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Abstract

Economic equilibrinm models often distinguish several regions. For model man-
agement reasons. it can be advantageous to keep the submodels separate. even on
different computers. e.g.. different personnel may be in charge of developing and
maintaining the demand and supply submodels. Therefore. decomposition proce-
dures can be useful to bring the submodels together for a solution.

Although existing decomposition principles can make large-scale linear or non-
linear programming models more manageable. economic equilibrium modelers can-
not always use these techniques becanse many equilibrium models cannot be con-
verted into optimization problems. This dissertation develops new decomposition
methods by which existing LP decomposition principles can be applied to economic

equilibrium models (non-optimization models). Preliminary tests are included.
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Chapter 1

Introduction

Economic equilibrium models (EEM) have been used to study energy-environment
policies. tax policies and traffic policies for decades. An example of the EEMs is
the energy equilibrinm model which includes a detailed supply process model and
demand functions. This dissertation is motivated by our several years of applied
research with a mmlti-regional energy equilibrinm model - a Canada-USA energy
equilibrinm model 8], which consists of six regional energy equilibrinm submod-
els. Regional submodels are linked with each other by a few energy Hows. We
noticed that if these six regional submodels conld be developed. solved and de-
bugged individually and then integrated together as a whole multi-region'al model.
the modeling task would be greatly reduced. Other research groups (e.g. [18]. [7].
and [3]) have similar observations. Hence. we chose to investigate methods to in-
tegrate the submodels of a multi-regional economic equilibrium model (MREEM).
which is defined as an economic equilibrium model in which two or more regional

economic equilibrium models are connected by a few linking economic activities
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among them. The linking activities may be flows of commodities among regions.
or joint upper limits ov emissions of pollutants. for example.

In general. it wonld be desirable to be able to develop a new MREEM efficiently
by integrating all existing regional EEMs. created by one or many regional research
groups. by introducing a few linking economic activities among them. An integra-
tion example can be found in the energy equilibrium models. Regional research
groups often maintain their detailed energy equilibrium models. If all regional en-
ergy equilibrium models can be converted into optimization models (which may be
unrealistic for multi-fuel models. see Chapter 2). existing decomposition algorithms
of linear or nonlinear programming (LP or NLP) may be used as an integration
means. However. realistic multicommodity energy equilibrium models cannot nor-
mally be represented as optimization models.

Obviously. if some or all of the regional EEMs are not optimization models.
existing LP or NLP decomposition principles cannot be used. Hence. the main
objective of this dissertation is to provide new methods by which existing LP de-
composition principles can be adapted to decompose nou-optimization EEMs. With
these methods. we hope to alleviate the difficulties of model development and main-
tenance. which are due to the complexity and large-scale nature of multi-regional
models.

Often. new algorithms are developed for the sake of reducing the computing time
needed to solve a problem. However. solution time. compared with modeling time. is
not an issue of concern for many large-scale equilibrium models. Murphy (1993) (21]

provided a detailed discussion on how decomposition methods can be used to reduce
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the modelling time of large-scale models. He illustrated with an example showing
that the modelling time can be reduced aronnd 70% by means of decomposition
methods. Besides the reduction of the modelling time. he also mentioned different
advantages such as ervor rednction. Therefore. we view a decomposition method as
successful if it finds an equilibrium reliably. without an unacceptably large increase
in solution time.

Another motivation for decomposition is to overcome limits on model size due
to computing capacity problems. Although each regional EEM may be solvable on
a computer available to the modeler. the new MREEM may become too huge to
be solved as a single model on one compnter. Based on the decomposition-based
information exchange provided by the new methods. modelers do not need to put
the entire MREEM on one computer. Instead. the regional models can be solved
on their own compnters and they can exchange information with each other over a
network. in order to solve the MREEM.

The new methods presented in this thesis show how modelers can integrate their
regional EEMs as a new MREEM by directly adapting existing LP decomposition
principles. The integrated MREEM is to be solved by exchanging the price and
quantity information for the linking activities among all regional EEMs in an itera-
tive manner nntil an equilibrium is found. The pattern of the decomposition-based
information exchange follows that of the adapted decomposition principle. At each
iteration. all regional EEMs can be solved by appropriate algorithms for finding
equilibrium solutions.

Chapter 2 provides the formulation of the MREEM and explains when the
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MREEM cannot be converted into an optimization model. The solution methods
and the existing decomuposition methods for the non-optimization MREEM are
reviewed. The literatnre review shows that there is no appropriate decomposition
method for the non-optimization MREEM.

Chapter 3 describes a new decomposition method consisting of three steps. An
illustration of the new decomposition method is given to show how the Dantzig-
Wolte [9] decomposition principle is adapted by the new method. We also demon-
strate how the new decomposition method can adapt another existing LP decom-
position principle. The new method can be viewed as 2 general procedure for
decomposing non-optimization equilibrium models. The formulation of the decom-
posed MREEM in variational inequalities (VI) form is presented to show that the
new decomposition method can be used in that more general setting.

Chapter 4 shows that there is a computational difficulty (divergence) when
we apply the new decomposition method in Chapter 3 to solve a MREEM. which
includes the consideration of the time-lagged effect in the demand side. The demand
side of the MREEM in Chapter 3 does not consider the time-lagged effect which can
make the MREEM more realistic. For example. in energy eqnilibrinm models. when
dealing with the effects of a decrease in the price of electricity. durable commodities
(e.g.. a gas stove) may have to be worn out before a shift is made to the product
whose price has fallen. In order to resolve the computational difficulty. another new
decomposition method. which adapts the Dantzig-Wolfe decomposition principle
19]. is developed.

In Chapter 5. a new demand-supply decomposition method. following the similar
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approach of the new decomposition method in Chapter 3 which adapts the Dantzig-
Wolfe decompuosition principle. is developed to decompose an economic equilibrium
model into a demand submodel and several supply submodels. Because such a
demand-supply decomposition method inherits the finite convergence property of
the Dantzig-Wolfe principle. it must converge in a finite number of iterations.
Chapter 6 concludes with the summary of the work and recommendations for

future research.



Chapter 2

Background and Literature

Review

In this Chapter. a general background of economic equilibrium models is provided
first. Becanse multi-regional economic equilibrinum models are used to derive the
new decomposition methods. the formulation of the models is then presented. The
literature review of the solution techniques and the existing decomposition methods

used in economic equilibrium models follows.

2.1 Economic Equilibrium Model (EEM)

This thesis is concerned with the development of new decomposition methods for
solving economic equilibrium models. A general backgronnd of economic equilib-
rium models is therefore presented first. Since Ahn and Hogan [2] presented the

background concisely. the content of this section mainly is quotation from them
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with a few notation changes for the consistent presentation of this thesis. Based on
Ahn and Hogan (1982) {2]. economic equilibrium models with linearized production

activities can be formulated as follows.

EEM
Supply side:
ugn T
s.t. Ar > ¢ (v) (2.1)
A (2.2)

Demand side: ¢ = Q(p)

Equilibrium condition: p = v
where v is an optimal dual variable vector (shadow price vector) corre-
sponding to the demand constraints Az > q. ¢ is a cost vector for the
supply activities. z is a production activity level vector. Z is the convex
polyhedral production feasibility set which includes resource availabil-
ity constraints. material balance equations and other system constraints.
Ar > g are demand requirement constraints. and Q (e} is a vector-valued
demand function defined over prices. p.

Under the competitive market assumption. the elements of a shadow
price vector v can be regarded as the supply prices. representing a bound
on the marginal cost of meeting an additional unit of demand. Then. a
solution r=(or p*) and ¢ become equilibrinm price and quantity vectors.
respectively. An accompanying solution £° represents an equilibrium
production profile of the supply activities.

After the description of the economic equilibrinin model. Ahn and Hogan also

provided the following general discussion regarding the properties of the EEM.

Consider a state of a multi-commodity market characterized by com-
modity prices p = (p1..... pn) and consumption levels ¢ = (q1.. ... Gn)-
Suppose that the consumers’ behavior in this market is captured by a
demand function Q(e) and the supply side is described by an indirect
supply mapping P(e). Let these supply and demand mappings satisfy
the following:
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Assumption 1. The demand function Q(e) from R7 into R7 is
continuously differentiable. Furthermore. the own price effects on de-
mand levels are negative. i.e.. dQi(p)/dp:; < 0 for any p in R} and each
h.

Assumption 2. The supply mapping P(e) is a point-to-set map-
ping from R" into R7}. (A point-to-set mapping P(e) is monotone if. for
any q* and ¢ in its domain and for any p* and p* such that pt = P(¢h)
and p? = P(4*). it follows that (p' — )T (gt — ¢*) 2 0. If the above
inequality is strictly positive for any q* # ¢°. the mapping is said to
be strictly monotone. A point-to-set mapping P(e) is said to be up-
per semi-continuous at ¢ € R7. if assumptions ¢ = qand pf = p
such that p* = P(¢*) imply that p € P(q). P(e) is said to be upper
semi-continuons on X if it is upper semi-continuous at each point of
X Z R?. Note that upper semicontinuity is a generalization of conti-
nuity of a point-to-point mapping.)

With these supply and demand sides. a typical economic equilibrium
condition is defined as follows:

Definition 1. A supply price vector v". a demand price vector p*.
and a supply level vector ¢* constitute an equilibrium of the EEM if

vt £ P(q7)
(l' = Q(p') (23)
p- = v

or. eqpuivalently.
pr = Plg) } 54
= Qp7). (24)

This is the general formulation of market equilibrium with a given
demand function and a supply mapping. If we go one step further. (2.4)
can be put into the form ’

p- € P(Q(p7)) (2.5)

which is a fixed-point problem.

The EEM can also be cast in the above form after we identify the
implicit supply mapping embedded in the cost minimizing supply model.
This conversion makes it possible to analyze the EEM in terms of (2.3).
(2.4). or (2.3).
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Let V(o) be the total cost fuuction of the supply activities:
Vig) = ming{cFele = Z. Az >q} (2.6)

This function is known to be convex. piecewise-linear. and sub-
differentiable with sub-gradient

AViqgh) = {vlVi(q) = V(¢}) > v (g = qt)7q € the domain of V(e)}.
(2.7)
The resulting mapping dV'(e) is said to be the sub-gradient mapping
of V(e). The image set dV'(q) for a given ¢ is closed and convex, and the
mapping AV (e) is upper semi-continuons and monotone: see Rockafellar
(1969) [29].
In addition. the optimal dual variable v(q) corresponding to the de-
mand requirement constraint Az > g in the cost minimizing LP supply
side is an element of the sub-gradient dV(q): i.e..

v(q) = OV (q). (2.8)

This implies that under the competitive market assumption we can
interpret the sub-gradient as the set of supply prices. and that the sub-
gradient mapping 0V(e) can be viewed as the inverse supply mapping
of the snupply side of the EEM. 1.e..

P(q) = 3dVi(q) 7q. (2.9)

The formulation in terms of monotone mappings leads immediately
ro a uniqueness resnlt:

Lemma 1. Assume that the snpply mapping P(e) is monotone and
the negative of the demand function —Q(e) is strictly monotone. Then
there exists at most one solution to (2.3). (2.4). or (2.5).

Corollary 1. Assume that —Q(e) is strictly monotone. Then. the
EEM has at most one equilibrium.

The proofs of Lemma 1 and Corollary 1 can be found in Ahn and Hogan (1982)
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2.2 Multi-Regional Economic Equilibrium Model
(MREEM)

Assume that we have two regional EEM submodels. named Region-1 and Region-2.
with the following formulation. The subscript is the region index.

Region-1

Supply side:

n}i‘n ¢y Ly
s.t. Ay > g (vy)
Bz, < by
zy.qp 20
Demand side: q; = Q1(p1)
Equilibrium Condition: py = vy.
and
Region-2
Supply side:
min ¢, La

s.t. ‘42-133 Z Ja (Ug)
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Demand side: ga = Qa(p2)

Equilibrium Condition: p» = va.
where {Biz; < bi.zy > 0} and {Baza < baz2 2 0} are the convex polyhedral
production feasibility sets described as Z in the EEM.

To illustrate. suppose that the following Figures 2.1 and 2.2 represent the net-
work flows in a model of energy supplies and demands in Region-1 and Region-2.

respectively. There may also be non-network constraints in the supply model.

supply Region-1 Demand

»
->

v

 Z

Figure 2.1: The network of energy flows in the submodel of Region-1

Supply Region-. Demand

'
»

v

Figure 2.2: The network of energy flows in the submodel of Region-2

If there are some economic activities between these two regional submodels.

e.g.. exporting electric power from Region-1 to Region-2 and importing natural
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gas to Region 1 from Region 2. we will have a new two-region model llustrated in
Figure 2.3. where the linking arcs LC11. LC12. LC21. and LC22 are connected with
two linking nodes. When these trade links are introduced. the competition between
two regions wonld tend to drive the global supply cost to a minimum. Hence. we

get a new two-region model with the following formulation.

Supply Regron-1 Demand

v

v

v

Demand

v

LC12

Figure 2.3: The network of the energy flows in the two-region model

Two-region model

Supply side:

Ly L2
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s.t. Az, 2 (1)

Aszs 2 o (1)

Lyry+ Laza < h
Ly. Lo 1.2 Z 0

Demand side: q; = Q1(p1). q2 = Q2(p2)

Equilibrinm Condition: p; = vy, pa = va.
where Lz, + Lazs < h are the linking constraints. containing the linking arcs and
corresponding to the linking nodes.

Apparently. we must consider this two-region model as a whole model. How-
ever. if there is an appropriate decomposition method to decompose this two-region
model into regional submodels. and therefore the decomposed submodels can be
solved individually. then we can use this decomposition method actually to inte-
grate regional submodels. An appropriate decomposition method can be
used as a tool to integrate regional submodels.

Similarly. when we integrate m regional submodels. we have the following multi-
regional economic equilibrium model (MREEM) which will be used to carry out
our discussion on the development of the new decomposition methods. For the
sake of simplicity and emphasis on the multi-regional structure. indices such as

time period ¢ and commodity i. are hidden. leaving only the index r. for regions.
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explicitly displayed.

MREEM
Supply side:
min cfz:l +ef e+ T,
T r -
s.t. Aoz, > g (v.) Tr (2.10)
lel + L'g.Bg +... T Lmlﬂm S h (,d) (211)
\
Bz, <h
Bo.l!-_) S bg
(2.12)
Bnzm <bnm
z, > 0. q 20 Tr:

Demand side: ¢, = Q.(p.) r:
Equilibrium Condition: p, = v, 7

where
¢, = a cost vector for the supply activities in region r:
z, = a production activity level vector in region r:

v. = an optimal dual variable vector (shadow price vector) corresponding to the

demand requirement constraints A.z. > ¢, in region r:

3 = a dual price vector corresponding to the linking economic activity constraints

S o Ler. <h:

awr=]
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v, L.z, < h represents linking economic activity constraints:
B.r. < b, represents supply constraints in region r:
A,r. > q, requires that demands are met in region r:

Q.(p.) = a vector-valued market demand function defined over prices. p, in region

r.

Notice that the MREEM is an extension of the formulation of the EEM and
shares the same properties of the EEM presented in Section (2.1). That is. ¢- and v,
are variables. The MREEM is solved when p, = v, such that ¢. = Q.(p-) for all r.
Hence. the MREEM is not an optimization model. The regional demand ¢ consists
of two or more commodity components. The vectors z,. p.. ¢,. b,. h. and matrices
L.. B, have appropriate dimensions. The above constraine set in the supply model
is called a block-angular constraint set. which is non-separable. Because of the
linking constraints. the MREEM cannot break into m separate regional models.

Moreover. according to the definition of equilibrinm condition provided in [2}. if
the optimal dual variables r, corresponding to the demand requirement constraint
Az, > ¢, in the cost minimizing linear programming supply side is equal to p, such
that ¢, = Q-(p-). and Q.(p,) is strictly monotone for all r. then t:here' exists at
most one solution to the MREEM. We shall assume strict monotonicity of demand.
in order to ensure uniqueness of the equilibrinm. -

Variational Inequality Problems

Much recent literature regarding the equilibrium model is based on variational

inequality (V1) problems. Based on Sham (1997) [32]. the expression of the MREEM
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in the formulation of the VI problems is given below.

MREEM-VI
Find (z".q7) € K

st cleo(e—2) = Qg )T e(q—q7) >0.

(e.q) = K.

where K is the constraint set of the supply side of the MREEM and the vectors
¢.z.q. and Q include all regional components.

The new decomposition methods can be directly used in the MREEM-VI. the
variational inequality problems. However. for the sake of simplicity in presentation
of how the new decomposition method is derived. the MREEM is used instead of

the MREEM-VL

2.3 Symmetric Equilibrium Model

It the demand function Q(p) satisfies the integrability condition (the matrix of
cross-price derivatives of Q(p) is symmetric). then the MREEM is equivalent to the

convex optimization model {1] shown below.
. T Ty,
min ¢ & — Q™  (y)dy
L. 0

s.t. (z.q) €K
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This kind of model is referred to as a symmetric equilibrium model for the rest
of this thesis.

Some researchers claimed that they applied existing LP decomposition princi-
ples to their equilibrium models. or the VI problems. However. all their models are
symmetric equilibrium models (optimization models). Obviously. if the equilibrium
models. or the MREEM. can be converted into a simple optimization problem as
above. some existing decomposition methods. e.g.. the Dantzig-Wolfe decomposi-
tion method {9]. can be employed directly. Hence. no literature review of decom-

position methods for symmetric models (optimization) is presented here.

2.4 Asymmetric Equilibrium Model

In case the demand function Q(p) is non-integrable (asymmetric). the MREEM
cannot be converted into an optimization model and this kind of model is referred
to as an asymmetric equilibrium model. Since the asymmetric equilibrium model
is not an optimization model. we cannot use optimization solution techniques to
solve it. The asymmetric equilibrium model can be solved by various approaches.
such as fixed-point methods [31]. the PIES method {2]. and nonlinear complemen-
tarity programming or variational inequality methods ([20] and [24]). Since the
development of the decomposition methods relies upon these solution techniques
for subproblems. a brief description of each solution technique is given. The next

section reviews existing decomposition methods for asymmetric equilibrium models.
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2.4.1 Variational Inequality Methods

Based on Harker and Pang (1990) [13]. we are given a VI problem shown below.
A\ !
Find z= £ K C R™. such that

Flz)e(r—2")>0. YrekK

where
F = a given continuous function from K to R™:
K = a given closed. convex set: and

K is also assumed to be compact and F(z) continuously differentiable.

A general approach for solving the VI problems consists of creating a sequence

£* C K such that each %! solves V(K. F*) problem:
Fk(.l,'k.:.l) PY (y — .Ek-é-l) 2 0.‘7!/ E K’.

where F*(z) = an approximation to F(z). which is chosen in a way that makes
VI(K.F*) easy to solve.
Two basic choices for this approximation are that F' () is either a linear or

nonlinear function.
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For the linear approzimations, we have

F¥(x) = Fle*) + Ao - 2°)

where A(z*) = an n < n matrix. Several methods exist which differ in the choice

of A(Jz"' ):
AlzF) = VF(£5) (Newton's method)
x~ VF(zF) (Qnasi-Newton)
= D(z*) (Linearized Jacobi)
= (L(zM)orU(c*)) + 222 (SOR)
= YVF(F) + VF(z7T) (symmetrized Newton)
= G (Projection)
where
D(r*) = the diagonal part of V F(zF).
L(z*) = the lower triangular part of VF(z*).
U(z*) = the upper triangular part of VF(z*).
w* = a scalar parameter £ (0.2).
G = a fixed. symmetric. positive definite matrix.
SOR = Successive Overrelaxation.

For the nonlinear approzimations, the most popular is the nonlinear Ja-

cobi (also called relaxation or diagonalization) algorithm [2]. The basic idea of

this algorithm is to extend the linearized Jacobi method by producing a separable

nonlinear map at each iteration
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F¥z) = (... F¥z)..)T - R = R"

where

k ko k k k k
Fi(e;) = Fi(zl. oqe o 2], L0 20y oo T).

2.4.2 PIES Method

When the above nonlinear approximation technique is applied to the economic
equilibrium model with the formulation of the MREEM. the solution technique for
the VI problems actually reduces to the PIES (Project Independence Evaluation
System) method. According to Ahn and Hogan (1982) [2]. an illustration of using
the PIES method for solving the MREEM is given below. The region index r is
hidden for simplicity.

Let

gilp: ) = Qulpy Tt ph T ol ope i Pt

P ') = Q7 a P

where p; = price for the :** commodity:

k = iteration index:

{ = commodity index:

P:(e) = inverse of the modified demand function Q;(e: p*l). Le.. it gives p; as
a function of ¢;. with other commodities” prices fixed.

At the k? iteration of the PIES method. the following optimization problem is
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solved.

PIES*

Ty

[ i

min Tz —Z/ Pi(y:p* M)y
=1 0

s.t. (r.q) = K

where K is the block angular constraint set of the supply side in the MREEM.
The PIES method for the MREEM is:

Step 1: Provide a starting guess of the price vector. p°.and set k = 1:

Step 2: Solve problem PIESF. constrncted by pF~l. to obtain demand estimates
7*: calculate new price estimates p¥ from P;(q;: Py

Step 3 : Calcnlate

(S k-1
# = |px — pi I,
= m?.x_-——k_l |:

i
if # < J. a given tolerance. then go to step 4. otherwise increment the iteration

index k& — k - 1. and rerurn to step 2:

Step 4: Terminate with p* = p*.

2.4.3 Fixed Point Methods

Another computational approach for the asymmetric equilibrium models. which is
based on an economic theory. is fixed-point method pioneered by Scarf (1967) [30].
Consider a multi-commodity market in which the consumer’s behavior is captured

by a demand function Q(e) and the supply sector is described by an inverse supply



(3]
[\
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mapping P,(e) which is a point-to-set mapping. A typical equilibrium condition of

the MREEM is defined as a fixed-point problem:
P 2 P,(Q(P7))

where P,(Q) is the image set of the mapping applied to the demand vector Q.
The fixed-point representation readily yields an iterative solution scheme such

as

P**! = P,(Q(PY))

whicli is a typical cobweb search process. Unfortunately. as can be shown by
examining even a one-dimensional example. the cobweb search may diverge in some
cases. However. Murphy and Mudrageda (1998) [22] presented a variant of the
cobweb method that converges.

Although we also have other convergent fixed point algorithms (see Scarf and
Hansen (1973) [31]). their computational efficiency in solving large-scale equilibrium
models is donbtful. Ahn (1979) [1] provided a piece of practical evidence showing

the inability of the fixed puint methods to handle large-scale models.

2.5 Existing Decomposition Methods for Asym-
metric Equilibrium Models

Based on the solutions technique. four kinds of decomposition methods have been

developed for asymmetric equilibrium models.
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2.5.1 Partitionable Decomposition

If the approximation F*(z) is separable. then each subproblem VI(K. F*) can be
cast into the form of an optimization problem. If the feasible set K of the VI

problems is given by

B, 0 0 0 Iz hy
0 B, 0 0 Lo ba
(] =
0 0
0 0 ... Ba L b
where
> 0.r=1..... m

m > 1., £ R".

and the matrices B, and b.. r = 1.....m. have appropriate dimensions. then the

feasible set is the Cartesian product K = [[7-, K.. where
K.={e, sRY| Bz, =bh.r=1.... m}

Some researchers. e.g.. Nagurney (1993) [24] shows l:ha.t if the constraints define
a Cartesian product of feasible sets. the VI problems with a linear or nonlinear
approximation function F¥(z) can be decompose(i into m subproblems. The most
common linear approximation function to be used for decomposition purpose is

SOR. For a comprehensive review. the reader may refer to [28].
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The separable structure of the feasible set K is the main assumption of the
Partitionable Decompesition method. Obviously. this method is not of interest to
ns becanse the multi-regional model has a feasible set that is block-angular. not a

Cartesian product.

2.5.2 Transfer Decomposition

Hearn (1984) [14] has developed the Transter Decomposition scheme for symmetric
traffic assignment problems. This scheme is to partition a network so that the origi-
nal problem is transformes into two problems: a master problem and a subproblem.
Barton. Hearn and Lawphongpanich (1989) {4] show that chis technique is equi%r-
alent to a generalized Benders decomposition of the original equilibrium problem.
Lawphongpanich and Hearn (1990) {17] extended the above technique to asymmet-
ric models. However. this extension requires a point-to-set mapping imposed in the
Master problem. which is very difficult to solve [13] due to the nonconvexity of the
transformed feasible region.

The bigger the number of the subproblems. the harder the master problem is
to solve. because the number of the point-to-set mappings imposed in the master
problem is equal to the number of the subproblems in the model. Thus. this scheme
not only does not provide an efficient decomposition method. but also destroys the
mathematical formulation of the original equilibrinm model. Moreover. this method
is not similar to the Dantzig-Wolfe decomposition principle in which the original
problem is not transformed to another type of problem. That is. if the original

problem can be solved by one algorithm (e.g. the simplex algorithm for LPs). then
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the decompused problems (including Master and sub-problems) can be solved by

the same algorithm.

2.5.3 Simplicial Decomposition

This method is nsually applied to the traffic assignment problem. Lawphongpanich
and Hearn (1984) [16}. and Pang and Yu (1984) {26] show that it can be an effective
computational technique for large-scale problems. It also can be used in both
symmetric and asymmetric models.

The main idea of the Simplicial Decomposition method is derived from column
generation in linear programming. It is a scheme for algorithmically generatiﬁg
profitable variables in a problem. The algorithmic principle consists of two main
steps. In the first. the original problem is solved over the set of known variables
(restricted master problem). In the second. the solution to this master problem is
the basis for the formulation of a subproblem. which is solved to generate variables
that may improve the restricted master problem solution. However. because the
subproblem is still subject to the whole feasible set. i.e.. no decomposition in the
block-angular feasible sets. this scheme is not suitable for the multi-regional models

etther.

2.5.4 Cobweb-Decomposition

In the absence of appropriate demand-supply decomposition methods. some re-
searchers (see Murphy et al. (1988) [23]. Murphy and Mudrageda (1998) [22]. Wag-
ner (1980) [34]. Mansur and Whalley (1982) [19]. and Bueler (1997) {7]) adopted
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the cobweb algorithm for their tailor-made demand-supply decomposition methods.
By the cobweb algorithm. the supply model (or demand model) estimates a price
vector. given the quantity offered by the demand model (or supply model). and
passes the price information to the demand model (or supply model). This process
continues in an iterative manner until the price and quantity approximations stop
changing. The general principle of their decomposition methods is therefore based
on decomposing an economic equilibrium model into a supply model and a demand
model. but the same technique could be used for regional decomposition. By means
of the cobweb algorithm. price and quantity pairs are passed between models as a
way to decompose the model. Unfortunately. as can be shown by examining even
a one-dimensional example. the cobweb algorithm may diverge in some cases. We

refer to this type of decomposition method as the cobweb-decomposition method.

2.6 Summary

Because of violating the integrability condition. some equilibrium models cannot
be converted into optimization models. These equilibrium models are called asym-
metric equilibrium models in this dissertation. The asymmetric equilibrium models
can be solved by variational inequality methods. the PIES method and Fixed point
methods. Four decomposition methods have been developed for computational
efficiency.

However. Partitionable Decomposition relies upon the separability of the feasible
set to carry out the decomposition in each iteration of the solution method for the

VI problems. Transfer Decomposition makes the decomposed model very difficult
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to solve due to the nonconvexity of the transformed feasible region. In Simplicial
Decomposition. the subproblems are still subject to the whole constraints set. i.e..
there is no decomposition in the block-angnlar feasible sets. Cobweb-Decomposition
may diverge. Hence. these methods are not suitable for our integration purpose in
which regional models are to be integrated as a whole multi-regional economic

equilibrinm model.



Chapter 3

A New Decomposition Method

Since at each iteration of the VI methods or the PIES method. an approximated
solution can be obtained by solving an optimization problem. we can apply an
existing decomposition principle to decompose such an optimization problem. We
refer to this type of decomposition scheme as a sequential optimization de-
composition scheme. in which the decomposition principle is employed within
each sequential iteration. Obviously. this type of decomposition approach is not
of interest in this dissertation because the integration of the regional models de-
pends on the type of solution procedure for equilibrium models. We are interested
in decomposition schemes which depend only on the structure of the links among
regions.

A new structural decomposition scheme is developed. in which any equilibrium
seeking algorithm is used to solve equilibrium subproblems individually - we use
the PIES method here. The original MREEM is to be decomposed into regional

economic equilibrium models structurally. just as existing Linear Programming
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(LP) decomposition principles decompose a large-scale LP into several smaller LPs.
ie. the same class of model as the original. In our example. all these regional
EEMs are to be solved by the PIES method individually within each decomposition

iteration.

3.1 The new decomposition method, for MREEM

The new decomposition method for the MREEM relies on convex combinations and
column generation techniques as in the decomposition principle of linear program-

ming. There are three main steps in the new decomposition method.

Step 1: Decompose the LP supply side of the MREEM (page 14) into subproblems
(or submodels - the term “subproblenis™ is nsed here instead of “submodels”
due to the traditional terminology in discussions of the decomposition prin-
ciples) by an existing LP decomposition principle. Each subproblem includes
the corresponding regional objective function. regional demand requirement
constraints (2.10) and regional supply constraints from (2.12). Depending on

the decomposition principle. there may also be a master problem.

Step 2: Attach the regional demand side to the corresponding subproblems and
the master problem such that all subproblems and the master problem are

transformed into equilibrium subproblems aad equilibrium master problem.

Step 3: Solve the decomposed equilibrium model by exchanging the price infor-
mation for the linking constraints and quantity information among all equi-

librium subproblems and the master problem in an iterative manner until an
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equilibrium point is found. The pattern of the decomposition-based informa-
tion exchange follows that of the adopted decomposition principle. At each
iteration. the master problem and all equilibrinm subproblems can be solved
by the PIES method (or other methods). Note that different decomposition
principles can be adopted by the new decomposition method. which leads to

different algorithms.

3.2 An illustration, with the Dantzig-Wolfe prin-
ciple

To illustrate the new decomposition method. the Dantzig-Wolfe [9] decomposition
principle is adopted. For simplicity. the following two-region model is used. and we
have one equilibrium master problem and two regional equilibrinm subproblems.
Two-region model
Supply side:

. T ,
mimn oLy T (:Z'.Bg
£y .L2 e

s.t. Az 2 q (v1)
Aoza > ¢ (va)
By < b
Baras < by

Lizy+ Lazs < h (3)
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ry. L2 qm-qa 20
Demand side: q; = Q1(p1). 72 = Qa(p2)

Equilibrium Condition: py = v1.  pa2 = va.

3.2.1 Illustration of Step 1

Applying the Dantzig-Wolfe decomposition principle to the LP supply side of the

Two-region model. i.e. for fixed q; and ¢». we have one restricted master problem

and two sub-problems in the supply side at the k** decomposition iteration.
Supply side at the A** iteration:

Restricted master problem

E{u& T XENE — T kA
st AXPA > ¢ (v1)
AXANS 22 (va)
LiXEN + LXEN<h ()
FAF =1 A=

Af A5 q1q2 20

where
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tf = supply subproblem solution from iteration f.r=1.2:

N = (A A A)Tor =12
e =(1.1..... 1) the unit k-vector.
Subproblem.s

min (¢} — 8Lz,
)

3.t .4.1.121 > : 31131 S b]_i Iy Z 0:

and

3.2.2 Illustration of Step 2

If we were to extend the above decomposed supply side to an equilibrium model.
we would need to include the following conditions.

Demand side: ¢ = Q1(p1). ¢2 = Q2(p2)

Equilibriumn Condition: py = vy.  p2 = va.

If we distribute the demand functions and equilibrium conditions appropriately
among subproblems and the restricted master problem. we define the following
equilibrium problems.

Restricted equilibrium master problem at the k* iteration (REMPF):
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Supply side:

min  ¢F XENY + T XEAS
¥k R
s.t. Al.’ 'lkz\f Z 01 (Ul)

.-l«_»X.f,\’._." > @ (va)

LXEN - LLXSM <h  (B)
N =1 FAb =1
/\,;./\g.lll.q-_) 2 0
Demand side: qi = Q(p1). 2 = Q2(p2)

Equilibrium Condition: p; = ;. pa = va.

Equilibrium. sub-problem. | (ESP-1)
Supply side:

n}l;n (ry = L) 2y
sk, Ay 2 q (v1)
Bz, < by £y 2 0 @20
Demand side: q; = Q(p1)

Equilibrium Condition: p; = vy.

Equilibrium sub-problem 2 (ESP-2):

33
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Supply side:

min  (c; — BLa) s
st Asra 2 qa ()
Borsa <ba: z220: 220

Demand side: qa = Qa(p2)

Equilibrium Condition: p» = va.

Since any proposals generated by equilibrium subproblems satisfy the con-
straints B,z, < b,. we can leave these constraints out of the equilibrium master
problem. Consequently. we have one restricted equilibrinm master problem R.EMI"“'
and two equilibrium subproblems ESP-r. The equilibrium master problem has few
constraints. compared to the whole model because the dimensions of ¢. and h are
small for the models that we consider.

Decomposition may result in unboundedness in the subproblems. If this is the
case. upper bonnds can be imposed on all variables to prevent the subproblems

from being unbonnded. This technique is used in onr test models.

3.2.3 Illustration of Step 3

According to the adopted decomposition principle. the Dantzig-Wolfe decompo-
sition principle. we have the following decomposition-based information exchange.
All equilibrium subproblems are solved by the PIES method (or another algorithm).
with a given equilibrium price vector 3 to provide a new equilibrium proposal. The

restricted master problem. solved by the PIES method (or another algorithm). es-
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timates a new price vector 3 with all the accumnulated proposals. This iterative
process will be terminated by a stopping condition - see the next section.

It is easy to extend the above development of the new decomposition method
to the MREEM. We assume that we have the decomposed MREEM and carry out
the following discussions. Figure 3.1 illustrates the decomposed MREEM. which

consists of one equilibrinm master problem and m equilibrium subproblems.

ESP-1 x

ESP-2 xz"
rempt | B

ESP-m <

Figure 3.1: The decomposed MREEM by Dantzig-Wolfe principle

3.3 Stopping and convergence conditions

As discussed in Section 2.2. if we assume that Q.(p.) is monotone for all r. there
exists at most one solution to the MREEM. Based on this uniqueness assumption.

we have the following stopping conditions.
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3.3.1 Stopping conditions

After RMEP* has been solved. we have an equilibrium for a model whose supply
side is more restricted than in the full model MREEM. i.e.. the supply cost may be
greater than it would be for the unrestricted supply of MREEM. If it happens that
the supply cost from RMEP* actually is the minimum that could be achieved in
the unrestricted supply of MREEM. then RMEP* has found an equilibrium for the
full model MREEM. This reasoning leads to a general stopping condition. which we
label ~sufficient™ because. if it is satisfied. then we may stop the algorithm because

we have found the solution.

Sufficient stopping condition
Given 4, and & = X*\* from RMEP*. if the cost of the LP supply side
of the MREEM is minimized by Z.. then q.. £, is the unique solution

to MREEM.

However. directly solving the LP supply side of the MREEM is not consistent
with onr aim to decompose by region. The stopping condition for the Dantzig-
Wolfe decomposition principle of LPs [9] can be used to overcome this difficulty.
We can investigate all equilibrium subproblems. rather than the equilibrium master
problem. to check that there are no more proposals that cén reduce the cost of the
equilibrinm master problem. That is. we can use equilibrium subproblems to check
if the sufficient stopping condition is satisfied and therefore the MREEM is solved.

Because direct implementation of the sufficient stopping condition would require
an LP calculation for each region at each iteration. we use a simpler calculation

first which allows us to avoid the LP calculations for most iterations. The simple
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calculation is the basis of a necessary stopping condition: if the equilibrium has
been found. then the condition must be satisfied. or conversely (which is how we
use the condition). if the condition is violated. then the equilibrium has not been
found and the iterations must continue.

The necessary stopping condition of the equilibrium solution is based on the
solution technique of the PIES method. in which the equilibrium point is found by
solving a sequence of nonlinear programs as discussed in Section 2.4.2. If RMEP*-!
finds the equilibrium of the MREEM. then further subproblem proposals cannot
reduce the supply costs. and. by uniqueness of the equilibrium. the same equilibrium
must be found by RMEP*. The last nonlinear programs in the PIES sequences
for RMEP*~! and RMEP* must have the same objective functions and the same

objective values. We suinmarize the condition below.

Necessary stopping condition

If the equilibrinm has been found by RMEP*~!. then the difference
between the A" and (k — 1)tP objective values of the master problem is
zero. Conversely. if the difference is not zero. then the equilibrium has

not been found. and the iterations must continue.

However. the condition of the same objective values on successive iterations
is not sufficient to terminate the calculation because the master problem is an
equilibrium model: two successive solutions to the restricted master problem may
both fail to be the equilibrium of MREEM. yet it is possible that their final PIES
objective values could. by chance. be equal. Nevertheless. we have found. in all

tests so far. that stopping when the difference in successive objectives is sufficiently
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small does yield the unigne solution of the MREEM.

3.3.2 Convergence consideration

The convergence properties are not as easy to investigate as for the Dantzig-Wolfe
decomposition algorithm for LPs. The convergence theorem of the Dantzig-Wolfe
algorithm is based on the finite number of extreme points generated by subprob-
lems. However. in the new decomposition method. the equilibrinm subproblems
will generate extreme points of the z, feasible sets. but these sets change because
- changes in the iterations. Hence. other approaches to convergence theorems are
needed. We have not yet found a theorem that gnarantees convergence. so we must
leave this for future research. As we report in Section 3.7. the algorithm does

converge in all tests. so far.

3.4 The algorithm, with the Dantzig-Wolfe prin-
ciple

When the new decomposition method adopts the Dantzig-Wolfe decomposition

principle. we have the following algorithm for solving the decomposed MREEM.

Step 1: Set 4 = 3° a guess provided by modelers: solve all ESP-r: index the

proposal with &k = 1.

Step 2: Solve the REMP*. If k > 2. go to Step 3: else go to Step 4.
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Step 3: Check whether to continue. using the necessary stopping condition. If yes.

go to Step 4: else go to Step 5.

Step 4: Solve all ESP-r with equilibrinm dunal price 3 from Step 2: increment

k = k + 1: index the proposal with k: go to Step 2.

Step 5: Check if the MREEM is solved with the sufficient stopping condition. i.e.
solve m LPs defined as ESP-r with fixed demand ¢, and 3 provided from Step
2. and apply the Dantzig-Wolfe stopping condition. If yes. stop. Else. go to

Step 4.

As mentioned in Section 3.3.1. the sufficient stopping condition requires the
solution of an LP for each equilibrium subproblem. and the necessary stopping
condition only compares two numbers. Obviously. checking the sufficient stopping
condition in each decomposition iteration is inefficient. Therefore. the necessary
stopping condition is checked first and then the sufficient stopping condition is
checked only when warranted. The algorithm is presented as a flowchart in Fig-
ure 3.2. with the information exchange indicated by dashed lines.

The new decomposition method with Dantzig-Wolfe decomposition principle can
be interpreted as a mathematical representation of decentralized planning. The
coordinating research group (the equilibrium master problem) posts commodity
prices for the linking (e.g.. trading) resources available to regional research groups
(the equilibrinm subproblems). and regional research groups submit equilibrium
plans (proposals) based on these prices. That is. the coordinating research group
makes a compromise equilibrium plan based on all proposals submitted so far.

and posts new prices to get more information from regional research groups. The
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Set ="
Solve all ESP-r. and
set k=1

Step |

Step 2

.
[
.
+
.
'
.
.
.
'
'
[
.
+

Step 4

v
Solve all EPS-r with
B: k=k+1

——

Check
whether continue, using
the necessary stopping
condition.

Step 3

Check if the
MREEM is solved with
the sufficient stopping
condition.

No

Figure 3.2: The flowchart of the algorithm. with Dantzig-Wolfe principle
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coordinating research group is supposed to have complete information about the
dependence of demands on prices. but its incomplete information abont supply

conditions gradually improves as the iterations proceed.

3.5 The new decomposition method in VI

Since the MREEM can be expressed in a VI form. we have
MREEM-VI
Find (z~.¢") € K

st cle (e—-27) - Q—l(q')T e(qg—yq7)20.Y(r.q) K.

where

where K is the constraint set of the supply side of the MREEM and the vectors
c. £.q. and Q include all regional components.

By using the new decomposition method with the Dantzig-Wolfe decomposition
principle. the MREEM-VT can be decomposed into one equilibrium master problem
Master-VI. and eqnilibrium subproblems SP,-VI for r = 1..... m.

Master-VI

Find \*.q; € S

st ST XEOE = A5 = Q7Me) (g — g 2 0. V(AEg) €5,

r=l
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where

S,Ln = (/\r~‘Zr)

such that

AXEN >q. 7
SrLxvich
r=1

ek,\’rc = 1. 7r
Mg >0 7r

SP.-VI

Find z7.q7 € S.
st ler —BL (2 =) = Q7N (g = q0) 20, F(2L.q) €S-

where

S, ={(zr. g ) Aree > qr. B X, < b r,.q 20} and

3 = dual variables which can be obtained from solutions of the Master-VI.

The above formulae show that the equilibrium master problem and subproblems
can be expressed as the VI problem. These separated VI problems can be solved
by any appropriate solution techniques.

The new decomposition method can be extended to the VI problems in a more
general way. It can be generalized for VI problems consisting of easy variables

(z, in this thesis) and hard variables ¢.. The distinction between easy and hard
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variables is that only the hard variables make the VI problems into asymmetric
equilibrium problems. U the constraint set links the z, vectors for different values
of r. but not the 4. vectors. then the new decomposition method provides a way to

decompose a VI problem.

3.6 Other decomposition principles

One of the characteristics of the new decomposition method is the flexibility to
adopt other appropriate decomposition principles. In this section. another decom-
position principle. the Lan-Fuller decomposition principle (see Lan and Fuller [15])
is adopted. as an illustration.

For simplicity. the two-region model is used again. The Lan-Fuller decomposi-
tion principle divides the LP supply side of the two-region model into two subprob-
lems instead of one master and two subproblems by the Dantzig-Wolfe principle.
Hence. following the three main steps of the new decomposition method. the Two-
region model can be decomposed into only two equilibrium snubproblems. i.e.. no
equilibrinm master problem. Each subproblem acenmmnlates either primal or dunal
proposals from the other subproblem. building a compact approximation of the
other subproblem. |

The following decomposition structure is obtained at the A** decomposition
iteration.

SUB1*

Supply side:

minclrl -4
;t[.@
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sk Ay 2q (v1)
By, < b
milie, + 8 < mhge +mba+ A Y (4)
£1.qi.q2 > 0.7 4 is unrestricted.

Demand side: 1 = Qi(p1):  q2 = Qa(p2)
Equilibrinm condition: p; = v,:  pa = Yio) pinh.
SUB2*

Supply side:

. kyko
min ¢, XA} + ¢aln
,\{‘.J.‘:

s.t. .41.7Cf/\'1° > (m1)
Asza > g2 (72)
Bayzs < bs (m3)

LXEN £ Laza<h (my)

ek,\’f =1. /\}f..l?g.ql.(]g >0

Demand side: qy = Q(p1): 2 = Q2(p2)

Equilibrinm condition: py =71 p2 = ma.

Figure 3.3 shows the decomposition information exchange between the two equi-
librium subproblems. At the k** iteration. the proposal =¥ is passed to SUB2 from

SUBI as the dual prices (7a. 3. and m4) are passed to SUB1 from SUB2. More-
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SUBI* x|
s
b8
1

SUB2*

Figure 3.3: The decomposed Two-region model by Lan-Fuller principle

over. the Lan-Fuller decomposition principle can be extended to MREEM. nsing

procedures defined by Park [27}.

3.7 Empirical results

In order to report the computational behavior of the new decomposition method.
three asymmetric equilibrinm models are used for tests.

One of the test models. adopted from {33]. named Small. is a small. two-region
cconomic equilibrium model. There are 6 g-variables. 28 r-variables (including +
linking variables) and 14 constraints (including 2 linking constraints).

Figure 2.3 shows the strncture of the Small model. - The supply m,odel is a
network flow model. so the constraints are flow balance constraints. corresponding
to nodes in Figure 2.3.

Four linking variables (LC11. LC12. LC21 and LC22) with upper bounds are
added to what is otherwise two copies of the EEM of [33]. In the Small model. two

linking nodes for four linking variables are introduced so that we can express the
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mathematical linking constraints and separate the regional variables and constraints

more easily. The demand functions of the Small model are in the form of

3
Irj = Grj T Z brji *x pri

=1

where

12

r = index of region = 1.
j = index of commodity = 1. 2. 3:

¢ = alias index of

¢-; = demand of commodity j in region r:
pri = price of commiodity  in region r: and

ip; and b,j; are constant parameters for all ».j.:.

The second one. named CEM. is a realistic two-region energy equilibrium model.
the Canadian Energy Model. retrieved and modified from Wu and Chung (1997)
135]. The Canadian Energy Model consists of 14 g-variables. 149 z-variables (in-
cluding 4 linking variables). and 120 constraints (including 2 linking constraints).
per period. Each of the two periods corresponds to a tixree-year duration. for a
total time span of six years from 1986 to 1992.

The third one. named CAN-US. is a realistic 6-region energy equilibrium model.
the Canadian-USA Energy Model. retrieved and modified from Chung et al. (1997)
[8]. The Canadian-USA Energy Model consists ;>f 43 g-variables. 529 z-variables (in-
cluding 92 linking variables). and 406 constraints (including 46 linking constraints).
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per period. Each of the two periods corresponds to a three-year duration. for a total
time span of six years from 1986 to 1992.

For the Small model. the new decomposition method was coded with the Lan-
Fuller principle and the Dantzig-Wolfe principle. The programming codes of the
Small model are included in Appendix. The Canadian Energy Model and the
Canadian-USA Energy Model were coded with the Dantzig-Wolfe principle only.
All models were coded into GAMS [6] programs and were executed in an IBM
RS,/6000 workstation. We use GAMS for the coding language because it can provide
access to the nonlinear programming solver MINOS 5.3 from a procedural language.
and because the coding effort is much less than for a program in FORTRAN or
C. However. there is a major drawback of using GAMS: each call to MINOS. to
solve an optimization problem in a PIES sequence. must be preceded by GAMS
generating the entire model for input to MINOS. even though successive models are
very similar and every optimization is started from the last solution. This repeated
model generation. which adds greatly to the total solution time. could be avoided
in a carefully written implementation of the decomposition in FORTRAN or C.

The reference method is the PIES method. used to sclve the original model
with no decomposition. The reference method was coded for the test models so
that we can have reference results for evaluating the accnrétcy and speed of the new
decomposition method. All equilibrium subproblems and the master problems of
the test models and all reference models are solved by the PIES method with the
same convergence tolerance. In the decomposition method. artificial variables with

large cost coefficients are added in each linking constraint. and upper bounds are
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imposed on all variables which do not already have any upper bounds: these mea-
sures are taken to prevent infeasibility or unboundedness cansed by decomposition.
The first guess of the linking prices. 8°. was the zero vector. for all tests.

To help evaluate the new decomposition method. we construct measures of accu-

racy and effort. namely “D-ITER". “TIMEUSED". "MAX%DIFF". and "ELAPSED".

defined as follows.

D-ITER = the number of decomposition iterations nsed by the new method:

TIMEUSED = the total solver time used to solve the test model. as provided by
the MINOS solver (i.e.. this excludes GAMS model generation time). mea-

sured in seconds:

MAX%DIFF = the maximum percent difference. over all prices and demands
between solutions from the new method and the reference method. The fol-
lowing formulation was used.

D% — Pir; i — diri
MAXTDIFF =100 <« maz{maz;. &—L). mazi( l—‘-1—"'—1&)}

J /
Pir Tir

where p. and g, (pi- and ;.) are the solution of prices and demands respec-

tively found by the reference method (the new method).

ELAPSED = the clapsed times of solving the test models under GAMS (ie.

including GAMS model generation time). measured in seconds.

Table 3.1. presents the results from the test models and the reference models.
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Model Method | D-ITER | TIMEUSED | MAX%DIFF | ELAPSED
LF 1 0.39 0 39
Small DW 12 1.25 0 69
REF — 0.04 — 3
CEM DwW 19 10.35 0.233 417
REF — 1 — 58
CAN-US | DW 220 14820.79 0.35 > one day
| REF | — 0.8 256

Table 3.1: The computational results of the new decomposition method.

The maximum ifference between the new decomposition method and the refer-
ence method is acceptable. and the solver time used by the new method is acceptable
(except perhaps for the largest model) although longer than the reference method.
The very long elapsed time. especially for the largest model. shows the importance
of avoiding repeated model generation if these were to be coded for practical use.

Results concerning the accuracy of the new decomposition method are very
encouraging. Althongh the solution time of the new decomposition method is longer
than for the reference method. the solution time is acceptably short. considering
expected reductions in the modeling time. Furthermore. as Murphy and Mudrageda
(1998) also discussed. the solution time would not be serious because the models
(i.e.. equilibrium master problem and snbproblems in here) are typically distributed
over workstations that could be rmn in parallel. .

One may notice that CAN-US took many more iterations than CEM. The reason
is that the network structures of the oil and gas sectors in CAN-US are not in a nat-
ural regional form. Consequently. there are many linking constraints and variables:
intuition suggests that many decomposition steps are required to solve CAN-US.

Dirickx and Jennergren (1979) {10] claimed. based on tests. that the number of
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decomposition iterations increases with the number of linking constraints. There
are 2 linking constraints out of 120 constraints. per period. for CEM. However.
CAN-US consists of 46 linking constraints out of 406 constraints. per period. The
density of the linking constraints of CAN-US is much higher than that of CEM.

Since the discussion of Dirickx and Jennergren (1979) {10] is for LPs. we con-
ducted a test on the Small model to verity the effect of the number of links on the
number of iterations. When we added one more linking constraint to Small-DW.
it took L6 iterations (4 more than the original model). This test. together with
the results for CEM and CAN-US. illustrate that if the MREEM is modeled in a
natural regional way with few linking variables and constraints. the solution time
is acceptable compared with the modeling time. Moreover. even if the MREEM is
not in a natural regional form like CAN-US. the new decomposition method can
still solve it with perhaps a long solution time.

The Lan-Fuller method takes fewer iterations and less time than the Dantzig-
Wolfe method. on the small test problem. The discussion of selection of 8” can be
found in Chapter 5. Generally. a good first choice of 3" can reduce the number of

decomposition steps.

3.8 Summary

In this Chapter. a new decomposition method has been developed for non-optimization
multi-regional economic equilibrium models. Modelers can use the new decompo-
sition method to integrate several well-developed regional economic equilibrium

models without the asymmetric restriction from the demand side. The empirical
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tests have indicated great promise to use the new decomposition method for the
purpose of integration. in which regional economic equilibriumn models can be mod-
eled individnally and then integrated as a multi-regional model. The new method
can be viewed as a general procedure for decomposing asymmetric equilibrium mod-
els (asymmetric variation inequality problems) which consist of a special structure.
e.g.. block-angnlar linear constraint set. with a few hard variables (which cause the
asymmetry) and many easy variables.

Different decomposition principles can be adopted by the new decomposition
method. which leads to different versious of the algorithm. Future research will
focus on the computational behavior and convergence characteristics of the new
decomposition method for different decomposition principles. On the other hand.
efficient implementations of the new decomposition method. e.g.. parallel implemen-
tation. is another important issue both for improving the computational speed and
allowing integration of regional models which are on different computers connected

by a network.



Chapter 4

A New Decomposition Method for
MREEM with Geometric
Distributed Lag Demand

A class of multi-regional economic equilibrium models. energy equilibrium models.
was developed and used for energy policy analyses in the 1970s due to the oil crisis.
Later in the 1980s. because of the inter-relationship between the use of energy and
the problems with emissions of air pollutants. environmental features were added
to the models. Since influence of environmental pollution and the consequences
of the environmental protection policies accumulate with time. it is necessary that
models be multi-period. In many such multi-period models. demands are functions
only of current period prices. However. consumers’ adjustments to price changes do
not occur instantaneously. so such models can give quite incorrect estimates of pol-

lutants. When prices change in a period. demands often change most significantly

(2}
(V]
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in later periods. Such time-lagged effect has drawn some researchers” attention to
modify their models. See Wu and Fuller (1995) {36] for further discussions.

Wu and Fuller (1996) {37] introduced a Geometric Distributed Lag (GDL) struc-
ture to the demand side of an energy equilibrium model for simulating the time-
lagged effect. Becanse of convergence difficulties of finding the equilibrium of such
energy-equilibrium models. the Decoupling algorithm was developed. As explained
in detail below. the inter-period price elasticities are eliminated (thus the term “De-
coupling™) and the current period price elasticities are adjusted in a compensating
way at each iteration. For simplicity. the MREEM with GDL demand side is called
MREEM-GDL model for the rest of this dissertation.

This chapter is motivated by the MREEM-GDL model and the Decoupling
algorithm. The application of the new decomposition method in Chapter 3 to the
MREEM-GDL is examined. Tests show that another new decomposition method

of is required because the new decomposition method of Chapter 3 fails to converge

in solving the MREEM-GDL.

4.1 The model and solution techniques

The difference between the MREEM and the MREEM-GDL is in the demand side.
Without considering the time-lag effect. Fuller and Luthra (1990) [11] used the
following demand functions to represent the demand side in the MREEM.

Non-GDL Demand

-0 =biye
Qitr = ’-litrpizi"r H pjtrl (4.1)

jeHir
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where

qit» = the demand of commodity ¢ in period ¢. region r:

a;r = the constant factor in demand function of commodity 7 in period ¢. region

H; = the set of indices of ocher demand variables in the same group as gier:
pier = the price of commodity # in period ¢. region r:
bi;» = the own-price elasticity of demand for commodity &. region r:

bijr = the cross-price elasticicy of Jdemand for g, with respect to the price pj.,

(J S Hir)-

Notice that the own and cross-price elasticities (by, .bijr) are independent of
time and therefore the demands are functions only of current period prices.

Oun the other hand. Wu and Fuller (1995) {36] use che following GDL demand
functions to represent the demand side in the MREEM-GDL.

GDL demand

¢ t—n £ t—ny ’
— bii —e; bi; ;
Titr = Qigp H Pim-‘r ) H H pjm-r " (42)

n=1 jeH; - n=1

where ¢;, is the lag elasticity of the commodity i: region r (normally. 0 < e;r < 1).
Therefore the demands are functions of not only current period prices but also

previous period prices.
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4.2 Decoupling algorithm and PIES method

Fuller and W (1989) [12] have shown that it can be Jifficult to obtain the solution of
the MREEM-GDL by the PIES method because the PIES convergence condition is
usually violated. For this reason. the Decoupling algorithm has been developed for
the solution of the MREEM-GDL. At each iteration of the algorithm. the demand
functions containing the lags are replaced by functions in which current demands
depend only on current prices. That is. demands in different periods are decoupled.
The price elasticities of the decoupled demand functions are inflated through the
decoupling procedure. An equilibrium solution of the decoupled MREEM-GDL
can be calculated with the PIES method as an approximate equilibrium solution
of the original MREEM-GDL. The approximate equilibrium price is inserted back
in the decoupling procedure to dynamically re-adjust the inflated price elasticities.
Successive re-estimation of the inflated price elasticities leads to more accurate
estimates of equilibrium. as the iterations proceed.

Wu and Fuller (1995) [36! used the following eqnation to calenlate the inflated

price elasticities for the decoupling procedure.

t_lln(p;'[r) —‘-et-g ln(p;'.’r) - o1 ln'(p;(t-l)r)

B] r = ei,. ” ir - = .. T eir .
% In(p},) In(p3,) In(p;,,)
J

+ 1}y (4.3)

where B, is the inflated price elasticity of demand g;, with respect to the price
pjer of demand g at time t. region r: pj,. is the estimated equilibrium price at
the latest decoupling step. At each decoupling iteration. the cross-price elasticity
(hijr) in the equation (4.1) is replaced by Bijer to reduce the GDL demand side to

a decoupled demand side.
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4.3 The problem statement

The new lecomposition method in Chapter 3. based on the Dantzig-Wolfe principle
and the Decoupling algorithm. for the MREEM-GDL. fails to converge in all tests.
for reasous explained below.

Step ! and Step 2 of the new decomposition method in Chapter 3 can be di-
rectly applied to the MREEM-GDL. However. in Step 3 for the MREEM-GDL. all
equilibrium subproblems are to be solved by the Decoupling algorithm. According
to our computational experience. we found that the signs of the inflated price elas-
ticities calculated by equation {4.3) keep changing. e.g.. from positive to negative.
in solving equilibrium subproblems. Consequently. at some iterations of the Decou-
pling algorithm. after the first iteration. NLPs in the PIES sequence incorporate
demands that increase with their own prices. causing PIES to fail to converge. The
convergence condition of the PIES method is violated. We refer to this problem
as the sign-change problem. Another new decomposition method is developerd in

order to resolve this sign-change difficulty.

4.4 The GDL-decomposition method, for MREEM-
GDL

Another new decomposition method. named GDL-decomposition method. is de-
veloped for the MREEM-GDL. We noticed that the sign-change problem does not
occur in the master equilibrium problem. Therefore. in the GDL-decomposition

method. the inflated price elasticities of the equilibrium subproblems are deter-
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mined by the equilibrium master problem. That is. the equilibrium master problem
passes not only the dval price but also the fixed inflated price elasticities to the
equilibrium subproblems. Such fixed inflated price elasticities change the demand
side of the equilibrium subproblems from GDL-demand to demand depending only
on current period prices. Such submodels can be solved by the PIES method. The
Decoupling algorithm is not required in solving the equilibrium subproblems. The
sign change problem is therefore solved.

The GDL-decomposition method. based on the Dantzig-Wolfe decomposition
principle. is composed of three main steps similar to the new decomposition method
in Chapter 3. The first two steps are the same as the new decomposition in Chapter
3. The third step includes passing of the inflated price elasticities and the dual prices

of the linking constraints from the master probleni to the subproblems.

Step 1: Decompose the supply side of the MREEM-GDL into a master problem
and regional supply subproblems. defined from the corresponding regional
objective function. demand requirement constraints (2.10) and supply con-

straints (2.12). by the Dantzig-Wolfe decompeosition principle.

Step 2: Attach the regional GDL-demand side. ¢, = Q.(p:). to the corresponding
regional supply subproblems and the master problem such that all supply
subproblems and the master problem are transformed into equilibrium sub-

problems and equilibrium master problem. .

Step 3: Solve the decomposed MREEM-GDL by passing the dual price informa-
tion from the master linking constraints (2.11). and the inflated price elas-

ticities (Bij,) from the master problem to the subproblems. and quantity
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information from all equilibrinm subproblems to the master problem in an

iterative manner nntil the equilibrinm is found.

At each iteration of the GDL-decomposition method. we have the following
decomposition-based information exchange. All equilibrium subproblems are solved
by the PIES wethod. with a given estimate of the price vector 3 and the correspond-
ing inflated price elasticities to provide a new equilibrium proposal. The restricted
master problem. solved by the Decoupling algorithm. estimates a new dual price
vector 3 and the inflated price elasticities based on ali the accumulated proposals.
This iterative process will be terminated by a stopping condition. as discussed in

the next section.

4.4.1 Stopping and convergence conditions

In Chapter 3. we mentioned that the convergence properties are not as easy fo
investigate as for the Dantzig-Wolfe decomposition principle. because the feasible
region of the proposals generated by the equilibrium subproblems changes with
- in the iterations. We encounter the same difficulties for the algorithm for the
MREEM-GDL. and in addition. we face the lack of a general convergence proof
for the Decoupling algorithm. However. the stopping conditions from Chapter 3
still apply. and we are assured that when the algorithm stops. it has found the
equilibrium. We next define the algorithm for the MREEM-GDL. and then present

some empirical results.
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4.4.2 The algorithm, with the Dantzig-Wolfe principle

Based on the GDL-decomposition method with the adopted Dantzig-Wolfe decom-
position principle. we have the following algorithm for solving the MREEM-GDL.
Note that the sutficient and the necessary stopping conditions are employed here in
the same way as in the MREEM. The algorithm begins by solving each subproblem
by the Decoupling algorithm. because we never enconntered the sign change prob-
lem in the first solutions of the subproblem. It is possible to define an alternate
Step 1 wheib nses a guess of the inflated price elasticities. and the PIES method.

but we did not follow this path.
Step 1: Set 3 = 3° a guess provided by modelers: solve all ESP-r by the Decou-
pling algorithm: index the proposal with k = 1.

Step 2: Solve the REMP* by the Decoupling algorithm. If & > 2. go to Step 3:

else go to Step 4.

Step 3: Check wherher to continue. nsing the necessary stopping condition. If yes.

go to Step +: else go ro Step 5.

Step 4: Solve all ESP-r by the PIES method with equilibrium dual price J and the
corresponding inflated price elasticities Biji, from Step 2: increment k =k+1:

index the proposal with k: go to Step 2.

Step 5: Check if the MREEM-GDL is solved with the sufficient stopping condition.
i.e. solve m LPs defined as ESP-r with fixed demand ¢. and 3 provided from
Step 2. and apply the Dantzig-Wolfe stopping condition. If yes. stop. Else.

go to Step 4.
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4.5 Empirical results

In order to investigate the computational behavior of the GDL-decomposition
method. a realistic MREEM-GDL. the Canadian Energy Model with GDL de-
mand. labeled CEM-GDL. from Wu and Chung (1997) {35]. is used. The structure
of the CEM-GDL is the same as the CEM in Chapter 3. except for the GDL de-
mand and the time horizon (three periods corresponding to a three-year duration
for total time span of nine years from 1986-1993). The CEM-GDL solved by the
GDL-decompusition method with the Dantzig-Wolfe decomposition principle was.
called CEM-GDL-DW. coded into a GAMS program which was executed in an IBM
RS/6000 workstation.

The reference method is the Decoupling method without decomposition. The
model with the reference method. referred to as CEM-GDL-REF. was coded in
order to have reference results for evaluating the performance of the new decom-
position method. In the decomposition method. artificial variables with large cost
coefficients are added in each linking constraine: npper bounds are imposed on all
variables which do not have any upper bounds: these measures are taken to pre-
vent infeasibility or unbonndedness caused by decomposition. The first guess of the
linking prices. 3”. was the zero vector. for all tests.

The measures “D-ITER”. “TIMEUSED". "MAX%DIFF". and "ELAPSED" of
the CEM-GDL model and its reference model CEM-REF are reported as follows.
Their definitions are the same as the ones in Table 3.1.

As shown in Table 4.1. there is no significant difference in the calculated de-

mands and prices between the new decomposition method and the reference method.
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Model D-ITER | TIMEUSED | MAX%DIFF | ELAPSED
CEM-GDL-DW | 41 29.53 0.220 455
CEM-GDL-REF | — 244 — 82

Table 4.1: The computational results of the GDL-decomposition method

The maximum difference of any demand quantity or price is only 0.220%. We note
that the computation time used by the decomposition method is longer than the
reference method. but both times are short enough to be acceptable to modelers. In
general. the GDL-decomposition method shares the same computational properties
with the original one. but the addirional inflated price elasticities are required to

pass from the equilibrium master problem to all equilibrinm subproblems.

4.6 Summary

With geometric distributed lag GDL demand in the MREEM. the Decoupling algo-
rithm is used to search for the equilibrium. The Decoupling algorithm employs the
inflated price elasticities (eqnation 4.3) to carry out the decoupling step. While ap-
plying the new decomposition in Chapter 3 with the Dantzig-Wolfe decomposition
principle and the Decoupling algorithm to the model. a divergent result may be
obtained. In solving the equilibrium subproblems with the Decoupling algorithm.
the sign of the inflated price elasticities keeps changing. e.g.. from positive to nega-
tive. With unrealistic signs for price elasticities. the PIES method fails to converge
for some iterations of the Decoupling algorithm. Consequently. the original new
decomposition method fails to converge for the MREEM-GDL.

To overcome the above difficulty. another new decomposition method. called
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GDL-decomposition method. has been developed. In the GDL-decomposition method.
the inflated price elasticities are calculated only by the equilibrium master prob-
lem. Such inflated price elasticities are then passed. with the dual prices. from the
equilibrium master problem to the corresponding regional equilibrium subproblems.
The equilibrium subproblems no longer need to calculate the inflated price elastici-
ties. which can be solved by the PIES method. A test on a realistic model indicated
great promise to use the GDL-decomposition method for the MREEM-GDL.
Further research work may concentrate on the possibility of adopting other

decomposition principles and the corresponding couvergence properties.



Chapter 5

A New Demand-Supply

Decomposition Method

In the absence of appropriate demand-supply decomposition methods. some re-
searchers (see Murphy et al. (1988) [23]. Murphy and Mudrageda (1998) [22]. Wag-
ner (1980) [34]. Mansnrand Whalley (1982) {19]. and Bueler (1997) [7]) adopted
the cobweb algorithm into their tailor-made demand-supply decomposition meth-
ods. By means of the cobweb algorithm. prices and quantities are to be passed
between the supply and demand sides as a way to decompose an economic equilib-
rium model. Unfortunately. as can be shown by examining even a one-dimensional
example. the cobweb algorithm may diverge in some cases. We refer to this type
of decomposition method as the cobweb-decomposition method.

This chapter presents a new demand-supply decomposition method. based on
the Dantzig-Wolfe decomposition principle {9]. for solving economic equilibrium

models (non-optimization methods). The new decomposition method inherits the

63
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finite convergence property of Dantzig-Wolfe decomposition - it must converge In

a finite number of iterations. In short. the new decomposition method is created

to eliminate the non-convergence shortcoming of existing cobweb-decomposition

methods. and also the restriction of the optimization assumption for the EEM.

5.1 The Model

An economiic equilibrium model can be written in the following formulation based

on the model presented by Ahn and Hogan (1982) [2]. in which the supply side is

represented by a detailed cost-minimizing. linear process model. and the demand

side by a smooth vector-valued function of prices.
DEM-SUP
Supply side:

3}1}1‘ cgzd + cfz:,
st Arg>q  (v)
Byry < by
B,z, <),

Lycg + L,z, < h (/3)

L. Ly q Z 0

Demand side: 4 = Q(p)
Equilibrium Condition: p = v

(5.3)

(5.4)
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where

cg = a cost vector for the demand activities:

¢, = a cost vector for the supply actiyities:

zgy = a demand activity vector:

£, = a supply activity vector:

Azy > q represents demand requirenmient constraints:

v = an optimal dual variable vector (shadow price vector) corresponding to the

demand requirement constraints Axy > q:
Byry < by represents demand activity constraints:
B,r, < b, represents supply activity constraints:
Lyry+ L,z, < h represents linking demand-snpply activity constraints:

8 = an optimal dual price vector for the linking demand-supply activity constraints

Lgtq+ L.z, <h:
Q(p) = a vector-valued market demand function defined over prices. p.

The demand variable vector q consists of two or more commodity components. The
vectors cg. €. Ls. Lq. by. by, h. p. and matrices L,. Ly. B,. By have appropriate

dimensions.
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It is worth mentioning here that the dimensions of B, are usually huge in large-
scale DEM-SUP compared with the size of other matrices. The new decomposition
method takes B, out of the master problem of the DEM-SUP and puts it into
the subproblem representing the supply side. which is just a linear program and is

therefore easier to solve than an equilibrinm model.

5.2 Demand-supply decomposition method

A new demand-supply decomposition method is developed. in which the DEM-SUP
is to be decomposed into an equilibrium master problem and a linear programming
supply subproblem based on the Dantzig-Wolfe decomposition principle. The PIES
method (or any other equilibrium seeking algorithm) and any linear programming
algorithm are used to solve the decomposed DEM-SUP.

There are three main steps in the new decomposition method.

Step 1: Decompose the supply side of the DEM-SUP into a supply subproblem
with all supply activity constraints (3.3) and a master problem with demand
requirement constraints (5.1). demand activity constraints (5.2) and linking

constraints (5.4). by the Dantzig-Wolfe decomposition principle.

Step 2: Attach the demand side to the master problem such that the master prob-

lem is transformed into an equilibrium master problem.

Step 3: Solve the decomposed DEM-SUP by exchanging the dual price informa-
tion 3 from the linking constraints (5.4) of the equilibrium master prob-

lem and the accumulated quantity information (called proposals) from the



CHAPTER 5. A NEW DEMAND-SUPPLY DECOMPOSITION METHOD 67

supply sub-problem in an iterative manner until the equilibrium point is

found.

5.2.1 Further decomposition and applications

Although onr method explicitly decomposes the DEM-SUP into one equilibrium
master problem and one supply subproblem. the supply subproblem can be
further decomposed into more subproblems according to the modeling attributes.
such as commodity or region.

An example application for further decomposition in the supply side can be
fonnd in economic equilibrium models for energy-environmental policy analyses.
Existing real-world models. e.g.. the National Energy Modeling System [22] and
the Intermediate Future Forecasting System [23] for the U.S. Energy Information
Administration. always have extensive regional detail and allow for the modeling
of the various fuel sectors individually in the supply side. For example. if the
supply side can be divided into m regions. one can apply the new demand-supply
decomposition method snch that the subscript s in the DEM-SUP can be replaced
by an index r to represent regions and therefore we will have m separable supply
subproblems with regional detail and one equilibrinm master problem for searching
for the equilibrium solution.

Consequently. we can use the concept of a central integrating approach that
searches for an equilibrium solution for all regional supply simultaneously without
the c1‘1mbersome burden of a huge number of supply variables and constraints.

That is. the new method can provide a reliable way to manage a complex model
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by assigning one person responsibility for each regional supply subproblem or the
equilibrium master problem. The model is then partitioned and therefore modeling
difficulty can be reduced greatly.

Similarly. one can apply the new demand-supply decomposition method to fur-
ther decompose the supply side by commodity. For example. the supply side of
an energy-equilibrium model can be decomposed into several supply subproblems
representing different fuel types such as electricity. gas. and oil.

Obvionsly. this new method can also be used in the DEM-SUP with the GDL
demand side. The equilibrium master problem is to be sclved by the Decoupling
algorithm and the LP supply subproblems are to be solved by any LP solution
method. Hence. the sign-change problem can be avoided. because the Decoupling

algorithm is not nsed in the subproblems.

5.3 An illustration, with further decomposition

To illustrate the new decomposition method for the DEM-SUP with more than one
supply subproblem. the following DEM-SUPm is nsed.

DEM-SUPm

Supply side:

m
min clzy + Z e,
Lr. Lo oy

sk, Azg 2> q (v)

Byzry < by
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L,1£4+L1131+L2£2+---+Lm1:m < h (/3)

By, <bh

B'-"E‘.' S b'_v

Demand side: 4 = Q(p)

Equilibrium Condition: p = v

5.3.1 Illustration of Step 1

Applying the Dantzig-Wolfe decomposition principle to the LP supply side. i.e. for
fixed q. we have one restricted master problem and m supply sub-problems in the

kb

supply side at the iteration.

Supply side at the At iteration:

Restricted master problem.

m
. . T vk k
min cfzd + Z cz'.»\,. AL
Ak gy

r=1
s.t. Azy > q (v)
Biry < by

Lacg+ Y L.XEAS <h  (B)

r=1
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=1 wr

kg>0  r

XE = (ere2. .. ) 7r:

e’ = (1.1..... 1) unit k-vector.

The rtt Supply subproblems (SSP-r)

min (¢, — 3L e,

Le

s.t. Ber, < b £, 20

5.3.2 [Illustration of Step 2

If we were to extend the above restricted master problem to an equilibrivm model.
we would need to include the following conditions.

Demand side: q = Q(p). and

Equilibrium Condition: p = v.

We define the following equilibrium master problem in a restricted form.

Restricted equilibrium master problem at the kt* iteration (REMP*):
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Supply side:

m
min ¢J.zg + Z T XEAE
A"f..t,( r=1

s.t. Ary 2 q (v)
Byry < by

Lzg+ S LXFXE <R (3)

r=1
eNE =1 vr
.l:d./\,: qg2>0 Tr

Demand side: ¢ = Q(p)

Equilibrium Condition: p = v

Since any proposals from supply subproblems satisfy B.z. < b,. we can leave
these constraints out of the equilibrium master problem. Consequently. we have one
restricted eqnilibrium master problem REMP* and m linear programming supply
sub-problem SSP-r. The equilibrium master problem lias few constraints. compared
to the whole model because the dimensions of g,. b; and A are small for the models

that we consider.

5.3.3 Illustration of Step 3

According to the Dantzig-Wolfe decomposition principle. we have the following
decomposition-based information exchange. At each iteration. the equilibrium mas-
ter problem is solved by the PIES algorithm (or another algorithm) and all sub-

problems by any linear programming solution method. With an estimate of the
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equilibrinm dnal price vector .3 from the equilibrium master problem. all supply
subproblems are solved to provide a new equilibrium proposal. The restricted equi-
librium master problem is solved to estimate a new price vector 4 with all the
accumulated propusals. This iterative process will be terminated by a stopping

conditions as discussed next.

5.4 Stopping and convergence conditions

According to the definition of equilibrium condition provided in [2]. if the optimal
dual variable v corresponding to the demand requirement constraint Azy > q in the
cost minimizing linear programming supply side is equal to p such that ¢ = Q(p).

and Q(p) is strictly monotone. then this is the unique solution to the DEM-SUPm.

5.4.1 Stopping condition

By using the above definition. we can check. at the A** iteration. whether the DEM-
SUPm reaches equilibrinm through investigating the cost minimizing LP supply
side in the DEM-SUPm. and therefore we have the following theoretical sufficient

stopping condition:

Stopping Condition

Given § from the RMEP*. if the cost of the LP supply side of the
DEM-SUPm is minimized and the corresponding v is equal to p such
that ¢ = Q(p). the DEM-SUPm is solved with the unique equilibrium

solution.
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However. directly solving the full LP supply side of the DEM-SUPm is not
consistent with our aim to decompose by demand and supply side. The stopping
condition mentioned in [9] can be used to overcome this difficulty. We can investi-
gate the supply subproblem(s) rather than the equilibrinm master problem to check
that there are no more proposals that can reduce the cost of the equilibrium master
problem. That is. we can use the supply subproblem(s) to check if the stopping

condition is satisfied and therefore the DEM-SUPm is solved.

5.4.2 Convergence condition

The new demand-supply decomposition method terminates in a finite number ;)f
iterations. yielding a solution of the DEM-SUPm. for the following reasons.

The method is a direct implementation of the colnmn generation scheme. At
each iteration the supply subproblem provides an extreme point of the supply sub-
problem’s feasible region. r£*. as a proposal to the equilibrium master problem.
Because the supply snbproblem is a linear programming model which consists of a
finite number of extreme points. the method converges in a finite number of iter-
ations. According to Bazaraa (1990) [5]. it is worth mentioning that the method
converges provided that a cycling prevention rule is used in both the calculation of

master problem and supply subproblem in the presence of degeneracy.
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5.5 The algorithm, with the Dantzig-Wolfe prin-
ciple

When the new decomposition method adopts the Dantzig-Wolfe decomposition
principle. we may have the following algorithm for solving the decomposed [DEM-

SUPm|. as illustration.

Step 1: Set 3 = :3° a guess supplied by the modeler: solve all [SSP-r|: index the
proposal with k=1. solve the [REM P]*.

Step 2: Solve all SSP-r with 3 provided by [REM PJ*:

Step 3: Check if the DEM-SUPm is solved by the stopping condition. If yes. stop.
Else. set k = k = 1: index the proposal with k: solve the (REM P]* and then

go to Step 2.

5.6 Empirical results

In order to investigate the compntational behavior of the new demand-supply de-
composition method. a realistic 2-region energy equilibrium model. the Canadian
Energy Model CEM (35] was solved. The Canadian Enefgy Model. consists of 14
q-variables. 78 ,-variables. 55 z,-variables. and 120 constraints (including 6 linking
constraints for demand and supply model). per ;;eriod. Each of the two periods
corresponds to a three-year duration. for a total time span of six years from 1986 to
1992. Based on the CEM. we developed four test models. called CEM-1, CEM-2.
CEM-1-3 and CEM-2-3. The CEM-1 and CEM-2 consist of one and two supply
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subproblems respectively and start with the first gness of the dual price equal to
zero (;3° = 0). Instead of using 3 = 0. the CEM-1-3 and CEM-2-3 start with a
first guess of the dual price vector which is assumed in practice to be provided by
modelers.

The new method was coded into GAMS programs for the test models which
are executable in an IBM RS/6000 work station. We use GAMS for the coding
langnage because it can provide access to the nonlinear programming solver MINOS
5.3 from a procedural langnage. The reference method is the PIES method for our
empirical tests. solving the original model directly with no decomposition method.
The model with the reference method. CEM-REF in Chapter +. was nsed in order
to have reference results for evaluating the performance of the new decomposition
method.

Supply subproblems are solved by a GAMS built-in linear programming solver.
and the equilibrium master problem and the reference model are solved by the PIES
method with the same convergence tolerance serting as for the reference method. In
the decomposition method. artificial variables with large cost coefficient are added
in each linking constraint: upper bounds are imposed on all variables which do
not have any upper bounds: these measures are taken to prevent infeasibility or
unboundedness caused by decomposition.

We report the “D-ITER". "TIMEUSED". "MAX%DIFF". and "ELAPSED" of
the test models. CEM-1. CEM-2. CEM-1-3. CEM-2-3 and CEM-REF as follows.

Table 5.1 presents the results from the test model and the reference. We found

that the maximum difference between the new method and the reference method
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Model D-ITER | TIMEUSED | MAX%DIFF | ELAPSED
CEM-1 33 11.79 0.52 594
CEM-2 ! 36 9.82 0.552 393
CEM-1-3 | 49 10.6 0.52 338
CEM-2-3 |28 7.41 0.552 312
CEM-REF | — 1.16 — 62

Table 5.1: The compntational results of the new demand-supply decomposition
method
is acceptable. and the time used by the new method is longer than the reference
method.

Results concerning the accuracy of the new decomposition method are very
encouraging. Although. from Table 5.1. we note that the solution time of the new
decomposition method is slower than with reference models. the solution time and
the elapsed time is so short (compared with the modeling time) that it is not a great
concern to modelers. The elapsed time for decomposition time could be reduced
greatly if the whole procedure were coded in a language such as C or C++. GAMS
spends a lot of time generating each NLP in the equilibrium calculations for the
master problem. and generating each LP for the subproblems.

With the Dantzig-Wolfe decomposition principle for linear programming. Dirickx
and Jennergren (1979) [10] mentioned that the number of decomposition iterations
decreases with an increase of the number of subproblemsl Results from Table 5.1
show that the number of decomposition iterations for the test models decreases
from 55 for the model with one subproblem CEM- 1 to 36 for the model with two
subproblem CEM-2. and from 49 to 28 when a first guess of J is provided. We
believe that the new decomposition method for the DEM-SUPm shares the same

relationship between the number of decomposition iterations and subproblems.
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Concerning a good first guess of the dual price. the results also show that a
sood first guess provided by the modeler can decrease the number of decomposition
iterations. Check the column D-ITER: the number of iterations for both CEM-1
and CEM-2 is 6 or 8 greater than that for CEM-1-J and CEM-2-3 respectively.
This suggests that if the modeler wants to reduce the decomposition iterations. he

should provide a good first guess of the dual price for the linking constraints.

5.7 Summary

In this Chapter. a new demand-supply decomposition method has been devel-
oped for modeling and solving asymmetric econoniic equilibrium models (non-
optimization problems). Existing decomposition methods for linear or nonlinear
programming can be applied only to decompose symmetric economic equilibrium
models (optimization problems). However. real-world economic equilibrium models
are usually asymmetric (non-optimization problems). In the absence of suitable
decomposition methods. some researchers used the cobweb-decomposition method
as a decowposition tool for real-world asymmetric models. However. cobweb-
decomposition methods may fail to converge. The new demand-supply decomposi-
tion method overcomes the non-convergence shortcoming of the existing demand-
supply decomposition method. By adopting the Dantzig-Wolfe decomposition prin-
ciple. the new demand-supply decompuosition method can decompose an asymmet-
ric equilibrium model into one equilibrium master problem and many LP supply
subproblems. Since the supply subproblems are linear programmes consisting of

a finite number of extreme points. the new demand-supply decomposition method
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terminates in a finite number of iterations. The possibility of adopting other de-

composition principles ~an be a further research topic.



Chapter 6

Conclusion and Further Research

6.1 Summary

This dissertation explores how to nse existing decomposition principles of Lin-
ear Programming (LP) to integrate several regional economic equilibrium models
(EEMs) as a whole multi-regional economic equilibrinm model (MREEM). If the
MREEM can be converted into an optimization mocel nnder the otten unrealistic
assumption of symmetric demand. existing LP or NLP decompuosition principles can
be directly applied for the integration purpose. On the other hand. before now there
has been no appropriate decomposition method for the MREEM like LP decompo-
sition principles for optimization models. This dissertation resolves this difficulty
by developing new decomposition methods for the non-optimization MREEM in
order to alleviate the difficulties of model development and maintenance.

The new decomposition methods have been developed for economic equilibrium

models with application to decomposition by region. In general. the new decom-

79
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position methods take advantage of the special structure of the supply side of the
MREEM. The supply side with special structure. e.g.. block-angular structure. is
first decomposed by existing LP decomposition principles accordingly into regional
supply subproblems (and a master problem. depending upon the adapted decom-
position principles). The corresponding demand functions are then attached to
the decomposed supply subproblems (and the master problem) in order to form
the decomposed equilibrium subproblems (and the master problem). By means
of decomposition-based information exchange among decomposed regional models.
the original MREEM can be solved.

Based on the above general approach. three new decomposition methods were
developed. The first new decomposition method. presented in Chapter 3. was
created for the integration of all regional (existing or new) EEMs. The second
one was developed because the first new decomposition method diverges in solving
the MREEM-GDL which is a MREEM with GDL structure in order to consider
the time-lagged effect in the demand side. The third one is a new demand-supply
decomposition method. and is motivated by the non-convergence of the existing
cobweb-decomposition methods. The new decomposition methods can be applied
in many different areas. e.g.. to study regional tax policy. international trade. or
issues in energy economics such as the cost of carbon dioxide emission permits. for
example.

Preliminary empirical results have indicated great promise to use the new de-
composition methods for the integration purposes. in which regional economic equi-

librium models can be modeled individually and then integrated as a multi-regional
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model. According ro all empirical results. there are no significant differences in
equilibrinm solutions between the new decomposition methods and the reference
methods. The maximum difference is only 0.552% over all demand quantities and
prices. and over all tests of all algorithms. The computation time of the new decom-
position methods is longer than for the reference methods. but the solution time
is acceptably short. considering expected reductions in the modeling time. Fur-
thermore. as Murphy and Mudrageda (1998) mentioned. the solution time is not
a serious issue because the submodels can be distributed over workstations that

could be run in parallel.

6.2 Contribution

Although LP decomposition algorithms can make large-scale linear and nonlinear
programming models more manageable. economic equilibrium modelers cannot al-
ways nse these techniques because many equilibrinm models cannot be converted
into optimization problems. This research contributes new decomposition methods
for non-optimization economic equilibrium models.

The new decomposition methods provide a general approach to combine the
solution methods of economic equilibrinm models and the LP decomposition prin-
ciples. As a result. modelers can integrate regional non-optimization EEMs
and/or pure optimization EEMs as a whole multi-regional model. With-
out the new decomposition methods. only pure optimization EEMs can be inte-
grated.

Based on the decomposition-based information exchange approach in the new
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methods. individual complex regional EEMs can be developed. debugged. and 1m-
plemented in different workstations. Without the new decomposition methods. the
non-optimization EEMs cannot be debugged individually. All the significant de-
bugging tasks of the regional EEMs and the linking procedures must be done in
the context of the inteerated MREEM. Hence. the new decomposition methods
provide a traceable modeling environment in which the regional non-optimization
EEMs can be well developed before starting the integrating procedures. Modelers
may have error-free regional EEMs and therefore they can concentrate only on the
integrating procedures in developing a MREEM.

On the other hand. the size of the MREEM increases with the number of regional
models. Therefore. it can happen that the MREEM is too huge to be implemented
in a single computer. and/or solved by a single commercial solver. Because the
new methods enable the smaller size regional models to be implemented in individ-
nal workstations. the requirement of the huge size workstation can be eliminated.
Before now. siuch an implementation was infeasible for non-optimization EEMs.

In the realm of theory. the new decomposition methods provide a new decom-
position approach. mathematically. for solving asymmetric equilibrium models (e.g.
asymmetric variational inequality problems) which consist of a special structure. i.e.
block-angular linear constraint set. with hard and easy variables. Without the new
decomposition methods. LP/NLP decomposition principles can be applied only on
optimization models. If we consider that LP/NLP ‘models are a special case of equi-
librium models. this dissertation provides a new way that the application area of

existing LP/NLP decomposition principles can be extended to equilibrium models.
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6.3 Further Research

6.3.1 Computational Aspect

Different decomposition principles can be adopted by the new decomposition meth-
ods. which lead to different versions of the algorithm. More investigation can focus
on the possibility of adopting other decomposition principles. For example. Nur-
minski and Balabanov (1983) [25] applied a primal-dual decomposition method to
a large-scale LP energy model which is naturally divided into a supply side and a
demand side. We may study if such LP decomposition method can be adapted into
the new decomposition methods for solving not only LP energy models but also
EEM.

Although the main objective of the new decomposition methods is to reduce the
difficulty of the modeling task and the modeling time. efficient implementation of
the new decomposition method. e.g.. parallel implementation. is another important
issue in order to improve the computation speed.

The new decomposition methods provide an environment in which regional mod-
els can be solved individually in their own workstations in order to solve the multi-
regional model. Oue of the possible research areas is how to use the Internet to

counect the existing regional EEMs and compute the integrated MREEM efficiently.

6.3.2 Convergence Aspect

We have proven that the new demand-supply decomposition method converges.

since its convergence properties are the same as that of the Dantzig-Wolfe decom-
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position principle because the supply supply subproblems are LP.

However. the convergence properties of the other new decomposition methods
are not as easy to investigate as the LP decomposition principles. The convergence
theorem of the LP decomposition principles is based on the finite number of ex-
treme points generated by subproblems. However. in the other new decomposition
methods. the equilibrium subproblems will generate extreme points of the feasible
sets. but these sets change because the regional demand ¢, changes in the iterations.

Further theoretical investigation of convergence is required.

6.3.3 Application Aspect

LP decomposition principles have been applied in stochastic programming and
mixed integer programming. It is worthwhile to explore the possibility of applying
the new decomposition methods in stochastic EEMs and mixed integer EEMs.

Decomposition of the EEM by different modeling attributes (e.g.. time. com-
modity. and user-group) is another worthwhile research area. because some research
groups muaintain their models by different attribute-oriented teams. For example.
a large-scale energy equilibrium model may be maintained by different teams for
different fuel types (oil. gas. electricity). or for different user-groups (users from
industries. commerce. transportation). or for different time-periods.

Harker and Pang (1990) [13] showed that the VI problems can be applied in var-
ious situations. such as the Nash equilibrium of an n-person non-cooperative game.
traffic assignment or network equilibrium model. etc. Since the new decomposition

methods can be generalized in the VI form. many more application areas can be
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explored.

The new decomposition methods rely upon the assumption of the separabil-
ity of the demand functions. i.e.. the independence of demand from other regions’
prices. which restricts the application of our methods to the VI problems. Another
restriction is our assumption of a linear supply model. Further research may exam-
ine decomposition methods for different forms of cost functions in the supply side.
such as nonlinear or stochastic cost functions. and for different kinds of demand

functions. such as non-separable demand functions.



Appendix A

GAMS File of Small Two-region
Model

Two GAMS files of Small-DW and Small-LF in Chapter 3 are attached in this
Appendix. for reference. Other GAMS files regarding the Canadian Energy Model
and the Canadian-USA Energy Model are too large (more than 200 pages) to be

attached and therefore those files are ommitted for brevity.

A.1 With Dantzig-Wolfe Principle, Small-DW

sx[Two-region model] solved by the new decomposition method with
s»Dantzig-Wolfe decomposition principle.
set k /1%40/;
set km /1%40/;
SET ITER /1%50/;
SETS Il plants /PLANT11,PLANT12,PLANT13/
I2 plants /PLANT21i,PLANT22,PLANT23/
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J1 retailing regions /REGION11, REGION12, REGION13/
J2 retailing regions /REGION21, REGION22, REGION23/;
ALIAS (J1,EJ1);
ALIAS (J2,EJ2);
set k1(k);
set k2(k);
alias(kloop,k);
alias(kloopl,k);
alias(kloop2,k);
ki(’1?)=yes;
k2(’1’)=yes;
parameters pill,pil2,pi21,pi22;
PARAMETERS
GAMMA1(I1) supply price intercepts
/PLANT11 42
PLANT12 35
PLANT13 50 /
DELTA1(I1) supply price coefficients
/PLANT11 0.30
PLANT12 0.25
PLANT13 0.50 /
GAMMA2(I2) supply price intercepts
/PLANT21 40
PLANT22 30
PLANT23 45 /
DELTA2(I2)  supply price coefficients
/PLANT21 0.2
PLANT22 0.1
PLANT23 0.3/
EA1(J1) demand fct. intercepts (elasticities)
/REGION11 350
REGION12  47S
REGION13 300/
EA2(J2) demand fct. intercepts (elasticities)
/REGION21 325
REGION22 425
REGION23  300/;

TABLE EB1(J1,EJ1) elasticities constant
REGIONi1 REGION12 REGION13
REGION11 -2 0.1 0.2

8

~
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REGION12 0.2 -2.5 0.05

REGION13 0.1 0.15 -1.7 ;

TABLE EB2(J2,EJ2) elasticities constant
REGION21 REGION22 REGION23

REGION21 -2 0.1 0.2

REGION22 0.2 -2.5 0.05

REGION23 0.1 0.15 -1.7 ;

g et TSI IT RIS SRR RS RS A RS AL R AL A S0l A

TABLE
C1(I1,J1) unit shipment costs
REGION11 REGION12 REGION13
PLANT11 0 1 1.5
PLANT12 1 0 2.0
PLANT13 1.5 2.0 o ;
TABLE
€2(12,J2) unit shipment costs
REGION21 REGION22 REGIQN23
PLANT21 0 1 1.5
PLANT22 1 0 2.0
PLANT23 1.5 2.0 o ;
VARIABLES
SURPLUS total surplus
costl
cost2

POSITIVE VARIABLES
X1(I1,J1) quantity shipped from plant I to region J
S1(I1) supply at plant I :
D1(J1) demand at region J
X2(I12,J2) quantity shipped from plant I to region J
S2(12) supply at plant I
D2(J2) demand at region J
lvil linking variables LV..
lvi2
1v21
1v22
la1(k)
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la2(k)
slackl
slack?2
slack3
slack4
slackS
slack6
slack7
slack8

1v1i1.up=500;
1v12.up=500;
1v21.up=500;
1v22.up=500;

EQUATIONS
OBJECTIVE objective function defined
SUPBAL1(I1) commodity balance at each plant Il
SUPBAL2(I2) commodity balance at each plant I2
linksup1(I1)
linksup2(I2)
DEMBAL1(J1) commodity balance at each retailing region J1
DEMBAL2(J2) commodity balance at each retailing regiom J2
linkdem1(J1)
linkdem2(J2)
mDEMBAL1(J1) commodity balance at each retailing region J1
mDEMBAL2(J2) commodity balance at each retailing region J2
mldeml (J1)
mldem2(J2)
linkl
link2
subobji
subobj2
sumlal
sumla2

’

PARAMETER P11(J1)
/REGION11 110.6
REGION12 109.6
REGION13 111.6/;
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PARAMETER P21(J2)
/REGION21 110.6
REGION22 109.6
REGION23 111.6/;
parameter pcostl(k),pcost2(k);
PARAMETER PV1(J1) ssxssxxs for PIES s»ssxsnsssssxuss;
PV1(J1) = 200;
PARAMETER PV2(J2);
PV2(J2) = 200;
parameter mpi1(J1),mp21(J2);
mpl1(J1) = 200;
mp21(J2) = 200;
parameter plvil(k),plvi2(k),plv21(k),plv22(k),pp11(J1),pp2l (J2);
parameter px1(I1,J1,k),px2(I12,J2,k),ps1(IL,k),ps2(I2,k),pd1(J1),pd2(J2);
parameter md1(J1),md2(J2);
parameter timemas(k,ITER),timesmi(k,ITER),timesm2(k,ITER),
itermas(k,ITER) ,itersmi(k,ITER),itersm2(k,ITER);

pp11(J1)=P11(J1);

pp21(J2)=P21(J2);

OBJECTIVE..

SURPLUS =E= SUM(k2,lal(k2)*pcost1(k2))+sum(k2,1a2(k2)*pcost2(k2))

+ 10000*(s1ack1+slack2+slack3+slack4+slack5+s1ack6+slack7+slack8)
-SUM(J1, (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*mp11(EJ1)))
/(-EB1(J1,J1))=D1(J1)-D1(J1)*D1(J1)/(2%(-EB1(J1,J1))))

-SUM(J2, (EA2(J2)+SUM(EJ28 (ORD(EJ2) NE ORD(J2)) ,EB2(J2,EJ2)*mp21(EJ2)))
/(-EB2(32,J2))*02(J2)-02(J2)*D2(J2)/(2*(-E82(J2,J2))))

linkl.. -sum(k2,plv11(k2)*lal(k2))*Sum(kZ,plv12(k2)*1a2(k2))
-(slackl)+slack7=e=0;

link2.. -sum(k2,plv21(k2)*1la2(k2))+sum(k2,plv22(k2)*1a1(k2))

-(slack2)+slack8=e=0; -

sumlal.. sum(k2,la1(k2))=e=1;

sumla2.. sum(k2,la2(k2))=e=1;

mDEMBAL1(J1)$(ord(J1) ne 3)..

SUM(I1,sum(k2,px1(I1,J1,k2)*1la1(k2)))+slack3=g=D1(J1);

mDEMBAL2(J2)$(ord(J2) ne 3)..

SUM(I2,sum(k2,px2(I2,J2,k2)*1a2(k2)))+slackd=g=02(J2);

mldemi(J1)$(ord(J1) eq 3)..

SUM(I1,sum(k2,px1(I1,J1,k2)*1a1(k2)))+sum(k2,plv22(k2)+la1(k2))+slacks

=g= D1(J1);
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mldem2(J2)$(ord(J2) eq 3)..
SUM(I2,sum(k2,px2(I2,J2,k2)*la2(k2)))+sum(k2,plv12(k2)‘132(k2))+slack6
=g= D2(J2);

subobjl.. costl=e=

SUM(J1, (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*P11(EJ1)))

/(-EB1(J1,J1))*D1(J1)-D1(J1)*D1(J1)/(2#(-EB1(J1,J1))))
-SUM(I1,GAMMA1(TI1)*S1(I1))

- SUM((I1,J1),C1(I1,J1)%X1(I1,J1))-0.25%1v22-0.25+1v11

+(pill=(-1v11)+pi21#(1v22))

subobj2.. costl=e=

SUM(J2, (EA2(J2)+SUM(EJ2$ (ORD(EJ2) NE ORD(J2)),EB2(J2,EJ2)*P21(EJ2)))

/(-EB2(J2,J2))*D2(J2)-D2(J2)*D2(J2)/ (2= (-EB2(J2,32))))
-SUM(I2,GAMMA2(I2)*52(I2))

- SUM((I2,J2),C2(I2,J2)%X2(12,J2))-0.25%1v12-0.25%1v21

+(pil1=(1v12)+pi21*=(-1v21))

SUPBAL1(I1)$(ord(I1) ne 2).. SUM(J1,X1(I1,J1)) - S1(I1) =L= O;
SUPBAL2(I2)$(ord(I2) ne 2).. SUM(J2,X2(I2,J2)) - S2(I2) =L= O;
linksup1(I1)$(ord(I1) eq 2)..  SUM(J1,X1(I1,J1)) + 1lvil - S1(I1) =L= 0;
linksup2(I2)$(ord(I2) eq 2).. SUM(J2,X2(I2,J2)) + 1v21 - §2(1I2) =L= 0;
DEMBAL1(J1)$(ord(J1) ne 3)..  SUM(I1,X1(I1,J1)) =g= D1(J1);
DEMBAL2(J2)$(ord(J2) ne 3).. SUM(I2,X2(I2,J2)) =g= D2(J2);
linkdem1(J1)$(ord(J1) eq 3)..  SUM(IL,X1(I1,J1)) + lv22 =g= D1(J1);
linkdem2(J2)$(ord(J2) eq 3).. SUM(I2,X2(I2,J2)) + lvi2 =g= D2(J2);

EARAREERRXEAXEARBARRERRRRKEFERNR NNQY

SCALAR MERR;

SCALAR ERR1;

SCALAR ERR2;

pil1=0;

pi21=0;

MODEL submi/subobj1,SUPBAL1,DEMBAL1,linksupl,linkdeml/;

MODEL subm2/subobj2,SUPBAL2,DEMBAL2,linksup2,linkdem2/;

model master/OBJECTIVE,link1,1link2,sumlal,sumla2,
mDEMBAL1,mDEMBAL2,mldem1,mldem2/;

MERR=0.2;
LOOP (ITER,
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IF (MERR GT 0.001,
SOLVE subml USING NLP MAXIMIZING costil;
PV1(J1) = (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)) ,EB1(J1,EJ1)*P11(EJ1))
-D1.L(J1))/(-EB1(J1,J1));
MERR = 0;
LoorP(Jt,
ERR1 = ABS(PV1(J1)-P11(J1))/P11(J1);
IF (ERR1 GT MERR,
MERR = ERR1;
);
)
P11(J1) = PV1(J1);
)
Y

MERR=0.2;
LooP (ITER,
IF (MERR GT 0.001,
SOLVE subm2 USING NLP MAXIMIZING cost2;
PV2(J2) = (EA2(J2)+SUM(EJ2$(ORD(EJ2) NE ORD(J2)),EB2(J2,EJ2)*P21(EJ2))
-p2.L(J2))/(-EB2(J2,J2));
MERR = O;
LOOP(J2,
ERR2 = ABS(PV2(J2)-P21(J2))/P21(J2);
IF (ERR2 GT MERR,
MERR = ERR2;
)
)i
P21(J2) = PV2(J2);
)
)

scalar merrl,merr2,pobj,perri,perr2,pmerrl,pmerr2;
pobj=10;

merr1=0.2;

merr2=0.2;

pmerri=0.2;

pmerr2=0.2;

loop(kloop,
ki1(k)=yes$(ord(k) eq ord(kloop));
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k2(kloop)=yes;

plvit(kl)=1lvil.1;
plvi2(k1)=1vi2.1;
plv21(k1)=1v21.1;
plv22(k1)=1v22.1;
px1(I1,J1,k1)=X1.1(I1,J1);
px2(12,J2,k1)=X2.1(12,J2);
ps1(I1,k1)=S1.1(I1);
ps2(12,k1)=52.1(I2);
pd1(J1)=D1.1(J1);
pd2(J2)=D2.1(J2);

pcosti(k1)=SUM(Il,GAMMAI(II)*SI.I(II))
+ SUM((I1,J1),C1(I1,J1)»X1.1(I1,J1))+0.25#1v22.1+0.25»1v11.1;
pcost2(k1)=SUM(IZ,GAMMA2(I2)*S2.1(I2))
+ SUM((I2,J2),C2(I2,J2)*»X2.1(I2,J2))+0.25%1v12.1+0.25%1v21.1;

if(merr2 gt 0.00001,
MERR=0.2;
LOOP (ITER,
IF (MERR GT 0.001,
SOLVE master USING NLP MINIMIZING SURPLUS;
timemas (ki ,ITER)=master.resusd;
itermas(ki,ITER)=master.iterusd;

PV1(J1) = (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*mp11(EJ1))
-D1.L(J1))/(-EB1(J1,J1));
PY2(J2) = (EA2(J2)+SUM(EJ2$(0RD(EJ2) NE ORD(J2)),EB2(J2,EJ2)*mp21(EJ2))
-D2.L(J2))/(-EB2(J2,J2));
MERR = 0;
LOOP(J1,
ERR1 = ABS(PV1(J1)-mp11(J1))/mp11(J1);
IF (ERR1 GT MERR,
MERR = ERR1;
);
)
LOoP(J2,
ERR2 = ABS(PV2(J2)-mp21(J2))/mp21(J2);
IF (ERR2 GT MERR,
MERR = ERR2;
)
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)

mp11(J1) = PV1(J1);
mp21(J2) = PV2(J2);
);
)i
pill=linki.m;

pi2i=link2.m;

pmerri=0;
Loor(J1,
perrl = ABS(pp11(J1)-mp11(J1))/mp11(J1);
IF (perri GT pmerri,
pmerrl = perri;
);
)i
LooP(J2,
perr2 = ABS(pp21(J2)-mp21(J2))/mp21(J2);
IF (perr2 GT pmerrl,
pmerril = perr?;
);
)i
pp11(J1)=mp11(J1);
pp21(J2)=mp21(J2);
merr2=abs (pobj-SURPLUS.1);
pobj=SURPLUS.1;
md1(J1)=D1.L(J1);
md2(J2)=D2.L(J2);

MERR=0.2;
LOOP (ITER,
IF (MERR GT 0.001,

SOLVE submi USING NLP MAXIMIZING costl;
timesml(k1,ITER)=subml.resusd;
itersmi(k1,ITER)=submi.iterusd;

PV1(J1) = (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*P11(EJ1))

-D1.L(J1))/(-EB1(J1,J1));

MERR = O;

Loor(J1,

ERR1 = ABS(PV1(J1)-P11(J1))/P11(J1);
IF (ERR1 GT MERR,
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MERR = ERR1;
);
)
P11(J1) = PV1(J1);
);
)

*P21(J2)=mp21(J2);
MERR=0.2;
LOOP (ITER,
IF (MERR GT 0.001,
SOLVE subm2 USING NLP MAXIMIZING cost2;
timesm2(k1,ITER)=subm2.resusd;
itersm2(ki,ITER)=subm2.iterusd;

PV2(J2) = (EA2(J2)+SUM(EJ2$(ORD(EJ2) NE ORD(J2)),EB2(J2, EJ2)¢P21(EJ2))
-D2.L(J2))/(~-EB2(J2,J2));
MERR = 0;
LOOP(J2,
ERR2 = ABS(PV2(J2)-P21(J2))/P21(J2);
IF (ERR2 GT MERR,
MERR = ERR2;
);
)
P21(J2) = PV2(J2);

);

DISPLAY Di1.L, PV1,D2.L,PV2,1v11.1,1v12.1,1v21.1,1v22.]1,pcostl,pcost2;
parameter splvil,splvi2,splv2i,splv22,spx2(I2,J2), spxi(Il J1);

splvil = sum(k2,plvii(k2)*lal.1(k2));

splvi2 = sum(k2,plvi2(k2)»*1a2.1(k2));

splv2l = sum(k2,plv21(k2)*1la2.1(k2));

splv22 = sum(k2,plv22(k2)*1lal.1(k2));

spx1(I1,J1) = sum(k2,px1(I1,J1,k2)»1a1.1(k2));

spx2(12,J2) = sum(k2,px2(I2,J2,k2)*1a2.1(k2));

display splvii,splvi2,splv2i,splv22,mpil,mp21,spxl,spx2,pobj,mdl,md2;
display timemas,timesml,timesm2,itermas,itersml,itersm2;
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A.2 With Lan-Fuller Principle, Small-LF

»»[Two-region model] solved by the new decomposition method with
xxLan-Fuller decomposition method.

set k /1%20/;
set km /1%20/;
SET ITER /1%50/;
SETS I1 plants /PLANT11,PLANT12,PLANT13/
I2 plants /PLANT21,PLANT22,PLANT23/
J1 retailing regions /REGION11, REGION12, REGION13/
J2 retailing regions /REGION21, REGION22, REGION23/;
ALIAS (J1,EJ1);
ALIAS (J2,EJ2);
set ki(k);
set k2(k);
alias(kloop,k);
alias(kloopl,k);
alias(kloop2,k);
k1(’1’)=yes;
k2(’1’)=yes;
parameters pi21(k),pi22(k),pi23(k),pi51(k),pi52(k);
PARAMETERS
GAMMAL(I1) supply price intercepts
/PLANT11 42
PLANT12 35
PLANT13 50 /
DELTA1(I1) supply price coefficients
/PLANT11  0.30
PLANT12 0.25
PLANT13 0.50 /
GAMMA2(I2) supply price intercepts
/PLANT21 40
PLANT22 30
PLANT23 45 /
DELTA2(I2) supply price coefficients
/PLANT21 0.2
PLANT22 0.1
PLANT23 0.3/
EA1(J1) demand fct. intercepts (elasticities)
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/REGION11 350
REGION12 475
REGION13 300/
EA2(J2) demand fct. intercepts (elasticities)
/REGION21 325
REGION22 425
REGION23  300/;

TABLE EB1(J1,EJ1) elasticities constant
REGION11 REGION12 REGION13

REGION1t -2 0.1 0.2

REGION12 0.2 -2.5 0.05

REGION13 0.1 0.15 -1.7 ;

TABLE EB2(J2,EJ2) elasticities constant
REGION21 REGION22 REGION23

REGION2L -2 0.1 0.2

REGION22 0.2 -2.5 0.05

REGION23 0.1 0.15 -1.7 ;

EEEAREREEAEREREREERRRRREERBEEERRERBRRRR RN E R RB R R RN ®

TABLE
C1(I1,J1) unit shipment costs
REGION11 REGION12 REGION13
PLANT11 0 1 1.5
PLANT12 1 0 2.0
PLANT13 1.5 2.0 o
TABLE
€2(12,J2) unit shipment costs
REGION21 REGION22 REGION23
PLANT21 0 1 1.5
PLANT22 1 0 2.0
PLANT23 1.5 2.0 o
VARIABLES
costil
costi
cost2
m

POSITIVE VARIABLES

97
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X1(I1,J1) quantity shipped from plant I to region J
S1(I1) supply at plant I

D1(J1) demand at region J

X2(12,J2) quantity shipped from plant I to region J
S2(I2) supply at plant I

D2(J2) demand at region J

lvil linking variables LV..

lv12

lv21

1v22

la1(k)

la2(k)

slackil

slack2

slack3

slack4

slacks

slack6

slack?

slack8

1vil.up=500;
1v22.up=500;

EQUATIONS

OBJECTIVE objective function defined

SUPBAL1(I1) commodity balance at each plant I

SUPBAL2(I2) commodity balance at each plant I2
linksup1(I1)

linksup2(I2)

DEMBAL1(J1) commodity balance at each retailing-region Ji
DEMBAL21(J1) commodity balance at each retailing region J2
DEMBAL22(J2) commodity balance at each retailing region J2
linkdem1(J1)

lindem21(J1)

lindem22(J2)

linkl

link2

subobji1l

subobj1

98
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subobj2
sumlal
cut (k)

’

PARAMETER P11(J1)
/REGION11 110.6
REGION12 109.6
REGION13 111.6/;
PARAMETER P12(J2)
/REGION21 110.6
REGION22 109.6
REGION23 111.6/;
PARAMETER P21(J1)
/REGION11 110.6
REGION12 109.6
REGION13 111.6/;
PARAMETER P22(J2)
/REGION21 110.6
REGION22 109.6
REGION23 111.6/;

parameter pcosti(k),pcost2(k);

PARAMETER PV11(J1),PV12(J2),PV21(J1),PV22(J2);

PV11(J1) = 200;
PV12(J2) = 200;
PV21(J1) = 200;
PV22(J2) = 200;

parameter plvii(k),plvi2(k),plv21(k),plv22(k);

= pp11(J1),pp21(J2);

parameter pxi(I1,J1,k),px2(I2,J2,k),ps1(I1,k),ps2(I2,k),pd1(J1),pd2(J2);
parameter timesubi(k,ITER),timesub2(k,ITER),scosti(k),scost2(k);

subobjll.. costll=e=

SUM(J1, (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*P11(EJ1)))

/(-EB1(J1,J1))*D1(J1)~-D1(J1)=D1(J1)/(2#(-EB1(J1,J1))))
-SUM(I1,GAMMAL(I1)#*S1(I1))

- SUM((I1,J1),C1(I1,J1)»X1(I1,J1))-0.25+1v22~0.25*1v11
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subobjl.. costl=e=

SUM(J1, (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)»P11(EJ1)))

/(-EB1(J1,J1))*D1(J1)-D1(J1)*D1(J1)/(2%(-EB1(J1,J1))))

+ SUM(J2, (EA2(J2)+SUM(EJ2$ (ORD(EJ2) NE ORD(J2)),EB2(J2,EJ2)*P12(EJ2)))

/(-EB2(J2,J2))*D2(J2)-D2(J2)*D2(J2)/(2+(-EB2(J2,J2))))
~-SUM(I1,GAMMA1(I1)#*S1(I1))

- SUM((I1,J1),C1(I1,J1)*X1(I1,J1))-0.25%1v22-0.25«1v11

+m

SUPBAL1(I1)$(ord(I1) ne 2)..  SUM(J1,X1(I1,J1)) - S1(I1) =L= 0;
linksup1(I1)$(ord(Il) eq 2).. SUM(J1,X1(I1,J1)) + 1lvil - S1(I1) =L= 0;
DEMBAL1(J1)$(ord(J1) ne 3).. SUM(I1,X1(I1,J1)) =g= D1(J1);
linkdem1(J1)$(ord(J1) eq 3)..  SUM(I1,X1(I1,J1)) + 1lv22 =g= D1(J1);
cut(k2).. m=1= pi21(k2)*D2(’REGION21’) +

pi22(k2)*D2('REGION22’) +
pi23(k2)*D2(’REGION23")
- pi51(k2)*(-1vil) - pi52(k2)*(1v22);

subobj2.. cost2=e=

SUM(J1,(EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*P21(EJ1)))

/(-EB1(J1,J1))»D1(J1)-D1(J1)*D1(J1)/(2=(~-EB1(J1,J1})))

+ SUM(J2, (EA2(J2)+SUM(EJ2$(CRD(EJ2) NE ORD(J2)),EB2(J2,EJ2)*P22(EJ2)))

/(-EB2(J2,J2))=D2(J2)-D2(J2)*»D2(J2)/(2*(-EB2(J2,J2))))
-SUM(I2,GAMMA2(I2)*S2(1I2))

SUM((I2,J2),C2(12,J2)*X2(12,J2))~0.25+1v12-0.25*1v21

SUM(k2,1al(k2)*pcost1(k2))

10000=(slackl+slack2+slack3+slack4)

1

DEMBAL21(J1)$(ord(J1) ne 3)..
SUM(I1,sum(k2,px1(I1,J1,k2)*1a1(k2))) =g= D1(J1);
lindem21(J1)$(ord(J1) eq 3)..
SUM(I1,sum(k2,px1(I1,J1,k2)*1la1(k2))) +
sum(k2,plv22(k2)*la1(k2)) =g= D1(J1);

DEMBAL22(J2)$(ord(J2) ne 3).. SUM(I2,X2(I2,J2)) sg= D2(J2);
lindem22(J2)$(ord(J2) eq 3)..  SUM(I2,X2(I2,J2)) + 1lvi2 =g= D2(J2);
SUPBAL2(I2)$(ord(I2) ne 2).. SUM(J2,X2(12,J2)) - 52(I2) =L= 0; s
linksup2(I2)$(ord(I2) eq 2).. SUM(J2,X2(12,32)) + 1v21 - S2(I2) =L= 0;

linkt.. -sum(k2,plvi1(k2)=lal(k2))+1lvi2-(slackl)+slack2=e=0;
link2.. -1lv21+sum(k2,plv22(k2)sla1l(k2))-(slack3)+slacké=e=0;
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sumlal.. sum(k2,la1(k2))=e=1;

AEEEREHURRERRRRMERRRRRRBLRRRRSE N1OF
SCALAR MERR;

SCALAR ERRI1L;

SCALAR ERR12;

SCALAR ERR21;

SCALAR ERR22;

MODEL submil/subobji1,SUPBAL1,DEMBAL1,linksupl,linkdeml/;

MODEL submi/subobj1,SUPBAL1,DEMBAL1,linksupl,linkdeml,cut/;

MODEL subm2/subobj2,SUPBAL2,DEMBAL21,lindem21,DEMBAL22,
lindem22,linksup2,link1,link2,sumlal/;

MERR=0.2;
LOOP (ITER,
IF (MERR GT 0.001,
SOLVE submli USING NLP MAXIMIZING costii;
PV11(J1) = (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*P11(EJ1))
-D1.L(J1))/(-EB1(J1,J1));
MERR = 0;
LOOP(J1,
ERR11 = ABS(PV11(J1)-P11(J1))/P11(J1);
IF (ERR11 GT MERR,
MERR = ERR11;
)i
)i
P11(J1) = PV11(J1);
),
)

plvii(ki)=lvii.1;
plv22(k1)=1v22.1;
px1(I1,J1,k1)=X1.1(I1,J1);
ps1(I1,k1)=81.1(I1);

* ps2(I2,k1)=82.1(I2);
pd1(J1)=D1.1(J1);

» pd2(J2)=D2.1(J2);

pcost1(k1)=SUM(I1,GAMMA1(I1)*S1.1(I1))
+ SUM((I1,J1),C1(T1,J1)X1.1(I1,J1))+0.25%1v22.1+0.25*1v11.1;
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MERR=0.2;
LOCP (ITER,
IF (MERR GT 0.001,
SOLVE subm2 USING NLP MAXIMIZING cost2;
PV21(J1) = (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*P21(EJ1))
-D1.L(J1))/(-EB1(J1,J1));
PV22(J2) = (EA2(J2)+SUM(EJ2$(ORD(EJ2) NE ORD(J2)),EB2(J2,EJ2)*P22(EJ2))
-D2.L(J2))/(-EB2(J2,J2));
MERR = 0;
LOOP(J1,
ERR21 = ABS(PV21(J1)-P21(J1))/P21(J1);
IF (ERR21 GT MERR,
MERR = ERR21;);
)
LOOP(J2,
ERR22 = ABS(PV22(J2)-P22(J2))/P22(J2);
IF (ERR22 GT MERR,
MERR = ERR22;);
)
P21(J1)
P22(J2)
)
s

PV21(J1);
PV22(J2);

scalar merri,merr2,pobj,perrl,perr2,pmerri,pmerr2;
pobj=10;

merri=0.2;

merr2=0.2
pmerri=0

.2;
pmerr2=0.2

s

loop(kloop,
k1(k)=yes$(ord(k) eq ord(kloop));
k2(kloop)=yes;
pi21(k2)=DEMBAL22.m(’REGION21');
pi22(k2)=DEMBAL22.m(’REGION22’);
pi23(k2)=1lindem22.m(’REGION23’);
pi51(k2)=linki.m;
piS2(k2)=1link2.m;
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if (merr2 gt 0.0001,

MERR=0.2;
LooP (ITER,
IF (MERR GT 0.001,
SOLVE subm1i USING NLP MAXIMIZING costi;
timesubl(k1,ITER)=subml.resusd;
PV11(J1) = (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)),EB1(J1,EJ1)*P11(EJ1))
-D1.L(J1))/(-EB1(J1,J1));
PV12(J2) = (EA2(J2)+SUM(EJ2$(ORD(EJ2) NE ORD(J2)),EB2(J2,EJ2)*P12(EJ2))
-D2.L(J2))/(-EB2(J2,J2));
MERR = O;
LOOP(J1,
ERR11 = ABS(PV11(J1)-P11(J1))/P11(J1);
IF (ERR11 GT MERR,

MERR = ERR11;);
)
Loor(J2,
ERR12 = ABS(PV12(J2)-P12(J2))/P12(J2);
IF (ERR12 GT MERR,
MERR = ERR12;);
)
P11(J1) = PV11(J1);
= PV12(J2);

P12(J2)
Y
)

plvii(kl)=lvii.1;
plv22(k1)=1v22.1;
px1(I1,J1,k1)=X1.1(I1,J1);
ps1(I1,k1)=S1.1(I1);

+ ps2(I2,k1)=52.1(12);
pd1(J1)=D1.1(J1);
pd2(J2)=D2.1(J2);

pcostl(k1)=SUM(Il,GAMMAl(Il)*Sl.l(Ii))
+ SUM((I1,J1),C1(I1,J1)*X1.1(I1,J1))+0.25+1v22.1+0.25=1v11.1;
scosti(kl)=costl.1l;
MERR=0.2;
LOOP (ITER,
IF (MERR GT 0.001,



APPENDIX A. GAMS FILE OF SMALL TWO-REGION MODEL 104

SOLVE subm2 USING NLP MAXIMIZING cost2;
timesub2(kil,ITER)=subm2.resusd;
PV21(J1) = (EA1(J1)+SUM(EJ1$(ORD(EJ1) NE ORD(J1)) ,EB1(J1,EJ1)*P21(EJ1))
-D1.L(J1))/(-EB1(J1,J1));
PV22(J2) = (EA2(J2)+SUM(EJ28(ORD(EJ2) NE ORD(J2)) ,EB2(J2,EJ2)*P22(EJ2))
-D2.L(J2))/(-EB2(J2,J2));
MERR = O;
LooP(J1, .
ERR21 = ABS(PV21(J1)-P21(J1))/PV21(J1);
IF (ERR21 GT MERR,
MERR = ERR21;);
);
LooP(J2,
ERR22 = ABS(PV22(J2)-P22(J2))/PV22(J2);
IF (ERR22 GT MERR,
MERR = ERR22;);

);
P21(J1)
P22(J2)

)

);
scost2(kl)=cost2.1;
merr2=abs(costl.l-cost2.1);

)

PV21(J1);
PV22(J2);

);

DISPLAY D1.L, PV11,D2.L,PV21,PV12,PV22,1v11.1,1v12.1,1v21.1,1v22.1,pcostl;
parameter splvil,splvi2,splv21i,splv22,spx2(I2,J2),spx1(I1,J1);

splvil = sum(k2,plvii(k2)=*lal.1(k2));

splv22 = sum(k2,plv22(k2)=*lal.1(k2));

spx1(I1,J1) = sum(k2,px1(I1,J1,k2)*1la1.1(k2));

display splvil,splv22,spx1,X2.1,scostl,scost2,timesubl,timesub2; ,
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