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Abstract

The increasing use of cryptographic techniques in various communication and com-
puter systems has inspired many researchers to find ways to perform fast computations
over finite fields, especially over large finite fields of characteristic two. The central
theme of the thesis is an investigation of finite field computations and their architectures,
such as multiplication and exponentiation. The computation of point multiples on elliptic
curves is also discussed.

Three new types of finite field multipliers are given in the thesis. New bit-serial and
bit-parallel multipliers using redundant bases, which is a modification of certain normal
bases, are proposed. Parallel weakly dual basis multipliers are presented in Fym over F,
for any prime power q. For the polynomial basis, bit-parallel multiplication and squaring
are discussed and their low-complexity constructions are investigated.

Exponentiation of a primitive element in finite fields is also considered. Structures
for exponentiations using different representations of the exponent are given for both the
polynomial basis and its weakly dual basis. A new signed-digit representation is pro-
posed and used for the computation of m, P, + maPs + - - - + m Py for elliptic curve
cryptosystems. The performance analysis for such computations on elliptic curves us-
ing the sliding window method is also given. Other related results include closed form
expressions for the average Hamming weight and length of signed-digit representations,
which correspond to the numbers of multiplications and squarings in an exponentiation

operation.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Finite fields and their applications

A finite (or Galois) field is an algebraic structure with a finite number of elements where
we can perform addition, subtraction, multiplication and division. A finite field of ¢ el-
ements is denoted by F, or GF(q). Finite fields have been applied to finite geometries,
optimal designs, linear recurring sequences, linear modular systems, and other math-
ematical disciplines. Over recent decades, finite fields have also gained wide spread
practical applications.

For example, the study and design of systems for secret communication is the subject
of cryptography, and finite fields are involved in many modern cryptographic systems or
cryptosystems. More about the use of finite fields in cryptography is discussed in § 1.1.2.

The theory of finite fields and the theory of polynomials over finite fields have been
applied to the design of good codes and efficient decoding methods. For example, BCH
(Bose-Choudhuri-Hocquenghem) [37] codes and the related RS (Reed-Solomon) [66]
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codes are widely used codes. A number of efficient algorithms are available for encoding
and decoding these codes {11, 13], where finite fields are involved.

Finite fields can also be used in digital signal processing that makes extensive use of
the discrete Fourier transform, convolution, and solution to Toeplitz systems of equa-
tions. The use of appropriate finite fields may simplify or speed-up these computa-
tions [14]. In certain digital testing schemes for integrated circuits, it is very important
to select a good primitive polynomial over a finite field to be used in the implementation
of the tester [31].

1.1.2 Cryptography and finite field computations

Communication networking or information highway has been one of the greatest tech-
nical achievements in this century, which has greatly promoted electronic information
exchange, electronic commerce, and emerging electronic banking. The security require-
ments for these facilitations can include privacy or confidentiality, user authentication,
data authentication or integrity, key management, and non-repudiation. Researchers
have been developing tools for cryptosystems to meet these requirements, for instance,
encryption/decryption system for privacy, hashing function for data integrity, and digital
signature scheme for authentication and non-repudiation.

Cryptosystems can be categorized into public (or asymmetrical) key systems and
private (or symmetrical) key systems. Public-key cryptosystems are such that they are
based on some “hard” computational problems, for example, factoring the product of two
large primes (i.e., integer factorization cryptosystems) or the discrete logarithm in a finite
cyclic group (i.e., discrete logarithm cryptosystems and elliptic curve cryptosystems).
Many of them work in Z, or over F,, where » and q are usually large enough to promise
adequate security of the system against possible cryptoanalytic attacks. For both a secure

and an efficient implementation of the latter type of cryptosystems, the cyclic group G
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should be chosen to satisfy the following two conditions:

e For efficiency, the group operation in G should be “easy” to apply;

¢ For security, the discrete logarithm problem in the cyclic group G should be “hard”.

The group G = F,n. is considered since operations in Fam are easy and more suit-
able for implementation. Besides the discrete logarithm cryptosystems over Fsn, the
elliptic curve cryptosystems, which utilize the group of points on an elliptic curve over
a field, can also be realized using finite fields of characteristic two. These groups are
generally used to take advantage of their efficiency over multiprecision arithmetic for
large prime fields. The elliptic curve cryptosystems also have the advantage of their high
cryptographic strength relative to the key size, and thus they are especially attractive in
applications such as the financial industry, smart cards and wireless areas where power
and bandwidth are limited.

The computations in F,» with applications to cryptography have the following re-

quirements:

e In logarithm and elliptic curve cryptosystems, the primary operation performed
is exponentiation or addition of two points on an elliptic curve. Both operations
involve extensive finite field multiplications especially when high indices are re-
quired for security considerations. As a result, there is a need for high-speed mul-

tipliers.

e Compared to software implementations, it is believed that a hardware implemen-
tation of a security algorithm may better resist attackers from tampering with the

system, besides its advantage on speed it has.

o Network security protocols require high computation speed. For example, com-
putation time probably should be within a second for on-line identification on the
Internet.
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There have been several excellent books and dissertations on finite fields, for exam-
ple, [47, 55, 40, 52, 24]. Books on cryptography or number theory with special treatment
of algorithms and computations over finite fields include [57, 73, 54, 9]. Some of the
dissertations on efficient finite field computations and their VLSI implementations are
[74, 50, 33, 63, 39].

In this thesis, we focus on finite field operations which are commonly used in cryp-
tosystems, such as multiplication, exponentiation and computation of point mulitiples on

elliptic curves.

1.2 VLSI Architecture and Complexities

1.2.1 Parallel VLSI architecture

Hardware architectures performing finite field arithmetic operations can be generally cat-
egorized into three classes: parallel, serial, and hybrid architectures. Correspondingly,
architectures over the field F, are usually classified as bit-parallel, bit-serial and hybrid
architectures [50]. Generally speaking, bit-parallel finite field architectures discussed in

this thesis may be characterized by the following features:

1. Consist of only combinational logic, and no memories required;

(%]

. Have parallel input and output ports;

W

. No sequential logic involved and thus no clock required.

In contrast, bit-serial architectures use sequential logic and have clock inputs, while both
the input and output ports can be either parallel or serial type. Hybrid architectures are
usually referred to those architectures that consist of a number of bit-parallel modules

which are serially connected using sequential logic, or a number of bit-serial modules
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working in parallel. For instance, bit-parallel word-serial architectures and bit-serial

word-parallel architectures.

1.2.2 Complexity measures

Two parameters of a VLSI architecture are of vital importance, its size (or space) com-
plexity and time complexity.

In this thesis, the complexity of the algorithms for computations in finite fields are
usually evaluated by the number of operations in the ground field. If the characteristic
of the underlying field is 2, then the count of bit operations is given as a complexity
measure. An addition or multiplication in F; can be realized with a two-input XOR
or a two-input AND gate, respectively.! Consequently, the space complexity of the
mapped VLSI architecture can be expressed in terms of the numbers of AND and XOR
gates. In the sequel, the numbers of AND and XOR gates needed in an architecture are
denoted by C4 and Cyx, respectively. Paar and Lange have shown that this measure
for size complexity is a good estimate for the chip area if it is implemented in VLSI
technologies [64]. If the exact number of the logic gates or elementary logic cells is not
available, we also use O(n), O(n?), etc., to give the asymptotic size complexity, where
n can be a measure of the field size.

The time complexity of a bit-parallel architecture consisting of only combinational
logic is measured by the maximal propagation delay in the path from the input to the
output. If we denote the time delays caused by one AND gate or one XOR gate by T4 or
Tx . respectively, then the time complexity which is referred to as Cr is given as a sum
of multiples of T4 and Tx.

For bit-serial or other types of architectures with clock inputs, the time complexity
is decided by both the clock period and the number of clock cycles required to complete

'In the sequel, all XOR gates and AND gates are assumed to have only two inputs.
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the operation. Then it could be understood that a computation requires a time delay not

less than

# of clock cycles x the clock period.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2, some mathematical preliminaries are reviewed. Definitions and funda-
mental theorems in finite fields which relate to the subsequent chapters are given.

Chapters 3, 4 and 5 discuss finite field multipliers and their implementations. Re-
dundant basis, a modification of certain normal bases, is presented in Chapter 3. New
bit-serial and bit-parallel multipliers using this basis are also developed in this chapter.
Chapter 4 discusses parallel muitipliers using weakly dual bases. New implementations
of these multipliers with reduced propagation delay are given over F, and over F,. In
Chapter 5, first complexity bounds on bit-parallel polynomial basis multiplication and
squaring are given, then new low-complexity bit-parallel multipliers and squarers over
F,m are presented.

Chapters 6, 7, and 8 discuss exponentiation over finite fields and point multiples on
elliptic curves. Methods of efficiently representing an exponent is discussed in Chap-
ter 6. Efficient implementation of finite field exponentiation is presented in Chapter 7,
where a novel linear feedback shift register is used to efficiently realize multiplication
with multiple multiplicands. Two exponentiation architectures, using polynomial basis
and dual basis, are also proposed. In Chapter 8, a new signed-digit representation is
proposed and used in the general sliding-window algorithm to compute point multiples
on elliptic curves. Various extensions of sliding-window method are discussed and their

performance analyses are given.
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A summary of our work is presented in Chapter 9, where we also give some sugges-

tions on possible future work.

1.4 Research Contributions

The major contributions in this thesis are the formulation of algorithms and the develop-
ment of architectures for finite field multiplication, exponentiation, and computing point

multiples on an elliptic curve. Some specific contributions are as follows:
e new bit-serial and bit-parallel multipliers using redundant basis,
o new parallel multipliers using weakly dual basis in Fyn over F,,
e new bit-parallel muitipliers and squaring using polynomial basis,
e new bit-parallel squarings using polynomial basis,

o Closed form expressions for average number of nonzeros and average length of the

NAF,

e New architectures of exponentiation using polynomial and dual bases,

A minimal signed-digit representation with fewer zero runs.



Chapter 2

Mathematical Preliminaries

This chapter gives some preliminaries on finite fields to facilitate the discussions of the
chapters to follow. A brief introduction of elliptic curves over finite fields is also pro-
vided. For detailed treatment of finite fields and elliptic curves, the readers are referred
to [47, 52, 54].

2.1 Finite Fields

2.1.1 Groups, rings and fields

Definition 2.1 [47] A group is a set G together with a binary operation * on G such that:

1. Binary operator =* is associative; i.e., forany a,b,c € G,a*(bxc) = (axb) = c.

9

. There is an identity (or unity) element e in G such that foralla € G, axe = exa = a.

3. For each @ € G, there exists an inverse element a~! € G such that a s a~! =

alsa=ec a
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The operation * may be denoted as either ordinary multiplication () or ordinary ad-
dition (+). If for all a,b € G,a x b = b = g, then G is called abelian group. A group
containing a finite number of elements is called a finite group. The number of elements
in a finite group G is called its order and denoted as |G|.

A multiplicative group G is said to be cyclic if there is an element a € G such that for
any b € G there is some integer j with b = a?. Such an element a is called a generator of
G and we write G = (a). If (a) is finite, then its order is called the order of the element
a. A subset H of the group G is a subgroup of G if H is itself a group with respect to the
operation of G.

A mapping f : G; = G of the group G, into the group G; is called a homomor-
phism of G, into G, if f preserves the operation of Gy. If f is a one-to-one and onto
homomorphism of G; onto G, then f is called an isomorphism and we say that G, and

G, are isomorphic.

Definition 2.2 [47] A ring (R. +.-) is a set R together with two binary operations de-
noted by + and - such that:

1. R is an abelian group with respect to +.

[[S]

. Binary operator - is associative, i.e., (a-b) -c=a-(b-c) foralla,b,c € R.

W

. The distribution law holds; that is, forall a,b,c € Rwehave a-(b+c) =a-b+a-c
and (b+c)-a=b-a+c-a. O
The identity element of the abelian group R with respect to addition is called zero el-
ement, while the multiplicative identity (if it exists) is called identity. A ring is called
commutative if the operator - is commutative. A ring is called an integral domain if it is
a commutative ring with identity e # 0 in which ab = 0 implies eithera = 0 or = 0.
A subset S of a ring R is called a subring of R provided that S is closed under
+ and - and forms a ring under these operations. A subring J of R is called an ideal

provided that foralla € Jandr € Rwe have ar € Jandra € J. Let Rbea
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commutative ring, then an ideal J of R is said to be principal if there is an a € R such
that J = (a) ={ra+na:r € R.n € Z}.
If n is the least positive integer such that nr = 0 for every r belonging to finite ring

R, then n is called the characteristic of R and R is said to have characteristic n.

Definition 2.3 [47] A finite field F' is a set F' together with two binary operations denoted
by + and - such that

. F is a commutative ring under + and -.

2. Nonzero elements of F' form a group under -. a

2.1.2 Extension fields

A subset K of a field F is called a subfield of F provided K is a field under the op-
erations of F. In this context, F is called an extension field of K. If F, considered as
a vector space over K, is of finite-dimension, then F is called a finite extension of K.
The dimension of the vector space F' over K is then called the degree of F' over K, in
symbols [F : K]. If L is a finite extension of F, then L is a finite extension of K with
[L: K] =|[L: F|[F : K]. Clearly, if there are q elements in F then L has ¢" elements,
wheren = [L : F|.

A field containing no proper subfield is called a prime field. Let F be a finite field,
then F' has ¢ = p" elements, (denoted by F,), where the prime p is the characteristic
of F and = is the degree of F' over its prime field. Every subfield of F, has order p™,
where m is a positive divisor of =. Conversely, if m is a positive divisor of n, then there
is exactly one subfield of F, with p™ elements. For example, the subfields of F3; can be
determined by finding all divisors of 30. The containment relations between the subfields
are illustrated in Figure 2.1.

The number of elements of a finite field F' can only be equal to a prime power. Given

a prime power g, there exists one and only one finite field F,, up to an isomorphism.
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Fz 30

Figure 2.1: Subfields of Fy.

2.1.3 Polynomials over finite fields

The ring formed by the polynomials over a field F is called the polynomial ring over F
and denoted by F([z]. Let f(z) = Y., fiz' € F[z]. Polynomial f(z) is called a monic
polynomial if f, = 1.

Definition 2.4 [47] A polynomial f(z) € F{z] is said to be irreducible over F (or ir-
reducible in F(z}, or prime in F(z}) if f(z) has positive degree and f(z) = g(z) - h(z)
with g(z), h(z) € F[z] implies that either g(z) or h(z) is a constant polynomial. a

F(z] is a principal ideal domain. In fact, for every ideal J # (0) of F[z] there exists
a uniquely determined monic polynomial g € F[z] with J = (g). For f € F[z], the
residue class ring F[z]/(f) is a field if and only if f is irreducible over F. Moreover,
if F = F, and f € F,[z] is an irreducible polynomial of degree n, then F,[z]/(f) is
isomorphic to Fg». And all the roots of f are in Fya and given by the = distinct elements
a.a?a?, ... ot " of

For a nonzero polynomial f(z) € F[z], the least positive integer e for which f(z)
divides z° — 1 is called the order of f and denoted by ord(f). The number of monic
irreducible polynomials in [F, [z] of degree m and of order e is equal to ¢(e)/m if e > 2,
equalto 2if m = e = 1, and equal to 0 in all other cases. A monic irreducible polynomial
f(z) € F, of degree n is primirtive if ord(f) = ¢™ — 1. A root of a primitive polynomial

of degree = is a primitive element and generates the cyclic group G = F7.
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Let K be a subfield of F. Then 8 € F is said to be algebraic over K if @ satisfies a
nontrivial polynomial equation with coefficients in K. If§ € F is algebraic over K, then
the uniquely determined monic polynomial g € K|[z] generating the ideal J = {f €
K{z]: f(8) = 0} of K is called the minimal polynomial of § over K. A field element is
a primitive element if and only if its minimal polynomial is primitive.

Let f € F[z]. The polynomial f is called a trinomial if it has three nonzero terms and
it is called a pentanomial if it has five nonzero terms [47]. Because of their low Hamming
weights, irreducible trinomials and pentanomials are often used in finite field arithmetic
operations. Over Fy, if f(z) is of the form f(z) = g(z*) for g(y) = 1 + y*~! + ¢,
then all irreducible trinomials of the form g(y) of degree up to 30,000 are known [15].
By a theorem of Cohen [19], the condition under which g(z*) is irreducible given g(z)
is irreducible is also known. The same work in [15] has also given all the irreducible
polynomials of the form z™ + z* + 1.1 < k < % for all m up to 10,000. Thus all
irreducible trinomials are known for today's practical purposes. For m < 10,000, where
irreducible trinomials do not exist, the recent work of {71] has shown that irreducible
pentanomials exist.

The polynomial f € Fa[z] is an equally spaced polynomial (or ESP) if for some
integers £ its degreen = (t+ 1)rand, f; = 1if¢ = jrand j = 0,1,... .¢, and
fi: = 0 otherwise. A 1-ESP is often called all one polynomial (AOP) [38]. Let r-ESP
f(z) = h(z"), where h(z) = %—1 It can be seen that such an f(z) is irreducible if
and only if ¢ + 2 = p, r = p", and k(z) an irreducible AOP over F,, where p is a prime
and n a non-negative integer [38]. This in turn exists if and only if 2 is a generator of F,°
and for » > 0 p? does not divide 2P~ — 1 [35]. Table 2.1 shows all the irreducible ESPs
for m < 1000 [38].



CHAPTER 2. MATHEMATICAL PRELIMINARIES 13

Examples of irreducibie ESPs: m (r)

T(1) 28(1) 100 (25) 172(1) 342 (19) 460 (1) 558 (1) 700 (1) 828 (1)
2(1) 36(1) 106(1) 178(1) 346 (1) 466 (1) 562 (1) 708 (1) 852 (1)
4(1) 52(1) 110(11) 180(1) 348 (1) 486 (243) 586 (1) 756 (1) 858 (1)
6(3) 54(27) 130(1) 196(1) 372(1) 490 (1) 612(1) 772(1) 876 (1)
10(1) 58(1) 138(1) 210(1) 378 (1) 500 (125) 618 (1) 786 (1) 882(1)
12 (1) 60(1) 148(1) 226(1) 388 (1) 508 (1) 652 (1) 796 (1) 906 (1)
18 (1) 66 (1) 156 (13) 268 (1) 418 (1) 522 (1) 658 (1) 812 (29) 940 (1)
18 (9) 82(1) 162(1) 292(1) 420 (1) 540 (1) 660 (1) 820 (1) 946 (1)
20 (5) 100 (1) 162 (81) 316 (1) 442 (1) 546 (1) 676 (1) 826 (1)

Table 2.1: »-ESP for m < 1000.

2.1.4 Roots of unity

Let K be a subfield of F and § € F. Then the field K () is defined as the intersection
of all the subfields of F' containing both K and 4, and is called the extension (field) of
K obtained by adjoining the element 6. And 8 is called a defining element of L = K(8)
over K.

Let f € K[z] be of positive degree and F an extension field of K. Then f is said to
splitin F' if f can be written as a product of linear factors in F'[z]|—that is, if there exist

elements a;, as, ... .a, € F such that

f(z) =a(z - a1)(z - @3) -+ (2 — am),

where a is the leading coefficient of f. The field F is a splitting field of f over K if f
splits in F and if, moreover, F = K(a,,a;,... ,a,). And it can be proven that such a
splitting field of f over K always exists and is unique.

Let n be a positive integer. The splitting field of z® — 1 over an arbitrary field K is
called the n* cyclotomic field over K and denoted by K(™. The roots of z” — 1 in K™
are called the n' roots of unity over K and the set of all of these roots is denoted by E).
Let the characteristic of K be p. Then there are two cases: (i) If p does not divide n, then
E‘™ is a cyclic group of order n with respect to multiplication in K. In this case, a

generator of E(™ is called a primitive n* root of unity over K. (ii) If p divides n, write
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n = mp® with positive integers m and e, and m not divisible by p. Then K(®) = K(™),
E™ = E() and the roots of z® — 1 in K™ are the m elements of E™), each with
multiplicity p°.

The n* cyclotomic polynomial over K is defined as

Qu(z)= [ (=-¢).

=1
ged{an)=1

where K has characteristic p, n a positive integer not divisible by p, and £ a primitive
nth root of unity over K. It is known that the degree of Q,(z) is ¢#(n) and its coefficients
belong to the prime subfield of K [47]. If K = F, with gcd(g,n) = 1, then we have
z" — 1 = [[, @n(z) and Q, factors into #(r)/d distinct monic irreducible polynomials
in K{z] of the same degree d, and furthermore, K'™ is the splitting field of any such
irreducible factor over K, and [K®) : K| = d, where d is the least positive integer such

that ¢* = 1 mod n.

2.1.5 Finite field bases and arithmetic operations

Let us consider the finite field K = [, and its finite extension F = F;». Then F can
be considered as an n-dimensional vector space over K, and if {ao,a;,... ,an-1} isa

basis of F' over K, each element A € F can be uniquely represented in the form
A=agag+aq1a1 +++++ @n_1@n_1 wi[ha,-e K, 0 <£j<n-1

Let B = bgag + byay + -+ + ba_1n—1 be another element in F'. Then addition or
subtraction of A with B is given by

AxB= (ag £ bo)ao +(ay £b)ay + -+ (@n-1 £ bpn-1)@n-1,
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where a; + b; are taken as modulo p and p is the characteristic of F. The multiplication

of A with B is given by

n—-1
AB = z a;o; Z bja; = Z aibjaic;j.
=0 Jj=0 agigsn—-1

Define multiplication matrices T} = (tE?)"xn, ti-_';-) eF,,k=0,1,... ,n -1, such that

ara; = Zt""a, fork=0,1....,n— L. 2.1)

j=0

Then coefficients of the product C can be written as a bilinear form of the coefficients of
Aand B:

n-1 n=-1

c;‘—ZZtm . fork=0,1.... .n =1,

i=0 j=0

where AB = C £ "} ¢;a;.

=0
Below we give a few special types of bases of particular interest.

Definition 2.5 [47] A polynomial basis {1,a,a?, ... .a" '}, of F over K, is made up

of the powers of an element & whose minimal polynomial f over K is of degreen. 0O

Since a;a; = a*t7, the multiplication matrix can be reduced into T = (£;,;)(n—1)xn and,

n-1

aia; = aipjifi + 7 <n—1and aye; = Ztiﬂ—_mka" if ¢t + 7 2 n. Then from
k=0
n—-1
AB = z Z a;bitivinic® + Z ab;a*t?,
0ijgn—1 k=0 0gi,jgn~1

:+J>n i+jgn-1
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the product C can be obtained by

k
Ck = Z t.-+j_n,ka,-bj + Z aibp_ifork=0,... .n—-1.

0gi.jgn—1 i=0
+j2n
Definition 2.6 [47] A set of n elements of F over K of the form {a,a?,....a?"" '},
where « is a suitable element in F, is called a normal basis of F over K. ]

Since af = a(;41), where (j + 1) £ j + 1 mod n, we raise by a power of ¢ on both sides

of (2.1) and it follows

n-1 n-1
((k+1)) (k)
QXk+1)X(i+1) = Z biv1); % = Z ti.; Ai+1)-
1=0 j=0
(k) __ g(k=1) __  _ (0}
Then we have ¢ = beicty = =tk and thus
n—-1 n—-1
o= Yt jab; fork=01.....n-1 (2.2)
i=0 j=0
Now it can be seen from (2.2) that each cx, £ = 0,1, ... ,m — 1 has the same number of

nonzero terms, and furthermore it is equal to the number of nonzeros in the matrix Tp.

Following Mullin, Onyszchuk, Vanstone and Wilson [62], we denote this number as Cy.

Theorem 2.1 [62] If N is a normal basis in Faom, then Cy > 2m — 1. N is called an

optimal normal basis when Cxy = 2m — 1.

Fora € F = Fjpn and K = F,, the trace Trp/x(a) of a over K is given by
Trrix(@) = a+ af + -+ + af" . If K is the prime field of F, then Trr/x(a) is
usually denoted by Trz(a) or simply, Tr(a) if F' is understood.
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Definition 2.7 [47] Let K be a finite field and £ a finite extension of K. Then two bases
{ag,... .@m—1}and {fo. ... .Bm-1} of F over K are said to be dual to each other if for

1 <1¢,7 < m,wehave

0 fori#j,
Tre/x(a@ifs) = o
1 fori=j.
a
A basis that is its own dual is called a self-dual basis.
2.1.6 Elliptic curves over finite fields
An elliptic curve over the finite field £, is given as [54]
y? + a1zy + sy = ° + a2z’ + a4z + as. (2.4)

For an elliptic curve E/ F, defined over F, the set F,—rational points of £/ Fy, denoted
by E(F,), is the set of points whose both coordinates lie in £, together with the point
O. By a theorem of Hasse, we know the number of points in E(Fy) is: #E(F;) =
g+ 1—t.|t] < 2,/9. The elliptic curve E is said to be supersingular if p divides ¢,
otherwise it is called non-supersingular.

A non-supersingular elliptic curve E over Fja is of the form [54]

E: y* +zy =23 + ayz® + ae,

where aa, ag € Fan. The sct of Fan-rational points E(F,-) on E together with O forms
an abelian group under a certain operation which is usually called addition. Let P =
(z1.31) € E, then —P = (21,1 + 21). £ Q = (22,52) € Eand Q # —P, then
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P + Q = (z3,y3), where

zs:(:'c: +:Fzzz)2+ zi+:czz + 21+ T2 + a,

P#Q:
ys=("H_—L;,,I'Hz’,)(z1+za)+xa+yh
and
2 a
T3 = z] + =%,
p=q:{ = ‘=

y3 =z + (21 + ",ﬁ-)za + z3.

Let b € Fan be the square root of ag, which always exists, then the point (0. ) is on
E and has order 2. Thus we know that the highest order p of a point on E can not be
greater than half of #E(F;» ). By the Hasse theorem, #E(Fan) = 2™ + O(2%), then the
possible highest order of a point is not greater than 2"~! + O(23~!).

Since the characteristic of the underlying field is 2, for non-supersingular curve the
cost of an elliptic addition is roughly the same as that of a point doubling, which is about
one field inversion and three or four field multiplications. Let P € E(Fzn). If P = (z,y),
then it is worthy to note that — P = (z, —y) = (z,z + y). Consequently, elliptic addition
P + @ has about the same difficulty as point subtraction P — Q, where Q € E(F3.).

In {43], Koblitz has shown that doubling a point on some non-supersingular curves
over F, with complex multiplication (CM) can be done almost as easily as in the case of

supersingular curves. Such curves defined over F; are given by [43}
E.:y*+zy=z+(1-c)z+1,

where ¢ = 0 or 1. The Frobenius map r of E,. over F, is defined by r(z,y) = (z?,y?)

that satisfies: 2 = —r* + (—1)°r. Then given a muitiple point m P one can write m as a
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sum of T powers. Since squaring in Fy» is simply a circular shift of the coordinates in a

normal basis, m P can be computed with a few elliptic additions.



Chapter 3

Normal Basis Multipliers

In this chapter we propose a new basis — redundant basis, which is a modification of
certain normal bases. The redundant basis takes advantage of the elegant multiplicative
structure of the set of (mk + 1)* roots of unity over F, that includes a basis of F;m. It is
shown that multiplication using redundant basis is simple.

The generation of a normal basis using the Gauss period is first reviewed (§3.1). Then
bit-serial multipliers using redundant basis are proposed (§3.2). Parallelization of these

multipliers is also discussed (§3.3). Discussions on redundant bases are given in §3.4.

3.1 Gauss Period and Normal Basis

The Gauss period was discovered by Gauss and is defined as follows: Let m,k > 1 be
integers such that r = mk + 1 is a prime, and let ¢ be a prime power with gcd(q.7) = 1.

Let K be the unique subgroup of order k of the multiplicative group of Z, = Z /rZ, then

20
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for any primitive rth root 2 of unity in F ms, the element

= 2m (3.1

7€

is called a Gauss period of type (m, k) over [, . It can be checked that « € Fym.

The Gauss periods have been used to construct normal bases with low complexity [62,
7]. A Gauss period of type (m, k) over F, is a normal element of F;m over F, if and only
if gcd(e, m) = 1, where e is the index of ¢ modulo r. Furthermore, such a normal basis
has complexity at most mk’ — 1 with ' = k if plk and & + 1 otherwise, where p is
the characteristic of F, [7, 78, 26]. Clearly, for ¢ = 2, Gauss periods of types (m, 1)
and (m.2) generate optimal normal bases with complexity 2m — 1, which are usually
called type-I and type-II optimal normal bases (ONB), respectively [62]. For small values
of k > 2, the Gauss periods generate low complexity normal bases [7]. Other classes
of low complexity normal bases can be generated by an extension of the Gauss period
where r = mk + 1 is not a prime [21].

Gauss periods are also used to develop fast arithmetic in finite fields. Gao and Van-
stone have proposed an exponentiation algorithm in Fom using normal bases generated
with the Gauss period of type (m.2) [26]. Subsequent work has shown that an efficient
realization of arithmetic operations can be obtained using normal bases generated with

the Gauss period of type (m. k), k > 2 [27], and with the general Gauss period [25].



CHAPTER 3. NORMAL BASIS MULTIPLIERS 22

3.2 Bit-Serial NB Multipliers

3.2.1 Previousimplementations

The first efficient implementation of normal basis multiplication was described by Massey

m~1 m—1
and Omura in a US patent [49]. Let A = Z ara® and B = E bea® be two ele-
k=0 k=0
ments in Fom represented with respect to the normal basis (a,a?,... ,a®""' ). Viewing
the coefficient ¢, of C = A - B as a bilinear form of A = (ag.ay,...,8,m_;) and

B = (bo.by,....bn-1), the f-function is defined as

Cm-1 = f(a0~al.!--- -%—1;60s613-°' 7bm—1)'

Since squaring of an element is just a cyclic shift of its coefficients, we have

(em-1.C0s--- s€m-2) = (@m-1.G0, .. s @m—2) X (b1, b0. ... . Bm_2).

Then it follows that

cm-2 = f(@am-1.80.... .@m-2:bm-1.b0,... .b;m—2)

Co = f(als cee s Gm-1,00; bl? seesre s bm—h bQ)

The f-function can be solved from (2.2) as

m—-1lm-1 m-1lm-1
= (0) — (0)
=D D G astiebioe = Y D EG)y iy,
i=0 j=0 =0 j=0
m-—1

where ¢\ can be obtained from Fof; = ) t32'8;. Clearly, realizing the f-function
j=0
requires Cy multiplication operations and Cx — 1 addition operations, both in F;. Also,
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two m-bit registers are required to supply the shifted coefficients of A and B.

An alternate structure with serial input and parailel output and its VLSI implemen-
tation has been proposed by Agnew, Mullin, Onyszchuk, and Vanstone {3]. Their basic
idea is as follows [3]:

Let the function F|*)(-) be defined by

m-1

k 0
FJ‘ )(t) = Ojtk+te Z t.(,’_,{.oai-'rk-bh
=0
-1
(R) -0 o R _ X (k) :
where ¢ is given in (2.2). Then ¢, = Z F; (0). The coefficients of A and B are

=0

¢ ¢
stored in registers A and B, which are shifted cyclically. Attimet, Y F;7(i),..., Y £ (i)
i=0 i=0
are computed from the previous contents in register C and current contents of A, and

the results are stored in C. Then after m clock cycles, the contents of register C are
C0+Cle-ne +Cryml-

Compared to the Massey-Omura muitiplier, this multiplier offers advantages in the
following aspects: fewer gates, potentially faster clock rate, highly regular structure and
simpler cell connection. [t is thus more suitable for large fields.

Other normal basis multipliers include the one presented by Feng in [22]. It has the
same input and output style as Agnew et al’s [3], but its complexity seems r.ot better than
the one in [3] when implemented in VLSI technology.

Recently, Gao and Vanstone have proposed a novel muitiplication algorithm for the
field generated with the Gauss period of type (m.2) [26]. The resultant architecture is

very simple and has low complexities.
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3.2.2 Bases generated with Gauss period of type (m, 1)

Algorithm Let 3 be a primitive (m + 1)st root of unity in Fy= and ¢ is a generator of
the group G = F,7.,, then (3.089,... .3%"") 2 Lisan optimal normal basis in F;m
over F, generated with the Gauss period of type (m, 1). From

gt i #m,
=YL/ i=m,

B-p =

it can be shown that [, = (B.8%,...,8™) is a set of m linearly independent elements

in Fgm and thus forms a basis of F,m over F,. It can also be verified that I; contains the
same elements as [y, since 3 is a primitive (m + 1)st root of unity in Fgm.
Consider the set of the following m+1 ordered field elements of Fym : (1.8.8%,... .8™),

and denote it as [3. Clearly, every element A € Fym can be represented with /3:

A=ag+a;f+ a3 - +anf™. (3.2)

where a; € F,,2 =0.1,... ,m. Then [; can serve as a representation basis for F;m over
F,. Since the elements of I are not linearly independent, the representation of a field
element with respect to [; is not unique. In the sequel, we will refer to I3 as a redundant
basis.

Now let us look at multiplication operation under the redundant basis /3. Let B €
F,m be givenas B = by + b8 + b28% + -- - + b,8™. Then we have

BB = bfB+b82+b+  +bpo1f™ + bnf™T
= bm+boﬁ+51ﬂ2+bzﬂ3+-"+bm-1ﬁm-
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Obviously, the coordinates of 3B is a cyclic shift of those of B, with respect to [3. From

BB = boft + 56,87 + b0 4 4 biB™ + brnmigr + bnie2B + -+ b S
= bmoivt + bmoipaB 4 o+ b 4 BB+ BB et b BT
- Z b(,-__.-)ﬁj, (3.3)
j=0

where (7 — ¢) = (§ — ¢) mod (m + 1) denotes that j — ¢ is to be reduced modulom + 1,

we have
AB=) af-B)=) &) b =) (Zagb(,-_g))ﬂj.
i=0 i=0 j=0 j=0 i=0

If we define AB = C = ) _ c;3’, then it follows

=0

;=) abyy, j=0.1....m. (3.4)
i=0

Architecture Figure 3.1 shows the multiplier structure to realize multiplication using
I3. The coordinates of B with respect to [; are loaded into a register of length m +- 1 bits
whose contents can be shifted cyclically. The binary tree of m adders in F, takes m + 1
a;b terms as its inputs and generates a ¢; term as output every clock cycle. All ¢;'s,
J =0,1,... ,m, which are represented using /5, are computed and obtained in m + 1
clock cycles. When p = 2, it can be seen that m + 1 AND gates, m XOR gates and m + 1
1-bit registers are required for constructing the multiplier. The clock period should not
be less than T4 + [log,m + 1]T%. Table 3.1 shows a comparison of the multipliers
proposed in [49, 22, 3] and the presented here. It can be seen from the table that the

new proposed architecture has a significantly lower complexity compared to the previous
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ao r{é
b b

bo bm m-l Om-2 ba by _l

Figure 3.1: Bit serial multiplier using redundant basis when there is a type I ONB.

Y

[ Multiplier | #AND | #XOR | #l-bitreg. | #clk cycles | Basis
Massey-Omura [49] || 2m — 1 | 2m — 2 2m m normal
Feng [22 2m~1|3m -2 | 3Im -2 m normal
Agnew et al 3] m 2m -1 3m m normal
presented here m+1 m m+ 1 m+ 1 redundant

Table 3.1: Comparison of bit-serial muitipliers using type [ ONB and RB.

implementations.

Basis conversion The conversions between the normal basis /, and the redundant basis
I3 are simple: If A = (a}.a5,... ,a;,) with respect to basis I3, then (0.4}, a5, ... .al,)
is a representation of A with respect to basis f3; If A = (ao, @1, aa, . .. , 3 ) with respect

to [3, then with basis I, the representation of A is (@, + ag, a2 + @9, ... .@m + ag).
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3.2.3 Bases generated with Gauss period of type (m, k)

Algorithm The idea of redundant basis can be easily applied to the normal basis gen-
erated with the Gauss period of type (m, k), k > 1. Let 8 be a primitive (mk + 1)st root

of unity in Fyms and v be a primitive kth root of unity in G = Fy;, .. If G = (2,G™),
k-1

thena = Z,B"i is a normal element and I; = (@, a?.... ,a®™") is a normal basis in
Fm with ci:;lplexity not greater than k'm — 1.

Consider two sets of km elements in Fpum: §; = {8¥*7.,i =0,1.... . m - 1;j =
0.1,... .k —1} and S; = {8.4,...,8""}. For any element 32" ¢ §,, we have
B¥Y = prv'medimktl) ¢ G, and thus, S; C S, Let G = F,o.,, then G = (2,7).
For any integer [ € {1.2,... ,km]}, there exist integers i € {0,1,... ,m ~ 1} andj €

{0.1.... .k ~ 1}, such that ! = 2'47 mod (km + 1). Therefore, S, C §; = 5> = ).

k-1 k-1 k-1
Since [, = (Z g, 2/32". - Zﬂ:"m'l"') and each element in [, is a sum of k
i=0 =0 i=0

elements in S, it can be seen that elements in S;(= S) can serve as a basis in Fam. Con-
sider redundant basis /s by adding element ‘1’ to the set S»: [s = (1,8.8%,... .8%™).
Obviously, any element B € Fam can be represented with [s: B = by + b3 + ===+
bimB*™, where bq, ... .bim € F2. Then the multiplication of B with 8* is actually an
{-fold cyclic shift of the coordinates of B:

mk
B'B = boff + by + - 4 b = ) " by B,

i=0
Architecture A structure for multiplication in Fom over F, using Is is shown in Fig-
ure 3.2. The structure is very similar to that shown in Figure 3.1 except that it requires
more gates and registers. Its complexities are compared to those of other similar mul-
tipliers in Table 3.3 (When the Gauss period is of type (m, 2), comparison is made and
shown in Table 3.2).
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Tc,-,j:(),l,...,km

@ : Binary Tree

Figure 3.2: Bit serial multiplier using redundant basis.

[ Multipliers #AND | #XOR | #1-bitreg. | #clk cycles | basis
Massey-Omura [49] || 2m — 1 | 2m — 2 2m m normal
Feng [22] m—-1{3Im—-2| 3m -2 m normal
Agnew et al [3] m 2m -1 Im m normal
Gao- Vanstone [26] m 2m—-1| 2m+1 m normal !
presented here 2m +1 2m 2m +1 2m + 1 | redundant

3In fact, it is a certain permutation of a normal basis.

Table 3.2: Comparison of bit-serial multipliers using type [I ONB and RB.

From the table it can be seen that the new structure suffers a lower throughput and
when & is an odd integer not less than 3 it also has higher space complexity. However, it

still has the advantage of simpler architecture over the other implementations.

° . . . -l
Basis conversion Now let us look at the conversion from the normal basis [; = {a. a?,...,a®" )

to the basis Is. As we have seen before, the conversion between redundant basis /s and

the basis consisting of elements from S, = S is simple. If A = (ag, a}, ... ,a,,_;) with
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| Multipliers #AND #XOR #l-bitreg. | #clkcycles | basis
Massey-Omura [49] Cnx Cy-1 2m m normal
Feng [22] 2m -2 |[Cy+m—-1°} 3m -2 m normal
Agnew er al [3] m Cn 3Im m normal
presented here km +1 km km +1 km +1 | redundant

®In the example presented in [22], a technique of reusing partial sum was used to
reduce the complexity, Thus the number of XOR gates should be not greater than
Cx + m — 1 if a non-optimal normal basis is used.

Table 3.3: Comparison of bit-serial multipliers using NB and RB.

the normal basis, then with the basis from 5,,

n
(aoo auu ve 1B paqree s m—lk—l)v

wherea!; = a}forj=0.1.... . k—land:=0.1,... . m — 1.
J 1

3.3 Bit Parallel NB Multipliers

3.3.1 Previous implementations

Although the original Massey-Omura multiplier focuses on bit-serial form, its paral-
lelization is straightforward. The architecture of a bit-parallel version of Massey-Omura
multiplier can for instance be found in Wang, er. al.’s paper [76], The complexity is
mCy AND gates and m(Cy — 1) XOR gates. If an optimal normal basis is chosen, the
complexity is m(2m — 1) + m(2m — 2) = 4m? - 3m.

Later, Hasan, Wang and Bhargava proposed a modified Massey-Omura bit-parallel
multiplier [36] using the type-I optimal normal basis which has accomplished the low-
est complexity among bit-parallel normal basis multipliers reported so far in the litera-

ture. Let the normal basis (@, a®. ... .a*" ') be generated with the Gauss period of type
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(m,1). Since a is a primitive (m + 1)st root of unity in Fym, then, o;a; = 1 for some

] = s(-i), and Qi = Q(s j)» fOl'j # 3(i), 1 =0, 1,2, e..m—1, and
m-1lm=-1
AB =C = Z z a:bjaa;
i=0 j=0
m=-1
= ) "*‘( Y. bjaig +bua - 1)
1=0 0<j<m—-1
j#a(i)
m-1 m=1
= Z ai( Z biaeijy + bui) Z ak)
i=0 0<j<m—1 k=0
J#a(i)
m-—1 m—-1 m-1
= Y ¥ bewat ) (2 abe)e
i=0 0<j<m~1 k=0 i=0
7#a(3)
= C'+C~

Since for fixed iq, £(4.7) runs through 0.1,2,... .m — 1 except i, C* has m(m — 1)
terms and a; would appear in m — 1 terms for{ = 0,1,... ,m — 1. Therefore, in
¢k = ¢ + c3, ¢} has m — 1 terms and requires m — 1 AND gates and m — 2 XOR gates.
While ¢2 = 375" a:b,(;) has m terms but they are the same ones fork =0, 1,... ,m—1,
hence c; needs to be implemented only once which costs m AND gates and m — 1 XOR
gates. Considering another m XOR gates to realize ¢, = c} + ¢ fork = 0,1,... ,m—1,
the complexity is m(m —1)+m = m? AND gatesand m(m —2)+(m —1)+m = m? -1
XOR gates.

Other parallel multipliers using type-I ONB include the one presented in [45]. Itis a

combination of a polynomial basis multiplier and bases conversion circuits.
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| Mulipliers #AND #XOR Time delay
Hasan et al [36] m? m?>—1 | T4+ (1+ [log,m]|)Tx
Koc and Sunar [45] m* m?—1 | Ta+(2+ [log,m])Tx
New proposal (m+1)? | m(m+1)| Ta+ [logs(m +1)]Tx

Table 3.4: Comparison of bit-parallel multipliers using type I ONB and RB.

3.3.2 New bit-parallel multipliers

When a normal basis in Fom is generated with a Gauss period of type (m, 1), a parallel
version of the multiplier using a redundant basis is shown in Figure 3.3. On the left
side of the figure inputs {a;} and {b;} are fed into m blocks (Block B). The detailed
structure of Block B is shown on the right side of the figure. It can be seen that (m + 1)?
AND gates and m(m + 1) XOR gates are required. The time delay is T4 + [log,(m +
1)]Tx. Compared to the bit-parallel multiplier proposed in [36], this one uses more
gates, but has a simpler architecture (see Table 3.4 and Fig. 3.3). Moreover, it can be
easily made for trade-offs between size and time complexities: If ¢ Block B’s are used
to construct a multiplier and thus in one clock cycle £ ¢;’s are computed and output, then

one multiplication operation can be completed in [ Itn:[ clock cycles.

bo i
: " I S
: ek [ D> ,
m i @ : Binary Tree
e ]
B =" |p " B = !
i
i

) bi~1)

Figure 3.3: Parallelization of the bit-serial multiplier using the redundant basis.

When the redundant basis is generated with Gauss period of type (m, k), the paral-

lelization of bit-serial multiplier can be obtained in a similar way.
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3.4 Discussions on Redundant Basis

From the previous sections, it can be seen that a redundant basis is the set of all the nth
roots of unity over F, which includes m field elements in F,m which form a basis in Fym
over F;. Clearly, any field F,m has a redundant basis if there is a cyclotomic field over F,
that contains F;m as a subfield. Thus the redundant basis can be the set of (g™ — 1)st roots
of unity if p does not divide g™ — 1,where p is the characteristic of F,m. To efficiently
represent the field elements, the redundant basis should be chosen such that its size is as
small as possible. Now the question is: Given Fym , what is the smallest cyclotomic field
Ff,"’ that contains ;= as a subfield? A systematic algorithm for computing such an n is

given below.
Algorithm 3.1 Computing the smallest cyclotomic field that includes F,» as a subfield

1. Find all the factors &; of ¢™ —1 that are greater than m and list them in an increasing

order: dy.ds. ... ,dp = q¢™ - 1;
2. Do while(z < k)
If m | ¢(d;), then output &; as n, and Stop; Else « ¢ + 1.
a

Since the (g™ — 1)™ cyclotomic field has a degree of #(¢™ — 1) and contains the field
F,m as a subfield, we have that m divides ¢(g™ — 1).
A redundant basis consisting of all the nth roots of unity is an optimal redundant
basis if ]Ffl"’ is the smallest cyclotomic field over I, that contains Fgm as a subfield.
Given a basis [ in F =, the general case of basis conversion between [ and the re-
dundant basis R may not be trivial. If [ is a normal basis generated with the Gauss

period of type (m, k), then how to obtain R has been discussed in §3.2 and §3.3. If
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[ =(l,a,...,a™ ") is the polynomial basis, and if we know that the order of element

a is ord(a), then the redundant basis R can be obtained using the following algorithm:
Algorithm 3.2 Computing the RB from the PB (1, «, ... ,a™"1)

1. Compute n using Algorithm 3.1;

58]

. Compute the order of the irreducible polynomial ord(a);

. Lett = ord(a)/n, then the RB is given by (1, af, a*, ... ,a("1t), 0

W



Chapter 4

Parallel Dual Basis Multipliers

[n this chapter, first a complexity bound for parallel weakly dual basis (WDB) multipli-
ers in Fym over F, is given (§4.2). Then parallel multipliers using WDB in F;m over F,
(§4.2) and Fam over F» (§4.3 and §4.4) are presented, respectively. When the generating
polynomial isz™ +z* +1,1 < k < [%J ,or an r-ESP (r 2 1) over F2, low complexity
bit-parallel multipliers are constructed with reduced propagation delays. Basis conver-
sions between the WDB and the polynomial basis and vice versa are discussed in §4.5.

Parts of this chapter were presented in [82] and [81].

4.1 A Brief Review of Dual Basis Multipliers

Implementation of dual basis (DB) muitiplication is known as bit-serial Berlekamp multi-
plier which efficiently realizes the operation using a linear feedback shift register (LFSR) [12].
Recently many other DB type bases (which, in the sequel, will be referred to as weakly
dual basis or WDB) have been found and used to achieve a LFSR style operation {60, 77].
A self-dual normal basis has also been considered and used for the implementation of

multiplication in [75]. Bit-parallel DB multipliers have been discussed in [63, 23]. By

34
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reusing some other previously generated signals, it has been shown in [23] that signifi-

cant reduction of size complexity can be achieved for the fields of characteristic two.

4.2 Parallel Multipliers in F, over F,

4.2.1 WDB multiplication

Definition 4.1 Two bases (ag, a1, ... ,am-1) and (Go. 1, ... ,Bm-1) of Fym over F, are
said to be weakly dual to each other if Tr(ya;8;) = &;j, .7 =0,1.2,... ,m — 1, where
v € Fim = Fym\0 and 4;; is the Kronecker delta function, which is equal to 1 if i = j
and O otherwise.

In this chapter, we consider (ag, @i, . . . , @m-1) to be the polynomial basis (1., ... ,a™!)
m-1

where a is a root of monic irreducible polynomial f(z) = z™ + Z fiz* with f; € F,.

i=0
m-1 m-1

For a field element A € Fim, A = Z aa = Z a;f:, where a;’s and a]’s are the

=0 =0

coordinates of A with respect to the polynomial basis and its weakly dual basis (WDB),
respectively. Then we have

m-1

m—1
Tr(eA) = Te(ed ) aiB:) = Y Tr(ajedB:) = a}, 0<j<m—1. (@4l
=0 i=0

m~-1

Let the field element B € Fym be given by B = Z b; B;, where b;’s are the coordi-
=0
nates of B with respect to the WDB. Consider the product of A and B, in the WDB, given
by

m-—1

AB=C2Y cf;

=0
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From (4.1), cj can be expressed as a sum of a;’s as follows:
m-—1 m-1 o m—1
¢; =Tr(cAB) =Tr (aj BY a,-a") =Y Tr(a™*Blai= Y cja  (42)
i=0 =0 i=0
where
o b, ; for0<t+j<m-1, (4.3a)
¢ 2 Te(a™iB) = {
Tr(a’*’B) form <i+j<2m-2. (4.3b)
Define the reduction matrix R = ( 7ij )(m-1)xm> Ti.j € Fy, by
a™ T0,0 Tor ***  Tom-1 1
a™t! _ Ti0 Tia T Tlm~-1 a ’ (4.4)
a*™-? Tm-20 Tm-21 °** Tm-2m-1 a™!
then,
m-1 ) m-1 m-=1i
Tea™ " B) =T [(Z rl.ia') B] =Y rTr(a'B) = Y mighi. [=0.1,2,....
=0 1=0 =0
4.5)
The rows of the reduction matrix give the representation of ™+, = 0,1,... ,m —2,in

terms of the polynomial basis. The first part of the above identity is obtained from (4.4),
whereas the last part follows from (4.1). It can be seen that (4.2), (4.3) and (4.5) will

decide the multiplication in Fgm over F,. The above can be summarized in the following

algorithm.
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Algorithm 4.1 Parallel multiplication in Fy= over F,

Input:  Field elements A = {a¢,@1,... ,6m-1), B = (bg,b3,... , 05 _,);

Output: The product C = (c5,¢5,... .Ch_;)-

(Precompute r; j,¢,5 = 0.1,... . m~—1.)
m-1
1. Compute Tr(a™+) = Z bl forl=0,1,... , m -2

=0
2. Compute cj;a; foré, 7 =0.1.... ,m—1;

m-1
3. Compute ¢ = Z c;;aiforj=0,1,... ,m -1 O
=0

Note that the above multiplication algorithm has been suggested in [12, 63, 23] for
q = 2. Write (4.5) as

m-1 m-1
Tr(a™*B) =Tt [a‘ (Z ﬁa") B] = Zf,-Tr(a‘“B), [=0,1,2,... ,m —2.
=0

i=0

In Step 1 of Algorithm 4.1, if we first compute Tr(a! B) with smaller I/, then it can be
seen that each Tr(a™*+ B) needs H(f) — 2 bit additions when the field is of character-
istic 2 [23], where H(f) is the Hamming weight of f(z). The consequent architecture
requires only m? two-input AND gates and (m — 1}(m + H(f) — 2) two-input XOR
gates [23].

4.2.2 A complexity bound

For parallel multiplication in Fym over Fg, it is natural to represent its complexity based
on the numbers of multiplication and addition operations in the ground field F,. Conse-
quently, the complexity of a parallel muitiplier in F,m can be measured in terms of the
numbers of multipliers and adders in the ground field F,.
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Theorem 4.2 Let f(z) be an irreducible polynomial of degree m over F,. If f(z) has k&
nonzero terms, then a parallel WDB multiplier in F;» over F, can be constructed with at
most m* multipliers and (k —1)(m — 1) constant multipliers in F,, m?+(k~3)m—(k—2)

adders (or subtractors) and m — 1 constant adders (or subtractors) in F,.

Proof: From the discussion of the previous section, a parallel WDB multiplier can be
implemented based on Algorithm 4.1. Steps 1, 2 and 3 of Algorithm 4.1 will determine
the complexity of this multiplier. It can be readily seen that realizations of Steps 2 and
3 require m?* multiplication operations in F, and m(m — 1) addition operations in F,,
respectively. In the following we will prove that the complexity required in Step 3 is
(k = 1)(m — 1) constant multiplications in F,, (k — 2)(m — 1) multiplications and m — 1
constant additions in F,.

Let the monic irreducible polynomial

k-2
f@)=z™+ ) foz®
i=0
have k nonzero terms, where 0 = eq < €; < == < €x-z < m, fo; € F] = F\{0}. We
proceed by induction on { in Tr(a™+ B).

[. When! =20,

k-2
Tr(a™B) = Tr [(- Y. fe;a") B] Z foTr(a B) = Z feb,

i=0

Since f;, b;. € F,, obviously, & — 1 constant multiplications in F, and k& — 2
k-2
additions in I, are required to generate Z fe:bZ,. and one constant subtraction

=0

operation for Tr(a™ B) Z Je:b:,
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2. Assume that Tr(a™** B) has been generated with k& — 1 constant multiplications in
F,, kK —2 additions and one constant subtraction in F,, foreachof I’ = 0,1.... .I-
1. Then

k-2
Tr(am+fB) = Tl'[a‘(a"‘ =Tr [C! ( Zfe. ) ] = _ Zfe;Tr(QH.ﬁB)'

1=0 =0

For each of i = 0,1,... ,k — 2, when 0 < l + & < m, Tr(a'*<) = bf,,, is
available as a certain coordinate of input B; whenm < I + ¢; < [ + m, Tr(a't<)
has already been generated as assumed. Therefore, Tr(e™*) can be generated

with & — 1 additions (subtractions) in F, and & — 1 multiplications in F,.

We conclude that a realization of Tr(a™*!), { = 0,1,... ,m — 2, requires at most (k —
1)(m — 1) constant multiplications in F,, (¥ — 2)(m — 1) additions and m — 1 constant
additions in F,. Thus the lemma holds. O

Corollary 4.1 Let f(z) be given as in Lemma 4.2 and g a power of 2. Then a parallel
weakly dual basis multiplier in F,m over F, can be constructed with m* multipliers and
(k — 1)(m — 1) constant multipliers in F,, and at most m* + (k — 3)m — (k — 2) adders

(or subtractors) in [,.

Proof: Since the field has characteristic of 2, Tr(a™'B) = —Tr(a™"B) for | =
0.1,... .m — 2. The corollary follows by noting that the m — 1 constant subtractors in
F, are not needed, compared to the case of Lemma 4.2. a

When ¢ = 2 we obtain the same results as Fenn, Benaissa and Taylor proposed
in [23]:

Corollary 4.2 Let f(z) be a k term irreducible polynomial over F; of degree m. Then
a bit-parallel weakly dual basis multiplier in F,m can be constructed with m? AND gates
and at most m? + (k — 3)m — (k — 2) XOR gates.
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4.2.3 Algorithm and architecture

An algorithm for parallel multiplication in F,m, which conforms to the complexity bound

discussed in the previous section, can be given as follows.

Algorithm 4.2 Modified Parallel Multiplication in F;m over F,

Input:  Coefficients of an irreducible polynomial: {fo, fi...., fm-1, fm = 1);

Two field elements (aq, a4, ... .@m-1), and (bg,b7,... .05, _;);
Output: The product (cj, c1.... ,Cm_1)-
(Precomputer; j for{ =0,1.... . m —e—andj =0,1,... .m — 1;)
la. Compute:
m-1
Tr(ya™ ) = Z mabl l=0,1,... . m—e_2—1;
=0
1b. Compute:
t=1;
Do

Fori=0.1.... , m—exr_2—1,if (t < €y — 1)
Compute Tr(ya®™<-2%%) fori = 0. 1,... ,m—ep_p—1;
t=t+1;} While (ti < ex—2 — 1);

2. Compute:
Cji®i fori.7=0,1.... . m—1;
3. Compute:
m—-1
c}:Zc;’,-a,-forj=0.1,....m—l. a

=0
In order to obtain Tr(ya™*7), Algorithm 4.2 allows us to use certain Tr(ya™**) terms
which have already been generated in the generation of some other signals Tr(ya™*).
Consequently, generating Tr(ya™"7) should be arranged as follows: First, terms Tr(ya™*7)
with 7 =0,1,... .min(m — ex_s — 1,2m — 2) are generated. Then Tr(ya™+tm—-1+7)
with 7 = 0.1,... ,min(m — ex_» — 1,2m — 2) are generated where the previously

generated terms Tr(ya™*7) are used as available inputs, and so on. An implementation
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procedure for a parallel multiplier in F= can be summarized as the following three steps:

Scheme 4.1 Implementation of parallel multiplier in Fym over Fy

I. Generate ¢j; = Tr(ya'*?B) for n <i+j < 2m — 2.
la. Generate those Tr(ya™* B) which are to be reused in some other Tr(ya™*" B).

1b. Generate those Tr(ya™t B) which reuse some other Tr(ya™*" B).

2. Generate cj;a;, for,j = 0,1,... ,m — 1, with m multipliers in F,.

m=1

3. Generate c; = Z c;:ai forj = 0.1,... .m — 1 by using m binary tree network

i=0
of m — 1 adders in F,.
a

When ¢ = 2, Fenn, Benaissa and Taylor proposed the similar implementation proce-
dure [23], where Step | is implemented with Module B and Steps 2 and 3 are realized
with Module A (see [23]).

At Step 1 of Algorithm 4.2, the longest propagation delay occurs at Tr(ya®™~?) and it
is tTg + t{log,(H(f) — 1)] Ty, where Tg and Tg denote the propagation delays incurred
with a constant multiplier and an adder in F,, respectively, and ¢ can be solved from

Step 1b in Algorithm 4.2 as follows:

(2m -2) —t(m —ex—2) <m -1
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Considering the time delay incurred at Steps 2 and 3, the time complexity of the parallel

multiplier is
tTeg + Te + {t[log,(H(f) — 1)] + [log, m]}Te, (4.6)

where Tg denotes the time delay with a multiplier in F,.

4.2.4 Architecture with reduced time delay

The propagation delay of the multiplier presented above can be further reduced if the
terms in the parallel multiplier are arranged properly. This can be illustrated in the fol-
lowing example.

Let two bases (1. a.a?,a®. a') and (B, 51, B2, B3. P4) be weakly dual bases in Fis

over F,, where a is a root of irreducible polynomlal f(z) = =° + 2z% + 5. Let A and

B be two field elements € Fys given by A = Z @' and B = Z b; B;, where a; and
=0 i=0
b; are the i coordinates of A with respect to the polynomial basis and of B with respect

to the weakly dual basis, respectively. Let their product C' be denoted by C = Z c; B,
i=0

where ¢} is the ® coordinate of C' with respect to the weakly dual basis.
From (4.3) and Step | in Algorithm 4.2, we can write

c;i =05, fori+35=0.1,2.3,4;

Cla = C3 = &3 a2 = €3, = Tr(7a® B) = 5b; + 2b3;
C3.4 = €33 = €32 = Tr(ya®B) = 5b7 + 2b;;

¢34 = Ci3 = Tr(a’B) = 5b; + 2¢} ;

ciq = Tr(a®B) = 5b5 + 25 4.
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When all c;:ai fori, 7 =0, 1,2, 3.4, have been generated, then we have

C(-) = baao + b;al + b;ag + b;a;, + 6264,

¢ = bjag + bya; + byaz + bias + cj 4a4,

ca = biag + b3ay + biay + cf a3 + <3 (a4, 4.7)
cg = bzag + b3a; + ¢ 482 + ¢35 443 + Cj3 4G4,

cs = biao +cj a1 + g 82 + c5 a3 + Cg 404

If we implement (4.7) using Scheme 1, from (4.6) it has a time delay of 2T + T +5T.
Categorizing all the terms occurred at the righthand side of (4.7) into three sets, one

can obtain:

S £ {bjajli,j =0.1,2.3,4}.
S2 & {cj;a;lj =1.2,3.4:i +j = 5.6},
Sa = {cali =3.4i+j="7.8}

It can be seen that the generation of the signals belonging to Sy, S», and S requires a
time delay of Tg, Tg + T + Tg, and 2T + Tg + 2T, respectively. Then (4.7) can be

written as

C;— = (C;’S1 + C;'s,x) + C;'ss, J = 07 17 2, 31 47

where signal ¢} 5. denotes the sum of those terms that belong to S;. It can be seen that the

longest propagation delay of the multiplier occurs to generate ¢ which is 2Tg + Tg +4T
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(see Figure 4.1).

Y i=34
b;. ‘ Trtya’ Bl Tr(va® B)
i=01.234 51 |{®5 w Sy
One layer of multipliers in ‘
A y ! ll’ F: 7 Triyats) Jra®8) = p
constant multiplicr in Fr
(x5) wHpter N> - L 1
A constant multiplier in F>
(x2)
o5/ |®3) @5 (@3
@ Anadderin Fr : . b3 b3
Abinaryrrceofaddc:sini’r, T N T - r . T .
the depth depends on the inputs bo 53 bl b-i

Figure 4.1: Architecture of a parallel multiplier in Fys over F; when f(z) = z° + 2z +
3 € F-{[:BI.

4.3 ESP Based Bit-Parallel Multiplier in Fom

4.3.1 Algorithm

Let f(z) be an irreducible #-ESP of degree m, i.e., f(z) = 1+z" +2¥ +---+ 2z +2z™,

where m = (t + 1)r, for a root a of f(z) we obtain the equations for ™/, j =
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0,1,... ,m — 2, as follows.

.

a™ti = od+ati 4. tat™ for0K < r -1,

<
a™t™ti = of for0<j<m—r—2.
Applying the trace function Tr(«y - B) to the above equations we have

Tr(ya™iB) = bj+b5,;+ o +by,; for0<jgr—1

Tr(ya™™*IB) = b; for0<j<m—-r-2

From (4.3), it follows

biso 0Si+j<m—-1, (48a)

C"‘= b;'{-j-m +b;+j—m+r+“'+bt+j-m+tr’ m si j gm"l‘r—' 1. (4.8b)

+
b: m+r<i+j < 2m — 2(4.8¢)

thj—m—r?

Clearly, the complexity of a bit-parallel WDB multiplier completely depends on iden-
tities (4.2) and (4.8). It can be readily seen that when c;',-’s are given, a realization
of (4.2) requires m? AND gates and m(m — 1) XOR gates and has a time delay® of
T4 + [log, m] Tx, where T, and Tx denote the delays caused by one AND gate and by
one XOR gate, respectively. Another time delay of [log,(t + 1)] Tx = [log, -7,'%] Tx is
required to generate those c};’s withm < ¢ +j < m +r — 1. The number of XOR gates
required is¢r. For0 < i+j<m—landm +r € i+j < 2m ~ 2, ¢j,;’s are certain
coordinates of B with respect to the WDB and are available without any cost of gates and

gate delays.

*We assume that for the generation of ¢}, the m — 1 XOR gates are connected in the binary tree form.
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We summarize the above discussions as follows: In the finite field Fsm constructed
with an irreducible r-ESP, at most m? AND gates and m? — r XOR gates are required to
build a bit-parallel multiplier. The time delay incurred is at most T4+ ([log, m] + [log, 2]) Tx.
In most cases, however, the time delay of the multiplier can be further reduced as it is

discussed in the next section.

4.3.2 Implementation

Let us consider the case when f(z) is an irreducible r-ESP. Then c}; is given by (4.8)

and a bit-parallel multiplier can be implemented using the following three steps.

1. Obtainc;j; fori,j = 0,1.... .m—1using (4.8). Inthis step, logic gates are needed

¢t t
only to generate signals » &7 . ... =Y bey.fork=0,1,...,r— 1, where
+j-m+l +

=0 =0
k = i + j — m. Each of these signals can be reused for m — k — 1 cj,;'s, since

Cji = Cjm-j+k and j can be any value of k + 1,k + 2,... ,m — 1. The number of

XOR gates needed is ¢ = m — r and the time delay incurred is [log,(¢ + 1)].

2. Generate cj;a;, fore,j =0,1,... ,m—1, where m? two-input AND gates are used

and the incurred time delay is T'4.

m-1
3. Obtain ¢ = ) _ cj;a: forj = 0,1,... ,m — 1. Each c; can be implemented with

i=0

a binary tree network of . — 1 XOR gates. The time delay is [log, m] Tx.

Notice that for0 < i+j <m—-landm+r < 1+j < 2m—2, ¢};’s are certain WDB

e 2
coordinates of the element B and are already available. We may let each of these c};’s

enter an AND gate (Step 2) before the rest of the c,’s are generated and thus the total
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time delay of the multiplier might be reduced. This can be illustrated by the multiplier
structure shown in Figure 4.2. .

Block B1 generates ¢}, ;. = z:b;'”,,c fork+1<j<m-1land0<kgr—1
in accordance with (4.8b). This blg_;:(}c consists of tr = m — r XOR gates and has a
propagation delay of [log,(t + 1)]Tx = [log, ] Tx.

The c;; terms obtained from Bl are ANDed witha;,1 < ¢ <m—1in block B2
to generate ¢j;a; form < i+ j < m +r — 1. For these particular constraints on ¢

r{r +1 . Consequently, block B2 consists of

and j, the number of c};a; terms is mr —
mr — iim AND gates and has a propagation delay of T4 only. For convenience, the
outputs of B2 are shown at m — 1 ports, viz., P, PP, ..., P2} . The number of Cjiai
termsatport PV is jif L j<r—landrifr<j<m-—1.

From (4.3), the number of ¢} ;a; terms for 0 < i,j < m — 1is m?. The c};a; terms,
which are not generated in B2, are generated in block B3. The latter takes a; and b;,
0 <t < m-1asinputs. As given in (4.8a) and (4.8c), the b;’s are directly related to
c;ifor0<i+j<m—landm +r <i+j<2m — 2. The B3 block outputs ANDed

rir+1

terms cj;a; for these values of 7 and j. This requires m? — mr + AND gates

and a propagation delay of T4. Similar to B2, the outputs of B3 are shown at m ports,
namely, Péa’, le, ..., P8 _’_1. Let the number of c;;a; terms at port P}s’ be denoted by

Np@ . Then

]

m-j f0<j<r—1,
Npgs)=
! m—r ifr<j<m~-1
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The c;;a; terms obtained through port P}‘” are then partially added in block B4 using
XOR gates that are arranged in binary tree forms with [logs(t + 1)] levels. This is to
ensure that the sum of the propagation delays of B3 and B4 is equal to that of Bl and
B2. The outputs from B4 are presented at ports Pé"), Pl(", ceey P,S:_)_l. If N Pl denotes
the number of outputs at port P}‘] , then

[2'::;‘“)] if0<j<r—1,

NP}"
N PY = | Jflogyex )1 | —
m—T ifr<i<m-1.

9oy (E+1]7 SIS

The outputs from the corresponding ports of B2 and B4 are then added in block B5 using

XOR gates to generate c; (eqn (4.3)). The maximum propagation delay in B5 is

. m—j m-—r
max {ogg&l { [log, (J + 9[logy (t+1)] )] TX} ! [log, (r + 9logz(t+1)] ).‘ Tx}

m-—-r
= [logz (1‘ + W).l Tx.

Since m? ANDed terms, i.e., ¢j;a:,0 < ¢,5 < m — 1, are added in B4 and B5 to generate
m outputs c;,0 < j < m — 1, the total number of XOR gates in B4 and BS combined is
m(m — 1).

As an example, the details of the blocks used in Figure 4.2, are shown in Figure 4.3
with irreducible 3-ESP z® + z* + 1 of degree 6.

The result of the above discussions can be summarized in a theorem as given below.
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Figure 4.2: Architecture for a parallel multiplier when f(z) is an r-ESP.

Theorem 4.3 If the finite field Fom is defined by an irreducible r-ESP, i.e., f(z) =1 +
" +z¥ +--- + 2" + z™, where m = (¢t + 1)r, then, a bit-parallel WDB multiplier

can be implemented with m? AND gates, m? — r XOR gates, and time delay of T4 +
{loga 71 + [logs (r + [er] )| } 7

It can be seen that irreducible -"23-ESP is a trinomial z™ + z7 + 1. In this case, both
the size and the time complexities achieve the minimum: Numbers of required AND
and XOR gates are at most m* and m* — %, respectively, and incurred time delay is
Ta+ l'log2 (m + [-"274] )] Tx. In the AOP case, r = 1 and such a muitiplier requires m?
AND gates and m? — 1 XOR gates and has a time delay of T4 + (1 + [log, m])Tx.
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Figure 4.3: Multiplier structure when f(z) = z8 + 23 + 1.

4.4 Trinomial Based Bit-Parallel Multiplier in Fom

4.4.1 Analysis of multiplier complexity

Corollary 4.2 has shown that a parallel WDB multiplier can be constructed with m? AND
gates and at most m? — 1 XOR gates when f(z) is an irreducible trinomial.

Since the size and time complexities of a bit-parallel WDB multiplier are determined
by (4.5) and (4.2), we shall use C$), CL), €% and €, CEL, C¥ 10 denote the

contributions to the size complexity and the time complexity of a circuitry realizing (4.5)



CHAPTER 4. PARALLEL DUAL BASIS MULTIPLIERS 51

and (4.2), respectively.

It can be readily seen that an implementation of (4.2) requires m? AND gates and
m? — m XOR gates and has a time delay of T4 + [logs m] Tx, or C4) = m?,CSy =
m? —m,C% = T, + [log, m] Tx. Now consider eqn (4.4): (a™,a™*,... ,a®?)T =
R(l,e,... ,a™ )T, where ais aroot of f(z) = 1 + z* + z™.

(i) When k& = 1, one can write
a™ = +a' for 0<j<m-2. (4.9)

Thus each row of R has only two nonzero entries. Then from (4.5) we have Tr(ya™*’ B) =

b; + bj,; forj =0,1,... ,m — 2. Clearly, C{} =m —1,and C}’ = Tx.

(i) Whenl < k < -"2'4 or m —k > k. According to arithmetic modulo a polynomial,

a™ j=0,1,... ,m — 2, can be computed as follows
a™i = o 4ot j €S, (4.10a)
amHm-Rti = o 4 ghti | glm=RIti j € Sp, (4.10b)

where S, denotes the set {0,1,... ,m —k — 1},and S} 2 {0,1,... ,k—2}.
Applying trace function Tr(-y - B) to both sides of (4.10a) and (4.10b), we find

Tr(ya™?B) = bj + biyj j€S,,  (4lla)

Te(ya™ ™ B) = b] + by ; + bimoigess J€S.  (411b)

It is readily seen that the first two terms on the right side of (4.11b) (in boldface) are
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exactly the same ones as those on the right side of (4.11a). Notice that S, C S, (" m >
2k), thus we can reuse the term Tr(ya™+ B) = b} + by, j»J € Sa, of (4.112) in (4.11b)

and it follows (reused terms in boldface)

Tr(ya™B) = b + by, j€Ss (4.12a)

Tr(ya™ ™ % B) = Tr(ya™B) + bjpn_iy4;: j€S,. (4.12b)

Clearly, computing (4.12a) and (4.12b) requires m — k and k — 1 bit additions, respec-
tively. Hence, CY'=m-k+k-1=m~—1XOR gates. The longest time delay occurs
at (4.12b) with the first Ty time delay to carry out Tr(ya™* B) = b; + b3, ; and a second
Tx delay to accomplish Tr(ya™*? B) + b;m_k) 4 for0<yg k - 2. Thus, C.(,} ) = 2Tx.

(iii) When k = 7-5"-, m even, we have

a™i = o +a™ 7, 0<j<k-1 (4.13a)

a™tkti = o 0<j<k-2 (4.13b)
Applying trace function Tr(y - B) to both sides of (4.13a) and (4.13b), we obtain

Tr(ya™* B)

b + Bk 0<j<k-1,  (414a)

Tr(ya™**'B) = b, 0<j<k-2 (4.14b)

Clearly, only (4.14a) requires k = % XOR gates and has a time delay Tx. Thus, cf,},} =
? and CT = Tx.
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Now we can summarize the above discussions as follows. When f(z) = 1 +z* +z™,

a WDB multiplier can be constructed with Cs4 = m?2, and

(i) Csx=m?-1 and Cr=T,+ ([log,m] +1)Tx for k=1,
(i) Csx=m?-1 and Cr =Ty + ([log2 m]|+2)Tx for 1<k< ?;
(iii) Csx =m? — -5"1 and Cr =Ty +([log,m] +1)Tx for k= %

44.2 Construction with reduced propagation delay

When f(z) = z™ + z* + 1,1 < k < B, from (4.3), (4.12a) and (4.12b) we obtain

¢, = b +bL. ., form<i+j3j<2m—-k—-1, (4.153)
¢ K] i+j-m s+7—-m+
- _ i+j-m+k -
¢;i = Tr(ya™ ™™ B) + bivjom
= Cimek + Uiricm for2m — k <i+j < 2m —2. (4.15b)

The boldface terms in (4.15b) can be obtained by reusing the same terms in (4.152). We

put (4.3), (4.15a) and (4.15b) together and it yields

b, fori +j € S., (4.16a)
i = § Ditjom +04jmee  fOri+je€ Sa (4.16b)
Cimmik T Orjom  fOri+jeS., (4.16¢)

where S, = {0,1,... ,m—1},54 £ {mm+1,...,2m —k—1},and S, = {2m -
k,2m - k+1,...,2m - 2}.
Notice that in (4.16) it may take different time delays to generate c}; with different

values of Z + j. By exploiting this fact, we might expect that the whole time delay of the
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multiplier can be further reduced (for some m and k).

It can be seen that no time delay is incurred for generating c;,i + j € S, but T,
and 2Tx are required to generate cj; fori + j € Sy, and for ¢ + j € S., respectively. If
those c;,’s that are generated earlier are allowed to multiply with a; first, the overall time
delay of the multiplier might be further reduced. A multiplier architecture with reduced

time delay can be shown in Figure 4.4.

dm-te1.:-Gmal 1+ Size Complexities:
L
.tv,:,',’q s—1 Bl: k - 1 XOR gates
Bl 82 {82 A1) AND gates
bt o B3: m — k XOR gates
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Figure 4.4: Multiplier structure when f(z) = z™ +z* + 1,1 <k < .

Block B3 generates ¢j; = b, ;_,, + b7, ;—m4x>t+J € Sa, in accordance with (4.16a).
This block uses m — k XOR gates and causes a time delay of Tx. The cj; terms obtained

from B3 are ANDed with a;,1 < ¢ < m — 1 in block B4 to generate cj;a; fori +j € Sq.
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m(m2+ L _ k(kz— U anD gates are required in B4 and they cause a

Consequently,
time delay of T7'4. The outputs of B4 are shown at m — 1 ports, namely, le, cery P,(:ll.

The number of ¢;;a; terms at port P}" is denoted by N and
F)

N J for0<j<m-—-k,
P =
! m—-—k form-k+1<j<m-1.

In the sequel, the output ports of block Bi. i = 2,4, 5,6, 7, are denoted by P, ..., P} |
and the number of binary outputs at port P}‘) is denoted by N P

Block Bl produces ¢}; = ¢j;_ ik + 0itjum:t +J € Se, Where c; ..., is from the
output of B3 and reused by B1, see (4.16¢). The number of XOR gates used is £ — 1 and
the time delay incurred is 2Tx (since the input of the reused signals have already a delay
of Tx). Then the output of Bl is multiplied with a; in B2 to yield cj;a; fori + j € &,
where Il(ii:—ll AND gates are used and incurred delay is T4. From (4.16c¢),

0 for0<j<m—k,
NP42)=
! j—m+k form—-k+1<j<m-1

From (4.2), the number of c;;a; terms for0 <z, < m—11is m2. The cj ;a; terms,
which are not generated in B2 or B4, are generated in block BS. The latter takes a; and
b;,0 < ¢ < m — 1 as inputs. As given in (4.16a), the b;’s are directly related to c;; for
i +j € S.. The BS outputs ANDed terms c};a; for these values of ¢ and j. This requires
m(m +1 AND gates and a propagation delay of T4. Clearly, the number of c};a; terms

8) . .
atP} )ISNP}s) =m-j.
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The c};a; terms at port P}s) are then partially added in block B6 using one layer of
XOR gates. This is to ensure that the sum of the propagation delay of BS and B6 is equal
to that of B3 and B4. The outputs from B6 are presented at ports Pée), Pl(e), ceey P,Sfll

Npe
P! i
andNP}q = —2—" '] =0,1,... ,m-—1.

To ensure that the sum of time delays of BS, B6 and B7, or B3, B4 and B7 is equal to
that of B3, B1 and B2, block B7 must consist of one layer of XOR gates. Then, we have

L ]\j=0q1|~onqm—1-

Finally, the outputs from the corresponding ports of B2 and B7 are added together
in block B8 to get c;. Let the input ports of B8 be Péa’ ) 1(3’ yeoo s P,ff_)_l and the number

of binary inputs at P}a' be No@. Then, we have Npwy = Np@ + Npm. Thus, the
J H

: L

propagation delay caused in B8 can be computed as

k-1
max {rlogz(Np}” + NP,(" )]Tx} = [Ing (m + )] TX.

0<j<m—1 2

When f(z) = z™ + z7 + 1, the if-and-only-if condition for that f(z) is irreducible
isthatm = 23!, 1 = 0,1,2, --.. This is so because g(z) = 1+ z + z? is irreducible and
by Cohen’s theorem [19], f(z) = g(z*) is irreducible iff k = 3’. This is also a special
case of 7-ESP when r = % which has been discussed in the previous section.

When f{z) = z™ + z + 1, from (4.3) and (4.9),

{b;+,. for0<i+j<m—1,

b:

itj—m T Oipjomer  fOrm <i+j<2m -2
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In this case, a block diagram for parallel multiplier is shown in Figure 4.4. It is easy

to see that the total time delay is T4 + ([log, m] + 1) Tx.

QL. Ol ; Size Complcxities:
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Ta+Tx , {log; m|Tx

Figure 4.5: Architecture of WDB multiplier when f(z) = z™ +z + 1.

We summarize the results for the reduced time delay multipliers in the following

theorem.

Theorem 4.4 If finite field Fam is generated with an irreducible trinomial f(z) = 1 +

zF+z™ 1 <k g [?J, then, a bit-parallel WDB multiplier can be constructed with
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Csa = m?,
(i) Csx = m2—1 and Cr=T4+ ([logzm] + 1) Tk, for k=1;
(i) Csx=m?-1 and Cp=Ty+ ([m,[uéi'—lﬂ +2)Tx, for 1<k< %
(i) Csx=m?-T and Cr=Ty+ [1og2(m + 2[%])]7‘,:, for k=T

4.5 Basis Conversion

Since two bases are involved in the WDB multiplication, sometimes it may be necessary

to have a basis conversion between the polynomial basis and the WDB, and vice versa.

m-1

Given an element A = Z a;a’ € Fym, from (4.1) its jth coordinate with respect to the

=0
WDB is given by
I m-l - -
aj = Tr(ved A) = ) _ aiTe(ya™),
=0
or
[ag,--+ am_y)T =T -[ag, -+ ,8m-a], (4.18)

where basis conversion matrix T is defined by

Te()  Te(re) -+ Tefya™) |
Te(ya) Te(ya?) -+ Tr(ra™)

e

(4.19)

| Tr(ya™"') Tr(ye™) --- Tr(ye®™"?)
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Lemma 4.1 [60, 77] Let the polynomial basis be defined by an irreducible trinomial
f(z) = z™ + zF + 1, then 7 can be chosen so that the basis conversion matrix is a

permutation back circulant matrix. O

When the field is defined with an irreducible trinomial, from Lemma 4.1 we know that
the coordinates of a field element represented with the dual basis is simply a permutation
of its polynomial basis coordinates. Then, with a little added cost, a dual basis multiplier

can be used as a polynomial basis multiplier.

Lemma 4.2 Let the field be defined with a d + 3 term irreducible polynomial f(z) =
m_ ok+d | pkt+d-1 k did-1
™+ 4+ +-+-+2*+1. Then we can choose 7 such that T has m+1+

nonzero entries. |

Proof: Let a be aroot of f(z) and let to; = Tr(ya'),7 € Fam,to; € Fa, andi =
0,1.... ,m—1. Then when ~ runs through all the 2™ elements in Fym , (£0,0, t0.1,- - - s tom—1)
will give each of the possible 0-1 sequences of length m once.

Choose v € F,m such thattgg =g = 1,80; =0fori =1,2,... ,m—1land: # k.

Then we have

Tr(ya™ ") = Tr(ya') + Tr(ya®*) + - - -+ Tr(ya*+t4+)
=0 for 0Ki<k-1;
Tr(ya™*) = Tr(va*) + Tr(va®) + ==+ Tr(ya?®*+4) = 1;
Tr(ya™*+) = Tr(ya**) + Tr(va™*) + - -- + Te(ya®*+4+)
= 0 forl<i:<m—-k-d-1;

2m-d)

Tr(va = Tr(ya™ %) + Tr(y@™* ) +--- + Tr(ya™*) = 1L
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If we assume that Tr(ya®™~4+*) = 1 fori = 1,2... ,d—2 and let the number of nonzero
entriesinTbe N. Then N < 1+(k-1)+(2m-1-m—k)+(14+2+---+d—-1) =
m+1+ 291 The ‘= holdswhenm +k +d—2 < 2m—d, orm > k+2d-2.0

Clearly, ford = 2, f(z) = z™+z**2+z**! +z*+ 1 is a pentanomial and N = m+2,
which was discussed by Morii, Kasahara and Whiting [60].

Lemma 4.3 Let the polynomial basis be given by an irreducible 7-ESP f(z) = 1 +z" +
z3" 4 etz + 2™ (r 2 1). Then we can choose 7 such that the basis conversion matrix

T has 2m — 2r ones. O

Proof: Choose v € Fjn such that to,—;, = 1.6 = Ofor¢ = 0,1,... ,m — 1 and

t # r — 1. Then we have

Tr(va™) = Tr(ya') + Tr(va™*") + - -+ + Tr(ya*+*)
= 0 for0<e<r—2;
Tr(ya™") = Tr(ya™!) + Tr(ya® ) + -+ + Tr(yal®*-t) = 1
Tr(ya™) = Tr(ye*™) = 0 for r<i<2r - 2;
Tr(ya™* ") = Te(v™) = L

Tr(ya™*) = Tr(y"™) = 0 for 2r <i<m—2.

Clearly, Thasr+m —r+m —2r =2m - 2r I’s. a

Wang and Blake have given a simple T for any polynomial basis [77].
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Lemma 4.4 [77] Let the polynomial basis be given by an irreducible polynomial f(z) =

z™ + Yot fiz'. Then a basis conversion matrix T can be given as

0 0 O 0 0 1
0 0 0 0 1 bm
T= ,
| 1 bm bm+1 Lo bﬁm-—-‘l b2m—3 b2m-2 J
where bn-y = Lbis1 = ooy bifimibm-1pi =m —1L,m,... . 2m - 2. m]

If we choose f(z) with its second highest order term being z¢, then it can be seen that the
number of nonzero entries will not be greater than m + (“3—"'1)2(&;2). More interesting
is that the entries ;’s can be computed serially with a linear feed-forward shift register

which can be easily implemented in hardware [77, 34].

4.6 Chapter Summary and Discussions

In this chapter, we have first presented an upper bound on the size complexity of bit-
parallel multipliers using an arbitrary field Fam. Then for classes of fields which are
generated with irreducible trinomials, or irreducible ESPs, we have given both the size
and time complexities of the bit-parallel multiplier. Implementation issues have been
discussed, especially to reduce the time delay incurred by the multiplier. These re-
sults compare favorably with those of the recently proposed multipliers of the same
classes [35, 23].

Multipliers presented in this chapter are suitable for the cases where the weakly dual
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basis representation of one input is available. When the polynomial basis is defined by
an irreducible trinomial, our results match exactly those of Fenn, et al [23], who have
implemented the bit parallel multiplier for small size fields (m < 15, m # 8,12). When

the polynomial basis is defined by an irreducible AOP, which is a special case of r-ESP

—4

with » = 1, the complexities of our bit-parallel multiplier in terms of both size and
time complexities are equal to those of M_.MOM proposed by Hasan, et. al. [36] (see
Table 4.1(a)). When the finite field is defined by an irreducible r-ESP (» > 1), the com-
plexities of our multiplier are significantly lower than those of the previously reported
ESP based multipliers as shown in Table 4.1(b). If the field generating polynomial is a
trinomial, the results presented in this chapter compare favorably with those of recently

proposed multipliers of the same class [23].

Multipliers | Basis used | Number of two- | Number of | Time delay due to gates
input AND gates | XOR gates

MOM [10] | Normal 2m* -m 2m* -2m | Ty + ([logam] +1) Tx
ITM [6 Polynomial | m* +2m +1 m®+2m | Ty + ([logam] + [logy(m +2)]) Tx
HWBM [4] | Polynomial | m* m*+m -2 | Ty +(m + [log,m]) Tx
M.MOM |5} | Normal m? m* -1 Ta+ ([log,m] +1) Tk
WDBM Weakly dual | m* mé -1 Ta + ([log,m] +1) Tx

(a)
Multipliers | Basis used | Number of two- | Number of | Time delay due to gates

L input AND gates | XOR gates | ]
ITM[6] | Polynomial | (m +r)* (m+1)? =1 | Ta+([log,m] + [log,(m + r +1)]) Tx
HWBM [4] | Polynomial | m? m? +m —2r | Ty + (B + [log,m]) Tx
WDBM | Weakly dual | m? m?-r Tu+ {ﬂog, ™
+ ioes (-4 ke 172
(8)

Table 4.1: (a) Comparison of multipliers based on AOP. (b) Comparison of multipliers
based on r-ESP (r > 1).
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The scope of the proposed architecture, like all other bit-parallel multipliers, appears
to be constrained to relatively small-to-medium size fields since the size complexity of
O(m?) makes hardware realization difficult with large values of m which are of interest
for cryptographic algorithms, especially, those which are based on the discrete logarithm.
The recent advances in the elliptic curve cryptosystems, however, have been making it
possible to use relatively small fields for attaining similar level of data security [32].
Moreover, as VLSI and packaging technologies, such as multi-chip-module continues
to improve, the proposed bit-parallel muitipliers are expected to find potential use in

practical applications.



Chapter 5

Parallel Polynomial Basis Multipliers

In this chapter, we present a low complexity algorithm for computing reduction modulo
a polynomial. Implementations of polynomial basis multipliers using the new method of
modular reduction is proposed in § 5.2.2. New algorithms for squaring in Fam are also

presented and their implementations are discussed in §5.3.

5.1 Polynomial Basis Multiplication in Fom

Let the finite field Fom be generated with an irreducible r-term polynomial f(z) = z™ +

r—2 m-1

Ez", where 0 = g < €; < -+ < &,z < m. Let A(z) = Za,-z'. and B(z) =
i=0 i=0

m-1 m-1

E b;z* be any two elements in Fpm . Then, C(z) = E ciz* € Fzm, the product of A(z)
i=0

"__-0
and B(z) can be obtained in two steps:
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1. Polynomial multiplication:

S(z) = A{z)B(z),

2m-2
where S(z) = Z skz*, and s is given by
k=0
= Y b, k=01,2...,2m-2
i+i=k
0, jEm~-1

2. Reduction modulo the irreducible polynomial:

C(z) = 5(z) mod f(z),

m-1
where C(z) = E azt, ¢ € Fp.

i=0

65

5.1

(5.2)

Obviously, the complexities of the polynomial basis multiplication in Fom are determined

by these two steps. The complexity of the first step (polynomial multiplication) is in-

dependent of choice of the irreducible polynomial f(z), and it has been shown to be

O(mlog mloglog m) in bit operations [68]. We will show that the complexity of the

second step (modular reduction) is O(rm), where r is the Hamming weight of the irre-

ducible polynomial f(z).

5.1.1 Polynomial multiplication

In the first step of PB multiplication (5.1), if 5(z) is computed from A(z) and B(z) by

the conventional polynomial mulitiplication method, it requires m? multiplications and
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(m — 1)2 additions in the ground field and the time delay is T4 + [log, m]Tx. However,
there are some asymptotically faster methods for polynomial multiplication over finite
fields [5], such as, the Fast Fourier Transform method (5, 42] and the Karatsuba-Ofman
algorithm [41, 2, 63]. They can result in asymptotically fewer bit operations at the ex-
pense of longer time delay and certain costly pre- and post-computations. Another tech-
nique for polynomial basis multiplication that can combine polynomial multiplication

with modulo reduction into one single step is called the Montgomery method [58, 44].

5.1.2 Reduction modulo a polynomial

For modular reduction C(z) = S(z) mod f(z), where deg f = m,deg S < 2m —2 and
deg C < m — 1, if the conventional polynomial division method is used, the complexity
is O(m?) in ground field operations. Mastrovito [50] has found that if the irreducible
polynomial is chosen properly for m < 15, m # 8, the complexity of modulo reduction
can be greatly reduced by using some partial sums. Paar [63] has also discussed this
issue for certain small values of m. However, their methods are based on computer based
exhaustive search and available for only moderately small size fields. In the following,
we will present a new algorithm that can perform modulo reduction in O(rm) ground

field operations for any irreducible polynomial f(z) with the Hamming weight r.

Theorem 5.1 If the Hamming weight of the irreducible polynomial f(z) is r, then the

modular polynomial reduction (5.2) can be done with (r — 1)(m — 1) bit operations.
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Proof: Define
m+l m-1 )
Y sz’ mod f(z) = Y 2, 1= -1,0,1,... ,m-2. (5.3)
1=0 =0

t{'""s have the initial values ¢~ = s;, and, we try to solve for the ‘final’ values t{™~%) =
¢, 1=0,1,2,... m—1.

In the following, we shall prove by induction that the complexity of solving tf-'"'z’ =
0,1,2,... ,m—1,is(r - 1)(m — 1) bit operations.

When [ = 0, from (5.3) we have

m=-1 m m-1
i=0 =0 =0
m-1
= Yt sl 42 4o+ 25
1=0
(=1) e .
.. +8n, Ift=0,e,e3,...,60-3,
Clearly, tf.o’ =4 " i

t=Y, if1<i<m-—1, andi # eq,e,...,€rz.

It can be seen that » — 1 bit additions are required for obtaining ti-u) from tE"l),i =
0,1,... m—1
Assume when ! < I, + — 1 bit-additions are required for obtaining ¢\’ from t?'”,i =

0,1,... ,m — 1. Then, when ! = !, we have
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ml’ mel’ =1
’ . 7]
Z t(l )33 — Z Z 3;‘1:‘ + 3m+l’zm+‘
=0 =0 1=0
m-—1
= Z tf‘ “Hgi 4+ ST ™
=0
m-—1
= S ¥V 4 szt L+ 2 4 2o
1=0

Ifm >l + e._, then

0 ) b sy ifi= Ul e, Ut ey,
B Y
?

t; otherwise.

Obviously, tE") can be computed from tsll_” using r — 1 bit additions. Now suppose that

Ut+epy<m<l+enr €{l,...,r—2}and e 2 0, thus it follows

m+l’ ) m-1 , )
Z szt = {Z tﬁ‘ 1) i + 3m+l'zll[l +2% 4oz}
i=0 i=0

4
+3m+‘:zl [zer’ -+ zer’-l»l + ... + 3e'-2]

— Z t?l‘O)zi + 3m+llzl'[ze" + zel"-l-l RN + ze,,__z]

m—
= Z ts_l O i 4 Smatr T T oot gpypzt e (5.4)



CHAPTER 5. PARALLEL POLYNOMIAL BASIS MULTIPLIERS 69

m-1 m-1
where Z o & Z ("2 4 s wzb L+ 29 + -+ + 2%-1]. Since we have
=0 =0

) 4 s, =l tey,... I + ey,
-1
g1,

¢ =

otherwise,

it can be seen that v’ bit additions are required to obtain tﬁ""” from tﬁ"‘" ,t=0,1,... ,m—
1.
In the following we shall prove that tf"), t=0,1,... ,m — 1, can be obtained from

tgm’ with r — ¢’ — 1 bit additions. Define

m-1 m-—1
Z gz 2 Z tg"'o)z‘ + $pmsrz * mod f(z), i=0,1,...,m—1. (5.5)

1=0 =0
Since l' + e, —m < I, we have

m-—1 m-1
’ - . ' e, —m— - . .
E tf-‘ reermmlgi E tf.‘ tepmm=l) i o Strge,, 2 T mod f(z),i=0,1,... , m—1.

1=0 i=0

(5.6)

Since t\ **"~™) has been obtained from t\" ***~™") with r — 1 bit additions as assumed,
comparing (5.5) to (5.6), we can see that (5.5) and (5.6) can be combined together to save

bit operations. That is, when ! = I’ + e,» — m, instead of performing (5.6), we perform

m-—1 m—1
z t? +c,;-m-1)z{ + (sl'-(-c,, + sm+(')zl'+e" mod f(:) = Z tgl +e.-l-m.t)zi (5.7
=0 =0
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with r bit additions, while (5.5) can be saved. In the sense of the count of bit operations,
we may equivalently say that (5.5) requires one bit addition, while (5.6) still needs » — 1
bit operations. Similar arguments can be applied to the remaining r — v’ — 2 terms in
(5.4). Thus for I = I, + — 1 bit additions are required for obtaining ¢’ from ¢ =),
fori = 0,1,...,m — 1. Therefore, to compute £{") from t{""V.i = 0,1,... ,m — 1,
needs r — 1 bit additions for any integer . We conclude that computing ¢; = t&""z) from
s;,t =0,1,... ,2m — 2 requires (m — 1)(r — 1) bit additions. a

Theorem 5.1 can be easily extended to Fym as it is stated in Theorem 5.2. A proof for

Theorem 5.2 is analogous to that of Theorem 5.1.

Theorem 5.2 If the monic irreducible polynomial f(z) € F[z] of degree m has the
Hamming weight of r, then the modular polynomial reduction in polynomial basis mul-
tiplication can be done with (r — 1)(m — 1) multiplications and (r — 1)(m — 1) additions

in Fg.

5.2 Bit Parallel PB Multipliers

5.2.1 Previousimplementations

The earliest parallel polynomial basis (PB) multiplier was suggested by Bartee and Schnei-
der [10]. Depending on the irreducible polynomial, the implementation requires as many
as m® — m two-input adders over F; [11]. Some proposals on bit-parallel PB multipli-
ers are suitable for VLSI implementation by using cellular array, systolic array, or other
highly regular structures {83, 70], while others with less complexity are based on some

specific class of fields such as all one polynomials and equally spaced polynomials which
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can potentially simplify the multiplication circuitry {38, 35].

Bit-parallel PB multipliers based on the irreducible trinomial z™ + z* + 1 with
1<k < ['—2"-'J are attractive because they require fewer gates for modular reduction.
Mastrovito has proposed a multiplication algorithm and architecture when f(z) is a tri-
nomial [SO]. He has shown that the number of both AND and XOR gates needed is propor-
tional to 2m? when the degree of f(z) is no greater than 15 and not equal to 8. The KOA
has also been considered for building bit-parallel finite field multipliers [63, 2]. Paar’s
implementation has shown that bit-parallel multiplication architectures using the KOA
in certain composite fields can have significantly lower complexity, compared to that of

Mastrovito’s. However, the time delay of the architectures using the KOA can be longer.

5.2.2 Implementation with new method of modulo reduction

[f the conventional method for polynomial multiplication is used, then the complexity of

a bit parallel multiplier in F,= can be described as follows.

Theorem 5.3 Let f(z) be an irreducible r-term polynomial of degree m over F,. Then
PB multiplication in Fom can be performed with at most m? bit muitiplications and m? +

(r = 3)m — (r — 2) bit additions.

Proof: It is a direct consequence from Theorem 5.1 when the conventional polynomial
multiplication is used for (5.1). ]
In the following, we will present an analysis of propagation delay for the bit parallel

multiplier when the irreducible polynomial is a trinomial.

Lemma 5.1 Ifthe finite field Fom is defined with an irreducible trinomial f(z) = 1+z*+

™, 1< k< %‘-, then a bit-parallel PB multiplier can be constructed with Cs4 = m?,
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Csx =m? - 1land

T4 + (flog,m] +1)Tx, for k=1;
Ts + ([logam] +2)Tx, for 1<k< %

Proof: If the conventional polynomial multiplication method is used, an implementation
of the first step (5.1) requires m? AND gates, (m — 1)2 XOR gates and a time delay of
T4 + [log, m]Tx.

In the following we solve the complexities required for implementing the second step

(5.2). Define
m-~1 2m~2
Zu.-z‘ = Z s;z* mod f(z).
i=0 i=m

(i) Whenk =1, f(z) = z™ + z + 1, we have

™ = gf 4 gt 0<j<m-2. (5.8)

It can be seen that term z° = 1 occurs once on the right hand side of (5.8) when j = 0,
term z™~! occurs once on the right hand side of (5.8) when j = m — 2, and term
¥, i=1,2,...,m — 3, occurs twice on the right hand side of (5.8) when § = — 1,1.

Thus, we obtain

Ug = 3m., j‘—‘ov
Uj = Smij—1 +Sm+jr J=1,2,... ,m—2,

Un—-1 = S2m-2. j =m-—2.
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Clearly, C% = m — 2, and C2 = Tx. The longest delay occurs at the terms u;,j =
L,2,..., m-2

(ii) When k > 2, since f(z) = 1+ z* + 2™ and k < %t orm — k > k, we can write

the terms z7, § = 0,1,... ,m — 2 as follows
g™t = gI 4 Rt 0<j<m=-k-1, (5.9a)
M=K+ i + zk+i + z(m—k)ﬂ', 0<j< k—-2. (5.9b)

Let Ty and T, denote the first and second terms on the right hand side of (5.9a),
respectively. Let T3, Ty, and T denote the first, second and third terms on the right hand
side of (5.9b), respectively. Note the range of degree of each term. We illustrate their

relationship in Fig. 5.1.

0 k-2 m-k—-1 m—2 dcgm
. . ik cme-k Im-1

Ty [ - .. ] .

o

Figure 5.1: Indication of the relation between terms in (5.9a) and (5.9b).

It can be easily seen from Fig. 5.1 that term z7, 0 < j < k — 2, only exists in T} and
Ts, and term z*~! exists only in T}. Thus we have

Uj = Smtj + Sm+(m—k)+5+ 0 S j < k- 2, and Uk—1 = Smtk—1-
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Case 1: When2k — 2 <m - k — 1, we have

Ukyj = Smtj + Smiksi T Smi(m-k)+js 05 J < k-2,
Uksj = Smaj + Smak+is k—1<j<m-2k-1,
Um-k+j = Smi(m-k)+j T Smi(m-2k)4i, 0<J <k -2,

Um-~1 = $2m—k-1-

Case 2: When 2k — 2 > m — k, we have

Ukt = Smij + Smik+i + Smi(m-k)+jy 07 <m—2k—1,
Ukt = Sm4j + Sm+(m—k)+j + Smtk+jy ™M — 2k S ] S k— 2,
Usk—14] = Smtk-14i T Sme2k-14j, 0SF<m—-2k—-1,

Um-1 = $2m-k-1-

Rewrite the above equations to obtain

[ o = Smtj + Sma(m—k)+ir 0<j<k-2
Uk~1 = Smik-1,
Ukt = Smij t Smakti T Smi(m-k)+i

Case 1 - 1 = (Sm+j + Smt(mek)+;) + Smiksj
= Uj + Smtk+ss 0<j<k-2

Uktj = Smtj T+ Smik+is k-1<j;j<m-2%-1,
Um-k+i = Smi(m—k)+i T Sm+(m-2k)+j> 0<;i<k-2,

| Um-1 = Swm—k-1,
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and
)
u; = Smtj t Sm(m-k)+i 0<j<k-=-2
Uk—1 = Smtk-1»
Uktj = Smej T Smek+i T Smt(m—k)+is
Case 2 : \ = (8m+j + Smt(m-k)+j) T Smak+is
= U+ Smaktio 0<j<k-2
Uskt; = Smaj + Smik+in -1<j<m—-2k-2,
L Um-1 = S2m—k-1-

Thus, for both cases we have C% = m — 2 XOR gates, and C} = 2Tx. The longest
delay occurs when generating the terms ue4+;, 0 < § < k — 2. The lemma follows by

noting Cs4 = C} + C% and Cr = C} + C}. o

Lemma 5.2 If the finite field Fom is generated with an irreducible trinomial f(z) =
1 + z% + z™, then a bit-parallel PB multiplier can be constructed with Cs4 = m?,

Csx =m? - T-Q'landCT =TA+(|'log2m] +1)Tx.

Proof: Since z™ = 1 + £ 7, we have

™t =24 2TH 05 <

-1
P L 0<i<H-2

From the above equations, we have

uj = S%m-—l? J= ﬂ?l - 11
i = SmajtS3myj 0<;j<F-2
Ueti = Smii) 0<j<2—1
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Clearly, Ct = 2 — 1 XOR gates and C} = Tx. Then, the lemma follows by noting
Csa = CL + C% and Cr = C} + Ci. O

Since the above proofs are constructive, architectural implementation of the bit-
parallel multipliers is straightforward. We summarize the results in the following the-

orem:

Theorem 5.4 If the finite field F,m is generated with an irreducible trinomial f(z) =
l+zf+z™ 1<k < I.%J , then a bit-parallel PB multiplier can be constructed with

Csa =m?,

(i) Csx =m?-1 and CT=TA+([log2m] +1)Tx for k=1;
(i) Csx =m?-1 and Cr =T, +([logzm] +2)Tx, for 1<k< 5,
(i) Csx =m?-1 and Cr =T, +([log,m] +1)Tx for k=T

5.3 Low Complexity PB Squarer in Fom

5.3.1 Complexity of PB squaring in Fom

Let f(z) be the irreducible polynomial over F, generating the field Fom. Let A(z) =
:Vj a;z' be the polynomial representation of an arbitrary element of Fam . The squaring
;zpoeration of A(z) is C(z) = A%(z) mod f(z), where 0 < deg C(z) < m — 1. In A*(z),
the terms with degree equal to or higher than z™ are transformed to lower degree terms

using the (m — [%] — 1)-by-m reduction matrix R, as follows [50].
R, (Lz,... 2™ = (228, A4 22T mod f(z)

or,
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qo,0 do.1 o go.m—1 1

Q10 1.1 e d1,m-1 z

| Im-131-10 Im~[F1-11 " Im-[F1-1m-1 | | T

[ ]
2[F1+1)
mod f(z).
zzm—Z
m-1 )
Then the square C(z) = Y a:z' = A(z) mod f(z) = a0 + @z’ +azz* + ... +
=0

ar%'lzzr!;-] +...+ am—lzzm_z mOd f(:l:) can be described as

a; + armiqo; +ermiequi+ oo+ Gmorqp -1 EEVED,

L
7

c =
ami9oi + e[2141914 + +** + Gm-1q )14, Otherwise,

fort=0,1,2,... . m—1.

The complexity of the polynomial basis bit-parallel squaring depends on the number
of 1’s in matrix R,. The coordinates ¢; is the sum of at most l%J + 1 terms which can
be realized using a binary tree of at most [?J XOR gates when ¢ is even. Otherwise, ¢;
has at most l’-g‘—J terms and needs I.%J — 1 XOR gates or fewer. The total number of
gates is less than l-"é*J m — l_-’ﬁ"*J ,or —”"23 — 1 form even, and %3 -m+ % for m odd.
The maximal time delay is I'log2 ([’-2"4] + 1)] Tx. The above can be summarized as
follows: Let the field Fom be generated with the irreducible polynomial f(z) of degree
m. Then squaring a field element can be performed with at most l%‘l m — l’-gJ bit

operations.
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It can be seen that squaring in Fam is actually a case of polynomial modular reduction
that has been discussed in §5.1.2, where the degree of each squared terms in A?(z) is an
even integer between 0 and 2m — 2. From the discussion in § 5.1.2 (Theorem 5.1), the

following corollary is obvious.

Corollary 5.1 Let the field Fom be generated with the irreducible r-term polynomial
f(z) of degree m. Then squaring a field element can te performed with at most (r —

1)(m — 1) addition operations in [F,.

When f(z) is an irreducible trinomial, however, both the size complexity and time

complexity can be further reduced.

Theorem 5.5 Let the field Fom be generated with the irreducible trinomial f(z) = z™ +

z* + 1, where m is even and k odd. Then squaring a field element can be performed with

at most %’“—1 bit operations. O

Proof: Define

m+2l m-1

Z a:z* mod f(z) £ Z tgl)zi,

i=0 i=0
where a; = as ifteven,and 0 if1 odd, and { = -1,0,1,..., ? — 1. The terms tE”'s
have their initial values £{™") = a/, and we try to solve the final values t.* " = ¢;,i =
0,1,... ,m — 1. In the following we shall prove the theorem by induction.

When ! =0,
m-1 m m-1 m-—1

z tgolz‘ = Zaé:ci = Z az' +al z™ = Z alz' +a! (1 + zF).
i=0 i=0 =0

=0
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a;+a,, t=0;
al i=k.
0

tf-)= 4
0<i<m-—1,ieven;

0, iodd, i # k;

Clearly, one bit addition is needed to compute tEO) from tg'”, 1=0,1,... ,m— 1. For

l > 0, we have

m=-1 m+2l
s _ roi
S = S
i=0 i=0
m+2(l-1)
= Z aiz' + al, gz ™t
=0
m-1
-1) 2
= th '+ al 2?1 + 2)
i=0
m-~1
(=1) i, A, 1 k+2!
Zti T+ nu2 t+OnT

=0

Ifk+2l<mor£<ﬂ§-’~1—‘,then

g1, 0Ki<m—-1li#2ieven;ori=kk+2,...,k+2(~1);

W 0, todd,s # k,k+2,... .k + 2[;
t‘- =<

¢ 4 Gpay =2

a:n_{,ﬂ, i=k+2l.

(5.10)
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It can be seen that only one bit addition is required to compute tf-" from tﬁ'"” for0 <
l<®rbandi=0,1,...,m-1.
In the following we proceed with induction. When { = '—"—_2’5—*—1 . m—kis odd),

we have
m-—1
z tﬁ”z' _ E t“ Dgi 4 am+2 2™
=0 $=0
= Z t e+ Ay uT” + Byt
=0
m-1
=) 872" + al, 2 + Gl T + Gl T
=0
Then,
{
=Y 4 Gy t=2lori=k+1;
Bt i=1
! - . .
£ = ¢ g1, ievens # 2Lk + 1; (5.11)
ori=kk+2,....,k+2(1-1);
L 0. todd,t #kk+2,... ,k+2(l-1)andz # 1.

Obviously, two bit additions are required to compute t?) from tf-"'l ) i=0, 1,...,m-1.
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Assume that for "Léi—l <l<l,(5.11) holds, then forl = I' < %, we have

m-1 m-1
" -1 . .
Ztg ):!:' = Z tg )z: + am+2yzm+2l
=0 i=0
m-1
I'-1) ; 4
= Z N2 4 al ez (L + 2]
=0
m-1
'-1) ’ '
= Z (e 4 al ez + al ez E
=0
m-1
I=1) ¢ ' . -
=0
m-1
o) ¢ (.
- zts )mt+a:n+2p$2k+21 m" (5.12)

=0

me~1

m-1
where £ is defined by E (0 & z Vi al pz? +aly gzt ¥ ™. Since

=0 =0
' < m,and k + 2I' — m is odd and less than &,

ty'_l) + a:.n+2ll, i = 21’;
9 = | T2l i=k+2 —m;
tf-”"“, 0<i<m—1,i# 2l ieven;ori =k,k+2,... ,k+2('-1);
o, iodd,i # kk+2,... . k+2( —1).

(5.13)

Thus it requires one bit addition to obtain tf»"'o) from t?"”, t1=01,...,m—-1.
When 2k + 2I' —m < m, we have t{) = t&% if i £ 2 + 2I' — m, otherwise
t?') = tE"'o) + al,, .o~ It is therefore two bit operations are required to compute t?’) from

tf-""” fort=0,..., m-1.
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When 2k + 2I' — m 2> m, consider
m~1
Z t(k‘H -m) _ Z t("‘H ~-m~—1) + a2k+2l’—m 2k+2[ -m (5.14)
=0 =0

It can be seen that the last terms of the right hand side of (5.12) and (5.14) are the same

except for the coefficients. If we perform

m~1 m-1

k+l' -m,x k+i'=m=-1) (-
E:tf m,x) = E :ts m + (a;k-{-zl'—m + a:n+u')z2k+2l m (515)
1=0 i=0

atstep [ = k + I’ — m at the cost of one more bit operation, then at step [ = ', the
term tﬁl') can be computed from T,»("_”,i = 0....,m — 1 with only one bit operation.
Equivalently, we might say that at step [ = U, term tﬁ” can be computed from tﬁ"‘”,
it =0,1,...,m—1, at the cost of two bit operations. Thusform—“-zl"—"‘—l- Ll< %—1,
it requires two bit additions at each step.

We conclude that the total cost for computing ¢; = tf-g'l

0,1,... m-lis®m=f+lypm_;_m=-k=1l)_md3k=1lpoperations. O

7-1) from tg-l) = a:.,i =

Theorem 5.6 Let the field Fom be generated with the irreducible trinomial f(z) = z™ +
z* + 1, where m is odd and k even. Then squaring in F,m can be performed with at most

m+ k=1 i additions.

Theorem 5.7 Let the field F.m be generated with the irreducible trinomial f(z) = z™ +
z* + 1, where both m and & are odd. Then squaring in Fom can be performed with at
most =L bit additions. 0

Proofs of Theorems 5.6 and 5.7 are similar to that of Theorem 5.5.
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5.3.2 Implementation

Theorem 5.8 Let the field Fam be generated with the irreducible trinomial f(z) = z™ +
z* + 1, where m + k is odd. Then a bit-parallel squarer can be implemented with at
most mié‘—-—l XOR gates. For & = 1 and 2, the incurred time delay is Tx, and for

2<k< %,itis2Tx.

Proof: Foracertain valueof:, ¢ =0,1,... ,m—1, itcan be seen from (5.10) and (5.13)
that that every bit addition occurs for a different value of <. Thus the time delay incurred
with (5.10) and (5.13) is at most T'x. The longest time delay is incurred with (5.12). A
simple method to estimate this delay is to count the number of times that (5.15) is used
when computing (5.12). When I' = T — 1, 22++2'-m = z2*=2_ Applying the mapping
z™ = zF + 1 to %2 until all the terms with degree less than m. Let the number of the
mappings is y, then

2k —m -2

k=2— —fk
2k-2-ym-k)<m = y> —

.. The longest time delay = [ %—;%:2] +2= [%—_%I )

For k = 1,2, we have '-nmm_:%.|=1,andwhen2<k< ?, [H}:Z |
Theorem 5.9 Let the field Fam be generated with the irreducible trinomial f(z) = z™ +
z* + 1, where both m and k are odd. Then a bit-parallel squarer can be implemented
with at most "—"2'4 XOR gates. The incurred time delay is Tx if £ = 1, and 2Ty if

m
2<k<12—.

Proof: The proof is similar to that of Theorem 5.8.



Chapter 6

Analysis of SD Form Exponents

The primary operation in most discrete logarithm and elliptic curve public-key cryptosys-
tems is to raise an element in the group to large powers, ie., exponentiation and point
multiplication on an elliptic curve. This chapter deals with the efficient representations
of the exponent. First a brief review of signed-digit (SD) number systems (§6.1), then
closed form formula for the number of nonzeros and the length of the (SD) non-adjacent

form (NAF) are derived in § 6.2.

6.1 Exponent Representations

6.1.1 Using conventional number systems

The conventional number systems are non-redundant and fixed-radix number systems. In

a non-redundant number system, every number has a unique representation. An integer
n-1

N is uniquely represented with a radix-r number system as N = z a;r', where a; €

t=0



CHAPTER 6. ANALYSIS OF SD FORM EXPONENTS 85

{0,1,... ,r — 1}. The ordered string (ag-1, ... , ao) is called the radix-r representation
of N. A binary or radix-m representation of N naturally introduces a method to compute

o (square and multiply method or m-ary method [57]).

6.1.2 Using redundant number systems

In a fixed-radix system, if we allow the digit set to be extended to {g, ... ,1,0,1,..., a}?
where @ = —a. then the resultant number system is called the signed-digit (SD) number

system. A radix-r SD representation of N is given by:
N = (bnbm-y ... bo)

where b; € {0.£1.... ,£(r — 1)} and i bir' = N.

The SD number system is redundanti;?nce some numbers have more than one repre-
sentation. Note that the number of nonzeros digits of an SD form is actually the length
of the corresponding addition/subtraction chain [59], then we can present the following

definition:

Definition 6.1 [67, 18,6] N = (bnbm-1 . .. bo) is referred to as a minimal weight radix-
T SD representation of N if the sum Z z; is minimized, where
=0

0 otherwise.

i

*The positive integer a can be in the range of [232] < @ < r— 1. Whena = [55L], the set of
{a,...,1,0,1,...,a} isthe minimal signed digit set [51] and the system is called the minimally redundant
signed-digit number system.
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It can be shown that a minimal weight radix-r SD representation is of length not greater
than n + 1, where = is the binary length of N.

Among the minimal weight radix-r SD representations of N, a canonical radix-r SD
form can be defined as follows which is a generization of the canonical binary SD (BSD)

form [67].

Definition 6.2 [18] Let N = (b,b.-: ... bo) be a minimal weight radix-r SD represen-
tation. It is referred to as a canonical radix-r SD representation of N if b;’s satisfy the

following two conditions:

(i) |bi41 + b <7 foralli,
(i) [bi] < lbiaal  if biprbs < O.

where |b| denotes the absolute value of b.

In Clark and Liang’s paper [18], where the canonical SD representation is referred to
as a generalized nonadjacent form (GNAF), since it has the property that there is no
two consecutive nonzero digits in this representation when » = 2, proofs have been
provided for minimality, uniqueness and existence of the canonical SD representation
for any integer N. An algorithm from Theorem 3 of [18] that converts the conventional
radix-r representation of an integer into the canonical radix-r SD form is given below.
Algorithm 6.1 [18]
Input: The radix-r form of an integer: N = (@n-18n-2-..4a0),
where a; € {0,1,... ,r —1}.
Output: The canonical radix-r SD form: N = (bnba-1 ... bo),
where b; € {0, £1,... ,£(r — 1)}.



CHAPTER 6. ANALYSIS OF SD FORM EXPONENTS 87

Step I: an :=0;an41 := 0500 :=0;
Step 2: for: =0tondo
ifa;+aip+a2r
bii=ai+¢—r;

Ciy1 =15
else

b; := a; + ;3

Civ1:=0;

End.

6.2 Average Hamming Weight and Length of Non-adjacent

Form

Minimal weight signed-digit (SD) representations have been used in many arithmetic op-
erations, such as, computation of exponentiations in the integer domain and in a cyclic
group (17, 80), computation of multipie of a point on an elliptic curve [59], etc. In
these algorithms, the number of certain basic arithmetic operations, for example, multi-
plication and squaring, depends on both the Hamming weight and the length of the SD
representations used. It is thus important to know their precise formulae to determine the

number of underlying basic arithmetic operations.

6.2.1 Hamming weight of radix-r NAF

Lemma 6.1 Let p(n,r) denote the average number of nonzero digits in the minimal

weight radix-r SD representation of an integer which is between 0 and r™ — 1, inclusive.
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Assuming p(0,7) = 0, we have (n 2 1)

p(n—l,r)+r_1(1+ "1__1) for n even,
o) = T
pln—1,7) + %(1 + r—") for n odd.
Proof:
(i) When n = 1, obviously, p(1.7) = T,

(ii) When n = 2, it can be verified that the number of nonzero digits cannot be reduced in
the minimal weight SD form, and thus p(2, r) is equal to the average number of nonzero
digits in the radix-r form of an integer N,0 < N < r? — 1. Then p(2,7) = gL,.:—ll =
p(l,7) + =L,

(iii) Whenn > 3, let N = (@a-1an-2 . - . ag) be an integer in radix-r form between 0 and

" = 1, inclusive. We have

p(n,r) = Pr(a,-; =0)p(n — 1.7) + Pr(@n-1 # 0)a(n,r)

1 r—1
;p(n -1,r)+ Ta’(n,r), (6.2)

where o(n, ) denotes the average number of nonzero digits in the minimal weight radix-
r SD form of an integer whose radix-r representation is of length n with the most signif-
icant digit being nonzero.

Let each of uj,v;, #; and wj, 7 = 0,1,2,... . denote a digit and be given by

v; € {1,2,...,r-1},
v; € {0,1,...,r-2},
5 2 r-1

w; € {0,1,...,r—1}
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Let N' = (@n-2apn-3...4ag), and let N” = ug »7™! + N’ = (10@n-2an-3...a0). Then
all the possible combinations of the three most significant digits in the radix-r form of
N" can be divided into three cases Aq, By, and Co:

4
(Ao) uolviwz #e~

(Al) uolﬁlovsw4 Py
(Az) uo|1710f)30'u5w6 coe
¢ (Bo) ug|t10--+ — J (B1) uol|t10930--- — (Ba) tgl#,0550550 -+ —

(CZ) uolfho‘{)sOﬁsue cee

L (C1) uo|tr0vzuy---

| (Co) ug|tyug « - -

Now apply Algorithm 6.1 to both N' and N” and let the resultant canonical SD forms
be b],_, -- »by and b, ---bj, respectively. Obviously, b; = b fort =0,1,... ,n — 3 and

Ch-z2 = Cn_g-
When the case Ag is considered, one clearly has &, _, = vy +¢|,_,and b,,_, = 0. If

ug+vi+chi,2rthend, , =vw+c,_, #0andd) , =vn +c_, —r # 0and,
b, =u+1#0andd)] =0ifug<r—10rd_, =0andbd] =1ifug=7r—-11If
wo+v1+ch_,<rvthend. , =vy+c_, =b,_,andb;_, = uo # 0. Thus, in Ag, the
SD form of N" has one more nonzero digit than that of N'.

When the case Cj is considered, then ¢/,_, = c¢/_; = 1since 9y + uy > r. Also
b, ,=0,8_,=1andd] ,=0and, b, =uo+1#0ifu<r—20rd_, =0
and b/ = 1 if ug = r — 1. Thus, in the case of C, the SD forms of N’ and of N* have the
same number of nonzero digits.

In case B,, it can be easily checked that the SD form of N has as many nonzero digits
as thatof N'if ¢},_, = ¢fi_, = 1, and the SD form of N has one more nonzero digit than
that of N’ if ¢,_, = ¢/,_, = 0. Further including next two digits so that it can be divided

into three subcases A,, By, and C, then in subcase A, we have ¢,_, = ci_, = 0,
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= 1 because c/

n-3

and in subcase C) we have ¢,,_, = ¢/_, = cji_; = 1. In subcase
B,, the above dividing procedure is repeated. It can be verified that in all subcases
A;,7 =0,1,2,..., we have ¢, _, = ¢/|_, = 0, and in all subcases C;,j = 0,1,2,...,
we have ¢,_, = ci_, = 1. If n is odd, the repeated procedure stops when it reaches
subcases Anzs, Bazs, and Cnzs. Obviously, ¢_a = ¢l_y = 0 in subcase Bass. Ifn
is even, the final subcases to consider are subcases Ag*—_i, B%—_ﬁ and C%-J,. In subcase
B ass further including the last remaining digit ao, it is easy tosee thatc,,_, =c/_, =0
when aq either is 0 or belongs to {1,2,... ,r — 1}.

Following the above argument and noting that

Pr(Ao) = Pr(A;|Bo) = Pr(As|By) = -+ = : 1
Pr(Bo) = Pr(By|Bo) = Pr(By|By) = --- = 3,
Pr(Co) = Pr(Cy|Bo) = Pr(CalBy) = - = 57,

when n is odd one can write

o(n,7) = p(n—1,7)+ Pr(Ag) x 1+ Pr(Bo) x (Pr(AllBo) x 1 + Pr(By|Bo) x
(Pr(4alBy) x 1+ Pr(BalBy) x (--)))

= p(n-lv")"'rr;l(l"'rl’*‘#*‘mip(r’)l"z;’) (1")1"_;"

= p(n—l,f)'f‘r:l if_—:) 1"‘1‘1

= p(n—l,r)-{'-?‘(‘f‘-l)lr::,TlIr ,nl-l

- p(n—l,r)+r:_1(1-rn];1+r;1)

= p(n-l,r)+$(1+;1;)- (©3)



CHAPTER 6. ANALYSIS OF SD FORM EXPONENTS 91

Then by noting (6.2), we obtain

r—1 1
p(rn,r) = p(n—-1,7)+ r+1(1+1-_;).

When n is even, we have

o(n,r) = p(n—1,r)+ Pr(Ao) x 1 + Pr(Bo) x (Pr(AllBo) x 1 + Pr(B,|Bo) x

(st 1 ez x ()

r—1 1 1 1 1
= p(n‘l’r)+7(l+?+(—r=_)?+"'+(,.2)",—"-)

T

1
pn=1

r—1 -1 1
= p(n-1,7)+ - (;15_1)4-1."_2

-5 1
= pn-1lr)+r(r-1) rz-r—l +r""
= p(n—l.r)-{-r—:-j(l-i-rnl_l). (6.4)
From (6.2) and (6.4), we obtain
pln,r) = p(n—l,r)+:i(1+r,,l.l)-
O

From the recursive relation in Lemma 6.1, we can derive a closed form expression
for p(n,r). When = is odd, by recalling that p(1,7) = ":—1 and using Lemma 6.1 we
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can write
r—1 r—1
p(nvr) = P(n - 1,1‘) + 1‘+1 + (1‘+ l).,.n

= pn 2)_*.1'—1+ r—-1 +r-1+ r—1
-7 r+l (r+1)" r+l1 (r+1)2

(r=-1)(r-1)
= p(l.r) + T
r—l(l PR T S I
r+ 1\r» n-- rn—ﬁ rn—4 rn—4 1.3 1.3 r
_ 1'--1+ (n—1)(r—-1) r-1.1 i)l—;;‘_—r
T r+1 r+lr P 1-%
_ r—1n+ r—1 (2 + 1)(r~t = 1)
r+1 (r+1)r (r 4+ 1)%r"
r—-1 2r r?+1

P L Py 1 B Py
When = is even, it yields

r—1n+ r 2
r+1  (r+1)2 (r+1)*

p(n,r) =

We summarize the above results in the following theorem.

Theorem 6.1 Let p(n,r) denote the average number of nonzero digits in the minimal
weight radix-r SD representation of an integer whose radix-r form is of length n (between

0 and ™ — 1, inclusive, and n 2> 1). Then a closed form expression on p(=n,r) is given
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by
F r—1n+ 2r 2 for n even
r+1 (r+1)* (r+1)3r1 !
P(nar) = 4
r—1 2r r?+1
‘ r+ln+ Y _(r+1)’r" for n odd.

For the case of the minimal weight BSD form, we have the following expression for
the average number of nonzero digits in the minimal weight BSD form of an integer

whose radix-r form is of length n (n > 0):

n 4 1

§-+§(1-§;) for n even,
p(n,2) =

n 1 5

§+9-(4—-2;) for n odd.

6.2.2 Length of radix-r NAF

We have also obtained the average length of the canonical SD form and it is summarized

in the following theorem.

Theorem 6.2 Let A(n,r) denote the average length of the canonical radix-r SD repre-
sentation of an integer whose radix-r formis of length » (» 2> 1) with the most significant
digit being nonzero. Then A(n,r) can be given by the following expression,
n+ 2;(1 - l) for n even,
ré -1 ™
Aln,r) =
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Proof:
(i) Whenn =1,A(1,7) = 1.
(ii) When n = 2, the SD form has length 3 only when a; = r — 1 and ag # 0, otherwise

the SD form has length 2. Thus, A(2, 7 _2+’;17 =2+1L

(iii) When n > 3, it is easy to see that ¢, = 1 is a necessary and sufficient condition for
that the canonical SD form is longer than its radix-r form. If ¢, = 0, the canonical SD
form keeps the same length as its radix-r form.

Let u;,v;,9;, and wj,j = 0,1,..., be defined as in the proof of Lemma 5.1 and
z;,7 = 0,1,... .beadigit € {1,2,... ,7 — 2}. Let T be an integer between r"~! and
r® — 1, inclusive. Consider all the possible combinations of the leading three digits (the
most significant digits) in the radix-r form of T (shown below) and apply Algorithm 8.2

to them:
( (Ag) Towywy---

(Bg) wolug---

((By) 05,005 ---

(Bz2) 009200400 - -

ﬁ (Co) ©a0U2+¢s — J (Cy) 9g002004--- — (Ca) 5005205405 - - —
(D2) 909,084 uswe - - -

| (D1) ©a0Bzusws -

[ (Do) towqwy:--

It can be seen that ¢, = 0 in cases Ag and By, and ¢, = 1 in case Dy. In case Cy, include
the next two digits and consider all possible combinations of the leading five digits, it is
easy to see that ¢, = 0 in case B, and in case D, we have ¢, = 1 (" ¢p—2 = 1 and
@n-1 + Cnez = Vo + Ca—2 2 T, .. Cay = 1 and @n_y + ¢y 2 7). For C,, we can further
divide it into three sub-cases B,, C,, and D, and a similar discussion can be applied.



CHAPTER 6. ANALYSIS OF SD FORM EXPONENTS 95

Obviously we have

Pr(Ao) = : — i
Pr(Co) = _II ) % ) % = r’(rl— 1y’
Pr(Do) = %1- . 1-.:—1 = é,
and
Pr(By(Co) = Pr(BalCy) = Pe(BulCa) = -+ = 5,
PH(C1[Co) = P(CAICy) = Pr(CslCa) = -+ = =,
r—1

Pr(D1[Co) = Pr(Ds]Cy) = Pr(Ds|Cy) = -+ =

When = is even, the procedure would continue until the least significant digit is
reached, where the last digit is a 0 with a probability of % and a nonzero with a probability
of "—;—1—, corresponding to ¢, = 0 and ¢, = 1, respectively. Then,

Aln,r) = n+Pr(Do) + Pr(Co) (Pr(Ds[Co) + Pr(C1|Ca) (PH(DsIC1) + -+ ) )

-n+1+1+1+ + L
- r 3 s pr-1

rzil(l-v—‘l;)'

= n+
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When = is odd, this procedure can be repeated to the end of the original radix-r form
and the length of the canonical SD form is,

AMn,r) = n+Pr(Do)+ Pr(Co)(Pr(DIICO) + Pr(C,ICo)(Pr(D,|Cl) + ))

1 1 1 1
=nt+-+F3+F5+-+
r o or

r—r—f(l B r"l"l)'

rn—?

I

B

+
»

a
When the radix r = 2, we have the following formula for the average length of a

canonical BSD form whose binary expansion is of length n (n 2 0):

2 1
n + 5(1 - 2_") for n even,
An,2) =

n+ g(1 - 2—1-—) for n odd.



Chapter 7

Realization of Finite Field

Exponentiation

In this chapter, we present efficient architectures for exponentiation of a primitive ele-
ment of a finite field. We consider two different representations of the element — one
using the polynomial basis and the other using its weakly dual basis. Parts of this chapter
have been presented in [80, 79].

7.1 Brief Review

Many cryptosystems require extensive exponentiation in finite fields (20, 3]. High-speed
computation of this function in large finite fields, which are necessary to achieve a high
level of security, requires hardware implementation. A special case of exponentiation in

finite fields is that the base a is a root of the primitive polynomial F(z) generating the
m-1

field F2m [69, 50]. Given a primitive element & € F,m and an integer H = Z h:2,0 <

i=0
H < 2™ — 2, the exponentiation function of « is given as y = af € F3m = Fam — {0}.

97
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The basic scheme for computing the exponentiation function af in Fym is the Square
and Multiply algorithm. The number of multiplications involved in this algorithm is
determined by the number of 1’s in the binary representation of the exponent f.

When a polynomial basis or its weakly dual basis is used to represent the field ele-
ments, multiplication with a is simple and squaring can be implemented in a bit-parallel
fashion [50]. If a normal basis is adopted, the squaring is trivial; the multiplication is
however quite complicated. The multiplication, however, can be simplified when an op-
timal normal basis [7] is used. Using the square and multiply algorithm, architectures for
exponentiation of a primitive root with polynomial basis and normal basis can be found
in [69, 50]. Since a is a fixed element, one method to compute af is to precompute
the conjugates of a and store them in a memory, and then multiply together some of the
conjugates according to the binary representation of H [69]. The multiplications can be
performed in a parallel fashion with a number of multipliers arranged in a binary tree
form. Processor-time tradeoffs can be made by adopting a subset of the full multiplier
tree.

Other methods for exponentiation of a primitive root are based on lookup tables
(LUTs) [50] and linear feedback shift registers (LFSRs) [50]. The former is advanta-
geous only for small m, since the size of the LUT is proportional to m x 2™. The LFSR

based method requires A multiplications to compute o = ga...a. It is suitable for

small values of m and under the condition that the computation tg'ne is not critical {50].
It is worth mentioning here that the binary representation of H is used in all the above
algorithms.

On the other hand, binary signed digit (SD) representation of H whose symbols be-
long to {—1,0, 1} has been used in exponentiation % when the base b is a conventional
real number [17]. In the binary SD number system, H may have several representations;
however, the minimal binary SD representation, which has the least number of nonzero
symbols, can reduce the average number of nonzero symbols to ? from -'2"-‘ contained in
the conventional binary representation [28]. . Consequently, the use of the minimal SD
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representation results in fewer multiplications required for the computation of exponen-
tiations in the real number field.

However, introducing SD number system, especially with a higher radix, into expo-
nentiation in F,» would involve a multiplicative inversion operation, which is commonly
known to be difficult. To solve this problem, in this chapter, we present novel architec-
tures as well as new algorithms for exponentiation of a primitive root in Fom. Using
the minimal binary SD representation and bidirectional LFSR, an architecture for the
exponentiation is developed. This architecture has a low size complexity and can effec-
tively reduce the number of underlying operations. Consequently, it is suitable for low
power implementation using VLSI technologies. Furthermore, the use of the minimal
radix-4 SD representation of the exponent is investigated and an extended bidirectional
LFSR is devised to perform multiple operations that arise due to the use of the radix-4
representation. The attractive feature of the extended bidirectional LFSR is that a multi-
plication with a primitive root, or its square or its inverse or its inverse-and-square can be
performed with one single shift operation. Using this LFSR, a second architecture for ex-
ponentiation in Fam is developed. With a modest extra size complexity, this architecture
has the potential of significantly reducing the total computation time as well as power
consumption, when implemented using VLSI technologies. As a result, the proposed ex-
ponentiation architectures are suitable when low power and compact configurations are

of prime concern, such as personal communication systems.

7.2 Efficient Representations of Exponent

7.2.1 Algorithm

One special case of the redundant SD number representations (discussed in §6.1.1) isr =
4, and e = 2, which uses radix 4 and the minimal signed digit set { -2, —1,0, 1,2}. This
class of SD representations is well known and has been applied to the design of computers
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[8]. In this section, we will give an explicit definition of the reduced redundancy minimal
radix-4 SD form and an algorithm to generate the canonical representation, as well as
some properties.

Definition 7.1 The reduced redundancy radix-4 SD number K = k,_1kq—1...ko, ki €

n—1

{2,1,0,1,2}, is a minimal radix-4 SD representation, if Z s; is minimized, where T 2
i=0

—z and

1 fork; #0

8 =

0 otherwise

A method called the extended canonical recoding to obtain the radix-4 SD represen-

tation from a binary number H = Apn-1hm—2 - .. ho is given below.

Algorithm 7.1
Step 1. Use the canonical recoding to obtain the canonical binary SD representation
of H [67]:

{hm-lhm-z ‘e ho} - {gmgm-l .. -go};
Step 2. Compute &k; = g3; + 2¢g2i41 fori =0,1,2,..., l"—z-’J (gm+1 = 0 for m even).

The radix-4 SD form H = k{m k=), ...k computed from Algorithm 7.1 is called
the (reduced redundancy) canonical radix-4 SD representation. Circuits to transform a
binary number to its canonical radix-4 SD representation using Algorithm 7.1 are shown
in Fig. 7.6. An example of using the extended canonical recoding to obtain the canonical

radix-4 SD form is given in Example 7.1 in the next subsection.

7.2.2 Features of minimal radix-4 SD form

Lemma 7.2 Every integer has a unique canonical radix-4 SD representation.
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Proof: {gmgm-1...9go} computed in Step 1 is a canonical binary SD number and has
the property: gj+19; = 0, for j = 0,1,... ,m — 1 [67]. Then the possible values of
gai+192i, in Step 2, are 00,01, 10, 01, and 10, and correspondingly, k; = 0,1,2,1, and 2.
It is obvious that there is a one-to-one correspondence between gi;g2i+1 and k;. Thus,
{kizmk\m)_1 ... ko} is uniquely decided by the {gmgm-1 - - - go}. The lemma follows by
noting that any binary number H has a unique canonical binary SD form {gmgm-1 - - - 9o}
[67]. O

Lemma 7.3 Canonical radix-4 SD form is a minimal radix-4 SD representation.

Proof:  From the proof of Lemma 7.2, we know that k; = 0 if and only if both g,;
and g4+, are zero, and k; # 0 if and only if either g; or g2:41 is a nonzero digit, and
moreover, g»; and g24; cannot be both nonzero. Thus, the canonical radix-4 SD form
{kim k2 )-1 ...ko} has the same number of nonzero digits as its canonical binary SD
form {gmgm-1 - -.g0}-

For the sake of contradiction assume that the canonical radix-4 SD number H =
kymikim|_y ...ko is not a minimal SD representation. Let {kk,_, ...kg} be another
radix-4 SD representation of A, which is a minimal radix-4 SD number. Then there are

fewer nonzero digits in {k,k,_; .- . ko} than those in {k|= k= |1 . .. ko} orin {gmgm-1 - -
Applying the conversion rules 2 = 10, T = 01, 0 = 00, 1 = 01, and 2 =
10 to {k,k,_, ...ky}, we obtain a binary SD form {ga,, gz, - -- 9o} With the same

number of nonzero digits as {k,k._, ...ky}. Then the number of nonzero digits in
{92m4192n - - - o} is less than that in {gmgm-1 - - - o}, Which is however impossible since
H = gngm-1 - - - go is a minimal binary SD representation. Thus the lemma holds. O

Note that 2-bit Booth [8] form uses the same digit set {2,1,0, 1,2}. The following

lemma states a comparison between these two SD representations.

Lemma 7.4 The average number of nonzero digits in 2 minimal radix-4 SD number is
asymptotically 11% less than that of its 2-bit Booth form.

-go}-
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Proof:  First, we obtain the number of nonzero digits in the 2-bit Booth form. Let
X =zpn-1Zm-2...2Z0, z; € {0,1},7 = 0,1,... ,m—1, be any binary number of length
m, and Y its 2-bit Booth form. Let the two consecutive bits z2;,122; in X correspond to
the digit y; in Y, where y; € {2,1,0, 1,2}. The conversion rules for the 2-bit Booth form
are given in Table 7.1 [8].

K || T2ier Z2i | T2ie1 || ¥:
1 0 0 0 0
2 0 1 0 1
3 1 0 0 2
4 1 1 0 [[1
5 0 O 1 1
6 0 1 1 2
7 1 0 1 1
8 1 1 1 0

Table 7.1: Radix-4 SD number encoding using 2-bit Booth algorithm [8].

(a) When i = 0; z2;_; = z_, = 0, and either of z, and z, with equal probability can
be 0 or 1, corresponding to the cases & = 1.2. 3. 4. Then it is obvious from Table 7.1 that
Pr(yo # 0) = %, since each case of k£ = 1,2, 3, 4, has equal probability.

() Whenl <1 < Y—l(meven),orl <t < ——2-—-1(modd); each of
Tai41,2Z2; and zo;_, has equal probability to be 0 or 1. Consider in Table 7.1 all the
values of k i.e., 1,2,3,4,5,6, 7,8, each of which has the same probability, then we have
Pry #0) = § = §.

(c) When i = -75"- (m even); zy; = Zzi+1 = 0, and z3;.; can be 0 or 1, with equal
probability. Consider the cases & = 1,5 with equal probability in Table 7.1, obviously,
Pr(y: #0) =

(d) When i = ﬂé’—l (m odd); z2:4+; = 0, and with equal probability, either of z;
and z,;_, can be 0 or 1. Consider in Table 7.1 the cases k = 1, 2, 5, 6, which are equally
likely, thus, Pr(y: # 0) =
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Let Ly be the average number of nonzeros in Y, then we have

Ly = %xl+%x('—2-n—1)+%x1=§m+%, m even,
%x1+g—x(ﬂ2_—1—1)+%xl=§m+g, m odd.

Therefore, for any large m, Ly = %m + 1'16 - g-m.

Thus, the lemma follows by noting that the radix-4 minimal SD number of length !2"’-
has average % nonzero digits. O

Below is an example which shows that the nonzero digits in 2 minimal radix-4 SD
number are fewer than those in its 2-bit Booth form. It is worth noting here that the
(reduced redundancy) minimal radix-4 SD number has fewer nonzero digits and shorter
length than the corresponding 2-bit Booth form, since they both use the same symbol set
{2.1,0,1,2}.

Example 7.1 Consider the binary number 100111001000110110. Its canonical binary
SD form is 101001001001001010. Then, from the extended canonical recoding, its
canonical radix-4 SD representation is 22102102 2. According to the conversion ta-
ble for 2-bit Booth algorithm shown in Appendix A, however, its 2-bit Booth form is

1221121122

Thus the 2-bit Booth form has three more nonzero digits than the canonical radix-4 SD
representation. (Also notice that the 2-bit Booth form is longer than the canonical radix-4

SD representation by one digit.)

Lemma 7.5 Let a number H, in the conventional binary representation, be of length
m. Then, for large m, the average length of its canonical radix-4 SD representation is

m_ 7
7tz
Proof: Let H = hp—1hm—2...ho be a binary number of length m with its leading bit

Rm—1 = 1. Let L; and L, be the lengths of the corresponding canonical binary SD form
and canonical radix-4 SD form of H, respectively. From Theorem 6.2 and for m > 1,
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Ly =m+% Or Pl =m)=4andPr(Ly = m+1) = . Whenm is even,
Ly=3xP4+2(%1+1)=T+2 Whenmisodd, L, = 21
=g x P +5(F+1) = F+3 Whenmisodd, [ = B2

Therefore, for any binary number of length m (large m), its canonical radix-4 SD

representation has the average length of m; = % (’-2"-' + % + 3+ %) =%+ 1?2 m]

The use of the minimal radix-4 SD representation of H is advantageous over the 2-

bit Booth form as stated in Lemma 7.4. The former can also reduce the computation

time for exponentiation by about half of what is needed using the minimal binary SD

representation (Lemma 7.5).

7.3 Exponentiation Algorithms

In the squaring and multiply scheme of exponentiation, a multiplication operation results
from each nonzero digit in the exponent. Thus an exponent in minimal SD representation
would require a minimum number of multiplications. Minimal binary SD representation
can be obtained from its conventional binary form using the canonical recoding [67].
An alternative method for the conversion is Booth’s algorithm which usually yields sub-
optimal but not minimal SD number representation [16].

The algorithm for computing a, where a is a primitive root in F;m and H is repre-

sented as a minimal SD number, is given below.

Algorithm 7.2
X=1; \*1€Fm x\
FOR i=m TO 0 DO
{
X=X=*X,;
X = X + a%; \* g € {-1,0,1} *\
}

The final value of X is of.
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When the exponent is represented in the minimal radix-4 SD form, an analogue of

the “square and multiply” algorithm is given below.

Algorithm 7.3

X=l; \* IEFgm *\

FOR i = [?J TO 0 DO
{
X = X%
X = X xa; \»k; € {2,1,0,1,2} =\
}

The final value of X is af.

Notice that the number of the fourth power operations in Algorithm 7.3 is only about
half of the number of squaring operations in Algorithm 7.2. This feature can potentially
reduce the dynamic power dissipation of the overall exponentiation structure, when im-
plemented in VLSI technologies. However, Algorithm 7.3 requires a few finite field oper-
ations (e.g. multiplication with @*2?) which were not required in Algorithm 7.2. Efficient

realization of these operations is discussed in the next section.

7.4 Implementation Using Polynomial Basis

Since a is primitive, there is a one-to-one correspondence between H and y = o in the
range 0 < H < 2™ —2. In practical applications, H usually satisfies ged(H,2™ —1) =1
for security considerations {69]. Recently proposed structures for exponentiation are to
use the “square and multiply” scheme. However, the exponentiation of a primitive root,
as we show here, can be calculated with the exponent represented by a minimal SD
number which can effectively reduce the underlying maltiplication operations.

Bit-parallel squarer and bit-parallel fourth power A polynomial basis bit-parallel
squarer has been discussed in §5.3. When f(z) is chosen as an irreducible trinomial
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z™ + z* + 1, by Theorems 5.7 and 5.8 we know that a bit-parallel squarer in Fzm can be
implemented with fewer than %m XOR gates and a propagation delay of not greater than
2Tx.

One way to obtain a bit-parallel fourth-power (FP) is to cascade two bit-parallel squar-
ers. Then the complexities of the resultant architecture double those of a bit-parallel
squarer.

If we consider f(z) of a general form, the fourth power is D(z) = A*(z) mod
F(z)=ao+a1z* +a28 +... + argz‘r?] + ...+ 6m-1Z2*™ * mod F(z), 0 < deg
D(z) < m — 1, and the corresponding (m — [%] — 1)-by-m reduction matrix P is
defined by

(419, 2140 pam-\T = P (1, z,... 2™ )T,
Do Po, v Pom-1
where P = Pro Put o Prm-t
| Pm~[21-10 Pm~[3]-11 °°° Pm-[R]-lm-1
A m-1
The coefficients of D(z) = z d;z* can be obtained by
=0

@k + armpoi+ta[paPrit o+ GmaPpim g, 2 is a multiple of 4,

armipo; + a[2141Pri + 00+ GmorPyamy g s otherwise,
where: =0,1,2,... , m — 1.

Whenm = 4n+1,1 = 0,1,2,3, and n € N, the upper limit of the size complexity of
the fourth power is %m’ - %m, %m’ - %—m+ %, %m’ - %m+ %, and %m’ —-m+ %, XOR
gates, respectively, and the time complexity for all cases is at most [lng2 (l}mJ + 1)]
Tx for arbitrary polynomial F(z).
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The complexities can be significantly reduced when we choose f(z) as an irreducible
trinomial or an irreducible pentanomial of the form f(z) = ™ + z*+? 4+ z*+! + 2% 4+ 1.
When such a polynomial is of degree which is a Mersenne exponent, the bit-parallel
fourth power complexities are given in Table 7.2.

For the fourth power (FP) module, let Srp denote the size complexity in terms of the
number of its 2-input XOR gates and Trp the time complexity in terms of the number
of levels of XOR gates needed to realize the FP module. Table 7.2 shows the values of
Srp and Trp when f(z) is an irreducible trinomial or pentanomial whose degree is a
Mersenne exponent for Mg < deg(f(z)) < M,s, where M; denotes the jth Mersenne
exponent. Note that an irreducible polynomial is also a primitive polynomial if the degree

is a Mersenne exponent.

l_ z;‘-{-:ck-}-l_ ™ 4 gt g ophtl L Rk L] |
m,k Sep/m | Tep m.k Spp/m | Trp
17,3 1.35 2 17,1 2.24 3
17.5 1.35 3 17.6 5.00 3
17,6 1.53 3 19.5 4.84 4
31,3 1.32 3 31,1 2.36 3
31.6 1.36 2 31,13 | 6.74 4
31.7 1.42 3 89,10 | 4.55 3
31,13 | 1.68 2 89,37 | 6.90 4
89.38 | 1.76 2 || 107,14 | 4.57 3

1271 1.24 2 || 107,19 | 4.69 4
1277 1.29 3 107,23 | 4.77 4
127,15 | 1.34 3 || 107,39 | 6.21 4
127,30 | 1.42 2 [ 107.45 | 7.02 4
521,32 | 1.29 2 || 127,35 | 5.19 4
521,48 | 1.32 2 || 127,52 | 6.80 4
521,158 | 1.53 2 | 521,18 | 4.34 3
521,168 | 1.56 2 || 521,174 | 5.27 4
607,105 | 1.38 2 || 521,204 | 6.42 4
607,147 | 1.42 3 || 607,73 | 4.53 2
607,273 | 1.85 3

1279,216 | 1.38 2

1279,418 | 1.57 2

Table 7.2: Table for bit-parallel fourth power complexity when f(z) is a primitive trino-
mial or pentanomial (k < -’2’5) whose degree is a Mersenne exponent.
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From Table 7.2, one can choose certain primitive trinomial f(z) for which the FP
module needs only l%m XOR gates or fewer and has a time delay of at most two levels
of XOR gates. However, if a pentanomial is used, according to Table 7.2, the FP module
would require as many as about 5m XOR gates and cause a time delay of four layers of
XOR gates.

Structure for exponentiation with a binary SD exponent Let F(z) and a be given
as above, then {1, a,a?....,a™"'} is a polynomial basis. Let A be a field element in Fym

m-1 m-1 m-1
and A = ) ad. Since F(a) =0, ityields ™ = Y fic' and 2™} = ) finia'.
=0 =0 =0
Then one can easily obtain
m-1 )
Aa =) [(1 - 8:0)aie1 + amr fila, (7.1)
=0
m-1 )
Aa~t! = Z[(l = 0im—-1)8i+1 + Gofinr]’, (7.2)
i=0

where d; ; is the Kronecker delta function which is | when ¢ = j, and O otherwise.

Equations (1) and (2) show how a field element can be multiplied with @ and a™!.
The corresponding realization using shift register is shown in Fig. 7.1. The LFSR is
bidirectional which is referred to as BiLFSR and initially loaded with A. If a rightward
shift is applied, the BiLFSR will have Aa, while a leftward shift will result in Aa~. It
can be seen later that this BiLFSR is a building block of the structure for exponentiation
of a primitive root & whose exponent is represented as a binary SD number. More on the
BiLFSR can be found in [34].

The algorithm for the exponentiation of a primitive root with the exponent repre-
sented as a binary SD number is shown in Algorithm 7.2. The corresponding structure,
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h fa fm—t
e —H HOH A -

Figure 7.1: Bidirectional LFSR (BiLFSR) for multiplying a field element with a primitive
root « and its inverse a~t.

or EXP1 as we call it, is shown in Fig. 7.2. EXPI has a BiLFSR for multiplication with
a*!. The direction of a shift depends on the sign of the nonzero digit of the SD expo-
nent H. The bit-parallel squaring is employed for faster operation. Since EXP1 uses, the
minimal binary SD form of the exponent, the average number of multiplications is ? as

opposed to & when the exponent is in the conventional binary form.
PP 5 P ary

m Vi
(BiLFSR is ini-
tialized with ‘1°) <
F 77 | BiLFSR Squarer
N
H in minimal m
binary SD form
o

Figure 7.2: The Structure EXP1 for computing o with H being converted to a minimal
binary SD number.

To further reduce the number of operations in the exponentiation in finite fields, a
simple technique can be used on the exponent A before the exponentiation. If H is
greater than half of 2™ — 1, let H « H — 2™ 4 1, which results in performing square
and multiply algorithm at the other end of ‘1’ (= a®"~1!), rather than 1 = o®. This
technique would save one square and multiply operation on average. More significantly,
when H is very close to 2™, or 2™ — H is very small, only about |log,(2™ — H + 1)]
square and multiply operations are needed using the modified method. For exampie, to

compute a*"" =%, where a is a primitive element in Fzi000 , the modified method requires
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only about [log,(2!°% — H + 1)| = |log, 6] = 2 square and multiply operations, rather
than about |log, H| = 999 square and multiply operations. To use this method, ali that
is needed is to reduce the exponent as H « H — 2™ + 1 before applying Algorithm 7.2
to it to comnpute the exponentiation.? This simple operation can be combined into the
exponent conversion with little extra hardware, since all that is needed is to change H =
hm-1Rm-2 ... hq into its two’s complement if Ap,—; # 0.

Complexity of EXP1 Here we give the size and the time complexities of EXP1. For the
BiLFSR and Squaring modules, the total number of XOR gates is at most l_%—J m— I.%J +
Wp — 2, where Wp is the Hamming weight of F(z), together with m 1-bit registers. If
we choose the clock cycle period as the same as the delay of the squaring operation T's
(for example, exponentiation in Fji000, Ts < I-logz ( I.mém J + 1)] x Tx = 9Ty, where
Tx is the delay in one XOR gate), the exponentiation can be completed in {log, H| + %
clock cycles on average.

fF(z)=1+zF+z™,1<k< l-'g"-'J , at most 31"1 XOR gates besides m 1-bit reg-
isters are required, and the delay of the squaring operation T's < 2Tk. It both increases
the computing speed and reduces the size complexity significantly. Since a multiplication
operation (either with @ or @™!) is due to a nonzero digit in the SD number representation
of the exponent, the number of multiplication operations would be minimized using the
minimal SD number representation and the structure can potentially reduce the dynamic

power dissipation when implemented in VLSI technologies.

Structure for exponentiation with a radix-4 SD exponent Since F(«) = 0, we have

m~1

@™t = [fmrfi + (1= bi0) fimi]a’ (7.3)
=0

*A similar idea can be applied to Algorithm 7.3 where radix-4 exponents are used.
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m-1
a? = [fifirr + (1= Gimor) firale (7.4)
i=0
Thus from (1), (2), (3) and (4), we obtain

m~1

Aa® =) [(1 = 6io — 8:1)8iz2 + G2 fi + Gmo1((1 = 8i0) fict + fm-1 i)l

=0

m-1
Aa~? = Z[(l — bim-2 — Sim-1)@is2 + a1 fir1 + 6o((1 = &imm1) firz + fifinr)]
i=0

Fig. 7.3(a) shows the structure for multiplications with a? and a~? using the poly-
nomial basis. The field element, whose coordinates are stored in REG, is multiplied with
a? when a right-shift is applied and multiplied with a~? when a left-shift is applied.
Comparing Fig. 7.3(a) with Fig. 7.1, one can see that the former has a BiLFSR for a*!
multiplication embedded in it. Thus, with minor modification it can be used for both
a*! and o*? multiplications as shown in Fig. 7.3(b), which is referred to as the Extended
BiLFSR or XBiLFSR. When the switches are at upper positions (solid lines), the circuits
are configured to perform a*? multiplications. When they are at lower positions (dotted
lines), the upper branch of the circuits is disconnected and the circuits are able to mul-
tiply with a*?. The switches are controlled by the signed digits of the exponent. For
simplicity, the control circuitry is omitted from the figure.

When the exponent is represented as a minimal radix-4 SD number, the XBiLFSR can
be used to realize Algorithm 7.3. The corresponding structure (referred to as EXP2) is
shown in Fig. 7.4. Here the XBiLFSR is used for the multiplication with a*! or o*2, and
the bit-parallel fourth power replaces the squaring for performing power of four. The
sign of the digit in the radix-4 SD exponent would control the shifting directions while
the absolute value of the nonzero digit would decide switch positions in the XBiLFSR.
The number of clock cycles needed in EXP2 is about half of that of EXP1.
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h fa
REG
h
(a)
f2
REG\ [ I ANV AN
fa
()]

Figure 7.3: (a) Circuits for multipling a field element with a? and a~2; () Circuits for
multipling a field element with a*! and a*?.

Complexity of EXP2 There are at most 2m — 2 XOR gates, together with m 1-bit reg-
isters in the XBIiLFSR. If F(z) is chosen as a trinomial, XBiLFSR would only need two
XOR gates and m 1-bit registers. The size complexity of the fourth power module is at
most l%m J m — l%m J (XOR gates), which also heavily depends on the choice of the
field-generating polynomial. The system clock cycle period should be no shorter than
Trp < [logz (l%m_l + 1)] x Tx, where Trp is the delay of a fourth power operation.
The time required for an exponentiation would be %[logz H| + 1T2 clock cycles on av-
erage. If a primitive trinomial is chosen, the size complexity would be not greater than

l%m gates and propagation delay is within 4Tx.

Exponent conversion The exponent H is represented as a minimal binary SD number
in EXP1, and as a minimal radix-4 SD number in EXP2. Where EXP1 or EXP2 is only a
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talized with *1°)
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radix-4 SD form
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[44

Figure 7.4: The Structure EXP2 for af with H represented as a minimal radix-4 SD
number.

part of a larger system, A might be available in the form of a conventional binary number.
In such cases, simple extra circuitry can be used to obtain the required SD representation
as briefly explained below.

Assume that bits hgh; . . . Ay, are stored in an m stage shift register R (Fig. 7.5) from
where these bits sequentially enter Converterl. The latter simply realizes the canonical
recoding, and can be readily implemented using 2 flip flops and a few logic gates ar-
ranged in two levels. The outputs of Converterl, each of which consists of two bits, are
pushed into the stack S1 from where EXP1 gets H in the required SD form. The stack

allows the SD symbols enter EXP1 in the reverse order.

R . G
| [ a5 . s
R r
Converterl ?. EXPI
Sl
g0

Figure 7.5: EXP1 with a converter that performs the canonical recoding.

For EXP2, to take the advantage of its lower computation time which is about half
of that of EXPI, bits hgh; . . . hm—; are stored into two l-%] stage shift registers — one
register with hohahy . .. and the other with A hshs . .. (see Fig. 7.6(a)). These two reg-
isters are shifted in parallel to allow two consecutive bits to enter Converter2 every clock
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cycle. Converter2 realizes the extending canonical recoding to generate the sequence of
symbols kok; ... k2| each of which consists of three bits. These symbols are stacked in
S2 and then enter EXP2 in the reverse order. Converter2 can be implemented using 4 flip
flops and a few logic gates as shown in Fig. 7.6(b). Compared to Converterl, the gate

count is almost doubled in Converter2.

s “ees o L k;
== = 1 haisy 3 y 3; >
b,__ ...... n

Converter2 k.l 2

Assume that m is even. EXP2

o
L) O

hai D Q =|
SO

Ra:
2041 b Q

kioy

D Q

lms by hg

hg M

Figure 7.6: (a) EXP2 with a converter that performs the extended canonical recoding; (b)
Circuits for the extended canonical recoding (Algorithm 7.1).

To pipeline exponentiation operations, an extra stack (like S1 with Converterl or
S2 with Converter2) can be used. Notice that the structures of Converterl as well as
Converter2 are independent of the values of m and do not slow down the clock speed at
which EXP1 and EXP2 operate.
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If one could use algorithms for obtaining the required minimal SD representations
by scanning the sequence Ahqh; ... hy,—; from the most significant bit, there would not
be any need for stacks S1 and S2; consequently, the time to reverse the order of the SD
symbols could be saved. However, it seems the implementation of such algorithms may
not be simple. As a trade-off, one can use the 2-bit Booth algorithm which, however,
generates about 11% more non-zero symbols on average as compared to the extended

canonical recoding as stated in Lemma 7.6.

7.5 Realization Using Weakly Dual Basis

Exponentiation algorithm An analogue to Algorithm 7.1 by using WDB is as follows:

Algorithm 7.4

X=1 \* 1€F;m inPB =\

FORi = [?J TO 0 DO
{
X =X
X*=T-X, \* basis conversion: from PB to WDB *\
X" =(X a5 \* & €{2.1,0,1,2} *\
X=T"1.X" \* basis conversion: from WDB to PB =\
}

The final value of X is a.

Since muitiplication by o is achieved with weakly dual bases, basis conversions be-
fore and after multiplication operation at each iteration are necessary. Basis conversions
are usually realized by multiplying by the conversion matrix T or the inverse of T'. From
Lemma 4.1 we know that those matrix operations can be a simple permutation of the
coordinates if a primitive trinomial is chosen as the generating polynomial.
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If the multiplication operations are efficiently implemented, we can then increase
the computing speed as well as potentially reduce the dynamic power dissipation of the

overall exponentiation structure when implemented in VLSI technologies.

Multiplication in weakly dual bases Following the discussion in §4.2.1, multiplica-

tions of A by some powers of a can be obtained below.

Te(ra*14) = af,  0<j<m-2,

(@A); = m-1 (7.5)
" | TamA) = Y fap j=m-y
=0
Tr(ya?~'A) = aj_, 1<j<m-1,
(a”tA); = m-1 (7.6)
T | Tata) = Y fnal =0
=0
( -
Tr(ya?*?A) = a},, 0<j<m-3,
m-1
(a?A); = J Tr(ya™4) = 2; fia} j=m-2,
m-—1
Te(va™A) = Y (fir + fmo1£)0] + fofmorag G=m—1;

\ =1

)
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Tr(yai=24) = aj, 2<j<m-1,
m-—1
(a=4); = { T ) = 3 fanc] i=1

J

=0
m=2

Tr(va2A) = Y (fuz+ fifi)a + fiaf., §=0.

\ =0

(7.8)

Equations (7.5) and (7.6) can be readily realized as shown in Fig. 7.7(a). The LFSR
is bidirectional which is referred to as (Fibonacci type) BiLFSR. The coordinates of A
with respect to the weakly dual basis are initially loaded into BiLFSR. If a rightward shift
is applied, the BIiLFSR will have A, while a leftward shift will result in Aa~!. BiLFSR
can be extended for realizing multiplication by a2 and a~2 (Fig. 7.7(b)). By combining
these two LFSRs, we obtain a structure for the multiplication of A with both a*? and
a*?, which is referred to as (Fibonacci type) extended bidirectional LFSR or XBiLFSR
and shown in Fig. 7.7(c). When the switches are at upper positions (solid lines), the
circuits are configured to perform a*? multiplications. When they are at lower positions
(dotted lines), the upper branch of the circuits is disconnected and the circuits are able
to multiply with a*!. The switches are controlled by the signed digits of the exponent.
For simplicity, the control circuitry is omitted from the figure. When the exponent is
represented as a minimal radix-4 SD number, the XBiLFSR can be used to realize the
multiplication operation step in Algorithm 7.4.

When the generating polynomial f(z) is a trinomial, the XBiLFSR can be built with
only two two-input XOR gates and m 1-bit registers and minimal clock period can be
chosen as no shorter than the time delay of one layer of XOR gates.. When f(z) is
chosen as a pentanomial, four more two-input XOR gates are required to construct the
XBILFSR, while the clock period should be equal to or longer than the time delay caused
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by two layers of XOR gates.

Basis conversions Since the product obtained from the XBiLFSR is in weakly dual ba-
sis and the fourth power operation requires polynomial basis, intermediate results should
be converted between the weakly dual basis and the polynomial basis before and after
the multiplication operation. The conversions of bases can be greatly simplified if we
choose a proper generating polynomial f(z).

From the discussion in § 4.5, we have the following two lemmas:

Lemma 7.6 [60, 77] Let f(z) = z™ + z* + 1 be an irreducible trinomial in Fom and «
its root. Then for the polynomial basis {a'}, there exists a weakly dual basis and it has

the form: {a™®,a™1), ... ,a*™~1} wheren(j)=k—-1-jmodm,0<j<m-1

In Lemma 7.6, the permutation can be done with a cyclic shift of lines with no time delay.
Since n(7(i)) = a#(k-i—1modm) = [k -1 - (k—i— 1) mod m = i, we have
w~1(2) = n(¢) = k ~ ¢ — 1 mod m. Therefore the same permutation can also be used to

perform the conversion from the weakly dual basis back to the polynomial basis.

Lemma 7.7 [60] Let f(z) = z™ + z**2 4 z**! + z* + 1 be an irreducible pentanomial
and « its root. Then for polynomial basis {a'}, there exists a weakly dual basis which
has the form: {f, 51, ... ,Bm-1}, where

(14+at forj =0,

5 = ak-I forl <j <k,

=) a™-itk fork+1<j<m-2
| &**' o™ forj=m -1

When f(z) = z™ + z*¥? + z**1 + zF + 1, it can be checked that two two-input XOR
gates are required to realize the basis conversion from the polynomial basis to the weakly
dual basis or from the dual basis back to the polynomial basis.
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System architecture and its complexities When a is a root of a trinomial, the archi-
tecture for exponentiation using weakly dual basis is shown in Fig. 7.8, which is called
EXP3. Here the XBiLFSR is used for the multiplication with a*! or a*2, and the bit-
parallel fourth power for performing power of four. The sign of the digit in the radix-4
SD exponent would control the shifting directions while the absolute value of the nonzero
digit would decide switch positions in the XBiLFSR. The permutation block is to realize
basis conversions between the polynomial basis and the weakly dual basis, which is a
simple re-arrangement of lines. If the polynomial basis is generated by a primitive pen-
tanomial of the form f(z) = z™ + z**2 + z**! 4+ z* + 1, the two permutation blocks
would be replaced by two slightly more complicated basis conversion blocks which can
be implemented with four two-input XOR gates. Fourth power module is implemented
in bit-parallel fashion with combinational logic. Its time delay would determine the min-
imum period of the system clock.

The time required for an exponentiation would be about %-log2 H clock cycles on
average if the exponent H is available in its minimum radix-4 SD form. When the gen-
erating polynomial is a primitive trinomial whose degree is a Mersenne exponent, the
FP module needs fewer than lg-m XOR gates and has a time delay of at most two levels
of XOR gates. Consequently, the size complexity of the proposed system is less than
(1%m + 2) XOR gates, together with m 1-bit registers, and the system clock period can
be chosen as Tjock 2> 2Tx0R. Where TR is the time delay of one layer of XOR gates.
When one primitive pentanomial in Table 7.2 is to be used as the generating polynomial,
substantially more gates are required to implement FP module and XBiLFSR. The system
complexity can be as much as (5m + 6) XOR gates and m 1-bit registers. The system
clock period should be chosen as no shorter than the time delay of four layers of XOR
gates.

When the generating polynomial f(z) is an irreducible trinomial, the proposed weakly
dual basis method in this section achieves time and size complexities which are equiva-

lent to those described in the last section. Using weakly dual basis rather than polynomial
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basis, the proposed method provides an example of the equivalence in the complexities

of implementation of many finite field operations by using different bases.

7.6 Comparisons

In this section, the proposed exponentiation schemes are compared with the existing
schemes for similar operations which have been briefly reviewed in §7.1. In the follow-
ing discussion, it is assumed that for an arbitrary F,m the gate count for a bit-parallel
multiplier using either a polynomial or normal basis is proportional to m? and that for a
bit-parallel squarer using the polynomial basis is proportional to m. (It has already been
mentioned that squaring using normal basis is free of cost.)

In the full-parallel scheme of stored conjugates method [69, 50], let L be the delay
due to an m-bit multiplier, then the time complexity of an exponentiation is proportional
to L x [log,(m — 1)], where [log,(m — 1)] is the depth of the multiplier tree. If the
bit-parallel multipliers are employed, L would be greater than both T's and Trp, where
Ts and Trp are the time delays of the squaring operation and the fourth power opera-
tion proposed in this paper, respectively. While [log,(m — 1)] would be much less than
log, H, and the total time of exponentiation might be less than those of our proposed
structures, the gate count of the bit-parallel multiplier tree is, for an arbitrary F(z), pro-
portional to m® for both polynomial and normal basis multipliers, which is much higher
than those of our proposed methods (whose complexities are proportional to m?). When
trade-off is made in the stored conjugates methods by using a smaller multiplier tree,
the time complexity would increase while the size complexity is still much higher than
those of our proposed methods, since the number of gates in a polynomial or normal
basis bit-parallel multiplier is proportional to m?2. If the bit-sequential multipliers are
employed, the multiplier tree has a gate count of about 4m? for a polynomial basis mul-
tiplier or 5m? for normal basis multiplier and the time for performing an exponentiation
is at least m[log,(m — 1)] clock cycles. In this case, all size and time complexity and



CHAPTER 7. REALIZATION OF FINITE FIELD EXPONENTIATION 121

consequently power consumption are higher than those of our proposed structures. An
additional memory of m? bits is also required for the stored conjugates methods which
we do not take into consideration for comparison.

If the squaring and multiply scheme (Algorithm 7.2) is adopted, both the polynomial
basis and normal basis can be used. An exponentiation structure with the polynomial
basis is presented in [50]. The squaring module is the same as that of the structure in this
paper. The multiplication with a has a simple non-LFSR structure with complexity of
Wr—2 XOR gates, where Wr is the Hamming weight of F'(z). At least one m-bit register
is required to temporarily store the intermediate results and support the iterations. The
time complexity is about the same as that of EXP1, which is (|log, H ] + 1)Ts, where T's
is the delay caused by one squaring operation. However more multiplication operations
would be performed and therefore more power dissipation would be required compared
with EXP1. If the normal basis is used, the squaring is readily implemented with a shift
of the coefficients, while the muitiplier is more complicated. It is shown in [50] that the
complexity of multiplier (multiplication with a constant) and squaring pair in the normal
basis is higher than that in the polynomial basis. Even when an optimal normal basis is
chosen, the size complexity is proportional to 3m, which is still higher than that in the
polynomial basis when the field-generating polynomial F(z) = z™ + zf + 1,k < [?J
is used.

Some specific classes of fields can be used to reduce the multiplier complexity (for
example, the field-generating polynomial is a trinomial [50] or m is a power of 2 [63]),
and the comparisons can be made in a similar way. However, it is worth noting here
that the base a is a primitive element and hence F'(z) should be primitive. As a result,
multipliers based on all one polynomials (AOP) or equally spaced polynomials (ESP) as
proposed in [35, 36] cannot be used since AOPs and ESPs are non-primitive irreducible
polynomials (except when the polynomial is of degree two).

Simple schemes for exponentiation are to use LFSR or LUT. The time needed to

compute an exponentiation using LFSR is H clock cycles, which is much more than
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those of all the other methods discussed above. This method is adequate only for small
m. The LUT method is simple in design, and it requires the use of a memory of size
proportional to mn x 2™, which might be unacceptable even when m is moderately large.

In our proposed structures using PB or WDB, the gate count for EXP1 is about 66.7%
of that of EXP2 or EXP3, while the computation time for EXP2 or EXP3 is 50% of that of
EXPI. The number of multiplications is reduced to minimum in both structures since the

minimal SD representations are employed.

7.7 Chapter Summary

Exponentiation of a primitive element has applications in cryptography. In this chap-
ter, we have presented architectures for realizing this computation for the cases where
the element is represented with respect to a polynomial basis or a weakly dual basis.
Compared to previous proposals, the new proposals have lower size complexity, shorter
propagation delay, and thus they are expected to require less power when implemented
in VLSI technologies.
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Chapter 8

Efficient Computations for Elliptic

Curve Cryptosystems

8.1 Introduction

In this chapter, the computation of my Py + maP; + - - - + mi P is considered, where m;
is an integer and P; a point on an elliptic curve forz = 1,2,... ,k. When k = 1, mP
is the primary operation in most EC cryptosystems [56]. When k& = 2, computation of
my P, + m, P, has applications in various elliptic curve signature schemes {56]. When
k = 3, the computation of m; P, + maP; + m3P; is required in verifying ElGamal
signature [57]. With & = 4, we have m, P, + .- + m4P; which has application in the
Burmester-Desmedt keying scheme [57]. In the recent past, several algorithms have been
proposed for efficiently computing mP, e.g., [59, 43, 53, 46, 32, 30, 72]. The general
idea behind these algorithms for computing m P is to find ways to minimize the number
of point operations (i.e., elliptic addition or doubling for non-supersingular curve).

In order to compute mP, Agnew, Mullin and Vanstone have applied the double-
and-add method {4], while Morain and Olivos have used the binary signed-digit (SD)

125
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non-adjacent form (NAF) to compute mP [59]. The use of the SD form is based on
the fact that obtaining an additive inverse of a given point is at little cost. Koyama and
Tsuruoka have speeded up the computation using a binary SD window scheme [46]. In
their method, first m is transformed into a binary SD form with fewer zero runs than
that of the NAF, and certain point multiples are computed and stored. Then computation
of m P is performed with elliptic doublings and additions of some of the stored values
alone.

On the other hand, Shamir has developed a novel scheme to compute multiple expo-
nentiation of the form M' M3? --- M* [57], which can be easily modified to compute
my Py + «~+ 4+ mP;. With a few extra stored values, his method can compute multiple
exponentiation in the same way as performing a single exponentiation operation using
square-and-multiply method. An extension of Shamir’s method proposed by Yen and
Laih requires more stored points by using a window method, and thus fewer steps are
needed for obtaining the final resuit {84]. An alternative to the window method is the
‘comb algorithm’ which is proposed in [48] and described in [57]. '

Efficient computation of m P has also been proposed for a class of non-supersingular
curves — e.g., anomalous or Koblitz curves [43, 53, 72, 29]. The recent work by Soli-
nas shows that computation of mP on a Koblitz curve requires only about % elliptic
additions, where n is the degree of the finite field over which the group of points is
defined [72, 29].

In the sequel, the set of 3« -rational points E(F;» ) on a nonsupersingular curve E is
considered. We assume that the point P, has prime order p and thus m, a positive integer
less than p. While P, ... , P are other points on the curve of order not greater than that
of P, and integers mg, ... ,m; are also not greater than p. Since p < 2! + 0(23!),
then the binary form of any one of m,,... ,m; is of length not greater than n. In the
sequel, for generality, we, however, denote the binary length of m; by A.

The organization of this chapter is as follows. In § 8.2, a general sliding window
method for computing m, P, + m3P; + --- + m P on nonsupersingular curves is pro-
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posed. A new SD representation with fewer zero runs is proposed and its application
to the computation of point multiples is discussed in 2S 8.3. Such computation of ad-
dition of point multiples on a Koblitz curve is considered in § 8.4. Finally, numerical

comparisons are made in § 8.5.

8.2 Sliding Window Method for Non-Supersingular Curves

8.2.1 Modified Shamir’s method

Since negating a point is equally expensive as adding a point, a simple modification of
Shamir’s method can be used to compute my P, + ma Po + - -+ + my Pe..

Let us consider the case of £ = 2. First compute points P; + P; and P, — P, and
store them along with the points P, and P,. While m, and m, are converted into their
NAFs:

my = mg)mf_’r..mé‘” and m,; = mff)m‘(:_),l...m,(f),

where m;.i) € {-1.0,1}. fori =1.2and j = 0.1.... . A

Now we have

my P, + ma Py
= [2"mlY + 2"“1m},1_)1 + oo+ 2%mi P + [2Pm) 4+ 2""1m£‘2x +o-+ 2°mPN Py
= 2’1[117.;‘”131 + mf)Pz] + 2"'1[m£‘1_)1P1 + m;:"_)ng] + s + 2°[ml()1)P1 + m‘(-_.z)Pg]

= 2(---22(mM"P, + mP P) + mY P+ m{ P + - ) + m P + m{ P,
h

Since m;-” B+ mg-z)Pz, for 0 < j < h, is either the point O or one of the stored points
or the negative of one stored points, m, P; + m2 P, can be computed in a double-and-add
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fashion.
Algorithm 8.1 Modified Shamir’s Method
Input: [ntegers m;, w, and points P;, ¢ = 1.2.... ,k.

Output: Point P =m P, + -+ + mi Ps.

1 Compute and store the points [y P, + [, Ps + -+« + g P, where I; € {—1,0.1}, not
all ;s are zeros and first nonzero /; is positive.

(3

2 Convert m; into the NAF, for: = 1.2,... .k :m; = my, ()

e m?)mg", where m;
€ {-1.0.1}, for s = 0.1.... .h; Place them as an array of size k x (h + 1).

3 Starting from the leftmost end, find the first nonzero column [mg-”, ce s mi-")]T and
its corresponding point stored as £y (or —FPy); Set L + jand P « P, (or P « —P,).

4 Do while L > 0 Begin:

4.1 Set P « 2P.

41 SetP « P + P'(or P «— P — P’)if the next column is not a zero column and
the corresponding point being stored as P’ (or — P’).

41 SetL « L -1.
End.

The performance of Algorithm 8.1 can be summarized in the following theorem.

Theorem 8.1 For computing m; P, + m2 P + « - - + my Py, the modified Shamir’s method

. 1 1 - . 2k 1 1 3k -1
requires h — 5 — 1 elliptic doutl)chngs and {1 - (5)*][h— 3 — S 1] + 55— —k
additions on average, with Ny = 3—2——1 stored points. The worst case performance is:

k
h + 3—2-—1 — k elliptic additions and & doublings.

A sketch of proof:
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[S]

k
. The number of the stored points is 3—2_—1

k
. The number of elliptic additions required for stored points is 3——2'——1 — k. This can

be shown as follows: Let S denote the set of the stored points. Let A; be any point
€ Sexcept for P, P,.... . P.. Write Ay = L Py, + 1P + - - - + [} Py, without loss
of generality, assume thatl; > 0. Then/; = 1, and point A, can be computed from
the point A3 = I, P; + -~ -+ U, P, € S by one addition. Perform this process on A,
and repeat until A; is one of P, P, ... , Pi. Then the statement follows by noting
that the k points P;. Pa. ... . P € S are already available.

. The average length® of the NAF of m; is h — :1; for0 € m; < 2" andi =

1.2,... .k (see § 6.2).

. The average length® of an k x (h + 1) array of binary signed digitsis L = h +

2 1 it i :
Ik 1 and thus the number of doublings is A — R e

. Let d denote the average number of all-zero columns between two nonzero columns,

- (Q)k
thend = '1—_:(—575

. The number of elliptic additions except those for the stored points is

8.2.2 Generalsliding window methods

Window method with double-and-add
If we view the modified Shamir’s method as a sliding window algorithm with window

3The length of 2 number representation is equal to the number of the digits between the most significant
nonzero digit and the least significant digit. inclusive.

®The length of an array is equal to the number of the columns between the leftmost nonzero column
and the rightmost cofumn, inclusive.
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size w = 1, then further improvements may be explored using a window of size w > 1.
Let us write my, ma,... ,m in their NAFs and put them as an k x (h + 1) array
of binary signed-digits ({1. 0. 1}), see Figure 8.1(a). Consider a window of size k x w
horizontally sliding along the array from the leftmost end. Then the array can be split
into blocks of size k x w whose leftmost column is not all zero. If we compute and store
the points {, P, + l,Ps + -+ + l; P, where {;, [, ... .l are all possible integers whose
NAF is of length w or less, the required point can be computed with elliptic doublings
and additions performed only on some stored points. The number of elliptic additions
can be less than that in Shamir’s method for w > 1 if the computation complexity of the

stored points is comparatively low.

— i) {1 (1) (] (1 [Q)]
my =m, .....m:-?’w Mg My M. myg

— mi2) (3) 2 (2], (2} (2)
mz=myem L m T e amy T My myg

..' (k) (k) (k) (k) ‘(’t) (k)
M =My e M A e TR TR g

window of size w x k

(a)

my =({100}j-101100{0-1{00 )
m; =(]010]/]0t0 |OO{-10]00 )
m3 =(j{001}]0-10}00j10 JOO )

—\

blocks
(&)

Figure 8.1: (a) A window of size w scanning along an & x (h + 1) array of binary signed
digits; (b) An example showing the blocks resulted from the scanning and splitting.

The number of stored points can be reduced if we allow the use of variable block
widths, If blocks are of maximum width w, then the block of the smallest width w’ < w
is used provided that it is still able to contain all the nonzero digits as a block of width w
does. When such a block is chosen, its both rightmost and leftmost columns are nonzero
columns. See Figure 8.1(b), where a window of size 3 x 3 used to scan and split the

array into four blocks of size not greater than 3. The main steps in this method can be
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illustrated in the following example.
Example 8.2 Compute 60454 P, + 127453 P, using window size of two.

First 8 points are computed and stored that costs 6 elliptic additions:

Pl. Pg, P1 + Pz, Py_ + 2P2,2P1 + Pz.

While the two multiples are converted into the NAFs and they are placed as a2 x (h + 1)
array of binary signed digits. Then, a window of maximal length 2 is used to scan over
the array and to split the array into a number of blocks. Each block is of width two or one
and there is at least one nonzero digit in both the leftmost and the rightmost columns.

The array is split into a number of blocks of maximal length 2 as shown below.

60454 = 100010 f[T0}Jo0ooO0OI|1]01!10

Lt |
S e
=)

127453 = |1 0| 0 0 |T 0| 0|0 1| 00O0|I|O0]0O

For each block we can find the corresponding point in the storage. The solution can
finally be obtained with

60454 P, + 127453P, = 22.[2°.[2%.[2%.[2' . (P +2P:) — (P, +2P;)| - (2P, - P)] +
(Px-Pz)]+(2P1—Pg)]—(2P1—P2).

It can be seen that five elliptic additions and sixteen doublings are required for the above
equation. Then the total cost for computing 60454 P; + 127453 P, is 11 elliptic additions
and 16 doublings.

We summarize the general window method in the following algorithm.

Algorithm 8.2 Window method
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Input:  Integers m;, w, and points P, = 1,2.... . k.

Output: Point P = m P, + --- + m P

1 Convert m; into a certain signed-digit (SD) form, and place them as a & x n array
of binary signed digits.

2 Compute the points , P} + -+ + L P, =Y < L <Y, Y is the largest integer
whose SD form is of length w. The first nonzero {; > 0, and at least one {; is odd
(for the binary case).

3 Find the first block of size < w from the leftmost end of the array. Find the cor-
responding point P, or its negative — P, among the stored points. Set P « P,
(or P « —PRy); Set L « the length of the remaining array.

4 Do while (L > 0) Begin:

4.1 Let the window of size w slide along the array rightward and find the next block
if such a block exists. Let the stored point P’ be the corresponding point of the
block (or the negative of the corresponding point).

4.2 Set P « 24P, where d denotes the distance between the rightmost column of
the current block and that of the previous block. If there is no block to be found
in Step 4.1, then let d be the length of the remaining array.

43 SetP+— P+ P (or P+ P-P').

44 SetL « L—-d.

End.
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8.2.3 Window method with efficient computation of 2! P

Recently, it has been shown that under certain circumstances it is advantageous to directly
compute 16P, 8P and 4P instead of performing consecutive doublings [30, 61]. This
idea can also be applied to the algorithms presented in this article by performing a 4P,
8P or 16P operation whenever there are two, three or four consecutive doublings are

required.

Algorithm 8.3 Window method with efficient computation of 2! P
Input: Integers m;. w, and points P;,: = 1.2,... .k.

Output: Point P =m P, + +-- + mpPs.
(Same as Algorithm 8.2 except Step 4.2 should be divided into 4 sub-steps:)

4.2.1 Set P « (16)" P, where t, = HJ,
4.2.2 Set P « (8)2P, wheret; = I_d —34t J?
4.2.3 Set P « (4)"P, where t; = I_d —H=¥ J ;

-

424 SetP « (2)P,wherety =d — 4t; — 3t; — 2t3.

8.2.4 Results and features

Some of the salient features of Algorithm 8.2 and 8.3 are presented in the following

theorems.

Theorem 8.2 For w > 1, the number of stored points required in both Algorithms 8.2
and 8.3 is

(& Y-1
Y Y@y +1)F - —2—-1""‘1] if w is odd,

k=1
an:= J k

Yvey +1)¥ - %(Y +1)¥71  ifwiseven,
\ k’=1
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where Y is the largest integer whose NAF is of lengthw,and Y = é[?"+2 =3+ (-1)wtt],

Proof: For the computation of m, P, + ---+ m;P;.7 > 1, and a certain window size
w 2 1, let the points to be stored be denoted by [, P, + - -- + I; P;, where [; is of length
not great than w in its NAF, and the number of points to be stored be denoted as Ns‘;i),,.
(Note that N8\ = Nyore).

In the case of j = k: When w is even, the largest integer whose NAF is of length w is
Y = 2¥"1 4273 4 ...+ 2. Obviously there are Y + 1 integers in [0, Y] and }2,- of them
are odd numbers.

1. When [, is one of those -}2,- odd numbers, I; can be any number in {-Y,Y], for

t = 2.3.... .k for this case. Thus we have to store -12/-(21/ + 1)k~ points.

2. When [, is nonzero even number in (1.Y], /; can be any number in {-Y, Y] for
1 =2.3,... .k, except at least one of [;'s is an odd number. Since thereare Y + 1

even numbers in [-Y. Y], %[( 2Y +1)¥=! — (Y + 1)*~!] points need to be stored.

3. When [, is zero, clearly, Ns‘;;” points should be computed and stored.

Thus we have

Y Y -
Nuwe = 5(2Y + 15704 Z{2Y + )F7 — (¥ + 1)1 + Mgz
l Y
= Y IYEY + )¢ - (Y +1)¥Y]
k=1 “
When w is odd, similar analysis can be applied. a

Theorem 8.3 For 2 >»> w and w > 1, the average number of elliptic additions required
in both Algorithms 8.2 and Algorithm 8.3 is

(= m) - ()P - wil = ()] + 32 - ()F] + (3 = (§)terr

Nuga = Ngoe — k + w[l _ (§)k] _ (%)2& + (g)(w-f-l)k
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while the average number of doublings required in Algorithm 8.2 is

2 1 (2
o LG

(g)('lH-l)lc
1-(3)F 3 2¢-1 [1 -G

Nop=h —

A sketch of proof:
1. The number of elliptic additions required for the stored points is Nyoe — k.

2. The average length of an k& x (h + 1) array of binary signed digitsis L = h + :2; -

1
-1

3. The average length of blocks is

e -2 e )

The number of elliptic doublings is Z — L.

4. The average number of all-zero columns between two nonzero columns is d =

(3

e number of elliptic additions except those for computing the stored points is

The aum
L-1,
Ly+d

a

Theorem 8.4 The worst-case performance of Algorithm 8.2 for A > wand w > 1

requires Nyore — &k + [%.l elliptic additions and A doublings. The number of elliptic

additions needed in the worst case for Algorithm 8.3 is Ngore — k + [1%] .

Proof: By direct inspection. a
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From Theorem 8.2, the optimal length of the window w,, for the average perfor-

mance of Algorithm 8.2 can be obtained by solving the equation

a( Nm.ld + aNdoubling) =

ow 0

for w, where we assume that the complexity of an elliptic doubling is a times that of
an elliptic addition. If the solution w = weyg is not an integer, then we can try both
w = [wop| and w = |wp |, and choose the one with smaller Nugg + @Nyoubling-

In Algorithm 8.3, if we further assume that the complexities of 4P, 8P, and 16 P are
B4, B2, and B3 times that of a doubling, then the optimal value of window size w can be

obtained by solving

6{Nadd + C!( NzP + ﬁ]_NU’ + ,BZNSP + .BSNIGP)}
dw

=0,

where Nap, Nyp. Ngp. and Nygp denote the numbers of operations of 2P,4P,8P and

16 P, respectively.

8.3 Algorithms using a New SD number Representation

8.3.1 A New SD representation with fewer zero runs

It is well known that a binary NAF of length n has the minimal number of nonzeros which
is approximately % However, Koyama and Tsuruoka have observed that the NAF is not
necessarily the best representation to use for computing point multiples on an elliptic
curve. It does have minimal weight, but allowing a few adjacent nonzeros may increase
the length of zero runs, reducing the total number of elliptic additions. They also have
given an algorithm for computing an SD representation with such features [(46].

In the following, we will present a new SD number representation which is similar
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to that of Koyama and Tsuruoka [46] in the sense that they both have a much reduced
number of zero runs, compared to that of the NAF.

Given a bit string A = [--+ ,4i,8i-1,**- .G1, a0, @; € {0,1} fori = 0,1,2,--.,
define a flag function g(-) over A as g(0) = aq, and for j > 0 as
f
gy —1)+1 ifa;=1:
g(j-1)-1 ifa;=0and g(5 — 1) > 0;

g(j) = <
0 ifa; = 0and g(j - 1) = 0;

0 if a;_, is the rightmost bit in a convertible block.

\

A convertible block [ay,+1-1G1+1-2 - - . ai,] of length L is defined by
l. g(lg—1)=0o0rl, =0;

. glb) =1

ca(f)+a(j+1)>0forleg <jSlo+1-2;

88 ]

W

4. Ifg(7) =0,theng(j — 1) < 2forlp+ 1< j < b+ 1-2;

5. 9(o+1—1)>2and aj.; = 0.

The new recoding algorithm takes a binary form as a bit string and the operation
starts at the least significant end. The transformation from binary digits into signed
digits is performed only on convertible blocks while the ordinary binary bits are retained
outside the blocks. The transform operation applied to a convertible block is the Booth
algorithm [16]. Note that the transformation is made block by block starting from the
least significant end of the input since the result from transforming a convertible block
could affect the calculation of the next convertible block.

Then the detaiis of the transformation of an integer into the new SD form are shown
in Algorithm 8.4. The function g(-) is denoted by £1ag. Lines 4 to 8 are to obtain the
binary form of an integer while the Booth algorithm [16] is used in Lines 13 to 18. A
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convertible block is found in Lines 24 to 32. In the sequel, the SD form with fewer zero

runs obtained from Algorithm 8.4 is denoted as the FZR form.

Algorithm 8.4 Recoding into binary SD form with fewer zero runs (FZR form)

Input: n: Integer;
Output: S: FZR form of n.

1. Begin:

2 kl <= n; k2<=n; i <= 0; flag <= 0; t <= 0; st <=

3 do while k1>0 Begin:

4. if kl even

5 then u <= 0;

6 else u <= 1;

7 kl <= (kl-u)/2;

8. S{i] <= u;

9. if u=1

10. then flag <= flag+l;

11. else flag <= flag-1;

12. if flag>=0

13. then

14. if k2 even

15. then v <= 0;

16. else v <= -1;

17. k2 <= (k2-v)/2;

18. T[i] <= v;

19. else

20. j from st to i do: Begin: TI[j] <= S[j]l; End;

21. k2 <= k1;

22. t <= 0;

23. flag <= 0;

24. if flag=1

25. then

26. if t=0 then st <= i;

27. t <= 1;

28. elseif flag>2 and k1l even

29. then

30. j from st to i do:
Begin: S[j] <= T([j]; End;

31. k1l <= k2;

32. flag <= 0;
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33. i <= i+1;
34. End;
35.End.
Binary | Nonadjacent KT Proposed
form form form [46] form
128 bits
Average length 125.92 126.66 127.27 126.29
Average # of nonzeros | 64.00 43.09 43.47 43.09
Average # of zeroruns | 31.16 42.06 34.15 33.96
Average zero run length | 1.9911 1.9877 2.4488 2.4519
256 bits
Average length 253.85 254.65 255.31 254.25
Average # of nonzeros | 128.00 85.75 86.40 85.75
Average # of zeroruns | 63.25 84.72 68.90 68.71
Average zero run length | 1.9930 | 1.9941 24526 | 24542
512 bits
Average length 509.63 510.59 511.10 510.11
Average # of nonzeros | 156.00 171.07 171.72 171.07
Average # of zeroruns | 127.17 170.17 138.17 137.98
Average zero run length | 1.9979 1.9958 2.4583 2.4591

Table 8.1: Comparison of the various binary number representations
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Table 8.1 shows some statistical parameters of the FZR form, along with those of

the binary form, the NAF and the SD form obtained with the Koyama and Tsuruoka
algorithm [46]. It can be seen from the table that the FZR form not only has the min-
imal number of nonzeros but also has an average length which is less than that of the
NAF. One can also see that the FZR form is as good as the SD form obtained using the

Koyama-Tsuruoka algorithm. This new form was conjectured having not only the mini-

mal number of nonzero digits but also the fewest zero runs among all minimal binary SD

representations. Later, Proos has found an example to show that the conjecture does not
hold [65].
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8.3.2 Window method with the FZR form

If the FZR form is used in Algorithm 8.2 and Algorithm 8.3, we have the following

evaluation:

Evaluation 8.1 For w > 1, the number of stored points required in Algorithm 8.2 and
Algorithm 8.3 using the FZR form is

(& Y -1
dlvey + 14t - ——Q-—Y""‘] if w is odd,

k=1
Nstore = 4

k
Z[Y(2Y + 1)¥-1 - %(Y + 1)""‘] if w is even,

\ k/=1

where ¥ which is the largest number whose FZR form is of length w is given by %[5 -
¥ =3+ (-1)v].

Proof

From Algorithm 8.4, it can be seen that Y = 2%—1 4-2%=-24.2%=4 1. ... ] if w is even, and
Y =241 4292429 4 ...+ 2 if wis odd. Thus we have ¥ = }[5-2% 3+ (~1)"].
The rest is similar to the proof of Evaluation 8.2.

8.4 Window Method for Koblitz Curves

Based on the results obtained by Merier and Staffelbach [53], Solinas [72] and Gor-
don [29], we have developed a new algorithm for computing m; Py +mq Py + + «~+my Ps,
where m; is an integer and P; is a point on a Koblitz curve. The algorithm is stated below.

Algorithm 8.5 Window method for Koblitz curves
Input:  Integers m;, w, and points P, i = 1.2,... k.

Output: Point P = my Py + -+« + mp Pe.
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16 )

1 Compute and store the points [y Py + ++- + [ P, where ; = (1,2, ()’ , vulg’) are
all possible T-adic NAFs of length not greater than w, lg-i) € {-1,0,1} fori =1,
...,k,andj =0,1.... .w — 1, and the nonzero /; with smallest : has a positive
T-adic NAF and at least one of the r-adic NAFs is odd (l[‘,j ) # 0).

2 Use the method presented in Theorem 3, 4 and 5 in [29] to obtain the r-adic

NAFs form; = 3°0_ ef)ri(mod 7 — 1) and el € {~1.0,1} fori = 1,... ,k
and j = 0,1,... A, where the elliptic curve is defined over Fyn,and, h = n + 1

as it is shown in Theorem 5 in [29].
3 SetL«0and P « O,
4 Do while (L < h) Begin:

4.1 Let the window of size w scan leftward along the array to locate the next block
and its corresponding point in the storage be P’ (or —P’). If no block is found
then exit the iteration and stop the program.

4.2 SetP « P + %P (or P « P — 73 P’), where d is the distance between the
rightmost columns of the current block and that of the previous block.

43 Setl « L +d;

End.

Some features of Algorithm 8.5 can be summarized in the following theorems.
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Theorem 8.5 For w > 1, the number of stored points required in Algorithm 8.5 is

(& Y—1
YyEy + )¢t - -2—-y’='-1] if w is odd,
NS‘OR = 4 k':L v
SYEY +1)¥ 7 - (Y +1)¥7!]  ifwiseven,

\ k=1

where Y is the largest number whose NAF is of lengthw,and Y = %[2""+2 —3+(-1)"*].
A proof can be similar to that of Theorem 8.2.

Theorem 8.6 For A 3> w and w 2 1, on average Algorithm 8.5 requires

(h = )1 = G~ wil = (3] + 32 = (3% + (924 = ()ferii

Nua = Noore — k + w[]_ - (%)k] - (%)Zk + (%)(w+l)k

elliptic additions. Here we assume that the statistical properties of the NAF of m; and
those of the r-adic NAF of m; are the same except that the 7-adic NAF is longer than the

NAF by one digit on average.

A proof can be similar to that of Theorem 8.3. Note that in Theorem 8.6 we do not include
the cost of some up-front calculations required in Step 2 of Algorithm 8.5, which can
be estimated to be a couple n-bit binary multiplications and divisions and is negligible
compared to the cost of elliptic addition and doubling [53, 29].

Theorem 8.7 The worst-case performance of Algorithm 8.5 forh »> wandw > 1
h

requires Nyore — k + I-E] elliptic additions.

Proof: By direct inspection. |
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8.5 Numerical Results
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In this section, we give some numerical comparisons for the proposed algorithms. The

underlying field is chosen to be 4163 which has been considered for implementing elliptic

curve cryptosystems [1].

8.5.1 Comparison of computing m P

n = 163
Algorithms Nadd [ NzP | Nstor: Nndd ! N2P LNslon:
w=2 w=3
Algorithm 8.2 (NAF) 53.76 | 161.70 1 37.65 | 160.67 3
Algorithm 8.2 (FZR) 44.52 | 161.09 2 38.35 | 160.68 3
Algorithm 8.5 (7-adic NAF) | 54.10 0 1 37.88 0 3
— w=4 w=3y
Algorithm 8.2 (NAF) 34.49 | 159.93 35.02 | 158.94 | 11
Algorithm 8.2 (FZR) 34.96 | 159.80 7 36.66 | 158.81 | 13
Algorithm 8.5 (7-adic NAF) | 34.68 0 b 35.17 0 11
w=0 w=7T
Algorithm 8.2 (NAF) 41.74 | 158.01 | 21 70.98 | 157.01 | 53
Algorithm 8.2 (FZR) 47.19 | 157.84 | 27 | 120.94 | 156.84 | 105
Algorithm 8.5 (r-adic NAF) | 41.88 0 21 71.09 0 93

Table 8.2: Comparison of the algorithms for computing m P.

From the data shown in Table 8.2, we can see that if the number of elliptic operations
is all what we are concerned of, then Algorithm 8.2 using the NAF and Algorithm 8.5 with

window size of 4 or 5 may be the best options for computing m P on a non-supersingular,

or on a Koblitz curve in Fass , respectively. When the memory size for the stored points is

also an issue of consideration or the window size is small, we may choose Algorithm 8.2

using the FZR form to compute m P on a non-supersingular curve in Fates .

When the point P is fixed, then all the possible point muitiples, whose corresponding

binary SD form is within a window of size w, can be precomputed and stored. Conse-
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n =163
Algorithms Nndd ] sz l Nstom Nndd l NZP | Nstore
w=2 w=3
Algorithm 8.2 (NAF) 93.76 | 161.70 1 35.65 | 160.67 3
Algorithm 8.2 (FZR) 43.52 | 161.09 2 36.35 | 160.68 3
Algorithm 8.5 (r-adic NAF) | 54.10 0 1 35.88 0 3
w=4 w=235
Algorithm 8.2 (NAF) 30.49 § 159.93 5 25.02 | 158.94 | 11
Algorithm 8.2 (FZR) 28.96 | 159.80 7 24.66 | 158.81 | 13
Algorithm 8.5 (r-adic NAF) | 30.68 0 9 25.17 0 11
w==6 w=7T
Algorithm 8.2 (NAF) 21.74 1 158.01 1 21 | 18.98|157.01 | 53
Algorithm 8.2 (FZR) 21.19 | 157.84 | 27 | 16.94 | 156.84 | 105
Algorithm 8.5 (7-adic NAF) | 21.88 0 21 19.09 0 53

Table 8.3: Comparison of the algorithms for computing m P (P fixed).
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quently, the computational cost for computing mP may exclude the precomputations.
From Table 8.3, it can be seen that it is advantageous to use Algorithm 8.2 with the FZR
form to compute m P for the cases when the point P is fixed.

[nstead of performing consecutive doublings, when the operations like 16 P, 8 P, and
4P are utilized, the efficiency of the Algorithm 8.3 is shown in Table 8.4. It can be seen
that the algorithm using the FZR form sometimes has more 16 P and 8 P operations than

using the NAF.

8.5.2 Comparison of computing mP; + r P,

The best option for computing mP; + rP; is to use Algorithm 8.2 with the NAF
for non-supersingular curve and Algorithm 8.5 for Koblitz curve with window size of 2,

when the curve is defined in Fyies . additions is

If either P, or P, is fixed, say, P, is fixed, which is also the case practically used
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n = 163

Algorithms Nug | Niep | Nep | Nup | Nop | Nooe
w=2

Algorithm 8.3 (NAF) | 53.76 | 14.22 | 14.38 | 28.94 | 3.81 1
Algorithm 8.3 (FZR) | 44.52 | 20.56 | 14.97 | 13.96 | 6.02 2
w=3J3
Algorithm 8.3 (NAF) | 37.65 | 26.56 | 9.07 | 9.06 | 9.12 3
Algorithm 8.3 (FZR) | 38.35 | 25.76 | 10.94 | 7.38 | 10.05 3
w=4
Algorithm 8.3 (NAF) | 34.49 | 29.74 | 5.27 | 8.73 | 7.68 5
Algorithm 8.3 (FZR) | 34.96 | 28.57 | 7.72 | 7.33 | 7.68 7
w=>5
Algorithm 8.3 (NAF) | 35.02 | 29.75 | 5.90 { 7.92 | 6.39 11
Algorithm 8.3 (FZR) | 36.66 | 30.06 | 6.37 | 6.36 | 6.72 13
w==~6
Algorithm 8.3 (NAF) | 41.74 | 30.53 | 6.33 | 6.21 | 4.47 21
Algorithm 8.3 (FZR) | 47.19 | 31.11| 5.86 | 5.28 | 5.26 27
w=7
Algorithm 8.3 (NAF) | 70.98 | 32.32 | 4.80 | 4.34 | 4.63 53
Algorithm 8.3 (FZR) | 120.94 | 32.15 | 4.66 | 4.57 | 5.13 | 105

Table 8.4: Comparison of the numbers of 16 P, 8P, 4P and 2P operations required to
compute m P for non-supersingular curves.

in the Elliptic Curve Digital Signature Algorithm [56], then all the P; multiples whose
binary SD form has length within w can be precomputed. In this case the data are given
in Table 8.6, and it is still Algorithm 8.2 using the NAF with a window of size 2 which
yields the best results for non-supersingular curves.

If both P, and P, are fixed, then Algorithm 8.2 using the NAF with window of size
3 and using the FZR form with window of size 2 seem to be good choices for computing
mP, + rP; on a non-supersingular curve (see Table 8.7). Also from Tables 8.5, 8.6 and
8.7, the computation of mP; + rP, on a Koblitz curve, no matter whether the points

are fixed or not, instead of using Algorithm 8.5 with & = 2, it is more advantageous to
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n = 163

Algorithms Nugg | Nop [ Naoe | Nasd | Nop | Noor

w=1 w=2
Algorithm 8.2 (NAF) 92.22 | 162.42 4 72.01 | 162.05 8
Algorithm 8.2 (FZR) 92.19 | 162.08 4 76.09 | 161.51 20

Algorithm 8.5 (7-adic NAF) | 92.77 0 4 72.43 0 8

w=3 w=4
Algorithm 8.2 (NAF) 90.14 | 160.89 48 193.31 | 160.03 | 160
Algorithm 8.2 (FZR) 102.27 | 160.80 60 312.41 | 159.77 | 280

Algorithm 8.5 (7-adic NAF) | 90.42 0 48 | 193.53 0 160

Table 8.5: Comparison of algorithms for computing mP; + r P,

compute m P, and r P, separately using Algorithm 8.5 with & = 1 and then add them up.

When the operations like 16 P, 8 P, and 4P can be performed more efficiently than
by consecutive doublings, it can be seen from Table 8.8 that with the FZR form Algo-
rithm 8.3 has significantly more operations like 16 P and 8P forw = 1 and w = 2, while
for w = 4 the NAF has better performance.

It is also worth noting that when = is large, say, n > 400, the algorithm using the
FZR form for computing both m P, and m P, + r P, perform significantly better than that
using the NAF.

For computing m, P, + --- + m. P, k 2 3, it is common to choose w = 1 since the
cases of w 2> 2 often require large memory to store precomputed points. For example,
when & = 3, Algorithm 8.2 using the NAF requires 13 stored points for w = 1 and 49
s tored points for w = 2, and when & = 4, this algorithm requires 40 stored points for

w = 1 and even much more stored points for w > 1.

8.6 Chapter Summary

In this chapter, the general sliding window method and its performance analysis are
presented for computing my P, + mP; + - - - + m Py for nonsupersingular and Koblitz
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n = 163
Algorithms Nua | Nap | Nooe | Nasa | Nop | Naore
w=1 w =2
Algorithm 8.2 (NAF) 92.22 | 162.42 4 72.01 | 162.05 8
Algorithm 8.2 (FZR) 92.19 | 162.08 4 75.09 | 161.51 | 20
Algorithm 8.5 (7-adic NAF) | 92.77 0 4 72.43 0 8
w=3 w=4
Algorithm 8.2 (NAF) 86.14 | 160.89 | 48 | 185.31 { 160.03 { 160
Algorithm 8.2 (FZR) 98.27 | 160.80 | 60 | 300.41 | 159.77 | 280
Algorithm 8.5 (7-adic NAF) | 86.42 0 48 | 185.53 0 160

Table 8.6: Comparison of the algorithms for computing mP; + r P, (P, fixed).

curves. For computing a point multiple on an EC over a certain field, the numerical resulits

have given a hint on how to choose a recoded SD representation and window parameters

for efficient computations.



CHAPTER 8. COMPUTATIONS FOR ELLIPTIC CURVE CRYPTOSYSTEMS

n =163
Algorithms Nadd l N2P [ Ns(orc Nndd I N. 2P l N, store
w=1 w=2
Algorithm 8.2 (NAF) 90.22 | 162.42 4 66.01 | 162.05 8
Algorithm 8.2 (FZR) 90.19 | 162.08 4 59.09 | 161.51 | 20
Algorithm 8.5 (7-adic NAF) | 90.77 0 4 66.43 0 8
w=3 w=4
Algorithm 8.2 (NAF) 44.14 | 160.89 | 48 | 35.31 | 160.03 | 160
Algorithm 8.2 (FZR) 44.27 | 160.80 | 60 | 34.41 | 159.77 | 280
Algorithm 8.5 (T-adic NAF) | 44.42 0 48 | 35.53 0 160
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Table 8.7: Comparison of algorithms for computing m P, + r P, (both P; and P; fixed).

n = 256
Algorithms Nug | NMiep | Nsp | Nap | Nap | Nion

w=1

Algorithm 8.3 (NAF) | 92.22 | 3.35 | 10.14 | 40.78 | 37.04 4

Algorithm 8.3 (FZR) | 92.19 5.23 | 13.08 | 28.50 | 44.93 4
w=2

Algorithm 8.3 (NAF) | 72.01 | 6.71 | 20.24 | 33.51 | 7.48 8

Algorithm 8.3 (FZR) | 76.09 | 12.41 | 21.08 | 19.13 | 10.38 20
w=3

Algorithm 8.3 (NAF) { 90.14 | 24.74 | 12.34 | 8.05 | 8.85 48

Algorithm 8.3 (FZR) | 102.27 | 23.57 | 13.23 | 7.81 | 11.24 | 60
w=4

Algorithm 8.3 (NAF) | 193.31 | 30.13 | 5.40 | 5.51 | 12.29 [ 160

Algorithm 8.3 (FZR) | 312.41 | 28.36 | 6.99 | 7.51 | 10.34 | 280

Table 8.8: Comparison of the numbers of 16 P, 8P, 4P and 2P operations required to
compute mP; + rP» for non-supersingular curves.



Chapter 9

Summary, Discussions and Future

Work

Computations in finite fields play an important role in cryptography, coding theory, se-
quence generation, signal processing and VLSI testing. In this thesis, a number of effi-
cient algorithms and architectures for finite field multiplication have been presented. Ef-
ficient realizations of finite field exponentiation and point multiples on an elliptic curve
have also been proposed.

A normal basis is commonly used in many cryptographic systems, since a squaring
operation using the normal basis is simply a cyclic shift. This can potentially simplify
exponentiation, elliptic addition and doubling, and Frobenius mapping. Since the in-
vention of the Massey-Omura muitiplier, a few alternative normal basis multipliers have
been proposed, e.g., [22, 3]. The redundant basis presented in this thesis takes advantage
of the elegant multiplicative structure of the set of (mk + 1)* roots of unity over F, that
includes a basis of F;m . The resultant muitiplier architectures using redundant basis are
extremely simple and also have a lower complexity when & = 1 and 2. Further work
on this topic might include the investigation of low complexity multipliers when k& has a

149
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small value but greater than 2. It will also be interesting to study efficient representation
of the field elements when the normal basis is generated by the general Gauss period.

Weakly dual basis multiplication architectures have also been considered in this the-
sis. For the classes of finite fields generated with an irreducible trinomial or an irreducible
ESP, low complexity bit-parallel multipliers have been presented. Basis conversion has
also been discussed such that we have given its complexity bound when the field is gen-
erated with an ESP or a polynomial of form f(z) = 2™ 4 zF+d 4+ gL 4. 2* 4 1,
Future work might include the investigation of multiplier architectures with reduced time
delay when the field is generated with an irreducible pentanomial or a polynomial of ar-
bitrary form. Multipliers using normal dual bases might also be worthy to further study.

A polynomial basis probably has been most commonly used in various applications.
In this thesis, we have given a size complexity bound for a polynomial basis multiplier
in an arbitrary finite field. When the field is of characteristic 2 and generated with an
irreducible trinomial, both the size complexities and time delays of the multiplier and
the squarer are analyzed. Given the irreducible trinomial, we can easily build a multi-
plier or a squarer conforming to the complexity parameters following the steps in the
proofs of the theorems. However, general diagrams of the multiplier and the squarer
architectures have not been available because they seem quite complicated and could be
considered for further investigation. Future work should also include study of using the
FFT and the KOA methods and seeking the possibility to combine these methods with
other techniques to yield more efficient architectures for finite field computations.

Finite field exponentiation and elliptic curve operation have received considerable at-
tention recently for their uses in cryptography. To efficiently perform an exponentiation
operation, on the one hand, fast multiplication and squaring must be provided; on the
other hand, efficient representation of the exponent should be investigated. Precompu-
tation can be done if certain information about the base and/or the exponent is known
before hand, and consequently, speed and memory size trade-offs can be made to obtain

the maximum efficiency.



CHAPTER 9. SUMMARY, DISCUSSIONS AND FUTURE WORK 151

In this thesis, architectures for exponentiation of a primitive element have been pro-
posed. LFSR-style structures are presented to realize multiplication operation, while
squaring or power operation is performed in a bit-parailel module. On the other hand,
minimal weight signed-digit forms have been utilized to efficiently represent the expo-
nent. For computation of point multiples for elliptic curve cryptosystems, algorithms
have been proposed for efficient representation of the multiples. Future work in this area
should include research on efficient computation of elliptic point operation. Investiga-
tion can be carried out for the design of a finite field processor especially for performing
elliptic point operations, which can coordinate the data flows between its sub-modules,

such as the inverter and the muitiplier.
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