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Abstract

Black-and-white imagery is a popular and interesting depiction technique in the visual arts, in
which varying tints and shades of a single colour are used. Within the realm of black-and-white
images, there is a set of black-and-white illustrations that only depict salient features by ignoring
details, and reduce colour to pure black and white, with no intermediate tones. These illustra-
tions hold tremendous potential to enrich decoration, human communication and entertainment.
Producing abstract black-and-white illustrations by hand relies on a time consuming and dif-
ficult process that requires both artistic talent and technical expertise. Previous work has not
explored this style of illustration in much depth, and simple approaches such as thresholding are
insufficient for stylization and artistic control.

I use the word wholetoning to refer to illustrations that feature a high degree of shape and tone
abstraction. In this thesis, I explore computer algorithms for generating wholetoned illustrations.
First, I offer a general-purpose framework, “artistic thresholding”, to control the generation of
wholetoned illustrations in an intuitive way. The basic artistic thresholding algorithm is an op-
timization framework based on simulated annealing to get the final bi-level result. I design an
extensible objective function from our observations of a lot of wholetoned images. The objective
function is a weighted sum over terms that encode features common to wholetoned illustrations.

Based on the framework, I then explore two specific wholetoned styles: papercutting and
representational calligraphy. I define a paper-cut design as a wholetoned image with connectivity
constraints that ensure that it can be cut out from only one piece of paper. My computer generated
papercutting technique can convert an original wholetoned image into a paper-cut design. It can
also synthesize stylized and geometric patterns often found in traditional designs.

Representational calligraphy is defined as a wholetoned image with the constraint that all
depiction elements must be letters. The procedure of generating representational calligraphy
designs is formalized as a “calligraphic packing” problem. I provide a semi-automatic technique
that can warp a sequence of letters to fit a shape while preserving their readability.
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Chapter 1

Introduction

If everything isn’t black and white, I say, “Why the hell not?”
– John Wayne

Visual communication is one of the most important and popular ways to represent ideas and
exchange information. Its origins can be traced back to more than ten thousand years ago [4].
When ancient people lived in caves, they drew figures and patterns on rock to record their ac-
tivity and knowledge and convey emotion and consciousness (Figure 1.1(a)). With the progress
of civilization, visual communication has developed into an effective and diverse form of com-
munication. It includes many media such as painting, photography, film, typography, illustration
and drawing.

How do people communicate visually? Chinese painter Zheng Xie (1693-1765) described
his creative experience [77]:

One autumn morning, I was absorbed by the sight of bamboo on the riverside. The
branches were waving in the mist and light was blinking between leaves. The beau-
tiful scene inspired me to record it in a drawing. But at this time, the bamboo in my
mind was not the bamboo I had seen. I brought out brush and ink, and finished a
painting in high spirits. But the bamboo on the paper was not the one in my mind.

1



2 Wholetoning: Synthesizing Abstract Black-and-White Illustrations

(a) (b) (c)

Figure 1.1: Examples of black-and-white illustrations in different media: an ancient rock paint-
ing in Spain (between 8,000 and 3,000 BCE) in (a), a decorative pattern on a Chinese ceramic
vase (between 600 and 900 AD) in (b) [33, Page 28] and a batik-dyed fabric design (modern
times) in (c)[33, Page 32].

His description effectively summarizes the procedure of creating a graphic depiction of the real
world. In this procedure, we manipulate acquired information and present it in a way that follows
our purpose. I conceptualize it to be an iterative process of observation, composition and depic-
tion. The observation step acquires external reality through an observer’s visual system. The
composition step creates the internal representation by our deliberate processing, manipulating,
selecting and filtering of visual data. Finally, the results are depicted on real media to express
and communicate our thoughts and perceptions. The depiction can itself feed back as the input of
further observation activity. The composition and depiction steps are subjective. Individual bias
will shape different results, and at the same time act as a catalyst for the process of abstraction.

Among depiction approaches in the visual arts, black-and-white imagery is a special and
interesting technique, because the language of expression is simplified to tints and shades of a
single colour. Since we see the world in colour, a monochromatic image offers a more abstract,
interpretive view of reality. When viewing a black-and-white image, we are moved by its em-
phasis on shapes and forms, patterns and contrasts, simplicity and expressivity. Black-and-white
imagery can employ different techniques to derive numerous representations ranging from a re-
alistic style to an exaggerated or highly simplified style. It has long been a desirable medium in
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decoration (Figure 1.1(b)) , pattern design (Figure 1.1(c)), advertising, book illustration and logo
design.

The most prominent channels through which images communicate are colour (we refer to
tone in black-and-white images), texture and shape. Tone refers to a colour’s degree of lightness
or darkness. It communicates the lighting and shading information of objects. Texture consists
of the visual patterns with properties of homogeneity that result from the presence of repeated
elements. It communicates important information about the structural arrangement and material
properties of surfaces. Shape defines objects’ geometric properties.

Let us restrict ourselves to the case where only two tones are used, which are called pure
black-and-white illustrations (In this dissertation context, I will use black-and-white illustrations
to represent those two-tone black-and-white images). In black-and-white illustration, the colour,
texture and shape of the real world must be reduced to a simple vocabulary of black marks on
a white background or vice versa. This reduction is the fundamental challenge of this style of
visual communication. Artists have developed many techniques in black-and-white illustration
to present desired visual features.

My initial inspiration arises from traditional media as shown in Figure 1.2. Artists have devel-
oped many approaches to creating the black-and-white illustrations, such as woodcutting, seal
cutting, papercutting, line drawing, engraving, etching, and Batik dyeing. Many of them aim
at creating black-and-white representations of continuous-tone images. The majority of these
techniques are concerned with halftoning, the approximation of continuous tone using a distribu-
tion of black primitives on a white background [131]. Halftoning was—and continues to be—a
necessary means of overcoming limitations in output technologies. For the most part, computer
displays have moved beyond the need for extensive halftoning, but print technology is still highly
dependent on it. Colour painting has been around for a long time, but print-based techniques of-
fer the advantage of reproducibility, and grew in popularity with the development of the printing
press. Printing is limited to a finite colour palette, meaning that it quickly became necessary
to approximate intermediate tones. Halftoning has also found its way into non-photorealistic
rendering research; examples include algorithms for approximating tone with ordered dither-
ing [131], stipples [27, 115], ASCII art [123], screens [95], pen strokes [142], or the walls of
a maze [99, 146]. These approaches produce image with distinct visual characters, which can
evoke different aesthetic responses in viewers.
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LogoMooney face

Seal-cut

Line drawing

Paper-cut

Paper-cut

Chiaroscuro 
  wood-cut

  photograph Wood-cut

Silhouette

Wood-cut

ASCII art Labyrinthine Portrait

Representational 
     Calligraphy

Dithering Pen-and-ink

Abstract Shapes

Figure 1.2: Black-and-white imaging styles. Mooney faces are low-information two-tone pic-
tures of faces used in psychological tests [84]. Labyrinthine Portraits are line drawings made
from a single labyrinthine stroke [85]. The last two rows show close-ups alongside the originals.
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(a)

(c)

(d)

(b)

Figure 1.3: Classic examples of black-and-white illustration without halftoning: a simple line
drawing (a), a papercutting by Susan Throckmorton (b), Felix Vallotton’s woodcut La Raison
Probante (c), and an ink painting [150, Page 11].
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However, halftoning need not be the only way to create a black-and-white depiction of an
image. There exists a great deal of traditional art in black-and-white that makes no attempt at
halftoning. An immediate example is line drawing (see Figure 1.3(a)), which seeks to convey
all information about form and texture from a few sparse visual cues embedded in contours.
Aesthetically, we appreciate the “efficiency” of this encoding of a scene, and enjoy the experience
of unpacking it.

Figure 1.4: Examples of two-tone images. A graffiti work by Banksy is shown in (a). A picture
from Frank Miller’s Sin City is shown in (b) and a page from Neil Gaiman’s Sandman is shown
in (c).

Other traditional techniques use large regions of black and white instead of lines. Examples
are shown in Figure 1.3. Some ink paintings use large black forms to carry all the salience
of an image [150]. Papercutting, by its nature a binary medium, depicts an image by cutting
holes in paper. Closely related is stencilling, as in the graffiti work of the British artist Banksy
(Figure 1.4(a)). Many woodblock prints ignore tone (though masters of the medium may include
hatching or stippling in their blocks). Contemporary examples include Frank Miller’s Sin City
comic [81] and the computer animated film Renaissance [108]. Both use pure black and white to
reinforce the stark setting of their stories. The story “Exiles” in Neil Gaiman’s Sandman series
also makes heavy use of black and white, in a looser brush stroke style. A photographer can
reduce an image to pure black and white with no grays by copying a negative onto high-contrast
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litho film and printing that negative [48]. Concrete examples in nature, such as black-and-white
stripes on a zebra and the black-and-white coat of giant panda, make us admire the beauty of this
style.

While the problem of producing line drawings from images has received attention in non-
photorealistic rendering (NPR) research [60], depiction using large black and white regions
remains underexplored. Examples like Sin City (Figure 1.4(b)) and Sandman (Figure 1.4(c))
inspired me to explore the inherent features of this style of illustration.

Figure 1.2 offers a sampling of black-and-white imaging styles. Notice that a subset of them
have similar properties. For instance, the first two rows of Figure 1.2 have only two tones and
abstract shapes. This visual style is further exemplified by the Calvin and Hobbes comic in
Figure 1.5 and by the famous portrait of Che Guevara in Figure 1.6. In such an extreme black-
and-white style, we can only observe pure black and pure white regions. The contrast between
black and white is sometimes used metaphorically to express balance or opposition as in the Yin
Yang symbol and M.C. Escher’s work Encounter [32].

By analogy with halftoning, I use the term “wholetoning” to refer to black-and-white illustra-
tions with the kind of abstraction in shape and tone described here. This is a distinct, recognizable
style within black-and-white illustration, one that deserves to be studied in isolation. I will offer
a more precise definition of this term in the next section.

In this dissertation, I examine the following problem: given a colour input image (observa-
tion), can I convert it into a wholetoned representation (composition and depiction)? This topic
can be classified as a research area in NPR that focuses on emulating traditional styles of art
and illustration and developing expressive rendering styles. By exploring this wholetoned style,
I hope to deepen our understanding of black-and-white illustration and complement the already
extensive published literature.

In the rest of this chapter, I offer a definition of wholetoned style and discuss the challenges
of my research. In Chapter 2, I review the mathematical and computational background related
to this work. The state of the art in black-and-white image synthesis is introduced in Chapter 3.
Chapter 4 presents my general framework for wholetoning. Then, I investigate two specific who-
letoned styles: papercutting in Chapter 5 and representational calligraphy in Chapter 6. Finally,
I finish with conclusions and a discussion of future work in Chapter 7.
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Figure 1.5: A Calvin and Hobbes comic [137, Page 57] explores the mystery of a black-and-
white world. Watterson recognized it is a distinct style: “To draw this strip, I not only avoided
color and halftones, I avoided outlines. As the top ‘throwaway’ panels illustrate, the placement
of black is crucial to making the pictures comprehensible.”

1.1 Definition of wholetoned style

I analyze the collection of black-and-white images in Figure 1.2 by ordering them informally for
visualization purposes. I begin by studying these images in terms of the visual features described
earlier: tone, texture and shape. Figure 1.7 orders images based on the range of tones they
contain. Halftoned images, in which black primitives are interpreted as continuous tones by our
visual systems, are intermediate between highly abstract images made of large black regions, and
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Figure 1.6: One of the most iconic portraits of the twentieth century. The left portrait of Che
Guevara was taken by Alberto Korda. The right stylized poster was created by Jim Fitzpatrick.

2 continuous tone

Figure 1.7: Tone variations in black-and-white visual arts. The number of tones increases along
the tone axis. The images of interest to me (in the boxed region) include only two tones.

continuous-toned images such as photographs. Note that if you are reading this page in print,
all examples are halftoned — The images on the right are merely halftoned at the printer’s finer
scale. I am interested in images that are highly abstract in tone, shown boxed in the figure. They
only have two tones, the minimum value for any meaningful representation.

Some black-and-white illustrations are abstractions of realistic pictures. The abstraction can
be attained by suppressing textures and simplifying geometric shapes. Figure 1.8 orders the
example images by faithfulness of texture reproduction. The abstract styles lie on the left side.
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low high

Figure 1.8: Faithfulness of texture reproduction. The images of interest to me (in the boxed
region) have low texture fidelity.

low high

Figure 1.9: Shape abstraction in black-and-white visual arts. The images of interest to me (in
the boxed region) are those with a high degree of abstraction.

Texture reproduction and abstraction are hard problems in computer graphics. Because of the
importance and usefulness of texture in pattern and object recognition, there has been a fair
amount of previous work on this topic [113, 6]. However there is no general approach to detect
and analyze texture patterns.

Figure 1.9 demonstrates shape abstraction in black-and-white visual arts. I would like to
explore the styles that lie on the right-hand side. Shape abstraction can be achieved in two ways:
simplification that omits some properties or details, and idealization that represents an object by
an approximate ideal form. The artist can apply shape abstraction to maximize the likelihood
that the information he deems important will be received and processed. There are many real-
world examples of shape abstraction. The ancient Chinese seal-cut in Figure 1.10(a) is a good
example. Tangrams (Figure 1.10(b)), a traditional puzzle game, is another extreme case that
can compose hundreds of objects with only seven simple geometric shapes. Some artists are
also masters of stylized black-and-white drawings (Figure 1.10(c)). In these images, only a few
simple lines or shapes are used, but the features of objects are depicted well. The abstraction
of images empowers us to organize the essential geometric features to fit human perception and
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(a) (b) (c)

Figure 1.10: Abstraction images: a Chinese seal-cut (tiger pattern) in (a) , an example
of Tangram (b) and a painting (c) (Pablo Picasso’s “Don Quixote”) (Scan by Mark Harden
http://www.artchive.com).

Figure 1.11: Image taken from Scott McCloud’s Understanding Comics [80, Page 31]. It shows
the universality of comics. While a realistic picture turns into an abstract image by simplifying,
more people can identify with the face being depicted, because a more abstract image connects
to the essential features more directly.

cognition more naturally. A good demonstration is the power of comics [80]. When we abstract
an image through cartooning, we are not so much eliminating details as we are focusing on
specific details. As shown in Figure 1.11, by stripping down an image to its essential meaning,
an artist can amplify that meaning in a way that realistic art cannot offer. This aspect of depiction
in comics explains one cause of our fascination with them. It helps absorb our sense of identity
so that we become an active part in the comic, seeing “ourselves” instead of “others”. As with
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0 21

Figure 1.12: Dimensionality of primitives in visual art. Zero dimension means using points.
One dimension means using lines. Two dimensions mean using regions. The images of interest
to me (in the boxed region) use lines and regions, but emphasize regions.

texture abstraction, shape abstraction is also a difficult research topic [21, 38, 122]. It is closely
related to cognitive psychology. The role of the human observer must be taken into account in
abstraction processing.

Kandinsky analyzed the geometrical elements that compose every painting, namely point,
line and plane [59]. Wucius Wong also listed four conceptual elements in pictorial design: point,
line, plane (or region) and volume [144]. The elements are individual primitives that are used
to depict objects in an illustration, and not the actual content. A point indicates position. It
has no length or breadth. As a point moves, its path becomes a line. A line has length but no
breadth. The path of a line in motion becomes a plane. A region has length and breadth, but
no thickness. The path of a region in motion becomes a volume. It has position in space and
is bounded by regions. Although volume primitives can be simulated, no real volume exists in
two-dimensional art. The choice of primitives determines what we call the dimensionality of
representation. I order images by dimensionality in Figure 1.12. I am interested in artistic styles
based on two-dimensional primitives.

From the preceding discussion, I can give a working definition of wholetoning.

Definition: a wholetoned image is a black-and-white image in which
1. Only two tones are used;
2. Little texture information is involved;
3. A high degree of shape abstraction is used; and
4. The pictorial elements are lines and regions.

This definition is of course “loose”. It cannot be perfectly precise, and surely there will be
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(a) (b)

Figure 1.13: Variants of wholetoning: A papercutting example in (a) and a representational
calligraphy example by AlmapBBDO in (b).

illustrations that are on the verge of being wholetoned, but not quite. However, it clearly states the
main features that I focus on and is good enough for our purposes. I use the term “wholetoning”
to refer to any algorithm for constructing wholetoned images.

Wholetoning algorithms have many potential applications today, for example in printing and
illustrations. People frequently use simplified images when they want to express complicated
ideas. This rule is also applied to icon and logo design, where highly stylized small images are
preferred [141]. Abstract logo images have the power to stimulate the imagination and recall to
our minds images, experiences and feelings embedded in memory. Further, faithful reproduction
of tone is not always desirable, even when possible. Some artists deliberately employ this pure
black-and-white technique to obtain special effects that can be found in comic books and movies.

Moreover, we can impose some extra constraints to generate variants descended from the
basic wholetoned style, such as papercutting (Figure 1.13(a)), stencilling, and representational
calligraphy (Figure 1.13(b)). Notice that a paper-cut design must satisfy the constraint that it can
be cut out from one piece of paper, and the depiction primitives in a work of representational
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calligraphy are limited to letters.
The goal of my work is to combine the expressivity and beauty of wholetoned styles with

the power and flexibility of computer graphics. I want to explore opportunities where mathe-
matical and computational models can be applied to the synthesis of wholetoned images. The
goal will be achieved by analyzing the features of wholetoned images, and presenting a general
framework to define a wholetoning pipeline. After studying wholetoning in general, I focus on
how to reproduce two particular derived styles: representational calligraphy and papercutting.
To capture the outstanding appearance of a specific style, I must derive a specialized algorithm
that captures the idiosyncrasies of that style. During my investigations of representational cal-
ligraphy and papercutting, I watch for principles and techniques that might be applied to other
wholetoned styles.

1.2 Challenges of my research

Before I discuss my research on wholetoning in greater detail, it is instructive to see the limita-
tions of existing methods and examine some considerations face by an artist when converting a
colour image into a wholetoned image. We should consider the following problems: How to deal
with tone? What is the trade-off between line-based depiction and plane-based depiction? How
to make use of feature homogeneity? And how to derive more wholetoned styles? All of these
problems have significant implications for my approach.

1.2.1 Wholetoning via image processing

A naive way of generating a wholetoned representation of a continuous-tone image is threshold-
ing:

Color(i, j) =

{
White if I(i, j) > T
Black otherwise

(1.1)

Here, I(i, j) is the intensity value of the pixel at position (i, j), normalized to the range [0,1]. T is
the threshold value. Unfortunately, the quality of the result is usually poor (see for example the
colour gradient in the sky region in Figure 1.14(b)). The reason is that this method applies one
single threshold value globally. It also disregards the difference between luminance (a physical
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(a) (b) (c) (d)

Figure 1.14: Examples of applying different thresholding methods. Given a source image (a),
we can get a black-and-white image by thresholding in (b), adaptive thresholding in (c) and
thresholding after bilateral filtering in (d).

property) and brightness (a product of human perception), which is highlighted by well-known
contrast illusions [34].

An enhanced method is adaptive thresholding, which changes the threshold value dynami-
cally over the image [37], as shown in Figure 1.14(c). It can do a better job, but the result has
too much noise. There are some more advanced methods such as applying thresholding immedi-
ately after bilateral filtering (Figure 1.14(d)). This approach is more successful, but it still loses
too many feature details and the user has little control over style variations. With respect to my
wholetoning definition, these methods can satisfy the tone condition but are weak in the other
properties. My challenge is to produce a wholetoning algorithm that can generate convincing
results and also provide flexible control of styles.

1.2.2 Tone preservation and tone inversion

Since tone is one of the most important communication factors in wholetoning, I should deal
with tone carefully. Basically, I look forward to the following property in wholetoning: the
dark parts in original image should be turned into black while the bright parts should be white.
I call it “tone preservation”. An image violating this rule is called a “tone inverted” image.
One problem concerning tone is whether a tone inverted image is as perceptually acceptable as
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(a) (b) (c) (d)

Figure 1.15: Tone inversion and tone preservation examples. The source picture in (a) [151, Page
45] and the tone inversion result in (b) are both perceptually acceptable. But for the paper-cut
design in (c) [71, Page 131], our perception will reject the inverted picture of (d).

Figure 1.16: Spatial scales of images in Figure 1.15. Each image includes a high spatial fre-
quency data (left) and low spatial frequency data (right). Tone inversion images have similar high
spatial frequency data as original images. But low spatial frequency data are totally different.
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the original image. Although local tone inversion of part of an image is enough for graphic
design, I will discuss some tone inversion examples of a whole image to explain my findings. I
observe that some images and their inverted counterparts are equally good for human perception
(Figure 1.15(a) and (b)), while others are not (Figure 1.15(c) and (d)).

This difference originates from the representation characteristic of images. Normally, an
image contains variations in what neuroscientists term “spatial frequency” [106]. High spatial
frequencies correspond to abrupt spatial changes in the image, such as sharp, fine lines and
fine details. Low spatial frequencies correspond to global information about the shape such
as blurred edges or large objects. By applying the image processing techniques of high-pass
filtering and low-pass filtering, an image can be separated into different spatial scales. From
Figure 1.16, we can see that the inverted images have similar high spatial frequency information
as the originals while low spatial frequency information is different. For the fish pattern, the
high spatial frequency information alone is enough for human perception, so both images are
perceptually acceptable. But for the portrait example, we have to rely on low spatial frequency
information to help us finish the recognition. Because the low spatial frequency data of inverted
image differs a lot from original one, our perceptual system will reject it. The perception of
some images is guided by information at high spatial frequencies (where only the edges can
provide enough information), others by information at low frequencies (where shadow is usually
engaged). This distinction is important because artists use different techniques to abstract tone
in high- and low-frequency dominant images. I will discuss this topic more in Section 1.2.3.

Figure 1.17: A simple tone violation example. With some tone violations, the right picture
encodes more shape information than the left picture.

I also notice that it is possible and even helpful to introduce some minor violations of tone
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(a) (b)

Figure 1.18: Tone inversion in wholetoned images: A papercutting (by the Zhou family) in (a)
and a logo example (D’Amico & Partners by Duffy & Partners) in (b).

preservation regardless of spatial frequency. To highlight important contrasts between elements,
we have to break the “tone preservation” by inverting tone. Otherwise some feature components
will be lost. Figure 1.17 demonstrates the necessity of inverting tone to depict shape. Tone
inversion clearly discloses how the three rectangles overlap each other (though not their relative
ordering). There are some concrete examples in real art works, such as the table legs and chair
legs in Figure 1.18(a) and the human heads and letters in (b). The challenge here is to depict
complex scenes in black and white in a way that balances between the conflicting goals of tone
preservation and shape depiction. To do this, I need to understand when tone can safely be
inverted.

1.2.3 Line-based and plane-based representation

Corresponding to the dominant spatial frequency, shape depiction can be divided into two cate-
gories: line-based, which refers to high spatial frequency and plane-based, which refers to low
spatial frequency. The former depicts a shape with only the outer boundary, and the latter depicts
a shape with the entire shape region. The outer boundaries can be object contours, shadow con-
tours and texture contours. Line drawings that depict shape features using only thin line strokes
can create convincing representations. Figure 1.19(b) shows an example. However, the whole-
toned image conflates information about object structure and illumination. Its outer boundaries
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are a combination of object contours and shadow contours. In this situation, the outer boundary
alone (Figure 1.19(c)) may not provide enough clues to finish the perception task, because these
boundary lines correspond to the brightness discontinuities in the image. They cannot distin-
guish object contours from shadow contours. Shadows have great effect on recognition [12]. To
accurately recover the structure of an object, it is essential to identify the cast shadow borders in
an image because they are generally unrelated to the object contours and they seriously disrupt
the interpretation of the image if they are confused with object contours. This explains why Fig-
ure 1.19(c) is unsuccessful. Therefore, a good line drawing should highlight object contours that
are the key feature guiding our perception instead of simply tracing the brightness discontinuities.
Otherwise, this type of representation is rendered meaningless by missing shadow contours and
object contours. With the help of shaded regions, we can get hints to discover shadow contours
(see Figure 1.19(d)). These differences highlight the need to explore style variation between
line-based and plane-based depiction.

(a) (b) (c) (d)

Figure 1.19: Given the source picture in (a), a line drawing is shown in (b). The outer boundary
of a wholetoned image (d) is in (c).

1.2.4 Feature homogeneity

Visual perception interprets objects with two strategies: a bottom-up strategy that relies on the
input stimulus in recognition, and a top-down strategy that is also influenced by the viewer’s
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Figure 1.20: The procedure of top-down perception strategy. The input stimulus drives recogni-
tion to find a match of 2D shape information against memory prototypes, which then iteratively
guide the construction of a 3D model.

prior experience [12, 13]. As shown in Figure 1.20, the top-down strategy is a feedback model.
It is driven by our memory and attention, and controlled by higher level cognitive processes,
which means that we must depend on our prior experience to aid recognition. Based on an input
stimulus, recognition constructs a crude match of 2D views to internal prototypes in memory.
The prototype guides the construction of a 3D model that can adjust the interpretation of 2D
views. Finally, the completed 3D model determines our recognition. In top-down perception,
grouping is important in that we group together seemingly unrelated fragments of a single object
when we are interpreting it [67]. After grouping, we try to search a matched template in our
memory to identify the image.

As I mentioned before, a wholetoned image is an abstraction of an input image due to its
simplification and exaggeration in tone and shape. In the NPR literature, abstraction means
removing details so that the main point of a presentation is perceptually salient. Research in
cognitive psychology shows that we depend mainly on top-down perception in interpreting an
abstract image [12]. Therefore, another important consideration in wholetoning is that it should
represent the features so that they can easily arouse our memory.

1.2.5 Wholetoning style variants

As mentioned in Section 1.1, wholetoning includes many variants. The visual appeal of whole-
toned images attracts me to explore how I can reproduce similar styles. To simulate papercutting
(Figure 1.13(a)) and representational calligraphy (Figure 1.13(b)), the challenge that I face here
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(a) (b) (c) (d)

Figure 1.21: Artistic devices in black-and-white illustration: switching the foreground and back-
ground colour deliberately in (a) [15, Page 38], contoured silhouettes in (b) [15, Page 40], re-
lief by shadowing in (c) [15, Page 42] and contrast between homogeneity and heterogeneity
in (d) [15, Page 44].

is that some specific algorithms have to be developed. For instance, a representational calligra-
phy algorithm should try to warp letter forms to fit a shape while preserving their readability as
well as possible. And a papercutting algorithm should guarantee that the final design consists of
a single connected component.

Figure 1.22: An example of illusory contours in a papercut design by Susan Throckmorton.
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Artists have developed many techniques and devices to deal with a small number of tones,
which can be borrowed in wholetoned image design. A colour can appear as foreground and
background in the same design (Figure 1.21(a)). Solid color regions can be outlined by contours
to give a concise effect (Figure 1.21(b)). Objects can be emphasized by the effects of relief or
halo that are simulated by shadow regions surrounding the contours of objects (Figure 1.21(c)).
The contrast between homogeneity and heterogeneity can help highlight objects, as shown in
Figure 1.21(d): the homogeneous goat figures stand out prominently from the heterogeneous
background. Due to the very limited range of tones in wholetoned images, some visual features
may even not be presented explicitly. But a skilled artist can make use of our perception to recon-
struct those lost features. A good example is the contours of the human figures in Figure 1.22.
With the help of the patterns on cloth, our brains can easily infer the missing portions of the
characters’ outlines. We are probably aided in this process by our perceptual ability to perceive
“illusory contours” [128]. The challenge, then, is to analyze artistic techniques and devices, learn
from the wisdom and experience of artists, and incorporate this understanding into wholetoning
algorithms.

1.3 Contributions

In this dissertation, I define an art style—wholetoning—and develop a general framework called
“artistic thresholding” to generate wholetoned illustrations from continuous-tone images. I then
study how to simulate two particular wholetoned styles: papercutting and representational cal-
ligraphy. I expect that the analysis, algorithms, and results presented here will provide valuable
ideas to the computer graphics community, and drive further research in abstract black-and-white
illustration.

As is common in NPR research, I do not try to establish objective standards for evaluating
the quality of the output of my algorithms. We are starting to see papers in the NPR literature
that attempt to do evaluation [54, 18, 143], papers just about evaluation [76, 53], and new con-
ferences [91] related to the problem. I am hopeful that future work will uncover more objective
standards by which images like those shown in this thesis might be evaluated.

The principal contributions of this dissertation are as follows:

• I provide the formal concept of wholetoned images, define the style of wholetoned images,
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and articulate a set of constraints that can be used to produce wholetoned images from
photographs in general.

• A general framework—artistic thresholding—is presented to generate wholetoned images.
I apply segmentation to a source image and user-provided high-level information to ex-
tract feature homogeneity. A planar subdivision that captures segment connectivity is
constructed. My artistic thresholding algorithm is a combinatorial optimization over this
graph. The optimization is controlled by wholetoning style constraints. A wholetoned
image is the result of those competing forces that comprise the trade-offs in tone repro-
duction, depiction style, and salient features. This comprehensive approach overcomes the
deficiencies of existing methods and can be tuned to achieve different artistic styles.

• I explore one variant of wholetoning: papercutting. I define the papercutting as a whole-
toned image with connectivity constraints to ensure that it can be cut out from only one
piece of paper. I present a technique for composing digital paper-cut designs. The elements
of a design may be images, which are processed via artistic thresholding and a connectiv-
ity algorithm, or they may be procedurally generated arrangements of shapes that simulate
traditional paper-cut patterns. Elements are composed using a set of boolean operators that
preserve connectivity.

• I study another wholetoning variant: representational calligraphy. A representational cal-
ligraphy design is defined as a wholetoned image with the constraint that all depiction
elements must be letters. The procedure of generating representational calligraphy designs
is formalized to a “calligraphic packing” problem. I develop a semi-automatic solution
based on dividing up a target region into pieces and warping a letter into each piece. I
define an energy function that chooses a warp that best represents the original letter.



Chapter 2

Background

In this chapter, I will introduce some general background knowledge in my research. More
specific knowledge will be introduced in later related chapters.

2.1 Image processing

The similarities and interrelations between computer graphics and image processing make image
processing techniques widely applied in computer graphics systems. To be able to compute
wholetoned illustrations from images, I apply many existing image processing approaches. So I
introduce some of them here.

2.1.1 Blurring

Blurring operations are used in many visual computing applications to reduce image noise and
details. One typical operation is Gaussian smoothing. It is defined as the convolution of an image
with a Gaussian function. A two-dimensional Gaussian function is:

G(x,y) =
1

2πσ2 e−(x2+y2)/(2σ2), (2.1)

where σ is the standard deviation. The width of the Gaussian increases as σ increases.
Mathematically, a convolution of two functions f and g is given by the following equation:

( f ∗g)(x,y) =
∫ +∞

−∞

∫ +∞

−∞

f (x− x′,y− y′)g(x′,y′)dx′dy′. (2.2)

24
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(a) (b) (c)

Figure 2.1: An example of blurring. The source image is shown in (a). The Gaussian blurred
result is in (b) and the bilateral filtered result is in (c).

In image processing applications, convolution can be viewed as a kernel window of some finite
size scanned across the image. The output pixel value is the weighted sum of all pixels within
the window where weights are given by the elements in the kernel window. If I is an image, and
K is the kernel function whose dimension is M×N, then this discrete convolution is given by

(I ∗K)[x,y] =
M−1

∑
x′=0

N−1

∑
y′=0

I[x− x′,y− y′]K[x′,y′]. (2.3)

Gaussian smoothing is defined as (I ∗G)[x,y], where G is a discrete Gaussian kernel. Fig-
ure 2.1(b) shows an example of Gaussian smoothing.

Because the effect of Gaussian blurring is to compute a weighted average of pixel values in
the neighborhood isotropically, it leads to the whole image being smoothed evenly. To prevent
averaging across obvious edges while still averaging within smooth regions, some anisotropic
blurring methods have been developed [100]. Bilateral filtering is a typical one [130]. It extends
Gaussian smoothing by weighting the filter coefficients with their corresponding relative pixel
intensities. It is composed of two Gaussian filters. One is in the spatial domain, named the
domain filter, and the other is in the intensity domain, named the range filter. The definition is
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given by the following function:

h(x) = k−1(x)
∫ +∞

−∞

∫ +∞

−∞

f (ξ )c(ξ ,x)s( f (ξ ), f (x))dξ , (2.4)

k(x) =
∫ +∞

−∞

∫ +∞

−∞

c(ξ ,x)s( f (ξ ), f (x))dξ , (2.5)

where f (x) is the intensity value of a given pixel x and c(ξ ,x) is a domain filter that measures
the spatial distance between the neighborhood center x and a nearby point ξ . It is commonly
defined as

c(ξ ,x) = e−
1
2 ( ||ξ−x||

σd
)2

, (2.6)

where σd is the standard deviation of the domain filter.
s( f (ξ ), f (x)) is a range filter that measures the intensity similarity between the pixels. It is

commonly defined as:

s( f (ξ ), f (x)) = e−
1
2 ( || f (ξ )− f (x)||

σr )2
, (2.7)

where σr is the standard deviation of range filter. Both spatial distance and intensity distance are
computed as Euclidean distance. Figure 2.1(c) gives a result using bilateral filtering.

2.1.2 Segmentation

In many applications of image processing techniques, great importance is attached to image
segmentation. The goal of image segmentation is to partition an image into homogeneous and
connected regions. Homogeneity of regions in image segmentation usually involves colours. In
contrast to single pixels in the original image, the regions of the segmented image have more
consistent features like shape, boundary, texture, and so forth.

Many segmentation methods have been developed [56]. These methods can be classified as
pixel-based methods that use properties of the individual pixels, region-based methods that ana-
lyze the properties in larger areas, and edge-based methods that detect edges and follow them to
isolate regions. Among these methods, mean shift segmentation is a robust and versatile region-
based method that clusters pixels to segment regions [20]. Mean shift segmentation applies a
kernel of influence for each pixel xi to estimate the density. This kernel defines a measure of
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(a) (b)

Figure 2.2: Mean shift segmentation example. Given a source colour image (a), the segmented
image is shown in (b).

the distance between two pixels that operates both in the spatial and colour domains. The kernel
function is given by

f̂ (x) =
c

n(hs)p(hr)q

n

∑
i=1

k(
∥∥∥∥xs− xs

i
hs

∥∥∥∥2

)k(
∥∥∥∥xr− xr

i
hr

∥∥∥∥2

), (2.8)

where c is a normalization constant, n is the number of pixels, hs is the spatial bandwidth and hr

is the range bandwidth. Those two parameters are given by users and define the size of kernel.
p(= 2) is the spatial dimension size and q(= 3) is the colour dimension size. xs and xr are the
spatial and range parts of a feature vector. k(x) is the profile of the kernel. The Epanechnikov
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kernel is sufficient for most applications. Its profile is described as:

k(r) =

{
1− r 0≤ r ≤ 1
0 r > 1

(2.9)

The mean shift procedure iteratively moves every pixel along the gradient of the density until
they converge to a stationary point. The pixels that converge to the same stationary point are
clustered into a single segment.

Figure 2.2 shows an example of mean shift segmentation of a colour image using EDISON’s
synergistic image segmenter [16].

2.1.3 Feature detection

Edge detection is one of the fundamental feature detection operations. Many other operations
are based on edge detection. The edges of objects in an image hold much information including
location, size, shape, and texture.

The Sobel operator is a simple difference filter that computes an approximation of the gradi-
ent of the image (Figure 2.3(a)). It defines a pair of 3× 3 convolution masks corresponding to
horizontal and vertical directions:

Kx =
1
8

 1 0 −1
2 0 −2
1 0 −1

 , Ky =
1
8

 1 2 1
0 0 0
−1 −2 −1

 . (2.10)

By applying convolution, the horizontal derivative Gx and vertical derivative Gy can be approxi-
mated as

Gx = I ∗Kx, Gy = I ∗Ky. (2.11)

The resulting gradient approximations can be combined to compute the gradient magnitude G
and direction θ at each pixel:

G =
√

G2
x +G2

y , θ = arctan(
Gy

Gx
). (2.12)

The gradient image is the edge detection result.
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(a) (b)

Figure 2.3: Edge detection examples. Given the source image in Figure 2.1(a), The Sobel mask
operator produces a result in (a) and a differences of Gaussians operation produces the result
in (b).

Another important edge detector is the differences of Gaussians (DoG) operator. The DoG
operator allows the width of a convolution mask to vary in order to adjust the detail in the output.
A wider mask will eliminate more details. The masks are differences of Gaussian functions.

The two-dimensional DoG function is defined as

f (x,y,σ1,σ2) =
1

2πσ2
1

e−(x2+y2)/(2σ2
1 )− 1

2πσ2
2

e−(x2+y2)/(2σ2
2 ), (2.13)

where x, y are the distances from the origin in the horizontal and vertical axes respectively, and
σ1, σ2 are two different standard deviations of two Gaussian distributions, usually σ2 = 1.6σ1.
This DoG function is used as a convolution kernel on images. Figure 2.3(b) gives an example of
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DoG edge detection.

2.1.4 Morphological operations

There is a set of operators that can be described in terms of adding or removing pixels from
a binary image according to certain rules, which depend on the pattern of neighboring pixels.
They are called morphological operators. While most morphological operations focus on binary
images, some can be applied to grayscale images.
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(a) (b)

Figure 2.4: Given a reference pixel, the 4-neighborhood is shown in (a) and 8-neighborhood is
shown in (b). The red circles indicate neighboring pixels.

Morphological operations are performed in a small neighborhood of a reference pixel, which
includes the reference pixel itself. In many applications, the 4-neighborhood or 8-neighborhood
is used (Figure 2.4). The corresponding masks are

M f our =

 0 1 0
1 1 1
0 1 0

 , Meight =

 1 1 1
1 1 1
1 1 1

 . (2.14)

There are four basic binary morphological operators: EROSION, DILATION, OPEN and CLOSE [56].
We label every pixel in a binary image by zero and one, corresponding to white and black pixels
respectively. Let G be the set of all the pixels that are not zero. Mp denotes the mask (M f our or
Meight) shifted so that its center coincides with the pixel p. EROSION is defined as

G	M = {p|Mp ⊆ G}. (2.15)
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Original EROSION DILATION OPEN CLOSE

Figure 2.5: Morphological operations. The removed pixels are shown in light gray colour and
added pixels are shown in dark gray colour.

This equation means that if a pixel and all its neighbors are in G, then this pixel is in the erosion
result.

DILATION is defined as
G⊕M = {p|Mp∩G 6= /0}. (2.16)

This equation means that if a pixel is in G or at least one of its neighbors is in G, then this pixel
is in the dilation result.

The EROSION operation is useful for eliminating small objects. But it has the disadvantage
that all the remaining objects shrink in size. We can avoid this effect by applying DILATION to
the image after EROSION. This combination of operations is called OPEN:

G◦M = (G	M)⊕M. (2.17)

Intuitively, OPEN refers to the ability to open up gaps between just-touching features. It is
commonly used to remove pixel noise.

In contrast, the DILATION operator can fill holes and cracks but enlarge objects. So we can
define a CLOSE operation that is the combination of EROSION following DILATION:

G•M = (G⊕M)	M (2.18)

CLOSE refers to the ability to close breaks in features. It is used to fill in missing pixels within
features and narrow gaps between components of a feature.

Figure 2.5 shows an example of these operators using the 8-neighborhood mask. These
operators can also be viewed as a form of applying the neighborhood mask to do convolution
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over a Boolean algebra. I will apply morphological operations to smooth results in Chapters 4,
5, and 6.

2.2 Geometric data structures and algorithms

I introduce some geometric data structures and algorithms used extensively in this research.

2.2.1 Voronoi diagrams and Delaunay triangulations

(a) (b)

Figure 2.6: An example of a Voronoi diagram (a) and its corresponding Delaunay triangulation
(b).

The Voronoi diagram comes from the field of computational geometry, in which it is used
for nearest neighbor queries, among other uses. Given a set S of points in the plane, the Voronoi
region of a point P in S is defined as the set of points in the plane closer to P than to any other
points in S. These Voronoi regions tessellate the whole plane and we call this tessellation a
Voronoi diagram.
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The dual graph of the Voronoi diagram is the Delaunay triangulation, which is a triangulation
of S such that no point in S is inside of the circumcircle of any triangles. Figure 2.6 shows a
Voronoi diagram and its corresponding Delaunay triangulation. Voronoi diagrams and Delaunay
triangulations can be computed by computer software such as CGAL [14] and Triangle [120].
Voronoi diagram provides the basis of some optimization techniques, such as Lloyd’s method
(Section 2.3.1).

2.2.2 Graph structure

To efficiently explore the geometric and topological relationships of objects, I encode an image
using a graph data structure. My representation is similar to the region adjacency graph used
occasionally in image segmentation and labeling algorithms [50].

Assume that the source image can be subdivided into many regions. The regions can be a
single pixel or a segment composed of many pixels. We can think of the image as a graph with
a vertex for each region. Two vertices are connected by an edge when there are two pixels, one
from each of the corresponding regions, that are adjacent horizontally or vertically (each is in
the other’s 4-neighborhood). Figure 2.7 gives a simple demonstration. The artistic thresholding
algorithm presented in Chapter 4 will work on a graph structure. The colour and geometric
properties of the regions (e.g., area and boundary) can be saved in vertices and edges of this
graph. I will discuss more details about the usage of the graph structure in Chapter 4.

2.3 Optimization methods

Optimization methods are applied in choosing the best solution to problems that have many
possible answers, or for which it is difficult or impossible to derive a closed-form solution. Given
a space S of configurations for a system and an objective function f , optimization searches for a
configuration x in S for which f (x) is as small as possible.

A lot of research problems posed in computer graphics are optimization problems [133]. I
present several optimization methods applied in my research.
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(a) (b)

Figure 2.7: An example of the region adjacency graph for an image. Every region in (a) has a
corresponding vertex in (b) with the same colour and label.

2.3.1 Lloyd’s method

Lloyd’s method is a relaxation method based on the Voronoi diagram [75]. It is used to distribute
a set of points P evenly in a region of the plane. The basic algorithm is as follows:

Algorithm 1 Lloyd’s method
Let P be an initial distribution of points.
repeat

Compute the Voronoi diagram of P.
Compute the center of gravity for each Voronoi region.
Move each point to the centroid of its region.

until The sum of point movements is below a given threshold.

Figure 2.8 shows the effect of this method. A typical application of Lloyd’s method is stip-
pling [27, 115, 47]. I will apply Lloyd’s method in the calligraphic packing technique of Chap-
ter 6.
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(a) (b)

Figure 2.8: Lloyd’s method. Starting from the random distribution (a), we can get an even
distribution (b).

2.3.2 Simulated annealing

The simulated annealing method is inspired from annealing in metallurgy, a technique involving
heating and controlled cooling of a material to increase the size of its crystals and reduce their
defects. In an annealing process a melt, initially at high temperature and disordered, is slowly
cooled so that the configuration of atoms converges to the lowest energy state.

By analogy, simulated annealing is a generic probabilistic algorithm for global optimization.
It locates a good approximation to the global optimum of a given objective function in a large
search space. It is better than local search methods such as hill climbing, because simulated
annealing allows you to occasionally move to a less optimal solution, which can help avoid
getting caught in local minimum. It is a clever combination of local search and random walk.
Each step of this algorithm replaces the current solution by a random “nearby” solution, chosen
with a probability that depends on the difference between the corresponding function values and
on a global “temperature” parameter T , which is gradually decreased during the process. As
the temperature gradually decreases the algorithm becomes more deterministic. How to set the
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initial value of T and decrease it in each step is related to the problem domain. The user has
to tune them to achieve good performance. The algorithm is shown in Algorithm 2. Simulated
annealing has been widely used in computer graphics [45, 1]. I will apply it in the artistic
thresholding algorithm.

Algorithm 2 Simulated annealing method
Get an initial state s.
Initialize temperature T to a high value.
while T is higher than a temperature threshold T0 and the energy E(s) is greater than an energy
threshold E0 do

Randomly pick a neighbor yielding a state s′.
if E(s′) < E(s) then

Replace s by s′.
else

Replace s by s′ with probability e
E(s)−E(s′)

T .
end if
Decrease the temperature T .

end while
return the best solution found.



Chapter 3

State of the Art in Black-and-White Image
Synthesis

In this chapter, I survey the state of the art in black-and-white image synthesis. Based on the
dimensionality of representation presented in Section 1.1, I classify related work into three types:
point-based techniques, line-based techniques and plane-based techniques. Note that these terms
are not intended to correspond to their geometric definitions, but to their common use in art.
Thus a “point” is any small localized primitive, “lines” can include curves, and “planes” can be
regions of any shape.

3.1 Point-based techniques

First, I will review the basic techniques that make use of points as elements. Kandinsky said,
“the point is temporally the briefest form” [59]. Although in theory a point has no dimension or
size, I regard any shapes as points if they are small compared to the image size. For instance,
small rectangles and circles are considered points in our discussion. Every pictorial form can be
viewed as a composition of points. This fact is verified by many techniques that are still applied
today. For example, the basic element of modern raster monitors is the pixel which is a tiny
point. Most image file formats are also based on assigning specific colours to a grid of points.

Halftoning is one the most popular means of converting an image into black-and-white while
preserving the image tone. Among different halftoning approaches, dithering is frequently

37
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(a) (b) (c) (d) (e)

Figure 3.1: Given a source image (a), the result of ordered dithering is shown in (b). Using error
diffusion, a better result (c) can be acquired. The result of Weighted Voronoi Stippling is in (d)
and the result of applying a Difference-of-Gaussians method is shown in (e).

used in the printing and publishing industries to reproduce image tone using only black and
white [131]. It simulates continuous gray levels by varying the configuration of black dots ar-
ranged in a regular pattern (Figure 3.1(b)). However, the regularity of patterns leads to easily
noticeable artifacts that detract from the quality of the rendered image. An enhanced technique
is error diffusion (Figure 3.1(c)). It traverses each pixel and computes the closest intensity avail-
able. The error is the difference between input value and the nearest available intensity. The next
step is to divide up the error and distribute it to nearby neighbors. When we reach to these later
pixels, the distributed error is combined into image values for processing. Error diffusion is a
good halftoning method. Many artifacts are suppressed, producing images with little grain.

Other more complicated dot distribution methods have been developed. Ostromoukhov demon-
strated how to generate a random, smooth dot distribution by relaxing a random point set with
a mass-spring model [93]. In other work, he used a Hilbert space-filling curve or a random
space-filling curve to distribute the dithering dots [96]. Velho and Gomes introduced a similar
digital halftoning technique that also applied space filling curves such as the Hilbert, Peano, and
Sierpinski curves to generate non-repeating dithering dots [134].

Several point distribution techniques are based on computation of Voronoi diagrams. Deussen



State of the Art in Black-and-White Image Synthesis 39

et al. [27] applied Lloyd’s method, which is an iteration between constructing Voronoi tessella-
tions and centroids (see Section 2.3.1). Secord extended this work by introducing a weighted
centroidal Voronoi diagram method [115]. Figure 3.1(d) shows an example using this technique
with 2000 dots. This technique can present images with a much smaller number of dots by
sacrificing resolution.

Researchers also employed results from human visual perception to seek better solutions. For
example, Gooch et al. used a perceptually motivated technique to convert photographs of human
faces into black-and-white illustrations [38]. Their method is based on a Difference-of-Gaussians
technique. Two different Gaussian kernels operate at varied scales. Then the differences of the
Gaussian operations are summed up and thresholded to a two-tone image. The DoG works as a
band-pass filter. One effect of this technique is that areas with a constant gradient are removed.
Figure 3.1(e) shows an example.

Of course, the stippling dots do not need to be small circles exactly. Ostromoukhov and
Hersch [95] proposed a technique which they called “artistic screening” to generate screen dots
of any shape. ASCII art is an extension technique that down-samples the image, computes the
intensity value for each cell, then assigns a corresponding character to it.

Another related art style is mosaics [72]. Several attempts have been made to simulate the
appearance of ancient mosaics [43, 31]. Of course, the small mosaic tiles can be extended to
any shape, so this problem actually is a packing problem. It has been studied by many computer
graphics researchers [65, 47]. Dalal et al. defined a new metric to solve the “NPR packing”
problem that aims at evenly distributing tiles with the constraints of minimizing both grout and
overlaps [22]. But NPR packing does not really attempt to approximate tone. Schlechtweg et al.
presented the “RenderBots” technique to unify point-based and stroke-based rendering [114].
Their framework can handle stippling, mosaics, and hatching.

3.2 Line-based techniques

Line drawing is widely used by artists. It is a representation method of using straight and curved
strokes whose width can be constant or varied to depict objects. This technique emphasizes form
and outline. Many traditional media can be used to create line drawings, for example woodcut,
engraving, and pen-and-ink.
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(a) (b) (c) (d) (e)

Figure 3.2: Different feature lines: given a 3D model (a), we can get silhouettes (b), contours (c),
ridge and valley lines (d) and contours with suggestive contours (e).

Lines can convey shape information efficiently. A few lines often suffice to offer us strong
shape cues. NPR researchers have studied the mathematical and perceptual properties of various
lines (Figure 3.2) [18]. These feature lines can be computed from 3D models [109]. Silhou-
ettes are boundaries between object and background. Contours emphasize depth discontinuities.
Ridge and valley lines are local maxima and minima of curvature. Hatching lines are repeated
patterns of lines. They are useful to convey shape. DeCarlo et al. presented a new type of
feature lines: suggestive contours, which they defined as lines that become contours in nearby
views [23].

Compared with other NPR sub-fields, researchers have been exploring this area for a long
time and many techniques and systems have been developed. These techniques can be catego-
rized as image-space methods or object-space methods. For an image-space method, the input is
a 2D image, while for an object-space method, it is a 3D model.

First, I review image-space methods. A direct approach is applying edge detection [11]
to get lines. But the result includes too much noise and is hard to control, as I discussed in
Section 1.2.1. Pearson and Robinson designed feature-extraction operators which make use of
the second derivative of image [98]. Their operators are helpful to suppress noise. Instead
of using general 2D images, Saito and Takahashi [110] rendered geometric properties of a 3D
scene, such as depth and normal vector, into raster images they called G-buffers. They developed
line drawing algorithms for discontinuities, edges, contour lines, and curved hatching based on
G-buffers. Deussen extended the basic G-buffer approach [125, Chapter 6]. He used a set of
clipping planes to cut the 3D scene and extracted the intersecting lines from G-buffers. These
intersecting lines are simulated hatching lines. His method can be applied to generate copper
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plates. Decaudin showed how to combine depth and normal maps to render outlines [25]. Lee
et al. described a new algorithm to extract silhouettes, creases, ridges and suggestive contours
from a shaded image [68].

Line-based primitives can be applied in halftoning. Pnueli and Bruckstein developed a grid-
less halftoning technique [101]. They used the image intensity to control the evolution of a planar
curve.

Many researchers generate line drawings from object-space, because it provides more help-
ful shape information so that we can extract meaningful lines more precisely. In Hertzmann’s
survey paper [44], he also summarized methods for finding silhouettes of 3D models. Ohtake
et al. detected ridge and valley lines by estimating curvature of the mesh model [90]. As a pre-
processing step, they first fitted an implicit surface to the mesh. Dooley and Cohen described an
automatic illustration system that can generate line illustrations from 3D objects [28]. The lines
include boundary lines, silhouette lines, discontinuity lines and isoparametric lines. Elber ap-
plied a set of isoparametric curves to cover a 3D surface [30]. The density of curves is controlled
by an illumination model of this surface. In another paper, he extended this technique to process
freeform surfaces based on point coverage [29]. Ostromoukhov suggested simulating traditional
facial engraving by composing layers of transformed screened engraving patterns [94]. Goodwin
et al. presented an approach to generate line drawing whose stroke thickness is computed from a
shaded surface [39].

Hatching is a popular topic of research because it is an efficient way to illustrate a surface
to denote its smoothness, material properties, and shading. Hertzmann and Zorin [46] inferred
a direction field from principal curvature and smoothed it by optimization. Finally, they placed
hatching lines following this direction field. Praun et al. applied a set of pre-defined “tonal art
maps” to achieve real-time hatching [103]. They also maintained spatial and temporal coherence.
In a later paper [138], they extended their hatching technique with hardware acceleration.

A closely related art form is pen-and-ink illustration. Many researchers have studied this
topic [112, 142, 111]. The research results of hatching have direct applications in pen-and-ink
illustration. Salisbury et al. [113] introduced “orientable textures” to convey 3D information
in an image-based system. They provided a set of interactive tools that allow the user to edit
direction information. It is helpful in creating compelling pen-and-ink illustrations.

Researchers also explored other interesting variants of line drawing. For instance, with the
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(a) (b)

Figure 3.3: An example of TSP Art in (a) and a result of our image-guided maze construction
algorithm in (b).

purpose of generating drawings made up of a single long path, Kaplan and Bosch [61] presented a
technique that they called “TSP Art”. They first used a point placement method such as stippling
to create dots from an image, then generated a nearly optimal solution to the Euclidean Travel-
ing Salesman Problem (TSP) to find a short closed path that visits every dot exactly once. An
example is shown in Figure 3.3(a). Pedersen and Singh [99] presented a synthesis algorithm that
evolves an initially simple shape into an organic labyrinthine drawing. Xu and Kaplan applied
maze depiction techniques to represent geometric patterns [147] and general images [146]. Fig-
ure 3.3(b) shows an example generated by their system. I will apply some line-based techniques
in papercutting (Chapter 5) and representational calligraphy (Chapter 6).

3.3 Plane-based techniques

Artists have great interest in using small shapes to compose a scene. In theory, all point-based and
line-based techniques can be viewed as special cases of plane-based techniques. These special
planes are small or thin. Many stippling and packing techniques [47, 65, 22, 114] can be applied
with larger shapes.

Plane-based representation is preferred in wholetoning. Recently, Mould and Grant [88]
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(a) (b)

Figure 3.4: Given a source image (a), the mean shift segmented result is shown in (b).

presented an algorithm based on energy minimization for abstracting input images into black-
and-white images. Their goal is to preserve details while as much as possible producing large
regions of solid colour. Contemporaneously, Vergne et al. [135] defined a new shape descriptor
based on convexity and curvature information of 3D objects. It could be used to depict shape
through different shading styles. They demonstrated a minimal shading result that is similar to
wholetoning. Bronson et al. [9] described a method for creating stencils from 3D models and
images through error minimization. Stencils have the same mathematical constraints as paper-cut
designs (Chapter 5).

Another related technique is image segmentation. Black-and-white images are an extreme
case of using only two colours to segment an image. There are many segmentation methods
such as clustering, edge detection, physics based methods, and region growing [121]. One good
method is mean shift (Section 2.1.2). It computes a mean value for search windows. If windows
converge to the same extrema, they are merged (Figure 3.4(b)). Image segmentation has wide
applications in NPR. Recently, Qu et al. [105] presented a technique for screening manga back-
grounds from photographs. Their method is based on image segmentation and applies texture
matching and tone matching to find an optimal assignment of screen types. Their method aims
at the richness of screens and tone reproduction, so it can be viewed as an improved halftoning
technique.
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Little work in NPR is concerned with creating abstracted imagery via large regions of con-
stant colour. DeCarlo and Santella used a hierarchical segmentation of an image to permit ab-
straction with spatially-varying level of detail [24]. In their work, level of detail was guided
by eye fixations, leading to a very natural distribution of detail around salient image features
and high abstraction elsewhere. Similar results were achieved by Orzan et al. [92]. They used
edge information to guide the smoothing of features into large regions of constant colour. Wen
et al. [140] allowed the user to edit a segmentation interactively, and abstracted segment shapes
into attractive coloured forms. Song et al. presented a technique of “arty shapes” to simplify
image segments [122]. A closely related art form is stained glass. Mould used morphological
operators to smooth a segmentation and create stained glass tiles [87]. Brooks [10] presented an
image-based approach to stained glass generation based on image segmentation. Each segment is
covered by textures from real stained glass. The regions in a stained glass image are not exactly
constant colour, but the principle is the same. All of these techniques focus on detail abstraction
and preserve colours from the source image.



Chapter 4

Artistic Thresholding

(a) (b) (c) (d)

Figure 4.1: Examples of a photograph (a) to which simple thresholding (b), adaptive threshold-
ing (c) and max-flow graph cut optimization (d) have been applied.

As discussed in Chapter 1, the simplest way to convert any colour image to a wholetoned
image is undoubtedly thresholding. Thresholding does not produce convincing abstractions of
images (Figure 4.1). Even if we apply more powerful techniques such as adaptive threshold-
ing [37] (Figure 4.1(c)) or a max-flow graph cut algorithm [8] to cluster pixels into two sets
based on their intensity values (Figure 4.1(d)), the result suffers from many of the same prob-
lems and it is hard to control to generate different styles. One notable deficiency in those methods
is that they cannot account for many of the wholetoning characteristics discussed in Section 1.2

45
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such as “tone inversion”, where an artist may choose to colour dark objects white or bright ob-
jects black to make them stand out from the background. These tone reversals are important for
capturing all the details in a scene, and appear natural to the viewer.

In this chapter I present an optimization-based artistic thresholding algorithm to generate
wholetoned images. My algorithm automatically segments a source image and constructs a
graph data structure based on that segmentation (Section 4.1). I establish an energy function
that measures the quality of different black-and-white colourings of the segments (Section 4.2).
My system adopts a simulated annealing framework to minimize an energy function based on a
weighted sum of competing aesthetic goals, such as tone preservation, relative amounts of black
and white, and the depiction of edges and high-level features (Section 4.3). The user can inter-
actively adjust the energy function’s weights in real time and immediately observe the effect on
the optimization process (Section 4.5). The final result is vectorized as output.

4.1 The region adjacency graph

The core of my artistic thresholding framework is a graph data structure (Section 2.2.2) that
encodes the geometric and topological properties of small-scale features in an image.

Given a source image, I use EDISON’s synergistic image segmenter (Section 2.1.2) to subdi-
vide it into regions. The small segments that are produced (related to the notion of “superpixels”
in computer vision [107]) support a wide range of abstracted results, while eliminating the dis-
tracting details associated with operations on individual pixels. Image segmentation can group
pixels homogeneously and implement shape and texture abstraction in a naive way.

Let us assume that the source image has dimensions W ×H (in pixels). Segmentation yields
a set of N regions that I will denote using the indices 1, . . . ,N. Each region is a (not necessarily
connected) subset Si of integer locations (x,y) in the image. We can think of the segmentation as
a graph with a vertex for each region. Two vertices are connected by an edge when there are two
pixels, one from each of the corresponding regions, that are adjacent horizontally or vertically.

I augment this purely topological description of the segments with information that will allow
us to develop artistic thresholding algorithms. With each region Si I associate ci, the average
colour of the pixels in Si, and the area Ai, the number of pixels in Si. For every pair of distinct
indices i and j, let li, j denote the length of the shared boundary between Si and S j. This length is
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measured in terms of the number of adjacencies as described in Section 2.2.2; if Si and S j are not
connected by a graph edge, li, j is zero (and hence an explicit graph data structure is not required).
Figure 4.2 illustrates a simple segmentation, together with its region adjacency graph.

(a) (b)

Figure 4.2: A visualization of the region adjacency graph for a simple segmentation of the image
in Figure 4.1(a). Every segment in (a) has a corresponding vertex in (b) with the same colour
and label. Each vertex records the number of pixels in its segment. Each edge records the length
of the shared boundary between its neighbouring segments.

This simple representation of a segmentation enables a wide variety of non-photorealistic
rendering algorithms. Here I envision artistic thresholding as a technique that assigns a value
bi ∈ {black,white} to every region. I freely abuse this definition, thinking of bi sometimes as a
colour defined in the same colour space as ci, sometimes as a boolean value (where black is true
and white is false), and sometimes as real-valued a grey level (where black is 0 and white is 1).
Given an assignment {b1, . . . ,bN}, I also define B = {i ∈ 1, . . .N|bi = black}, the current set of
black regions.

I would also like to allow a designer to divide the image more coarsely into high-level fea-
tures, and have those features interact with the low-level segmentation. If explicit features are
provided, I simply divide any segmentation regions that cross feature boundaries. I will use these
features in Section 4.2.3. In principle, these two levels could be extended into a full segmentation
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hierarchy, such as the one constructed by DeCarlo and Santella [24]; I found two levels adequate
for my purposes.

4.2 Evaluating the quality of an assignment

A natural first approach to artistic thresholding is an energy-based optimization framework.
There are 2N possible assignments to the bi; I search over that space of assignments for one
that minimizes an objective function. In this section, I build the objective function, based on
an attempt to address the challenges outlined in Chapter 1. I believe that this quality depends
on several competing forces based on the following design rules that should be considered to
generate a wholetoned image:

• Due to the spatial and visual coherence in an image, adjacent things should have the same
colour. Image segmentation helps achieve this goal, because it respects spatial and colour
similarities.

• Because of “tone preservation”, dark regions should be black while bright regions should
be white.

• Edges in the source image should be depicted in the wholetoned illustration. This goal
may be satisfied by colouring two adjacent regions with opposite colours.

• I would like to control relative amounts of black and white. Different ratios of black to
white will produce diverse styles.

• It is desirable to distinguish high-level features in some cases. To highlight a high-level
feature, all segments belonging to this feature should be coloured homogeneously.

The tradeoff in these forces is manifested by an objective function that is a weighted sum of
individual measurements. The designer can adjust the weights to bias the search.

4.2.1 Colour matching

One term in the objective function must measure how well the binary assignment to each region
approximates the original colour of that region.
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(a) (b)

Figure 4.3: An example demonstrating the use of Ccol in isolation. The photograph from Fig-
ure 4.1 is shown segmented in (a). The optimized result is then shown in (b).

I define Ccol, which evaluates the overall difference between the binary assignment and the
source image pixels:

Ccol =

(
∑

i
Aid(ci,bi)

)
/(WH) .

Here, d(c1,c2) is a function that computes the difference between two colours, producing a
result in the range [0,1]. I divide by the total image area to normalize the cost to the range [0,1]
(I will seek to normalize all cost functions in a similar way). When Ccol is used in isolation, the
optimal assignment can be found easily by setting bi to be the thresholded luminance of ci. For
reference, Figure 4.3 shows an image produced by minimizing Ccol. The result is already more
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(a) (b) (c) (d)

Figure 4.4: Demonstrations of the area and boundary costs. The image in (a) was optimized
to be 80% black. Image (b) demonstrates the use of Calike in isolation. In (c), I combine Calike

and Copp with comparable values to achieve a balanced composition. In (d) I combine all three
costs, aiming for 10% black.

attractive than the pixel-based thresholding of Figure 4.1: pixels are collected into segments,
resulting in a less noisy image.

4.2.2 Area matching

In some cases a designer might wish to control the overall proportion of black used in the final
image. Given a user-supplied target value Tarea ∈ [0,1], I define

Carea =

∣∣∣∣∣
(

∑
i∈B

Ai

)
/(WH)−Tarea

∣∣∣∣∣ .

Figures 4.4(a) and (d) demonstrate the effect of optimizing Carea.

4.2.3 Boundary contrast

The most interesting costs associated with an assignment measure the impact of contrast (or lack
of it) between adjacent segments on the quality of the final assignment. Boundaries between
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segments tend to contain the image’s edges as a subset. I would like to preserve the visibility
of those edges by ensuring that adjacent segments with contrasting colours are assigned oppo-
site binary values. Conversely, similarly-coloured segments should be assigned identical binary
values.

I divide the set E of edges of the segment graph into two groups Ealike and Eopp. An unordered
pair (i, j) is in Ealike if bi = b j (i.e., the segments are both black or both white); otherwise the
edge is in Eopp. I can now define

Calike =

(
∑

(i, j)∈Ealike

li, jd(ci,c j)1/5

)
/

(
∑

(i, j)∈E
li, j

)
,and

Copp =

 ∑
(i, j)∈Eopp

li, j(1−d(ci,c j)1/5)

/

(
∑

(i, j)∈E
li, j

)
.

The cost Calike measures how effectively the assignment uses similar binary values for similarly-
coloured adjacent segments. On its own, this cost is theoretically minimized by letting Ealike be
empty, corresponding to a 2-colouring of the region adjacency graph. In practice, minimization
of Calike produces busy assignments that approximate 2-colourings, as shown in Figure 4.4(b).
Conversely, minimizing Copp comes from placing every edge in Ealike, which can be achieved
by assigning every segment the same binary value. When these two costs are given comparable
weights, they cooperate to achieve a balanced use of contrast. Most interestingly, optimizing
these costs can lead to a segment being assigned a binary value that contradicts its luminance, if
that assignment improves the overall depiction of shapes via edges.

Most of the time, we expect that adjacent segments will have similar colours because of
spatial coherence, which suppresses the effectiveness of these measurements. To improve the
robustness of this cost function, some robust estimators can be applied [52]. Empirically, I found
that taking the colour differences to the power of 1/5 magnifies small differences and evens out
the cost functions. Note also that contrasts are multipled by boundary lengths, and normalized
by the total length of boundaries in the image.

When high-level features are provided by the designer, I modify Calike to further penalize
feature edges that are not depicted via segment contrast:
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Calike =

(
∑

(i, j)∈Ealike

li, jd(ci,c j)1/5 pi, j

)
/

(
∑

(i, j)∈E
li, j pi, j

)
.

Here, pi, j = 1 when segments i and j belong to the same high-level feature, and pi, j = 100
when they do not.

4.2.4 Feature homogeneity

(a) (b)

Figure 4.5: An example of minimizing the group homogeneity measure Cgroup in (b), based on
the user-supplied features shown in (a).

When the image is divided explicitly into high-level features, we may sometimes wish to
assign binary values as homogeneously as possible within each of those features. Assume that
there are M features. For a given assignment, let uk and vk denote the number of black and white
segments within feature k. Then I let

Cgroup =

[
M

∑
k=1

(
1− |uk− vk|

uk + vk

)]
/M .
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Source Image Ntarget = 0 Ntarget = 1 Ntarget = 2 Ntarget = 3 Ntarget = 4

Figure 4.6: Demonstrations of the effects of neighboring cost Cneigh. Given the source image, I
prefer 0, 1, 2, 3, 4 black neighbours respectively.

This cost is minimized by assigning all segments within the same high-level feature identical
binary values. On its own, Cgroup can produce attractive images, but deceptively so: the quality
arises almost entirely from the salience of the user-provided features (see Figure 4.5). This cost
can be used profitably in conjunction with the others, as a way to produce a “calmer” assignment.

4.2.5 Other costs

I experimented with three other cost measurements for assignment quality. The first, Cnum, sim-
ply counts the number of black segments. It can be combined with other costs to account for
abstraction. The second, Ccomp, counts the number of connected components of black segments.
I may seek to minimize this value in some applications. If I can reduce the assignment to a
single black connected component, the resulting picture would be a connected set and could, for
example, function as a papercutting. Finally, I let the user define a number Ntarget that records
a desired number of black neighbours for each black segment. I can then include a cost Cneigh

that measures how far every black segment is from having exactly that many neighbours (see
Figure 4.6). For example, setting Ntarget to 2 might tend to produce space-filling paths through
the segments, which could ultimately be treated like mazes. These costs are disabled by default
but can be enabled for specific applications.

4.2.6 Total cost

I must define a single energy function that can be minimized via optimization. I adopted an
approach that has been seen before in NPR [45, 65], computing the overall energy as a weighted
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sum of individual terms:

Ctotal =
wcolCcol +walikeCalike +woppCopp +wgroupCgroup

wcol +walike +wopp +wgroup
.

The weights are non-negative real numbers, not all zero. As with the individual costs, I
divide by the sum of the weights to normalize the quality measurement. This normalization
becomes especially important in the next section, where Ctotal is used as the objective function
in a simulated annealing optimization. If the overall scale of the weights were allowed to drift,
the resulting cost function would behave differently with respect to the optimization’s cooling
schedule.

4.3 Optimization

The goal of artistic thresholding is to find an assignment {b1, . . . ,bN} that minimizes the total cost
Ctotal defined in the previous section. Except for simple cases, it is too expensive to search over all
2N assignments for the optimum. Instead, I use an optimization framework based on simulated
annealing [104, Chapter 10]. Simulated annealing is a robust, general purpose optimization
algorithm. It is particularly useful when the geometry of the configuration space is difficult to
characterize. Simulated annealing is one example of a Markov chain Monte Carlo method. Barbu
and Zhu applied the similar Swendsen-Wang method to solve graph partition problems [5].

I initialize the bi randomly to black or white, and keep track of the current best assignment.
The optimizer repeatedly constructs perturbations of this assignment and tests their costs. If a
perturbed assignment has a lower cost, it is accepted unconditionally as the new best answer;
if the cost is higher, it is accepted with a small probability, temporarily degrading the solution
in the hopes of avoiding local minima in the configuration space. I use a cooling schedule
to decrease the acceptance probability at an exponential rate. Optimization continues until a
specified number of iterations have passed with no changes to any of the bi, at which point I
report the best assignment found. A similar approach was used by Agrawala and Stolte [1] to
render route maps.

The question remains of how to construct perturbations of the current assignment. A natural
approach is to flip a random bi and check whether that improves the overall assignment. However,
in practice this approach is too local. There may be situations where overall cost can be decreased



Artistic Thresholding 55

by changing the values of several nearby segments in tandem, even though the cost goes up if
any one of them is flipped in isolation.

I mitigate this problem by operating on subgraphs instead of individual segments. Given a
vertex in the region adjacency graph, I generate a random connected subgraph containing that
vertex. The number of vertices in the subgraph can be controlled by the user; I have found that
three to five vertices provide a good balance between performance and quality. I construct new
assignments for all possible combinations of binary values within this subgraph, and emit the
lowest-energy combination as the chosen perturbation.

Note that I do not need to recompute Ctotal from scratch every time some bi changes. Most
of the energy terms depend only on the relationship between a segment and its immediate neigh-
bours. When one segment changes colour, I can compute the effect of this change on those cost
terms and add the difference to the current cost. I further exploit this fact when testing all com-
binations of binary assignments within a subgraph. I iterate over the combinations in an order
given by a Gray Code [139], so that the combinations can be tested by flipping a single bi at a
time.

4.4 Postprocessing

Once the optimization is complete, I can simply render every pixel in Si using colour bi. I have
also experimented with several postprocessing operations that can improve the overall quality of
my results.

The designer may optionally apply the standard OPEN and CLOSE morphological operators
described in Section 2.1.4, adapted here from the pixel grid to the region adjacency graph. These
operators can help to eliminate small, isolated pockets of contrasting colour, smoothing out noise
and increasing the level of abstraction in the thresholded image. For each segment, I control
which of its neighbours participate in the computation of OPEN and CLOSE. The regions cannot
be processed uniformly in these morphological operations, because we do not like big segments
to be affected and we prefer to keep salient edges. Some modifications are incorporated. A user-
controllable area threshold prevents small adjacent segments from having an influence. An edge
threshold excludes adjacent segments that are too different in colour, helping to preserve image
edges.
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(a) (b)

Figure 4.7: Demonstrations of the postprocessing operations discussed in Section 4.4. I smooth
out isolated pockets of black and white in (a) using graph-based morphological operators. In (b),
I superimpose edges between high-contrast segments that were assigned the same binary value.

While I wish to draw a clear distinction between artistic thresholding and previous work on
line drawing, a few well-chosen lines can enhance some results. I search over all pairs of adjacent
segments. When two segments are given the same binary assignment but have a colour difference
beyond a user-selected threshold, I draw the boundary between them as an edge. These edges
can help to reinforce object boundaries in the source image that were missed by the optimizer.
In practice, I found that many images are comprehensible without these edges.

Figure 4.7 demonstrates the application of the morphological operators and edges.
Finally, I vectorize the binary image to produce a high-quality scalable result. I have obtained

good results using the Potrace library [117]. All results presented here have been vectorized in
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this way.

4.5 Implementation

I have constructed an interactive software implementation of artistic thresholding. The interface
is designed to support a continuous, dynamic interaction between the designer and the optimiza-
tion process. A more complete description of the implementation, together with a screenshot, is
given in Appendix A. The current best binary assignment is displayed during optimization. The
designer can modify the weights in the cost function, immediately affecting the algorithm. To
allow weight changes to have a significant effect on the assignment, each adjustment causes a
small increase in annealing temperature. The designer can also fix binary values for individual
segments when desired; such values are held constant during optimization. This design proce-
dure can be viewed as a mixed-initiative interaction [2] in which the designer and the system
collaborate to finish a design task. The designer provides intuition, evaluation, and makes high-
level decisions, while the system manages details and generates immediate feedback responding
to the designer’s current settings.

One downside of this interface is the lack of continuity. In the processing of artistic thresh-
olding, any change to the binary assignment will necessarily produce discontinuous feedback.
During optimization, these discontinuities become even more pronounced when the annealing
temperature is raised following user interaction. The assignment can change chaotically while
the optimization settles down. Even at low temperatures, there might exist multiple near-optimal
results corresponding to current parameter configuration. These results have nearly the same
energy, meaning that the optimization will flip back and forth between them. I look forward to
investigating how to provide less chaotic feedback in future work.

In my implementation, I set the initial annealing temperature to 100. Every time the tem-
perature changes, I iterate over the vertices in the region adjacency graph in random order. For
each vertex, I construct a random connected subgraph containing that vertex and optimize it
as described in Section 4.3. After visiting all vertices, I set the temperature to 99% of its cur-
rent value. When the current best assignment has survived 200 temperature changes, I stop the
optimization process.
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4.6 Results and discussion

I first compare my wholetoned results against those produced by artists. Figure 4.8 shows several
experiments. In general, my technique can create similar results to artists. The principal features
are also reproduced well by my system. But I also notice that artists have deliberate control over
the details, so that they can capture features more precisely and direct the viewer’s focus. See,
for example, the eyes of Che Guevara and the teeth of Marilyn Monroe. Artists can also handle
abstraction more effectively, as in the wheels of the skateboard. Figure 4.9 shows the difference
between my results and images generated via naive thresholding followed by vectorization. We
can notice that there are some significant differences in the results produced by my system: for
example, Che Guevara’s nose and Marilyn Monroe’s lips are both more sharply defined because
of tone inversion.

On the other hand, I found my implementation to be successful on a wide variety of source
images. Figure 4.10 demonstrates different styles of Che and Marilyn generated by my system.
Figures 4.11, 4.12 and 4.13 show more results produced using my artistic thresholding algo-
rithm. A typical result requires only a few minutes of processing (disregarding the segmentation
step) and very little user interaction. In most cases, it is not necessary to fix the binary values for
any segments manually.

In Figure 4.14, I compare my technique to drawings that could be produced with more tradi-
tional image processing methods. I found that a combination of bilateral filtering, blurring and
thresholding can produce attractive results, as in Figure 4.14(c). However, this method misses
some of the edges and details brought out by artistic thresholding. Also, it is ultimately tied to
traditional luminance-based thresholding, and could never produce more abstract results like the
rightmost image in Figure 4.11.

The algorithm produces interesting results across a wide range of weights, and the respon-
sive interface invites the designer to manipulate the weights interactively in a dialogue with the
optimizer. My implementation is an engaging and effective tool for creative exploration of this
artistic style.

As mentioned in Section 4.1, I support manually specified high-level features, which can be
provided by tracing salient boundaries in a drawing program. In some cases, I can make use of
pre-existing feature data. The images in Figure 4.12 all come from the Berkeley Segmentation
Dataset [78], and are accompanied by human feature identification data. In Figure 4.12, high-
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Figure 4.8: Evaluation of wholetoned results. The first column lists the source photographs. The
second column shows the results by professionals and the last column shows my results.
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Figure 4.9: Comparison of artistic thresholding and naive thresholding. The first column shows
my results and the second column shows the results by naive thresholding on pixels. The red
regions in the last column visualize the differences between them.
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Figure 4.10: Variations of Che and Marilyn results generated by my system.

Figure 4.11: A photograph of St. Basil’s Cathedral in Moscow, rendered three different ways
using artistic thresholding. Photograph used with permission from CNET Networks, Inc., Copy-
right 2008. All rights reserved.
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Colour only Colour, boundary
contrast, and
morphology

Colour, boundary
contrast, morphology,

and 10% black

Colour, 80% black, boundary, �xed
white foreground

Colour, boundary, 86% black

Colour and boundary

Colour, boundary,
group homogeneity

Colour, boundary,
�xed black foreground

Figure 4.12: Sample results produced using my artistic thresholding algorithm. I summarize the
settings used to produce each result by listing the non-zero weights and target area (if applicable).
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Figure 4.13: A wholetoned drawing based on a photograph of a bridge in Wuzhen. Photograph
by Carsten Ullrich.
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(a) (b) (c)

Figure 4.14: A wholetoned drawing based on a photograph of the CN Tower, together with
related drawings produced via traditional image processing approaches and vectorization. The
original photograph is shown in (a). Blurring and adaptive thresholding produces the drawing
in (b). In (c), I apply bilateral filtering, blurring and thresholding, leading to a result with some
similarities to the illustration produced via artistic thresholding.
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(a) (b)

(c)

Figure 4.15: Comparison with Mould and Grant’s work. A source photograph is shown in (a).
Mould and Grant’s result is shown in (b). Several different results generated by my system are
shown in (c).

level features were used for results that have fixed foregrounds or that made use of Cgroup.
Despite the seemingly unpredictable nature of simulated annealing, I found that my imple-

mentation was quite stable: given a source image and its region adjacency graph, re-running the
optimization with the same weights produced nearly identical results. Differences were minor
and did not affect the visual character of the thresholded images. Quantitatively, the images
differed from each other over only a few percent of their pixels.

As with many algorithms in graphics and vision, I begin with a finely segmented image
and treat segments as atomic entities. Conceivably my algorithm could be modified to operate
directly on the graph induced by image pixels. However, segments provide a basic level of
image abstraction and noise reduction that would be difficult to achieve at the pixel level. A
graph of individual pixels would probably produce less attractive results in the presence of Calike

and Copp. Looked at another way, I suspect that for any sufficiently robust artistic thresholding
algorithm, there is a need to cluster pixels together for shape abstraction and feature homogeneity.
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Segmentation seems like a good way to do that. Like other researchers [10], I prefer to trust in
the high quality of published segmentation algorithms.

The quality of segmentation has great impact on my result. Unlike the closely related work by
Mould and Grant [88], which combined a base layer describing the global features with a detail
layer describing local small features, my system relies on one single existing image segmentation
technique. Their work will create abstract black-and-white images while preserving details, and
because the two-layered segmentation is more robust, their results are more appealing in some
cases. But their technique is hard to adapt to a wide range of styles and its control parameters
are not intuitive. As shown in Figure 4.15, my method is able to generate a wider variety of
wholetoned images.

Because the quality of image segmentation has a great impact on the artistic thresholding
result, my algorithm might not produce satisfying results for some images that current image
segmentation methods cannot process well. This can be verified in Figure 4.16. Image segmen-
tation performs poorly in an image with a narrow range of tones, such as the cat picture in the
leftmost column. Other simple thresholding methods, such as blurring plus simple thresholding
or bilateral filtering plus thresholding, also cannot produce satisfactory results. Adaptive thresh-
olding and Mould and Grant’s method work better in this situation. Another case where image
segmentation is unsuccessful is in areas where an image has gradients, as in the shadow on the
Sphinx’s face in the second column. In these areas, image segmentation cannot create sharp
edges, leading to two regions that are merged falsely. This limitation also exists in the adaptive
thresholding method. In this situation, we can improve the quality of results with the benefit of
user specified high-level features. Of course, more robust segmentation techniques are always
desirable in a system such as mine. For images that have relatively even tone distribution, artistic
thresholding will work well as shown in the third and fourth columns of Figure 4.16.

4.7 Black-and-white Animation

Given the compelling appearance of the film Renaissance, it is natural to consider the application
of artistic thresholding to video. I developed an approach that is similar to Video Tooning [136].
In my approach, I view a video sequence as a three dimensional data set. Then a high dimensional
segmentation is executed on it. The next step is to find a low-cost assignment directly on the
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Source pictures

Tone histograms

Segmentation
results

Artistic 
Thresholding

Blurring + simple
 thresholding

Bilateral �ltering 
+ thresholding

Blurring + adaptive
thresholding

Mould and 
Grant’s results

Figure 4.16: Applicability of artistic thresholding.
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(d)

Figure 4.17: An example of black-and-white animation generation. An animation is a three
dimensional data set (a). The segmented result is in (b). After optimization, I can get the bi-level
animation in (c). Frames from source animation and resulting animation are in (d).

space-time volume equivalent of the region adjacency graph. The objective function is the same
as my previous description. Finally, the newly generated black-and-white frames are merged into
an animation. Figure 4.17 illustrates the approach.
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4.8 Future work

There is an interesting relationship to be explored between artistic thresholding and line drawing.
My research takes a first step by drawing missed edges explicitly after optimization is complete.
I would like to investigate how an understanding of edges can be incorporated directly into the
optimization. I might extend my binary assignment to include a black or white value for each
edge in the region adjacency graph. I would then have to modify the cost functions to evaluate
assignment quality in the presence or absence of these edges. At a minimum, I would want a
term that simply minimizes the total length of all edges drawn, to encourage the binary segments
to carry most of the salience in the result.

(a) (b)

Figure 4.18: Examples of illusory contours: the Kanizsa triangle (a) and my drawing (b), inspired
by ink painting [150].

Even when adjacent segments with contrasting colours are given the same binary value, it
need not follow that their shared boundary must be drawn. Our perceptual systems are wired to
infer portions of object contours that are obscured by lack of contrast. Perhaps the most famous
demonstration of this effect is the “Kanizsa triangle”, shown in Figure 4.18(a). Missing contours
are inferred so strongly that we actually see an edge where none is present. These “illusory” or
“subjective” contours have been demonstrated in many contexts [97], and are usually attributed
to a Gestaltist explanation: a triangle occluding three circles is the simplest interpretation of the
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image. This effect is used in practice, as in the boundaries between the houses in Figure 4.18(b)
and the dresses in Figure 1.13(a) (Chapter 1). I would like to explore the problem of how well
image edges can be represented even when partially invisible, taking inference into account.
This effect is enabled uniquely by artistic thresholding: line art drawings do not exhibit illusory
contours to the same degree.

Another effect not easily achieved is the use of “exclusive-or” to depict foreground objects
on top of a background that varies between black and white. I have encountered many examples
where thin foreground objects such as trees or table legs are drawn in white on black segments
and black on white segments (see Figure 4.18(b)). The object is then visible everywhere, and
can be perceived as a cohesive whole even though it varies between black and white. Because I
start by segmenting a flat image, it is difficult to discover opportunities to use this effect. I can
contrive to achieve it by specifying high-level features that deliberately cross through foreground
objects. Those objects are then broken into multiple segments, allowing the optimizer to make
independent assignment choices in the sub-segments. Figure 4.19 shows an example. An alterna-
tive would be to work from a 3D scene or 21

2D layers, in which case I can decide on an XOR-like
compositing rule when the layers are flattened. This technique provides a solution to the tone
inversion challenge discussed in the introduction. I discuss a similar approach in Chapter 5 in
the context of papercutting.

Finally, it would be interesting to augment the objective function by taking into account fur-
ther measures of salience in the source image. Salience could be painted by hand or derived from
eye-tracking data [24]. It might also be computed automatically; Collomosse and Hall [19] used
an automated salience algorithm to drive a genetic algorithm for painterly rendering. Salience
would probably be used to annotate edges in the region adjacency graph with an importance
value, which would then affect boundary contrast costs.
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(a) (b)

(c) (d)

Figure 4.19: An example of how an “exclusive or” effect may be achieved via carefully con-
structed user features. The tree in (a) yields a single large segment, and therefore cannot contrast
with both the building and the sky in (b). In (c) I force a feature for the building to cross through
the tree. The boundary of this feature splits the tree into two segments that can be given opposite
colours. Photograph by Flickr user atemzeit, used with permission.



Chapter 5

Computer-Generated Papercutting

The craft of papercutting is part of the folk art traditions of cultures all over the world. From the
point of view of computer graphics, papercutting can be seen as a method of composing abstract
bi-level images. It satisfies the definition of a wholetoned style discussed in Chapter 1. But it
is not just wholetoning; papercutting is special because it has a set of geometric connectivity
constraints so that a paper-cut design can be cut out from one single piece of paper. Moreover,
many stylized ornamental motifs are commonly used in traditional papercutting as an efficient
approach to texture and shape abstraction.

In this chapter, I present a technique for composing digital paper-cut designs. The elements
of a design may be images, which are processed via artistic thresholding (Section 5.3), or they
may be procedurally-generated arrangements of shapes (Section 5.4). Elements are composed
using a set of boolean operators that preserve connectivity (Section 5.5). The resulting designs
are well suited to being cut by a new generation of inexpensive computer peripherals.

5.1 Introduction

Papercutting, which originated in China 2000 years ago, is today part of the folk art traditions of
cultures all over the world [55]. It is still a popular decorative art in China [71] (where it is known
as Jianzhi), and is practised in distinct styles in Japan (Kirigami), Germany (Scherenschnitte),
Poland (Wycinanki), Mexico (Papel Picado) and Jewish culture. In some of these cases, designs
play a symbolic role in rituals or festivals; other uses are more purely decorative or artistic.

72
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As a loose collection of traditions, there is no single recipe for constructing paper-cut de-
signs. But if we restrict ourselves to a subset of all human-made examples, we begin to see some
recurring mathematical features. In this work I consider the common case where the design is a
connected shape formed by cutting holes into a piece of paper. If the image being depicted is rep-
resented by the paper itself, we call it a “positive paper-cut”; the image may also be represented
by the holes left in the paper, which we call a “negative paper-cut”. In either case the design is a
connected subset of the plane which, except for the simplest silhouettes, will contain holes. Such
shapes, which can feasibly be cut from a piece of paper, will be called “valid paper-cut designs”.

Motivated by this simple mathematical description, in this chapter I examine the problem of
constructing valid paper-cut designs with computer assistance. In particular, I develop a set of
tools for constructing simple designs, each of which is a valid paper-cut, and then give a set of
binary operations that allow paper-cuts to be combined while preserving validity. In my system,
the user has access to high-level controls for creating and combining designs, and the computer
handles the geometric details.

5.2 Related work

Figure 5.1 shows just a few examples from thousands of years of papercutting tradition. The
traditional Chinese design in (a) is used to express wishes of good fortune for the new year.
Cut-out silhouettes like those in (b) enjoyed significant popularity as a style of portraiture in
18th century Europe. Today, artists such as Susan Throckmorton, whose work is shown in (c),
produce beautiful and highly detailed paper-cut scenes that are excellent examples of both art
and craft [129].

The use of computers to design cutting patterns for paper has become a popular research
topic, driven in part by the simplicity and ready availability of computer-controlled cutting tools.
Previous research has investigated papercraft sculpture [83], origami architecture [82] and pop-
up books [35]. Within the art-math community, paper has been cut into interlocking grids de-
picting mathematical shapes [119] and polyhedral sculptures [42].

In computational geometry, some researchers have investigated the algorithmic aspects of
cutting paper. Demaine et al. showed that a single straight-line cut can remove any shape from a
suitably folded piece of paper [26].
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(a) (b) (c)

Figure 5.1: Three examples of papercutting: a traditional phoenix and flower design in (a), a
silhouette portrait in (b), and a modern paper-cut by Susan Throckmorton in (c).

On the other hand, little research in computer science has addressed the problem of papercut-
ting in the traditional folk art sense. The cut-out Islamic star patterns of Kaplan and Salesin [63]
can be seen as a family of purely geometric paper-cut designs. Liu et al. [74] studied the cyclic
and dihedral symmetries of different annuli in paper-cut designs, and showed how to synthesize
new designs with different rotational orders. Recently, Li et al. [69] presented a design tool for
annotating animated 3D surfaces with holes derived from traditional papercutting motifs.

Insofar as the designs we study in this chapter are binary images, we can see papercutting as
a form of wholetoning. Existing research in non-photorealistic halftoning, such as pen-and-ink
rendering [142], might therefore be seen as related. On the other hand, even if a pen-and-ink al-
gorithm might be constrained to produce a connected final result (for example, the maze designs
of Xu and Kaplan [146] are connected by construction), such designs are likely too detailed to be
cut by a human, and possibly even by a machine. In my study of traditional papercutting, I found
few examples with hatching or any other form of continuous tone reproduction. Papercutting
tends to use a more stylized representation of shape.
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5.3 Image-based paper-cut designs

I would like to have access to images as a source of paper-cut designs. Artistic thresholding
might serve as a suitable conversion algorithm. However, for the purposes of papercutting, we
must impose the additional constraint that the resulting representation be connected. In this
section I therefore propose a two step conversion process: I apply my artistic thresholding on
images, and then run an image-based algorithm to enforce connectivity.

(a) (b) (c) (d)

Figure 5.2: Artistic thresholding applied to a portrait of Lincoln (a) to generate the black-and-
white image in (b). Additional pixels are coloured in to force all regions to be connected in (c).
The final vectorized paper-cut design in shown in (d).

5.3.1 Wholetoning

In my interactive application, I first provide the user with a standard set of tools for foreground
extraction, based on lazy snapping [70] and intelligent scissors [86].

After background removal, we are now ready to create a bi-level version of the image. As
shown in Figure 5.2(b), I apply the artistic thresholding technique presented in Chapter 4. Addi-
tionally, I provide an enhancement tool to overlay the result of edge detection on the wholetoned
image. Image edges can help fill in outlines that disappear during wholetoning (see Figure 5.3).
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Figure 5.3: A demonstration of adding detected edges to better depict object outlines.

5.3.2 Enforcing connectivity

The thresholding operation can produce many disconnected regions. As discussed in Chapter 4,
we could attempt to force connectivity by minimizing the number of connected black components
during artistic thresholding, but there is no guarantee this would work, or that the results would
be visually satisfactory. I used a simple image-based algorithm to colour additional pixels black
to yield a single connected component.

I first compute all the connected components in the thresholded image, and identify the small-
est one. To create a valid paper-cut, I will need to connect this component to some other com-
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(a) (b) (c)

Figure 5.4: In (a), two components α and β are connected by a path of red pixels from the
boundary of α (in green) to β . The path is surrounded by an oriented bounding box in (b). The
numbers are the intensities of the corresponding pixels in the source image. I threshold all pixels
inside the bounding box with the maximum intensity along the path (4 in this example). The
result is shown in (c). The pixels connected to the path (shown in magenta) are added. The
disconnected pixels (shown in blue) are discarded.

ponent via a path of pixels. I would like this path to be as dark as possible in the source image
(measured as the sum of the values of its pixels). We can find such a path by running Dijkstra’s
algorithm outward from every pixel on the boundary of the component, using pixel values as
edge weights. I treat the component as a single source vertex connected to its boundary pixels,
and stop the algorithm as soon as I encounter a pixel on the boundary of another component.
Figure 5.4(a) shows an example of a path discovered using this search.

Of course, a one-pixel-wide path is unattractive, and probably too narrow to be practical in
a papercutting context. I therefore provide a means of thickening the path based on intensities
in the source image. I compute an oriented bounding box from the 2D covariance matrix of all
pixels on the path, as in the stroke analysis method of Barla et al. [6, Section 2.1]. The two
eigenvectors of this matrix are the axes of the bounding box, and I project all pixels to these axes
to get the box’s dimensions (see Figure 5.4(b)). I define a threshold I as the lightest intensity
of the source image pixels on the path. I then set every pixel in the bounding box to black if it
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is darker than I, and white otherwise. Finally, I keep those black pixels that belong to the same
connected component as the path itself, and discard any others (see Figure 5.4(c)). This process
can be seen as locally relaxing the thresholding operation to let in more pixels. In practice I have
found that it adequately thickens paths, making satisfactory connections between components.

(a) (b) (c) (d)

Figure 5.5: Edge detection information is helpful in pathfinding. Given the source image (a),
we can get a paper-cut design with original pathfinding algorithm in (b). Note that the cheek is
poorly connected to the mouth. A better result (d) can be acquired by weighting pixels with edge
information in (c). The cheek is connected to the chin by following the salient edges.

The pathfinding step merges the smallest component with some other component. I repeat
this process until there is only one connected component left. I fill small holes introduced during
thresholding and pathfinding by applying two rounds of the morphological CLOSE operation,
and then use the well known Potrace library [117] to recover vector paths for the design.

The pathfinding algorithm can be improved by employing salience information from the im-
age, for example, detected edges. I add an extra weight to the pixels with the edge detection
information. Pixels on edges have smaller weights, which enforces the path to follow salient
edges. Figure 5.5 shows the effect of this enhancement.

Note that if we invert the binary image before computing connectivity, we can construct
a negative paper-cut design instead of a positive one. Connectivity can then be enforced on
the negative binary image, as before. Figure 5.6 shows a comparison of positive and negative
designs.
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(a) (b)

Figure 5.6: Positive (a) and negative (b) paper-cut designs of the portrait of Mao Zedong. The
paper-cut in (a) is a connected black region on a white background; in (b), it is a connected white
region on a black background.

5.4 Pattern synthesis

Traditional paper-cuts frequently feature decorative ornament and stylized or geometric patterns.
I support an extensible set of patterns that can be combined with each other and with image-based
designs.

Geometric patterns reminiscent of latticework are a popular papercutting device. Aside from
their decorative function, they provide a connected substrate into which other objects can be
embedded. I support a wide range of geometric patterns in the form of isohedral tilings of
the plane [41]. The edges in any tiling can be thickened to produce a valid paper-cut design.
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Figure 5.7 shows the procedure.

m
n

w
(a) (b) (c)

Figure 5.7: The creation of a paper-cut design from lines. Given the two sets of lines m and n
in (a), I first compute the offset lines with width w in (b), and for the joints between two segments,
I apply round corners. Finally, all offset lines are merged into one single shape in (c).

(a) (b) (c) (d)

Figure 5.8: Paper-cut designs based on simple geometric patterns. Isohedral tilings are shown
in (a), (b), and (c); the latter two were taken from Chinese papercutting and latticework. A
Voronoi diagram is given in (d) (patterns similar to Voronoi diagrams occasionally appear in
Chinese latticework [124]).

Figure 5.8 shows several of my geometric patterns, inspired by traditional Chinese designs.
There are many other potential sources of geometric designs for papercutting, such as Islamic
star patterns [63].

I also support the synthesis of freeform arrangements of stylized ornamental motifs. I have
experimented with a small set of conventionalized motifs inspired by Chinese papercutting (see
Figure 5.9), though of course many others are possible. In my system, the user selects a pattern
type and draws a stroke. I use the stroke pattern synthesis method of Barla et al. [6] to place
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CLOUDS WATER

FIRE MISCELLANEOUS

Figure 5.9: Predefined ornamental patterns, based on conventionalized motifs from the Chinese
papercutting tradition.

Figure 5.10: An example of synthesizing the WATER and FIRE patterns along two letterforms.

motifs along the stroke, and deform the motifs to fit the stroke’s path in a manner similar to
skeletal strokes [51]. The user can also control the density and sizes of motifs placed along
strokes. An example of my stroke-based pattern synthesis is shown in Figure 5.10.

Note that synthesized patterns are generally disconnected, and hence not valid paper-cut de-
signs. When necessary, I consider such a pattern to be a set of holes cut out from a sufficiently
large rectangle.
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Procedural methods are another approach to generate patterns such as trees, flowers and
mountains. I can define rules about how to “grow” such a pattern. But I must apply the constraint
to ensure the all parts of a pattern are connected. Figure 5.11 gives an example.

Figure 5.11: An example of procedurally generated birch trees.

5.5 Compositing Paper-cuts

The techniques of the previous two sections can be used to construct a wide variety of paper-cut
designs. I would also like to be able to combine individual designs into finished scenes. Here
I encounter an interesting mathematical problem: given two valid paper-cut designs, how may
they be combined to produce a valid result? In other words, I wish to define a set of binary
operations on connected sets that preserve connectivity.

Let A be a valid paper-cut design, i.e., a non-degenerate connected set in the plane. I may
regard A as partitioning the plane into three disjoint regions: A itself, Ai, the set of holes contained
entirely within the outer boundary of A, and Ao, the rest of the plane. Note that because A is
connected, Ai cannot enclose further parts of A. An example is shown in Figure 5.12. Similarly,
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Ao

A

Ai

Figure 5.12: An example of shape A.

(a) (b)

Figure 5.13: The adjacency of all nine region types is shown in (a). After removing AoBi, AiBo,
AiBi, and AoBo, the remaining five regions are shown in (b).

a second design B partitions the plane into B, Bi, and Bo (see the top row of Figure 5.14). When
A and B are superimposed, the pairwise intersections of these sets partition the plane into nine
regions, as shown in Figure 5.13(a). It is easy to find that one region’s internal holes (such as Ai)
are not adjacent to its external regions (such as Ao), and if two regions are adjacent each other,
then they should share one label. Figure 5.13(a) shows the relationship of the nine region types.
Any binary operation on A and B can be specified by assigning a boolean value to each of these
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A B

AoB AiB ABi ABo

Figure 5.14: Given two valid designs A and B, AoB, AiB, ABi, ABo alone cannot guarantee
validity. The two superimposed shapes A and B are illustrated in light gray colour and the com-
binatorial results are shown in dark gray colour.

nine regions – true if the region is part of the result, and false if it is not. Therefore, there are
512 possible operations. We can limit the possibilities by assuming that operations do not add
paper that did not originally belong to A or B. In other words, the regions AoBo, AoBi, AiBo and
AiBi must be set to false, leaving us with five boolean choices and 32 operations, as shown in
Figure 5.13(b).

Figure 5.14 shows that we cannot guarantee the validity if only a single set of regions is set
to true. From Figure 5.13(b), I can conclude that it is necessary to assign true to AB, if more
than two sets of regions are used. In this situation, there are only 16 possible operations left.

Theorem 5.1. Let A and B be two valid paper-cut designs, for which A
⋂

B 6= /0. Their combina-
tion is also a valid design if A or B is embedded in the result.

Proof of Theorem 5.1. Suppose A is embedded in the result. Then ABi, AB and ABo must be
true. From the assumption, A is valid and AB is also not empty, so all regions in ABi, AB and
ABo are connected. Any additional regions are either AiB or AoB. From Figure 5.13(b), we know
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these must connect to AB, meaning that they connect to A and the new result is valid. The same
argument holds for B.

AB ABi ABo AiB AoB

A T T T F F

B T F F T T

A UNION B T T T T T

A OVER B T T T F T

A UNDER B T F T T T

A WITHIN B T T F T T

A WITHOUT B T T T T F

Table 5.1: Seven valid paper-cut operations.

Among those 16 operations, there are seven satisfying Theorem 5.1. Inspired by the com-
positing operators introduced by Porter and Duff [102], I summarize my operations in Table 5.1.
I name each one and define it in terms of the boolean values for the five regions. Figure 5.15
gives illustrations for each.

Theorem 5.2. There are only seven operations that guarantee validity.

Proof of Theorem 5.2. Aside from the preceding seven operations, there are nine possible cases.
Figure 5.16 shows counterexamples for each case. So I can conclude that any other operation is
invalid.

Based on observations of traditional paper-cut designs, I would also like to support an XOR

operation, in which the region AB is set to false (Table 5.2), i.e.,the intersection of the two shapes
is cut out. As I demonstrated in Figure 4.19, the XOR operation allows two shapes to coexist



86 Wholetoning: Synthesizing Abstract Black-and-White Illustrations

A B A UNION B

A OVER B A UNDER B (B OVER A)

A WITHIN B A WITHOUT B (B WITHIN A)

Figure 5.15: The seven binary operations on paper-cut designs that preserve validity, as ex-
plained in Section 5.5.

AB ABi ABo AiB AoB

A XOR B F T T T T

Table 5.2: XOR operation.



Computer-Generated papercutting 87

AB AiB∪AB AoB∪AB

AB∪ABi AiB∪AB∪ABi AoB∪AB∪ABi

AB∪ABo AiB∪AB∪ABo AoB∪AB∪ABo

Figure 5.16: Examples of nine invalid operations, based on the shapes in Figure 5.15.

in the same space, with the edges of both discernible. It efficiently addresses the tone inversion
challenge. But it is not an explicit operation in artistic thresholding, where the user’s input about
high-level features is need. In papercutting, it is an intuitive operation in exploring paper-cut
designs to be composed in layers. Unfortunately, XOR is not guaranteed to produce connected
results. I can fix this by thickening the edges of one of the shapes so that it overlaps the second,
as shown in Figure 5.17. Because I can choose to thicken the edges of A or B, my XOR operation
is asymmetric. Figure 5.18 shows an example of composing a complex paper-cut design from
a set of primitive elements using the seven valid operations and XOR. Note that the overlapped
steam cup is clearly visible because of tone inversion induced by XOR.
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(a) (b)

(c) A XOR B (d) B XOR A

Figure 5.17: The XOR operation on paper-cut designs. The simple XOR in (a) does not preserve
validity. If we thicken the edges of B as in (b), we can restore validity as in (c). The design in (d)
thickens the edges in A instead.

Many other set-theoretic operations, such as A∩B and A\B, produce correct results in some
contexts but not others. For instance, I can cut a pattern of holes into a shape A by intersecting
A with a large rectangle containing the holes, as mentioned in Section 5.4. I permit the user to
perform these “unsafe” operations, but must check whether the result is connected.

5.6 Results and future work

I have created a prototype implementation of my technique using C++ and Gtkmm. I represent
paper-cut designs as polygons with holes, and use the GPC library [89] to compute boolean op-
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Tiling Window

Teapot SteamCup Cup

(Tiling WITHIN Window) XOR Teapot

((Teapot OVER (Tiling WITHIN Window)) XOR Cup) XOR SteamCup

Figure 5.18: A demonstration of boolean operations on paper-cut designs. Five source designs
are shown in the top two rows. In the first finished design, the XOR operation is used to make
the teapot appear to be behind the screen. The teapot is placed OVER the screen in the second
design, and a couple of cups are then added with XOR.
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Figure 5.19: Evaluation of my paper-cut results. The first row shows source photographs. The
second row shows the results created by artists. My results are shown in the third row.

erations on them. My interface lets the user process images, create stylized patterns, and perform
boolean operations on designs. A screenshot of my system is shown in Appendix A. The out-
put is a PDF file of cutting paths. The PDF can be displayed directly by filling the paths, or it
can be used to create actual paper-cuts using a variety of computer-controlled manufacturing de-
vices. I have experimented with the QuicKutz Silhouette digital craft cutter, a small, inexpensive
knife cutter intended for home use (see Figure 5.20(d)). Finer and more precise results could be
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(a) (b) (c) (d)

Figure 5.20: The construction of a paper-cut based on a painting of a goose by Zhu Da (c.1626
– c.1705). The original image is shown in (a). My image-based technique extracted the design
in (b), to which some synthesized patterns were added in (c). In (d), I show the design cut from
cardstock using an inexpensive computer-controlled craft cutter.

obtained using a laser cutter.

(a) (b) (c)

Figure 5.21: Three additional paper-cuts. The design in (a) is based on the Stanford Dragon
model, created using the technique presented in this chapter. The design in (b) is a couple
dancing among procedurally generated trees, and (c) is the Chinese character “Fu” (good fortune)
embedded in a geometric pattern.
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Figure 5.19 demonstrates the comparison of my results and artists’ works. We can see my
system can generate pretty good results based on photographs and it is convenient and efficient
to compose multiple designs. But the limitations are similar to those discussed in Chapter 4:
artists can handle abstraction and detail much better than my system, and I need further work to
implement more stylized traditional paper-cut designs.

Some additional results generated by my system are shown in Figures 5.20, 5.21, and 5.22.
There are several directions I would like to explore in the future. Many traditional paper-cuts

feature a central design surrounded by annuli with different cyclic or dihedral symmetries [74].
I would like to automate the construction of symmetric designs.

It would also be interesting to extract more information from images when transforming them
into paper-cut designs. It might be possible to decompose an image into overlapping regions that
can then be assembled using XOR. Another challenge would be to automatically select patterns
from a library to approximate details in the image, or better yet to develop conventionalized
vector patterns directly from image features.



Computer-Generated papercutting 93

Figure 5.22: A paper-cut design based on the Big Wild Goose pagoda (Xi’an, China).



Chapter 6

Calligraphic Packing

As mentioned in Chapter 1, representational calligraphy is a derived wholetoned style. In rep-
resentational calligraphy, warped letters are assembled into a composition. Due to their limited
expressivity, a representational calligraphic illustration is definitely an abstract depiction. Fur-
thermore, letters are usually rendered in black color over white background, meaning there are
only two tones. Thus it satisfies my definition of a wholetoned image. However, this style
presents an extra challenge on top of artistic thresholding: we would like the letters to fit the
whole shape well while preserving their readability.

In this chapter, I develop a solution to the “calligraphic packing” problem. Foreground ex-
traction and artistic thresholding are applied to a source image to produce a container region.
Then, given a sequence of letters, my system uses a clustering algorithm (Section 6.3.2) to sub-
divide the container into subregions. For each letter, I then warp a corresponding glyph into
its subregion (Section 6.3.3) in a way that minimizes distortion (Section 6.3.4). I automate the
process of warping glyphs to fill the container by optimizing an energy function that chooses a
warp that best represents the original letter. The energy function is composed of shape similarity,
orientation and area coverage. To create more appealing results, I provide a set of interactive
tools that help users adjust the details of letters. I also include some variations in rendering style
(Section 6.4).

94
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6.1 Introduction

Artists and art lovers have always been captivated by the interplay between a whole and its
parts. When a complete image is seen as composed of many small cooperating elements, we can
appreciate not only the image as a whole, but the ingenuity of its conception and realization. In
a Roman mosaic, for example, small squares of coloured glass conspire to form a detailed scene.

(a) (b)

Figure 6.1: Two examples of representational calligraphy. The tiger on the left, by Sudanese-
born artist Hassan Musa, is made up of elongated Arabic letters. The portrait on the right is from
an advertisement for the magazine Veja.

Especially fascinating is the case where the parts are themselves recognizable objects. The
viewer is then caught in a dynamic tension between attending to the image and to the elements
that make it up. A famous example that has inspired many researchers in computer graphics
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is Arcimboldo’s sixteenth century portraits [79]. His subjects are assembled from small objects
such as flowers, vegetables, fruits, and animals. Halsman’s famous In Voluptate Mors is a portrait
of Dalı́ featuring a skull assembled from nudes. In Escher’s tessellations, the whole is simply
the entire plane, but we are fascinated by the way lifelike characters occupy it without any gaps.
Escher was also interested in the narrative possibilities that arise in having multiple different
objects interact in an image.

A special case of this artform can be found in what I call “representational calligraphy”.
Here, a collection of letters or symbols cooperate to compose an image that is also a calligraphic
inscription. Islamic calligraphers are certainly the masters of this style. A recent example by
Sudanese-born artist Hassan Musa is shown in Figure 6.1(a). Today, representational calligra-
phy is frequently used in graphic design applications such as advertising, product design, and
corporate logos. The example of Figure 6.1(b) was part of an advertising campaign for Veja, a
Brazilian news magazine.

In representational calligraphy the letters are frequently distorted, and the inscription may
be difficult or even impossible to read. In some examples, it is possible to recognize the letters
only if one already knows (from the context) what they are. Note that there is no harm in de-
forming letters this way. Legibility and consistency are the goals of typography; both may be
suppressed for artistic purposes in calligraphy. The resolution of the resulting visual puzzle can
be a rewarding aesthetic experience.

Within non-photorealistic rendering there has been a great deal of work in the area of “NPR
Packing”, the general problem of depicting an image by automatically arranging a collection of
small pictorial elements. But to my knowledge, no research has been done on the specific prob-
lem of packing letterforms. Inspired by the examples above, I therefore pose a representational
calligraphy problem for computer graphics:
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Problem (Calligraphic Packing): Given a region of the plane (the
“container”) and a sequence of letters L = {l1, . . . , ln}, construct a non-
overlapping arrangement of deformed glyphs {g1, . . . ,gn} in the interior of
the container so that

1. The glyphs fill the container as much as possible;
2. Individual glyphs are recognizable as the corresponding letters; and
3. The order of the letters is suggested by the arrangement of the

glyphs in the packing.

Note that I make a distinction between a letter (an abstraction) and a glyph (its representa-
tion). A single letter may be equally well represented by any of a number of glyphs, such as
lowercase and uppercase versions.

Although calligraphic packing is related to other forms of NPR packing, there are important
differences that make this problem unique. First, we do not have a database of available objects,
and the freedom to pack copies of objects from the database at will. We are given a specific
sequence of symbols, and must include each exactly once. The relative positions and orientations
of the letters are important too, as they affect overall readability. Finally, we expect to apply
a significant amount of deformation to the glyphs to pack them. Unlike most NPR packing
applications, the glyphs can undergo a great deal of deformation compared to ordinary images.
The glyphs are not intended to be representations, merely signs. As long as the original letters
can be recovered, the incidental shapes of the glyphs are unimportant.

6.2 Related work

One primary thread of NPR packing techniques has focused on the use of Lloyd’s method to relax
an initial distribution of objects into a final, evenly-spaced configuration. Hausner [43] simulated
the appearance of Roman mosaics. He applied Lloyd’s method to Voronoi diagrams generated
via the Manhattan metric, giving an arrangement of oriented rectangular mosaic tiles. Hiller
et al. [47] improved and generalized this result by using area Voronoi diagrams, allowing more
complex objects to be packed together. Secord [115] used a weighted version of Lloyd’s method
as a form of importance sampling to create stippled depictions of images. But for arbitrary tiling
shapes like the letters, these methods cannot produce tiles that resemble these shapes.
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Recently, Dalal et al. [22] achieved excellent packing results by modifying the relaxation step
in Lloyd’s method. Instead of moving the object to the centroid of its Voronoi region, they define
a metric based on image correlation that minimizes variation in the space around the objects (the
“grout” in the mosaic). All these packing techniques focus on distributing a large number of
small elements without deformation. For calligraphic packing, I wish to pack a small, fixed set
of deformable shapes.

Kim and Pellacini [65] presented a more generic framework for packing shapes chosen from a
database of candidates into a container. Their algorithm attempts to minimize an energy function
that trades off between various measures of the packing’s quality. It is similar to the weighted sum
objective function in artistic thresholding (Chapter 4). Their technique deforms objects slightly
to even out the irregular boundaries between them. I would like to support an even greater amount
of deformation and provide some mechanism for controlling the flow of the letters to maintain
readability.

Kaplan and Salesin [62] examined the problem of Escherization, in which a given shape
must be converted into a tiling of the plane. Their algorithm seeks a tileable shape that resembles
the original as closely as possible, thereby minimizing the amount of deformation that must be
applied.

In the artistic screening method of Ostromoukhov and Hersch [95], shapes such as letter-
forms were continuously deformed via interpolation from a small set representing different tones.
Grids of these shapes were then used for halftoning by varying the interpolation level spatially.
Surazhsky and Elber [126, 127] presented a method to arrange text along free-form parametric
curves. They rendered their text with varying tone along projected parametric curves on surfaces
to produce comprehensible text-based rendering of 3D shapes. Compared to these techniques,
my deformations are more freeform. Also, my results are not halftoned representations; I pack a
container derived from a bi-level image, producing a wholetoned illustration as a result.

6.3 Approach

I created a system that produces calligraphic packings. Given an image and a sequence of letters,
I convert the image into a black-and-white representation of an object (Section 6.3.1), subdivide
it into regions (Section 6.3.2), and warp the individual letters into these regions (Sections 6.3.3
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)d()c()b((a)

Figure 6.2: The extraction of a container region from an image. The user marks the input image
in (a) with foreground (red) and background (blue) curves. Lazy Snapping extracts the fore-
ground object in (b). The segmented image in (c) is fed in to the artistic thresholding framework
to obtain the bi-level container in (d).

and 6.3.4).

6.3.1 Container extraction

The first step in my system is to define the container region into which I will pack the letter
sequence. When drawn as a black shape on a white background, the container should be a clear
depiction of an object.

As with papercutting, I first extract a desired foreground object from an image using the Lazy
Snapping method of Li et al. [70]. I then apply my artistic thresholding technique to produce
a bi-level raster image of the container region. The user can control the parameters to select an
appropriate container region. This procedure is illustrated in Figure 6.2.

6.3.2 Subdivision

The pixels of the container region must now be partitioned into n subregions R1, . . . ,Rn, where
each Ri will be assigned to li from the original letter sequence. This step can be seen as a data
clustering problem, where pixels form into clusters around letters.

As with other NPR packing techniques, I use an iterative algorithm to refine an initial letter
placement into an evenly distributed set of subregions. To begin, the user interactively creates
a starting arrangement of n letters inside the container region, as shown in Figure 6.3(a). I then



100 Wholetoning: Synthesizing Abstract Black-and-White Illustrations

(a) (b) (c)

Figure 6.3: The user provides initial positions and orientations for a set of letters in (a). The
initial clustering result is shown in (b). In (c), after iterative relaxation, I obtain an optimized
clustering result.

run a level-set algorithm to grow subregions associated with the letters [118], which is similar to
variational shape approximation [17]. (The use of a level-set algorithm helps ensure that letters
are contained in their subregions, and that the subregions are connected.) I initialize n clusters
to the rasterized outlines of the letters. Then, while there exist unclaimed pixels, I iterate over
the clusters. Each cluster claims the pixels adjacent to its boundary. The subregion boundaries
will grow at a roughly constant rate until they encounter one another and consume the container.
The resulting subdivision may be uneven, as in Figure 6.3(b). I refine it by moving each letter to
the centroid of its cluster, in the style of the modified Lloyd’s method of Hiller et al. [47]. Each
letter is scaled so that it fits more snugly into its cluster. The subdivision process then repeats
until the user is satisfied with the locations and orientations of the letters. Figure 6.3(c) shows an
example of a final set of subregions produced by this process.

I provide the user with two additional interactive tools to modify the behaviour of the sub-
division step. First, they can sketch closed curves containing pixels that must all belong to the
same subregion. A demonstration is given in Figure 6.4. This tool can be used to force an area
of the container to belong to a single letter when the subdivision process is trying to pull it apart.
It was used in Figure 6.11 to ensure that the mouth would be depicted by a single subregion
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(a) (b) (c)

Figure 6.4: The forced clustering of pixels. The clustering algorithm produced the result in (a).
The user drew the green curve in (b). The pixels inside the curve are forced to belong to a single
cluster in (c).

(a) (b) (c)

Figure 6.5: The forced exclusion of pixels from the subdivision process. The user sketched the
green curve in (b). Its contents do not participate in the subdivision in (c).
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containing the letter O. Second, the user can sketch a closed curve that excludes a portion of the
container from the subdivision, as shown in Figure 6.5. In Figure 6.16(b), the propellers of the
airplane were simply drawn as black shapes rather than as awkward protrusions on the letter D.

At this point, the subdivision process has produced a partition of the container region into
sets of pixels. I must now convert these subregions into paths that can serve as geometric targets
for image warping. I smooth the boundaries of the subregions by applying a few iterations of
the OPEN and CLOSE morphological operations. I finish by applying OPEN three more times to
shrink the subregion boundaries and create space between them. A library such as Potrace [117]
can then convert the rasterized subregions into vector paths. If desired, the user can edit the
paths manually before proceeding with the warping step. A set of subregions is shown in Fig-
ure 6.10(b).

6.3.3 Warping

Now that I have the container subregions, I must warp the corresponding glyphs into them.
Warping and morphing are well studied problems in computer graphics [36]. Unfortunately,
in most cases the user must provide an explicit correspondence between the source and target
shapes. I would like the computer to derive this correspondence automatically based on the
quality of the warp it produces. I provide a geometric warping technique that incorporates an
energy function based on shape matching to measure the success of the warp. I can then try a
large set of possible correspondences and choose the one that minimizes the energy function. I
discuss the warp in this subsection, and the energy function in the next one.

Denote by Ci the convex hull of glyph gi, which will be warped into subregion Ri. An example
is given in Figure 6.6(a). I will define a warp from Ci to Ri, and apply it to the glyph. To begin,
I place the same number of sample points evenly around both Ci and Ri (I have found that 100
points is an adequate trade-off between efficiency and accuracy). Any given assignment of a
point on Ci to a point on Ri induces a correspondence between the two shapes.

Previous research by Hormann and Floater [49] and Ju et al. [58] has shown how to warp
between two arbitrary simple polygons, based on a generalized notion of barycentric coordi-
nates [49, 58]. I found that their technique performs well when the source and target polygons
are convex, but produces unacceptable distortion in general. While Ci is convex by definition, Ri

need not be. Therefore, I partition Ri into convex pieces using the approximation algorithm of
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(a) (b)

(c) (d) (e)

Figure 6.6: A visualization of the warping process. A source letter and its convex hull are shown
in (a). A container subregion is shown in (b), partitioned into convex pieces. The corresponding
subdivision is applied to the convex hull in (c), and the letter is warped piece-by-piece into the
convex partition in (d). The finished warped letter is shown in (e).

Greene [40]. Figure 6.6(b) shows an example of a partitioned subregion. Given a correspon-
dence between the sample points on Ci and Ri, I can then map this partition back through the
correspondence and create a convex partition of Ci, shown in Figure 6.6(c). Finally, I apply the
geometric warp of Hormann and Floater [49] inside each convex piece to obtain a warp of the
entire glyph. The outlines of the glyph are approximated by piecewise-linear paths with m ver-
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Figure 6.7: A visualization of the shape context for a single reference point on a warped letter
“a”. The plane is divided into log-polar regions on the left, and the sample points are collected
into histogram bins on the right.

tices {v1, . . . ,vm}, and the glyph is warped by computing new positions {w1, . . . ,wm} for each of
the vertices in those paths. A finished example is given in Figure 6.6(e).

6.3.4 Shape Matching

As was mentioned in the previous section, if I fix a sample point on Ci and assign it in turn
to each sample point on Ri, I get a sequence of correspondences between the two shapes. To
decide which is best, I need a measurement that evaluates the quality of the warp resulting from
a given correspondence. My measurement is based primarily on geometric similarity between
the warped glyph and the original. I also penalize warps that rotate the glyph too much or fail to
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cost=0.328 cost=0.369 cost=0.371 cost=0.429 cost=0.512

Figure 6.8: The costs of warping letters. Smaller values indicate a closer match to the original
letter of Figure 6.6.

fill the container subregion.
The measurement of similarity between two shapes is an important and active area of research

in computer vision. I found that the “shape context” method of Belongie et al. [7] is a good fit
to my needs. In this method, the shapes to be compared can have arbitrary topology (unlike,
for example, the method of Arkin et al. [3]). They need only have the same number of sample
points, which mine do by construction.

A shape context for a single reference point is a log-polar histogram of the locations of the
other points in the shape. The histogram is discretized by logarithmic distance from the reference
point and by angle. An example is given in Figure 6.7.

Belongie et al.explain how to compute δ (vi,w j), the distance between the histograms asso-
ciated with reference points vi and w j on the original and warped copies of the glyph. I can then
define a measurement of geometric similarity as Cg = 1

m ∑
m
i=1 δ (vi,wi). Note that the original

use of shape contexts minimized over all pairs of reference points; here, I exploit the known
correspondence between the vi and wi.

To preserve readability, it is important to avoid rotating glyphs too much. In the worst case, a
rotated letter may turn into a different letter entirely, as an “m” becomes a “w” under a half-turn.
Therefore, I define a penalty Co based on the effect of the warp on the glyph’s orientation. I use
a least-squares estimate [132] of the rigid motion between the vi and wi to compute the change θ

in orientation induced by the warp. I then define Co = θ/π,θ ∈ [0,π].
I would also like to force warped glyphs to occupy as much of their container subregions as

possible. I introduce an additional penalty based on area coverage: Ca = 1−Aw/Ar, where Aw is
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cost=0.324 cost=0.396 cost=0.333 cost=0.376

cost=0.469 cost=0.456 cost=0.36 cost=0.463

Figure 6.9: The best-fit costs of lowercase and uppercase versions of the letter “a” for four
different typefaces. The original letters are shown on the top, and are packed into the blue
container subregions.

the area of the warped glyph and Ar is the area of its container subregion.
Finally, I define the overall quality of a matching as Ctotal = wgCg + woCo + waCa. The

values wg,wo and wa are weights chosen to trade off between the relative importance of these
three terms. In practice, I use wg = 0.6,wo = 0.2 and wa = 0.2. Figure 6.8 shows some warped
letters and their associated costs. I compute Ctotal for every possible correspondence between Ci

and Ri, and choose the warp that produces the lowest cost.
I extend this cost function in a simple but important way by trying multiple glyphs for each
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letter. I iterate over a few different typefaces, and try both lowercase and uppercase versions
of letters. Notice, for example, the use of mixed case in Figure 6.17(b). The examples in this
chapter (Figure 6.9) were constructed from the four typefaces URW Bookman, Bitstream Vera
Sans, Courier, and DejaVu Serif. The additional variety of multiple letterforms helps to ensure a
better match.

A finished example of calligraphic packing, based on the Mona Lisa, is shown in Figure 6.10.

(a)

(b) (c)

Figure 6.10: A calligraphic packing made from the painting and words “Mona Lisa”. After I
subdivide the image (a) and extract the outlines (b), my system will produce the finished result
in (c). The details of the nose and mouth were excluded from the packing process, and taken
directly from the container.
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(a)

(b) (c)

Figure 6.11: Abraham Lincoln (a) was faced with the conflict between “freedom” and “slavery”.
The container image is shown in (b). In the result (c), I added noise to the outlines of the letters
“O” and “M” to give the appearance of Lincoln’s facial hair.

6.4 Rendering

I usually render the warped letters as solid black shapes. I have also experimented with a few
additional rendering styles to increase the aesthetic appeal of my results.
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Figure 6.12: The word “successful” made into a packing of a boat and its reflection.

(a) (b)

Figure 6.13: Three copies of the Chinese character for “bird” are used to fill a bird in (a). The
source character is shown on the upper left. “Muse” and some musical notation are used to create
a portrait of Ludwig van Beethoven in (b).
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Inspired by the rough outlines in Figure 6.1(b), I allow boundaries of letters to be perturbed
geometrically before rendering. This style is useful for capturing the look of rough or irregular
objects, such as Lincoln’s facial hair in Figure 6.11.

Referring to the dimensionality of representation in introduction (Chapter 1), solid colour
filled letters are two dimensional regions. I also experiment with a one dimensional representa-
tion. I allow the interior of a letter to be filled with strokes instead of a solid colour. The user
is able to draw a few sample curves to define the principle stroke direction in a letter. I interpo-
late from points sampled on those curves using radial basis functions to infer a vector field, in
the manner of Litwinowicz [73]. The streamline placement algorithm of Jobard and Lefer [57]
draws long, curved strokes that follow the vector field. These strokes give me an opportunity to
experiment with texture and tone in my designs. For example, Figure 6.12 shows streamlines
used to give the look of a reflection in water and Figure 6.16(a) demonstrates a beard simulated
by streamlines.

6.5 Implementation and results

My system is implemented in C++, and generates Postscript output. I use the CGAL library [14]
to compute the convex hull and convex partition. I implemented a prototype user interface in
Gtkmm that lets the user load in an image, create the binary container image, fill it with letters,
and modify the rendering parameters. The automated packing process usually takes from a
couple of seconds to a couple of minutes to complete on a standard PC, depending on how
many letters are used.

As mentioned throughout the chapter, I provide a wide range of interactive tools that permit
the user to intervene in the automatic construction of a packing. They can edit the curves repre-
senting the subregions and the shapes of the warped letters. For example, I added some detail to
Chaplin’s eyes in Figure 6.17(b).

My system is not restricted to the Roman alphabet; it can process more complex symbols.
Figure 6.13(a) shows a result in which three copies of the Chinese word “bird” (written in the
traditional zhuànwén, or “seal script”) are used to fill the outline of a bird. Figure 6.13(b) includes
some musical symbols in a portrait of Beethoven.

Some additional results are shown in Figures 6.14, 6.15, 6.16 and 6.17.



Calligraphic Packing 111

(a) (b) (c)

Figure 6.14: A calligraphic packing created by my system. A horse is extracted from a photo-
graph (a) and converted into a container region (b) using artistic thresholding method. The word
“horse” is then packed into the container (c).

(a)

(b) (c)

Figure 6.15: An elephant example. The source photograph is in (a). The word “elephant” is
packed into container region (b) to get the result (c).
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(a)

(b)

Figure 6.16: The “Da Vinci Code” packed into a portrait of Leonardo in (a). and an airplane
flying “like a bird” in (b).
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(a) (b)

Figure 6.17: A “graceful” dancer in (a) and Charlie Chaplin depicted using the words “laugh”
and “cry” in (b).
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6.6 Discussion

Figure 6.18: Evaluation of my calligraphic packing results. The first row shows works by artist.
The corresponding container regions are derived in the second row. My results are shown in the
last row. There is no user modification included.

In this chapter, I introduced the calligraphic packing problem and proposed a solution. My
system uses a level-set approach to subdivide a container region into subregions, and a best-fit
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Container “d” “a”

Container “T” “Y”

Figure 6.19: Comparisons of similar letters. The first example shows that we can get similar
results using letter “d” and “a” to tile a pear shape. The second example shows the results of
using letter “T” and “Y” to tile a heart shape.

warping algorithm to map letters into subregions. I also developed some variations in rendering
style that provide the user with additional aesthetic opportunities.

I evaluate my results in Figure 6.18. To compare with artists’ works, I derive the container
regions from artists’ results, then create my versions in those regions. In my technique, the letters
can be warped to fit the contours of shapes pretty well but my system cannot handle the details
inside each letter, such as Osama’s eyes. To acquire more appealing results, I provide a set of
interactive tools to help user adjust every parts of letters elaborately to depict shape features.
However, these tools cannot match the subtlety and stylization achieved by the original designs.

Like other problems in non-photorealistic rendering, calligraphic packing is a challenging
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topic because a successful solution relies on facts from both mathematics and human perception.
Calligraphy is an especially interesting medium in this regard, because it relies on the cognitive
and perceptual mechanisms of reading, about which far too little is understood. Figure 6.19
shows that different letters could be warped to create similar results. These letters might be
confused in isolation, though we can distinguish them in the context of whole words depending
on high-level cognition.

I note two important directions in which the technique in this chapter can be improved. First,
I would like to solve the third requirement of my calligraphic packing problem, namely that the
arrangement of glyphs respect the order of the original sequence of letters. I would like to find a
way to distribute letters automatically so that the eye is naturally drawn across them in the order
in which they are intended to be read. I would have to extend my energy function to account not
only for the quality of each individual warp, but for the layout of the glyphs as a whole.

Second, I would like to improve the legibility and fit of the rendered letters. I cannot simply
reduce the convex hull to the boundary of the glyph, because some of the negative space adjacent
to the letter is essential in identifying it (consider, for example, the spaces separating the arms of
an uppercase “E”). However, the convex hull also contains incidental features such as serifs that
reduce the quality of the packing. It may be necessary to move to a spine-based model of letter
construction, where I pack zero-thickness drawings of letters and expand outward from them to
fill the container. A parameterized model of letterforms like that of METAFONT [66] could be
used to control the shapes of letters during this process.

In the long run, I am interested in ways that the computer can be used as a tool for calligraphic
design. Computers are long established as a powerful technology for typography, but more
research needs to be done to achieve the same level of power and flexibility with letterforms that
non-photorealistic rendering grants us with images.



Chapter 7

Conclusions and Future Work

Wholetoned images, which depict objects with two high contrast tones, hold tremendous poten-
tial to enrich art, decoration, advertisement and entertainment. However, there is little work that
specifically focuses on this area. Related research typically aims at simulating typical art styles
such as pen-and-ink, engraving and halftoning, which pursue reproduction of continuous image
tone with black and white. With minimal tone information, wholetoned images are a higher ab-
straction that arouses a viewer’s interest to interpret them. The work presented in this dissertation
unifies and eases the wholetoned image generation process by offering a novel framework and
opportunities for extensions. I review my contributions in Section 7.1 and 7.2. In Section 7.3, I
describe several areas for future work. Finally, I conclude with some observations in Section 7.4.

7.1 General wholetoning framework

This thesis presents an interactive technique, artistic thresholding, which converts an original
colour image to a wholetoned image. It allows the user to control a set of intuitive, high-level
parameters. These parameters determine the result of a continuous optimization process. The
user can adjust the weights on the fly and get a corresponding result interactively. The desired
result can be obtained in an intuitive way. This optimization-based framework is not restricted to
one specific style. Driven by different parameters, it can generate a variety of styles and different
levels of abstraction.

Artistic thresholding provides more powerful and flexible control of wholetoned image gen-
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eration than other image thresholding methods. The output satisfies my definition of wholetoning
in Chapter 1. Only two tones appear in result images. Artistic thresholding applies image seg-
mentation to do initial shape and texture abstraction. Those two-dimensional segments are the
representation elements. Further abstraction can be obtained by adjusting parameters. The user
can control the coverage of black area in the image, the faithfulness of tone, the strength of
boundary contrast, and the effect of feature homogeneity. With the aid of these parameters, we
can achieve trade-offs between tone inversion and tone preservation, between feature homogene-
ity and heterogeneity, and style variations. My experiments show that this system can generate
results with the essential features of wholetoned images. I also explored the combination of
lines from edge detection and wholetoned images using inversed tone to highlight boundaries.
Depending on user specified high-level features, my technique can generate more convincing
feature homogeneity and tone inversion results.

7.2 Extended wholetone styles

This research enables us to make the advantages of wholetoned style available to a wide variety
of applications. Starting with the artistic thresholding results, I explored two styles to enhance
the complexity and aesthetics.

The first extended style is a computer-generated papercutting technique that provides an ap-
proach to simulate papercutting, a traditional folk art. I applied artistic thresholding to generate
motifs. Then all parts of a motif were connected to form a valid paper-cut design correspond-
ing the special constraint of papercutting. Following the traditional style of papercutting, I also
developed ways to construct other abstractions of shapes such as synthesized stylized patterns,
geometric patterns and procedurally generated patterns. These paper-cut patterns are composed
of region-based representations (such as artistic thresholding generated motifs) and line-based
representations (such as the decorative latticework and procedurally generated patterns). By
employing a set of binary operations, any two such paper-cut designs can be composed while
preserving connectivity. Compared to artistic thresholding, my papercutting technique makes
use of binary operations on layers of paper-cut patterns, which solves the tone inversion issue
more intuitively. The results demonstrate that they achieve the goals of wholetoned style and
overcome some of the challenges in Section 1.2. My technique efficiently constructs paper-cut
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designs that are suitable for outputting to a craft cutter to produce real papercutting.
In my second application, I presented a system for calligraphic packing. This technique

allows the user to perceive a shape that is composed of a set of letters. It is a semi-automatic
approach. I first apply artistic thresholding to create container regions. The user can then set
the initial configuration of letters in container regions. After running a clustering algorithm, my
system can generate a set of subregions. Each subregion corresponds to a letter. The letters are
warped in subregions so that they try to match the shapes of subregions as well as possible while
preserving readability. This technique is distinguished from other existing packing algorithms
since it formalizes the warping process to a minimization problem by evaluating a cost function
that measures the geometric similarity, orientation and area coverage. The results of calligraphic
packing satisfy the definition of wholetoned images. Furthermore, using warped letters to depict
an image is a specific abstraction approach. I also explored line-based rendering as an alternative
to solid filled regions. In calligraphic packing, tone inversion is trivial because there are no
overlapping shapes. Calligraphic packing is also related to papercutting. If the stencil letterforms
are used, then the result is a valid paper-cut design.

7.3 Future directions

I have mentioned some future work for each wholetoned style in Chapters 4, 5 and 6. I want to
discuss other more general future directions here.

Although wholetoned image generation is a simple idea, it is surprising that graphics re-
searchers seem to have overlooked this topic for a long time and there is little previous research
about it. I am happy to find that this situation is changing. Some researchers have noticed this
research area and observed its extensive applications in practice [9, 88]. Unlike this related
work which only focuses on specific styles or applications, I summarize several applications and
present a general framework, one that I believe establishes a new independent field of study for
NPR. The output images generated by my system have demonstrated the power and effectiveness
of my research.

My wholetoning framework could be extended in a number of ways. First, I can find more
uses for it. For example, graphic design such as logo design could benefit from it. Another novel
use would be in animation and games [116]. My discussion in Section 4.7 would be helpful in
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(a) (b)

Figure 7.1: Examples of special aesthetic effects: tone inversion can be applied to depict two
embedded animal figures in (a) (California conservation Corps logo by Vanderbyl Design) and
tone inversion can be applied to distinguish letters and simulate 3D-like effects in (b) (Crestview
Plaza logo by Gardner Design).

these areas.
Other improvements extend the framework’s architecture. Future work can tune my frame-

work to adapt it to specific purposes and extend it by importing more constraints. For example,
there is no explicit representation of salient lines. The lines in my results are a by-product of
image segmentation and very noisy and imprecise. My framework also cannot handle textures.
Further research about how to combine texture properties into segmentation and optimization
should provide better results. It should be significant to explore “distortion” or “symbolism” in
shape. Distortion occurs when there are discrepancies between the representation of an object
and the properties that the object actually possesses. Deliberate distortion can produce more
absorbing aesthetic objects. Skillful designers can create some appealing aesthetic effects us-
ing wholetoned illustration. Figure 7.1(a) shows an example of two animal figures embedded
together with inversed tones. Applying tone inversion, it even can produce 3D-like effects as
shown in Figure 7.1(b). It is an interesting research direction to simulate those effects.

As discussed in Chapter 1, tone inversion is unacceptable for images in which low spatial
frequencies dominate perception while it has little effect when high spatial frequencies dominate.
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I observed that images of human figures are typically dominated by low spatial frequencies,
perhaps because of the importance of lighting and shadows. It could be helpful to apply computer
vision techniques such as face recognition algorithms to distinguish different frequency dominant
regions, and adjust optimization weights accordingly in those regions.

It is also possible to exploit machine learning techniques. The system might be able to “learn”
a specific style by training it with user provided examples.

I also look forward to extending my framework to multi-colour illustrations so that I can deal
with colourful styles.

7.4 Observations

I conclude with a few observations. Currently the criterion for evaluating my results is that it is
right when it looks good. This is acceptable for the prototype algorithms presented in this thesis.
But some more novel and sophisticated approaches should be developed. We should work with
artists to find out how they do a design and what are their considerations. my systems should
generate results according to each artist’s intention and distinctive preference.

In Chapter 1, I presented the definition of wholetoning. My qualitative definition is based
only on the visual appearance of images. I would like to explore the inherent relationships be-
tween wholetoned images. I want to know whether there exist some fundamental computational
and psychological properties that distinguish wholetoning from other styles. There are many pos-
sible tools that could be used to answer these questions, such as algorithmic complexity, informa-
tion theory, group theory and geometric analysis. I did several experiments with the algorithmic
complexity of black-and-white illustration styles. First, a black-and-white image is converted
into a one-dimensional binary sequence in row-major or column-major order. Then I compute an
approximate Kolmogorov Complexity measure of this sequence following an explicit algorithm
by Kaspar and Schuster [64]. In my experiments, I choose eighteen styles and include 10 sample
images from each. These styles are Mooney faces, Calligraphic Packing, Artistic Thresholding,
Icon, Seal-cut, Ink Painting, Paper-cut, Wood-cut, ASCII art, Etching, Line Drawing, Comics,
Dithering, TSP Art, Engraving, Pen-and-Ink, Maze Illustration and Stippling. As mentioned
in Chapter 1, the first nine styles can be classified into wholetoning. Since wholetoning is an
abstract representation, I anticipate that wholetoned images should have lower complexity than
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Mooney packing icon sealcut AT papercut ink paint ascii woodcut comics etching line stippling pen&inkengraving TSP maze halftoning
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Figure 7.2: The algorithmic complexity of eighteen black-and-white visual art styles is in (a).
Their distribution entropy measurements are in (b). They are sorted in increasing order of median
values.

other styles. Figure 7.2(a) demonstrates a boxplot of the result. In this figure, a smaller value
corresponds to lower complexity. I observe that approximate Kolmogorov Complexity is doing
a decent job of sorting images according to an intuitive measure of abstraction or complexity.
Most wholetoned styles have lower complexity than non-wholetoned styles, except that ASCII
art has low complexity. The reason is that ASCII art applies a small number of repeated pat-
terns which decreases the complexity. To verify the dimensionality of representation, I compute
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the distribution entropy of each image, as shown in Figure 7.2(b). Higher distribution entropy
means that black and white pixels distribute more evenly. Because wholetoning images empha-
size regions, black and white pixels are unevenly distributed. Therefore, they should have lower
distribution entropy value, which is clearly verified in Figure 7.2(b). These experiments provide
interesting views to my research. These measurements are necessary, but not sufficient, for the
creation of wholetoned images. We cannot expect to produce art simply by computing random
images whose measurements are comparable to those of wholetoned illustrations. Furthermore,
there exist some depiction styles, such as ASCII art that satisfy these measurements but which
should not be classified as wholetoned images subjectively. I hope to see future research explore
other metrics and discover more hidden facts among different visual arts.



Appendix A

Screenshots of wholetoning systems

Figures A.1, A.2, and A.3 show the interfaces of my artistic thresholding system, papercutting
system and calligraphic packing system respectively.

In the interface of artistic thresholding (Figure A.1), the widgets in the top right panel are used
for image segmentation and help the user to specify high-level features. In the next panel, the re-
gion size slider sets the size of the random subgraphs used during optimization (Section 4.3). The
sliders labeled w color, w area, w alike, w opposite, w number, w component, w neighbor,
and w group control the corresponding weights in the energy function, as described in Sec-
tion 4.2. The buttons below that help the user to operate the image generation procedure. They
can restart the optimization, pause current processing and output a vector image file. The areaT
and edgeT fields define the threshold values for morphological operators. The edgethresh de-
fines the threshold for superimposing salient edges. The T slider shows the current temperature
of simulated annealing optimization. The user can adjust it interactively to control the degree of
random perturbation.

In the main window of papercutting system (Figure A.2), the first widgets provide parameters
for image processing. The f ront and back colour buttons set the colours of the paper-cut design
and background. The next set of widgets is used to in the generation of stylized geometric
patterns. In the design window, the user can rotate, scale and reflect paper-cut designs. In the
operator window, the user can load candidate designs and apply the composition operators to
generate new designs.

In the interface of the calligraphic packing system (Figure A.3), the topmost controls allow
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Figure A.1: Screenshots of the artistic thresholding system. By setting parameters interactively,
the user can see the result instantly.

the user to set the initial arrangement of letters, cluster pixels and generate subregions. Mixletter
indicates whether the system should consider both lowercase and uppercase glyphs. oriweight
sets the weight of the orientation cost, and areaweight sets the weight of the area cost (Sec-
tion 6.3.4). The controls in the “Setting” panel help the user set and review one specific warped
result. The “edit” panel helps the user to manipulate letter details.
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Figure A.2: A screenshot of papercutting system. The interface is composed of three windows:
the main window, the design window and the operator window. In the main window, the user can
set control parameters and review the results. In the design window, the user can design stylized
patterns. In the operator window, the user can compose multiple designs by applying predefined
operators.
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Figure A.3: A screenshot of the calligraphic packing system. My system iteratively warps letters
and selects the best results.
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