transfer mode1 developed in this work is semi- 

empirical in nature and tends to be less reIiabIe under turbulent flow conditions. A better 

mass transfer model may be obtained with the help of computational fluid dynamics. 
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APPENDIX A: RADIATION MODEL DEVELOPMENT 

A.1: Calculation of the Spectral Specific Irradiance 

Lamp Radiation: 

Figure A- 1 shows the manufacture's data on the relative spectral power of the fluorescent 

lamps used in this study. As shown in this figure, a normal distribution function (a=15.75 nm. 

ha.,= 353 nm) was found to fit these data quite well. The lamps were arranged such that the 

UV-A reading of the radiometer was constant (let it be "w") over the entire reactor cover. 

Therefore, the spectral irradiance at any point of the reactor cover can be expressed as: 

Based on radiation energy balance over a unit hemisphere and Assumption (1) in Section 

6.1, the spectral specific irradiance at any point of the reactor cover can be expressed as: 

Solar Radiation: 

Based on Assumption (2) in Section 6.1, the spectral specific irradiance due to the direct 

parailel fraction of the solar UV was derived through energy balance. The result can be 

expressed as: 



280 3 10 340 370 400 

Wavelength (nm) 

Figure A-1: Spectral Irradiance of Fluorescent Lamps 
and the Solar W 
**Philip Lighting Co., 1998 



The spectral specific irradiance of the d i f i se  solar UV was also denved using the same 

method. The result is presented in Equation (A-4). The units in Equations (A-3) and (A4)  are 

both W/m2/Sr. 

A.2: Spectral Extinction Coefficient of the UV Transmitting Plexiglas 

The CIV transmission property of the Plexiglas used as the reactor cover was provided 

by the supplier. This information was given as the fraction of transmission through a quarter inch 

plate at dif3erent wavelengths. However, it was not clear what type of radiation pattern (i.e., 

direct parallel, diffuse, or sphe~cai)  the information was based on. Irradiance of the fluorescent 

lamps at 365 nrn before and after penetrating the reactor cover was therefore measured with the 

radiometer. The expenmentd data approximately agreed with the supplier's specification. 

Therefore, diffuse radiation pattern should be an appropriate assumption to use in cdculating 

the extinction coefficients of plastic material at different wavelengths. 

After penetrating the Plexiglas plate, the spectral specific irradiame becomes: 

Integrating Equation (A-5) over aLl solid angles, we have: 



The known spectral transmission information, fn, (fiom the plastic supplier for 

6=0.25*2.54 cm), c m  therefore be used to calculate the spectral extinction coefficient, k,, 

through Equation (A-7) below: 

Extinction coefficient as a function of wavelength was obtained by solving Equation (A- 

7) with Maple V. The results are presented in Figure A-2. 

A.3: Radiation Fields Under Lamp Radiation 

Cormgated Plate: 

Equations (A-8) through (A-16) are obtained based on the principles of analytical 

geometry. Under the coordinate system shown in Figure 6- 1, the upper wing of the comgated 

plate (uw) can be expressed as: 

x-ztancc=O (A-8) 

where O .s x s B and -U2 s y s U2 

the lower wing (Iw) can be expressed as: 

x t z t a n a = O  

where O s x s B a n d  - U 2 r y s U 2  

and the reactor cover (cv) can be expressed as: 

x=B 

where - y 2  s y s W2 and -B tana s z SB tana 

(A- 10) 



Wavelength (nm) 

Figure A-2: Absorption Coefficient of the TiO, Film (Crittenden et al., 
1995) and Extinction Coefficient of the UVT Acrylic 



For points P1(x', y', z') on uw, P"(xt', y", z") on Zw, and P(x, y, z) on cv, the square of the 

distance from P to Pf can be expressed as: 

dl' = (~~cota-B)'+(~'-y)%(z~ -z)' (A-1 1) 

and the square of the distance from P" to Pf can be expressed as: 

d 2 1  ( c~ta)~(z'+z") '+(~'-~ ")'+(zl-z' '1' (A- 12) 

The cosine of the angle between cv vector and Iine PP' can be expressed as: 

COSJT~ = (B-zfcota)/dl (A- 13) 

and the cosine of the angle between uw vector and line PP' can be written as: 

cos pl = sina (B-z cotcr)/d, (A- 14) 

The cosine of the angle between lw vector and Iine P"Pf can be expressed as: 

= 22' cosci/d2 (A- 15) 

and the cosine of the angle between uw vector and line P"P1 c m  be written as: 

cosJT5 = 22'' cosa/dz (A- 16) 

Based on the pnnciples of geometric optics. the spectral radiative energy incident on 

point P'(x',y',zt), due to the radiation from the reactor cover, can be written as: 

(A- 17) 

Within the wavelength range in question, the extinction coefficient of the reaction 

medium, k,, is zero for the artificiai wastewater used in this study. 

If the photons reflected from the lower wing could be ignored, the relationship between 

the incident energy and the absorbed one at wavelength h could then be expressed by Equaîion 

(A-18). 



(A- 18) 

Actually, as a results of the absorption of the photons reaected from the Iower wing, 

neither Equation (A-17) nor Equation (A-18) give the LASREA on the upper wing. In order to 

calculate the LASREA, a special procedure has been developed and presented in next section. 

Flat Plate: 

The radiation field on the flat plate was modeled similarly. The spectral radiative energy 

incident on any point on the flat plate (xf,yf,z') was derived to be: 

(A- 19) 

Where is the distance between the reference point on the flat plate (xl,y',z') and the 

reactor cover (x,y,z) and can be found based on the equaiion below: 

d' = ~ ' / 4  + (yf-y)' + (zl-z)' (A-20) 

Since no photon will be reflected back to the flat plate, the LASREA can be 

conveniently calculated using: 

A.4: Radiation Field Under Solar Radiation 

Contributions from the diffuse part of the solar W cm be modeled using the equations 

in Section A.3, except that w:, from Equation (A-4) should be used in stead of w,, from 

Equation (A-2). Based on geometric optics, the spectral radiative energy incident on point 



P'(x',y', 2'). due to the direct parallel part of the solar W fiom the reactor cover, has been 

derived to be: 

This equation holds for both comgated and flat (a=x/2) plates. 

AS: Procedure for the CaIculation of the LASREA 

Step (1): Imagine at time "t" photons have just contacted on the two wings of the 

cormgated plate Çrom the reactor cover and no reflection occumed yet. The 

spectral radiative energy incident on any location of the upper wing [Le., 

Cr IL-,, (y'.zr)] can be calculated from Equations (A-S), (A-1 1), (A-13), (A-14), 

Since the radiation field of the upper and lower wings of the comgated plate are 

symrnetric to plane: z=O, 

(0 (01 
( Y ' ~ Z ' ~  = ( y ' 9 - 2 ' )  (A-25) 

Step (2): Imagine at time "t+AtW photons on the two wings of the cormgated plate just 

finished their f i s t  reflection (to conjugated wing and to reactor cover). The 

spectral radiative energy incident on any location of the upper wing due to this 



reflection can be caicuiated based on: 

(0) ( i - a ( A ) )  l,-uk- ( y ? - 2 )  cos cos -k,d= 

7t LW e dydz (A-26) 

The fraction that can be absorbed is: 

( 1 )  qA-uw ( Y '  Y 2 ' )  = Q (A) [;Yu,,, ( y ' y  2 ' )  (A-27) 

Since the radiation field of the upper and lower wings of the comgated plate are 

symmetric to plane: z=0, 

Step (3): Imagine at time "t+2Atm photons on the two wings of the corrugated plate just 

finished their second reflection (to conjugated wing and to reactor cover). The 

spectral radiative energy incident on any location of the upper wing due to this 

refiection can be calculated based on: 

The absorbed part can be cdculated using: 

4 F u w ( ~ ' . 2 ' )  = a ( & ~ ~ - ~ w ( y t , ~ ' )  (A-30) 

Since the radiation field of the upper and lower wings of the comgated plate are 

symmeîric to plane: z=O, 



Step (n+l): Imagine at time "t+nAtW photons on the two wings of the conugated platejust 

finished their "n" th reflection (to conjugated wing and to reactor cover). The 

spectral radiative energy incident on any location of the upper wing due to this 

reflection can be calculated based on: 

Since the radiation field of the upper and lower wings of the corrugated plate are 

symmetric to plane: z=0, 

After sufficient times of reflections, the calculation stopped based on the criterion: 

The LASREA was calculated with: 



APPENDIX B: MODEL FOR LOCAL MASS TRANSFER RATE 

ON CORRUGATED PLATES 

Under the coordinate system shown in Figure B-1, consider the projection of the 

comgated plate on plane: y=O. Point P on the projection of L W  can be expressed as P{x, 

xtana) .  The geornetric center of the triangle formed by L/W. LW, and CV, A, can be located with 

A { B [l -tanatan(x/4-a/2)], O } or { B/( hsinar), O).  The distance fkom the geometric center to any 

point on UW is then: 

B i T &- B B s inacoscc  
)' + x -  t a n - a  =- 

N s i n a  ~ o s a  ~ + s i n J  + ( I f s i n a  (B-1) 

According to the assumptions in Section 7.2, there exist: 

The integration constant, Const, can be determined fiom Equation (B-2) to be: 

Substituting Equation (B-3) into Equation (B-2), we have: 

Const = 
B 

B c o s ' a  B s i n a c o s a  sin a(I + sin a) 
)' In 

c o s a ( 1 -  c o s a )  

C O S C C ~  In 

This is identical with Equation (7-2). 

sin a ( l  + sin a) 
cosa (1-  c o s a )  



P=45O-a/2; P(x, x [ana); A[B(1 -tana tan B), O ]  

Figure B-1: Coordinate System Used in 
Mass Trader Mode1 Development 



APPENDIX C: NEW KINETIC MODEL DEVELOP-MENT 

Based on Assumption 3 in Chapter 8, parent compound consumption rate can be 

calculated with Equation (C-1) beIow. The integration is over the whole catalyst surface. 

Since al1 reactants are transferred from the liquid b u k  to catalyst surfaces, Equations (C- 

2) and (C-3) are applicable. 

5,  = k,, (C  - Cs) K-2) 

According to Assumption 1 in Chapter 8, the reaction stoichiornetry can be written as 

Equation (C-4), frorn which the ratio of 4-chlorophenol and oxygen consumption rates c m  be 

deterrnined to be 257/416 (by mass). 

2 C,H,CIOH + 12 0- = 12 CO, + 4 H,O + 2 HCI (c-4) 

Based on the film theory in mass transfer (McCabe, Smith, and Harriott, 1993), the 

effect of difisivity can be expressed by Equation (C-5). 

Applying Assumption (4) into Equation (C-2), there exist: 



Oxygen concentration on the catalyst surfaces can be solved from Equations (C-2) 

through (C-5) to be: 

Due to Assumption 2 and Equation (C-1), parent compound concentration in the 

reservoir at any run time can be derived to be: 

Since bulk oxygen concentration (OJ, local mass transfer coefficients (k,, and k& 

LASREA (q), diffusivities of the reactants (D,, and DO& and total water volume (V) are dl 

known, Equations (C-6), (C-7), (C-2), and (C-8) f o m  a complete model. 

The denvatives of the local reaction rate with respect to the mode1 parameters were 

obtained based on Assumption (4). They are: 
.. 

(C- 10) 

(C- 1 1) 



APBENDIX D: CALIBRATION CURVES 
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Figure D-1: HPLC Calibration Curve: 4-CP Concentration 
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Figure D-2: A Typical Calibration C u ~ e  for TOC Measurement 
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Figure D-3: Spectrophotometer Calibration Curve: 
4-CP Concentration 
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Figure D-4: Spectrophotometer Calibration Curve: 
Benzoic Acid Concentration 
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Figure D-5: Ion Chromatography Calibration Curve: 
ChIoride Ion 




