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Abstract

Let X be a locally compact Hausdorff space along with n proper continuous

maps σ = (σ1, · · · , σn). Then the pair (X, σ) is called a dynamical system. To each

system one can associate a universal operator algebra called the tensor algebra

A(X, σ). The central question in this theory is whether these algebras characterize

dynamical systems up to some form of natural conjugacy.

In the n = 1 case, when there is only one self-map, we will show how this

question has been completely determined. For n ≥ 2, isomorphism of two tensor

algebras implies that the two dynamical systems are piecewise conjugate. The

converse was only established for n = 2 and 3. We introduce a new construction

of the unitary group U(n) that allows us to prove the algebraic characterization

question in n = 2, 3 and 4 as well as translating this conjecture into a conjecture

purely about the structure of the unitary group.
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Chapter 1

Introduction

The question of classifying dynamical systems by certain algebras has been an

active area of research for over seventy years. There have been several key players

in the development of this theory, a history of which will be shortly forthcoming.

First however, it is good to state what our definition of a dynamical system, both

one-variable and multivariable, has ended up as.

Definition 1.1 A one-variable dynamical system, denoted (X, σ), is a locally com-

pact Hausdorff space X defined with a proper continuous map σ : X → X, where

proper means that the inverse image of a compact set is compact.

And similarly defined,

Definition 1.2 A multivariable dynamical system, denoted (X, σ), is a locally

compact Hausdorff space X defined with n proper continuous maps σi : X → X for

1 ≤ i ≤ n, where σ = (σ1, · · · , σn).

The main goal of this area of study is to associate each dynamical system with

a particular Banach algebra such that the algebras are isomorphic if and only if

the dynamical systems are the same up to some form of natural conjugacy. In the

one-variable case conjugacy takes on the form:

Definition 1.3 Two one-variable dynamical systems, (X1, σ1) and (X2, σ2), are

conjugate if there exists a homeomorphism τ : X2 → X1 such that τ ◦ σ2 = σ1 ◦ τ .
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In the multivariable case conjugacy must be replaced by something called piece-

wise conjugacy which allows for an ambiguity of which maps are conjugate locally.

Chapter 2 will detail the complete solution to the one-variable dynamical system

problem provided by K. Davidson and E. Katsoulis in [4], which they wrote in 2006.

Along with the proof there will also be various examples of algebras that one can

associate to each system.

Davidson and Katsoulis, in [3], went on to provide an almost complete proof of

the multivariable case. This will be outlined in Chapter 3, along with the conjecture

that would finish off this problem if proven true. The conjecture has to do with

mapping an n!-simplex into the n-dimensional unitary group, U(n), such that the

map has a very specific partition structure. They only verified n = 2 and 3.

Following from this, Chapter 4 details a method of proof for this conjecture

that holds promise but demonstrates how the original question turns out to be

quite complicated due to the iterative structure of an n!-simplex. This permutation

structure comes from the built-in ambiguity of piecewise conjugacy. Our proof

works for n = 2, 3 and 4, extending the known cases of this result.

Now we turn to the development of this subject and how it has changed from

the early days.

1.1 History

This area of theory can be considered to have originated with what is referred

to as von Neumann’s group-measure construction first published in 1936 by F. J.

Murray and J. von Neumann [11]. Here one takes a locally compact space X with

an associated positive measure m. Now let G be a countably infinite discrete group

that acts on the left on X such that for g ∈ G we have x 7→ gx, x ∈ X is a

homeomorphism of X which transforms m into an equivalent measure.

From this situation of a space and an action, we can construct a von Neumann

algebra, called the crossed product or covariance von Neumann algebra. Suppose

that L∞(X,m), an abelian von Neumann algebra, acts on a Hilbert space H and

let H = H⊗ l2(G). Now we get two representations π of L∞(X,m) and u of G on

H given by

π(a)ξ(g) = (g−1a)ξ(g), ξ ∈ H, g ∈ G, a ∈ L∞(X,m)
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u(g)ξ(h) = ξ(g−1h), h ∈ G.

This gives us that

u(g)π(a)u(g)∗ = π(ga), a ∈ L∞(X,m), g ∈ G

Let L∞(X,m) oG be the crossed product algebra generated by π(L∞(X,m)) and

u(G).

Second, W. B. Arveson, in his 1967 paper [1], developed the theory into some-

thing that is more familiar in form to our area of interest. He showed that the

classification, up to conjugacy, of an ergodic measure preserving automorphism of

the measure algebra of the unit interval is equivalent to the classification of specific

Banach algebras of operators on the Hilbert space L2(0, 1).

Particularly, letM be the von Neumann algebra of all multiplications by bounded

measurable functions, acting on L2(0, 1). Suppose that α is a ∗-automorphism pre-

serving the ergodic measure m, that is m ◦α = m on the projections of M . Let Uα

be a unitary operator such that α(A) = UαAU
∗
α on M . Then since α(M)Uα = UαM

then

A0(α) = {
n∑
i=0

AiU
i
α : A1, · · · , An ∈M,n ≥ 0}

forms an algebra. Let A(α) be the closure of A0(α) in the operator norm. This

construction gives the required theory:

Theorem (Arveson, [1, Thm. 1.8]) Let α and β be ergodic m-preserving ∗-
automorphisms of M . Then α and β are conjugate if, and only if there exists

a unitary V such that VA(α)V ∗ = A(β).

This work was generalized by Arveson and K. Josephson in their 1969 paper [2].

Instead of such a limited class of automorphisms they considered triples, (X, σ,m),

where X is a locally compact Hausdorff space, σ : X → X a homeomorphism,

and m a separable nonatomic regular Borel probability measure on X, with the

conditions:

(1) m ◦ σ is mutually absolutely continuous with m (quasi-invariance),

(2) m(U) > 0 for every nonempty open set U ,

(3) The set of periodic points of σ, P = ∪n 6=0{x ∈ X : σn(x) = x}, is measure
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zero, that is m(P ) = 0.

However, these are still fairly restrictive conditions as the existence of such a

measure does not happen automatically, and many interesting dynamical systems

are not homeomorphisms and have many periodic points.

Consider the Hilbert space L2(X,m) and the unitary operator

Uf =

(
dm ◦ σ
dm

)1/2

f ◦ σ, f ∈ L2(X,m)

where m ◦σ is the measure defined for E ⊂ X to be m ◦σ(E) = m(σ(E)). Now let

A(X, σ) =

{
n∑
i=0

fiU i : f1, · · · , fn ∈ C0(X), n ≥ 0

}‖·‖

They go on to show that two different separable nonatomic Borel probability mea-

sures on X that satisfy the three conditions stated previously will produce isometric

isomorphic Banach algebras A(X, σ) [2, Proposition 3.3]. As well, it is shown that

two algebras A(X1, σ1) and A(X2, σ2) are isomorphic as algebras if and only if

(X1, σ1,m1) and (X2, σ2,m2) are conjugate with the additional restriction that m1

and m2 are both ergodic and invariant under σ1 and σ2 respectively [2, Theorem

3.11].

Furthermore, Arveson and Josephson prove that if X1, X2 are compact and the

measures m1,m2 are invariant then a bounded isomorphism, τ , from A(X1, σ1)

to A(X2, σ2) has the decomposition τ = β1 ◦ β2 ◦ φ, where β1 is a weakly inner

automorphism of A(X2, σ2), β2 is an isometric automorphism of A(X2, σ2) and φ

is an isometric automorphism from A(X1, σ1) to A(X2, σ2) [2, Theorem 4.10].

In 1984, J. Peters [13] associated a concrete Banach algebra to a one-variable

dynamical system as defined in Definition 1.1. He originally defined this algebra to

encode the information of a C∗-algebra and an endomorphism but we will use the

specific case when the C∗-algebra is C0(X), where (X, σ) is our dynamical system.

Definition 1.4 Let (X, σ) be a one-variable dynamical system. Let Hx = l2(N) be

the space of square summable sequences ξ = (ξn)∞n=0, define for x ∈ X

πx(f)ξ = (f(x)ξ0, (f ◦ σ)(x)ξ1, (f ◦ σ(2))(x)ξ2, · · · ), for f ∈ C0(X),
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and let Ux be the forward shift operator

Uxξ = (0, ξ0, ξ1, ξ2, · · · ).

The semicrossed product algebra, denoted C0(X)×σ Z+, is defined to be the norm

closed operator algebra acting on ⊕x∈XHx and generated by

⊕x∈Xπx(f), ⊕x∈XUxπx(g), f, g ∈ C0(X).

Peter’s shows that two one-variable dynamical systems (X, σ) and (Y, τ) with

X and Y compact and σ and τ having no fixed points, are conjugate if and only if

C(X)×σ Z+ is isomorphic to C(Y )×τ Z+.

This algebra will prove very useful as Davidson and Katsoulis use it to charac-

terize the one-variable dynamical systems up to conjugation. These semi-crossed

product algebras can also be defined via a universal property [9].

The last paper we will discuss in this history was written by D. W. Hadwin

and T. B. Hoover in 1988 [8]. They consider one-variable dynamical systems where

the space X is compact, not locally compact, but there are no longer any measure

theoretic considerations making this theory much farther ranging then the previous

work that was tied to the existence of a specific measure, which need not exist in

many cases.

This paper marks the introduction of what are called (topological) conjugacy

algebras, a class of algebras defined from a dynamical system that have a set of

properties making them particularly tractable. Davidson and Katsoulis refined this

idea which we will see in Section 2.1 and so their definition will be left until then.

However, they still imposed conditions on the fixed points of the map σ. Showing

that (X1, σ1), (X2, σ2) are conjugate dynamical systems, where X1, X2 are compact

and the set {x ∈ X2 : σ2(x) 6= x, σ2
2(x) = σ(x)} has empty interior, if and only

if there exist isomorphic conjugacy algebras for (X1, σ1) and (X2, σ2). Or, as they

prove later, if and only if the semicrossed product algebras of the dynamical systems

are isomorphic.
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Chapter 2

One-variable case

Building on all of the work in the previous section, Davidson and Katsoulis in

[4] managed to extend this algebraic characterization to one-variable dynamical

systems (X, σ) where X is any locally compact Hausdorff space and σ is a proper

continuous map. Gone are the measure conditions and the restrictions on the fixed

point set.

2.1 Topological conjugacy algebras

Now we will define the algebra that encodes the one-variable dynamical system,

called a topological conjugacy algebra.

First, we need to define some basic structures to build up what we need.

Definition 2.1 Let X be a compact Hausdorff space and let σ : X → X be a con-

tinuous function. The skew polynomial algebra, denoted P (X, σ), is all polynomials

of the form
n∑
i=1

fiU
i, fi ∈ C(X)

in the variable U for which in the “skew” case we have the multiplication

Uf = (f ◦ σ)U.

The following notion is due to Hadwin and Hoover.
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Definition 2.2 Let (X, σ) be a one-variable dynamical system where X is compact.

Define A to be a Banach algebra that satisfies the following conditions:

1. P (X, σ) is a dense subalgebra of A such that the units are the same, that is

1A = 1 ∈ P (X, σ),

2. C(X) ⊆ P (X, σ) ⊆ A is closed,

3. There exists an algebra homomorphism E0 : A → C(X) such that E0(f) =

f, ∀f ∈ C(X) and ker E0 = AU , and

4. U is not a right divisor of 0.

For such an algebra we can define a Fourier series for each element.

Lemma 2.3 Let A be defined as in the previous definition. Then we can associate

a formal power series with each element of A, that is there exist continuous maps

En : A → C(X) such that

a ∼
∑
n

En(a)Un ∈ P∞(X, σ)

Proof. Note that E0 has already been given in the definition of A. Now since C(X)

is closed in A then E0 is continuous by a classical continuity result. Hence, ker

E0 = AU is closed as well.

Define the map S : A → AU by Sa = aU . By the Inverse Mapping Theorem

we know that S has a bounded left inverse T .

Since a−E0(a) ∈ kerE0 = AU , there is a unique b ∈ A such that a = E0(a)+bU .

So inductively define nth coefficient map, where n ≥ 1 to be

En = En−1T (I − E0)

because En−1T (I−E0)(a) = En−1T (b) = En−1(bU−1). Combining each step we get

that

En = E0(T (1− E0))n.

Thus, it is clear that each En is continuous and we can now define an algebra

homomorphism ∆ : A → P∞(X, σ) given by ∆(a) =
∑

nEn(a)Un. �
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Now we can define the topological conjugacy algebra. We begin first with the

case when X is compact.

Definition 2.4 Let (X, σ) be a one-variable dynamical system where X is compact.

Then A is a topological conjugacy algebra for (X, σ) if A is an algebra given in

Definition 2.2 such that

lim sup
n

(‖En‖‖Un‖)1/n ≤ 1.

From this we can define a topological conjugacy algebra for the non-compact

locally compact X case. Define X̂ = X ∪ {ω} to be the one-point compactification

of X. Then we identify C0(X) with the continuous functions on X̂ that vanish at

ω. As well, we can extend a continuous proper map, σ, on X to a continuous map

on X̂ that has ω as a fixed point.

Definition 2.5 Let (X, σ) be a one-variable dynamical system where X is locally

compact but not compact. Let Â be the topological conjugacy algebra for (X̂, σ̂).

Then the topological conjugacy algebra for (X, σ) is the norm closed algebra A
generated by the polynomials with coefficients in C0(X). As well, Â is called the

canonical unitization of A.

Now we look at several examples of topological conjugacy algebras, which shows

the flexibility of the theory. The first two examples are neither Banach algebras or

complete but they do satisfy Hadwin and Hoover’s looser conditions for conjugacy

algebras [8]. However, they serve as basic demonstrations of the theory.

Example 2.6 It is not hard to see that P (X, σ) is a topological conjugacy algebra

for (X, σ) minus the issues discussed above. We just need to have a condition on

the “variable” U , that is, something like ‖U‖ ≤ 1
‖T‖‖I−E0‖ . From this we see that

P (X, σ) satisfies the conditions in Definition 2.2 and then

lim sup
n

(‖En‖‖Un‖)1/n = lim sup
n
‖E0(T (I − E0))n‖1/n‖Un‖1/n

≤ lim sup
n
‖E0‖1/n‖T‖‖I − E0‖‖U‖ ≤ 1.

because ‖E0‖ = 1.
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Example 2.7 In the same way P∞(X, σ) is also almost a topological conjugacy

algebra for (X, σ) by imposing a similar norm condition, in this case make it ‖Un‖ ≤
1

2n+1 . Again the four conditions of Definition 2.2 are satisfied quite easily.

Besides failing to satisfy the full definition for a topological conjugacy algebra,

neither P (X, σ) or P∞(X, σ) give us much information about the dynamical system.

We move on to more useful examples.

Example 2.8 Let (X, σ) be a one-variable dynamical system. Let Hx = l2(N) be

the space of square summable sequences ξ = (ξn)∞n=0 and for each x ∈ X define

πx(f)ξ = (f(x)ξ0, (f ◦ σ)(x)ξ1, (f ◦ σ(2))(x)ξ2, · · · ), for f ∈ C0(X),

and

Vxξ = (ξ1, ξ2, ξ3, · · · ).

The norm closed operator algebra AX,σ acting on ⊕x∈XHx and generated by the

operators

⊕x∈Xπx(f), ⊕x∈Xπx(g)Vx, f, g ∈ C0(X),

is seen to be a topological conjugacy algebra.

Hadwin and Hoover in [8] provide more examples of topological conjugacy al-

gebras.

Example 2.9 Let W be a Banach space and let f →Mf be a faithful continuous

representation of C(X) as operators on W . For instance W could be C(X) and Mf

could be ”multiplication by f”. Or, if m is a Borel measure on X with m(V ) > 0 for

every non-empty open set V , and if 1 ≤ q ≤ ∞, then we could let W be Lq(X,m)

and let Mf be multiplication by f .

Fix p, 1 ≤ p ≤ ∞, and let Y be a Banach space of all norm p-summable

sequences of points in W . Let U be the backwards shift operator on Y . For f in

C(X), let Tf be the operator on Y defined by

Tf ((wn)∞n=1) = (Mf ·σn(wn))∞n=1

It is readily verified that the norm closed algebra A generated by U and all the Tf ’s

is a topological conjugacy algebra for (X, σ).
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As well, note that the semi-crossed product algebras, Definition 1.4, are isomor-

phic to those with W a Hilbert space and p = 2.

Example 2.10 Suppose that the continuous map σ is freely acting on X in the

sense that, for every non-empty open set V and for every positive integer n, there is

a non-empty open subset V ′ of V such that the sets σk(V ′), 0 ≤ k ≤ n, are pairwise

disjoint. It is easily shown that σ acts freely if and only if, for each positive integer

n, the set {x : σn(x) = x} has empty interior.

Suppose m is a Borel measure on X such that m(V ) > 0 for every non-empty

open set V , and such that m and m ◦ σ are mutually continuous with Radon-

Nikodym derivative h = dm ◦ σ/dm. Also assume that every set with positive

measure contains a set with finite positive measure.

Suppose 1 ≤ p ≤ ∞, and let C(X) act on Lp(m) as multiplications. Define the

operator U on Lp(m) by U(f) = (f ◦ σ)h1/p. In the case of p = ∞, let the weight

function h1/p be the constant function. Let A be the norm closure of P (X, σ) in the

algebra B(Lp(m)) of all operators on Lp(m). Note that if m is counting measure

and p = ∞, then C(X) (with the supremum norm) is a norm closed subspace of

L∞(m) that is invariant for the algebra A. In this case, once we prove that A is

a topological conjugacy algebra, it will follow that the restriction of A to C(X) is

also a topological conjugacy algebra.

The operator U is an invertible isometry on Lp(m), so ‖U‖ = 1. Suppose

that a ∈ P (X, σ) and a =
∑n

i=0 fiU
i. Suppose 0 ≤ k ≤ n and r > 0, and let

V = {x ∈ X : |fk(x)| > ‖fk‖ − r}. Choose a non-empty open subset V ′ of

σk(V ) such that the sets σi(V ′), 0 ≤ i ≤ n, are pairwise disjoint. Let f be the

characteristic function of a subset E of V ′ with 0 < m(E) < ∞. The functions

f ◦ σi, 0 ≤ i ≤ n, have pairwise disjoint supports and Ukf vanishes off V . Thus,

‖af‖ ≥ ‖(f ◦ σk)af‖ = ‖fk(f ◦ σk)Ukf‖ ≥ (‖fk‖ − r)‖f‖.

Since r can be chosen to be arbitrarily small, it follows that ‖a‖ ≥ ‖fk‖ for 0 ≤ k ≤
n. Hence the coefficient maps E0, E1, · · · are continuous with norm 1 on P (X, σ).

Thus the coefficient maps can be extended to contractive linear maps on A. It

follows then that A is a topological conjugacy algebra for (X, σ).
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2.2 Characters and representations

In this section we will develop some theory around characters and representations

of the semicrossed product algebra. This turns out to be one of the key steps in

the characterization of one-variable dynamical systems which will be proven in the

next section.

First, a technical proposition about algebra homomorphisms and how they relate

to the power series of an element in a topological conjugacy algebra.

Proposition 2.11 Let A be a topological conjugacy algebra for the one-variable

dynamical system (X, σ). Let B be an algebra and ρ : A → B an algebra homomor-

phism. If C0(X)U ⊆ kerρ, then ρ(a) = ρ(E0(a)), for all a ∈ A.

Proof. If a ∈ A, then

a = E0(a) + E1(a)U + bU2

for some b ∈ A. We assumed that ρ annihilates the second summand above and

we are done if we can show that ρ annihilates bU2 as well.

Let (eα) be the contractive approximate unit of C0(X) of all positive functions of

norm less than 1 with compact support. The order on the net is given by, eα ≤ eβ

if and only if eα(x) ≤ eβ(x), for all x ∈ X. Now (eα) is also an approximate

unit for the Banach algebra AU2 and so span(AU2C0(X)) = AU2. Hence the

right multiplication on AU2 by elements of C0(X) defines an anti-representation of

C0(X) on the Banach space which satisfies the hypothesis of Cohen’s Factorization

Theorem [12, Theorem 5.2.2]. The conclusion is that

span(AU2C0(X)) = span(AU2C0(X)) = AU2

and so there exists ci ∈ A and gi ∈ C0(X) so that bU2 =
∑n

i=1 ciU
2gi. But then

ρ(bU2) =
n∑
i=1

ρ(ciU)ρ(Ugi) =
n∑
i=1

ρ(ciU)ρ((gi ◦ σ)U) = 0.

and the conclusion follows. �

Now there is a natural partitioning of the character space,MA, of a topological

conjugacy algebra. This partitioning is important since we will show that it is

preserved via homeomorphisms of topological conjugacy algebras.
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Definition 2.12 Let A be a topological conjugacy algebra for a one-variable dy-

namical system (X, σ) and let ρ be a character on A. Then since the action of ρ

on C0(X) ⊂ A is a point evaluation on some point, we define for x ∈ X,

MA,x = {ρ ∈MA : ρ(f) = f(x),∀f ∈ C0(X) ⊂ A}.

Thus, we get the following partitioning: MA =
⋃̇
x∈XMA,x.

From this, look at the structure of a partition based on whether it is or is not

related to a fixed point of σ. First, suppose that x is not a fixed point of σ and

ρ ∈MA,x then for all f, g ∈ C0(X)

f(x)ρ(U)g(x) = ρ(fUg) = ρ((g ◦ σ)fU) = g(σ(x))f(x)ρ(U) = f(x)ρ(U)g(σ(x))

which implies that C0(X)U ⊆ ker ρ. Hence, by Proposition 2.11,

ρ(a) = ρ(E0(a)) = E0(a)(x) for all a ∈ A.

Therefore, MA,x = {θx}, a single element.

The next theorem deals with the more complicated case when x is a fixed point

of σ. It turns out that in this case MA,x is homeomorphic to σ(U) = Dr, a closed

disc. We will call a map Θ from a domain Ω ⊂ C into MA pointwise analytic if

Θ(z)(a) is analytic for z ∈ Ω for all a ∈ A.

Theorem 2.13 Let A be a topological conjugacy algebra for the one-variable dy-

namical system (X, σ) and let x ∈ X be a fixed point for σ. Then there exists a

homeomorphism

Θx : σ(U)→MA,x

which is pointwise analytic on the interior σ(U)◦ of σ(U) and satisfies Θx(z)(gU) =

g(x)z for every g ∈ C0(X).

Proof. First suppose that X is compact. The following argument is due to Hadwin

and Hoover in [8] to show that MA,x is homeomorphic to the spectrum of U .

Let r = limn→∞ ‖Un‖1/n. Remember that the map Sa = aU from A to AU
has a bounded left inverse T and is therefore bounded below by ‖T‖−1. Hence,

‖U‖ ≥ ‖T‖−1‖1‖ and so ‖Un‖ ≥ ‖T‖−n‖1‖. Thus r ≥ ‖T‖−1 is positive.
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Now consider the power series
∑

nEn(a)(x)zn and note that by the definition

of a conjugacy algebra its radius of convergence is at least r. Hence, for any z ∈ C
with |z| < r, the mapping

A 3 a −→
∑
n

En(a)(x)zn

is a well defined multiplicative functional on A, which we denote by θx,z. Since

θx,z(U) = z, for any z with |z| < r we have σ(U) = Dr Furthermore, the mapping

MA,x 3 θ → θ(U) ∈ σ(U) is a continuous map between compact spaces that has

dense range. Since θ ∈ MA,x is determined by θ(U), this map is an injection.

By elementary topology the above map is a homeomorphism. Its inverse will be

denoted Θx.

In the second case, if X is not compact, then the corresponding map Θ̂x for the

canonical unitization Â will provide the correct map as long as it is shown that

every character in MA,x comes from one in MÂ,x. This argument is contained in

[4]. �

Definition 2.14 Let Θ : Ds → MA be an injection that is pointwise analytic,

s > 0. Then we call the range of Θ an analytic disc.

We see that for any f ∈ C0(X) then Θ(z)(f) = Θ(z)(f). Thus Θ(z)(f) is con-

stant by analyticity. So then an analytic disc is contained in someMA,x. Therefore,

by the previous Theorem the set (MA,x)
◦ = Θx(σ(U)◦) is an analytic disc for every

fixed point x of σ. By the Open Mapping Theorem, (MA,x)
◦ is a maximal analytic

disc. This maximality proves to be essential in the classification of semicrossed

products.

Now we move on to our second tool for studying isomorphisms between con-

jugacy algebras. That is, the definition of nest representations and some accom-

panying lemmas. If two topological conjugacy algebras A(X, σ) and A(Y, τ) are

isomorphic we can prove by character theory that there is a homeomorphism be-

tween X and Y that maps the fixed points of σ to the fixed points of τ (as will be

seen in the main theorem of the next section). The following theory allows us to

prove that the existence of certain nest representations gives us the conjugacy of

the systems that we desire.
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Definition 2.15 Let A be an algebra. Denote the collection of representations of

A onto T2, the upper triangular 2 × 2 matrices, as repT2
A. As well, let

θπ,i(a) = 〈π(a), ξi, ξi〉, a ∈ A, i = 1, 2

be characters that correspond to compressions on the (1,1) and (2,2) entries where

{ξ1, ξ2} is the canonical basis of C2.

Now suppose that A is a topological conjugacy algebra for the dynamical system

(X, σ). Then define

repx1,x2
A = {π ∈ repT2

A : θπ,1 ∈MA,xi , i = 1, 2}.

Hence, repT2
A =

⋃
x,y∈X repx,yA.

We will also need a few notations. Let γ : A1 → A2 be an isomorphism of

algebras. This induces isomorphisms

γc :MA1 →MA2 , γc(θ) = θ ◦ γ−1, and

γr : repT2
A1 → repT2

A2, γr(π) = π ◦ γ−1.

These isomorphisms are associated since γc(θπ,i) = θγr(π),i for i = 1, 2.

Lemma 2.16 Let A be a topological conjugacy algebra for the dynamical system

(X, σ). If x, y ∈ X with σ(x) 6= x, σ(y) 6= y and π ∈ repx,yA, then y = σ(x).

Proof. We assumed θπ,1 = θx,0 and θπ,2 = θy,0, and so θπ,i(gU) = 0, i = 1, 2, g ∈

C0(X). Thus, π(gU) =

(
0 cg

0 0

)
for some cg ∈ C. By Proposition 2.11 there

exists at least on g ∈ C0(X) so that cg 6= 0 or else the range of π would be

commutative. Apply π to gUf = (f ◦ σ)gU for this g to get(
0 cg

0 0

)(
f(x) t

0 f(y)

)
=

(
f(σ(x)) t′

0 f(σ(y))

)(
0 cg

0 0

)

for some t, t′ ∈ C, depending on f . We see that this gives f(y) = f(σ(x)) for all

f ∈ C0(X) and so y = σ(x). �
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However, repx,σ(x)A is not empty when x 6= σ(x). We can see this by first letting

ρ(f) =

(
f(x) 0

0 f(σ(x))

)
, ρ(fU) =

(
0 f(x)

0 0

)

and ρ(fUn) = 0, n ≥ 2, f ∈ C0(X). We can then extend ρ by linearity to a map

from the algebra of skew formal power series P∞(X, σ) to the upper triangular

representations repT2A. Then, ρ ◦ ∆ ∈ repx,σ(x)A, where ∆(a) =
∑

nEn(a)Un ∈
P∞(X, σ) is the Fourier series homomorphism.

Definition 2.17 Let A be a topological conjugacy algebra for the one-variable dy-

namical system (X, σ). Assume that x, y ∈ X such that σ(y) = y but σ(x) 6= x. A

pencil of nest representations for A is a set Px,y ⊆ repx,yA which satisfies

{θπ,2 : π ∈ Px,y} = (MA,y)
◦ = {θy,z : x ∈ σ(U)◦} = Θy(σ(U)◦)

Lemma 2.18 Let A be a topological conjugacy algebra for the dynamical system

(X, σ) and let Px,y be a pencil of representations for A. Then y = σ(x).

Proof. Since Px,y is a pencil, there exists a π ∈ Px,y such that θπ,1 = θx,0 and

θπ,2 = θy,0. The conclusion follows by an identical argument to that in Lemma

2.16. �

Lastly, it can be shown that for x ∈ X if we have x 6= σ(x) and σ(x) = σ(2)(x)

then there exists a pencil of representations, Px,σ(x), for the tensor algebra.

In particular, note that we need only consider compact spaces X. Recall that

lim infn ‖En‖−1/n ≥ r, where r is the spectral radius of U , so σ(U) = Dr. If |z| < r,

we define,

πz(f) =

[
f(x) 0

0 f(σ(x))

]
, πx(U) =

[
0 z

0 z

]
.

For any a ∼
∑

nEn(a)Un, define

πz(a) =
∑

n πz(En(a))πz(U)n

=

(
E0(a)(x)

∑
n≥1En(a)(x)zn

0
∑

n≥0En(a)(σ(x))zn

)
.
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Since |z| < r, πz(a) is well defined for all a ∈ A. As well, it is easy to see that

πz(U
n) = πz(U)n, n ∈ N, and πz(f ◦ σ)π(U) = πz(U)πz(f). Consequently, it easily

follows that πz is an algebra homomorphism that maps onto T2. Therefore,

Px,σ(x) := {piz : z ∈ σ(U)◦}

is the desired pencil of representations.

2.3 Complete characterization

Now we are ready to prove the characterization theorems.

Theorem 2.19 Let (X, σ), (Y, τ) be one-variable dynamical systems. Then they

are conjugate if and only if there exist topological conjugacy algebras of (X, σ) and

(Y, τ) that are isomorphic as algebras.

Proof. If the two systems are conjugate, then the algebras from Example 2.8 are

clearly seen to be isomorphic.

Conversely, suppose that A,B are conjugacy algebras for (X, σ) and (Y, τ), and

that there exists an algebra homeomorphism γc ofMA ontoMB by γc(θ) = θ◦γ−1.

It is elementary to verify that γc preserves analytic discs and therefore establishes a

bijection between the maximal analytic discs ofA and B. This bijection extends to a

bijection between their closures and therefore to a bijection between the collections

{MA,x : x ∈ X} and {MB,y : y ∈ Y }. In other words, for each x ∈ X there exists

a γs(x) ∈ Y so that

γc(MA,x) =MB,γs(x).

We have therefore defined a map γs : X → Y , which maps fixed points to fixed

points and satisfies

f(γs(x)) = (θx,0 ◦ γ−1)(f)

for all x ∈ X and f ∈ C0(Y ). Notice that if (xi)i is a net converging to some

x ∈ X, then the above equation shows that (f(γs(xi)))i converges to f(γs(x)),

for all f ∈ C0(Y ), and so (γs(xi))i converges to γs(x). Hence, γs is continuous.

Repeating the above arguments with γ−1 : B → A in the place of γ, we obtain

that γs : X → Y has a continuous inverse and is therefore a homeomorphism.
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Furthermore, γs maps the fixed point set of σ onto the fixed point set of τ . Finally,

Claim: If x ∈ X is not a fixed point for σ, then

γr(repx,σ(x)A) ⊂ repγs(x),γs(σ(x))B

Pick a representation π ∈ repx,σ(x)A. By the first equation, we have θγr(π),1 =

γc(θπ,1) and so θγr(π),1 = γc(θx,0). By the second equation, γc(θx,0) ∈ MB,γs(x) and

θγr(π),1 ∈ MB,γs(x). A similar argument shows that θγr(π),2 ∈ MB,γs(σ(x)) and this

proves the claim.

We now show that γs implements the desired conjugacy between (X, σ) and

(Y, τ), i.e.

γs(σ(x)) = τ(γs(x)), for all x ∈ X.

Since γs maps fixed points to fixed points, verifying the above equation becomes

trivial in that case. We therefore pick an element x ∈ X with σ(x) 6= x and we

examine two cases.

For the first case assume that σ(2)(x) 6= σ(x). In that case, pick a representation

π ∈ repx,σ(x)A. Combining the claim with Lemma 2.16, we obtain that τ(γs(x)) =

γs(σ(x)), which proves the equation.

For the second case assume that σ(2)(x) = σ(x) and let Px,σ(x) be a pencil of

representations for A as was constructed at then end of the last section. By the

claim

γr(Px,σ(x)) ⊂ repγs(x),γs(σ(x))B.

Since γc preserves maximal analytic discs, γr preserves pencils of representations

and so γr(Px,σ(x)) is a pencil of the form Pγs(x),γs(σ(x)). By Lemma 2.18, we have

τ(γs(x)) = γs(σ(x)), which proves the equation in the last remaining case. This

proves the Theorem. �

This gives us that the semicrossed product algebras completely characterize one-

variable dynamical systems. Thus, the following theorem finishes off the chapter.

Theorem 2.20 Let (X, σ), (Y, τ) be one-variable dynamical systems. Then they

are conjugate if and only if C0(X) ×σ Z+ and C0(Y ) ×τ Z+ are isomorphic as

algebras.
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Proof. Peter’s semicrossed products are not topological conjugacy algebras ac-

cording to Definitions 2.4 and 2.5. However, there is a natural connection. Let

(C0(X)×σ Z+)op denote the opposite algebra of C0(X)×σ Z+. That is, we define a

new multiplication � by a�b = ba for a, b ∈ C0(X)×σZ+. It can easily verified that

this opposite algebra is a topological conjugacy algebra. Although, C0(X) ×σ Z+

does not need to be isomorphic to its opposite algebra. However, it can be proven

that C0(X)×σ Z+ is isomorphic to C0(Y )×τ Z+ if and only if (C0(X)×σ Z+)op is

isomorphic to (C0(Y )×τ Z+)op.

So by Theorem 2.19 if C0(X)×σ Z+ is isomorphic to C0(Y )×τ Z+ then (X, σ)

and (Y, τ) are conjugate.

Finally, if the dynamical systems are conjugate then it is clear that C0(X)×σZ+

is isomorphic to C0(Y )×τ Z+ by looking at their definitions. �
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Chapter 3

Multivariable case

The multivariable case presents many more difficulties than the previous one-

variable case, though the argument has a similar structure and many parallels

with the last chapter. We can define a universal algebra along the same lines as in

the one-variable case:

Definition 3.1 Let (X, σ) be a multivariable dynamical system. Then the semi-

crossed product algebra is defined to be the universal operator algebra C0(X)×σ F+
n

generated by C0(X) and generators s1, · · · , sn satisfying the covariance relations

fsi = si(f ◦ σi) for f ∈ C0(X) and 1 ≤ i ≤ n

and satisfying the contractive condition ‖si‖ ≤ 1 for 1 ≤ i ≤ n.

But Davidson and Katsoulis in [3] found this to be non-tractable when it came

to trying to prove that the semicrossed product algebra in some way characterizes

multivariable dynamical systems.

They went on to show that if one replaced the contractive condition with an-

other norm condition, namely a row contractive condition, a much nicer object

appears called the tensor algebra. This algebra also recommends itself as it is a

C∗-correspondence algebra as defined by Muhly and Solel [10].

Though a lot of the following theory is mirrored in the semicrossed product

case we will be following only the tensor algebra. Readers wishing to pursue this

semicrossed product construction as well as the full details of the tensor algebra

construction and theory are directed towards [3].
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3.1 The tensor algebra

As was mentioned, the tensor algebra is defined similarly to the semicrossed product

algebra except for the change in the norm condition.

Definition 3.2 Let (X, σ) be a multivariable dynamical system. Then the tensor

algebra is defined to be the universal operator algebra A(X, σ) generated by C0(X)

and generators s1, · · · , sn satisfying the covariance relations

fsi = si(f ◦ σi) for f ∈ C0(X) and 1 ≤ i ≤ n

and satisfying the row contractive condition

‖ [s1 s2 · · · sn] ‖ ≤ 1.

Now we move on to a dilation theorem which lets us dilate to isometric represen-

tations. This in turn will allow us to use what are called boundary representations

to explicitly represent the C∗-envelope which is the smallest C∗-algebra containing

the tensor algebra as a subalgebra. Finally, we use these results to obtain a Fourier

series for each element of A(X, σ) which in turn will give us that isomorphisms

between tensor algebras are automatically continuous, an important result for the

characterization problem.

Without further ado, the dilation theorem:

Theorem 3.3 Let (X, σ) be a multivariable dynamical system. Let π be a ∗-
representation of C0(X) on a Hilbert space H, and let A = [A1 · · ·An] be a row

contraction satisfying the covariance relations

π(f)Ai = Aiπ(f ◦ σi) for 1 ≤ i ≤ n.

Then there is a Hilbert space K containing H, a ∗-representation ρ of C0(X) on K
and a row isometry [S1 · · ·Sn] such that

(i) ρ(f)Si = Siρ(f ◦ σi) for f ∈ C0(X) and 1 ≤ i ≤ n.

(ii) H reduces ρ and ρ(f)|H = π(f) for f ∈ C0(X).

(iii) H⊥ is invariant for each Si, and PHSi|H = Ai for 1 ≤ i ≤ n.

It follows from this theorem that every row contractive representation of the

covariance algebra dilates to a row isometric representation. This allows us to work
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with isometric representations which will allow us to produce the C∗-envelope of

the tensor algebra.

Now to construct the C∗-envelope we first need to define some representations

that Peters [13] used to define the semicrossed product of a one-variable dynamical

system.

Let F+
n be the free semigroup consisting of all words in the alphabet {1, 2, · · · , n}

with the empty word ∅ as a unit. We define Fock space as the Hilbert space l2(F+
n )

with the orthonormal basis {ξw : w ∈ F+
n }. Naturally we can define the left regular

representation of the free semigroup F+
n on Fock space by

Lvξw = ξvw, v, w ∈ F+
n .

Consider the following orbit representations of (X, σ). First define the orbit of an

element x ∈ X as O(x) = {σw(x) : w ∈ F+
n }. Then we can define a ∗-representation

πx of C0(X) on the Fock space Fx = l2(F+
n ) by

πx(f)ξw = f(σw(x))ξw, f ∈ C0(X), w ∈ F+
n

or rather we can say πx(f) = diag(f(σw(x))). By sending the generators si to

Li and letting Lx = [L1 · · · Ln] it is easily seen that (πx, Lx) is the covariant

representation.

Lastly, we define the full Fock representation (Π,L) where Π =
∑⊕

x∈X πx and

L =
∑⊕

x∈X Lx on FX =
∑⊕

x∈X Fx. With further work this gives us the following

proposition.

Proposition 3.4 The full Fock representation is a faithful completely isometric

representation of the tensor algebra A(X, σ).

A completely contractive representation, say ρ, of an operator algebra A on a

Hilbert spaceH is maximal if in the case when π is a completely contractive dilation

of ρ on a Hilbert space K = H⊕K1, then H reduces π, that is π = ρ⊕ π1. In the

case of the tensor algebra we can state explicitly a condition for a representation

to be maximal.

Lemma 3.5 A completely contractive representation ρ of the tensor algebra A(X, σ)
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is maximal if Si = ρ(si) is an isometry for 1 ≤ i ≤ n and

n∑
i=1

SiS
∗
i = Eρ

(
n⋃
i=1

σi(X)

)
,

where Eρ denotes the spectral measure associated to ρ(C0(X)).

The converse turns out to be true as well. Finally, a boundary representation is

a maximal representation that is irreducible, that is, it has no reducing subspaces.

If we can produce a completely isometric maximal representation ρ of A then it is

known that C∗env(A) = C∗(ρ(A)).

Theorem 3.6 The C∗-envelope of A(X, σ) is C∗(π(A(X, σ))), where π is a max-

imal dilation of the full Fock representation Π.

Proof. The full Fock representation Π is a completely isometric representation of

A(X, σ) by Proposition 3.4. Therefore, any maximal dilation π of Π will yield the

C∗-envelope.

In [3] this is accomplished by constructing explicit maximal dilations of the orbit

representations. Taking the direct sum of the irreducible ones, that is boundary

representations, yields the required maximal dilation π. �

However, this does not give an explicit description of the C∗-envelope. David-

son and Katsoulis [3] also describe a second approach using what are called C∗-

correspondences [9] to give another description of the C∗-envelope, but again this

is via a representation.

In fact, Davidson and J. Roydor, in [5], showed that this C∗-envelope of the

tensor algebra can be explicitly described. In particular, given a dynamical system

(X, σ) that is surjective (they also show what happens in the non-surjective case),

that is X =
⋃n
i=1 σi(X), define Y = {1, · · · , n}N ×XN with the product topology.

Let

X̃ = {(i,x) ∈ Y : σik(xk+1) = xk for k ≥ 0},

the subset of all infinite tails in Y . We also define the maps

σ̃i(i,x) = ((i, i0, i1, · · · ), (σi(x0), x0, x1, · · · )).
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Therefore, (X̃, σ̃) is a new multivariable dynamical system which is called the

covering system of (X, σ). Notice also that X̃ is the disjoint union of n sets

X̃i = {(i,x) ∈ X̃ : i0 = i}. This allows us to define an inverse map τ given

by

τ |X̃i = σ̃i
−1 for 1 ≤ i ≤ n

which is a local homeomorphism. They go on to show that C∗env(A(X, σ)) '
C∗(X̃, τ), the groupoid C∗-algebra described in [6]. Finally, they use these results

to show that C∗env(A(X, σ)) ' B×αN where B is the inductive limit of homogeneous

C∗-algebras. This construction mirrors how Peters in [13] defined the C∗-envelope

of a one-variable dynamical system.

We move on to associating to each element of the tensor algebra a Fourier series.

Though similar to the one-variable case there are some distinct differences. One

major difference is the necessity to pass to the C∗-envelope to compute the Fourier

coefficients.

Suppose π is a row contractive representation and S = [S1 · · ·Sn] satisfies the

covariance relations. By the universality of the tensor algebra we have that π

and λS satisfy the same conditions, for λ = (λi) ∈ Tn. Therefore, the map that

sends the generators si to λisi and fixes C0(X) gives us a completely isometric

isomorphism of A(X, σ). Furthermore, we can extend this map uniquely to a ∗-
automorphism of the C∗-envelope. By letting λi = z, 1 ≤ i ≤ n, z ∈ T we obtain

the gauge automorphisms γz.

Proposition 3.7 The map E(a) =
∫

T γz(a)dz is a completely contractive expecta-

tion of A(X, σ) onto C0(X).

This map E also makes sense for any element of the C∗-envelope. Yet in this

case the range is no longer just in C0(X) but the span of words of the form svfs
∗
w

for |v| = |w|. This extended version of the map E is used below as the Fourier

series of an element of A(X, σ) is calculated within the C∗-envelope of the tensor

algebra.

Definition 3.8 For every word w ∈ F+
n , the Fourier coefficient map Ew : A(X, σ)→

C0(X) is defined as Ew(a) = E(s∗wa).
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Observe that

s∗wsv =


su, if v = wu

s∗u, if w = vu

0, otherwise

Hence, E(s∗wsvf) 6= 0 only when w = v. Therefore, for a polynomial a =
∑

v∈F+
n

svfv

in A(X, σ) we have that Ew(a) = fw. This extends so that we can write any element

of the tensor algebra as a Fourier series:

a ∼
∑
v∈F+

n

swfw, ∀a ∈ A(X, σ).

However, this series does not converge in general, rather the original element is

recovered by interpreting the series via the Cesaro means. Thus we have obtained

a Fourier series for each element of the tensor algebra.

We need one more definition before we continue. If ϕ : A → B is an epimorphism

between Banach algebras, then the separating space of ϕ is the two-sided closed ideal

of B defined as

S(ϕ) := {b ∈ B : ∃{an}n≥1 ⊆ A so that an → 0 and ϕ(an)→ b}

Thus the graph of ϕ is closed if and only if S(ϕ) = {0} and then by the closed

graph theorem we know that ϕ is continuous if and only if S(ϕ) = {0}. This gives

us the required continuity result.

Theorem 3.9 Suppose (X, σ) and (Y, τ) are multivariable dynamical systems. Then

any isomorphism γ of A(X, σ) onto A(Y, τ) is automatically continuous.

Proof. Fix one of the generating isometries of A(Y, τ), say t1. For any subset S of

A(Y, τ), the faithfulness of the Fourier series expansion implies that⋂
k≥0

tk1S = {0}

Thus if S(γ) 6= {0}, then it is known that there exists a k0 ∈ N so that for all

k ≥ k0 we have that tk1S(γ) = tk+1
1 S(γ). Thus, we have

tk01 S(γ) =
⋂
k≥0

tk1S(γ) = {0}.
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Thus, S(γ) = {0} because left multiplication by t1 is injective. Therefore γ is

continuous. �

This result will prove very useful as now we need to only consider continuous

representations in the study of isomorphisms between tensor algebras.

3.2 Characters, nest representations, and piece-

wise conjugacy

This section will follow a similar method to that discussed in the one-variable

dynamical system case in Chapter 2. Once again will we first look at characters

and then study nest representations into the 2 × 2 upper triangular matrices. There

is also an analytic structure that appears at fixed points that will be needed. Lastly,

we introduce a weakened concept of conjugacy since an extension of the concept of

conjugacy in the one-variable case becomes highly restrictive.

Let A = A(X, σ) be a tensor algebra for the multivariable dynamical system

(X, σ). First we considerMA, the space of characters of A defined with the weak-∗
topology. We will use the partitioning MA =

⋃̇
x∈XMA,x found in section 3 of

Chapter 2, whereMA,x comprises all characters that act as the point evaluation δx

at the point x when restricted to C0(X). Recall that we defined an expectation from

A to C0(X) in Proposition 3.7; this allowed us to always produce the expectation

θx,0 = δxE in MA,x. Lastly, because a character θ ∈ MA,x is always continuous

then it can be determined by z = (θ(s1), · · · , θ(sn)). We will denote this character

as θx,z when it is defined.

Lemma 3.10 Suppose x ∈ X and let Ix = {i : 1 ≤ i ≤ n, σi(x) = x} is the fixed

point set. Then

MA,x = {θx,z : zi = 0 for i /∈ Ix, ‖z‖2 ≤ 1} =: B(Ix)

Furthermore, for a ∈ A, Θa(z) = θx,z(a) is analytic on the ball of radius 1 in the

variables {zi : i ∈ Ix} and is continuous on the closure. In the special case when x

is not fixed by any σi then MA,x = {θx,0}.

In parallel with the one-variable case we again define analytic sets.
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Definition 3.11 Consider a continuous bijection Θ : Ω→M ⊂MA for a domain

Ω ⊂ Cd. Then we call M an analytic set if the function Θ(z)(a) is analytic on

Ω for every a ∈ A. It is called a maximal analytic set if it is maximal among all

analytic subsets of MA.

Now let Θ map a domain Ω into MA. For each f ∈ C0(X) both Θ(z)(f) and

Θ(z)(f) = Θ(z)(f) are analytic, and thus constant. Now continuous functions on

X separate points so Θ maps into a single fibre. By Lemma 3.10 we have thatMA,x

is homeomorphic to a closed ball. Therefore, we can conclude that the maximal

analytic sets in MA are precisely the open balls Bx = {θx,z : z ∈ B(Ix)} for those

x fixed by at least one σi.

This leads us to the following conclusion:

Proposition 3.12 The characters of A determine X up to homeomorphism, and

identify which points are fixed and by how many of the σi maps.

Proof. The above discussion shows thatMA consists of a space which is fibred over

X, and the fibres are determined canonically as the closures of maximal analytic

sets and the remaining singletons. Thus there is a canonical quotient map of MA

onto X, determining X. Now the points which are fixed by some σi are exactly the

points with a non-trivial fibre of characters. The corresponding maximal analytic

set is homeomorphic to a ball in Cd where d = |Ix|. The invariance of domain

theorem shows that the dimension d is determined by the topology. �

This theory is used in [3] to show that if (X, σ) has a point that is fixed by

at least two of the σi maps then A(X, σ) and the semicrossed product algebra

C0(X)×σ F+
n are not algebraically isomorphic.

Now we come to the second part of this section, that is, the development of

the theory of nest representations. It turns out that we will need a more general

development of these representations than was needed in the one-variable case in

Chapter 2.

First, letN2 denote that maximal nest {{0},Ce1,C2} in C2. Then we can define:

Definition 3.13 A nest representation ρ is a continuous representation of an op-

erator algebra A on C2 such that Lat ρ(A) = N2. The collection of all such

representations is denoted repN2.
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This gives a more general definition of nest representations than in Chapter 2

because there are two unital subalgebras of M2(C) withN2 as the lattice of invariant

subspaces. They are T2 and the abelian algebra A(E12) = span{I, E12} and both

have non-trivial radical.

Next, for any representation ρ of A into T2, the compression to a diagonal entry

is a homomorphism. Hence ρ gives us two characters denoted θρ,1 and θρ,2. As

well, if we let ψ denote the map that gives us the (1,2)-entry of ρ(a) then we can

conclude that ψ is a point derivation and we have

ψ(ab) = θρ,1(a)ψ(b) + ψ(a)θρ,2(b), a, b ∈ A.

Now we define repx,yA = {ρ ∈ repN2
: θρ,1 ∈MA,x, θρ,2 ∈MA,y} the same as in the

one-variable case.

For our purposes it is enough to consider representations which restrict to ∗-
representations of C0(X). This comes automatically for (completely) contractive

representations of C0(X). As well, representations of C0(X) into M2(C) are auto-

matically continuous, and thus diagonalizable. So, we let repdN2
A and repdx,yA to

denote the nest representations which are diagonal on C0(X).

Lastly we need two technical lemmas about nest representations, the second of

which is key to recovering the dynamical system from the tensor algebra.

Lemma 3.14 Let X be a locally compact space; and let σ : X → X be a continuous

map. Let K ⊂ X, and let Ω be a domain in Cd. Suppose there exists ρ : K × Ω→
repA that satisfies the following

(1) ρ(x, z) ∈ repx,σ(x)A for x ∈ K and x ∈ Ω,

(2) ρ is continuous in the point-norm topology, and

(3) ρ(x, z) is analytic in z ∈ Ω for each fixed x ∈ K.

Then there exists A : K × Ω→ T−1
2 such that

(1) A(x, z)ρ(x, z)A(x, z)−1 ∈ repdA,

(2) A(x, z) is continuous on (K \ {x : σ(x) = x})× Ω,

(3) A(x, z) is analytic in z ∈ Ω for each fixed x ∈ K, and

(4) max{‖A(x, z)‖, ‖A(x, z)−1‖} ≤ 1 + ‖ρ(x, z)‖.

Lemma 3.15 If repy,x(A) is non-empty, then there is some i such that σi(x) = y.

As well, if ρ ∈ repdy,x(A) and σj(x) 6= y, then ρ(sjg) is diagonal for all g ∈ C0(X).
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Finally for this section, we define a natural form of conjugacy for multivariable

dynamical systems. When we move to the multivariable case there is an ambiguity

introduced into the construction of the universal operator algebra. Thus, isomor-

phism of universal algebras implies conjugacy of dynamical systems in only limited

circumstances. Thus, a new concept of local conjugacy, called piecewise conjugacy,

was introduced in [3].

Definition 3.16 Two multivariable dynamical systems (X, σ) and (Y, τ) are piece-

wise conjugate if there is a homeomorphism γ : X → Y and an open cover

{Vα : α ∈ Sn} of X such that

γ−1τiγ|Vα = σα(i)|Vα , for α ∈ Sn

Thus piecewise conjugacy depends upon a cover which causes the permutations

to depend on each open set. So piecewise conjugacy and conjugacy only correspond

under rather restrictive circumstances.

One such equivalence is given in the next proposition, though the condition on

the maps σ are highly restrictive.

Proposition 3.17 Let (X, σ) and (Y, τ) be piecewise conjugate multivariable dy-

namical systems. If X is connected and the set

E := {x ∈ X : |{σ1(x), · · · , σn(x)}| = n}

is dense in X then (X, σ) and (Y, τ) are conjugate.

If the space X is totally disconnected it turns out that piecewise conjugacy can

be explicitly stated.

Proposition 3.18 Let X be a totally disconnected compact Hausdorff space and

let γ be a homeomorphism of X onto a space Y . Then the multivariable dynamical

systems (X, σ) and (Y, τ) are piecewise conjugate by γ if and only if X can be

partitioned into clopen sets {Vα : α ∈ Sn} such that for all α ∈ Sn,

γ−1τiγ|Vα = σα(i)|Vα .
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3.3 The central claim

Now we are ready to state what can be proven about algebraic characterization of

multivariable dynamical systems as well as the conjecture that fills in the gap in

the theory.

Theorem 3.19 Let (X, σ) and (Y, τ) be two multivariable dynamical systems. If

A = A(X, σ) and B = A(Y, τ) are isomorphic as algebras then (X, σ) and (Y, τ)

are piecewise conjugate.

Proof. Let γ : A → B be an isomorphism. This induces a bijection γc :MA →MB

by γc(θ) = θ ◦ γ−1 and a map γr from repN2(A) onto repN2(B).

Since MA is endowed with the weak-∗ topology, we see that γc is continuous.

Because, if θα is a net in MA converging to θ and b ∈ B then

lim
α
γcθα(b) = lim

α
θα(γ−1(b)) = θ(γ−1(b)) = γcθ(b).

Similarly this holds for γ−1
c . Thus, γc is a homeomorphism.

Observe that γc carries analytic sets to analytic sets. Indeed, if Θ is an analytic

function of a domain Ω into MA, then

γcΘ(z)(b) = Θ(z)(γ−1(b))

is analytic for every b ∈ B; and thus γcΘ is analytic. The same holds for γ−1 and

so it follows that γc takes maximal analytic sets to maximal analytic sets. Thus it

carries their closures, MA,x, onto sets MB,y. The same also holds when these sets

are singletons.

It is known that the space X is the quotient of MA obtained by making each

MA,x a point. It follows that γc induces a set map γs of X onto Y which is a

homeomorphism since both X and Y inherit the quotient topology.

Fix x0 ∈ X, and let y0 = γs(x0). Fix one of the maps σi0 , and consider the set

F = {σi, γ−1
s τjγs : [σi]x0 = [σi0 ]x0 = [γ−1

s τjγs]x0}.

For convenience, let us relabel so that i0 = 1 and

F = {σ1, · · · , σk, γ−1
s τ1γs, · · · , γ−1

s τlγs}.
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Fix a neighbourhood V of x0 on which all of these functions agree, and such that

V is compact. Furthermore, if σ1(x0) 6= x0, then choose V so that V ∩ σ1(V) = ∅.

Now if k = l for every choice of x0 and map σ0 then we can partition the

functions into families with a common germ at x0 that always have the same number

of σi maps as γ−1
s τiγs maps. If α ∈ Sn preserves this partition at x0 then we define

Vα,x0 = V , otherwise Vα,x0 = ∅. Finally, let Vα =
⋃
x∈X Vα,x, for α ∈ Sn, which

defines the open covering of X that makes (X, σ) and (Y, τ) piecewise conjugate.

Assume then that k 6= l. Without loss of generality we can assume that k > l.

Also note that l = 0 is a possibility.

For any x ∈ V and z = (z1, z2, · · · , zl) ∈ Ck, consider the covariant representa-

tions ρx,z of A0(X, σ) into M2 defined by

ρx,z(f) =

[
f(σ1(x)) 0

0 f(x)

]
,

ρx,z(si) =

[
0 zi

0 0

]
for 1 ≤ i ≤ k,

and

ρx,z(si) =

[
0 0

0 0

]
for k < i ≤ n.

This extends to a well defined representation of A, where a typical element

A ∼
∑

w∈F+
n

swfw is sent to

ρx,z(A) =

[
f0(σ1(x))

∑k
i=1 fi(x)zi

0 f0(x)

]

There are no continuity problems since the Fourier coefficients are continuous.

This representation will be (completely) contractive for A(X, σ) if z ∈ Bk.

For other values of z, this representation is similar to a completely contractive

representation by conjugating by diag(‖z‖2, 1). Thus the norm can be estimated

as ‖ρx,z‖ ≤ ‖z‖.

The representation ρx,z maps into T2 and is a nest representation in repσ1(x),xA
when z 6= 0, but is diagonal at z = 0. Observe that the range of ρx,z for z 6= 0

equals T2 when σ1(x) 6= x and equals A(E12) when σ1(x) = x. Moreover this map

is point-norm continuous, and is analytic in the second variable.

30



Now consider the map defined on V × Ck given by

Φ0(x, z) = γr(ρx,z) ∈ repγsσ1(x),γs(x)B.

It is known that since γ is an isomorphism between tensor algebras then it is

automatically continuous; and so γr is also continuous. Thus Φ0 is point-norm

continuous, and is analytic in the second variable. So Φ0 fulfils the requirements

of Lemma 3.14. Hence there exists a map A(x, z) of V × Ck into T−1
2 , which is

analytic in the second variable, so that

Φ(x, z) = A(x, z)γr(ρx,z)A(x, z)−1

diagonalizes C0(Y ). Moreover

max{‖A(x, z)‖, ‖A(x, z)−1‖} ≤ 1 + ‖γr‖‖z‖.

Recall that when σ1(x0) 6= x0, we chose V so that V is disjoint from σ1(B). Therefore

in this case, A is a continuous function.

Choose h ∈ C0(Y ) such that h|γs(V) = 1 and ‖h‖∞ = 1. Define ψj(z) to be

the 1,2 entry of Φ(x0, z)(tjh); and set Ψ(z) = (ψ1(z), · · · , ψn(z)). Then Ψ is an

analytic function from Ck into Cn.

We can now show that ψj(z) = 0 for j > l.

Indeed, since j > l, the map γ−1τjγ is not in F . Hence there exists a net (xλ)λ∈Λ

in V converging to x0 so that γ−1
s τjγs(xλ) 6= σ1(xλ) for all λ ∈ Λ. By Lemma 3.15,

Φ(xλ, z)(tjh) is diagonal for all λ in Λ.

First consider the case when σ1(x0) 6= x0. Then A(x, z) is continuous, and so

Φ(x, z) is point-norm continuous. Taking limits, we conclude that Φ(x0, z)(tjh) is

diagonal; whence ψj(z) = 0.

Now consider the case σ1(x0) = x0. Recall that in this case Φ(x0, z) has range

in A(E12); so that the diagonal part consists of scalars. Fix z ∈ Ck. Since

max{‖A(xλ, z)‖, ‖A(xλ, z)
−1‖} ≤ 1 + ‖γr‖‖z‖,
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we may pass to a subnet if necessary so that limΛA(xλ, z) = A(z) exists in T−1
2 .

Since Φ0 is point-norm continuous and A(x0, z) = I2,

lim
λ∈Λ

Φ(xλ, z)(tjh) = lim
λ∈Λ

A(xλ, z)Φ0(xλ, z)(tjh)A(xλ, z)
−1

= A(z)Φ0(x0, z)(tjh)A(z)−1

Therefore A(z)Φ0(x0, z)(tjh)A(x)−1 is diagonal, and hence scalar. So Φ(x0, z)(tjh)

is scalar and φj(z) = 0, which proves the claim.

The function Ψ can now be considered as an analytic function from Ck into Cl.

Observe that Ψ(0) = 0. Now it is known that the zero set of Ψ has no isolated

points because it is an analytic variety of dimension greater or equal to k− l. Thus,

there exists z0 6= 0 for which Ψ(z0) = 0. Then Φ(z0) is diagonal and thus is not a

nest representation. This is a contradiction which proves that k = l and finishes

off the proof. �

Following this we have the central conjecture, namely that the tensor algebra

characterizes multivariable dynamical systems up to piecewise conjugacy.

Conjecture 3.20 Let (X, σ) and (Y, τ) be paracompact dynamical systems with

σ = {σ1, · · · , σn} and τ = {τ1, · · · , τn}. Then (X, σ) and (Y, τ) are piecewise con-

jugate if and only if A(X, σ) and A(Y, τ) are completely isometrically isomorphic.

In [3] this was reduced to the following technical conjecture about the imbedding

of a n!-simplex into the n-dimensional unitary group with certain decomposition

conditions, which they proved to be true if n ≤ 3.

Conjecture 3.21 Let Πn be the n!-simplex with vertices indexed by Sn. There is

a continuous function u : Πn → U(n) such that:

(1) Every vertex is taken to its corresponding permutation matrix and,

(2) Given any two sets of partitions A1∪̇ · · · ∪̇Am = B1∪̇ · · · ∪̇Bm = {1, · · · , n},
with |Aj| = |Bj|, 1 ≤ j ≤ m let P(A,B) = {α ∈ Sn : α(Aj) = Bj, 1 ≤ j ≤ m}.
Then if x =

∑
α∈P(A,B) xαα the non-zero matrix coefficients of u(x) are supported

on
⋃m
j=1Bj × Aj.
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This conjecture will be reformulated in Chapter 4 via a construction in the

unitary group. If this is proven to be true then the central theorem follows as

presented in [3].

Proof of Conjecture 3.20 modulo Conjecture 3.21

Completely isometrically isomorphic implies isomorphic as algebras. By The-

orem 3.19 we know that if A(X, σ) and A(Y, τ) are isomorphic as algebras then

(X, σ) and (Y, τ) are piecewise conjugate.

So conversely assume that (X, σ) and (Y, τ) are piecewise conjugate. Namely,

there is a homeomorphism γ and an open cover {Vα : α ∈ Sn}. From this simplify

so Y = X and γ = id, for ease of notation. Let {gα : α ∈ Sn} be a partition of

unity relative to the cover. Now we can define a map g : X → Πn given by

g(x) = (gα(x))α∈Sn

By Conjecture 3.21 there exists a map u from Πn to the unitary group that satisfies

the block decomposition condition. Let v = g ◦ u which maps X to U(n). For

x ∈ X there is a minimum partition (A,B) and an open neighbourhood V of x

such that

σi|V = τj|V for i ∈ As and j ∈ Bs, 1 ≤ s ≤ m.

Because the permutations α respect this block structure when gα(x) 6= 0 then so

does the map v.

Define operators in A(X, σ) by Ti =
∑n

j=1 sjvij, where vij are the matrix coef-

ficients of v. Since the sj have pairwise orthogonal ranges then

T ∗kTi =
n∑
j=1

vkjvij = δkiI

which implies that the Ti are isometries with pairwise orthogonal ranges. Now if

vij(x) 6= 0, then σj and τi agree on a neighbourhood of x and thus vij(f ◦ σj) =

vij(f ◦ τi) for all i, j. Hence,

fTi = f
n∑
j=1

sjvij =
n∑
j=1

sjvij(f ◦ σj) =
n∑
j=1

sjvij(f ◦ τi) = Ti(f ◦ τi).
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Next we know that A(X, σ) is generated by C0(X) and TiC0(X) for 1 ≤ i ≤ n

because for 1 ≤ k ≤ n we have

n∑
i=1

Tivikf =
n∑
i=1

n∑
j=1

sjvijvikf =
n∑
j=1

sjf

n∑
i=1

vijvik = skf.

Therefore, there is a completely contractive homomorphism of A(Y, τ) onto

A(X, σ) sending ti to Ti for 1 ≤ i ≤ n and which is the identity on C0(Y ) =

C0(X). Similarly there is a completely contractive homomorphism of A(X, σ) onto

A(Y, τ) which is the inverse on the generators sj. Hence, these maps are completely

isometric isomorphisms. �
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Chapter 4

The reformulation of the

conjecture

In Chapter 3 we saw that the characterization of multivariable dynamical systems

rests on a question about mapping a simplex in a particular way into the unitary

group. We will use this fact to restate the conjecture as a question purely about

the structure of the unitary group.

4.1 Construction and reformulation

From algebraic topology it is known that the unitary group U(n) is a CW-complex

with a largest simplex of size n!. However, this is a general theory for all Lie groups

and it does not give us the block decomposition condition of the conjecture. The

following inductive construction gives a very “nice” subset of U(n) that contains

all the permutation matrices and is contractible at every level.

It was pointed out to the author in a private communication from R. Kane that

neither SU(n) or O(n) can be contained in such a contractible subset of U ⊂ U(n)

since the inclusion map SU(n)→ U(n) induces an injective map from H∗(SU(n))

into H∗(U(n)), but because H∗(U) =

{
0, ∗ > 0

Z, ∗ = 0
, since U is connected and con-

tractible, then the induced homology map H∗(SU(n)) → H∗(U(n)) is trivial for

∗ > 0, a contradiction. A similar contradiction occurs when we consider O(n)

instead of SU(n).

35



Therefore, the structure of such a contractible subset of U(n) will be quite

“twisted” as can be seen in the following construction.

Proposition 4.1 There exists a copy of the complex unit sphere missing one point

in n dimensions in the unitary group U(n).

Proof. Consider the inverse stereographic projection p : Rn−1 → Sn−1 \{−e1} given

by

v1 = p(y2, · · · , yn) =
2

1 + y2
2 + · · ·+ y2

n


1−y22−···−y2n

2

y2

...

yn

 .

Next consider d
dt |t=0

p(y2, · · · , yk + t, · · · , yn) for 2 ≤ k ≤ n to get an orthogonal

basis for the tangent plane of p(y2, · · · , pn). Now,

vk =
d

dt |t=0

p(y2, · · · , yk + t, · · · , yn) =
4

(1 + y2
2 + · · ·+ y2

n)2



−yk
−y2yk

...
1+y22+···−y2k+···+y2n

2
...

−ynyk


and ‖vk‖ = 2

1+y22+···+y2n
for k ∈ {2, · · · , n}. Thus for n ≥ 2 let S̃(n)

=




1

z2

. . .

zn

×
[
v1

v2

‖v2‖
· · · vn
‖vn‖

]
×


1

z2

. . .

zn

 | z2, · · · , zn ∈ S1,

y2, · · · , yn ≥ 0

 .

Note that S̃(n) ⊂ U(n). However, the (1,1)-entry can only be real. To allow for the

first column to be anything but −e1 let y1 ∈ R and consider the following variation

to the matrices in S̃(n):

2

1 +
∑n

i=1 y
2
i


1−y21−···−y2n

2
+ iy1 −z2y2 · · · −znyn

z2y2
1−y22+···+y2n

2
−z2zny2yn

...
. . .

...

znyn −znz2y2yn · · ·
1+y22+···+y2n−1−y2n

2

 ,
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which have nonzero determinants because the determinant is always real when

y1 = 0 (just look at the structure in S̃(n)). Now we need to introduce a small

twist to ensure that all the permutation matrices show up in our construction. Let

0 < θ < 1/2 be irrational. We can rewrite S̃(n) with this scaling into a simpler

form. Namely:

2

1 +
∑n

i=1 |yi|2


eθπi(1−|y1|2−···−|yn|2

2
+ iy1) −y2 · · · −yn

eθπiy2
1−|y2|2+···+|yn|2

2
−y2yn

...
. . .

...

eθπiyn −yny2 · · · 1+|y2|2+···+|yn−1|2−|yn|2
2


with y1 ∈ R and y2, · · · , yn ∈ C. By applying the Gram-Schmidt orthonormaliza-

tion to the above matrices we get a subset S(n) of U(n) which is a copy of the

complex unit sphere missing one point, specifically the point −eθπie1. Note also

that S(n) is contractible. �

The above matrix identification of the complex n-sphere missing one point (in

its pre-Gram-Schmidt form) is central to the following theory and will be used many

times.

Now we can define a large subset of the unitary group that is a lot nicer in its

properties. This definition is motivated by the well known fact that

U(n)/U(n− 1) ' S2n−1.

Definition 4.2 Let U1 = S(1) = S1 \ {−eθπi} and

Un = S(n)×

[
1 0

0 Un−1

]
⊂ U(n), n ≥ 2.

Observe that Un is a locally trivial bundle and thus the following sequence of ho-

motopy groups is exact [7, pp. 77-84]:

· · · → πk+1(S(n))→ πk(Un−1)→ πk(Un)→ πk(S(n))→ · · ·

By induction on n, this gives us that Un is contractible because U1 is contractible.
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Next we must check that Un contains all of the necessary elements, specifically

the permutation matrices.

Proposition 4.3 The permutation matrices, which we will denote by Sn, are con-

tained in Un.

Proof. Because of the inductive structure of Un, namely Un = S(n)×

[
1 0

0 Un−1

]
,

we can prove inductively that it contains the permutation matrices.

First, for k1, · · · , kn ≥ 0 and α = {α1, · · · , αn} ∈ {−1, 1}n, define the set

Sαn (k1, · · · , kn) =


α1e

−k1θπi

. . .

αne
−knθπi

× Sn
of all permutation type matrices that have a αje

−kjθπi in the jth row, where θ is

the same irrational number chosen in Proposition 4.1.

We begin with looking at the case n = 2. Let k1, k2 ≥ 0 and α ∈ {−1, 1}2.

Since θ is irrational, ±e−kθπi 6= −eθπi for k ≥ 0. Thus we have the following

multiplications:

S ∈ S(2) ×

[
1 0

0 U

]
, U ∈ U1 ∈ U2

[
α1e

−k1θπi 0

0 1

]
×

[
1 0

0 α2e
−k2θπi

]
∈ Sα2 (k1, k2)[

0 −α2e
(k2+1)θπi

α2e
−k2θπi 0

]
×

[
1 0

0 −α1α2e
−(k1+k2+1)θπi

]
∈ Sα2 (k1, k2)

Hence, from the above table we can see that Sα2 (k1, k2) ⊂ U2 for all k1, k2 ≥ 0 and

α ∈ {−1, 1}2.

Now assume that Sα
′

n−1(k1, · · · , kn−1) ⊂ Un−1 for k1, · · · , kn−1 ≥ 0 and α′ ∈
{−1, 1}n−1. Then we can construct the following matrices when k1, · · · , kn ≥ 0,
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α ∈ {−1, 1}n with αi = α′i, 1 ≤ i ≤ n− 1 and when 2 ≤ m ≤ n:

S ∈ S(n) ×

[
1 0

0 U

]
, U ∈ Un−1 ∈ Un

[
α1e

−k1θπi 0

0 In−1

]
×

[
1 0

0 Sβn−1(k2, · · · , kn)

]
∈ Sαn (k1, · · · , kn)

0 0 −αme(km+1)θπi 0

0 Im−2 0 0

αme
−kmθπi 0 0 0

0 0 0 In−m


×

[
1 0

0 Sγn−1(· · · , km−1, k1 + km + 1, km+1, · · · )

]
∈ Sαn (k1, · · · , kn)

where β, γ ∈ {−1, 1}n−1 with βi = αi, 1 ≤ i ≤ m− 1 and βi = αi+1,m ≤ i ≤ n− 1

as well as γi = αi+1, 1 ≤ i ≤ m− 2, γm−1 = α1αm and γi = αi+1,m ≤ i ≤ n− 1.

Thus by induction Sαn (k1, · · · , kn) ⊂ Un for k1, · · · , kn ≥ 0 and α ∈ {−1, 1}n.

Therefore, Sn = S
{1}n
n (0, · · · , 0) ⊂ Un. So all permutation matrices are contained

in Un. �

Now we are ready to reformulate the Davidson-Katsoulis conjecture into a con-

jecture about the structure of the Unitary group. First, consider a partial ordering

on the set of partitions of {1, · · · , n}.

Definition 4.4 Suppose A = {A1, · · · , Am} and A′ = {A′1, · · · , A′m′} are partitions

of {1, · · · , n}. Then A′ is finer than A if for every 1 ≤ i ≤ m there is a partition

of Ai in A′. Similarly a pair of partitions (A′, B′) is finer than another pair (A,B)

if A′ is finer than A and B′ is finer than B.

Conjecture 4.5 For any two partitions A = {A1, · · · , Am} and B = {B1, · · · , Bm}
where A1∪̇ · · · ∪̇Am = B1∪̇ · · · ∪̇Bm = {1, · · · , n}, with |Aj| = |Bj| for 1 ≤ j ≤ m,

there exists a subset of Un, denoted U(A,B), that has the following properties:

(1) It is contractible.

(2) If U ∈ U(A,B) then the nonzero entries of U are supported on
⋃m
i=1Bi × Ai.

(3) If S ∈ Sn and its nonzero entries are supported on
⋃m
i=1 Bi×Ai, then S ∈ U(A,B).
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(4) If (A′, B′) is another pair of partitions satisfying the same conditions as above

and (A′, B′) is finer than (A,B) then U(A′,B′) ⊂ U(A,B).

From this we shall prove that the Davidson-Katsoulis Conjecture follows. Here

we state the conjecture again.

Conjecture 3.21 Let Πn be the n!-simplex with vertices indexed by Sn. There is

a continuous function u : Πn → U(n) such that:

(1) Every vertex is taken to its corresponding permutation matrix and,

(2) Given any two partitions A1∪̇ · · · ∪̇Am = B1∪̇ · · · ∪̇Bm = {1, · · · , n}, with

|Aj| = |Bj|, 1 ≤ j ≤ m, let P(A,B) = {α ∈ Sn : α(Aj) = Bj, 1 ≤ j ≤ m}.
Then if x =

∑
α∈P(A,B) xαα the non-zero matrix coefficients of u(x) are supported

on
⋃m
j=1 Bj × Aj.

Proposition 4.6 If Conjecture 4.5 is true then Conjecture 3.21 is true as well.

Proof. First map each vertex to its corresponding permutation matrix, α 7→ u(α).

Next, given two vertices α1, α2, there exists a minimum partition (A,B) such that

u(α1) and u(α2) are supported on
⋃m
j=1Bj × Aj and there is no other partition

(A′, B′) such that u(α1) and u(α2) are supported on
⋃m
j=1B

′
j ×A′j ⊂

⋃m
j=1 Bj ×Aj.

Then since U(A,B) ⊂ Un is contractible we can fill in the map u(x1α1 + x2α2) ⊂
U(A,B), where x1 + x2 = 1, x1, x2 ≥ 0 or specifically that 1-cell of the simplex.

Note that the minimum partition for two vertices may be (A,B) where A = B =

{{1, · · · , n}}.

Next for k vertices α1, · · · , αk, with 3 ≤ k ≤ n!, again there exists a minimum parti-

tion (A,B) with u(αi) ∈ U(A,B), 1 ≤ i ≤ k and thus also contains u(
∑k

j=1,j 6=i xjαj),

for 1 ≤ i ≤ k.

Now the boundary (or skeleton, where at least one of the x1, · · · , xk is zero) of a

k-simplex can be associated with the k− 2 dimensional sphere Sk−2. Namely, there

exist k equidistant points on Sk−2 which are associated with the vertices of the k-

simplex and from there connect the vertices by geodesics and so on until there is a

homeomorphic map, f , from the boundary of the k-simplex to Sk−2. By induction

we can conclude that u has been defined already for this boundary or skeleton.
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Because U(A,B) is contractible then there is a homotopy, H(t, Sk−2), between

u(f−1(Sk−2)) and and the point u(
∑k

j=1
1
k
αj) which is chosen to be in U(A,B). This

homotopy continuously fills in the required face or (k − 1)-cell of the simplex.

In this way the function u : Πn → Un ⊂ U(n) is defined with the required conditions.

�

4.2 Partial answers

There is no particular difficulty in defining such a U(A,B) ⊂ Un for some set of

partitions (A,B). However, defining them so that condition (4) of Conjecture 4.5

holds, that is these sets must contain all finer U(A′,B′), is where the difficulty lies.

However, we can give partial results that easily prove the n = 2 and 3 cases and

also let us prove the n = 4 case which was until now unproven. Hopefully this

method will give an idea how a proof of the Conjecture may follow.

First when A and B are made up of n 1-element sets, define U(A,B) to be the

single permutation matrix that has its nonzero entries supported on
⋃n
i=1Bi × Ai.

Next we define a few necessary concepts:

Definition 4.7 From Proposition 4.1 consider all matrices in S(n) such that yk =

0 for some 2 ≤ k ≤ n. They will have the following pre-Gram-Schmidt orthonor-

malization form:

eθπi(
1−

Pn
l=1,l 6=k |yl|2

2
+ iy1) · · · −yk−1 0 −yk+1 · · ·

...
...

...
...

eθπiyk−1 · · · 1+
Pn
l=1,l 6=k |yl|2−2|yk−1|2

2
0 −yk−1yk+1 · · ·

0 · · · 0 1 0 · · ·
eθπiyk+1 · · · −yk+1yk−1 0

1+
Pn
l=1,l 6=k |yl|2−2|yk+1|2

2
· · ·

...
...

...
...


.

This is easily seen to be a copy of S(n−1) imbedded in S(n) with a 1 in entry (k, k).

We will label this imbedding S(n−1)k,k and thus we have S(n−1)k,k homeomorphic

to S(n− 1).
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Definition 4.8 For 1 ≤ j ≤ n define the map Ψj,n(U) : Un → S(n+ 1) by

Ψj,n(U) =


0 u1,j · · · un,j

−eθπiu1,j ∗ · · · ∗
...

...
...

−eθπiun,j ∗ · · · ∗


which is in S(n+1) determined by setting y1 = 0 and yi = −ui−1,j for 2 ≤ i ≤ n+1.

Then set Φj,n(U) = Ψj,n(U)×

[
1 0

0 U

]
∈ Un+1.

The map Φj,n is bijective and is easily seen to be a homeomorphism. Observe

that Φj,n(U)ej+1 = e1. Thus, Φj,n should be thought of as taking

U to


1

−eθπiu1,j u′11 · · · 0 · · · u′1n
...

...
...

...

−eθπiun,j u′n1 · · · 0 · · · u′nn

 ,

that is, an imbedded copy of U in the bottom left corner of Un+1 with the first and

j + 1 columns interchanged, but still maintaining the necessary structure of Un.

We can move on to define U(A,B) in the case when there is an (n− 1)× (n− 1)

block in the partition structure.

Proposition 4.9 Let 1 ≤ i, j ≤ n, n ≥ 3, then for

A = {{j}, {1, · · · , j − 1, j + 1, · · ·n}} and B = {{i}, {1, · · · , i− 1, i+ 1, · · · , n}},

U(A,B) can be defined in Un.

Proof. The goal of this proof is not only to define such a set but to define the

largest set in Un that satisfies the required conditions for U(A,B) hopefully allowing

for ease of construction in the other types of partitions. To this end we want U(A,B)

homeomorphic to Un−1.

First, for ease of notation let U i,jm denote a subset of Um+1 with its (i, j) entry

equal to 1. Inductively we will define these sets such that U i,jm is homeomorphic to
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Um and then we can define U(A,B) = U i,jn−1. It also needs to be shown that these U i,jm
preserve the structure of the Um, that is, they must contain all of the permutation

matrices that have a 1 at the (i, j)-entry.

We begin with when i = j. If i = 1 then just define U1,1
m =

[
1 0

0 Um

]
,m ≥ 1.

Now using Definition 4.7 it is easy to set up the inductive step. We define U2,2
1 =

S(1)2,2 and then

U i,im = S(m)i,i ×

[
1 0

0 U i−1,i−1
m−1

]
,

which is exactly the same way we defined the sets Um. Therefore, we see that U i,im
is homeomorphic to Um by taking out the ith row and jth column. Thus, U i,im still

has the same structure as Um. In correspondence with this inductive definition, for

i, j ≥ 2, define

U i,jm = S(m)i,i ×

[
1 0

0 U i−1,j−1
m−1

]
.

We can see that the structure of U i,jm is then dependent on that of U i−1,j−1
m−1 . Hence,

the only sets left to define are U i,1m and U1,j
m for 2 ≤ i, j ≤ m.

The first case is simple enough, for 2 ≤ i ≤ m + 1, just take S ∈ S(m) such

that yi = e−θπi then we can define

U i,1m = S ·

[
1 0

0 Um

]
=


−eθπi

Ii−2

1

In−i

 ·
[

1 0

0 Um

]
.

Then from Proposition 4.3 we know that Sαm(k1, · · · , km) ⊂ Um for k1, · · · , km ≥ 0

and α ∈ {−1, 1}m, then it follows that the imbedded copy Sαm(k1, · · · , km)i,1 ⊂ U i,1m .

In the second case assume that 2 ≤ j ≤ m + 1 and U = [uk,l]
m
k,l=1 ∈ Um. Then

using Definition 4.8 we can define

U1,j
m = Φj−1,m(Um) =

{
Ψj−1,m(U) ·

[
1 0

0 U

]
: U ∈ Um

}
.

In particular this construction still insures that U1,j
m is homeomorphic to Um. Lastly,
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we can see that if T ∈ Sαm(k1, · · · , km) ⊂ Um, then

Ψj,m(T ) =


0 0 αje

kjθπi 0

0 Ij−1 0 0

−αje(1−kj)θπi 0 0 0

0 0 0 Im−j

 .

So if kj ≥ 1 then Ψj,m(T ) · T ∈ Sαm(k1, · · · , km)1,j+1 ⊂ U1,j+1
m and from this we can

see that all of these permutation type matrices are achieved. �

We can extend this definition so that U(A,B) in the above context is maximal

contractible, that is, one cannot add any more elements without making it fail to

be contractible.

Corollary 4.10 Let (A,B) be as in the previous proposition. Then we can define

Ũ(A,B) containing U(A,B) to be maximal contractible, that is, such that the B1 × A1

entry is homeomorphic to U1 and the B2 × A2 entries are homeomorphic to Un−1.

Proof. We can use the iterative definitions of the U i,jm in the previous proposition

to get this result.

In particular, define

Ũ1,1
m =

[
S(1)

Im

]
×

[
1

Um

]
=

[
U1

Um

]
∈ Um+1,

Ũ2,2
1 = S(1)2,2 ×

[
1 0

0 U1

]
=

[
U1

U1

]
∈ U2,

Ũ i,1m =


−eθπiφ̄

Ii−2

φ ∈ U1

Im−i

×
[

1

Um

]
∈ Um+1, and

Ũ1,j
m =

{
Ψj−1,m(U1U) ·

[
1 0

0 U

]
: U ∈ Um

}
∈ Um+1.
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Then we can define the rest in the same way as in the proposition, that is

Ũ i,jm = S(m)i,i ×

[
1 0

0 Ũ i−1,j−1
m−1

]
.

All of these sets Ũ i,jm are easily seen to be maximal contractible. �

Proposition 4.9 also allows us to define U(A,B) when there is one large partition

block and the rest is just a permutation matrix.

Corollary 4.11 Let A,B be two partitions such that |Ai| = |Bi| = 1, 1 ≤ i ≤ m−1

and so |Am| = |Bm| = n−m+ 1. Then U(A,B) can be defined in Un such that it is

homeomorphic to Un−m+1.

Proof. From the proof of the previous proposition we see that U i,jn−1 was defined in

such a way that any matrix in Un that has a 1 at the (i, j)-entry is contained in U i,jn−1.

Thus, any matrix that has a 1 at both the (i, j) and (k, l)-entries will be contained

in both U i,jn−1 and Uk,ln−1. But then since U i,jn−1 still has the same structure as Un we

see that U (i,j),(k,l)
n−2 ⊂ U i,jn−1, is all matrices in U i,jn−1 that have a 1 in their (k, l)-entry,

but then it follows that this U (i,j),(k,l)
n−2 = U i,jn−1

⋂
Uk,ln−1 which is homeomorphic to

Un−2.

Therefore we can use this argument repeatedly to see that U(A,B) =
⋂m−1
i=1 U

Bi,Ai
n−1

is homeomorphic to Un−m+1 and still contains the appropriate permutation matrices

and structure. �

Corollary 4.12 Let A,B be two partitions as in the previous corollary. Then we

can define a maximum contractible set Ũ(A,B) that contains U(A,B).

Proof. As in Corollary 4.11 we get this set by showing that Ũ(A,B) =
⋂m−1
i=1 Ũ

Bi,Ai
n−1 .

We know that U(A,B) =
⋂m−1
i=1 U

Bi,Ai
n−1 . Then we can simply add in what we need

as in Corollary 4.10.

Let U (1)
(A,B) ⊂ Ũ

B1,A1

n−1 be defined such that the B1 × A1 entry is homeomorphic

to U1 and the other n − 1 × n − 1 partition block is U({A2,··· ,Am},{B2,··· ,Bm}). Then

U (1)
(A,B) = ŨB1,A1

n−1 ∩
⋂m−1
i=2 U

Bi,Ai
n−1 .
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Continue in this way defining U (j)
(A,B) ⊂ Ũ

Bj ,Aj
n−1 such that its Bj × Aj entry is

homeomorphic to U1, one partition block is Ũ({A1,··· ,Aj−1},{B1,··· ,Bj−1}) and the re-

maining partition block is U({Aj+1,··· ,Am},{Bj+1,··· ,Bm}). Then

U (j)
(A,B) =

j⋂
i=1

ŨBi,Ain−1 ∩
m−1⋂
i=j+1

UBi,Ain−1 .

This process takes U (j−1)
(A,B) as a subset of UBj ,Ajn−1 into ŨBj ,Ajn−1 and then calls it U (j)

(A,B).

Thus, let Ũ(A,B) = U (m−1)
(A,B) =

⋂m−1
i=1 Ũ

Bi,Ai
n−1 . This set is maximal contractible

because each Bi × Ai entry is homeomorphic to U1 for 1 ≤ i ≤ m − 1 and the

Bm × Am entries are homeomorphic to Un−m+1. �

From this we can now prove the n = 2 and 3 cases by this new method. Note

that Davidson and Katsoulis had already proven these cases in a different way.

Example 4.13 For n = 2 if we letA = {{s1(1)}, {s1(2)} andB = {{s2(1)}, {s2(2)}}
where s1, s2 ∈ S2 then U(A,B) ⊂ S2 ⊂ U2. Therefore, Conjecture 4.5 holds which

implies that Theorem 3.20 is true.

For n = 3, partitions (A,B) come only in two types:

• A = {A1, A2, A3} where |Ai| = 1, i = 1, 2, 3, in which case U(A,B) is just a

permutation matrix.

• A = {A1, A2} where |Ai| = i, i = 1, 2, which is the case proven in Proposition

4.9 and so U(A,B) exists with the required properties.

Therefore, the conditions of Conjecture 4.5 are satisfied and the theorem applies.

Lastly, this theory allows us to prove the n = 4 case by brute force methods.

This was as yet unproven and will hopefully shine a light on the proof of Conjecture

4.5.

Theorem 4.14 For n = 4, dynamical systems are completely characterized by their

tensor algebras up to piecewise conjugacy.

Proof. So far we know that S4 ⊂ U4 and by Corollary 4.11 if m = 2, 3 and (A,B) are

two partitions such that |Ai| = |Bi| = 1 for 1 ≤ i ≤ m−1 and |Am| = |Bm| = 5−m
then U(A,B) ⊂ U4.
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Thus, the only partitions (A,B) where U(A,B) is undefined is the case when

m = 2 and |A1| = |A2| = 2, of which there are eighteen such partitions.

In the light of Corollary 4.10 we have all of the 3× 3 partitions with U1 and U2

blocks, that is the sets Ũ i,j2 . Hence we have the following sets:[
U2

U2

]
=

[
S(2)

I2

]
×

[
1

Ũ1,1
2

]


(U2)11 (U2)12

(U2)21 (U2)22

(U2)11 (U2)12

(U2)21 (U2)22

 “ = ”

[
S(2)

I2

]
×

[
1

Ũ1,2
2

]

 (U2)11 (U2)12

(U2)21 (U2)22

U2

 “ = ”

[
S(2)

I2

]
×

[
1

Ũ1,3
2

]

We say “=” since the right hand side is not equal to the left hand side but rather is

homeomorphic in each partition element. There are six more partitions that follow

like this, two of them being shown below. Note that (U2)i,j refers to the (i, j) entry

of U2 ⊂M2(C) so that we can identify U2 imbedded into larger matrices.
(U2)11 (U2)12

(U2)11 (U2)12

(U2)21 (U2)22

(U2)21 (U2)22

 “ = ”


S(2)11 S(2)12

1

S(2)21 S(2)22

1

×
[

1

Ũ2,3
2

]

 (U2)11 (U2)12

U2

(U2)21 (U2)22

 “ = ”


S(2)11 S(2)12

1

1

S(2)21 S(2)22

×
[

1

Ũ3,1
2

]

Thus, nine partitions of the eighteen have been accounted for. Next we use the

map Ψj,m that was given in Definition 4.8. We have:

 (U2)11 (U2)12

U2

(U2)21 (U2)22

 “ = ”Ψ2,3(S(1) · S)×

[
1

S ∈ S(2)3,3

]
×

[
12

U2

]
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(U2)11 (U2)12

(U2)11 (U2)12

(U2)21 (U2)22

(U2)21 (U2)22

 “ = ”Ψ3,3(S(1)·S)×

[
1

S(2)2,2

]
×

[
12

U2

]

[
U2

U2

]
“ = ”Ψ2,3(S(1) · S ∈ S(2)1,1)×


1

∗ ∗
S11 ∗ ∗
S21 ∗ ∗

×
[

12

U2

]

Finally consider the partition (A,B) = ({{2, 3}, {1, 4}}, {{1, 4}, {2, 3}}). This

construction is where brute force must be used. For the n > 4 case this must be

generalized in order for this method of proof to work.

Let r1, r2, s1, s2 ∈ [0, 1] with r2
1 + r2

2 = s2
1 + s2

2 = 1 then we have the following

matrix in S(4)×S(3):
r1 r2

eθπir1 ∗ ∗
eθπir2 ∗ ∗

1

×


1

eθπis1r1 ∗ ∗
eθπis1r2 ∗ ∗
eθπis2 ∗ ∗

 =


0 −eθπis1 row1

eθπir1 0 row2

eθπir2 0 row3

0 eθπis2 row4


By the structure of S(3) as seen in Proposition 4.1 we know that rowti ∈ R2.

Since the above matrix is unitary then dim(Span{rowt1, rowt4}) = 1 and because

0 < θ/2 < π/2 then for all choices of r1, r2, s1, s2

ϕ(r1, r2, s1, s2) =
rowt1 + eθ/2πirowt4
‖rowt1 + eθ/2πi · rowt4‖

is defined and is a continuous function into {z ∈ C2 : |z| = 1, z 6= −eθπie1}. Then

we have the set V in S(4)×S(3)×S(2) ⊂ U4 consisting of the following matrices:
0 −eθπis1 row1

eθπir1 0 row2

eθπir2 0 row3

0 eθπis2 row4

×
[
I2

ϕ(r1, r2, s1, s2) ∗

]
=


0 −eθπis1 ∗ 0

eθπir1 0 0 ∗
eθπir2 0 0 ∗

0 eθπis2 ∗ 0


which is in the right (A,B) partition form, is contractible and contains four per-

mutation type matrices, though they are not the ones in S4. Let (Ai, Bi), 1 ≤ i ≤ 4

be the four finer partitions of (A,B) that contain a 2 × 2 partition block. Finally
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define

U(A,B) = V ∪ (
4⋃
i=1

Ũ(Ai,Bi)).

Visually this is the following union:
∗ ∗

∗
∗

∗ ∗


∪

∗
∗ ∗
∗ ∗

∗

 ∪


∗ ∗

∗ ∗
∗ ∗
∗ ∗

 ∪


∗

∗ ∗
∗ ∗
∗


∪
∗ ∗

∗
∗
∗ ∗


where the outside 4 are the maximal contractible sets Ũ(Ai,Bi) and the center is the

contractible set V . The most important point is that any two sets that adjoin in the

diagram (including diagonally) have non-empty contractible intersection. Hence,

U(A,B) is contractible and contains all finer partitions.

The construction of the remaining 5 partitions follows exactly as above. There-

fore, we have satisfied the conditions of Conjecture 4.5 for n = 4 and thus dynamical

systems are completely characterized by their tensor algebras up to piecewise con-

jugacy. �

We feel fairly confident in the truth of Conjecture 4.5. As we have seen the

n = 4 case above contains another level of complexity over that of the n = 2 or 3

cases. Thus the truth of it should lead to a proof of the aforementioned Conjecture,

and hence the complete characterization of multivariable dynamical systems up to

piecewise conjugacy.

Another possibility for proof of the characterization result is to examine what
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happens to the covering systems (X̃, σ̃), introduced in [5] and outlined in Section

1 of Chapter 3, when two dynamical systems are piecewise conjugate.

Finally, we can ask some questions about further directions of research stemming

from this study of dynamical systems. An important point to remember is that

here we assumed that a multivariable dynamical system had unrelated maps. A

further avenue of research is to examine what happens when there are relations

among these maps, for instance when all the maps commute. Is there a similar

characterization up to some natural conjugacy? Are all such dynamical systems

equivalent to our unrelated map case when one quotients by the center?
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