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Abstract 

Hyperthermophiles grow optimally at 80 0C and above, and many of them have the 

ability to utilize various carbohydrates as carbon source and produce ethanol as an end 

product. Alcohol dehydrogenase (ADH) is a key enzyme responsible for alcohol 

production, catalyzing interconversions between alcohols and corresponding ketones or 

aldehydes. ADHs from hyperthermophiles are of great interests due to their 

thermostability, high activity and enantioselectivity. The gene encoding ADH from 

hyperthermophilic archaeon Thermococcus guaymasensis was cloned, sequenced and 

over-expressed. DNA fragments of the genes encoding the ADHs were amplified directly 

from the corresponding genomic DNA by combining the use of conventional and inverse 

PCRs.  The entire gene was detected to be 1092 bp and the deduced amino acid sequence 

had a total of 364 amino acids with a calculated molecular mass of 39463 Dalton. The 

enzyme belonged to the family of zinc-containing ADHs with catalytic zinc only. It was 

verified that the enzyme had binding motifs of catalytic zinc only (GHEX2GX5GX2V, 

residues 62-76) and coenzyme NADP (GXGX2G, residues 183-188). The tertiary 

structural modeling showed two typical domains, one catalytic domain close to amino-

terminal (N-terminal) end and one coenzyme-binding domain close to carboxy-terminal 

(C-terminal) end. Since its codon usage pattern seemed to be different from that of 

Escherichia coli, the enzyme was over-expressed in the E. coli codon plus strain using 

pET-30a vector. The recombinant enzyme was detected to be soluble and active (1073 

U/mg), which was virtually the same to the native enzyme (1049 U/mg).  The 

recombinant ADH possessed almost identical properties with the native enzyme. The 

optimal pHs for ethanol oxidation and acetaldehyde reduction were 10.5 and 7.5 

respectively, while the activity for alcohol oxidation was much higher than that of 

aldehyde reduction. The enzyme activity was inhibited in the presence of 100 μM Zn2+ in 

the assay mixture and it has a half-life of 6 hours after exposure to air.  

 

Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of 

growing at 90 0C. The gene encoding an alcohol dehydrogenase from T. hypogea was 

cloned, sequenced and over-expressed. The gene sequence (1164 bp) was obtained 
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successfully by sequencing all the DNA fragments amplified from PCR. The deduced 

amino acid sequence was found to have high degrees of identity (~72%) to iron-

containing ADHs from Thermotoga species and harbored typical iron and NADP-binding 

motifs, Asp195His199His268His282 and Gly39Gly40Gly41Ser42, respectively. The structural 

modeling showed that N-terminal domain of ThADH contained α/β-dinucleotide-binding 

motif and its C-terminal domain was α-helix-rich region including iron-binding motif. 

The gene encoding T. hypogea ADH was functionally expressed in E. coli using the 

vector pET-30a. The recombinant protein was expressed optimally in E. coli grown in the 

presence of 1 mM ferrous and induced by 0.4-0.6 mM IPTG. The recombinant enzyme 

was found to be soluble, active and thermostable, and had a subunit size of 43 kDa 

revealed by SDS-PAGE analyses. The native ADH from T. hypogea was purified to 

homogeneity for comparative analysis using a three-step liquid chromatography while the 

recombinant ADH over-expressed in E. coli was isolated by a simpler procedure 

including one-hour heat treatment. The activity of the purified recombinant enzyme was 

69 U/mg and presented almost identical properties with the native enzyme. The optimal 

pHs for ethanol oxidation and acetaldehyde reduction were 11.0 and 8.0 respectively, 

while activity for alcohol oxidation were higher than that of aldehyde reduction. The 

enzyme was oxygen sensitive and it had a half-life (t1/2) of 20 minutes after exposed to 

air. The enzyme remained 50% activity after incubation at 70 0C for 2 hours. Successful 

high-level expression of T. hypogea ADH in E. coli will significantly facilitate further 

study on the catalytic mechanism of iron-containing ADHs. 

 

In summary, both zinc- and iron-containing ADHs from two hyperthermophiles were 

successfully cloned, sequenced and overexpressed in mesophilic host E. coli, and such a 

high-level expression of ADH genes provides possibilities for three dimensional 

structural analysis by X-ray crystallography and enzyme modification by mutagenesis, 

which will help further explore mechanisms of catalysis and protein thermostability of 

iron and zinc-containing ADHs and their potential applications in biotechnology.                                             
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Chapter 1   General Introduction 
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1.1 HYPERTHERMOPHILES  

1.1.1 Thermophiles and hyperthermophiles 

Thermophilic and hyperthermophilic organisms are isolated from geothermal and 

hydrothermal environments, which have the ability to thrive at high temperatures. 

Thermophiles are defined as organisms with optimal growth temperatures between 45 

and 80 0C, which have been isolated from various environments including geothermal 

springs, sunlight-heated soils etc. Most thermophiles known are moderate, and show an 

upper temperature range of growth between 50 and 70 °C, although they are still able to 

grow slowly at 25-40 °C (Stetter, 1996). 

 

Hyperthermophiles are considered to be organisms with optimal growth temperatures at 

80 0C and above (Stetter, 2006). They have been found in a number of hydrothermal 

environments including both hydrothermal and geothermal areas, i.e. deep sea and 

shallow thermal sediments, hydrothermal vent systems, geothermal springs and solfataras. 

To date, more than 100 species of hyperthermophilic bacteria and archaea are known 

(Fukami-Kobayashi et al., 2007), which had been isolated from different terrestrial and 

marine thermal areas in the world. Hyperthermophiles grow fastest from 80 °C to 110 °C 

(Stetter, 1996 and 1998); however, they are unable to grow below 60 °C. These 

organisms are able to grow not only at high temperatures, but also extremes of pH, redox 

potential, pressure and salinity. Hyperthermophiles belong to phylogenetically distant 

groups and can be divided into two groups: bacteria and archaea (Stetter, 1996). 

Hyperthermophilic bacteria and archaea represent the organisms at the upper 

temperature border of life (Fig. 1-1). Their outstanding heat resistance makes them  
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Figure 1-1 Small subunit 16s rRNA based phylogenetic tree 

 
 (Adapted and modified from Stetter 2006). The thick lineages represent 
hyperthermophiles, and the arrows indicted the well-studied species of Pyrococcus, 
Thermococcous and Thermotoga.                                                                                                        
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interesting objects for basic research as for biotechnology. So far, in addition to the 

traditional taxonomic characteristics such as GC-contents of DNA, DNA-DNA 

homology, morphology, and physiological features, 16S rRNA sequence-based 

classification of prokaryotes appears to be imperative for the recognition and 

characterization of novel taxonomic groups (Radianingtyas et al., 2003).  

 
1.1.2 The genus Thermococcus  

Thermococcus is one of the three genera (Thermococcus, Pyrococcus, Paleococcus) from 

the euryarchaeal order Thermococcales (Huber and Stetter 2001; Itoh 2003, Takai et al., 

2000). The genera Pyrococcus and Thermococcus have been well studied, especially for 

the species Pyrococcus horikoshii (Kawarabayasi et al., 1998), Pyrococcus furiosus 

(Robb et al., 2001), Pyrococcus abyssi (Cohen et al., 2003) and Thermococcus 

kodakaraensis (Fukui et al., 2005) whose complete genomes have been sequenced and 

published. The genus Thermococcus contains the biggest number of characterized 

isolates among archaea. Deposited in German Collection of Microorganisms and Cell 

Cultures (Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ), this 

group contains 27 members. Except Thermococcus sibiricus (Miroshnichenko et al., 

2001), Thermococcus celer (Zillig et al., 1983) and Thermococcus stetteri 

(Miroshnichenko et al. 1989), most of Thermococcus species are hyperthermophiles and 

are usually spherical and obligately anaerobic. Thermococcus guaymasensis is a member 

of obligately heterotrophic and strictly anaerobic archaea. It grows on organic substrates, 

primarily in the presence of elemental sulfur (S°) at temperatures from 56 0C up to 90 0C, 

with no growth occurring at 95 0C. The optimum temperature for growth is 88 0C. The 
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pH range for growth is 5.6-8.1, with the optimum at 7.2 (Canganella et al., 1998). 

Acetate, CO2 and H2S are formed as the main end products of metabolism, and ethanol 

can also be produced (Ying et al., unpublished results). The G-C content of its genome is 

found to be 46.0 mol% while no genomic sequence is available presently.  

 
1.1.3 The genus Thermotoga 

Besides the obligately organotrophic, strictly anaerobic features, members of Thermotoga 

genus have characteristic rodshaped cells surrounded by a sheath known as “Toga”. The 

genus Thermotoga consists of nine species: Thermotoga maritima (Huber et al., 1986), 

Thermotoga neapolitana (Jannasch et al., 1988), Thermotoga thermarum (Windberger et 

al., 1989), Thermotoga subterranean (Jeanthon et al., 1995), Thermotoga elfii (Ravot et 

al., 1995), Thermotoga hypogea (Fardeau et al., 1997), Thermotoga petrophila and 

Thermotoga naphthophila (Takahata et al., 2001) as well as Thermotoga lettingae (Balk 

et al., 2002). Among them, T. maritima is the first species whose genome has been 

sequenced. Up to date, completed genome information of T. petrophila and T. lettingae is 

also available in GenBank (http://www.ncbi.nlm.nih.gov/Genbank/). 

 

T. hypogea is an anaerobic, extremely thermophilic bacterium. This strain is rod-shaped 

and has a characteristic outer sheathlike structure. The optimum temperature for T. 

hypogea growth is 70 0C at pH 7.0; the growth temperature range is from 56 to 90 0C. 

The optimum pH is 7.3 to 7.4 at 70 0C; growth occurs between pH 6.1 and pH 9.1. It can 

utilize carbohydrates including xylan as carbon and energy sources and producing 

acetate, CO2 and hydrogen as the major end products. Furthermore, ethanol is also 

produced as an end product of glucose/xylose fermentation (Fardeau et al., 1997). 
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Therefore, T. hypogea may have potential application in biomass conversion to ethanol 

and hydrogen, which are alternative sources of fuel.  

 

1.2 THERMOSTABLE ENZYMES 

1.2.1 Thermostable enzymes 

Since hyperthermophiles grow optimally at high temperatures, enzymes from these 

organisms (or named hyperthermophilic enzymes) have unique structure-function 

properties with high thermostability and optimal activity at temperatures above 80 0C, 

and some of these enzymes are active at temperatures as high as 110 0C and even above 

(Vieille et al., 1996). Enzymes from thermophilic organisms (thermophilic enzymes) are 

usually optimally active between 60 and 80 0C and show thermostability properties that 

fall between those of hyperthermophilic and mesophilic enzymes. Active at high 

temperatures, both thermophilic and hyperthermophilic enzymes typically do not function 

well below 40 0C (Vieille et al., 2001). 

 

Since some enzymes remain active for extended periods of times at temperatures even 

higher than 100 0C (Kelly et al., 1994), thermostable enzymes have great potentials in 

applications as biocatalysts, and the research on the thermostable proteins has been a 

quite dynamic area at present. The discovery of novel enzymes from extremophilic 

microorganisms greatly promotes industrial application of enzymes that can withstand 

harsh conditions; in particular, enzymes from hyperthermophilic organisms have the most 

practical commercial use to date because of their overall inherent stability. Additionally, 

it was proposed that hyperthermophiles were the first life forms to have arisen on Earth 
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(Stetter, 1996). Hyperthermophilic enzymes can therefore serve as model systems for 

understanding enzyme evolution, molecular mechanisms for protein thermostability, and 

adaptation of enzymes to their unusual environments.  

 

Hyperthermophilic enzymes have unique characteristics such as temperature, chemical, 

and pH stability; they have been used in several industrial processes, in which they 

replace mesophilic enzymes or chemicals (Demirjian et al., 2001). These thermostable 

enzymes are often used when the enzymatic process is compatible with existing (high-

temperature) process conditions. The main advantages of performing processes at higher 

temperatures are reduced risk of microbial contamination, lower viscosity, improved 

transfer rates, and improved solubility of substrates. However, cofactors, substrates, or 

products might be unstable or other side reactions may occur. Recent developments show 

that hyper/thermophiles are good sources of novel catalysts that are of great industrial 

interest (Gomes et al., 2004). Thermostable polymer-degrading enzymes such as 

amylases, pullulanases, xylanases, proteases, and cellulases are expected to play an 

important role in food, chemical, pharmaceutical, paper, pulp, and waste-treatment 

industries (Table 1-1). Lots of molecular adaptations have been identified which involve 

thermal stabilization of major cell components of thermophiles and hyperthermophiles: 

nucleic tides, proteins and so on. In particular, considerable research efforts have been 

made to better understand the stability of hyper/thermophilic enzymes. 
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Table 1-1 Industrial applications of the enzymes isolated from extremopiles 
(Demirjian et al., 2001) 

 
Extremophile Habitat Enzymes Applications 

Hyper/thermophile 
High temperature 

 

DNA polymerases 

Proteases 

Xylanases 

Amylases 

Genetic engineering 

Baking, brewing, detergents 

Paper bleaching 

Glucose, fructose for 
sweeteners 

Psychrophile Low temperature Proteases Cheese maturation, dairy 
production 

Acidophile Low pH 
Sulfur oxidation 

Chalcopyrite 
concentrate 

Desulfurization of coal, 
Valuable metals recovery 

Alkalophile High pH Cellulases Polymer degradation in 
detergents 

Halophile 
High salt 

concentration 
Whole 

microorganism 

Ion exchange resin 
regenerant disposal, 

producing poly(γ-glutamic 
acid) (PGA) 

and poly(β-hydroxy butyric 
acid) (PHB) 

Piezophile High pressure Whole 
microorganism 

Formation of gels and starch 
granules 

Metalophile 
High metal 

concentration 
Whole 

microorganism 

Ore-bioleaching, 
bioremediation, 

biomineralization 

Radiophile High radiation levels Whole 
microorganism 

Bioremediation of 
radionuclide contaminated 

sites 

 8



 
1.2.2 Factors affecting enzyme thermostability  

Attributes governing protein thermostability have not been completely defined yet, while 

the recent work on thermophilic enzymes helps to understand the types of general trends 

that factor into stability. Studies of thermostable enzymes suggest that there is no single 

factor that has been identified to cause stability, and a number of noncovalent features are 

important (Demirjian et al., 2001).  

 

Extreme environmental conditions require optimized interactions within the protein, at 

the protein–solvent boundary, or with the influence of extrinsic factors such as 

metabolites, cofactors, and compatible solutes (Ladenstein et al., 1998). Factors that 

contribute to the remarkable stability of enzymes could include an increased number of 

ion pairs, reduction in the size of loops and in the number of cavities, reduced ratio of 

surface area to volume, changes in specific amino acid residues, increased hydrophobic 

interaction at subunit interfaces, changes in solvent-exposed surface areas, increase in the 

extent of secondary structure formation and truncated amino and carboxyl termini 

(Baneyx, 2004).  

 

From the view of primary structure, protein amino acid composition has long been 

thought to correlate to its thermostability (Vieille et al., 2001). Researchers have found 

high numbers of hydrophobic residues in the protein cores, reduced surface-to-volume 

ratios, decreased glycine contents, high numbers of surface ionic interactions and 

shortened loose N- and C-terminal regions, all of which contribute to overall 

thermostability in specific proteins (Adams et al., 1995; Ladenstein et al., 1998). The 
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overall protein stability could be increased upon internalization of the more labile amino 

acids in the hydrophobic core. The frequency of occurrence of labile amino acids such as 

cysteine, asparagine, and aspartic acid is significantly lowered in thermostable proteins 

with respect to their mesophilic counterparts (Robb et al., 1999). Additionally, 

hyperthermophilic proteins have the reduced average length compared to mesophilic 

proteins (Baneyx, 2004), which could be related to the reduction of loose N- and C-

terminal regions and the loss of destabilizing loops. It is also known that the general trend 

of increased surface ionic interactions is accomplished by the replacement of uncharged 

polar residues (Gln, Asn, Ser, Thr and Cys) with the charged residues (Arg, Lys, His, Asp 

and Glu) (Chakravarty et al., 2000).  

 

The protein thermostability has been studied on a level of secondary structure as well. It 

was observed that helices of hyperthermophilic proteins were generally more stable than 

those of mesophilic proteins and a trend was detected as a decreasing content in β-

branched residues (Val, Ile, and Thr) in the helices of thermophilic proteins (β-branched 

residues are not as well tolerated in helices as linear residues are) (Facchiano et al., 1998).  

Researchers have compared the temperature dependence of the unfolding kinetics of 

rubredoxins from the hyperthermophile P. furiosus and the mesophile Clostridium 

pasteurianum to probe kinetic stability factors. The results indicated that the more 

thermostable protein unfolds at a much slower rate, but exhibits increased sensitivity to 

pH variation (Cavagnero et al., 1998). Addtionally, cystal structure analysis of the 

proteins shed lights on the factors of thermostability. The crystal structures of the 

multisubunit glutamate dehydrogenase isolated from two closely related 
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hyperthermophiles T. litoralis (grow optimally 88 °C) and P. furiosus (grow optimally 

100 °C) were compared. The less stable T. litoralis enzyme had a decreased number of 

ion-pair interactions, modified patterns of hydrogen bonding, substitutions that decrease 

packing efficiency and substitutions that give rise to subtle shifts in main- and side-chain 

elements of the structure (Britton et al., 1999). 

 

On the other hand, thermostable enzymes show considerable similarity with their 

mesophilic homologous enzymes, and share similar catalytic mechanisms. For instance, 

the recombinant β-glucosidase from the hyperthermophile P. furiosus and the mesophilie 

Agrobacterium faecalis were compared. The enzymes were found to exhibit similar broad 

substrate specificities and nearly identical pH dependencies with several different 

substrates, as well as similar inhibition constants with various inhibitor types, which 

indicate the enzymes exhibit similar catalytic mechanisms despite of a large difference in 

temperature tolerance (Demirjian et al., 2001). 

 

1.3 ALCOHOL DEHYDROGENASES 

1.3.1 Alcohol dehydrogenases from hyperthermophilic bacteria and archaea 

One of the most interesting enzyme groups from hyperthermophilic microorganisms is 

alcohol dehydrogenases (ADHs, EC 1.1.1.1). ADHs are ubiquitous in nature--widely 

distributed in all three domains of life (Bacteria, Archaea, Eucarya) and have been 

characterized from diverse sources including bacteria, yeasts, plants, and tissues from 

several mammalian species (Hirakawa et al., 2004). In a number of hyperthermophiles, 

including species of Pyrococcus, Thermococcus and Thermotoga, ADH has been 
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considered as a key enzyme responsible for the production of alcohol including ethanol, 

one of the most desirable renewable energy sources, as end product. In general, as an 

important family of oxidoreductases, ADHs can catalyze the inter-conversion between 

alcohols and the corresponding aldehydes or ketones. Morevoer, they display different 

physical and enzymatic properties, show a wide variety of substrate specificities 

(Radianingtyas et al., 2003), and react with primary and secondary, linear and branched 

chain, aliphatic and aromatic alcohols and with their corresponding aldehydes and 

ketones. ADHs play considerable roles in processing and producing, for example, the 

generation of potable alcohol (Lamed et al., 1980) and solvents (Reid et al., 1994). ADHs 

are also involved in the growth of methylotrophs, oxidation of alcohols and catalyse 

lignin degradation (Reid et al., 1994). Many studies have been undertaken to characterize 

ADHs from hyperthermophiles to better understand their activities and thermostability as 

well as industrial application in alcohol and enzyme production (Lamed et al., 1980). 

There is considerable interest in the use of ADHs as potential biocatalysts in the chemical 

synthesis industry, especially the chiral chemical production (Simon et al., 1985). 

 

The classification of ADHs is usually based on their substrates or cofactors. The 

functionally and presumably structurally similar ADHs are classified as primary (P-

ADH) or secondary (S-ADH) based on their higher catalytic efficiencies toward primary 

(1°) or secondary (2°) alcohols (Burdette, 1997). The secondary alcohol dehydrogenases, 

which show stereoselective reaction mechanisms, are highly desirable for synthetic 

chemistry (Whitesides et al., 1985). On the other hand, several categories of ADHs can 

be distinguished based on their cofactor specificity, these being: (i) NAD or NADP, (ii) 
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the pyrrolo-quinoline quinine, haem or cofactor F420, and (iii) FAD. ADHs can also be 

classified into three categories by the metal ions contained: short-chain ADHs (lack of 

metal ions), zinc-containing ADHs and iron-dependent ADHs (Reid and Fewson, 1994).  

The phylogenetic analysis revealed that ADH subgroups are classified according to their 

cofactor specificity in the NAD(P)-dependent group, the ADHs are orderly clustered 

according to enzyme type, i.e. zinc-dependent ADHs, short-chain ADHs, and Fe-

containing ADHs, irrespective of archaeal or bacterial origin, location of isolation or 

growth conditions (Fig. 1-2; Jeon et al., 2008). 

 

Up to date, there are quite a few alcohol dehdyrogenases identified from thermophiles or 

hyperthermophiles, and several of the enzymes have been biochemically characterized or 

functionally expressed in foreign hosts to further explore the potential application in 

industry, since some of thermostable dehydrogenases that are useful in stereoselective 

transformation of ketones to alcohols have aroused large research interests (Demirjian et 

al., 2001). Multiple NAD(P)-dependent ADHs which contain zinc or iron at the active 

site have been studies. In hyper/thermophilic archaea, several kinds of ADHs have been 

discovered, i.e. the ADH from Sulfolobus solfataricus and Aeropyrum pernix K1 are 

NAD-dependent zinc-containing ADHs (Giordano et al., 1999; Hirakawa et al., 2004); 

ADH from Pyrococcus furiosus detected to be an unusual iron- and zinc containing 

enzyme is liable when expose to oxygen (Ma et al., 1999). Putitive NADP-dependent 

Thermotoga maritia ADH (TM0820) was detected to be iron-containing based on the 

crystal structure. This ADH variation within hyper/thermophiles from different sources 
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Figure 1-2 Phylogenetic tree derived from NAD(P)-dependent ADHs 
 

Phylogenetic analysis was adapted performed with a selection of 23 sequences covering 
all representatives of the NAD(P)-dependent class of this family (Fe-dependent, short-
chain, and Zn-dependent) from thermophilic, mesophilic, and psychrophilic organisms  
(Adapted from Jeon et al., 2008). 
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could provide evidence that the genetic and metabolic diversity present in high-

temperature environments reflects the stress components that characterise the 

environments (Radianingtyas et al., 2003). 

 
1.3.2 Zinc-containing ADHs 

Most NAD (P)-dependent ADHs contain zinc at the active site (Radianingtyas et al., 

2003). Generally, most zinc-containing ADH enzymes found exist as tetramers, such as 

those present in yeast and bacteria; however, some of them were detected to be dimmers 

(Radianingtyas et al., 2003). Zinc-containing ADHs that are dimmers usually found in 

higher plants and mammals, while some from the microorganisms were also identified, 

such as the ADH from Rhodococcus rubber DSM 44541 (Kosjek et al., 2004), 

Thermomicrobium roseum (Yoon et al., 2002), ADH from Pyrococcus furiosus (Ma et 

al., 1999), and recently even a dodecameric ADH were identified from Picrophilus 

torridus (Hess et al., 2008). 

 
Zinc ions have catalytic or structural functions in several enzymes including 

hyperthermophilic zinc-containing ADHs. Generally, zinc is essential for the activity; 

however, several zinc-containing ADHs contain structural zinc. The accumulation of 

structure data about zinc-containing ADHs leads to further classification based on the 

role of zinc: ADHs with both catalytic zinc and structural zinc or ADHs with only 

catalytic zinc.  
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Thermophilic NAD-dependent homotetrameric alcohol dehydrogenase from the archaeon 

Sulfolobus solfataricus was the firstly well-studied thermophilic ADH containing both 

catalytic and structural zinc ion (Ammendola et al., 1992). Each monomer contains two 

Zn ions with catalytic and structural function, respectively. Despite few structural 

variations, all of the coordinating residues of S. solfataricus are located within typical 

sequence motifs of all zinc-containing ADHs (Vallee et al., 1990). Most Zinc-containing 

ADHs have three residues, including cystine or histidine, as active-site ligands, while in 

S. solfataricus the catalytic zinc is bound to Cys38, His68, Cys154 (numbering in S. 

solfataricus ) which are conserved coordinating residues of the catalytic zinc atom, and 

another protein Zn-ligand, Glu69, is also found to be strongly bound to Zn (Raia et al., 

2001).  The other example from hyperthermophiles is L-threonine dehydrogenase (TDH) 

from P. horikoshii involving in the oxidation of L-threonine to 2- amino-3-ketobutyrate, 

which is an NAD-dependent homotetramer containing one catalytic zinc and one 

structural zinc of each subunit (Ishikawa et al., 2007). The structural zinc ion exhibits 

coordination with four cysteine ligands (Cys97, Cys100, Cys103 and Cys111, numbering in 

P. horikoshii) conserved throughout the structural zinc-containing ADHs and TDHs. The 

residues Cys42, His67 and Glu68 coordinated to a functional catalytic zinc ion. However, 

the catalytic zinc ion has a larger interdomain cleft and is not coordinated at the bottom of 

the cleft in the crystal of Pyrococcus horikoshii TDH, which is a significant difference in 

the orientation of the catalytic domain (Ishikawa et al., 2007). 

 

Besides the ones with both catalytic and structural zinc ion, some members of the zinc-

containing ADH were found to harbor catalytic zinc only. The representatives of this 
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group are ADHs from thermophiles Thermoanaerobacter brockii and 

Thermoanaerobacter ethanolicus. Both of the enzymes are NADP-dependent and contain 

one zinc ion per subunit (Peretz et al., 1989; Burdette et al., 1997). Cys37, His59 and 

Asp150 coordinate the single catalytic zinc. The structures of NADP-dependent ADHs 

from T. brockii has been determined (Bogin et al., 1997; Korkhin et al., 1998), and the 

monomers are composed of two domains, a coenzyme-binding domain and a catalytic 

domain, separated by a deep cleft at the bottom of which a single zinc atom is bound in 

the catalytic site.  The T. ethanolicus adhB gene was cloned and expressed in Escherichia 

coli (Burdette et al., 1996) and T. ethanolicus ADH was characterized to be a medium 

chain, zinc-containing, tetrameric ADH composed of identical 40 kDa subunits. This 

NADP-dependent enzyme contains single catalytic zinc coordinated by Cys37, His59 and 

Asp150, conserved in the T. brockii ADH (Bogin et al., 1997). 

 

Thermococcus species are the best-studied hyperthermophilic anaerobes and a large 

number of species have been already described. Many Thermococcus ADHs contain iron, 

such as Thermococcus strain ES-1 has the sulfur-regulated, nonhaem iron ADH (Ma et 

al., 1995), and ADH from Thermococcus hydrothermalis is iron-dependent enzyme using 

NADP as cofactor (Antoine et al., 1999). Interestingly, an ADH purified from 

Thermococcus guaymasensis was determined to be a zinc-containing, NADP-dependent 

secondary alcohol dehydrogenase (Ying et al., unpublished results). Containing one 

single zinc atom at the catalytic core, the T. guaymasensis ADH has the outstanding 

thermostability and a higher resistance to oxygen than the iron-containing ADHs from 

Thermococcus species. 
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1.3.3 Iron-containing ADHs 

Although many zinc-containing ADHs have been well studied, only a few iron-

containing ADHs are known, few have been described in hyperthermophiles. And also, 

the importance and catalytic mechanism of iron in such enzymes are not well understood. 

So far, most of iron-dependent ADHs that still contain iron after purification are found in 

hyperthermophilic archaea, including members of the genus Thermococcus: T. litoralis 

(Ma et al., 1994), Thermococcus strain ES1 (Ma et al., 1995), T. zilligii (Li et al., 1997; 

Ronimus et al., 1997), and T. hydrothermalis (Antoine et al., 1999). In one of the well-

studied hyperthemophilic bacterial genera Thermotoga, the gene TM0820 was 

determined to encode a NADP-dependent iron-containing enzyme (Schwarzenbacher et 

al., 2004). The bacterial T. hypogea ADH is the first purified and characterized iron-

containing ADH from the hyperthermophilic bacteria and is one of the most thermostable 

iron-containing ADHs (Ying et al., 2007).  

 

Several genes encoding metal free and Zn-containing ADHs from hyperthermophiles 

have been successfully expressed in E coli to yield recombinant forms (Cannio et al., 

1996; van der Oost et al., 2001; Hirakawa et al., 2004; Kube et al., 2006; Machielsen et 

al., 2006), while the expression of genes encoding iron-containing ADHs from 

hyperthermophiles has remained a challenge.  Expression of the gene encoding the iron-

containing ADH from T. hydrothermalis in E. coli is the first example of heterologous 

production of an iron-containing ADH from a hyperthermophilic archaeon, however, the 

native and recombinant T. hydrothermalis ADH showed clear differences in catalytic 
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activity and thermostability (Antoine et al., 1999). Recently, an iron-containing ADH 

from Thermococcus strain ES1 was successfully expressed in E. coli, and the 

recombinant and native enzyme were shown to have similar catalytic characteristics 

(Ying et al., 2008).  

 

Only few of the 3-D structure of iron-containing alcohol dehygrogenases are available 

currently. L-1, 2-propanediol dehydrogenase is the first bacterial iron-containing ADH 

whose 3-D structure was analyzed. L -1, 2-propanediol dehydrogenase expressed in E. 

coli forms a dimer, in which each monomer folds into an α/β dinucleotide-binding N-

terminal domain and an all-α-helix C-terminal domain that are separated by a deep cleft.  

The metal ion is coordinated with an aspartate residue (Asp196) and three histidine 

residues (His200, His263, and His277, numbering in E. coli). The coenzyme NAD binding 

site is harbored in the α–helix close to the N-terminal site and conserved among 

dehydrogenases. The enzyme encoded by gene TM0920 from the hyperthermophile 

bacterium T. maritima is a putative NADP-dependent ADH and the crystal structure has 

been obtained (Schwarzenbacher et al., 2004). Each monomer of the enzyme has two 

distinct N-terminal and C-terminal domains, separated by a deep cleft. The ferrous ion is 

deeply located in the catalytic cleft and has a square pyramidal coordination with Asp189, 

His193, His256, and His270 (numbering in T. maritima), all of which are situated in C-

terminal domain.  

 

An alcohol dehydrogenases from T. hypogea represents the first hyperthermophilic 

bacterial ADH that contains iron with full activity after purification, whose catalytic 
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properties show similarities to the enzymes in archaea (Ying et al., 2007). The N-terminal 

sequence of T. hypogea ADH has no similarity to archaeal ADHs, which is an indication 

of the divergence of iron-containing ADHs from hyperthermophilic archaea. However, 

there is still a need of more sequence information for understanding the evolutionary 

relationship between the bacterial iron-containing ADH and the archaeal ADHs. Because 

of the oxygen sensitivity, the iron-containing fully active ADHs including the T. hypogea 

ADH cannot be easily purified from hyperthermophiles, which is probably one of the 

reasons why there is a lack of understanding of the iron-containing ADH and the catalytic 

mechanism of iron in such enzymes. To achieve better understanding of these types of 

ADHs, sufficient amount of pure enzymes that can be obtained by over-expressing 

hyperthermophilic enzymes in mesophilic host is needed for further study.  

 

1.4 RECOMBIANT HYPER/THERMOPHILIC ENZYMES  

ADHs from thermophiles or hyperthermophiles can be used for the study of enzyme 

evolution, enzyme stability and catalytic mechanisms, protein structure-function 

relationships, and biocatalysis under extreme condition. However, it is difficult to obtain 

native enzymes because of the difficulties in cultivating the organisms on the large scale, 

low basal level expression of the enzymes in native hosts, and complex purification 

process (Demirjian et al., 2001). In addition, the lack of suitable expression systems in 

particular extremophiles has prevented the high level production of the target enzymes 

from the source microorganisms. Recently, based on the discovery of molecular and 

biochemical studies such as protein purification and characterization, the applications of 

the hyperthermophilc enzymes are greatly facilitated by the cloning and expressing of 
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genes from hyperthermophiles in mesophilic hosts, which allows for the tagging or 

modification of the recombinant proteins for the purpose of simplifying downstream 

purification (Baneyx, 2004).   

 

Compared to the native enzymes from hyperthermophiles, the recombinant enzymes have 

the benefits of purity, consistency, and affordability. Although recombinant enzymes and 

native enzymes are manufactured to meet the same rigorous quality control standards, it 

is recombinant enzymes that produce a more pure product with less processing time 

(Baneyx, 2004). In particular, hyperthermophilic enzymes that are intrinsically stable and 

active at high temperatures can be easily purified by heat treatment. Typically, the yields 

obtained for recombinant and over-expressed enzymes are significantly larger than those 

produced by native strains. Moreover, in industry, the introduction of recombinant 

enzymes has resulted in lower cost that spreads the application of the enzymes (Vieille et 

al., 2001).  

 

Though initially thought that some of the factors such as difference in codon usage or GC 

content of the hyperthermophilic genes compared to the host would pose obstacles for 

successful high-level expression, however, with the continuous improvements of new 

systems, over-expression of various proteins from hyper/thermophiles have conducted 

successfully in traditional expression hosts such as E. coli, yeast and Bacillus subtilis, and 

in general, most recombinant enzymes are obtained using the mesophilic E. coli as the 

host system. The most commonly used vector of the E. coli systems is the T7 promoter 

based expression vectors (Tabor et al., 1985; Studier et al., 1986), with ~60% of the 
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recombinant extremophilic proteins beings produced with this system. The second most 

often used E. coli expression system for extremophilic proteins production is lac-

promotor-based expression vectors.  More than 100 genes from hyperthermophiles have 

been cloned and expressed in mesophiles (Hirakawa et al., 2004). Most of the genes from 

hyperthermophiles have been directly cloned after PCR amplification or isolated by 

hybridization (Cannio et al., 1996), only few other genes have been isolated by direct 

expression and activity screening (i.e., by complementation of growth or activity assay) 

of a genomic library of the host cell (Vieille et al., 2001).  

 

When the properties of the native and recombinant hyperthermophilic enzymes are 

compared, the majority of hyperthermophilic enzymes expressed in E. coli retain all of 

the native enzyme’s biochemical properties, including proper folding (Grättinger et al., 

1998), thermostability, and optimal activity at high temperatures (Arnone et al., 1997). 

The crystallization studies of crystal structures of both the native and recombinant 

enzymes indicated recombinant hyperthermophilic proteins are typically similar to that of 

their mesophilic homologues (Knapp et al., 1996; Yip et al., 1995). Thus, while a few 

proteins from hyperthermophiles might require extrinsic factors (e.g., salts or 

polyamines) or posttranslational modifications (e.g., glycosylation) to be fully 

thermostable, most proteins from hyperthermophiles are intrinsically thermostable, and 

they can fold properly even at 60 °C, below their physiological conditions (Danson et al., 

1996). The fact that most hyperthermophilic enzymes are properly expressed and folded 

in E. coli has greatly facilitated their study, since they can be cultured under aerobic 
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growth conditions and purified from E. coli rather than from an often hard-to-grow 

hyperthermophilic organism.  

 

On the other hand, difficulties also appear in the over-expression of hyperthermophilic 

enzymes in mesophiles because of their evolutionary gap. Genes from hyperthermophiles 

in E. coli can be low expression due to a significantly different codon usage in the 

expressed gene. This difficulty is often alleviated by the expression in E. coli of rare 

tRNA genes together with the target gene (Uriarte et al., 1999; Machielsen et al., 2006). 

Furthermore, since archaeal transcription systems (including promoter sequences) are 

more closely related to eucaryal than to bacterial systems, most archaeal genes can be 

expressed in E. coli only when they are cloned under the control of strong promoters, 

such as Plac, Ptac, or T7 RNA polymerase promoter.  

 

There are quite a few ADHs from hyper/thermophilic sources have been over-expressed 

in mesophilic host E. coli (Table 1-2). T. hydrothermalis ADH is the first Thermococcale 

ADH to be cloned and over-produced in a mesophilic heterologous expression system 

(Antoine et al., 1999), the adhB gene encoding thermophilic bacterium T. ethanolicus 

39E secondary-alcohol dehydrogenase (S-ADH) has also been cloned, sequenced and 

expressed in E. coli (Burdette et al., 1996). The recombinant T. ethanolicus protein, with 

kinetic properties similar to those of the native enzyme, is a thermophilic and 

thermostable NADP-dependent enzyme that exhibits significantly greater catalytic 

efficiency towards secondary than primary alcohols. The molecular cloning, complete 

nucleotide sequences, and high-level expression have been done in  
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Table 1-2 Over-expressed ADHs from hyper/thermophiles in mesophilic host E. coli 

 

Metal ion Source Organism Expression System Reference 

Zinc Aeropyrum pernix
E. coli- pTRC99 

system (T7 promoter)
Guy et al., 2003 

Zinc 
Geobacillus 

thermoglucosidasius

E. coli-pET system 

(T7 promoter) 
Jeon et al., 2008 

Zinc Pyrococcus horikoshii 
E. coli-pET system 

(T7 promoter) 
Higashi et al.,2005 

Zinc Sulfolobus solfataricus
E. coli- pTRC99 

system (T7 promoter)
Cannio et al., 1996 

Zinc 
Thermoanaerobacter 

brockii 

E. coli-pET system 

(T7 promoter) 
Peretz et al., 1997 

Zinc 
Thermoanaerobacter 

ethanolicus 

E. coli-pET system 

(T7 promoter) 

Ziegelmann-Fjeld 

et al., 2007 

Zinc 
Thermococcus 

hydrothermalis 

E. coli-pET system 

(T7 promoter) 
Antoine et al., 1999 

Iron Thermotoga maritima E. coli 
Schwarzenbacher et 

al., 2004 

Iron Thermococcus strain ES-1 
E. coli-pET system 

(T7 promoter) 
Ying et al., 2008 

None Pyrococcus furiosus 
E. coli-pTZ19R(T7 

promoter) 

van der Oost et al., 

2001 
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E. coli of the cloned genes encoding ADH in the thermophile T. brockii (Peretz et al., 

1997). It was found that the level of T. brockii ADH expression in E. coli was 30-fold 

higher than in the native bacterium T. brockii, while the kinetic properties with C3 to C5 

substrates and the thermostability of the purified recombinant ADHs were equivalent to 

those of the enzymes purified from the respective native organisms. And recently, a 

thermostable NAD-dependent Zinc-containing alcohol dehydrogenase from Geobacillus 

thermoglucosidasius has been functionally expressed in E. coli and the catalytic 

properties were characterized (Jeon et al., 2008).  

 

 A few genes from hyperthermophilic archaea have been successfully expressed in yeast 

systems as an alternative of E. coli (Riley, 1993). That is because archaea have some 

eukaryotic-like characteristics, such as having histone-like proteins and eukaryotic-like 

transcription and translation initiation (Bell et al., 1998). The majority of the obstacles of 

yeast expression were reported as protein failed to fold properly into monomeric subunits 

in the endoplasmic reticulum (ER) and, therefore, was not subsequently trafficked to the 

yeast secretory pathway. S. cerevisiae has been used to express the β-glucosidase from P. 

futiosus (Smith et al., 2002). In this case, the β-glucosidase gene was expressed using the 

yeast Gal1-10 promotor and 10 mg/L of recombinant protein was obtained. It was 

determined that increasing the cultivation temperatures from 30 to 37 0C improved the 

protein yield, so higher expression temperatures could be necessary for the proper folding 

of the β-glucosidase subunits.  Other yeast expression strains have also been used for the 

recombinant expression of extremophilic proteins. Xylanase from the hyperthermophilic 
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stain Thermotoga strain FjSS3B.1 was successfully expressed in the yeast strain 

Kluyveromuces lactic (Walsh et al., 1998).  

 

Another alternative expression host Bacillus subtilis has recently been used, especially 

for the production of proteins from alkaliphiles. For example, the recombinant expression 

of the alkaliohilic pectate lyase in Bacillus subtilis resulted in high yield using the 

Bacillus shuttle vector pHY300PLK (Ishiwa et al., 1986). B. subtilis has also been used to 

expression proteins from thermophiles, and become a powerful approach when 

expression level in E. coli is poor. The pullulanase from Desulfurococcus mucosus was 

expressed in very low level in the host E. coli because of the different codon biases 

between thermophiles and E. coli. However, the D. mucosus gene was expressed 

successfully when cloned into the B. subtilis expression vector pJA803 and under control 

of the Bacillus maltogenic α-amylase (PamyM) promoter (Duffner et al., 2000). The 

pullulanase gene reflected the codon biases present in B. subtilis better than that of E. coli 

since it contains argnine, isoleucine and leucine codons that are considered rare in E. coli 

(Duffner et al., 2000). With the increasing of potentially useful alkaliphilic proteins, it is 

anticipated that the recent development of new Bacillus expression systems will continue 

to occur. 

 
Due to the evolution gap between hyperthermophiles and mesophilc hosts, especially 

difference between archaeal and bacterial transcription systems, the using of anaerobic 

thermophilic or hyperthermophilic archaea as cell factories for thermostable protein 

production has been constructed. However, this system is limited because of the low cell 

density of these archaea in fermentation processes (Biller et al., 2002).  Up to date, few 

 26



high-temperature expression systems are available. A shuttle vector that maintained a 

high copy number in Pyrococcus abyssi was constructed (Lucas et al., 2002). 

Alternatively, Sulfolobus species can be used as thermophilic host organism since it 

grows to higher cell densities (Krahe et al., 1996; Schiraldi et al., 1999). Researchers 

have developed a generic system for a Sulfolobus sulfataricus host and over-expressed 

ADH from the moderate thermophile Bacillus stearothermophilus (Contursi et al., 2003). 

It is obvious that the thermophile expression systems have their advantages but also 

require optimization.  

 
In conclusion, higher level production of ADHs using heterologous over-expression is 

obviously essential for biotechnological application, and can also be extremely useful for 

further characterization studies, such as determining three-dimensional (3-D) structures 

and structure/function studies using mutagenesis. However, no general rules can be 

provided for the production of different proteins, and sometimes a single amino acid 

change results in dramatic differences. Still, there is a need for the optimization of the 

heterologous production of thermostable enzymes in general.  
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1.5 AIM OF THIS STUDY 

Hyperthermophiles are located at the bottom of the phologenetic tree in both domains of 

bacteria and archaea, and represent a broad spectrum of growth physiologies.  

Hyperthermophilic enzymes may serve as model systems in understanding enzyme 

evolution, molecular mechanisms for protein thermostability, and adaptation of enzymes 

to their unusual environments.  ADHs are ubiquitous in nature and responsible for diverse 

metabolic functions. The study of ADHs is important to expand not only the 

understanding of hyperthmophilic physiology but also their potentials as potent 

biocatalysts in industry. The aim of this research is to obtain a new version of ADH from 

both hyperthermophilic bacteria and archaea as model systems for studying 

thermostability and catalytic mechanisms. This work mainly focused on zinc-containing 

ADH from T. guaymasenis and iron-containing ADH from the bacterium T. hypogea. 

Since metal ions are essential for maintaining the activity of some biocatalysts in vitro, 

and their presence may result in enhancements of selectivity, activity as well as stability. 

As the T. guaymasenis ADH and T. hypogea ADH contain zinc and iron respectively, it is 

interesting to investigate effect of different divalent ions on catalytic characteristics or 

oxygen sensitivity of the enzymes.  

 

To simplify the cell cultivation and protein purification as well as to increase the protein 

yield, the entire encoding gene was cloned, sequenced and over-expressed in the 

mesophilic host E. coli following the strategy outlined in Figure 1-3. 
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Figure 1-3 Brief strategy of this study 
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Further biochemical characterization would be effective in determining catalytic 

properties of recombinant enzymes, including optimal catalytic conditions, 

thermostabilities, and comparision with the native enzymes from hyperthermophiles. 

Differences between archaeal and bacterial hyperthermophilic enzymes will be analysed, 

which will be helpful to understand the evolutionary relationship between the bacterial 

iron-containing ADH and the archaeal ADHs. Finally, potential approaches in industrial 

process of thermostable enzymes will be discussed. Further studies on crystal structures 

of the recombinant enzymes and engineering of the enzymes may provide comprehensive 

understanding of the thermostable enzymes. Site-directed mutagenesis on the surface 

areas, cofactor binding motif and ion binding site may modify the catalytic characteristics, 

substrate selectivity or even create additional nonlocal ion pairs, and it is expected to 

obtain biocatalysis under extreme conditions with broader substrate specificities and new 

functions targeted at industrial applications. 
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Chapter 2:  Sequence determination and functional expression of a 

Zinc-containing alcohol dehydrogenase from Thermococcus 

guaymasensis 
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2.1. OVERVIEW 

Thermococcus guaymasensis is a hyperthermophilic starch-degrading archaeon 

producing acetate, CO2, H2, ethanol and acetoin as end products. An alcohol 

dehydrogenase (ADH) was characterized previously to be a primary-secondary ADH and 

exhibited stereoselectivity on interconversion between 2, 3-buanediol and acetoin. The 

gene encoding the enzyme was cloned using both conventional and inverse PCRs.  The 

deduced amino acid sequence had a total of 364 amino acid residues with a calculated 

molecular mass of 39463 Da. The enzyme belongs to the family of zinc-containing ADHs 

with catalytic zinc only. It was verified that the enzyme had binding motifs of catalytic 

zinc only (GHEX2GX5GX2V, residues 62-76) and cofactor NADP (GXGX2G, residues 

183-188). The tertiary structural modeling showed two typical domains, one catalytic 

domain close to N-terminal and one coenzyme-binding domain close to C-terminal end. 

Since its codon usage pattern of which seemed to be different from that of E. coli, the 

enzyme was over-expressed in the E. coli codon plus strain using pET-30a vector. The 

recombinant enzyme was soluble and active (1073 U/mg), which was virtually the same 

to the native enzyme (1049 U/mg).  The recombinant possessed almost identical 

properties with the native enzyme. The optimal pH values for ethanol oxidation and 

acetaldehyde reduction were 10.5 and 7.5 respectively, while activity for alcohol 

oxidation was much higher than that of aldehyde reduction. The enzyme activity was 

inhibited in the presence of 100 μM Zn2+ in the assay mixture and it has a half-life of 6 

hours after exposed to air. The enzyme had outstanding thermostability with 60% activity 

after incubation at 80 0C for 40 hours.  
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2.2 INTRODUCATION 

Interconversions of alcohols, aldehydes, and ketones are essential processes in both 

prokaryotes and eukaryotes. As one of the key enzyme in metabolism pathways, ADHs 

are involved in a wide range of metabolism, especially in microorganisms (Radianingtyas 

et al., 2003). Hyperthermophiles are a group of microorganisms growing optimally at 

temperatures higher than 80 0C, of which anaerobic heterotrophs have attracted 

increasingly attention for the use of fermentation at the elevated temperatures 

(Karakashev et al., 2007). Thermococcus guaymasensis is a strictly anaerobic archaeon 

isolated from marine sediments (Canganella et al., 1998). It is a member of obligately 

heterotrophic and strictly anaerobic archaea with the optimum temperature for growth at 

88 0C. Acetate, CO2 and H2 are formed as the main end products of metabolism, and 

ethanol can also be produced.  

 

Up to date, alcohol dehydrogenases have been characterized from many sources. Based 

on the cofactor specificity, they can be divided into 3 types: NAD(P)-dependent, FAD-

dependent, and pyrro-quinoline quinine (Duine 1980), haem or cofactor F420. Those 

NADP-dependent ADHs can be further classified into 3 groups based on the metal 

content: zinc-containing ADHs, iron-containing or activated ADHs and the enzymes 

without metal ions. The native ADH purified from T. guaymasensis was determined to be 

a Zinc-containing, NADP-dependent secondary alcohol dehydrogenase (Ying et al., 

unpublished results).  
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Zinc-containing ADHs from hyperthermophiles are highly desired as promising catalysts 

in industry because of the features such as solvent tolerance, high stereoselectivity as well 

as thermostability. For instance, a zinc-containing ADH from anaerobic archaeon 

Pyrococcus furiosus underwent asymmetric ketone reduction to the corresponding chiral 

alcohols (Machielsen et al., 2006; Zhu et al., 2006). The T. guaymasensis ADH (TgADH) 

has the outstanding thermostability and stereoselectivity as well.  So there is a need to 

produce large amount of recombinant ADH for further biophysical and biochemical 

studies as well as for industrial applications.  

 

Complete genomic sequences of some hyperthermophilic archaea are available in the 

Genebank (http://www.ncbi.nlm.nih.gov/Genbank/) and several Zinc-containing alcohol 

dehydrogenases have been successfully expressed in mesophilic heterologous expression 

systems. Further analysis of 3-D structure also provided valuable information of their 

catalytic mechanisms. The NADP-dependent ADH from the thermophilic bacterium 

Thermoanaerobium brockii was over-expressed in Escherichia coli and crystallized in its 

holo-enzyme form (Korkhin et al., 1998). T. hydrothermalis ADH is the first 

Thermococcale ADH to be cloned and over-produced in mesophilic host E. coli. 

Additionally, the X-ray structure of a tetrameric NAD-dependent ADH from the 

hyperthermophilic archaeon Sulfolobus solfataricus has been solved (Esposito et al., 

2002). The gene encoding ADH from Aeropyrum pernix was over-expressed in E. coli 

and the 3-D structure of the enzyme was obtained by crystallization with presence of its 

cofactor NADH (Guy et al., 2003). 
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In this study, the structure gene encoding TgADH was cloned, sequenced and over-

expressed in mesophilic host E. coli, and the resulting enzyme was purified and its 

catalytic properties were characterized. The over-expression of TgADH was a successful 

fundament for further redesign of the enzyme that could better fit the application purpose.   
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2.3 MATERTIALS AND METHODS 

2.3.1 Materials  

All the chemicals in this research were purchased from commercially available sources 

(Table 2-1). 

Table 2-1 Major chemicals used in this research 
 
Chemicals * Corporation  

Agarose                                                      Fermentas Canada Inc. (ON, Canada) 

Acrylamide-Bisacrylamide-Solution    MP Biomedicals (OH, USA)  

BIO-RAD Protein Assay       Bio-Rad Laboratories, Inc. (ON, Canada) 

5-bromo-4-chloro-3-indolyl- beta-D-

galactopyranoside   

Fermentas Canada Inc. (ON, Canada) 

Dithiothreitol Fisher scientific company (ON, Canada) 

Isopropyl β-D-1-thiogalactopyranoside Fermentas Canada Inc. (ON, Canada) 

ß- nicotinamide adenine dinucleotide 

(NADP) 

Sigma-Aldrich Canada Ltd. (ON, Canada) 

ß-nicotinamide adenine dinucleotide; di-

sodium salt (NADPH) 

Sigma-Aldrich Canada Ltd. (ON, Canada) 

 
 
*, all other chemicals not mentioned here were of high technical grade and obtained from 

Sigma-Aldrich Canada Ltd. (Oakville, Ontario) or Fisher scientific company (Ottawa, 

Canada). 
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Restriction enzymes and DNA ladders for molecular cloning and recombinant plasmid 

construction enzymes were commercially available (Table 2-2), and were used according 

to the manufacture’s instructions. Major instruments used were listed in Table 2-3.  

 

Table 2-2 Major chemicals for molecular biology work 
 
Restriction enzymes and reagents * Cooperation  

GeneRuler 100 bp DNA Ladder                    Fermentas Canada Inc. (Burlinton, ON, 

Canada) 

KOD Hot Start DNA Polymerase EMD Chemicals, Inc. (NJ, USA) 

PCR Gel Extraction Kit Qiagen (ON, Canada) 

Perfect DNA 1 kb DNA Ladder Novagen (WI, USA) 

Restriction DNA restriction endonuclease Fermentas Canada Inc. (ON, Canada) 

Taq Polymerase Fermentas Canada Inc. (ON, Canada) 

T4 DNA Ligase Fermentas Canada Inc. (ON, Canada) 

 

*, All other chemicals not mentioned above were obtained from Sigma-Aldrich Canada 

Ltd. or Fisher scientific company (ON, Canada).  
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Table 2-3 Major instruments used in this research 
 
Instrument Corporation 

Agarose gel electrophoresis chamber             Bio-Rad Laboratories, Inc. (ON, Canada) 

Acrylamide-Bisacrylamide-Solution    MP Biomedicals (OH, USA)  

Centrifuge (Allegra 21R Centrifuges)  Beckman Coulter (ON, Canada) 

Centrifuge (Sorvale® RC6-Refrigerated 

Superspeed Centrifuges) 

Mandel Scientific Company Inc. (ON, 

Canada) 

FPLC Amersham Biotech (QC, Canada). 

FluorChem 8000 Chemiluminescence and 

Visible Imaging System  

Alpha Innotech Corporation (CA, USA) 

 

Incubation shaker New Brunswick Science (NJ, USA) 

Incubator  Fisher scientific company (ON, Canada) 

Microscope  Fermentas Canada Inc. (ON, Canada) 

Protein gel chamber  Bio-Rad Laboratories, Inc. (ON, Canada) 

Spectrophotometer (GENESYS 10 UV) VWR Canlab (ON, Canada) 

Table centrifuge Eppendorf  (ON, Canada) 

Thermal-PCR-cycler TC-312  Techne incorporated (NJ, USA) 

Vortex  Fisher scientific company (ON, Canada) 

Waterbath Fisher scientific company (ON, Canada) 
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2.3.2 Microorganisms  

Microorganisms used for this study are listed below: 

Thermococcus  guaymasensis DSM 11113T  was obtained from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen, Braunschweig, Germany. 

E.coli DH5α [(supE44 ΔlacU169 Φ80 lacZΔM15) hsdR17 recA1gyrA96 thi-1 relA1] 

(BRL, CA, USA) 

E.coli BL21(DE3) [B F-
 
ompT hsdSB (rB

-
 
mB

-) gal dcm (DE3)] (Novagen, WI, USA) 

E.coli BL 21(DE3)-RIL [F-, ompT, hsdSB (rB
-
 
mB

-)  gal  dcm lacY1, pRARE (CamR)] 

(Stratagene, CA, USA) 

 

2.3.3 Cultivation media and growth conditions 

For the growth of E. coli, 2YT-medium was used (Sambrook et al., 1989). All media 

were autoclaved for 30 minutes at 121 0C.  

 

2YT medium (per liter) 

Tryptone  16 g 

NaCl          5 g  

Yeast extract 10 g 

Deionized water was added to 1 L. The solution was autoclaved for 30 minutes at 121 °C.  

 

SOB medium  (per liter) 

Bacto-peptone        20 g 

Bacto-yeast extracts    5 g 
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NaCl                5.8 g 

KCl                 0.19 g 

Adjust the pH to 7.5 with KOH. After autoclave and cool down, 2.5 ml autoclaved 1 M 

MgCl2 and 2.5 ml autoclaved 1 M MgSO4 were added. 

 

Medium for T. guaymasensis (per liter) 

KCl                   0.32 g 

MgCl2.2H2O             2.7 g 

MgSO4.7H2O             3.4 g 

NH4Cl                         0.25 g 

CaCl2.2H2O             0.14 g  

K2HPO4             0.14 g 

Na2SeO3             100 µl (100 mg/ml) 

NiCl2·6H2O             100 µl (100 mg/ml) 

NaCl                         18 g 

Bact-yeast extract 5 g  

Tryptone-peptone 5 g  

Trace mineral             10 ml 

Resazurin             2 ml (500 mg/L) 

Glucose              5 g 

 

Adjust the pH to 7.0, dispensed 50 ml medium to a 160 ml serum bottle. After autoclave 

the medium turned to pink. When it cooled down, the medium was degassed and 
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pressured with nitrogen gas. Then 0.14 ml 15% cystein and 0.17 ml 7% Na2S were added 

to each bottle. After incubating the medium at 88 0C for 5 min, the medium turned to 

light yellow and it was ready for use.  

  

Stock solutions of antibiotics and reagents   

Ampicillin: 1 g /ml in deionized water. Filter sterilized through 0.2 μm filter membranes             

                  (Corning NJ, USA). Stored at –20 0C. Used at 1mg /ml.  

Kanamycin: 500 mg/ml in deionized water. Filter sterilized through 0.2 μm filter   

                   membranes. Stored at –20 0C. Used at 0.5 mg/ml. 

IPTG (Isopropyl β-D-1-thiogalactopyranoside): 0.1 M in deionized water. Filter sterilized   

                   through 0.2 μm filter membranes. Stored at –20 0C.  

X-gal (5-bromo-4-chloro-3-indolyl- beta-D-galactopyranoside): Dissolved in   

                   dimethylformamide at 20 mg/ml.  Stored at –20 0C in dark. 

 

 
2.3.4 Cell cultivation  

Cell cultivation was carried out either in shake-flasks with baffles or in solidified agar 

plates with the media composition as described in section 2.3.3.  

 
2.3.4.1 E. coli cultivation 

E. coli strains were grown in 2YT medium at 37 0C, 140-200 rpm, in a volume ranging 

from 500-1000 ml in shake flasks with baffles by inoculating one colony from agar plate 

or with previous culture in a ratio of 1:100 or 1:50 (1-2% v/v). The ratio between the 

volume of the media and the volume of the shake flask was 1:5 (e.g. 100 ml media was 
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used for cultivation in a shake flask having a volume of 500 ml). For isolation of vector 

material or screening of clones, E. coli strains harboring plasmids were grown overnight 

at 37 0C in a shaker incubator at 140-160 rpm containing necessary antibiotic in the 

media composition.  

 
2.3.4.2 T. guyamsensis cultivation  

T. guyamsensis was cultured at 88 0C in the medium as described previously (Canganella 

et al. 1998) with modifications that elemental sulfur and HEPES were omitted. The 

preparation of trace metal and vitamin solutions was described as previously (Balch et al., 

1979). The growth was monitored using cell counting. The culture was taken out from 

water bath after 18-20 hours incubation, and the culture could be stored at room 

temperature. For long-term storage, the resulting cell pellet by centrifugation (5,000 × g) 

was frozen in liquid nitrogen immediately and stored at -80 0C until use. 

 
2.3.5 Conservation and storage of microbiological strains  

For long-term storage of E. coli cells, cryo-cultures were made with glycerol at –20 0C or 

–80 0C. This method was used for preparation of competent cells as well as preparing 

stock cultures of E. coli cells harboring either pET vectors or pET recombinants. For this, 

a single colony was picked up from 2YT-agar plate and inoculated into a 5 ml liquid 2YT 

medium containing appropriate antibiotic if required, incubated at 37 0C on a shaker with 

vigorous shaking until the OD600 reached 0.6-0.8. Then 0.8 ml of the culture was removed 

and transferred to a sterilized cryo-vial, and 0.2 ml of 50 % glycerol was added. The 

culture was mixed well and stored at –20 0C. Or cells with glycerol (10 %) were frozen in 

liquid nitrogen quickly and then stored for long-term at –80 0C. 
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2.3.6 Preparation for competent cells 

2.3.6.1 E. coli DH5α high efficiency competent cells  

For construction of the cloning vector pGEM-Teasy carrying the TGADH coding gene, 

the E. coli DH5α high efficiency competent cells were prepared following the standard 

protocol. E. coli DH5α cells were amplified into 250 ml SOB medium and grew at 18 0C 

(room temperature) and were shaken with 100-110 rpm until a cell density of 0.6 OD600nm 

was reached.   

 

After harvesting at 4000 rpm for 10 minutes at 4 0C, the pellet cells were re-suspended in 

80 ml pre-cooled transformation buffer (10 mM PIPES, 10 mM CaCl2, 250 mM KCl, 100 

mM MnCl2, pH 6.7) slightly, followed by incubation for another 10 minutes on ice. After 

centrifugation, the pellet was carefully re-suspended in 18.6 ml ice-cold transformation 

buffer and then 1.4 ml DMSO was slowly added with gentle stirring to obtain a final 

concentration of DMSO at 7% which is critical for transformation efficiency and long 

term storage. Cells were incubated for another 10 minutes on ice and dispensed 100 ul 

each in 1.5 ml centrifuging tube. The tubes were frozen immediately in liquid nitrogen, 

and stored at -80 0C (the cells are viable for at least 4 months).  

 
2.3.6.2 E. coli BL 21 (DE 3) and E. coli BL 21 (DE 3)- RIL competent cells 

E. coli BL 21 (DE 3) or BL 21 (DE 3)-RIL single colonies (2-3 mm) from overnight 

growth on 2YT-agar-plate could be taken as inocula into 5 ml 2YT medium without 

antibiotics and incubated with shaking in a small scale at 37 0C for 3-4 hours. Then the 

bacteria could be amplified into 100 ml 2YT medium. The cells grew at 37 0C with 
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shaking at 100-110 rpm until a cell density of OD600nm 0.6 was reached.  Then the cells 

were centrifuged at 4,000×g for 10 minutes at 4 0C and the supernatant was then 

discarded. The cells were then re-suspended in 10 ml pre-cooled 0.1 M CaCl2 slightly, 

followed by incubation for another 10 minutes on ice. After washed using 0.1 M CaCl2 

again, cells were incubated on ice for at least 30 minutes. Finally, the pellet was re-

suspended carefully using 2 ml ice-cold 0.1 M CaCl2 solution and 200 μl 50% glycerol 

with gentle stirring. Cells were then dispensed in 1.5 ml centrifuging tubes at 100 μl/tube 

and were frozen immediately in liquid nitrogen, and finally stored at -80 0C.  

 
2.3.7 Gene cloning for TgADH 

Since the genome sequence of T. guaymasensis is unknown, the TgADH encoding gene 

should be isolated and sequenced before over-expression of enzyme in mesophilic host. 

The PCR amplified fragments were obtained using genomic DNA as template, and the 

strategy of gene cloning was shown in Figure 2-1.  

 
2.3.7.1 Preparation of T. guaymasensis genomic DNA  

The total genomic DNA from T. guaymasensis was isolated by lysis of the cells. The 

cells harvested and resuspended in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0), 

which was followed by the addition 0.5 ml of 10% SDS and 5 mg of protease K and 

incubation at 60 0C for 30 minutes. To this, 0.5 ml of 3 M sodium acetate was added and 

stored on ice for 1 hour. This was centrifuged at 10,000×g for 10 min. The supernatant 

was transferred to a fresh tube and DNA was isolated from the mixture using the solution  
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Step 1 PCR for nucleic acids coding the N-terminal of TgADH 

 

 

 

 

 

Step 2 Inverse PCR for the entire coding gene of TgADH 

 

 

 

 

Figure 2-1 Strategy for T. guaymasensis ADH coding gene sequencing 
 
Black arrows, location and directions of major oligonucleotide primers for PCR 
amplification. 
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of phenol, chloroform and isoamyl alcohol (25: 24: 1). Participated by 100% isopropanol 

and washed by 75% ethnol, the DNA was finally resuspended in 0.2 ml TE buffer. DNA 

concentrations of samples were quantified using NanoDrop Spectrophotometer 

(NanoDrop Technologies, DE, USA), and purified DNA was stored at –20 0C.  

 
2.3.7.2 Cloning of the entire gene encoding TgADH  

The coding gene of TgADH was cloned from the T. guaymasensis genomic DNA isolated 

from the T. guaymasensis cells directly using Polymerase Chain Reaction (PCR) 

performed by a thermal cycler termed TC-312 (Techne incorporated, NJ, USA), each 

reaction had a volume of 25 μl and all the reagents were added following the standard 

conditions recommended by the suppliers (Table 2-4). An error-free amplification was 

expected to protect occurrence of accidental mutations in the process of PCR, which 

could finally lead to an inactive recombinant protein. The Taq-polymerase possesses no 

“proof-reading activity” (Flaman et al., 1994) and therefore the appearance of mutations 

during the process of amplification cannot be avoided. So the amplification of the PCR-

products for cloning in the expression vectors was carried out by the proof-reading 

polymerase. Unless otherwise stated, PCR was performed using KOD Hot Start DNA 

Polymerase, and all the reaction parameters were set as conditions suggested by the 

suppliers (Figure 2-2). Two bioinformatic tools were used for primer designing; software 

DNASTAR was used to predict the potential locations of the primers and 

GENERUNNER (version 3.01, downloaded from http://www.generunner.net) was used 

to optimize the parameters of oligonucleotides (Burland 1999).  After typing in the 

nucleic acids sequence in DNASTAR, major properties of the primers were set as the 
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Table 2-4 PCR mixture 
 
Reagents Final concentration      Volume (μl) 

Polymerase buffer (10×) 1× 2.5 

Template 50~100 ng/μl 2 

Primer1 1 μM 1 

Primer2 1 μM 1 

DNTP 0.2 mM 2.5 

MgSO4 / MgCl2 1.5 mM 1.5 

Polymerase 0.5 unit 0.5 

ddH2O - 14 

Total - 25 
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                            Temperature          Time                  Explanation  

                        step1                          94*-95 0C               2-3 min             Pre-denaturation  

    

                        Step 2                          94*-95 0C                30 s                  Denaturation   

36 cycles         Step 3                          50-63 0C                  30 s                  Annealing  

                        Step 4                          70-72* 0C           20-60* s/kb          Elongation 

 

                       Step5                             70-72* 0C              5 min                 Final elongation 

                       Step 6                               15 0C                  forever               Cooling 

 

Figure 2-2 PCR parameters setting 

 
*, parameters for Taq polymerase. Parameters without definition were for KOD 
polymerase. 

 48



following: primer length between 18- 30 bp, melting temperatures (Tm) between 45-     

65 0C. The software then calculated the locations of proper forward and reverse primers 

that were consequently optimized by GENERUNNER. The optimal primer pairs had 

similar melting temperatures (difference ≤ 3 0C) and harbored no hairpin loops, dimmers, 

bulge loops or internal loops. 

 

Analytical as well as preparative gel electrophoresis of double-stranded DNA fragments 

were performed in 0.5-1.5% agarose gels (Sambrook et al., 1989) supplemented with 

ethidium bromide (final concentration 0.5 μg/ml). The agarose was dissolved in 1×TAE 

buffer (Diluted from the 50×stock solution: Tris base 1 M, Glacial acetic acid 57.1 ml/L, 

EDTA 50 mM, pH 8.0). Before loading on the gel, the DNA samples were mixed with 6× 

DNA loading buffer. For determination of fragment size and concentration estimation, a 

defined amount of DNA size marker was included. DNA bands were visualized and 

graphed by FluorChem 8000 Chemiluminescence and Visible Imaging System (Alpha 

Innotech Corporation, San Leandro, CA, USA). For preparative methods such as cloning 

of DNA fragments, all the PCR products were purified with the PCR Purification kit 

(Qiagen, ON, Canada).  

 

The nucleic acids sequence encoding the N-terminal of the enzyme was obtained by PCR 

using both normal and degenerate primers (Table 2-5). The degenerated forward primer 

TGADHNF was designed based on its N-terminal amino acid sequence considering the 

codon bias of Thermococcus kodakaraensis KOD1 while the reverse non-degenerated  
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Table 2-5 Primers designed for cloning and sequencing the gene encoding T. 
guaymasensis ADH 

 
 
 
Name of 

primers*
  

Nucleotide sequence                                                Restriction enzyme 

          (5'-3')                                                                Sites (underlined)  

TGADHNF AARATGMGNGGTTTTGCAATG 

TGADHIR GGAGTGCTGGTGATATCC 

TGMAYN01 TCTCCTTCTCAATCCACTCG 

TGMAYC02 GCAATAACTCCCGACTGG 

TGMAY28C01 TGCCGAAGTAGTTGATGTTG 

TGMAY28C02 GAGGTCAAGCAGGCGNTC 

TGJL1N1 ATGTCNAAGGATGCGCGGT 

TGJL1N2 ATGAGYAAGGATGCGCGGT 

TGECN TAGAATTCATGAGCAAGATGCGCGGTTTTC            EcoRI 

TGXHR ACCTCGAGTCACTCCTCTATGATGACC                      XhoI 

 

 

*
, Primer properties such as melting temperature (Tm), GC content (GC%), primer loops 

and primer dimmers were evaluated by a DNA analysis tool Gene Runner (Hastings 
Research, Inc., Las Vegas, USA).  The table indicates all the key primers used for both 
fragments cloning and specific amplification. The forward and the reverse primers with 
the restriction enzyme sites were the specific primer designed based on the confirmed 
sequence for the amplification of the entire TgADH encoding gene.  
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primer TGADHIR was designed based on one of the internal sequences 

(GYHQHSGGMLAGW) by mass spectrometry and the conserved nucleotide sequence in 

the gene encoding the ADH from Thermoanaerobacter brockii. Both sequence analysis 

using bioinformatics tool BLAST, as well as the matching of the amino acid sequence 

finally confirmed the nucleic acids sequence. For the further cloning of the downstream 

sequence till the coding sequence of C-terminal of T. guaymasensis ADH, a process 

termed Inverse PCR was applied. Firstly, the isolated genomic DNA was digested by the 

DNA restriction enzyme that was not included in the known DNA sequence, including 

EcoRI, Hind III and Bam HI, respectively. After incubation at 37 0C for 1-2 hours, the 

partially digested samples were incubated at 65 0C for half an hour to denature the 

enzymes. Then, the digested product was ligated to circle DNA by using T4 DNA ligase 

at 16 0C overnight, which was used as the template in inverse PCR (Triglia, 2000). After 

amplification, the resulting product of inverse PCRs was sequenced by the dye-

termination method using several primers designed on raw sequence information 

(Molecular Biology Core Facility, University of Waterloo, ON, Canada). The nucleotide 

sequences were analyzed with the program GENERUNNER and its deduced amino acid 

sequence was compared to the GenBank Data Base by BLASTP (Altschul et al., 1997). 

Finally a 1.4 kb fragment amplified from the DNA template digested by Hind III was 

confirmed to be the one carrying the target TgADH encoding gene.  

  

2.3.8 Data mining  

The homologues of the encoding gene sequence of TgADH and the deduced amino acid 

sequence were identified using the BLAST program 
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(http://www.ncbi.nlm.nih.gov/BLAST) with the default parameters (Altschul et al., 

1997). Additional sequences were retrieved from the Pfam database (Bateman et al., 

2002). Sequence alignments and phylogenetic trees were constructed by the neighbor-

joining method of Clustal W with default parameters (Thompson et al., 1994). 

Theoretical molecular weight was calculated using the ProtParam program at the 

ExPASy Proteomics Server with standard parameters (Gasteiger et al., 2005). A 3-D 

structure of TgADH monomer was modeled using the Swiss Model server (Guex and 

Peitsch 1997; Peitsch 1995; Schwede et al. 2003), and then the PDB file obtained was 

used in the PyMOL software to visualize and analyze the 3-D structure.  

 

2.3.9 Construction of the recombinant plasmid 

2.3.9.1 Vectors  

pGEM-Teasy, 3015 bp, PT7, AmpR (Promega,WI, USA)  

pET-30a, 5360 bp, PT7, KanR 
(Novagen, WI, USA)  

 

2.3.9.2 Plasmid isolation by the alkaline lysis method 

Alkaline lysis (Birnboim et al., 1979) was done for plasmid isolation. The method 

involves 3 steps: washing with RNase solution, lysis of the cells with lysis buffer and 

precipitation of the plasmid DNA. A single colony was inoculated in 5 ml of 2YT 

medium with corresponding antibiotics and grew overnight at 37 0C. The culture was 

harvested by centrifugation for 10 min at 5,000×g and the pellets were suspended by 

vortexing in 400 μl of ice-cold Solution A (Glucose 50 mM, EDTA 10 mM, Tris-HCl 25 

mM, pH 8.0, RNase A 100 μg/ ml). To the suspension, 800 μl of Solution B (NaOH 0.2 
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M, 1% SDS) was added and mixed by inverting the tube several times slightly. After 

incubation on ice for 5 min, 600 μl of ice-cold Solution C (Sodium acetate, 3 M) was 

added and mixed by inverting the tube. After the centrifugation at 4 0C, the supernatant 

containing the plasmid DNA was taken and DNA participated by 100% ethanol and 

collected by centrifugation. The isolated plasmid DNA was then suspended in 50-100 μl 

TE buffer.  

 
2.3.9.3 DNA restriction digestion 

Digestion of the DNA with restriction endonucleases was performed in the buffer 

supplied with the restriction enzyme and in accordance with the suppliers’ 

recommendations for temperatures and duration of digestion. Mostly digestion was done 

for 2-4 hours using 10-20 U of the enzyme for 0.5-1.5 μg DNA. The digestion reaction 

was incubated at 37 0C. After completion of the restriction digestion the reaction mixture 

was analyzed by agarose gel electrophoresis. For preparative restriction digestion e.g., 

DNA fragments to be inserted into the vector, reaction mixture was purified with the 

PCR Purification kit (Qiagen, ON, Canada) and quantified by agarose gel electrophoresis.  

 
2.3.9.4 Ligation of DNA fragments  

To keep a high efficiency of the ligation, all the restriction endonucleases selected in this 

research could provide the “sticky end”, either 5’ or 3’ extension.  For successive ligation 

reactions of the inserts to vectors, a 10 μl reaction volume was used with 3:1 molar ratio 

of insert to vector, 1 U of T4 DNA Ligase and 1 μl 10× Ligation buffer (Fermentas, ON, 

Canada). The ligation mixture was incubated at 16-20 0C overnight. After ligation 

reaction was completed, the mixture was used for transformation. 
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2.3.9.5 Transformation and selection  

As T. guaymasensis ADH coding gene preferred a very different codon usage compared 

to the mesophilic host E. coli, higher expressed gene tend to have a greater degree of 

codon bias. To overcome this big problem, confirmed by sequencing, the isolated 

recombinant plasmids carrying TgADH coding gene were transformed into both E. coli 

BL21 (DE3) and the codon-plus E. coli BL 21-RIL expression strains. Transformation of 

the plasmid to E. coli host cells followed the standard heat shock method. When E. coli 

competent cells with the constructed plasmids were subjected to 42 0C heat, a set of heat 

shock genes would be expressed which aid the bacteria in surviving at such temperatures 

that was necessary for the uptake of foreign DNA. In heat shock method, 10 μl of the 

ligation mixture was added to 100 μl competent cells, after incubation on ice for 30 

minutes, a heat shock was given at 42 0C for 90 seconds followed by a second incubation 

on ice for 5 minutes. To this, 300 μl of blank 2YT medium was added and regeneration 

was done at 37 0C for 0.5 to 1 hour. The transformation mixture was plated onto 2YT 

agar plates containing appropriate antibiotic for selection and incubated at 37 0C 

overnight (Hanahan, 1983).  

 
Normally the vector molecule carries a gene whose product confers a selectable or 

identifiable characteristic on the host cell, or either oppositely, one gene is disrupted 

when new DNA is inserted into a vector, and the host cell does not display the relevant 

characteristic. pGEM-Teasy and pET-30a plasmids contained gene giving resistance to 

ampicillin and kanamycine, respectively, which the intended recipient E. coli strain is 

sensitive to. For the construction of expression vector pET-30a-Tgadh, a final 
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concentration of 50 mg/ml kanamycine was added to the medium as the resistance 

selection, while for the pGEM-Teasy cloning vector, a blue-white selection together with 

the ampicillin resistance was used. The blue-white selection is a method of differentiating 

transformants that carry the vector-insert construct to those that do not carry any insert by 

using X-Gal (5-bromo-4-chloro-3-indolyl-[beta]-D-galactopyranoside) and IPTG 

(Isopropyl-[beta]-D-thiogalactopyranoside) as selection markers (Ullmann et al., 1967).

After transformation, host cells were plated on 2YT agar containing X-Gal (80 μg/ml 

2YT agar), IPTG (final concentration 0.05 mM) along with ampicillin (100 μg/ml 2YT 

agar). The plates were incubated at room temperature until the transformation mixture 

had absorbed into the agar. After that, the plates were inverted and incubated at 37 0C 

overnight followed by a second incubation at 4 0C for 5-6 hours. This cold incubation 

enhances blue color development and thereby facilitates differentiation between blue 

colonies and white colonies.  

 

2.3.10 Optimization of growth condition for the recombinant E. coli 

For expression of recombinant ADH gene in E. coli, plasmid Tgadh-pET-30a was 

transformed into E. coli BL21 (DE3) and transformants were grown in 2YT medium at 

37 0C before induction. The recombinant TgADH was expressed driven by the T7-lac 

promoter and the recombinant enzyme was obtained in the periplasmic space when IPTG 

was added. Both the concentration of the inducer as well as the growth phase of 

recombinant cells at which it was added affected the final yield of the protein. To 

optimize the yield, inducer IPTG was added in the exponential phase when OD600 of the 

cell culture reached 0.4-1.0, wheras an ideal yield with high activity presented when the 
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cell density reached OD600  0.8. The optimum concentration of the inducer was detected 

by amount of recombinant protein on the SDS-PAGE. The culture was then induced with 

0.2 mM IPTG and cultivated at 30 0C for 12-16 hours prior to harvesting the cells. 

 
2.3.11 Determination of protein concentration 

Bradford method was used to measure the protein concentration of solutions using a 

spectrophotometer or microplate reader (Bradford, 1976). This is based on the coomassie 

blue dye-binding assay in which a differential color change of the dye occurs in response 

to various concentrations of protein. The maximum absorbance of the dye shifts from 465 

nm to 595 nm when binding of protein occurs and the measurements were at 595 nm. 200 

μl of Bio-Rad reagent was mixed with 800 μl of protein solution, and a control was set by 

mixing 200 μl of Bio-Rad reagent with 800 μl pure water. Since the absorption is 

proportional to the protein quantity, the concentration of the protein solution can be 

determined over a linear calibration curve. The calibration curve was obtained with 

known protein concentrations of standard protein bovine serum albumin (BSA, albumin 

fraction V) by reading the absorbance of the diluted BSA at 595 nm. The absorbance 

versus protein concentration curve was linear in the restricted protein concentration range 

(between 1 mg and 20 mg protein/ml sample solution).  

 
2.3.12 Determination of enzyme activity  

The activity of ADH was determined spectrophotometrically by measuring the rate of 

consumption of the cofactor NADPH. The in vitro enzyme assays were anaerobically at 

80 0C by measuring the ethanol-dependent reduction of NADP or the acetaldehyde-

dependent oxidation of NADPH at 340 nm. Unless specifically stated, the enzyme assay 
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was carried out in duplicate using the standard reaction mixture (2 ml) for ethanol 

oxidation, which contained 100 mM 3-(cyclohexylamino)-1-propanesulfonic acid 

(CAPS) buffer (pH 10.5), 90 mM butanol, and 0.4 mM NADP. For determination of 

reducing activity of the enzyme, the reaction mixture for acetaldehyde reduction was 

composed of 100 mM 4-(2-hydroxyethyl)-1- piperazineethanesulfonic acid (HEPES) 

buffer (pH 7.0), 0.4 mM NADPH and 90 mM acetaldehyde. The reaction was initiated by 

adding enzymes. One unit (U) is defined as the production of 1 μmol of NADPH per 

minute.  

 
2.3.13 Protein purification 

2.3.13.1 Preparation for the cell-free extract 

All procedures for the preparation of cell-free extracts were carried out anaerobically. 

Frozen E. coli cells (5 grams, wet weight) carrying the recombinant expression vector 

TgADH-pET-30a were resuspended in 25 ml buffer A [50 mM Tris buffer containing 5% 

(v/v) glycerol, 2 mM dithiothreitol (DTT), 2 mM sodium dithionite (SDT) and 0.01 

mg/ml DNase I, pH 7.8]. The cell suspension was incubated with stirring for 2 hours at 

37 0C.  After centrifugation at 10,000 × g for 30 minutes, the supernatant was collected as 

cell-free extract for further use. 

 

2.3.13.2 Purification of the recombinant TgADH 

Purification of the recombinant enzyme from E. coli was carried out anaerobically using 

the FPLC system. Since the enzyme was thermostable, a step of heat precipitation was 

applied prior to the column. To optimize the heat treatment time, the cell free extracts 

were incubated at 60 0C for 0.5 hour, 1 hour and 2 hours respectively. After incubated at 
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60 0C for 0.5 to 1 hour, the solution turned gel-like. The denatured proteins and cell 

debris in the cell-crude extract were removed by centrifugation at 10,000 × g for 30 min 

at room temperature. The supernatant containing enzyme activity were collected and 

pooled to a Phenyl-Sepharose column (2.6 × 10 cm) equilibrated with 0.8 M ammonia 

sulfate in buffer A. A linear gradient (0.82-0 M ammonia sulfate in buffer A) was applied 

at a flow rate of 2 ml/min and the ADH started to elute at a concentration of 0.4 M 

ammonia sulfate.  

 
2.3.13.3 Size exclusion chromatography 

The recombinant TgADH was purified after Phenyl-Sepharose column, while a part of 

sample was loaded onto the Superdex 200 gel filtration column (2.6 × 60 cm; Amersham 

Biosciences) in order to determine the molecular mass of its native form. Size exclusion 

chromatography on a Superdex 200 (Amersham Biosciences, USA) equilibrated in 50 

mM Tris-HCl (pH 7.8) containing 100 mM KCl.  Size of the native form of enzymes was 

calculated based on the elution volume of standard proteins (Pharmacia, NJ, USA) that 

contained blue dextran (molecular mass, Da, 2,000,000), thyroglobulin (669,000), ferritin 

(440,000), catalase (232,000), aldolase (158,000), bovine serum albumin (67,000), 

ovalbumin (43,000), chymotrysinogen A (25,000) and ribonuclease A (13,700). 

 
2.3.13.4 Protein gel electrophoresis  

The fraction containing the dominated activity was loaded to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) as described by Laemmli (Laemmli, 

1970) to examine the purity and analyzed protein composition. Protein samples for SDS-

PAGE were prepared by heating for 10 min at 100 0C in the presence of sample buffer 
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(0.1 M sodium phosphate buffer, 4% SDS, 10% 2-mercaptoethanol, 20% glycerol, pH 

6.8). A low range molecular weight protein marker (Bio-Rad Laboratories Inc., ON, 

Canada; containing the bands 97 kDa, 66 kDa, 45 kDa, 31kDa, 20 kDa, 14 kDa) was 

used to estimate the molecular mass of the proteins. 

 
2.3.14 Characterization of catalytic properties 

2.3.14.1 Optimum pH 

All the catalytic properties of native and recombinant TgADH were determined using the 

in vitro enzyme assay described above. The optimal pH of ethanol-dependent oxidation 

of native and recombinant TgADHs was determined by testing and comparing the 

enzyme activity at a series of pHs. Standard enzyme assay at 80 0C were applied using a 

set of 100 mM buffers: HEPES (pH 6.5, 7.0, 7.5 and 8.0), EPPS (pH 8.0, 8.5, 8.8, 9.0), 

glycine (pH 9.0, 9.5, 10.0) and CAPS (pH 10.0, 10.5, 11.0). The optimal pH of 

acetaldehyde-dependent reduction of native and recombinant TgADH was measured 

between pH 5.5 and 9.5 using the following buffers (100 mM): citrate (pH 5.5 and 6.0), 

PIPES (pH 6.0, 6.5 and 7.0), HEPES (pH 7.0, 7.5 and 8.0), EPPS (pH 8.0, 8.5, and 9.0), 

and glycine (pH 9.0 and 9.5). 

 
2.3.14.2 Temperature dependence and thermostability  

The effect of the temperature on the enzyme activity was examined at temperatures from 

30 to 95 0C. The activities were measured using standard assay conditions. Enzyme 

thermostability was evaluated incubating the enzyme in sealed serum bottle at 80 0C and 

95 0C respectively, and measuring the residual activities at different time intervals under 

the standard assay conditions.  
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2.3.14.3 Oxygen sensitivity 

The effect of oxygen on enzyme activity was investigated by exposing the enzyme 

samples in the air at room temperature and determining the residual activity after oxygen 

exposure. The exposure was performed in the presence or absence of DDT and SDT. The 

residual activities of each sample at different time intervals were tested parallelly under 

the standard assay conditions.  

 

2.3.14.4 Effect of metal ions 

Considering the low solubility of cations at alkaline environment, the effect of cations on 

enzyme activities was carried out only by measuring the reduction of 2-butanone optimal 

at a moderate pH and alcohol oxidation activity optimal at a pH higher than 10 was not 

measured. Metal ions were added in the enzyme assay mixture at a final concentration of 

100 μM.  
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2. 4 RESULTS 

 

2.4.1 Cloning of T. guaymasensis ADH encoding gene 

2.4.1.1 N-terminal sequencing of TgADH encoding gene 

Based on the method as described in section 2.2.3, the genomic DNA (gDNA) from T. 

guaymasensis strain was isolated with a high purity (Fig. 2-3). The isolated gDNA had a 

concentration of 400 ng/μl. The isolated genomic DNA was used as the template for the 

amplification of ADH encoding gene directly by PCR. In previous research, native 

TgADH was purified and the N-terminal sequence of mature enzyme was detected to be 

SKMRGFAMVDF, which started from serine, indicating the presence of N-terminal 

methionine excision after translation (Table 2-6). The PCR directed by primer pair 

TGADHNF and TGADHIR produced a single band on 1% agarose gel with the size of 

approximately 300 bp (Fig. 2-3). The nucleotide sequence were confirmed by DNA 

sequencing and the deduced amino acid sequence of the 321 bp PCR product was applied 

in the BLAST tool and they aligned the N-terminal sequence of ADH from thermopiles. 

 
2.4.1.2 The entire coding gene of TgADH obtained by inverse PCR 

The SDS-PAGE indicated that native enzyme purified from T. guaymasensis has the 

molecular weight of 40 kDa (Ying et al., unpublished results), so the complete nucleic 

acid sequence of TgADH gene should involved in a complete open reading frame with an 

approximate length of 1.1 kb, encoding a polypeptide of about 360 amino acid residues. 
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Figure 2-3 PCR amplification of the gene encoding T. guaymasensis ADH 

 
(a) 0.8% agarose of isolated T. guaymasensis genomic DNA; (b) 1% agarose of the PCR 
product using primers TGADHNF and TGADHIR; (c) 1% agarose of inverse PCR 
products using primers TGMAYN01 and TGMAYC02. Lane 1, 1 kb DNA ladders 
(Novogan, WI, USA); lane 3 and 6; 100 bp DNA ladders (Fermentas Canada Inc., ON, 
Canada) ; lane 2, T.guaymasensis genomic DNA; lane 4, negative control (PCR without 
template); lane 5, PCR products of 300 bp; lane 7, fragments amplified from inverse PCR 
containing TgADH coding gene. 
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Table 2-6 N-terminal and internal sequences of TgADH 

 

Location Sequences 

N-terminala SKMRGFAMVDF 

Internal 1b DFKPGDR 

Internal 2b VVVPAITPDWR 

Internal 3b GYHQHSGGMLAGW 
 

 

a amino-terminal sequence was determined by using Edman-degradation  
b internal sequences were determined by using mass spectrometry  
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 To amplify the upstream and downstream sequences of the known fragment and finally 

get the sequence of the entire gene, an inverse PCR-based method was used (Benkel et 

al., 1996; Nie et al., 2007). Inverse PCR uses the polymerase chain reaction, but the 

template for the reverse primers is a restriction fragment that has been ligated upon itself 

to form a circle and it has the primers oriented in the reverse direction of the usual 

orientation. Templates for inverse PCR were obtained from the total genomic DNA of T. 

guaymasensis by partial digestion of the gDNA with EcoRI, BamHI and HindIII 

respectively, which were not involved in the known sequence (Fig. 2-4). After ligation by 

T4 DNA ligase, DNA samples were subjected to inverse PCR with the gene-specific 

primers designed from the known 300 bp sequence encoding N-terminal of TgADH. For 

inverse PCR using EcoRI or BamHI digested DNA as templates, non-specific bands were 

found in each lane after agarose gel electrophoresis; while there was one 1.4 kb specific 

band produced by PCR using the Hind III digested genomic DNA as template and driven 

by the specific primer pair TGMAYN01 and TGMAYC02 (Fig. 2-3). The 1.4 kb PCR 

product was fully sequenced by primer walking, and the alignment revealed that entire 

coding gene was located in the 1.4 kb fragment.     

 

2.4.2 Sequence analysis  

The entire structural gene encoding TgADH was detected to be 1092 bp with a deduced 

364 amino acids sequence. The molecular weight was calculated to be 39463 Da. 

Interestingly, the nucleic acid sequence ended at two consecutive stop codons TGA and  
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(a) 
                                                              

 
(b) 

 

Figure 2-4 Restriction map of the T. guaymasensis ADH coding gene 
 
On-line analysis was conducted using http://tools.neb.com/NEBcutter2/index.php; (a), 
restriction endonucleases involved in initially sequenced 321 bp fragment; (b), restriction 
map of the entire TgADH encoding gene. Red: blunt end cut; blue, 5’ extension; green, 3’ 
extension; *, cleavage affected by CpG methylation; #, cleavage affected by other 
methylation 
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TAA, and the putative archaeal terminator sequence, TTTTTCT, found 24 bases 

downstream of the stop codon TGA (Reiter et al., 1988). The downstream sequence of 

TgADH encoded a putative gene encoding archaeal hydrogenase (Fig. 2-5). Analyzed by 

the on-line BLAST tool, deduced amino acid sequence of T. guaymasensis ADH showed 

high overall identities to threonine dehydrogenase or zinc-containing ADHs from 

thermophilic bacteria, e.g., ADHs from Thermoanaerobacter tengcongensis MB4 (77% 

identity, AAM23957), Thermoanaerobacter brockii (77% identity, CAA46053), 

Thermoanaerobacter pseudethanolicus ATCC 33223 (77% identity, EAO63648), 

Thermoanaerobacter ethanolicus X514 (76% identity, EAU57308), Thermosinus 

carboxydivorans Nor1 (72% identity, EAX46383), and it also showed high similarity to 

ADH from mesophile Clostridium beijerinckii (67% identity, EAX46383). The deduced 

TgADH sequence was classified as zinc-related. The N-terminal region showed 

homology to ADH_N, the alcohol dehydrogenase GroES-like domain; while the C-

terminal region belonged to NADB_Rossmann superfamily indicating the dependence of 

NAD(P) as coenzyme; the central domain was aligned to Tdh, L-threonine dehydrogenase 

(Fig. 2-6). The central region spanning the majority of peptides showed homology to the 

domain of TDH, so all the three domains were classified as zinc-related. From the 

conserved motif comparision with its thermophilic and mesophilc counterparts, TgADH 

was found to be belonged to the family of zinc-containing ADHs with catalytic zinc only, 

which was verified by motif searches that the enzyme had binding motifs of catalytic zinc 

only (GHEX2GX5GX2V, residues 62-76) and coenzyme NADP (GXGX2G, residues 183-

188)(Fig. 2-7).   
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1         ATGAGCAAGATGCGCGGTTTTGCAATGGTGGACTTCGGCAAGGCCGAGTGGATTGAGAAG 

1          M  S  K  M  R  G  F  A  M  V  D  F  G  K  A  E  W  I  E  K  
 
61        GAGAGGCCGAAGCCCGGGCCGTACGATGCAATCGTCAAGCCCATTGCAGTCGCCCCATGC 
21         E  R  P  K  P  G  P  Y  D  A  I  V  K  P  I  A  V  A  P  C   
 
121       ACCTCGGACATCCACACGGTCTTTGAGGCAGCGTTTCCCAGGGAGATGTGTGAGTTCCCG 
41         T  S  D  I  H  T  V  F  E  A  A  F  P  R  E  M  C  E  F  P   
 
181       CGCATACTGGGTCACGAAGCAGTCGGAGAGGTAGTCGAGGTCGGAAGCCACGTCAAGGAC 
61         R  I  L  G  H  E  A  V  G  E  V  V  E  V  G  S  H  V  K  D   
 
241       TTCAAGCCCGGGGACAGGGTTGTTGTCCCGGCAATAACTCCCGACTGGAGGACCCTTGAC 
81         F  K  P  G  D  R  V  V  V  P  A  I  T  P  D  W  R  T  L  D   
 
301       GTTCAGAGGGGCTACCACCAGCACTCCGGTGGAATGCTCGCCGGATGGAAGTTCAGCAAC 
101        V  Q  R  G  Y  H  Q  H  S  G  G  M  L  A  G  W  K  F  S  N   
 
361       CCCCTCAAGGAGGGCGGTAAGGACGGTGTGTTTGCAGAATACTTCCACGTCAACGACGCT 
121        P  L  K  E  G  G  K  D  G  V  F  A  E  Y  F  H  V  N  D  A   
 
421       GACATGAACCTGGCACACCTTCCGGACGAAATCAAGCCGGAAGTCGCTGTCATGGCCACC 
141        D  M  N  L  A  H  L  P  D  E  I  K  P  E  V  A  V  M  A  T   
 
481       GACATGATGACCACGGGATTCCACGGCGCCGAGCTCGCCGACATTCCGCTCGGAGGAACA 
161        D  M  M  T  T  G  F  H  G  A  E  L  A  D  I  P  L  G  G  T   
 
541       GTCGCCGTCATTGGAATTGGACCGGTCGGCCTGATGGCGGTTGCCGGGGCAAGACTGCTC 
181        V  A  V  I  G  I  G  P  V  G  L  M  A  V  A  G  A  R  L  L   
 
601       GGTGCCGGAAGGATCATCGCGGTCGGCAGCAGGCCGGTGTGCGTTGAGGCCGCTAAGTAC 
201        G  A  G  R  I  I  A  V  G  S  R  P  V  C  V  E  A  A  K  Y   
 
661       TACGGAGCCACCGACATAGTCAACCGCAGGGAGCACCCGGACATCGCCGGAAGGATCCTG 
221        Y  G  A  T  D  I  V  N  R  R  E  H  P  D  I  A  G  R  I  L   
 
721       GAGCTGACCGGTGGAGAGGGTGTTGATTCGGTGATAATCGCCGGCGGAAACGTTGACGTA 
241        E  L  T  G  G  E  G  V  D  S  V  I  I  A  G  G  N  V  D  V   
 
781       ATGAAGACCGCGGTGAAGATAGTCAAGCCCGGAGGAACGGTGGCCAACATCAACTACTTC 
261        M  K  T  A  V  K  I  V  K  P  G  G  T  V  A  N  I  N  Y  F   
 
841       GGCAGCGGTGACTACCTCCCGATCCCGAGGATTGAGTGGGGCCAGGGAATGGCCCACAAG 
281        G  S  G  D  Y  L  P  I  P  R  I  E  W  G  Q  G  M  A  H  K   
 
901       ACCATCAAGGGAGGGCTCTGCCCAGGCGGACGCCTGAGGATGGAGCGCCTGCTTGACCTC 
301        T  I  K  G  G  L  C  P  G  G  R  L  R  M  E  R  L  L  D  L   
 
961       ATCAAGTACGGCAGGGTTGACCCGTCAAGGCTCATAACCCACAAGTTCAAGGGATTCGAT 
321        I  K  Y  G  R  V  D  P  S  R  L  I  T  H  K  F  K  G  F  D   
 
1021      AAGATACCAGAAGCCCTCTACCTGATGAAGGACAAGCCCAAAGACCTGATAAAGCCCGTG 
341        K  I  P  E  A  L  Y  L  M  K  D  K  P  K  D  L  I  K  P  V   
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1081      GTCATCATAGAGGAGTGATAAAGCTCTGCCCTCGCTATTCTTTTTTCTTCAACAGGCAAT 
361        V  I  I  E  E  *  *     
 
1141      ATCATATCCCGTTCTAAACCTTTAGTTCAAAAAACGCTTTTATCGTGCGTTTCGAACTCA 
         
1201      AAAATGGAGTGAAAAGCGGAGGTGAAGGCTTTGGGCGAGGTAACCCTCNNNAAGGTTTGC 
   
1261      AGGATTGCAGGTGAGGCCAAGCTCATCCTGTACGAGGAAGACGGAACCGTTCAAGATGCC 
 
1321      CTCTTCATAGCGACGGCTCCGGTGAGGGGTTTCGAGAAGATGGNGGNCGGAAAGAACCCC 
                                                  M  X  X  G  K  N  P   
 
1381      CTCTTTGCGGTCGAGGCTGTTATGAGGATATGCGGTCTCTGCCACGCCTCCCACGGCATA 
461        L  F  A  V  E  A  V  M  R  I  C  G  L  C  H  A  S  H  G  I   
 
1441      GCGGCGAGCGAGGCCATAGAGCACGCCATAGGCATTGCCCCCCCGAGGAACGGAAGGCTC 
481        A  A  S  E  A  I  E  H  A  I  G  I  A  P  P  R  N  G  R  L   
 
1501      ATGCGGGAAGCCCTCGGCCTGATAAACAGGGNCCAGANCCACGCACTGCTCTTCCTGANG 
501        M  R  E  A  L  G  L  I  N  R  X  Q  X  H  A  L  L  F  L  X   
 
1561      GNCGCGGGCGAC 
521        X  A  G  D                          
 
 

Figure 2-5 Nucleotides and deduced amino acid sequences of TgADH 

 
The amino acid sequence was deduced using the program DNAMAN (Lynnon 
Corporation, Vaudreuil-Dorion, Quebec, Canada). The stop codons were marked with 
asterisk and the possible terminator sequence in the 3’-untranslated region is highlighted. 
The partial gene encoding a nickel-containing hydrogenase located downstream of the 
TgADH was underlined. N in the nucleotide sequence represents either A, T, C or G 
while X in the deduced amino acid sequence represents unknown amino acid residue.  
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Figure 2-6 Putative conserved domains of T. guaymasensis ADH 
ADH_N, alcohol dehydrogenase GroES-like domain, GroES is an oligomeric molecular 
chaperone, N-terminal domain of alcohol dehydrogenase-like proteins have a GroES-like 
fold; NADB_Rossmann superfamily, a large family of proteins that share a Rossmann-
fold NAD(P)H/NAD(P) binding domain; Tdh, L-threonine dehydrogenase. 
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Figure 2-7 Amino acid sequences alignment among TgADH and its homologues 
The sequences were aligned using Clustal W (Thompson et al., 1994). TgADH, T. 
guaymasensis ADH; CpADH, Carboxydibrachium pacificum ADH; TbADH, T. brockii 
ADH; CbADH, C. beijerinckii ADH. ‘‘*’’, residues or nucleotides that are identical in all 
sequences in the alignment; ‘‘:’’, conserved substitutions; ‘‘.’’, semi-conserved 
substitutions; “-”, no corresponding amino acid. Highlighted in yellow, conserved 
putative binding sites of catalytic zinc; highlighted in black, conserved putative motif of 
coenzyme binding sites.   
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To better understand the catalytic mechanism of the enzyme, predicted 3-D structure of 

TgADH was shown by PyMOL software (Fig. 2-8). The tertiary structural modeling of 

monomer of TgADH showed two typical domains. Both domains were separated by the 

cleft where the active site of the enzyme might be situated, which was responsible for 

specifically binding a substrate and catalyzing a particular enzymatic reaction. TgADH 

and its homologues harbored the highly conserved amino acid residues (Fig. 2-7). One 

putative catalytic domain G62H63E64X2G67X5G73X2V76 located close to N-terminal, and 

one coenzyme NADP-binding domain G183XG185XXG188 was close to C-terminal end. In 

the three dimensional structure, the active site of TgADH centered around the catalytic 

zinc ion was close to the pocket containing the cofactor NADP indicating the cofactor 

binding is essential for the catalysis, as observed for NAD(P)-dependent ADHs (Ishikawa 

et al., 2007).  

 

The amino acids sequences of TgADH and its thermophilic and mesophilic homologous 

were compared. The primary structural analyses revealed that the enzyme and its 

thermophilic homologue T. brockii alcohol dehydrogenase had higher ratio (molar 

fraction, >0.8% increase or decrease) for Ala, Arg, Glu, Lys and Pro but lower ratio for 

Asn, Gln, Leu, Ser and Met as compared to the ADH from the mesophile C. beijerinckii. 

(Table 2-7). In particular, the amino acid composition of TgADH had higher ratio for 

Arg, Pro and Tyr but lower ratio for Ala, Asn and Val than that of the ADH from the T. 

brockii. The 14 most frequently used codons (greater than 2.7%) accounted for 58% of 

the amino acid residues in T. guaymasensis, reflecting its abundant tRNA types (Peretz et 

al., 1997). Additionally, the codon usage pattern for the TgADH coding gene was  
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Figure 2-8 Predicted tertiary structure of TgADH monomer (a) and the putative 
ion/conenzyme-binding site (b) 

 
The structure modeling was run on the Swiss-Model server using T. brockii ADH (PDB 
entry: 1ykf) as template. The structure figure was constructed using the software PyMOL 
(Delano 2002). (a) Vertical view of predicted tertiary structure of TgADH monomer; (b) 
Residues in blue, the putative NADP-binding site; residues in red, the putative zinc-
binding site. 
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Table 2-7 Comparison of the typical amino acids between TgADH and its 
thermophilic and mesophilic counterparts  
 

 

 

TbADH, ADH from thermophile Thermoanaerobium brockii; CbADH, ADH from 
mesophile Clostridium beijerinckii; amino acids highlighted in grey, amino acids that 
obviously less in hyper/thermophilic ADH than mesophilic homologous; amino acids 
highlighted in yellow: amino acids that obviously more in hyper/thermophilic ADH than 
mesophilic homologous.  
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analyzed (Fig. 2-9). Of the 61 sense codons, thirteen were not used in the Tgadh gene, 

and the comparison between codon usage of T. guaymasensis and the mesophilic 

bacterium E. coli indicated an obviously different codon bias between the two species, 

particularly, AGG (arginine), CUC (leucine), AUA (isoleucine) were rarely used in E. 

coli (Fig. 2-9). 

 

2.4.3 Construction of the cloning and expression vectors 

The TgADH gene is difficult to be specifically amplified from the genomic DNA due to 

the high GC-content, which is a common feature of archaeal genes. Before its cloning to 

the over-expression vector, the entire encoding gene was inserted to pGEM®-T Easy 

cloning vector. The PCR amplified T. guaymasensis ADH coding gene was inserted to 

the hanging thymidine (T) with the overhanged restriction sites of EcoRI and XhoI at the 

N-terminal and C-terminal respectively (Fig. 2-10). The recombinant pGEM vector was 

selected using the ampicillin resistance and blue-white screening. The E. coli DH 5α cells 

containing transformed recombinant plasmid produced colorless colonies on the agar 

plate.  

 

After confirmation by sequencing, the insert from T-easy cloning vector was realeased by 

EcoRI digestion.  The entire TgADH encoding gene with overhanged primer including 

EcoRI and XhoI restriction sites was then inserted to the EcoRI and XhoI double digested 

pET-30a-Tgadh expression vector (Fig. 2-10). The recombinant plasmid was selected  
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Figure 2-9 Codon usage comparasion between T. guaymasensis and E.coli 

 
Codon usage analysis was conducted using Graphical codon usage analyzer at  
www.gcua.de (Fuhrmann et al., 2004). Columns in red, codon usage pattern of T. 
guaymasensis; columns in black, codon usage pattern of E. coli. The numbers of most 
frequenctly used codons for the specific amino acid was defined as 100. 
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                       (a)                                                                         (b) 

              

Figure 2-10 Recombinant plasmid construction and the location of inserted gene 
 
Figures are modified from http://www.bio.davidson.edu. (a) Cloning vector pGEM®-T 
Easy; (b) Expression vector pET; black arrows, location of the inserted TgADH encoding 
gene. 
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from the colonies grew on 2YT agar with 50 mg/ml kanamycine, and confirmed by both 

colony PCR and restriction enzymes digestion. Completely digested by EcoRI, 

recombinant plasmids gave a 6.5 kb band on the agarose gel, 1.1 kb larger than 5.4 kb 

blank pET-30a vector, indicating the insertion of TgADH encoding gene (Fig. 2-11). 

 

2.4.4 Over-expression of the T. guaymasensis ADH in E. coli 

Driven by T7-lac promoter of pET-30a vector, over-expression of TgADH encoding gene 

in the mesophilic host E. coli was induced by IPTG. From 10% SDS-PAGE, large 

amount of recombinant enzymes around 40 kDa were produced in the presence of IPTG 

as inducer (Fig. 2-12). The yield of the enzymes was better in the E. coli codon plus 

strain E. coli BL 21-RIL expression strains, containing the extra plasmid for rarely used 

tRNAs including AGG/AGA/AUA to rescue the poor expression by condon bias, 

however, no expression was observed in blank host strains or recombinant strains without 

IPTG as inducer. 

 

2.4.5 Optimum cultivation condition 

Recombinant E. coli cells were incubated in 2YT medium with 50 mg/ml kanamycine to 

an OD600nm 0.8 before induction, which took 3.5 to 4 hours. From small scale testing, the 

E. coli carrying the recombinant vector Tgadh-pET30a provided optimum yield of the 

recombinant enzyme when the concentration of inducer IPTG reached 0.2 mM (Fig. 2-

12). So, the large-scale (1-2 liters) incubation was at 37 0C to OD600nm 0.8, the final 

concentration of IPTG for induction was set at 0.2 mM.  

 77



 

 

            1          2         3         4          5         6          

 

 

Figure 2-11 Enzyme digestion of the recombinant vector carrying the Tgadh by 
enzyme digestion 
 

The arrows and notes describe behavior of recombinant vector and blank pET-30a vector 
after enzyme digestion by Eco RI. Lane 1, recombinant plasmid Tgadh-pET-30a; lane 2, 
blank pET-30a vector; lane 3, recombinant plasmid Tgadh-pET-30a; lane 4, 1 kb DNA 
ladders (Novogan, WI, USA); lane 5, recombinant plasmid Tgadh-pET-30a; lane 6, blank 
pET-30a vector.  
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Figure 2-12 Analysis of over-expression level of TgADH in E. coli induced by IPTG 
using SDS-PAGE (10 %) 

 

Left lane, low molecular weight protein marker (Bio-Rad Laboratories Inc., ON, 
Canada); other lanes, crude extracts of cells; red arrow, over-expressed TgADH in the 
total protein of codon-plus E. coli host cells. 30 ul cell crude extracts were loaded per 
lane. 
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2.4.6 Purification of the recombinant T. guaymasensis ADH from E. coli 

The recombinant ADH was purified from E. coli using a modified procedure. Prior to 

liquid chromatography, heat treatment was applied to the cell extract. Heating at 60 0C in 

half an hour caused no loss of enzyme activity but significantly reduced the protein 

concentration to 30% (Fig. 2-13). The TgADH activities were dominant in the cell-free 

extract after heat treatment, subsequently; the recombinant TgADH was purified to 

homogeneity after Phenyl-Sepharose column (Fig. 2-14). The purified recombinant 

TgADH had a specific activity of 1079 U/ mg almost the same as the native protein (Ying 

et al., unpublished data) but presented a higher yield of 81% (Table 2-8). For size 

exclusion chromatography, ADH activity was assembled in a peak at 170 ml, and 

molecular mass of the recombinant enzyme was calculated to be 146 ± 6 kDa. The SDS-

PAGE analyses showed that both native and recombinant TgADHs had almost identical 

subunit size of 40 ± 2 kDa, suggesting that enzyme was homotetramer in the native form 

(Fig. 2-14).  

 
2.4.7 Catalytic properties of the recombinant TgADH from E. coli 

The recombiant TgADH had very similar catalytic properties to the native enzyme 

purified from T. guaymansensis cells, including temperature dependence, optimum pH, 

thermostability and oxygen sensitivity. Both the native and recombinant TgADH was 

thermostable and its activity increased along with the temperature elevated up to 95 0C 

(Fig. 2-15). The activity values at temperatures higher than 95 0C were not measured 

because of the instability of the co-enzyme NADP at those high temperatures. The 

optimal pHs of the enzyme were tested for the oxidation and formation of 2-butanol using 
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Figure 2-13 Heat treatment of recombinant E. coli cell-crude extract 

 
The enzyme activity was assayed in CAPS buffer (100 mM, pH 10.5). Black columns 
stand for residual activity after heat treatment; white columns stand for residual protein 
concentration after heat treatment.  
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Figure 2-14 10% SDS-PAGE for purified recombinant TgADH 

 
Lane 1, molecular weight marker; lane 2, 6 μg purified recombinant TgADH was loaded. 
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Table 2-8 Purification of recombinant TgADH 

 
 Total protein 

(mg) 
Total 

activity (U) 
Specific 
activity 
(U/mg) 

Purification 
fold 

Yield 
(%) 

Cell-crude 
extract 

420 28000 67 1 100 

Heat-
treatment 

65 24735 383.4 5.7 88 

Phenyl-
Sepharose 

21 22425 1073.2 16 81 
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Figure 2-15 Temperature dependence of the purified recombinant TgADH 

  
The activities were measured in the standard assay conditions except varying assay 
temperatures from 30 to 95 0C. The relative activity 100% was defined as the highest 
activity value achieved in this test (1533 U/mg at 95 0C). Standard deviations of the 
measurements are indicated using error bars. 
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various 100 mM buffers to form a pH gradient from 5.5 to 11.5. The optimal pH value for 

the 2-butanol oxidation was 10.5 and for the 2-butanone reduction was 7.5 (Fig. 2-16). 

When the buffer pH values were higher than 10.5, the activity of butanol oxidation had a 

remarkable decrease, similarly, the activity of 2-butanol formation sharply decreased 

when the buffer pH value higher than 7.5. Recombiant TgADH presented outstanding 

stability at high temperatures, which had the same half-life (t1/2) of about 26 hours at 95 

0C and the residual activity remained more than 60% of the full activity after 42 hours 

incubation at 80 0C (Fig. 2-17), revealing the resistance of enzymes to heat. However, 

both the native and recombinant form of TgADH presented sensitivity to oxygen. Some 

of the activity lost after exposure to the air, although they were more resistant to 

oxidation than that of iron-containing ADHs and the enzyme activity kept consistent in 

anaerobic conditions. The half-life (t1/2) against the oxygen inactivation was about 4 

hours, and loss of activity was slightly protected by the presence of 2 mM dithioreitol 

(Fig. 2-18). Metal ions also affected the enzyme activity. The purified enzyme from T. 

guaymasensis was experimentally determined to be zinc-containing; however, the activity 

of butanol formation was blocked by zinc. When the zinc concentration increased from 

20 to 100 μM in the assay mixtures, the corresponding activity obviously decreased (Fig. 

2-19).  
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Figure 2-16 Optimal pH of the purified recombinant TgADH  
 
Optimal pHs for alcohol oxidation and formation were determined by measuring the 
activities on the oxidation of 2-butanol and the reduction of 2-butanone, respectively. The 
buffers (100 mM) used were phosphate (unfilled squares), EPPS (filled circles and 
inverted triangles), Tris (unfilled triangles), glycine (unfilled circles), and CAPS (filled 
squares). The relative activity of 100% refers to the full activity of the recombinant 
enzyme that equals to 1073 U/mg of alcohol oxidation activity and 191 U/mg of ketone 
reduction activity, respectively. Error bars indicate standard deviations of the 
measurements. 
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Figure 2-17 Thermostability of the purified recombinant TgADH  

  

Open squares, incubation at 80 0C; filled squares, incubation at 95 0C. The relative 
activity of 100% equals to the initial ADH activity without heat treatment (1073 U/mg). 
Standard deviations of the measurements are indicated using error bars. 
 

 

`
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Figure 2-18 Oxygen sensitivity of the purified ADH from T. guaymasensis 

 
Open circles, in the presence of 2 mM DTT and 2 mM SDT; filled circles, in the absence 
of 2 mM DTT and 2 mM SDT. The relative activity of 100% equals to the ADH activity 
prior to exposure to air (1029 U/mg). Standard deviations of the measurements are 
indicated using error bars. 
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Figure 2-19 Effect of zinc on activity of TgADH 
 
The activities were measured in the standard assay conditions. The relative activity 100% 
was defined as the ADH activity prior to zinc treatment (1037 U/mg). Standard 
deviations of the measurements are indicated using error bars. 
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2.5 DISCUSSION 

 

ADHs using NAD or NADP as coenzyme are divided into three different groups, the 

zinc-dependent ADHs, the iron-containing ADHs, as well as the short-chain ADHs that 

are lack of metal. The native ADH isolated from T. guaymensensis represents a NADP-

dependent, zinc-containing alcohol dehydrogenase (Ying et al., unpublished).  

 

In hyperthermophilic archaea, several zinc-containing NAD(P)-dependent alcohol 

dehydrogenases have been discovered, including ADHs from aerobic hyperthermophilic 

archaea S. solfataricus (Ammendola et al., 1992) and A. pernix (Guy et al., 2003) or 

TDHs from anaerobic hyperthermophiles P. furiosus (Machielsen et al., 2006) and P. 

horikoshii (Ishikawa et al. 2007).  Similar to the above-mentioned enzymes, both the 

native and recombinant TgADH were in the ternary structure of homotetramer, which is 

the usual structural characteristic of the previously characterized zinc-containing ADHs 

in archaea. However, TgADH represented different biochemical properties from these 

hyperthermophilic zinc-containing ADHs or threonine dehydrogenases that preferred to 

NAD as coenzyme, but native TgADH was specific for NADP as coenzyme. 

Interestingly, TgADH has high overall identities to NADP dependent zinc-containing 

ADHs from thermophilic bacteria, e.g., ADHs from T. brockii and T. tengcongensis. The 

sequence alignment indicated TgADH shared conserved co-enzyme NADP binding sites 

and active site predicted harboring catalytic zinc ion, which matched the biochemical 

characterizations. From the 3-D structure modeling, the monomer of TgADH folded into 

two domains, the catalytic domain closing to N-terminal end and one NADP-binding 
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domain closing to C-terminal end. The phylogenetic analysis between TgADH and the 

thermophilic and hyperthermophilic zinc-containing ADH indicated TgADH to be closer 

to the ADHs containing catalytic zinc atom only in evolution but further from the ADHs 

containing both catalytic and structure zinc ions (Fig. 2-20).  

 

Cloning and sequencing of the entire encoding gene of TgADH provided fundamental 

information for over-expression of the hyperthermophilic enzymes in heterologous hosts. 

The production of recombinant extremophilic proteins in mesophilic hosts such as E. coli 

is highly desirable due to simpler culture conditions and typically higher yields. 

Compared to a series of chromatography for the native enzyme purification, only two 

steps including heat treatment and liquid chromatography were needed for purification. 

Because of its stability at high temperatures, one heat treatment step could significantly 

simplify the purification of the recombinant TgADH from E. coli. The over-expression of 

archaeral genes in bacterium is often challenged by poor yield or loss of activity due to 

different codon bias. However, the recombinant TgADH seems soluble, active and 

thermostable. Although native TgADH purified form T. guaymensensis directly presented 

a high concentration in the cells (Ying et al., unpublished), E. coli provided a much 

higher yield of recombiant TgADH at about 4~5 mg per gram cells. The recmombinant 

TgADH carried almost same activity and other catalytic properties with the native 

enzyme purified form T. guaymensensis directly. When cloned and expressed in 

mesophilic hosts, the enzymes usually retain its thermal properties, suggesting that these 
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Figure 2-20 Phylogenetic tree of TgADH and some hyper/thermophilic zinc-
containing ADHs 

 
Scale bar indicates 0.1 substitutions per sequence position ClustalW (Thompson et al., 
1994). Abbreviation: Tetha, Thermoanaerobacter ethanolicus; Tbroc, 
Thermoanaerobacter brockii; Tteng, Thermoanaerobacter tengcongensis; Apern, 
Aeropyrum pernix; Ssolf, Sulfolobus solfataricus; Sacid, Sulfolobus acidocaldarius. 
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properties would be genetically encoded. 

 

The enzyme from T. guaymasensis possesses several outstanding features to be a 

competitive biocatalyst. Firstly, the enzyme presents one of the highest specific activities 

among the zinc-containing ADHs families. The thermoactivity over 1000 U/ mg at 80 0C 

was remarkably higher than other zinc-containing ADHs characterized except the TDH 

from P. horikoshii. TgADH was active within a broad temperature range from 30 to 95 

0C as tested while the optimal temperature was even over 95 0C and could maintain a 

high activity when treated at high temperatures: the half life was around 26 hours when 

treated at 95 0C, which is the most thermostable one among the family of zinc-containing 

ADHs up to date. Thermostability and thermophilicity molecular mechanisms are varied, 

differing from enzyme to enzyme, which could be a combination of intrinsic stabilizing 

forces (such as salt bridges, hydrogen bonds, hydrophobic interactions) and extrinsic 

stabilizing factors. Sequence alignments, amino acid comparisons, and predicted 3-D 

structure comparisons indicate that TgADH is, indeed, very similar to mesophilic 

counterparties. Interestingly, the length of the hyperthermophilic /thermophilic protein 

was not less than the mesophilic homologous (Table 2-7). From the view of primary 

structure, the ratio of amino acid residues Ala, Arg, Glu, Lys and Pro was increased in 

TgADH, whereas that of Ala, Asn Gln, Ser and Val decreased. It was reported that the 

equal increase of oppositely charged residues especially Arg and Glu, in 

hyperthermophiles most likely led to the increased amount of ion pairs observed already 

in their proteins (Cambillau and Claverie 2000). In contrast, the uncharged polar residues 

Gln, Asn, Ser decreased in T. guaymasensis ADH, in which the first two are prone to 
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deamidation and known to be the most temperature sensitive (Cambillau and Claverie 

2000). However, it is likely that other determinants are also critical for thermostability, 

and detailed structural comparisons between the two types of enzyme are needed.  

 

The optimal pHs of both native and recombinant TgADH on the oxidation of alcohols are 

more alkaline than those on the reduction of aldehydes or ketones. Generally, dependence 

of enzyme activity on pH value is related to protonation at the active site (Koumanov et 

al., 2003). In a hyperthermophilic L-threonine dehydrogenase from Pyrococcus 

horikoshii, the proton dissociation model with two catalytic forms among three ionizable 

groups was derived to explain the experimental the examined pH dependence (Higashi et 

al., 2008). It was also reported in Drosophila lebanonensis short-chain alcohol 

dehydrogenase, the protonation/deprotonation transition was related to the coupled 

ionization of Tyr151 and Lys155 in the active site and the pH dependence of the proton 

abstraction was correlated with a reorganization of the hydrogen bond network in the 

active site (Koumanov et al., 2003). Likewise, the oxidoreductase activity of TgADH 

probably relies on a proton relay mechanism. The conformation of the residues at the 

catalytic site accomplishes with the deprotonation process, which would be an 

explanation for dissociation of substracts or cofactor from the enzyme when pH changes. 

 

The sequence analysis indicated TgADH contained catalytic zinc atom only, which is 

consistent with the previous determination for the native enzyme (Ying et al., 

unpublished). Since Zn2+ cannot be further oxidized, most zinc-containing ADHs are 

resistant to oxygen; however, it was unexpected that TgADH was oxygen sensitive in 
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both native and recombinant form. The inactivation of the enzyme might be caused by 

the damage of labile amino acid residues such as cysteine residues. The TgADH contains 

four cysteine residues per subunit (Cys38, Cys55, Cys212 and Cys305). Cys38 was highly 

conserved in zinc-containing ADHs and a putative active site residue, which has been 

approved to coordinate the binding of catalytic zinc in T. brockii ADH. The residue Cys55 

was unique in TgADH and did not exist in the same location of any other zinc containing 

ADHs sharing high similarities, so site direct mutagenasis at Cys55 residue could shed 

light to the role of Cys55 in the oxygen sensitivity.  

  

Produced in relatively high amounts by heterologous expression in E. coli and easily 

purified together with the outstanding stabilities, TgADH carries an obvious industrial 

perspective. It is highly S-enantioselective (Ying et al., unpublished data) make this 

enzyme a potential catalyst for industry, especially for the production of chiral 

compounds. However, the oxygen sensitivity is a disadvantage, and it would be a focus 

of further study on protein engineering to reconstruct the enzyme and explore the 

application of TgADH as one of the biocatalysts for industrial applications. 
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Chapter 3: Cloning, over-expression and characterization of an iron-

containing alcohol dehydrogenase from Thermotoga hypogea 
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3.1 OVERVIEW 

 

Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of 

growing at 90 0C. The gene encoding T. hypogea alcohol dehydrogenase (ThADH) was 

cloned, sequenced and over-expressed. DNA fragments of the gene encoding T. hypogea 

ADH were amplified directly from the genomic DNA by PCR. The gene sequence (1164 

bp) was obtained successfully by sequencing all the DNA fragments. The deduced amino 

acid sequence was found to have high degrees of identity (~72%) to iron-containing 

ADHs from Thermotoga species and harboured typical iron and NADP-binding motifs, 

Asp195His199His268His282 and Gly39Gly40Gly41Ser42 respectively. The structural modeling 

showed that N-terminal domain of ThADH contained α/β-dinucleotide-binding motif and 

its C-terminal domain was α-helix-rich region including iron-binding motif. The gene 

encoding T. hypogea ADH was functionally expressed in Escherichia coli using the 

vector pET-30a. The recombinant protein was expressed optimally in E. coli grown in the 

presence of 1 mM ferrous and induced by 0.4-0.6 mM IPTG. The recombinant enzyme 

was found to be soluble, active and thermostable with a subunit size of 43 kDa revealed 

by SDS-PAGE analyses. The native ADH from T. hypogea was purified to homogeneity 

for comparative analysis using a three-step liquid chromatography while the recombinant 

ADH over-expressed in E. coli was isolated by a simpler procedure including one-hour 

heat treatment. The activity of the purified recombinant enzyme was 69 U/mg and 

presented identical properties with the native enzyme. The optimal pH values for ethanol 

oxidation and acetaldehyde reduction were 11.0 and 8.0 respectively. The enzyme was 

oxygen sensitive and it has a half-life (t1/2) of 20 minutes upon exposure to air. Compared 

to the zinc-containing TgADH, ThADH was less thermostable and retained 50% of the 
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full activity after incubation at 70 0C for 2 hours. Successful high-level expression of T. 

hypogea ADH in E. coli will significantly facilitate further study on the catalytic 

mechanisms of iron-containing ADHs. 
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3.2 INTRODUCTION 

 

Thermotoga hypogea is an anaerobic, extremely thermophilic bacterium. This strain is 

rod-shaped and has a characteristic outer sheath like structure. The optimal temperature 

for growth is 70 0C at pH 7.0 while the temperature range is 56 to 90 0C. The stain 

utilizes carbohydrates including xylan as carbon and energy sources and producing 

acetate, CO2 and hydrogen as the major end products. Furthermore, ethanol is also 

produced as an end product of glucose/xylose fermentation (Fardeau et al., 1997).  

 

Alcohol dehydrogenases catalyze the interconversion between alcohols and the 

corresponding aldehydes. ADHs can be classified into the following categories: zinc-

containing ADHs, iron-dependent ADHs and short-chain ADHs that are lack of metal 

ions (Reid et al., 1994). Zinc ions have catalytic or structural functions in several 

enzymes including hyperthermophilic zinc-containing ADHs, however, only a few iron-

dependent ADHs are known due to its instability (Radianingtyas et al., 2003). And some 

of them have been over-expressed in the mesophilic heterologous system E. coli and 

detailed 3-D structure was analyzed. For instance, the gene that encodes iron-containing 

alcohol dehydrogenase II (adhB) from bacterium Zymomonas mobilis was expressed well 

in E. coli under control of the lac promoter (approximately 0.25% of the total cell protein) 

(Conway et al., 1987). Additionally, the adhE2 gene of Clostridium acetobutylicum, a 

gram-positive spore-forming anaerobic bacterium, coding for an aldehyde/alcohol 

dehydrogenase, was characterized to be iron-containing ADH and functionally expressed 

in E. coli (Fontaine et al., 2002). Most known hyperthermophilic iron-containing alcohol 
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dehydrogenases belong to hyperthermophilic archaea, the ADH from Thermococcus 

hydrothermalis was detected to be iron-containg and ADH from the hyperthermophilic 

archaeon Pyrococcus furiosus was purified and biochemical characterized to be an 

unusual oxygen-sensitive, iron- and zinc-containing ADH. Expression of the gene 

encoding ADH from T. hydrothermalis in E. coli is the first example of heterologous 

production of an iron-containing ADH from a hyperthermophilic archaeon, however, the 

native and recombinant T. hydrothermalis ADH showed clear differences in catalytic 

activity and thermostability (Antoine et al., 1999). Up to date, only the iron-containing 

hyperthermophilic alcohol dehydrogenases from Thermococcus strain ES-1 (Ying et al., 

2008) and NADP-dependent, iron-containing 1,3-propanediol dehydrogenase encoded by 

TM0920 in Thermotoga maritima genome were reported to be successfully expressed in 

E. coli (Schwarzenbacher et al., 2004). And the 3-D structure of the T. maritima ADH 

that has been solved at 1.30 Å resolution is the only available detailed structure of the 

iron-containing ADH from hyperthermophiles.  

 

T. hypogea ADH (ThADH) is the first iron-containing ADH purified from 

hyperthermophilic bacteria (Ying et al., 2007). The recombinant ThADH expressed and 

purified from E. coli could replace the enzymes from the native sources, and the higher 

level of ADH produced in E. coli has facilitated preparation of crystals for the 

determination of the three-dimensional structure of this distinct class of ADH.  
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3.3 MATERTIALS AND METHODS 

3.3.1 Materials and Devices 

All chemicals were of high technical grade and obtained from Sigma-Aldrich Canada Ltd 

(ON, Canada) or Fisher scientific company (ON, Canada). Restriction enzymes, DNA 

ladders and other reagents for molecular work were purchased from Fermentas Canada 

Inc. (ON, Canada); all reagents were used according to the manufacture’s instructions. 

Major materials were same as listed in sections 2.2.1.1 and 2.2.1.2). Common used 

instruments were same as listed in section 2.2.1. 

 

3.3.2 Microorganisms  

Thermotoga hypogea (DSM 11164) was obtained from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen, Braunschweig, Germany. 

E.coli DH5α [(supE44 ΔlacU169 Φ80 lacZΔM15) hsdR17 recA1gyrA96 thi-1 relA1] 

(BRL, CA, USA) 

E.coli BL21 (DE3) [B F-
 
ompT hsdSB (rB

-
 
mB

-) gal dcm (DE3)]  (Novagen, WI, USA) 

E.coli BL 21 (DE3)-Rosetta [F-, ompT, hsdSB (rB
-mB

-) gal dcm lacY1, pRARE (CamR)] 

(Stratagene, CA, USA) 
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3.3.3 Cultivation media and growth conditions 

All media for cell cultivation named 2YT-medium was based on the standard protocols 

(Sambrook et al., 1989). Solid agar plates were made with 1.5% agar. The preparation of 

antibiotics and stock solutions were the same as listed in section 2.3.3.  

 

Medium for T. hypogea cultivation was described previously (Fardeau et al., 1997; Ying 

et el., 2007). The medium was autoclaved and degassed before use. Before inoculation, 1 

ml 25% Na2S2O3, 0.14 ml 15% cysteine and 0.4 ml 3% Na2S were added to each serum 

bottle (50 ml medium) and incubation was at 70 0C.  

 

3.3.4 Cell cultivation 

3.3.4.1 E. coli cultivation 

Cell cultivation was carried out either in shake-flasks with baffles or in solidified agar 

plates with the medium composition as previously described in section 2.3.3. E. coli 

strains were grown in 2YT medium at 37 0C in a volume ranging from 500-1000 ml in 

shake flasks at 140-200 rpm by inoculating one colony from agar plate or with previous 

culture in a ratio of 1:100 or 1:50 (1-2% v/v). The cells were harvested by centrifugation. 

Storage of E. coli was carried out with a final concentration of 10% glycerol at –20 0C or 

–80 0C. 

 
3.3.4.2 T. hypogea cultivation  

T. hypogea was cultured in 50 ml serum bottles. Cells were cultured for 16-18 hours 

anaerobically at 70 0C and the growth was monitored using cell counting. After 
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incubation, the cells were harvested by centrifugation at 10,000× g. The resulting cell 

pellet was frozen in liquid nitrogen immediately and stored at -80 0C.  

 
3.3.5 Cell harvest and storage 

The cultivated cells were collected by centrifugation. Glycerol was added to cultures with 

a final concentration of 10% for storage of E. coli cells at –20 0C or –80 0C. This method 

was used for preparation of competent cells as well as preparing stock cultures of E. coli 

cells harboring either pET vectors or pET recombinants. When the E. coli grew to 

OD600nm of 0.6-0.8, 0.8 ml of the culture was removed and transferred to a cryo-vial, and 

0.2 ml of 50 % glycerol was added. The culture was mixed well and stored short-term at 

–20 0C. Cells with glycerol at a final concentration of 10% were frozen in liquid nitrogen 

quickly and then stored in –80 0C for long-term storage. 

 

3.3.6 Preparation for competent cells 

Competent cells for transformation were prepared using the same way as described as in 

section 2.3.6.  E. coli BL 21 (DE 3) or BL 21 (DE 3)-Rosetta were cultivated in 2YT 

medium without antibiotics. Then the bacteria were harvested by centrifuging at 4,000×g 

at 4 0C and treated by pre-cooled 0.1 M CaCl2 slightly, which stimulated the cells to be 

more easily altered cell walls that DNA can be passed through easily. Ultimately, the 

competent cells were frozen immediately in liquid nitrogen, and stored the tubes at -80 0C.  

 

 103



3.3.7 Gene cloning for ThADH 

The genome sequence of T. hypogea is unknown yet and the encoding gene of ThADH 

was cloned and sequenced directly from the genomic DNA. The fragments were obtained 

by the strategy of primer walking shown in Fig. 3-1.  

 

3.3.7.1 Preparation of T. hypogea genomic DNA  

The genomic DNA from T. hypogea as PCR template was isolated by lysis of the cells. 

The cells were grown in 50 ml degassed liquid broth and harvested by centrifuging. After 

treated by 25 % SDS, 1mg/ml Proteinase K and 3 M NaAc, DNA was isolated from the 

mixture using the solution of phenol, chloroform and isoamyl alcohol (25: 24: 1). The 

genomic DNA was participated by 100% isopropanol and washed by 75% ethanol and 

concentrations of samples were quantified using NanoDrop Spectrophotometer. 

 
3.3.7.2 Cloning of the entire ThADH encoding gene 

DNA fragments carrying target gene were amplified from genomic DNA directly by PCR. 

The PCR amplification for cloning coding sequence of N-terminal of ThADH was 

performed by Proof reading KOD Hot Start DNA Polymerase in a volume of 25 μl and 

all the reagents were added following the standard conditions recommended by the 

suppliers (Table 3-1). Pimer desgining software DNASTAR and GENERUNNER were 

used to predict the potential locations of the primers and optimize the parameters of 

oligonucleotides respectively. Principles of primers design were described in sectin 2.3.7. 

On the basis of N-terminal (MENFVFHNPTKLIFG) and internal sequence 

(LMLYGGGSI), two oligonucleotides THADHNF and THADHIR (Table 3-2) were  
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Figure 3-1 Strategy for ThADH coding gene sequencing 

 

Horizontal arrows indicate the direction and location of major oligonucleotide primers for 
PCR amplification.  
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Table 3-1 PCR mixture 
 
Reagents Final concentration      Amount (μl) 

Polymerase buffer (10×) - 2.5 

Template 50~100 ng/μl 2 

Primer1 1 μM 1 

Primer2 1 μM 1 

DNTPs 0.2 mM 2.5 

MgSO4  1.5 mM 1.5 

Polymerase 0.5 unit/μl 0.5 

ddH2O - 14 

Total - 25 
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Table 3-2 Primers designed for cloning & sequencing the gene encoding ThADH 
 
Name of primers*  Nucleotide sequence                                                Restriction enzyme  

          (5'-3')                                                                Sites (underlined)            

THADHNF ATGGAGAACTTCGTCTTCCACAATCC 

THADHIR TATCGATCCACCACCGTATAGCATCAG 

THAUNF AACTTCGTCTTCCACAATCC 

THAUIR01 TCATCTCCGTTCCTGTCG 

THADHYIR GTGTGTGCTATTGCGTCG 

THADHYIF1 ACTGAGATGAACGGAAACG 

THADHYIF2 GCGACGATAGCCCTGAAC 

TH11NF ATGAGYAAGGATGCGCGGT 

TH11CR GAGCACCATTATTCTTCCC 

TH11CF01 ATACCAGCACAGGACATCG 

TH11CF02 CGATAGCCCTGAACGGTC 

TH11N01 AACTTGGTGGGATTGTGG 

TH11N02 GCACTGGATTGGGTTTGAC 

TH11C01 GAAAGGTGGGGATTGGTC 

TH11C02 CGCAGGTAGGAAAGGTGG 

TH08IF1       GATAATGAAGTCCACAGAAGTTTTG 

TH08IF2  TACGTCTATAAACAAAAACCACAGC 

TH08IR1  CCTTAGCCAGTTCGGACACG 

TH08IR2  TGGATTTGCTGTCTCTTTTCTTSS 

THNCNF TAGAATTCATGAGCAAGATGCGCGGTTTTC                   NcoI 

THECCR ACCTCGAGTCACTCCTCTATGATGACC                            EcoRI 
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*
, primer properties like melting temperature (Tm), GC content (GC%), primer loops and 

primer dimmers were evaluated by a DNA analysis tool Gene Runner (Hastings 
Research, Inc., Las Vegas, USA).  The table indicates all the key primers used for both 
fragments cloning and specific amplification. The forward and the reverse primers with 
the restriction enzyme sites were the specific primer designed based on the confirmed 
sequence for the amplification of the entire ThADH encoding gene.  
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synthesized and used as forward and reverse PCR primers, respectively. Reaction was 

performed using a thermal cycler TC-312 (Techne incorporated, NJ, USA) with 25 pmol 

of each primer against 100 ng of genomic DNA isolated from T. hypogea cells. After 

preheating at 95 0C for 2 min, the cycling program consisted of 36 cycles of denaturation 

at 95 0C for 20 seconds, annealing at 55 0C for 20 seconds, and extension at 70 0C for 30 

seconds. The PCR products were run on a 2% agarose gel and the resulting 150 bp PCR 

product was sequenced by the dye-termination method at Molecular Biology Core 

Facility, University of Waterloo. DNA and protein sequencing were analyzed with Gene 

Runner (Hastings Research Inc., Las Vegas, USA) and compared to the GenBank 

database by BLAST (Altschul et al., 1997). The BLAST search of the sequenced 

fragment indicated its highest similarity to the putitive NADH-dependent butanol 

dehydrogenase from T. maritima TM0820, which could be considered as part of the 

target gene. Considering the high sequence similarity among the Thermotoga species, 

gradual primer walking was selected as the effective strategy. After the fragment was 

firstly sequenced as if it were a shorter fragment and in order to completely sequence the 

region of interest, new primers complementary to the final few bases of the known 

sequence were designed and synthesized to obtain contiguous sequence information. 

Thus, the new forward primer THAUNF was designed based on the known sequence, 

while the reverse primer THAUIR01 was designed based on the conserved nucleotide 

sequence among the Thermotoga species whose genome information were already 

available including T. maritima, T. petrophila and Thermotoga sp. RQ2. A 1.3 kb PCR 

product covering majority of ThADH encoding gene was obtained after 36 cycles PCR at 

95 0C for 20 seconds, 58 0C for 20 seconds, 70 0C for 30 seconds. Then, a series of PCR 
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were applied under the above condictions and directed by downstream primers including 

THADHIR, THADHIF1 and THADHIF that, designed based on that preliminary 

sequencing results  of ThADH and conserved sequences analysis (Table 3-2). Eventually 

the nucleotide sequence of 1164 bp encoding 387 amino acid residues was cloned from T. 

hypogea genome.  

 

3.3.8 Data mining  

Gene sequence and the deduced amino acid sequence of ThADH were analysed using the 

BLAST program (http://www.ncbi.nlm.nih.gov/BLAST) (Altschul et al., 1997). 

Sequence alignments with homologues in iron-containing ADH families and 

phylogenetic trees were constructed using Clustal W tool with default parameters 

(Thompson et al., 1994). Theoretical molecular weight was calculated using the 

ProtParam program at the ExPASy Proteomics Server with standard parameters 

(Gasteiger et al., 2005). 3-D structure of ThADH monomer was modeled using the Swiss 

Model server (Guex et al., 1997; Peitsch et al., 1995; Schwede et al., 2003), and 

visualization and analysis of the 3-D structure were preformed using PyMOL software.  

 
3.3.9 Construction of the recombinant plasmid 

3.3.9.1 Vectors and plasmid isolation 

Encoding gene of ThADH was inserted into vector pET-30a (5360 bp, PT7, Kan
R
;
 

Novagen, WI, USA) and over-expressed in E.coli host strains. Plasmids were isolated by 

the alkaline lysis method described in section 2.3.9.2 (Birnboim et al., 1979).  
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3.3.9.2 DNA restriction digestion  

Restriction map of ThADH encoding gene was gained using the on-line tool 

(http://tools.neb.com/NEBcutter2/index.php). Only the restriction endonucleases that did 

not cut within the coding gene were selected for recombinant vector construction.  

Digestion of the DNA was performed in the recommended buffer for 2-4 hours using 10-

15 U of the endonucleases (1-1.5 μl; 10 U/μl) for 0.5-1.5 μg DNA. The digestion reaction 

was incubated at 37 0C for completion of the restriction digestion and the reaction 

mixture was analyzed using agarose gel electrophoresis. For DNA fragments used for 

ligation, reaction mix was purified with the PCR Purification kit (Qiagen, ON, Canada) 

and quantified by agarose gel electrophoresis.  

 

3.3.9.3 Ligation of DNA fragments  

The restriction endonucleases selected in this research, both NcoI and EcoRI, could 

provide the sticky end that could keep a high efficiency of the ligation. For the successive 

ligation reactions of the insert to vectors, a 10 μl reaction volume was used with 3:1 

molar ratio of insert to vector together with 1 U of T4 DNA Ligase and 10× Ligation 

buffer. The ligation mixture was incubated at 16-20 0C overnight (16-18 hours). After 

ligation reaction was completed, the mixture was used for transformation. 

 

3.3.9.4 Transformation and selection  

In the plasmid transformation, 10 μl of the ligation product was added to 100 μl 

corresponding competent cells and then heat shock at 42 0C to the mixture of plasmids 

and competent cells was applied. After heat shock, intact plasmid DNA molecules 
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replicated in bacterial host cells. To help the bacterial cells recover from the heat shock, 

the cells were incubated with non-selective growth media. However, due to the low 

number of bacterial cells those contain the plasmid and the potential for the plasmid not 

to propogate itself in all daughter cells, selection for bacterial cells that contain the 

plasmid were performed with antibiotic selection. E. coli BL21 (DE3) strains used in this 

research sensitive to common antibiotics including kanamycine, while pET-30a has been 

engineered to harbor the genes for antibiotic resistance. The bacterial transformations 

were plated onto media containing 50 mg/ml kanamycine and only bacteria possessing 

the plasmid DNA would have the ability to form colonies.   

 
 
3.3.9.5 Optimization of induction condition for the recombinant E. coli 

The chemical induction of the lac promoter was accomplished by the addition of IPTG. 

Under control of the T7-lac promoter, the recombinant ThADH was obtained in the 

periplasmic space when IPTG was added to the 2YT medium with 1 mM ferrous. To 

optimize the growth condition, both the concentration of the inducer as well as the 

growth phase of recombinant cells at which it was added were tested. The inducer IPTG 

was added as a gradient of 0, 0.2 mM, 0.4 mM, 0.8 mM, 1 mM and the optimum 

concentration of the inducer was detected by amount of recombinant protein on the SDS-

PAGE. Then IPTG was added in the exponential phase when OD600nm of the cell culture 

reached 0.4-1.0, which was recommended by the pET manual. However, induction at OD 

600nm 0.8 provided an ideal yield with high activity. Therefore, induction in this study was 

set at OD 600nm  of 0.8.  
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3.3.10 Protein assay 

The protein concentrations of all samples were determined using the Bradford method 

and bovine serum albumin (BSA) served as the standard protein (Bradford, 1976). 200 μl 

of Bio-Rad reagent was mixed with 800 μl of pure water as the blank control, and the 

assay was performed by mixing 200 μl of Bio-Rad reagent with 800 μl protein solution. 

The specific absorbance was tested by spectrophotometer (GENESYS 10 Vis, NJ, USA) 

at 595 nm. 

 
3.3.11 Determination of enzyme activity  

The catalytic activity of T. hypogea ADH was measured anaerobically at 80°C by 

specific absorbance change of NADP(H) at 340 nm (ε340 = 6.3 mM-1cm-1, Ziegenhorn et 

al., 1976). The catalytic reaction by ThADH involved two directions, ethanol-dependent 

reduction of NADP or the acetaldehyde-dependent oxidation of NADPH. Unless 

specified, the enzyme assay was done in duplicate using the assay mixture (2 ml) for the 

oxidation of alcohol that contained 20 mM 1-butanol and 0.2 mM NADP in 100 mM 3-

(cyclohexylamino)-1-propanesulfonic acid (CAPS) buffer at pH 11.0. The assay mixture 

(2 ml) used for the reduction of aldehyde contained 22 mM butyraldehyde and 0.1 mM 

NADPH in 100 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer 

(pH 8.0). One unit (U) is defined as the production of 1 μmol of NADPH per minute.  

 
3.3.12 Preparation of cell-free extracts and investigation of oxidoreductase activities 

All procedures for the preparation of cell-free extracts were carried out anaerobically. 

The 5 g frozen cells of E. coli carrying ThADH encoding gene were re-suspended in 25 

ml of 50 mM Tris–HCl buffer (pH 7.8) containing 2 mM dithiothreitol, 2 mM sodium 
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dithionite and 5% (v/v) glycerol. Lysozyme and DNase I were added to the cell 

suspension with the final concentrations of 0.1 mg/ ml and 0.01mg/ml respectively. The 

mixture was then incubated at 37°C for 2 hours with stirring. After centrifugation at 

10,000 × g for 30 min at room temperature, the supernatant was collected as cell free 

extract for further use. ADH activities in the cell free extract were determined 

spectromatically as described in section 3.3.11. 

 
3.3.13 Purification of the recombinant ThADH 

All purification steps were carried out anaerobically using the FPLC system considering 

the oxygen sensitivity of native ThADH (Ying et al., 2007). Since the enzyme was 

thermostable, a step of heat precipitation was applied prior to the column 

chromatography. The cell extract was incubated at 60 0C for half an hour and the solution 

turned gel-like. The denatured proteins and cell debris in the cell-crude extract were 

removed by centrifugation at 10,000 × g for 30 min at room temperature. The supernatant 

containing enzyme activity were collected and pooled to a DEAE-Sepharose column (2.6 

× 10 cm) equilibrated with buffer A. A linear gradient (0- 0.5 M sodium chloride in 

buffer A) was applied at a flow rate of 2.5 ml per minute and the ThADH was eluted and 

collected anaerobically.   

 
3.3.14 Size exclusion chromatography 

After purification of the recombinant ThADH from E. coli DEAE-Sepharose column, 

size exclusion chromatography was applied in order to determine the molecular mass of 

its native form. The enzyme sample was loaded onto the gel filtration column Superdex 

200 (2.6 × 60 cm) equilibrated in 50 mM Tris-HCl (pH 7.8) containing 100 mM KCl at a 
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flow rate of 2 ml per minute.  The size of the native form of ThADH was calculated 

based on the elution volume of standard proteins (Pharmacia, NJ, USA) that contained 

blue dextran (molecular mass, Da, 2,000,000), thyroglobulin (669,000), ferritin 

(440,000), catalase (232,000), aldolase (158,000), bovine serum albumin (67,000), 

ovalbumin (43,000), chymotrysinogen A (25,000) and ribonuclease A (13,700). 

 

3.3.15 Protein gel electrophoresis  

The fraction containing the dominated activity was loaded to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) as described previously (Laemmli 

1970). Sample preparations were same as described in section 2.3.13.4. The low 

molecular weight range protein marker (Bio-Rad Laboratories Inc., ON, Canada) was 

used for indication of the samples on the SDS-PAGE.  

 
3.3.16 Characterization of catalytic properties  

3.3.16.1 Optimum pHs 

The optimal pHs of ethanol-dependent oxidation of native and recombinant ThADHs 

were determined by enzyme assay of butanol oxidation or butyraldehyde reduction. 

Standard enzyme assays at 80 0C for alcohol oxidation were applied using a set of 100 

mM buffers (Ying et al., 2007): Tris/HCl (pH 8.0, 8.5, 9.0) and CAPS (pH9.0, 9.7, 10.0, 

10.5, 11.0, 11.5, and 12.0).  The optimal pH value of acetaldehyde-dependent reduction 

of native and recombinant ThADH was measured between pH 6.0 to 9.0 using the 

following 100 mM buffers PIPES (pH 6.0, 6.5, and 7.0), HEPES (pH 7.0, 7.5, and 8.0), 

Tris/HCl (pH 8.0, 8.5, 9.0). 
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3.3.16.2 Temperature dependence 

The effect of the temperature on the enzyme activity was examined at temperatures from 

30 to 95 0C by standard essay conditions described in section 3.3.11 except the 

temperature.  

 

3.3.16.3 Thermostability  

Enzyme thermostability was evaluated by incubating the enzyme in sealed serum bottles 

at 70 0C and 90 0C, respectively. The residual activities of each sample at different time 

intervals were measured parallelly using the standard assay conditions.  

 

3.3.16.4 Oxygen sensitivity 

The effect of oxygen on enzyme activity was investigated exposing the enzyme samples 

in the air at room temperature and determining the residual activity after oxygen 

exposure. The exposure was performed in the presence and absence of 2 mM DDT and 

SDT. The residual activities of each sample at different time intervals were measured 

using the standard assay. 
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3.4 RESULTS 

3.4.1 Cloning of T. hypogea ADH 

Amino-terminal of the native ThADH sequence was determined by using Edman 

degradation and five other internal sequences were obtained using mass spectrometry, 

two of which were aligned and revealed to have high similarity to an iron-containing 

ADH TM0820 from T. maritima (Table 3-3). Primers were designed based on the 

conserved nucleotide sequence among the Thermotoga species (Table 3-2) and 

consequently, PCR amplifications resulted in DNA fragments with a length of about 150 

bp that was sequenced and showed to have high similarity to the iron-containing ADH 

TM 0820. Referring to the nucleotide sequence of TM0820, the non-degenerate primers 

were designed based on conserved fragments and partially sequence fragments of 

ThADH encoding gene; and PCR amplifications were conducted using the T. hypogea 

genomic DNA as template. PCR using primer THAUNF and THAUIR1 produced a 1.3 

kb band on 1% agarose gel and the primary sequencing results indicated 1.1 kb of this 

fragment had a high similarity to TM0820. PCR product of the entire ThADH encoding 

gene amplified using specific primer THNCNF and THECR showed a single 1.2 kb band 

on 1% agarose gel (Fig. 3-2). Confirmed by sequencing, the gene consisted of 1164 bp 

nucleotides, encoding the 387 amino acids peptide chain with a calculated molecular 

weight of 43374 Da (Fig. 3-3).  
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Table 3-3 N-terminal and internal amino acids fragments of ThADH 

 

Location Sequences 

N-terminala
MENFVFHNPTKLIFG 

Internal 1b LPLLLHLE(L)c

Internal 2b RAPVSL 

Internal 3b LMLYGGGSI 

Internal 4b PRSLSLR(A) c

Internal 6b LILAS  
 

 

a amino-terminal sequence was determined by using Edman-degradation  
b internal sequences were determined by using mass spectrometry  
c amino acid in parentheses indicateed less certainty 
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Figure 3-2 Cloning of ThADH encoding gene by PCR 

 
(a), amplification using primers THADHNF and THADHIR; (b), amplification using 
primers THAUNF and THAUIR1; (c), amplification of entire gene using primers 
THNCNF and THECR. Lane 1 and 3, 100 bp DNA ladders (Fermentas Canada Inc., ON, 
Canada); lane 5, 1 kb DNA ladders (Novogan, WI, USA); Lane 2, 4 and 6, PCR products.
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1         ATGGAGAACTTCGTCTTCCACAATCCCACCAAGTTGATATTCGGTAAAGGAACCATTCCA 
1          M  E  N  F  V  F  H  N  P  T  K  L  I  F  G  K  G  T  I  P  
 
61        AAGATAGGCGAGGAGATCAAATCTTTCGGGATCAAAAAGGTTTTGATGCTCTACGGCGGT 
21         K  I  G  E  E  I  K  S  F  G  I  K  K  V  L  M  L  Y  G  G   
 
121       GGTTCGATAAAGAAGAACGGTGTCTACGATCAGGTCGTGGAATCTTTGAAAAGAAACGGC 
41         G  S  I  K  K  N  G  V  Y  D  Q  V  V  E  S  L  K  R  N  G   
 
181       ATCGAGTGGGTTGAGGTTTCTGGCGTCAAACCCAATCCAGTGCTCTCGAAGGTCCACGAG 
61         I  E  W  V  E  V  S  G  V  K  P  N  P  V  L  S  K  V  H  E   
 
241       GCTATAGAAGTTTGCAGAAAAGAGAACGTGGAGGCTGTTCTGGGCGTCGGTGGTGGAAGT 
81         A  I  E  V  C  R  K  E  N  V  E  A  V  L  G  V  G  G  G  S   
 
301       GTTATCGATTCAGCTAAAGCGATCGCAGCCGGTGTTCTCTACGAAGGAGACATTTGGGAC 
101        V  I  D  S  A  K  A  I  A  A  G  V  L  Y  E  G  D  I  W  D   
 
361       GCATTCGCCGGAAAGCATAAGATCAACAATGCCTTGCCAGTGTTCGCAATTTTGACCATA 
121        A  F  A  G  K  H  K  I  N  N  A  L  P  V  F  A  I  L  T  I   
 
421       TCTGCCACTGGAACTGAGATGAACGGAAACGCCGTGGTCACCAACGAAAAGACCCAGGAA 
141        S  A  T  G  T  E  M  N  G  N  A  V  V  T  N  E  K  T  Q  E   
 
481       AAGTGGGCGATCAGTGCAAAGTGTCTTTATCCACGAGTTTCTATAATCGATCCCACCGCA 
161        K  W  A  I  S  A  K  C  L  Y  P  R  V  S  I  I  D  P  T  A   
 
541       CAGTTTTCTCTACCGAAGGAGCAGACCGTCTATGGTGCGGTCGACGCAATAGCACACACG 
181        Q  F  S  L  P  K  E  Q  T  V  Y  G  A  V  D  A  I  A  H  T   
 
601       CTCGAGTACTACTTCGACGGTTCAGACTCGGACATACAGAACCAGATCAGCGAGTCCATT 
201        L  E  Y  Y  F  D  G  S  D  S  D  I  Q  N  Q  I  S  E  S  I   
 
661       ATCAGATCGATAATGAAGTCCACAGAAGTTTTGATAGACAATCCACAAGACTACGAGGCG 
221        I  R  S  I  M  K  S  T  E  V  L  I  D  N  P  Q  D  Y  E  A   
 
721       AGGGCGAACTTCGCCTGGTGTGCGACGATAGCCCTGAACGGTCTGACCGCCGCAGGTAGG 
241        R  A  N  F  A  W  C  A  T  I  A  L  N  G  L  T  A  A  G  R   
 
781       AAAGGTGGGGATTGGTCCTGTCACAAGATAGAGCATTCTCTCAGCGCGCTCTACGACATT 
261        K  G  G  D  W  S  C  H  K  I  E  H  S  L  S  A  L  Y  D  I   
 
841       GCTCACGGTGCAGGACTTGCGATCGTTTTCCCCGCGTGGATGAGATACGTCTATAAACAA 
281        A  H  G  A  G  L  A  I  V  F  P  A  W  M  R  Y  V  Y  K  Q   
 
901       AAACCACAGCAGTTCGAGAGGTTCGCGAAGCACGTTTTCTCGATCGATGCCGTGGGAGAA 
301        K  P  Q  Q  F  E  R  F  A  K  H  V  F  S  I  D  A  V  G  E   
 
961       GAAGCGATCTTGAAAGGTATAGACGCTTTCAAAGCTTGGCTCAGGAAGGTCGGTGCTCCC 
321        E  A  I  L  K  G  I  D  A  F  K  A  W  L  R  K  V  G  A  P   
 
1021      GTTTCGTTGAGAGACGTTGGTATACCAGCACAGGACATCGACAGGATCGTCGAGAACGTC 
341        V  S  L  R  D  V  G  I  P  A  Q  D  I  D  R  I  V  E  N  V   
 
1081      ATGAAACAGGGTCCATCCTTCGGTGTTCTGAAGAAGCTCGGTAAGGAAGATGTGAAACAG 
361        M  K  Q  G  P  S  F  G  V  L  K  K  L  G  K  E  D  V  K  Q   
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1141      ATCCTGCTCATAGCTTCCCAATGAGACATTAAAATGATAAAATCAAAGTGTGGAGGCGTG 
381        I  L  L  I  A  S  Q  *  D  I  K  M  I  K  S  K  C  G  G  V   

1201      T 
 

Figure 3-3 Nucleotides and deduced amino acid sequences of ThADH 
 
The amino acid sequence was deduced using the program DNAMAN (Lynnon 
Corporation, Vaudreuil-Dorion, Quebec, Canada). The stop codons were marked with 
asterisk. The nucleic acids located downstream of the ThADH were highlighted in grey.  
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3.4.2 Sequence analysis 

The BLAST analysis of the deduced amino acid sequence of ThADH showed the identity 

as high as 72% to iron-containing alcohol dehydrogenases from hyperthermophilic 

bacteria in genus of Thermotoga such as T. maritima (Nelson et al. 1999), T. petrophila 

(Copeland et al., 2007-a), 60% identity to Fervidobacterium nodosum Rt17-B1 

(Copeland et al., 2007-b) and 58% identity to Thermosipho melanesiensis (Copeland et 

al., 2007-c), moderately high identity (46-58%) to those enzymes from other thermophilic 

bacteria such as Symbiobacterium thermophilum (Ueda et al., 2004) and 

Thermoanaerobacter ethanolicus. The ThADH also showed similarity to ADHs from the 

mesophiles, e.g. 54% identity to ADH from Alkaliphilus oremlandii. ThADH belonged to 

a group of uncharacterized oxidoreductases of the iron-containing alcohol dehydrogenase 

family (Fig. 3-4). Amino sequences alignment of ThADH with its homologues indicated 

that ThADH haboured conserved coenzyme NADP binding motif and putative active site 

for binding iron (Fig. 3-5), which matched the results from biochemical characterization 

of ThADH to be NADP-dependent and iron-containing (Ying et al., 2007).  

 

Though ThADH showed high similarity in amino acids sequence with ADH from 

thermophile Fervidobacterium nodosum and mesophile Alkaliphilus oremlandii, the 

amino acids composition indicated that ThADH and its thermophilic homologues F. 

nodosum alcohol dehydrogenase had higher ratio (molar fraction, >0.8% increase or 

decrease) for Ala, Arg, Lys, Thr and Val but lower ratio for Asn, Glu, Tyr and Met when  
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Figure 3-4 Putative conserved domains of T. hypogea ADH 

 
Figure was constructed using BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast). Fe-ADH 
superfamily, a group of uncharacterized iron-containing alcohol dehydrogenase; EutG, 
alcohol dehydrogenase. 
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Figure 3-5 Amino acids sequences alignment among ThADH and its homologous 
enzymes 

 
The sequences were aligned using Clustal W (Thompson et al., 1994). ThADH, T. 
hypogea ADH; TmADH, T. maritima ADH; FnADH, Fervidobacterium nodosum ADH; 
AoADH, Alkaliphilus oremlandii ADH. ‘‘*’’, residues or nucleotides that are identical in 
all sequences in the alignment; ‘‘:’’, conserved substitutions; ‘‘.’’, semi-conserved 
substitutions; “-”, no corresponding amino acid. Highlighted in black, putative catalytic 
iron binding sites; highlighted in grey, putative motif of coenzyme binding sites.   
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compared to the ADH from the mesophilic A. oremlandii (Table 3-4). Particularly, the 

amino acid composition of ThADH had higher ratio for Ala, Pro, Trp and Val but lower 

ratio for Glu, Lys and Thr than that of the ADH from thermophile F. nodosum.  

Furthermore, the exchange of hydrophilic and large hydrophobic residues such as Ser, 

Asn for the small hydrophobic amino acids Ala and Val in ThADH (Table 3-5) may also 

contribute to the higher thermostability of by locking the enzyme in a conformation with 

a higher density of packing and decreased structural flexibility (Peretz et al., 1997).  

 

The tertiary structural modeling of monomer of ThADH showed two typical domains 

separating with a deep cleft (Fig. 3-6). Similar to the 3-D structure of iron-containing 1, 

3-propanediol dehydrogenase (TM0920) from T. maritima, the N-terminal domain of 

ThADH was formed by an α/β region containing the dinucleotide-binding fold, whereas 

the C-terminal part was an all-helical domain responsible for the iron binding. The 

ThADH consisted of amino-terminus contained a GGGS motif (residues 39-42) which 

was well accepted to be involved in the interactions with the pyrophosphate groups of 

NADP, and the sequence harbored most of amino acid residues responsible for NADP 

binding that were observed in the crystal structure of TM0920 (Sulzenbacher et al., 2004). 

The putative active site motif was identified to be Asp195His199His268His282. Both the 

putitive iron binding site and coenzyme binding residues were found to be conserved in 

ThADH and its thermophilic and mesophilic counterparts (Fig. 3-5).  
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Table 3-4 Amino acids components and abundance of ThADH and its homologous 
 
 

 
 
FnADH, ADH from thermophile Fervidobacterium nodosum; AoADH, ADH from 
mesophile Alkaliphilus oremlandii. Numbers in parenthesis, percentage of the amino 
acid; numbers highlighted in grey, amino acids that are obviously less in 
thermophilic/hyper thermophilic ADH than mesophilic homologous; numbers 
highlighted in yellow, amino acids that are obviously more in thermophilic/hyper 
thermophilic ADH than mesophilic homologous.  
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Table 3-5 Comparison of the typical amino acids between ThADH and its 
homologous 

 

 
 
FnADH, ADH from thermophile Fervidobacterium nodosum; AoADH, ADH from 
mesophile Alkaliphilus oremlandii. Highlighted in grey, amino acids that are obviously 
less in thermophilic and hyperthermophilic ADH than mesophilic homologous, 
highlighted in yellow, amino acids that are obviously more in thermophilic and 
hyperthermophilic ADH than mesophilic homologous.  
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His268 
His282 

Asp195 

His199

 

                                   (a)                                                                (b) 

                         

Figure 3-6 Predicted tertiary structure of ThADH monomer and the putative iron-
binding site 

 The structure modeling was run on the Swiss Model server using an iron-containing 
ADH from T. maritima (TM0820; PDB number: 1vljB) as the template. (a) Residues in 
red, the putative NADP-binding site; residues in blue, the putative iron-binding site. (b) 
The vertical view of the putative iron-binding site, Asp195His199His268His282.
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3.4.3 Construction of the expression vector 

Specific primers with the over-hanged restriction sites were designed as THNCNF and 

THECCR (Table 3-2).  The restriction enzymes NcoI and EcoRI were selected since they 

were not involved in the structure gene (Fig. 3-7). The PCR products showed a specific 

1.2 kb band on 1% agarose gel, and the DNA was extracted and confirmed by 

sequencing. The PCR amplified ThADH coding gene was inserted in pET-30a over-

expression vector after double enzyme digestion by NcoI and EcoRI (Fig. 3-8). The gene 

was inserted under the control of T7-lac promoter. The recombinant plasmid was selected 

from the colonies grew on 2YT agar with 50 mg/ml kanamycine by both colony PCR and 

restriction enzymes digestion (Fig. 3-9). 

 
3.4.4 Over-expression of the ThADH in E. coli 

E. coli was selected as heterlogous expression host in this research.  However, ThADH 

coding gene preferred a different codon usage compared to E. coli. Analyzed by 

Graphical codon usage analyzer (Fuhrmann et al., 2004), the mean difference was    

39.98% (Fig. 3-10). To overcome the possible poor yield caused by codon bias, 

confirmed by sequencing, the isolated recombinant plasmids carrying ThADH coding 

gene were transformed into E. coli BL 21-Rossetta expression strains, containing the 

extra plasmid for rarely used tRNAs codons AGA/AGG/AUA/CUA/GGA/CCC/CGG to 

rescue the poor expression by codon bias mainly caused by the rare tRNA in E. coli: 

AGG/AGA for arginine, AUA for isoleucine, and CUC for leucine.  From 10% SDS-  
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Figure 3-7 Restriction map of the ThADH coding gene 
 
On-line analysis was conducted using http://tools.neb.com/NEBcutter2/index.php; red, 
blunt end cut; blue, 5’ extension; green, 3’ extension; *, cleavage affected by CpG 
methylation; #, cleavage affected by other methylation. 
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Figure 3-8 Recombinant plasmid construction and the location of inserted gene 
Figure was modified from http://www.bio.davidson.edu. Major elements constructed in 
the pET vector are indicated using color arrows. Black arrow, location of the inserted 
ThADH encoding gene.  
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Figure 3-9 Selection of the recombinant vector carrying the gene Thadh by enzyme 
digestion 

 
The arrows and notes describe behavior of recombinant vector and blank pET-30a vector 
after enzyme digestion by NcoI and EcoRI.  The 1.2 kb bands were released insert gene 
from recombinant vectors after enzyme digestion. Lane 1, blank pET-30a vector; lane 2, 
recombinant plasmid Thadh-pET-30a; lane 3, 1 kb DNA ladders (Novogan, WI, USA); 
lane 4, recombinant plasmid Thadh-pET-30a; lane 5, recombinant plasmid Thadh-pET-
30a. 
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Figure 3-10 Codon usage pattern comparison of T. hypogea and E. coli 
 
Codon usage analysis was conducted using Graphical codon usage analyzer at 
www.gcua.de (Fuhrmann et al., 2004). Columns in red, codon bias pattern of sequence 
derived from T. hypogea; Columns in black, codon bias pattern of E. coli. The numbers 
of most frequenctly used codons for the specific amino acid was defined as 100.  
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PAGE, the recombinant enzyme around 43 kDa was expressed at a high level with the 

presence of IPTG as inducer (Fig. 3-11). 

 

3.4.5 Optimum cultivation condition 

E. coli strains carrying the recombinant vector Tgadh-pET30a were incubated in 2YT 

medium with 50 mg/ml kanamycine and 1mM ferrous to an OD600 0.8 before induction, 

which took 3.5 to 4 hours. The optimal yield of the recombinant enzyme was obtained 

when the concentration of inducer IPTG was 0.4 to 0.6 mM from SDS-PAGE (Fig. 3-11). 

Therefore, the concentration of IPTG was chosen to be 0.4 mM.  

 

3.4.6 Purification of the recombinant T. hypogea ADH from E. coli 

Considering the thermostability of ThADH, the recombinant enzyme was purified from 

E. coli using a simplified procedure. Heat treatment was applied to the cell extract prior 

to liquid chromatography. Heating for 30 minutes at 60 0C significantly reduced 60% of 

the total proteins (Fig. 3-12). Subsequently, the recombinant ADH was purified to 

homogeneity after DEAE-Sepharose column. The purified recombinant ThADH had a 

specific activity of 69 U/mg compared to 57 U/mg of the native enzyme (Ying et al., 

2007) and presented a higher purification yield of 49% than 31 % of the native one 

(Table 3-6). Purified recombinant ThADH was eluted from the gel-filltration column 

Superdex 200, the corresponding ADH activity was collected from a peak at 192 ml, 

indicating a molecular mass of 84 ± 5 kDa. The SDS-PAGE analyses showed that 

recombinant ThADH had a single subunit with a molecular weight estimated to be 43 ± 2 

kDa, suggesting the recombinant ThADH was a homodimer (Fig. 3-13). 
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kDa 

45

Figure 3-11 10% SDS PAGE for yield of ThADH in E. coli induced by IPTG  
Left lane, low molecular weight protein marker; other lanes, crude extracts of cells; red 
arrow, over-expressed ThADH in the total protein of codon-plus E. coli host cells. 30 ul 
cell crude extracts were loaded per lane. 
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Figure 3-12 Heat treatment of recombinant E. coli cell-crude extract 

 
The enzyme activity was measured using standard assay in CAPS buffer (100 mM, pH 
11.0). Column in black, residual activity of recombinant E. coli cell-crude extract after 
heat treatment at 60 0C; column in grey, residual protein concentration recombinant E. 
coli cell-crude extract after heat treatment.  
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Table 3-6 Purification of the recombinant ThADH from E. coli 

 
 

 Total protein 
(mg) 

Total activity 
(U) 

Specific activity 
(U/mg) 

Purification 
fold 

Yield 
(%) 

Cell-crude 
extract 240 3552 14.8 1 100 

Heat-
treatment 62.8 2427.2 38.5 2.6 68 

DEAE- 
Sepharose 25.1 1734.4 69.1 4.7 49 
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Figure 3-13 10% SDS-PAGE for purified recombinant ThADH  

 
Lane 1, molecular weight marker; Lane 2, cell crude extract; Lane 3, cell crude extract 
heat treated for 30 min; Lane 4, 2 μg purified recombinant ThADH. In lane 2-3, 
approximately 10 μg total proteins were loaded per lane. 
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3.4.7 Catalytic properties and the comparison with native enzyme from T. hypogea 

Compared to the native ADH purified directly from T. hypogea, the recombinant ThADH 

had very similar catalytic properties to the former. Over a temperature rang from 30 to 95 

0C, the activity of recombinant ThADH increased along with the increase of assay 

temperature, showing the same trend of the native enzyme (Fig. 3-14). The effect of pH 

on enzyme activities was investigated with a set of 100 mM buffers ranging from pH 6.0 

to 12.0. Both the native and recombinant ThADH shared the optimal pH for ethanol 

oxidation was pH 11.0 while that for butyaldehyde reduction was pH 8.0 (Fig. 3-15), 

additionally, the enzymes worked within quite a small pH range, when the buffer pH 

value was higher or lower than the optimum value, the activity of ethanol oxidation had a 

remarkable decreasing. Similar to the native enzyme, when the thermostability was tested 

at 70 0C, there was a 50% of residue activity of the recombinant enzyme after 2 hours in 

the presence of 2 mM DTT, however, the half life (t1/2) of the recombinant enzyme was 

was detected to be less than one hour at 90 0C in the absence of DTT (Fig. 3-16). Both 

the native and recombinant enzymes were sensitive to oxygen. There was a residual 

activity of 50% after exposure to the air at room temperature for only 20 minutes (Fig. 3-

17).  
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Figure 3-14 Temperature dependence of the purified ThADH 

 
The activities were measured in the standard assay conditions except varying assay 
temperatures from 30 to 95 0C. The relative activity 100% was defined as the highest 
activity value achieved in this test (133 U/mg at 95 0C). Error bars indicate standard 
deviations of the measurements. 
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Figure 3-15 Optimal pHs of the purified recombinant ThADH 

 
Optimal pHs for alcohol oxidation and formation were determined by measuring the 
activities on the oxidation of 1-butanol (unfilled points) and the reduction of 
butyaldehyde (filled points), respectively. The buffers (100 mM) used were CAPS 
(unfilled circles), Tirs/HCl (unfilled triangles and unfilled squares), HEPES (filled 
converted triangles) and PIPES (filled circles). The relative activity of 100% refers to full 
activity of the recombinant enzyme that equals 69 U/mg of alcohol oxidation activity and 
means 51 U/mg for of aldehyde reduction, respectively. Error bars indicate standard 
deviations of the measurements. 
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Figure 3-16 Thermostability of the purified recombinant ThADH 

 
The enzyme activity was assayed by 1-butanol oxidation in the CAPS buffer (pH 11.0) at 
80 0C. Filled circles, in the presence of 2 mM DTT at 70°C; open circles, in the absence 
of DTT at 70 0C; filled triangle, in the presence of 2 mM DTT at 90 0C; open triangle, in 
the absence of DTT at 90 0C. The relative activity of 100% equals to the initial ADH 
activity without the heat treatment (62 U/mg). Error bars indicate standard deviations of 
the measurements. 
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Figure 3-17 Oxygen sensitivity of the purified recombinant ThADH 
 
The enzyme activity was measured by 1-butanol oxidation in the CAPS buffer (pH 11.0) 
at 80 0C. Open circles, in the presence of 2 mM DTT and 2 mM SDT; filled circles, in the 
absence of 2 mM DTT and 2 mM SDT. The relative activity of 100% equals to the ADH 
activity prior to exposure to air (62 U/mg). Error bars indicate standard deviations of the 
measurements. 
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3.5 DISCUSSIONS 

 
Alcohol dehydrogenases are ubiquitous enzymes catalyzing interconversions between 

alcohols and corresponding ketones or aldehydes. Classified by the metal contained, 

ADHs are divided into 3 groups. Group I contains long-chain ADHs whose size varies 

from approximately 350 to 900 amino acid residues and zinc is at their catalytic site and, 

sometimes, the enzyme also has structural zinc (Littlechild et al., 2004). Group II 

contains short-chain ADHs with approximately 250 amino acid residues and lacks metals 

(Reid et al., 1994). Group III only consists of a small number of iron-dependent ADHs. 

The three groups of ADHs are present in three domains of life: archaea, bacteria and 

eukarya. There are only a few iron-containing ADHs characterized from 

hyperthermophiles, though many ADHs from mesophiles, especially those from horse 

liver, yeast and E. coli are well studied. Up to date, only four iron-containing ADHs from 

hyperthermophiles have been characterized; they are ADHs from hyperthermophilic 

archaea: T. hydrothermalis, Thermococcus strain ES-1, Thermococcus litoralis and 

Pyrococcus furiosus. T. hypogea ADH represents the first hyperthermophilic bacterial 

ADH that contains iron with full activity after purification, whose catalytic properties 

show similarities to the enzymes in archaea (Ma et al., 1995; Ying et al., 2007). 

 

The sequencing of the entire encoding gene of ThADH provided valuable insights on 

understanding the evolutionary relationship between this iron-containing ADH and its 

homologous enzymes (Fig. 3-18). The amino acids sequence (387 aa) of T. hypogea 

ADH has similarity of higher than 70% to those within Thermotoga species such as T.  
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Figure 3-18 Phylogenetic relationships of ThADH and related iron-containing ADHs 
from bacterial hyper/thermophiles  
 
The sequences were aligned using Clustal W (Thompson et al., 1994). Scale bar indicates 
0.1 substitutions per sequence position. The numbers following the enzymes are the 
accession numbers for the genes encoding ADHs. Tetha, Thermoanaerobacter 
ethanolicus X514; Tteng, Thermoanaerobacter tengcongensis MB4; Cther, Clostridium 
thermocellum ATCC 27405; Pmobi, Petrotoga mobilis SJ95; Gther, Geobacillus 
thermodenitrificans NG80-2; Gkaust, Geobacillus kaustophilus HTA426; Sther, 
Symbiobacterium thermophilum IAM 14863; Horen, Halothermothrix orenii H 168; 
Tmari, Thermotoga maritima; Tpetr, Thermotoga  petrophila; ThADH, ADH from T. 
hypogea; Fnodo, Fervidobacterium nodosum Rt17-B1; Tmela, Thermosipho 
melanesiensis BI429.  
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maritima and T. petrophila. And it carries moderately high similarity (50-70%) to those 

in other bacterial thermophiles or mesophililes, including Thermoanaerobacter 

ethanolicus and Fervidobacterium nodosum, and low similarity to ADHs from archaeal 

hyperthermophiles, The homologues of T. hypogea ADH were abundant in bacteria but 

not archaea, which could be an indication of the divergence of iron-containing ADHs 

from hyper/thermophiles.  

 

Analysis of both primary and predicted 3-D structure of the enzyme revealed its 

characteristics of iron-containing ADH. Though sharing a similarity of less than 50% in 

primary structure, ThADH typically had two domains of three-demonsional structure 

separated by a cleft where the active site of the enzyme might be situated, similar to that 

of the TgADH. The cleft catalytic pockets are commonly found in the metalloenzyme 

when cofactors are involved the catalytic reactions (Schwarzenbacher et al., 2004). The 

ThADH consisted of the N-terminal domain formed by an α/β region where contained a 

Gly39Gly40Gly41Ser42 motif, well accepted to be involved in the interactions with the 

pyrophosphate groups of NADP  (Sulzenbacher et al., 2004). On the other hand, the C-

terminal part was an all-helical domain responsible for the iron binding. The putative 

active site motif was identified to be Asp195His199His268His282.  

 

The catalytic parameters of the recombinant enzyme were similar to the native form, 

indicating that this iron-containing ADH was successfully produced in E. coli and the 

heterologous expression in E. coli can potentially be used for the large-scale production 

of this recombinant iron-containing hyperthermophilic ADH. The recombinant enzyme 
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was periplasmic and soluble, and no inclusion body was formed. The activity of 

recombinant ThADH from E. coli did not require heat activation. However, heat 

activation was essential to obtain maximally active forms of the iron-containing ADH 

from T. hydrothermalis and 2, 3-butanediol ADH from P. furiosus (Antoine et al., 1999; 

Kube et al., 2006). The activity of the recombinant T. hydrothermalis ADH increased 10- 

25% after 1 minute incubation at 80 0C while P. furiosus ADH was inactive without heat 

treatment and the highest activity was obtained after 10 minutes incubation at 100 0C. 

Recombinant ES1 ADH activity was unaffected by heat treatment of the cell-free extract, 

similar to what was observed with the recombinant short-chain ADH from P. furiosus 

(van der Oost et al., 2001). Similar to TgADH, the optimal pHs of both native and 

recombinant ThADH on the oxidation of alcohols are more alkaline than those on the 

reduction of aldehydes. One of the reasonable explanations would be the enzyme activity 

of ThADH relies on the proton relay mechanism, and the pH dependence of the proton 

abstraction is correlated with a reorganization of specific conformation in the active site 

(Koumanov et al., 2003).  

 

Both native and recombinant ThADHs were quite oxygen-sensitive, which could be a 

disadvantage of the enzyme, and construction of a more oxygen tolerant enzyme is the 

focus of further study. The loss of activity after exposure to the air might be due to the 

oxidation of ferrous to ferric, and/or loss of ferrous ion, and replacement with other metal 

ion such as zinc (Ying et al., 2007); however, the structural basis underlying this behavior 

is not clear yet. Generally, iron-sulfur centers are the oxidation-sensitive sites in several 

metalloenzymes (Unden et al., 1994), but it is not present in ThADH. Iron substitution by 
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divalent metal ions that could not be further oxidized (e.g. Zn2+, Co2+ etc.) at the catalytic 

site may provide further mechanistic insights into the nature of oxygen sensitivity. For 

example, the cobalt-substituted T. brockii ADH exhibited an increase in specific activity 

compared to the native enzyme resulting from higher metal-ligand coordination in the 

catalytic site (Kleifeld et al., 2004). In addition, irreversible loss of enzyme activity was 

also likely to be caused by irreversible structure change due to the oxidation of some 

amino acids such as cysteine residues (Neale et al., 1986). Site-direct mutagenesis 

worked as a powerful approach that induced changes of the oxygen sensitivity in some 

iron-containing oxidoreductases. For instance, site-direct mutations of residues near the 

NAD-binding consensus amino acid sequence (Ile7Leu and Leu8Val) of an oxygen 

sensitive iron containing propanediol oxidoreductase (FucO protein) in E. coli increases 

resistance to oxidative stress (Lu et al., 1998), however, thermal stability of the mutant 

enzyme decreased simultaneously. The previous mutagenesis work shed light on the 

protein engineering of ThADH that could help to clarify the mechanism of oxygen 

tolerance as well as the relationship between structure and function.  
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Chapter 4 General Conclusions 
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Alcohol dehydrogenases are ubiquitous enzymes catalyzing inter-conversions between 

alcohols and corresponding ketones or aldehydes. ADHs from hyperthermophiles have 

attracted interests in both fundamental studies and the exploitation of their application 

potentials because of their outstanding tolerance to high temperatures. This research work 

aimed at cloning and expression of thermostable alcohol hedydrogenases from anaerobic 

hyperthermophiles followed by characterization of the recombinant enzyme as well as 

exploration of their biotechnological potentials. 

 

4.1 Cloning and molecular characterization of ADHs 

 

Both TgADH and ThADH encoding genes were amplified directly from corresponding 

genomic DNAs by PCR. Since genome sequences are not available, designing of specific 

primers for gene amplification remained a challenge. The initial nucleotide sequences of 

the two genes were amplified using degenerated primers that were designed based on 

amino acids fragments obtained by Edman degradation and mass spectrometry analysis 

of the ADHs purified directly from T. guaymasensis and T. hypogea. When fragments of 

nucleotide sequences were sequenced, specific primers were designed based on the 

known sequences, which increased the chance to amplify the target gene. For cloning of 

the entire TgADH-encoding gene, inverse PCR was applied because of relatively low 

identity between TgADH encoding gene and its homologues. However, detection of 

DNA fragments carrying the target gene after inverse PCR needed lots of efforts. 
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Southern hybridization using known nucleic acids as probe would be an effective way to 

select target fragments.  

 

The 1092 bp TgADH structural gene encoded a 364 amino acids polypeptide, which was 

identified to be Zn-binding ADH. TgADH encoding gene ended with two stop codons 

TGA and TAA and followed by one of the putative archaeal terminator sequence, which 

suggested the gene behavior like an independent one but not involved in an operon. 

Compared to its thermophilic and mesophilic counterparts, hyperthermophilic TgADH 

has the amino acids composition of more Ala, Arg, Glu, Pro but less Asn, Ser, Met and 

Ile, which  strengthened ion pairs and might be important determinants of thermostability. 

The nucleotide sequence analyses of TgADH showed a different pattern of codon usage 

from that of E. coli. 

 

The ThADH encoding gene was 1164 bp corresponding to 387 amino acids sequence, 

which contains the conserved domains indicating an uncharacterized iron-containing 

ADH. In contrast to TgADH, there is one stop codon TGA. As only a few downstream 

nucleic acids obtained now and no typical terminal sequence was found, it is not discreet 

to conclude if ThADH is involved in an operon. While the gene arrangement in the 

genome of T. maritima indicated the encoding gene of TM0920 that have 76% identities 

with ThADH was not in the operon, so ThADH encoding gene could be independent. 

Similar to TgADH, ThADH has higher ratio for Ala, Arg, Lys, Thr but lower ratio for 

Asn and Met as compared to the thermophilic and mesophilic counterparts. Also, the 
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nucleotide sequence analyses of ThADH showed the pattern of its codon usage different 

from that of E. coli. 

 

4.2 Heterologous expression of ADHs 

 

TgADH and ThADH were over-expressed in the mesophilic host E. coli using pET-30a 

vector that contains strong promoter T7 frequently selected for the expression of 

extremophilic proteins. In both cases, the expression of recombinant enzymes was 

induced by IPTG. The recombinant enzymes were soluble, and no inclusion body 

produced. The activity of recombinant ADHs from E. coli did not require heat activation, 

although heat activation was necessary for achiving the maximum activity of some 

recombinant iron-containg ADHs, including T. hydrothermalis ADH and P. furiosus 2, 3-

butanediol ADH (Antoine et al., 1999; Kube et al., 2006). Purification of the recombinant 

enzymes was simplified by heat treatment of the cell crude extract and the purified 

enzymes retained biochemical properties of the native enzymes, such as optimal activity 

at high temperatures and thermostability, indicating E. coli is an effective heterologous 

expression system for enzymes from anaerobic hyperthermophiles, and under proper 

cultivation conditions, enzymes from hyperthermophiles could fold correctly in 

mesophilic host.  

 

4.3 Biochemical and biophysical properties of ADHs 
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Both the recombinant TgADH and ThADH have highly similar biochemical properties to 

characterized native ADHs from T. guaymasensis or T. hypogea. The recombinant ADH 

enzymes have full activity of the native forms in alcohol oxidation and aldehydes 

reduction. Both TgADH and ThADH show that their optimal temperatures are above 

95°C and stay stable after treatment at high temperature (>80 0C). TgADH harbors the 

outstanding thermostability and remain 70% of the original activity when incubated at 80 

0C for 24 hours. Generally, pH dependence of enzymatic activity reflects the ionization of 

groups involved in the catalysis. The optimal pHs of both TgADH and ThADH on the 

oxidation of alcohols are more alkaline than those on the reduction of aldehydes or 

ketones, which is a common feature among hyperthermophilic ADHs. Additionally, both 

ThADH and TgADH are sensitive to oxygen. The oxygen inactivation of the iron-

containing ThADH seems to be due to the oxidation of iron atom, while the oxygen-

inactivation mechanism of TgADH has not been well understood yet, which may be 

associated with oxygen damage on amino acid residues. 

 
 

4.4 Structural properties of ADHs 

 

Though sharing a similarity of less than 50% in primary structure, both TgADH and 

ThADH typically had two domains of three-demonsional structure separated by a cleft 

where the active site of the enzyme might be situated. The active sites centered on the 

catalytic ions were dimensionally close to the pocket containing the cofactor NADP 

indicating the cofactor binding is essential for the catalysis. The TgADH amino acid 

sequence shows high similarity to zinc-containing ADHs from hyperthermophiles, 
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especially those from Thermoanaerobacter species. The conserved domain analyses 

revealed that it belongs to zinc-containing ADHs and the enzyme harboured only 

catalytic zinc and coenzyme NADP binding sites. Two typical domains located in 3-D 

structure of TgADH, the catalytic zinc-binding site (GHEX2GX5GX2V, residues 62-76) 

close to N-terminal and one cofactor NADP binding site (GXGX2G, residues 183-188) 

close to C-terminal end. 

 

On the other hand, the amino acid sequence of ThADH has high similarity with the iron-

containing ADH from Thermotoga species. The ThADH consists of two cleft typical 

domains as well: the N-terminal domain formed by the α/β region which contains 

Gly39Gly40Gly41Ser42 motif, predicted to be conserved NADP binding sites; and the C-

terminal part is an all-helical domain responsible for the iron binding, where the putative 

active site motif Asp195His199His268His282 is located.  

 

4.5 Relationship between Zinc-and iron-containing ADHs 

 

The zinc-containing ADH from T. guaymesensis and the iron-containing ADH from T. 

hypogea belong to NADP-dependent ADH and they shared some properties: divalent 

metal ion is necessary for the activity, 3-D structure consists of two cleft typical domains 

locating coenzyme binding site and catalytic core respectively. However, the two 

enzymes represent very different biochemical properties due to different divalent metal in 

the catalytic core. Containing stable zinc ion, the TgADH was present more stable either 

at high temperatures or exposure to oxygen than ThADH containing ferrous that is 
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sensitive to oxidation. From evolutionary point of view, Fe2+-containing ADHs have been 

proposed to evolve earlier than Zn2+-containing ADHs. It is well accepted that the 

original global environment was anaerobic and highly reducing and it was possible the 

supply of ferrous iron was abundant. Fe2+-containing ADHs commonly function in 

anaerobiosis and such enzymes are proposed to evolve earlier than zinc-containing ADHs 

(Lu et al., 1998). Later, iron became mostly sequestered in the Fe3+-containing 

compounds when oxygen accumulated in the earth atmosphere. It is thus logic to 

speculate that more oxygen-resistible Zn2+-containing ADHs gradually supplanted Fe2+-

containing ADHs. Fe2+-containing ADHs persist either because there is no selective 

pressure such as environments lacking of oxygen or because they play a role in the shift 

from anaerobic to aerobic metabolism (Lu et al., 1998). 

 

4.6 Future outlooks 

 

ADHs are important for fundamentally scientific studies as well as exploration of their 

potential in biotechnological applications. TgADH has the extremely high specific 

activity (1079 U/mg on the oxidation of 2-butanol), thermostability, stereoselectivity, 

broad substrate specificity to meet the requirements of good biocatalysts in industry. 

However, the coenzyme of TgADH--NADP is commercially expensive, which limits its 

industrial application to some extent, therefore it is necessary to alter properties of the 

enzyme, enabling it to transform new substrates or catalyze existing substrates more 

efficiently associated with a relevantly cheap coenzyme. On the other hand, oxygen 

sensitivity limited application of ThADH, and construction of a more oxygen tolerant 

enzyme is the focus of further study. Since protein lability is caused by oxidation of Fe2+, 
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iron substitution by divalent metal ions that could not be further oxidized (e.g. Zn2+, Co2+ 

etc.) at the catalytic site may provide further mechanistic insights into the nature of 

oxygen sensitivity. Moreover, protein engineering is a powerful approach to alter 

catalytic properties of enzymes. Site-directed mutagenesis and direct evolution are most 

commonly used approaches for protein engineering. In addition, site-directed 

mutagenesis is also widely used for identifying the role of specific amino acid in 

catalysis. Generally, the 3-D structural information of enzymes is critical to understand 

the structure-function relationships for enzymes. The successful production of 

recombinant enzymes provides sufficient amount of active enzymes for crystallography 

study that will shed light on the design of site-directed mutagenesis.  
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