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ABSTRACT 

As pointed out more and more frequently in the literature, there is a pressing need for 

research into the health and environmental impact of nanoparticles. This work represents a joint 

effort between scientists in nanotechnology, chemistry and biology to answer this call and to 

investigate the environmental effects of carbon nantoubes (CNTs) from a brand new aspect.  

The results showed clearly the dose-dependent effects of single-walled carbon nanotubes 

(SWNTs) on the ingestion and digestion of bacteria by Tetrahymena thermophila, a ciliated protozoan, 

propagated to its prey bacteria, Escherichia coli. Investigated by confocal microscopy Tetrahymena were 

able to internalize large quantities of SWNTs and then excrete SWNTs and undigested bacteria in 

aggregates. Inhibition of ciliate bacterivory measured by Ciliate Bacterivory assay was evident at far 

below lethal concentrations. At high tube concentrations (above 6.8 µg·ml-1), cell viability was 

affected.  In addition, explored by fluorescence microscopy and scanning electron microscopy, 

SWNTs stimulated Tetrahymena to abnormally egest viable bacteria inside membrane protected 

structures, which enhanced bacterial survival during antimicrobial treatments, bacteriostatic or 

bacteriocidal. This phenomenon may have important implications to public health. In general, 

research on toxicity of nanoparticles is in a very early stage with most studies on direct fatality (kill 

or not to kill) of a single organism or certain type of cells. This work is believed to be among the 

first few investigating extrapolated effects. Hopefully, this wok will stimulate a line of research 

towards better understanding of the effects of nanomaterials on diverse organisms, and stimulate 

not only toxicology but also ecotoxicology studies.  
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CHAPTER 1: INTRODUCTION 

1.1 Discovery of Carbon Nanotubes & Nanotechnology 

The serendipitous discovery of Single Walled Carbon Nanotubes is one of the landmarks in the 

history of nanotechnology. Whether the history of its discovery goes back to 1958 as Hillert and 

Lange stated that “Filamentary growth of graphite has recently been discovered again” or to Baker’s 

group note of “Interest in catalytic decomposition of hydrocarbons on metallic surfaces… has 

recently become more active” in 1973 or even 1991 Iijima’s paper in Nature, from a scientific point 

of view all teams are acknowledged the credit for the discovery of SWNTs that revolutionized a 

wide range of industries.1  

The historical perspective of nanotechnology, similar to SWNTs, is indefinite and in fact 

“the rudiments of the science of nanotechnology evolved from research in a variety of endeavors”2; 

however, the famous speech by the renowned physicist and later Noble Prize Winner in Physics, 

Richard Feynman is considered to be the foundation of nanotechnology. The term 

“nanotechnology” was first introduced by Taniguchi in 1974 and later on popularized by Drexler’s 

famous book entitled “Engines of Creation” in 1986. Less than fifty years ago, Feynman articulated 

the concept of nanotechnology in his lecture “There’s plenty of room at the bottom”2. Today 

nanotechnology is a rapidly expanding field defined as the science and technology that deals with 

nanoparticles, substances with one or more external dimensions, or an internal structure, on the 

nanoscale3.  As nanoparticles may exert toxic effects, nanotoxicology emerged as one category of 

nanotechnology that is defined by its focus on gaps in knowledge and possible undesirable effects of 

nanoparticles4,5. 
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1.2 Physical Characteristics, Properties, Appearance and Synthesis of Carbon Nanotubes 

Among the category of insoluble nanoparticles, carbon nanotubes are one of the most 

widely studied and used. Two nanostructures, shown in Figure 1, single-walled and multi-walled 

carbon nanotubes (SWNTs and MWNTs) are two forms of CNTs. CNTs are well ordered, high 

aspect ratio allotropes of carbon with ultra-light weight that possess high tensile strength as well. 

They have excellent chemical and thermal stability and superior electronic properties.6 SWNTs have 

diameters on the order of 1 nm, about half the diameter of the average DNA helix and lengths in the 

range of 20-100 nm; while MWNTs depending on the number of walls in their structure have 

diameters that range from several nanometers to tens of nanometers and lengths from 1 to several 

um7. CNTs are fabricated using electric arc discharge (EAD), laser ablation (LA), chemical vapor 

deposition (CVD), or combustion processes8.  

 

 

 

Figure 1 Diagram representation of single walled carbon nanotubes (a) multi walled carbon 

nanotubes (b)9. 

Pristine CNT (as prepared, non-functionalized) are inherently hydrophobic. Therefore the 

main obstacle in the utilization of CNT in biology and medicinal chemistry is their lack of solubility 

in most solvents compatible with biological milieu. To overcome this problem, surface modification 

of CNTs (functionalization) can be achieved by covalent and noncovalent sidewall functionalization 

with surfactants and polymers (Fig. 2).  In addition, endohedral functionalization (Fig. 2d) is possible 

and may be used for capsulation of functional molecules or synthesis of hybrid structures (e.g. 

a b 
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magnetic CNT). Through different modifications, the water solubility of CNT is improved, their 

biocompatibility profile completely transformed, propensity to cross cell membranes increased and 

possibilities offered for introducing biologically active moieties. Moreover, the bundling/aggregation 

of individual tubes through van der Waals and hydrophobic forces is also reduced by the 

functionalization of their surface. 

 

 

 

 

 

 

 

 

Figure 2 Functionalization possibilities for SWNTs: covalent sidewall functionalization (a) 

noncovalent exohedral functionalization with surfactants (b) noncovalent exohedral 

functionalization with polymers (c) endohedral functionalization with, for example, C60(d). (Modified 

from: Hersam, 20089) 

 

1.3 Potential Wide Applications of Carbon Nanotubes  

“As of April 2008, it is estimated that there are currently greater than 610 available consumer 

products utilizing nanomaterials”10. The superior combination of properties of carbon nanotubes 

have made them particularly promising nanomaterials for industrial use and, therefore one can easily 

imagine that they become a more frequent component of consumer products and their production 

will continue to increase in the future. “Carbon nanotubes are often considered to epitomize the 

b c 

a 

d 
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field of nanotechnology”11. The size, geometry, and surface characteristics of these structures make 

them appealing for diverse applications in biomedicine, electronics and environmental protection. In 

medical field, SWNTs have been proposed as chemical sensors for gaseous molecules, vectors for 

drug delivery, and photothermal therapy for cancer12.   

Approximately sixty five tons of CNTs and fibers were produced in 2004, and mass 

production is predicted to grow annually over the next few years by well over 60%.13 By 2010, easy 

access to CNTs will allow extensive usage of them in a wide variety of applications and the global 

market for CNTs is projected to reach multi-billion dollars by 201411. Meanwhile, widespread 

concerns have been raised about the hazards that nanoparticles can have on human and 

environmental health.   

1.4 Environmental Health Issues of Carbon Nanotubes 

With the larger scale production of CNTs in the future, it is inevitable that its products and 

by-products will release in different environmental media14, including waterways and aquatic systems 

despite any safeguards. Consequently, as accidental spillages or permitted release of industrial 

effluents increase, direct as well as indirect exposure to nanoscale products and wastes of humans 

will also increase. Direct exposure could arise from skin contact, inhalation of aerosols and direct 

ingestion of contaminated drinking water or particles adsorbed on vegetables or other foodstuffs. 

On the other hand, indirect exposure may result from ingestion of aquatic organisms, such as fish, as 

part of the human diet15.  

1.5 Nanotoxicology of Carbon Nanotubes 

CNT, in the context of nanotoxicology, can be continued together with nanofibers due to 

the fact they share characteristics within both categories; therefore unexpected toxicological effects 
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upon contact with biological system may be induced6. In particular, CNT resemble carcinogenic 

asbestos fibers in size, shape and cellular persistance16. In fact CNTs introduced into the abdominal 

cavity of mice have shown asbestos-like pathogenicity11. CNTs that are long, thin (few nanometers 

in diameter) and insoluble contribute to fibre toxicity in lungs.17Also Environmental toxicologists are 

challenged by the fact that living organisms were not encountered by such materials during the 

course of biological evolution.. Consequently, it is expected to be “a little or no selection pressure 

for defensive or protective systems to counter any adverse properties that such particles may present 

beyond those already naturally occurring”15 ones.  Additionally, CNTs like many nanoparticles have 

natural propensity to bind transition metals and organic chemical pollutants that could enhance the 

toxicity of either. Furthermore, CNTs ability to penetrate the cellular membrane provides potential 

routes for the delivery of other toxic pollutants when they are conjugated to CNTs to sites where 

they would normally unable to go15.  

Generally, the harmful effects of CNT arise from the combination of various factors, three 

of which are particularly important6: 

1. structural characteristics including the high surface area and dimension 

2. biopersistence and the retention time  

3. the intrinsic history (the toxicity of the chemical component of CNT) 

As the degree of sidewall functionalization increases, the nanotube sample becomes less 

toxic18. Further, sidewall functionalized nanotube samples are substantially less toxic than surfactant 

stabilized nanotube. However, the intrinsic toxicity of CNT does not only depend on the degree of 

surface functionalization and the different toxicity of functional groups.18 Impurities in pristine 

CNTs such as amorphous carbon and metallic nanoparticles (catalysts: Co, Fe, Ni and Mo) can also 

be the source of severe toxic effects.  
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1.6 Current Status of Toxicity of Carbon Nanotubes 

Currently, the main route of exposure of the general public to nanoparticles is by air 

pollution; since from a terrestrial organisms’ toxicology standpoint or specifically human toxicology, 

significant exposures result from direct exposure via dermal or inhalational exposure. But this is not 

the only route. CNTs can be introduced by other means such as oral and parental methods that are 

most likely be from the use of nanotechnology in a medical setting. For  aquatic animals there may 

be other routes of entry such as direct passage across gill and other external surface epithelia. 

Aquatic organisms are particularly susceptible to pollutants due to their large, fragile respiratory 

epithelium10. The fate and transport of CNTs in various environmental media including air, water, 

and soil are largely lacking from literature. A review by Heland et al19 in 2007 suggests, there were as 

few as 50 studies focusing on the impact of CNT on human health and environment, with the 

majority of them from in vitro studies on mammalian cell lines. Even fewer  studies could be found 

on ecotoxicology where the effects of CNTs on only a small range of aquatic organisms have been 

reported. Mammalian studies have raised concerns about the toxicity of CNTs, but there is very 

limited data on ecotoxicity to aquatic life. Our knowledge of the harmful effects of nanoparticles is 

very limited and is almost non-existent in aquatic animals.  

Despite the increasing effort made to identify the cytotoxicity of CNTs, the toxicological 

evidence for CNTs is sparse, fragmentary, mammalian based and sometimes contradictory. Uptake 

of carbon nanomaterials including SWNTs by aquatic organisms following exposure in the water has 

been documented. The study by Zhu et al20, shows that the viability of Stylonychia mytilus exposed to 

MWNTs is concentration dependent. Concentration higher than 1.0 µg.ml-1 induced a dose-

independent growth inhibition to the cells, whereas, concentration lower than 1 µg.mL-1 stimulated 

the cell growth. Another study by the same group shows MWNTs can be either toxic or nontoxic, 

depending on the medium used to cultivate Tetrahymena pyriformis. MWNTs stimulated growth of the 
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cells cultured in proteose peptone yeast extract (PPYE), but inhibited growth in FPW (stand for?).21 

Another study on MWNTs by Asharani et al22, shows concentration-dependent toxicity of MWNTs 

on Zebrafish embryos. . At concentration above 60 µg mL-1, such as significant phenotypic defects 

slimy mucus like coating was observed around the zebrafish embryo. At high concentrations, 

MWNTs was found to cause the apoptosis, delayed hatching and formation of abnormal spinal 

chords. Recently, a study by Blaise et al23, shows the SWNTs are capable of eliciting toxicity to one 

or more of the aquatic taxonomic groups at concentrations lower than 5 mg L-1. Furthermore, Smith 

et al24 concluded aqueous SWNTs are a respiratory toxicant in trout. SWNT exposure was found to 

cause a dose dependent rise in ventilation rate, gill pathologies and mucus secretion with SWNT 

precipitation on the gill mucus; however, no major haematological disturbances were observed. 

SWNT interaction with E. coli studied by Raja et al25 should significant morphological changes of E. 

coli, including elongation was observed. Interaction of SWNTs with E. coli was also investigated by 

Elimelech et al26, and their group also observed strong antimicrobial activity by SWNTs. Cell 

membrane damage as a result of direct contact with SWNT aggregates was considered to be the 

most likely underlying mechanism.  

1.7 Research Objectives 

These results regarding the toxicology of SWNTs suggest that both water soluble and 

insoluble SWNTs could be consumed and transferred by organisms at different levels in the aquatic 

food chain. Carbon nanotubes are probably the least biodegradable class of nanomaterials, 

suggesting serious issues with its long-term accumulation and interaction with diverse organisms in 

the environment. Therefore, the potential for their exposure and health effects needs to be 

considered. This makes it imperative that we have effective risk assessment procedures in place as 

soon as possible to deal with potential hazards.  
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The ciliated protozoan Tetrahymena thermophila has been widely studied by ecotoxicologists 

because it has long been used as a model of eukaryotic cell in basic research as well as in 

toxicological and health risk assessments27. The genome of T. Thermophila has recently been 

sequenced, which enhances the value of the ciliate as a research organism28. Furthermore, 

Tetrahymena is representative of an ecologically important group, the grazing protists. Bacterivory by 

grazing protists, which is the phagocytosis and digestion of bacteria, is a major mechanism in 

regulating the microbial population composition in both natural and artificial aqueous environments. 

In particular, it is an important organism in wastewater treatment and an indicator of sewage effluent 

quality.  Tetrahymena are ciliated protozoa that ingest bacteria by phagocytosis and sequester them 

within food vacuoles or phagosomes, which eventually fuse with the cytoproct before being released 

from the protozoa. The entire process, commonly termed bacterivory, occurs over a period of 1-2 h 

at 30ºC. Phagotropic protists contribute to aquatic ecology at several levels29, 30. They transfer energy 

from the base of food webs to higher tropic levels by grazing on microbes and then by themselves 

being eaten by multicellular organisms. Additionally, grazing can change the phylogenetic 

composition of bacterial assemblages. Although the importance of grazing protists to the 

environment and public health is well known, few reports can be found on exposure of such 

organisms to carbon nanotubes, partly because it has been thought that CNTs do not dissolve in 

water. However, this belief has been challenged by a recent report showing stable CNT suspension 

in natural surface water over a long period of time.  

This study is the first detailed investigation of the ecotoxicity of SWNTs on two common 

organisms on adjacent trophic levels of the freshwater food chain. In detail the impact of SWNTs 

was studied on bacterivory by Tetrahymena thermophila and through T. thermophila -Eschericia coli 

interaction, its effect on bacterial survival. Tetrahymena was exposed to a wide range of single-walled 

carbon nanotube concentrations (0-17.2 µg ml-1) to fully demonstrate the different modes of impact, 
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from behavior change to cell death. The results extend the current knowledge on CNTs and 

microorganisms, and help define critical paramteres such as predicted no effect concentrations 

(PNEC) for environmental risk assessment models.  
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CHAPTER 2: RESEARCH METHODOLOGY AND APPROACH 

2.1 SWNT Preparation & Characterization  

 The SWNTs were produced by acid oxidation, which is a widely used method to render 

purified, shortened and water-soluble CNTs31, and characterized using several techniques. Atomic 

force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize 

nanotube morphology, and their chemical purity was determined by elemental analysis using energy-

dispersive analytical X-ray (EDAX). In brief, SWNTs (raw HipCo tube, Carbon Nanotechnologies) 

were refluxed in 6M HNO3 for a 20-h period. The resulting mixture was then filtered through a 

polycarbonate filter with a pore size of 100 nm, rinsed thoroughly, and resuspended in deionized 

water with cup-horn sonication for 1h. Centrifugation (22,000 g, 5h) removed larger unreacted 

impurities from the solution to afford a stable suspension of acid oxidized nanotubes. For AFM 

imaging, SWNTs were deposited onto a 3-aminopropyltriethoxysilane (APTES) treated silicon 

substrate. For incubation of T. thermophila  and E. coli,  stock solution of SWNTs was serially diluted 

in Osterhout`s minimal salts medium (5.2 g NaCl, 0.997 g MgCl2
.6 H2O, 0.2 g MgSO3, 0.115 g KCl, 

0.066 g CaCl2
.H2O, in 100 ml of distilled water) or PPYE medium. UV-visible-NIR spectroscopy 

(Cary) was used to characterize SWNT concentration, based on Beer’s law, absorbance at 808 nm 

and molar extinction coefficient 7.9 x 106 M-1 cm-1. 32.  

2.2 Microorganisms 

2.2.1. T. thermophila Culture  

The ciliated T. thermophila were cultured axenically at room temperature in 10 ml of PPYE 

medium. To prepare the cultures for assays in brief, from the stock culture, 1 ml was aseptically 

transferred into 50 ml sterile PPYE in untreated 75 cm
2 

tissue-culture flasks (Falcon, VWR) and 

grown for 36 h at room temperature on an orbital shaker at 50 rpm. The culture was then 
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centrifuged (450 g, 5 min) and washed three times, and resuspended in 50 ml Osterhout’s solution. 

Cells were counted using a Coulter Z2 particle counter and adjusted to a cell density of 10
6 

cells ml-1 

(±10%) using Osterhout’s solution.  

2.2.2. Bacterial Strains 

The green fluorescent protein (GFP) expressing E. coli we used in this study is E. coli XL-1, 

previously transformed with the recombinant plasmid containing the expression pET vector 

(Stratagene, La Jolla, CA) into which has been ligated a red shifted gfp construct with an excitation 

maximum at 490 nm and was observed to produce a stronger fluorescence than that of wild-type 

(provided by Ian Macarra, Center for Cell Signaling, University of Virginia). The E. coli XL-1 (pET-

gfp) was maintained on Tryptone Soy agar (TSA) (Difco, Toronto, ON) plates supplemented with 

100 µg ml-1 ampicillin grown overnight at 37ºC and then stored at 4ºC. In order to obtain fresh 

cultures for the ciliate bacterivory (CB) assay, single, isolated colonies from previous plates were 

picked and then re-streaked onto new TSA plates which contained ampicillin to create lawns of 

bacteria expressing gfp. The plates were incubated as previously mentioned. The fully saturated 

cultures were harvested off of the TSA plates and resuspended to the desired concentration in 

Osterhout’s solution. The cells were then collected by centrifugation (3000 x g, 10 min), and washed 

three times with Osterhout’s solution. The washed cells could be maintained at 4ºC for 1 week with 

no loss in fluorescence or viability. 

The non-gfp expressing E. coli used in this study is E. coli B63 (ATCC 11202E). Similar to 

fluorescing E.coli, this strain was also maintained on TSA plates but without ampicillin. To obtain 

fresh cultures, colonies were picked from streaked TSA plates, which had been incubated at 37ºC for 

24 h, and 20 ml of tryptone soy broth (TSB) (Difco) were inoculated with several colonies from the 

plates and incubated with several colonies from the plates and incubated at 37ºC at 200 rpm for 18 
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to 24 h. The cultures were harvested by centrifugation (3000 g, 10 min), washed and resuspended to 

the desired concentration in Osterhout’s solution.  

2.3 Microscopy  

 The interactions of SWNTs and Tetrahymena were monitored with a video camera in a phase 

contrast microscope and by confocal microscopy (Zeiss LSM510). For the latter, cells were seeded 

into eight-well chambered cover slides. Immediately before imaging, 0.01% neutral formalin buffer 

was added as a fixative. For all SWNT concentrations, cell densities were kept the same, that is, 5 x 

105 cells ml-1 for T. thermophila and 5 x 108 c.f.u. ml-1 for E. coli. Tetrahymena nuclei were stained red 

using DRAQ5 (Biostatus Ltd.) The yellow appearance of E. coli-gfp is due to overlapping of green 

(gfp) and red (stained by DRAQ5).  

To investigate the surface structures of T. thermophila and E. coli with SWNTs incubation, 

SEM was carried out using LEO FESEM 1530 field emission scanning electron microscope. After 

incubation of E. coli and Tetrahymena independently with 12.41 µg ml-1 SWNT for 6 hours, the 

samples were fixed for one hour in 2.5% glutaraldehyde in Osterhout’s solution, gradually medium 

exchanged into acetone, dehydrated through critical point drying and finally coated with 30 nm gold. 

There are SWNTs attached to the outer surface of both E. coli and Tetrahymena, which is expected 

because the samples were not washed prior to fixation.  

2.4 Bioassays 

2.4.1. Ciliate Bacterivory Assay & Colony Forming Assay  

A schematic of the ciliate bacterivory assay is presented in Figure 12. The assay was carried 

out in 96-well plates, usually with 3 or 6 wells per treatment. Each well contained ciliates (shown in 

three of the wells in the schematic; 5 × 105 cells ml-1) and E. coli (5 × 105 c.f.u. ml-1) expressing gfp. 

For a typical assay without treatment (control), the bacteria (green rods) are nearly all outside the 
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ciliates shortly after initiation of the assay (1), reduced in number and mostly inside ciliate food 

vacuoles after 1 h (2), and largely destroyed by 4 h (3). The assays were begun by either the exposure 

of Tetrahymena to SWNTs concurrently (protocol 1) or 4 hours incubation prior (protocol 2) adding  E. 

coli-gfp, and was monitored with a fluorescence plate reader (Victor V, Perk and Elmer) that 

repeatedly measured over time the relative fluorescence units (RFUs) per well as described 

previously33. The results were expressed as a percentage of the starting RFUs. Two types of 

experiments were carried out with only SWNTs and E. coli-gfp together. First, the effect of different 

SWNT concentrations on the fluorescence of E. coli-gfp alone (6 wells for each concentration) was 

monitored over time and expressed as a percentage of starting RFU values. The starting RFUs were 

196,908 ± 706 (control), 152,822 ± 8,660 (0.9 mg ml-1), 133,084 ± 11,756 (1.8 mg ml-1), 130,763 ± 

441 (3.6 mg ml-1), 87,660 ± 2,578 (7.3 mg ml-1) and 54,309 ± 4,997 (14.6 mg ml-1). Second, the effect 

of SWNTs on colony formation was examined. Several dilutions of the samples were prepared by 

the addition of sterile Osterhout’s and, subsequently, dilutions were plated on TSA ampicillin plates 

and incubated at 37ºC overnight. Colonies were counted and expressed as colony forming units 

c.f.u. ml-1.  

2.4.2 Bacterial viability and proliferation Assays 

The growth of pET-gfp was assessed in two different ways. One was to directly observe the 

fluorescence from GFP. After pET-gfp were inoculated onto a TSA plate, fluorescence images 

(Olympus BX41) of the plate were taken (at the same location) after incubation at 37ºC for 0, 12, 

and 24 hours. For a more quantitative assessment of bacterial growth rate, as described before, pET-

gfp were cultured in TSB in 96-well plates with 3-6 replicates, of which relative fluorescence level 

was measured using a plate reader every 2 hours over a period of 26 hours at 37ºC.  
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 The Live/Dead BacLight kit (Invitrogen) was used to evaluate bacterial survival after anti-

microbial treatments. The kit includes two nucleic acid staining dyes, green-fluorescent SYTO 9 

(Abs/Em 490/500 nm) and red-fluorescent propidium iodide (PI) (Abs/Em 490/635 nm). Staining 

condition was optimized to 1:2 ratio of SYTO 9 and PI in 3:1000 dilution. STYO 9 labels live 

bacteria with intact membrane, while PI penetrates only bacteria with damaged membranes, causing 

a reduction in SYTO 9 fluorescence when both dyes are present. To avoid overlapping in 

fluorescence with GFP (Abs/Em 480/530 nm), the non-gfp expressing E. coli strain was used. In 

the presence of antibiotics or disinfectant, SYTO 9/PI mixture was introduced right after 

administration of those compounds into bacteria cultures and green fluorescence level (i.e. live 

bacteria population) was monitored by fluorescence microscopy and the fluorescence plate reader 

over the period of 24 hours. The intensities of green/red fluorescence are well correlated to 

live/dead bacteria populations.  

2.4.3. Alamar Blue (AB) & 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA) 

Assays 

 Similar to CB assay, AB and CFDA assays were carried out in a filter bottom 96-well plates, 

usually with 3 wells per treatment. Each well contained ciliates (5 × 105 cells ml-1) and for treatment 

study were exposed to SWNTs for 4 hours. After the 4-h exposure of T. thermophila to SWNTs had 

been terminated by vacuum suction, the cells were resuspended in working solution of the 

fluorescent indicator dyes, which was prepared. The cells were incubated at room temperature for 60 

min in the solution of AB and CFDA. Afterward the fluorescence as fluorescent units (FUs) was 

quantified with the microplate reader at the excitation and emission wavelengths of 530 and 596 nm. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Characterization of Single Walled Carbon Nanotubes 

The oxidization approach was to render SWNTs water soluble by standard refluxing in nitric 

acid and sonication, which is known to produce oxidized tubes with oxygen-containing groups (e.g. 

–COOH) along the sidewalls and at the ends (Fig. 3a)31. These functional groups impart 

hydrophilicity to the nanotubes and make them stable in water without apparent aggregation.  

Furthermore, oxidized SWNTs were used so that the impact of the nanotubes could be studied 

without interference from surfactants; especially certain surfactants are known to contribute to 

cytotoxicity34. SWNTs were characterized structurally by AFM in a simple solution (Osterhout’s) and 

in a complex ciliate growth medium, PPYE. Solubilized SWNTs were mostly individual or in small 

bundles (Fig. 3b) with length predominantly <500 nm (based on manual count on AFM software) 

and diameters ranging from 2 to 10 nm (based on AFM software cross-section examination) (Fig. 

3e) in Osterhout’s, but appeared as micrometer-size complexes in PPYE (Fig. 3c). SEM of SWNT 

aggregates after 24 h with in Osterhout’s revealed amorphous tangles (Fig. 3d). Iron contamination 

was successfully removed by our nanotube preparation procedure (Fig. 3f). UV-visible-NIR 

spectroscopy was used to characterize SWNT concentration (Fig. 3g).  
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Figure 3 Characterization of SWNTs. 

images showing the morphology of SWNTs in Osterhaut’s solution (

(c). Scale bars, 500 nm. d, SEM image of SWNT aggregates collected from a 

Scale bar, 200 nm. e, Distribution of nanotube length obtained from 

nanotubes. Oxidized SWNTs presented to 

the presence of iron (inset). The two spectra are normalized against the carbon peak intensity. 

UV-vis spectrum of solutions of individual SWNTs functionalized via oxidation.  
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Characterization of SWNTs. a, schematic representation of oxidized SWNT.  , 

images showing the morphology of SWNTs in Osterhaut’s solution (b) and PPYE growth medium 
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, Distribution of nanotube length obtained from a. f, EDAX spectrum of 
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3.2 Effect of Single Walled Carbon Nanotubes on Tetrahymena Thermophila Viability 

Tetrahymena cultures in Osterhout’s (control) and with SWNTs (11.9 µg.ml-1) were monitored by 

phase contrast video microscopy over 3 days. Still images (Fig. 5) and movies were taken at various 

time points. Control cultures remained healthy for 72 h, as judged by the continued motility of the 

ciliate and no apparent change in their morphology (Fig. 4a). In contrast, the response of Tetrahymena 

to SWNTs exposure was complex. Concentration-dependent effects of SWNTs on cell mobility and 

viability were evident. SWNTs elicited four interrelated responses: diminished mobility, cell 

aggregation, matrix accumulation and cell death. These occurred sequentially in three distinct stages: 

(1) initial aggregation and loss of mobility (0–3 h), (2) recovery of mobility by some cells and their 

movement out of aggregates (3–12 h) and (3) increased visibility of the matrix associated with the 

persisting aggregates and appearance of dead cells (12–72 h). 

In the first phase, upon addition of SWNTs (11.9 µg.ml-1), almost immediately all cells bunched 

together in groups of approximately 5 to 50 cells with slight or no mobility (Fig. 4b). The size of 

Tetrahymena aggregates persistently grew larger and reached its maximum after about 1 hour (Fig. 4c). 

A few single cells were also present and all cells showed little or no mobility during roughly the first 

3 hours. It was suspected that aggregated Tetrahymena were unable to ingest either bacteria or 

SWNTs, which well explained the impeded bacterivory as shown in results from CB assay (protocol 1).  

After 3 hours, in the second stage, a stage of recovery was observed. Some cells began to break 

free from the aggregates, and the number of motile single cells increased gradually over time. The 

observed recovery of ciliates is mainly responsible for the less profound impact found in CB assay 

(protocol 2). At this stage, freed Tetrahymena would be able to internalize SWNTs and/or bacteria as 

supported by confocal images. Examination after 24 hours found that a small portion of the ciliates 

regained mobility and appeared healthy. Cellular division could be spotted occasionally.  
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In the third stage, the aggregates persisted and a large number of cells remained trapped in a 

matrix along with small portion of the ciliates that remained motile and appeared healthy. Over time, 

the matrix grew darker and became progressively more obvious as being responsible for holding 

cells together (Fig. 4d). The dark matrix could arise from the release of DNA and proteins from 

dead cells or from exudates from living cells including SWNT aggregates. The two possibilities 

cannot yet be distinguished but the latter is favored, because the matrix was formed while majority 

of cells were obviously viable (as shown in the movies). Continued monitoring showed obvious cell 

death in the matrix after 24 hours, and the ciliates regained mobility and assumed bacterivory earlier 

(during the 3 to 24 hours time frame) lost viability later. Very few live cells could be found in the 

culture after 3 days.  

In contrast, in cultures with SWNTs concentrations < 6.8 µg.ml-1 no loss of cell viability was 

observed after 3 days, even though initial aggregation was observed. Because the responses at low 

concentrations and the early responses at all concentrations do not appear to be from SWNTs 

quickly killing the cells, releasing DNA and proteins that immobilize and aggregate the ciliates, the 

prior favored assumption is valid. In general, aggregate size, loss of mobility and cell death increased 

with increasing SWNTs concentrations. This trend is evident in the videos taken from cultures with 

1.6 µg.ml-1 (the lowest concentration with visible initial aggregation) and 11.9 µg.ml-1 SWNTs.  
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Figure 4 Phase contrast micrographs of T. thermophila after addition of SWNTs. a – d, Still images of 

control cultures (a) and 0.5 h (b), 1 h (c), 24 h (d) after addition of 11.9 µg.ml-1 SWNTs. Dueto the 

high mobility of the control cells, image a was taken at a lower magnification. Scale bar for a, 100 

um; scale bars for b – d, 50 µm.  
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When SWNT-treated cultures were examined more closely by confocal microscopy at cellular 

level, five interactions between SWNTs and Tetrahymena were seen. First, a faint matrix was seen to 

surround some individual cells shortly after SWNT exposure (Fig. 5a, white arrows). These resemble 

the capsules shed upon exposure of Tetrahymena to Alcian blue35. With Alcian blue, the capsular 

material originates from the discharge of mucocysts located just beneath the cell surface, and cells 

slow and aggregate, but eventually swim away from capsules.4, 36 Therefore, the induction of capsule 

formation could be responsible for the decreased motility and early aggregation of Tetrahymena with 

SWNTs. Thesimilarity of the phenomena induced by SWNT and Alcian blue will require further 

investigation, but structurally the inducers are very different. For long-term exposures at high 

SWNT concentrations, continued stimulation of mucocyst discharge might have led to excessive 

loss of membrane and cell death.  

Second, Tetrahymena internalized the SWNTs. A comparison of Tetrahymena cultures (no SWNTs) 

and exposed to SWNTs clearly demonstrated the internalization of SWNTs by the ciliate and the 

accumulation of SWNTs inside. When Tetrahymena were examined ½ hour after being fed E. coli-gfp, 

but no SWNTs, as the bacteria were fluorescent green, ingested E. coli-gfp were visible within the 

cytoplasm as large fluorescent (green or yellow) spheres, which are interpreted to be clumps of 

bacteria within phagosomes or food vacuoles (Fig. 5a inset, 5b). Control ciliates were able to intake 

large quantities of E. coli-gfp within ½ hour and effectively digest and destroy the fluorescent bacteria 

within 4 hours (Fig.5d).  After incubation of Tetrahymena with SWNTs solution for roughly 2 h, dark 

structures appeared within ciliates that were interpreted to be internalized SWNTs (Fig. 5a). The 

internalized SWNTs appeared as dark aggregates of a similar size and shape as the fluorescent 

bacteria clumps, which is an indication like bacteria; SWNTs were engulfed or phagocytized into 

food vacuoles. This observation was supported by comparison of Tetrahymena being fed E. coli-gfp, 
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but no SWNTs and Tetrahymena in SWNTs solution (Fig. 5a inset, 5a). Exposure of Tetrahymena to E. 

coli-gfp and SWNTs led to vacuoles that contained both SWNTs and the bacteria (Fig. 5b). 

Third, Tetrahymena egested SWNT. Under continuous microscopic observation, some ciliates 

(after a few hours in SWNTs solution) excreted SWNT globules through their posterior ends while 

swimming around with no obvious signs of toxicity. After 4 hours, the control ciliates were able to 

effectively digest and destroy the large quantities of fluorescent bacteria that were taken in (Fig. 5d). 

In contrast, SWNTs-treated Tetrahymena excreted SWNT aggregates, along with fluorescent spheres, 

which were observed externally (Fig. 5e). The latter are interpreted to be patches of partially digested 

or undigested E. coli-gfp.  SWNTs egestion was observed with (Fig. 5e) or without (Fig. 5a) the 

presence of E. coli, suggesting that this behavior is triggered solely by SWNTs. Others have 

previously observed the food vacuole contents of Tetrahymena being egested from the cytoproct in 

defecation balls37,38,39. For example, India ink was egested as carbon-containing faecal pellets without 

membranes36. The possible egestion of SWNT aggregates raises the further possibility that these 

aggregates might be ingested again.  

Fourth, SWNTs caused a dark matrix to build up in cultures treated for 24 h or more with 

nanotubes (Figs 4d, 5f). An SEM image of a sample taken from the dark matrix shows heavily 

coated SWNT amorphous tangles (Fig. d). Multiple processes likely contributed to this. Two of 

these are the apparent induction by SWNTs of capsule secretion, and the egestion of SWNT 

aggregates (Fig. 5e). Capsular material might provide mats to which the egested SWNT aggregates 

stick, as well as SWNTs that had not been internalized. Also, over the long term some ciliates appear 

to die and lyse, and the lysate could be added to the matrix or provide an additional matrix 

framework.  
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Finally, two observations suggest that SWNTs could be inhibiting bacterivory. In particular, 

when E. coli-gfp was presented together with high SWNT concentrations (>7.3 µg.ml-1), fewer 

ciliates were seen to have incorporated E. coli-gfp (Fig. 5), suggesting that phagocytosis was 

impaired. Also, at a concentration of 11.9 µg ml-1, more round fluorescent aggregates were seen 

outside the ciliates than in control cultures (Fig. 5e, 5f). These might be egested digestion remnants 

or undigested viable bacteria, which would suggest that SWNTs interfered with the digestion 

process. The egested SWNTs and bacteria appeared to be contained inside vesicle structures 

surrounded by a membrane. Tetrahymena have been shown to release viable bacteria within vesicles.40 

Alternatively, the fluorescent aggregates might have been individual bacteria that aggregated as a 

result of matrix build-up.  
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Figure 5 Confocal and white light images of T. thermophila. a, ingestion of SWNTs (black  granules) 

stimulated the release of mucus-like substance (white arrow). Internalized SWNTs are then egested 

as aggregates. Inset shows ingestion of E. coli-gfp alone (green-yellow). b, Control cells ½ hour after 

co-culture showing E. coli-gfp in food vacuoles and DRAQ5 stained nuclei (red). c, Ingestion of 

SWNTs and E. coli-gfp inside the same (red arrow) or different food vacuoles. d, Control cells 

remain healthy and could still proliferate by going under cellular division shown in inset. e,f, T. 

thermophila egesting SWNT aggregates and remnant or viable E. coli-gfp after 4 h (e) and 24 h (f). 

Scale bar for a, 20 µm; scale bar for b-f, 5 µm.  
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Figure 6 Confocal fluorescence images of Tetrahymena ½ hour after feeding E. coli-gfp. This set of 

images demonstrates that fewer ciliates were seen to incorporate E. coli-gfp when E. coli-gfp were 

presented together with high concentrations of SWNT (11.9 µg.ml-1). The images were taken with 

the same Tetrahymena and E. coli-gfp cell densities. There are much less fluorescent food vacuoles 

shown inside Tetrahymena with SWNT (a) compared to the control (b). a, Also shows abundant E. 

coli-gfp in culture (green fluorescent specks). The control ciliates were also stained by DRAQ5 (red). 

 

3.3 Effect of Single-Walled Carbon Nanotubes on Escherichia Coli Viability 

 To investigate further the egested vesicles, CellMask Deep Red fluorescent dye was used to 

stain the vesicles. In control cultures, vesicles stained by the red fluorescent dye, were seen almost 

exclusively inside the ciliates (Fig. 7a). They were approximately the same size as the vesicles that 

stained green as a result of the engulfment of E. coli-gfp (Fig. 7a), hence interpreted to be food 

vacuoles. A few small red speckles were seen outside the ciliates and are believed to be bits of 

membrane debris. On the other hand, cultures that had been pre-incubated with SWNT prior to 

being fed E. coli-gfp, many vesicles were seen outside the ciliates (Fig. 7b). These vesicles were also 
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visualized with red fluorescent dye and had a similar feature to food vacuoles normally inside 

Tetrahymena with a 2.8 – 4.8 µm diameter range. Many of the vesicles were with black granules of 

SWNT and some also had fluorescent green regions, which are attributed to E. coli-gfp. A three 

dimensional image of a single red fluorescent vesicle reconstructed from a Z-stack of high-

resolution confocal images (the middle slice is shown in (Fig. 7c) shows a well-defined membrane 

(red) enclosed structure with green fluorescent E. coli-gfp inside. Surface examination of vesicles by 

scanning electron microscopy confirmed the continuous membrane enclosure (E. coli inside are not 

visible) with no SWNT or bacteria attached to the outer surface (Fig. 7d). Periodic microscopic 

inspection shows the ciliates do not appear to lyse and remain intact and during the course of 

experiment. Therefore, these results suggest that SWNT cause the ciliates to abnormally egest food 

vacuole-sized vesicles that can contain live E. coli-gfp.   

          

Figure 7 Confocal and SEM images of SWNT stimulated egestion of membrane enclosed vesicle 

structures. a, Control cells. b, SWNT-treated cultures show vesicles (red & green) inside and outside 

Tetrahymena. c, A single vesicle reveals two intact pET-gfp (green) enclosed by a membrane (red). d, 

Surface of a vesicle. Scale bars for a-b, 25 µm; c, 5 µm and d, 200 nm.  
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Viability and proliferation capability of E. coli-gfp egested in vesicles from SWNT-fed were 

further confirmed by monitoring the change in fluorescence of isolated vesicles with two different 

fluorescence based studies. Vesicles isolated from SWNT-fed ciliate cultures were seeded on a TSA 

plate and incubated at 37 ºC were examined with a fluorescence microscope at times 0 h , 12 h and 

24 h. At 0 h, which corresponds to immediate seeding, the E. coli-gfp were seen as clusters within 

well defined spherical boundaries (Fig. 8a). After 12 h some bacteria appeared outside these 

spherical boundaries or vesicles (Fig. 8b). This observation is attributed to excessive bacterial 

proliferation within vesicles that might have caused some vesicles to break and release individual or 

small groups of bacteria. After additional 12 h, the E. coli-gfp appeared as a galaxy of fluorescent 

particles (Fig. 8c), because those bacteria that were free from the vesicles were able to spread and 

grow over the agar surface.  

This sequence is supported by the findings of the second fluorescence study. Once again vesicles 

isolated from SWNT-fed ciliate cultures were incubated in wells of 96-well plates in TSB at 37 ºC 

were examined with a fluorescence plate reader. Vesicle free E. coli-gfp were also incubated in other 

wells as control for sake of comparison. When RFUs, which are linearly correlated with the number 

of E. coli-gfp10, were recorded over a 26 h period and expressed as a percentage of the starting RFUs, 

the egested and the control bacteria showed different patterns and magnitude of change (Fig. 8d).  

In the control case, RFUs remained constant for a period (0-6 h lag phase) followed by a phase (6-26 

h) in which RFUs increased in approximately a linear manner. By contrast, for vesicle bound 

bacteria, RFUs remained constant for a longer period (0-10 h) before increasing linearly, but only to 

about half that observed from control. The delay in the lag phase is due to the confinement of 

bacteria in vesicles, which might have restricted the growth of bacteria. The second delay is when 

the bacteria break free of vesicles and grow faster but not as fast as the control bacteria, which could 
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be from not all the bacteria breaking free of vesicles and possibly some bacteria dying as a result of 

having been partially digested by the ciliates. 

 

Figure 8 pET-gfp inside egested vesicles are viable and able to proliferate. a-c, Fluorescence images 

of vesicles right after seeded on agar plate (a) 12 h after (b) 24 h after (c). Scale bars for a-c, 20 µm. 

d, Proliferation assay on free (control) and vesicle-enclosed pET-gfp.  

 Confinement of bacteria in vesicles creates a potential survival advantage over those bacteria 

that remain free in an aquatic environment. The possible protection of bacteria egested in vesicles 

from SWNT-fed ciliates against killing by antibiotics and disinfectants was assessed with the 

LIVE/DEAD Baclight bacterial viability kit. The kit consisted of two stains, SYTO 9 (green) and 

Propidium Iodide (PI, red). In order to avoid overlapping of fluorescence of E. coli-gfp with the 

green stain of the kit, a non-gfp expressing E. coli strain (B63) was tested using the same protocols. 

Chloramphenicol is an antibiotic that kills bacteria indirectly by inhibiting peptide bond formation in 

0%

100%

200%

300%

400%

500%

600%

700%

0 4 8 12 16 20 24 28

time (hour)

re
la

ti
v
e
 f

lu
o

re
s
c

e
n

c
e

control

vesicles

d 

 a  b  c 



28 

 

ribosome. Prior to 50 µg.ml-1 chloramphenicol treatment, the majority of free E. coli and E. coli 

contained in vesicles were stained green by SYTO 9 (Fig. 9a, c) and lacked red fluorescence from PI 

(Fig. 9e, g), indicating that they were alive with intact cell membranes. After 12 h exposure to the 

antibiotic, chloramphenicol, most free E. coli stained strongly red due to PI (Fig. 9f), which indicates 

the cells were dead. In contrast, E. coli in egested vesicles were green and thus alive (Fig. 9f). 

Similarly, free E. coli and egested E. coli showed different response when they were exposed to 

disinfectant; egested E. coli survived 0.25% glutaraldehyde better than free E. coli. Despite 

differences in mechanisms of killing, the vesicles offered protection for at least 12 h against both 

compounds.  

 

Figure 9 Images of E. coli cultures before and after antibiotic treatment show enhanced survival of 

E. coli (non-gfp) in vesicles egested by SWNT-treated Tetrahymena. a-d, Images showing live cells 

stained by green fluorescent SYTO 9. e-h, Images of dead cells stained by red fluorescent PI. Scale 

bars a-h, 10 µm.  

The duration of protection was evaluated by following over 24 h changes in SYTO 9 staining 

with a fluorescence plate reader as RFUs (Fig. 10). RFUs of control bacteria declined steadily after 
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adding chloramphenicol and rapidly after glutaraldehyde treatment, whereas, for egested bacteria, a 

rapid but small drop in RFUs was seen in the first few hours, for approximately next 8 hours a 

relatively constant plateau period and ultimately slow decline with chloramphenicol and rapid one 

with glutaraldhyde. The initial drop is attributed to the killing of a small number of free bacteria 

presented among the egested vesicles and the remaining constant RFUs suggest the bacteria within 

vesicles are being protected. Furthermore, microscopic examination during the plateau period 

revealed many intact vesicles but upon longer treatment these were disrupted, indicating that 

integrity of vesicle membrane is necessary to the protection of bacteria against antimicrobial 

treatments. This interpretation is further supported by the work of Brand et al, who found that 

Salmonella enteria released from Tetrahymena inside vesicles were protected against low concentrations 

of calcium hypochlorite, a common disinfectant.  

 

Figure 10 Enhanced survival of egest vesicle-enclosed E. coli against antibiotic and disinfectant. 

Fluorescent assay detects the gradual disappearance of green fluorescence (STYO 9), which is 

proportional to live bacteria population after chloraphenicol (a) and glutaraldehyde (b) treatment 

over a period of 24 hours. The dashed lines indicate 50% fatality.  
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3.4 Effect of Single-Walled Carbon Nanotubes on Tetrahymena Thermophila Bacterivory 

Fluorescence based ciliate bacterivory (CB) assay was used to further investigate the impact of 

SWNT on CB, which is the ability to ingest and digest bacteria, even before affecting ciliate viability. 

It is known that Tetrahymena ingest bacteria by phagocytosis and sequester within food vacuoles or 

phagosomes32, 36. Eventually, the phagosomes fuse with the cytoproct at the posterior end of the 

ciliate, releasing their residual contents.  The entire process occurs over a period of 1-2 hours at 

30°C41. The CB assay, which is newly established by Bols group, were able to monitor this dynamic 

process in real-time. The assay was done using multi-well plates and the fluorescence level of each 

well, containing a co-culture of Tetrahymena and E. coli-gfp, was measured in relative fluorescent unit 

(RFU) by scanning the plates with a multi-titre plate fluorimeter (Fig. 11a). Since the fluorescence of 

E. coli-gfp engulfed into food vacuoles of Tetrahymena would be destroyed by subsequent acidification 

and activation of digestion, the capacity of Tetrahymena to reduce fluorescence over time is a direct 

measure of phagocytosis or bacterivory by the ciliate. This correlation is illustrated in figure 11a & 

11b with three corresponding points labeled at 0, 1, and 4 hours. The cell densities of Tetrahymena 

(5×105 cells ml-1) and E. coli-gfp (5×108 cfu ml-1) were optimized and maintained the same in all CB 

assays. All assays were done in Osterhout’s solution with E. coli-gfp as the sole food source for the 

ciliate.  

The fluorescence level from control (no SWNT) wells with healthy Tetrahymena declined rapidly 

over 2 h due to the engulfment and digestion of bacteria by Tetrahymena (Fig. 11b). When different 

concentrations of SWNTs were added concurrently with E. coli-gfp into the Tetrahymena culture 

(procedure 1), bacterivory was impeded in a dose-dependent manner (Fig. 11b). We observed a clear 

transition from nearly no effect at low SWNT concentrations (0.9 and 1.8 µg.ml-1), to obvious 

slowing down (3.6 µg.ml-1), and to complete impairment at high SWNT concentrations (7.2 and 14.6 
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µg.ml-1). To make sure this result is the true representation of SWNT’s impact on bacterivory, 

control experiments were carried out to rule out 1) the possible effect of SWNTs on bacterial 

viability and 2) the possible interference of SWNTs on fluorescence. With E. coli-gfp and SWNTs 

only (without Tetrahymena), the fluorescence level or bacterial count from each well, with or without 

SWNTs, remained roughly the same over the monitored period of 8 hours (Fig. 11c). E. coli-gfp 

collected after 4 and 24 hours of treatment in a SWNT solution (7.8 µg.ml-1 in Osterhout’s) showed 

normal growth in our colony forming assay (Fig. 11d). This result was expected since at the cellular 

level, unlike Tetrahymena that have highly developed processes for the cellular internalization of 

particles (endocytosis and phagocytosis), E. coli do not have mechanisms for the bulk transport of 

suspended particles across their cell walls. Therefore, in general, prokaryotes in comparison to 

eukaryotes will be largely protected against the uptake of many types of nanomaterials.  Although 

nanotubes did not appear to have any inhibitory effect on the E.coli growth, but in presence of 

nanotubes they showed change in morphology that included elongation (Fig. 13), which is consistent 

with work of Raja et al reference. It is known that similar morphological changes happen in E. coli in 

response to extreme temperature, pressure, chemical agents and quantum dots. Therefore, lowered 

RFU readings from wells with SWNTs were simply due to optical absorption by SWNTs, which 

should not alter the kinetics of RFU reduction caused by ciliate bacterivory. The almost constant 

RFU readings for each SWNT concentration also indicate that SWNT did not stimulate or depress 

GFP expression over time. Expressing CB assay data relative to starting RFU for each SWNT 

concentration corrects the interference by SWNT on fluorescence readings and also the small 

variations in cell densities.  
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The CB assay was conducted with a slightly different protocol this time, where SWNTs were 

added to Tetrahymena culture 4 hours prior to E.coli-gfp (protocol 2). Interestingly, although the result 

demonstrated similar dose-dependent impact of SWNTs on bacterivory (i.e. curves with tails 

showing slower RFU reduction); a distinctive initial stimulation of RFUs was observed for all 

concentrations of SWNT, except the control (Fig. 12). The rate of RFU rising was also 

concentration dependent. Plate counts of E. coli-gfp at 0 and 1 hour are almost the same, suggesting 

that the rise in RFUs is not due to bacterial proliferation. A similar trend was present in all type 2 CB 

assays (appendices).  

With these two different experimental procedures (1 & 2), CB assays likely detected the impact 

of SWNT at different stages. When using 1, SWNT and bacteria were added concurrently and the 

ingestion of bacteria appeared to be partially or completely blocked depending on SWNT 

concentration. We suspect that, in the case of 2, our assay monitored the gradual recovery of 

Tetrahymena. The initial stimulation of RFUs was likely due to removal of SWNTs partially from 

solution phase, and the rate is an indication of the rate of recovery which is slower at higher SWNT 

concentrations. At later hours, bacterivory was restored and the destruction of E. coli-gfp became 

more dominant and the reduction of RFUs was then closely correlated to ciliate bacterivory. At this 

point, is not clear the mechanisms behind SWNT removal and why it’s not observed in protocol 1. 

According to our confocal images excretion of SWNT aggregates by Tetrahymena could be a reason. 

Since SWNT affected both ingestion and digestion of bacteria by Tetrahymena, bacterivory might only 

be restored after SWNTs were egested. 
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Figure 11 Effect of SWNTs on bacterivory of T. thermophila. a, CB assay detects the gradual 

disappearance of fluorescence upon exposure (1), ingestion (2) and eventual destruction (3) of 

ingested E. coli-gfp by T. thermophila. b, Various concentrations of SWNTs (final concentration in µg. 

ml-1) were added concurrently with E. coli-gfp to microwells containing T. thermophila. High 

concentrations of SWNTs (7.3 and 14.6 µg.ml-1) blocked bacterivory. c, CB assay on E. coli-gfp alone 

(no T. thermophila) shows SWNTs have little effect on E. coli-gfp viability over time. Fluorescence is 

expressed as a percentage of starting RFU values. Inset shows SWNT solutions. d, Plate counts 

from a colony forming assay of E. coli-gfp with and without SWNTs show no difference.  
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Figure 12 CB assay result from Tetrahymena pre-treated with various concentrations (µg.ml-1) of 

SWNT solutions for 4 hours prior to adding E. coli-gfp. 

 

Figure 13 SEM micrograph of E. coli-gfp pre-incubated with SWNTs. Inset shows bacterial 

elongation. 
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3.5 Effect of Single-Walled Carbon Nanotubes on Tetrahymena Thermophila Further 

Assessed by Common Cell Viability Indicatory Dyes  

Studies by Casey et al42, Davoren et al43, Hurt et al44 and Worle-Knirsch et al45 strongly 

suggest that in order to assess the cytotoxicity of carbon nanomaterials at least two or more 

independent test systems are required.  The SWNTs were found to interfere with a number of the 

dyes used in cytotoxicity assessment. Davoren group concluded that among the multiple cytotoxicity 

assays they used, the Alamar Blue (AB) assay was found the most sensitive and reproducible. 

Furthermore, removal of SWNTs from the tested medium prior to addition of dyes makes it 

possible to employ the assays with fewer complications. Cytotoxicity of SWNTs was further 

evaluated based on cell viability indicatory dyes, AB and CFDA.  AB is a commercial preparation of 

the dye resazurin and providesa very simple and versatile way of measuring cell proliferation and 

cytotoxicity. AB is nontoxic to cells and does not necessitate killing the cells to obtain 

measurements. There is a direct correlation between the reduction of AB in the growth media and 

the quantity/proliferation of living organisms; resazurin is reduced to a fluorescent form resorufin 

by viable cells and an impairment of cellular metabolism will diminish the reduction. Another 

convenient, rapid and inexpensive methodology to evaluate the viability of the ciliates CFDA. 

Carboxyfluorescein diacetate acetoxymehtyl ester diffuse into cells and is converted by the 

nonspecific esterases of living cells from a nonpolar, nonfluorescent dye into a polar, fluorescent dye 

(5-carboxyfluorescein, CF), which diffuses out of cells slowly. A decline in fluorescence readings is 

interpreted as a loss of plasma membrane integrity. SWNTs induced a dose dependent lethal and 

sublethal toxicity when introduced to Tetrahymena (Fig. 14). Also similar to the findings from the 

above investigations, AB and CFDA reported different levels of toxicity, possibly due to interaction 

of SWNTs with the organic indicatory dyes. 
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Figure 14 Viability and functionality of the ciliate T. thermophila upon exposure to SWNTs for 4 h in 

Osterhout’s buffer. Cell viability and functionality was measured with fluorescent indicator dyes: AB 

(blue) and CFDA-AM (pink). Results are expressed as a percentage of the readings in control wells 

exposed to Osterhout’s buffer alone. The data points with error bars represent the mean and 

standard deviation of 3 wells per treatment. 
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CHAPTER 4: CONCLUSIONS AND INTO THE FUTURE 

 The toxicity of carbon nanotubes is the subject of ongoing debate. This study using 

Tetrahymena thermophila shows that they may be safe within a certain concentration, but a more 

rigorous set of studies with different types of carbon nanotubes is necessary. SWNTs are shown 

capable of entering the ciliated protozoan, Tetrahymena thermophila. Tetrahymena ingested SWNTs and 

bacteria with no apparent discrimination. Impact of SWNT on ciliate bacterivory, but not cell 

viability, was evident at fairly low concentrations (3.6 µg.ml-1 from CB assays and 1.6 µg.ml-1 from 

phase contrast optical microscopy). Tetrahymena immobilization and recovery were observed first 

after SWNT exposure. Tetrahymena is known to secrete mucous and form a capsule in response to 

mechanical and chemical stimuli46. A matrix generated by Tetrahymena aggregates was observed which 

consists of obvious SWNT aggregates and possibly other excudates such as mucous, DNA, proteins, 

and membrane fragments. At high concentrations, there was obvious loss of cell viability. 

Immobilization and membrane interference by internalized SWNTs are suspected to be the toxicity 

mechanisms.  

 Furthermore, SWNT stimulatedTetrahymena to abnormally egest viable bacteria inside 

membrane protected structures, which enhanced bacterial survival during antimicrobial treatments, 

bacteriostatic or bacteriocidal. The exact cellular mechanisms leading to SWNT-induced vesicle 

egestion awaits further investigation. One possibility is that the internalization of SWNT disrupts 

vesicle trafficiking within the cell so that engulfed bacteria are transported out of the cell in vesicles 

rather than being sent to fuse with primary lysosmes for digestion. Abnormal egestion of food 

vacuoles by ciliates has been reported in the literature. Direct interactions between E. coli and SWNT 

are believed to be minimal, except possible attachment of E. coli to the SWNT aggregates expelled 

by Tetrahymena which normally precipitate to the bottom of the culture dish. 
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SWNT internalization by Tetrahymena and SWNT inhibition of ciliate bacterivory have 

several ecotoxicological implications. Internalization within ciliates followed by consumption of the 

ciliates by multicellular animals could be a route for SWNT to move up food chains. Additionally, 

the ciliates appeared to contribute to SWNT aggregation through exudates and/or the egestion of 

SWNT clumps. As aggregates, the SWNT possibly can be considered as another form of detritus, 

which is dead particulate organic matter that contributes to food webs by providing microhabitats 

for colonizing bacteria47. SWNT may impact microbial ecosystems multi-fold. First, the inhibition of 

ciliate bacterivory could lead to stimulated bacterial population. Second, the bacteria aggregates 

(possibly enclosed in a membrane) excreted by SWNT-exposed Tetrahymena may enhance bacteria 

survival when exposed to inhibiting compounds and other types of stresses48. Third, an 

underestimation of actual pathogen population during surveys or studies could be introduced by the 

packaging of bacteria as high density clusters. 

Further investigations are needed to better understand the internalization routes of SWNT 

and the mechanisms leading to Tetrahymena immobilization/aggregation. Both soluble and insoluble 

SWNT could contribute to the microscopically visible aggregates within the Tetrahymena cytoplasm. 

Soluble SWNT may internalize through macropinocytosis with vesicles approximately 1 µm in 

diameter49,50,51,  micropinocytosis with vesicles less than 200 nm in diameter 32,50,52 , endocytosis53, and 

also simple penetration of cell membrane without the use of vesicles. SWNT aggregates greater than 

0.5 µm and SWNTs attached to bacteria surfaces could be internalized by phagocytosis. In the 

future TEM can be done to distinguish between these possibilities. Tetrahymena has long been known 

to phagocytosis inert particles36, and interestingly Tetrahymena showed less discrimination towards 

India ink (carbon pigment) than to colloidal gold. Whether ciliates will be generally non-specific to 

carbon nanoparticles remains to be studied. The overall effect of SWNTs, and other engineered 

nanomaterials in general, on environmental ecology remains to be a field largely unexplored. 
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Whether Tetrahymena or grazing protists will show similar susceptibility to other classes of 

nanomaterials is unknown. The fact that common biological assays can be used should make 

comparisons easier.  
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APPENDICIES 

Additional CB assay trials consistently demonstrated 1) the dose-dependent effect of 

SWNTs on bacterivory by Tetrahymena, 2) the initial stimulation of RFUs when Tetrahymena were 

incubated in SWNT solutions 4 hours prior to adding bacteria, and 3) the more pronounced impact 

at lower concentrations when SWNTs and bacteria were added concurrently. 
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