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Abstract 
 
This thesis presents the results of a study on the kinetics of nitroxide-mediated radical 

polymerization of styrene with a unimolecular initiator. The primary objective was to obtain a 

more comprehensive understanding of how a unimolecular-initiating system controls the 

polymerization process and to clarify the effects of various reaction parameters.  

 

Previous work in this field has met with some difficulties in the initiator synthesis, such as 

low yield and inconsistency of molecular weight. These problems were overcome by 

adjusting reaction conditions and procedures. Better yields of initiator with consistent 

molecular weight were produced by the improved methods. 

 

Control of polymerization rate and polymer molecular weight in unimolecular 

nitroxide-mediated radical polymerization was studied by looking at the effects of the three 

main factors: initiator concentration, temperature, and the initiator molecular weight on 

polymerization rate, molecular weight and polydispersity. Results indicated that increasing 

the initiator concentration had no effect on polymerization rate at low conversion, but led to 

lower polymerization rate at high conversion; higher initiator concentration led to lower 

molecular weight of the resulting polymer. It was also found that temperature significantly 

increased the polymerization rate, yet had no effect on number-average molecular weight, Mn, 

at low conversion, while it caused a plateau at high conversion levels; there was no effect on 

weight-average molecular weight, Mw, through the whole conversion range. In addition, 

increasing initiator molecular weight was found to have no effect on either polymerization 
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rate or molecular weight. 

 

The experimental molecular weights of the unimolecular system were compared to 

theoretical molecular weights based on ideal controlled radical polymerization (CRP). The 

results were found to be close to the theoretical values. This confirmed the advantages of the 

unimolecular system, namely, the degree of control over molecular weight was nearly ideal 

(for certain conditions); and molecular weights could thus be predicted by simply following 

general rules relating to CRP mechanisms. 
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Chapter 1 Introduction    
   

  Radical polymerization (RP) is one of the most widely used processes for the commercial 

production of high-molecular-weight polymers. The versatility of radical polymerization is 

attributed to (i) the compatibility to a wide variety of monomers, including styrene, 

(methy)acrylates, (meth)acrylimides, acrylonitriles, dienes, etc.; (ii) tolerance of unprotected 

functionality in monomer and solvent (i.e., OH, NR2, COOH, CONR2, and SO3H); and (iii) 

compatibility to a wide range of reaction conditions (i.e., bulk, solution, emulsion, 

miniemulsion, and suspension). However, conventional radical polymerization has notable 

limitations with respect to the degree of control over molecular weight distribution, 

end-functionality and macromolecular architecture. This deficiency has been compensated by 

the development of processes that provide living characteristics, the so-called “controlled 

radical polymerization (CRP)”. 

 

  The success of CRP relies on the versatility of radical chemistry and the capability to 

control the polymerization like anionic polymerization; however, under reaction conditions 

requiring no solvent or rigorous experimental and purification techniques as for anionic 

polymerization. CRP can be used in the synthesis of well-defined homo-, gradient, di- or 

tri-block, star polymers and other more complex architectures. In addition, inorganic 

materials and natural products can be linked to synthetic polymers to form nanocomposites 

and copolymers tethered to surfaces. The application of CRP has penetrated a variety of fields, 

such as nano-technology (electronics, computer science), material technologies 

(compatibilizers, stabilizers, adhesives, dispersing agents, polymer toughening agents, 
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thermoplastic elastomers, hybrid materials, etc.), and bio-materials (bio-related polymers, 

drug delivery systems, etc.). The most recent developments in materials research are mainly 

devoted to end functionalization for nano-materials.  

 

  Nitroxide mediated radical polymerization (NMRP) is one of most attractive CRP 

techniques. It stands out of other CRP techniques by the relative simplicity of its mechanism, 

larger tolerance to many functional groups and easier purification of reagents. Based on 

different initiation strategies, NMRP can be divided in two types, unimolecular and 

bimolecular. In unimolecular NMRP, the radicals form from decomposition of an 

alkoxyamine at elevated temperature. In bimolecular NMRP, the radical initiation is from 

addition of a traditional initiator along with a stable nitroxide compound. To date, the organic 

chemistry and other kinetic/mechanistic aspects of NMRP are considered relatively well 

understood. However, many features of kinetics and mechanism remain to be unraveled. Thus 

a significant part of current research remains directed to this end. 

 

  Difficulties in synthesis of unimolecular initiators (i.e. low yield, inconsistent molecular 

weight) have been met in previous studies. This has discouraged an extensive study of 

unimolecular systems. The low yield, for example, leads to inadequate amounts of initiator 

available for an extensive kinetic program. Initiator had thus to be prepared in a variety of 

batches. This may bring about undesirable differences to initial initiator properties, and 

extensive study using such initiators may be complicated. Although many novel nitroxides 

and alkoxyamines with advanced functionality or structure have been developed to overcome 

the above mentioned deficiencies, the cost for synthesizing such materials is still a concern, 
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and further purification of product may be needed. Thus, it is worthy to develop a method 

that uses commercially available materials and simple procedures, yet can provide relatively 

high yield and consistent initiator properties (molecular weight, polydispersity). 

  

  Previous studies have indicated certain advantages of unimolecular systems over the 

corresponding bimolecular systems, such as better controlled molecular weight and lower 

polydispersity while keeping a comparable polymerization rate to a bimolecular system. 

Interestingly, some recent studies observed a distinct kinetic behavior, where the 

unimolecular system at high conversion had a relatively lower polymerization rate than that 

of a bimolecular system. Although there are a large number of publications devoted to 

explore the kinetics of NMRP, most of them conduct research at low conversion; discussions 

on high conversion are seldom provided. This is due to complex reaction factors present at 

high conversion. In NMRP of styrene, for example, the contribution of side reactions (i.e. 

termination, thermal self-initiation, decomposition of alkoxyamine) may be more significant 

at high conversion. The interpretation of the results, and control over the process, are thus 

more complicated at the high conversion range. However, a route toward higher molecular 

weight of polymer (driving monomer conversion to a sufficiently high level) has always been 

an important industrial concern. So investigation of NMRP process through the whole 

conversion range can provide more information on its mechanism, based on which we can 

develop methods to achieve better control over the process. 

  

 There is a reasonable understanding of a unimolecular system in terms of mechanism, and 

therefore a number of models have been developed. However, this theoretical understanding 
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has not been balanced by detailed experimental studies regarding the various reaction 

conditions. Proper selection of reaction conditions can provide the system with sufficient 

living nature, and reveal the relationship between reaction conditions and kinetic behavior, 

which can further be used to produce polymers with pre-determined properties.  

 

  Therefore, the objectives of the work carried out in this thesis were to:  

1) Find optimal conditions to the extent possible to prepare initiator in sufficient quantity for 

extended kinetic studies; 

2) Extend the understanding of advantages of a unimolecular system over a bimolecular 

system over the whole conversion range; 

3) Investigate the effects of the main experimental factors in a unimolecular system. 

 

  In Chapter 2, a brief review of NMRP is given, including a brief historical perspective, and 

basic mechanisms and applications of CRP. Furthermore, the scope of components (monomer, 

nitroxides) in NMRP is described and the kinetic mechanisms of different initiating systems 

are discussed. The experimental techniques used to study the unimolecular NMRP are 

described in Chapter 3, and characterization methods are briefly discussed. 

 

  In Chapter 4, the experimental design and results from the experimental part are presented 

and discussed. The improved synthetic method for unimolecular initiator is described. 

Furthermore, the performance of unimolecular NMRP is compared to a bimolecular system. 

The effects of experimental factors (initiator concentration, temperature, and initiator 

molecular weight) on the kinetics of the unimolecular system are then investigated with 

respect to polymerization rate and molecular weight. In addition, the prediction of molecular 
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weights is discussed. Finally, concluding remarks and recommendations for further work are 

given in Chapter 5. 

 

  The thesis includes three appendices. Appendix A contains tables of the raw data collected 

for the figures of Chapter 4, whereas Appendix B contains complementary figures that were 

kept out of the main text for the sake of brevity. Appendix C contains a sample calculation of 

initiator concentration. Each chapter has its own reference section and all symbols used in the 

text are explained upon first use. 
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Chapter 2 Literature Review  
 

2.1 Controlled radical polymerization (CRP) 
 
2.1.1 Historical development of CRP 
   

  Until a little more than a decade ago, “controlled/living radical polymerization 

(CRP/LRP)” would have been a highly impossible concept. Simultaneous control over all 

aspects, including molecular weight distribution, end-functionality and macromolecular 

architecture, is impossible for regular radical polymerization (RP) due to its slow initiation, 

fast propagation and inevitable radical-radical termination (more details in section 2.1.2). The 

success of CRP is an integration of advances in synthetic organic chemistry, living ionic 

polymerization and conventional radical polymerization (Figure 2.1). Three main types of 

techniques have been developed over the years: 1) stable free radical polymerization (SFRP) 

with nitroxide-mediated radical polymerization (NMRP) as its most common example, 2) 

atom transfer radical polymerization (ATRP) and 3) reversible addition-fragmentation 

transfer (RAFT) polymerization. 

 
Figure 2.1 Development of CRP by integration of advances in several fields of chemistry 
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  The first successful method to control radical addition reactions in general organic 

syntheses was atom transfer radical addition (ATRA) developed by Kharasch et al.[1](Scheme 

2.1), where the atom (X) transfers from an organic halide (R-X) to the metal complex (Mtn), 

then back to the organic radical (RCH2CH2Y*); carbonic radical (R*) was added to alkenes 

(CH2=CHY ) via radical intermediates (Mtn+1X) under photochemical conditions. This ATRA 

process was subsequently converted to a much more efficient metal-catalyzed reaction [2].  

R-X

R*

Y

R

Y

R X

Y

Mt(n+I)X

Mt (n)

 

Scheme 2.1 Mechanism of atom transfer radical addition (ATRA) 

  The concept of “living polymerization” can be attributed to the study on anionic 

polymerization of non-polar monomers by Swarc et al.[3]. The elimination of transfer and 

termination reactions from chain growth polymerization is the core finding of this discovery. 

It was the first technique used to synthesize macromolecules with controlled topologies, 

predetermined molecular weight and nearly Poisson distribution of molecular weight. The 

first system in which both dormant and active species were spectroscopically observed and 

kinetics and thermodynamics of exchange reactions determined was cationic ring-opening 

polymerization of tetrahydrofuran[4]. The concept of dynamic equilibrium between dormant 

and active species that arose from this work has subsequently been successfully used in 

carbocationic polymerization (Scheme 2.2). 
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A* D
ka

kd  

Scheme 2.2 Equilibrium between active and dormant species 

  Initial efforts on producing a “living” system based on free radical chemistry involved the 

“iniferter” concept, which takes advantage of sulfur-centered radicals[5] (Scheme 2.3).  

S
NR2

S

S*
NR2

S

Monomer

Pm

termination

+Pn*
Pn

 

Scheme 2.3 Main mechanism for sulfur-centered radical (iniferter) mediated polymerization 

  The model that Otsu and Yoshida[5] proposed for this is very similar to that for modern 

CRP. Disulfides were proposed as photochemical initiators where cleavage can occur at the 

C-S bond to give a carbon-based propagating radical and the mediating thio-radical. 

Propagating radical can undergo reversible recombination with the primary sulfur radical to 

give a dormant species, thereby controlling the radical concentration and subsequently the 

structure of polymers. Although iniferters allowed the facile synthesis of block copolymers, 

they were also found to initiate new chain growth, which leads to molecular weight 

distributions that are as broad as those from traditional free radical processes. They could not 

lead to a living radical polymerization with efficient control over the polymer structure. 

Further development was therefore needed to produce a radical initiated polymerization with 

better living characteristics. 
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  A new system for controlling radical polymerizations based on 2,2,6,6-tetramethyl-1-piper- 

-idinyloxy (TEMPO) as controller appeared in the patent literature in 1986[6]. The researchers 

used nitroxide at temperatures above 100ºC in synthesis of oligomers (Scheme 2.4) and 

short-chain-length block- or graft- copolymers, and demonstrated the living nature of the 

polymer chain end. However, the full implications of this work were not recognized at that 

time.  

NO NOPn + * Pn

ka

kd

*

 

Scheme 2.4 Mechanism of TEMPO-mediated radical polymerization 

  Subsequently, Moad et al.[7] proposed another approach to LRP based on 

addition-fragmentation chemistry, which can be considered as a special case of degenerative 

transfer. In these systems, some understanding of LRP was reached and the mode of 

termination was identified.  

  It was not until 1993 when Georges et al.[8] published their first paper on controlling the 

bulk radical polymerization of styrene by using a mixture of benzoyl peroxide (BPO) and 

TEMPO as an initiating system (Scheme 2.5), that the wider interest in living radical 

polymerization was stimulated. Many publications have subsequently emerged confirming 

the “living” nature and demonstrating the usefulness of this approach to prepare polymers of 

well-defined and complex architectures, which can not be prepared using traditional methods.  
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Scheme 2.5 Georges’ approach to NMRP using bimolecular initiation[8] 

 

  In 1995, Wang and Matyjasewski [9] extended atom transfer radical addition (ATRA) to 

atom transfer radical polymerization, ATRP. The main difference between ATRA and ATRP is 

the fact that the addition product (RCH2CHXY in Scheme 2.1) is able to reactivate to a 

radical (RCH2CHY*) that is able to undergo propagation reactions with available monomer.     

Thus, equilibrium is established between the dormant alkyl halide molecule and the active 

radical species (R*), the latter of which may propagate, terminate or deactivate (Scheme 2.6). 

Polymerizations gave polymers with very low polydispersities (down to 1.05), and 

predictable molecular weights based on the concentration of monomer consumed (∆[M]) and 

the initial initiator concentration (i.e. degree of polymerization (DP) = ∆[M]/[Initiator]0).This 

provided a new and efficient way to conduct CRP. 
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Scheme 2.6 Mechanism of atom transfer radical polymerization (ATRP) 

  Subsequently, Rizzardo et al.[10] reported another living free radical polymerization based 

on their previous study of employing addition-fragmentation chemistry for end 

functionalization. The mechanism involved Reversible Addition-Fragmentation (chain) 

Transfer (Scheme 2.7), and thus it was designated as RAFT polymerization. It also 

demonstrated significant living character, such as narrow polydispersity, predictable 

molecular weight and the ability to produce block co-polymers by further monomer addition. 

Compared to other processes for living/controlled free-radical polymerization, it has a major 

advantage that it is compatible with a wider range of monomers. 

R* A-X
monomer

A-X

R-X A* A*

R+ +

+ +

(M)n*

R-(M)n-X  

Scheme 2.7 Mechanism of reversible addition-fragmentation chain transfer polymerization 

 The success of polymerization using stable radical and atom transfer methods is attributed to 

the persistent radical effect (PRE). The model was originally developed by Fischer[11][12] in 

order to explain the high selectivity observed in some radical reactions. Simply stated: when 

a transient radical and a persistent radical are simultaneously generated, the cross reaction 
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between the transient and persistent radicals will be favored over self-combination of 

transient radicals (homo-termination). Self-combination of transient radicals leads to a build 

up in the concentration of the persistent species, which favors cross termination with the 

persistent radical over homo-termination. The homo-termination is thus self-suppressing. The 

effect can be generalized to a persistent species effect to embrace nitroxide-mediated radical 

polymerization (NMRP) and atom transfer radical polymerization (ATRP).  

  The development of controlled radical polymerization methods such as nitroxide-mediated 

radical polymerization (NMRP), atom transfer radical polymerization (ATRP) and reversible 

addition fragmentation transfer (RAFT) polymerization provide almost the same level of 

control over the microstructure as traditional ionic polymerization methods without the need 

of extensive purification of reagents. The combination of a living mechanism with the scope 

and versatility of the radical process allows a wider selection of monomers and monomer 

combinations that can not be made by ionic polymerization (see also section 2.1.3). These 

potential and subsequent applications have stimulated increasing interest in this area in the 

last decade. 

2.1.2 Basic mechanisms and typical kinetic features of CRP 

2.1.2.1 Reversible activation/deactivation in CRP 

  Radical polymerization includes four elementary reactions[13] (Scheme 2.8): (1) slow 

initiation by the homolytic cleavage of an initiator (a molecule with low thermal stability, i.e. 

peroxide, diazo-compound), followed by relatively fast reaction of primary radicals with 

monomer to generate the first growing species; (2) fast propagation by addition of monomer 
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to the growing species; (3) very fast termination between growing radicals; and (4) chain 

transfer reactions between growing radicals and monomer, solvent, chain transfer agent or 

initiator.  

 
Scheme 2.8 Mechanism of conventional radical polymerization (RP)[13] 

 

  Controlled radical polymerization (CRP) distinguishes itself from conventional radical 

polymerization by involving a reversible activation process [14] (Scheme 2.9). 

P-X P* X*

(+M)

(Dormant)

+
ka

kd

 
Scheme 2.9 Reversible activation process of CRP [14] 

 

In this mechanism, an end capped (or inactive) polymer (dormant species), P-X, is 

homolytically unstable and undergoes thermal fragmentation to give a transient polymeric 

radical P*. The chains propagate by the addition of monomer to the active radical P* until it 

is deactivated back to P-X. K is the activation/deactivation equilibrium constant. 

  The reversible activation reactions in the most effective CRP methods may be classified 
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mechanistically into three types[14], which are: (a) dissociation-combination (DC), (b) atom 

transfer (AT), and (c) degenerative chain transfer (DT) (Scheme 2.10). 

P-X P* X*

(b) Atom Transfer (AT)

P-X A P* AX*

(c) Degenerative Chain Transfer (DT)

P-X R* P* X-R

P-X*-R

+

+ +

+ +

kd

kc

kc

kc

kd

kd

(a)Dissociation-Combination (DC)

 
Scheme 2.10 Three main mechanisms of reversible activation[14] 

 

  In the Dissociation-Combination (DC) mechanism, P-X is thermally or photochemically 

dissociated into an active/propagating radical P* and a stable (persistent) radical X*. An ideal 

stable free radical (SFR) participates in neither self-termination nor initiation of new chains. 

The most widely studied and most successful class of stable radicals are nitroxides such as 

TEMPO.  

  In the Atom Transfer (AT) system, the dormant, P-X, is activated by the catalytic action of 

activator A, and the capping agent is transferred to form a stable species AX*. Commonly 

used activator A is a halide complex of a transition metal like Cu and Ru, and the capping 

agent is a halogen such as Cl or Br.  

  In the Degenerative Chain Transfer (DT) mechanism, with reversible 

addition-fragmentation radical (RAFT) polymerization as the best example, the dormant 
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chain is attacked by radical R* to form the active species P* and the dormant species R-X. 

The exchange reaction occurs via addition of R* to form the intermediate radical P-(X*)-R 

followed by fragmentation of P-(X*)-R into P* and R*. 

2.1.2.2 Other elementary reactions in NMRP of styrene 

  Besides the reversible activation, elementary reactions in NMRP of styrene include 

propagation, chain transfer and termination, which can also be seen in conventional radical 

polymerization (Scheme 2.11 b, c, d). The rate constants of propagation and termination are 

assumed to be the same as in the conventional system. In addition, alkoxyamines can 

decompose at high temperatures through β-proton abstraction by TEMPO, forming an alkene 

and a hydroxylamine (Scheme 2.11e). In addition, styrene is known to undergo a thermal 

self-initiation at elevated temperature (T ≥ 100º)[15](Scheme 2.11a) (details see section 2.3.1).  

(a) Thermal self-Initiation 

     

   * *D M D M+ ⎯⎯→ +

(b) Propagation 

* *pkP M P+ ⎯⎯→  

(c) Termination 

* * .kt
m nP P dead polymer+ ⎯⎯→  

(d) Chain Transfer 

* *trk
mP RH PH R+ ⎯⎯→ +  

(e) Decomposition of P-X 

.deckP X dead polymer XH− ⎯⎯→ +  

 
Scheme 2.11 Possible elementary reactions other than reversible activation reactions in NMRP of 
styrene[16] 
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2.1.2.3 Typical kinetic features of NMRP 

  CRP closely resembles conventional radical systems, yet there are some distinct features. 

i) Semi-logarithmic plot of ln([M]0/[M]) vs. time is linear. 

        In an ideal CRP system, initiation occurs instantaneously at an early stage of           

polymerization, and termination is effectively minimized; a constant radical 

concentration is reached by balancing the rates of activation and deactivation, 

which demonstrates a first-order kinetic dependence of propagation rate on 

monomer concentration (Eq. 2.1). 

[ ][ *]p p nR k M P=             ( 2.1) 

        where Rp is rate of propagation, kp is propagation rate constant, [M] is monomer 

concentration, and [Pn*] is the propagating radical concentration. 

        A plot of ln([M]0/[M]) vs. time provides a straight line (Figure 2.2). 

1/20[ ]ln ( )
[ ]

ip

t

M Rk
M k

= t          ( 2.2) 

        where [M]0 is monomer concentration at time t = 0, and Ri is initiation rate. 

        If initiation is not fast enough, or termination can not be neglected, the plots will          

        show some curvature. 
 

 
           Figure 2.2 First order kinetic plot for controlled/living radical polymerization (CRP/LRP)[17] 

 16



         In contrast, for conventional radical polymerization (RP) which is also                     

         described by Eq.(2.1), a steady-state is established early in the reaction by   

         balancing continuous initiation and irreversible termination.  

 

ii) Molecular weight increases linearly with monomer conversion (Figure 2.3).  

        This feature is analogous to what is seen for anionic living polymerization, which 

has eliminated termination. In an ideal living radical polymerization system, where 

initiation is faster than propagation and chain transfer side reactions and 

termination can be neglected, the polymer molecular weights are proportional to 

the ratio of monomer consumption to the concentration of initiated chains. In most 

cases, we assume the initiator efficiency is close to 1, so that the concentration of 

initiated chain can be substituted by the initial initiator concentration (Eq.2.3). 

0
0

0

[ ] [ ]
[ ]

t
n

M MM M
I
−

= ×      ( 2.3 ) 

        Mn is the number-average molecular weight of polymer, [M]0 is monomer    

concentration at time t = 0, [M]t is monomer concentration at time t, [I]0 is initiator 

concentration at time t = 0, and M0 is the molecular weight of the monomer unit. 

 
      Figure 2.3 Molecular weight vs. conversion plot, comparison of CRP and RP 
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iii) Molecular weight distribution is narrow (Figure 2.4). 

The distribution of molecular weight of polymer can be quantified by the 

polydispersity index (PDI), which is the ratio of weight average molecular weight 

to number average molecular weight (Mw/Mn). The PDI has a value always greater 

than 1, but as the polymer chains approach uniform chain length, the PDI 

approaches unit. 

 

Figure 2.4 Size exclusion chromatographs of polystyrene samples. A: regular radical 
polymerization (PDI=2), B: anionic polymerization (PDI=1.1), C: NMRP (PDI=1.1) [17] 

    

       The narrow molecular weight distribution stems from the fact that each chain      

undergoes periods of growth and deactivation alternatively. The mean increase of 

DP in each activation/deactivation cycle (run length per activation cycle (RLPAC)) 

is determined by the ratio of propagation rate and deactivation rate[18], 

[ ][ *] [ ]
[ *][ *] [ *]

p p p

d d d

R k M P k M
RLPAC

R k X P k X
= = =             ( 2.4 ) 

       where kp is propagation rate constant, kd is deactivation rate constant, [M] is 

monomer residual concentration, [P*] is propagating radical concentration, and [X*] 
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is nitroxyl radical concentration.  

       It can be seen that the faster this deactivation/activation process is (Rd↑), the less 

propagation steps can be completed in each activation cycle (RLPAC↓), and the 

overall result would be that the majority of chains stay in the dormant form, and 

grow in a slow and incremental fashion. Since the chain growth is initiated 

instantaneously at the early stages of polymerization, each chain in the overall 

sample will grow on average for a similar period of time. 

     In contrast, conventional RP has a slow initiation and unavoidable termination with a 

rate proportional to the square of the radical concentration (Rt ∝ [Pn*]2). This leads 

to a broad molecular weight distribution. 

iv) End functionality 

      The participation of the reversible activation extends the average lifetime of 

growing chains from ≈ 1s (in RP) to more than 1h (in LRP). This combined with 

minimal termination, leads to the observed narrow molecular weight distribution. In 

addition, the nature of the mechanism also enables specific end functionalization 

(Figure 2.5), or addition of a second monomer to make a block copolymer, which 

can not be realized by conventional RP systems. 

 
      Figure 2.5 General polymer chain functionalization in controlled radical polymerizations 
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2.1.3 Potential applications of CRP materials 

  The development of CRP has allowed the preparation of polymers with novel architectures 

and functionality. A schematic of potential applications [19] are shown in Figure 2.6. Some 

examples are highlighted below. 

 

Figure 2.6 Examples of molecular structures attained through CRP [19]. 

 
  Block copolymers based on acrylates and other polar monomers may find applications as 

polar thermoplastic elastomers[20]. Such materials can be used as adhesives and sealants, in 

many compounding applications, including automotive, wire and cable, footwear, medical, 

soft touch overmolding, cushions, squeezables etc. They can be used as thermoplastic 

vulcanizates, in flexographic printing, road marking, lubricants, gels, and coatings. They also 

can be used for much more sophisiticated applications such as specialized chromatographic 

packing[21] or controlled drug-release in cardiovascular stents[22]. 
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  Amphiphilic block copolymers with water soluble segments have been successfully used 

as very efficient surfactants[23] and also for higher end applications including pigment 

dispersants, additives, and components of health and beauty products[24][25]. AB and ABC 

triblock copolymers with precisely controlled segment lengths to self-assemble at the 

nanometer scale has enormous utility for applications ranging from thermoplastic elastomers, 

catalyst supports, organic photovoltaics, and nanoporous media [26][27]. Graft copolymers have 

been used as compatibilizers for polymer blends and may be used in applications intended for 

block copolymers[28][29]. Gradient copolymers hold great promise in applications ranging 

from surfactants to noise and vibration dampening materials[30]. 

  Star and comb polymers[31] can be used as viscosity modifiers and lubricants. An ultimate 

example of controlled topology might be a macromolecular bottle-brush. Such polymers are 

lightly crosslinked and result in supersoft elastomers[32]. Thus, applications are ranging from 

intraocular lenses and other biomedical applications requiring a soft material that does not 

leach to surrounding tissue, and electronic applications requiring the protection of delicate 

components by a soft solid. 

  Molecular hybrids with a covalent attachment of well-defined functional polymer to either 

an inorganic component or a natural product are currently being investigated[33][34]. Such 

hybrids and nanocomposites may allow better dispersability of inorganic components 

(pigments, carbon black, carbon nanotubes, nanoparticles), and the formation of 

nanocomposites. 

  Other potential applications include microelectronics, optoelectronics, specialty 

membranes, sensors and components for microfluidics. Well-defined polymers prepared by 

CRP are very well-suited for biomedical applications such as components of tissue and bone 
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engineering, controlled drug release and drug targeting, antimicrobial surfaces[35], steering 

enzyme activity[36], and many others. 

2.2 Components of NMRP 

2.2.1 Monomers 

  NMRP has mainly been used for styrene polymerization and, to a lesser extent, acrylate 

polymerization. For styrene polymerizations carried out at temperatures greater than 100ºC, 

thermal initiation provides some rate enhancement and a source for controlling the excess of 

nitroxide that is formed as a result of radical-radical termination and the persistent radical 

effect. Otherwise, polymerization would come to a halt because of the inhibiting effect 

caused by the build up of stable free radical concentration. 

NMRP with acrylates and acrylamides with TEMPO provides only very low conversions 

and broad dispersities. Better results were obtained with DTBN[37] (Figure 2.7). However, 

low conversions were still observed. The self-initiation of monomer (as seen for styrene) is 

absent and, as a consequence, polymerization proceeds until inhibited by the build-up of 

nitroxide. Molecular weight may also be limited by the occurrence of backbiting and 

fragmentation when high reaction temperatures are used.  

O N

DTBN

*

 

Figure 2.7 Structure of DTBN [37] 

  NMRP cannot be applied to methacrylate monomers, although a small amount of the 
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monomers can be inserted into styrene and acrylate polymers through copolymerization[38]. 

This is because the disproportionation termination predominates over the coupling 

termination during the methacrylates polymerization at high temperature. A recent 

communication[39] has described a photo-living radical polymerization of MMA in the 

presence of 4-methoxy-TEMPO (MTEMPO). This is the first study demonstrating that 

nitroxide mediated radical polymerization produced PMMA with a comparatively narrow 

molecular weight distribution ( Mw/Mn = 1.3 ~ 1.7 ).  

2.2.2 Nitroxide as trapping agent 

  Because of relatively low cost and immediate commercial availability, TEMPO was the 

primary nitroxide being applied to CRP. However, as a mediating nitroxide, TEMPO has 

some apparent deficiencies, including the necessity to use high temperature (125-145ºC), 

long reaction time to high conversion (24-72h), and an incompatibility with many important 

monomer families other than styrenics.  

  In order to broaden the scope of the technique, efforts to develop new mediating nitroxides 

with improved performance were made. The initial efforts looked at TEMPO-based 

derivatives. By using 4-oxo-TEMPO[40], Keoshkerian et al. successfully controlled the 

polymerization of acrylates at elevated temperature (145ºC-155ºC) with relatively low 

polydispersity (1.40-1.67). Similarly, Matyjaszewski et al.[41] observed that the rate of 

polymerization of styrene had increased by using a TEMPO derivative, substituted in the 

4-position with a phosphonic acid group. This prompted the development of other 

“TEMPO-like” nitroxides, such as di-t-butyl nitroxides. All of these approaches provide an 
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increased polymerization rate; yet none of them is significant enough to improve on what was 

observed for TEMPO and to make NMRP stand out from other living radical techniques. 

The most significant breakthrough in the design of improved nitroxides was use of acyclic 

nitroxides, which bear no structural resemblance to TEMPO. The best example of these new 

materials is the phosphonate derivative, SG-1[42] (Figure 2.8) and the family of arenes, DTBN. 

These nitroxides have subsequently been shown to be superior to the original TEMPO 

derivatives. They have extended the monomer families for NMRP from styrene to acrylates, 

acrylamides, 1,3,-dienes, and acrylonitrile-based monomers, and they enable controlled 

copolymerization with a selection of monomers and functional groups. 

O N
P OEt
OEt

O

SG1

*

 

Figure 2.8 Structure of SG-1[42] 

2.3 Initiating systems 

2.3.1 Thermal self-initiation of styrene 

  Styrene is known to undergo a thermal (spontaneous) self-initiation at elevated temperature 

(T ≥ 100º)[15]. The generally accepted mechanism of thermal self-initiation of styrene is by 

radical formation from unsaturated dimers according to Mayo[43]. This involves a reversible 

reaction between two styrene molecules to form a Diels-Alder adduct (D), followed by 

reaction of D with a styrene molecule to form two benzylic radicals, D* and M*, that can add 

monomer to initiate polymerization (Scheme 2.12). The rate of thermal initiation was 
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proposed to be third order with respect to monomer concentration.  

+
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Scheme 2.12 Mechanism of self-initiation of styrene[43] 

This process relies on the presence of monomer, so it will proceed until all the monomer 

has been consumed. The radicals generated in self-initiation will lead to termination of 

long/short chains, or new chain growth. The lengths of newly generated chains are varied at 

different reaction times: the early-born chains are long, whereas the late-born chains are short. 

All of these will cause a broad molecular weight distribution and subsequently deviations 

from controlled polymerization. 

On the other hand, thermal self-initiation helps maintain a reasonable reaction rate. It 

continuously generates radicals to balance the built-up of nitroxyl radicals due to the 

termination of propagating radicals.  

 

2.3.2 Bimolecular initiation of NMRP 

  Two basic strategies have been applied to initiate NMRP. The first method involves use of 

a conventional initiator (e.g. AIBN, BPO) in the presence of a nitroxide (Scheme 2.5). The 
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mixture is heated to a temperature at which initiator rapidly decomposes. The resulting 

initiator radicals then react with monomers to generate the initial propagating radicals, P1*, 

which thus starts the chain growth. Between the propagation steps, the radicals may combine 

with nitroxide, X, to reversibly form an alkoxyamine so that the chain grows in a controlled 

fashion. 

This system is called “bimolecular NMRP”. It was first successfully studied by the group 

of Georges[8] who described the synthesis of polystyrene (PS) and the subsequent PS-based 

block copolymers in the presence of TEMPO. In this reaction, a mixture of BPO, TEMPO 

and styrene was simply heated at 123°C. A key observation was that the molecular weight of 

the polymer produced increased in a linear fashion with conversion, and the polydispersity 

was below 1.3. 

However, the yield of alkoxyamine based on the bimolecular system is not quantitative to 

the amount of TEMPO added. In this system, initiation consists of multiple steps, including 

decomposition of initiator, addition of monomer to the initiating radical and subsequent 

trapping of the radical intermediate with TEMPO. Various side reactions are known to 

accompany alkoxyamine formation. One of the important side reactions is the TEMPO 

promoted dissociation of BPO (Scheme 2.12), proposed by Moad et al.[44] and further 

clarified by Georges et al.[45] and Cunningham et al.[46]. Georges et al. suggested that up to 

50% TEMPO may be lost in this reaction at 70°C, and they concluded that promoted 

dissociation of BPO is important at temperature lower than 80ºC[45]. Therefore, a simpler 

NMRP system with less initiating steps would offer better control of polymer properties. 
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Scheme 2.13 Promoted dissociation of BPO[44] 

  A recent study[47] by our group has demonstrated the nature of bimolecular initiating 

NMRP by variation of reaction temperature and ratio of TEMPO/BPO. It has shown that 

experimental data and model predictions for conversion vs. time are in good agreement up to 

50% conversion (Figure 2.9). Furthermore, the experimental data of molecular weight vs. 

conversion follow the linear trend but are higher than model predictions (Figure 2.10). These 

deviations were ascribed to the possible side reactions, such as the “promoted dissociation” of 

BPO. In addition, a study of temperature effects showed that higher temperature increases the 

polymerization rate. There was no significant change in the molecular weight vs. conversion 

plot when temperature increased; only at high conversion, Mn showed a plateau. This 

insignificant difference was ascribed to the most likely unchanged “run length per activation 

cycle (RLPAC)[18]”. 
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Figure 2.9 Comparison of experimental data and model predictions of conversion vs. time, at 120ºC and 
[TEMPO]/[BPO] = 1.1 [47] 

 
Figure 2.10 Comparison of experimental data and model predictions of molecular weight vs. conversion, 
at 120ºC and [TEMPO]/[BPO] = 1.1 [47] 
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2.3.3 Unimolecular initiator 

  The second approach to initiation for NMRP is possible when the initiator is a low 

molecular weight alkoxyamine. This approach was used in the original work of Rizzardo and 

Solomon [48]. Later, Hawker[49] also exploited this method and coined the term ‘unimer’ to 

describe the initiators produced. Alkoxyamine was generated by adding initiator and nitroxide 

in monomer and heating the mixture at 80°C. At this relatively low temperature, the small 

molecule alkoxyamine produced is essentially a stable compound with only a low degree of 

radical dissociation. Therefore it can be isolated, and then used as a unimolecular initiator, for 

styrene polymerization at higher temperature (125°C) (Scheme 2.13).  
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Scheme 2.14 Reactions in unimolecular NMRP[49] 
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2.3.3.1 Synthesis of unimolecular initiator 

  Although unimolecular initiators have advantages, the exploitation of them was originally 

limited by a lack of efficient synthetic procedures, which leads to the low yields and a wide 

range of by-products[50]. Several techniques have since been developed, which rely on the 

controlled generation of the intermediate radicals, including hydrogen abstraction from ethyl 

benzene with di-t-butyl peroxide[21], single electron transfer from ester enolates by treatment 

of lithium salts with ferrocenium ions[52], and halogen abstraction from alkyl halides by a Cu 

catalyst via atom transfer radical addition[53]. 

2.3.3.2 Kinetics of unimolecular system 

  It was observed by Catala et al. [54] that the polymerization rate, Rp, of styrene 

polymerization in the presence of the model adduct S-DBN (S = 1-phenylethyl, and DBN = 

di-tert-butyl nitroxide) was independent of the adduct concentration (<30% conversion). This 

phenomenon was attributed to aggregation of dormant chains. Subsequently, a paper by 

Greszta and Matyjaszewski[55] indicated that the rate of unimolecular NMRP was equal to 

that of thermal self-initiation. The same researchers then extended this conclusion to other 

initiating systems[56]. Hence, it has been commonly accepted that the polymerization rates of 

unimolecular systems are independent of the concentration of alkoxyamine and remarkably 

close to the rate of thermal self-initiation (research was conducted at low conversion, within 

15 hours).  

The kinetics and mechanism of a unimolecular system were illustrated by Fukuda et al.[57]. 

They assumed that radical-radical termination and thermal self-initiation of styrene are 
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proceeding through the entire process of styrene NMRP. Termination continuously consumes 

growing radicals, P*. As a result, [P*] is decreasing relative to [X*]; [X*] gradually builds up, 

leading to an unbalance between [P*] and [X*]. On the other hand, radicals generated by 

self-initiation capture X*, thus preventing it from build-up. A stationary state then can be 

reached with the approximately constant [P*] and [X*], 

[ *] / [ *] / 0d P dt d X dt= =                                           ( 2.5) 

Controlled radical polymerization may generally be described by the following differential 

equations: 

[ *] [ ] [ ][a d
d X k P X k P X

dt
= − − *]                                       ( 2.6) 

2[ *] [ ] [ *][ *] [ *]a d i t
d P k P X k P X R k P

dt
= − − + −                          ( 2.7) 

Ri is the rate of initiation due to an initiator and/or thermal initiation, and kt is the termination 

rate constant between polymer radicals. 

Substitute Eq. 2.5 into Eq. 2.6 and Eq. 2.7, we have 

1/2[ *] ( )i

t
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k

=                                                 ( 2.8) 

0[ *][ *] [ ]P X K P X KI= − =                                   ( 2.9) 

a

d

kK
k

= .                                                    ( 2.10) 

The (stationary) rate of polymerization is given by 

1/2 1/2( / ) [p p t i ]R k k R M=                                        ( 2.11) 

Thus, in the absence of a conventional initiator, thermal self-initiation is mainly responsible 
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for maintaining a reasonable polymerization rate, which is independent of the alkoxyamine 

concentration, [P-X].  

  This relationship applies when there is a secondary source of radical initiation. If there is 

neither conventional initiation nor self-initiation, there won’t be enough radicals generated to 

balance the build up of nitroxyl radicals, thus the assumption of d[P*]/dt = d[X*]/dt = 0 can 

not be held. In this case, it can be shown that the polymerization rate is expressed as Eqs. 

2.12 and 2.13[17]. 

1/3 ( 1/3)
0[ *][ ] ( / 3 ) [ ]p p p tR k P M k KI k t M−= =      ( 2.12 ) 

1/3 (2/3)
0 0ln([ ] / [ ]) (3 / 2)( / 3 )p tM M k KI k t=     ( 2.13 ) 

Eqs. (2.12) and (2.13) indicate that in the case of no secondary initiation source (conventional 

and/or thermal), polymerization rate is 1/3-order dependent on initiator concentration. This 

conclusion was also independently drawn by Fischer using a power-law analysis[58].  

The comparison of a bimolecular system (Ri > 0, [X*] > 0) with a unimolecular one was 

described by Hawker et al.[59] in an evaluation of a variety of initiating systems for 

nitroxide-mediated radical polymerization (NMRP) (research was conducted within the 

whole conversion range, up to 50 hours). Polymerization rates were observed as the same for 

both unimolecular and bimolecular systems even at high conversion. Interestingly, a recent 

study by our group[17] observed that the polymerization rate of the unimolecular system was 

lower than that of the corresponding bimolecular system at high conversion levels (≥ 60%) 

(Figure 2.11), rather than the same, which had been reported in Hawker et al.’s paper[59].  
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Figure 2.11 Comparison of conversion vs. time plots for the polymerization of styrene at 120ºC using the 
unimolecular initiator (▲) and a bimolecular system, [TEMPO]/[BPO]=1.1 (○) [17] 

   

  As the earlier study[17] has proposed, there may be two possible reasons that can account 

for the rate difference between unimolecular and bimolecular systems. One is because “a 

portion of the initial mixture volume is occupied by the unimolecular initiator so the 

concentration of monomer present is less (considering the same volume as in the bimolecular 

case)”. Another assumption is that, in a bimolecular system, a large proportion of TEMPO 

would be lost as a consequence of side reactions, which is avoided in the unimolecular 

system. Hence, a unimolecular system retains a higher effective TEMPO concentration than a 

bimolecular system. 

Nabifar[17] also observed that both molecular weight and polydispersity of the unimolecular 

system were lower than those of the corresponding bimolecular system (Figures 2.12, 2.13). 

These differences were ascribed to the significant loss of TEMPO in bimolecular system.  
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Figure 2.12 Comparison of molecular weight vs. conversion plots for the polymerization of styrene at 
120ºC using the unimolecular initiator (▲) and a bimolecular system, [TEMPO]/[BPO]=1.1 (○) [17] 

 

 
Figure 2.13 Comparison of polydispersity vs. conversion plots for the polymerization of styrene at 120ºC 
using the unimolecular initiator (▲) and a bimolecular system, [TEMPO]/[BPO]=1.1 (○) [17] 

 

From this brief overview, one can appreciate that there are still some aspects worth 

studying with respect to a unimolecular system. For example, the loss of TEMPO due to side 

reactions such as promoted dissociation was considered significant at temperatures below 

80ºC. However, the temperatures commonly used in NMRP are all above 100ºC. Why is the 

loss of TEMPO still significant when the experiments are carried out at high temperature? 

Furthermore, since the loss of TEMPO occurs at the initiation step, how does it relate to the 
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kinetic behavior at later stages of polymerization (high conversion level)? These and other 

related questions will be discussed in Chapter 4. 
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Chapter 3 Experimental Methods 

3.1 Monomer purification  

  Monomer (styrene, Aldrich Canada Ltd.) was washed three times with a 10 w/v% sodium 

hydroxide solution, washed three times with distilled water, dried over calcium chloride and 

distilled under vacuum[1] just prior to use. Solvents such as ethanol, methyl chloride, and 

acetone used during the course of the experimentation and both BPO and TEMPO were used 

as received from suppliers (ATOFINA Chemicals, and Aldrich, respectively) without further 

purification.  

3.2 Synthesis of alkoxyamines 

3.2.1 Preparation of alkoxyamine macromolecule in ampoules 

  Benzoyl peroxide (0.072 mol/l) was mixed with TEMPO (0.086 mol/l)[2][3] and styrene in a 

flask and transferred into ampoules (capacity ~ 4 ml). The mixture in ampoules was then 

degassed via three freeze-vacuum-thaw cycles, sealed under vacuum, and stored in liquid 

nitrogen until use. Before heating, the samples in ampoules were thawed. After thawing, the 

samples were heated at 90°C for 1h and then at 125°C for varying times. The reaction was 

quenched by immersing ampoules in liquid nitrogen, and then products were precipitated 

from ethanol, purified by filtration and thoroughly dried. Yield was then calculated from 

gravimetry comparing the product mass to the initial reagent amount. Molecular weight was 

analyzed by size exclusion chromatography. 
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3.2.2 Preparation of alkoxyamine macromolecule in flask 

  TEMPO (0.1mol/l) was dissolved in styrene in a flask. The solution was then degassed by 

bubbling N2 through it for about 1 hour and heated to 95ºC (oil bath temperature) while 

maintaining an N2 atmosphere. A solution of benzoyl peroxide (molar ratio of BPO/TEMPO 

= 1.2) in styrene was made and degassed by bubbling N2 through it at room temperature. The 

degassed BPO solution was added dropwise into the TEMPO/styrene solution over a period 

of 20 min, which gave a pale yellow solution. The oil bath was maintained at 95ºC for about 

1h, and then the temperature was increased and maintained at 125ºC for a further 3.5 hours. 

The solution was concentrated by rotary evaporator, and then the residue was dissolved in the 

minimum amount of methylene chloride. This product was precipitated by being added 

dropwise into an excess ethanol (the volume ratio of product solution to ethanol was 1:10). 

The mixture was stirred vigorously during the precipitation. The precipitate was separated by 

filtration. This dissolving-precipitation-filtration was repeated several times until the product 

appeared ivory colored. Then the purified product was thoroughly dried in a vacuum oven at 

65ºC. Yield was then determined gravimetrically by comparing the product mass to the initial 

reagent amount. Molecular weight was analyzed by size exclusion chromatography. 

3.3 Polymerization procedures 

  Polymerizations were completed in borosilicate glass ampoules. Unimolecular initiator was 

dissolved in the distilled styrene to prepare initiator solution with the selected concentration 

(see sample calculation in Appendix C), and then transferred into ampoules (capacity ~ 4ml). 

Then the solution was degassed by three freeze-vacuum-thaw cycles, sealed off and stored in 

liquid nitrogen until being used. To run the polymerization, the ampoules were immersed in a 
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silicone oil bath at the desired reaction temperature having a temperature control of ± 0.1ºC, 

and taken out and quenched in liquid nitrogen at different times. Ampoules were then thawed, 

weighed, and opened. The contents were dissolved in methylene chloride, and precipitated 

using a large excess of ethanol. The mixtures were then air dried. Finally, the partially dried 

contents were vacuum-dried for several days at approximately 50ºC until a constant weight 

was reached for the amount of residue. 

 

3.4 Polymer characterization   

3.4.1 Gravimetry 

  Monomer conversion was measured gravimetrically by comparing the mass of isolated 

polymer to the mass of monomer feed: 

Conversion% = mass of polymer / mass of initial monomer feed × 100%     ( 3.1) 

One thing to note is that since the unimolecular initiator took up a portion in the monomer 

feed and in the resulting polymer, the mass of the initiator had to be subtracted from the 

amount of monomer feed and from the mass of the final polymer residue. 

 

3.4.2 Size exclusion chromatography 

Size exclusion chromatography (SEC), also referred to as gel permeation chromatography 

(GPC), was used for determining average molecular weights and molecular weight 

distribution (MWD) of the polymer. As its name implies, SEC separates molecules based on 

their sizes. A low concentration of polymer solution passes through a column packed with 

 38



porous gel. The large molecules can not penetrate or diffuse into pores as frequently as small 

molecules do. As a result, large molecules are eluted faster and get out of the column earlier 

than the small molecules. The eluted samples can be characterized by a single concentration 

detector (Conventional Calibration), or series of detectors (Universal Calibration or 

Multiple-Detection) downstream[4].  

  In this study, the SEC system was maintained at 30ºC with tetrahydrofuran as the mobile 

phase flowing at a rate of 1.0 ml/min. The set up consisted of a Waters solvent delivery 

system and autosampler followed by Viscotek’s quad detector equipped with a UV detector, 

low- and right-angle laser light scattering detectors (LALLS/RALLS), differential 

refractometer (RI) and viscometer in series. One PL gel 10μm guard column (50 × 7.5mm, 

Polymer Laboratories Ltd.) and three HR-5E columns (300 × 7.5mm, Viscotek) were used 

with the detectors. The laser operated at 670nm and the light-scattering intensity was 

measured at 7º (LALLS) and 90º (RALLS)[4]. Data analysis for results was performed using 

OmmiSEC version 3.0 (Viscotek)[5]. 
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Chapter 4 Results and Discussion 

4.1 Synthesis of unimolecular initiator 

  Different methods of initiator synthesis were examined. The differences between the 

methods were centered on type of reaction vessels used. The first method looked at carrying 

out synthesis in sealed glass ampoules. It provided efficiency in degassing of reaction 

mixtures by standard freeze-pump-thaw procedures. The second method used a standard 

multi-neck flask as reaction vessel. This offered ease of set up for preparation of larger 

quantities of initiator. Both methods were used and comparisons between them are presented 

in the following subsections. 

4.1.1 “Ampoule method” 

  The objective of initiator preparation was to provide high yield of initiator that could be 

sufficient to use in an extended study. In addition, molecular weight (MW) of initiator was to 

be fairly low ( ~ 2000 g/mol) to ensure a low MW starting point for the planned 

polymerizations, so that there would be a larger proportion of free monomer in the reaction 

mixture. In addition, the molecular weight should be high enough so that initiator could be 

readily purified by precipitation from ethanol. 

  In order to prepare initiator with the targeted yield and molecular weight, small scale tests 

were first carried out with various reaction times at 125ºC and in different sizes of ampoules. 

Test 1 in Table 4.1 used regular-sized ampoule (capacity ≈ 4 ml). Test 2 in Table 4.1 used 

larger ampoules (capacity ≈ 10 ml).  
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Table 4.1 GPC results of preparation of unimolecular initiator 
 

Experiment Sample Time (h)
Mn 

(g/mol) 
Mw 

(g/mol) 
Mw/Mn Conversion (%)

Test 1 1 2 2,094 2,637 1.26  4.40  
(Small ampoule) 2 3 2,516 2,701 1.07  8.20  

  3 4 3,284 3,575 1.09  12.60  
  4 6 5,092 5,451 1.07  22.10  
              

Test 2 1 3.25 1,411 1,544 1.09  3.00  
(Big ampoule) 2 3.5 1,614 1,760 1.09  3.58  

  3 3.5 1,654 1,806 1.09  3.16  
  4 4 1,804 1,952 1.08  5.62  
  5 4 1,956 2,118 1.08  4.75  

 

  The results from the small ampoule studies indicated that the best reaction time would be 

about 2 h to get the desired Mn ( ~ 2000 g/mol). However, the yield of the product was fairly 

low. In order to test if the same results would be obtained using large ampoules, another study 

was carried out. As can be seen from the data in Table 4.1, the results were not exactly the 

same for corresponding reaction times in large ampoules as compared to small ampoules. 

Molecular weights of polymers that were produced in the large ampoules were lower than 

those by small ampoules at the same reaction time.  

  Based on these small scale tests, scaled-up preparation was carried out by using a batch of 

large ampoules with reaction time of 3.5 hours, which produced initiator having a molecular 

weight of Mn ≈ 2105g/mol (Mw/Mn = 1.15), and yield of 7.2%. 
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4.1.2 “Flask method” 

  Although the “ampoule method” had prepared initiator with the targeted molecular weight 

and considerable yield, its set-up and procedures were relatively complicated. In order to 

simplify the set-up and procedures, a three-necked flask was used as the alternative reaction 

vessel. In the initial tests, a mixture of BPO, styrene and TEMPO was warmed to 90ºC. Then 

the reaction mixture was held at this temperature for 1 hour. After the preheating at 90ºC, the 

temperature was increased to 125ºC, and the reaction time was varied at that temperature for 

times shown in Table 4.2 (Batch#: 1-4). For the final preparations, refinements to the 

procedure were made as per below (Batch#: 5-7). The appropriate concentration of TEMPO 

was dissolved in styrene, and the solution was degassed by bubbling with N2. This solution 

was then warmed to 95ºC. Separately, a solution of BPO was made in styrene, which was 

then degassed and added slowly to the TEMPO/styrene solution over a period of about 20 

min (overall [TEMPO] = 0.10 mol/l, and [BPO]/[TEMPO] = 1.2).  

Table 4.2 Summary of initiator synthesis 
 

Batch  Conditions MW (g/mol) 
 t (h) 
  90ºC 125ºC 

[TEMPO]
(mol/l) 

[BPO] 
(mol/l) Yield Mn 

Mw 

1 1 4.5 0.086 0.072 18.96% 6238 6824 
2 1 4 0.0859 0.072 0.60% 2260 2454 
3 1 3.5 0.0861 0.072 3.57%   
4 1 4 0.086 0.072 8.04% 2626 2821 
 95ºC 125ºC      
5 2 3.5 0.1 0.12 5.30% 2193 2369 
6 2 3.5 0.1 0.12 7.68% 2474 2694 
7 2 3.5 0.1 0.12 9.74% 2102 2347 

 

  The results show that the refined method provides relatively high yield of initiator, and a 

fairly low and constant molecular weight. The refined preparation avoided mixing TEMPO 
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and BPO at room temperature, which are known to readily react together to form nitrone plus 

radicals[1]; hence, the scale of losses of TEMPO and BPO in side reactions was reduced. 

Therefore, synthetic efficiency with respect to [TEMPO] was increased and the reaction 

process was better controlled. 

 

4.2 Comparison of bimolecular NMRP with unimolecular NMRP 

  Previous studies have claimed certain advantages of unimolecular NMRP over the 

corresponding bimolecular NMRP, such as better control of molecular weight and lower 

polydispersity. Interestingly, conflicting observations related to polymerization rate have been 

presented by different researchers [2][3](see also section 2.3.3.2).  

  Two possible assumptions have been made to explain the difference of polymerization 

rates between the two systems[3] at high conversion. One is related to the proportion that the 

unimolecular initiator occupies in the initial mixture volume, which leads to a lower free 

monomer concentration (in the case of the same initial mixture volumes in the two systems). 

This assumption has some deficiencies. First, since polymerization rate is proportional to the 

propagating radical concentration and the free monomer concentration, this implies that the 

propagating radical concentrations have been the same in the two systems. The bimolecular 

system can be considered as a special case of the unimolecular system containing an 

alkoxyamine initiator. Since the conventional initiator (BPO) is used up in the first few 

minutes, the polymerization can progress to a large extent as in the unimolecular case if the 

ratio of BPO to TEMPO is kept at the appropriate level. However, the lower initial monomer 

concentration of a unimolecular system (at t = 0) must lead to a lower free monomer 
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concentration at any reaction time (t). This is so because the free monomer concentration 

([M]) depends on both initial monomer concentration ([M]0) and monomer conversion (p) 

(see Eq. 4.1). 

0[ ] [ ] (1 )M M= − p         ( 4.1 ) 

It can be seen in the later discussion that the free monomer concentrations in bimolecular 

system are higher than those in unimolecular system at low conversion, but is similar with 

unimolecular system at high conversion. 

Another reason that may potentially explain differences is based on the loss of TEMPO in 

side reactions in the bimolecular system. This may be more reasonable. The bimolecular 

system involves a multi-step initiation, which leads to various side reactions. Therefore, the 

total concentration of effective TEMPO is actually lower than that of the TEMPO initially 

added ([TEMPO]bi < [I]0). In a unimolecular system, on the other hand, preparation of 

alkoxyamine is stepwise, so the loss of TEMPO doesn’t occur during the polymerization 

stage, and the total concentration of effective TEMPO is close to that of the added initiator ([I] 

= [I]0 = [TEMPO]uni). The presence of TEMPO slows down the polymerization at later stages 

of reaction, a bimolecular system with lower effective TEMPO concentration ([TEMPO]bi < 

[TEMPO]uni) would have a higher polymerization rate at high monomer conversion levels. 

However, several other questions remain to be answered. First, why is the loss of TEMPO 

still significant when the reaction undergoes at a temperature above 100ºC? This can be 

ascribed to the preparation and handling of samples during bimolecular initiation, where the 

reaction stock solutions are maintained at ambient temperature for a significant period. At 

low conversions, it has been shown in a number of studies[4][5][6] that rates are independent of 
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added alkoxyamine concentration, and are essentially equal to the rates for thermally initiated 

polymerization of styrene. It remains to resolve some of the issues regarding rates at high 

conversion levels of monomer. 

To examine the aforementioned issues, a comparison of styrene polymerizations using 

bimolecular and unimolecular systems with conditions similar to those in Nabifar[3] was 

carried out. The results for conversion vs. time in both reactions are presented in Figure 4.1. 

It can be seen that below 70% conversion, the rates of monomer conversion were essentially 

the same for both unimolecular and bimolecular systems; while above 70% conversion, the 

polymerization rate of the bimolecular system was higher than that of the unimolecular 

system. These results are in agreement with the results in the earlier comparison[3], where the 

unimolecular system had a lower polymerization rate at high conversion.  
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Figure 4.1 Conversion vs. time plot; comparsion of NMRP of styrene at 120°C between a unimolecular 
system (▲) with [I]0 = 0.040 mol/l and a bimolecular system (+) with [TEMPO] = 0.040 mol/l, and 
[TEMPO]/BPO] = 1.1. 
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  Based on the assumption that the free monomer concentration in a unimolecular system is 

lower than that in a bimolecular system, the free monomer concentrations were calculated 

and are shown in Figure 4.2. The free monomer concentration is obviously higher in 

bimolecular system than that in unimolecular system up to 60% conversion (15 h), and then 

above 60% conversion the differences are less pronounced. Therefore, the lower monomer 

concentration in unimolecular system is unlikely to account for the observed difference in the 

polymerization rate at high conversion levels. 
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Figure 4.2 Free monomer concentration vs. time plot, comparsion of NMRP of styrene at 120°C between a 
unimolecular system (▲) with [I]0 = 0.040 mol/l and a bimolecular system (+) with [TEMPO] = 0.040mol/l, 
and [TEMPO]/BPO] = 1.1. 

 

Considering the second assumption stated above, the bimolecular system has a lower 

effective TEMPO concentration than a unimolecular system. At the later stages of 

polymerization, the monomer concentration is low. Since self-initiation of styrene is 

third-order dependent on monomer concentration, it is largely abated at the later stages of 
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reaction. This makes the situation more like the case of a unimolecular system with small 

amounts of self-initiation. Figure 4.3 shows the monomer conversion index, ln([M]0/[M]), for 

the reactions. Eq. (2.13) would not be in agreement with experimental data at high conversion 

for both systems since the bimolecular has a lower effective concentration of alkoxyamine. If 

expression 2.13 was true then the rates observed for the bimolecular should be lower than 

unimolecular. This is not the case and so it supports that the system is likely one where 

conventional (thermal) initiation is an important factor. 
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Figure 4.3 Ln([M]0/[M]) vs. time plot, comparsion of NMRP of styrene at 120°C between a unimolecular 
system (▲) with [I]0 = 0.040 mol/l and a bimolecular system (+) with [TEMPO] = 0.040mol/l, and 
[TEMPO]/BPO] = 1.1. 

 

  The fact that the effective nitroxide concentration is lower in bimolecular NMRP is seen in 

the molecular weights of the two systems. In the molecular weight vs. conversion plots of 
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Figure 4.4, both of the systems show linear trends, indicating that they are both controlled; 

the unimolecular system has a lower molecular weight for given levels of conversion.  

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100
Conversion (%)

N
um

be
r a

ve
ra

ge
 m

ol
ec

ul
ar

 w
ei

gh
t, 

M
n 

(g
/m

ol
)

Unimolecular

Unimolecular Replicates

Bimolecular

 

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100
Conversion (%)

W
ei

gh
t a

ve
ra

ge
 m

ol
ec

ul
ar

 w
ei

gh
t, 

M
w

 (g
/m

ol
)

Unimolecular

Unimolecular Replicates

Bimolecular

 
Figure 4.4 Molecular weight vs. conversion plot, comparsion of NMRP of styrene at 120°C between a 
unimolecular system (▲) with [I]0 = 0.040 mol/l and a bimolecular system (+) with [TEMPO] = 0.040 
mol/l, and [TEMPO]/BPO] = 1.1. 
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  Figure 4.5 shows that the unimolecular system has a narrower molecular weight 

distribution. As mentioned in section 2.1.2.3, in an ideal living radical polymerization, the 

molecular weight of polymer is proportional to the ratio of molar monomer consumption and 

the concentration of initiated chains (Eq. 2.3). For a unimolecular system, each alkoxyamine 

chain end contains one TEMPO molecule, thus the total active TEMPO concentration in the 

reaction mixture can be considered as equal to the initial alkoxyamine concentration. The 

molecular weight is likely proportional to [TEMPO] (more details in section 4.4). Since the 

[TEMPO] concentration of a unimolecular system is intrinsically higher than that of a 

bimolecular system, its molecular weight would hence be lower. 
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Figure 4.5 Polydispersity vs. conversion plot, comparsion of NMRP of styrene at 120°C between a 
unimolecular system (▲) with [I]0 = 0.040 mol/l and a bimolecular system (+) with [TEMPO] = 0.040 
mol/l, and [TEMPO]/BPO] = 1.1. 

 

  Given the evidence from MW trends support the theory that effective initiator (controller) 

concentration is lower in the bimolecular system, we can conclude that the lower rates at high 
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conversion levels for the unimolecular polymerization stem from the higher concentrations of 

nitroxide. Consider the fact that the propagation reaction competes with the associative 

reaction, in the control equilibrium, for reaction of radicals 

1* [ ] *pk
nP M P ++ ⎯⎯→ n          ( 4.2 ) 

* * KP NO P ON+ ←⎯→ −       ( 4.3 ) 

As the polymerization proceeds, [M] decreases as does [Pn*] (because of irreversible 

termination). Since [P*] drops then the equilibrium will react by increasing the concentration 

of [NO*] in order to keep the equilibrium condition. Overall, the combination of factors will 

lead to a decrease in polymerization rate until essentially no measurable polymerization 

occurs (i.e. the RLPAC tends to be zero). If we have a higher level of [NO*] at the start of the 

reaction, the point at which polymerization “ceases” should probably be lower with respect to 

fractional conversion of monomer because the associative reaction will be even more favored 

relative to propagation. 

 

4.3 Factors affecting unimolecular NMRP 

  Although there is still debate about the detailed mechanism of NMRP, the propagating 

species is believed to be a conventional propagating radical. Thus, radical-radical termination 

is not completely eliminated, though, as we shall see, with appropriate choice of reaction 

conditions, the significance of this process is markedly reduced in CRP. Therefore, in order to 

get a better understanding of how the kinetic behavior is affected by reaction variables, the 

present study was undertaken. In order to maximize the information content with minimum 
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number of experiments, and be able to draw valid conclusions from experimental work, it is 

crucial to have a logical experimental design. The details of experiments conducted are 

summarized in Table 4.3. 

 
Table 4.3 Summary of experimental runs 
 

      Factors     
  Exp.# T [I] Mn(I)  
  1 - - -   
  2 + - -   
  3 - + -   
  4 + + -   
  5 - - +   
  6 + - +   
  7 - + +   
  8 + + +   
  9 + 0 -   
  10 - 0 -   

        
    FACTOR LEVELS     
    - 0 +   
  T (°C) 120 130 140   
  [I] (mol/l) 0.030 0.040 0.050   

  
Mn(I) 
(g/mol) ≈ 2000 ≈ 3000 ≈ 6000   

            
        
   REPLICATES    
 Exp # T [I] Mn(I) Replicate of Exp# 
 11 - - - 1 
 12 + - - 2 
 13 + + - 4 
 14 - 0 - 10 

            

 

The determination of initiator concentration levels (0.030M, 0.050M) was based on 

previous studies on the bimolecular NMRP of styrene. The selection of temperature levels 

(120-140ºC) was based on the prerequisite that TEMPO only acts efficiently as a mediator at 
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temperature above 115ºC (below that reactions are very slow).  It should be noted also that 

the amount of unimolecular initiator synthesized was insufficient to complete the whole 

series of experiments. Therefore, slightly different initiators (in terms of their molecular 

weights) were used for different parts of the study. As a result of this, the effect of initiator 

molecular weight was considered as the third factor. 

It was important to make sure that the experimental data obtained were reliable and error in 

each section of the experiment could be assessed. To do so, individual ampoule replicates 

were carried out at specific times in selected experiments. In addition, in order to check the 

reproducibility of data, independent replicates at specific conversion ranges were conducted. 

Reliability of molecular weight measurements was checked by running GPC replicates at 

different times. In addition, during GPC analysis, two independent injections were done for 

every sample (Exp 1-8). Molecular weight values plotted in the relevant figures later are 

averages from these two injections. Tables A.1 - Table A.14 in Appendix A cite the raw data 

for monomer conversion, average molecular weights and polydispersities for the study. 

 

4.3.1 Effect of initiator concentration 

Two levels of initiator concentration were selected and the effects of initiator concentration 

with respect to polymerization rate and molecular weight development were examined. The 

effect of initiator concentration on the polymerization rate (at 120ºC, initiator Mn = 2105 

g/mol) is presented in Figures 4.6 and 4.7. 
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Figure 4.6 Conversion vs. time plot, effect of initiator concentration, T = 120ºC, initiator Mn = 2000 g/mol.  
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Figure 4.7 Ln([M]0/[M]) vs. time plot, effect of initiator concentration, T = 120ºC, initiator Mn = 2000 
g/mol.  
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As can be seen, below 60% conversion, conversion vs. time profiles were independent of 

initiator concentration. In the ln([M]0/[M]) vs. time plots of Figure 4.7, about 95.2% of the 

values are within 1 standard deviation of the mean, in other words, the polymerization rates 

using two initiator concentrations can not be distinguished. This coincided the observations in 

previous studies[4][5][6], which was ascribed by the stationary-state assumption (d[P*]/dt = 

d[X*]/dt = 0). This could also be verified, in another way, by the linear evolution of 

molecular weight shown in Figure 4.8, which indicated that the number of living chains is 

constant.  

Above 60% conversion, the ln([M]0/[M]) vs. time plot of Figure 4.7 gradually lost its 

linear trend, and the lower initiator concentration led to a slightly higher polymerization rate; 

this difference virtually disappeared by 80% conversion. Possible reasons that may account 

for this deviation are as follows: 1) as the polymer concentration increases, the radical 

concentrations drop because of termination, so it would be expected that true first order 

kinetics would not be followed for the whole reaction. 2) as the polymer concentration 

increases, it is more difficult for the polymer radicals to diffuse; however, recent studies by 

our group have indicated that diffusion effects in NMRP systems are not very pronounced[7]. 

So it is unlikely that the diffusion effect is significant. 

Figure 4.8 shows the average molecular weights Mn and Mw of polymer produced using 

different concentrations of initiator. It is evident that Mn increases linearly with conversion. 

This indicates that the experiment approached an ideal situation where the initiation was fast 

and the termination was minimized. It is noteworthy that the low initiator concentration led to 

a higher molecular weight of polymer. The slope of molecular weight vs. conversion plot 
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(degree of polymerization) for the lower initiator concentration (■) is 1.69 times larger than 

that for the higher initiator concentration (○). This value is close to the ratio of the [M]0/[I]0, 

which was equal to 1.76. This indicates that at these conditions unimolecular NMRP follows 

typical kinetic features of CRP, and that molecular weight is proportional to the ratio of 

styrene consumption to initiator concentration (further details are given section 4.4). 
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Figure 4.8 Effect of initiator concentration, (a) Mn vs. conversion; (b) Mw vs. conversion, T = 120ºC, Mn(I) 
=  2000 g/mol.  
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Similar results for the effect of initiator concentration on polymerization rate and 

molecular weight have also been observed in the polymerizations conducted at 140ºC and 

when using initiator molecular weight equal to 6238 g/mol (see Appendix B, Figures 1-12). 

This gives consistent support for the postulate that higher nitroxyl levels will lead to some 

inhibition of polymerization rates at higher conversion levels 

 

4.3.2 Effect of temperature 

Radical polymerization processes are known to be sensitive to temperature, and in most 

cases, an increase in temperature will increase polymerization rate. Examples of this in 

NMRP include: a study on the role of TEMPO in polymerization of styrene by Veregin et 

al.[8], a recent publication by Nabifar et al.[9] studying the polymerization of styrene in the 

presence of BPO and TEMPO, an unimolecular NMRP of 4-vinylpridine by Fischer[10], and 

an unimolecular NMRP of styrene in the presence of SG-1 by Becer et al.[11]. Similar results 

have been obtained in our study using the unimolecular initiators. This is illustrated in Figure 

4.9 which shows the effect of temperature on polymerization rate in the presence of a 

low-molecular-weight alkoxyamine (Mn = 2193 g/mol). As expected, at a higher temperature, 

the polymerization rate is significantly higher.  
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Figure 4.9 Conversion vs. time plot, effect of temperature, Mn(I) = 2193 g/mol, [I]0 = 0.0301 mol/l. 

However, there is no detailed discussion regarding this issue from a theoretical point of 

view. What follows is a discussion on this issue based on the reversible activation process 

(Scheme 2.10 (a)), which gives  

0[ *][ *] [ ]P X K P X KI= − = 0        ( 4.4 )  

where K = kd/ka 

Polymerization rate can be derived as Eq. 4.5 

0[ *][ ] ( )([ ] / [ *])[ ]p p pR k P M k K P X X M= = −   ( 4.5 ) 

Therefore, when the initiator concentration ([P-X]0), is fixed, polymerization rate is 

determined by the propagation rate constant kp, the equilibrium constant K, nitroxide radical 

concentration [X*], and monomer concentration [M].  
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Propagation is through addition of styrene monomer units to carbon-centered propagating 

radicals, which involves formation of C-C bonds, an exothermic process. The relationship 

between kp and temperature is given by the well known Arrhenius equation, 

exp( / )pk A E RT= −      ( 4.6 ) 

where E is the activation energy, A is the frequency factor, R is universal gas constant and T 

is temperature in K. In such a case, Eq. (4.6) indicates that increasing temperature will 

increase propagation rate (kp ↑). In addition, dissociation of C-ON bond is an endothermic 

process. As a result, increase in temperature will enhance the rate of dissociation of C-ON 

relative to that of the associative reaction, namely, K will increase. Since kp increases and the 

change in K will lead to higher [P*], the overall result of an increased temperature is to 

increase the polymerization rate. 

For the bimolecular system, an increase of temperature was reported to have no significant 

effect on molecular weight except at high conversion Mn showed a plateau[9] with respect to 

conversion of monomer. Similar results have been observed in this thesis. As can be seen in 

Fig 4.10, below 60% conversion, temperature had no effect on the trends in Mn vs. 

conversion. Above 70% conversion, the results from the higher temperature showed a plateau 

in Mn values. Mw values at two temperatures remained almost the same through the whole 

conversion range (Figure 4.10). 
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Figure 4.10 Effect of temperature, (a) Mn vs. conversion; (b) Mw vs. conversion, Mn= 2193 g/mol, [I]0 = 
0.0301 mol/l.  
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  The fact that similar molecular weights are obtained at different temperature levels is now 

briefly discussed by relating to the concept described earlier, i.e.“run length per activation 

cycle (RLPAC)[9][12]” (Eq. 2.4).  

[ ][ *] [ ]
[ *][ *] [ *]

p p p

d d d

R k M P k M
RLPAC

R k X P k X
= = =  

As previously mentioned in section 2.1.2.2, increases in molecular weight for CRP are 

determined by the number of initiated chains and the number of monomer units added to the 

propagating radicals (Eq. 2.3).  

If there is no self-initiation, which may proceed through the entire course of 

polymerization, increase of temperature won’t change the concentration of initiated chains. 

One of the prerequisites of an ideal living radical polymerization is that initiation is 

completed almost instantaneously. So the number of initiated chains is determined at the early 

stages of polymerization and stays constant while chain length grows in the propagation stage. 

Initiation is stimulated at a certain temperature. Once the temperature reaches the requirement 

to get over the minimum energy barrier, initiation is triggered. The rate of decomposition will 

be related to the temperature based on Arrhenius relationship. 

  An increase in temperature might be expected to have a slight effect on the number of 

monomer units added to the propagating radical in a given time period. As previously 

mentioned in section 2.1.2, the presence of a stable radical delays the propagation step by 

involving active radicals in the deactivation/activation cycles. Thus, the number of monomer 

units added to the polymer chain within a certain period depends on the rate of propagation 

relative to the rate of deactivation. The faster the deactivation is compared to propagation, 
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fewer monomer units can be added to the polymer chain. Increasing temperature not only 

increases the propagation rate (kp↑, Rp↑), but also increases the deactivation rate (kd↑, [X*]↑, 

Rd↑). As a result, the ratio of Rp/Rd won’t show a significant change as long as the changes in 

the competing factors balance. Thus, the overall effect of temperature on molecular weight 

should be slight, in ideal situations, which is as observed in the experiments. 

A notable plateau in Mn values with respect to monomer conversion (while Mw kept 

constant) was observed for higher temperature at high conversion. No study has addressed 

this before. A possible reason stems from the fact that self-initiation is enhanced at a higher 

temperature. Self-initiation is continuous through the entire course of polymerization, and the 

radicals generated may terminate long/short chains, or initiate new chain growth. At the later 

stages of polymerization, the newly initiated chains would have shorter time to grow than 

those initiated at the early stages of reaction, thus having a lower molecular weight. If the 

proportion of chains initiated from the unimolecular initiator is much higher than the amount 

of new chains generated by self-initiation, the molecular weight distribution (MWD) would 

still be narrow. If the proportion of newly initiated chains becomes higher, then MWD should 

be broadened. Low MW will have a significant effect on Mn but will not be so much on Mw 

(although the mole fraction of low MW molecules may be relatively high, their mass fraction 

would be low), and as a result, Mn is more sensitive to this change. Since thermal 

self-initiation rates are higher at a higher temperature, the proportion of thermally initiated 

chains will be greater at a higher temperature. The validity of this postulate was confirmed 

experimentally by comparing calculated data obtained from GPC results for normalized mole 

fraction vs. retention volume at different conversion levels at different temperatures, as 
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shown in Figures 4.11 and 4.12.  

 
Figure 4.11 Normalized mole fraction vs. retention volume, T = 120º, Mn(I) = 2193 g/mol, [I] = 0.0301 
mol/l 

 
Figure 4.12 Normalized mole fraction vs. retention volume, T = 140º, Mn(I) = 2193 g/mol, [I] = 0.0301 
mol/l 

 62



  At both temperatures, the peaks were observed to shift to higher molecular weight (low 

retention volume) with increasing conversion, showing that the polymer chains are growing. 

The differences in the tails of the GPC traces at the two temperatures represent the reason for 

the differences in average MW trends. It can be seen that the mole fractions of low MW (high 

retention volume) are larger for the polymer made at the higher temperature, which indicates 

that relatively more oligomers with low molecular weight had been formed. A higher mole 

fraction of low MW species likely balances any increase in the peak MW causing the plateau 

in Mn. 

  Similar results have also been observed when using initiator with Mn = 6000 g/mol, and 

initiator concentration equal to 0.050 mol/l (see Appendix B, Figures B.17-24). 

 

4.3.3 Effect of initiator molecular weight 

As previously mentioned, it was difficult to make a large enough batch of initiator to last 

for the whole study. So the alkoxyamines used to conduct the polymerization studies had to 

be produced from different batches, leading to slightly different properties of initiator 

(molecular weight, polydispersity), which may have had some effect on the kinetic behavior. 

For example, high-molecular-weight initiator will take a larger proportion in the initial 

mixture volume; to prepare a mixture with the same initiator concentration, the amount of 

monomer initially needed would be less. Since the polymerization rate is proportional to the 

free monomer concentration (see Eqs. 2.11 and 2.12), which is determined by the initial 

monomer concentration and monomer conversion (see Eq. 4.1), the change of initial 

monomer concentration may lead to a difference in polymerization rates. No previous study 
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has discussed this issue so far, so the kinetic behavior by using initiators produced from 

different batches was examined and is described in this section. 

An initial comparison was conducted between two batches of initiator of different 

molecular weight and polydispersity at the same temperature and initiator concentration (Fig 

4.13). 
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Figure 4.13 Conversion vs. time plot, effect of initiator molecular weight, T = 120ºC, [I]0 = 0.0301 mol/l.  

 

It was surprising to observe that the monomer conversion rates were the same for different 

initiator molecular weights. As analyzed in previous sections (sections 4.2 and 4.3.1), 

polymerization rate is affected by the rate of thermal initiation. This implies that the slightly 

different thermal initiation rates caused by differences in [M]0 did not have a significant 

effect. As discussed in section 4.3.1, the free monomer concentration is determined by the 
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initial monomer concentration and monomer conversion rate. If the initial monomer 

concentration is higher, the free monomer concentration would be higher for given 

conversion levels for the whole reaction. However, the results in Figure 4.14 show that at 

high conversion there is not a significant reduction in rate when the high molecular weight 

initiator was used. If the lower [M] used, when higher MW initiator was studied, was the 

main cause of reduced rates at high conversion then we would have expected to see a 

difference in conversion rates when using the different initiators. This was not observed and 

so would indicate that rates are more affected by the concentration of [RON] (as described in 

section 4.3.1)  

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 7

Time (h)

[M
] (

m
ol

/l)

0

Mn(I)=2193g/mol
Mn(I)=6238g/mol

 
Figure 4.14 Effect of initiator molecular weight, T = 120ºC, [I]0 = 0.0301 mol/l. Free monomer 
concentration vs. time plot. 
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  Figure 4.14 shows that the free monomer concentration values in the system with lower 

molecular weight initiator are higher than in the system with higher molecular weight initiator. 

However, this difference between the free monomer concentrations (in absolute terms) 

becomes smaller along with conversion. This means that the rate of monomer consumption 

for the system with lower [M]0 (higher initiator molecular weight) decreases more slowly 

than that with higher [M]0, so that overall result would be that the free monomer 

concentration values become closer.  

Since the molecular weight of the resulting polymer is proportional to the concentration of 

monomer consumed, the initiator of high molecular weight should have a slightly lower 

corrected MW with respect to conversion than those observed for lower MW initiator. The 

experimental results of Figure 4.15 are largely in agreement with this postulate. 

The differences between the free monomer concentration values can be amplified by 

increasing the difference between initiator molecular weights. Since it is not recommended to 

use initiator with molecular weight higher than 6238g/mol (to maintain the same initiator 

concentration, a larger amount of initiator is required if the initiator molecular weight is high), 

the initiator molecular weight can thus be considered to have little effect on polymerization 

rate and molecular weight development in the present study. 
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Figure 4.15 Effect of initiator molecular weight, T = 120ºC, [I]0 = 0.0301 mol/l. (a) Mn vs. conversion; (b) 
Mw vs. conversion 
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4.4 Prediction of molecular weight 

 As mentioned in section 2.1.2.2, molecular weight of an ideal living radical polymerization 

can be determined by the ratio of monomer conversion to initiator amount (Eq. 2.3).  

0
0

0

[ ] [ ]
[ ]

t
n

M MM M
I
−

= ×    (2.3) 

A bimolecular system may have a deviation from this rule because of several side reactions 

(section 2.3.1). However, since in a unimolecular system side reactions that occur in a 

bimolecular system are avoided, one would be able to predict molecular weight by following 

this simple rule. Therefore, a comparison between the experimental data of molecular weight 

obtained from GPC analysis and the theoretical data of molecular weight calculated by 

Eq.(2.3) was made.  
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Figure 4.16 Prediction of molecular weights of polymers in unimolecular system 
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In section 2.3.2, such model prediction was also carried out for a bimolecular system, 

where the TEMPO concentration was substituted for the initiated chain number. The results 

showed that the experimental data were evidently higher than the theoretical data. As side 

reactions may lead to reduction of initiator efficiency and large loss of TEMPO, the actual 

initiated chain numbers are lower than the initial initiator concentration. This goes back to 

support one of the original postulates of our work, namely, that a unimolecular system could 

provide a better controlled process and better quantitative prediction for molecular weight 

than a bimolecular system. 

  For the unimolecular system, as one can see from Figure 4.16, the ratio (slope of the curves 

in Figure 4.16) of theoretical molecular weight to experimental molecular weight is slightly 

larger than 1 (see inset of figure 4.16, equations of linear fits y1, y3, y5, and y7). A likely 

reason for the deviation may be due to self-initiation that continuously generates new radicals 

during polymerization. This possibility is supported by the fact that the most significant 

deviations from the ideal trends are from the experiments at higher temperatures (Exp. 2, 4, 6, 

8). This confirms that although high faster rates of polymerization, it will also lead to poorer 

control of the polymerization process. 
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Chapter 5 – Conclusions and Recommendations 

5.1 Conclusions 

This study has systematically assessed the kinetic behavior of a controlled radical 

polymerization system with a unimolecular initiator through the whole conversion range, and 

comparisons relative to the corresponding bimolecular system have been made. 

Initially, the kinetic behavior of an unimolecular NMRP process was compared with a 

bimolecular system[1][2]. This was revisited under the same conditions as an earlier study[2]. 

The results showed good agreement with the work by Nabifar[2]. It was confirmed that 

polymerization rates for the two systems were largely the same in the early stages, which is 

as expected from standard theory explaining NMRP kinetics[3][4]. It is believed that a higher 

effective TEMPO concentration holds in a unimolecular system throughout the entire course 

of polymerization, and it leads to the early inhibition of the polymerization. Because when 

the radical concentrations drop, the equilibrium with respect to P* will react preferentially 

with NO* rather than another monomer. This ultimately leads to the slow down of 

polymerization. 

In addition, the capabilities of molecular weight prediction for the two systems have been 

evaluated (Eq. 2.3). The bimolecular prediction underestimated the experimental value, while 

the unimolecular system gave a better estimate. The bimolecular system involves a multi-step 

initiation, so a significant concentration of initiator and free TEMPO is consumed in various 

side reactions [5][6][7]. So the stoichiometry between the growing radical, free TEMPO and 

BPO is not valid. In a unimolecular system, on the other hand, preparation of initiator is 
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stepwise; the fact that BPO reacts with TEMPO is not important since the initiator is isolated 

from any impurities. This method separates the preparation of initiator from polymerization, 

so the side reactions are no longer a factor in polymerization. Therefore, the effective free 

TEMPO concentration is closer to the initial initiator concentration. So the stoichiometry 

between the initial initiator concentration and growing radical concentration is valid, and 

molecular weight can be simply predicted following general CRP rules (Eq.2.3).  

The effects of different reaction conditions such as initiator concentration, temperature, and 

initiator molecular weight on NMRP have also been considered in the thesis, both 

experimentally and theoretically. Initiator concentration was reported to have no effect on 

polymerization rate at low conversion in early studies[3][4]. This study looked at this and 

similar results were obtained at low conversion. Interestingly, at high conversion, 

polymerization rate was observed to have an inverse dependence on initiator concentration. 

This supports the conclusions obtained in the comparison of unimolecular and bimolecular 

initiations. Molecular weight measurement showed that higher initiator concentration yielded 

lower molecular weight polymers. This agrees with the rule for an ideal CRP system that 

molecular weight is inversely proportional to initiator concentration, which, again, implies 

that the prediction of molecular weight for a unimolecular system simply follows a general 

rule for CRP (Eq. 2.3).  

Temperature effects were also examined for rates of polymerization and molecular weight 

development. In this work, increase of temperature led to an increase of the overall 

polymerization rate. This was ascribed to the fact that increasing temperature increases kp and 

[P*](Eq. 4.6). Molecular weight appears to be independent of temperature. This may be 
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because the average number of monomer units added per polymer chain in each 

deactivation/activation cycle (RLPAC) is dependent on both propagation rate and 

deactivation rate; increasing temperature would increase both of these rates, so RLPAC didn’t 

change significantly. In addition, at high conversion, Mn showed a plateau in values with 

respect to monomer conversion at higher temperatures. This was likely because an increase in 

temperature enhances the degree of self-initiation, which leads to higher proportions of new 

radicals. The newly initiated chains have shorter time to grow, thus giving lower molecular 

weight chains. Since Mn depends more on the actual number of chains, it thus shows an 

apparent plateau. In general, the temperature studies show that although it leads to faster 

polymerization rates, the control of the polymerization is poorer because of the effect that the 

higher levels of thermal initiation has on the polydispersity of the polymer products. 

Initiators produced from different batches, with different molecular weight and 

polydispersity, showed no effect on polymerization rate and molecular weight. This indicates 

that initiator produced in different batches can be used in the same polymerization study since 

it won’t bring significant errors to the kinetic study. The free monomer concentration in the 

high-molecular-weight initiator case would be lower; however, it appears this does not have a 

significant effect on the polymerization rates and “limiting” conversion. This suggests that 

the more significant factor in dictating the final conversion levels in different experiments is 

the concentration of initiator added.  

The experimental molecular weights of the unimolecular systems under different reaction 

conditions have been compared to the theoretical values calculated by Eq.2.3, where 

molecular weight is proportional to the ratio of monomer consumption to initiator 
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concentration. The ratios of theoretical values to experimental data were shown to be close to 

1. This demonstrates that the degree of control by unimolecular systems approaches that of an 

ideal CRP system. One of the important reasons for the deviation of theoretical values from 

experimental data may be the effect of self-initiation, which leads to a higher number of 

initiated chains than that generated by the original initiation, and thus a lower molecular 

weight. This is most noticeable for polymer produced at higher temperatures, which showed 

the largest deviation from ideal, especially at higher conversion. This would suggest that 

NMRP has a limited optimal range of temperature where one can achieve reasonable rates 

along with good control of MW. 

 

5.2 Recommendation for future work 

Although a considerable amount of experimental work has already been conducted on the 

kinetics of unimolecular NMRP, there is still a lot that can be done to improve the 

understanding of the polymerization system and bring it closer to industrial production. 

1) The differences between bimolecular and unimolecular systems with respect to 

polymerization rate at high conversion have been studied. A tentative interpretation is 

centered on the reduction of thermal initiation. The propagating radical concentration of a 

bimolecular system can be proved to be intrinsically higher than that of a unimolecular 

system. However, the assumption for the propagating radical concentration in a 

bimolecular system still needs to be confirmed by experiments. This can be realized by 

measurement of free nitroxide concentration and calculation of polymerization rate from 

a conversion vs. time plot. The measurement of nitroxide concentration can be carried out 
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by ESR (Electronic Spin Resistance) or by fluorescence spectroscopy (if the nitroxide is 

fluorescent). 

2) Effect of temperature is rather complex. It is not only related to the propagation rate 

constant (kp), but also related to the deactivation/activation process (K=kd/ka; [X*], [M]). 

This can be seen in a recent simulation[8] on styrene polymerization for both bimolecular 

and unimolecular systems over a range of reaction conditions. The experimental data in 

this thesis should be compared with the newly developed model, and further explore the 

role of each factor contribution when temperature changes. 

3) Besides initiator and temperature, there are other factors affecting the experimental results, 

such as those involved in GPC analysis. The measured polymer molecular weight values 

may vary with the different calibration methods. For example, a recent comparison 

between the conventional calibration and multi-detector calibration has shown that 

conventional calibration gave a broader MWD and notably lower values for Mn; the Mw 

values were almost the same for both calibration methods. This may be because 

conventional calibration is better for assessing concentrations and molecular weight 

values of low molecular weight polymers. Multi-detector techniques are dependent on 

primary measurement of molecular weight from light scattering. Low angle light 

scattering responses are very weak for low MW polymers. This leads to considerable 

uncertainty in the values measured for the MW of low MW fractions. Conventional 

calibration methods simply depend on the retention volume of a particular fraction to 

determine its MW and so the degree of uncertainty in measuring MW of a low MW 

fraction is likely less.  
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4) The predicted molecular weights by Eq. (2.3) are shown to be always higher than the 

corresponding experimental values, and this was ascribed to thermal initiation which 

generates extra new growing chains besides those originally initiated by alkoxyamine. 

Since each growing chain can be as considered containing a nitroxide end, the predicted 

molecular weights would be closer to the experimental values if [I]0 could be replaced by 

the actual TEMPO concentration in Eq. (2.3). The measurement of [TEMPO] was 

discussed earlier. It is likely that the actual Pn-ON concentration is less than that 

calculated because it is unlikely that all chains in the initiator batch are capped with a 

nitroxyl radical. In order to get a more accurate idea for [Pn-ON], the actual concentration 

of TEMPO units / mass of initiator should be determined by an end group analysis 

method. 
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Appendices 

Appendix A – Tables of Raw Data 
 
Table A. 1 Raw data for Exp. 1 

Sample Time(h) Conversion (%) Mn Mw Mw/Mn 
1 1.00 6.11 3,922  4,423  1.13  
2 3.13 22.31 7,801  8,585  1.10  
3 6.00 42.52 12,070  13,047  1.08  
4 8.05 50.72 14,052  15,222  1.08  
5 10.00 52.53 15,706  16,747  1.07  
6 15.18 67.87 18,582  19,826  1.07  
7 20.00 76.55 20,338  21,613  1.06  
8 25.22 81.70 20,301  22,357  1.10  
9 30.07 81.96 21,262  22,944  1.08  
10 40.00 84.68 21,608  23,840  1.10  
11 50.00 87.29 23,028  25,349  1.10  

 

 
Table A. 2 Raw data for Exp. 2 

  Time(h) Conversion (%) Mn Mw Mw/Mn 
1 1.00  30.83  9,680  10,267  1.06  
2 3.00  58.98  17,921  19,218  1.07  
3 6.00  69.85  19,566  21,039  1.08  
4 8.00  75.76  18,980  21,684  1.14  
5 10.00  80.58  19,992  22,423  1.12  
6 15.00  82.12  19,063  23,019  1.21  
7 20.00  86.13  19,891  23,530  1.25  
8 25.00  88.59  19,209  23,436  1.23  
9 30.25  90.38  19,905  23,684  1.19  

10 40.00  89.71  19,371  23,652  1.22  

11 50.00  90.12  18,690  17,871  0.96  
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Table A. 3 Raw data for Exp. 3 
  Time(h) Conversion (%) Mn  Mw  Mw / Mn 
1 0.50 0.04 3,320 3,529 1.06 
2 1.00 6.35 3,593 3,810 1.06 
3 2.00 11.74 4,273 4,574 1.07 
4 2.00 10.59 4,243 4,545 1.07 
5 3.00 16.12 5,168 5,486 1.06 
6 6.00 33.30 7,467 7,878 1.06 
7 8.03 42.62 8,956 9,321 1.04 
8 10.10 49.07 9,801 10,376 1.06 
9 10.10 49.29 9,816 10,470 1.07 
10 15.13 63.37 11,867 12,597 1.06 
11 20.00 72.07 12,541 13,863 1.11 
12 25.00 76.55 13,111 14,546 1.11 
13 30.00 81.41 13,922 15,194 1.09 
14 30.00 80.77 13,854 15,163 1.09 
15 40.00 80.16 15,428 16,115 1.04 
16 50.00 83.64 14,582 16,094 1.10 
17 50.00 87.37 14,154 16,002 1.13 
18 60.00 91.35 15,255 16,685 1.09 

 
 
Table A. 4 Raw data for Exp. 4 

  Time(h) Conversion (%) Mn Mw Mw/Mn 
1 1.00  28.91  6,211  7,892  1.27  
2 3.02  57.21  9,962  11,176  1.12  
3 6.02  68.53  11,646  12,696  1.09  
4 8.00  75.47  11,968  13,330  1.11  
5 10.00  76.39  12,407  13,634  1.10  
6 15.02  79.96  12,149  13,762  1.13  

7 20.00  83.39  11,821  14,088  1.19  

8 25.00  32.67  11,669  14,023  1.20  

8' 25.00  84.39  12,674  14,300  1.13  

9 30.25  50.74  11,736  14,033  1.20  

10 40.00  86.53  11,884  14,236  1.20  
11 50.02  87.78  11,223  14,176  1.26  
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Table A. 5 Raw data for Exp. 5 
  Time(h) Conversion (%) Mn  Mw  Mw / Mn 
1 0.5 6.34 7,406 7,852 1.06 
2 1 11.24 8,653 9,382 1.08 
3 3 25.65 11,552 13,316 1.15 
4 6 42.10 17,315 18,661 1.08 
5 8 51.55 16,714 20,173 1.21 
6 10 54.46 20,277 22,504 1.11 
7 10 55.19 20,831 22,866 1.10 
8 15 64.35 21,679 24,882 1.15 
9 20 77.49 23,025 26,142 1.14 
10 25 75.12 23,614 27,061 1.15 
11 30 82.00 25,115 28,196 1.12 
12 40 84.82 24,638 28,672 1.16 
13 50 86.84 26,624 29,468 1.11 
14 60 84.78 26,072 29,811 1.14 

 

 
Table A. 6 Raw data for Exp. 6 

  Time(h) Conversion (%) Mn  Mw  Mw/Mn 
1 0.5 19.81 10,249 11,506 1.12  
2 1 25.84 13,057 14,666 1.12  
3 2 50.34 17,898 19,986 1.12  
4 3 52.68 19,798 22,516 1.14  
5 6 71.49 20,935 25,758 1.23  
6 8 78.51 20,903 26,794 1.28  
7 10 81.27 22,721 27,304 1.20  
8 15 83.05 21,487 27,909 1.30  
9 15 82.51 24,047 28,383 1.18  
10 20 84.94 22,825 28,094 1.23  
11 25 85.06 22,244 28,181 1.27  
12 30 86.95 20,980 28,428 1.36  

13 40 76.21 22,166 28,294 1.28  

14 50 85.39 17,802 28,097 1.58  
15 50 88.27 21,016 28,374 1.35  
16 60 86.75 20,214 28,220 1.40  
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Table A. 7 Raw data for Exp. 7 
  Time(h) Conversion% Mn  Mw  Mw/Mn 
1 0.50 1.04 6,672 7,004 1.05 
2 1.00 5.76 7,421 7,841 1.06 
3 3.00 19.78 9,552 10,087 1.06 
4 6.00 41.27 12,248 12,993 1.06 
5 8.00 47.46 12,733 13,701 1.08 
6 10.00 48.84 12,804 14,149 1.11 
7 15.00 65.03 13,327 15,271 1.15 
8 21.33 70.62 13,002 15,115 1.16 
9 25.00 79.79 15,184 16,976 1.12 
10 25.00 75.65 16,272 17,319 1.06 
11 30.00 78.45 15,422 17,348 1.12 
12 40.00 83.96 16,547 17,880 1.08 
13 50.02 83.86 15,899 17,997 1.13 
14 50.02 81.90 16,990 18,266 1.08 

 

 

Table A. 8 Raw data for Exp. 8 
Sample Time(h) Conversion% Mn Mw Mw/Mn

1 0.50 14.13 2,521 2,471 0.98  
2 1.03 29.43 4,584 4,647 1.01  
3 2.00 35.68 5,952 6,566 1.10  
4 3.00 51.67 6,401 7,459 1.17  
5 6.00 61.33 8,383 9,449 1.13  
6 8.00 71.11 7,892 9,746 1.23  
7 10.00 72.12 8,470 10,095 1.19  
8 15.03 65.76 8,515 10,524 1.24  
9 15.03 51.68 9,183 10,816 1.18  

10 20.00 93.71 7,545 10,504 1.39  
11 25.00 79.15 8,618 10,906 1.27  
12 30.00 80.75 8,626 10,870 1.26  
13 40.00 88.73 8,424 10,859 1.29  
14 50.00 81.59 7,488 10,949 1.46  
15 60.03 89.06 8,070 11,296 1.40  
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Table A. 9 Raw data for Exp. 9 

Sample Time (h) Conversion (%) Mn  Mw  Mw/Mn
1 0.5 14.39 5,547 6,000 1.08 
2 1 24.34 8,057 8,585 1.07 
3 3 50.04 13,183 14,811 1.12 
4 6 73.19 15,629 18,283 1.17 
5 8 77.77 16,498 19,323 1.17 
6 10 78.98 16,784 19,886 1.18 
7 20 82.72 17,492 20,937 1.20 
8 25 82.45 17,046 19,601 1.15 
9 40 91.25 16,627 20,397 1.23 

10 50 92.12 18,347 21,719 1.18 
11 60 90.14 17,529 21,241 1.21 
12 70.01 93.49 16,431 20,896 1.27 
13 80 85.59 15,285 20,925 1.37 

 

Table A. 10 Raw data for Exp 10 
Sample Time(h) Conversion (%) Mn Mw Mw/Mn
1 1.00 9.88 3,228 3,591  1.11 
2 3.13 25.19 6,156 6,733  1.09 
3 6.00 39.85 9,242 9,947  1.08 
4 8.05 48.41 10,831 11,464 1.06 
5 10.00 56.12 12,035 12,775 1.06 
6 15.18 68.56 14,235 15,252 1.07 
7 20.00 72.52 15,713 16,935 1.08 
8 25.22 77.48 15,475 16,875 1.09 
9 30.07 91.05 16,046 16,809 1.05 
10 40.00 80.04 16,197 17,896 1.10 
11 50.00 85.89 16,426 18,077 1.10 

 
 
Table A. 11 Raw data for Exp 1’ 

  Time(h) Conversion (%) Mn  Mw  Mw / Mn

1 30.02 81.07 21,770 22,943 1.05 

1' 30.02 83.39 22,163 23,324 1.05 

2 40.00 83.49 21,475 23,773 1.11 

3 50.00 87.65 19,718 23,660 1.2 

4 60.00 92.75 24,104 25,470 1.06 
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Table A. 12 Raw data for Exp 2’ 
  Time(h) Conversion (%) Mn Mw Mw / Mn
1 0.50 15.23 6,017 6,479 1.08 
2 1.00 27.15 8,908 9,663 1.09 
3 2.00 43.23 12,947 14,298 1.10 
4 3.02 56.50 16,201 17,942 1.11 
5 4.03 66.45 17,133 20,002 1.17 
6 5.02 71.93 18,486 21,496 1.16 
7 6.00 72.99 17,821 22,007 1.24 
8 6.00 73.35 11,058 13,605 1.23 

 
 
 
Table A. 13 Raw data for Exp 4’ 

  Time(h) Conversion (%) Mn  Mw  Mw / Mn 
1 0.50 14.53 4,351 4,682 1.08 
2 1.02 22.90 5,891 6,302 1.07 
3 2.00 42.12 8,250 8,929 1.08 
4 3.02 54.88 11,238 11,827 1.05 
5 4.05 63.13 7,134 11,556 1.62 
6 5.02 69.53 11,301 12,995 1.15 
7 6.00 73.35 11,058 13,605 1.23 

 
 
 
Table A. 14 Raw data for Exp 10’ 

  Time(h) Conversion (%) Mn  Mw  Mw / Mn 

1 30.02 78.70 16,862 17,562 1.04 

2 40.00 85.53 17,851 18,461 1.03 

3 50.02 88.34 15,653 18,197 1.16 

4 60.00 92.52 18,463 19,371 1.05 
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Appendix B – Complementary Figures 
 
Table B. 1 Summary of figures 
 
Effect Mn(I) T (°C) Exp     Figure # 

[I] 2000 120 1(1’) 10(10’)  3  
    140 2(2’) 9 4(4’) Figures B.1-B.4 
  6000 120 5 7   Figures B.5-B.8 
    140 6 8   Figures B.9-B.12 
             
    [I]        

T 2000 0.030 1(1’) 2(2’)    
    0.050 3 4(4’)   Figures B.13-B16 
  6000 0.030 5 6   Figures B.17-B.20 
    0.050 7 8   Figures B.21-B.24 
             
  T [I]        

Mn(I) 120 0.030 1(1’) 5    
    0.050 3 7   Figures B.25-B.28 
  140 0.030 2(2’) 6   Figures B.29-B.33 
    0.050 4(4’) 8   Figures B.34-B.37 
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Figure B.1 Conversion vs. time plot, effect of initiator concentration, T=140º, Mn(I) = 2193 g/mol. 
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Figure B.2 Mn vs. conversion plot, effect of initiator concentration, T=140º, Mn(I) = 2193 g/mol. 
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Figure B.3 Mw vs. conversion plot, effect of initiator concentration, T=140º, Mn(I) = 2193 g/mol. 
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Figure B.4 PDI vs. conversion plot, effect of initiator concentration, T=140º, Mn(I) = 2193 g/mol. 
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Figure B.5 Conversion vs. time plot, effect of initiator concentration, T=120º, Mn(I) = 6238 g/mol. 
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Figure B.6 Mn vs. conversion plot, effect of initiator concentration, T=120º, Mn(I) = 6238 g/mol. 
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Figure B. 7 Mw vs. conversion plot, effect of initiator concentration, T=120º, Mn(I) = 6238 g/mol. 
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Figure B.8 Polydispersity vs. conversion plot, effect of initiator concentration, T=120º, Mn(I)= 6238g/mol. 
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Figure B. 9 Conversion vs. time plot, effect of initiator concentration, T = 140°C, Mn(I) = 6238 g/mol 
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Figure B. 10 Mn vs. conversion plot, effect of initiator concentration, T = 140°C, Mn(I) = 6238 g/mol  
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Figure B. 11 Mw vs. conversion plot, effect of initiator concentration, T = 140°C, Mn(I) = 6238 g/mol  
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Figure B. 12 Polydispersity vs. conversion plot, effect of initiator concentration, T = 140°C, Mn(I) = 6238 
g/mol  
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Figure B. 13 Conversion vs. time plot, effect of temperature, [I] = 0.0500 mol/l, Mn(I) = 2193 g/mol. 
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Figure B. 14 Mn vs. conversion plot, effect of temperature, [I] = 0.0500 mol/l, Mn(I) = 2193 g/mol . 
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Figure B. 15 Mw vs. conversion plot, effect of temperature, [I] = 0.0500 mol/l, Mn(I) = 2193 g/mol. 
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Figure B. 16 Polydispersity vs. conversion plot, effect of temperature, T = 120º, Mn(I) = 6238 g/mol. 
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Figure B. 17 Conversion vs. time plot, effect of temperature. [I] = 0.0301mol/l, Mn(I) = 6238 g/mol. 
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Figure B. 18 Mn vs. conversion plot, effect of temperature, [I] = 0.0301 mol/l, Mn(I) = 6238 g/mol . 
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Figure B. 19 Mw vs. conversion plot, effect of temperature, [I] = 0.0301 mol/l, Mn(I) = 6238 g/mol. 
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Figure B. 20 Polydispersity vs. conversion plot, effect of temperature, [I] = 0.0301 mol/l, Mn(I) = 6238 
g/mol. 
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Figure B. 21 Conversion vs. time plot, effect of temperature, [I] = 0.0500 mol/l, Mn(I) = 6238 g/mol 
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Figure B. 22 Mn vs. conversion plot, effect of temperature, [I] = 0.0500 mol/l, Mn(I) = 6238 g/mol 
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Figure B. 23 Mw vs. conversion plot. Effect of temperature. [I]=0.0500M, Mn(I)=6238g/mol 
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Figure B. 24 PDI vs. conversion plot. Effect of temperature. [I]=0.0500M, Mn(I)=6238g/mol 
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Figure B. 25 Conversion vs. time plot, effect of initiator molecular weight, [I] = 0.0500 mol/l, T = 120ºC. 
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Figure B. 26 Mn vs. conversion plot, effect of initiator molecular weight, [I] = 0.0500 mol/l, T = 120ºC . 
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Figure B. 27 Mw vs. conversion plot, effect of initiator molecular weight, [I] = 0.0500 mol/l, T = 120ºC. 
 

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

0 20 40 60 80
Conversion (%)

Po
ly

di
sp

er
si

ty
 In

de
x

100

Mn(I)=2474g/mol
Mn(I)=6238g/mol

 
Figure B. 28 Polydispersity vs. conversion plot, effect of molecular weight, [I] = 0.0500 mol/l, T = 120ºC. 
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Figure B. 29 Conversion vs. time plot, effect of initiator molecular weight, [I] = 0.0301 mol/l, T = 140ºC. 
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Figure B. 30 Mn vs. conversion plot, effect of initiator molecular weight, [I] = 0.0301 mol/l, T = 140ºC. 
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Figure B. 31 Mw vs. conversion plot, effect of initiator molecular weight, [I] = 0.0301 mol/l, T = 140ºC. 
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Figure B. 32 Polydispersity vs. conversion plot, effect of initiator molecular weight, [I] = 0.0301 mol/l, T = 
140ºC. 
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Figure B. 33 [M] vs. time plot, effect of initiator molecular weight, [I] = 0.0301 mol/l, T = 140ºC 
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Figure B. 34 Conversion vs. time plot, effect of initiator molecular weight, [I] = 0.0500 mol/l, T = 140ºC.  
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Figure B. 35 Mn vs. conversion plot, effect of initiator molecular weight, [I] = 0.0500 mol/l, T = 140ºC.  
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Figure B. 36 Mw vs. conversion plot, effect of initiator molecular weight, [I] = 0.0500 mol/l, T = 140ºC. 
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Figure B. 37 PDI vs. conversion plot, effect of initiator molecular weight, [I] = 0.0500 mol/l, T = 140ºC. 
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Appendix C – Sample Calculation of Initiator Concentration 
 

If the required volume of initial mixture is 1 L, the mass of initiator needed should be: 

mi = [Initiator] × Vmix × Mi = [Initiator] × (Vi + Vsty) × Mi 

where mi is the mass of initiator added to the initial mixture; 

     [Initiator] is the expected initiator concentration (i.e. 0.0500 mol⋅L-1); 

     Mi is the molar mass of initiator ( ~ 2200 g⋅mol-1 ); 

     Vmix, Vsty, Vi are the volume of initial mixture, styrene and initiator, respectively. 

Thus, 

mi = 0.0500 mol⋅L-1 × 1 L × 2200 g⋅mol-1 = 110 g 

 

Then the relevant mass of styrene can be obtained from 

msty = Vsty × ρsty = (1000 mL – Vi) × ρsty = (1000 mL - mi / ρi ) × ρsty 

where ρi  is the density of polystyrene at 20°C, which is equal to 1.05 g⋅mL-1; 

     ρsty is the density of styrene at 20°C, which is equal to 0.906 g⋅mL-1; 

Thus, 

msty = ( 1000 mL – 110 g / 1.05 g⋅mL-1) × 0.906 g⋅mL-1 = 811.0857 g 

 

The mass ratio of styrene to initiator should be 

R = mi / msty = 811.0857 g / 110 g = 7.3735 
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Since the actual volume of initial mixture is based on the number of samples: 

Vmix = Vsty + Vi = Nsample × 1.5 ml/sample  

where Nsample is the number of samples required 

If we required 15 samples, then  

Vmix = 15 × 1.5 ml/sample = 22.5 ml 

The mass of initiator should be  

mi = [Initiator] × Vmix × Mi  

  = 0.0500 mol⋅L-1 × 22.5 mL × 10-3 L⋅mL-1 × 2200 g⋅mol-1
  

   = 2.475 g 

And the mass of monomer should be 

msty = mi × R = 2.475 g × 7.3735 = 18.2494 g  
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