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Abstract

In the event of a hazardous release (chemical, biological, or radiological) in an urban envi-

ronment, monitoring agencies must have the tools to locate and characterize the source of

the emission in order to respond and minimize damage. Given a finite and noisy set of con-

centration measurements, determining the source location, strength and time of release is

an ill-posed inverse problem. We treat this problem using Bayesian inference, a framework

under which uncertainties in modelled and measured concentrations can be propagated, in a

consistent, rigorous manner, toward a final probabilistic estimate for the source.

The Bayesian methodology operates independently of the chosen dispersion model, mean-

ing it can be applied equally well to problems in urban environments, at regional scales, or at

global scales. Both Lagrangian stochastic (particle-tracking) and Eulerian (fixed-grid, finite-

volume) dispersion models have been used successfully. Calculations are accomplished effi-

ciently by using adjoint (backward) dispersion models, which reduces the computational effort

required from calculating one [forward] plume per possible source configuration to calculat-

ing one [backward] plume per detector. Markov chain Monte Carlo (MCMC) is used to effi-

ciently sample from the posterior distribution for the source parameters; both the Metropolis-

Hastings and hybrid Hamiltonian algorithms are used.

In this thesis, four applications falling under the rubric of source determination are ad-

dressed: dispersion in highly disturbed flow fields characteristic of built-up (urban) environ-

ments; dispersion of a nonconservative scalar over flat terrain in a statistically stationary

and horizontally homogeneous (turbulent) wind field; optimal placement of an auxiliary de-

tector using a decision-theoretic approach; and source apportionment of particulate matter

(PM) using a chemical mass balance (CMB) receptor model. For the first application, the data

sets used to validate the proposed methodology include a water-channel simulation of the

near-field dispersion of contaminant plumes in a large array of building-like obstacles (Mock

Urban Setting Trial) and a full-scale field experiment (Joint Urban 2003) in Oklahoma City.

For the second and third applications, the background wind and terrain conditions are based

on those encountered during the Project Prairie Grass field experiment; mean concentration

and turbulent scalar flux data are synthesized using a Lagrangian stochastic model where

necessary. In the fourth and final application, Bayesian source apportionment results are

compared to the US Environmental Protection Agency’s standard CMB model using a test

case involving PM data from Fresno, California. For each of the applications addressed in

this thesis, combining Bayesian inference with appropriate computational techniques results

in a computationally efficient methodology for performing source determination.
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Chapter 1

Introduction

Accurately predicting how pollutants (both natural and anthropogenic) are dispersed in the

atmospheric environment has become an important area of research over the past several

decades. One immediately recognizable application involves modelling the way stack emis-

sions and effluent releases are transported through the environment, so that ‘safe’ levels of

pollutant concentrations can be maintained. In addition to such regulatory exercises, dis-

persion modelling can be used as a tool for public security. Releases (either intentional or

accidental) of toxic gas can pose great danger to nearby populations, as evidenced by the

sheer scale of the impact of the Bhopal disaster in 1984 (Ramesh, 2004).

Dispersion modelling is an example of a ‘forward’ problem in that the source of the emis-

sion is considered known. Of equal importance is the inverse problem: locating and character-

izing the source of the pollutant using a finite and possibly noise-corrupted set of concentra-

tion measurements. In this thesis, the inverse problem is referred to as source determination,

a term which reflects the general nature of the problem under consideration. In addition to

the noun ‘determination’, other terms used by authors to describe specific applications in-

clude: identification, inversion, estimation, apportionment, localization, and reconstruction.

The word ‘determination’ has been chosen because it applies more generally than the alter-

natives in terms of which properties of the source we wish to ascertain. For example, ‘source

localization’ implies interest in the location but not necessarily the strength (or other proper-

ties) of the source; ‘source apportionment’ implies awareness of a number of different sources

existing at different locations, for whom the relative magnitudes of their emissions must be

estimated. However, in a problem of ‘source determination’, we are interested in any or all

parameters describing the source (or sources), for example: location, strength, size, area,

turn-on time, and even the identity of the chemical being released.

1



1.1 Theme and objective

In this thesis, Bayesian inference acts as the hub to which various pieces of computational

and analytical machinery are attached with the objective of solving a variety of problems in

source determination.

Inverse problems (such as source determination) are frequently described as being ‘ill-

posed’ as though there is something wrong with the way they have been formulated. Adopt-

ing Bayesian inference (viz., probability theory as logic) requires a fundamental shift in our

philosophical interpretation of such problems. Rather than regarding them as being posed

incorrectly, one should interpret these problems as involving states of incomplete informa-

tion, or more simply, uncertainty. Therefore, the solution to a source determination problem

ought to take the form of a function which is capable of describing one’s best available in-

formation after accounting for errors and uncertainties which originate from measurements,

physical models, and prior information regarding the phenomenon under study. It turns out

that the rules of probability theory form a ‘calculus of inductive logic’ for manipulating uncer-

tain propositions, and so the final answer to a source determination problem is best expressed

using a probability density function (PDF).

The central theme of this thesis is the use of the Bayesian methodology in formulating and

solving several different problems in the area of source determination. For each of the cases

considered, the problem is first formulated using probability theory before computations are

performed (using dispersion models and statistical sampling techniques). The thesis is bro-

ken into two parts: Part I outlines the basics of the probability theory and the computational

techniques needed to solve the source determination problem; Part II explores a number of ap-

plications, in each case stepping through the methodology while discussing implementational

issues and presenting contributions.

The primary objective of this thesis is to demonstrate to the reader the power and flexibil-

ity that the Bayesian apparatus lends to the solution of the problems presented in Part II. For

each case, either the flows, dispersion models, or applications themselves are quite different;

however, probability theory allows each problem to be solved in a logically consistent way, un-

der the same framework. Contributions made in Part II consist of the the development of new

methods for solving source determination problems efficiently (such as the statistical tracer

decay treatment discussed in chapter 6), as well as the novel adaptation of existing methods

(e.g., Bayesian adaptive exploration as applied to the problem of optimal detector placement

in chapter 7).

1.2 Contextual setting

While this thesis advances the available set of methodology and techniques for source deter-

mination, it is important to recognize that our particular inverse problem is only one out of

the multitude of inverse problems encountered in the physical sciences (and in virtually ev-

ery other discipline). For example, one influential text describing the Bayesian approach to

2



inverse problems is written from a geophysical viewpoint (Tarantola, 2005), while another fo-

cuses on information theory (MacKay, 2003). Astronomy is another field which has benefited

significantly from adopting a Bayesian approach, with one key application being extrasolar

planet finding (Gregory, 2005).

The applications contained in this thesis consider atmospheric transport over relatively

short distances (tens or hundreds of kilometers at most). However, the techniques which have

been developed could also be applied to transport at the continental or global scale. Yee et al.

(2008) addressed a transient release being dispersed over continental Europe; monitoring the

transport and characterizing the source of radionuclides released from a nuclear test is one

example of an application involving global transport (Geer, 1996; Hourdin and Issartel, 2000).

1.3 Thesis outline

The work presented in later chapters is multidisciplinary in nature and is intended for an

audience with a wide range of interests and perspectives. With this in mind, it is worthwhile

to give a brief overview of the thesis content so that the individual reader may focus attention

on the parts of greatest interest.

As mentioned above, Part I provides background information on Bayesian inference as

required to solve source determination problems. Chapter 2 discusses both philosophical as-

pects and the fundamentals of Bayesian probability theory. In chapter 3, a simplified but gen-

eral formulation of the source determination problem is presented. This formulation results

in multidimensional PDFs for the source parameters which must be sampled or integrated

efficiently. Computational techniques for accomplishing this are presented in chapter 4.

Part II of this thesis delves into a number of different applications, introducing specific

dispersion models and sampling techniques as required for each individual case. Chapter 5

demonstrates that source determination can be performed in turbulent flows around obsta-

cles, namely the Mock Urban Setting Test (MUST) array, and buildings in downtown Ok-

lahoma City. An adjoint Eulerian dispersion model is used as a tool to calculate modelled

concentrations in a computationally efficient way.

Chapters 6 and 7 involve simpler, horizontally homogeneous, parameterized wind fields,

based on those found during the Project Prairie Grass (PPG) dispersion experiment. In chap-

ter 6, a Lagrangian stochastic (LS) particle model is modified to be useful for estimating the

rate of decay of a nonconservative tracer. Although the flow is simpler, this problem involves

more parameters (the source location, strength and rate of decay are considered unknown)

and the original LS model must be augmented in order to perform calculations efficiently.

Chapter 7 uses the same LS model and flow fields to examine the problem of optimally placing

additional detectors so that the information yielded by them is maximized. A simple example

is presented which shows how Bayesian inference can be used in an information-theoretic

context to address this problem.

The final case, presented in chapter 8, is a problem of source apportionment where a num-

ber of different sources contribute additively to particulate matter (PM) measured at a given

3



location. The PM is broken down into its individual chemical constituents and its chemical

profile is compared to those of several known pollution sources (e.g., road dust, oil refinement).

The chemical mass balance (CMB) model is used to relate sources to measurements, with the

objective of determining the relative contribution of each source to the measured PM. This

problem is entirely statistical in nature and does not involve a transport or dispersion model.

However, an advanced Markov chain Monte Carlo (MCMC) method is used (hybrid Hamil-

tonian) which demonstrates that source determination problems with very large numbers of

unknown parameters (hundreds and perhaps thousands) can still be solved efficiently.

Publications directly related to this work

Three of the chapters in Part II are adapted from papers that were published earlier:

Chapter 5: A. Keats, E. Yee, and F.-S. Lien. Bayesian inference for source determination with

applications to a complex urban environment. Atmospheric Environment, 41:465–479,

2007.

Chapter 6: A. Keats, E. Yee, and F-S. Lien. Efficiently characterizing the origin and decay

rate of a nonconservative scalar using probability theory. Ecological Modelling, 205:

437–452, 2007.

Chapter 8: A. Keats, M-T. Cheng, E. Yee, and F-S. Lien. Bayesian treatment of a chemical

mass balance receptor model with multiplicative error structure. Atmospheric Environ-

ment, 43:510–519, 2009.
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Chapter 2

Bayesian inference for inverse

problems

This chapter begins by outlining the distinguishing features of inverse problems. Toward the

end of Section 2.1, the rationale behind using probability theory as a method of solution is

presented and placed in context with other, more traditional techniques.

In Section 2.2, we address the way in which probability theory is applied as a method for

doing logical inference. At our disposal is Bayes’ theorem, a mathematical tool which provides

a consistent way for us to update our ‘state of knowledge’ about a model or system, upon the

arrival of new information. Bayes’ theorem is discussed in detail in Section 2.3.

2.1 Inverse problems

Inverse problems are pervasive in many areas of mathematics and science. They usually arise

from a need to determine (or, ‘infer’) unknown or loosely constrained model parameters which

best characterize a system whose output (be it numerical or physically measured) is known

(Tarantola, 2005).

Wherever the available system output is subject to measurement or numerical error, or

wherever the system output does not effectively constrain the model parameters, the inverse

problem can be said to be ‘ill-posed’. Hadamard (1902) characterized ill-posed problems as

suffering from one or more of the following conditions:

1. An inverse transformation does not exist;

2. The inverse transformation is not unique;

3. The transformation is unstable (i.e., small changes in the data imply arbitrarily large

changes in the model).
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Hadamard went on to argue that such problems are actually incorrectly formulated and ‘arti-

ficial’; however, it is now generally acknowledged that undertaking to solve ill-posed problems

is a worthwhile cause. Examples of such inverse problems include:

Extrasolar planet-finding: Given measured data in the form of Doppler shifts in the ab-

sorption lines of a star’s spectrum, determine the parameters (such as orbital period,

eccentricity, planet mass, among others) which describe a Keplerian orbit of the hypoth-

esized planet (or planets). Tinney et al. (2003) used a least-squares approach to solve

this problem, while Gregory (2005) later reapplied a Bayesian probabilistic framework.

X-ray tomography: This is the process of inferring the composition (in terms of, e.g., den-

sity or attenuation coefficients) of some solid object by transmitting X-rays from different

sources at varying angles through the object and measuring the attenuated ray on the

other side (see Figure 2.1) (Tarantola, 2005). Assuming that the integrated ray atten-

uation is subject to some experimental noise, the problem is ill-posed and no unique

solution exists.

s1

s2

r1 r5

r6

r10

Figure 2.1: Example 2-D tomography problem of inferring the composition of 3×3 blocks

with different attenuation coefficients (adapted from Tarantola (2005)). si: X-ray sources;

rj : receptor locations

Inverse heat conduction: As presented by Wang and Zabaras (2004), in this problem we

wish to infer the heat flux on some part of the boundary of a conducting material, given

a limited set of temperature measurements as well as knowledge of the heat flux at the

remainder of the boundary (see Figure 2.2).

2.1.1 General formulation and common solution techniques

In general, forward and inverse problems are related through an operator (possibly nonlinear,

denoted by A) which relates the system output (e.g., noise-corrupted measured data, d) to the

input (e.g., parameters m defining an idealized system model):

d = A(m) . (2.1)
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region of known heat flux

region of

known temperature

unknown
heat flux

conducting

material

temperature

measurements

Figure 2.2: Example inverse heat conduction problem (adapted from Wang and Zabaras

(2004)). The ‘+’ signs represent temperature measurement locations.

If the data d and parameters m belong to the Hilbert spaces D andM respectively, the oper-

ator A performs the mapping:

A :M→D . (2.2)

The inverse problem is then

m = A
−1(d) , (2.3)

where

A
−1 : D →M , (2.4)

whose solution can be approached in several different ways. The following three techniques

constitute the more common approaches, in order of ascending general applicability:

Least-squares approach: We seek to minimize the residual by solving the problem

m̂ = arg min
m∈M

‖A(m)− d‖2 , (2.5)

where ‖·‖ denotes the Euclidean norm, and m̂ denotes the optimal m. For a well-

conditioned system of linear equations, the solution is straightforward and can be accom-

plished analytically or using numerical optimization techniques (e.g., gradient-based,

stochastic, etc.). However, when faced with an ill-conditioned operator, or data which

does not effectively constrain the model parameters, the solution to this problem may be

nonunique or unstable.

Regularization: When the operator A is ill-conditioned, it may still be possible to obtain

a useful approximation to the solution by minimizing an objective function (e.g., the

squared residual) which has been better-conditioned through the use of one or more

‘regularization parameters’. A common scheme is Tikhonov regularization (Tikhonov,

1977):

m̂λ = arg min
m∈M

‖A(m)− d‖2 + λ2‖m‖2 , (2.6)
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where λ is a regularization parameter. This effectively applies a stable approximation

to the inverse operator,

A
−1
λ : D →M , (2.7)

resulting in a family of approximate solutions parameterized by λ. One main drawback

of regularization techniques is that the choices of both λ and the regularization func-

tional are somewhat subjective, although for a given functional, the ‘optimal’ value of

λ can be determined according to various criteria. The choice of optimality criterion is

also, however, subjective.

Bayesian probabilistic: This method has a solid philosophical grounding in terms of its

connection to logic (see Section 2.2) and can provide a more comprehensive solution than

least-squares or regularization because:

1. All prior knowledge of the parameters can be incorporated in a coherent manner;

2. The full solution takes the form of a probability density function (PDF) which sum-

marizes the complete state of knowledge (including any uncertainty) of the param-

eter values, given all relevant information.

Under the Bayesian methodology, arbitrary solution parameters (such as λ) should no

longer require manual tuning. Indeed, by choosing λ to be a function of the noise vari-

ance for cases where the data d is subject to Gaussian noise, Tikhonov regularization

can be shown to be a special case of the more general Bayesian approach. The Bayesian

probabilistic approach is adopted in this thesis and is explained in detail in the following

sections.

2.2 Probability theory as extended logic

Using probability theory to formulate the source determination problem is sanctioned by the

fact that the rules of probability theory form a ‘calculus of inductive logic’ (or inference) which

allows us to manipulate proposals whose plausibility can be represented by a spectrum of real

number values (e.g., P ∈ [0, 1]), rather than simply by True or False (e.g., 0 or 1). Cox (1946)

began with simple desiderata;

1. Degrees of plausibility can be represented using real numbers;

2. The calculus should be consistent (viz., different methods of calculation should yield the

same results);

and showed that the rules of probability calculus are equivalent to the rules for conducting

inference. His derivation, known as ‘Cox’s theorem,’ remains somewhat philosophically con-

tentious, and there is disagreement over its range of applicability.1 However, from a pragmatic

1 A detailed philosophical and mathematical discussion of controversy surrounding the use of probability theory

as extended logic is beyond the scope of this thesis. Examples of popular arguments against it are provided by

Colyvan (2004) and Shafer (2004).
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point of view, most scientific and mathematical reasoning is founded on classical deductive

logic, and probability theory as extended logic has historically been able to provide acceptable

results in a consistent fashion. Furthermore, no calculus has yet been proposed based on non-

classical systems of logic, and Jaynes (2003) argues that such an approach, if it existed, would

either be inconsistent with or isomorphic to classical deductive logic.

Before continuing with a description of the Bayesian interpretation of probability, we de-

fine the notation used in this thesis to express combinations of propositions and their proba-

bilities. The rules for manipulating these probabilities are also defined below.

Notation: For propositions (or, hypotheses) A, B, and C, we adopt the notation used by

Gregory (2005):

P (A | B,C) Probability that A is true given (“|”) B and C are true

A,B Logical product (both A and B are true)

A+B Logical sum (at least one of A and B is true)

A Negation (A is false)

Rules: The sum and product rules form the ‘grammar’ of the probability calculus. All legiti-

mate relationships between probabilities can be derived from these rules:

Product rule:
P (A,B | C) = P (A | C)P (B | A,C)

= P (B | C)P (A | B,C)

Sum rule:

P (A | C) + P (A | C) = 1

or

P (A+B | C) = P (A | C) + P (B | C)− P (A,B | C)

For propositions whose plausibilities are definitively True (1) or False (0), the sum and product

rules remain consistent with the axioms of two-valued symbolic logic.

2.2.1 The nature of probability

In order to use probability theory as a way of conducting inference, we require that the def-

inition of ‘probability’ be expanded beyond its classical interpretation as a measure of the

relative frequency with which the outcome of some event occurs over a very large number

of trials. Historically, this approach has been labelled the Frequentist interpretation, while

a more general approach (which does not require the event to be the realizable outcome of

some theoretical ensemble) has been labelled (over the last 50-60 years) the Bayesian inter-

pretation (after the Reverend Thomas Bayes, due to his essay, posthumously communicated

in 1763). Formally, the relative frequency definition of probability is:

If an experiment is repeated n times under identical conditions and nx outcomes

yield a value of the random variable X = x, the limit of nx/n as n becomes very

large, is defined as P (x), the probability that X = x.

(Gregory, 2005)
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Note that this definition requires either a repeatable experiment or a large population from

which to draw samples. It does not permit the term ‘probability’ to be used to describe more

abstract situations where one is faced with an incomplete state of knowledge. In contrast,

the Bayesian definition stipulates that probabilities express degrees of belief in any logical

proposition or hypothesis:

P (A | B) is a real number measure of the plausibility of a proposition or hypothesis

A, given (conditional on) the truth of the information represented by proposition

B. “A” can be any logical proposition, and is not restricted to propositions about

random variables.

(Gregory, 2005)

The Bayesian interpretation is pragmatic in that it does not preclude the use of propositions

of a frequentist nature. Furthermore, it allows one to consider propositions beyond the [pos-

sibly imaginary] realm of repeatable experiments, such as A = “it will rain tomorrow”, or B =

“there are 4 planets orbiting the star Betelgeuse”. The usage of such propositions leads to crit-

icism of Bayesian probability as being subjective; however, as long as model assumptions and

prior information remain consistent, Bayesian probability theory yields consistent results.

In this thesis, we have adopted a Bayesian probabilistic approach because it permits us to

interpret parameters as proposals. Indeed, in his original essay, Bayes used probability theory

to calculate the distribution for the parameter of the binomial distribution. In the frequentist

interpretation, parameters are not considered to have distributions associated with them,

because they do not represent repeatable experimental outcomes. However, in the Bayesian

interpretation, we consider our state of knowledge of the parameter value to be a probability,

conditional upon all available data, assumptions, and theoretical models.

2.2.2 Confidence or credibility

Under the frequentist definition of probability, confidence intervals are used to describe our

degree of certainty in an estimate. For example, consider the problem of estimating the aver-

age height of a male human. Using available data (the heights of some smaller subset of the

world population), one could obtain an estimate for the height, ĥ, along with a surrounding

interval based on knowledge or assumptions about the sampling distribution. A 95% confi-

dence interval specifies that if the survey were repeated a large number of times, 95% of the

intervals surrounding ĥ would contain the true (but unknown) average height.

The Bayesian equivalent is known as the credible interval, and provides a more direct

way of expressing one’s degree of certainty in the parameter value. Since knowledge about

the parameter is expressed as a PDF, a 95% credible interval can be specified by calculating

points between which 95% of the probability mass lies. Further comparisons between the

frequentist and Bayesian interpretations of confidence vs. credibility intervals can be found

in (Brooks, 2003; Gregory, 2005).
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2.3 Bayes’ theorem

Bayes’ theorem can be obtained from the product rule of probability, and is commonly ex-

pressed in the literature as:

P (M | D, I)
︸ ︷︷ ︸

Posterior

=

Prior
︷ ︸︸ ︷

P (M | I)
Likelihood

︷ ︸︸ ︷

P (D |M, I)

P (D | I)
︸ ︷︷ ︸

Evidence

. (2.8)

In Eq. (2.8), M could represent, for example, a model and its concomitant parameterization.

D might represent data (e.g., experimental or numerical) which we hope to use to improve

our knowledge of the model parameters. I describes the background context – any available

underlying information about our retrieval of the data and the applicability of the model.

Note that for the moment, we are considering the terms M,D and I in their most general

sense: solely as logical propositions. For the purpose of Bayes’ theorem, M and D need not

specifically refer to models and data. However, this thesis is concerned with estimating model

parameters, so we assign M ≡ model and D ≡ data by way of example.

Bayes’ theorem effectively provides a way to ‘update’ our current state of knowledge of M ,

after the arrival of some data (or more generally, information) D. Proceeding term-by-term:

The prior distribution P (M | I) expresses our state of knowledge about M prior to the

arrival of data D. For example, suppose M describes the parameters for a model of some

physical phenomenon. If we are originally ignorant of the parameter values, the prior

distribution should properly reflect this state of ignorance. A technique for choosing

such priors is discussed in Section 2.3.1.

The quantity P (D | M, I) is termed the likelihood function when considered as a function

of M , but is known as the sampling distribution when considered as a function of D.

P (D | M, I) is normalized with respect to D, but not M ; therefore, the likelihood func-

tion is technically not a PDF2. However, for a given inference problem, the likelihood

function is used to obtain the sampling distribution. For fixed parameters M , the sam-

pling distribution defines the probability of obtaining D. For example, consider that we

have chosen a specific set of values which parameterize a model of the aforementioned

physical phenomenon. The sampling distribution then expresses the probability that

the data D were obtained, given this parameterization.

The posterior distribution P (M | D, I) is the full solution to the inference problem and,

converse to the likelihood, expresses the probability of M given D. Our final goal is

to conduct inference over the parameters which define M , and the posterior expresses

2 Singpurwalla and Wilson (2009) point out that “... the notion of probability is germane only for events that have

yet to occur, or for events that have occurred but whose disposition is not known to you.” In the case of the

likelihood function, the data are known. Singpurwalla and Wilson go on to interpret the likelihood as a function

“that prescribes the weight of evidence provided by the data for the different values that [the parameters] can

take.”
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our complete state of knowledge of these parameters given all of the available data.

Depending, however, on the dimensionality of M , it can be difficult to post-process or

extract useful summary information from the posterior.

The evidence (sometimes known as the marginal likelihood) P (D | I) is so-named because

it measures the support for the hypothesis of interest (namely, the choice of model M ).

The term ‘evidence’ has recently been popularized by Skilling (2006) and MacKay (2003).

In the literature, it is alternatively known as the ‘marginal likelihood’ (which describes

its construction), or as the ‘prior predictive’ (which describes its use). For inference

problems where only a single hypothesis (or, model) has been or will ever be considered,

the evidence is an unimportant constant of proportionality.

Having given a brief overview of the terms present in Bayes’ theorem, it is worthwhile to

discuss the nature of two of the more interesting and misunderstood terms; namely, the prior

and the evidence.

2.3.1 Prior information and ignorance

Objections to Bayesian probabilistic methods frequently center around a perceived ‘subjectiv-

ity’ of prior information. To counter this objection, one can argue that it is precisely because

Bayes’ theorem is able to account for prior information that the methodology is so powerful

(Brooks, 2003). In any case, it is possible to place the selection of prior probabilities on firmer

theoretical ground by requiring that they account properly for ‘ignorance’ regarding the pro-

posal they describe.

In this thesis, in order to objectively specify prior probabilities, we adopt an information

based approach known as the maximum entropy principle (MaxEnt), due to Jaynes (2003).

Under the MaxEnt approach, prior distributions are chosen such that they are maximally

non-committal (least informative) with respect to assumptions made about the nature of the

distribution. This principle is most easily explained by considering the case of a six-sided die.

If it is not known beforehand whether the die is weighted or biased, then the only constraint

which can be used to specify the prior distribution is

6∑

i=1

pi = 1 , (2.9)

where pi is the probability that side i is rolled. Given this constraint, we find that by maxi-

mizing the entropy,

arg max
p

(

−
6∑

i=1

pi log pi

)

, (2.10)

the distribution which expresses maximum ignorance about the outcome is uniform, with

pi = 1/6 for all i.

The MaxEnt principle can also be applied to continuous distributions which describe, e.g.,

noise. Consider some measurement equipment which generates a signal φ. If the only known
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characteristics of φ (i.e., constraints describing the distribution of φ) are its mean µ and vari-

ance σ2, then it turns out that the distribution with maximum entropy which describes the

noise is Gaussian:

P (φ | I) =
1√
2πσ

exp

[

−1

2

(
φ− µ
σ

)2
]

. (2.11)

Information about means and variances aside, we often require a continously defined prior

which represents a state of total ignorance (within the bounds of the problem domain, of

course) about some parameter. Such ignorance is typically expressed using a uniform distri-

bution, although some care must be taken with regards to the invariance properties of the

quantity being considered. Tarantola (2006) distinguishes two classes of physical quantities:

Cartesian: Quantities whose values lie in the interval (−∞,∞), such as the components of

velocity or position;

Jeffreys: Named for Sir Harold Jeffreys, who conducted the first investigations into the

properties of positive quantities (Jeffreys, 1931, 1939), these are quantities such as tem-

perature, density, frequency, etc., whose values span the range (0,∞). Tarantola reckons

that in physics there are far more Jeffreys quantities than there are Cartesian.

One interesting feature of Jeffreys quantities is that they are commonly defined by their in-

verses, depending on the situation or problem at hand. Consider, for example, the following

pairs: inverse temperature – temperature (β = 1/T ); conductance – resistance (C = 1/R);

specific volume – density (ν = 1/ρ); frequency – period (f = 1/T ). Tarantola goes on to ar-

gue that the aforementioned physical quantities are actually coordinates over quality spaces;

for example, ‘temperature’ describes points in the cold-hot quality space. An appropriate

distance metric for these quality spaces should remain invariant to a change in coordinates.

Using density ρ and specific volume ν as an example, the appropriate metric which measures

distances between points in the empty-full quality space is:

Dempty-full(Ω1,Ω2) =

∣
∣
∣
∣
log

ρ2

ρ1

∣
∣
∣
∣
=

∣
∣
∣
∣
log

ν2

ν1

∣
∣
∣
∣
. (2.12)

Note that this definition of distance is additive,

D(Ω1,Ω3) = D(Ω1,Ω2) +D(Ω2,Ω3) . (2.13)

Prior probabilities which express ignorance about Jeffreys quantities ought to satisfy scale

invariance. For example, an ignorance prior for a frequency parameter with units of Hz should

retain a constant probability mass from octave to octave, or from decade to decade. In other

words, rather than considering the prior distribution of the quantity to be constant over a

certain interval (as with Cartesian quantities), the logarithm of the quantity should remain

constant. Therefore, for a Jeffreys quantity γ, one possible ignorance prior would be

P (log γ | I) ∝ constant , (2.14)
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or equivalently,

P (γ | I) ∝ γ−1 , (2.15)

with γ ∈ [γmin, γmax] in order to render the prior proper (normalizable). For a Cartesian quan-

tity θ, location invariance implies the familiar flat prior distribution:

P (θ | I) ∝ constant , θ ∈ [θmin, θmax] . (2.16)

Having made the distinction between location invariant (Cartesian) and scale invariant

(Jeffreys) priors, it should be mentioned that in general, the practitioner is more concerned

with the sensitivity of the posterior distribution to prior information than with the precise

form of the prior distribution. Often, if the data sufficiently constrain the parameters under

investigation, other prior distributions may be used (e.g., for analytical convenience) if they

are sufficiently diffuse. In the source determination applications addressed in this thesis, we

find that final estimates obtained for the source strength (a Jeffreys quantity) are relatively

insensitive to a choice of Cartesian or Jeffreys prior.

2.3.2 Evidence

It was mentioned in Section 2.3 that the evidence term, P (D | I), is an unimportant constant

of proportionality when only one model is being considered. In many situations, this is not

the case, and Skilling (2006) has argued that even if only one model is under investigation,

the evidence should still be calculated as a courtesy to future researchers.

The evidence is obtained by marginalizing (integrating) the likelihood over the entire hy-

pothesis space (where each ‘hypothesis’ parameterizes the model M ):

P (D | I) =

∫

all M

P (D |M, I) P (M | I) dM . (2.17)

Essentially, the evidence is a numerical value which measures the suitability of the model to

the data under consideration. If a competing model is able to better predict the data, then the

evidence value will be higher. For example, calculating and comparing evidence values might

be useful in a problem involving multiple point sources, where each model corresponds to a

different number of hypothetical sources. If the measured concentration data are sufficiently

descriptive, then the evidence value should be highest for the model which accounts for the

correct number of sources.

Evidence values can be very difficult to calculate. If the number of parameters encoun-

tered in the model is high, then the integral in Eq. (2.17) will be of high dimensionality.

Such integrals are best approached using stochastic techniques such as nested sampling

(Sivia and Skilling, 2006; Skilling, 2006).
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Chapter 3

Source determination

As discussed in the previous chapter, inverse problems commonly require model parameters

to be estimated. In this chapter we use a simple illustrative example to demonstrate how

Bayesian inference is applied toward the estimation of model parameters for a source deter-

mination problem.

3.1 Literature review

In the literature, problems involving source determination are addressed in many different

contexts of varying scope. What follows is a review of the some of the literature surrounding

source determination; for the most part, this literature pertains to relatively small-scale ap-

plications in atmospheric dispersion. Throughout the review we give particular attention to

which of the source parameters were determined, as well as the method used to estimate the

parameters. Further, specific literature surveys can be found in the introductory sections of

the application chapters in Part II.

Research devoted to estimating the strength (emission rate) of a contaminant source

(whose location is known) using a fixed network of concentration measurements was under-

taken by Wilson and Shum (1992), who estimated the rate of ammonia volatilization from

field plots using a Lagrangian trajectory model, and also by Flesch et al. (1995), who used a

backward-time Lagrangian model to estimate the emission rate of a sustained surface area

source in horizontally homogeneous turbulence. In both cases, the source strengths were

determined using integral approaches based on information from a single sensor.

The problem of characterizing the strengths of a number of recognized sources (source

apportionment) was addressed by Skiba (2003) who developed an adjoint pollution transport

model to be used for estimating the emission rates of various industrial plants in Mexico.

Skiba dealt with issues surrounding the posedness (in the Hadamard sense) of several vari-

ations on the problem and proposed non-probabilistic techniques (analytical, regularization,

and least-squares) to estimate the emission rates for each variation. Another example of

source apportionment involving a transport model is the work by Tsuang et al. (2003), who
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implemented a Gaussian plume model with the aim of determining contributions of various

sources (e.g., roads, power plants) to concentrations of SO2, NOx, particulate matter (PM),

and secondary nitrate and sulfate aerosols. Source apportionment may also proceed without

a transport model, by chemically analyzing captured PM and comparing it to known source

profiles. This was performed in a Bayesian framework by Keats et al. (2009).

The ‘source localization’ problem was addressed by Nehorai et al. (1995) and by

Jeremić and Nehorai (2000), who determined the physical location of a point source with the

objective of finding land mines by sensing the vapours shed. They modelled the dispersion

of the contaminant exclusively using a diffusion mechanism and used data from a static net-

work of detectors measuring concentration over time. Finally, they estimated the location

of the source using a maximum-likelihood method. Matthes et al. (2005) further refined the

solution to the problem by taking advection into account, and used an analytical solution to

the advection-diffusion equation in conjunction with a least-squares approach to estimate the

source location. All of the aforementioned approaches assume idealized, undisturbed homo-

geneous flow fields, and treat the problem in an optimization framework using Monte Carlo

or gradient-based methods.

At this point we digress briefly in order to provide background information describing how

dispersion models are utilized for performing source determination. Specific dispersion mod-

els are introduced gradually in the applications presented in Part II of this thesis; suffice it to

say that for a given source configuration, there are two main ways to calculate source-receptor

relationships (the expected detector concentrations for a given source configuration). The first

and more simplistic method involves running a forward dispersion model (e.g., numerically

solving the advection-diffusion equation over a grid of points) to generate a concentration

field, from which the expected detector concentrations can be extracted (e.g., by choosing the

appropriate element from the resulting array of concentration values) for later comparison to

measured data. The second option is to run a backward (or, adjoint) dispersion model once

for each detector (e.g., solve the adjoint advection-diffusion equation) and obtain the detec-

tor concentration by computing the inner product of the source distribution and the ‘adjoint

concentration’ (or, residence-time density) field. The advantage of using the second approach

is that theoretical detector concentrations can be easily calculated (the inner product cal-

culation is trivial compared to solving the advection-diffusion equation) for many different

possible source configurations, once adjoint concentration fields have been generated. In a

typical source determination problem there are far fewer detectors than potential source lo-

cations, so using backward dispersion models instead of forward ones will be computationally

much more efficient.

The work of Yee (2005) and Keats et al. (2007a) advanced the field of source determination

by introducing a Bayesian methodology for the simultaneous estimation of source strength,

location, and turn-on and turn-off times, using adjoint dispersion models in the complex flow

fields characteristic of urban (built-up) environments. Recent work of Keats et al. (2007c)

has extended the methodology to account for nonconservative (reacting or decaying) trac-

ers, and Yee (2008) successfully solved a problem involving an unknown number of point

sources. Although the flows in the aforementioned cases are statistically stationary, the
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Bayesian methodology is also applicable to time-varying fields, and Yee et al. (2008) were

able to address a transient release being dispersed at a continental scale. Chow et al. (2005),

Kosović et al. (2005) and Rapley et al. (2005) also recognized the value of using a Bayesian

inferential framework to perform source determination in urban environments, but they did

not implement adjoint dispersion equations for quickly computing source-receptor relation-

ships. As a result, their calculations were computationally intensive. Nevertheless, as noted

by Chow et al. (2008), adjoint equations rely on linearity in concentration, so nonlinear effects

which occur during the dispersion process may be difficult to account for. Furthermore, effort

is required to convert an existing forward dispersion model into its adjoint or backward form.

Depending on the availability of computational power, a practitioner may simply prefer to

use forward models. For example, Senocak et al. (2008) used forward Gaussian plume models

to estimate not only source location and strength, but also wind field parameters describing

transport and dispersion coefficients. Gaussian plume models predict concentrations using

analytical formulae and can therefore be run very quickly; for a given (hypothesized) source

location, it is not necessary to generate an entire concentration field in order to determine

individual detector concentrations.

Estimation of both the location and strength of a source was also performed by

Pudykiewicz (1998), who considered the problem of determining the source of a radioactive

tracer. He recognized the problem as probabilistic in nature, and solved adjoint dispersion

equations backwards in time in a global context. However, he mistakenly interpreted the

solution to the adjoint equations as representing a probability density function (PDF) of the

source location. In Section 3.3 we explain why this interpretation is invalid.

3.2 Problem formulation

By way of illustration, consider a single point source (whose height is known) located at a

position given by coordinates (xs, ys), and whose emission rate qs is assumed to be constant

with time. These source properties act as a vector of model parameters:

m ≡ (xs, ys, qs) . (3.1)

Detectors measuring mean concentration data are arranged downwind of the source, and the

terrain is uniformly flat. The wind field is statistically stationary with a mean velocity of

U m/s. The mean wind direction is aligned with the x-axis, as seen from the overhead view

presented in Fig. 3.1.

For now we consider only a single model for the source distribution (i.e., that there is only

a single point source, defined by the parameters m); therefore, we are not yet concerned with

calculating the evidence term. Furthermore, by using the MCMC method (to be discussed in

chapter 4) we are able to draw samples from the posterior PDF without knowing the normal-
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Figure 3.1: Example source-receptor configuration. Circular dots are detectors; the square

dot is the [unknown] source.

ization constant, which allows us to use a simplified version of Eq. (2.8):

P (m | d, I)
︸ ︷︷ ︸

Posterior

∝ P (m | I)
︸ ︷︷ ︸

Prior

P (d |m, I)
︸ ︷︷ ︸

Likelihood

, (3.2)

where d represents the concentration data measured by the detectors.

3.2.1 Likelihood of the parameters

Given that the source is described by the parameters m, we require the probability that an

array of detectors observes a certain set of concentrations d. The likelihood function is used

to quantify the probability of the discrepancy between the measured concentrations d and

a corresponding set of modelled concentrations, r, termed the theoretical source-receptor re-

lationship. ri is the value that detector i would theoretically measure if the source were

characterized correctly by the parameters m, and is determined using a dispersion model.

The discrepancy between the measured and modelled concentrations at the ith detector, di

and ri, arises from [at least] two sources: measurement and model error1. First, consider that

1 A detailed discussion of error sources and propagation in dispersion models can be found in the work by Rao

(2005).
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the measured mean concentration is subject to additive noise, emeas

i :

di = dtrue
i + emeas

i , (3.3)

where dtrue
i is the (unknown) true value of the mean concentration at the ith detector. For

now we assume the noise ei to be normally distributed, although other distributions which

take into account the positivity and skewness of the noise [such as the lognormal, chosen by

Goyal et al. (2005)] can also be used. Nevertheless, Sohn et al. (2002) have performed similar

analyses (source localization) using Gaussian distributions, which we adopt both here and

later in the thesis. The discrepancy emodel
i between the modelled and true concentrations is

also assumed to be normally distributed:

ri = dtrue
i + emodel

i . (3.4)

Both noise components emeas

i and emodel

i are assumed to have a mean of zero and variances

of σ2
D,i and σ2

R,i, respectively. Furthermore, the measurement and the model errors for any

detector are statistically independent, and the measurement and model errors across different

detectors are also statistically independent. The measurement error is then codified as

P (d | dtrue,m, I) ∝ exp

[

−1

2

∑

i

(
di − dtrue

i

)2

σ2
D,i

]

, (3.5)

which represents the probability that the observed data are measured as d when the true

values are actually dtrue. Note that m appears in the PDF of Eq. (3.5) purely for accounting

purposes; there is no logical dependence of measured concentration data on the model. This

term could be removed but is technically necessary for evaluating an integral to follow. The

model error is codified as

P (dtrue |m, I) ∝ exp

[

−1

2

∑

i

(
dtrue

i − ri(m)
)2

σ2
R,i

]

, (3.6)

which states the probability that the true data are predicted by the model for the source-

receptor relationship when the source parameters are m. The likelihood is then obtained by

marginalizing the joint PDF of d and dtrue with respect to dtrue:

P (d |m, I) =

∫

all d
true

P (d,dtrue |m, I) ddtrue

=

∫

all d
true

P (d | dtrue,m, I) P (dtrue |m, I) ddtrue .

(3.7)

Evaluating the integral of Equation (3.7) yields the likelihood:

P (d |m, I) ∝ exp

[

−1

2

∑

i

(di − ri(m))2

σ2
D,i + σ2

R,i

]

. (3.8)
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Assuming that we know d, σD and σR, calculating ri(m) for various m provides P (d | m, I).

Note that Eq. (3.8) is Gaussian in the data, but is non-Gaussian in the source parameters m.

3.2.2 Prior probability of the model parameters

The prior probability encompasses any information known about the source parameters prior

to the arrival of the detector information. For example, if the effects of a toxic gas were to

be qualitatively observed in some region of space, e.g., {x, y} ⊂ Ω, then the value of the prior

probability could be increased in this region according to the reliability of the observations.

In this thesis, it is assumed that nothing is known about the source parameters before-

hand, and that the parameters are independent, in that knowledge of one parameter does not

imply anything about the others. According to the principle of maximum entropy (which re-

duces to Laplace’s principle of indifference in this case), the PDF whose distribution expresses

complete ignorance about the parameter values is flat (Jaynes, 2003); therefore, the prior PDF

is assigned a uniform distribution over the domain of definition Ω for the source parameters:

P (m | I) = P (xs | I) P (ys | I) P (qs | I) ∝ constant, m ∈ Ω . (3.9)

Of course, any PDF must integrate to unity, which is accomplished in this case by bounding

the parameters m. For a bounded computational domain Ω, we have (xs, ys, qs) ∈ Ω; for

example, the source strength qs is assumed to be greater than zero but less than some practical

upper limit. The prior probability is also used to discount the possibility that the source lies

within a building. It is set to zero in all of the within-building regions.

Alternatively, if we consider qs to be a Jeffreys quantity, then we should assign a scale-

invariant prior:

P (qs | I) ∝ q−1
s , qs ∈ [qmin, qmax] . (3.10)

Typically, the data sufficiently constrain qs (e.g., to within an order of magnitude) such that

the posterior distribution is relatively insensitive to the choice of prior, and in the examples

presented later in this thesis, both uniform and Jeffreys priors are used.

3.2.3 Posterior probability of the parameters

Assuming a constant prior distribution, the posterior PDF is essentially proportional to the

likelihood:

P (m | d, I) ∝ P (m | I)P (d |m, I)

∝ I(m ∈ Ω) exp

[

−1

2

∑

i

(di − ri(m))2

σ2
D,i + σ2

R,i

]

,
(3.11)

where I( ) denotes the indicator function, which returns ‘1’ when the argument is true, and

‘0’ otherwise.
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3.3 Source-receptor relationship

While the datum di corresponds to a measured mean (time-averaged) concentration value, the

source-receptor relationship r(m) denotes the corresponding mean concentration predicted by

a dispersion model for a given detector. For a detector located at (xd, yd), we have

r(m) ≡ C(xd, yd;m) , (3.12)

where C is a concentration field obtained by running a dispersion model using m to define the

source. Simply put, dispersion models provide a way to predict contaminant concentrations

given a description of the source (e.g., shape, strength, location) and the physical domain

(e.g., wind field, turbulence statistics, boundary conditions). Depending on the application,

computed concentrations may be called for as time averaged quantities, higher moments,

fluxes, or instantaneous values.

There are two main types of dispersion model: Eulerian advection-diffusion and La-

grangian stochastic. Each possesses its own set of strengths and limitations. Moreover, each

can be used in either forward or backward mode. In forward mode, a dispersion model ful-

fills the capability described above (calculating a concentration field C(x, y, z) given a source

specification). However, depending on the computational requirements of the model, it may

be infeasible to use a forward dispersion model to solve the source determination problem. In

general, the source location is unknown a priori, and running a forward dispersion model for

each possible source location could be untenable if the wind field is complex (as in a built-up

urban area, for example). Backward models are essentially forward models which have been

recast into a receptor-oriented (rather than source-oriented) mode. These models operate in

the space which is dual to the concentration field, and are also known as adjoint models (be-

cause the adjoint advection-diffusion equation is solved). Qualitatively, a backward model is

run backwards in time and space, and generates a ‘dual’ concentration field (e.g., C∗(x, y, z))

which has no physical meaning other than as a residence-time density field, or ‘region of

influence’. Issartel and Baverel (2003) use the term ‘retroplumes’ to describe these fields,

since they take the same form as concentration plumes, except that they emanate upwind

(backwards in time and space) from the detectors, not downwind from the source. Figure 3.2

illustrates the difference between the forward and backward (adjoint) problems as applied to

a continuous point source release. Note that the region of influence (C∗
2 ∩ C∗

3 \ C∗
1 ) is signif-

icantly smaller than the size of the plume, C. C∗
1 is excluded from the region of influence

because according to the shape of C, detector d1 measures zero concentration.

As alluded to above, the primary motivation behind using backward models for source de-

termination is a reduction in computational requirements. Numerically solving the adjoint

advection-diffusion equation requires the same resources as the forward model, but for source

determination we only require one model run per detector, rather than one run per potential

source location. Details are presented later in the applications (Part II), but essentially, once

the C∗ field has been computed at a detector, concentrations expected at that detector can be

calculated for any possible source configuration using an inner product, which reduces to a

simple multiplication in the case of a point source. Typically, the number of available detectors
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a) Forward problem
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Figure 3.2: Illustration showing the relationships between the source, detectors, C field

(plume), and C∗ fields (retroplumes) for a 2-D problem layout with one source (denoted by

s) and three detectors (d1, d2, d3).

is far less than the number of possible source locations, so adopting a backward model may sig-

nificantly reduce the computational requirements.2 The idea of using a backward approach

was probably first proposed by Gifford in 1959, who wrote a letter to the editor suggesting

that a system of transparent plastic overlays with ground-level concentration isopleths could

be placed over a map showing locations of sources and receptors. The concentration isopleths

(which would correspond to a source of unit strength) were to be oriented upwind, with the

plume origin lying at the receptor location. For source locations lying within the plume enve-

lope, multiplying the isopleth values by the corresponding source strengths and summing the

results over all relevant sources would yield an estimate for the concentration at the recep-

tor. Gifford’s system is essentially the same as that used in this thesis; plastic transparencies

have been replaced by computational dispersion models.

Section 3.1 referred to work by Pudykiewicz (1998) in which the intersection of dual con-

centration fields (C∗) were used inappropriately as a PDF for the source location. This state-

ment has generated some controversy [as witnessed by the comment-reply (Pudykiewicz,

2007; Keats et al., 2007b)] and is worth briefly clarifying here. It is certainly true that a zone

of intersecting C∗ fields actually demarcates the region where, according to the dispersion

model, a potential source could have contributed to [non-zero] concentration measurements

made at all detectors. However, summing these ‘influence fields’ does not yield any additional

information about the source location beyond its potential existence. Moreover, the C∗ fields

are generated using a model which only approximates reality and are therefore subject to

model errors with the result that the true source may not necessarily lie within the intersec-

tion of the fields. In effect, the PDF adopted by Pudykiewicz for the source location arbitrarily

depends on the locations where detectors are placed, rather than the concentrations they mea-

2 The computational savings discussed above rely on the wind field and/or emission being constant in time. When

either the wind field or the emission changes in time, the workload increases by a factor of the mean number of

‘time averaging intervals’ during which each detector measures some mean concentration value. This is discussed

further in chapter 5.
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sure. Generally speaking, individual C∗ fields are incompatible and cannot be agglomerated

with the goal of obtaining information about the source.

3.4 Obtaining source parameter estimates

For posterior distributions defined over a low-dimensional space (viz., when the number of

parameters in m is small), source parameter estimates can be obtained from marginal distri-

butions. As suggested by the name, these distributions are obtained (numerically, or in some

cases analytically) through a procedure called ‘marginalization’ in which irrelevant variables

are integrated out of the PDF. For example, suppose we wish to estimate the x-location of the

source. The marginal posterior PDF for the parameter xs is:

P (xs | d, I) =

∫

all ys

∫

all qs

P (xs, ys, qs | d, I) dqs dys . (3.13)

A qualified estimate for xs could be obtained by calculating the mean and standard devia-

tion of P (xs | d, I). The precise choice of estimator is left to the practitioner, as there are

cases where a median and credible interval might be desired instead. Correlations existing

in the posterior distribution (e.g., xs is frequently correlated with qs) can be explored through

multidimensional marginal distributions [e.g., P (xs, qs | d, I)].

For the simple three parameter example given earlier, the posterior distribution can eas-

ily be computed over a three dimensional grid of points (with each point in parameter space

representing a potential source hypothesis) for subsequent post-processing (e.g., marginaliza-

tion). However, as source determination problems become more complex and involve more

parameters, the computational effort and storage requirements increase exponentially. It is

partially for this reason that Bayesian inference has only recently gained in popularity, with

the advent of efficient sampling techniques such as Markov chain Monte Carlo (MCMC). In

the literature, MCMC is overwhelmingly the numerical method of choice for solving problems

formulated in a Bayesian framework. The linkage of Bayesian inference to MCMC is found in

virtually all disciplines, and the development and improvement of MCMC algorithms is cur-

rently a topic of intensive research. The next chapter presents the basics of MCMC as used

for source determination.
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Chapter 4

Markov chain Monte Carlo for

Bayesian inference

Although the value of the posterior distribution can be obtained directly to within a constant

of proportionality, this calculation is nevertheless computationally expensive when conducted

millions or billions of times. Conventional Monte Carlo integration is relatively inefficient for

computing multidimensional integrals (or in the present work, sampling a multidimensional

PDF), because samples are taken at random throughout the entire domain of the parameter

space. Gregory (2005) provides the following illustration: suppose that for a one-parameter

problem, the fraction of time spent sampling regions of high probability is 10−1. Then in an N -

parameter problem, this fraction could fall to 10−N . In contrast, MCMC algorithms generate

samples (e.g., m(k) ∈ R; m(k) is the kth sample) in proportion to the value of the PDF, so time is

not wasted generating samples from regions in parameter space which contribute very little.

Algorithms implementing MCMC are described by Hastings (1970), Gregory (2005),

Gilks et al. (1996), and generally work in the following way:

1. Given some initial values for the parameters (e.g., m(0)), for each parameter we take

a series of random steps and either accept or reject them depending on the transition

probability [which in turn depends on the proposal distribution, as in the Metropolis-

Hastings algorithm, as well as the properties (e.g., value) of the target distribution P (m |
d, I)] at each step. Because each new point is chosen to be in a specific neighbourhood of

the previous point, each new step m(k+1) depends only on the previous step m(k).

2. The series of samples generated by the MCMC method is a Markov chain; the distribu-

tion of these samples tends asymptotically to the distribution of P (m | d, I).

3. Different MCMC algorithms will produce different Markov chains, but they must

obey certain criteria in order for the chains to correctly represent the distribution of

P (m | d, I).

For example, consider the Markov chain associated with the ith parameter, mi. If the kth value

of the chain is m
(k)
i , then subsequent steps could be defined as m

(k+1)
i = m

(k)
i + ξ, where ξ is
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a random number drawn from a proposal distribution with mean 0. A normal distribution is

commonly chosen, with the variance specified by the user. The proposal distribution does not

necessarily need to be symmetric; the Metropolis-Hastings algorithm (Metropolis et al., 1953;

Hastings, 1970) accounts for asymmetrical proposal distributions in the expression for the

acceptance probability. This algorithm is often the starting point for applications of MCMC

to Bayesian inference, due to its flexibility and ease in programming, and is outlined in Algo-

rithm 4.1 in pseudocode. The following notation is used:

• q(· |m(k)) is a proposal distribution from which we draw a candidate m̃. For example, it

might be a normal distribution with mean m(k).

• α(m(k), m̃) is the acceptance probability. This is the probability that the proposal m̃ will

be accepted as the next point in the Markov chain.

The acceptance probability is defined as

α(m(k), m̃) = min

[

1,
P (m̃ | d, I)
P (m(k) | d, I)

q(m(k) | m̃)

q(m̃ |m(k))

]

(4.1)

For symmetric proposal distributions (q(m(k) | m̃) = q(m̃ | m(k))), the acceptance probability

is simplified:

α(m(k), m̃) = min

[

1,
P (m̃ | d, I)
P (m(k) | d, I)

]

(4.2)

Algorithm 4.1 Metropolis-Hastings MCMC algorithm

1: select initial parameter values: m(0)

2: FOR k = 0, 1, 2, . . . DO

3: m̃← sample from q(· |m(k)) {propose a new sample }

4: α← min

[

1,
P (m̃ | d, I)
P (m(k) | d, I)

q(m(k) | m̃)

q(m̃ |m(k))

]

{calculate acceptance probability }

5: u← sample from uniform(0, 1)

6: IF u < α THEN

7: m(k+1) ← m̃ {accept the sample }

8: ELSE

9: m(k+1) ←m(k) {reject the sample }

10: END IF

11: END FOR

A crude sketch of the MCMC procedure as it might be applied to a one-dimensional poste-

rior distribution (compactly denoted P (x)) can be found in Figure 4.1.
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4.1 Chain mixing

In practice, the variance (or, width) of the proposal distribution q has a great impact on the

ability of the algorithm to generate a representative chain of samples m(k) in a reasonable

amount of time. If the width is too large, the chain may stay at one point for a large num-

ber of steps (because the acceptance probability remains low). Alternatively, if the proposal

distribution is too small, the chain may explore regions of high probability very slowly. This

ability of the Markov chain to explore the parameter space is known as ‘mixing’. The effect

of the proposal distribution’s width on chain mixing is demonstrated in Figure 4.2. The his-

P
(x

)

x(k)

P (x(k))

(a) Given a point x(k) in parameter

space, calculate its posterior prob-

ability.

x̃

P
(x

)

x(k)

P (x(k))

q(· | x(k))

(b) Step to a new point x̃ by drawing it

from the proposal distribution q(· |
x(k)).

x̃

P
(x

)

x(k)

P (x(k))

P (x̃)

(c) Calculate x̃’s posterior probabil-

ity and compare it to x(k)’s. Ac-

cept or reject the new point with

some probability α. If acceptance,

x(k+1) = x̃. Otherwise, x(k+1) =
x(k)

P
(x

)

(d) After repeating steps (a–c), the

histogram corresponding to the

Markov chain {x(k),∀k} will con-

verge toward the true marginal

posterior distribution.

Figure 4.1: One-dimensional MCMC demonstration for a Metropolis-Hastings type algorithm.
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tograms in the middle row indicate that the chain with the narrowest proposal width does not

approximate the target distribution well. In this respect, the other two chains perform bet-

ter, although the chain with the widest proposal distribution suffers from ‘shot noise’, which

manifests itself as irregularity in the histogram bar heights. Trace plots (shown in the top

row of Fig. 4.2) can be a good way for the practitioner to visually assess the progress towards

convergence of a MCMC algorithm, especially if the number of parameters is reasonably low.

However, it is also important to quantitatively assess chain convergence; one possible method

for doing so is presented in the next section.

4.2 Chain convergence

For MCMC algorithms, ‘convergence’ expresses the degree of agreement between the chain’s

samples and the true (but unknown) target distribution. Many techniques exist for analyz-

ing whether Markov chains have sufficiently converged; some involve comparing the sample

means and variances of multiple chains (Gilks et al., 1996), while others examine the shape

of the power spectrum (Dunkley et al., 2005). Later in this work we adopt Dunkley et al.’s

convergence criterion, partly due to the fact that it only requires information from a single

realization of a Markov chain. Briefly, Dunkley et al. analyzed the spectral properties of a

Markov chain which had progressed beyond the initial ‘burn-in’ stage1, testing for conver-

gence by examining parameter values obtained through the fitting of a model template power

spectrum. They imposed the following two requirements:

1. The distribution is not biased by correlated points, and the chain is drawing points

throughout the full region of high probability. This is equivalent to saying that for the

spectral representation of the chain (obtained using, e.g., a fast Fourier transform), fre-

quencies lying below some pre-determined cut-off value have entered the white noise

regime (viz., spectrally flat).

2. The ‘convergence ratio’ is specified by an estimate for the ratio of the sample mean

variance (σ2
x̄) to the variance of the underlying distribution (σ2

0). This ratio is required

to lie below some cut-off value, such as 0.01.

Power spectra for three different Markov chains (all of which are exploring the same target

distribution) are shown in Fig. 4.2. The middle chain, for which the mixing ratio is appro-

priate, has clearly entered the white noise regime; this is apparent from the delayed roll-off

into the region of correlation at higher wavenumbers. Full details regarding the convergence

criteria can be found in the work of Dunkley et al. (2005).

In practice, MCMC methods often require manual tuning in order to ensure that proposal

widths are appropriate and that the individual chains (there is one chain per model parame-

ter) will converge in a reasonable amount of time. Besides adjustable parameters, the actual

1 The burn-in period occurs at the beginning of the chain and consists of the initial set of samples which are gener-

ated as the chain moves from the starting conditions toward the target distribution. These samples are typically

discarded.
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choice of MCMC algorithm can greatly affect the convergence rate. As the dimensionality of

parameter space increases, the Metropolis-Hastings algorithm experiences increasing diffi-

culty maintaining a reasonable acceptance rate (the ratio of the number of accepted samples

to total chain length). For high-dimensional problems, ‘guided’ methods such as Hamiltonian

MCMC become indispensable. Guided methods use additional information such as posterior

gradients to steer the random walk and improve acceptance rates, while maintaining the

correct mathematical properties of the MCMC method (asymptotic convergence to the target

distribution). The Hamiltonian MCMC method is applied to solve the source apportionment

problem in chapter 8.
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Figure 4.2: The effect of the proposal width on Markov chain mixing. The top row of ‘trace

plots’ (thinned to show every tenth sample) show the Markov chains. The middle row com-

pares histograms of chain samples to the target distribution (a standard Gaussian). Power

spectra are plotted along the bottow row. Each chain’s samples have a similar standard devi-

ation. Goldilocks-inspired vernacular subtly hints toward the obligatory artful human med-

dling.
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4.3 Post-processing samples

Once a series of MCMC samples has been obtained, summary statistics related to each vari-

able can be found (e.g., sample means and variances). In the event that the target distribution

is highly irregular (e.g., asymmetrical with multiple peaks or spikes), histograms are of de-

scriptive value. In the present research, either the mean or median is used as the summary

statistic of choice, since the distributions encountered may be somewhat irregular. By com-

parison, the commonly used maximum a posteriori estimator faces the potential problem of

ignoring the bulk of the probability density by describing only an isolated local maximum.

Uncertainties associated with parameter histograms can be effectively communicated

through credible intervals (Sec. 2.2.2), which are straightforward to determine given his-

togram information. Credible intervals can be constructed in a number of different ways;

one possibility is to use the highest posterior density (HPD) interval. An HPD interval de-

marcates the region of the posterior distribution which contains h% of the total probability

mass, such that the values of the PDF within the interval are everywhere larger than outside

it. It should be noted that for multimodal distributions with large separations between modes

(viz., ‘disconnected’ modes), the HPD region may be split into multiple intervals, each of which

contains a sufficient proportion of the probability mass.2

2 For this reason, the term ‘HPD interval’ may not be the most appropriate, since the HPD region need not consist

of a single contiguous interval.
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Chapter 5

Source determination in a complex

urban environment

The material presented in this chapter is adapted from an earlier paper:

A. Keats, E. Yee, and F.-S. Lien. Bayesian inference for source determination with

applications to a complex urban environment. Atmospheric Environment, 41:465–

479, 2007.

This chapter mainly quotes the methods and results from the paper. Some material which

was present in the original article pertaining to probability theory, Bayesian inference and

existing literature, has been removed, since it is now available in expanded form in Part I of

this thesis.

5.1 Introduction

Determining the emission source of a contaminant released into the atmosphere has recently

become a topic of intensive study because it carries important implications for both emer-

gency and environmental management. The US Department of Homeland Security envi-

sions using city-wide detector networks capable of sensing chemical, biological or radiological

(CBR) emissions as a tool for mitigating potential acts of terrorism involving the release of

CBR agents. Using a robust source determination methodology in conjunction with CBR

detector measurements would provide emergency services with valuable additional informa-

tion about the location and nature of a threat. On wider spatial and temporal scales, the

problem of environmental contamination warrants the use of source determination method-

ology in a number of settings. Above ground, industrial sites issuing spurious emissions can

be pinpointed (Skiba, 2003; Goyal et al., 2005), and regional sources of air pollution iden-

tified (Lin and Chang, 2002). Below ground, aquifer contamination history can be inferred

(Aral et al., 2001; Michalak and Kitanidis, 2003). Another application of global importance

is the enforcement of the Comprehensive Test Ban Treaty (CTBT). A world-wide network of
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radionuclide detectors is in place as a verification tool and can be used to potentially isolate

the location of clandestine nuclear testing (Geer, 1996; Hourdin and Issartel, 2000).

The main objective of this work is to show how Bayesian inference can be applied to solve

a source determination problem in a consistent and computationally efficient way through the

combined use of adjoint dispersion equations and MCMC. Section 5.2 formulates the problem

for a time-dependent release (as well as the special case of a steady release) from a point

source and explains the rationale behind using the adjoint equation and MCMC approaches.

The methodology is validated using two different test cases in Sections 5.3 and 5.4, in which

we simultaneously estimate the source location and strength for dispersion experiments per-

formed in built-up environments.

5.2 Problem formulation and solution

Consider a vector of parameters, m, which describe the properties of a transient point source:

m = (xs, ys, zs, qs, ton, toff) , (5.1)

where {xs, ys, zs} represent the spatial location of the source, qs is its strength (of dimen-

sion [MT−1]), and {ton, toff} are turn-on and turn-off times. Bayes’ theorem [reproduced from

Eq. (2.8) below] provides a way to manipulate the conditional PDFs of the vector of source

parameters m, the concentration data d, and background information I:

P (m | d, I)
︸ ︷︷ ︸

Posterior

=

Prior
︷ ︸︸ ︷

P (m | I)
Likelihood
︷ ︸︸ ︷

P (d |m, I)

P (d | I)
︸ ︷︷ ︸

Evidence

. (5.2)

Using PDFs in the problem formulation allows us to account for bias and inaccuracy in

our experimental and model data. It also provides a way to account for the fact that al-

though many different source configurations may be plausible, some will be more probable

than others. However, while the Bayesian approach provides the overall framework for solv-

ing this inverse problem, other techniques are required for our calculations to be of practical

use (viz., both timely and sufficiently representative of our ‘state of knowledge’ of the source).

Calculating the theoretical source-receptor relationship (the modelled mean concentration

expected by a detector for a given source configuration) is rapidly accomplished using the

adjoint advection-diffusion equation, which is described in Section 5.2.2. Furthermore, the

posterior PDF, whose dimensionality may be high, must be sampled. This is accomplished

using MCMC, a stochastic sampling technique which was described in chapter 4. Combining

Bayesian inference with the adjoint and MCMC techniques results in an efficient and effective

method for determining the source of a dispersion.
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5.2.1 Bayesian formulation

The full solution to the source determination exercise is the posterior PDF, which represents

the probability that the source parameters m take certain values, given i) a set of concentra-

tion measurements d, and ii) any other background information I that is applicable to the

problem. In order to be of practical use, this PDF must be marginalized for each source pa-

rameter mi, and suitable summary statistics (e.g., the mean and standard deviations, mi and

σmi
) must be extracted.

Using MCMC, we are able to draw samples from the posterior PDF without knowing the

normalization constant, so a simplified version of Equation (5.2) is used:

P (m | d, I)
︸ ︷︷ ︸

Posterior

∝ P (m | I)
︸ ︷︷ ︸

Prior

P (d |m, I)
︸ ︷︷ ︸

Likelihood

. (5.3)

This avoids the need to calculate the evidence term, a complicated multidimensional integral

required for normalization. The posterior is proportional to the product of the likelihood and

prior distributions, which are provided in the following section.

5.2.1.1 Assignment of the likelihood function

The likelihood function was formulated in Section 3.2.1 for the case where detector mea-

surements and modelled concentrations are subject to additive Gaussian noise. It takes the

following form:

P (d |m, I) ∝ exp

[

−1

2

∑

i

(di − ri(m))2

σ2
D,i + σ2

R,i

]

. (5.4)

Given measured concentration data d, and specified uncertainties σD and σR, by calculating

ri(m) for various m we are able to obtain P (d |m, I) to within a constant of proportionality.

5.2.1.2 Assignment of the prior probability

In this chapter, we assume the prior for the source strength qs to be a constant, resulting in

an overall prior:

P (m | I) = constant, m ∈ Ω , (5.5)

which was given in Eq. (3.9).
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5.2.1.3 The posterior probability density function

Since the prior is constant, the posterior PDF is essentially proportional to the likelihood:

P (m | d, I) ∝ P (m | I)P (d |m, I)

∝ I(m ∈ Ω) exp

[

−1

2

∑

i

(di − ri(m))2

σ2
D,i + σ2

R,i

]

,
(5.6)

where I( ) denotes the indicator function. The dimensionality of this PDF is the same as that

of the vector m.

5.2.2 Source-receptor relationship

Efficiently calculating the source-receptor relationship r(m) is crucial to the practical suc-

cess of the source determination methodology. Under a brute-force approach, the forward

advection-diffusion equation (5.8) must be solved for every desired combination of source pa-

rameters m (of which there may be potentially hundreds of millions). This approach yields an

entire concentration field when only a limited set of modelled concentration measurements

are required. In this paper we adopt an adjoint approach in which the adjoint advection-

diffusion equation is solved only once for each detector, and the resulting conjugate concen-

tration field is used to rapidly calculate the expected detector concentration for every desired

combination of source parameters. Solving the adjoint advection-diffusion equation requires

approximately the same computational time as does the forward advection-diffusion equation.

Consider a transient point source Q [ML−3T−1] which releases material at a steady rate

of qs [MT−1] and whose turn-on and turn-off times are ton and toff:

Q = qsδ(x− xs)[H(t− ton)−H(t− toff)] , (5.7)

where δ(·) and H(·) are the Dirac delta and Heaviside unit step functions, and xs ≡ {xs, ys, zs}
is the source location. The transport equation for the mean concentration,

∂C

∂t
+ U · ∇C−∇· (Γ∇C) +∇·u′c′ = Q ,

subject to ∇nC = 0 at ∂R ,

C(x, t = ton) = 0 ,

(5.8)

models the release of the source Q over a space-time domain R × [0, T ] through the time

evolution of the concentration field, C. Here, C [ML−3] denotes a Reynolds averaged (or,

mean) concentration and the elements of U are Reynolds averaged wind velocities in the x, y, z

directions. Γ is a molecular diffusivity, and u′c′ are the turbulent scalar fluxes. The boundary-

normal direction is given by n, ∇n is a directional derivative, and ∂R is the boundary of the
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spatial domain. The scalar fluxes can be modelled using the gradient diffusion hypothesis:

u′c′ = − νt

Sc
∇C , (5.9)

where νt is the kinematic eddy viscosity and Sc is the turbulent Schmidt number, a dimen-

sionless quantity which corresponds to the ratio of momentum diffusivity to mass diffusivity.

Under the modelling assumption (5.9), the transport equation for the mean concentration can

be rewritten as the following advection-diffusion equation:

∂C

∂t
+ U · ∇C −∇· (K∇C) = Q , (5.10)

where

K = Γ +
νt

Sc
(5.11)

is the sum of a molecular diffusivity and an eddy diffusivity used to model the turbulent scalar

flux rate. In flows where turbulent diffusion dominates molecular diffusion, Γ≪ νt/Sc. In the

technical report by Yee et al. (2007) which describes the code used in this thesis to solve the

forward and adjoint advection-diffusion equations, Sc is assigned a fixed value of 0.63.

Next, consider the modelled concentration measurement at the ith detector, ri. This spe-

cific value is a linear functional of the concentration field, C, and is determined by the inner

product of C and a ‘detector response function’, h [L−3T−1], at a specific location and measure-

ment time:

ri = 〈C, h〉 ≡
∫ T

0
dt

∫

R

C h dR , (5.12)

where h = h(x − xr, t − tr) for a detector which measures the concentration at location xr

and time tr. The function h acts as a space-time filter and would be, e.g., a delta function for

an ideal detector with infinite resolving power. According to the duality relationship, ri can

also be obtained using the inner product of the conjugate concentration field C∗ [L−3] and the

source function Q:

ri = 〈Q,C∗〉 ≡
∫ T

0
dt

∫

R

Q C∗ dR , (5.13)

where the C∗ field evolves according to the adjoint advection-diffusion equation:

−∂C
∗

∂t
−U · ∇C∗ −∇ · (K∇C∗) = h ,

subject to K∇nC
∗ + U · nC∗ = 0 at ∂R ,

C∗(x, t = tr) = 0 .

(5.14)

The general procedure for obtaining the adjoint of a linear operator is outlined by Estep

(2004), and is briefly illustrated below for the present case. The adjoint equation (5.14) is

obtained by first multiplying the forward advection-diffusion equation (5.8) by a test function,
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C∗, and integrating over the space-time domain:

∫ T

0
dt

∫

R

C∗∂C

∂t
dR+

∫ T

0
dt

∫

R

C∗U · ∇C dR

−
∫ T

0
dt

∫

R

C∗∇ · (K∇C) dR =

∫ T

0
dt

∫

R

C∗Q dR .

(5.15)

Integrating by parts and taking advantage of the divergence theorem where applicable, the

derivative terms can be rearranged to yield an expression which is compatible with

〈C, h〉 = 〈Q,C∗〉+ boundary terms , (5.16)

and which obeys the boundary conditions associated with the forward problem. The term h

manifests itself in this expression as the left hand side of Equation (5.14) and can be extracted

by inspection. Boundary conditions for the adjoint advection-diffusion equation are chosen

such that the boundary terms of Equation (5.16) vanish, resulting in the duality relationship

between C and C∗,

〈C,L∗C∗〉 = 〈LC,C∗〉
or 〈C, h〉 = 〈Q,C∗〉 .

(5.17)

The linear operators L and L
∗ are defined by:

L( ) ≡ ∂

∂t
( ) + U · ∇( )−∇ ·

(
K∇( )

)
,

⇒ L(C) = Q ,
(5.18)

L
∗( ) ≡ − ∂

∂t
( )−U · ∇( )−∇ ·

(
K∇( )

)
,

⇒ L
∗(C∗) = h .

(5.19)

The inner product of Equation (5.17) can be rapidly calculated in order to find the concentra-

tion at a detector for any choice of Q using the value of the C∗ field at the location of the point

source. For a line, area or volume source, this calculation would be more involved, but still

simpler than re-solving Equation (5.8) for a new source term.

In practice, detectors do not obtain concentration readings continuously; rather, they mea-

sure for a period of time and provide the average concentration over that period. Therefore,

the concentration information at detector i typically takes the form of a time series, with each

data point centered around a time of measurement, t
(i)
j . The concentration read by detec-

tor i during time period j is denoted by d
(j)
i . Figure 5.1 shows how a smooth (theoretical)

concentration curve might be sampled by a detector.

It is necessary to solve Equation (5.14) once for every possible (i, j) in order to find C
∗(j)
i .

Substituting the assumed source distribution of Equation (5.7) into the duality relationship
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Figure 5.1: A detector measures an average value of the concentration over time period j,
resulting in a series of concentration readings at times tj .

of Equation (5.17), one obtains the source-receptor relationship:

r
(j)
i (m) = qs

∫ min(t
(i)
j ,toff)

ton

C
∗(j)
i (xs, ts) dts (5.20)

where C
∗(j)
i is a time-varying field corresponding to the measurement taken by detector i dur-

ing time period t
(i)
j , and r

(j)
i (m) is the averaged concentration that detector i would expect to

have measured during t
(i)
j if the source were correctly characterized by m. The total number of

unsteady C∗ fields that need to be generated is equal to the product of the number of detectors

(indexed by i) multiplied by the number of time intervals t
(i)
j sampled at detector i. Finally, it

is important to note that calculating the posterior distribution involves a summation over all

possible (i, j):

P (m | d, I) ∝ I(m ∈ Ω) exp




−

1

2

∑

i,j

(

d
(j)
i − r

(j)
i (m)

)2

σ2
D,i,j + σ2

R,i,j




 . (5.21)

5.2.2.1 Continuous releases

The problem of a point source which releases material continuously in time into a statistically

stationary wind field is a special case of the more general formulation presented above. Here

we consider a point source of the form:

Q = qsδ(x− xs) , (5.22)

which is a special case of Equation (5.7) for ton → −∞ and toff → ∞. The steady forward and

adjoint advection-diffusion equations are obtained by integrating Equations (5.8) and (5.14),

respectively, over all time:

U · ∇C −∇ · (K∇C) = Q (5.23)

−U · ∇C∗ −∇ · (K∇C∗) = h . (5.24)
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The units of C∗ and h become [TL−3] and [L−3], respectively, and the duality relationship,

Equation (5.17), remains applicable. Thus, the source-receptor relationship is calculated us-

ing:

ri(m) = qsC
∗
i (xs, ys, zs) , (5.25)

where the set of parameters has been reduced to m = {xs, ys, zs, qs}.

5.3 Mock Urban Setting Test (MUST) array

The Mock Urban Setting Test (MUST) is a transport and dispersion experiment which took

place at Dugway Proving Ground in Utah during September 2001 (Yee and Biltoft, 2004). It

was designed to simulate dispersion in a built-up (urban) area using an array of shipping

containers (or building-like obstacles). This array consisted of 12 rows of obstacles in the

streamwise x-direction and 10 columns in the spanwise z-direction. Propylene gas was used

as a tracer and released from various locations within the array both continuously and in-

termittently, and concentration time series were obtained at detectors spaced throughout the

array. A physical model of the MUST field experiment was conducted at a scale of 1:205 in

a boundary-layer water channel operated by Coanda Research & Development Corporation

(Burnaby, British Columbia, Canada). A detailed description of the experiment is provided by

Hilderman and Chong (2004) and Yee et al. (2006). The inverse problem is solved using in-

dividual concentration measurements d which are extracted from the concentration profiles

that were measured during the water channel experiment.

The MUST array test case is useful for validating the source determination methodology

because it possesses the following attributes:

1. Detailed continuous source concentration data are available from a number of experi-

ments at regularly-spaced locations within the array of obstacles.

2. The experiments simulate an urban environment, which tests the ability of the method-

ology to locate a source lying in a built-up area.

3. The flow encounters obstacles, which affect the expected shape of the posterior distribu-

tion (the probability of a source lying within a building is considered to be zero). Fur-

thermore, obstacles induce recirculation zones, which enhance the mixing of the tracer

and obscure the results of the inference procedure (i.e., the uncertainty of the source

location is increased in these zones).

5.3.1 Procedure

5.3.1.1 C∗ field generation

The C∗ fields relevant to the MUST array are generated by solving the steady adjoint

advection-diffusion equation (5.24). The mean fluid velocities U and turbulent diffusivity
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νt are generated on a structured grid of points using the urbanSTREAM code of Lien et al.

(2005a). In order to reduce the computational workload, however, the adjoint code is only

solved over a three-row subset of the domain. This domain size is sufficient, given that the

bulk flow is in the x-direction and the plume width is smaller than the spanwise (z-direction)

width of the domain. Figure 5.2 shows an x-z slice of the mesh used for calculation of the C∗

fields, with obstacles added to provide context.

x
y

z

flow
dir

ec
ti
on

Figure 5.2: A ground-level (y = 0) slice of the mesh on which the adjoint advection-diffusion

equation was solved.

Note that the mesh is significantly more dense between the first two rows of obstacles –

this is a remnant of the fact that this mesh was originally designed for a forward dispersion

calculation (the tracer was released from the region between the first two rows of buildings),

and was not redesigned to accomodate adjoint (backwards) calculations.

The C∗ fields generated by the adjoint advection-diffusion code do not depend on time

because the velocity field is steady, and at present only continuous releases have been con-

sidered. However, the flow is non-homogeneous in all three spatial directions, so one C∗ field

must be generated for each detector.

5.3.1.2 Detector selection

Concentration profiles were experimentally measured at several x-locations and heights. Fig-

ure 5.3 shows an array of detector locations which lie along the paths of the experimental

profiles. Starting from the left (x = 0), each spanwise line of detectors is numbered accord-

ing to its position relative to the leftmost spanwise line of obstacles. The convention used

here is to refer to the lines of detectors as belonging to rows 2.5, 3.5, 4.5, 6.5, 9.5 and 12.5.

Experimental concentration profiles are not available at other x-locations.

By comparing the profiles generated by the forward dispersion model to the experimental

profiles, it is clear that the model error dominates the measurement error. This comparison is

shown for rows 2.5 and 4.5 in Figure 5.4. Although the detector concentrations obtained using
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Figure 5.3: MUST array source and detector configuration. The x, y, and z coordinates are

normalized by the width of an obstacle in the streamwise (or, x) direction. The source (marked

by the square) lies at ground level while the detectors (marked by circles) lie at y = 0.5 build-

ing heights in rows 2.5, 3.5, 4.5, 6.5, 9.5, and 12.5. In the spanwise direction, the detectors

are placed at z = 0.0,±2.075,±4.150,±6.225,±8.305,±10.380 building heights. The filled circles

depict the 42 detectors used to determine the source location.

the C∗ fields agree well with the forward dispersion model, the plume center is considerably

overpredicted with increasing x-distance when compared with the experimental data. The

lumped theoretical and measurement uncertainties for each detector, σL,i = (σ2
D,i + σ2

R,i)
1/2,

are assigned values based on the ability of the dispersion model to predict the experimental

concentrations. These values lie between 10% and 270% of the mean concentration measured

at a given detector. In general, detector uncertainties increase along the centerline in the

streamwise x-direction as the flow is disturbed and the model increasingly overpredicts the

concentration. The 42 detector locations depicted in Figure 5.3 were chosen as measurement

stations to be used for the source reconstruction. Each detector is assigned an uncertainty

according to its position as described above.

5.3.2 Results

The source reconstruction was performed using experimentally measured concentration data.

The Metropolis-Hastings algorithm was used to generate 107 MCMC samples from various

initial conditions. Since the acceptance rate (the proportion of accepted proposals out of the

total number of samples drawn) was low (approximately 15%), these chains were thinned

to obtain smaller chains consisting of every 100th sample in order to avoid autocorrelation.

Although the chain was qualitatively found to quickly converge to the area of interest, we

conservatively chose to discard the first half of these samples to avoid ‘burn-in’. In all, 5× 104

samples were used to generate the histograms shown in Figure 5.5. It should be noted that

the burn-in period is often chosen by inspecting the results of the Markov chain in order to

determine whether it has reached a stationary distribution. The thinning interval can be
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(a) Concentration profile at row 2.5
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(b) Concentration profile at row 4.5

Figure 5.4: Normalized concentration profiles. Small circles represent experimental mea-

surements, the solid line represents the solution to the forward advection-diffusion equation,

and the squares represent detector concentrations reconstructed using C∗ fields according to

Equation (5.25).

selected by computing the autocorrelation function of the chain samples. Automatic methods

for determining optimal burn-in and thinning parameters have been proposed throughout

the MCMC literature (e.g., Gilks et al., 1996; Dunkley et al., 2005); however, in the present

case the chains were inspected manually. In order to verify the MCMC results, the posterior

distribution was evaluated directly, and the marginal distribution of each source parameter

was obtained by numerically integrating the full posterior distribution over the remaining

source parameters. The marginal distributions are also shown in Figure 5.5. The stair-step

appearance of the marginal xs, ys, zs distributions is a remnant of the fact that the value of

the distribution is only calculated at the center of each cell in the computational grid, and is

not linearly interpolated at points in between. This appearance is not present in the graph

for the qs parameter because it is not considered discrete by the MCMC algorithm.

The marginal distribution corresponding to the streamwise source location, xs, is obtained

by integrating the full posterior PDF according to:

P (xs | d, I) =

∫

all ys

∫

all zs

∫

all qs

P (xs, ys, zs, qs | d, I) dys dzs dqs

≈
Ny∑

j=1

Nz∑

k=1

Nq∑

l=1

P (xs, ys,j, zs,k, qs,l | d, I) ∆ys ∆zs ∆qs

(5.26)

where the grid cell dimensions ∆xs,∆ys,∆zs vary in space, but ∆qs is held constant. The

marginal distributions for the other parameters are found similarly. The agreement between

the MCMC results and the marginal distributions is good; small discrepancies are due to the

parameter domain discretization used for the numerical integration.

The results shown in Figure 5.5 demonstrate that the Bayesian methodology provides an

honest assessment of the source-receptor relationship in that the source strength is under-
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predicted based on the available experimental concentration data and the performance of the

dispersion model. The modelled concentrations near the centerline generally overpredict the

measured concentrations and this is reflected in the fact that the methodology expects the

source to be of lesser strength. The source position in the spanwise coordinate, zs, is very well

resolved, as the bulk of the probability mass lies in the width of a single cell of the computa-

tional grid. This is an ideal result because the C∗ fields are not linearly interpolated, so the

value of the marginal posterior distribution does not change within a single cell for a fixed

source strength qs. It is also interesting to note that the xs histogram is smeared over most

of the length of the canyon between the first and second rows of obstacles. This demonstrates

that the rapid mixing which occurs in the canyon where the source is located erodes the qual-

ity of the inference made using data from detectors located in the canyons downstream.

5.4 Joint Urban 2003 atmospheric dispersion study

Mean concentration data were obtained at locations in and around downtown Oklahoma City,

Oklahoma, US, during the Joint Urban 2003 atmospheric dispersion study which was con-

ducted from June 28 to July 31, 2003 (Allwine et al., 2004). A sulfur hexafluoride (SF6) tracer

was released continuously for 30 minutes and sampled at several locations around the city.

For the present case, we used nine sampler sites to perform the source reconstruction. Figure

5.6a shows the source and sampler locations with respect to the buildings present in the flow

field. The dark contours surrounding the source (the area magnified in Figure 5.6b) represent

the marginal posterior distribution for (xs, ys), obtained using direct evaluation of the full

posterior PDF.

Before solving the inverse problem, the wind field was found for the domain shown in

Figure 5.6a using the urbanSTREAM code of Lien et al. (2005a). The domain was subdivided

into 98 × 138 × 68 grid cells in the x, y, z directions, with the most refined cells located in the

built-up area. The buildings in this area were explicitly resolved, while outside this area, the

drag-force approach was used to simulate the effect of buildings on the flow by introducing

a drag-force term into the spatially-averaged momentum equation (Lien et al., 2005b). For

each detector location, the adjoint advection-diffusion equation was solved, resulting in a set

of nine C∗ fields. The problem is steady-state, so the wind field statistics do not change with

time, and the source height (z-location) is assumed known. The units of distance in the x

and y directions correspond to the system of units used internally by the flow solver, and the

source strength qs is measured in grams per second.

Detector measurements from the experiment were used for the di, and the model and mea-

surement uncertainties were assigned realistic quantities based on the ability of the forward

and adjoint dispersion simulations to correctly predict the detector concentrations. Depend-

ing on the detector, these uncertainties range from 2% to 70% of the mean concentration

measured at the detector.
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5.4.1 Results

In Figure 5.6b, the distribution of MCMC samples (xMCMC
s , yMCMC

s ) is plotted as a set of points in

contrast with a two-dimensional contour map of the marginal (xs, ys) distribution. The points

occasionally stray from the bulk of the probability mass outlined by the contours, which is an

indication that the Markov chain experiences difficulty traversing regions of very low proba-

bility, i.e., through buildings. In this case it is necessary to manually adjust MCMC algorithm

parameters (e.g., increase the width of the proposal distribution) in order to encourage the

chain to behave in a more exploratory fashion.

Both the MCMC histograms and marginal posterior distributions of the source parameters

are shown in Figure 5.7. The parameter estimates in the table of Figure 5.7 show that the

MCMC results are able to isolate the source parameters to within one standard deviation. In

contrast to the MUST array case, the streamwise source coordinate ys is well-estimated, with

the bulk of the probability mass lying in the two grid cells which surround the source.

5.5 Conclusions

Bayesian probability theory has been successfully applied to solve the problem of source deter-

mination in a flexible and consistent way. By using the adjoint advection-diffusion equation

along with MCMC sampling, calculations which yield an accurate picture of the full poste-

rior distribution for the source parameters can be performed in a reasonable amount of time.

Using these two techniques, the computational effort required for a fixed spatial domain size

scales linearly with both the number of detectors and the number of source parameters. With-

out the adjoint approach, the computational effort would be proportional to the number of

possible source locations, which is typically far greater than the number of detectors. With-

out using MCMC, the time required to sample from or directly evaluate the posterior PDF

grows as a power of the dimensionality of the source parameters. The methodology is capa-

ble of simultaneously inferring at least four separate source parameter values: the location

and strength are generally well estimated. The quality of the inference truthfully reflects the

quality (in terms of the uncertainty) of the modelled and measured concentration data.

The present work assumes detector and model uncertainties to follow Gaussian distribu-

tions – alternative error distributions (such as lognormal) may be preferred depending on

the available data and models. The primary source of the model uncertainty is our limited

understanding of the physics of turbulent flows. Improving the turbulence modelling compo-

nent of the flow solver and dispersion model would significantly improve the determination

of the source location through a reduction in the discrepancy between the model dispersion

predictions and the measured detector data.

Both of the test cases considered involve dispersion in built-up areas and demonstrate the

utility of the method for practical applications in emergency and environmental management.

Generating the flow field is by far the greatest computational burden, and adding the ability
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to perform source determination to an existing dispersion or CFD tool does not increase this

burden significantly.
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mean(mMCMC
i ) 2.294 0.248 0.001 3.141 × 10−3

mean(mdirect
i ) 2.315 0.198 0.001 3.124 × 10−3

sd(mMCMC
i ) 1.127 0.134 0.060 2.123 × 10−4

sd(mdirect
i ) 1.227 0.135 0.025 2.190 × 10−4

95% HPD (mMCMC
i ) [0.98, 4.21] [0.05, 0.50] [−0.09, 0.09] [2.7, 3.5] × 10−3

Figure 5.5: Marginal parameter distributions and summary statistics (mean and standard

deviation) generated from both MCMC samples and direct marginalization of the posterior

PDF. The histograms are generated from MCMC samples and the solid lines are generated

using a direct calculation of the posterior distribution. The solid vertical line represents the

true parameter value, and the dashed line is the mean of the MCMC samples. Shaded re-

gions represent 95% HPD intervals based on the MCMC samples. The parameter qs was

non-dimensionalized based on the flow rate, reference length, and reference velocity associ-

ated with the experiment. The 95% credible [HPD] interval does not contain the true value of

qs; however, the 99% interval does.
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Figure 5.6: Oklahoma City building outlines overlaid with samples and contours from the

marginal posterior distribution for the source x-y location.
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Figure 5.7: Source parameter estimates as determined using MCMC (histograms) and direct

calculation of the marginal posterior distributions (dark lines). The true parameter value

is shown by the solid vertical line, and the mean of the MCMC samples [mean(mMCMC

i )] is

shown by the dashed line. Shaded regions represent 95% HPD intervals based on the MCMC

samples.
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Chapter 6

Determining the origin and decay

rate of a nonconservative scalar

The material presented in this chapter is adapted from an earlier paper:

A. Keats, E. Yee, and F-S. Lien. Efficiently characterizing the origin and decay

rate of a nonconservative scalar using probability theory. Ecological Modelling,

205:437–452, 2007.

6.1 Introduction

Accurately predicting the dispersion of pollutants in the environment has important implica-

tions for both emergency and environmental management, and has been a topic of intensive

study over the last several decades. Equally important is the inverse problem: determining

the characteristics of the source of the pollutant, whether it be natural or anthropogenic, given

a finite and noisy set of concentration measurements. Bayesian inference has recently gained

popularity as a framework for solving these problems of parameter estimation and model se-

lection; for example, Borsuk and Stow (2000) and Qian et al. (2003) estimated the magnitude,

rate and reaction order of a biochemical oxygen demand model using experimentally mea-

sured wastewater data. Estimating rate parameters is not only useful for model selection

and verification, but it can also be used to find evidence for specific types of chemistry which

occur in the environment. Ariya et al. (1998) isolated the presence of halogen chemistry in

the troposphere by examining ozone and nonmethane hydrocarbon (NMHC) depletion in the

Arctic boundary layer. They applied linear regression to estimate the removal rates of various

NMHCs and deduced a reaction mechanism based on information about Cl, Br and HO radical

chemistry. The air mass under consideration remained stagnant which allowed the authors

to treat it as a ‘smog chamber’ reactor. In contrast, the present work explicitly considers the

advection of species and would be useful in situations involving both transport and chemistry.
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Assuming the existence of a single model used to represent the source (or sources), the

problem of source determination becomes one of parameter estimation in which the parame-

ters describing the source could include its strength (emission rate), location, rate of decay in

the environment, and if the source is transient, its turn-on and turn-off times. Hanna et al.

(1990) used Eulerian-based models to estimate the source strength for the Project Prairie

Grass (PPG) experiments (Barad, 1958; Haugen, 1959), while Flesch et al. (1995) used a

backward-time Lagrangian stochastic (LS) model to estimate the emission rate of a sustained

surface area source in horizontally homogeneous turbulence. The work of Flesch et al. is im-

portant because it presents the backward Lagrangian stochastic model used in the present

research. A similarly motivated but more involved study was carried out by Lin et al. (2003)

who developed a backward LS model for determining surface CO2 fluxes from aircraft mea-

surements made in the planetary boundary layer. The LS models described by Flesch et al.

and Lin et al. both take a ‘receptor-oriented’ approach to determining detector concentrations,

an approach which is also adopted here. However, they do not exploit statistics related to par-

ticle travel times for treating potentially nonconservative tracers.

The source apportionment problem1 was addressed by Skiba (2003) who used an adjoint

pollution transport model (the Eulerian equivalent of the backward Lagrangian stochastic

model) to identify industries operating in violation of emissions regulations. In this case, a

limited set of possible source locations were known a priori, whereas in the present work, no

such assumptions need be made about the position of the source. Penenko et al. (2002) and

Liu et al. (2005) use a similar method to perform a sensitivity analysis and risk assessment

for populated areas which could potentially suffer from the effects of a chemical or radiological

accident.

The Bayesian methodology we have adopted for this work is flexible in that any number

or type of source parameters may be considered for estimation; however, the main contribu-

tion of this research is the attachment of a statistical method (described in Section 6.3.3) to

a Lagrangian stochastic dispersion model. This permits the efficient estimation of the first-

order decay rate of a dispersed tracer. Therefore, for simplicity we consider only a single point

source which continuously emits material into a statistically stationary and horizontally ho-

mogeneous atmospheric surface layer. Although this may seem like a special case of limited

relevance, the method can easily be generalized to account for transient sources and wind

fields. Furthermore, many practical transport-related problems in the field of ecological mod-

elling can be addressed or at the very least approximated by assuming a continuous release of

a contaminant into a statistically stationary and horizontally homogeneous (turbulent) flow

field. In certain wind conditions, the assumption of stationarity (independence of mean vari-

ables and turbulence statistics on time) may be considered valid, which allows tracer trans-

port (emanating from a briefly sustained source) over small distances (100m – 1000m) to be

modelled using a continuous release. For example, the assumption of a continuous release

and horizontal homogeneity of the turbulent wind field was adopted by Meyers et al. (1998)

who inferred dry deposition rates for SO2, O3, HNO3, as well as particulate matter. In fact,

whereas Meyers et al. used eddy correlation methods to estimate the deposition rates, the

1 In the source apportionment problem, we are aware of the locations of a number of pre-existing sources and must

estimate the relative magnitudes of their emissions.
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method presented in this work could also potentially be used (directly or by augmenting a

separate experimental procedure) in the estimation of deposition wherever it can be modelled

as a first-order decay process.

It is important to distinguish the present work from studies which have been done on

global atmospheric transport inversion, such as Rödenbeck et al. (2003) and the TransCom

studies, e.g., Denning et al. (1999). While it is true that they incorporate backward trajecto-

ries (or adjoint equations) and Bayesian inference techniques, these investigations are driven

by global-scale transport models with the objective of determining surface fluxes (of CO2 and

SF6) and do not require near-field models to estimate location or reaction rate parameters.

Contaminant source identification in groundwater flows has been addressed by a num-

ber of authors, including Aral et al. (2001) who used an optimization approach (based

on genetic algorithms) to infer the release history and source location of a contaminant.

Michalak and Kitanidis (2002) adopted a Bayesian approach and used Markov chain Monte

Carlo to sample the posterior distribution for the source parameters. While both investiga-

tions share the goal of inferring the source location of a contaminant, they differ from the

present work in that they did not consider scenarios in which the first-order decay coefficient

of the contaminant was unknown.

Nonconservative tracers (which decay or grow in mass over time either through mechan-

ical, chemical or photolytic processes) represent an important subset of dispersion cases. A

naı̈ve treatment of these cases will result in computationally challenging and data-intensive

calculations. Accordingly, in this chapter we present the efficient numerical solution of an

inverse problem in which parameters describing the source location and strength, as well as

the rate of tracer transformation (growth or decay), are simultaneously estimated. In the

next section, we formulate the solution to the source determination problem in terms of the

comprehensive probabilistic expression for the source parameters. Efficiently evaluating and

interpreting this expression involves techniques which are described in Section 6.3. In Sec-

tion 6.4, we validate the overall methodology using concentration measurements made during

Project Prairie Grass (where the scalar was assumed to be conservative), and also against

data obtained from a solution to the forward problem using a Lagrangian stochastic model of

short-range dispersion in the atmospheric surface layer for a nonconservative scalar.

6.2 Bayesian problem formulation

In this chapter, we consider the following vector of source parameters:

m = (xs, ys, zs, qs, ks) , (6.1)

where {xs, ys, zs} represent the spatial location of the source, qs is its strength (of dimension

[MT−1]), and ks [T−1] is the rate of tracer transformation. Bias and inaccuracy in the exper-

imental and numerical data (e.g., measured concentration data are subject to experimental
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uncertainty, while modelled concentration measurements are affected by the accuracy of the

numerical model) are taken into account by using PDFs2.

The posterior distribution expresses the plausibility of all possible hypotheses (a single

hypothesis consists of a single set of values for the source parameters) and, when evaluated

for a specific set of source parameters, is a scalar quantity whose domain of definition has the

same dimensionality as m. Therefore, for an n-dimensional problem where each parameter

is rendered into s discrete values, the entire posterior distribution might be represented by

sn numbers. For high-dimensional m, this may be an impossibly large number of data points

to calculate, which motivates the use of the MCMC technique for exploring only the signifi-

cant regions of the posterior PDF. Furthermore, MCMC draws samples (i.e., selects sample

parameter values) from the posterior PDF without requiring the evidence term as a normal-

ization constant. The relationship between the posterior, prior and likelihood PDFs can then

be simplified:

P (m | d, I)
︸ ︷︷ ︸

Posterior

∝ P (m | I)
︸ ︷︷ ︸

Prior

P (d |m, I)
︸ ︷︷ ︸

Likelihood

. (6.2)

The bulk of the time required to calculate the value of the posterior PDF for a single hy-

pothesis is determined by the calculation of the likelihood function, which relates modelled

to measured concentration data. Using a backward Lagrangian particle model in conjunction

with an inventory of averaged particle travel times significantly mitigates this effort; these

techniques are described in detail in Section 6.3.

6.2.1 Assignment of the likelihood function

Both the physical concentration measurements and the theoretical source-receptor relation-

ship are subject to uncertainties, which are assumed to have the following properties:

1. We adopt the basic assumption that the measurement error for detector i can be char-

acterized as additive Gaussian noise with root-mean square (RMS) experimental error

σD,i.

2. The model error associated with the source-receptor relationship may be characterized

in a similar way, having RMS error σR,i.

3. Both the measurement and the model errors are independent; i.e., measurements at one

detector do not affect measurements at another detector, and measurement errors do

not affect model errors at each detector location.

2 In this work, we represent errors by simple variances and do not account for bias in the measurement and model

uncertainties. However, the present work could easily be extended to account for bias by adding additional offset

(bias) variables to the Gaussian PDF. These variables might initially be unknown and could later be removed

using marginalization.
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Under these assumptions, the likelihood function takes the same form as in the previous

chapter:

P (d |m, I) ∝ exp

[

−1

2

∑

i

(di − ri(m))2

σ2
D,i + σ2

R,i

]

. (6.3)

6.2.2 Assignment of the prior probabilities

For the present case, we assume a state of ignorance3 with respect to each of the parameters.

Ignorance regarding the location and decay parameters, {xs, ys, zs, ks}, is expressed using a

uniform distribution:

P (xs | I) = P (ys | I) = P (zs | I) = P (ks | I) = constant, m ∈ Ω , (6.4)

and the remaining parameter, qs, is assigned a prior which remains invariant under transfor-

mations of scale4:

P (qs | I) ∝ q−1
s , qs ∈ [qmin, qmax] . (6.5)

Using a scale-invariant prior ensures that P (qs | I) = P (aqs | I) for any constant a (Jaynes,

2003). The interval [qmin, qmax] ensures that the prior PDF is normalizable; in practice, qmax is

chosen to be some finite, reasonable upper bound.

6.2.3 The posterior probability density function

The posterior PDF is proportional to the product of the prior and the likelihood:

P (m | d, I) ∝ P (m | I)P (d |m, I)

∝ I(m ∈ Ω)
1

qs
exp

[

−1

2

∑

i

(di − ri(m))2

σ2
D,i + σ2

R,i

]

,
(6.6)

where I( ) denotes the indicator function.

6.3 Modelling and numerical approach

Numerically predicting ri, the modelled concentration at the ith receptor, requires the use of a

model which, when given a specific source configuration (location, strength and decay rate), is

capable of providing a concentration value at each of the detector (receptor) locations. Rather

than running a forward dispersion model for every possible combination of source parame-

ters, using a backward (or adjoint) dispersion model requires less computational time when

3 Since we do not consider hypotheses where parameters lie outside of the computational domain, our state of

ignorance is not total.
4 The scale-invariant prior was also discussed in Section 3.2.2.
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the number of detectors is significantly less than the number of possible source locations. La-

grangian stochastic particle dispersion models are routinely applied in the field of meteorology

to simulate the dispersion of species in environmental flows. Backward Lagrangian models

are structurally very similar to their corresponding forward models (Seibert and Frank, 2004)

and are used in the present work to generate the required dual (adjoint) concentration fields.

6.3.1 Source-receptor relationship

In this chapter, we consider an ideal continuous point source of the form:

Q = qsδ(x− xs) . (6.7)

Q is a source density distribution [ML−3T−1] which releases material continuously at a steady

rate of qs [MT−1] from location xs. The mean concentration field C resulting from this release

can be found using a forward dispersion model, which relates Q to C through the linear oper-

ator L in the following way:

LC = Q . (6.8)

The definition of the operator L is flexible; in the Eulerian framework, Equation (6.8) becomes

the steady advection-diffusion equation,

U · ∇C −∇ · (K∇C) = Q , (6.9)

where

L( ) ≡ U · ∇( )−∇ ·
(
K∇( )

)
. (6.10)

In a Lagrangian framework, L effectively describes a forward Lagrangian stochastic (fLS)

particle model:

C(x) =

∫

R

G(x | x0) Q(x0) dx0 , (6.11)

where G(x | x0) is the integral kernel of L
−1 and is a function of the specific LS model chosen.

In LS models, G(x | x0) represents a transition probability density.

The adjoint operator, L
∗, relates a dual (or adjoint) concentration field (viz., C∗ field) to a

‘detector response’ function, h [L−3]. For the ith detector, the relationship is:

L
∗C∗

i = hi , (6.12)

where h = h(x − xd) models the detector response function of a receptor which measures the

concentration at location xd. The function h acts as a spatial filter and would be, e.g., a delta

function for an ideal detector with infinite resolving power. In an Eulerian framework, Equa-

tion (6.12) becomes the adjoint advection-diffusion equation. In a Lagrangian framework, L
∗

describes a backward Lagrangian stochastic (bLS) model. The C∗ field has units of [TL−3]

and can be interpreted as a residence-time density field. Here, we assume that the release

is continuous and the flow is statistically stationary, so transient terms are absent in both L

and L
∗.
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The source-receptor relationship is used to obtain ri, the modelled concentration value at

the location of the ith detector. ri is defined through the inner product:

ri = 〈C, hi〉 ≡
∫

R

C hi dR , (6.13)

where R defines the spatial domain (or a space-time domain if the problem were transient).

The duality relationship, defined by Equation (6.14), connects the forward and adjoint opera-

tors and provides an alternative way to calculate the source-receptor relationship:

〈C,L∗ C∗〉 = 〈LC,C∗〉 (6.14)

⇒ ri = 〈C, hi〉 = 〈Q,C∗
i 〉 ≡

∫

R

Q C∗
i dR . (6.15)

For a point source, the inner product reduces to a simple multiplication:

ri(m) = qsC
∗
i (xs, ys, zs, ks) . (6.16)

In general, one C∗ field must be generated per receptor, with the response function h treated

as a ‘source’. Once all of the C∗ fields have been generated, the source-receptor relationship

can be rapidly calculated using Equation (6.16) for any combination of the parameter val-

ues {xs, qs}. Varying the tracer decay rate, ks, introduces difficulties which are addressed in

Section 6.3.3.

6.3.2 Forward and backward Lagrangian stochastic dispersion model

Lagrangian stochastic (LS) particle models provide an alternative to Eulerian methods for

simulating the dispersion of a tracer in a wind flow. Whereas Eulerian methods directly cal-

culate concentration fields using the advection-diffusion equation discretized over a grid of

fixed locations, LS methods track individual ‘particles’ or ‘parcels of fluid’ through a flow field

and generate a set of particle trajectories which can then be manipulated to yield concentra-

tion fields (and other information).

Both the fLS and bLS models used in the present research calculate particle trajectories by

solving for velocity increments dui which evolve according to the Langevin equation (Rodean,

1996):

dui = ai(x,u, t)dt + bi(x,u, t)dWt , (6.17)

where dWt denotes an increment of the standard Wiener process; x is a vector indicating the

position of the particle; u is the Lagrangian velocity vector of the particle, and (u1, u2, u3) =

(u, v,w) are the streamwise, spanwise and vertical components of the velocity vector. Particle

positions are calculated using the following equation:

dxi = uidt . (6.18)
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The ai terms govern the deterministic component of the particle trajectory and represent a

combination of:

1. Damping coefficients which relax the velocity increments dui back toward the mean flow;

2. A ‘drift correction’ term which satisfies the ‘well-mixed criterion’:

If a species of passive “marked particles” is initially mixed uniformly in po-

sition and velocity space in a turbulent flow, it will stay that way (Thomson,

1987). In other words, if the concentration of a species is initially uniform in

a flow, it will remain uniform if there are no sources or sinks for the species

(Rodean, 1996).

In the present model, the ai are functions of velocity ui, Reynolds stresses τij, and their re-

spective z-derivatives, and the dissipation rate ǫ. With respect to the test cases addressed

later in this chapter, parameterizations for the mean wind profile, Reynolds stresses and dis-

sipation rate can be found in Section 6.4.1. The bi terms govern the stochastic component of

the trajectory and represent acceleration increments generated by random pressure fluctua-

tions with very short correlation times. The present work assumes horizontally homogeneous

and statistically stationary flow in the atmospheric surface layer, for which functional forms

of the ai and bi coefficients for Gaussian turbulence consistent with the ‘well-mixed criterion’

and Kolmogorov’s theory of local isotropy are:

a1 =

[

−Ckǫ

2
[λ11(u1 − U1) + λ13u3] +

∂U1

∂x3
u3 +

1

2

∂τ13
∂x3

]

+

[
∂τ11
∂x3

[λ11(u1 − U1) + λ13u3] +
∂τ13
∂x3

[λ13(u1 − U1) + λ33u3]

]
u3

2
,

(6.19a)

a2 =

[

−Ckǫ

2
(λ22u2) +

∂τ22
∂x3

(λ22u2)
u3

2

]

, (6.19b)

a3 =

[

−Ckǫ

2
[λ13(u1 − U1) + λ33u3] +

1

2

∂τ33
∂x3

]

+

[
∂τ13
∂x3

[λ11(u1 − U1) + λ13u3] +
∂τ33
∂x3

[λ13(u1 − U1) + λ33u3]

]
u3

2
,

(6.19c)

bi = (Ckǫ)
1/2 , (6.19d)

where the λij are the components of the inverse Reynolds stress tensor τ−1
ij :

λ11 = (τ11 − τ2
13/τ33)

−1 , (6.20a)

λ22 = τ−1
22 , (6.20b)

λ33 = (τ33 − τ2
13/τ11)

−1 , (6.20c)

λ13 = (τ13 − τ11τ33/τ13)−1 , (6.20d)

and the Reynolds stresses are τij = (ui − Ui)(uj − Uj) = u′iu
′
j, where Uj are components of

the Reynolds averaged wind velocity. For the horizontally homogeneous wind field used later
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in this chapter, the flow direction is aligned with the x-axis, so U2 = U3 = 0. Furthermore,

in the atmospheric surface layer, τ12 = τ23 = 0. The explicit Euler scheme is used for time

integration, with the time step chosen to be significantly smaller than the integral Lagrangian

time scale:

∆t = 0.01τL(z) , (6.21)

τL(z) =
2w′2

Ckǫ(z)
, (6.22)

with ǫ(z) ∝ 1

z
, (6.23)

where Ck = 4.8 is a constant. General expressions (including the changes necessary for im-

plementation in a backward LS model) for the ai and bi terms (e.g., for cases where flows and

turbulence are not homogeneous) are given by Flesch et al. (1995) and Yee (2008). Rodean

(1996) lists a number of alternate values that various authors have proposed for the constant

Ck, and Yee and Wilson (2007) discuss issues related to the stability of both the dynamical

and time integration scheme.

With respect to the fLS model, dispersion from a continuous source is modelled by re-

leasing a large number Np of particles from the source location, with each particle’s initial

‘pseudo-mass’ representing a fraction of the source strength qs. As particles spend time in

the flow field, they may undergo transformations which alter their pseudo-mass. These mech-

anisms are modelled according to a first-order decay process which is described in Section

6.3.3. For the moment, we consider that the jth particle’s pseudo-mass (viz., source strength

fraction), qj, is a function of the amount of time, tj , that it has spent in the field:

qj = qj,0 f(ks, tj) , (6.24)

where qj,0 = qs/Np is the particle’s pseudo-mass at tj = 0, and ks is a coefficient characterizing

the decay process. Similarly, with reference to the bLS model, Np particles are released from

each of the detector locations. Since the detector response function, h, integrates to unity,

each particle’s initial dual pseudo-mass is q∗j,0 = 1/Np, and the decay process is modelled in

the same way:

q∗j = q∗j,0 f(ks, τj) . (6.25)

The temporal frame of reference has been reversed (particles originate from detectors and

are travelling backward through the flow field), so τj = −tj + T , where T is an arbitrary

transformation constant.

In order to obtain a discrete representation of the particle trajectory defined by Equations

(6.17) and (6.18), particle locations are recorded at discrete time intervals. Between the loca-

tions x
(n)
j and x

(n+1)
j , and within a volume enveloping {x(n)

j ,x
(n+1)
j }, the jth particle spends a

‘residence time’, ∆τj = τ
(n+1)
j − τ (n)

j . To first-order accuracy, the individual contribution of the
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particle to the residence-time density in a grid cell whose centroid is x can be obtained using:

C∗(x, ks) =
∑

j:xj∈D

ψ(xj ;x) q∗j ∆τj , (6.26)

where ψ(xj,x) is a mass-conserving kernel function with finite support over spatial domain

D ⊂ R. It assigns a relative contribution to the C∗ value in the cell based on the distance

between the jth particle’s position xj and the center of the grid cell. The bandwidth (a measure

of the region of support) of this kernel is typically on the order of the edge length of a grid cell.

6.3.3 Tracer decay treatment

The species being dispersed is assumed to undergo transformation (decay or growth) by, e.g.,

reaction, radiological decay, or scavenging, which can be modelled by the first-order mecha-

nism:
dC

dt
= −ksC , (6.27)

where ks is a rate constant with units of [T−1]. Here, we assume ks to be positive for trans-

formations in which the concentration of the tracer decays over time as it is transported. The

solution to Equation (6.27) is:

C(t) = C0 exp(−kst) , (6.28)

where C0 is the concentration at time t = 0. The adjoint decay mechanism is then modelled

using:
dC∗

dτ
= −ksC

∗ , (6.29)

whose solution is:

C∗(τ) = C∗
0 exp(−ksτ) , (6.30)

assuming that particles were released from the detector at time τ = 0. Note that τ > 0 refers

to earlier times relative to τ = 0.

With respect to the bLS model, ‘tagging’ the jth particle with its ‘accumulated travel time’

τj enables us to rapidly quantify its expected transformation for any ks:

q∗j (τj) = q∗j,0 exp(−ksτj) , (6.31)

where q∗j,0 ≡ q∗j (τj = 0). Treating dual pseudo-masses (as opposed to dual concentrations) in

this manner is appropriate given the linearity of Equation (6.29).

Complications arise when we attempt to calculate the C∗ value in a grid cell through

which a large number N of particles have passed. Figure 6.1 demonstrates how different

[dual] particles travelling upstream from a given detector could take different amounts of

time to reach the same grid cell. Strictly speaking, the correct C∗ value for the cell is obtained

by re-calculating Equation (6.31) using the desired ks value for all N particles, and then sub-

stituting q∗j into Equation (6.26). However, this requires us to maintain and manipulate lists
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of all the particles generated from each detector by the bLS model, which would be computa-

tionally intractable and excessively data-intensive for large simulations consisting of millions

or billions of particles moving in flow fields which might evolve over time. Fortunately, by

u
detector

grid cell

Figure 6.1: Dual particles are ‘released’ from detectors and travel upstream through the wind

field, generating retroplumes. A number of particles will pass through the same grid cell (a

potential source location) and will have taken different lengths of time to travel there, by

virtue of the stochastic nature of their trajectories.

phrasing the problem in a statistical sense, i.e., by considering the distribution of the indi-

vidual particle travel times τj, we can estimate C∗(x, ks) with an accuracy determined by the

value of ks together with the properties of the distribution of the τj. In Section 6.4.4 we assess

the computational savings made through the use of the statistical method, relative to solving

the problem exactly using all available trajectory information.

In order to simplify the analysis of our estimate for C∗(x, ks), we will assume a very basic

kernel (with a top-hat function) which arithmetically averages both the travel times and dual

pseudo-masses of particles passing though the domain D defined by a single grid cell centered

on x. Assuming a kernel of this form results in simple expressions for the sample mean travel

time, τ̂ , and the conservative C∗ field value, C∗
0 :

ψ(xj ,x) =
1

∆x∆y∆z
xj ∈ D , (6.32)

τ̂(x) =
1

N

∑

j:xj∈D

τj , (6.33)

C∗
0 (x) =

1

∆x∆y∆z

∑

j:xj∈D

q∗j,0 ∆τj . (6.34)

If we assume that the only information available describing the distribution of particle travel

times, τj, is their mean and variance, then the principle of maximum entropy (Jaynes, 2003)

asserts that the maximally non-committal (least informative) PDF used to describe the parti-

cle travel times should be the Gaussian distribution. Given that the τj are obtained directly

from the Lagrangian stochastic particle model, obtaining their mean and standard deviation

is straightforward.
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The true C∗ value in a given grid cell is a consequence of the decaying pseudo-mass, q∗,

and is obtained directly using the arithmetic mean of the exponentiated decay coefficients:

C∗(x, ks) = C∗
0

1

N

∑

j:xj∈D

exp (−ksτj) . (6.35)

Maintaining lists of individual τj is impractical, so we must find a way to estimate C∗ using

the sample mean and standard deviation of the τj. Assuming that the individual particle

travel times τ are distributed normally,

τ ∼ N(τ̂ , στ ) , (6.36)

where N(τ̂ , στ ) is a normal (Gaussian) distribution with mean τ̂ and standard deviation στ ,

then the exponentiated decay coefficients are distributed log-normally:

φ ≡ exp (−ksτ) ∼ LN (−ksτ̂ , ksστ ) , (6.37)

with probability density function given by

P (φ) =
1

ksστφ
√

2π
exp

(

−1

2

(
log(φ) + ksτ̂

ksστ

)2
)

. (6.38)

Here, LN(−ksτ̂ , ksστ ) is a log-normal distribution such that the logarithm of the random vari-

ate results in a Gaussian distribution whose mean and standard deviation are −ksτ̂ and ksστ .

The mean of this log-normal distribution provides the following estimate for C∗:

Ĉ∗(x, ks; τ̂ , στ ) = C∗
0 exp

(

−ksτ̂ +
1

2
k2

sσ
2
τ

)

. (6.39)

Before proceeding to use this estimate, it is worthwhile to examine its accuracy in view of

the fact that the limited availability of computational power constrains the number of particle

trajectories that can be simulated (within a reasonable amount of time) during a given bLS

model run. Consider a detector for which the bLS model is used to generate a corresponding

C∗ field. With increasing upstream distance from this detector, particle trajectories are spread

thinly over more grid cells, resulting in lower individual cell particle counts (and in turn lower

dual concentration [C∗] values). For grid cells experiencing low tagged particle counts, the

law of large numbers does not necessarily guarantee the accuracy of the mean particle travel

time, τ̂ , which might vary significantly across several different realizations of the same (in

the parametric sense) bLS model run. Since the estimate, Ĉ∗, is a function of τ̂ , the impact of

variability in τ̂ on the variability of Ĉ∗ must be analyzed.
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Based on the earlier assumption that particle travel times are normally distributed, their

sum, and thus the estimated mean travel time, τ̂ , is also normally distributed5,

τ̂ ∼ N
(

τ̄ , στ/
√
N
)

, (6.40)

where τ̄ is the ‘true’ mean travel time, and the standard deviation is στ/
√
N , where N is the

number of particles passing through a given grid cell. N could change for different bLS model

realizations, but here we assume for simplicity and with no loss in generality that it remains

the same. As with τ , the fact that τ̂ is normally distributed leads to a log-normal distribution

for the estimate, Ĉ∗:

Ĉ∗(x, k; τ̂ , στ ) = C∗
0 exp

(

−kτ̂ +
1

2
k2σ2

τ

)

∼ LN
(

−kτ̄ + log

[

C∗
0 exp

(
1

2
k2σ2

τ

)]

,
kστ√
N

)

,

(6.41)

whose standard deviation is:

sd(Ĉ∗) = C∗
0 exp

(
k2σ2

τ

N

(
N + 1

2

)

− kτ̄
)(

exp

(
k2σ2

τ

N

)

− 1

) 1
2

. (6.42)

It is clear from Equation (6.42) that as k and στ decrease, and asN increases, the standard

deviation of the sample mean decreases. However, for certain values of k, τ̄ , στ and N , Ĉ∗ may

vary significantly. This variance could be treated as part of the overall model (theoretical)

uncertainty, σR, information which can be encoded into the likelihood function. It should also

be noted that the above analysis assumes that the variability in τ̂ as encoded in στ is known

exactly; in practice, στ must be estimated from the sample of N particles that ‘move’ through

the given grid cell.

6.4 Short-range dispersion in the atmospheric surface layer

Here we apply the source determination methodology to a test case whose wind field and

geometry match those used for Project Prairie Grass (PPG), a benchmark tracer dispersion

experiment that was conducted over flat terrain with no obstacles. This experiment is de-

scribed in detail in the original reports (Barad, 1958; Haugen, 1959), and more recently by

other authors such as Venkatram and Du (1997), and Hanna et al. (2004).

In PPG, sulfur dioxide (SO2) was released from a small tube placed 46 cm above the

ground. Seventy 20-minute releases were conducted during July and August 1956, in a wheat

field near O’Neil, Nebraska. The wild hay was trimmed to a uniform height of 5 to 6 cm.

Samplers were positioned on concentric semi-circular arcs centred on the release, at down-

wind distances of 50, 100, 200, 400, and 800 m. The samplers were positioned 1.5 m above

5 For more general distributions of τ , Equation (6.40) is only true in the limit as N → ∞, but for the present case,

the relationship is also valid for small N .
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the ground, and provided 10-minute (averaged) concentration values. Towers for measuring

vertical profiles of mean concentration were also available along the arc with a radius of 100

m.

After stating the parameterization used to define the wind field (Section 6.4.1), we present

a reference solution based on part of the actual PPG experiment (Section 6.4.2). This is fol-

lowed by a validation of the statistical tracer decay treatment and a discussion of its per-

formance. We validate the overall source determination methodology in two stages. First,

in Section 6.4.5.1 the source reconstruction approach is tested using real concentration data

measured during the PPG experiment (in which the scalar was considered to be conservative).

During the source reconstruction approach, it is assumed that the rate of decay is unknown.

In the second stage (Section 6.4.5.2), the reconstruction approach is applied to two sets of syn-

thetic concentration data generated using a forward Lagrangian stochastic model operating

under the same atmospheric conditions as PPG, with decay of particle mass being modelled

by the first-order mechanism described by Equation (6.27). These synthetic measurements

are then chosen to play the role of d in the inverse problem, and the bLS model is applied to

generate the required C∗ fields.

It should be noted that the Lagrangian stochastic particle model described in this chapter

has already been validated against PPG using parameterized wind statistics, appropriate for

a horizontally homogeneous neutrally-stratified atmospheric surface layer (or, adiabatic wall

shear layer), for the case of a passive, conservative tracer (Wilson et al., 1981).

6.4.1 Wind field

The wind field is fully-developed and horizontally homogeneous, so all velocity and turbulence

statistics are functions of z (height above the ground surface) only. The mean wind velocity

is aligned with the x-axis. The fLS and bLS models require the wind field to be supplied

in terms of its mean velocity and turbulence statistics. For the present case, the wind field

can be described analytically by semi-empirical relationships developed for a horizontally

homogeneous neutrally-stratified surface layer. Parameterizations of wind statistics also exist

for describing non-neutral (e.g., stably stratified and convective) boundary layers, but they

are not considered in this work. The components used to describe the turbulent wind field are

outlined below. These expressions are commonly used for LS models applied to the surface

layer, and are similar to those found in Flesch et al. (1995) and Rodean (1996). They are

parameterized in terms of u∗, the friction velocity, and z0, the roughness length.

Mean wind velocity profile

The average wind speed in the x (streamwise) direction is assumed to follow a log-law profile

in the surface layer:

U1(z) ≡
u∗
κ

ln
z

z0
, (6.43)
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where κ ≈ 0.4 is von Kármán’s constant. The mean y and z velocity components (v and w) are

both zero.

Velocity variances

The velocity variances, u′2, v′2, w′2, and the covariance, u′w′, are constant within the surface

layer:

u′2 = v′2 = 4.5u2
∗ ,

w′2 = 1.69u2
∗ ,

u′w′ = −u2
∗ .

(6.44)

It is assumed that the velocity covariances u′v′ and v′w′ vanish in the surface layer.

Dissipation rate

The turbulence kinetic energy dissipation rate is determined as follows:

ǫ(z) =
u3
∗

κz
. (6.45)

6.4.2 Reference solution: forward dispersion

The fLS model was used to simulate dispersion under the conditions encountered in Run

24 of the PPG experiment. Using a roughness length of z0 = 0.006 m, a friction velocity of

u∗ = 0.38 m s−1, and a source strength of qs = 41.2 g s−1, particle trajectories were used to

generate a three-dimensional concentration field over a 420×200×10 m3 domain. A horizontal

slice of this domain (z = 1.5 m), along with the locations of the source and detectors, is shown

in Figure 6.2. The concentration field was generated for a grid of cells of dimension ∆x =

∆y = ∆z = 1 m.

Along each arc, detectors were spaced at 2◦ intervals, and the streamwise flow direction

(aligned with the x-axis) was determined using the maximum concentration measurement.

Experimentally measured concentration data for each arc (at radii r = {50, 100, 200, 400} m

from the source) are plotted in Figure 6.3 together with concentration profiles generated with

the fLS model using decay coefficient values of ks = {0, 0.03} s−1.

6.4.3 Validation: tracer decay treatment

Before proceeding to solve the inverse problem (Section 6.4.5), we first examine the suitability

of the tracer decay treatment which was presented in Section 6.3.3. Without loss of generality,

consider the detector located at (x, y, z) = (400, 0, 1.5). The C∗ field (or ‘retroplume’) emanating

upwind from this detector was calculated by using the bLS model to determine the trajectories
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of 1× 105 tagged particles. For the six grid cell locations marked in Figure 6.4, tagged particle

travel times were recorded and used to generate the normal probability plots shown in Figure

6.5. The Kolmogorov-Smirnov test was applied to each set of travel times. P-values for each

set except τa met or exceeded 0.1. Despite τa failing the test, we consider the assumption of

normality to be vindicated by the high quality of the statistical tracer decay approximation in

regions near to the source. This property is quantified in Figure 6.7.
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Figure 6.2: Arrangement of the point source (square) and detector arcs (circular dots) for

Project Prairie Grass. The detectors shown measured non-zero concentrations during the PPG

experiment. Contours of log10(C [µg/m3]) obtained using the fLS model (ks = 0, z = 1.5 m) are

also plotted.
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Figure 6.3: Experimentally measured circumferential concentrations (circles), simulated con-

centration profiles (solid line, obtained using fLS model), and decayed concentration (dashed

line, ks = 0.03 s−1).
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Having assessed the validity of assuming normally-distributed particle travel times, we

turn our attention to estimating the relative error incurred by using particle travel time

0 100 200 300 400

−
10

0
−

50
0

50
10

0
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x [m]

y
[m

]

abc

d

e

f

Figure 6.4: Detector (circle) and grid cell locations (squares labelled a–f ) in which particle

travel times were binned. Contours of log10(C
∗) obtained using the bLS model (ks = 0, z =

1.5 m) are plotted in the background.
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Figure 6.5: Normal probability plots of particle travel times recorded at the grid cells shown

in Figure 6.4.
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statistics (mean and variance) to approximate the ‘true’ C∗ field6. The estimate, Ĉ∗, is de-

fined by Equation (6.39). We define the absolute value of the relative error incurred by the

approximation as:

EC∗ =
| Ĉ∗ − C∗ |

C∗
, C∗ > 0 . (6.46)

For the case of the C∗ field shown in Figure 6.4, the error term EC∗ was calculated in all

cells (where C∗ > 0) throughout the three-dimensional domain R for the cases of ks =

{0.03, 0.3} s−1. Histograms showing the distribution of EC∗ over the domain as a whole are

presented in Figure 6.6. For the present test case, the error is clearly significant for the larger
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0
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00

0
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Figure 6.6: Histograms of the error incurred by the approximation, Eq. (6.39). The error is

evaluated once per grid cell over the three-dimensional spatial domain.

value of ks, and Figure 6.7 demonstrates that EC∗ generally grows with upstream distance

and, by extension, increasing particle travel time.

While Figures 6.6 and 6.7 characterize EC∗ specifically with respect to the estimate of the

C∗ field of Figure 6.4, it remains desirable to characterize EC∗ for more general cases. When

considering bLS simulations that are not problem-specific, the standard deviation of Ĉ∗ as de-

fined by Equation (6.42) is indicative of the accuracy of the approximation. This quantity de-

pends on ks, τ̄ , στ and N , but can be characterized effectively by approximating the ratio στ/τ̄

using a constant value. For the bLS test case outlined above, Figure 6.8 presents the distri-

bution (over all grid cells) of this ratio, and shows a pronounced mean value of approximately

0.10.7 In Figure 6.9, we plot contours of sd(Ĉ∗) as a function of ks and N , conservatively

assuming that the ratio στ/τ̄ = 0.15. For low N and large ks, sd(Ĉ∗) increases drastically,

indicating that bLS simulations involving high decay rates should be made more accurate by

increasing the number of particles released from the detector (in the hope of increasing N , the

number of particles passing through the grid cell).

6 By ‘true’, we refer to a C∗ field calculated using Eqn. (6.35), not necessarily a field generated using a large enough

number of particles to ensure small statistical error.
7 Empirical observation suggests that this figure remains more or less constant for different scenarios.
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We recapitulate that the approximation Ĉ∗ is based on the assumption that particle travel

times are normally distributed, which leads to the consequence that decayed pseudo-masses

q∗ are distributed log-normally. Alternatively, if we assume that pseudo-masses q∗ are in fact

normally distributed, numerical experiments show that accuracy of the approximation suffers

(EC∗ grows, and the histograms of Figure 6.6 are shifted to the right by a significant amount).

6.4.4 Performance of the statistical tracer decay treatment

The above analysis has shown that the statistical tracer decay approximation is valid under

the condition that the ratio of the average particle travel time to the decay coefficient is rel-

atively low. Applying this statistical treatment to an existing LS model requires only a little
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Figure 6.7: The error EC∗ as a percentage, evaluated along the centerline of the C∗ field

(y = 0, z = 1.5), upstream of the detector.
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Figure 6.8: Histogram of the ratio of travel time standard deviation (στ ) to mean particle

travel time (τ̄ ) for all grid cells in the PPG domain.
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Figure 6.9: Contours of log10

(

sd(Ĉ∗)
)

for varying ks and N . Here, στ/τ̄ = 0.15, and τ̄ = 100 s.

code modification and results in a much faster and more memory-efficient calculation of the

expected dual concentration in a grid cell, compared to using an exact approach in which all

particle trajectory information would have to be retained.

Due to the considerable variation in computer storage techniques and data structures,

there is no point in performing a side-by-side comparison of two LS codes, one which incor-

porates the statistical treatment and another which does not. Instead, we consider how the

required CPU time and memory (storage) requirements relate to typical LS model parameters

governing the length and spatiotemporal resolution of a dispersion simulation.

Consider a bLS dispersion model run in which Np particles are released from a single

detector. Each of these Np particles follows a trajectory which is recorded either on disk or

in memory by saving the individual particle’s position (xj), pseudo-mass (q∗j ), and cumulative

travel time (τj). Trajectory data is built up by saving this positional information at every time

step, and we can assume that the average particle spends Nt time steps in the domain. Thus,

an LS simulation will typically write (Np Nt) entries in a trajectory file.

The desired end product of a bLS simulation is usually a C∗ field. Consider such a field,

generated from a trajectory file using the kernel described in Equations (6.32–6.34), and dis-

cretized over a Cartesian grid which contains (NxNyNz) grid cells. In order to calculate the

hypothetical concentration expected by the detector using Equation (6.16), we extract the

value of the C∗ field at a potential source location (xs, ys, zs). When the rate of tracer decay

(ks) is known a priori, a C∗ field need be generated only once from the trajectory data using

the first-order decay equation (6.31). However, in the present scenario, ks is unknown, which

means that a new C∗ field (or at the very least, the C∗ value at all potential source locations)

must be recalculated for many possible values of ks.

Because LS models are inherently stochastic, Np is required to be very large, large enough

to generate reasonably smooth C∗ (or concentration, in the fLS case) data on what may be a

high resolution grid of the problem domain. For a given grid cell, especially if it is near the
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plume centerline, a very high number N of particles will pass through, contributing to the C∗

value in the cell. By way of illustration, the examples addressed in this work use Np = 1× 105

and for many grid cells, N is on the order of 1000 particles. Larger-scale problems solved over

higher-resolution grids may result in the generation of a thousand times as much trajectory

data. It should be noted that the C∗ fields which are generated from trajectory data are, for

the present example, on the order of 1/1000 the size of the trajectory data. In general, it is

desirable to avoid manipulating raw trajectory data once it has been used to generate gridded

data fields.

With this background in mind, Table 6.1 summarizes the savings in computational time

and memory requirements obtained by using the statistical decay treatment. From a prac-

tical standpoint, three fields must be generated from the trajectory data in order to use the

statistical approximation: C∗
0 (x) (a C∗ field for which ks = 0); τ̂(x) (the average particle travel

time for each grid cell); and σ2
τ (x) (the variance of the particle travel times). However, once

these fields have been generated, it is no longer necessary to store or manipulate the raw

trajectory data.

Computational task Exact approach Statistical treatment

Trajectory data storage ∝ NpNt 0

Field storage ∝ NxNyNz ∝ 3×NxNyNz

(for each of C∗
0 , τ̂ , σ

2
τ )

Data retrieval required for

C∗(xs, ks) calculation

List of N particles which

passed through grid cell cen-

tred on xs

3 array entries:

C∗
0 (xs), τ̂(xs), σ

2
τ (xs)

Calculation of C∗(xs, ks) N evaluations of

exp(−ksτj)
1 evaluation of

C∗
0 exp(−ksτ̂ + 1

2k
2
sσ

2
τ )

Table 6.1: Comparison of computational effort required by the exact vs. statistical tracer

decay treatments.

6.4.5 Inverse problem: source determination

We begin by assessing the performance of the overall source determination methodology using

concentration data measured during the PPG experiment, Run 24. In this case, the tracer

was considered conservative (ks = 0); however, we have included ks as an unknown parameter

to be estimated. Following this assessment, in Section 6.4.5.2 we apply the methodology

to two problems involving synthetic, decayed (ks > 0) concentration data generated using

the fLS model. For all three test cases we assume the following parameter bounds for the
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computational domain Ω:

xs ∈ [−10, 410] m , qs ∈ [1, 200] g s−1 ,

ys ∈ [−100, 100] m , ks ∈ [−1, 1] s−1 ,

zs ∈ [0, 10] m .

(6.47)

6.4.5.1 PPG experimental data (conservative tracer)

The experimentally measured concentration data used here is extracted from a subset of the

arc-based measuring stations shown in Figure 6.2. Four stations from each arc were used

and are shown in Figure 6.10. In the {50, 100} m arcs, detectors are located off-centerline by

{−6,−2, 2, 6}◦ . In the {200, 400} m arcs, detectors are located off-centerline by {−4,−1, 1, 4}◦ .

0 100 200 300 400

−
10

0
−

50
0

50
10
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Figure 6.10: Layout, Case 1 (measured data). Unknown source (square) and detector (circular

dots) arrangement for determining the source parameters.

The combined uncertainty in the model and measurement noise for each detector was

conservatively set such that the model results shown in Figure 5.4 lie within 3 standard de-

viations of the measurements. This led to the assignment of {100, 50, 50, 50}% of the mean

concentration measured at the detectors in each of the four {50, 100, 200, 400} m arcs, respec-

tively. Dual concentration (C∗), and particle travel time mean and variance (τ̄ and σ2
τ ) fields

were generated for one of the rightmost detectors using the bLS model (105 particles were

released), and were subsequently translated in space to all of the other detectors in the ar-

ray. This translation is admissible due to the horizontally homogeneous nature of the flow

encountered in PPG. Vertical translation of the C∗ field is inadmissible owing to the vertical

inhomogeneity of the wind statistics, and for general flows which lack homogeneity in any one

direction, C∗ fields and particle travel time statistics cannot be translated.

The posterior PDF was sampled using the Metropolis-Hastings algorithm, and MCMC

samples for each parameter were binned. 105 points were generated using normal proposal

distributions whose width was decided based on observations of each chain’s progress. His-
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tograms and corresponding summary statistics for the MCMC samples are shown in Figure

6.11. The scatter plots in the lower-right corner of the set of histograms show the MCMC sam-

ples drawn in {qs, ks} parameter space. A clear positive correlation is evident in the spread

and density of these samples, indicating that difficulty could potentially be encountered when

attempting to isolate both source strength and decay rate simultaneously. Detector measure-

ments must be relatively unambiguous in their representation of the effects of decay rate and

source strength in order for the posterior PDF to yield meaningful information about these

two parameters.

In this case, all parameters are estimated such that the true values are enclosed within

at most two standard deviations of the means of the MCMC samples. This includes the decay

rate coefficient, which was known a priori to be zero.
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mean(mMCMC
i ) 2.11 3.09 2.12 45.78 0.006
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i ) 9.12 1.84 1.58 20.53 0.012

95% HPD (mMCMC
i ) [−9.47, 19.17] [−0.44, 6.62] [0.01, 4.85] [12.12, 88.01] [−0.015, 0.031]

Figure 6.11: Case 1: Marginal parameter distributions and summary statistics generated

from MCMC samples. The true parameter value is represented by the solid vertical line in

the histograms, and the circular dot in the scatter plot. The mean of the MCMC samples is

represented by the dashed vertical line in the histograms, and the square dot in the scatter

plot. Shaded regions represent 95% HPD intervals based on the MCMC samples.
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6.4.5.2 Synthetic data (nonconservative tracer)

In Figures 6.12 and 6.13, detector arrangements are shown for two source determination test

cases where the unknown decay rate ks differs by an order of magnitude. For the first case,

in which the decay rate is very low, detectors which provide meaningful data (given their

susceptibility to noise) are generally located closer to the source. By ‘meaningful data’ we

refer to data points which are in general representative of the decay and dispersion of the

plume. Hence, the streamwise spread of the detectors in the second case (Figure 6.13) is

approximately half that of those for the first case (Figure 6.12). In both cases, the detector

array is asymmetric about the plume centerline, with all detectors placed at a height of z =

1.5 m (as in the PPG field experiment). Synthetic concentration data were obtained for the two

decay rates using the concentration field generated by the fLS model after releasing 5 × 104

particles. This data was then subjected to additive Gaussian noise whose standard deviation

was 50% of the measured concentration.
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Figure 6.12: Layout, Case 2. Unknown source (square) and detector (circular dots) arrange-

ment for determining the source parameters (for small ks).

For both cases, uncertainties at all detectors were assumed to be 50%, and the same C∗

field was generated and horizontally translated in the x-y plane to each of the synthetic detec-

tor locations. The posterior PDF was sampled using the same MCMC approach as with case

1. Histograms and summary statistics for the second case (ks = 0.03) are shown in Figure

6.14, and the results of the third case (ks = 0.30) are shown in Figure 6.15. The scatter plots

of the MCMC samples drawn from the {qs, ks} parameter space once again demonstrate a pos-

itive correlation. In both cases, parameters are generally well estimated; the true parameter

values are enclosed within two standard deviations of the means of the MCMC samples.

6.5 Conclusions

Combining the following techniques;
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1. a statistical approach to reconstructing the [dual] concentration field for a given decay

coefficient (in LS particle models);

2. the adjoint approach; and

3. Markov chain Monte Carlo

results in a computationally efficient method for solving the source determination problem for

a nonconservative tracer in a Bayesian probabilistic framework.

The detector positions used in the three test cases might be construed to be arranged

based on prior knowledge of the source location, as opposed to being randomly spread about

the domain (as might be expected in a real-life scenario). However, our choice of detector ar-

rangement is designed to elicit knowledge about the capabilities and limitations of the source

determination methodology. In a random array, detectors upwind of the source would be

expected to measure zero concentration, information which would effectively constrain the

potential source location (but not the decay rate or the strength). It could be considered that

we have utilized a ‘subset’ of detectors which sample only part of the plume (downwind of the

source), which actually results in a more challenging inference.

A prior understanding of the expected scale of tracer decay is clearly important when

considering an inverse problem in which the decay coefficient and source strength could vary

by orders of magnitude. For the case of a tracer undergoing rapid decay, detectors will yield

useful information (in terms of their signal-to-noise ratio) only when placed relatively close to

the source. Lagrangian stochastic simulations must be run using relatively large numbers of

particles in order to improve model concentration estimates for detectors which lie far from

the source. Conversely, for tracers which decay slowly in time, the spread of detectors must be

wide enough to capture the relative behaviours of dispersion (indicative of the source strength)

and decay. The MCMC samples presented in the previous section demonstrate that while
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Figure 6.13: Layout, Case 3. Unknown source (square) and detector (circular dots) arrange-

ment for determining the source parameters (for large ks).

77



these parameters are closely correlated (i.e., the concentration measured by a single detector

could be reduced either by reducing the source strength or by increasing the decay rate),

they can nevertheless be simultaneously estimated (using multiple detectors), since they are

not linearly dependent. The ks vs. qs MCMC sample scatter plots shown in Figures 6.11–6.15

match the trend seen in the analogous plot of Rate coefficient vs. Ultimate biochemical oxygen

demand presented by Qian et al. (2003).

The test cases demonstrate that the method can be applied to environmental flows in

which several of the source parameters are unknown. Consider a scenario where tracer de-

cay or scavenging is unexpected, but experimentally unconfirmed. Using an inference pro-

cedure based on the ‘overparameterized’ model (i.e., the model which includes ks) will re-
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Figure 6.14: Case 2: Marginal parameter distributions and summary statistics generated

from MCMC samples. The true parameter value is represented by the solid vertical line in

the histograms, and the circular dot in the scatter plot. The mean of the MCMC samples is

represented by the dashed vertical line in the histograms, and the square dot in the scatter

plot. Shaded regions represent 95% HPD intervals based on the MCMC samples.
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sult in more truthful estimates (in terms of their accuracy) of the other source parameters

(Reichert and Omlin, 1997). In other words, uncertainty about the persistence of a tracer in

the environment will be reflected in additional uncertainty about its origin and strength. The

statistical approach to particle travel times described in this work significantly mitigates the

computational effort required to include ks as a source parameter in the inference procedure.
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Figure 6.15: Case 3: Marginal parameter distributions and summary statistics generated

from MCMC samples. The true parameter value is represented by the solid vertical line in

the histograms, and the circular dot in the scatter plot. The mean of the MCMC samples is

represented by the dashed vertical line in the histograms, and the square dot in the scatter

plot. Shaded regions represent 95% HPD intervals based on the MCMC samples.
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Chapter 7

Optimal auxiliary detector

placement for source determination

7.1 Introduction

Recent efforts made toward solving inverse problems in atmospheric dispersion have mainly

considered situations which involve a fixed network of detectors measuring mean concen-

tration data. When finding the location of the release is time-critical (due to toxic or other

hazardous materials being emitted continuously at some undiscovered incident site), a fixed

detector network (if one exists) may not yield data capable of effectively isolating the source

location to within an easily searchable area. In these cases, it may become necessary to aug-

ment the available concentration data using a mobile detection capability. In an alternate

scenario, regulatory considerations may necessitate placement of additional detectors for bet-

ter isolating a single source of pollution where many potential sources exist.

Bayesian approaches to source determination commonly treat the problem as one of pa-

rameter estimation (Keats et al., 2007a; Yee, 2008), where the source is defined by a set of

parameters m (location, strength, time of release, etc.) which must be inferred probabilis-

tically. Uncertainties associated with concentration data d and model predictions r are es-

sentially propagated through the Bayesian apparatus, resulting in a posterior probability

density function (PDF) for the source parameters. Rather than extracting estimates m̂ from

this posterior PDF, our goal is to strategically place one or more additional detectors so that

the entropy (as a measure of the uncertainty) of the posterior distribution is minimized (or

equivalently, its Shannon information content is maximized). This should have the desirable

effect of improving our degree of certainty in potential estimates m̂.

In the literature, entropy-based criteria are often applied to the design and analysis of

fixed environmental monitoring networks. One type of application involves determining

subsets of existing networks which are optimal in the sense of the information they yield

(Wu and Zidek, 1992; Silva and Quiroz, 2003; Fuentes et al., 2007). The problem of extending

an existing monitoring network (by adding additional detectors) was examined by Zidek et al.
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(2000), who considered not only the potential information gain (entropy decrease), but also

the cost of operating the new network. The present research differs from these efforts by

considering a more specific case: rather than extending our network of detectors to provide

an expected information gain for general release scenarios (where weather patterns might

change, and pollutant sources are inventoried), we presume a single release which happens

under a distinct set of meteorological conditions. Our goal is not to provide a general moni-

toring capability, but rather to act to improve our state of knowledge regarding this specific,

unknown release.

Our work lies along a similar vein to that of Patan et al. (2008), who formulated the prob-

lem within the framework of optimal control in order to determine the best trajectory that

a set of mobile sensors should take. Patan et al. (2008) consider a time-varying advection-

diffusion-reaction equation and perform the trajectory optimization while accounting for con-

straints on sensor path lengths. By contrast, we examine the problem of a quasi-steady-state

release, without reaction or decay of the tracer. We focus on calculating and analyzing the

expected information in the solution based on a Bayesian approach to parameter estimation

(rather than the optimization approach adopted by Patan et al.).

We adopt a methodology put forward by Loredo (2004) known as Bayesian adaptive ex-

ploration (BAE). This methodology is founded on information-theoretic principles, and es-

sentially provides a way to decide how future experiments should be performed so that in-

formation about the phenomenon of interest in maximized. Loredo’s method falls under the

rubric of optimal Bayesian experimental design, which has a rich background in the literature

(Lindley, 1956; Bernardo, 1979; Chaloner and Verdinelli, 1995; Sebastiani and Wynn, 2000).

7.2 Bayesian adaptive exploration for source determination

Bayesian adaptive exploration (BAE), as described by Loredo (2004), is an iterative process

which involves the following three stages:

Observation: Data are collected in an experiment that is designed to elicit information about

the phenomenon under investigation. Here, the data consist of concentration measure-

ments obtained at a limited set of locations.

Inference: Bayesian inference is applied to calculate probabilities for hypotheses about the

phenomenon, given the data collected in the previous stage. In the present work, each

hypothesis takes the form of a set of parameters defining a possible source location.

Design: A subsequent experiment must be proposed (i.e., designed, or decided upon1) which

we expect will maximally improve our state of information regarding the phenomenon.

Here, we wish to propose a supplementary detector location where we hope that the

measured concentration, once it has been processed during the next inference stage,

will yield maximum information about the source location.

1 Bayesian ‘decision theory’ is synonymous with experimental design.
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7.2.1 Bayesian inference for source parameters

Given mean (time-averaged) concentration data d obtained from a set of detectors, we wish

to estimate the parameters m which characterize the source of the dispersion. From Bayes’

theorem, information regarding the source parameters is encapsulated in the posterior distri-

bution:

P (m | d, I)
︸ ︷︷ ︸

Posterior

∝ P (m | I)
︸ ︷︷ ︸

Prior

P (d |m, I)
︸ ︷︷ ︸

Likelihood

. (7.1)

In this chapter we consider the following set of source parameters:

m ≡ (xs, ys, qs) , (7.2)

where (xs, ys) represent the location of the source, and qs is the release rate. The source height

is assumed known2, and neither the release rate nor the wind field change in time.

7.2.1.1 Prior and likelihood

The prior distribution expresses our state of knowledge about the parameters m before the

arrival of data d. During the first iteration of the BAE process, this distribution would typi-

cally be chosen to express a state of ignorance.3 Distinguishing between location parameters

(xs, ys) and scale parameter qs (Jaynes, 2003), and assuming a priori that parameters are

logically independent, the prior distribution takes the form:

P (xs, ys, qs | I) ∝ q−1
s , (xs, ys, qs) ∈ Ω , (7.3)

where Ω bounds the computational domain (parameter space), ensuring that the prior inte-

grates to unity.

For a fixed set of source parameters m, P (d | m, I) defines the probability that data d

are measured. When data d are fixed, P (d | m, I) defines the likelihood of m (MacKay,

2003). For the problem of source determination, different authors have adopted different

likelihood functions based on varying assumptions made about the noise prior (viz., the level

of disagreement between modelled and measured concentrations). In this chapter we adopt a

Gaussian form for the likelihood,

P (d |m, I) =

N∏

i=1

1

σi

√
2π

exp

[

−1

2

(
di − ri(m)

σi

)2
]

. (7.4)

Other distributions such as log-normal can also be used (Goyal et al., 2005; Senocak et al.,

2008; Keats et al., 2009), but for now we adopt the Gaussian for simplicity and compatibility

with previous work (Keats et al., 2007a,c). In Eq. (7.4), di are the measured concentration

2 This is a reasonable assumption since in many scenarios, one is concerned with sources located at or very near to

the ground.
3 In subsequent iterations, however, the prior would be replaced by the posterior distribution from the previous

iteration.
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data (indexed by detector i), while ri are their modelled counterparts. The ri are obtained

using a source-receptor relationship which could take the form of either a forward or adjoint

dispersion model. The source-receptor relationship is discussed further in Sec. 7.2.1.3. At this

point, however, it should be noted that the Bayesian formulation remains independent of the

choice of dispersion model used to obtain the ri. The σi are a measure of the error associated

with each (di, ri) pair. In the present work, this quantity is considered to be specified a priori,

either as a constant or as a function of the mean concentration.

7.2.1.2 Posterior distribution

The posterior PDF is proportional to the product of the prior and likelihood:

P (m | d, I) ∝ q−1
s exp

[

−1

2

N∑

i=1

(
di − ri(m)

σi

)2
]

. (7.5)

7.2.1.3 Source-receptor relationship

Bayesian inference for source determination has already been addressed in the literature

for both building-resolving and regional-scale flows (Keats et al., 2007a; Yee et al., 2008). In

the present work we wish to focus attention on the design stage of BAE, so we adopt the

Lagrangian stochastic (LS) dispersion model used earlier in chapter 6. The LS model was

selected over the simpler (but well-known) steady-state Gaussian plume model (Csanady,

1973; Arya, 1999) because we are not only interested in the potential information gain yielded

by mean concentrations, but also by turbulent scalar fluxes. As with mean concentration,

the scalar flux ‘seen’ by a detector can be calculated efficiently (for many different source

hypotheses) using a backward LS model. Turbulent scalar fluxes behave differently to mean

concentration, and we seek to quantify their value as measurables within the BAE framework.

The LS model used in this work has already been described in chapter 6, so we shall simply

outline the additional facility required for calculating the scalar fluxes (in both backward and

forward modes).

In forward mode, a LS model generates particle trajectories which can be post-processed

to generate a grid of concentration data. Elaborate kernel smoothing techniques aside, the

Reynolds averaged concentration C in a grid cell can be estimated simply by averaging parti-

cle residence times:

C(xd) ≈
1

V Np

Np∑

p=1

q(p)δt(p) , (7.6)

where V = ∆x∆y∆z is the volume of the (sensor or detector) grid cell centered on xd, q(p) is

the mass flow rate (source strength) associated with the particle released from the source,

and Np is the number of particles released from the source. The ‘residence time’ that particle

p spends within the grid cell is given by δt(p). The Reynolds averaged scalar fluxes are cal-

culated similarly using the forward model, by weighting particles by their associated velocity
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fluctuations:

u′j c
′(xd) ≈ φj(xd;xs) ≡

1

V Np

Np∑

p=1

u
′(p)
j q(p)δt(p) , j = 1, 2, 3,

=
qs
V Np

Np∑

p=1

u
′(p)
j δt(p) (constant mass flow rate q(p) = qs) ,

(7.7)

where (u′1, u
′
2, u

′
3)

(p) = (u′, v′, w′)(p) are the streamwise, spanwise and vertical components of

the particle velocity fluctuation in the grid cell centered on xd; c′(xd) denotes the concentration

fluctuation at xd (this is not directly computed by the LS model). The true (but unknown)

scalar flux, u′j c
′, is approximated by the computed quantity φj(xd;xs). The quality of this

approximation depends on Np.

In order to calculate scalar fluxes in backward mode, we first define a ‘conjugate’ scalar

flux, φ∗j , where particle pseudo-mass flow rates and residence times are weighted by the ve-

locity fluctuations seen at a detector:

φ∗j(xs;xd) ≡
1

V Np

Np∑

p=1

u
′(p)
j q∗(p)δτ (p) , j = 1, 2, 3,

=
1

V Np

Np∑

p=1

u
′(p)
j δτ (p) (q∗ unity) ,

≈ 1

qs
u′j c

′(xd) ,

(7.8)

where V is now the volume of the grid cell centered on xs, and Np refers to the number of

particles released from the detector (located at xd). At this point it is worthwhile to compare

the terms in Eqs. (7.7) and (7.8). In Eq. (7.7), u′j and δt refer to the marked particle’s velocity

fluctuation and residence time in the detector volume centered on xd. The scalar fluxes φj are

essentially ‘field variables’ in the traditional sense. By contrast, for the backward LS calcula-

tion of eq. (7.8), the conjugate flux in a potential source grid cell (located at xs) is determined

using velocity fluctuations at the detector (which is fixed at location xd with respect to the grid,

and acts as the ‘source’ from which pseudo-particles are released), but particle pseudo-mass

release rates q∗ and residence times δτ are taken from the grid cell at xs. Barring removal

processes such as those discussed in chapter 6, q∗ is typically unity, and so the conjugate flux

φ∗j is equivalent to the normalized scalar flux at the detector location xd. Multiplying φ∗j by

the source strength qs then yields the scalar flux φj at the detector location.

We are now equipped with a backward LS model which permits the rapid calculation of

both mean concentrations C and scalar fluxes φj at a given detector location for any arbitrary

source location and strength. In chapters 5 and 6, backward (adjoint) models were used to

generate one C∗ field per detector location. Now, in addition to the C∗ field, we require an

additional three fields to be generated for each detector: φ∗j , j = 1, 2, 3. Scalar fluxes are easily

integrated into the overall Bayesian framework for source determination; we simply use an
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extended version of the likelihood (8.20) which incorporates scalar flux data:

P (d |m, I) =
N∏

i=1

1

σC

i

√
2π

exp

[

−1

2

(
dC

i − rC

i

σC

i

)2
]

×
3∏

j=1

1

σφ

i,j

√
2π

exp



−1

2

(

dφ

i,j − r
φ

i,j

σφ

i,j

)2


 .

(7.9)

In Eq. (7.9), dC

i is the concentration and dφ

i,j is the jth scalar flux measured by the ith detector.

Their modelled counterparts are rC

i ≡ C(xdi
;m) and rφ

i,j ≡ φj(xdi
;m). The uncertainties

surrounding model–data agreement are specified by σC

i and σφ

i,j.

7.2.2 Experimental design

Consider a scenario where there are Nd receptors (all measuring mean concentration levels

di, i = 1, 2, . . . , Nd) spread about the domain of interest. The design stage of the BAE process

requires that we attempt to maximize the expected utility of a future experiment in which an

additional receptor is placed somewhere in the domain to measure an additional concentra-

tion datum (or some combination of concentration and flux data), d⋆. For experiments whose

main purpose is to gain knowledge about a phenomenon, and when the particular choice of

experiment does not affect the overall cost of performing it (or the cost is of no concern), an

appropriate utility function that measures the information content of the ‘final’ posterior dis-

tribution for m, after the receipt of the future datum d⋆ (Lindley, 1956) is:

U(d⋆, e) =

∫

all m

dm P (m | d⋆,d, Ie) log P (m | d⋆,d, Ie) , (7.10)

where e specifies the choice of experiment (i.e., the location at which d⋆ is to be obtained), and

Ie signifies that our background information I accounts for e.

Obviously, the future measurement has not yet been made, so we are faced with maximiz-

ing the expected utility, which is the average of the utility function (7.10) weighted by the

predictive distribution for d⋆ conditioned on known data d and choice of experiment e:

EU(e) =

∫

all d⋆

dd⋆ P (d⋆ | d, Ie) U(d⋆, e) . (7.11)

Following the notation of Loredo (2004), we denote the information content of a distribution

by I[ ], and the expected utility (7.11) becomes the expected information:

EI(e) =

∫

all d⋆

dd⋆ P (d⋆ | d, Ie) I[m | d⋆,d, Ie] . (7.12)
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The expected information is easier to evaluate once decomposed into its constituent parts

(Sebastiani and Wynn, 2000):

EI(e) = I[m | d, Ie] +

∫

dm P (m | d, Ie) I[d⋆ |m,d, Ie]− I[d⋆ | d, Ie]

=

∫

dm P (m | d, Ie) log P (m | d, Ie)

+

∫

dm P (m | d, Ie)
∫

dd⋆ P (d⋆ |m,d, Ie) log P (d⋆ |m,d, Ie)

−
∫

dd⋆ P (d⋆ | d, Ie) log P (d⋆ | d, Ie) .

(7.13)

The first term in Eq. (7.13) is the information in the posterior from the previous iteration

of BAE (or in the prior, if this is our initial iteration), and is independent of the choice of

experiment e. We disregard this term as an unimportant constant. The second term is the

average information contained in the sampling distribution for the new datum d⋆. When the

shape and spread of the sampling distribution are fixed, this term is also constant. However, if

the sampling distribution depends upon the data being measured (e.g., the uncertainty might

be a function of the concentration or flux seen by a detector), the second term will depend on

e and must therefore be calculated. The final term represents the entropy of the predictive

distribution, and also depends upon e.

7.3 Computational approach

For small problems possessing relatively few parameters and where sampling distributions

for future data are canonical (e.g., Gaussian, log-normal, Weibull), EI(e) can be evaluated

either analytically or through quadrature. In general, however, the nested sample space and

parameter space integrals in Eq. (7.13) may need to be calculated using efficient sampling

approaches. In Sections 7.3.1–7.3.3 we outline procedures for sampling from the posterior

and for computing the second and third terms in the expected information.

7.3.1 Sampling from the posterior distribution

Estimating the second and third terms of EI(e) will require that we possess a set of N sam-

ples, {m(k)}, drawn from the posterior distribution, P (m | d, I). In this work, we obtain these

samples using Metropolis-Hastings Markov chain Monte Carlo (MCMC). MCMC approaches

are commonly used for source determination (Keats et al., 2007a; Yee, 2008), and will not

be discussed in depth here. Details can be found in chapter 4 and in the books by Gilks et al.

(1996) and MacKay (2003). At this point it should be noted that the posterior distribution does

not account for the arrival of future datum d⋆, and so notationally, P (m | d, Ie) = P (m | d, I).
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7.3.2 Estimating I[d⋆ | d, Ie]

Having obtained a set of samples {m(k)} using MCMC4, we adopt a technique known as pos-

terior sampling to estimate the information in the predictive PDF for d⋆. This technique,

outlined by Loredo (2004), is summarized below and adapted for the task of optimal detector

placement.

The PDF P (d⋆ | d, Ie) can be expressed as the product of the sampling distribution for new

data and the posterior distribution from the previous BAE iteration:

P (d⋆ | d, Ie) =

∫

all m

dm P (d⋆ |m, Ie) P (m | d, Ie)

≈ 1

N

N∑

k=1

P (d⋆ |m(k), Ie) = P̃ (d⋆) ,

(7.14)

recognizing that P (d⋆ | m, Ie) = P (d⋆ | m,d, Ie). Posterior sampling provides a way to obtain

M samples d
(j)
⋆ , from which the information I[d⋆ | d, Ie] can be estimated. Details are given in

Algorithm 7.1.

Algorithm 7.1 Posterior Sampling

1: {m(k)} ← draw N samples from P (m | d, Ie)
2: choose integer M ≤ N
3: FOR j = 1, 2, ...,M DO

4: m(j) ← draw uniformly from {m(k)}
5: r⋆(m

(j); e)← calculate source-receptor relationship

6: d
(j)
⋆ ← draw from sampling dist, P (d⋆ |m(j), Ie)

7: P̃ (d
(j)
⋆ )← 1

N

N∑

k=1

P (d
(j)
⋆ |m(k), Ie)

8: END FOR

9: I[d⋆ | d, Ie]← 1
M

M∑

j=1
log P̃ (d

(j)
⋆ )

With regard to steps 5 and 6 of the posterior sampling algorithm, note that the sampling

distribution depends on the modelled concentration for a specific source-receptor configura-

tion, r⋆(m
(j); e). The sampling distribution for new data is effectively the noise prior (which

was used to establish the likelihood):

P (d⋆ |m, Ie) =
1

σ⋆

√
2π

exp

[

−1

2

(
d⋆ − r⋆
σ⋆

)2
]

. (7.15)

4 The samples {m(k)} might only constitute a subset of the entire collection of MCMC samples.
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7.3.3 Estimating
∫

dm P (m | d, Ie) I[d⋆ |m,d, Ie]

Obtaining an estimate for the posterior-averaged information in the sampling distribution is

relatively straightforward if an analytical expression for I[d⋆ | m,d, Ie] is available. Recog-

nizing that I[d⋆ | m,d, Ie] = I[d⋆ | m, Ie] (conditioning on m obviates dependence on d), the

information in the sampling distribution (7.15) can be obtained analytically:

I[d⋆ |m, Ie] =

∫

dd⋆ P (d⋆ |m, Ie) log P (d⋆ |m, Ie)

= − log σ⋆

√

2π exp(1) .

(7.16)

The posterior-averaged information can then be approximated with the help of existing

MCMC samples {m(k)}:

∫

dm P (m | d, Ie) I[d⋆ |m,d, Ie] ≈
1

N

N∑

k=1

I[d⋆ |m(k), Ie] . (7.17)

As mentioned in Section 7.2.2, when σ⋆ is constant, the term (7.16) is also constant, and

does not need to be calculated as part of the optimization procedure (where we try to maximize

the expected information). However, in this work we shall consider a situation where σ⋆ is

dependent upon the choice of experiment; for example, one might expect the error to depend

on the magnitude of the modelled or measured data.

7.4 Short-range dispersion in the atmospheric surface layer

Here we present test cases for which the wind field and the heights of the source and detectors

are the same as those used in the Project Prairie Grass (PPG) dispersion experiment (which

was described in Sections 6.4 and 6.4.1 of the previous chapter). However, data obtained from

samplers used in the PPG experiment are not used.5 Instead, a reference solution (mean

concentration and scalar flux fields) is obtained using a forward LS model in order to provide

‘synthetic’ concentrations and fluxes for later use in both the inverse problem (sec. 7.4.2) and

the subsequent Bayesian adaptive exploration (sec. 7.4.3).

7.4.1 Reference solution: forward dispersion

Figures 7.1 and 7.2 present contours of the concentration field obtained using the forward LS

model, generated from the trajectories of 106 marked particles. The dimensions of each grid

cell in the domain are (∆x,∆y,∆z) = (1/2, 1/2, 1/16) m. As in Section 6.4, the source is located

at (xs, ys, zs) = (0, 0, 0.46) m. The present results differ from the previous chapter in that the

source strength is now set to be unity.

5 Scalar fluxes were not measured during the PPG experiment.
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In addition to mean concentration data, we are also interested in obtaining a reference

solution for the scalar fluxes u′jc
′. In the near-field, scalar fluxes exhibit a more interesting

behaviour than the concentration, as seen in figures 7.3 and 7.4. The vertical flux profiles

compare favourably to those obtained by Fackrell and Robins (1982).

0 100 200 300 400

−
40

−
20

0
20

40

x

y

Figure 7.1: Contours of log10 C obtained using a forward LS model with a source strength

of unity. Noise increases with downstream distance due to the relative paucity of marked

particles passing through grid cells. Contours are drawn at a height of zs = 0.46 m in the x−y
(horizontal) plane.
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Figure 7.2: Contours of log10 mean concentration, drawn at the plume centerline (y = 0) in

the x− z (vertical) plane.
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Unfortunately, the scalar fluxes decay far more rapidly than the mean concentration, as

seen in figure 7.5. Their rate of decay with downstream distance is roughly twice that of the

mean concentration, and we observe an even more precipitous decrease in the signal to noise

ratio obtained from the LS simulation results. The implication here is that if scalar flux data

is to aid in solving the inverse problem, it should be obtained at a location sufficiently close to

the true (but unknown) source.
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Figure 7.3: Profiles showing the vertical structure of the scalar fluxw′c′, normalized by u∗C
max,

where Cmax is the maximum centerline concentration at each x location.
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Figure 7.4: Crosswind profiles of mean concentration and scalar fluxes, drawn at source height

(0.46 m). Concentration data are normalized by Cmax, while fluxes are normalized by u∗C
max.

Profiles have been smoothed.
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7.4.2 Inverse problem: source determination

In order to demonstrate the utility of the BAE methodology (sec. 7.4.3), we must first solve

an inverse problem where detectors and their corresponding measured concentrations dC

i are

already specified. At this point, scalar fluxes are not used; however, the information that they

could potentially yield at a supplementary detector site will be assessed in the next section.

From equations (7.14) and (7.16), it can be seen that the information functional EI is

relatively sensitive to the choice of sampling distribution (or equivalently, noise prior). It is

therefore worthwhile to consider, at a minimum, the following two cases:

1. σC

i = 10−6 ∀ i: detector uncertainties are constant;

2. σC

i =
√

(0.3 dC

i )2 + (10−6)2 ∀ i: uncertainties are approximately proportional to measured

values.

In each case the noise is assumed to be Gaussian.

Figure 7.6 illustrates the layout of detectors used to solve this inverse problem. A singleC∗

field, generated at the far end of the domain, was copied and transposed to each of the detector

locations. Mean concentration data were obtained from the forward LS simulation presented

in Section 7.4.1 and subjected to additive Gaussian noise with the variances prescribed above.

The posterior PDF (7.5) was sampled using MCMC, and histograms and corresponding

summary statistics for the cases of constant and variable σC

i are shown in figures 7.7 and 7.8

respectively. For both cases, the chosen detector array apparently does a poor job of distin-

guishing the source’s x-location and strength, as evidenced by the strong correlation and wide

spread seen in the contour plots of the marginal posterior distribution for xs and qs. The con-
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Figure 7.5: Along-plume profiles of mean concentration and absolute values of scalar fluxes.

Taken at detector height (z = 1.5 m). The quantities C, |u′c′|, and |w′c′| are plotted along the

plume centerline (y = 0), while |v′c′| is plotted along y = 1.5 m, slightly off-centerline.
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tour plots were obtained from the MCMC samples using a binned kernel density estimation

tool.
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Figure 7.6: Source-receptor configuration. Circular dots are detectors; the square dot is the

[unknown] source. Detector array is oriented at 11.25◦ from the horizontal.

7.4.3 Bayesian adaptive exploration: design stage

At this point we wish to evaluate I[d⋆ | d, Ie] and
∫

dm P (m | d, Ie) I[d⋆ | m,d, Ie], the compo-

nents of the expected information which depend on the placement of an additional detector.

Adding these two components and obtaining their maximum will reveal the location where the

additional detector must be placed in order to optimally reduce uncertainty in the posterior

distribution for the source parameters.

Due to the fact that the wind field is horizontally homogeneous, the hypothetical source-

receptor relationship can be rapidly calculated for arbitrary detector placements. This allows

us to examine the EI surface over a relatively large grid of possible detector locations, instead

of relying on an optimization approach to locate a single maximum.6 As mentioned above, the

overall shape of the EI surface is quite sensitive to the noise specification, and plotting it for

a range of possible (xd, yd) coordinates offers insight into this sensitivity.

We specify the sampling distribution for new data, P (d⋆ | m, Ie), separately for concentra-

tions and fluxes. For concentrations, the standard deviation of the sampling distribution is

defined to be compatible with the aforementioned definitions:

σC

⋆ = 10−6 (constant detector uncertainty) , (7.18)

σC

⋆ =
√

(0.3 rC
⋆ )2 + (10−6)2 (variable detector uncertainty) . (7.19)

6 This maximum may also be corrupted by noise, since the procedure for computing EI (outlined in Sections 7.3.2

and 7.3.3) is stochastic.
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These standard deviations are then scaled by a factor of 10% in order to obtain expressions

for the scalar fluxes:

σφ

⋆,j = 10−7 (constant detector uncertainty) , (7.20)

σφ

⋆,j =
√

(0.1 × 0.3 rφ

⋆,j)
2 + (10−7)2 (variable detector uncertainty) . (7.21)

Using the above definitions, we calculate the components of EI using the techniques de-

scribed in Sections 7.3.2 and 7.3.3. EI surfaces corresponding to the constant and variable

uncertainty cases are presented in figures 7.9 and 7.10, respectively. Contributions from con-

centration and flux data are separated and shown in the upper two panels of each figure; the

lower panel presents the sum of the two components.
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s−
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mi xs [m] ys [m] qs [g s−1]

actual mi 0.0 0.0 1.00

mean(mMCMC
i ) −14.4 −2.9 1.16

sd(mMCMC
i ) 35.5 2.0 0.25

95% HPD (mMCMC
i ) [−87.2, 45.7] [−6.4, 1.0] [0.69, 1.67]

Figure 7.7: MCMC results for the case where detector uncertainties are constant: σC

i =
10−6 ∀ i. The true parameter value is represented by the solid vertical line in the histograms,

and the circular dot in the contour plot. The mean of the MCMC samples is represented by

the dashed vertical line in the histograms, and the square dot in the contour plot. Shaded

regions represent 95% HPD intervals based on the MCMC samples.
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Additional noise is present in the surfaces shown in figure 7.10, where σ⋆ is not held

constant. This is due to the fact that the posterior-weighted information in the sampling dis-

tribution (
∫

dm P (m | d, Ie) I[d⋆ | m,d, Ie]) is no longer constant7 and must be estimated

using the stochastic technique described in Section 7.3.3. Evidently, the maximum informa-

tion yielded by an additional detector measuring scalar fluxes is approximately three times

that obtained from a detector measuring concentration alone (the jth scalar flux yields about

as much information as a single concentration measurement). It is also interesting to observe

how the shapes of the EI surfaces depend on the specification of the sampling distribution

for new data. While the maxima are similarly located, the expected information surface for

the case of variable σ⋆ exhibits ‘wings’ which follow regions of relatively large concentration
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mi xs [m] ys [m] qs [g s−1]

actual mi 0.0 0.0 1.00

mean(mMCMC
i ) −2.4 −4.3 1.05

sd(mMCMC
i ) 42.4 2.4 0.25

95% HPD (mMCMC
i ) [−87.5, 64.4] [−9.3, 0.4] [0.59, 1.55]

Figure 7.8: MCMC results for the case where detector uncertainties are approximately pro-

portional to measured values: σC

i =
√

(0.3 dC

i )2 + (10−6)2. The true parameter value is rep-

resented by the solid vertical line in the histograms, and the circular dot in the contour plot.

The mean of the MCMC samples is represented by the dashed vertical line in the histograms,

and the square dot in the contour plot. Shaded regions represent 95% HPD intervals based

on the MCMC samples.

7 For the case of constant σ⋆ seen in figure 7.9, I[d⋆ | m,d, Ie] is also a constant.
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gradient (along the plume edges). In these regions, the signal-to-noise ratio as determined by

d⋆/σ⋆ does not degrade rapidly, and so the behaviour seen in figure 7.10 is entirely expected.

Having calculated the EI surfaces, for each of the two cases we place a single additional

detector measuring both concentration and scalar fluxes at the location of the maximum EI
value. The forward LS model results are used to generate synthetic concentration and scalar

flux measurements (which are then perturbed by Gaussian noise) at this new location. With

this additional datum, MCMC is used to sample from the new posterior distribution based on

the extended likelihood given by Eq. (7.9). Histograms and corresponding summary statistics

are presented in figures 7.11 and 7.12. These new results show that uncertainties in xs and

qs are drastically reduced, and correlations previously seen in the contour plot corresponding

to the marginal posterior distribution for (xs, qs) are now negligible.
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Figure 7.9: EI surfaces, σ⋆ held constant. The square marks the true source location, and

the circles mark detector locations. The triangle marks the location where EI reaches a

maximum.
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7.5 Conclusions

The material in this chapter has demonstrated the viability and some of the issues behind us-

ing an information-based approach (BAE) to address the optimal detector placement problem.

Furthermore, the fusion of additional data types (such as scalar fluxes) adds potential value

(informationally) for solving the source determination problem. Clearly, much future work

remains to be done in the area of optimal detector placement. Three key recommendations

can be made:

1. It is necessary to perform further research into properly defining detector uncertainties

(both modelled and measured), and by extension, the sampling distribution for new data.

The sampling distributions used in this chapter were chosen arbitrarily, and while the

location of maximumEI was not found to depend greatly on the choice, the overall shape

was. This carries implications where potential optimization algorithms are concerned

(for cases where the problem is too complicated to calculate EI over a grid of points).
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Figure 7.10: EI surfaces, σ⋆ variable depending on modelled concentration. The triangle

marks the location where EI reaches a maximum.
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2. Optimization algorithms are needed which are capable of maximizing (or minimizing) a

noisy objective function such as that which arises when EI is calculated using stochastic

techniques. Such algorithms might be genetic, or take the form of simulated annealing

methods.

3. Further research is required into mitigating the computational effort that would be

needed when flows are spatially inhomogeneous and time dependent. Currently, for ev-

ery proposed detector location that a given optimization technique proposes, a backward

dispersion model must be run in order to calculate the concentrations that the detector

would expect to see. Judiciously adopting heuristics in aid of the chosen optimization

procedure (such as searching regions of high expected concentration gradient) may help

to minimize the number of backward model runs needed.
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Figure 7.11: Post-BAE MCMC results for the case where detector uncertainties are constant.

An extra detector measuring both concentration and scalar fluxes has been added at the loca-

tion of the maximum EI value as shown in figure 7.9.
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Figure 7.12: Post-BAE MCMC results for the case where detector uncertainties are approxi-

mately proportional to measured values. An extra detector measuring both concentration and

scalar fluxes has been added at the location of the maximum EI value as shown in figure

7.10.

99





Chapter 8

Source apportionment using the

Chemical Mass Balance model

The material presented in this chapter is adapted from an earlier paper:

A. Keats, M-T. Cheng, E. Yee, and F-S. Lien. Bayesian treatment of a chemical

mass balance receptor model with multiplicative error structure. Atmospheric

Environment, 43:510–519, 2009.

8.1 Introduction

Source apportionment studies performed using receptor models employ information about the

chemical makeup of sampled particulate matter (PM) in order to infer the relative contribu-

tions made by emission sources. Given a set of relevant source profiles (which indicate the

relative proportions of constituent species present in the PM released by each individual emis-

sion source) as well as knowledge of the constituent elemental and molecular species which

comprise the sampled PM, the receptor model provides a source-receptor relationship which

is used to estimate the most important individual contributors to the sample.

The chemical mass balance (CMB) receptor model (Watson et al., 1990), which is com-

monly used to perform source apportionment (Watson and Chow, 2001; Kim and Henry, 1999;

Chio et al., 2004; Marmur et al., 2007), essentially reduces the problem to one of constrained

multiple linear regression. In the standard CMB model, mass concentrations of individual

species are assumed to be linear combinations of emission source contributions:

yi =

N∑

j=1

Xij βj + ǫi , (8.1)

where N is the number of source profiles; yi is the measured concentration of the ith species,

and Xij is the fractional amount of the ith species originating from the jth source. The target
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quantities, βj , are the calculated contributions of the jth source to the receptor. Given that

there are M species of interest (both elemental and molecular), the Xij constitute a matrix,

X
M×N , which is usually not square. The vector β can be obtained using, e.g., a least-squares

method (Watson et al., 1990). The CMB model accounts for measurement uncertainty (and to

a certain extent, model uncertainty) through the term ǫi, which is commonly assumed to be

additive, uncorrelated and Gaussian in nature.

In the literature, the CMB model has been reinterpreted and implemented in several

different but related ways, with the primary differences lying in the treatment of its as-

sociated measurement and model errors. Aside from the ordinary least-squares approach,

Christensen and Gunst (2004) outline four alternative approaches to source apportionment

based on the CMB model, each of which yields a specific estimator for β along with its vari-

ance. One popular method, known as the effective variance solution, explicitly accounts for

uncertainty in the source composition matrix X (we hereafter denote this uncertainty by σXij
)

in addition to measurement uncertainties (Watson et al., 1990). For the methods described by

Christensen and Gunst which do account for model error explicitly, this error is assumed to

be the mass of the ith species that is not accounted for by all sources in the model. By contrast,

the present work presumes a more holistic (although less precise) interpretation of the model

error – we assume it to be representative of any prospective failure of the CMB model to cal-

culate the true species concentration yi, given the source contributions βj . As with any other

predictive model, this failure might arise as a consequence of physical reality’s deviation from

any or all of the basic assumptions behind the CMB model (lists of these assumptions can be

found in the works of Christensen and Gunst (2004) or Seinfeld and Pandis (2006)).

Bayesian approaches to source apportionment are becoming increasingly common.

Bayesian inference has already proven to be a useful tool for multivariate statistical anal-

ysis, and its application to receptor models is a part of this pattern. Chan et al. (1996) applied

Bayesian inference to a receptor modelling problem in Taipei and used Markov chain Monte

Carlo (MCMC) to sample from a joint posterior distribution for the source contributions β and

the combined model and measurement uncertainties. In a similar vein to the present work,

they log-transformed the data and used a modified CMB equation of the form

log yi = log





N∑

j=1

Xij βj



+ ǫi , (8.2)

with ǫi being normally distributed and uncorrelated. We expand on their analysis, however,

to consider model, measurement and source profile errors separately, and adopt informative

prior distributions for these errors.

A more general problem based on the chemical mass balance approach is source identifica-

tion (and subsequent apportionment), frequently conducted using techniques of multivariate

receptor modelling. Bayesian inference provides a valuable framework for addressing this

problem, as seen in the work of Park et al. (2002). They consider both measurement and model

parameter uncertainties and formulate a posterior distribution based on truncated normal

and conjugate priors for these quantities. Such an approach presumes additive behaviour for
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the errors, whereas the present work adopts a multiplicative assumption (although Park et al.

did conduct investigations using log-normally distributed data). Park et al. (2001) extended

the Bayesian approach to account for temporal correlations in the data, improving estimates

for source compositions.

Billheimer (2001) and Kashiwagi (2004) also address source apportionment in a Bayesian

framework. They both treat the data compositionally (viz., as vectors which convey relative

proportions). Kashiwagi examines the case where one source is unknown, and compares a few

different distributions for the model error (including log-normal and truncated-normal), eval-

uating their suitability using estimates of the posterior mean and variance. The present work

is more similar to that of Billheimer in that positivity is maintained and prior information

about the source profiles and measurement errors is incorporated in a cogent way. However,

we do not explicitly treat the data as being compositional, and whereas Billheimer uses the

logistic normal distribution for model parameters, we adopt a log-normal distribution. It is

interesting to note that Billheimer obtains source contribution estimates based on posterior

medians, a reflection of the fact that the median is a better indicator of central tendency in

such positively skewed distributions (Slob, 1994). Recent work of Lingwall et al. (2008) adopts

a Bayesian approach which maintains positivity while treating data compositionally through

the use of a generalized Dirichlet distribution. Lingwall et al. address both exploratory as-

pects (source profiles considered unknown) and confirmatory (CMB apportionment) aspects of

the problem.

The question of how to treat errors in the chemical mass balance model (additively vs. mul-

tiplicatively) has not received a great deal of attention in the literature, perhaps because the

log-normal distribution is not as firmly embedded in the scientific consciousness as the normal

distribution. Some would argue that the log-normal occurs just as frequently as the normal

(Limpert et al., 2001), as a consequence of multiplicative error behaviour. Such errors require

alternate techniques of analysis, such as using the coefficient of variation (CV) and median

as measures of spread and central tendency, respectively. In the work by Watson and Chow

(2001), source profile entries for certain elements can be seen to display uncertainties which

are almost two orders of magnitude larger than the average abundances. Although these

uncertainties (and averages) are commonly expressed in additive terms, we advocate recon-

sidering them in a multiplicative sense.

In the next section, we phrase the source apportionment problem in a Bayesian probabilis-

tic sense by giving consideration to the types of uncertainty present. Quantifying these uncer-

tainties leads to a comprehensive probabilistic expression for the source and profile parame-

ters (this expression is known as the posterior distribution), which must be sampled in order

to obtain statistics (e.g., estimates of expected source contributions). Section 8.3 describes the

specific MCMC technique used for sampling from the posterior distribution. Since there are

potentially hundreds of parameters present, conventional Markov chain Monte Carlo sam-

pling techniques remain challenging to execute (due to the high dimensionality of the param-

eter space). Indeed, we employ a Hamiltonian MCMC algorithm, utilizing the gradients of the

log-posterior in order to accomplish the sampling in a reasonable amount of time. The overall
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methodology is evaluated in Section 8.4 using PM2.5 (particulate matter with an aerodynamic

diameter less than 2.5 µm) data from Fresno, California.

8.2 Bayesian formulation

Phrasing the source apportionment problem in a Bayesian framework allows one to obtain an

expression for the probability of the source contributions which is consistent with any assump-

tions made about the nature of measurement and model errors. The Bayesian methodology

culminates in an expression for the posterior distribution,

P (β,X | y, I) , (8.3)

where β is the vector of N unknown source contributions βj, X
M×N is the matrix of source

profile information Xij , y is the vector of M elemental and chemical species measurements

yi, and I represents background information pertaining to our problem. In traditional CMB-

based source apportionment, the source profiles X are often considered to be fixed, and un-

certainty surrounding them enters the calculation in the form of the standard deviations σXij

(which are reported along with the profiles). However, for the present approach we consider X

to be unknown (although our prior knowledge about the entries Xij and their standard devia-

tions acts to ‘constrain’ the range of plausible values for X) and requiring inference. According

to Bayes’ theorem, the posterior probability is proportional to the likelihood multiplied by the

prior:

P (β,X | y, I) ∝ P (y | β,X, I)
︸ ︷︷ ︸

likelihood

P (β,X | I)
︸ ︷︷ ︸

prior

. (8.4)

Here we assume a priori that β and X are statistically independent1. In this case, the prior

factors as follows:

P (β,X | I) = P (β | I)P (X | I) . (8.5)

When the species measurements yi are statistically independent (in this work we do not con-

sider the dependent case), the likelihood factors as follows:

P (y | β,X, I) =
M∏

i=1

P (yi | β,Xi, I) , (8.6)

1 Note that a prior assumption of independence does not rule out posterior correlation.
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where Xi is a vector of length N consisting of the ith row of the matrix X. Under similar

assumptions of independence, the prior distributions for X and β factor as follows:

P (X | I) =

M∏

i=1

N∏

j=1

P (Xij | I) , (8.7)

P (β | I) =
N∏

j=1

P (βj | I) . (8.8)

Note that the Bayesian formulation presented above is independent of the specific choice of

model used for source apportionment. Before proceeding with the model definition, however,

we reiterate that in this work, both measurement and model errors are considered separately,

so at this point it is important to distinguish yi, the measured concentration of the ith species,

from y̌i (=
∑N

j=1Xij βj) the modelled concentration of the ith species.

8.2.1 Sources and types of uncertainty

The probability P (y | β,X, I) is effectively determined by quantifying the model and measure-

ment errors, while the prior probability P (X | I) is specified based on the degree of uncertainty

surrounding the source profiles. Before proceeding with the expressions for the likelihood,

prior and posterior PDFs (Sections 8.2.3, 8.2.4 and 8.2.5, respectively), we first explain the

roles of errors in the CMB approach by relating the modelled and measured quantities to

their true (but unknown) counterparts.

8.2.1.1 Measurement and model errors

Under a multiplicative noise assumption, the logarithm of the noise is additive and Gaussian,

rendering the untransformed noise log-normally distributed. The measured species concen-

trations yi are therefore related to the true quantities in the following way:

log(yi) = log(ytrue

i ) + log(ǫi) , log(ǫi) ∼ N(0, σi) ;

yi = ǫi y
true

i , ǫi ∼ LN(0, σi) ,
(8.9)

where LN(0, σi) is a log-normal distribution based on a Gaussian distribution parameterized

by a zero mean and a standard deviation of σi. We also assume that model uncertainty, like

the measurement uncertainty, can be characterized as log-normal noise:

log(y̌i) = log(ytrue

i ) + log(ǫ̌i) , log(ǫ̌i) ∼ N(0, σ̌i) ;

y̌i = ǫ̌i y
true

i , ǫ̌i ∼ LN(0, σ̌i) .
(8.10)

The probability density function (PDF) for the errors ǫi is given by

P (ǫi) =
1

ǫiσi

√
2π

exp

[

− log2(ǫi)

2σ2
i

]

. (8.11)
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One consequence of assuming a multiplicative error structure is that existing data on mea-

surements, source profiles and their variances must be converted to a form compatible with

the log-normal distribution. For example, in the PDF of Eq. (8.11), the quantity σi expresses

the standard deviation of the log-transformed ǫi. In order for Eq. (8.11) to properly describe

the untransformed ǫi, tabulated measurement errors must be converted to express coefficients

of variation (CV’s) instead of standard deviations. The σi should then be chosen based on the

CV’s, instead of being extracted directly from the data. This conversion will be addressed in

Section 8.2.2.

8.2.1.2 Source profile uncertainty

Source profile entries Xij are assumed to be distributed log-normally about median values

X◦,ij :

P (Xij | I) =
1

XijσXij

√
2π

exp

[

− log2 (Xij/X◦,ij)

2σ2
Xij

]

. (8.12)

In Watson and Chow (2001), source profile estimates are stated in terms of average fractional

abundances and their variances. We wish to choose the X◦,ij to be equivalent to the median

fractional abundances, so a conversion from mean to median fractional abundances is neces-

sary. This conversion depends on the stated source profile variances, and is given by Eq. (8.15)

in Section 8.2.2.1.

For certain source profiles, the list of species present is exhaustive (profile entries sum to

1). For these species, we specify the constraint equation:

M∑

i=1

Xij = 1 , for fully specified source profile j. (8.13)

8.2.1.3 Multiplicative vs. additive error

To justify using log-normal distributions to characterize both our measurement and model

noise, we invoke the principle of maximum entropy (MaxEnt), as put forward by Jaynes

(2003). MaxEnt provides a way of selecting distributions which are maximally noncommittal

with respect to any information about them which remains unknown. If all that is known

about our noise are its mean and variance, then according to the MaxEnt principle, the least

informative distribution that can be chosen is the Gaussian.

In the CMB problem, we manipulate concentration and source profile data which may

only take positive values. Uncertainties related to such information are commonly dealt with

in a ‘scaling fashion’ in which uncertainties are specified as relative percentages of the mea-

surement, rather than absolute plus-or-minus values (Jaynes, 2003; Sivia and Skilling, 2006).

Indeed, the source profiles themselves are vectors of positive, fractional amounts. It there-

fore makes sense to deal with concentration data and source profiles in a logarithmic setting

106



(Tarantola, 2006). Adopting a Gaussian distribution for the logarithmic noise implies that the

untransformed noise should be considered to belong to a log-normal distribution.

In some cases, individual measurements and source profile entries are specified as being

zero. While the information contained in such zero values is undoubtedly important (such

data could have a large impact on the source apportionment by permitting the outright rejec-

tion of source profiles identified by certain elements which act as markers), directly adopting

a log-normal error distribution (noise prior) in these cases leads to an overemphasis on these

zero values within the Bayesian framework. This overemphasis can be rectified by recogniz-

ing that measurements and source profiles are subject to lower limits of detection, which are

almost certainly non-zero. We therefore replace zero entries by an estimate for the lower limit

of detection and supply an appropriate value for the uncertainty.

8.2.2 Assigning distribution parameters

Although we wish to characterize uncertainties as log-normal, the measured concentration

data and source profile information are actually supplied as sample mean and standard devi-

ation information. Furthermore, the model uncertainty is not explicitly known and must be

either assumed or inferred.

8.2.2.1 Measurement error σi and source profile parameters σXij
,X◦,ij

Out of the available measures of central tendency (e.g., the mean, median, and mode), the

mean is typically the more popular. However, when the data are known to be log-normally

distributed, the median is a more appropriate measure of central tendency than the mean, for

the following reasons (Slob, 1994):

1. The median of the log-normal distribution is the ‘multiplicative analogue’ of the mean:

if the mean of log(x) is µ, then the median of x is x◦ = exp(µ). In contrast, the mean of x

is exp(µ+ σ2/2), which depends on the variance of the untransformed data [log(x)].

2. The median is less sensitive than the mean to extreme values in the data. Log-normally

distributed data are positive, and may be spread over several orders of magnitude. In-

terpreting such data from an absolute rather than a logarithmic standpoint can result in

a mean value which is significantly higher than the location of the distribution’s central

region.

Slob goes on to argue that “the coefficient of variation is a natural measure of uncertainty in

the log-normal distribution, since exp(σ2) [...] can be recognized as the multiplicative analogue

of σ2, which has an additive nature.” The coefficient of variation is the ratio of the standard

deviation to the mean, which for the log-normal distribution is:

CV =
standard deviation

mean
=
√

exp(σ2)− 1 . (8.14)
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Adopting the CV as our preferred measure of uncertainty is especially useful in the context

of the CMB model, where uncertainties are best represented as fractions of measured values

(with the exception of zero-measurements, in which case the uncertainty would be representa-

tive of the lower limit of detection). We therefore assign measurement uncertainties σi using

Eq. (8.14), with the CV taking the percentage value of the measurement standard deviation.

For example, if a measurement takes a value of 100 units, and the measurement standard

deviation is specified as 10 units, then σi is chosen such that CV= 10%.

The source profile distribution parameters X◦,ij are specified based on quoted estimates

for the average abundances, which we denote µXij
; in other words, µXij

represents the mean

of the (i, j)th log-normal distribution for Xij . Manipulating relationships for the mean and CV

of a log-normal distribution, an expression is obtained which allows one to obtain the median

value given the mean and CV:

X◦,ij = µXij

(

1 + CV2
Xij

)−1/2
. (8.15)

The parameters σXij
are determined using Eq. (8.14), which implies that:

σ2
Xij

= log(1 + CV2
Xij

) (8.16)

8.2.2.2 Model error σ̌i

The CMB model rests on a number of assumptions which may be violated in unpredictable

ways. It is difficult to derive a single useful uncertainty estimate for the model because it is

implemented across many different scenarios. Traditional least-squares approaches to esti-

mating source contributions through the CMB model carry a built-in assumption of a Gaus-

sian, independent error structure. This assumption often leads to negative mass estimates

which must be truncated or otherwise remedied in an ad hoc manner. The present approach

avoids this problem by characterizing errors as multiplicative (log-normal), and guarantees

that the estimated masses are positive. However, the scale of these errors remains unknown,

and we require a methodology to deal with this ‘uncertainty of the uncertainty’. The following

is a partial list of possible approaches (in order of decreasing subjectivity):

1. Arbitrarily specify quantities for the model errors σ̌i. Equivalently, specify the CV’s for

the model errors.

2. Select model errors to be proportional to a percentage of the concentration measurement

errors (with both errors expressed as CV’s). Use a single constant of proportionality to

relate all of the model errors (we have just added a parameter to the inference). Specify a

prior probability for this constant and incorporate it into the Bayesian inference scheme.

3. Consider each model error to be an unknown parameter which must be inferred. The

parameter values can either be sampled using MCMC, or else analytically marginalized

(if possible). Whether these parameters are sampled or marginalized will not affect the

marginal posterior distributions for any of the other parameters.
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In this work we select option #2 to account for model error. The posterior distribution must

therefore incorporate a prior which assumes a state of ignorance with respect to the ‘scale’

parameter ρ. In a manner similar to Sivia and Skilling (2006), we adopt a form for the prior

which does not require the specification of a finite upper bound on ρ:

P (ρ | I) =
ρmin

ρ2
, ρ ∈ [ρmin,∞) , (8.17)

where ρmin is a conservative lower bound for ρ (selected by the user). This limit ensures

that the PDF of Eq. (8.17) is normalizable. The model CV’s are rewritten in terms of the

measurement CV’s: ČVi → ρCVi, i = 1, 2, . . . ,M .

8.2.3 Assignment of the likelihood P (y | β, X, I)

The likelihood is obtained by marginalizing the joint PDF of the measured (yi) and true (ytrue

i )

data given the modelled (y̌i =
∑
Xijβj) data:

P (yi | β,Xi, I) =

∫

all ytrue
i

dytrue

i P (yi, y
true

i | β,Xi, I)

=

∫

all ytrue
i

dytrue

i P (yi | ytrue

i ,β,Xi, I) P (ytrue

i | β,Xi, I).

(8.18)

Expanding and combining both expressions in the integrand (each is a log-normal PDF2), the

likelihood can be written as:

P (yi | β,Xi, I) =

∫

all ytrue
i

dytrue

i

1

2πσiσ̌iyiy̌i

× exp

[

− log2(yi/y
true

i )

2σ2
i

− log2(y̌i/y
true

i )

2σ̌2
i

]

,

(8.19)

where σ̌2
i is the variance pertaining to the log of the ith modelled datum (log y̌i) and σ2

i is the

variance pertaining to the log of the ith measured datum (log yi). Integration over ytrue

i ∈ (0,∞)

2 A detailed derivation would show that each expression is obtained through a convolution integral,
R

dǫi P (ǫi) δ(yi−
ǫiy

true
i ), with P (ǫi) specified by Eq. (8.11).
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yields the likelihood:

P (yi | β,Xi, I) = ai

√
π

ri
exp

[
(qi + 1)2

4ri
− pi

]

,

where ai =
1

2πσiσ̌iyiy̌i
,

pi =
log2 yi

2σ2
i

+
log2 y̌i

2σ̌2
i

,

qi =
log yi

σ2
i

+
log y̌i

σ̌2
i

,

ri =
1

2σ2
i

+
1

2σ̌2
i

.

(8.20)

8.2.4 Assignment of the prior probabilities

We assume a state of ignorance with respect to each parameter βj and therefore adopt a

Jeffreys’ prior (Sivia and Skilling, 2006), constrained by our estimates for the lower and upper

bounds for βj :

P (βj | I) =
1

βj log
(

βmax
j /βmin

j

) , βj ∈ [βmin
j , βmax

j ] . (8.21)

Note that under this prior, P (log βj | I) ∼ constant for βj ∈ [βmin
j , βmax

j ].

The prior distribution P (Xij | I) was given in Eq. (8.12), and as mentioned above, the prior

distribution P (ρ | I), Eq. (8.17), must also form part of the posterior distribution.

8.2.5 The full posterior distribution

Calculations are most easily performed using the logarithm of the posterior distribution,

which takes the following form:

logP (β,X, ρ | y, I) =
M∑

i=1

[

log

(

ai

√
π

ri

)

+
(qi + 1)2

4ri
− pi

]

−
M∑

i=1

N∑

j=1

[

log
(

XijσXij

√
2π
)

+
log2 (Xij/X◦,ij)

2σ2
Xij

]

−
N∑

j=1

log
[

βj log
(

βmax
j /βmin

j

)]

− 2 log ρ+ log ρmin + C ,

(8.22)

where C is a constant derived from taking the logarithm of the (unknown) normalization

constant for the posterior distribution.
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8.2.5.1 Gradients of the negative log-posterior

As explained below in Section 8.3, we require knowledge of the partial derivatives of the neg-

ative log-posterior PDF in order to effectively sample from it. Fortunately, these expressions

are available analytically, and are reproduced below for completeness.

∂

∂βj
(− logP ) =

M∑

i=1

Xij

y̌i

(
σ̌2

i + log y̌i − log yi

σ̌2
i + σ2

i

)

+
1

βj
(8.23a)

∂

∂Xij
(− logP ) =

βj

y̌i

(
σ̌2

i + log y̌i − log yi

σ̌2
i + σ2

i

)

+
log (Xij/X◦,ij)

σ2
Xij
Xij

+
1

Xij
(8.23b)

∂

∂ρ
(− logP ) =

2

ρ
+

M∑

i=1

ρCV2
i

(ρ2CV2
i + 1)

[

σ2
i + log(ρ2CV2

i + 1)
]2

×
[

−σ4
i + σ2

i (2 log(y̌i/yi) + 1)− log2 (yi/y̌i) + log(ρ2CV2
i + 1)

]

(8.23c)

8.3 Exploring the posterior distribution with Markov chain

Monte Carlo

For a source apportionment involving N sources and M species, the posterior distribution in-

volves up toN×M+N+1 parameters. For typical problems, this number could lie between 102

and 103. Clearly, tesselating and evaluating the posterior PDF over such a high-dimensional

parameter space is computationally impractical, so here we use Markov chain Monte Carlo

(MCMC) as a technique for sampling from the posterior distribution.

MCMC methods are well-documented in the literature (Neal, 1993; Gilks et al., 1996;

MacKay, 2003; Gregory, 2005) and provide a way to explore high-dimensional parameter

spaces more efficiently than conventional Monte Carlo integration. MCMC algorithms work

by generating a Markov chain of samples whose distribution tends asymptotically to a target

distribution (in our case, the posterior PDF). This property ensures that time is not wasted

generating samples from areas of the parameter space which contribute negligibly to the over-

all probability mass. We denote the sequence by m(k) ∈ R
Nd , where Nd is the dimensionality

of m(k); m(k) is the kth sample; and mi is the ith component of the model parameter vector, m.

The Metropolis-Hastings MCMC algorithm (which was described in chapter 4) is difficult

to implement for the present source apportionment problem because, as Hajian (2007) points

out, the efficiency3 of this algorithm is inversely proportional to the number of parameters in-

volved. Hajian advocates the use of Hamiltonian MCMC (originally due to Duane et al. (1987),

the method is also known as ‘hybrid Monte Carlo’), for which the efficiency remains constant

with dimensionality. This method is slightly more difficult to implement than Metropolis-

3 The statistical efficiency of a chain is basically a measure of the MCMC method’s effectiveness at generating sam-

ples which accurately describe the target PDF. An inefficient chain will suffer from large sample mean variance.

Details can be found in Gilks et al. (1996) and Hajian (2007).
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Hastings, as it requires the use of auxiliary momentum variables and knowledge of the partial

derivatives of the logarithm of the posterior PDF. Furthermore, all of our parameters of inter-

est, m = (β,X, ρ), are necessarily positive and must be transformed so that exploration of the

posterior distribution (which must also be transformed) can be carried out in log-parameter

space. However, due to the hundreds of parameters present in our source apportionment prob-

lem, and due to the fact that partial derivatives of the log-posterior are available analytically,

Hamiltonian MCMC remains a valuable technique for exploring our parameter space.

8.3.1 Hamiltonian MCMC: implementation

In the Hamiltonian MCMC method, we augment the model parameters m with a vector of

auxiliary momentum variables p and construct the Hamiltonian,

H(m,p) = U(m) +K(p), (8.24)

where U , the ‘potential energy’, is the negative logarithm of the target (posterior) PDF, andK,

the ‘kinetic energy’, is a quadratic function of the momenta: K(p) = 1
2p

Tp. The Hamiltonian

(8.24) is explored in the way described by Algorithm 8.1.

The leapfrog moves serve to transport the proposal m̃ through the Hamiltonian along

trajectories of constant energy. In this way, mixing (the tendency of the chain to explore dif-

ferent regions of parameter space) happens with more intensity than in a chain generated by

the Metropolis-Hastings algorithm. In theory, the acceptance rate for the method should be

100%; however, because the Hamiltonian dynamics are not simulated exactly (the leapfrog

algorithm discretely approximates the true trajectory; step sizes ς are finite), the acceptance

rate does not necessarily reach 100%. Good acceptance rates4 are obtained when each step

size is chosen to be proportional to the standard deviation of the chain: ςi ∝ sd(mi). The

number of leapfrog steps taken, Nleap, is also determined based on the desired rates of accep-

tance and chain exploration, and is subjected to small random perturbations at each step k

in order to guarantee ergodicity. These issues, along with an analysis of Hamiltonian MCMC,

are discussed in detail by Neal (1993).

8.3.2 Assessing chain convergence

Because the Markov chain of samples generated by an MCMC algorithm tends asymptotically

to the target distribution, it is necessary to assess how well a chain of finite length approx-

imates the target distribution. Hajian (2007) compares power spectra obtained using both

Hamiltonian and Metropolis-Hastings MCMC, demonstrating the ability of the Hamiltonian

method to achieve convergence more rapidly than Metropolis-Hastings for high-dimensional

parameter spaces. For the rest of this chapter, we adopt the method of Dunkley et al. (2005),

which was briefly described in Sec. 4.2 for assessing chain ‘convergence’.

4 In practice, a compromise is reached between acceptance rate and the speed of each chain’s exploration. For this

method applied to the source apportionment problem, we generally aim for acceptance rates higher than 50%.
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Algorithm 8.1 Hamiltonian MCMC

1: select initial parameter values: m(0)

2: select leapfrog step sizes: ς

3: FOR k = 1, 2, ... DO

4: p(0) ← sample from N(0, 1)

5: τ ← 0

6: m̃(τ) ←m(k−1)

7: FOR n = 1, 2, . . . , Nleap DO {execute leapfrogging }

8: p(τ+ς/2) ← p(τ) − 1
2ςT∇mU(m̃(τ))

9: m̃(τ+ς) ← m̃(τ) + ςTp(τ+ς/2)

10: p(τ+ς) ← p(τ+ς/2) − 1
2ςT∇mU(m̃(τ+ς))

11: τ ← τ + ς

12: END FOR {end leapfrogging }

13: calculate acceptance probability:

α← min
(

1, exp
[

H(m(k−1),p(0))−H(m̃(τ),p(τ))
])

14: u← sample from uniform(0, 1)

15: IF u < α THEN

16: m(k) ← m̃(τ) {accept the sample }

17: ELSE

18: m(k) ←m(k−1) {reject the sample }

19: END IF

20: END FOR
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8.4 Test case: San Joaquin Valley Fine (SJVF) data

We evaluate the proposed Bayesian source apportionment methodology using a subset of the

data collected at the Fresno site in California’s San Joaquin Valley (SJV) as part of the 1988-

1989 Valley Air Quality Study (VAQS). Details pertaining to this study (including the area’s

geography, dominant sources and measurement procedures) are presented in the work of

Chow et al. (1992), where a source apportionment is performed using the US Environmental

Protection Agency’s (EPA) CMB software version 7.0 (Watson et al., 1990). In a similar vein

to the study of Christensen and Gunst (2004), we perform a source apportionment using the

PM2.5 data and compare our results to those supplied in the EPA’s CMB version 8.2 software

users manual (Coulter, 2004). It should be noted that while Christensen and Gunst performed

the source apportionment using data from each time period, and Seinfeld and Pandis (2006)

performed the apportionment using annual average concentrations, our results are based on

data from only a single observation (Feb 27, 1989, as listed in the manual). The full data set

is available at the US EPA’s internet site5.

8.4.1 Source contribution estimates

Estimates for the contributions of each individual source are obtained directly from the chains

of samples generated by the MCMC algorithm. Figure 8.1 illustrates the sample histograms

corresponding to each source contribution parameter βj . For each histogram, the median

value along with 50% and 95% credible intervals (each credible interval contains a given

percentage of the probability mass) are shown.

A comparison between the apportionment results illustrated in Figure 8.1 and those ob-

tained using the EPA’s CMB software (Coulter, 2004) is graphed and tabulated in Figure 8.2.

The results are similar, although the uncertainty bounds are generally decreased. Further-

more, the estimate for crude oil burning lies much closer to zero.

8.4.2 Source profile estimates

One of the strengths of the proposed method lies in the way it accounts for uncertainty in

the source profiles. The Bayesian methodology allows us to obtain new estimates for the

source profile concentrations (X̂◦,ij) and their uncertainties, based on prior information which

consists of the profiles reported in the literature. Many source profile species concentrations

are listed in the literature as being zero; however, as mentioned in Section 8.2.1.3, we replace

these entries by an estimate for the lower limit of detection. For the present test case, this

lower limit is assumed to be equal to the lowest non-zero quoted measurement uncertainty.

Replacing these zero entries permits one to compare prior distributions for source profile

species to their posterior distributions. Figure 8.3 compares prior and posterior distributions

of species for the motor vehicles profile. Shifts in median estimates for certain species are

5 http://www.epa.gov/scram001/receptor cmb.htm
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evident (e.g., silicon) while for other species, the posterior distribution appears much narrower

than the prior.

Figure 8.4 illustrates the ratio (X̂◦/X◦)ij for two different profiles; namely, wood burning

and motor vehicles. Relatively large differences exist between the estimated and reported

profiles for motor vehicles, whereas in contrast, the posterior estimate for the wood burning

profile does not deviate greatly from its prior specification.
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Figure 8.1: Marginal parameter distributions generated from MCMC samples. The solid lines

are at median values, and the long and short dashed lines delineate 95% and 50% credible

intervals (CI’s), respectively.
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8.4.3 Markov chain convergence

To complete this section on the validation of our Bayesian methodology, we present some

details regarding the application of the MCMC algorithm (described in Section 8.3.1) to the

SJVF test case.

The Hamiltonian MCMC method used to obtain the samples (binned and summarized in

Figure 8.1) was run for 525×103 iterations, with each leapfrogging loop performing approx-

imately 15 steps (this number was randomized to lie uniformly between 11 and 19). The
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Crude oil combustion 1.3×10−5 4.24×10−2 0.20 0.26

Motor vehicles 8.30 2.24 7.39 3.65

Ammonium sulfate 3.62 0.73 3.57 1.11

Ammonium nitrate 24.8 2.16 25.4 4.22

Sodium nitrate 0.693 0.438 0.680 0.702

Figure 8.2: Comparison between apportionments obtained using the present approach vs.

those obtained using the EPA’s CMB software. Error bars delineate 68% credible intervals

(for the present approach) and estimated standard deviations (quoted by the EPA’s CMB soft-

ware).
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algorithm resulted in an overall acceptance ratio of 69%. Initial values and step sizes ς were

arrived at by running the algorithm iteratively using shorter chain lengths (on the order

of 103–104 samples) in order to drive the chain behaviour to achieve a desirable acceptance

ratio. The total number of iterations was chosen to be slightly larger than a power of two

(219 = 524 288) due to the fact that the chain convergence criteria are assessed using a spectral

technique which requires a fast Fourier transform (FFT). Commonly available FFT routines

operate most efficiently on data whose length is a power of two, and convergence was not

found to happen after 217 iterations.

Convergence was assessed using the criteria of Dunkley et al. (2005), and convergence

ratios were found to lie well below 0.01 for all parameters β and X. A diagram of the thinned
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Figure 8.3: Motor vehicles source profile: comparison of prior (solid line) to posterior density

(histogram) for each of the species in the profile. Horizontal axes are logarithmic.
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power spectrum6 for the chain corresponding to β1 (road dust), along with a parametric fit

to the spectrum, can be seen in Figure 8.5. The parametric fit models the power spectrum

according to a template proposed by Dunkley et al.:

P(η) = P0
(η∗/η)γ

(η∗/η)γ + 1
, (8.25)

which effectively divides the spectrum into ‘white noise’ (the flat region to the left) and ‘corre-

lated noise’ (the downward-sloping region at the right). Dunkley et al. showed that estimating

P0 (or, P(η) as η → 0) is equivalent to estimating the sample mean variance of a long chain.

The parametric fit allows one to estimate this quantity easily, as well as the quantity η∗,

which indicates the extent of the white noise regime. Chains which have entered the white

noise regime no longer experience correlations at the largest scales, and are likely to be ex-

ploring the full region of high posterior probability.
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Figure 8.4: Ratios of inferred to reported source profiles for motor vehicles and wood burning

sources. Vertical scale is logarithmic.

6 The full spectrum was obtained using 219 samples.
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8.5 Conclusions

Applying the multiplicative error assumption to the CMB model within a Bayesian framework

has proven to yield estimates for the source contributions (and their associated uncertainties)

which are consistent with results obtained using more traditional methods. Despite the ap-

parent similarity between these sets of estimates, the following attributes of the proposed

methodology are noteworthy:

1. The source profiles form part of the inference. We obtain posterior estimates for the

source profiles which effectively improve model concentration estimates y̌ with respect

to the measured PM data, y. It should be mentioned that source profile estimates cannot

be obtained if the posterior distribution is analytically marginalized over the parameters

X.

2. The ability to account for an unknown model uncertainty. It is often difficult to objec-

tively assess the impact that intrinsic features and assumptions of the model will have

on the agreement between model results and the true (but unknown) data. Accounting

for model uncertainty through an extra parameter ρ provides insight into how appropri-

ate the CMB model is for a given scenario. For example, if the posterior estimate for the

‘model error factor’ (ρ) was large, it might indicate that the tabulated source profiles (X◦)

are inappropriate for the geographical area or data set under study (examination of the

posterior estimates for the source profiles themselves would help to support or refute

this hypothesis). Furthermore, many other sources of model uncertainty are possible,
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Figure 8.5: Power spectrum (P(η), cosmetically thinned) for the chain corresponding to the

parameter β1, generated by the Hamiltonian MCMC alogrithm. The horizontally flat, leftmost

portion of the parametric fit (dashed line) indicates that the chain has entered the white noise

regime.
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such as the assumption that species do not react as they are transported from source

to receptor. The Bayesian methodology permits one to account for model uncertainty in

any number of ways, allowing competing hypotheses (regarding the applicability of the

model) to be tested.

3. Hamiltonian MCMC permits the resulting high-dimensional parameter space to be sam-

pled efficiently. A fortunate consequence of using the CMB receptor model is that gradi-

ents of the posterior distribution are available analytically, allowing one to use ‘directed’

MCMC methods such as the Hamiltonian method described in Section 8.3. For this

method, efficiency remains constant with dimensionality, which is especially important

since the SJVF test case involved 148 parameters.

To conclude, the proposed approach is of greater generality and flexibility than traditional

methods, yet manages to yield estimates with competing (or better) degrees of uncertainty.

While it is beyond the scope of this thesis to address issues surrounding source identification

and selection, Bayesian approaches to model selection and hypothesis testing could be applied

in a way compatible with the present framework.
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Chapter 9

Conclusions and recommendations

The material presented in this thesis constitutes a kernel which could be grown or extended

in several possible directions throughout the taxonomy of source determination problems.

Each of the chapters in Part II has addressed an individual application along with its solu-

tion, obtained by coupling a Bayesian inferential framework together with suitable analytical

and computational techniques. The contributions offered in this thesis lie in the blending of

techniques to achieve the said solutions, as well as the fact that a number of problems per-

taining to source determination in the atmospheric environment have now been collected and

treated under a single global framework. Accordingly, this thesis concludes with a summary

of the contributions presented in Part II, followed by suggestions for further investigation into

problems related to source determination.

9.1 Summary of contributions

1. The main contribution made in this thesis is the demonstration of how source determi-

nation problems, when posed in a Bayesian framework, can be solved efficiently through

the use of adjoint or backward dispersion models, together with MCMC for drawing

samples from the posterior distribution. Chapter 5 demonstrated the feasibility of this

approach for complex turbulent flows in built-up environments.

Our commentary on the correct usage of the adjoint approach for source determination

(Sec. 3.3) had the beneficial effect of generating discussion, and a comment-response

was later published which allowed us to further illuminate the key issues behind the

connection of the adjoint ‘influence fields’ to the PDF for the source location.

2. The source determination methodology was expanded in chapter 6 to involve nonconser-

vative tracers–agents expected to undergo a first-order removal process1 at an unknown

or uncertain rate ks. To this end, we introduced a novel extension to the Lagrangian

1 Many physical processes are modelled using a first-order scheme; e.g., deposition, scavenging (dry or wet), and

radioactive decay.
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stochastic dispersion model, allowing influence field (C∗) information to be rapidly re-

calculated (estimated) for arbitrary rate constants.

3. A decision-theoretic framework (Bayesian adaptive exploration, or BAE) was applied to

solve the optimal detector placement problem in chapter 7. Starting with a toy problem

involving synthetic data, the potential usefulness of BAE was demonstrated, but at the

same time a number of issues were uncovered which will need to be addressed in order

for the method to be practical in more general scenarios. These issues are described

below (Sec. 9.2).

4. Finally, an advanced MCMC method (hybrid Hamiltonian) was exploited to solve a

source apportionment problem involving hundreds of unknown parameters. All rele-

vant uncertainties in the model and data were taken into account at the outset, yet the

posterior uncertainties associated with the source apportionment estimates were either

comparable to or less than those obtained using traditional methods.

9.2 Recommendations for future work

Uncertainty quantification and model error specification

For all of the examples presented in this thesis, the functional forms for the model and mea-

surement uncertainties are fixed (as either Gaussian or log-normal) and of either predeter-

mined or unknown width. In the absence of available data and assumptions, these func-

tional forms are appropriate (according to the MaxEnt principle). However, potential im-

provement in each parameter estimate (in terms of reducing its uncertainty) can only be ob-

tained through improvement in the initial measurement and model error specifications, and

for this reason it is recommended that further investigation be performed into uncertainty

quantification (and characterization) for dispersion models.

The problem formulation presented in Sec. 3.2 began with the a priori assumption that

the only information available about the noise (model error) was its mean and mean-square

value. Application of the MaxEnt principle to this state of information (i.e., given mean and

mean-square noise values) yielded a Gaussian distribution as the joint PDF for the noise (this

being the maximally uninformative distribution given our ‘state of knowledge’ of the noise).

Moreover, the form of this Gaussian distribution for the noise does not contain correlations

(since this information was assumed to be unknown a priori). The reason for this is that given

our assumed state of knowledge about the noise structure, a further (a priori known) con-

straint on the correlations must lower the entropy. In other words, a constraint on the noise

correlation structure must lower the entropy (resulting in a more informative distribution),

which in turn makes more precise the estimates of the (unknown) source parameters, if the

correlation coefficients themselves are known.2

2 However, if we do not know the correlation structure of the noise a priori, and introduce a specific form (model) for

the correlation structure with some unspecified parameters which also need to be inferred from the concentration

data, this case may not lead to more precise estimates for the source parameters (since now the same data must
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From this perspective, the particular form of the Gaussian distribution for the noise as-

signed using the MaxEnt principle given the a priori information on only the mean and mean-

square values of the noise (correlations unknown) should not be viewed as not containing

correlations – rather, it is more precise to state that this form of the Gaussian distribution

for the noise effectively allows for every possible (noise) correlation structure that could be

present and, as a consequence, is less informative than a correlated distribution. In other

words, the functional form for the Gaussian distribution makes no specific assumptions about

the unknown noise correlation structure (for which it was assumed that no information was

available a priori).

Given, however, the observed nature of model errors (as seen from, e.g., the concentration

profiles obtained from the MUST array experiment, Fig. 5.4), the assumption that correlations

are unknown a priori is somewhat naı̈ve and ought to be improved upon. We would begin

by recognizing that in reality, for the atmospheric dispersion problems considered in this

thesis, the structure and causes of dependency between model errors are expected to be highly

complex. It is probably the case that errors in mean concentration depend strongly on the

accuracy of the flow field, which depends in turn on the underlying flow model’s ability to

resolve turbulence quantities and mean wind velocities. This ability depends further on the

specification of initial conditions such as wind direction and turbulent velocity profiles, as well

as boundary conditions such as surface roughness and temperature.

Having shortlisted potential sources of model uncertainty, one could consider, as a first-

order approximation, that there exists a temporal or spatial correlation structure to the model

errors, quantified by a characteristic time or length scale. In such a case, it is interesting

to examine the problem from a MaxEnt viewpoint as seen in Sec. 8.5 of Sivia and Skilling

(2006). Sivia and Skilling demonstrate that when all that is known about the prospective

error covariance is a characteristic nearest-neighbour correlation strength, maximizing the

entropy of the likelihood function results in a multivariate Gaussian whose covariance ma-

trix exhibits a power-law type of decay. In other words, starting with a specification for only

the diagonal and first set of off-diagonal terms, the MaxEnt principle can be used to obtain a

complete specification for the rest of the off-diagonal entries in the covariance matrix. Alter-

native covariance matrices could be specified as a result of different assumptions being made

regarding the off-diagonal terms. Having specified a form for the covariance matrix, the next

tasks would be to estimate (infer) specific values for its entries, and to assess the suitability

of its specified form (e.g., power-law vs. linear decay).

Evaluating competing hypotheses pertaining to model error structure is a problem related

to uncertainty quantification, and may call for techniques of Bayesian model comparison to be

applied. For example, consider the case where a sufficiently large data set of measured con-

centration and flow field data of known quality is available to be used for model validation.

A Bayesian approach to the uncertainty quantification problem might begin by estimating

the parameters of a model error specification (e.g., the terms in a covariance matrix) using

available data. However, the terms in the covariance matrix may be of a given form or struc-

also be used to constrain the unknown noise parameters). For example, in chapter 6, lack of knowledge of decay

rate resulted in an increase in the uncertainty in the source strength parameter.
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ture and we wish to assess whether or not a competing specification is more appropriate. By

calculating and comparing evidence terms, P (D | I1) vs. P (D | I2), the relative merits of

each different specification can be assessed. As mentioned in Sec. 2.3.2, however, calculat-

ing evidence terms is a nontrivial exercise, and it is expected that this particular aspect of

uncertainty quantification would require substantial research effort.

Complex source configurations

While the material in chapter 5 formulated the source determination case for a time-

dependent source, and while problems involving multiple point sources have already been ex-

amined by Yee (2008), more general source models remain to be addressed under the Bayesian

framework. The adjoint approach described in Sec. 5.2.2 improves the efficiency of source-

receptor computations not only for point sources, but also for line, area, and volume sources.

Issues arise, however, when we wish to characterize and parameterize such multidimensional

sources. For example, a set of basis functions may be required in order to characterize the

source for a given application. In such a case, the source would be parameterized by basis

function coefficients, of which there may be a varying number, which might in turn necessi-

tate the use of a dimension-jumping MCMC technique [as was used in the multiple source

problem of Yee (2008)]. Depending on the dimensionality of the parameter space, a hybrid

Hamiltonian MCMC technique (or other guided method) may also be required in order to

ensure timely convergence. Clearly, the issue has very quickly become complicated and there-

fore further investigation into the efficient solution of problems involving arbitrary source

configurations is recommended.

Improvement in computational efficiency for experimental design

As mentioned in the previous section, investigating the optimal detector placement problem

(chapter 7) yielded a number of issues which remain open. Of the three issues described in

Sec. 7.5, two stand out and bear restating. Firstly, the way that detector uncertainties (both

modelled and measured) are specified has a relatively large effect on the shape of the surface

defined by the expected information (EI) as a function of auxiliary detector location. This un-

derscores the importance of our first recommendation, which was that properly defining the

uncertainties involved in source determination is an important part of the problem. Secondly,

the optimal detector placement problem is computationally challenging in that many poten-

tial detector locations must be proposed in order for an optimization algorithm to lead the

proposal to the location where EI is maximized. Future research in this area could perhaps

concentrate on developing heuristic criteria to aid the optimization procedure.
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Appendix A

Nomenclature

Propositions

A,B,M,D, I

Spaces

Ω computational domain (parameter space)

R physical domain

D subset of physical domain (grid cell or support of kernel function)

Operators and matrices

L,L∗ forward and adjoint dispersion operators

X source profile matrix

Xi row of X corresponding to ith species

Xij entry of X; quantity of ith species contributed by jth source

Vectors and components

d, di measured data (mean concentration or scalar fluxes)

r, ri modelled data (mean concentration or scalar fluxes)

m,mi source parameters (indexed by i but of different dimension from data)

β, βj source contributions

y, yi measured species concentrations

y̌, y̌i measured species concentrations

σi, CVi standard deviation, coefficient of variation; ith modelled/measured concen-

tration
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p, pi auxiliary momentum variables used for Hamiltonian MCMC

ς, ςi step sizes used for leapfrog method

Note: m, p and ς have been indexed by i but are of different dimension to d and r.

xs source location

xd detector location

Field variables and functions

C(x) concentration field

C∗(x) conjugate concentration field

τ̂(x) sample average LS particle travel time field

σ2
τ (x) particle travel time variance field

u′c′(x) turbulent scalar fluxes

U(x) Reynolds averaged wind velocity

Q(x;xs, qs) source density distribution

h(x;xd) detector response function

I( ) indicator function; returns ‘1’ if argument is true, otherwise ‘0’

P (A | B, I) probability of A given B and I (probability density function)

I[A | B, I] information content of PDF:
∫

dA P (A | B, I) log P (A | B, I)
EI(e) expected information as a function of chosen experiment e

H(m,p) Hamiltonian function

P(η) power spectrum as a function of wavenumber η

Individual parameters and other scalar quantities

xs, ys, zs source x, y, z locations

qs source strength

ks rate of decay of nonconservative tracer

ρ scale parameter (unknown scale of model errors)

α acceptance probability (MCMC algorithms)
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A. Jeremić and A. Nehorai. Landmine detection and localization using chemical sensor array

processing. IEEE Transactions on Signal Processing, 48:1295–1305, 2000.

N. Kashiwagi. Chemical mass balance when an unknown source exists. Environmetrics, 15:

777–796, 2004.

A. Keats, E. Yee, and F.-S. Lien. Bayesian inference for source determination with applications

to a complex urban environment. Atmospheric Environment, 41:465–479, 2007a.

A. Keats, E. Yee, and F-S. Lien. Reply to the ‘Comments on: “Bayesian inference for source

determination with applications to a complex urban environment” ’. Atmospheric Environ-

ment, 41:5547–5551, 2007b.

A. Keats, E. Yee, and F-S. Lien. Efficiently characterizing the origin and decay rate of a

nonconservative scalar using probability theory. Ecological Modelling, 205:437–452, 2007c.

A. Keats, M-T. Cheng, E. Yee, and F-S. Lien. Bayesian treatment of a chemical mass balance

receptor model with multiplicative error structure. Atmospheric Environment, 43:510–519,

2009.

B. M. Kim and R. C. Henry. Diagnostics for determining influential species in the chemical

mass balance receptor model. Journal of the Air and Waste Management Association, 49:

1449–1455, 1999.
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C. Rödenbeck, S. Houweling, M. Gloor, and M. Heimann. CO2 flux history 1982–2001 in-

ferred from atmospheric data using a global inversion of atmospheric transport. Atmo-

spheric Chemistry and Physics, 3:1919–1964, 2003.

P. Sebastiani and H. P. Wynn. Maximum entropy sampling and optimal Bayesian experimen-

tal design. Journal of the Royal Statistical Society: Series B, 62:145–157, 2000.

P. Seibert and A. Frank. Source-receptor matrix calculation with a Lagrangian particle dis-

persion model in backward mode. Atmospheric Chemistry and Physics, 4:51–63, 2004.

132

http://www.guardian.co.uk/world/2004/nov/29/india.randeepramesh


J. H. Seinfeld and S. N. Pandis. Atmospheric Chemistry and Physics: From Air Pollution to

Climate Change. John Wiley and Sons, Hoboken, 2006.

I. Senocak, N. W. Hengartner, M. B. Short, and W. B. Daniel. Stochastic event reconstruction of

atmospheric contaminant dispersion using Bayesian inference. Atmospheric Environment,

42:7718–7727, 2008.

G. Shafer. Comments on “Constructing a logic of plausible inference: a guide to Cox’s Theo-

rem”, by Kevin S. Van Horn. International Journal of Approximate Reasoning, 35:97–105,

2004.

C. Silva and A. Quiroz. Optimization of the atmospheric pollution monitoring network at

Santiago de Chile. Atmospheric Environment, 37:2337–2345, 2003.

N. Singpurwalla and A. Wilson. Probability, chance and the probability of chance. IIE Trans-

actions, 41:12–22, 2009.

D. S. Sivia and J. Skilling. Data Analysis: A Bayesian Tutorial. Oxford University Press,

2006.

Y. N. Skiba. On a method of detecting the industrial plants which violate prescribed emission

rates. Ecological Modelling, 159:125–132, 2003.

J. Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1:833–860,

2006.

W. Slob. Uncertainty analysis in multiplicative models. Risk Analysis, 14:571–576, 1994.

M. D. Sohn, P. Reynolds, N. Singh, and A. Gadgil. Rapidly locating and characterizing pol-

lutant releases in buildings. Journal of the Air and Waste Management Association, 52:

1422–1432, 2002.

A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. Society

for Industrial and Applied Mathematics (SIAM), Philadelphia, 2005.

A. Tarantola. Elements for Physics: Qualities, Quantities, and Intrinsic Theories. Springer,

Berlin, 2006.

D. J. Thomson. Criteria for the selection of stochastic models of particle trajectories in turbu-

lent flows. Journal of Fluid Mechanics, 180:529–556, 1987.

A. N. Tikhonov. Solutions of ill-posed problems. Winston, Washington, 1977.

C. G. Tinney, R. P. Butler, G. W. Marcy, H. R. A. Jones, A. J. Penny, C. McCarthy, B. D. Carter,

and J. Bond. Four new planets orbiting metal-enriched stars. Astrophysical Journal, 587:

423–428, 2003.

B-J. Tsuang. Quantification on the source/receptor relationship of primary pollutants and

secondary aerosols by a Gaussian plume trajectory model: Part I–theory. Atmospheric

Environment, 37:3981–3991, 2003.

133



B-J. Tsuang, C-L. Chen, C-H. Lin, M-T. Cheng, Y-I. Tsai, C-P. Chio, R-C. Pan, and P-H. Kuo.

Quantification on the source/receptor relationship of primary pollutants and secondary

aerosols by a Gaussian plume trajectory model: Part II. Case study. Atmospheric Envi-

ronment, 37:3993–4006, 2003.

A. Venkatram and S. Du. An analysis of the asymptotic behavior of cross-wind-integrated

ground-level concentrations using Lagrangian stochastic simulation. Atmospheric Environ-

ment, 31:1467–1476, 1997.

J. Wang and N. Zabaras. A Bayesian approach to the inverse heat conduction problem. Inter-

national Journal of Heat and Mass Transfer, 47:3927–3941, 2004.

J. G. Watson and J. C. Chow. Source characterization of major emission sources in the Imperial

and Mexicali Valleys along the US/Mexico border. The Science of the Total Environment,

276:33–47, 2001.

J. G. Watson, N. F. Robinson, J. C. Chow, R. C. Henry, B. M. Kim, T. G. Pace, E. L. Meyer, and

Q. Nguyen. The USEPA/DRI Chemical Mass Balance receptor model, CMB 7.0. Environ-

mental Software, 5:38–49, 1990.

J. D. Wilson and W. K. N. Shum. A re-examination of the integrated horizontal flux method

for estimating volatilisation from circular plots. Agricultural and Forest Meteorology, 57:

281–295, 1992.

J.D. Wilson, G.W. Thurtell, and G.E. Kidd. Numerical simulation of particle trajectories in

inhomogeneous turbulence, III: Comparison of predictions with experimental data for the

atmospheric surface layer. Boundary-Layer Meteorology, 21:443–463, 1981.

S. Wu and J.V. Zidek. An entropy-based analysis of data from selected NADP/NTN network

sites for 1983-1986. Atmospheric environment. Part A, General topics, 26:2089–2103, 1992.

E. Yee. Probabilistic inference: an application to the inverse problem of source function esti-

mation. Melbourne, Australia, 31 January – 4 February 2005. The Technical Cooperation

Program (TTCP) Chemical and Biological Defence (CBD) Group Technical Panel 9 (TP-9)

Annual Meeting, Defence Science and Technology Organization.

E. Yee. Theory for reconstruction of an unknown number of contaminant sources using prob-

abilistic inference. Boundary-Layer Meteorology, 127:359–394, 2008.

E. Yee and C. A. Biltoft. Concentration fluctuation measurements in a plume dispersing

through a regular array of obstacles. Boundary-Layer Meteorology, 111:363–415, 2004.

E. Yee and J.D. Wilson. Instability in Lagrangian stochastic trajectory models, and a method

for its cure. Boundary-Layer Meteorology, 122:243–261, 2007.

E. Yee, R. M. Gailis, A. Hill, T. Hilderman, and D. Kiel. Comparison of wind tunnel and water

channel simulations of plume dispersion through a large array of obstacles with a scaled

field experiment. Boundary-Layer Meteorology, 121:389–432, 2006.

134



E. Yee, F.S. Lien, and H. Ji. Technical Description of Urban Microscale Modeling System:

Component 1 of CRTI Project 02-0093RD. DRDC Suffield TR 2007-067, Defence R&D

Canada – Suffield, Ralston, Alberta, 2007.

E. Yee, F-S. Lien, A. Keats, and R. D’Amours. Bayesian inversion of concentration data:

Source reconstruction in the adjoint representation of atmospheric diffusion. Journal of

Wind Engineering and Industrial Aerodynamics, 96:1805–1816, 2008.

J.V. Zidek, W. Sun, and N.D. Le. Designing and integrating composite networks for monitoring

multivariate Gaussian pollution fields. Journal of the Royal Statistical Society: Series C

(Applied Statistics), 49:63–79, 2000.

135


	List of Figures
	Introduction
	Theme and objective
	Contextual setting
	Thesis outline

	I Source determination: theory and formulation
	Bayesian inference for inverse problems
	Inverse problems
	General formulation and common solution techniques

	Probability theory as extended logic
	The nature of probability
	Confidence or credibility

	Bayes' theorem
	Prior information and ignorance
	Evidence


	Source determination
	Literature review
	Problem formulation
	Likelihood of the parameters
	Prior probability of the model parameters
	Posterior probability of the parameters

	Source-receptor relationship
	Obtaining source parameter estimates

	Markov chain Monte Carlo for Bayesian inference
	Chain mixing
	Chain convergence
	Post-processing samples


	II Applications and Case Studies
	Source determination in a complex urban environment
	Introduction
	Problem formulation and solution
	Bayesian formulation
	Assignment of the likelihood function
	Assignment of the prior probability
	The posterior probability density function

	Source-receptor relationship
	Continuous releases


	Mock Urban Setting Test (MUST) array
	Procedure
	C* field generation
	Detector selection

	Results

	Joint Urban 2003 atmospheric dispersion study
	Results

	Conclusions

	Determining the origin and decay rate of a nonconservative scalar
	Introduction
	Bayesian problem formulation
	Assignment of the likelihood function
	Assignment of the prior probabilities
	The posterior probability density function

	Modelling and numerical approach
	Source-receptor relationship
	Forward and backward Lagrangian stochastic dispersion model
	Tracer decay treatment

	Short-range dispersion in the atmospheric surface layer
	Wind field
	Reference solution: forward dispersion
	Validation: tracer decay treatment
	Performance of the statistical tracer decay treatment
	Inverse problem: source determination
	PPG experimental data (conservative tracer)
	Synthetic data (nonconservative tracer)


	Conclusions

	Optimal auxiliary detector placement for source determination
	Introduction
	Bayesian adaptive exploration for source determination
	Bayesian inference for source parameters
	Prior and likelihood
	Posterior distribution
	Source-receptor relationship

	Experimental design

	Computational approach
	Sampling from the posterior distribution
	Estimating I[dbold0mu mumu dddddd, Ie]
	Estimating dbold0mu mumu mmmmmm P(bold0mu mumu mmmmmmbold0mu mumu dddddd, Ie) I[dbold0mu mumu mmmmmm,bold0mu mumu dddddd, Ie]

	Short-range dispersion in the atmospheric surface layer
	Reference solution: forward dispersion
	Inverse problem: source determination
	Bayesian adaptive exploration: design stage

	Conclusions

	Source apportionment using the Chemical Mass Balance model
	Introduction
	Bayesian formulation
	Sources and types of uncertainty
	Measurement and model errors
	Source profile uncertainty
	Multiplicative vs. additive error

	Assigning distribution parameters
	Measurement error i; profile parameters Xij, X,ij
	Model error i

	Assignment of the likelihood P(bold0mu mumu yyyyyy  |  bold0mu mumu , X, I)
	Assignment of the prior probabilities
	The full posterior distribution
	Gradients of the negative log-posterior


	Exploring the posterior distribution with Markov chain Monte Carlo
	Hamiltonian MCMC: implementation
	Assessing chain convergence

	Test case: San Joaquin Valley Fine (SJVF) data
	Source contribution estimates
	Source profile estimates
	Markov chain convergence

	Conclusions

	Conclusions and recommendations
	Summary of contributions
	Recommendations for future work

	Appendix Nomenclature
	References


