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Abstract

Concrete structures can often be modeled as plates, for example, bridges, tunnel walls
and pipes. Near-surface damage in concrete structures mostly takes the form of cracking.
Surface-breaking cracks affect concrete properties and structural integrity; therefore, the
nondestructive evaluation of crack depth is important for structural monitoring, strength-
ening and rehabilitation. On the other hand, material damping is a fundamental parame-
ter for the dynamic analysis of material specimens and structures. Monitoring damping
changes is useful for the assessment of material conditions and structural deterioration.
The main objective of this research is to develop new methodologies for depth evaluation
of surface-breaking cracks and the evaluation of damping in concrete plates.

Nondestructive techniques based on wave propagation are useful because they are
non-intrusive, efficient and cost effective. Previous studies for the depth evaluation of
surface-breaking cracks in concrete have used diffracted compressional waves (P-waves).
However, surface waves exhibit better properties for the characterization of near sur-
face defects, because (a) surface waves dominate the surface response, they carry 67%
of the wave propagation energy, and present lower geometrical attenuation because the
propagating wave front is cylindrical; and (b) the penetration depth of Rayleigh waves
(R-waves) depends on their frequency. Most of the R-wave energy concentrates at a
depth of one-third of their wavelengths. The transmission of R-waves through a surface-
breaking crack depends on the crack depth; this depth sensitivity is the basis for the
so-called Fourier transmission coefficient (FTC) method.

R-waves only exist in a half-space (one traction-free surface); whereas in the case
of a plate (two traction-free surfaces), Lamb modes are generated. Fundamental Lamb
modes behave like R-waves at high frequencies, because their wavelengths are small
relative to the plate thickness. Lamb modes are not considered in the standard FTC
method, and the FTC method is also affected by the selected spacing between receivers.
The FTC calculation requires the use of an explicit time window for the identification of
the arrival of surface waves, and the selection of a reliable frequency range.

This research presents theoretical, numerical and experimental results. Theoretical
aspects of Lamb modes are discussed, and a theoretical transfer function is derived,
which can be used to study changes of Lamb modes in the time and frequency domains
as a function of distance. The maximum amplitude of the wavelet transform varies with
distance because of the dispersion of Lamb modes and the participation of higher Lamb
modes in the response. Numerical simulations are conducted to study the wave prop-
agation of Lamb modes through a surface-breaking crack with different depths. The
surface response is found to be dominated by the fundamental Lamb mode. Using the
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2D Fourier transform, the incident, transmitted and reflected fundamental Lamb modes
are extracted. A transmission ratio between the transmitted and incident modes is calcu-
lated, which is sensitive to crack depths (d) normalized to the wavelength (λ ) in a range
(d/λ ) = 0.1 to 1/3.

A new wavelet transmission coefficient (WTC) method for the depth evaluation of
surface-breaking cracks in concrete is proposed to overcome the main limitations of
the FTC method. The WTC method gives a global coefficient that is correlated with
the crack depth, which does not require time windowing and the pre-selection of a fre-
quency bandwidth. To reduce the effects of wave reflections, which are present in the
FTC method because of the non-equal spacing configuration, a new equal spacing con-
figuration is used in the WTC method. The effects of Lamb mode dispersion are also
reduced. In laboratory tests, an ultrasonic transmitter with central frequency at 50kHz is
used as a source; the 50kHz frequency is appropriate for the concrete plate tested (thick-
ness 80mm), because the fundamental Lamb modes have converged to the Rayleigh wave
mode. The new method has also been used in-situ at Hanson Pipe and Precast Inc., Cam-
bridge, Ontario, Canada, and it shows potential for practical applications.

In general, the evaluation of material damping is more difficult than the measure-
ment of wave velocity; the dynamic response and attenuation of structural vibrations
are predominantly controlled by damping, and the damping is typically evaluated using
the modal analysis technique, which requires considerable efforts. The existing meth-
ods based on surface waves, use the Fourier transform to measure material damping;
however, an explicit time window is required for the spectral ratio method to extract
the arrival of surface wave; in addition, a slope of the spectral ratio varies for different
frequency ranges, and thus a reliable frequency range needs to be determined.

This research uses the wavelet transform to measure material damping in plates,
where neither an explicit time window nor the pre-selection of a frequency bandwidth
are required. The measured material damping represents an average damping for a fre-
quency range determined by source. Both numerical and experimental results show good
agreement and the potential for practical applications.
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Chapter 1

Introduction

1.1 Depth evaluation of a surface-breaking crack

Concrete structures can often be modeled as plates, for example, bridges, and tunnel
walls and pipes. Near-surface damage in concrete structures mostly often takes the form
of cracking (Song 2003); surface-breaking cracks in concrete structures are caused by:

• Exterior loading, as in the case of a structure under mechanical actions.

• Interior volume changes due to freeze or thaw.

• Environmental conditions such as the corrosion of rebars.

Surface-breaking cracks affect concrete properties and structural integrity, and they
can be considered one of the indications of structural residual strength and serviceability
conditions. Even small cracks can grow and eventually lead to the failure of a struc-
ture. Therefore, nondestructive evaluation of the crack depth is important for health
monitoring, strengthening and rehabilitation. Nondestructive techniques based on wave
propagation are commonly used because they are non-invasive, efficient and cost effec-
tive. Two main types of waves exist: body waves and surface waves. Body waves could
be compressional waves or shear waves; whereas surface waves could be Rayleigh waves
or Love waves. In a plate, another type of surface waves exist, which are called Lamb
waves. Considerable works have been done in this area; however, there is no robust
nondestructive technique that can be easily used in-situ (Lin 1996).

Based on the impact echo technique, Lin (1996) measured P-wave reflections be-
tween the surface boundary and the tip of surface-breaking cracks. The analysis of wave
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reflections shown in the frequency domain is used to calculate the crack depth. However,
a significant amount of energy is required from the wave reflections.

A dynamic force acting on a structure excites different vibration modes, each with a
distinct natural frequency, which is altered by the presence of a defect. Toutanji (2003) at-
tempted to find a quantitative relationship between the natural frequencies and the depth
of a surface-breaking crack. However, the results excited are affected by different vibra-
tion modes.

Previous studies on concrete structures for the depth evaluation of surface-breaking
cracks have used diffracted P-waves (Sansalone 1998). A vertical point loading at the
surface of a medium generates P-waves that propagate spherically. The P-wave diffrac-
tion occurs at the tip of surface-breaking cracks, where a new wave source is formed.
The diffracted P-waves are recorded by a receiver that is placed at surface on the other
side of the crack. The arrival time or initial amplitude is measured for the calculations
of the crack depth. However, surface responses in a medium are dominated by surface
waves; in addition, the intensity of diffracted P-waves depends on the discontinuity at
the crack tip. As a result, the selection of the P-wave arrival in time domain is difficult.

Surface waves exhibit unique properties suitable for the characterization of near sur-
face (Rix 1990; Kalinski 1994). Two useful features for the evaluation of the depth of
surface-breaking cracks are:

• Surface waves dominate the surface response. A vertical point load applied to the
surface of a homogeneous half space generates Rayleigh waves, which contain
67% of the propagation energy, and present lower geometrical attenuation because
the propagating wave front is cylindrical; (Miller and Pursey 1955). Shear waves
and compressional waves contain 26% and 7% of the the propagation energy, re-
spectively, their propagating wave fronts are in spherical.

• The penetration depth of surface wave depends on the frequency or wavelength.

Hevin (1998) found the Rayleigh wave energy concentrates at a depth of one-third
of the wavelength. Based on the characteristics of Rayleigh waves, Popovics (2000)
and Song (2003) use the Fourier transform to calculate a transmission coefficient, and
they propose the so-called Fourier transmission coefficient (FTC) method for the depth
evaluation of surface-breaking cracks; the numerical and experimental results of FTC is
sensitive to the crack depth (d) normalized to the wavelength (λ ) in a range from d/λ =
0 to 1/3.

Although the FTC method is promising, some problems exist:
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• Rayleigh waves are a non-dispersive in a half-space where only one traction-
free surface is present, non-dispersion means that different frequency components
propagate at a constant velocity; whereas for the case of a plate with two traction-
free surfaces, different Lamb modes are generated. Lamb waves are dispersive, and
the penetration depth of Lamb waves is different from the corresponding Rayleigh
waves because of the different mode shapes.

• For the FTC calculations, a time window is required to extract the arrival of surface
wave from the measured time signal; however, the results vary because of the sub-
jective identification. The FTC is a function of frequency, and the determination of
a reliable frequency range is difficult; thus the FTC results depend on the selected
frequency range.

• A mechanical impactor is used as a source for the FTC measurement. Popovics
(1995) indicated that the generated frequency components can be controlled by
varying the impactor size and the drop height; however, in reality the control of the
frequency is limited because of the inelastic and inhomogeneous properties of con-
crete, and the complex surface conditions at a micro scale level. High frequency
components are required for the detection of a small crack. Popovics (1995) per-
formed experimental tests on a Plexiglas plate using a small steel ball as an im-
pactor; the generated wave energy is shown below 50kHz.

• A non-equal spacing configuration is used in the FTC method, where two receivers
are aligned with the source and unequally spaced from a source. Constructive
and destructive interference occurs before a crack, and the variation in frequency
content for the propagating waves at the two receiver locations affect the FTC
results.

This research addresses the above problems by conducting the theoretical and nu-
merical studies. The major contributions of this research are the new method for the
nondestructive evaluation of the depth of surface-breaking cracks, the new theoretical
transfer function for the study of Lamb modes in plates, and the new method for the
evaluation of material damping using a surface array of receivers. The following works
are performed:

• The Lamb wave propagation in a concrete plate is studied and a theoretical trans-
fer function is derived. Theoretical and numerical results show that Lamb wave
modes are dispersive; as a result, the frequency components of a propagating Lamb
wave vary with distance. However, fundamental Lamb modes behave similar to
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Rayleigh waves for high frequencies where the wavelength is small relative to the
plate thickness.

• In the presence of a surface-breaking crack, the contour plot of the 2D Fourier
transform of numerical results shows incident, transmitted, and reflected Lamb
modes. With a 2D filter, a single Lamb mode can be extracted. Because surface
responses are dominated by fundamental Lamb modes for both the transmitted and
reflected waves, they can be used for the crack depth evaluation.

• The numerical models are calibrated using Lamb’s problem, theoretical geomet-
ric attenuation, and 2D Fourier transform. For the case presented in this study,
the fundamental Lamb mode S0 is nearly non-dispersive at low frequencies in a
small frequency bandwidth; this non-dispersive behavior is used to calibrate the
numerical models.

• The wavelet transform is applied to time signals measured at different distances
from the source. With a fixed dilation parameter, the magnitude of the wavelet
transform varies with the time shifting parameter; the magnitude is the maximum
at a time corresponding to an arrival of the fundamental Lamb modes, and this
magnitude information is used to calculate a newly proposed wavelet transmission
coefficient (WTC), where neither a time windowing nor a reliable frequency range
are needed. The WTC integrates the signal over a frequency bandwidth to give a
global value that is related to the crack depth.

• An ultrasonic piezoelectric transmitter provides known frequency components in
a high frequency range, and it is used on the surface of a medium as a source.
The initial output force of the transmitter is modeled with a Morlet function; there-
fore, the generated ultrasonic pulse propagates in a medium, and the surface re-
sponses are analyzed with the wavelet transform using the same Morlet function
as a wavelet.

• To eliminate the variation in the frequency spectra at two receiver locations, a
new equal configuration with the two receivers placed at equal distance from the
source is used. In the new equal spacing configuration, the variation between two
receivers in the WTC measurement is attributed only to the presence of a surface-
breaking crack.

• The WTC is correlated with the crack depth in a sensitive depth range, which is
determined by the central frequency of an ultrasonic piezoelectric transmitter. The
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new method has been applied in-situ at Hanson Pipe and Precast Inc., Cambridge,
Ontario, Canada, and it shows potential for practical applications.

1.2 Measurement of material damping ratio

Material damping is important for the dynamic analysis of material specimens and struc-
tures. In geomaterials, the wave propagation depends strongly on the physical state and
saturation conditions, for example, the wave attenuation caused by material damping in
dry, saturated or frozen rocks, or cemented soil varies much more than the wave veloci-
ties for these conditions. However, the experimental measurement of material damping
ratio is more difficult than the measurement of wave velocity (Toksoz 1979). The dy-
namic response of structures is predominantly controlled by damping (Liu 1995); there-
fore, monitoring variation of damping is useful for the assessment of structural health or
deterioration. Moreover, the presence of a defect in a medium generates a reduction in
stiffness and an increase in damping; thus damping measurements can be used to detect
or locate defects, for example crack initiation and propagation in a structural element can
be monitored by measuring changes in wave attenuation in given frequency range.

This research proposes a new methodology to measure material damping ratio in a
medium. The medium is assumed to be represented by a single-degree-freedom sys-
tem (SDOF), and a theoretical equation for the calculation of material damping ratio is
derived, which uses the maximum amplitude and phase information of the propagating
waves from the wavelet transform. Both the numerical and experimental results show
good potential and the potential for practical applications.

1.3 Thesis organization

Chapter 2 presents a theoretical background on wave propagation in an elastic medium.
The characteristics for Rayleigh waves in a half-space and Lamb waves in a plate are
introduced. The dispersion curve of Lamb waves for the concrete plate used in the ex-
periments is calculated.

In Chapter 3, basic signal processing techniques that are used for nondestructive
testing, such as Fourier transform, 2D Fourier transform and wavelet transform are de-
scribed.

A literature review on the use of mechanical waves for the crack depth evaluation is
given in Chapter 4. The Fourier transmission coefficient (FTC) is a promising technique,
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which constitutes the basis for the new WTC method.

The characteristics of surface wave propagation are studied in Chapter 5, where dif-
ferent wave sources are compared. A theoretical transfer function for Lamb wave prop-
agation, and a theoretical equation for the measurement of material damping ratio are
derived.

The experimental setups for the depth evaluation in a concrete plate and the damping
measurement in a sand box are given in Chapter 6.

Chapter 7 introduces the basic principles for the numerical finite difference modeling.
A commercial software package FLAC T M (fast Lagrangian analysis of continua) is used
for the numerical simulations in this research, and numerical calibrations for the FLAC
models are conducted.

The results from the numerical simulations, laboratory and in-situ tests are presented
and discussed in Chapter 8.

Finally, the conclusion and recommendation are given in Chapter 9.
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Chapter 2

Wave propagation background

2.1 Introduction

Nondestructive techniques based on wave propagation are important because they are
non-intrusive, efficient and cost effective. Understanding the fundamentals of wave prop-
agation in an elastic medium is helpful for the application of these techniques in practice.

Nondestructive testing using wave propagation has been practiced for many decades,
and the primary purpose was the detection of defects. Waves exist as different solutions
to the wave equation of motion. According to particle motions, waves could be compres-
sional waves, shear waves or surface waves; for example, particles for compressional
waves move parallel to the wave propagation, particles for shear waves move perpendic-
ular to the wave propagation, and particles for surface waves move elliptically. When
applying one traction-free boundary condition to the wave equation of motion, Rayleigh
waves as one type of surface waves are solved; therefore, Rayleigh waves exist in a half
space. While, Lamb waves are another type of surface waves, which are the solutions
to the wave equation of motion with two traction-free boundaries used; therefore, Lamb
waves exist in a plate. Lamb waves are also called ”plate” waves or guided Lamb waves,
because their wave propagation is guided by the finite dimensions of a plate.

This chapter provides background of theoretical equations for the wave propagation
in an elastic medium. Two types of surface waves are related to this study: Rayleigh
waves as a non-dispersive mode in a half space; Lamb waves as different dispersive
modes in a plate. Lamb wave propagation is complicated because of the dispersion and
multiple mode participation. However, the wave propagation of the fundamental Lamb
modes is similar to Rayleigh waves when the wavelength is small relative to the thickness
of a plate. Wave transmission through and wave reflection from an interface between two
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different media are introduced, and the transmitted and reflected waves can be evaluated
with the transmission and reflection coefficients. The superimposition of the reflected
and incident waves before the interface varies with distance.

2.2 Wave propagation fundamentals

2.2.1 Navier’s equation

In an elastic, isotropic and homogeneous medium without the presence of a body force,
when waves propagate through it, the pressure changes in a small element are related to
the acceleration by Newton’s law:

3

∑
i=1

Fi = m ai (2.1)

where i indicates the elements for the three mutually-perpendicular axes x1, x2, and x3,
respectively.

The above equation is rewritten in terms of functions:

σ1idx2dx3 +σ2idx1dx3 +σ3idx1dx2 = (ρdx1dx2dx3)
∂ 2ui

∂ t2 (2.2)

where σ ji is the stress in axis xi and act on a plane with the normal in axis x j (i, j = 1, 2,
and 3); ui is the displacement in axis xi; ρ is the mass density of a medium.

By dividing by the volume factor (dx1dx2dx3) on the both sides of Eq. 2.2, it becomes
the equation of wave motion:

3

∑
j=1

∂σ ji

∂x j
= ρ

∂ 2ui

∂ t2 (2.3)

In the elastic range of an isotropic and homogenous medium, the relation between
stress and displacement exist in the generalized Hooke’s law:
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σii = λ∆+2µ
∂ui

∂xi
(2.4a)

σ12 = µ
(

∂u1

∂x2
+

∂u2

∂x1

)
(2.4b)

σ13 = µ
(

∂u1

∂x3
+

∂u3

∂x1

)
(2.4c)

σ23 = µ
(

∂u2

∂x3
+

∂u3

∂x2

)
(2.4d)

where i = 1, 2, and 3; λ and µ are the Lame constants; ∆ is the dilatation or volumetric
strain and it is given:

∆ =
∂u1

∂x1
+

∂u2

∂x2
+

∂ u3

∂x3

An isotropic, homogeneous and elastic medium has only two independent material
constants λ and µ . For engineering purposes, some authors may use the independent
constants: Young’s modulus E and Poisson’s ratio υ ; they are related:

λ =
Eυ

(1+υ)(1−2υ)
(2.5a)

µ =
E

2(1+υ)
(2.5b)

The other three elastic constants commonly used in engineering are shear modulus
G, bulk modulus K and constraint modulus M:

G = µ (2.6a)

K =
E

3(1−2υ)
(2.6b)

M =
E(1−υ)

(1+υ)(1−2υ)
(2.6c)

Navier’s equation is obtained by substituting Eq. 2.4 into Eq. 2.3:

ρ
∂ 2ui

∂ t2 = (λ + µ)
∂∆
∂xi

+ µ∇2ui (2.7)
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where i = 1, 2, and 3; ∇ is the differential operator, and ∇2 is the Laplacian operator:

∇ =
∂

∂x1
+

∂
∂x2

+
∂

∂x3

∇2 =
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂x2
3

2.2.2 Body waves in a medium

Navier’s equation is not a wave equation, but it has a plane wave solution, which is
obtained by manipulating the Navier’s equation (Eq. 2.7). First, applying the differential
operator ∇ to the both sides of the Navier’s equation results in:

ρ
∂ 2∆
∂ t2 = (λ + µ)

∂ 2∆
∂ 2xi

+ µ
∇2∆
∂x2

i
(2.8)

where i = 1, 2, and 3.

Furthermore:
∂ 2∆
∂ t2 =

λ +2µ
ρ

∇2∆ (2.9)

Then it gives:

VP =

√
λ +2µ

ρ
=

√
M
ρ

(2.10)

Eq. 2.9 implies a strain direction aligned with the wave propagation, and the variation
in strain causes a volumetric change in compressional waves (P-waves). The velocity is
determined by the constraint modulus M and mass density ρ (Eq. 2.10). The particle
motion for P-wave propagation is shown in Fig. 2.1.

Secondly, the Navier’s equation (Eq. 2.7) is manipulated with the curl operation on
the both sides of the Navier’s equation, it gives:

ρ
∂ 2curl(ui)

∂ t2 = (λ + µ) curl
(

∂∆
∂xi

)
+ µ∇2 curl(ui) (2.11)

where i = 1, 2, and 3.

The ”curl” operates a vector~v = (v1 v2 v3) as:
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curl




v1

v2

v3


 =

(
∂v3

∂x2
− ∂v2

∂x3

)
~n1 +

(
∂v1

∂x3
− ∂v3

∂x1

)
~n2 +

(
∂v2

∂x1
− ∂v1

∂x2

)
~n3 (2.12)

where n1, n2, and n3 are the mutual-perpendicular unit vectors for axes x1, x2, and x3,
respectively.

Therefore,

curl
(

∂∆
∂x1

)
=

∂
∂x2

∂∆
∂x3

− ∂
∂x3

∂∆
∂x2

= 0 (2.13a)

curl
(

∂∆
∂x2

)
=

∂
∂x3

∂∆
∂x1

− ∂
∂x1

∂∆
∂x3

= 0 (2.13b)

curl
(

∂∆
∂x3

)
=

∂
∂x1

∂∆
∂x2

− ∂
∂x2

∂∆
∂x1

= 0 (2.13c)

Eq. 2.11 reduces to:

∂ 2ηi

∂ t2 =
µ
ρ

∇2ηi (2.14)

where,

η1 =
1
2

(
∂u3

x2
− ∂u2

x3

)

η2 =
1
2

(
∂u1

x3
− ∂u3

x1

)

η3 =
1
2

(
∂u2

x1
− ∂u1

x2

)

Then it gives:

VS =
√

µ
ρ

(2.15)

The curl operation describes the circulations of a vector along a closed loop, which
indicates the tendency to be propagating circularly and generates the shear waves (S-
waves). Unlike P-waves, the strain direction caused by S-waves is perpendicular to the
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wave propagation, and the variation in strain does not cause a volumetric change. The
particle motion for S-wave propagation is shown in Fig. 2.2.

The ratio of P-wave to S-wave velocities is given:

VP

VS
=

√
2(1−υ)
1−2υ

(2.16)

2.2.3 Helmholtz equation

To solve two dimensional (2D) problems of wave propagation using the Navier’s equa-
tion for an elastic isotropic medium, the displacements can be represented in terms of
the potential functions ϕ(x1,x2) and ψ(x1,x2). The horizontal component parallel to the
surface of a medium is represented by axis x1 and vertical component perpendicular to
the surface by axis x2. There is no displacement in axis x3 (u3 = 0) for a two dimensional
problem.

u1 =
∂ϕ(x1,x2)

∂x1
+

∂ψ(x1,x2)
∂x2

(2.17a)

u2 =
∂ϕ(x1,x2)

∂x2
− ∂ψ(x1,x2)

∂x1
(2.17b)

As an advantage for such potential functions, the following Helmholtz equation must
hold in order to satisfy Navier’s equation (Eq. 2.7):

∂ 2ϕ(x1,x2)
∂ t2 = VP∇2ϕ(x1,x2) (2.18a)

∂ 2ψ(x1,x2)
∂ t2 = VS∇2ψ(x1,x2) (2.18b)

Substituting Eq. 2.17 into the generalized Hooke’s law (Eq. 2.4) results in:
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σ11 = µ

[(
VP

VS

)2

∇2ϕ(x1,x2)+2
(

∂ 2ψ(x1,x2)
∂x1x2

− ∂ 2ϕ(x1,x2)
∂x2

2

)]
(2.19a)

σ22 = µ

[(
VP

VS

)2

∇2ϕ(x1,x2)−2
(

∂ 2ψ(x1,x2)
∂x1x2

− ∂ 2ϕ(x1,x2)
∂x2

2

)]
(2.19b)

σ12 = µ
[

2
(

∂ 2ϕ(x1,x2)
∂x1x2

+
∂ 2ψ(x1,x2)

∂x2
2

− ∂ 2ψ(x1,x2)
∂x2

1

)]
(2.19c)

2.3 Rayleigh waves in a half-space

The Rayleigh waves (R-waves) propagate along one traction-free surface of a half-space
and decay with depth. Rayleigh (1885) first discovered these waves by choosing the
potential functions as:

ϕ(x1,x2) = Aexp(−αx2)exp[ j(κx1−ωt)] (2.20a)

ψ(x1,x2) = Bexp(−βx2)exp[ j(κx1−ωt)] (2.20b)

where,

α2 = κ2− ω2

V 2
P

β 2 = κ2− ω2

V 2
S

κ =
ω
VR

(2.21)

and j is the imaginary unit; t is the time; ω is the angular frequency; κ is the wave
number; VR is the R-wave velocity; A and B are the constants; x1 and x2 are the horizontal
and vertical axes, respectively.

The potential functions (Eq. 2.20) satisfy both the Helmholtz equation (Eq. 2.18)
and Eq. 2.19 with the boundary conditions as σ22 = σ12 = 0 at x2 = 0, which locates the
traction-free surface, if the following Rayleigh-frequency equation is true:

[
2−

(
VR

VS

)2
]4

= 16

[
1−

(
VR

VP

)2
][

1−
(

VR

VS

)2
]

(2.22)

The R-wave velocity (VR) depends on the P-wave and S-wave velocities (VP and VS).
For an isotropic, homogeneous and elastic medium, an approximate expression for the
ratio of VR to VS is related to the Poisson’s ratio υ as:
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VR

VS
=

0.862+1.14υ
1+υ

(2.23)

Substituting the potential functions (Eq. 2.20) into Eq. 2.17 results in the horizontal
displacement u1 and the vertical displacements u2 for the R-waves:

u1 = Cκ j
[
−exp(−αx2)+

2αβ
β 2 +κ2 exp(−βx2)

]
exp[ j(ωt−κx1)] (2.24a)

u2 = Cκ
[
−α

κ
exp(−αx2)+

2ακ
β 2 +α2 exp(−βx2)

]
exp[ j(ωt−κx1)] (2.24b)

where C is the constant; α and β are defined in Fig. 2.21. The particle motion for R-wave
propagation is shown in Fig. 2.3.

If u10 and u20 represent the horizontal and vertical displacement amplitudes at the
surface (x2 = 0), respectively, by normalizing the horizontal (u1) and vertical displace-
ment (u2) amplitudes at a depth in axis x2 to the surface as u1/u10 and u2/u20, and
normalizing the depth to the R-wavelength (λR), the normalized displacement vs. nor-
malized depth is plotted for different Poisson’s ratios in Fig. 2.4. Near the subsurface,
an elliptical particle motion with a retrograde rotation is generated because of positive
vertical displacements (u2 > 0) and negative horizontal displacements (u1 > 0). This mo-
tion is reversed at greater depths where horizontal displacements become positive. This
phenomenon happens earlier when Poisson’s ratio is larger.

2.4 Lamb waves in a plate

2.4.1 Basic principles

In a plate, a series of reflected and mode-converted body waves (P- and S- waves) are
generated. These waves interact with each other and the two parallel traction-free sur-
faces of a plate to form new wave modes propagating along the two surfaces in axis x1,
which are called Lamb or plate waves.

The potential functions are chosen for this case as below (Graff 1991), where the
origin of the vertical axis (x2 = 0) is defined at half the thickness of a plate.
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ϕ(x1,x2) = f (x2)exp[ j(ωt−κx1)] (2.25a)

ψ(x1,x2) = g(x2)exp[ j(ωt−κx1)] (2.25b)

Substituting Eq. 2.25 into the Helmholtz equation (Eq. 2.18) results in the two sets
of equations for functions f (x2) and g(x2):

f (x2) = Acosh(αx2) (2.26a)

g(x2) = Bsinh(βx2) (2.26b)

f (x2) = C sinh(αx2) (2.27a)

g(x2) = Dcosh(βx2) (2.27b)

where A, B, C, and D are the constants; α and β are defined in Fig. 2.21.

With the boundary conditions: σ22 = σ12 = 0 at two surfaces of a plate, where x2 =
±h and h is half the plate thickness, the potential functions (Eq. 2.25) and Eqs. 2.26 and
2.27 must satisfy Eq. 2.19, which yields Rayleigh-Lamb-frequency equation:

tan(βh)
tan(αh)

+
[

4κ2αβ
(β 2−κ2)2

]±1

= 0 (2.28)

where the wave number κ = ω/Vph, Vph is the phase velocity of Lamb waves; α and
β are defined in Fig. 2.21; the exponent +1 represents the solution for the symmetric
Lamb modes using Eq. 2.26; while the exponent −1 represents the solution for the anti-
symmetric Lamb modes using Eq. 2.27. The symmetric Lamb modes generate waves
with symmetric thickness variation with respect to a plane at the middle thickness of a
plate (Fig. 2.5); while the anti-symmetric Lamb modes generate a bending deformation
of the plate as it propagates.

If the frequency is sufficiently high, or equivalently the wavelength is sufficiently
small, tan(αh) ≈ tan(βh) ≈ 1, the Rayleigh-Lamb-frequency equation (Eq. 2.28) re-
duces to Rayleigh-frequency equation (Eq. 2.22). It implies that the plate thickness ap-
pears to be large for high frequency components, and they propagate as R-waves in a
plate independently on the top surface without any interference from the bottom surface.
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For low frequencies, the following conditions are considered approximately true (Vik-
torov 1967):

tan(αh) ≈ αh(1+
1
3

α2h2) (2.29a)

tan(βh) ≈ βh(1+
1
3

β 2h2) (2.29b)

By substituting the above equation into the Rayleigh-Lamb-frequency equation (Eq. 2.28),
the velocities for the global vibration modes: the extensional vibration mode VEXT (sym-
metric mode) and the flexural vibration mode VFLX (anti-symmetric mode) are:

VEXT =

√
E

ρ(1−υ2)
(2.30a)

VFLX = κh

√
E

3ρ(1−υ2)
(2.30b)

The extensional vibration mode is non-dispersive; while the flexural vibration mode
remains dispersive because of the wave number κ involved in the calculation of VFLX .

The Rayleigh-Lamb-frequency equation (Eq. 2.28) is governed by three parameters:
P-and S-wave velocities (VP and VS), and half the plate thickness (h). This equation is
considered as relating the frequency ω to the wave number κ , resulting in the frequency
spectrum, or as relating the frequency ω to the phase velocity of Lamb waves Vph, re-
sulting in the dispersion curves. As different solutions to Eq. 2.28, Lamb modes exist,
differing from one another by their dispersion curves and contribution of the displace-
ments throughout the thickness of a plate.

By substituting the potential functions (Eq. 2.25), Eqs. 2.26 and 2.27 into Eq. 2.17,
the horizontal displacement u1 and vertical displacement u2 are calculated.

For symmetric Lamb modes:

u1 = Aκ
[

cosh(αx2)
sinh(αh)

− 2αβ
κ2 +β 2

cosh(βx2)
sinh(βh)

]
exp[ j(κx1−ωt− π

2
)] (2.31a)

u2 = −Aα
[

sinh(αx2)
sinh(αh)

− 2β 2

κ2 +β 2
sinh(βx2)
sinh(βh)

]
exp[ j(κx1−ωt)] (2.31b)
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For anti-symmetric Lamb modes:

u1 = Bκ
[

sinh(αx2)
cosh(αh)

− 2αβ
κ2 +β 2

sinh(βx2)
cosh(βh)

]
exp[ j(κx1−ωt− π

2
)] (2.32a)

u2 = −Bα
[

cosh(αx2)
cosh(αh)

− 2β 2

κ2 +β 2
cosh(βx2)
cosh(βh)

]
exp[ j(κx1−ωt)] (2.32b)

where A and B are the arbitrary constants. There is a phase difference of π/2 between
the horizontal and vertical displacements for both the symmetric and the anti-symmetric
Lamb modes.

2.4.2 Calculation of dispersion curves

For any given frequency, there are an infinite number of wave numbers that satisfy the
Rayleigh-Lamb-frequency equation (Eq. 2.28), and they might be complex, for exam-
ple, κ = κre + jκim, where κre and κim are the real and imaginary parts, respectively.
Therefore, a harmonic time signal propagating in the horizontal axis x1 is expressed:

exp[ j(κx1−ωt)] = exp[ j(κrex1−ωt)]exp(−κimx1)

A physical interpretation is discussed for three possible cases (Rose 1999):

1. κim < 0: the waves grow exponentially with distance. They have not been physi-
cally observed.

2. κim > 0: the waves decay exponentially with distance. They are called evanescent
waves, and disappear rapidly.

3. κim = 0: the waves propagate with no attenuation. Only real wave numbers supply
the information about the propagating waves.

For the propagating Lamb waves (κim = 0), the Rayleigh-Lamb-frequency equation
(Eq. 2.28) becomes the following equations, which are used for the calculation of the
dispersion curves (Rose 1999).

For symmetric Lamb modes:
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Fsym(ω,Vph) =
tan(βh)

β
+

4 ω2

V 2
ph

α tan(αh)
(

β 2− ω2

V 2
ph

)2 = 0 (2.33)

For anti-symmetric Lamb modes:

Fanti(ω,Vph) = tan(βh)β +

(
β 2− ω2

V 2
ph

)2

tan(αh)

4α
(

ω2

V 2
ph

)2 = 0 (2.34)

The calculation of dispersion curves for Lamb waves is implemented using the com-
mercial software MathCAD T M, and the algorithm is described in Fig. 2.6. The frequen-
cies and phase velocities are digitized in a range with an appropriate increment. Because
the functions given in Eqs. 2.33 and 2.34 are continuous, a change of the phase velocities
in sign for each frequency is accomplished by a crossing through zero. Therefore, a root
exists in the interval of phase velocities where the sign changes. This interval is used
in a root function to locate precisely the phase velocity, and then the root is taken as a
solution to Eqs. 2.33 and 2.34 for each frequency.

For a typical concrete plate, which is assumed isotropic and homogenous, three pa-
rameters are given for the calculation of dispersion curves for Lamb waves: P-wave
velocity VP = 4800m/s, S-wave velocity VS = 2770m/s, and half the plate thickness
h = 40mm. Other elastic constants are calculated: Poisson’s ratio υ = 0.25, Young’s
modulus E = 45GPa, R-wave velocity VR = 2550m/s, the velocity for the extensional
vibration mode, VEXT = 4524m/s, and the velocity for flexural vibration mode at fre-
quency 500Hz, VFLX = 572.9m/s. The dispersion curves are shown in Fig. 2.7 for this
concrete plate.

Fundamental symmetric Lamb mode S0 starts from low frequency with the highest
phase velocity that is close to VEXT , and then the phase velocity decreases with fre-
quency; while fundamental anti-symmetric Lamb mode A0 starts from low frequency
with the lowest phase velocity, which is close to VFLX for frequency at 500Hz, and then
the phase velocity increases with frequency. Finally, the fundamental Lamb modes (S0
and A0) converge to the value of VR at frequencies larger than f = 60kHz; the cor-
responding wavelength (λR = 42.5mm) is close to half the plate thickness h = 40mm.
It indicates a non-dispersion behavior of the fundamental Lamb modes as the Rayleigh
wave mode occurring at high frequencies. Higher Lamb modes (symmetric modes Si and
anti-symmetric modes Ai, where i > 0) first appear at different frequencies that are called
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critical frequencies, where the phase velocity goes to infinity, and then the corresponding
phase velocity decreases to S-wave velocity VS (Viktorov 1967) as the frequency goes to
infinity.

2.4.3 Determination of mode numbers

The critical frequencies for higher Lamb modes are given by a factor of P- or S-wavelengths,
which are related to half the plate thickness (h) as (Viktorov 1967):

For Symmetric Lamb modes:

2h =
1
2

λP,
3
2

λP,
5
2

λP . . . (2.35a)

2h = λS, 2λS, 3λS . . . (2.35b)

For Anti-symmetric Lamb modes:

2h = λP, 2λP, 3λP . . . (2.36a)

2h =
1
2

λS,
3
2

λS,
5
2

λS . . . (2.36b)

where λP and λS are the P- and S-wavelengths, respectively.

λP = 2π
VP

ω
λS = 2π

VS

ω

The total numbers of symmetric Lamb modes Nsym and anti-symmetric Lamb modes
Nanti that are possible in a plate are given:

Nsym = 1+ round
(

2h
λS

)
+ round

(
2h
λP

+
1
2

)
(2.37a)

Nanti = 1+ round
(

2h
λP

)
+ round

(
2h
λS

+
1
2

)
(2.37b)

where the ”round” function gives the nearest integer part of the number that are enclosed.
For the case given in Fig. 2.7, the numbers of Lamb modes are calculated in Fig. 2.8.
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2.4.4 Calculation of displacement vs. depth

The horizontal and vertical displacement amplitudes vs. depth are calculated according
to Eqs. 2.31 and 2.32, where for each Lamb mode the wave number or the phase veloc-
ity is a function of frequency that is determined by the dispersion curve. For the case
given in Fig. 2.7, the results of normalized displacement amplitude vs. normalized depth
for frequencies at 50kHz and 100kHz are shown in Fig. 2.9 for the fundamental Lamb
mode S0, and in Fig. 2.10 for the higher Lamb mode S1. The horizontal axis in the plot
represents the displacement amplitude (u1 or u2) that is normalized to the horizontal dis-
placement amplitude at surface, which is denoted as uS0 or uS1; while the vertical axis
(x2) represents a depth that is normalized to the S0 or S1 wavelength (λph). The phase
velocity (Vph) at a certain frequency is measured from the dispersion curves. For a com-
parison, the R-wave displacement amplitude is also shown. For 50kHz, R-wave and S0
mode match well for normalized depths smaller than 1/3; for 100kHz, they match well
up to the center of the plate (normalized depth d/λ = 1.57). However, displacements
for higher Lamb mode S1 show more variations with respect to the normalized depth.
Horizontal displacements of the Lamb modes are symmetric to a horizontal plane at half
the thickness; while vertical displacements of the Lamb modes are anti-symmetric to a
horizontal plane at half the thickness.

2.5 Wave transmission and reflection

In Fig. 2.11, a plane harmonic wave propagates in axis x1 at a normal incidence through
an interface between two media, which have the wave velocities V1 and V2, and mass
densities ρ1 and ρ2, respectively. The displacements of incident (uin), reflected (ure) and
transmitted (utr) waves are expressed:

uin(x1, t) = Ain exp [ j(κ1x1−ωt)] (2.38a)

ure(x1, t) = −Are exp [ j(−κ1x1−ωt)] (2.38b)

utr(x1, t) = Atr exp [ j(κ2x1−ωt)] (2.38c)

where κ1 and κ2 are the wave numbers for the wave propagation in two different
media; Ain, Are and Atr are the amplitudes for incident, reflected and transmitted waves,
respectively.
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If the displacement u1 is the only non-zero displacement component, the plane stress
σ11 is given from Eq. 2.4:

σ11 = (λ +2µ)
∂u1

∂x1
= ρV 2

1
∂u1

∂x1
(2.39)

A continuity condition must hold: both the displacements and the stresses are con-
tinuous at the interface between two different elastic media, thus:

uin(x1, t)+ure(x1, t) = utr(x1, t) (2.40a)

ρ1V 2
1

∂uin(x1)
∂x1

+ρ1V 2
1

∂ure(x1)
∂x1

= ρ2V 2
2

∂utr(x1)
∂x1

(2.40b)

By substituting Eq. 2.38 into Eq. 2.40, the following equations are true at the inter-
face x1 = 0:

Ain−Are = Atr (2.41a)

ρ1V 2
1 Ain +ρ1V 2

1 Are = ρ2V 2
2 Atr (2.41b)

Solving the above equation allows the reflection coefficient Re and transmission co-
efficient Tr defined as:

Re =
Are

Ain
=

ρ2V2−ρ1V1

ρ2V2 +ρ1V1
=

1− (z1/z2)
1+(z1/z2)

(2.42a)

Tr =
Atr

Ain
=

2ρ1V1

ρ2V2 +ρ1V1
=

2(z1/z2)
1+(z1/z2)

(2.42b)

where,
z1 = ρ1V1 z2 = ρ2V2 (2.43)

and z1 and z2 are the acoustic impedances for the first medium and the second medium,
respectively.

The reflection and transmission coefficients Re and Tr depend only on a ratio of the
acoustic impedances (z1/z2). The relation of Re and Tr vs. the acoustic impedance
ratio (z1/z2) is plotted in Fig. 2.12. Two coefficients are identical at z1/z2 = 1/3, where
Re = Tr = 0.54; two media are uniform when z1/z2 = 1, resulting in Tr = 1 and Re = 0.
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For a free surface, for example a solid-to-air interface, it is considered: (z1/z2)→∞;
then it follows: Re →−1, Tr → 2, Are ≈ −Ain and Atr ≈ 2Ain. The total displacement
on the solid side at the interface (x1 = 0) is almost double that of the incident waves:

uin(x1 = 0)+ure(x1 = 0) = Ain−Are = 2Ain (2.44)

The condition of the displacement continuity is satisfied because of an equal displace-
ment amplitude (2Ain) occurred on both sides of the interface. The propagating wave is
doubled when it encounters a free surface.

When a wave propagates into a rigid medium, for example, (z1/z2)→ 0 for an air-
to-solid interface; then it follows: Re≈ 1 and Tr ≈ 0. The total displacement at the both
sides of the interface is approximately zero. Therefore, to induce waves into a medium
from a transducer, the use of a coupling agent is necessary.

The presence of a surface-breaking crack provides two traction-free boundaries on
the both edges of the crack, which blocks the passage of waves through the crack (the
wave propagation is perpendicular to the crack). If a harmonic wave propagates as a
normal incidence to the crack, the reflected wave propagates to opposite with a phase
shifted by π . (Eq. 2.38). As a result, the incident and reflected waves are superimposed
at locations before the crack. A ratio of the displacement amplitudes between the su-
perimposed waves, uin(x1, t) + ure(x1, t), and the incident wave, uin(x1, t) is plotted in
Fig. 2.13, where the horizontal axis is the distance from the crack that is normalized
to half the wavelength λ/2. The two waves are in phase at distances multiple of λ/2,
where the displacement amplitudes for the superimposed waves is doubled that of the
incident wave, a phenomenon called constructive interference or amplification; whereas,
they are out of phase at distances multiple of λ/2 plus one quarter of the wavelength
λ/4, a phenomenon called destructive interference or de-amplification.

2.6 Summary

Waves are complicated because different geometries and boundary conditions of a medium
can be applied to the wave equation of motion. Basically, a point load acting on the sur-
face of a medium generates two types of waves: body waves, which propagate spherically
from the source, and surface waves, which propagate cylindrically from the source. Body
waves can be compressional waves or shear waves. Body waves are non-dispersive and
their velocities depend only on elastic constants of the medium. As one type of surface
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waves, Rayleigh waves exist in a half space where only one traction-free surface bound-
ary is present; another type of surface waves are Lamb waves, which exist in a plate with
two traction-free surface boundaries. Rayleigh waves are non-dispersive in a homoge-
neous medium; while Lamb waves are generally dispersive. A half-space does not exist
in reality; however, when the wavelength is small compared to the thickness of a plate,
the wave propagation of fundamental Lamb modes is similar to the Rayleigh wave. The
dispersion curves of Lamb modes are used to find a frequency where the fundamental
Lamb modes and Rayleigh wave mode can be comparable.

An interface is formed between two different media. When a wave propagates at
a normal incidence through the interface, wave reflection and transmission occur. For
locations before the interface, the incident and reflected waves are superimposed, causing
construction and destructive interferences.
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Figure 2.1: Particle motion for compressional wave (P-wave) propagation
(http://www.picsearch.com).

Figure 2.2: Particle motion for shear wave (S-wave) propagation
(http://www.picsearch.com).
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Figure 2.3: Particle motion for Rayleigh wave propagation
(http://www.picsearch.com).
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Figure 2.5: Symmetric and anti-symmetric Lamb mode variations in a plate.
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   Given a series of frequencies and phase velocities:    

       (ω i, vj),  i =  0  to  (N1 - 1) ;   j  =  0  to  (N2 - 1)

   i = 0   

 
   For symmetric Lamb mode:

    Fsym (ω i, vj-1) = var1;  Fsym (ω i, vj) = var2   

    For anti-symmetric Lamb mode:   

    Fanti (ω i, vj-1) = var1;  Fanti (ω i, vj) = var2

   var3 = sign (var1) * sign (var2)   
 

   
   For symmetric Lamb mode:

   var4 = root (Fsym(ω, v), v, [vj-1, vj])   

    For anti-symmetric Lamb mode:

    var4 = root (Fanti(ω, v), v, [vj-1, vj])   

 

   Store values of (ω i, var4)   

  
   j = j + 1  

   j = 1      E�D      
yes

yes

yes

no

no

no
    i < N1   

    j < N2   
  

   i = i + 1  

root (f(x, y), y, [y1, y2]): 
find a root for variable y
in function f(x, y)
within a range [y1, y2] 

"sign" function

"root" function

  

   i = i + 1  

If the sign changes.  
      var3  <  0 ?

sign (x) =
 1    if  x >= 0
-1    if  x < 0

Figure 2.6: Algorithm for the calculation of the dispersion curves for Lamb waves.
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Figure 2.11: Wave transmission through and reflection from an interface between two
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Chapter 3

Signal processing techniques

3.1 Introduction

The measured time signals can be analyzed with signal processing techniques to ex-
tract useful information for nondestructive tests. This chapter presents an introduction to
Fourier transform that relates the time domain to the frequency domain, two-dimensional
(2D) Fourier transform that relates the time-space domain to the frequency-wave number
domain, the short-time Fourier transform that is also called windowed Fourier transform,
and the wavelet transform that keeps both the time and frequency information. Finally,
the spectral analysis of surface waves is discussed.

3.2 Fourier transform

3.2.1 1D Fourier transform

As a common technique in signal processing, the Fourier transform (FT) compares the
time signals g(t) with a set of complex exponentials exp(− jωt) by doing a convolution.
Then, the frequency spectrum G(ω) is obtained, which reflects the similarity between
the time signal and each complex exponential, as well as the energy of a given complex
exponential function in the original time signal. It is calculated in time:

G(ω) =
∫ ∞

−∞
g(t)exp(− jωt)dt (3.1)

where j is the imaginary unit; t is the time; ω is the angular frequency.
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The inverse Fourier transform is calculated in frequency:

g(t) =
1

2π

∫ ∞

−∞
G(ω)exp( jωt)dω (3.2)

If the time signal g(t) is real, it holds: G(ω) = G∗(−ω), and vice versa, where the
star sign denotes the complex conjugate.

In practice, the time signal g(t) is always collected and stored in a digital form;
therefore, the Fourier transform and the inverse Fourier transform are implemented in a
discrete form (Santamarina 1998):

G(n∆ f ) = ∆t
N−1

∑
i=0

g(i∆t)exp(− j2πi
n
N

) (3.3a)

g(n∆t) =
1

N∆t

N−1

∑
i=0

G(i∆ f )exp( j2πi
n
N

) (3.3b)

where,
n = 0, 1, 2, . . . N−1

and N is the total number of sampled points; ∆t and ∆ f are the intervals in time and
in frequency, respectively. Because they are reciprocally related as below, a trade-off
should be considered to achieve a good resolution both in time and frequency for the
Fourier transform.

∆t =
1

N∆ f
(3.4)

A Nyquist criterion is satisfied to avoid a phenomenon called ”aliasing”, so as to
retain all frequency components of interests in the results of the Fourier transform. It
requires the frequency of interests ( f ) be lower than the Nyquist frequency, which is
equal to half the sampling frequency, fnyqu = fsamp/2.

f < fnyqu (3.5)

The results in frequency from the discrete Fourier transform are composed of a series
of complex numbers:

G(i∆ f ) = Re [G(i∆ f )]+ jIm [G(i∆ f )] (3.6)
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where Re is the function to get the real component; while Im is the function to get the
imaginary component.

For each complex number, the spectral amplitude Am and the phase angle Ph are
given:

Am(i∆ f ) =
√

Re2 [G(i∆ f )]+ Im2 [G(i∆ f )] (3.7a)

Ph(i∆ f ) = arctan
[

Im(i∆ f )
Re(i∆ f )

]
(3.7b)

Furthermore, the spectral amplitude and phase angle define the ith harmonic function:

gi(t) = Am(i∆ f )cos[2πi∆ f t +Ph(i∆ f )] (3.8)

The continuous time signal g(t) can be approximately viewed as the superposition of
a series of the harmonic functions:

g(t)≈
N−1

∑
i=0

gi(t) = A0 +
N−1

∑
i=0

{Am(i∆ f )cos [2πi∆ f t +Ph(i∆ f )]} (3.9)

where A0 represents a DC component.

Each frequency component has the spectral energy, which is proportional to the
square of the spectral amplitude. The cumulative spectral energy for all frequencies
is calculated:

Etotal =
∫ ∞

−∞
|G(ω)|2dω (3.10)

The cumulative spectral energy can be calculated with an upper or lower bound for
the integral:

Eupper(ω) =
∫ ω

−∞
|G(ω)|2dω (3.11a)

Elower(ω) =
∫ ∞

ω
|G(ω)|2dω (3.11b)

The time signal g(t) is said to have a finite energy, if its cumulative spectral energy
Etotal (Eq. 3.10) is finite. Therefore, for signals having a finite energy, some localization
parameters are defined (Stark 2005):
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tg =
1

Etotal

∫ ∞

−∞
t|g(t)|2dt (3.12a)

∆tg =

√
1

Etotal

∫ ∞

−∞
(t− tg)2|g(t)|2dt (3.12b)

ωg =
1

2πEtotal

∫ ∞

−∞
ω|G(ω)|2dω (3.12c)

∆ωg =

√
1

Etotal

∫ ∞

−∞
(ω−ωg)2|G(ω)|2dω (3.12d)

where tg indicates where on the time axis g(t) is located; ∆tg provides information about
how g(t) is localized around tg; the same arguments apply to ωg and ∆ωg in frequency.

Cross power spectrum is a representation in frequency of the cross correlation func-
tion between two time signals g1(t) and g2(t). If their frequency spectra are G1(ω) and
G2(ω), respectively, the cross power spectrum is defined:

G12(ω) = G1(ω)G∗
2(ω) (3.13)

3.2.2 2D Fourier transform

The time signal g(t,x) is a 2D function of the time and space; therefore, its 2D Fourier
transformation G(ω,κ) changes the time information into the frequency domain, and the
spatial information into the wave number domain as:

G(ω,κ) =
∫ ∞

−∞

∫ ∞

−∞
g(t,x)exp[− j(ωt−κx)]dtdx (3.14)

A discrete form of the 2D Fourier transform is given:

G(u∆ω,v∆κ) =
N−1

∑
n=0

N−1

∑
m=0

{g(n∆t,m∆x)exp[− j(u∆ω n∆t− v∆κ m∆x)]} (3.15)

where ∆t, ∆x, ∆ f and ∆κ are the intervals in time, space, frequency and wave number,
respectively; m, n, u and v are the counters.

The results from the 2D Fourier transform can be plotted in frequency-wave num-
ber domain, where incident, reflected and transmitted events in the wave propagation
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are shown. A single event in time can be extracted by applying an inverse 2D Fourier
transform on the filtered data. A typical 2D filter W (ω,κ) is given:

W (ω,κ) =





0.5+0.5cos
(

ω−ω<event>(κ)
BW

)
if ω−ω<event>(κ)≤ BW

2

0 if ω−ω<event>(κ) > BW
2

(3.16)

where a Hanning window is used; BW is the angular frequency bandwidth of the 2D
filter; ω<event>(κ) defines the relation of frequency and wave number for that single
event; for example, ω<event>(κ) is given from the dispersion curve for a single Lamb
mode as shown in Fig. 2.7.

The time-space signal for the event is calculated:

g<event>(t,x) =
∫ ∞

−∞

∫ ∞

−∞
[G(ω,κ)W (ω,κ)]exp[ j(ωt−κx)]dωdκ (3.17)

3.2.3 Short-time Fourier transform

Fourier transform has a serious drawback: in transforming to the frequency domain, time
information is lost (no time information is contained in G(ω), Eq. 3.1) and determination
of the arrival time of a particular event is impossible (Ovanesova 2004). To overcome
this deficiency, the short-time Fourier transform is defined:

G(ω,b) =
∫ ∞

−∞
[g(t)w(t−b)]exp(− jωt)dt (3.18)

where b is the shift time used to localize the window function w(t) at different locations
in time axis.

The short-time Fourier transform is sometimes called windowed Fourier transform.
The window function can be Hanning, Hamming, Kaiser, or Gaussian. A Gaussian win-
dowed short-time Fourier transform is known as the Gabor transform.

In the short-time Fourier transform, the width of windowing is fixed for all of fre-
quencies at different time locations; if very tiny signal details (high frequencies) are of
interest in only a small neighborhood, eventually the signal part, which actually is not
of interests, will be involved. Hence zooming into small details is not supported in the
short-time Fourier transform.
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A uncertainty condition is expressed below (Qian 2002), which states that no win-
dowing function can be chosen, which is arbitrarily sharply concentrated both in time
and frequency.

∆tg ∆ωg ≥ 1
2

(3.19)

where ∆tg and ∆ωg are given in Eq. 3.12b and 3.12d for the time signal g(t).

The Gaussian function has a low bound of the above inequality, and is considered to
be optimal window shape that has better resolution both in time and frequency.

3.3 Wavelet transform

3.3.1 Basic principles

Any function could be called a wavelet only if it has a finite cumulative spectral energy
(Eq. 3.10); however it is usually a waveform of effectively limited duration. Like the
short-time Fourier transform, the wavelet transform (WT) is a two-parameter transform.
For time signals, the two domains of the wavelet transform are the shifted time and
the frequency scale. As a main advantage of the wavelet transform, windowing with a
variable size is used; therefore, wavelet analysis allows the use of long time duration
where more precise low-frequency information is expected, and shorter regions where
high-frequency information is expected.

Fourier transform consists of breaking up a signal into complex exponentials of var-
ious frequencies; while wavelet transform is the breaking up of a signal into shifted and
scaled versions of the original wavelet. The wavelet transform of a time signal g(t) is
an example of a time-frequency scale decomposition by dilating and translating a chosen
wavelet φ(t) as:

G<WT>(a,b) =
1√
a

∫ ∞

−∞
g(t)φ∗

(
t−b

a

)
dt (3.20)

where a is the dilation parameter or frequency scale stretching or contracting the wavelet;
b is the translation parameter localizing the wavelet in the time axis. The first fraction
(1/
√

a) on the right is set for reasons of energy conservation, and the energy of the
wavelets for all frequency scales is identical. The wavelet transform provides very natural
way to view data deriving from a great number of natural phenomena, and also makes
sense that local features can be described better with wavelets that have local extent.
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An alternative equation for the wavelet transform that is calculated in frequency is
given (Qian 2002):

G<WT>(a,b) =
√

a
∫ ∞

−∞
G(ω)Φ∗(aω)exp( jωb)dt (3.21)

where G(ω) and Φ(ω) are the Fourier transforms for the time signals g(t) and the
wavelet φ(t), respectively. Therefore, the above equation can be viewed as a band-
pass filter for the input signal g(t), where Φ∗(aω) acts as the frequency response of
the filter. The dilated wavelet function φ(t/a) corresponds to the frequency spectrum
Φ(aω); therefore, contracting a wavelet in time is associated with stretching a wavelet
in frequency, and vice versa.

The wavelet transform is continuous (CWT); however, a discrete form (DCWT) is
given in time for the calculation in a computer:

G<WT>(a,b) =
1√
a

N−1

∑
n=0

[
G(n∆t)φ

(
n∆t−b

a

)
∆t

]
(3.22)

where N is the total number of sampled points. Note that the DCWT is fundamentally
different from the discrete wavelet transform (DWT).

If the time signal g(t) does not need to be recovered from the wavelet transform, the
wavelet φ(t) could be any function. However, when a perfect reconstruction is needed,
the selection of the wavelet is restricted. In general, the wavelet has to be such that (Qian
2002):

Cφ =
∫ ∞

−∞

|Φ(ω)|2
|ω| dω < ∞ (3.23)

The above equation is so-called the admissibility condition, and Cφ is the admission
constant. It should hold, Φ(ω = 0) = 0, indicating that the DC component is null. Once
the admissibility condition is satisfied, the time signal g(t) is recovered by doing an
inverse wavelet transform:

g(t) =
1

Cφ

∫ ∞

−∞

∫ ∞

−∞

1
a2 G<WT>(a,b)Φ

(
t−b

a

)
da db (3.24)

The dilation parameter (frequency scale) determines the frequency range of a wavelet,
which is used in the wavelet transform to extract the information of a local feature within
that range. However, the wavelet transform can be calculated in an extended form by giv-
ing a range for the dilation parameter in the integral, for example the dilation parameter
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a varies from a1 to a2. The results becomes a function of the the shift time b:

G<EWT>(b) =
∫ a2

a1

G<WT>(a,b)da (3.25)

3.3.2 Wavelet-based energy

The energy contribution of the time signal g(t) contained at a specific frequency scale
and a time location is given using the admission constant Cφ (Eq. 3.23):

E<WT>(a,b) =
1

Cφ

∣∣G<WT>(a,b)
∣∣2

(3.26)

A plot of E<WT>(a,b) is known as Scalogram; it can be integrated across the param-
eters a and b to recover the total cumulative energy:

E<WT>
total =

1
Cφ

∫ ∞

−∞

∫ ∞

0

∣∣G<WT>(a,b)
∣∣2

dadb (3.27)

3.3.3 Morlet wavelet

The Morlet function is a well-known wavelet for its good resolution both in time and
frequency domain according to the uncertainty principle (Eq. 3.19). This function is used
for the source modeling of an ultrasonic piezoelectric transmitter. Therefore, it is chosen
as a wavelet for the wavelet transform for this study. The Morlet function is given by a
harmonic complex function in time modulated by a Gaussian function (Lardies 2007):

φ(t) = exp( jω0t) exp
(
− t2

τ2

)
(3.28)

where f0 is the central frequency of the Morlet function, ω0 = 2π f0; τ is the modulation
parameter that determines the frequency bandwidth.

The spectral amplitude of the above Morlet function is given in frequency:

|Φ(ω)|=√
πτ exp

[
−τ2

4
(ω−ω0)2

]
(3.29)

The frequency bandwidth (BW ) of the Morlet function is measured in frequency be-
tween two half-power points at which the spectral amplitudes reduce to 70.7% of the
maximum spectral amplitude:
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BW =

√
ln(4)
πτ

(3.30)

If they are given: f0 = 50kHz, τ = 1.12×10−5, and thus the frequency bandwidth is
calculated: BW = 33.46kHz. Fig. 3.1 shows the Morlet function in time and frequency.
In the wavelet transform using the Morlet function (Eq. 3.21), |Φ(aω)| reaches the max-
imum at f0 = 50kHz for given a = 1; therefore, the information of a local feature whose
frequency components is centered at frequency 50kHz is mostly extracted from the time
signals g(t).

3.3.4 Wavelet transform for a SDOF system

For a viscously damped single degree freedom of system (SDOF), a free time response
g(t) is expressed:

g(t) = Aexp(−Dωnt)cos(ωdt +θ) (3.31)

where A is the residue amplitude; θ is the initial phase; ωn is the un-damped natural
frequency; while ωd is the damped natural frequency; they are related by the viscous
damping ratio D:

ωd = ωn

√
1−D2 (3.32)

If the system is under-damped, that is in general 0 < D¿ 1, and thus ωn ≈ ωd . The
time signal g(t) (Eq. 3.31) is asymptotic when D > 0, meaning g(t) tends to be zero as
time goes infinity. The wavelet transform for this case is given (Lardies 2007):

G<WT>(a,b) =
√

a
2

Aexp(−Dωnb)|Φ(aωd)|exp[ j(ωdb+θ)] (3.33)

The phase of the above wavelet transform is given:

Ph[G<WT>(a,b)] = ωdb+θ (3.34)

The derivative of the above phase with respect to the shift time b gives in the damped
frequency ωd:

d
db

Ph[G<WT>(a,b)] = ωd (3.35)
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3.4 Spectral analysis of surface waves

The use of surface waves (Rayleigh waves) for shallow applications involves often the
spectral analysis of surface waves (SASW) method (Heisey 1982; Stokoe 1983). In the
SASW, two receivers are placed at two locations with a spacing ∆x, and the phase differ-
ence ∆θ is measured.

If a harmonic signal g1(t) of surface waves is received at the first location, and g2(t)
is received at the second location after a time delay ∆t; then:

g1(t) = cos(ωt +θ) (3.36a)

g2(t) = cos[ω(t +∆t)+θ ] (3.36b)

The unwrapped phase difference ∆θ between two locations is measured from the
above equations as:

∆θ = ω∆t

Therefore, the phase velocity Vph at frequency ω is related to the spacing ∆x and the
unwrapped phase difference ∆θ :

Vph(ω) =
∆x
∆t

= ω
∆x
∆θ

(3.37)

In a conventional SASW test, only two receivers are used. Surface waves propagate at
different velocities in different materials; therefore, surface waves become dispersive in a
layered medium, and longer wavelength propagates at deeper material than shorter wave-
length; long-wavelength velocities depend on the material properties in deeper range,
while short-wavelength velocities depend only on the properties of the shallow materi-
als. This is the main principle that allows a dispersion curve of surface wave velocity
versus wavelength (or frequency) to be converted into a function of elastic modulus vs.
depth. Once the SASW analysis is performed and a dispersion curve is obtained, forward
or inversion modeling can be used to derive a profile of elastic modulus vs. depth for the
layered medium.

Surface waves must propagate a minimum distance from the source before being
fully formed (near-field effects). Conversely, low signal-to-noise ratios can be present
at large distances from the source, relative to the wavelength (far-field effects). Surface
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waves dominate surface response; however reflections and body waves affect the phase
function significantly. To determine the range of wavelengths (λ ) for which the phase is
dominated by well-formed surface waves, different empirical relationships for given test
geometries have been proposed. The most commonly employed is the Heisey criterion
(Heisey 1982), where the spacing from the source to the first receiver is equal to the
receiver spacing, ∆x, and it is suggested:

λ
3
≤ ∆x≤ 2λ (3.38)

The use of multi-channel analysis of surface waves (MASW) allows the relative com-
parison of the structural condition of different sections for a given structure. Better noise
control, identification of higher modes, and faster data collection are among the advan-
tages of MASW method with respect to the conventional SASW test. The location of
the source and receivers has significant effect on the collected data (Hiltunen 1988). The
spacing between the source and first receiver determines the largest developed wave-
length in the measurements. On the other hand, the spacing between the receivers de-
termines the smallest obtainable wavelength from the data. The source should produce
enough energy in a wide frequency range.

The spectrum analysis of the data collected in MASW tests allows the evaluation of
the phase angle of each frequency component as a function of distance. If the medium is
horizontally uniform, the phase function will vary linearly with distance; if the medium
is not uniform, the phase function will deviate from a linear trend. Therefore, variations
in the phase function with distance can be used to identify areas where the phase velocity
of the medium changes horizontally. The greater the number of receivers used in a test,
the higher the resolution of the results, thereby improving the ability to detect changes in
the horizontal properties of the medium.

3.5 Summary

The Fourier transform is commonly used for signal processing, which transforms time
information into the frequency domain; however, time information is no longer kept in
the Fourier transform results. The wavelet transform keeps both time and frequency in-
formation with a two-parameter transform, where windowing with a variable size is used;
wavelet analysis allows the use of long time duration where more precise low-frequency
information is expected, and shorter regions where high-frequency information is ex-
pected. The Morlet function is chosen as a wavelet for the wavelet transform in this
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study, because it represents the source modeling of an ultrasonic piezoelectric transmit-
ter. For a SDOF system, The derivative of the phase spectrum from the wavelet transform
gives the damped frequency of the system.

The SASW method is used for the assessment of a layered medium. However, the use
of MASW allows the relative comparison of the structural condition of differen sections
for a given medium. Better noise control, identification of higher modes, and faster data
collection are among the advantages of MASW method with respect to the conventional
SASW test.
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Figure 3.1: Morlet function: (A) in time; (B) in frequency. f0 = 50kHz, τ = 1.12×10−5,
and BW = 33.46kHz.
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Chapter 4

Literature review of previous studies

4.1 Introduction

This chapter reviews wave-propagation-based nondestructive testing techniques in the
literature on the depth evaluation of surface-breaking cracks in concrete. Basically, two
types of waves (P-waves and surface waves) are used; P-waves propagate spherically
from a source at a highest velocity, and are usually received as the first arrival in the
signal; while surface waves propagate cylindrically from a source and the wave propaga-
tion energy dominates the surface response. Previous studies for the depth evaluation of
surface-breaking cracks in concrete have used P-waves; however, several recently pub-
lished papers show better results using surface waves. The depth penetration of surface
waves depends on their frequency; this important feature is useful for the crack depth
evaluation. The Fourier transmission coefficient (FTC) is a promising technique, which
is correlated to the crack depth.

4.2 P-wave method

A transient pulse is introduced into a medium by applying a mechanical impact or an
ultrasonic emission on the surface. This pulse generates P-waves, S-waves and surface
waves that propagate in a medium. P-waves have a spherical wave front that propagate
at the highest wave velocity. If the presence of a surface-breaking crack completely
intercepts the passage of wave propagation through the crack, the receiver that is located
on the other side of the crack, would initially respond to the arrival of the diffracted
P-waves, which result from the P-wave diffraction at the crack tip (Fig. 4.1).
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In order to use the travel time or the initial amplitude of diffracted P-waves to evaluate
the crack depth, the following conditions must be considered to have clear diffracted P-
waves in the received signals:

• Along the wave path of P-wave propagation, the material is homogenous and flaw-
less, and the P-wave velocity is relatively constant.

• The surface-breaking crack provides high contrast of the acoustic impedances at
a solid-air interface to intercept the passage of direct wave propagation. Sansa-
lone (1998) performed experimental measurements in concrete, where a surface-
breaking crack is filled with air, water or grout; the results from an air-filled crack
are identical to those from a water-filled crack. However, the diffracted P-waves
are not readily identified for a partially grouted crack; Song (2003) indicated that
methods using diffracted P-waves are not effective if the crack is tightly closed.
For these cases, the interface at a crack does not provide enough contrast of the
acoustic impedances, and some of P-wave energy propagate through the crack.

• The crack tip is well-defined (Song 2003), meaning that an intense discontinuity at
the crack tip causes strong P-wave diffractions.

4.2.1 Time-of-flight technique

This is a widely reported method that has showed success in determining the depth of
simulated surface-breaking cracks in concrete (Sansalone 1998). This method relies
on the arrival time of P-waves that propagate from the source, and the crack tip to the
receiver (Fig. 4.1). A mechanical impact is usually used as a source; it generates P-waves
propagating spherically outward from the source, and the P-waves turn to be diffracted
at the crack tip, where a new wave source is formed. The P-wave diffraction is picked up
by the receiver that is placed on the other side of the crack. The arrival time tr of P-waves
is measured from the received time signal, and is used to calculate the crack depth d with
known P-wave velocity VP:

d =

√[
(VP tr)2 +S2

1−S2
2

2VP tr

]2

−S2
1 (4.1)

where S1 and S2 are the spacings between the source and the crack, and between the
crack and the receiver (Fig. 4.1), respectively.

If an equal spacing to the crack is used in the tests, S1 = S2 = S, the above equation
reduces to the following:
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d =

√(
VP tr

2

)2

−S2 (4.2)

This technique shows a straightforward principle and simplicity. However, the in-
tensity of P-wave diffraction depends on a clear tip of the crack. Generally, because of
low energy of P-wave diffraction, the first P-wave arrival in the received signal is always
difficult to be selected, especially in the presence of the background noises that may re-
sult from the measurement system, or in the case of long wave propagation path. Hevin
(1998) numerically simulated the wave trains propagating through a surface-breaking
crack, and different wave trains are shown; it states that in the case of experimental sig-
nals, measuring the time arrival of diffracted waves would be difficult due to low energy.

4.2.2 CECS 21:90 standard

Similar to the above time-of-flight technique, the Chinese national standard CECS 21:90,
written in 1990 uses a group of transducers to evaluate the depth of surface-breaking
cracks in concrete. A mechanical impactor produces stress waves propagating into a
medium in all directions; while an ultrasonic piezoelectric transmitter used as a source
for this standard produces an ultrasonic pulse in a focused direction (ACI Committee228
1998) and carries high frequency contents. The high frequencies give better resolution
in time to calculate the crack depth.

The two groups of measurements are conducted, each with a series of transmitter-to-
receiver spacings (S1, S2 . . . Sn). First, a flawless area on the medium surface adjacent
to the crack location is chosen for the first group of measurements (Fig. 4.2). Then, the
measurement is repeated for the depth evaluation of a surface-breaking crack, where the
transmitter and receiver are placed on the opposite sides of the crack and spaced equally
to the crack.

The P-wave arrival times are measured from the two groups for different spacings
(S1, S2 . . . Sn); the arrival times are denoted as (t1, t2 . . . tn) for the first group of mea-
surements at a homogenous and flawless area, and as (t ′1, t ′2 . . . t ′n) for the second group
of measurement with a crack.

Based on the first group of measurements, (S1, S2 . . . Sn) and (t1, t2 . . . tn), the curve
of spacing vs. time is plotted, and a linear curve fitting is made to calculate the P-wave
velocity VP:

S(t) = VP t +C (4.3)
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where VP represents the slope of the fitted line in Fig 4.3; C is the intercept at the vertical
axis representing different spacings; the time delay that results from the measurement
system is calculated as tzero = C/VP.

Based on the two groups of measurements, the crack depth for each transmitter-
receiver spacing is calculated:

di =
Si

2

√(
t ′i − tzero

ti− tzero

)2

−1 (4.4)

where i is the counter that varies from 0 to n.

A concrete plate with dimensions: 1200×300×300mm, was fabricated in NanJing
Academy of Sciences for Water and Environmental Conservation in 1997, China. The
concrete plate was bent to fracture and a 186mm-deep crack is seen at one end of the
plate. The measurements are performed by following the CECS 21:90 standard, and
the results are given in Table 4.1. The average value of the calculated crack depths is
199mm, and an acceptable error 6.9% is occurred relative to the manually measured
depth (186mm).

4.2.3 Migration method

Liu (1996) adopted the method from reflection seismology. By using both the time and
amplitude information of the first P-wave arrival to construct an image for the tip of
a surface-breaking crack, the crack depth and the dip angle of the crack can be deter-
mined. The arrival time tr is measured from the first P-wave arrival in the measured time
signal, and used to calculate the distance of propagating P-waves, S = VP tr, where the
P-wave velocity is assumed to be known. Suppose a surface-breaking crack is present in
a half-space (Fig. 4.4), thus in a medium, any point connecting the source and receiver
is a possible diffraction point, only if the distance of P-wave propagation through the
source-that point-receiver path is equal to S. As a results, all of these possible points
form an ellipse with the locations of source and receiver as its foci. When the source-
receiver spacing is changed, different ellipses are obtained. However, those ellipses are
intersected at the crack tip. Once the crack tip is located, a line connecting the crack tip
and the surface point of the crack is drawn, and thus the crack depth and the dip angle of
a surface-breaking crack can be determined.

In the measured signal, the time trace is represented as a function of amplitude vs.
time; the amplitude can be converted into a gray-scale value and the time is used to locate
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the pixel in a half-space. Therefore, the gray-scale image can be constructed by giving
gray-scale value to each pixel in a medium. The procedure is described:

1. Divide a half-space into N1×N2 pixels in a 2D plane. For each pixel with a coor-
dinate at (x1, x2), the distances to the source and receiver are denoted as S and R
(Fig. 4.4), respectively, and the time for P-waves to propagate from the source to a
pixel and then the receiver is denoted as tr; it is given to each pixel in a medium:

tr =
S +R

VP
(4.5)

2. The source and receiver are placed at different locations on the surface for a to-
tal number n of tests. For the ith test, the amplitude at the time tr for a pixel is
given as gi(tr), the final amplitude Ar for each pixel is obtained by summing up all
amplitudes gi(tr):

Ar =
1
n

n

∑
i=1

gi(tr) (4.6)

3. The final amplitude Ar for each pixel is converted into grey-scale Gr with an ap-
propriate upper bound U :

Gr =





−1 if Ar ≤−U
Ar
U if −U < Ar < U

1 if Ar ≥U

(4.7)

The modulated amplitude Gr is given to each pixel for the construction of a migration
image. Obviously, a small value of the upper bound may give a clear elliptic trajectory;
but if too small, a possibility of receiving the noise prior to the first arrival of the P-waves
may happen. It has been found that the best is to have this upper bound slightly smaller
than the first arrival amplitude of P-waves. Fig. 4.5 shows an example for this method
(Lin 1996), where a 100mm surface-breaking vertical crack is shown.

4.3 Impact echo method

Impact echo method was developed in the mid 1980s and it has been used successfully
for measuring the thickness of plate-like concrete structures (Lin 1996). In this method,

51



a mechanical impactor is applied on the surface of a plate-like medium, and the gener-
ated P-waves propagate into a medium spherically outward from the impact point. The
P-waves are reflected when they encounter an internal defect or the external boundary.
The wave reflections go back to the surface and are reflected again. The P-wave reflec-
tions between the surface and an internal defect or external boundary are recorded by a
receiver that is placed on the surface, and the reflection frequency can be determined in
the frequency domain through the Fourier transform. If P-wave velocity VP is known, the
depth d from the surface to an internal defect or the external boundary can be calculated:

d =
VP

2 f
(4.8)

where f is the frequency of P-wave reflections.

The wave reflections occur at an interface between two different media. However,
Eq. 4.8 is valid only at an interface where the tested medium is stiffer than another
medium, for example, a crack gives an solid-air interface.

Lin (1996) found that when the impact point and receiver are located on both sides
of a surface-breaking crack, the spectral amplitudes from the measured signal produce
two peaks in the frequency domain, which correspond to the P-wave reflections between
the top surface and the crack tip, and between the top and bottom surfaces in a medium.
Although some results from this method have demonstrated a possibility for measuring
the depth of a surface-breaking crack, questions arise in whether a multiple reflection
event is able to produce significant wave energy so that the amplitude can be shown in
the frequency domain.

4.4 Frequency analysis method

When a vertical force is applied on the surface of a plate-like medium, the different vi-
brational modes are generated, each mode with its distinct natural frequency. However,
these natural frequencies are altered in the presence of a defect. Therefore, the natural
frequency analysis can be used to predict the depth of a surface-breaking crack. A theo-
retical relationship (Toutanji 2003) is used to find an equation of moment for transversal
waves propagating through a circular plate-like medium:

ρ
∂ 2u2

t2 +
E h2

12(1−υ2)
∇2u2 = 0 (4.9)

52



where u2 is the vertical displacement of a point in the medium; ρ is the mass density;
E is the Young’s modulus; υ is the Poisson’s ratio; h is the plate thickness; ∇2 is the
Laplacian operator.

The above equation is solved using the relationship between the Bessel function and
the boundary conditions of a medium. The natural frequencies are given:

fi = π
(

i
12

)2 h
R2

√
E

ρ(1−υ2)
(4.10)

where fi is the natural frequency for the ith mode; R is the radius of the circular plate-like
medium.

The above equation shows a relationship between the natural frequencies and other
parameters. These parameters such as E and ρ are changed in the presence of defects;
thus the natural frequency of a vibrational mode could be an indication for a defect.

4.5 Surface wave method

4.5.1 Numerical studies

Previous studies have used P-waves for the depth evaluation of surface-breaking cracks
in concrete, where the first P-wave arrival time or initial amplitude is measured. How-
ever, surface waves exhibit unique properties suitable for the characterization of near
surface defects (Rix 1990; Kalinski 1994), because: (a) surface waves dominate the sur-
face response; a point load applied to the surface of a homogeneous half-space generates
Rayleigh waves (R-waves), which contain 67% of the wave propagation energy; and (b)
the depth penetration of Rayleigh waves depends on their frequency.

Previous studies provide several hypotheses on the diffraction patterns of surface
waves for surface cracks. To summarize, the surface cracks can be viewed as reflector,
low pass filter and delay gates (Hevin 1998); these three units produce reflected waves,
low frequency transmitted waves and the delayed transmitted waves, accordingly. Hevin
(1998) adapted a numerical model from earth physics to better understand the influence
of the crack geometry on surface wave propagation. This model is based on the rep-
resentation theorem and an indirect boundary element method (IBEM), and the three
dimensional (3D) response for a 2D structure is calculated. In an elastic medium, the
surface can be discretized into N segments of length ∆S; thus the displacement field in
elastic domain is expressed in the following discrete form:
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ui(p1) = u0
i (p1)+

N

∑
n=1

[
ϕ j(p2)gi, j(p1, p2)

]
(4.11a)

gi, j(p1, p2) =
∫ p2+∆S/2

p2−∆S/2
Gi, j(p1, p2)dS2 (4.11b)

where ui(p1) is the ith component of displacement at the point p1; u0
i (p1) is defined as

the free field of displacement in direction i at the point p1 when surface waves propa-
gate without the irregularity; ϕ j(p2) is the force density in direction j at the point p2;
Gi, j(p1, p2) is the Green function, for example, the displacement in direction i at the
point p1 due to a point force in direction j applied at the point p2.

The resultant motion is the superposition of the free field and the diffracted wave
field. The above equation can be solved by using some numerical simulation methods.
The results for an incident wave propagating perpendicular to a surface-breaking crack
with depths 5cm, 10cm and 15cm are shown in Fig. 4.6. Three Rayleigh wave trains:
the incident waves (marked as ”a”), the reflected waves (marked as ”c”), and the direct
transmitted waves (marked as ”b”) have large energy. As the crack depth increases, the
direct transmitted Rayleigh wave energy is reduced; while the reflected Rayleigh wave
energy is increased.

4.5.2 Cut-off frequency and wavelength

The depth penetration of Rayleigh waves depends on their frequency or wavelength. In
the presence of a surface-breaking crack, low frequency components propagate at a deep
depth, and they are mostly transmitted; while high frequency components propagate at a
shallow depth, and they are mostly reflected. Therefore, a surface-breaking crack plays
a role as a low-pass filter, and a ratio of the spectral amplitudes between the transmitted
and incident Rayleigh waves decreases with frequency. However, a cut-off frequency
related to the crack depth is found in the following equation (Hevin 1998):

fcut =
VR

3d
(4.12)

where the cut-off frequency fcut is related to the crack depth d for Rayleigh waves prop-
agating at a velocity of VR. For frequencies higher than fcut , Rayleigh waves are mostly
reflected from the crack; while for frequencies lower than fcut , Rayleigh waves propagate
through the crack.
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Accordingly, the crack depth d is equal to one third of the cut-off wavelength, λcut =
VR/ fcut :

d =
λcut

3
(4.13)

Havin (1998) validated Eq. 4.12 in Fig. 4.7, which is from the measurements of syn-
thetic seismograms and calculates the means of 50 curves using different couples of
receivers with same distances from one to another. The ratio of the spectral amplitudes
between the transmitted and incident Rayleigh waves (Ut/Ui) decreases with frequency,
and the cut-off frequency is measured at a frequency value 9kHz in the plot. For given
VR = 2318m/s and d = 9cm, Eq. 4.12 gives a close theoretical value fcut = 8.6kHz.

4.5.3 Fourier transmission coefficient

Using a ratio of the spectral amplitudes between the transmitted and incident Rayleigh
waves, the depth of a surface-breaking crack is measured in laboratory in so-called
Fourier transmission coefficient (FTC) by Popovics (2000) and Song (2003). As shown
in Fig. 4.8, two accelerometers are used as receivers, and a solenoid-driven impactor is
used as a source. The source is first applied at point A; the generated waves propagate
through points B and C, and the time signals are picked up by receivers and denoted as
gAB(t) and gAC(t), where the first subscript represents the source location and the second
subscript represents the receiver location.

If a medium is assumed globally isotropic and homogeneous, the corresponding fre-
quency spectra GAB(ω) and GAC(ω) are expressed in frequency:

GAB(ω) = SA(ω)MAB(ω)CB(ω)RB(ω) (4.14a)

GAC(ω) = SA(ω)MAC(ω)CC(ω)RC(ω) (4.14b)

where S terms represent the source transfer functions at a point determined by the sub-
script; M terms represent the medium transfer functions for a range between two sub-
scripts; C terms represent the coupling transfer functions; R terms represent the receiver
transfer functions.

The S and C terms involve unknown conditions; while R terms are nonlinear for the
amplitude responses of an accelerometer at high frequencies. As a result, the variations
caused by S, C and R terms mask the desired M terms, which include the medium in-
formation. Therefore, a self calibrating technique (Achenbach 1992) is used to eliminate
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the variations, which is accomplished by applying the source at point D. Similarly, the
time signals gDC(t) and gDB(t) are obtained from a complementary measurement, and
the corresponding frequency spectra GDC(ω) and GDB(ω) are expressed in frequency:

GDC(ω) = SD(ω)MDC(ω)CC(ω)RC(ω) (4.15a)

GDB(ω) = SD(ω)MDB(ω)CB(ω)RB(ω) (4.15b)

The wave transmission of surface waves through a surface-breaking crack is mea-
sured by the Fourier transmission coefficient (FTC), defined as:

FTC(ω) =

√
GAC(ω)GDB(ω)
GAB(ω)GDC(ω)

(4.16)

The S, C and R terms are eliminated in the above calculation, because:

FTC(ω) =

√
MAC(ω)MDB(ω)
MAB(ω)MDC(ω)

(4.17)

Therefore, the coupled receivers at points B and C have negligible effects on the
FTC that is calculated from the passing surface waves, and the coupling of the receivers
remains unchanged during testing. The nonlinear behaviors of the intrinsic transfer func-
tions for an impact source and accelerometers as receivers can be also neglected.

The FTC is a function of frequency, and it can be considered as a ratio of the spectral
amplitude at the far receiver to that at the near receiver. Therefore, a FTC value of 1
indicates total wave energy transmission through a surface-breaking crack from points B
to C; whereas a FTC value of 0 indicates complete wave energy loss. However, in the
case of a point source of stress waves, the FTC value should be less than 1, even for an
uncracked, perfectly transmitting medium, since a considerable wave energy loss results
from geometric spreading of a wave front.

Popovics and Song (2000 and 2003) measured in laboratory the relationship between
the FTC and the normalized depth of a surface-breaking crack that is artificially induced
on a concrete plate. The results are shown in Fig. 4.9. The FTC shows a sensitive range
for the crack depth (d) normalized to the wavelength (λ ) from d/λ = 0 to 1/3. The FTC
decreases significantly for this range, and a gradual decrease is shown for d/λ = 1/3 to
1.5; then FTC approaches a constant value for d/λ > 1.5. Importantly, no significant
difference exists for the FTC results between a crack and a notch.
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4.6 Summary of different methods

The methods discussed above are summarized in Table 4.2. Fourier transmission coef-
ficient (FTC) shows potential because it uses surface waves. However, some problems
exist:

• A mechanical impactor generates different frequency components that can not
be controlled well, because they depend on some unknown factors such as con-
tact duration of time or contact condition between an impactor and the tested
medium. High frequency components are required for the depth evaluation of a
small surface-breaking crack, but they are difficult to generate with a mechanical
impactor. Popovics (1995) performed a series of impact tests and found the highest
frequency that could be excited with an impact source is below 50kHz.

• Rayleigh waves exist in a half-space; while for the case of a plate, the differ-
ent Lamb modes are generated, and Lamb waves propagate at different velocities,
a phenomenon called dispersion. The frequency components of the propagating
Lamb waves vary with distance. Therefore, different frequency components are
measured at points B and C (Fig. 4.8) because they are spaced unequally from the
source. Lamb modes are not considered in the FTC method.

• The FTC method requires the Fourier transform of surface waves. However, it is
impossible to identify the arrival of surface wave in frequency domain, because
Fourier transform loses the time information; therefore a time windowing is re-
quired for the extraction of the arrival of surface wave in time domain; as a result,
subjective variation occurs. Wavelet transform keeps both the time and frequency
information, and the information of surface waves can be given in the results of the
wavelet transform.

In this research, the FTC method is modified and improved by using an equal spacing
configuration and by using the wavelet transform to calculate a new coefficient called
wavelet transmission coefficient (WTC).
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Table 4.1: Experimental results using CECS 21:90 standard

Items
Spacing between the transmitter and receiver (mm)

150 200 250 300 350 400 450 500
Arrival time (µs)

54.9 67.8 79.2 91.5 103.0 115.8 127.8 139.9
at a flawless area
Arrival time (µs)

98.0 120.6 126.0 131.0 144.4 154.6 160.9 171.0
with a crack
Calculated

168 204 203 194 210 211 202 203
crack depth (mm)
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Table 4.2: Depth evaluation of surface-breaking cracks in concrete

METHOD SUMMARY ADVANTAGES LIMITATIONS
Diffracted The time (amplitude) Straightforward Identification of
P-waves of the first arrival principle and the first arrival

of the diffracted simple calculation. of the diffracted
P-waves is used to P-waves is
calculate the crack difficult.
depth.

Impact The reflections of P- The frequency from The reflections
Echo waves between the tip the reflections of of P-waves must

of a crack and the P-waves is used to be dominant in
surface of a medium is calculate the crack frequency response
analyzed in frequency depth. to produce an
domain; the results significant peak
show the presence of amplitude.
of a crack.

Frequency If a dynamic force A general relation A relationship
Analysis acts on a structure, exists: the natural between the natural

different vibrational frequency is reduced frequency and the
modes are excited. with increasing the crack depth has not
Their modal natural crack depth, and been quantitatively
frequencies are vice versa. determined.
related to the crack The crack depth is
depth. only relatively

estimated.

Fourier The FTC is sensitive Surface response Variations from the
Transmission to the crack depth is dominated by identification of
Coefficient (d) normalized to the the surface waves; surface wave arrival
(FTC) wavelength (λ ) in and the penetration are subjective,

a range of d/λ = 0 depth depends on because of a time
to 1/3. the frequency or window. Different

wavelength. Lamb modes affect
the FTC calculation.
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Figure 4.1: P-wave diffraction at the tip of a surface-breaking crack.
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Figure 4.2: Measurements of P-waves for the depth evaluation of a surface-breaking
crack using the CECS 21:90 standard.
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Figure 4.3: Measurements of the P-wave velocity and time delay from the plot of distance
vs. time.
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Figure 4.4: Measurements of the P-waves using the migration method for the depth
evaluation of a surface-breaking crack.
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Figure 4.5: Migration image of a 100mm surface-breaking crack for a medium (Liu
1996).
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Figure 4.6: Rayleigh wave propagation through a surface-breaking crack with depths
5cm, 10cm, and 15cm (Hevin 1998). In the plot for a 5mm crack, the letter ”a” denotes
the incident Rayleigh waves, the ”b” the direct transmitted Rayleigh waves, the ”c” the
reflected Rayleigh waves, the ”d” the delayed transmitted Rayleigh waves, and the ”e”
the body waves from the conversion mode of Rayleigh waves.
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Figure 4.7: Ratio of the spectral amplitudes between the transmitted and incident
Rayleigh waves for given Rayleigh wave velocity VR = 2318m/s and crack depth
d = 9cm (Hevin 1998).
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Figure 4.8: Experimental setup for the Fourier transmission coefficient (FTC) method
(Popovics 2000).

67



Figure 4.9: Fourier transmission coefficient (FTC) vs. normalized depth (Song 2003).
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Chapter 5

Characteristics of surface wave
propagation

5.1 Introduction

Nondestructive techniques based on surface waves are useful for the characterization of
near-surface defects. Therefore, studies of characteristics for surface wave propagation
are important. Some new findings for this research are presented in this chapter.

An ultrasonic piezoelectric transmitter as a source shows advantages over a tradi-
tional mechanical impactor, because the output force of the transmitter is modeled with
a Morlet function. The penetration depth of surface waves depends on their frequency
or wavelength. The Rayleigh wave energy concentrates in a depth of one third of the
wavelength; while the penetration depth of Lamb waves depends on the mode shape. For
Lamb wave propagation in a plate, a theoretical transfer function is derived and is used
to study the Lamb mode dispersion and higher Lamb mode participation; the theoretical
results show the frequency components of propagating Lamb waves vary with distance.
A new methodology for the measurement of material damping ratio is proposed, where
the tested medium is assumed to be represented by a viscously-damped single degree
freedom of system (SDOF). The wave propagation of an ultrasonic pulse in the medium
attenuates because of material damping. With the wavelet transform, the amplitude at-
tenuation and phase variation with distance from surface responses are used to calculate
the material damping ratio.
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5.2 Source study for wave generation

In wave-propagation-based nondestructive testing, the type of sources employed to gen-
erate the stress wave is essential (Popovics 1995). Sources that have been reported for
the application include mechanical impactor, piezoelectric transmitter, high-energy ul-
trasonic tone burst system, laser device, ultrasonic lithotripter, and so on. Usually, four
factors are taken into account when choosing sources for the application: frequency
range, penetrating strength (depth), repeatability and simplicity:

• A successful nondestructive testing method depends on the frequency range that is
generated by a source. For example, in the measurement of cross-sectional vibra-
tion modes for a concrete beam, an expected vibration mode could not be excited
due to an absence of certain frequencies in the generated pulse. For the depth
evaluation of a small surface-breaking crack in a concrete plate, high frequency
components are required.

• It is expected that sources can provide significant wave energy for waves to propa-
gate in a desired distance, and to penetrate to a desired depth; therefore, the infor-
mation from the inspected area in a medium can be given.

• An error may occur in the results from repeatable tests, and it can be measured by
a consistency function. The reliable results require a high consistence, and so is a
high-repeatable source.

• Consideration for the similarity of test setup is necessary in many in-situ situations,
where reduced access is permitted, and long working time is not allowed.

5.2.1 Mechanical impactors

When the following conditions are satisfied for a spherical mechanical impactor (Zukas
1982):

• The spherical impactor and the target medium are linear elastic.

• Impact duration of time is long compared to stress-wave transit time in the spheri-
cal impactor.

• The impact is normal to the surface of the target medium.
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The pressure distribution function q(x1,x2, t) is given:

q(x1,x2, t) = q0(t)
(

1− x2
1

R2 −
x2

2
R2

) 1
2

(5.1)

where the coordinates x1 and x2 define a 2D plane on the surface of a medium; t repre-
sents the time; the contact area is given by a sunken circle with a radius denoted by the
parameter R; the maximum pressure q0(t) occurs at the circle center, which is located at
x1 = x2 = 0; while at the circle boundary, the pressure is equal to zero:

q(x1,x2, t) = 0 if x2
1

R2 + x2
2

R2 = 1 (5.2)

If the spherical impactor is small enough compared to the medium, the following
terms are defined:

k1 =
1−υ2

1
πE1

k2 =
1−υ2

2
πE2

V1 =
√

2h1g

M1 =
1

m1
1

CR
=

1
R1m

+
1

R1M

α1 =
(

5V 2
1

4M1n

) 3
5

n =
16

3π(k1 + k2)

√
CR

s3

where E1 and υ1, E2 and υ2 are the Young’s modulus and the Poisson’s ratios for the
spherical impactor and the medium, respectively; V1 is the velocity of the impactor at
the contact instant of time; h1 is the drop height of the impactor; g denotes the gravity
acceleration; m1 is the mass of the spherical impactor; R1m and R1M are the principal
radii of curvature for the spherical impactor at the contact point; s is the parameter that
is a function of R1m and R1M.

Zukas (1982) gives the following equation to calculate the maximum pressure q0(t):
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q0(t) =
3ns

8πCRmr

√
α1 sin

(
πtV1

2.94α1

)
(5.3)

Similar to the parameter s, m and r can be expressed as a function of R1m and R1M.
Zukas (1982) suggested that r = 1, s = 2 and m = 1 when R1m = R1M. Therefore, the
function of force vs. time is obtained by integrating q(x1,x2, t) over the spherical contact
area:

f (t) =
4CRα1

s
sin

(
πtV1

2.94α1

)
(5.4)

The total contact duration of time td for the spherical impactor and medium is calcu-
lated:

td = 2.94
(

5
4nM

√
V1

) 2
5

(5.5)

Hunter (1957) conducted experiments that show a half-sine-shaped function is a good
approximation for the theoretical force-time response. Sansalone (1987) adopted the
half-sine-shaped function to simulate the wave generation by a steel ball impactor using a
numerical finite model for plates. Zerwer (1999) calculated that the total contact duration
of time is 53µs for a 4.76mm-diameter steel ball dropped to the Plexiglas surface from a
50.8mm height, and gave the curve of force vs. time in Fig. 5.1A, where an approximate
half-sine-shaped function is shown. Carino (1986) addressed that in a stress pulse, the
highest frequency component with significant amplitude has a frequency value that is
approximately equal to the inverse of the contact duration of time; thus with the 53µs
contact duration of time, a steel ball impactor generates significant energy for frequencies
below 19kHz (Fig. 5.1B).

Although the frequency components in the generated pulse by an impact source can
be controlled by varying the size and the drop height (Popovics 1995), in reality the con-
trol of the frequency components is limited because of the inelastic and inhomogeneous
properties of concrete and the complex surface conditions at a micro scale level. Popovics
(1995) performed a series of impact tests on a Plexiglas plate using different sizes of the
steel balls dropped at a constant height of 150mm, and concluded that the larger the di-
ameter, the lower the upper cut-off frequency; however, most wave energy concentrates
below frequency 50kHz, even when a small diameter ball (3.9mm) is used. Additionally,
the repeatability of impact tests is low. An ultrasonic piezoelectric transmitter shows
advantages over a mechanical impactor, as they are compared in Table 5.1.
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5.2.2 Ultrasonic piezoelectric transmitters

The structure of an ultrasonic piezoelectric transmitter is shown in Fig. 5.2. It consists
mainly of three layers: backing plate, active element and matching layer. The active
element is usually made of piezoelectric crystal, the matching layer is a wear plate or
epoxy bonding for protection, and the backing plate is used to absorb the reflected wave
energy. An ultrasonic piezoelectric transmitter usually relies on the piezoelectric crystal
which has ability to convert electrical energy into acoustic energy (Brown 2000). Con-
versely, the piezoelectric crystal in a piezoelectric receiver plays a reverse role where
acoustic energy is converted back into electrical energy. By selecting an active element
that is 1/2 wavelength thick and a matching layer that is 1/4 wavelength thick, waves
generated by the active element are in phase with the wave reverberating in the match-
ing layer (Panametrics-NDT 2006). Therefore, the signal amplitudes are additive and
greater amplitudes of wave enter the test medium. The complete transfer function of
an ultrasonic piezoelectric transmitter is complicated, because modeling the electric and
acoustic fields of the transmitter requires considerable information about piezoelectric
and acoustic properties of the transmitter; therefore, a simplified form of the transmitter
is used for the numerical study in this research.

An electric pulser employed in measurement systems, can produce an electric spike
to electrically drive an ultrasonic piezoelectric transmitter. The pulser is composed of the
electric circuits, and the output electric spike is expressed (Brown 2000):

Vk(t) =





0 if t ≤ 0

−V∞[1− exp(−a1t)] if 0 < t ≤ t0

−V0 exp[−a2(t− t0)] if t > t0

(5.6)

where,

V∞ =
V0

1− exp(−a1t0)

The negative spike reaches its maximum amplitude (V0) at the time t0; a1 and a2

are the decreasing and the increasing rates of the output electric spike. The frequency
spectrum of the output electric spike is given:

FTk(ω) =
V∞{1− exp[−(a1− jω)t0]}

a1− jω
+

V∞[1− exp( jωt0)]
jω

− V0 exp( jωt0)
a2− jω

(5.7)

When V0 = 200volts, t0 = 0.01µs, a1 = 0.2, and a2 = 50, Fig. 5.3 shows an example

73



of an output electric spike in time and frequency. The spike is shaped like a Dirac-Delta
function and the wave energy is distributed in a broad frequency bandwidth.

An ultrasonic piezoelectric transmitter can be viewed as a two-port system in Fig. 5.4
(Deng 2002): an electric port with the voltage V and current I flowing into, an acoustic
port where the force F and velocity VP are coming out. The two ports have transfer
matrixes (TRe) and (TRa), respectively. By modeling the electric field and the acoustic
field in the piezoelectric transmitter as a 1D field, an explicit expression known as Sittig
model for the transfer matrix component is given, which only describes a plane P-wave
ultrasonic piezoelectric transmitter.

[
V
I

]
= [TRe] [TRa]

[
F
VP

]
(5.8)

where det{[TRe][TRa]}= 1,

[TRe] =

[
1

h33C0

h33
jω

− jωC0 0

]

[TRa] =
1

Zb− jZa tan(κd
2 )

[
Zb + jZa cot(κd) Z2

a + jZaZbcot(κd)
1 Zb−2 jZa tan(κd

2 )

]

and the parameters κ , d, h33 and C0 represent the wave number, the thickness, the piezo-
electric stiffness and the clamped capacitance of the piezoelectric crystal plate, respec-
tively; Za is the acoustic impedance of the piezoelectric crystal plate; Zb is the acoustic
impedance of the backing plate.

Considerable details about the material properties of an ultrasonic piezoelectric trans-
mitter are required for calculations of the transfer matrices. They are usually not given by
manufacturers. Meanwhile, a satisfactory experimental method to determine the transfer
matrices is not available (Deng 2002).

However, an approximation of the transfer function for an ultrasonic piezoelectric
transmitter is given in a simplified form (Fitting 1981), which defines the relationship
between the input voltage and the output force as:

H(ω) =
[1− exp(− jωtn)][1−RB exp(− jωtn)]

1−RARB exp(− j2ωtn)
(5.9)

where tn is the transit time of an ultrasonic pulse through the transmitter and it mostly
depends on the active element; RA and RB are the reflection coefficients between the
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active element and matching layer, and between the active element and backing plate,
respectively.

According to the information provided by the manufacturer, Table 5.2 is created for
the ultrasonic piezoelectric transmitter used in the experiments. The active element is
12.7mm thick and made of PZT-4 material with silver-coated top and bottom surfaces; the
matching layer is made of stainless steel (grade 303S31) and the backing plate is made
of Perspex material. Because the output electric spike from an electric pulser has an ex-
ponential decay, which is so fast that it can be approximately considered as a Dirac-Delta
function. As a result, the excited force output from an ultrasonic piezoelectric transmitter
depends directly on its transfer function. With the known parameters in Table 5.2, the
transfer function of the transmitter is calculated in frequency, and then in time through
an inverse Fourier transform. It is found in Fig. 5.5 to match well with a Morlet function
(Eq. 3.28) for given f0 = 50kHz and τ = 1.12×10−5 (BW = 33.46kHz). Therefore, this
Morlet function is used for a modeling of the output force for the transmitter, and it is
applied as a wave source in the numerical models.

5.2.3 Numerical sources

In addition to a Morlet source, sinusoidal tone burst source and Lamb source can be used
in the numerical simulations.

A sinusoidal tone burst source Sb(t) is given as a harmonic function multiplied by a
Hanning window function whn(t):

Sb(t) = sin(2π f0)whn(t) (5.10)

where,

whn(t) =





0.5+0.5cos
[

2π f0
n

(
t− n

2 f0

)]
if t ≤ n

f0

0 otherwise

and f0 is the frequency of a harmonic function; n is the number of the time cycles con-
tained in sinusoidal tone burst source; the larger the number of time cycles, the nar-
rower the frequency bandwidth is, and vice versa. Fig. 5.6 shows an example for given
f0 = 50kHz and n = 10.

The Lamb’s problem (Lamb 1904) is useful for the numerical calibration. For a half
space, Rayleigh waves are generated with a Lamb source, which is defined:
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Lm(t) =
Fb η

π(t2 +η2)
(5.11)

where Fb controls the force amplitude; η determines the width of the force pulse.

For the applied Lamb source, the theoretical solution w(t,x) to the vertical displace-
ments of Rayleigh waves at a horizontal distance x from the source, is given:

w(x, t) =
A Fb

4πGη2VR

√
2ηVR

x
cos

(
π
4
− 3

2
z
)

cos
3
2 (z) (5.12)

where,

z = arctan
(

VRt− x
VR η

)

and A is a constant that depends on elastic properties of the medium; G is the shear
modulus. Fig. 5.7 shows an example for given η = 1.78×10−6, where the wave energy
is shown in a broad frequency bandwidth.

5.2.4 Cumulative spectral energy for sources

A cumulative spectral energy of the sources is calculated to show the spectral energy
concentration. Eq. 3.11A calculates the spectral energy accumulated to a frequency as an
upper bound in the integral; while Eq. 3.11B calculates the spectral energy accumulated
from a frequency as a lower bound in the integral.

The wave energy concentrations for four different sources are studied: (a) sinusoidal
tone burst source ( f0 = 50kHz, n = 10), shown in Fig. 5.6; (b) Lamb source (η = 1.78×
10−6, Fb = 1), shown in Fig. 5.7; (c) Morlet source ( f0 = 50kHz, τ = 1.12× 10−5,
BW = 33.46kHz), shown in Fig. 5.5; and (d) Morlet source ( f0 = 100kHz, τ = 5.6×10−6

, BW = 66.92kHz).

Their cumulative spectral energy are calculated using Eq. 3.11, and shown in Fig. 5.8
to Fig. 5.11. A changing area in the vertical axis in the plots represents a frequency band-
width where the wave energy are concentrated. The sinusoidal tone burst source shows
a narrow frequency bandwidth for the wave energy concentration; while Lamb source
provides wave energy in a broad frequency bandwidth. For Morlet sources, a wider fre-
quency bandwidth for the wave energy concentration is given by a Morlet function that
has a higher central frequency.

76



5.3 Penetration depth of surface wave energy

Surface waves propagate along the surface of a medium, and the wave energy concen-
trates in a subsurface depth that depends on the frequency or wavelength.

Rayleigh waves exist in a half-space, and the wave energy concentrates in a depth of
one-third of the wavelength (λ/3) (Hevin 1998). The penetration depth of surface waves
can be shown using a function of the cumulative spectral energy vs. normalized depth.
For Lamb waves in a plate, different Lamb modes are generated; fundamental Lamb
modes behave similar to Rayleigh waves for high frequencies, where the wavelength is
small relatively to the thickness of a plate.

For the case given in given in Fig. 2.7, where VP = 4800m/s, VS = 2770m/s, VR =
2550m/s, and the plate thickness 2h = 80mm, the cumulative spectral energy Eupper

(Eq. 3.11A) are calculated in Fig. 5.12 for Rayleigh wave mode, fundamental Lamb
mode S0 and higher Lamb mode S1 at frequency f = 50kHz. Rayleigh wave mode
reaches 90% of the highest wave energy at a normalized depth of d/λR = 0.528; while
this value comes earlier for the fundamental Lamb mode S0, d/λR = 0.429, indicating
the wave penetration of fundamental Lamb mode S0 is a little shallower than Rayleigh
wave mode for this case. The wave penetration for higher Lamb modes show a com-
plicated pattern, for example, the wave energy for higher Lamb mode S1 is shown to
concentrate from d/λR = 0.3 to 0.7.

5.4 Transfer function for Lamb wave propagation

5.4.1 Theoretical derivation and analysis

This section presents a theoretical transfer function for Lamb wave propagation in a plate
to study the effects of Lamb mode desertion and higher Lamb mode participation. The
weighing factor 0.8 is assumed for the mode S0 contribution to represent a case where
the mode S0 dominates in surface response; while for the case of higher Lamb mode
participation in the wave propagation, the weighing factor 0.2 is assumed for 20% of
total energy from the mode S1.

When a vertical force is applied on the surface of a plate, it generates different Lamb
modes. Suppose g0(t) and G0(ω) represent the time signal and the frequency spectrum
for the surface response at the source location, respectively. When Lamb waves propa-
gate in a plate, each frequency component generated at the source location is transformed
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by the transfer functions of Lamb modes. In a linear system, modal superposition allows
the time signal g(t,x), measured on surface at a distance x from the source to be expressed
in frequency domain as:

G(ω,x) = ∑
i

[wi Hi(ω ,x)G0(ω)] (5.13)

where i is an index representing different Lamb modes; wi is the weighing factor of each
ith Lamb mode in the surface response; Hi(ω,x) is the transfer function for the single ith

Lamb mode.

Because of the complexity of Lamb mode participation, the weighing factors are
difficult to evaluate. However, if material damping is negligible, the contribution of a
single Lamb mode is given:

g(t,x) = g0

(
t± x

Vph

)
(5.14)

where the sign ± represents the direction of wave propagation; Vph is the phase velocity,
which varies with frequency for Lamb modes as shown in Fig. 2.7.

In the frequency domain, the above equation is written as:

G(ω,x) = G0(ω)exp
(
± jω

x
Vph

)
= G0(ω)exp(± jκx) (5.15)

Therefore, the transfer function for a single Lamb mode is given below; because the
amplitude of the transfer function is equal to 1, the amplitudes for all frequencies and
wave numbers are unchanged for the wave propagation of a single Lamb mode.

H(ω ,x) =
G(ω,x)
G0(ω)

= exp(± jκx) (5.16)

where the wave number κ is a function of frequency (ω) and phase velocity (Vph).

The time signals g(t,x1) and g(t,x2), measured at two distances x1 and x2 from the
source can be calculated by applying the inverse Fourier transform of the corresponding
frequency spectra given by Eq. 5.15. As an example, the surface response at the source
location is given with a Morlet function φ(t) (Eq. 3.28), where f0 = 100kHz (τ = 5.6×
10−6) or 50kHz (τ = 1.12× 10−5), and the wave propagation of the Morlet function is
shown in Fig. 5.13.

The transfer function H(ω,x) (Eq. 5.16), where the wave number κ is obtained from
the dispersion curve for the modes S0 or/and S1 (Fig. 2.7), is used to calculate the time
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responses at two distances (x1 and x2). For the mode S0 at f0 = 100kHz (λ = 0.0255m), it
gives x1 = 0.077m and x2 = 0.153m; while for the mode S0 at f0 = 50kHz (λ = 0.051m),
it gives x1 = 0.156m and x2 = 0.311m; therefore, it holds: (x2− x1)/λ = 3.

Figs. 5.13A and B show the wave propagation of the mode S0 ( f0 = 100kHz or
50kHz). The 100kHz Morlet function propagates as the mode S0 without dispersion;
whereas, because of a frequency bandwidth for the Morlet function centered at 50kHz,
some frequency components exist in a slightly-non-flat region of the mode S0 in the
dispersion curve, indicating a slight dispersion, which causes the original shape of the
Morlet pulse [φ(t)] to be slightly distorted in time with distance.

The spectral amplitudes of the time responses in Figs. 5.13A and B are the same,
and they are given in Fig. 5.13D. It indicates the frequency components of the propa-
gating Lamb waves are not affected when only a single Lamb mode is present, and the
transmission coefficient G(ω,x2)/G(ω,x1) is constant and equal to 1.

In the example showing higher Lamb mode participation when f0 = 50kHz, the trans-
fer function is calculated as 0.8 HS0(ω,x)+ 0.2 HS1(ω,x) for Fig. 5.13C, and the corre-
sponding spectral amplitude and the transmission coefficient are shown in Figs. 5.13E
and F, respectively. All frequency components are practically affected in this case, and
the transmission coefficient is no longer constant with frequency for different distances.

By using the unwrapped phase difference between the two frequency spectra [G0(ω)
and G(ω,x)], which are calculated from the time signals at the source location (x = 0)
and at a distance x from the source (x = x1 or x2), the phase velocity Vph(ω,x) of the
propagating Lamb waves can be calculated with Eq. 3.37. In the presence of a single
Lamb mode, the calculated dispersion curve (phase velocity vs. frequency) matches the
theoretical dispersion curve (Fig. 2.7) well. For case given in Fig. 5.13C, where higher
Lamb mode participates and the fundamental Lamb mode S0 has a 80% distribution, the
unwrapped phases are calculated in Fig. 5.14A, and the calculated phase velocities are
compared with the theoretical results for the mode S0 in Fig. 5.14B, where discrepancy
is found only in low frequencies.

5.4.2 Non-equal spacing effect analysis

A single frequency component generated at source location propagates along the surface,
and the surface response in a distance x from the source is modulated by a modulation
function m(t,x) as:

g(t,x) = m(t,x)cos(ωt +θ) (5.17)
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The amplitude of a single frequency component varies with distance as it propagates.
If the time signal g(t,x) is asymptotic, the amplitude from the wavelet transform using a
Morlet wavelet (Eq. 3.28) is given (Lardies 2007):

|G<WT>(a,b,x)|= 1
2
√

πa τ m(b,x) exp
[
−τ2

4
(aω−ω0)

2
]

(5.18)

If the parameter a is selected to equal ω0/ω , the amplitude of the wavelet transform
is proportional to the modulation function m(b,x). Therefore, using a Morlet function
centered in a frequency, ω0 = 2 pi f0 as a wavelet, the amplitude from the wavelet trans-
form can be measured to indicate the amplitude variation of the frequency components
with distance as waves propagate along the surface.

For the case given in Fig. 5.13A, where the mode S0 is present and the central fre-
quency of the Morlet function ( f0 = 100kHz) is at a non-dispersive range of frequency,
the maximum amplitudes of the wavelet transform are practically the same at two dis-
tances (x1 , x2), WTmax = 1.0.

However, Fig. 5.15 shows the amplitude from the Morlet wavelet transform that is
calculated for cases given in Figs. 5.13B and C. For a 50kHz Morlet function propa-
gating in the presence of the single mode S0, because of a dispersion, the maximum
amplitudes are slightly reduced in Fig. 5.15A with distances at x1: WTmax = 0.973, and
at x2: WTmax = 0.922.

For case given in Fig. 5.13C, where both the Lamb mode dispersion ( f0 = 50kHz) and
higher Lamb mode participation, H(ω,x) = 0.8 HS0(ω,x)+ 0.2 HS1(ω,x), are present,
the maximum amplitudes of the Morlet wavelet transform are largely reduced in Fig. 5.15B,
and they are WTmax = 0.743 at x1, and WTmax = 0.753 at x2.

In contrast with the Lamb waves, Rayleigh waves propagate at a constant velocity
VR along the surface of a half-space as a non-dispersive mode. In this case, g(t,x) is ob-
tained by simply shifting g0(t) in the time axis (Eq. 5.14),and the frequency components
of the propagating Rayleigh waves are the same for different distances. While, Lamb
waves propagate at different velocities in a plate as multiple Lamb modes; as results,
the frequency components of the propagating Lamb waves vary with distance. Fig. 5.16
shows in a contour plot the spectral amplitudes at different distances (0 to 200mm) for
the wave propagation of a Morlet function, g0(t) = φ(t), f0 = 50kHz, and τ = 1.12−5

(Eq. 3.28).

For Fig. 5.16A, the Morlet function propagate as Rayleigh waves at a velocity VR =
2550m/s; while for Fig. 5.16B, it propagates as Lamb waves in the presence of the modes
S0 and S1 from case in Fig. 5.13C, where H(ω ,x) = 0.8 HS0(ω,x)+0.2 HS1(ω ,x).
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Accordingly, the Morlet wavelet transforms are applied with Eq. 3.20. Fig. 5.17A
shows the amplitudes at different distances from the wavelet transforms for a Morlet
function ( f0 = 50kHz, τ = 1.12× 10−5) propagating as Rayleigh waves; the contour
line shows a slope that gives Rayleigh wave velocity (VR = 2550m/s), and the am-
plitudes are constant with distance as Rayleigh waves propagate. While, Fig. 5.17B
shows the amplitudes at different distances for a Morlet function ( f0 = 50kHz, τ =
1.12× 10−5) propagating as Lamb waves in the presence of the modes S0 and S1,
H(ω,x) = 0.8 HS0(ω ,x)+0.2 HS1(ω,x); in this case, the contour line shows a slope that
gives a value close to the Rayleigh wave velocity, and the amplitudes vary with distance
as Lamb waves propagate.

In the above studies, the frequency components of propagating waves are analyzed
with the Fourier transform and the Morlet wavelet transform for different distances. The
theoretical results show that the frequency components are constant with distance as
Rayleigh waves propagate as a non-dispersive mode; while for the Lamb waves in a
plate, because of the Lamb mode dispersion and higher Lamb mode participation, the
frequency components of the propagating Lamb waves vary with distance. Therefore,
this variation affects the FTC measurement in a plate, where the non-equal spacing con-
figuration is used.

5.5 Measurement of material damping ratio

5.5.1 Introduction

Material damping is important for the dynamic analysis of material specimens and struc-
tures. In geomaterials, the wave propagation depends strongly on the physical state and
saturation conditions, for example, the wave attenuation caused by material damping in
dry, saturated or frozen rocks, or cemented soil varies much more than the wave veloci-
ties for these conditions. However, the experimental measurement of material damping
ratio is more difficult than the measurement of wave velocity (Toksoz 1979). The dy-
namic response of structures is predominantly controlled by damping (Liu 1995); there-
fore, monitoring variation of damping is useful for the assessment of structural health or
deterioration. Moreover, the presence of a defect in a medium generates a reduction in
stiffness and an increase in damping; thus damping measurements can be used to detect
or locate defects, for example crack initiation and propagation in a structural element can
be monitored by measuring changes in wave attenuation in a given frequency range.

Resonant column and cyclic triaxial loading are two common laboratory methods to
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measure the dynamic properties of material specimens such as soil (Khan 2006). The
samples are taken in-situ from a medium that is being inspected; as a result, the distur-
bances are introduced to the medium; meanwhile, the samples tested in laboratory may
not keep the original conditions as in the medium. The determination of the dynamic
properties for a civil structure usually requires full experimental model measurements;
the structure is excited with a known pattern of forces and the corresponding responses
are measured at various locations on the structure, and then the damping is evaluated
with a modal analysis technique (Zhong 2008). Considerable efforts are required for the
implementation of this method.

Nondestructive testing techniques based on wave propagation shows advantages, be-
cause they are non-invasive, efficient and cost effective, where material damping is mea-
sured at a low-strain level (< 10−5). Surface waves are useful, because they dominate
in the surface response, and the penetration depth depends on their frequency or wave-
length. The existing methods using surface waves such as spectral ratio (Wang 2006),
use the Fourier transform to measure material damping ratio; however, a time window is
required for the spectral ratio method to extract the arrival of surface wave, and subjec-
tive variations occurs; in addition, the spectral ratio is a function of frequency, and using
linear curve fitting,a slope of the spectral ratio in frequency domain needs to be deter-
mined; however, the fitted slope varies for different frequency ranges, and the selection
of a reliable frequency range is difficult.

Based on surface wave propagation, a new methodology is proposed to measure ma-
terial damping ratio in a medium. The medium is assumed to be represented by a single-
degree-freedom system (SDOF), and a theoretical equation for the calculation of material
damping ratio using the wavelet transform is derived, which uses the maximum ampli-
tude and phase information of the propagating surface waves; neither a time window nor
a reliable frequency range are required.

In the numerical simulations, Rayleigh damping ratio as a function of frequency is
given to the numerical models. The material damping ratio is calculated from the nu-
merical results using the wavelet transform, and it gives a global value that represents
an average effect for a frequency bandwidth determined by source. In the experimental
tests, an ultrasonic piezoelectric transmitter as a source is used on the surface of a sand
box, and the output force of the source is modeled with a Morlet function. The wave
propagation of the generated ultrasonic pulse is measured on surface, and is analyzed
with the wavelet transform. Both the numerical and experimental results show potential
for practical applications.
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5.5.2 Geometric attenuation and material damping

Wave propagation attenuates with distance because of geometric attenuation, which re-
sults from the increasing surface area of propagating wave front, and material damping,
which gives energy dissipation due to internal particle friction of the material. Therefore,
a spectral ratio is calculated with two distances x1 and x2 from the source, and it is related
to the geometric attenuation and material damping (Zerwer 2002):

|G(ω,x1)|
|G(ω,x2)| =

(
x1

x2

)β
exp [αx(x1− x2)] (5.19)

where ω is the angular frequency; |G(ω,x)| is the spectral amplitude at a distance x from
the source; β is a constant describing the geometric attenuation, which is determined by
a type of the propagating wave fronts: β = −0.5 for surface waves (cylindrical wave
fronts); β =−1 for body waves (spherical wave fronts) propagating inside the medium,
and β = −2 for body waves propagating along the medium surface; αx is the spatial
coefficient of wave attenuation caused by material damping.

From Eq. 5.19, it is given:

αx =
1

x2− x1

{
ln

[ |G(ω,x2)|
|G(ω,x1)|

]
−β ln

(
x2

x1

)}
(5.20)

The spatial attenuation coefficient αx is related to the material damping ratio D (Zer-
wer 2002):

D = V
αx

ω
(5.21)

where V is the wave velocity. Using the spectral amplitudes from the Fourier transform,
the spatial attenuation coefficient is calculated in Eq. 5.20, where the geometric attenua-
tion is eliminated. Then, material damping ratio calculated with Eq. 5.21 gives a function
of frequency.

5.5.3 Rayleigh damping ratio

The wave motion for a structural system is governed by:

[M]{ü}+[C]{u̇}+[K]{u}= { f} (5.22)
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where {ü}, {u̇} and {u} are the acceleration, velocity and displacement vectors, respec-
tively; [M], [C] and [K] are the mass, damping and stiffness matrices, respectively; { f}
is the force vector applied to the system.

For a small level of damping, a reasonable approximation for damping matrix in
Eq. 5.22 is a common Rayleigh damping, by which the existence of a real mode can de-
couple the system’s equation of wave motion (Caughey 1960, Bathe 1976). The Rayleigh
damping matrix is given:

[C] = [M]
n−1

∑
i=0

[
ηi

(
[M]−1[K]

)i
]

(5.23)

The simplest case of Rayleigh damping matrix consists of only two proportional
terms when n = 2 (this may not accommodate for microstructure):

[C] = η0 [M]+η1 [K] (5.24)

where η0 and η1 are the mass and stiffness damping constants, respectively.

Many numerical finite element or finite difference codes adopt this two-parameter
model to simulate damping for dynamic analysis. The Rayleigh damping ratio ξ is given
as a function of frequency (Itasca 2000):

ξ =
η0

2ω
+

η1 ω
2

(5.25)

The mass damping ratio (the first term on the right in Eq. 5.25) decreases with fre-
quency; while the stiffness damping ratio (the second term on the right in Eq. 5.25)
increases with frequency; they intersect at frequency ωmin, ωmin = 2π fmin, where the
Rayleigh damping ratio is the minimum (ξmin) for different frequencies. Therefore, the
mass damping influence more the low frequencies; while the stiffness damping has more
of an influence at the high frequencies.

These two parameters ξmin and fmin are used in the numerical models to define a
relationship of Rayleigh damping ratio vs. frequency, and they are related to the mass
and stiffness damping constants in Eq. 5.26. For given ξmin = 0.01 and fmin = 50kHz,
Fig. 5.18 shows an example of Rayleigh damping ratio, mass damping ratio and stiffness
damping ratio for different frequencies.
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ξmin =
√

η0 η1 (5.26a)

ωmin =
√

η0

η1
(5.26b)

5.5.4 Material damping ratio from wavelet transform

The wavelet transform of a time signal g(t) is a time-scale decomposition by dilating and
translating a chosen wavelet, as defined in Eq. 3.20. In Fig. 5.19, an ultrasonic piezoelec-
tric transmitter is used on the surface of a medium, and generates surface wave propaga-
tion along the surface. If the medium represents a SDOF system, the surface responses
at different distances from the source can be analyzed with the wavelet transform.

From Eq. 3.31, a free vibration response g(t,x) for a viscously-damped SDOF system
at a distance x from the source is given:

g(t,x) = Aexp[−αtωn(x)(t− tx)]exp(−αxx)cos[ωd(x)t +θ(x)] (5.27)

where A is a constant; tx is the arrival time at a distance x; ωn(x) and ωd(x) are the
natural and damped frequencies for a distance x, respectively, ωn(x)≈ ωd(x) for a small
damping; θ(x) is the initial phase. αt and αx are the attenuation coefficients in time and
in space, respectively.

The output force of an ultrasonic piezoelectric transmitter is modeled with a Mor-
let function φ(t) (Eq. 3.28), which is applied at x = 0; therefore, the signal g(t,x) is
correlated with the Morlet function and this correlation varies with distance as waves
propagate. Because g(t,x) is asymptotic, from Eq. 3.33, its wavelet transform using a
Morlet function φ(t) as a wavelet can be expressed by means of asymptotic techniques:

G<WT>(a,b,x)
=

A
2
√

aexp[−αtωn(x)(b− tx)]exp(−αxx) |Φ[aωd(x)]|
exp{ j[ωd(x)b+θ(x)]}

(5.28)

where Φ(ω) is the frequency spectrum for the Morlet function φ(t). The phase spectrum
from the above equation is given:

Θ(a,b,x) = ωd(x)b+θ(x) (5.29)
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The amplitude of the wavelet transform is attenuated in time and space because of
the two attenuation coefficients αt and αx; however, for given a = 1, it is the maximum
at b = tx for a fixed distance x from the source. Therefore, for given a = 1 and b = tx,
the maximum amplitude Y (x) from the wavelet transform [G<WT>(a,b,x)] at different
distances is:

Y (x) =
A
2

exp(−αxx) |Φ[ωd(x)]| (5.30)

From Eq. 5.29, the damped frequency ωd(x) is obtained by taking a derivative of the
phase spectrum of the wavelet transform with respect to the shift time b:

∂
∂b

[Θ(a,b,x)] = ωd(x) (5.31)

The maximum amplitudes Y (x1) and Y (x2) can be measured at two distances; there-
fore, the attenuation coefficient αx is solved from Eq. 5.30:

αx =− 1
x2− x1

[
ln

(
Y (x2)

|Φ[ωd(x2)]|
)
− ln

(
Y (x1)

|Φ[ωd(x1)]|
)]

(5.32)

When (x2 − x1) tends to be 0, the above equation becomes a derivative, and it is
written:

αx =− d
dx

ln
(

Y (x)
|Φ[ωd(x)]|

)
(5.33)

Eq. 5.21 is rewritten in Eq. 5.34, which calculates the material damping ratio as a
function of distance; with the wavelet transform, αx(x) is obtained from a derivative
using the maximum amplitude information (Eq. 5.33), and ωd(x) is obtained from the
derivative using the phase spectrum (Eq. 5.31).

D(x) = V
αx(x)
ωd(x)

(5.34)

5.5.5 Summary

An ultrasonic piezoelectric transmitter as a source shows advantages over a traditional
mechanical impactor, because it generates high frequencies, which is suitable for the
depth evaluation of a shallow crack, and the source modeling can be represented with a
Morlet function for the numerical simulations. Rayleigh waves have a useful property
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for the evaluation of crack depth; their penetration depth concentrates at a depth of one
third of the wavelength. Lamb waves are more complex, because different Lamb modes
exist in a plate. However, the penetration depth of the fundamental Lamb mode energy
depends on the mode shape, and it is similar to the Rayleigh wave mode when the wave-
length is small compared to the plate thickness. A theoretical transfer function is derived
and is used to study the Lamb mode dispersion and the participation of higher Lamb
mode. The theoretical results show that the frequency components of Lamb waves vary
with distance.

A new equation for the evaluation of material damping ratio using the wavelet trans-
form is derived. The surface responses for the medium are modeled using single degree
freedom of systems (SDOF). In the new equation, the attenuation coefficient is obtained
from the variation of the maximum amplitudes of the wavelet transform, and the damped
frequency is obtained from the derivative of the phase spectra. The maximum amplitude
and phase information are calculated from the wavelet transform of the surface responses
at different distances from the source. The calculated material damping represents an av-
erage damping for the frequency bandwidth determined by the source.
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Table 5.1: Comparison of an ultrasonic piezoelectric transmitter and a mechanical im-
pactor

Source Applications Characteristics
Ultrasonic Ultrasonic pulse Better wave orientation,
piezoelectric velocity, ultrasonic concentrated energy,
transmitter hole-logging. well-controlled high

frequency range,
great repeatability.

Mechanical Seismic, SASW, Strong penetrability,
impactor Impact-Echo. broad frequency range,

good simplicity.
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Table 5.2: Characteristics of the ultrasonic piezoelectric transmitter used.

Active Element Acoustic Properties

Thickness: h0 = λ0/2 = 12.7cm
Typical impedance for steel *:
Z1 = 45×106kg/m2s

Wavelength: λ0 = 2h0 = 25.4cm
Typical impedance for PST-4 *:
Z2 = 39×106kg/m2s

Resonance: f0 = 50kHz
Typical impedance for Perspex *:
Z3 = 3.22×106kg/m2s

P-wave velocity: VP = λ0 f0 = 1270m/s
Reflection coefficient:
RA = (Z1−Z2)/(Z1 +Z2) = 0.071

Transit time: tn = h0/VP = 10µs
Reflection coefficient:
RB = (Z2−Z3)/(Z2 +Z3) = 0.847

*Panametrics-NDT 2006; Park and Shrout 1996.
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Figure 5.1: A 4.76mm diameter steel ball as an impact source dropped to the Plexiglas
surface from a 50.8mm height. (A) force vs. time; (B) spectral amplitude vs. frequency.
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Figure 5.7: Numerical Lamb source (η = 1.78×10−6). (A) in time; (B) in frequency.
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Figure 5.16: Spectral amplitudes at different distances (0 to 200mm) for the wave prop-
agation of a Morlet function ( f0 = 50kHz and τ = 1.12×10−5) as: (A) Rayleigh waves
in a half-space; (B) Lamb waves in a plate.
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Figure 5.17: Amplitudes of the Morlet wavelet transforms at different distances (0 to
200mm) for the wave propagation of a Morlet function ( f0 = 50kHz, τ = 1.12× 10−5)
as: (A) Rayleigh waves in a half-space; (B) Lamb waves in a plate.
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Figure 5.19: Surface wave propagation of an ultrasonic pulse along the surface of a
medium, where the surface response is modeled as a SODF system.
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Chapter 6

Experimental methodology and setups

6.1 Introduction

Different methods for the depth evaluation of surface-breaking cracks in concrete are
summarized in Chapter 4.6; thereinto, the Fourier transmission coefficient (FTC) is
promising. In this research, the wavelet transmission coefficient (WTC) is proposed to
overcome the problems that exist in the FTC method by performing the following works:

• An ultrasonic piezoelectric transmitter is used as a source. It can provide wave
concentration, high repeatability, and high frequency components that are suitable
for the depth evaluation of small surface-breaking cracks. Moreover, the output
force of the transmitter can be modeled with a Morlet function.

• The equal spacing configuration is used for the WTC measurements. The fre-
quency components of the propagating Lamb waves vary with distance; in addi-
tion, wave attenuation caused by geometric attenuation and material damping are
different for two receiver locations if they are unequally spaced from the source.
By placing two receivers equally spaced from the source, the variation of the fre-
quency components at two receivers is attributed only to the presence of a surface-
breaking crack, and the variation increases with the crack depth.

• An ultrasonic pulse generated by an ultrasonic piezoelectric transmitter carries
wave energy in a frequency bandwidth. The wave propagation along the surface
is analyzed with the wavelet transform, and the results integrate the effects of a
surface-breaking crack over the frequency bandwidth and give as output a global
coefficient that is related to the depth of a surface-breaking crack. The coefficient is
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calculated from the results of the wavelet transform that corresponds to the arrival
time of an ultrasonic pulse.

Experimental tests for the depth evaluation of a surface-breaking crack are performed.
In laboratory, two types of concrete plates are used as specimens, one with plain con-
crete, and another with reinforced concrete. In-situ tests are performed using concrete
pipe specimens. First, different crack depths are found at a concrete pipe specimen, and
they are tested using the WTC method. Then, D-loading is applied to a concrete pipe
specimen to initiate crack, and as a D-loading increases, the crack depth is tested using
the WTC method.

For the measurement of material damping ratio, the amplitude and phase informa-
tion from the wavelet transform of surface waves are used. The experimental tests are
performed on a sand box and a concrete plate specimen, respectively. A typical value of
material damping ratio for uncracked and low-stress concrete, is in a range from 0.007 to
0.010 (Cremer 1988). In the sand box, the top layer is filled with cemented sand. Using
resonant column (Khan 2006), the material damping ratio and Poisson’s ratio for this
cemented sand were measured as 0.4% and 2%, respectively. Different cement contents
affect the damping ratio and Poisson’s ratio of cemented sands; however, this effect is
not studied in this research.

6.2 Depth evaluation of a surface-breaking crack

6.2.1 Laboratory setup

For the depth evaluation of surface-breaking cracks in concrete, a picture for the ex-
perimental setup is shown in Fig. 6.1. The concrete plate specimens with dimensions:
1200×800×80mm are used to measure the variation of the wavelet transmission coef-
ficient (WTC) with the depth of a notch. Previous experimental works (Popovics 2000)
show that no significant difference exists for the depth evaluation in concrete between
a crack and a notch using the FTC method; the same is expected to hold for the WTC
method. Therefore, a notch is cut at the center of the specimens to simulate a surface-
breaking crack with depths of 5mm, 10mm, 15mm, 20mm, and 30mm, respectively.

The two types of concrete plate specimens were cast for laboratory tests (Fig. 6.2).
One type is not reinforced (plain concrete), and another is reinforced with rebars, which
are welded with a mesh size of 100 × 100mm and flatly laid at a depth of 40mm in
the specimens before casting. The concrete properties are measured as reference values,
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used for the numerical simulations, but not to predict the real values of the concrete
properties; therefore, a total of the three specimens are used. The mechanical properties
of the concrete are measured from one cylindrical specimen: density ρ = 2340kg/m3

and compressional strength f́c = 35MPa. The compressional strength and the density
are evaluated as the average of three specimens. Based on the ultrasonic pulse velocity
(UPV) method, the P-wave velocity is measured as VP = 4800m/s, using one specimen.

6.2.2 Instrumentation

A miniature accelerometer (PCB353B65, frequency range for a flat amplitude response:
1Hz to 25kHz at ±3dB, resonant frequency: 52kHz, sensitivity: 102.9mV/g) is used as
a receiver, and a commercial glue is used as a coupling. The accelerometer is powered
with an external power supply (PCB483A), its response is filtered with a 200kHz low-
pass filter (KROHN-HITE 3384) to avoid aliasing, and recorded with a 16-channel data
acquisition system (WaveBook/516E, 16 bits resolution, 1MHz sampling rate). Two
Pundit ultrasonic transmitters with a resonant frequency 50kHz are used as excitation
sources. The excitation frequency is selected to coincide with the resonant frequency to
obtain a high signal-noise ratio (SNR). The effect of ringing of the transducers is reduced
in the calculations of the wavelet transform, where the final results are dominated by the
first arrivals. Nonlinear effects in the amplitude response of the receiver are reduced in
the calculation of the WTC because of a ratio.

6.2.3 Wavelet transmission coefficient

As shown in Fig. 6.2, an equal spacing configuration is used for the proposed wavelet
transmission coefficient (WTC) method, where two ultrasonic piezoelectric transmitters
are fixed at points A and D, and an accelerometer is placed at point B or C. The four
vertices A-B-C-D define a square, and an ultrasonic pulse from the source location prop-
agates the same distance to the receiver locations. Similar to the FTC method, in these
tests, the effects from coupling (bond fixity) and nonlinear transfer function of transduc-
ers are eliminated or reduced by using the self calibrating technique (Achenbach 1992).

In the tests, the accelerometer is first placed at point B, and the time signals gAB(t)
and gDB(t), where the first subscript represents the source location and the second sub-
script represents the receiver location, are obtained by exciting the transmitters at points
A and D, respectively. Similar to the FTC method, to eliminate the effects from the
nonlinear behavior of the transducer’s transfer functions and variations of the couplings,
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a self-calibrating technique is performed by a complementary test (Achenbach 1992);
therefore, the accelerometer is moved to point C, and the time signals gAC(t) and gDC(t)
are measured. Because of a high repeatability for the ultrasonic piezoelectric transmit-
ter, gAB(t) and gAC(t) are assumed to be measured simultaneously with the same source
applied, and the same is assumed for gDB(t) and gDC(t).

The Fourier transmission coefficient (FTC) is given as a ratio of the spectral ampli-
tudes; similarly, the wavelet transmission coefficient (WTC) is defined as a ratio of the
maximum amplitudes from the extended wavelet transform (Eq. 3.25):

WTC(b = tr) =

√∣∣G<EWT>
AC (b)

∣∣ ∣∣G<EWT>
DC (b)

∣∣
∣∣G<EWT>

AB (b)
∣∣ ∣∣G<EWT>

DB (b)
∣∣ (6.1)

where tr corresponds the arrival time of an ultrasonic pulse at receivers.

In the above equation, the numerators
[
G<EWT>

AC (b)
]

and
[
G<EWT>

DC (b)
]

represent
the wavelet transform results from the wave paths where a surface-breaking crack is
present; while the denominators

[
G<EWT>

AB (b)
]

and
[
G<EWT>

DB (b)
]

represent the wavelet
transform results from the wave paths without a crack. Therefore, the calculation for
a ratio of the wavelet transform amplitudes gives a variation, which increases with the
crack depth, and vice versa.

The extended wavelet transform is calculated using Eq. 3.25, where a Morlet function
( f0 = 50kHz, τ = 1.12× 10−5, BW = 33.46kHz) is used as a wavelet. The frequency
range is selected as f2 = 40kHz to f1 = 80kHz, which corresponds to a range of the
dilation parameter a (frequency scale) as a variable in the integral: a1 = f0/ f1 = 0.625,
and a2 = f0/ f2 = 1.25. The amplitude of the extended wavelet transform varies with
shift time b; however, it usually reaches the maximum at b = tr.

6.2.4 In-situ tests

The wall of concrete pipes can be represented with a plate in the laboratory tests, be-
cause the transducer’s spacing (30mm) is small relative to the diameter of the pipes. To
test a real crack in concrete pipes, the in-situ experimental tests were performed twice
at the Hanson Pipe and Precast Inc., Cambridge, Ontario, Canada, in June 2008. The
tested concrete pipe specimens (Fig. 6.3) are 2.44m long, and the diameter and the wall
thickness are 1.35m and 0.16m, respectively.

For the first test, two cracks were found on the interior wall surface of a concrete
pipe specimen; one is shallow, and another is deep. The cracks were distributed from the
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one end of the specimen to a location close to the middle of the length. From the one end
of the specimen (Fig. 6.4), the two crack depths were estimated as 50mm and 150mm
deep, respectively. Normally, when a crack is initiated in concrete by a load, it develops
to a depth that is not very shallow. For this reason, a crack with a shallower depth than
50mm is difficult to find at the site.

The test position is located at a distance of 60mm from the one end of the specimen,
and an experimental setup for transducers is shown in (Fig. 6.5). The WTC measure-
ments follow the same procedures as done for the laboratory tests. Four time signals are
measured for each crack depth, and the 30mm equal spacing configuration is used.

For the second test, a newly-cast concrete pipe specimen was taken for a D-loading
tests (Fig. 6.6). According to the D-loading chart from the Canadian standard CSA
A257.2 M-9, the maximum load of 392.4kN was applied to the tested concrete pipe spec-
imen, and the width of a crack was measured with a gauge. The standard requires the
crack width be smaller than 0.3mm; otherwise, the concrete pipe specimen is considered
not acceptable.

At a location of the interior wall surface of the concrete pipe specimen, the WTC
are measured at different D-loading stages. The first measurement is performed on a
flawless of the interior wall surface before the D-loading starts. Then, the load increases
until a crack is observed on the interior wall surface, when the load is 242.4kN at the
second stage. The measurement for the third stage is performed at the same location
when the load increases to 290.8kN. At the fourth stage, the load reaches the maximum,
which is 392.9kN. Finally, the load is released at the fifth stage, and the measurement is
performed to check a recovery of the crack depth. In Fig. 6.7, a technician tried to locate
a possible crack and measure its width.

6.3 Measurement of material damping ratio

6.3.1 Laboratory setup

The experimental program for the measurement of material damping ratio is performed
in laboratory using a sand box and a concrete plate as specimens. The sand box has
two layers (Fig. 6.8); the top layer is filled with cemented sand and is 300mm deep; the
bottom layer is filled with dry sand and is 450mm deep; the horizontal dimensions are
1060× 870mm; an underground void in the sand box has a size of 15× 10cm, and is
located in a center position that is 8cm below the surface. This cemented sand is used for
the measurement of material damping ratio (void ratio of the sand material = 0.62, and
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void ratio of the cemented sand = 0.50). The concrete plate (Fig. 6.9) is the same one
used for the depth evaluation of a surface-breaking crack, which does not have rebars
and notch.

On the surface of the sand box specimen, The source location is 350mm and 300mm
spaced from the left and front boundaries, respectively; the first receiver location is se-
lected at 220mm from the source. Then, the receiver is moved to the right with a spacing
of 20mm for total 12 measurements. For the concrete plate specimen, the source is lo-
cated at the center on the plate surface; the receiver locations are 30mm, 60mm, 90mm,
and 120mm for total 4 measurements. For both specimens, the receivers are aligned with
the source.

6.3.2 Instrumentation

Similar to the depth evaluation of a surface-breaking crack, an ultrasonic piezoelectric
transmitter (Pundit, resonant frequency: 50kHz) is used as a source and fixed at the
surface location; a miniature accelerometer (PCB353B65, frequency range for a flat
amplitude response: 1Hz to 25kHz at 3dB, resonant frequency: 52.0kHz, sensitivity:
102.9mV/g) is used as a receiver to record the surface responses at different receiver
locations. The receiver is placed at different locations for each measurement. Because
of a high repeatability, an ultrasonic piezoelectric transmitter is assumed to generate the
same ultrasonic pulse for each measurement; therefore, the signals for different receiver
locations can be assumed to be measured simultaneously.

6.3.3 Typical values of material damping ratio

For cemented sand, 0.4% is a reference value of material damping ratio for this laboratory
test, which is measured using resonant column (Khan 2006).

For concrete, material damping ratio is related to the intrinsic stress condition and
the extent of cracking. Different values of material damping ratio for concrete are given
in Table 6.1. The tested specimen is uncracked, and low-stress concrete; therefore, a
measured value for material damping ratio from 0.007 to 0.010 is acceptable.
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6.4 Summary

Two new methodologies are proposed for the depth evaluation of a surface-breaking
crack and the measurement of material damping ratio, respectively. Based on the wavelet
transforms of four measured time signals, the wavelet transmission coefficient is defined,
which is related to the crack depth. The laboratory and in-situ experimental setups are
described. The material damping ratio is measured in the laboratory; the tested materials
are cemented sand and concrete; typical material damping ratios for these materials are
presented.
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Table 6.1: Material damping ratio for concrete (Cremer 1988)

Concrete Material damping ratio
Reinforced concrete

Small Stress Intensity (uncracked) 0.007 to 0.010
Medium Stress Intensity (fully cracked) 0.010 to 0.040

High Stress Intensity
0.005 to 0.008

(fully cracked but no yielding of reinforcement)
Prestressed Concrete (uncracked) 0.04 to 0.07
Partially Prestressed Concrete (slightly cracked) 0.008 to 0.0124
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Figure 6.1: Depth evaluation of a notch in laboratory.
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Figure 6.2: Laboratory WTC measurement for the depth evaluation of a surface-breaking
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Figure 6.3: Concrete pipe specimen in-situ.

Figure 6.4: Crack depth estimation from the one end of a concrete pipe specimen.
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Figure 6.5: In-situ setup for transducers.

Figure 6.6: D-loading tests.
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Figure 6.7: Locating a possible crack.
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Chapter 7

Numerical finite difference modeling

7.1 Introduction

The finite difference method (FDM) is commonly used for the solution of sets of dif-
ferential equations under given initial conditions. In this method, every derivative in the
governing equations is replaced directly by an algebraic expression in terms of the field
variables at discrete points in space and time; these variables are not defined within the
elements; whereas in the finite element method (FEM), specific functions (shape func-
tions) are required to describe the field variables within the elements, the formulation
involves the adjustment of these functions to minimize the error terms. Both the FDM
and FEM yield a set of algebraic equations to solve. In specific cases, the resulting equa-
tions are identical although they are derived in different ways. Therefore, it is pointless
to argue about the relative merits of two methods (Itasca 2000). However, compared to
the FEM, the FDM is less accurate because it combines the values of mass and damping
at nodes.

Usually the FDM uses an explicit method, where the equations always operate on
known values that are assumed to be constant for the duration of the calculations in the
one time increment. This assumption may seem unreasonable, because a stress change
in one element will influence other field variables, as well as neighbors; however, the
time increment is small enough so that information can not physically pass from one
element to another, and the neighboring elements can not really affect with each other
for that duration of calculation; therefore, a large number of time increments must be
taken and a large computational effort is required. In an implicit method that is usually
used in the FEM, every element communicates with every other element during one
time increment through global matrices, and several cycles of iteration may be necessary
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before compatibility and equilibrium are reached.

The explicit-solution procedure requires the known values for calculation at each
time increment; therefore, it is not unconditionally stable, unless the calculation speed
to obtain the known values keeps ahead of the physical wave speed, so-called numerical
stability condition, which should be satisfied in the numerical simulations.

This chapter introduces some basic principles about the FDM. A commercial soft-
ware package, FLAC T M (fast Lagrangian analysis of continua) is used for the numerical
simulations for this research. The numerical models using FLAC T M are constructed for
different studies, and the numerical results can be used only if the numerical models are
appropriately calibrated.

7.2 Difference forms of field equations

In the FDM, the medium is discretized into the numerical spatial grids; the displacement
field is then specified by a discrete set of nodal points represented by the indices m, n,
and p in a three-dimensional (3D) dimension. Therefore, the displacement function is
represented by:

um,n,p = u(m∆x1, n∆x2, p∆x3)

where ∆x1, ∆x2, and ∆x3 indicate the spatial increments in x1, x2, and x3 directions.

For time-varying 3D problems, it is modified:

um,n,p,q = u(m∆x1, n∆x2, p∆x3, q∆t)

where ∆t is the time increment.

In the FDM, the derivatives in the equations of wave motion and constitutive law
are replaced with the difference forms, and the explicit algebraic equations are formed.
They can be solved in a finite difference program and the solutions for the field variables
(displacement, velocity and acceleration) at grid nodes are obtained.

The typical difference forms for the first and the second derivatives are derived using
Tailor expansions (Lick 1989):
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(
∂ui

∂xi

)<n>

≈ u<n+1>
i −u<n−1>

i
2 ∆xi

(7.1a)

(
∂ 2ui

∂x2
i

)<n>

≈ u<n+1>
i −2u<n>

i +u<n−1>
i

∆x2
i

(7.1b)

where ui represents the displacement in xi direction (i = 1, 2 or 3); the superscript n
represents the grid node number.

Eq. 7.1 is refereed to as centered scheme, because it is symmetric to a center point at
n. With a simple change, the derivatives can be applied with respect to another variable,
for example the time t.

For simplicity, a one-dimensional (1D) elastic bar is taken as an example to describe
the basic principles of the FDM. The general equation of wave motion based on Eq. 2.3
is:

ρ
∂ 2u1

∂ t2 =
∂σ11

∂x1
(7.2)

where ρ is the mass density.

A constitutive law or a generalized Hooke’s law based on Eq. 2.4 becomes for this
case:

σ11 = E
∂u1

∂x1
(7.3)

where E is the Young’s modulus.

By using velocity v1 in x1 direction, the difference form of Eq. 7.2 is given at grid
node n:

ρ
v<n>

1 (t +∆t)− v<n>
1 (t−∆t)

2 ∆t
=

σ<n+1>
11 (t)−σ<n−1>

11 (t)
2∆x1

(7.4)

Rearranging the above equation results in:

v<n>
1 (t +∆t) = v<n>

1 (t−∆t)+2∆t
σ<n+1>

11 (t)−σ<n−1>
11 (t)

2ρ∆x1
(7.5)

Integrating the both sides of the above equation gives the displacements as:

u<n>
1 (t +∆t) = u<n>

1 (t−∆t)+2∆t v<n>
1 (t) (7.6)
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The difference form of Eq. 7.3 is given at grid node n:

σ<n>
11 (t) = E

u<n+1>(t)
1 −u<n−1>

1 (t)
2∆t

(7.7)

Eqs. 7.5, 7.6 and 7.7 are used for the calculation of velocities or displacements at
the grid nodes in the FDM for a 1D elastic bar. It is an explicit method, because the
quantities on the right for all difference equations are known. However, Eq. 7.7 must be
evaluated at first for all grid nodes before moving to Eqs. 7.5 and 7.6.

7.3 Boundary conditions and initial values

The boundary conditions are for some field variables to satisfy along a boundary curve
or boundary plane, where an abrupt change in rigidity happens; the initial values are
a known distribution of some field variables throughout the medium at some particular
instant of time.

The continuity condition of stress and displacement should be satisfied in a physical
boundary, for example:

u(x−1 , x−2 , x−3 , t) = u(x+
1 , x+

2 , x+
3 , t) (7.8a)

σ(x−1 , x−2 , x−3 , t) = σ(x+
1 , x+

2 , x+
3 , t) (7.8b)

where u is the displacement; σ is the stress; the coordinates x−1 , x−2 , and x−3 indicate a
position in the boundary on one side; while x+

1 , x+
2 , x+

3 indicate the same position, but on
another side.

An infinite medium can not be numerically simulated directly due to the limitation of
finite storage and speed for a computer; therefore, the waves reflected from the boundary
of a finite medium reach the recording locations and produce contamination. A simple
way to be free of this contamination is to put the boundary as far as it is feasible, or have
a length of recording time short enough; thus, the reflected waves do not appear within
that length of time at the recording points.

Lysmer and Kuhlemeyer (1969) describe a general method in which an infinite system
can be simulated by a finite system using an artificial viscous boundary condition, or
a so-called energy absorbing boundary. When waves propagate from interior region to
exterior region, this condition can be considered as a situation with infinitesimal dashpots
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supporting normal and tangential to the boundary in order to absorb the energy. However,
the effectiveness of this absorption is related the angle of incident waves, a nearly perfect
absorption occurs when the incident angle is larger than 30◦.

7.4 Numerical stability, convergence and consistence

Numerical stability, convergence and consistence are the most basic properties for a nu-
merical algorithm. The numerical stability is related to the accuracy of the numerical
algorithm. Usually, an numerical algorithm for solving numerical differential equations
is stable only if the solutions at a fixed time remains bounded as the step size goes to zero.
An algorithm is said to be consistent if the truncation error vanishes as the grid spacing
∆x1, ∆x2, ∆x3, and time increment ∆t tend to zero. The convergence means that the so-
lution to the difference equations approaches the solution to the differential equations in
the limit ∆x1, ∆x2, ∆x3, and ∆t going to zero.

The Lax equivalence theorem (Strikwerda 1989) states that a numerical algorithm
converges if it is consistent and stable. By inserting the solution to the differential equa-
tions into the corresponding deference equations, the the truncation error is measured in
order to check the consistence of a numerical algorithm, and it is given in a mathematical
form:

O(∆xα
1 , ∆xα

2 , ∆xα
3 , ∆tα) =⇒ 0 as ∆x1, ∆x2, ∆x3, ∆t −→ 0 (7.9)

where α is the degree of accuracy of the numerical algorithm.

For simplicity, numerical stability is studied by considering a single degree of free-
dom system (SDOF) in Fig. 7.1. The equations of wave motion are expressed:

F(t) = −k u(t) (7.10a)

v(t +
∆t
2

) = v(t− ∆t
2

)+
F(t)

m
∆t (7.10b)

where u is the displacement; v is the velocity; m is the mass; k is the stiffness of a spring;
F is the applied force; t is the time variable; ∆t is the time increment.

Integrating the both sides of Eq. 7.10B and shifting time by −∆t/2 results in:
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u(t) = u(t−∆t)+ v(t− ∆t
2

)∆t (7.11)

Combining two time steps for Eqs. 7.10 and 7.11 results in:

u(t +∆t)+u(t)
(

k
m

∆t2−2
)

+u(t−∆t) = 0 (7.12)

This above difference equation yields a stable, periodic solution if ∆t < ∆tcrit :

∆tcrit = 2
√

m
k

=
T
π

(7.13)

where T represents the eigen-period of time for a SDOF system. For a multi-degree of
freedom system, the eigen-period of time is selected as the smallest one.

A 1D elastic bar can be discretized as a series of elements consisting masses and
springs, shown in Fig. 7.2. The smallest eigen-period of time for the system can be
determined by an inspection, since it corresponds to alternate masses moving in opposite
directions, as shown in Fig. 7.3. In this case, each mass appears to be a SDOF system,
connected to two half-springs in parallel as shown in Fig. 7.4; therefore, the effective
stiffness is equal to 4k. Because:

k =
E A
∆x

(7.14a)

m = ρA∆x (7.14b)

where A is the cross area; E is the Young’s modulus; ∆x is the length of an element.

Substituting Eq. 7.14 into Eq. 7.13 results in:

∆tcrit = ∆x

√
ρ
E

=
∆x
VP

(7.15)

where VP is the P-wave velocity, a fastest velocity at which information can propagate.

This leads to an important conclusion: if the stability is satisfied in Eq. 7.13, the time
increment used in an explicit solution is sufficiently small so that information cannot
propagate between elements in one time increment.
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7.5 FLAC models and numerical calibrations

7.5.1 Introduction

FLAC T M (fast Lagrangian analysis of continua) is a 2D finite difference program for
numerical simulations, where a set of recursive finite difference equations and bound-
ary conditions are used with the explicit Lagrangian calculation scheme and the mixed-
discretization techniques (Itasca 2000). This program can implement the dynamic anal-
ysis by solving the full equations of wave motions, where the structure properties includ-
ing the dimensions are predefined. Materials are represented by elements which form a
grid. Each element can be given a separate material model, for example, isotropic elastic
model or null model (10 built-in material models in total). Different material models
can be incorporated into one structure, for example, by making some elements null, the
effects of the presence of a surface-breaking crack in a homogeneous concrete can be
simulated. For boundary conditions, velocity, displacement or stress can be specified at
any boundary orientation.

The general computation sequence is shown in Fig. 7.5. The equation of wave motion
is invoked first to derive new velocities and displacements from stresses and forces; then
the strain rates are calculated from velocities; finally, the one cycle of calculation ends up
with the new stresses or forces obtained from strain rates and all field variables at grids
are updated from known values.

It is important to satisfy the numerical stability condition for a square element, which
requires the time increment ∆t be small enough. Therefore, each element appears to
be physically isolated from its neighbors during one time cycle, so that the calculations
speed of wave front is no later than the fastest wave velocity VP (Itasca 2000):

∆tcrit =
∆x√
2VP

(7.16)

where ∆tcrit is the critical time increment; ∆x is the length of that square element; VP is the
P-wave velocity. Unlike a 1D elastic bar in Eq. 7.15, a 2D square element is considered
in Eq. 7.16, and thus the term of square root of 2 results.

Numerical dispersion is caused by numerical discretization in space, causing different
frequencies of waves to propagate at different velocities. Therefore, the critical size ∆xcrit

of a square element to avoid the numerical dispersion is suggested (Virieux 1986):

∆xcrit =
λmin

10
(7.17)
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where λmin = VP/ fmax; fmax is the maximum frequency of interests; thus λmin gives the
smallest wavelength.

7.5.2 Numerical models for different studies

The 2D numerical models are constructed in Fig. 7.6 using FLAC T M for different nu-
merical studies of the wave propagation. The material properties are specified with
three parameters: density ρ = 2340kg/m3, bulk modulus K = 30GPa and shear mod-
ulus G = 18GPa, and other elastic parameters can be calculated in Table 7.1.

The numerical modeling configuration can be axisymmetric where the left boundary
is fixed in the horizontal direction to represent an axis of symmetry, or plane-strain where
the thickness of a plate is small in comparison with other dimensions. The boundary
conditions can be quiet (an artificial viscous boundary condition) (Caughey 1960) to
avoid wave reflections, or free to simulate a real boundary condition for plates. For
different studies, the sources are placed at different surface locations 0mm, 555mm, and
585mm from the left boundary. Three types of sources are used in the numerical models:

• Lamb source with η = 1.78×10−6; it is shown in Fig. 5.7.

• Real part of a Morlet function with f0 = 50kHz and τ = 1.12× 10−5 (BW =
33.46kHz); it is shown in Fig. 5.5.

• Real part of a Morlet function with f0 = 100kHz and τ = 5.6× 10−6 (BW =
66.92kHz).

The plate thickness is given different values to study the thickness effects in the wave
propagation; however, for the study of the depth evaluation of a surface-breaking crack,
the plate thickness is 80mm. The location for a surface-breaking crack is at 600mm from
the left boundary of the numerical model; and the crack depth varies from 0 to 40mm.
Rayleigh damping is given to the numerical models through the minimum Rayleigh
damping ratio ξmin (Eq. 5.26), and the corresponding frequency fmin; for the Morlet
sources, fmin = f0, and for the Lamb source, fmin = 50kHz.

For the study of the depth evaluation of a surface-breaking crack, the plate in the nu-
merical models has the same physical dimension as the experimental specimens (1200×
80mm). The numerical models are given a uniform grid size (4800×320); therefore, the
numerical element size is equal to ∆x = 0.25mm. According to Eq. 7.17, λmin = 2.5mm,
and thus for given P-wave velocity VP = 4804m/s (Table 7.1), the numerical dispersion
can be avoided only if the highest frequency of interests fmax:

130



fmax =
VP

λmin
≤ 1.922MHz (7.18)

In addition to the numerical element size, another important parameter is the numer-
ical time increment, which is determined in consideration of the storage capacity and
calculation speed for a computer. Importantly, the numerical stability (Eq. 7.16) is satis-
fied when the following equation holds for given VP = 4804m/s and ∆x = 0.25mm:

∆tcrit ≤ 36.22ns (7.19)

Therefore, it is given in the numerical models: ∆t = 7.5ns.

To prevent free-body motion, the left-bottom node in the numerical models is fixed
in both horizontal and vertical directions; while the right-bottom node is fixed only in
horizontal direction. The surface responses of displacement, velocity and acceleration
are recorded with an array of 201 receivers that are placed on the surface of the numer-
ical models, starting at 400mm from the left boundary with a receiver-spacing of 2mm;
therefore, the last receiver is at 800mm from the left boundary.

7.5.3 Numerical calibrations

Numerical models can be used to study the wave propagation problems only if they are
appropriately calibrated. For this study, The Lamb’s problem (Eqs. 5.11 and Eq. 5.12) is
first used for the numerical calibration for a simulated half space, and then the numerical
model for a plate is calibrated by using a nearly non-dispersive region of the dispersion
curve for the fundamental Lamb mode S0.

Numerical calibration using Lamb’s problem for a simulated half space

The settings in Table 7.2 are given for the numerical mode in Fig. 7.6:

• Numerical modeling configuration: axisymmetric

• Boundary conditions. Left: symmetric axis; right: quiet; bottom: quiet.

• Lamb source (η = 1.78×10−6) at surface, x = 0mm from the left boundary.

• Plate thickness: 80mm.

• No Rayleigh damping.
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• No crack present.

Therefore, the numerical model simulates a half-space with the Lamb source applied
at its center. The theoretical vertical displacements at distances 400mm, 500mm, 600mm,
700mm, and 800mm from the source are calculated, and compared with the numerical
results in Fig. 7.7. The time signals arrive at different distances at a velocity that is
close to the Rayleigh wave velocity, VR = 2550m/s. The time signals agree, but with a
slight variation. The corresponding spectral amplitudes agree well only for high frequen-
cies. For low frequencies, variations appear in a frequency bandwidth, which gets wider
as distance from the source increases. For example, at distance 400mm, the frequency
components below 40kHz propagate not well; while at distance 800mm, the frequency
components below 60kHz propagate not well.

The plate in the numerical model has a thickness of 80mm. Even though the bottom
boundary of the numerical model is set to be quiet for a half-space simulation, the ef-
fectiveness for a quiet boundary depends on the angle of incident waves, and the quiet
boundary at the bottom for this case does not work perfectly. As a result, the thickness
effects of a plate still exist. Since low frequencies have large wavelengths, their wave
propagation is mostly affected by the thickness effects of a plate. As shown in Fig. 7.7B,
more low frequency components are affected as waves propagate with distance.

Surface waves attenuate with distance because of theoretical geometric attenuation
(Eq. 5.19). In the numerical model, the maximum amplitudes at distances 400mm to
800mm from the source are measured in time and frequency, and they are calibrated with
the theoretical results of geometric attenuation in Fig. 7.8. The numerical maximum
amplitudes measured in time and frequency match perfectly, and both show the same
trend as the theoretical prediction.

A 2D Fourier transform plot is useful for the evaluation of the numerical dispersion,
which is caused by an inappropriate size for an square element in the numerical models.
The numerical time signals at different distances from the surface responses are used to
calculate the 2D Fourier transform (Eq. 3.14), and the plot is shown in Fig. 7.9, where
a straight contour line is present in the frequency-wave number domain, indicating the
nonexistence of the numerical dispersion; the line’s slope determines the wave velocity
that is close to the value of Rayleigh wave velocity (VR = 2550m/s).

Numerical calibration using fundamental Lamb mode S0 for a plate

The study of the numerical calibration for wave propagation in a plate is important. The
numerical model in Fig. 7.10 is used to simulate a plate with free boundary conditions; in
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the numerical model, the right-top and right-bottom nodes are fixed to prevent free-body
motion, and the gravity acceleration is set to be zero for this case. The settings for the
numerical model are given:

• Numerical modeling configuration: plane-strain

• Boundary conditions: free for left, and right and bottom boundaries.

• Morlet sources with central frequency at f0 = 10kHz, applied to all the nodes of
the left boundary.

• Plate thickness: 80mm.

• No Rayleigh damping.

• No crack present.

For the case of an 80mm-thick plate, the dispersion curve is shown in Fig. 2.6, where
higher Lamb modes are null at 10kHz, and the fundamental Lamb mode S0 is nearly
non-dispersive in a small frequency range. Therefore, two Morlet sources with cen-
tral frequency at f0 = 10kHz, but in different frequency bandwidths (BW = 4.74kHz,
1.79kHz) are used as sources. They are shown in Fig. 7.11.

To generate a pure fundamental Lamb mode S0, Morlet sources are moved to the
left boundary of the numerical model (Fig. 7.10). The real part of the Morlet func-
tions is applied to each node (321 modes in total) with both the horizontal and verti-
cal displacements given in Eq. 2.31, where a π/2 phase difference exists between the
displacements in two directions. The displacements for the fundamental Lamb S0 are
normalized to the amplitude for the horizontal displacement at surface (u10), and it is
shown in Fig. 7.12. The horizontal displacements are anti-symmetric, and the vertical
displacements are symmetric with respect to the cross section of the plate at a depth of
40mm.

The time signals received at distances 400mm, 500mm, 600mm, 700mm, and 800mm
from the left boundary (Fig. 7.10) are shown in Fig. 7.13. They are compared with a
theoretical non-dispersive mode propagating at a constant velocity 4487m/s, which cor-
responds the phase velocity for the fundamental Lamb mode S0 at 10kHz (Fig. 2.6).

For the case of the Morlet source with the wide frequency bandwidth (τ = 7.9×10−5,
BW = 4.74kHz), the first cycle of the time signals match well in Fig. 7.13A, and they ar-
rive at different distances with a velocity that is close to the theoretical value (4487m/s).
However, variation occurs after the first cycle, because the wide frequency bandwidth
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covers the dispersive region in the dispersion curve of the fundamental Lamb mode S0.
While, for the case of the Morlet source with the narrow frequency bandwidth (τ =
2.1×10−4, BW = 1.79kHz), variation is significantly reduced as shown in Fig. 7.13B.

7.6 Summary

The finite difference method (FDM) is commonly used for numerical simulations. Bound-
ary conditions, numerical stability, convergence and consistence are important properties
for a numerical model. Quiet boundary is a condition with infinitesimal dashpots sup-
porting normal and tangential to the boundary in order to absorb the energy, which can
be used for the simulation of a infinite medium. Numerical stability is studied by tak-
ing a single degree of freedom system (SDOF) as an example; if the numerical stability
is satisfied, the time increment used in the numerical simulations should be sufficiently
small so that information can not propagate between elements in one time increment.

The numerical model is constructed using a commercial software package FLAC T M

(fast Lagrangian analysis of continua) for different studies. The element size is selected
to avoid numerical dispersion (frequency components propagate at different velocities
because of an inappropriate element size), and the time increment is selected to satisfy
the numerical stability.

The numerical model is calibrated using three different procedures. First, the time
histories and frequency spectra of the surface responses from the numerical model are
compared with the theoretical solutions for the Lamb problem. Then, the 2D Fourier
transform of the time histories is used to show that there is no numerical dispersion.
Finally, the time histories generated by the propagation of the fundamental Lamb mode
in a plate at low frequencies are compared with the theoretical solution. All the numerical
results are in agreement with the theoretical analysis.
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Table 7.1: Material properties for the numerical models

Given Parameters Calculated Parameters
Mass density: Possion’s ratio: υ = 0.25

ρ = 2340kg/m3 Young’s modulus: E = 45MPa
Bulk modulus: Constraint modulus: M = 54GPa

K = 30GPa P-wave velocity: VP = 4804m/s
Shear modulus: S-wave velocity: VS = 2774m/s

G = 18GPa R-wave velocity: VR = 2550m/s
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Table 7.2: Settings for the numerical models

ITEMS SETTINGS
Numerical modeling configurations: Axisymmetric and plane-strain

Boundary conditions
Left: Symmetric axis, quiet, and free
Right: Quiet and free
Bottom: Quiet and free

Sources
Type: Lamb and Morlet
Location: 0mm, 555mm, and 585mm

Plate thicknesses 20mm, 40mm, 60mm, and 80mm
Minimum Rayleigh damping ratios 0, 0.008, 0.02, and 0.05
Different depths of a surface-breaking crack 0mm to 40mm
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Spring mass: m

Spring stiffness: k

Force: F

Displacement: u

Figure 7.1: A single degree of freedom system.

Spring stiffness: k

Young's modulus: E

Mass: m

Element

Figure 7.2: A series of discretized elements for an elastic bar.

v = 0 v = 0 v = 0 v = 0 v = 0 v = 0 v = 0

v+ v+ v+ v+ v+ v+ v+v- v- v- v- v- v- v-

Figure 7.3: An inspection on alternate mass move.
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Spring mass: m

Double stiffnesses: 2k

Figure 7.4: Two half-springs in parallel for each mass.
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Figure 7.5: General computation sequence in FALC.

139



201 receivers400 mm
Crack at 600 mm

80 mm
(320 grids

�
1200 mm
(4800 grids)

First receiver Last receiver
400 mm

Figure 7.6: Numerical model for different studies.
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Morlet source in horizontal and vertical directions

Figure 7.10: Numerical model for the calibration of a plate.
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(BW = 1.79kHz) used for the numerical calibrations. (A) in time; (B) in frequency.
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Figure 7.12: Displacements for the fundamental Lamb mode S0 at a frequency of 10kHz.
(A) normalized horizontal displacement vs. vertical depth; (B) normalized vertical dis-
placement vs. vertical depth. u10 is the amplitude for the horizontal displacement at the
surface.
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Chapter 8

Results and discussion

8.1 Depth evaluation of a surface-breaking crack

8.1.1 Introduction

This chapter presents the results of numerical analysis and experimental testing which
were done using the methodologies described in Chapter 5, Chapter 6, and Chapter
7. The four numerical studies are conducted to simulate the wave propagation for differ-
ent conditions; they are: (1) axisymmetric numerical modeling for a half-space, where
Rayleigh wave propagation in a half space is studied; (2) plane-strain numerical mod-
eling for an infinite plate, where the effect of wave reflections from a surface-breaking
crack is studied; (3) plane-strain numerical modeling for a finite plate, where Lame wave
propagation in a plate is studied; and (4) plane-strain numerical model of the experi-
mental specimen is used to validate the experimental results. In the numerical models,
the surface responses are recorded with an array of 201 receivers, which are placed on
the surface at distances 400mm to 800mm from the left boundary; the vertical displace-
ments of the surface responses are used for numerical analysis, and the wave propagation
features are analyzed with the Fourier transform and wavelet transform.

Following the numerical studies, the experimental results are presented. For the depth
evaluation of surface-breaking cracks in concrete, the experimental tests are performed
on concrete plate specimens in laboratory and concrete pipe specimens in-situ. For the
measurement of material damping ratio, the laboratory tests are performed on a sand box
and a concrete plate to measure different values.
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8.1.2 Numerical study I: axisymmetric numerical modeling for a
half-space

The numerical simulations start with a simple case: Rayleigh wave propagation in a half
space. Rayleigh waves as a non-dispersive mode propagate at a constant velocity; this
wave feature can be shown in time domain and frequency domain. Using 2D Fourier
transform, Rayleigh waves are present in wave number-frequency domain as a single
mode. However, a half space does not exist in reality. Using axisymmetric numerical
modeling, a half space is simulated with a plate, which has a finite thickness and an arti-
ficial quiet boundary at bottom. The quiet boundary does not work perfectly; therefore,
the thickness effect of a plate is studied, where a ratio of wavelength vs. plate thickness
is important, because the thickness effect decreases as this ratio decreases.

The numerical models for this study are configured:

• Axisymmetric numerical modeling configuration.

• Boundary conditions. Left, right, and bottom: quiet.

• Lamb (η = 1.78×10−6) and Morlets sources ( f0 = 50kHz, 100kHz) at x = 0mm.

• Plate thickness: 20mm, 40mm, 60mm, and 80mm.

• No Rayleigh damping.

• No crack present.

The plate thickness is 80mm, and a Morlet source ( f0 = 50kHz or BW = 33.46kHz)
is applied at the surface center (x = 0mm) in an axisymmetric numerical model. The sur-
face responses at distances 400mm to 800mm are used. Fig. 8.1 shows in a 2D contour
plot the time signals and spectral amplitudes. Rayleigh waves propagate without disper-
sion as shown in Fig. 8.1A, and the wave velocity is given by the slope of the contour
line, which is equal to the theoretical value, VR = 2550m/s. In the 2D plot of the spec-
tral amplitudes (Fig. 8.1B), the spectral energy concentrates in a frequency bandwidth
with center frequency slightly higher than f0 = 50kHz, and frequency components are
constant for all distances.

The time signals given in Fig. 8.1A are analyzed using the wavelet transform (Eq. 3.20),
and the amplitude results for different times and distances (400mm to 800mm) are shown
in a 2D contour plot in Fig. 8.2. The straight contour line in the plot indicates that
Rayleigh waves are non-dispersive and propagate at a constant velocity, VR = 2550m/s.
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In a half space, Rayleigh waves dominate in the surface responses. Through the 2D
Fourier transform, different modes can be shown in wave number-frequency domain.
Therefore, for the time signals given in Fig. 8.1A, Fig. 8.3 shows the 2D Fourier trans-
form plots, where only Rayleigh waves are present because of their dominant energy.
In Fig. 8.3A, a Morlet source with f0 = 50kHz and BW = 33.46kHz is used, and a
narrow frequency bandwidth in shown in the plot; while in Fig. 8.3B, a Morlet source
with f0 = 100kHz and BW = 66.92kHz is used, the plot shows a wide frequency band-
width. The straight contour lines in the two plots indicate that Rayleigh waves are non-
dispersive and the Rayleigh wave velocity is determined by the slope of the contour lines
(VR = 2550m/s).

Using axisymmetric numerical modeling, a half space is simulated with a plate which
has a finite thickness; however, the thickness effect of a plate exists because of the use of
a quit boundary at bottom. For the study of this effect, a Lamb source (η = 1.78×10−6)
is used, because it provides wave energy in a wide frequency bandwidth (Figs. 5.9). For
different plate thicknesses 20mm, 40mm, 60mm, and 80mm, the surface responses at
distance 400mm from the source are used. Fig. 8.4 shows the time signals and the cor-
responding spectral amplitudes, where the amplitudes are normalized to the maximum
amplitude from the case of the 80mm thickness. The variation of the time signals be-
tween the theoretical Lamb solution (Eq. 5.12) and the numerical results increases as the
plate thickness decreases. In the spectral amplitude plot, the variations occur in a low fre-
quency range, and this frequency range becomes wider as the plate thickness decreases.

For different thicknesses of a plate, the numerical spectral amplitudes are normalized
to the theoretical spectral amplitudes (Lamb solution) for each frequency. The results
as a spectral ratio are shown in Fig. 8.5. If the theoretical and numerical results are
considered to agree well at a value of spectral ratio higher than 0.9, the corresponding
low-bound frequencies are: 39kHz for the thickness 80mm, 54.1kHz for the thickness
60mm, 86kHz for the thickness 40mm, and 200kHz for the thickness 20mm. Accordingly,
the wavelengths are calculated with given Rayleigh wave velocity (VR = 2550m/s). The
calculated wavelengths are normalized to the corresponding plate thicknesses, and the
results are shown in Fig. 8.6. For the normalized wavelengths below the curve shown in
the plot, their frequency components have more than 90% agreement with the theoretical
Lamb solution; the value of the normalized wavelength increases with the plate thickness.

Fig. 8.7 gives a RMS error of the spectral amplitudes between the theoretical Lamb
solution (Eq. 5.12) and the numerical results from different thicknesses of a plate. Low
frequencies are shown to be mostly affected because of the plate thickness effect, and the
variation becomes bigger as the plate thickness decreases.
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The correlation between two frequency spectra can be calculated using the cross
power spectrum (Eq. 3.13). Therefore, Fig. 8.8 shows the cross power spectra between
the theoretical Lamb solution (Eq. 5.12) and the numerical results from the two plate
thicknesses (80mm and 40mm). Because of the thickness effect of a plate, the frequency
components that are not correlated are in a low frequency range, and more frequency
components join this frequency range when the plate thickness reduces from 80mm to
40mm.

Surface waves propagating in the axisymmetric numerical models present geometric
attenuation (Eq. 5.19). In Fig. 8.9, the maximum amplitudes from the wavelet transform
at different distances are compared with the theoretical attenuation for the three sources,
which are Lamb source (η = 1.78× 10−6) and Morlet sources ( f0 = 50kHz, 100kHz).
The geometric attenuation is predicted well with the numerical results. However, the dif-
ferences of the numerical results among the three sources result from the thickness effects
of a plate. A Lamb source generates more low frequency components which attenuate
faster; in contrast, a Morlet source with central frequency at f0 = 100kHz matches better
with the theoretical results because of less low frequency components generated.

8.1.3 Numerical study II: plane-strain numerical modeling for an
infinite plate

Rayleigh wave reflections in the presence of a surface-breaking crack are studied in this
section. A surface-breaking crack plays a role as a low-pass filter that allows low fre-
quency components to transmit, and as a reflector where high frequency components are
reflected. In the non-equal spacing configuration used for the measurement of the FTC,
a source is aligned with receivers; therefore, a wave propagates on surface at a normal
incidence through a surface-breaking crack, it is reflected and transmitted. For locations
before a crack, the incident and reflected waves are superimposed, and the effect from
the wave reflections depends on a distance from the crack.

The numerical models for this study are configured:

• Plane-strain numerical modeling configuration.

• Boundary conditions. Left, right, and bottom: quiet.

• Lamb (η = 1.78×10−6) source at x = 200mm.

• Plate thickness: 80mm.
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• No Rayleigh damping.

• Different depths of a surface-breaking crack.

The Rayleigh waves are generated by a Lamb source (η = 1.78× 10−6) in the nu-
merical models, and the surface responses at distances 400mm to 800mm are used. The
spectral amplitudes in the presence of a 10mm surface-breaking crack are normalized
to the spectral amplitudes in the absence of a crack for each distance. The results as a
spectral ratio are shown in a 2D contour plot in Fig. 8.10.

The Rayleigh waves concentrate in a depth of one third of the wavelength; there-
fore, fcut = 85kHz for a 10mm surface-breaking crack (Eq. 4.12). In the contour plot,
the transmitted waves are shown lower than frequency fcut , and higher than 35kHz be-
cause of the thickness effect of a plate. In seismic reflections, appearance of a quadratic
curve indicates the wave reflections from an underground object. Similarly, the spectral
ratios for locations before a crack show a quadratic ripple, which is caused by the wave
reflections.

Rayleigh waves in a frequency range of 85kHz to 500kHz are mostly reflected from
a 10mm surface-breaking crack, and the wave reflections affect the locations before a
crack. Therefore, for each frequency in this frequency range and each location before
a crack, the spectral ratios of spectral amplitudes between the two cases, one with the
presence of a 10mm surface-breaking crack, and another with no crack, are plotted in
dots in Fig. 8.11. In this plot, the horizontal axis representing a distance from the crack
is normalized to the wavelength, and the vertical axis represents a spectral ratio. An
amplification or constructive interference takes place at distances multiple of half the
wavelength (λ/2); whereas, de-amplification or destructive interference takes place at
distances multiple of half the wavelength plus one quarter of a wavelength (λ/2+λ/4).

For the simulation of the Rayleigh wave propagation in the non-equal spacing config-
uration, which is used for the measurement of the FTC, and in the equal spacing config-
uration, which is used for the measurement of the WTC, two surface locations ”A” and
”B” in the numerical models are selected. Location ”A” is before a crack and location
”B” is after a crack; they are equally spaced from a crack, and the spacing between ”A”
and ”B” are 30mm and 60mm, respectively. For the non-equal spacing configuration,
the spectral ratio is calculated as the spectral amplitude at location ”B” divided by the
spectral amplitude at location ”A”; while, for the equal spacing configuration in a 2D nu-
merical model, the spectral ratio is calculated as the spectral amplitudes at location ”B”
in the presence of a crack, divided by the spectral amplitude at ”B” but in the absence of
a crack.
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For the case of a 10mm surface-breaking crack, Fig. 8.12 shows the spectral ratio
from the simulations of the two configurations, where the horizontal axis represents the
crack depth normalized to the wavelength, and the vertical axis represents the spectral ra-
tio. A frequency range of 39kHz to 500kHz is used to avoid the thickness effect of a plate.
Fluctuations of the spectral ratios occur for the non-equal spacing configuration, which
show the effects of the wave reflections. Higher amplitudes of fluctuations are present
for the 30mm spacing because of shorter distance from a crack. More fluctuation events
are present for the 60mm spacing, because longer spacing allows more wave reflections
to be received at location ”A”. The spectral ratio for the equal spacing configuration is
sensitive to the crack depth in the normalized range d/λ = 0.1 to 0.3.

8.1.4 Numerical study III: plane-strain numerical modeling for a fi-
nite plate

For the case of a finite plate, Lamb waves propagate; therefore, an understanding to Lamb
wave propagation is important for the depth evaluation of a surface-breaking crack. Dif-
ferent Lamb modes can be generated in a plate, and they are analyzed with the Fourier
transform and wavelet transform to show the Lamb mode dispersion and multiple Lamb
mode participation. In the presence of a surface-breaking crack, the transmitted and
reflected Lamb modes are shown in different halve using 2D Fourier transform; funda-
mental Lamb mode is useful for the depth evaluation of a surface-breaking crack in a
plate, because it dominates both the transmitted and reflected waves.

The numerical models for this study are configured:

• Plane-strain numerical modeling configuration.

• Boundary conditions. Left, right, and bottom: free.

• Morlet sources ( f0 = 50kHz, 100kHz) at x = 200mm.

• Plate thickness: 80mm.

• No Rayleigh damping.

• Different depths of a surface-breaking crack.

A Morlet source is applied at 200mm from the left boundary of the numerical model,
and the surface responses at distances 400mm to 800mm are used. Fig. 8.13 shows in a
2D contour plot the time signals and spectral amplitudes. Lamb waves propagate with
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dispersion, and multiple Lamb modes exist. As a results, the dispersion is shown in
the time signals (Fig. 8.13A), and the frequency components of the propagating Lamb
waves vary with distances (Fig. 8.13B); however, the spectral energy concentrates in a
frequency bandwidth with center frequency slightly higher than f0 = 50kHz.

The wavelet transforms (Eq. 3.20) are applied to the time signals given in Fig. 8.13A,
and the amplitude results are given in Fig. 8.14, where the dispersion of Lamb wave
propagation is shown.

With a Morlet source ( f0 = 50kHz, BW = 33.46kHz), different Lamb modes are gen-
erated as shown in a 2D Fourier transform plot in Fig. 8.15A, where a crack is absent. To
identify the maximum wave energy, for a given frequency, the maximum amplitude for
different wave numbers can be found at a wave number; thus, a series of frequencies and
wave numbers define a Lamb mode. The Lamb mode that has the maximum amplitudes
in the frequency and wave number domain dominates the surface responses, and it is
compared with the theoretical fundamental Lamb mode S0 in Fig. 8.15B; an agreement
is shown for frequencies higher than 25kHz. In Fig. 8.15A, the contour line for the fun-
damental Lamb mode S0 is slightly inclined at low frequencies showing dispersion, and
higher Lamb modes appear above fundamental Lamb mode S0.

Fig. 8.16 is given in the presences of a 20mm surface-breaking crack, where a Morlet
source ( f0 = 50kHz, BW = 33.46kHz) is used. The incident or transmitted Lamb modes
are shown in the first half, where the wave numbers are positive; while the reflected
Lamb modes are shown in the second half, where wave numbers are negative. Similar to
Fig. 8.15B, for different frequencies and wave numbers, the maximum amplitude in the
second half of Fig. 8.16A is compared with the theoretical fundamental Lamb mode S0
in Fig. 8.16B, and the dominant reflected wave energy is identified from the fundamental
Lamb mode S0 for frequencies higher than 40kHz. Therefore, a vertical force as a Morlet
function with f0 = 50kHz generates most wave energy from the fundamental Lamb mode
S0, and the reflected wave energy from a crack is also dominated by the fundamental
Lamb mode S0.

When a Morlet source with f0 = 100kHz and BW = 66.92kHz is used, Fig. 8.17A
shows in a 2D Fourier transform plot different Lamb modes in the absence of a crack.
Similarly, the fundamental Lamb mode S0 is identified in Fig. 8.17B. Because a Morlet
source ( f0 = 100kHz and BW = 66.92kHz ) generates higher frequency components in a
wide frequency bandwidth, the contour line of fundamental Lamb mode S0 in Fig. 8.17A
is longer, and is straight showing a non-dispersive behavior. Fig. 8.18 shows the 2D
Fourier transform results in the presence of a 10mm surface-breaking crack, where a
Morlet source with f0 = 100kHz and BW = 66.92kHz is used. The dominant reflected
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wave energy is identified from the fundamental Lamb mode S0 in Fig. 8.18B.

The incident, transmitted, and reflected wave energy of the fundamental Lamb mode
S0 can be extracted in wave number and frequency domain using a 2D filter (Eq. 3.16).
The frequency bandwidth BW of the filter is equal to the frequency bandwidth of the
Morlet sources. The extracted Lamb mode from the first half of the 2D Fourier transform
plot is transformed into the time and spatial domain by an inverse 2D Fourier transform;
then the obtained time signals for receiver locations before a crack correspond to the
incident Lamb mode; while the time signals after a crack correspond to the transmitted
Lamb mode. The reflected Lamb mode is extracted from the second half in the 2D
Fourier transform plot, and the time signals that are obtained using an inverse 2D Fourier
transform correspond to the receiver locations before a crack.

The wavelet transforms (Eq. 3.20) are applied to the time signals from different ex-
tracted Lamb modes. With a Morlet source ( f0 = 100kHz, BW = 66.92kHz) and the
presence of a 10mm surface-breaking crack, Fig. 8.19A shows the amplitudes from the
wavelet transform at different distances for the incident and transmitted fundamental
Lamb mode S0. Fig8.19B shows the corresponding maximum amplitudes at different
distances, where the incident Lamb mode is shown before the crack location (600mm)
and the transmitted Lamb mode after the crack location. The side edges become dull
because of the digitized effects from the Fourier transform. The WT transmission ratio
can be calculated between the two maximum amplitudes at 700mm and 500mm, which
is equal to (4.34/21.55) = 0.2 for this case. Whereas, based on the extraction of the
reflected Lamb mode, the WT reflection ratio can be calculated as the maximum ampli-
tudes at 500mm for different crack depths, and then normalized to the maximum value.

Fig. 8.20 shows the variation of the WT transmission and reflection ratios for dif-
ferent crack depths. Because the wave energy concentrates in a depth of one third of
the wavelength (λ/3), the maximum depth of a crack that can be evaluated with Morlet
sources at f0 = 50kHz and 100kHz, are 17mm, and 8.5mm, respectively. They are in
agreement with the numerical results of the WT transmission ratio. However, the WT
reflection ratio is less sensitive to the crack depth; it is likely because of the complex
wave pattern developed in front of a crack.

8.1.5 Numerical study IV: plane-strain numerical model of the ex-
perimental specimen

The WTC is measured in the laboratory tests on concrete plate specimens. To validate the
experimental results, the numerical simulations using the plane-strain numerical models
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of the experimental specimen are conducted.

The numerical models for this validation are configured:

• Plane-strain numerical modeling configuration.

• Boundary conditions. Left, right, and bottom: free.

• Morlet source ( f0 = 50kHz) at x = 585mm.

• Plate thickness: 80mm.

• Rayleigh damping ratio: ξmin = 0.001 at frequency fmin = 50kHz.

• Different depths of a surface-breaking crack.

A Morlet source with f0 = 50kHz and BW = 33.46kHz is used to simulate the output
force for an ultrasonic piezoelectric transmitter. In the numerical model, the source is
applied at distance 585mm from the left boundary, and the location for a crack is at
600mm. The surface response at 615mm is used to validate the experimental results;
thus, the source-receiver spacing is 30mm, which is the same as in the experimental tests.

In the experimental tests, the WTC is measured using the experimental setup in
Fig. 6.2, where a 3D condition is shown. In this equal spacing configuration, the wave
propagation from points ”A” to ”B” and points ”D” to ”C” come without a crack; while
the wave propagation from points ”A” to ”C” and points ”D” to ”B” come with a crack.
Both cases are simulated with the two 2D numerical models, where a crack is absent
or present, accordingly. The complementary test for a self-calibrating technique is no
longer needed in the numerical simulations.

Without a crack, Fig. 8.21 shows the time signals and corresponding spectral ampli-
tudes in a 2D contour plot, where the amplitudes in time are normalized to the maximum
value for each location. In the time-distance plot, the wave propagation starts at the
source location (585mm), and a slight dispersion is observed. In the spectral amplitude
plot, variations are shown with distances.

In the presence of a 20mm surface-breaking crack, the time signals and corresponding
spectral amplitudes in a 2D contour plot are shown in Fig. 8.22, where the amplitudes
in time are normalized to the maximum value for each location. In Fig. 8.22A, a slight
time delay is observed at the crack location when wave propagates through the crack,
indicating that a crack plays a role not only as a high frequency reflector and a low
frequency pass filter, but also as a time delay gate. The both transmitted and reflected
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waves are present in the time-distance plot. In the spectral amplitude plot (frequency-
distance), the variations are shown with distance, and low frequency components are
transmitted; however, at locations after 700mm, high frequency components are shown,
it is likely to be caused by the wave reflections.

The 2D Fourier transforms are applied to the time signals given in Fig. 8.21 and
Fig. 8.22, respectively, and the results are shown in Fig. 8.23. In the absence of a crack
(Fig. 8.23A), the waves propagate as the fundamental Lamb mode in the two directions,
because the source is at 585mm; however, in the presence of a 20mm surface-breaking
crack (Fig. 8.23B), the reflected fundamental Lamb mode is shown at high frequencies,
and the transmitted fundamental Lamb mode is shown at low frequencies.

The wavelet transforms (Eq. 3.20) are applied to the time signals from the two cases
of no crack and a 20mm surface-breaking crack, which are given in Figs. 8.21 and 8.22,
respectively. The amplitude results from the wavelet transform are shown in Fig. 8.24.
In the presence of a 20mm surface-breaking crack, the transmitted and reflected waves
for the fundamental Lamb mode are shown in Fig. 8.24B.

The surface responses at distance 615mm are shown in time and frequency in Fig. 8.25.
For the time signals, the maximum amplitude is attenuated because of the presence of
a 20mm surface-breaking crack, and the wave shape is changed for the first 1.5 time
cycles. In frequency, the spectral amplitudes are reduced for most frequencies. How-
ever, the spectral amplitude reduction is not constant for all frequencies; it indicates a
difficulty for the depth evaluation of a surface-breaking crack using Fourier transform.

Using the extended wavelet transform in Eq. 6.1, where a1 = 0.625 and a2 = 1.25, the
maximum amplitudes at different distances are shown in Fig. 8.26; a relatively constant
reduction is shown for locations after a crack, indicating the presence of a 20mm surface-
breaking crack. The reduction at distance 615mm is measured with a numerical WT ratio
between the two maximum amplitudes, which is equal to 0.178/0.341 = 0.523 for the
case of a 20mm surface-breaking crack. For different depths of a surface-breaking crack,
the numerical WT ratios are given in Table 8.1.

8.1.6 Laboratory tests on concrete plates

With Fig. 6.2, the laboratory tests are conducted on the two types of concrete plate spec-
imens, one with plain concrete, and another with reinforced concrete. A notch is cut on
the concrete plate specimens with different depths to simulate a surface-breaking crack.
Based on four measured time signals gAB(t), gAC(t), gDC(t), and gDB(t), the experimental
WTC is calculated using Eq. 6.1 for different depths of a notch.
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As an example to show typical experimental results, Fig. 8.27 shows the time signals
and corresponding spectral amplitudes for the case of the reinforced concrete plate spec-
imen with a 15mm notch. For this case, the extended wavelet transforms (Eq. 3.25) are
applied to the four measured time signals. The amplitude results are shown as a function
of shift time in Fig. 8.28. The maximum amplitudes occur at a signal arrival, and they
are used to calculate the experimental WTC, which is equal to 0.539 for a 15mm notch.
The experimental WTC results from the laboratory tests are given in Table 8.2 for both
the plain and reinforced concrete plate specimens.

In Fig. 8.29, the experimental WTC results are compared with the numerical WT
ratios from Table 8.1. Both the experimental and numerical results show a similar trend.
However, the equal spacing configuration in Fig. 6.2 shows a 3D condition; while the
numerical simulation is conducted in a 2D numerical model. Therefore, differences may
exist. For example, the wave propagation from points ”A” to ”B” or points ”D” to ”C” in
Fig. 6.2 is affected by the wave reflections from the side boundary of a crack (notch), but
it is not the case in the numerical simulations. For the crack depths deeper than 15mm,
experimental WTC results give a lower value than numerical results, and the variation
becomes bigger for a crack depth of 30mm.

8.1.7 In-situ tests on concrete pipes

In-situ tests were performed twice at the Hanson Pipe and Precast Inc., Cambridge, On-
tario, Canada, in June 2008. Effects of a curved surface on wave propagation are not
studied here, because the transducer’s spacing is small relative to the diameter of the
pipes.

For the first test, two cracks are found on a concrete pipe specimen, and their depths
are estimated as 50mm and 150mm, respectively. For the shallow crack, the four mea-
sured time signals and the corresponding amplitudes from the extended wavelet trans-
form are shown in Figs. 8.30 and 8.31, respectively. While, for the deep crack, they are
shown in Figs. 8.32 and 8.33, respectively. The experimental WTC are calculated using
Eq. 6.1, which is 0.25 for the shallow depth, and 0.041 for the deep depth. A significant
reduction for the WTC occurs for this shallow crack, and the further reduction indicates
the presence of a deep crack.

For the second test, the experimental WTC is measured at different loading stages.
The first measurement is performed on a flawless area of the interior wall surface of a
concrete pipe specimen before the load starts. Then, the load increases until a crack is
observed on the interior wall surface, when the load is 242.4kN at the second stage. The
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measurement for the third stage is performed at the same location when the load increases
to 290.8kN. At the fourth stage, the load reaches the maximum, which is 392.9kN.
Finally, the load is released at the fifth stage, and the measurement is performed to check
a recovery of the crack depth.

For the second stage to the fifth stage, the time signals and corresponding amplitudes
from the extended wavelet transform are shown in Figs. 8.34 to 8.41. The experimental
WTC are given in Table 8.5, and plotted in Fig. 8.42. In reality, a crack is initiated
normally with a deep depth; therefore, from the first stage to the second stages, the
experimental WTC is significantly reduced indicating the presence of a deep crack. From
the second to the third stages, the crack depth still increases. However, at the fourth stage,
where the load reaches the maximum (392.4kN), the experimental WTC does not change
much. At the last stage, the experimental WTC goes higher a little, indicating the crack
recovery is limited after the D-loading is released.
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8.2 Measurement of material damping ratio

8.2.1 Introduction

The numerical models shown in Fig. 7.6 are well-calibrated; therefore, they are used for
the numerical study of the measurement of material damping ratio. By applying three
numerical sources and giving four values to the minimum Rayleigh damping ratio, the
twelve numerical models are constructed in Table 8.3.

The numerical models for the damping study are configured:

• Axisymmetric numerical modeling configuration.

• Boundary conditions. Left, right, and bottom: quiet.

• Three numerical sources: Lamb source (η = 1.78× 10−6) and Morlet sources
( f0 = 50kHz, 100kHz) at x = 0mm.

• Plate thickness: 80mm.

• Four values of the minimum Rayleigh damping ratio: ξmin = 0, 0.008, 0.02, and
0.05.

• No crack present.

The numerical data are analyzed with the Fourier transform, which gives the material
damping ratio as a function of frequency, and the wavelet transform, which gives a global
value of the material damping ratio, which represents an average damping effect for a
frequency bandwidth determined by source.

Following the numerical results, the experimental results are presented, which are
from the laboratory tests on a sand box and a concrete plate specimen.

8.2.2 Material damping ratio from Fourier transform vs. frequency

The surface responses at two distances 400mm and 800mm from the source are used to
calculate the material damping ratio using Eq. 5.21, and the damping result is a function
of frequency. In Fig. 8.43, the numerical results are validated with theoretical Rayleigh
damping ratio ξ (Eq. 5.25). For three numerical sources, the numerical and theoretical
results agree in a wide frequency bandwidth for low values of ξmin. At low frequencies,
the numerical results show a high value; it is likely due to the thickness effect of a plate.
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8.2.3 Maximum amplitude from the wavelet transform vs. normal-
ized distance

The surface responses from the 201 receivers incorporate the effects from both the ma-
terial damping and the geometric attenuation. The maximum amplitudes at different
distances from the wavelet transform (Eq. 3.20) are shown in a logarithmic scale in
Fig. 8.44, where the horizontal axis is the distance normalized to the wavelength. The
logarithms of the maximum amplitudes decrease almost linearly with distance. Lamb
source and Morlet source with central frequency at 50kHz generate low frequency com-
ponents; in contrast, Morlet source with central frequency at 100kHz generates high
frequency components. Therefore, high frequency components attenuate faster than low
high frequency components as shown in Fig. 8.44.

8.2.4 Normalized damped frequency from the wavelet transform vs.
normalized distance

Using the surface responses at distances 400mm to 800mm, the damped frequencies for
a SDOF system are calculated by taking a derivative of the phase from the wavelet trans-
form (Eq. 3.20). Fig. 8.45 shows the variation of normalized damped frequency vs. nor-
malized distance for three numerical sources. For a small value of ξmin, the damped
frequency is slightly higher than the central frequency f0; while for a large value, the
damped frequency is lower.

8.2.5 Material damping ratio from the wavelet transform vs. nor-
malized distance

Eq. 5.34 calculates the material damping ratio using the amplitude and phase information
from the wavelet transform; the damping results are shown in Fig. 8.46. Unlike the
material damping ratio that is calculated from the Fourier transform (Eq. 5.21), the result
from the wavelet transform gives a global value that represents an average effect of the
material damping for a frequency bandwidth, which is determined by the source.

As shown in Fig. 8.43, the Rayleigh damping ratio gives a high value at low fre-
quencies, for example in a range when ( f / f0) < 0.5. In Fig. 8.46, Lamb source and
Morlet source with central frequency at 50kHz provide the frequency components at a
low frequency range, and thus the material damping ratios are higher than the minimum
Rayleigh damping ratio ξmin; whereas, Morlet source with central frequency at 100kHz
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provides high frequency components, and thus the material damping ratios show a close
value to the minimum Rayleigh damping ratio ξmin.

In Table 8.4, the mean values for the material damping ratios at different distances,
and a difference relative to the minimum Rayleigh damping ratio ξmin are calculated for a
comparison. Similarly, for the reason that the Rayleigh damping ratio gives a high value
for low frequencies, Lamb source produces the highest error, the Morlet source with
central frequency at 50kHz is the next, and the Morlet source with central frequency at
100kHz gives the closest results to ξmin.

8.2.6 Laboratory tests on a sand box

Using the experimental setup in Fig. 6.8, Laboratory tests are conducted for different
source-reviver spacings (220mm to 400mm). For the measurement of material damping
ratio, geometric attenuation needs to be eliminated from the time signals. As an example,
Fig. 8.47 shows at the first receiver location (220mm from the source) the time signal,
spectral amplitude and wavelet transform results. The first P-wave arrival (marked as
”P1”) and the first surface wave arrival (marked as ”P2”) are identified in the time sig-
nal, and they produce the two peaks (”P1” and ”P2”) for the amplitude of the wavelet
transform. The damped frequency (ωd) is calculated as a derivative of the phase from the
wavelet transform, which is a function of shift time; ωd = 35.56kHz at the first surface
wave arrival. The maximum amplitude and damped frequency corresponding to the first
surface wave arrival are used to calculate the material damping ratio.

The arrival times for the first P-wave and the first surface wave at different receiver
locations are shown in Fig. 8.48. By doing a linear curve fitting, the P-wave and surface
wave velocities are obtained: VP = 2186m/s and VR = 1208m/s. With these two values,
Poisson’s ratio is calculated as 0.21, which is close to a typical value 0.20 for cemented
sand, which is measured using resonant column (Khan 2006).

For the numerical simulations, a 50kHz Morlet function is used as a wave source ,
and a ratio of the wavelength to the plate thickness is equal to λ/h = 0.64. While, for the
wave propagation in the sand box with given Rayleigh wave velocity, VR = 1208m/s, and
frequency, f = 50kHz, the wavelength is calculated as λ = VR/ f = 24mm. Therefore, a
ratio of the wavelength to the top layer thickness (h = 300mm) is given, λ/h = 0.08. Be-
cause of a relatively small wavelength for the wave propagation in the sand box, Rayleigh
waves are mostly generated, which are suitable for the measurement of material damping
ratio.

From the wavelet transform, the maximum amplitudes of the first surface wave arrival
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(”P2” in Fig. 8.47) at different receiver locations are shown in a logarithmic scale in
Fig. 8.49, where variation appears; it is likely due to the effects of the wave reflections
from the boundaries or the underground void. Therefore, a linear curve fitting is used to
reduce this variation, and the spatial attenuation coefficient is obtained as a slope of the
fitted line, αx = 0.725.

The damped frequencies at different receiver locations are shown in Fig. 8.50, and
they are lower than 50kHz. In Fig. 8.51, The material damping ratio is calculated from
the wavelet transform using Eq. 5.34, where the spatial attenuation coefficient is given as
a constant number, αx = 0.725, the damped frequency ωd is given from Fig. 8.50, and the
velocity is equal to VR = 1208m/s. A mean value for material damping ratios at different
receiver locations is calculated as ξ = 0.384%, which is close to a value measured from
resonant column (Khan 2006), ξ = 0.4%.

8.2.7 Laboratory tests on a concrete plate

Using the experimental setup in Fig. 6.9, laboratory tests are conducted for different
source-receiver spacings, which 30mm, 60mm, 90mm, and 120mm, respectively. For the
measurement of material damping ratio, geometric attenuation needs to be eliminated
from the time signals.

The time signals and spectral amplitudes are shown in Fig. 8.52. Amplitude vs. shift
time from the wavelet transform (Eq. 3.20) is shown in Fig. 8.53A, where the maximum
amplitude occur at different arrival times: t1 = 104µs for receiver location at 30mm,
t2 = 120µs for receiver location at 60mm, t3 = 135µs for receiver location at 90mm, and
t4 = 152µs for receiver location at 120mm. The damped frequency is calculated with a
derivative of the phase from the wavelet transform in Fig. 8.53B, which varies with the
shift time; however, the damped frequencies corresponding to the arrival times (t1, t2, t3,
and t4) are selected for the calculation of the material damping ratios at different receiver
locations. The experimental results of material damping ratio using the wavelet transform
are shown for different receiver locations in Fig. 8.54. A mean value of material damping
ratio for different receiver locations is equal to 0.01, which is in a range of the material
damping ration for an uncracked and low stress concrete given in Table 6.1.

162



Table 8.1: Numerical WT ratio from the extended wavelet transform vs. crack depth

Crack depth (mm) Numerical WT ratio
0 1
5 0.833
10 0.69
15 0.615
20 0.523
25 0.46
30 0.348
35 0.246
40 0.201

Table 8.2: Experimental WTC vs. notch depth for the plain and reinforced concrete
plate specimens

Notch depth (mm)
Experimental WTC

(plain concrete) (reinforced concrete)
0 0.982 1.003
5 0.874 0.904

10 0.682 0.732
15 0.557 0.539
20 0.467 0.469
25 N / A 0.413
30 0.227 0.274
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Table 8.3: Numerical models for the damping measurements

Model No. Source
Rayleigh damping
ξmin fmin

M1 0

50kHz
M2 Lamb source 0.008
M3 (η = 1.58×10−6) 0.02
M4 0.05
M5 0

50kHz
M6 Morlet source 0.008
M7 ( f0 = 50kHz, BW = 33.46kHz) 0.02
M8 0.05
M9 0

100kHz
M10 Morlet source 0.008
M11 ( f0 = 100kHz, BW = 66.92kHz) 0.02
M12 0.05

Table 8.4: Mean values and a difference for material damping ratios

Source
Minimum Rayleigh

Mean value % Difference
damping ratio (ξmin)

Lamb source 0.008 0.01 25%
(η = 1.58×10−6) 0.02 0.023 15%

0.05 0.056 12%
Morlet source 0.008 0.0096 20%
( f0 = 50kHz) 0.02 0.022 10%

0.05 0.054 8%
Morlet source 0.008 0.008 0%
( f0 = 100kHz) 0.02 0.02 0%

0.05 0.051 2%
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Table 8.5: Experimental WTC vs. D-loading for different stages

Stage No. 1 2 3 4 5
D - load (kN) 0 242.4 290.8 392.9 0

Experimental WTC 0.975 0.219 0.141 0.135 0.15
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Figure 8.1: Numerical Rayleigh wave propagation in a simulated half-space with a Mor-
let source ( f0 = 50kHz, BW = 33.46kHz). (A) in time and distance; (B) in frequency
and distance.
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Figure 8.2: Amplitudes of the wavelet transform in time and distance domain for nu-
merical Rayleigh wave propagation in a simulated half-space. A Morlet source is used
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Figure 8.8: Numerical cross power spectra at different distances. (A) between the theo-
retical Lamb solution and the numerical result (the plate thickness 80mm); (B) between
the theoretical Lamb solution and the numerical result (the plate thickness 40mm).
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Figure 8.11: Numerical spectral ratio vs. normalized distance from the crack. A Lamb
source is used (η = 1.78×10−6).
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Figure 8.12: Numerical spectral ratio vs. normalized distance from the crack. A Lamb
source is used (η = 1.78×10−6).
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Figure 8.13: Numerical Lamb wave propagation in an 80mm plate. (A) in time and
distance; (B) in frequency and distance. A Morlet source is used ( f0 = 50kHz, BW =
33.46kHz).
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Figure 8.14: Amplitudes of the wavelet transform for numerical Lamb wave propagation
in an 80mm plate. A Morlet source is used ( f0 = 50kHz, BW = 33.46kHz).
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Figure 8.15: Numerical Lamb wave propagation in an 80mm plate without a crack. (A)
2D Fourier transform; (B) fundamental Lamb mode S0 compared with the theoretical
results. A Morlet source is used ( f0 = 50kHz, BW = 33.46kHz).
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Figure 8.16: Numerical Lamb wave propagation in an 80mm plate with a 20mm crack.
(A) 2D Fourier transform; (B) reflected fundamental Lamb mode S0 compared with the
theoretical results. A Morlet source is used ( f0 = 50kHz, BW = 33.46kHz).
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Figure 8.17: Numerical Lamb wave propagation in an 80mm plate without a crack. (A)
2D Fourier transform; (B) fundamental Lamb mode S0 compared with the theoretical
results. A Morlet source is used ( f0 = 100kHz, BW = 66.92kHz).
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Figure 8.18: Numerical Lamb wave propagation in an 80mm plate with a 10mm crack.
(A) 2D Fourier transform; (B) reflected fundamental Lamb mode S0 compared with the
theoretical results. A Morlet source is used ( f0 = 100kHz, BW = 66.92kHz).
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Figure 8.19: Numerical results from the wavelet transform with the extraction of the
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(A) amplitude vs. shift time for different distances ; (B) maximum amplitudes at different
distances. A Morlet source is used ( f0 = 100kHz, BW = 66.92kHz).
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Figure 8.20: Numerical WT transmission and reflection ratio vs. crack depth for the ex-
tracted fundamental Lamb mode S0. (A) Morlet source ( f0 = 100kHz, BW = 66.92kHz);
(B) Morlet source ( f0 = 50kHz, BW = 33.46kHz).
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Figure 8.21: Numerical wave propagation with a Morlet source ( f0 = 50kHz, BW =
33.46kHz) applied at 585mm in the absence of a crack. (A) amplitude in time and dis-
tance; (B) spectral amplitude in frequency and distance.
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Figure 8.22: Numerical wave propagation with a Morlet source ( f0 = 50kHz, BW =
33.46kHz) applied at 585mm in the presence of a 20mm crack. (A) amplitude in time
and distance; (B) spectral amplitude in frequency and distance.
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Figure 8.23: Numerical 2D Fourier transform with a Morlet source ( f0 = 50kHz, BW =
33.46kHz) applied at 585mm. (A) no crack; (B) a 20mm crack.
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Figure 8.24: Numerical amplitudes from the wavelet transform with a Morlet source
( f0 = 50kHz, BW = 33.46kHz) applied at 585mm. (A) no crack; (B) a 20mm crack.
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Figure 8.25: Numerical surface responses at 615mm with a Morlet source ( f0 = 50kHz,
BW = 33.46kHz) applied at 585mm for cases of no crack and a 20mm crack. (A) in time;
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Figure 8.26: Numerical maximum amplitudes from the extended wavelet transforms at
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Figure 8.27: Laboratory results from the reinforced concrete plate with a 15mm notch.
(A) in time; (B) in frequency.
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Figure 8.28: Amplitudes from the extended wavelet transform for the laboratory tests on
the reinforced concrete plate with a 15mm notch.
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Figure 8.30: Time signals measured in-situ for the shallow crack.
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Figure 8.31: Amplitudes from the extended wavelet transforms for the shallow crack
in-situ. Calculated WTC = 0.25.

195



35

30

25

20

15

10

5

0

A
m

pl
itu

de

5004003002001000

Time  ( us )

Deep crack

gAB(t)

(A)

 gAC(t)

35

30

25

20

15

10

5

0

A
m

pl
itu

de

5004003002001000

Time  ( us )

Deep crack

gDC(t)

(B)

 gDB(t)

Figure 8.32: Time signals measured in-situ for the deep crack.
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Figure 8.33: Amplitudes from the extended wavelet transforms for the deep crack in-situ.
Calculated WTC = 0.041.
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Figure 8.34: Time signals measured in-situ at the second stage, where the load is
242.4kN.
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Figure 8.35: Amplitudes from the extended wavelet transforms for the second stage; the
load = 242.4kN.
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Figure 8.36: Time signals measured in-situ at the third stage; the load = 290.8kN.
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Figure 8.37: Amplitudes from the extended wavelet transform for the third stage; the
load = 290.8kN.
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Figure 8.38: Time signals measured in-situ at the fourth stage; the load = 392.9kN.
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Figure 8.39: Amplitudes from the extended wavelet transform for the fourth stage; the
load = 392.9kN.
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Figure 8.40: Time signals measured in-situ at the last stage; the load is released.
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Figure 8.41: Amplitudes from the extended wavelet transform for the last stage; the load
is released.
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Figure 8.43: Material damping ratio from the Fourier transform vs. normalized fre-
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source ( f0 = 100kHz).
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Figure 8.44: Logarithm of maximum amplitude from the wavelet transform vs. nor-
malized distances. (A) Lamb source ( f0 = 50kHz, λ = 51mm); (B) Morlet source
( f0 = 50kHz, λ = 51mm); (C) Morlet source ( f0 = 100kHz, λ = 26mm).
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Figure 8.45: Normalized damped frequency ( f / f0) from the wavelet transform vs. nor-
malized distances. (A) Lamb source ( f0 = 50kHz, λ = 51mm); (B) Morlet source
( f0 = 50kHz, λ = 51mm); (C) Morlet source ( f0 = 100kHz, λ = 26mm).
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Figure 8.47: Laboratory results at the first receiver location (220mm from the source).
(A) time signal; (B) spectral amplitude; (C) amplitude and damped frequency from the
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Chapter 9

Summary and conclusions

9.1 Depth evaluation of a surface-breaking crack

This research presents results from experimental and numerical tests performed on an
80mm-thick concrete plate with well-defined notch, and experimental tests on cracked
real concrete pipes. The WTC method is proposed for the depth evaluation of surface-
breaking cracks in concrete. The new WTC experimental results using a 50kHz ultra-
sonic transmitter as a source show good potential for practical applications. Based on
the same underlying physical principles, the central frequency of the source should be
changed according to the plate thickness. The main conclusions are:

• A theoretical transfer function for Lamb modes is derived; it shows that the fre-
quency components of propagating Lamb waves vary with distance because of the
Lamb mode dispersion and higher Lamb mode participation. The numerical sim-
ulations support the theoretical results. Therefore, an equal spacing configuration
is used for the WTC measurement.

• In the presence of a surface-breaking crack, the contour plots of the 2D Fourier
transform of numerical results show incident, transmitted, and reflected Lamb
modes. With a 2D filter, a single Lamb mode can be extracted. Because sur-
face responses are dominated by fundamental Lamb modes for both the transmit-
ted and reflected waves, they can be used for the depth evaluation of a surface-
breaking crack. Fundamental Lamb modes behave similar to Rayleigh waves for
high frequencies, where the wavelength is small relative to the plate thickness. The
transmission ratio, which is calculated between the transmitted and incident fun-
damental Lamb mode S0 using the wavelet transform is related to the crack depth
(d) for normalized depths smaller than d/λ = 1/3.
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• An ultrasonic piezoelectric transmitter provides known frequency components in
a high frequency range, and it is used on the surface of a medium as a source.
The initial output force of an ultrasonic piezoelectric transmitter is modeled with
a Morlet function. The generated ultrasonic pulse propagates in a medium, and
the surface responses are analyzed with the wavelet transform using the Morlet
function as a wavelet. An agreement of the numerical and experimental results
supports the source modeling.

• The new WTC method is used to practically measure the depth of a notch in lab-
oratory. The laboratory results show good agreement with the numerical results.
The WTC is correlated with the crack depth in a sensitive depth range, which is
determined by the central frequency of an ultrasonic piezoelectric transmitter.

Based on the tests performed on real concrete pipe specimens, the main conclusions
are:

• There is no significant difference between a notch and a crack for the WTC mea-
surement. The WTC can be used to measure crack depth.

• The WTC is significantly reduced in the presence of a crack, because the depth of
a crack exceeds a sensitive depth range. However, the WTC still decreases as the
crack depth increases.

• After the load is removed, the WTC shows that the crack depth is practically the
same depth.

Numerical simulations are conducted for the four different cases:

• The numerical models are calibrated using Lamb’s problem, theoretical geometric
attenuation, and 2D Fourier transform. For the case presented in this research,
the fundamental Lamb mode S0 is nearly non-dispersive at low frequencies in a
small frequency bandwidth; this non-dispersive behavior is also used to calibrate
the numerical models.

• Numerical study I: Rayleigh wave propagation in a half space. Rayleigh waves
propagate as a non-dispersive mode at a constant velocity. The non-dispersive
property of Rayleigh waves can be shown in time domain and frequency domain.
Using 2D Fourier transform, Rayleigh waves are shown in the wave number-
frequency domain as a single mode. Using an axisymmetric model, a half space is

219



simulated as a plate, which has a finite thickness and an artificial quiet boundary at
bottom. The quiet boundary does not work perfectly; therefore, the thickness effect
of a plate is studied, where a ratio of wavelength vs. plate thickness is important,
and the thickness effect decreases as the thickness increases.

• Numerical study II: Rayleigh wave reflections in the presence of a surface-breaking
crack. In the non-equal spacing configuration used in the FTC method, the inci-
dent and reflected waves are superimposed for locations before a crack; there-
fore, the effect of wave reflections depends on the distance from the crack. Am-
plification or constructive interference takes place at distances multiple of half
the wavelength (λ/2); whereas, de-amplification or destructive interference takes
place at distances multiple of half the wavelength plus one quarter of a wavelength
(λ/2+λ/4).

• Numerical study III: Lamb wave propagation in a plate. Different Lamb modes can
be generated in a plate, and they are analyzed using the 2D Fourier transform and
wavelet transform. In the presence of a surface-breaking crack, the transmitted and
reflected waves are dominated by the fundamental Lamb modes. The wave prop-
agation of the fundamental Lamb modes is analyzed with the wavelet transform
(WT); the WT transmission ratio from the fundamental Lamb modes is sensitive
to the crack depth (d) in a normalized range from d/λ = 0.1 to 1/3.

• Numerical study IV: validation of the experimental results. The WTC is measured
in the laboratory tests on concrete plate specimens. To validate the experimental
results, the numerical simulations using the plane-strain numerical models of the
experimental specimen are conducted. The numerical and experimental results
show good agreement for all the crack depths studied.

Further studies are recommended for the depth evaluation of a surface-breaking crack:

• Four parameters are important for the depth evaluation of a surface-breaking crack:
the depth of a surface-breaking crack, the thickness of a plate, the central frequency
and the frequency bandwidth of the source. Different values of these parameters
can be used to study their effects on the depth evaluation of a surface-breaking
crack.

• Instead of changing the depth of a surface-breaking crack, the central frequencies
of the source can be varied. Therefore, for a certain depth of a crack, the variation
of WTC vs. central frequency of an ultrasonic piezoelectric transmitter can be
studied. This study requires the construction of customized transducers.
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• Different source-receiver spacing should be used.

• The wall surface of a concrete pipe is curved; therefore, the surface wave propaga-
tion on a curved surface should be studied for different curvatures of pipe walls.

• Different types of a crack can be found in practice, for example different tip pat-
terns and geometries of a crack; further studies related to this issue can be con-
ducted.

• Homogeneous material is assumed in this study. However, heterogeneity in mate-
rial that is randomly distributed at a micro-scale affects the wave propagation of
high frequencies; further studies related to this issue can be conducted.
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9.2 Measurement of material damping ratio

This research presents a new methodology for the measurement of material damping
ratio using the wavelet transform and surface waves. A theoretical study, numerical sim-
ulations, and experimental tests are conducted to show the validity for this new method-
ology. Main conclusions are:

• In the new theoretical equation, material damping is given from the wavelet trans-
form of propagating surface waves; with respect to distance, the derivatives of the
maximum amplitude and phase spectrum from the wavelet transform give the spa-
tial attenuation coefficient and damped frequency for a SDOF model, respectively.

• The calculated damping ratio represents an average damping for the frequency
bandwidth determined by the source.

• In the numerical simulations, three sources are used, and four values of the mini-
mum Rayleigh damping ratio are selected to represent different ranges of a material
damping ratio. The material damping ratio calculated from the wavelet transform
shows good agreement with the theoretical results, which are given by the theoret-
ical Rayleigh damping ratio.

• Experimental results of the material damping ratio using the new methodology in
a cemented sand box and a concrete plate agree with published results.

Further studies are recommended for the measurement of material damping ratio:

• For receiver locations that are near to the source, the geometric attenuation dom-
inates; while, for receiver locations that are far from the source, wave reflections
from boundaries become significant. Therefore, the study for the selection of re-
ceiver locations are important.

• Different central frequencies and frequency bandwidths of the source can be used.

• For a layered medium, low frequency components of surface waves propagate at a
deep depth, and damping is affected by different materials. Therefore, the effects
of different layer thicknesses on a global damping can be studied.
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Elastic constants

ORIGIN 1 zero 10 300

P-wave and S-wave velocity: VP 4800 VS 2770

Half the thickness of a plate: h
0.08

2
h 0.04

Poission ratio: fun x( )
VS
VP

1 2 x
2 1 x( )

ν root fun x( ) x 0.1 0.5( ) ν 0.25035

R-wave velocity: VR
0.87 1.12 ν

1 ν
VS VR 2548.55356

Mass density: ρ 2340

Shear modulus: G VS
2
ρ G 1.79546 1010

Young's modulus: E G 2 1 ν( ) E 4.48989 1010

Constraint modulus: M
1 ν

1 ν( ) 1 2 ν( )
E M 5.39136 1010

Bulk modulus: K
E

3 1 2 ν( )
K 2.99742 1010

P-wave velocity: VP 4800
M
ρ

4800.00031

S-wave velocity: VS 2770
G
ρ

2770

Elastic constants

Rayleigh - Lamb - Frequency  Equations

p ω k( )
ω

VP

2
k2 q ω k( )

ω

VS

2
k2
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For symmetric Lamb modes:

Fsym ω k( ) ∞
tan q ω k( ) h( )

q ω k( )
4 k2 p ω k( ) tan p ω k( ) h( )

q ω k( )2 k2
2

on error

For anti-symmetric Lamb modes:

Fanti ω k( ) ∞ q ω k( ) tan q ω k( ) h( )
q ω k( )2 k2

2
tan p ω k( ) h( )

4 k2 p ω k( )
on error

Rayleigh - Lamb - Frequency  Equations

Range for frequency and phase velocity

Numerical time increment: delta_t 7.5 10 8

f_inc
1

1024 10 4delta_t
f_max 510 103 f_inc 325.52083

Point number in frequency: Nf ceil
f_max
f_inc

Nf 1567

Frequency range:

Increment: ω_inc 2 π f_inc Start: ω0 2 π f_inc End: ω_max 2 π f_max

Phase velocity range:

Increment: v_inc 1.0 Start: v0 10 End: v_max 10000

Range for frequency and phase velocity

Symmetric Lamb modes
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MX1 row 1

ω ω0

v v0

val Fsym ω
ω

v

sgn sign val( )

v2 v v_inc

val2 Fsym ω
ω

v2

sgn2 sign val2( )

v2 v2 v_inc

val2 Fsym ω
ω

v2

sgn2 sign val2( )

v2 v_max sgn sgn2 0while

cond 1

cond 0 root Fsym ω k( ) k
ω

v2
ω

v
on error

Mrow 1
ω

2 π

Mrow 2
ω

root Fsym ω k( ) k
ω

v2
ω

v

row row 1

cond 1=if

v v2

val val2

sgn sign val2( )

v2 v v_inc

val2 Fsym ω
ω

v2

sgn2 sign val2( )

v2 v_max sgn sgn2 0if

v2 v_maxwhile

ω ω ω_inc

ω ω_maxwhile

M
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MK1

Mi 1 MX1i 1

Mi 2

MX1i 1

MX1i 2

i 1 rows MX1( )for

M

0 2 104 4 104 6 104 8 104 1 105 1.2 105 1.4 105 1.6 105 1.8 105 2 105
0

1.6 103

3.2 103

4.8 103

6.4 103

8 103
Symmetric Lamb modes

MX1 2

MX1 1

0 4 104 8 104 1.2 105 1.6 105 2 105
0

16

32

48

64

80
Anti-symmetric Lamb modes

MK1 2

MK1 1

Symmetric Lamb modes

Anti-symmetric Lamb modes
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MX2 row 1

ω ω0

v v0

val Fanti ω
ω

v

sgn sign val( )

v2 v v_inc

val2 Fanti ω
ω

v2

sgn2 sign val2( )

v2 v2 v_inc

val2 Fanti ω
ω

v2

sgn2 sign val2( )

v2 v_max sgn sgn2 0while

cond 1

cond 0 root Fanti ω k( ) k
ω

v2
ω

v
on error

Mrow 1
ω

2 π

Mrow 2
ω

root Fanti ω k( ) k
ω

v2
ω

v

row row 1

cond 1=if

v v2

val val2

sgn sign val2( )

v2 v v_inc

val2 Fanti ω
ω

v2

sgn2 sign val2( )

v2 v_max sgn sgn2 0if

v2 v_maxwhile

ω ω ω_inc

ω ω_maxwhile

M
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MK2

Mi 1 MX2i 1

Mi 2

MX2i 1

MX2i 2

i 1 rows MX2( )for

M
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1.6 103
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Anti-symmetric Lamb modes
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Parameters

ORIGIN 0 Rayleigh velocity: VR 1208

N 4096 i 0 N 1 Nf
N
2

jf 0 Nf

Sampling rate: Δt 1 10 6
Δt 1 10 6 ti i Δt

Interval in frequency: Δf
1

tN 1 t0
Δf 244.2 f jf jf Δf

Nyquist frequency: fnqu
1

2 Δt
fnqu 5 105

Central frequency of a Morlet function: fo 50 103

Plate thickness: h 80 10 3
Source location: xs 0 10 3

Receiver spacing: Δx 20 10 3

Number of receivers: Nx 12 jx 0 Nx 1

First receiver location: xo 0.22 Receiver locations: xjx xo jx Δx

Last receiver location: xNx 1 0.44

Parameters

Load experimental data

M0_ch0 READPRN ".\\miniature2\ASCII\220mm_1.txt"( )

M0_ch1 READPRN ".\\miniature2\ASCII\240mm_1.txt"( )

M0_ch2 READPRN ".\\miniature2\ASCII\260mm_1.txt"( )

M0_ch3 READPRN ".\\miniature2\ASCII\280mm_1.txt"( )

M0_ch4 READPRN ".\\miniature2\ASCII\300mm_1.txt"( )

M0_ch5 READPRN ".\\miniature2\ASCII\320mm_1.txt"( )

M0_ch6 READPRN ".\\miniature2\ASCII\340mm_1.txt"( )

M0_ch7 READPRN ".\\miniature2\ASCII\360mm_1.txt"( )

M0_ch8 READPRN ".\\miniature2\ASCII\380mm_1.txt"( )

M0_ch9 READPRN ".\\miniature2\ASCII\400mm_1.txt"( )

M0_ch10 READPRN ".\\miniature2\ASCII\420mm_1.txt"( )
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M0_ch11 READPRN ".\\miniature2\ASCII\440mm_1.txt"( )

M1 length rows M0_ch0( )

Mi jx M0_ch0i 0 i lengthif

0 otherwise

jx 0=if

Mi jx M0_ch1i 0 i lengthif

0 otherwise

jx 1=if

Mi jx M0_ch2i 0 i lengthif

0 otherwise

jx 2=if

Mi jx M0_ch3i 0 i lengthif

0 otherwise

jx 3=if

Mi jx M0_ch4i 0 i lengthif

0 otherwise

jx 4=if

Mi jx M0_ch5i 0 i lengthif

0 otherwise

jx 5=if

Mi jx M0_ch6i 0 i lengthif

0 otherwise

jx 6=if

Mi jx M0_ch7i 0 i lengthif

0 otherwise

jx 7=if

Mi jx M0_ch8i 0 i lengthif

0 otherwise

jx 8=if

Mi jx M0_ch9i 0 i lengthif

0 otherwise

jx 9=if

Mi jx M0_ch10i 0 i lengthif

0 otherwise

jx 10=if

Mi jx M0_ch11i 0 i lengthif

0 otherwise

jx 11=if

i 0 N 1for

jx 0 Nx 1for

M

Load experimental data

Time traces and frequency responses
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Cancel DC component: M1 jx M1 jx mean M1 jx

Eliminate geometric attenuation: M1i jx

xjx

x0

0.5

M1i jx

Fourier transforms: FM1 jx fft M1 jx max_FM1 max FM1 FM1
FM1

max_FM1

0 5 10 4 1 10 3
1

0

1

2

3

4
Time traces

M1 11 3

M1 8 2

M1 4 1

M1 0 0

t

0 2 104 4 104 6 104 8 104 1 105
0

1

2

3

4
Frequency spectra

FM1 11
jf 3

FM1 8
jf 2

FM1 4
jf 1

FM1 0
jf 0

fjf

Time traces and frequency responses

Definition of the wavelet transform using a Morlet wavelet

Frequency: fo 5 104
ωo 2 π fo ωo 3.142 105
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Time period: To
1
fo

To 2 10 5

Modulation parameter: τ 1.12 10 5

Shift time: to 2.0 To to 4 10 5

Morlet wavelet and its Fourier transform:

ϕ t( ) e
j ωo t

e

t

τ

2

U f( ) e

τ

2

2
2π f ωo

2

Frequency bandwidth: BW 2
ln 4( )
τ

1
2 π

BW 3.346 104

0 2 10 5 4 10 5 6 10 5 8 10 5
2

0.5

1

2.5

4
Time signal

ϕ i Δt to 2

Re ϕ i Δt to 1

Im ϕ i Δt to 0

i Δt

0 2.5 104 5 104 7.5 104 1 105
0

0.3

0.6

0.9

1.2
Frequency spectrum

U jf Δf( )

50000

fjf
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EQUATIONS FOR WAVELET TRANSFORM

1 t b
In time: WT (a,b) x(t) ( ) dtx aa

j bIn frequency : WT (a, b) a X( ) (a ) e dx

Wavelet transform calculation in time:

WTT a b data( )
1

a
0

N 1

i

datai ϕ
i Δt to b

a

Wavelet transform calculation in frequency:

WTF a b data( ) a

0

N 1

i

datai U a i Δf( ) ej 2 π i Δf( ) b

Definition of the wavelet transform using a Morlet wavelet

Results of wavelet transform

Dilation parameter "a": a 1 Nw
N
4

iw 0 Nw 1

Wavelet transform calculations:

Mw1iw jx WTT a iw Δt M1 jx Mw_amiw jx Mw1iw jx

max1 max Mw_am( ) max1 5.689 Mw_am
Mw_am

max1

0 204.8 409.6 614.4 819.2 1.024 103

Amplitude of the wavelet transform

Mw_amiw 11 3

Mw_amiw 8 2

Mw_amiw 4 1

Mw_amiw 0

iw

The first arrival times are selected:
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first_T 217 230 250 266 281 298 316 333 349 365 380 398( )

Corresponding amplitudes of the wavelet transform:

first_D

T first_TT

n Tjx

Mjx Mw_amn jx

jx 0 Nx 1for

MT

max2 max Mw1 Mw1
Mw1
max2

Djx first_DT
jx lnDjx ln Djx

Sp_lnD lspline x lnD( ) fit_lnD u( ) interp Sp_lnD x lnD u( )

d_fit_lnD u( ) 1u
fit_lnD u( )d

d

1

v_fit_lnDjx fit_lnD xjx slope x v_fit_lnD( ) 0.096 line x v_fit_lnD( )
1.311

0.096

y_fit_lnD u( ) line x v_fit_lnD( )1 u line x v_fit_lnD( )0

0 3.667 7.333 11
0

0.167

0.333

0.5
Maximum amplitude of the wavelet transform

Djx

jx
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0 3.667 7.333 11
3

2

1

0
Logarithm of the maximum amplitude

lnDjx

jx

0 3.667 7.333 11
100

33.333

33.333

100
Derivative of the maximum amplitude

d_fit_lnD xjx

jx

Nx1 512 jx1 0 Nx1 1

x1jx1
jx1
Nx1

xNx 1 LnD1jx1 fit_lnD x1jx1

Phase of the wavelet transform: Mw_phiw jx phasecor phase Mw1 jx
iw

r0 5 r1 10 u1iw iw Δt

v0iw Mw_phiw r0 Sp0 cspline u1 v0( )

fit0 u( ) interp Sp0 u1 v0 u( ) d_fit0 u( )
1

2π u
fit0 u( )d

d
v1iw Mw_phiw r1 Sp1 cspline u1 v1( )

fit1 u( ) interp Sp1 u1 v1 u( ) d_fit1 u( )
1

2π u
fit1 u( )d

d
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0 3.41333 10 4 6.82667 10 4 1.024 10 3
0

0.333

0.667

1

100

0

100

200

300

400
Amplitude and phase

Mw1iw r0

Mw1iw r1

Mw_phiw r0

Mw_phiw r1

iw Δt

1 10 4 2.3333333 10 4 3.6666667 10 4 5 10 4
0

0.333

0.667

1

0

5 104

1 105

Amplitude and damped frequency

Mw1iw r0

Mw1iw r1
fo

d_fit0 u( )

d_fit1 u( )

iw Δt iw Δt u u

Time arrival: Damped frequency at the arrival time:

arriv_nmjx first_TT
jx damped_fq

tiw iw Δt

phiw phasecor phase Mw1 jx
iw

iw 0 Nw 1for

Sp cspline t ph( )

fit u( ) interp Sp t ph u( )

d_fit u( )
1

2π u
fit u( )d

d

u1 arriv_nmjx Δt

Mjx d_fit u1( )

jx 0 Nx 1for

M
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Sp_damped_fq cspline x damped_fq( )

fit_damped_fq u( ) interp Sp_damped_fq x damped_fq u( )

line x damped_fq( )
3.022 104

1.876 104
slope x damped_fq( ) 1.876 104

y_damped_fq u( ) line x damped_fq( )1 u line x damped_fq( )0

damped_fq1jx fit_damped_fq xjx

0.22 0.293 0.367 0.44
2 104

3.333 104

4.667 104

6 104
Damped frequency vs. distance

damped_fqjx

fit_damped_fq u( )

y_damped_fq u( )

xjx u

Results of wavelet transform

Material damping ratio calculations

lnAjx ln
Djx

U fit_damped_fq xjx
y_damped_fq xr1 3.81 104

Sp_lnA cspline x lnA( ) fit_lnA u( ) interp Sp_lnA x lnA u( )

d_fit_lnA u( ) 1u
fit_lnA u( )d

d

1

v_fit_lnAjx fit_lnA xjx slope x v_fit_lnA( ) 0.725

y_fit_lnA u( ) line x v_fit_lnA( )1 u line x v_fit_lnA( )0
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αx slope x v_fit_lnA( ) αx 0.725

fit_damping u( )
αx

2 π fit_damped_fq u( )
VR dampingjx fit_damping xjx

0.22 0.275 0.33 0.385 0.44
0

1.875 10 3

3.75 10 3

5.625 10 3

7.5 10 3
Material damping ratio vs. distance

fit_damping u( )

u

mean_damping sum 0

sum sum fit_damping xjx

jx 0 Nx 1for

sum
sum
Nx

sum

mean_damping 3.839 10 3

Material damping ratio calculations
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 config dynamic ;Plain_strain by default 

 DEF setup

  ;Plate dimension: 1200mm x 80mm 
  ;Grid numbers: 4800 x 320, delta_x = 0.25mm

   xn = 4800 ;grid number
   yn = 320

   xn1 = xn + 1 ;node number
   yn1 = yn + 1

   ;Points for the velocity source applied to the left boundary
   tm1 = 20000

   ;Total numbers of points in the Lamb mode file
   tot1 = tm1 * yn1

  ;Actual size of the plate
   xsz = 1.2   ;1200mm
   ysz = -0.08 ;80mm

  ;Dynamic time increment
   delta_t = 7.5e-9 

  ;Reset history numbering
   command

      history reset

   end_command

 END ;setup

 setup 

 grid xn, yn

 gen 0, ysz  0, 0  xsz, 0  xsz, ysz

 model elastic

;Material properties
 prop dens = 2340 bulk = 3.0e10 shear = 1.8e10 

SET gravity 0.0 
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;Fixed nodes
 fix x y i = xn1 j = 1
 fix x y i = xn1 j = yn1

DEF input_sourc ;Create tables for the source

   string aa1
   array aa1(tot1)

   float aa2
   array aa2(tot1)

  ;Read Lamb mode shape of the horizontal velocity
   status = open ('c:\FLAC\LAMB\PRNs\S0U_10k.prn', 0, 1) 
   status = read(aa1, tot1)
   status = close

   loop n (1, tot1)
        aa2(n) = parse(aa1(n), 1) ;Convert string to float number
   end_loop

   loop n (1, yn1)
        loop n1 (1, tm1)

           ntab = n ;horizontal source

           xtable(ntab, n1) = n1 * delta_t

           ytable(ntab, n1) = aa2((n-1)*tm1 + n1) 

        end_loop
   end_loop

  ;Read Lamb mode shape of the vertical velocity
   status = open ('c:\flac\lamb\PRNs\s0w_10k.prn', 0, 1) 
   status = read(aa1, tot1)
   status = close

   loop n (1, tot1)
        aa2(n) = parse(aa1(n), 1) ;Convert string to float number
   end_loop

   loop n (1, yn1)
        loop n1 (1, tm1)

           ntab = yn1 + n ;Vertical source

           xtable(ntab, n1) = n1 * delta_t

           ytable(ntab, n1) = aa2((n-1)*tm1 + n1)

        end_loop
   end_loop 

 END ;input_sourc

 input_sourc
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 DEF apply_sourc 

   Fb = 1 ;Amplitude 

   loop n (1, yn1)

     ntab1 = n

     ntab2 = yn1 + n

     command
       apply xvel Fb hist tab ntab1 i = 1 j = n 

       apply yvel Fb hist tab ntab2 i = 1 j = n 
     end_command

  end_loop

 END ;apply_sourc

;Define a Morlet source, refering to MathCAD file 'Gen_sourc'
 DEF Mor_func

   ;dytime = stepno * dydt

   f_o = 10.0e3 ;Central frequency of a Morlet function
   sigma_o = 6.25e-9 

   t_o = 2.5e-4 ;time shift
   dua = 5.0e-4 ;time duration (2*t_o)

   t1 = dytime ;current time
   t2 = t1 - t_o 

   if t1 < dua

      Mor_func = cos(2*pi*f_o*t2) * exp(-(t2^2 / sigma_o))

   else 

      Mor_func = 0

   end_if

 END ;Mor_func

 DEF init_model

   command

     set dydt = delta_t
     set dytime = 0
     history nstep = 10 

    ;history 10000 Mor_func
     history 10001 unbal
     history 10002 dytime
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   end_command

  ;Shot Number
   movieshots = 1 

  ;Step Number for each shot
   moviesteps = 40000 ;moviesteps / nstep = 4000

 END ;init_model

 DEF hor_rece ;Place receivers in horizontal direction

  ;Receiver locations (400mm - 800mm)
   r0 = 1600 ;1600 x 0.25mm = 400mm 

  ;Number of receivers (horizontal direction)
   h_num = 201

  ;Receiver increment
   inc = 8 ;8 x 0.25mm = 2mm

   loop n (1, h_num)

      r = r0 + (n-1)*inc

      command
        ;X displacement
         history xacc i = r j = yn1 ;History at surface

        ;Y displacement
         history yacc i = r j = yn1

      endcommand
   end_loop

 END ;hor_rece

 DEF ver_rece ;Place receivers in vertical direction

  ;First receiver location
   r0 = yn1 ;at surface 

  ;Number of receivers (vertical direction)
   v_num = 41

  ;Receiver increment
   inc = 8 ;8 x 0.25mm = 2mm

   loop n (1, v_num)
      r = r0 - (n-1)*inc

      command
        ;X-velocity
         history xacc i = 1 j = r ;Hist at left end

        ;Y-velocity
         history yacc i = 1 j = r
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      endcommand 
   end_loop

 END ;ver_rece

 DEF save_hx ;X_displacment (horizontal direction)

   loop n (1, h_num) 

     m = (n-1)*2 + 1

     command
       history write m ;Writing hx_disp
     end_command

   end_loop

 END ;save_hx

 DEF save_hy ;Y_displacment (horizontal direction)

  loop n (1, h_num) 

     m = (n-1)*2 + 2

     command
       history write m ;Writing hy_disp
     end_command

   end_loop

 END ;save_hy

 DEF save_vx ;X_displacment (vertical direction)

   loop n (1, v_num) 

     m = 4*h_num + (n-1)*2 + 1

     command
       history write m ;Writing vx_disp
     end_command

   end_loop

 END ;save_vx

 DEF save_vy 

   loop n (1, v_num) ;Y_displacment (vertical direction)

     m = 4*h_num + (n-1)*2 + 2

     command
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       history write m ;Writing vy_disp
     end_command

   end_loop

 END ;save_vy

 DEF save_sour

   command
     history write 10000 ;Writing source
   end_command

 END ;save_sour

 DEF save_unbal

   command
     history write 10001 ;Writing un_balanced force
   end_command

 END ;save_unbal

 DEF run_model

   init_model

   hor_rece ;Place horizontal receivers

   ver_rece ;Place vertical receivers

   apply_sourc

   command
     ;for movie view 
     ;window 0.575 0.625 -0.10 0.05 
   end_command

   loop n (1, movieshots) 
     command
     step moviesteps
    ;plot bou red vel yel max=0.6e-5 apply green
     end_command
   end_loop

 END ;### End of Functions

  ;save c:\FLAC\LAMB\dum_1.sav

  ;movie on file c:\FLAC\LAMB\LM_1.dcx

  run_model

252



  set hisfile c:\FLAC\LAMB\data\166hx.his
  save_hx

  set hisfile c:\FLAC\LAMB\data\166hy.his
  save_hy

  set hisfile c:\FLAC\LAMB\data\166vx.his
  save_vx

  set hisfile c:\FLAC\LAMB\data\166vy.his
  save_vy

  ;set hisfile c:\FLAC\LAMB\data\166sour.his
  ;save_sour

  set hisfile c:\FLAC\LAMB\data\unbal.his
  save_unbal
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