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Abstract

Hysteresis is exhibited by many physical systems. Smart materials such as
piezoelectrics, magnetostrictives and shape memory alloys possess useful proper-
ties, especially in the field of micropositioning, but the control of these systems is
difficult due to the presence of hysteresis. An accurate model is required to predict
the behaviour of these systems so that they can be controlled.

Several hysteresis models including the backlash, elastic-plastic and Preisach
operators are discussed in detail. Several other models are mentioned. Other con-
trol methods for this problem are discussed in the form of a literature review.

The focus of this thesis is on the PID control of hysteretic systems. In particular,
two systems experiencing hysteresis in their controllers are examined. The hystere-
sis in each system is described by different sets of assumptions. These assumptions
are compared and found to be very similar. In the first system, a PI controller is
used to track a reference signal. In the second, a PID controller is used to control a
second-order system. The stability and tracking of both systems are discussed. An
extension is made to the first system to include the dynamics of a first-order system.
The results of the second system are verified to hold for a general first-order system.

Simulations were performed with the extension to a first-order system using
different hysteresis models.
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Chapter 1

Introduction

Hysteresis is a property experienced by many materials that is highly non-linear
and difficult to model. Multiple outputs can be associated with the same input,
so the system may exhibit path-dependence. Hysteresis can also be described as a
delay in the reaction of a material when provided with actuation. Consider mag-
netic hysteresis: magnets may possess a range of magnetization values without the
presence of an applied magnetic field. It is not possible to determine magnetization
without knowledge of the input history.

Another example is the play behaviour exhibited by mechanical gears. In the
operation of two mated gears, turning one gear causes the other to turn. Due to
the tolerance between the teeth of each gear, the driving gear must move a certain
distance before the mated gear will move. This hysteresis is known as backlash and
will be discussed later. See Figure 1.1, obtained from [24].

An exciting group of hysteretic materials are smart materials. Relevant appli-
cations are easily found in the field of micropositoning. For example, a magne-
tostrictive material, Terfenol-D, can experience a change in length of 0.001m/m
at a saturation magnetic field. Shape memory alloys are materials with multiple
phases, in which deformed materials return to their original shape under appropri-
ate temperature changes. Piezoelectric materials can convert strains into electrical
signals. The issue however, is that all of these materials possess some sort of hys-
teresis. It is difficult to provide a model, and even harder to control a system that
possesses hysteresis. For more information regarding smart materials, the reader is
referred to [32].

An attempt in this thesis is made to study the mathematics behind certain
hysteretic models and their control. The majority of the work presented in this
thesis considers two closed-loop systems with hysteretic components. The control
of a hysteretic system using a PI controller and of a second-order system with a
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Figure 1.1: Backlash Hysteresis [24]

hysteretic actuator using a PID controller is studied.

The thesis is divided into five chapters. An introduction to several hysteretic
models is provided in Chapter 2. The two aforementioned control systems are
described and discussed in detail in Chapter 3. A review of other control methods
used to control hysteretic systems is also provided in Chapter 3. Simulations are
performed in Chapter 4. Some discussion is included with regard to future work.
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Chapter 2

Hysteresis Models

As described previously, hysteresis is difficult to model due to its non-linearity, and
the need for knowledge of previous states. Considering the generality of hysteresis,
it is impossible to find one model that accurately describes all types of hysteresis.
Several different models that describe hysteresis will be discussed in this chapter.
This small selection is meant to provide an introduction to the models studied in
the relevant research papers and theory to come.

A commonly-used mathematical definition of a hysteresis operator from [41] is
first presented.

Let R+ := {t ∈ R | t ≥ 0}. Let I ⊆ R+. Let the set of all functions map-
ping I to the reals be denoted by Map(I) (that is, f ∈ Map(I) ⇔ f : I → R ).
The next definition is the truncation property. For T > 0, let the truncation of
f ∈Map(R+), be defined by

fT (t) :=

{
f(t), t ∈ [0, T ]

0, t > T.

Next, the two properties required to define a hysteresis operator are given. They
are the causal and rate-independent properties. Note that in literature, the causal
property may be also referred to as the Volterra property or the deterministic
property.

Definition 2.0.1. An operator Ψ : Map(R+) → Map(R+) is causal, if for every
v, w ∈Map(R+), T ≥ 0

vT = wT implies (Ψv)T = (Ψw)T .

That is, they must agree everywhere on [0, T ] for a given T .

3



From the definition of the causal property, the output (Ψ(v)) does not depend
on future inputs, because the property must hold true for all T ≥ 0.

In order to define rate-independence, another definition must first be introduced.

Definition 2.0.2. A function f : R+ −→ R+ is a time-transformation, if f is
continuous, nondecreasing, and lim

t→∞
f(t) =∞.

Definition 2.0.3. An operator Ψ : C(R+) −→ C(R+) is rate-independent if
for all time transformations f ,

(Ψ(u ◦ f))(t) = (Ψ(u))(f(t)), for all u ∈ C(R+), for all t ∈ R+. (2.1)

That is, the order in which the operations are applied do not matter. The
rate-independent operator can be applied before or after the time transformation.
That is, a rate-independent operator cannot depend on derivatives of the input. To
illustrate this, a graphical example is included. See Figure 2.1.

On the left of Figure 2.1(a), the input is a sinusoidal function with varying am-
plitude shown in blue, and the output of a rate-independent operator is shown in
green. The input is plotted against the output. A piecewise linear function, con-
structed with the same local maximums and minimums is in Figure 2.1(b). Note
that the input-output graphs are identical. The rate at which these local maxi-
mums and minimums are reached is irrelevant to the present value. Finally, the
definition of a hysteresis operator is presented.

Definition 2.0.4. An operator Φ : Map(R+)→ Map(R+) that is both causal and
rate-independent is a hysteresis operator.

2.1 Backlash Operator

Also known as play, the backlash operator is a hysteresis operator that is used in
certain mechanical applications, especially to model the play between gear trains.
In terms of application, backlash is the physical clearance between mated gear
teeth. The gears will turn only after a certain amount of torque is provided. The
following formulation can be found in [18]. An alternative definition can be found
in [4]. A function will first be defined.

For all h ∈ R+, let the function bh : R2 → R be defined as:

4



(a) Input Signal: u(t) = 0.8t cos(πt/5)

(b) Piecewise Linear Input Signal With Same Extrema

Figure 2.1: Rate-independence
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bh(v, w) = max{v − h,min v + h,w}

The backlash operator will be defined for every h ∈ R+ and ξ ∈ R as a function
of bh. For every piecewise monotone function u ∈ C(R+),

(Bh,ξ(u))(t) =

{
bh(u(0), ξ), for t = 0

bh(u(t), (Bh,ξ(u))(ti))), for ti−1 < t ≤ ti, i ∈ N

where 0 < t1 < t2 < ... is a partition of R+ such that u ∈ C(R+)→ R is monotone
(only non-decreasing or only non-increasing) on each of [ti−1, ti], i ∈ N and t0 = 0.
The parameter ξ represents the initial state of the operator. In the definition pro-
vided above, the parameter h can be thought of as the delay in the operator from
the input function u. This is represented visually in Figure 2.2. Using MATLAB R©,
the continuous function u(t) = 1

2
t sin t is plotted against the backlash operator act-

ing on this u(t), with h = 2, ξ = 1.

Figure 2.2: Backlash Operator acting on u(t) = 1
2
t sin t with h = 2, ξ = 1

The relationship between the input u(t) and the backlash operator is shown on
the right of Figure 2.2. The operator initially starts at (1, 0). Following the plot
of the u(t) given on the left, it increases and decreases without any change in the
operator. Then it proceeds to make successively larger counter-clockwise loops,
closely following the shape of the input on the lines (Bh,ξ(u))(t) = u(t) + 2 and
(Bh,ξ(u))(t) = u(t) − 2, which is representative of the delay of h = 2. At t = 30,
the operator (in the right plot) reaches the point on the bottom left, (−15,−13).
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2.2 Elastic-Plastic Operator

The stress and strain relationship in a one-dimensional elastic-plastic element is
modelled by this operator. If the stress applied is less than the yield stress, then
the material’s strain can be approximated by a linear relationship (Hooke’s Law,
σ = Eε, where σ is the stress, E is Young’s Modulus for the material and ε is the
strain). If the stress acting on the element becomes greater than the yield stress,
then the element deforms plastically (that is,t no additional strain is observed).
This mathematical definition of the elastic-plastic operator is constructed much
like the backlash operator and can be found in [18]. Let eh : R→ R be defined by

eh(u) = min{h,max{−h, u}},

For all h ∈ R+, for all ξ ∈ R, the elastic-plastic operator Eh,ξ is defined for piece-
wise monotone functions u ∈ C(R+) by

(Eh,ξ(u))(t) =

{
eh(u(0)− ξ), for t = 0

eh(u(t)− u(ti) + (Eh,ξ(u))(ti))), for ti−1 < t ≤ ti, i ∈ N

where 0 < t1 < t2 < ... is a partition of R+ such that u ∈ C(R+)→ R is monotone
(only non-decreasing or only non-increasing) on each of [ti−1, ti], i ∈ N and t0 = 0.
In Figure 2.3, the same function u(t) = 1

2
t sin t is plotted against the elastic-plastic

operator acting on the same u(t), with h = 2, ξ = 1. Here, h represents the strain
observed once the yield stress is reached. So the operator is bounded by −h and h.
The variable −ξ is the initial state of the operator.

Figure 2.3: Elastic Operator acting on u(t) = 1
2
t sin t with h = 2, ξ = 1

The relationship between the operator and the input is shown on the right of
Figure 2.3. As mentioned previously, the property |(Eh,ξ(u))(t)| ≤ h is satisfied

7



Figure 2.4: Preisach Relay, [41]

by the operator. With respect to u(t), the operator produces successively larger
clockwise loops as time progresses. The elastic-plastic operator is often consid-
ered the counterpart to the backlash operator. The two are related by: for all
u ∈ C(R+), Eh,ξ(u) + Bh,ξ(u) = u.

2.3 Preisach Model

One of the most powerful hysteresis models is the Preisach model. It was originally
developed in the 1930s to describe the hysteresis observed by magnetic materials.
There are several variations on the Preisach model based on physical phenomena,
which will be reviewed later. There are many resources that discuss the Preisach
model, among them, [11], [12], [25] and [40]. Though not presented here, an inter-
esting description of the Preisach model using the play and stop operators can be
found in [4].

2.3.1 Model Definition

The Preisach model is defined as a weighted sum of a continuum of relays. This will
be reflected in a double integral, which will be made clear after a few definitions.
Consider first the Preisach relay.

Preisach Relay

The Preisach relay is crucial to the definition of the Preisach model. The relay (see
Figure 2.4) has a value of +1 or -1, which is analogous to a simple magnetic dipole

8



Figure 2.5: Preisach Relay while a) increasing the input u(t), b) decreasing the
input u(t)

that can only take on a value of ±1. The relay has two parameters: r and s. The
centre of the relay is denoted by s, while the half-width of the relay is denoted by
r. Physically, r can be thought of as the resistance towards switching and s is the
critical magnetization where switching can occur. Finally, to determine the output
of the relay, a history of the relay is required. To illustrate this, suppose the input
u(t), lies between s− r and s + r. According to Figure 2.4, there are two possible
outputs for the relay.

Consider Figure 2.5. Following the left figure, suppose u(t) < s− r. Since there
is only one input, the relay has a value of -1. In order for the relay to switch, u(t)
must be increased past s + r for the relay to switch to +1. Analogously, on the
right, suppose u(t) > s+ r, then u(t) must be decreased past s− r for the relay to
switch to -1. To resolve the previous dilemma, if u(t) lies between s− r and s+ r,
then the relay takes on the value of the most recent output. Finally, each pair of
parameters (r, s) (note r must be nonnegative since it represents a half-width) has
a one-to-one correspondence with a specific relay. With this definition in place, the
actual model can now be introduced. The issue of initial states will be dealt with
in the following section.

2.3.2 Preisach Operator

The Preisach operator is described as follows,

y(t) =

∫ ∞
0

∫ ∞
−∞

Rr,s(u(t))µ(r, s)dsdr, (2.2)

where Rr,s is the relay with centre s and half width r, u(t) is the input, µ(r, s) is
the weight function and y(t) is the output of the model. The weight function must

9



be integrable, that is, y(t) in equation (2.2) must always be finite. This is remi-
niscent of an induced magnetic field (input) producing a magnetization (output)
on a magnet. At first glance, there appears to be a difficulty in implementation
due to the infinite double integral. Storage of all the history appears impossible.
Furthermore, measuring a continuum of relays would raise issues with computation.
However, several simplifications can be made, which lead to simpler computation.

2.3.3 Preisach Plane

The first of these simplifications is based upon physical systems having limitations.
The system is assumed to exhibit saturation in the presence of a large enough in-
put. As well, it is clear that in any physical computation, the integral cannot be
evaluated exactly, so an approximation of a finite sum of selected relay outputs is
considered instead.

The Preisach plane is a two-dimensional graphical construction with r on the
x-axis, and s on the y-axis. Each point represents a potential relay (with r and s to
be the parameters of the relay). Since r represents the half-width, which must be
positive, the discussion is limited to points/relays on the right half of the Preisach
plane. Next, only relays that have the capability of switching will be considered.
Referring back to the Preisach Relay (see Figure 2.4), note that s − r and s + r
are the switching points for a given relay with parameters r and s. Therefore only
relays that satisfy −usat ≤ s− r ≤ s + r ≤ usat are of interest. Note that this has
effectively changed the bounds from being infinite to finite.

The next statements deal with the initial state of the Preisach Plane. If the
system is initialized (prior to any input), then relays with s > 0 and s < 0 will be
assumed to have values of −1 and +1 respectively. If s = 0, then the relay will
remain at 0 until the input causes the relay to switch (increased past s−r or s+r).
All of these assumptions result in the Preisach plane in Figure 2.6. As a side note,
other sources of literature (for example [36] and [17]) define the Preisach plane so
that the end result is a 135 degree counter-clockwise rotation of the description
seen here. This is merely a change of coordinates and the two forms are otherwise
identical.

To determine the output, all the relays in each of the regions marked +1 and
−1 are summed. The Preisach boundary is made of line segments, having slopes of
1 and −1 as well as 0 (from the initial state see Figure 2.6). It is important to note
that the r = 0 point of the boundary will always have the same value as the current
input. To demonstrate the operation of the plane, an example will be considered.
Suppose the input is increased monotonically from u(t) = 0 to u(t) = 3, see Figure
2.7 (left). Then the Preisach boundary will produce a line segment with slope −1.

10



Figure 2.6: Preisach Plane (Initialized)

This is consistent with the previous definitions, since the line segment produced is
in fact s + r = 3, indicating that all the relays s + r ≤ 3 have switched to the +1
state. Suppose the input is now decreased monotonically to u(t) = −1, then the
result is another line segment of slope +1, described by s − r = 1. In Figure 2.7
(right), the relays with both s + r ≤ 3 and s − r ≥ 1 have switched back to an
output of −1. Note that the Preisach boundary has a corner, indicating that the
input was once at u(t) = 3, (but now is at u(t) = −1). Further non-monotonic
changes in the input would result in different corners in the Preisach boundary. It
is clear that the Preisach boundary contains information regarding the history of
the input. The next property regarding the Preisach plane will demonstrate this.

Continuing the previous example, suppose that the input is now increased mono-
tonically from u(t) = −1 to u(t) = 4. As u(t) increases, a new line segment with −1
slope will be introduced, hence introducing a corner indicating that the input was
once at u(t) = −1 (See Figure 2.8 (left)). But as the input increases past u(t) = 3,
both these corners will be wiped out, yielding only a single line segment of slope
−1. At u(t) = 4, there will be only a single line segment: s+ r = 4 (See Figure 2.8
(right)). That is, the Preisach boundary only retains information about the most
recent extrema. If the input is increased or decreased past previous extrema, then
that part of the memory is wiped out. Not surprisingly, this is known as the wiping
out property. With regard to computation, an alternative definition can be made
that uses the Presiach boundary ψ(t, r) at time t. Consider
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Figure 2.7: Left: Increasing the input to u(t) = 3, Right: Then Decreasing the
input to u(t) = −1

y(t) =

∫ ∞
0

∫ ∞
−∞

Rr,s(u(t))µ(r, s)dsdr (2.3)

= 2

∫ ∞
0

∫ ψ(t,r)

−∞
µ(r, s)dsdr −

∫ ∞
0

∫ ∞
−∞

µ(r, s)dsdr (2.4)

= 2

∫ ∞
0

∫ ψ(t,r)

0

µ(r, s)dsdr +

∫ ∞
0

∫ 0

−∞
µ(r, s)dsdr −

∫ ∞
0

∫ ∞
0

µ(r, s)dsdr

(2.5)

= 2

∫ ∞
0

∫ ψ(t,r)

0

µ(r, s)dsdr + yip. (2.6)

where yip is the output of the system evaluated with the Preisach plane shown in
Figure 2.6. This definition is mathematically equivalent to (2.2), though from a
computational perspective is simpler. The change from the initial state is modeled
by the boundary, thus only the relays that switch value need to be considered.

Preisach Boundary and Backlash Operator

As an interesting sidenote, the Preisach boundary has a strong connection to the
backlash operator. Consider first the boundary (ψ) as a function of r on the Preisach
plane. This boundary will change over time according to an input u(t). Let ψ(t, r)
denote the value of the boundary at position r and time t corresponding to the
input history of u(t). This mathematical relationship can be described with

ψ(t, r) = Br,0(median (−usat, u(t), usat)),
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Figure 2.8: Wiping Out Property

Figure 2.9: Minor Loops within a Major Loop in a Hysteretic System, from [41]

where r is the backlash factor and the second parameter (0) is the initial condition
on the backlash operator. The median function is just the middle of the three
values, ensuring that the saturation limits are in place. Should the input u(t)
be increased higher than usat, usat becomes the new input. While the Preisach
plane can be defined without the backlash operator, this property will be used in
theoretical developments in a future chapter. More details can be found in Section
2.1 of [4].

Major Loop

To obtain the major loop, (monotonically) increase u(t) past usat, then (monoton-
ically) decrease u(t) below −usat, followed by (monotonically) increasing u(t) past
usat. The last two changes should trace out the major loop. A minor loop is any
loop produced inside the major loop. See Figure 2.9 for a graphical example.
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2.3.4 Weight Function

It remains to discuss how the weight function is identified. There are several ap-
proaches to this problem. A general form of the weight function can be assumed
(for example, see Section 2.3.5), with varying parameters to be found through opti-
mization of error in comparison to experimental data. Optimization may not yield
a good result if an inappropriate shape is chosen. A popular choice for identifying
the weight function is to discretize the Preisach plane into squares of equal size
where the weight function is assumed to be constant over each square region. In
literature, this process is referred to performing a discretization of level L, where
L represents the number of squares along the centre. Thus the whole Preisach
plane would have L2 components. Assuming a proper identification technique is
used for each square, the higher the level of discretization L, the better the accuracy.

The identification of each square can be performed by evaluating experimen-
tal data obtained in a very specific manner. The identification of a single square
will be described. The corners of the square will be referred to in this descrip-
tion as labeled in Figure 2.10. The region of the desired square will be denoted
Ω. The following algorithm will yield an expression for the weight function inside Ω.

1. Decrease u so that it is less than −usat (note all relays will have output −1).

2. Increase u until the Preisach boundary coincides with the line segment formed
by points 1 and 2 in Figure 2.10. This is described by u12 in Figure 2.11.

3. Decrease u until the Preisach boundary coincides with the line segment formed
by points 1 and 3 in Figure 2.10. This is described by u13 in Figure 2.11.

4. Denote the output after this procedure y1 (the process to obtain 1 as a corner
in the Preisach boundary).

One may follow a similar algorithm to produce corners 2, 3, 4 in Figure 2.11 in
the Preisach boundary, and label the outputs y2, y3, y4 respectively. In the follow-
ing, Pyi is the Preisach plane obtained by following the procedure above to obtain
yi. The region Ω1 is described by Figure 2.11 (b). Consider the quantity:

(y1 − y2) =

(∫ ∫
Py1

Rr,s(u(t))µ(r, s)drds−
∫ ∫

Py2
Rr,s(u(t))µ(r, s)drds

)
,

=

(∫ ∫
Ω1

(+1)µ(r, s)drds−
∫ ∫

Ω1

(−1)µ(r, s)drds

)
,

= 2

∫ ∫
Ω1

µ(r, s)drds.
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Figure 2.10: An arbitrary square in a piecewise-constant weight function

Figure 2.11: a) Preisach Plane in obtaining corner 1, b) The region Ω1, c) The
region Ω2
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It is easy to see that a similar region (but one that includes the square of interest)
can be produced by considering the quantity (y3 − y4). Denote this region Ω2 (see
Figure 2.11 c)). Then the following expression will result in a weight function for
the square of interest. The side length of the square will be denoted c. The value
µΩ is the constant value of the weight function in the region Ω.

1

2c2
((y3 − y4)− (y1 − y2)) =

1

2c2

(
2

∫ ∫
Ω2

µ(r, s)drds− 2

∫ ∫
Ω1

µ(r, s)drds

)
,

=
1

c2

∫ ∫
Ω

µ(r, s)drds,

=
1

c2
µΩ

∫ ∫
Ω

drds,

= µΩ.

The second last step is a result of the weight function assumed constant over
this region. The experimental data used to identify the weight function is a set of
first-order descending curves. For a discretization of level L (L ∈ N), L + 1 first-
order descending curves are required. Suppose the range of the outputs in the major
loop is divided into L equally spaced intervals (resulting in L + 1 equally spaced
points). Then the ith curve (i ∈ 1, 2, ..., L+ 1) is obtained by decreasing the input
u(t) below −usat (so that all the relays are in the −1 state, then increasing the in-
put monotonically to the ith point, followed by decreasing the input monotonically
back to −usat. This is very similar to the procedure outlined above to obtain the
square region Ω. The differences are that the procedure is performed L + 1 times
(once for each curve), and in the third step, u(t) is decreased monotonically back
down to −usat, while sampling at each potential square corner. This approach is
attractive because it is simple both experimentally and computationally.

2.3.5 Physical Preisach Model

There have been efforts made (for example [33], [34]) to model magnetic effects from
a physical perspective, yielding what is known as the physical Preisach model. The
identification of the Preisach weight function in this context is done by assuming
a general shape, and optimizing parameters to fit with experimental data. Other
extensions include extending the relay so that it can take other values (other than
just +1 and −1). The general shape and operation would still be the same, how-
ever, the top and bottom components will have a positive slope instead of fixed
values (see Figure 2.12). This physical relay is modeled after the Gibbs Energy.

In the case of a magnetostrictive material, the variable MI is the least amount
of magnetization seen before switching from the positive to negative state. The
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Figure 2.12: Physical Preisach Relay, see [33]

value MR is the magnetization observed when the applied magnetic field is 0. The
local magnetization is denoted by M , representing the amount of magnetization of
that specific dipole. The coercive field HC , or switching point, is the same as r+ s
in the phenomenological model. The interaction field, HI plays the same role as s.
Instead of different centre locations, the same definition, but with an offset of HI is
used. Finally H is the applied magnetic field. For a visual representation of these
values with the Gibbs energy, the reader is referred to Section 2 of [33].

With this different formulation, the model equation itself becomes

M(H) =

∫ ∞
0

∫ ∞
−∞

ν1(Hc)ν2(HI)M(H +HI ;Hc; ξ)dHIdHC . (2.7)

where ξ represents the last known position (whether it is on the positive or negative
part of the relay). The weight function components ν1 and ν2 in [33] are given by

ν1(Hc) =
c1

I1

e−[ln(Hc/HC)/2c]2 ,

ν2(HI) = c2e
−H2

I /2b
2

,

I1 =

∫ ∞
0

ν1(Hc)dHC .

where c1, c2, and b are positive real parameters obtained through optimization in
accordance to provided data. These are not the only choices for the weight function.
There are however some general criteria that should be followed. Both functions
should follow certain decay properties. The function ν2 should be even. Extensions
have been made in [42] and [33] to include the effects of compressive loads on the
hysteresis of magnetostrictives.

The definition of three operators have been provided, but it should be mentioned
that they are in fact hysteresis operators as described by Definition 2.0.4. Recall
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that hysteresis operators must be both causal and rate-independent. The backlash,
elastic-plastic and Preisach operators satisfy this definition. It is clear that they
are causal. Rate-independence for each operator follows with a simple substitution
verifying that the equality in equation (2.1) holds.

2.4 Other Models

There are many more hysteresis models that have not been discussed. The hystere-
sis models discussed thus far are described by operators acting on functions. The
following hysteresis model is described by systems of differential equations. The
Duhem model is a very general model that has a purely mathematical basis. Other
models can be easily found in literature. The reader is referred to [32] for more
general models regarding hysteresis. For specifics to magnetic and magnetostrictive
materials, a wide variety of hysteresis models can be fonud in [39] and [40].

2.4.1 Duhem Model

The Duhem model was developed at the end of the last century by a French math-
ematician Pierre Duhem [4]. The model is used widely to model friction, and the
Maxwell-slip model is a special case of the Duhem model [29]. Only the previous
step of the input in terms of memory is required to determine whether is increasing,
decreasing or stationary. The definition takes the form of a differential equation:

w′(t) = f+(t, v, w)(v′(t))+ − f−(t, v, w)(v′(t))−, w(0) = w0.

where (v′(t))+ = 1 if v(t) is increasing at t and 0 otherwise, its counterpart
(v′(t))− = −1 when v(t) is decreasing and 0 otherwise. The functions f+ and
f− can be chosen to satisfy an application. The solution to this system can be
written as a series of ODEs on finite time intervals where the input is monotonely
nonincreasing or nondecreasing. Each ODE would depend on the solution and end-
point of the previous one for its initial value. It is not too difficult to see that
the input-output graph (see Figure 2.13) could produce a loop-like behaviour. In
this very simple example, v(t) is a sawtooth function with an amplitude of 1 and a
period of 2:

f+(t, v, w) = 2π sin(2πt),

f−(t, v, w) = 2π cos(2πt),

The Duhem model in contrast to the other models presented holds very general as-
sumptions and the hysteresis depends entirely on the chosen functions. The reader
is referred to [28], and [29] for more information on its derivation and properties.
The Duhem model may define a hysteresis operator, depending on the chosen func-
tions in its definition.
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Figure 2.13: Left: Input, Center: Output, Right: Input-Output

19



Chapter 3

PID Control of Hysteretic
Systems

3.1 Introduction

PID control is a well understood branch of control theory. In this chapter, two
groups of hysteretic systems will be controlled by PID controllers in order to track
a constant reference signal. A brief introduction to PID controllers and literature
review is presented in the following section. In [41], a system experiencing hys-
teresis is controlled with a PI controller. These mathematical results are presented
in Section 3.3. An extension is made in Section 3.4 to include a linear first-order
system and some similar properties and results are shown.

In [18], a second-order system experiencing hysteresis in the actuator is con-
trolled to track a constant reference signal. These results are discussed in Section
3.5. A verification is presented in Section 3.6 that the same results hold for a gen-
eral first order system. The assumptions of [18] and [41] are compared in Section
3.5.3. Finally, a literature survey discussing other popular methods of control in
the context of hysteresis systems is presented.

3.1.1 PID Controllers

PID controllers are commonly used in feedback control. The goal of the controller
is to steer the system to follow a given reference signal. The error is defined as the
difference between the output and a reference signal. Proportional, integral and
derivative components of the error can be found in the PID Controller. For the
following controller, KP , KI , KD > 0 are the proportional, integral and derivative
control parameters respectively. The general form of the PID controller is:

u(t) = KP e(t) +KI

∫ t

0

e(τ)dτ +KDe
′(t). (3.1)
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The Laplace transform of a function f ∈ C(R+) is

(L{f(t)})(s) = f̂(s) =

∫ ∞
0

f(t)e−stdt.

It is convenient to write the PID controller and other linear transformations
in terms of a transfer function. A transfer function is a representation of a linear
operator in the Laplace domain, defined by the Laplace transform of the output
divided by the Laplace transform of the input. For the PID controller described
above, if e(0) = 0,

û(s)

ê(s)
= KP +

KI

s
+KDs.

Proportional control changes the controller by an amount that is proportional
to the error. The system can become unstable if the value of KP is too high. Con-
versely, if KP is too low, then the controller may not be responsive to large errors.
Integral control considers previous values of error, and adjusts the input accord-
ingly. A larger value of KI will eliminate steady-state error faster but may cause
overshoot (the state moves past the reference signal and then returns to stabilize).
Derivative control affects the controller by considering the derivative of the error.
Applying derivative control reduces the rate of change of the controller, and hence
the overshoot is decreased. The derivative control is sensitive to noise. The deriva-
tive of the noise is usually unbonuded. More information regarding PID controllers
can be found in [26].

3.1.2 Lebesgue and Hardy Spaces

The notion of Lebesgue and Hardy spaces will be used throughout the chapter.
More information can be found in [8] and [9]. The space of Lp(R+) functions will
now be introduced.

Lebesgue Spaces: Lp(R+)

For 1 ≤ p <∞ and a function f

‖f‖p =

(∫ ∞
0

|f(t)|pdt
) 1

p

.
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In the case of p =∞,

‖f‖∞ = sup
t∈R+

|f(t)|.

A function f belongs to an Lp(R+) space if its Lp(R+)-norm is finite. Next, the
set of functions that are locally Lp(R+) where p ∈ N

⋃
{∞}) will be introduced.

Recall the truncation property defined earlier in the beginning of Chapter 2. A
function f ∈ Lploc if for every T > 0,

‖fT‖P <∞.

Hardy Spaces: H2(C+) and H∞(C+)

The results in this chapter require the definition of two Hardy spaces. A more
specific version of the definition found in [8, Definition A.6.14] is presented here.

Definition 3.1.1. A complex-valued function f ∈ H2(C+) if it is holomorphic on
the right-half complex plane and

‖f‖2
H2 := sup

x>0

(
1

2π

∫ ∞
−∞
‖f(x+ iy)‖2 dy

)
<∞. (3.2)

Definition 3.1.2. A complex-valued function f ∈ H∞(C+) if it is holomorphic on
the right-half complex plane and

‖f‖H∞ := sup
Re(s)>0

|f(s)| = sup
ω∈R
|f(iw)| <∞. (3.3)

3.2 PID Control of Hysteretic Systems in Liter-

ature

Before the main work is presented, a brief overview of other PID-related work
available in the literature regarding stability of controlled hysteretic systems will be
mentioned. Each of the hysteresis models are described in their respective papers.
In [16], a second-order system with hysteretic effects in the spring term, modeled
by the Bouc-Wen model, is controlled using a PID controller. The Bouc-Wen
model is a specific case of a rate-independent Duhem model. The closed loop
signals are shown to satisfy boundedness, and the Routh-Hurwitz criterion is used
to demonstrate asymptotic stability of the error. A similar study can be found
in [18] (expanded further in [22]), where the effects and control of a hysteretic
spring is considered. The hysteresis operator is formulated in the same manner as
in Section 3.5.2. Experimental data is presented in both works. A PID controller
combined with inverse compensation (discussed in Section 3.7.3) approach where
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the constants are determined experimentally is used in [14]. Shape memory alloy
actuators represented by a Preisach model are controlled in [1] with use of fuzzy
logic components and a PID controller. Lyapunov methods are used to demonstrate
stability. Finally, in [5], a PID controller is used alongside a feedback linearization
loop and repetitive controller on a system exhibiting Maxwell slip model hysteresis.
Stability is obtained with a small gain theorem.

3.3 Stability and Robust Position Control of Hys-

teretic Systems

The position control of a hysteretic system using a PI controller is discussed in [41].
For arbitrary reference signals, the closed-loop system is shown to be BIBO-stable
with a gain of one. In the case of a constant reference signal, zero-state error and
monotonically decreasing error are guaranteed. A bound on the time to reach an
arbitrarily small error is found. All the material in this section can be found in [4]
and [41].

3.3.1 Background and Assumptions

Several sets that deal with extensions of existing functions are defined. These sets
will be useful in the context of proving existence and uniqueness of solutions in
future sections. For every δ > 0, 0 ≤ t1 ≤ t2, w ∈ C([0, t1]), let

B1(w, t1, t2) := {u ∈ C([0, t2]) | ut1 = wt1}.

The set B1 is the set of all continuous extensions of w from t1 to t2.

Some assumptions on the hysteresis operator (Definition 2.0.4) are required and
will be applied throughout the next few theorems. In the following assumptions,
y(t) = Φ(u(t)), where Φ is a hysteresis operator.

(A1) If u(t) is continuous, then y(t) is continuous.

(A2) There exists λ > 0, such that for all 0 ≤ t1 ≤ t2, w ∈ C([0, t1]), u1, u2 ∈
B1(w, t1, t2),

sup
t1≤τ≤t2

|Φ(u1)(τ)− Φ(u2)(τ)| ≤ λ sup
t1≤τ≤t2

|u1(τ)− u2(τ)|

(A3): Let tf > ti ≥ 0. If for every t ∈ [ti, tf ], u(ti) ≥ u(t), then y(ti) ≥ y(tf ).
Similarly, if for every t ∈ [ti, tf ], u(ti) ≤ u(t), then y(ti) ≤ y(tf ). (In the context
of hysteresis loops, only counter-clockwise loops may be observed. In Figure 3.1a,
the first statement of (A3) is violated, whereas it is satisfied in Figure 3.1b.)
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Figure 3.1: (a) Clockwise Hysteresis Loop, (b) Counter-Clockwise Hysteresis Loop,
from [41]

(A4): There exists usat > 0, y+ and y− such that if u(t) ≥ usat, then (Φu)(t) = y+

and (Φ(−u))(t) = y−. This property is known as saturation.

The norm used throughout [41] is the infinity norm, defined by

‖f‖∞ = sup
t∈R+

|f(t)|.

It will be shown that the Preisach model satisfies the given assumptions. The
reader is referred to Section 2.3 for a complete definition of the Preisach model.
Several conditions are required for the Preisach model to satisfy (A1)-(A4).

Theorem 3.3.1. [41, Theorem 5] If µ(r, s) is bounded with compact support, then
assumptions (A1) and (A2) are satisfied with

λ := 2

∫ ∞
0

sup
s∈R
|µ(r, s)|dr <∞.

Outline of Proof: Assumption (A1) can be proven using the results of Propositions
2.4.9 and 2.4.11 in [4]. With regard to (A2) being satisfied, the Preisach operator
can be written as:

y(t) =

∫ ∞
0

∫ ψ(t,r)

0

2µ(r, s)dsdr + yip,

where ψ(t, r) represents the Preisach boundary at time t. The value yip ∈ R is first
introduced in equation (2.6). If ψ1(t, r) and ψ2(t, r) are the boundaries produced
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by input histories u1(t) and u2(t), respectively at time t, then

|y1(t)− y2(t)| =

∣∣∣∣∣
∫ ∞

0

∫ ψ1(t,r)

0

2µ(r, s)dsdr −
∫ ∞

0

∫ ψ2(t,r)

0

2µ(r, s)dsdr

∣∣∣∣∣ ,
=

∣∣∣∣∣
∫ ∞

0

∫ ψ1(t,r)

ψ2(t,r)

2µ(r, s)dsdr

∣∣∣∣∣ ,
≤ 2

∫ ∞
0

sup
s∈R

µ(r, s)dr ‖ψ1(t)− ψ2(t)‖∞ ,

≤ 2

∫ ∞
0

sup
s∈R

µ(r, s)dr ‖u1 − u2‖∞ .

A detailed proof of the last two lines is provided in Lemmas 2.3.2 and 2.4.8 in [4]. �

Theorem 3.3.2. [41, Theorem 6] If µ(r, s) ≥ 0 for every r, s, (A3) holds.

Proof. Let tf > ti ≥ 0. Suppose u is such that for every t ∈ [ti, tf ], u(t) ≤ u(ti).
Comparing the state of the system at tf and ti, let Ω+ denote the set of relays that
switched from −1 to +1 and let Ω− be the set of relays that switched from −1 to +1.

y(tf )− y(ti) =

∫∫
Ω+

(+1)µ(r, s)drds +

∫∫
Ω−

(−1)µ(r, s)drds

−
[∫∫

Ω+

(−1)µ(r, s)drds +

∫∫
Ω−

(+1)µ(r, s)drds

]
= 2

∫∫
Ω+

µ(r, s)drds− 2

∫∫
Ω−

µ(r, s)drds

Since u(t) ≤ u(ti) for every t ∈ [ti, tf ], no relays could have switched from −1 to
+1. Hence the set Ω+ is empty. This, together with the property that µ(r, s) ≥ 0
for all r, s, implies that

y(tf )− y(ti) = −2

∫∫
Ω−

µ(r, s)drds ≤ 0.

Therefore y(tf ) ≤ y(ti), as required. For the second statement, with the as-
sumption that u(t) ≥ u(ti), the set Ω− can be shown to be empty by an analogous
argument, so y(tf ) ≥ y(ti) as required. �

Finally, the Preisach model will be shown to satisfy (A4).

Theorem 3.3.3. [41, Theorem 7] Assume there is usat > 0 such that µ(r, s) = 0
for |r + s| or |r − s| larger than usat > 0, and define

y+ =

∫ ∞
−∞

∫ ∞
0

µ(r, s)drds

y− =

∫ ∞
−∞

∫ ∞
0

−µ(r, s)drds.
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If u(t) ≥ usat or u(t) ≤ −usat, then y(t) is equal to y+ or y− respectively, satisfying
(A4).

Proof. Let u(t) ≥ usat. If the switching point, r + s (refer to Figure 2.4) of a relay
is past usat, its weight must be 0. All the relays that correspond to when µ 6= 0
are in the +1 state. By applying the definition of y, if u(t) ≥ usat, then y(t) = y+.
The analagous argument is true, if u(t) ≤ −usat, then y(t) = y−. �

The Preisach model has been shown to satisfy assumptions (A1) - (A4) pro-
vided that reasonable assumptions on µ are satisfied. In particular, (A1) - (A4)
hold if the weight function µ, is both nonnegative and has compact support. In
the context of physical systems, the weight function at a point represents the con-
tribution of the relays with a specific configuration. This value must intuitively
be nonnegative. The notion of a weight function having compact support assumes
that relays that require extensive actuation do not have a considerable impact on
the output. If the contribution coming from relays that require large actuation is
significant, then usat can be increased accordingly. An infinite amount of actuation
is not realistic for a physical system, so a suitable usat can be chosen.

3.3.2 Stability of the Closed-Loop System

It will be shown that the controlled hysteretic system described below is BIBO
(Bounded Input Bounded Output)-stable.

Definition 3.3.4. Let an operator R : C(I) → C(I). R is BIBO-stable if for
every u ∈ C(I), Ru ∈ C(I), and there exists ρ such that:

||(Ru)||∞ ≤ ρ||u||∞.

The smallest such ρ is known as the gain.

The output is defined as y = Φu. The controller will have both proportional
and integral components of the error, e. A diagram is provided in Figure 3.2. For
the remainder of the section, closed-loop system will refer to the following four
equations,

e(t) = r(t)− y(t) (3.4)

f(t) =

∫ t

0

e(τ)dτ (3.5)

u(t) = KP e(t) +KIf(t) (3.6)

y(t) = Φ[u(t)] (3.7)
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Figure 3.2: Closed-Loop System, from [41]

The transfer function of the controller, C is Ĉ(s) =
û(s)

ê(s)
= KP +

KI

s
, where

KI and KP are chosen control parameters. With regard to the system parameters,
the following two assumptions are required.

(B1) 0 ≤ KPλ < 1, and KI > 0, where λ > 0 is the Lipschitz constant described
in (A2).

(B2) The reference signal, r(t) is continuous (that is, r(t) ∈ C(R+)).

Theorem 3.3.5. [41, Theorem 4] If Φ is a hysteresis operator, and satisfies (A3)
and (A4), then y− ≤ y(t) ≤ y+ for every t.

Proof. If |u(t)| > usat, assumption (A4) implies that y ∈ {y+, y−}. Otherwise,
let u(ti) and y(ti) be the input and output of the system at an arbitrary time ti.
If u(ti) ≤ usat, monotonically increase u to u(tf ) > usat (where tf > ti). From
(A3), y(ti) ≤ y(tf ), and from the saturation property in (A4), y(tf ) = y+, and
hence y(ti) ≤ y+. An opposite argument with a monotone decrease will result in
y(ti) ≥ y−. Since ti was chosen arbitrarily, this holds for all possible t. �

The next lemma will demonstrate the existence and uniqueness of the solution
to the closed-loop system on a small interval.

Lemma 3.3.6. [41, Lemma 9] Assume (A1), (A2), (B1), (B2) are satisfied.
For every t0 ≥ 0 such that the closed-loop system has a unique solution, u on [0, t0],
the closed-loop system will have a unique solution u on C([t0, t0 + t̄)), where

t̄ =
1−KPλ

2λKI

.

Proof. Let x ∈ C([0, t0]). Define the operator

(Gx)(t) = KI

∫ t

0

(r(τ)− (Φx)(τ))dτ +KP (r(t)− (Φx)(t)).
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If G is a contraction map, then by the Contraction Mapping Theorem [27, Thm
3.15.2] there will exist a unique fixed point. Note that in this case,

(Gu)(t) = KI

∫ t

0

(r(τ)− (Φu)(τ))dτ +KP (r(t)− (Φu)(t))

= KI

∫ t

0

e(τ)dτ +Kpe(t), since y = Φu

= KIf(t) +KP e(t)

= u(t),

and so u is a fixed point of G.

In order for the contraction mapping theorem to apply, two conditions must be
satisfied. The operator must map functions in the space of interest back into the
same space, namely C([0, t0+ t̄)). Since r is continuous, all the subsequent functions
(u, y, e, and f) are continuous. The second condition is that the operator must be
Lipschitz, with a Lipschitz constant that is strictly less than 1. Let w ∈ C([0, t0])
and u1, u2 ∈ B1(w, t0, t0 + t̄). Recall that this means u1 = u2 = w in the interval
[0, t0]. It will be shown that the contraction condition is satisfied on [t0, t0 + t̄).

max
t0≤t≤t0+t̄

|(Gu1)(t)− (Gu2)(t)|

= max
t0≤t≤t0+t̄

∣∣∣∣KI

∫ t

0

[(Φu1)(t)− (Φu2)(t)]dτ +KP [(Φu1)(t)− (Φu2)(t)]

∣∣∣∣
≤ KI max

t0≤t≤t0+t̄

∣∣∣∣∫ t

0

[(Φu1)(t)− (Φu2)(t)]dτ

∣∣∣∣+Kpλ max
t0≤t≤t0+t̄

|u1(t)− u2(t)|

≤ KI max
t0≤t≤t0+t̄

∫ t0+t̄

t0

|(Φu1)(t)− (Φu2)(t)| dτ +Kpλ max
t0≤t≤t0+t̄

|u1(t)− u2(t)|

≤ KI max
t0≤t≤t0+t̄

|(Φu1)(t)− (Φu2)(t)|
∫ t0+t̄

t0

dτ +Kpλ max
t0≤t≤t0+t̄

|u1(t)− u2(t)|

≤ (KI t̄+Kp)λ max
t0≤t≤t0+t̄

|u1(t)− u2(t)|

Recall from assumption (B1), 0 ≤ KPλ < 1 and KI > 0. For t̄ small enough,
the condition will be satisfied. In fact, if t̄ = 1−KPλ

2λKI
,

(KI t̄+KP )λ

=

(
1−KPλ

2λ
+KP

)
λ

=
1 +KPλ

2
< 1, as required. �
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Extended uniqueness and maximal solution arguments are discussed in the fol-
lowing theorem.

Theorem 3.3.7. [41, Theorem 10] Given that (A1), (A2), (B1) and (B2) hold,
then the closed-loop system (3.4) - (3.7) has a unique solution for all t ≥ 0.

Proof. Let T be the set of all τ > 0 such that there exists a solution on [0, τ ]. This
set is nonempty from the previous lemma. Define t∗ = supT and u∗ : [0, t∗]→ R by

u∗(t) = uτ (t), t ∈ [0, τ), τ < t∗.

If the maximal interval is not open, then t∗ is finite. By Lemma 3.3.6, t∗ ≥ t̄. If
t∗ is finite, then t∗ ≥ t̄ implies t∗ > t̄

2
. There is a unique solution u∗ on [0, t∗ − t̄

2
],

and hence by Lemma 3.3.6, the solution u∗ can be extended to [0, t∗ + t̄
2
). Thus t∗

is not the supremum of T . By this argument, the existence of u∗ can be extended
to C([0,∞)). Along with (A1), this implies that y ∈ C([0,∞)). With regard to
uniqueness, suppose there are two solutions u1(t), and u2(t) ∈ C([0,∞)). Let a0

be the largest time such that u1 = u2 on [0, a0). By Lemma 3.3.6, a0 ≥ t̄ > 0.
By continuity, the limits of u1(t) and u2(t) must agree at a0. Thus the solutions
u1 and u2 agree on [0, a0]. By Lemma 3.3.6, there is actually a unique solution on
[0, a0+ t̄). These arguments imply the existence and uniqueness of u(t) ∈ C([0,∞)).
By (A1), since u ∈ C([0,∞)), y ∈ C([0,∞)). �

The closed-loop system will be shown to be BIBO-stable.

Theorem 3.3.8. [41, Theorem 11] Assume that the closed-loop system has a unique
solution for u, y ∈ C([0,∞)) and assumptions (A3), (B1) and (B2) hold. Assume
u(0) = 0. If |y(0)| ≤ ‖r‖∞, then ‖y‖∞ ≤ ‖r‖∞. The closed-loop system is BIBO-
stable with a gain of 1.

Proof. Let L = ‖r‖∞. Assume there exists tf ≥ 0 such that y(tf ) > L. Let tmaxu
be the first time such that u reaches its maximum on the interval [0, tf ]. Similarly,
let tmaxf be defined in the same manner for f . From the assumptions, y and r are
continuous, so e is continuous. As well,

e(tf ) = r(tf )− y(tf )

≤ L− y(tf )

< 0.

There exists a neighbourhood around tf such that e(t) < 0. Since f ′(t) = e(t) < 0,
f must be strictly decreasing in this neighbourhood. As a result, f(t) is not maxi-
mized at tf . That is, tmaxf 6= tf .
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If tmaxf 6= 0, f is maximized at tmaxf , implying f ′(tmaxf ) = e(tmaxf ) = 0. Taking
the contrapositive statement, if e(tmaxf ) 6= 0, then tmaxf = 0. Next two cases are
considered:

Case 1: KP > 0
By definition, u(tmaxu) ≥ u(t) for all t ∈ [0, tf ]. Assumption (A3) implies that
y(tmaxu) ≥ y(tf ). By the definition of tmaxu, u(tmaxu) ≥ u(tmaxf ) and so f(tmaxf ) ≥
f(tmaxu). From the definition of u:

KIf(tmaxu) +KP e(tmaxu) ≥ KIf(tmaxf ) +KP e(tmaxf ) (3.8)

Since KI , KP > 0, and f(tmaxf ) ≥ f(tmaxu), inequality (3.8) implies

e(tmaxf ) ≤ e(tmaxu).

Note that e(tmaxu) = r(tmaxu)− y(tmaxu) ≤ L− y(tf ) < 0. Therefore, e(tmaxf ) < 0.
As shown above, this implies tmaxf = 0. Finally,

u(0) = KP e(0) = KP e(tmaxf ) < 0.

The contrapositive of the theorem has been proven: If u(0) = 0, KP > 0, then
‖y‖∞ ≤ ‖r‖∞.

Case 2: KP = 0
The input u is reduced to u(t) = KIf(t). It is clear that f(tmaxf ) ≥ f(t). Multi-
plying both sides by KI yields u(tmaxf ) ≥ u(t), for every t ∈ [0, tf ] and (A3) imply
that y(tmaxf ) ≥ y(tf ).

Thus, e(tmaxf ) = r(tmaxf ) − y(tmaxf ) ≤ L − y(tf ) < 0. (Recall that at the
beginning of the proof that y(tf ) > L is assumed). Therefore e(tmaxf ) 6= 0 implies
tmaxf = 0. Finally,

y(0) = y(tmaxf )

≥ y(tf )

> L

= ‖r‖∞ .

As a result, y(0) > ‖r‖∞. This result is the contrapositive of the theorem statement.
Hence if u(0) = 0, and |y(0)| ≤ ‖r‖∞, then ‖y‖∞ ≤ ‖r‖∞. �

3.3.3 Tracking

The performance of tracking a signal is discussed in Section 4 of [41], and the results
are shown here. Some interesting results are proved pertaining to the special case
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where the reference signal is a constant, including a bound on the time to reach
any arbitrarily small error.

Theorem 3.3.9. [41, Theorem 12] Let r be constant on an interval [t0, T ], where
t0 > 0. Assume that the closed-loop system has a unique solution for u, y ∈
C([t0, T ]), and (A3) and (B1) hold. For ρ ≥ 0, if

|r − y(t0)| ≤ ρ,

then

|r − y(t1)| ≤ ρ, for every t1 ∈ [t0, T ].

Proof. Assume for some t1 > t0, r − y(t1) = e(t1) < −ρ. As in previous proofs, let
tmaxf and tmaxu be the first times at which f and u respectively are maximized on
the interval [t0, t1] respectively. The error e is continuous because r and y are contin-
uous, and hence f is continuously differentiable. Note that since e(t1) = f ′(t1) < 0,
tmaxf 6= t1. This implies that if e(tmaxf ) 6= 0, then tmaxf = t0. This will be useful
later in the proof. If KP > 0, then u(tmaxf ) ≤ u(tmaxu). This implies that

KP e(tmaxf ) +KIf(tmaxf ) ≤ KP e(tmaxu) +KIf(tmaxu) ≤ KP e(tmaxu) +KIf(tmaxf ).

Therefore,
KP e(tmaxf ) ≤ KP e(tmaxu).

By assumption (A3),

u(tmaxu) ≥ u(t) for every t ∈ [t0, t1] implies that

y(tmaxu) ≥ y(t1).

By this property and the definition of e(t),

r − y(tmaxu) ≤ r − y(t1), implies that

e(tmaxu) ≤ e(t1).

Thus

e(tmaxf ) ≤ e(tmaxu)

≤ e(t1)

= r − y(t1)

< −ρ.
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Therefore e(tmaxf ) 6= 0 implies tmaxf = t0 and inequality e(t0) = r− y(t0) < −ρ
is shown.

If KP = 0, then u(t) = KIf(t). Since KI > 0, u and f will be maximized at
the same time. The inequality becomes

e(tmaxf ) = e(tmaxu)

≤ e(t1)

= r − y(t1)

< −ρ.

Again e(t0) < −ρ, as required. An analogous proof arguing that

r − y(t1) > ρ

implies
e(t0) > ρ

completes the proof. �

Since the error must always decrease monotonically, an overshoot cannot occur.
Finally, a bound on the time to reach any arbitrarily small error is found. This
implies zero steady-state error.

Theorem 3.3.10. [41, Theorem 13] Let t0 ≥ 0, and r be a constant reference signal
on [t0,∞). Assume that u, y ∈ C([t0,∞)) are unique solutions to the closed-loop
system and that (A3), (A4), and (B1) hold. If y− ≤ r ≤ y+, then for every ε > 0,

|r − y(t)| ≤ ε, for every t ≥ t̄+ t0,

where t̄ =
usat
KI

+ |f(t0)|
ε

. Thus asymptotic tracking is achieved, that is:

lim
t→∞

y(t) = r.

.

Proof. Assume that there exists some t ≥ t̄+ t0 and ε > 0, such that r − y(t) > ε.
Since a monotonic decrease in the absolute value of the error is guaranteed in the
previous theorem,

|r − y(t′)| = |e(t′)| > ε, for every t′ ∈ [t0, t]. (3.9)
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Integrating (3.9) from t0 to t0 + t̄ yields:

∫ t0+t̄

t0

e(t′)dt′ > εt̄

f(t0 + t̄) > f(t0) + εt̄, using the definition of t̄,

f(t0 + t̄) >
usat
KI

.

Since t ≥ t0 + t̄, e(t0 + t̄) ≥ e(t) > ε. Therefore,

u(t0 + t̄) = KP e(t0 + t̄) +KIf(t0 + t̄)

≥ KP ε+ usat

≥ usat.

By the saturation assumption (A4), y(t0 + t̄) = y+. Altogether:

e(t0 + t̄) = r − y(t0 + t̄) = r − y+ > ε > 0.

This implies r > y+. Analogously, if y(t) − r < ε, then r < y−. The contra-
positive of the theorem has been proven. Thus, for every ε > 0, there is a t̄ such that:

|r − y(t)| < ε

for all t ≥ t̄+ t0. Hence also, lim
t→∞

y(t) = r. �

Therefore, a bound on time is guaranteed to reach a diminishing error. Thus a
constant reference signal can be asymptotically tracked.

3.4 Extensions to include a Linear System

Suppose a linear system with transfer function Ĝ(s) is introduced into the original
set of equations presented in Section 3.3.2 after the hysteresis operator. This modi-
fication introduces a component into the system that could represent the modelling
of dynamics in a hysteretic actuator. See Figure 3.4 for the new system. While
similar results hold for a linear system of arbitrary order, the results will be demon-
strated for a linear first-order system. The extension to higher-order systems will
be discussed later. In the next few equations, the notation exp is used to denote
the exponential as to avoid confusion with the error function e(t). The resulting
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set of equations are

e(t) = r(t)− y(t), (3.10)

Ĉ(s) = KP +
KI

s+ ε
(3.11)

u(t) = KP e(t) +KI exp(-εt)

∫ t

0

exp(ετ)e(τ)dτ, (3.12)

v(t) = Φ(u(t)), (3.13)

Ĝ(s) =
M

s+ σ
(3.14)

y′(t) = Mv(t)− σy(t), (3.15)

where Φ is a hysteretic operator satisfying assumptions (A1) - (A4). The controller
has been changed to a practical PI controller, where ε > 0 is small. The pole of the
integral component has been shifted off of the imaginary axis and into the left-half
of the complex plane. This is generally the case in practical application.

3.4.1 Existence and Uniqueness

The aim is to provide existence and uniqueness proofs analogous to those in Section
3.3.2.

Lemma 3.4.1. Assume a hysteresis operator Φ satisfies (A1), (A2) and (B2),
with Lipschitz constant λ. Let M,σ,KP , KI > 0. For every t0 ≥ 0 such that the
closed-loop system described by equations (3.10) to (3.15) has a unique solution,
u on [0, t0], the closed-loop system will have a unique solution u on C([t0, t0 + t̄)),
where t̄ is chosen such that

0 < t̄ <
σ

λMKI

(1−KPλ
σ

M
)

Let x ∈ C([0, t0)). Define the operator F as follows,

F [x(t)]

=KIe
-εt

∫ t

0

eετ
(
r(τ)−Me-στ

∫ τ

0

eσsΦ(x(s))ds

)
dτ

+KP

(
r(t)−Me-σt

∫ t

0

eστΦ(x(τ))dτ

)
.

It can be verified that the operator has a fixed point u(t). Proceeding with fa-
miliar arguments, it is clear that if a function x(t) is continuous, and by (B2) r(t)
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is continuous, hence F [x(t)] is a continuous function. An estimate of the difference
of the operator F acting on functions u1, u2 ∈ B(w, t0, t0 + t̄) yields

‖F (u1)− F (u2)‖∞
= max

t0≤t≤t0+t̄
|F [u1(·)](t)− F [u2(·)](t)|

≤ ‖Φ(u1)− Φ(u2)‖∞ |M | max
t0≤t≤t0+t̄

∣∣∣∣KIe
-εt

∫ t

t0

eετ ε-στ
∫ τ

t0

eσsdsdτ +KP e
-σt

∫ t

t0

eστdτ

∣∣∣∣
≤|M |

σ
λ ‖u1 − u2‖∞ max

t0≤t≤t0+t̄

∣∣∣∣KIe
-εt

∫ t

t0

eετdτ +KP

∣∣∣∣
≤|M |

σ
λ(KP +KI t̄) ‖u1 − u2‖∞ .

If t̄ is chosen within the bounds mentioned in the theorem statement, then
the contraction mapping theorem assumptions are satisfied, and hence a unique
solution exists on C([t0, t0 + t̄)). �

Corollary 3.4.2. Assume a hysteresis operator Φ satisfies (A1), (A2) and (B2)
with Lipschitz constant λ. Let M,σ,KP , KI > 0. Then equations (3.10) to (3.15)
have a unique solution for u ∈ C([0,∞)) and y ∈ C([0,∞)).

The proof of Corollary 3.4.2 is analogous to the proof of Theorem 3.3.7.

3.4.2 Stability

The system will be shown to be BIBO-stable for a range of parameters (see Defini-
tion 3.3.4 for a definition of BIBO-stability). The incremental gains of each of the
components of the system will be found, and then combined using an incremental
gain theorem found in [9]. First, a useful lemma is presented that requires the
definition of a convolution of two functions. A multiplication of functions in the
Laplace domain is equivalent to a convolution in the time-domain. A convolution
of two functions f, g ∈ C(R+) is denoted by f ? g and is defined by

(f ? g)(t) =

∫ t

0

f(τ)g(t− τ)dτ .

In the context of linear systems, the L∞ gain of an operator is the L1 norm of
the inverse Laplace transform of the transfer function.

Lemma 3.4.3. [26, Thm 3.11] Suppose for a general input, output and plant de-
noted by u, y and Ĝ respectively so that

ŷ(s) = Ĝ(s)û(s).
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Then
‖y‖∞ ≤ ‖g‖1 ‖u‖∞ ,

where g is the inverse Laplace transform of Ĝ.

Proof

y(t) = (g ? u)(t)

=

∫ t

0

g(t− τ)u(τ)dτ

‖y‖∞ = max
t∈R+

∣∣∣∣∫ t

0

g(t− τ)u(τ)dτ

∣∣∣∣
≤ max

t∈R+

∫ t

0

|g(t− τ)||u(τ)|dτ

≤
(

max
t∈R+

∫ t

0

|g(t− τ)|dτ
)
‖u‖∞

=

(
max
t∈R+

∫ t

0

|g(τ)|dτ
)
‖u‖∞

= ‖g‖1 ‖u‖∞�

Estimates on upper bounds for the gains of the linear components of the system
can be easily found if Ĝ is a first-order system. If g(t) and c(t) are the inverse
Laplace transforms of Ĝ(s) and Ĉ(s) respectively,

g(t) = M exp(-σt),

‖g‖1 =
|M |
σ
,

c(t) = KP δ(t) +KI exp(-εt),

‖c‖1 = KP +
KI

ε
.

Definition 3.4.4. The incremental gain γ̃ of an operator H : L∞(R+) →
L∞(R+) is defined as

γ̃ = inf{γ ∈ R+| ‖H(x1)−H(x2)‖∞ ≤ γ ‖x1 − x2‖∞ , for every x1, x2 ∈ L∞(R+)}.

Assumption (A2) implies that the Lipschitz constant λ is an upper bound to
the incremental gain of the hysteresis operator Φ. A small gain theorem is used.
For a range of chosen parameters, closed-loop BIBO stability is guaranteed. A spe-
cific case of a theorem from [9] is presented regarding a fairly general closed-loop
system described by
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Figure 3.3: Closed-Loop System defined by (3.16) - (3.19)

e1(t) = u1(t)− y2(t), (3.16)

e2(t) = u2(t) + y1(t), (3.17)

y1(t) = H1(e1(t)), and (3.18)

y2(t) = H2(e2(t)). (3.19)

The assumptions on the equations will be made specific in the following theorem.

Theorem 3.4.5. [9, Thm 3.3.1] Consider the feedback system shown in Figure
3.3, and defined by (3.16) - (3.19). Suppose H1, H2 : L∞loc → L∞loc, and there are
constants γ̃1 and γ̃2 such that for every T ∈ R+ and u1, u2 ∈ L∞loc,

‖(H1u1)T − (H1u2)T‖∞ ≤ γ̃1 ‖u1T − u2T‖∞ ,
‖(H2u1)T − (H2u2)T‖∞ ≤ γ̃2 ‖u1T − u2T‖∞ .

If in addition, the solution corresponding to u1 = u2 = 0 ∈ L∞, then u1, u2 ∈ L∞
implies that e1, e2 ∈ L∞, that is, the system is BIBO-stable.

Theorem 3.4.6. If the parameters described in equations (3.10) to (3.15) satisfy

M

σ
λ

(
KP +

KI

ε

)
< 1,

then r(t) ∈ L∞(R+) implies e(t), u(t), v(t), y(t) ∈ L∞(R+).

Proof. Choose H1 = G ◦ Φ ◦ C, where G and C are the operators that correspond
to the transfer functions Ĝ(s) and Ĉ(s). Define H2 = I (the identity operator),
with gain γ̃2 = 1. To apply Theorem 3.4.5 to the system at hand, the following are
chosen: u2 = 0, e1 = e, u1 = r, y2 = e2 = y1 = y.
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Figure 3.4: Closed-Loop System defined by equations (3.10) - (3.15)

‖(G ◦ Φ ◦ C)(u1)− (G ◦ Φ ◦ C)(u2)‖∞ = ‖G ((Φ ◦ C)(u1)− (Φ ◦ C)(u2))‖∞

≤ |M |
σ
‖Φ (C(u1))− Φ (C(u2))‖∞

≤ |M |
σ
λ ‖C(u1 − u2)‖∞

≤ |M |
σ
λ

(
KP +

KI

ε

)
‖u1 − u2‖∞ .

From this calculation, it is deduced that the small gain condition is

γ̃1γ̃2 = |M |
σ
λ(KP + KI

ε
) < 1.�

Performing simulations and choosing different parameters has shown that this
bound yields not a necessary, but only sufficient condition. The range in the pa-
rameters that govern the gain are very limited because of the small gain condition.
These results hold for a linear system of arbitrary order, provided that ‖g‖1 is finite.

3.5 PID Control of Second-Order Systems with

Hysteresis

Using a PID controller, the tracking of a constant piecewise reference signal on a
second-order system experiencing hysteresis in the actuator is performed. Constant
disturbances were added to both the system, and the input as a measure of robust-
ness of the controller. Even with these disturbances, the tracking was found to be
asymptotic. The results from [18] and [23] are described in this section.
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Figure 3.5: Closed-Loop System defined by equations (3.21) and (3.22)

3.5.1 Model

The spring-mass-damper system is a classical example of a physical system modeled
by differential equations. The standard model without the presence of disturbances
or controlling forces is described by

mx′′(t) + cx′(t) + kx(t) = 0, x(0) = x0, v(0) = v0 (3.20)

where

m is the mass of the object,
c is the damping constant,
k is the linear spring constant, and
x(t) is the displacement at time t.

The parameters m, c, and k must all be positive. The control to be used is a
PID controller. Letting e(t) = x(t)− r,

u(t) = −KP e(t)−KI

∫ t

0

e(τ)dτ −KD
d

dt
(e(t)) + u0, u(0) = u0. (3.21)

As discussed previously, the input to the system will exhibit hysteresis. Two con-
stant disturbances d1, d2 are introduced as a measure of robustness to the controller.
See Figure 3.5, Ĝ(s) is the second-order system described in equation 3.20. The
modified system will have the form:

mx′′(t) + cx′(t) + kx(t) = Φ(u(t) + d2) + d1, x(0) = x0, (3.22)

x′(0) = v0, and u(0) = u0

3.5.2 Assumptions on Hysteresis Operators

Some further assumptions are required in order to achieve the results found in the
theorems in the next sections. There are six in total, but some necessary notation
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must first be introduced.

Definition 3.5.1. Let W 1,1
loc (R+) denote the space of locally absolutely continuous

functions. A function f ∈ W 1,1
loc (R+) if there exists g ∈ L1

loc(R+) such that

f(t) = f(0) +

∫ t

0

g(s)ds for all t ∈ R+.

This is a smaller space than the set of continuous functions. According to the
definition above, functions in this set must be locally L1-differentiable. That is,
on any interval, the derivative must be defined and bounded almost everywhere.
Throughout this section, θ will denote the step function, that is θ(t) = 1, for all
t ≥ 0.

For w ∈ C([0, α]), α ≥ 0, γ, δ > 0,

B(w; δ, γ) := {v ∈ C([0, α + γ]) : v|[0,α] = w, max
t∈[α,α+γ]

|v(t)− w(α)| ≤ δ}. (3.23)

With these notational definitions in place, the following assumptions can be
stated.

For a hysteresis operator Φ : C(R+)→ C(R+),

(N1) If u ∈ W 1,1
loc (R+), then Φ(u) ∈ W 1,1

loc (R+)

The hysteresis operator must map continuous functions that have bounded
derivatives almost everywhere to the same space of functions.

(N2) For u ∈ W 1,1
loc (R+), Φ satisfies:

(Φ(u))′(t)u′(t) ≥ 0, a.e. t ∈ I,

where a.e. means almost everywhere, and I is the domain of definition of u. Since
Φ(u) depends on u, the following is implied:

u′(t) > 0 implies (Φ(u))′(t) ≥ 0, and
u′(t) < 0 implies (Φ(u))′(t) ≤ 0
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wherever u′(t) is defined.

(N3) Φ is locally Lipschitz in the following manner: there exists λ > 0 such
that for all α ≥ 0 and w ∈ C([0, α]), there exists constants γ, δ > 0 such that

max
t∈[α,α+γ]

|(Φ(u))(t)−(Φ(v))(t)| ≤ λ max
t∈[α,α+γ]

|u(t)−v(t)|, for all u, v ∈ B(w; δ, γ).

Many hysteresis operators will satisfy a stronger condition, that is, a global
Lipschitz condition

sup
t∈R+

|(Φ(u))(t)− (Φ(v))(t)| ≤ λ sup
t∈R+

|u(t)− v(t)|, for all u, v : C(R+) −→ R+.

holds. If this is true, then (N3) is obviously true.

(N4) For all α ∈ R+ and all u ∈ C([0, α]), there exists c > 0 such that

max
τ∈[0,t]

|(Φ(u))(τ)| ≤ c(1 + max
τ∈[0,t]

|u(τ)|), for all t ∈ [0, α).

The last two assumptions require some simple definitions.

Definition 3.5.2. The numerical value set, denoted NVS (Φ) represents all the
possible values that Φ can output.

Definition 3.5.3. A function f is ultimately non-decreasing (non-increasing)
if there exists τ ∈ R+ such that f is non-decreasing (non-increasing) on [τ,∞).

Definition 3.5.4. A function f is approximately ultimately non-decreasing
(non-increasing) if for all ε > 0, there exists τ > 0 and an ultimately non-decreasing
(non-increasing function g such that for all t > τ ,

|f(t)− g(t)| < ε

The term approximately ultimately non-decreasing (non-increasing) is a broader
definition than ultimately non-decreasing (non-increasing) since functions that have
decaying oscillations (even if they continue to oscillate as t→∞) are included.

(N5) If u ∈ R+ is approximately ultimately non-decreasing and lim
t→∞

u(t) = ∞,

then (Φ(u))(t) and (Φ(−u))(t) converge to sup NVS Φ and inf NVS Φ, respectively
as t→∞.

41



(N6) If, for u ∈ C(R+), lim
t→∞

(Φ(u))(t) is in the interior of NVS Φ, then u is bounded.

The assumption (N4) is a limiting growth condition on Φ, relative to u. As-
sumptions (N5) and (N6) are similar in the sense that the behaviour of Φ must
in some sense follow the behaviour of u.

These assumptions will be referred to frequently throughout the remainder of
the section and will be required in proofs involving specific systems. Commonly
used hysteresis operators that satisfy (N1) - (N6) include the backlash operator,
elastic-plastic operator, and with some slight modifications (discussed later), the
Preisach operator (see Section 3.5.3).

3.5.3 Comparison of Assumptions from Valadkhan/Morris
Paper and Logemann Papers

A comparison of the assumptions on the hysteresis operator found in [41] and [18]
will be made. As in their respective sections, the assumptions found in [41] will be
denoted (A1)-(A4), while those found in [23] and [18] will be denoted (N1)-(N6).
For consistency, u(t) will be the input to the hysteresis operator, and y(t) = Φ(u(t))
will be the output. The first comparison deals with (A1) and (N1). They are as
follows:

(A1) If u(t) is continuous, then y(t) is continuous.

(N1) If u(t) ∈ W 1,1
loc (R+), then y(t) ∈ W 1,1

loc (R+),

where W 1,1
loc (R+) is the space of functions that are continuous and have a derivative

in L1(R+). At first glance, the two assumptions look very similar, however (N1)
deals with a smaller space than (A1). It is important to note that neither assump-
tion implies the other.

Next, a comparison is made between (A2) and (N3), which both deal with the
Lipschitz property of Φ acting on functions in B1(w, t1, t2) and B(w, δ, γ) respec-
tively. The sets B1 and B are similar, with different names for the parameters.
(A2) provides a global Lipschitz condition for Φ, while (N3) is only a local Lips-
chitz condition (on Φ). Technically, (A2) is stronger. Following the introduction
of (N1)-(N6), [18] also describes a global Lipschitz condition, that is identical to
(A2).

(A3) will now be compared to (N2):
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(A3) Consider an arbitrary interval [ti, tf ]. If for every t ∈ [ti, tf ], u(ti) ≥ u(t), then
y(ti) ≥ y(tf ). Alternative, if for every t ∈ [ti, tf ], u(ti) ≤ u(t), then y(ti) ≤ y(tf ).

(N2) For u ∈ W 1,1
loc (R+), Φ satisfies:

(Φ(u))′(t)u′(t) ≥ 0,

wherever u′(t) is defined. Recall that this is equivalent to whenever u(t) is increas-
ing, Φ(u(t)) is nondecreasing, and whenever u(t) is decreasing, Φ(u(t)) is nonin-
creasing. Since the interval in (A3) can be chosen arbitrarily, setting t = tf in
the assumption yields that monotonicity in the sense of (N2) is preserved. There-
fore, (A3) implies (N2). The converse is not satisfied, since (A3) allows only for
counter-clockwise loops while clockwise loops are not permitted. Assumption (N2)
does not imply (A3). Also note that in (A3), there are no assumptions regarding
the derivative of u(t) and Φ(u(t)) whereas these are required for (N2).

The remainder of this section will show that (A4) either implies, or is a specific
case of each of (N4)-(N6). Recall that (A4) deals with the saturation of the
system:

(A4) There exists some usat > 0, y+, and y− such that if u(t) ≥ usat, then
Φ(u(t)) = y+, and Φ(−u(t)) = y−.

First, a comparison to (N4) will be made:

(N4) For all α ∈ R+, and all u ∈ C([0, α]), there exists c > 0 such that

max
τ∈[0,t]

|(Φ(u))(τ)| ≤ c(1 + max
τ∈[0,t]

|u(τ)|), for every t ∈ [0, α).

Assumption (N4) places a bound on growth of Φ(u(t)) that depends on u(t).
It is immediately obvious that (N4) does not imply (A4), since an input u(t) can
be chosen that increases to infinity, resulting in y(t) not having a finite bound on
y(t) as required by (A4). Recall that from Theorem 3.3.5, assumptions (A3) and
(A4) together imply that there exist y+ and y− such that y− ≤ y(t) ≤ y+ for every
t ≥ 0. To show that this implies (N4),

Let c = max{|y+|, |y−|}.
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max
τ∈[0,t]

|(Φ(u))(τ)| = max
τ∈[0,t]

|y(τ)|

≤ c,

≤ c+ c max
τ∈[0,t]

|u(τ)|,

= c(1 + max
τ∈[0,t]

|u(τ)|).

Therefore assumptions (A3) and (A4) imply assumption (N4).

In comparison to (N5), (A4) is a specific case of (N5).

(N5) If u ∈ R+ is approximately ultimately non-decreasing, and lim
t→∞

u(t) = ∞,

then Φ(u(t)) and Φ(−u(t)) will converge to sup NVS Φ, and inf NVS Φ respectively,
as t→∞.

Assuming (A4) yields: if lim
t→∞

u(t) = ∞, then lim
t→∞

Φ(u(t)) = sup NVSΦ = y+,

and lim
t→∞

Φ(−u(t)) = inf NVSΦ = y−, hence satisfying (N5). (A4) guarantees that

sup NVS Φ and inf NVS Φ are reached by a finite u(t), whereas in (N5) sup NVSΦ
and inf NVSΦ need not be finite, and there need not exist a usat as described in
(A4). Thus Assumption (A4) implies Assumption (N5). The converse is obvi-
ously not true.

Finally, it will be shown that assumptions (A3) and (A4) together imply (N6):

(N6) If for u ∈ C(R+), lim
t→∞

Φ(u(t)) ∈ int NVS Φ, then u is bounded.

Assumptions (A3) and (A4) (see Theorem 3.3.5) imply that NVS Φ = [y−, y+].
This property along with the contrapositive of (A4) yields that if y ∈ (y−, y+), then
|u(t)| < usat. Hence, u is bounded. Therefore assumptions (A3) and (A4) imply
assumption (N6). The converse is not true. It is clear that assumption (N6) does
not imply (A3). To compare assumption (N6) with assumption (A4), if NVS Φ
is not a finite interval, then usat as described in assumption (A4) does not exist.
If NVS Φ is a finite interval, then the contrapositive of (N6) only guarantees that
for an unbounded u ∈ C(R+), sup NVS Φ or inf NVS Φ is reached as u approaches
infinity. This does not assert the existence of a usat. This is weaker than (A4)
which guarantees that y+ or y− are reached as soon as |u(t)| ≥ usat.

Also note that assumptions (N1) - (N6) can have NVS Φ = (−∞,∞), whereas
assumptions (A1) - (A4) cannot.
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To summarize the comparisons:

(A1) acts on a larger space than (N1) but the assumptions do not imply each other.

(A2) implies (N3), (if the signals u and y are differentiable),

(A3) implies (N2),

(A3) and (A4) imply (N4)− (N6).

3.5.4 Integral Control In The Presence Of Hysteresis In
The Input

A simplified version of a result found in [23, Thm 4.1] is presented. (In reference
to the original paper, h, ϑ, ψ, g and u in [23] are replaced with 0, 0, the identity
map, η, and x respectively.) The introduction of a space of functions similar to
the Lp-space is required. Let Lpα(R+) denote the space of α-exponentially weighted
functions. That is, f ∈ Lpα(R+) if∫ ∞

0

(f(t)e−αt)pdt <∞.

Also,

‖f‖Lpα(R+) =
∥∥f(·)e−α·

∥∥
p
.

This is the space of functions that decrease faster than an exponential function
with constant α < 0.

Let G : L2(R+)→ L2(R+) be a linear, bounded, shift-invariant operator defined
by Gu = g ? u, where g ∈ L1

α(R+) + Rδ0 for some α < 0. The transfer function of G
is the Laplace transform of g, (denoted ĝ). Note that ĝ ∈ H∞(C+). The following
assumptions are made on ĝ.

Assumption 3.5.5. [23, Assumption (L)] Let ĝ satisfy

ĝ(0) := lim
s→0,Re s>0

ĝ(s) exists , ĝ(0) > 0, and,

lim sup
s→0,Re s>0

∣∣∣∣ ĝ(s)− ĝ(0)

s

∣∣∣∣ <∞.
The material presented in this section is entirely done by Logemann and his

associates. His work can be broken down into successive theorems, which are each
steps to the final product.
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Proposition 3.5.6. [23, Prop 2.1] Assume there are G, N , and r such that

(a) G : L2(R+)→ L2(R+) satisfies assumption 3.5.5;
(b) N : R+ × R→ R satisfying

0 ≤ N(t, ξ)ξ ≤ aξ2, for every (t, ξ) ∈ [t0,∞)× R

(c) r ∈ L2(R+) + Rθ.

If v is a global solution to

v(t) = r(t)−
∫ t

0

(G(N(·, v)))(τ)dτ

then

(i) v − r ∈ L∞(R+);

(ii) N(·, v) ∈ L2(R+);

(iii)

∫ t

0

N(τ, v(τ))dτ converges to a finite limit as t→∞.

Before proving results regarding the system presented in the next theorem, it
is necessary to establish the existence and uniqueness of a solution for the system.
Since the proof is rather long, it will be presented in Appendices A.1 and A.2. The
actual existence and uniqueness proof is for a more general system (Appendix A.1).
It is shown in Appendix A.2 that the system (3.25) is a special case of the system
in Appendix A.1. The proof uses a standard ODEs argument that asserts the
existence and uniqueness of a solution on a small interval by using the contraction
mapping theorem. Further arguments are made to extend uniqueness to all of R+.

The following lemmas will be referred to in the proof of the next theorem. For
the first lemma, it can intuitively thought that f2 ultimately dominates f3.

Lemma 3.5.7. [23, Lemma 2.2] Let g ∈ W 1,1
loc (R+) satisfy

g′ = f1(f2 − f3), (3.24)

where f1 /∈ L1(R+) is non-negative and bounded, lim
t→∞

f2(t) = l 6= 0 and f3 ∈
Lp(R+), where 1 ≤ p <∞. Then the following statements hold.

1. If l < 0, then g is approximately ultimately non-increasing and lim
t→∞

g(t) =

−∞.

2. If l > 0, then g is approximately ultimately non-decreasing and lim
t→∞

g(t) =∞.
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Lemma 3.5.8. [21, Lemma 3.2c)] Let Φ : C(R+) → C(R+) be a hysteresis oper-
ator satisfying (N1) - (N6), with Lipschitz constant λ. For any u ∈ W 1,1

loc (R+),
there exists a measurable function du : R+ → [0, λ] such that

(Φ(u))′(t) = du(t)u
′(t), a.e. t ∈ R+.

Theorem 3.5.9. [23, Thm 4.1] Consider the system

x′ = κ(ρ− η − (G ◦ Φ)(x)), x(0) = x0 (3.25)

with the following assumptions:

1. G : L2(R+) → L2(R+) is a linear, bounded, and shift-invariant operator, as
described above, satisfying Assumption 3.5.5;

2. η ∈ L2(R+);

3. Φ is a hysteresis operator, satisfying (N1) - (N6) with associated Lipschitz
constant λ1;

4. There exists µ ∈ NVS Φ such that ρ = ĝ(0)µ;

5. κ : R+ → R is measurable, non-negative and bounded with:

lim sup
t→∞

κ(t) <
1

λ1|f(ĝ)|
,

where f(ĝ) = inf
ω∈R∗

Re

(
ĝ(iω)

iω

)
.

Then there exists a unique solution x ∈ W 1,1
loc (R+) to (3.25) and the following

statements hold:

1. (Φ(x))′ ∈ L2(R+) and the limit Φ∞ := lim
t→∞

(Φ(x))(t) exists and is finite.

2. The signal w = η+ (G ◦Φ)(x) can be decomposed into w = w1 +w2 where w1

is continuous and has a finite limit:

w∞1 = lim
t→∞

w1(t) = ĝ(0)Φ∞,

and w2 ∈ L2(R+). Under the additional assumption that:

lim
t→∞

(η(t) + Φ(x(0))(Gθ(t)− ĝ(0))) = 0, (3.26)
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lim
t→∞

w2(t) = 0.

3. If κ /∈ L1(R+), then w∞1 = ρ and the error signal e = ρ−w can be decomposed
as e = e1 +e2 where e1 is continuous and e2 ∈ L2(R+). If additionally, (3.26)
holds, then lim

t→∞
e(t) = 0.

4. If µ described in the assumptions is in the interior of NVS Φ, then x is
bounded.

Proof.[Proof of Theorem 3.5.9] Each result in the theorem will be shown sepa-
rately.

(1) The aim here is to apply Proposition 3.5.6 to the signal

w̃ := w − ρ = η + (G ◦ Φ)(x)− ρ.

By the assumptions in the theorem, there exists µ such that ρ = ĝ(0)µ. By Lemma
3.5.8,

(Φ(x))′(t) = dx(t)x
′(t)

= dx(t)κ(t)(ρ− η − (G ◦ Φ)(x))

= −dx(t)κ(t)w̃(t).

Define N(t, ξ) = κ(t)dx(t)ξ. Integrating yields

(Φ(x))(t) = (Φ(x))(0)−
∫ t

0

N(τ, w̃(τ))dτ .

Applying the operator G on both sides yields

(G ◦ Φ(x))(t) = G(Φ(x(0))θ)(t)− G
(∫ t

0

N(τ, w̃(τ))(τ)dτ

)
.

By linearity and shift-invariance of G,

(G ◦ Φ(x))(t) = (Φ(x(0)))(Gθ)(t)−
∫ t

0

(G(N(τ, w̃(τ))))(τ)dτ

Adding η − ĝ(0)µ to both sides,

(G ◦ Φ(x))(t) + η(t)− ĝ(0)µ = η − ĝ(0)µ+ Φ(x(0))(Gθ)(t)−
∫ t

0

G(N(·, w̃))(τ)dτ.

(3.27)
Defining
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r := η − ĝ(0)µθ + (Φ(x))(0)Gθ,

equation (3.27) can be written

w̃(t) = r(t)−
∫ t

0

G(N(τ, w̃(τ)))(τ)dτ. (3.28)

Equation (3.28) has the same form as that found in Proposition 3.5.6. It remains to
verify that the hypotheses on the components of (3.27) hold. Consider an operator
H: L2

loc(R+)→ L2
loc(R+) defined by:

(Hv)(t) :=

∫ t

0

(Gv(τ)− ĝ(0)v(τ))dτ. (3.29)

where G is the previously described convolution operator. The transfer function
of H is the Laplace transform of the corresponding function h. This is given by

ĥ(s) =
ĝ(s)− ĝ(0)

s
. Note also that the inverse Laplace transform of ĥ is the function

Gθ − ĝ(0)θ. It is clear from Assumption 3.5.5 that ĥ ∈ H∞(C+). It can also be
shown that ĥ ∈ H2(C+). Let r > 0. For Re(s) > 0 and |s| > r,

|ĥ(s)| =
∣∣∣∣ ĝ(s)− ĝ(0)

s

∣∣∣∣
≤

sup
Re(s)>0

|ĝ(s)|+ sup
Re(s)>0

|ĝ(s)|

|s|

=
2||ĝ||H∞
|s|

=

(
1 + |s|
|s|

)
2||ĝ||H∞
1 + |s|

=

(
1

|s|
+ 1

)
2||ĝ||H∞
1 + |s|

≤
(

1

r
+ 1

)
2||ĝ||H∞
1 + |s|

=
M1

1 + |s|

where M1 = 2(1
r

+ 1)||ĝ||H∞ . For |s| < r and Re(s) > 0,

|ĥ(s)| ≤ ||ĥ||H∞

=
(1 + |s|)||ĥ||H∞

1 + |s|

≤ (1 + r)||ĥ||H∞
1 + |s|

=
M2

1 + |s|
.
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where M2 = (1 + r)||ĥ||H∞ . Choose γ = max{M1,M2}. By Assumption 3.5.5
and ĝ, ĥ ∈ H∞(C+), γ <∞. The transfer function ĥ is bounded by γ

1+|s| for all of

Re(s) > 0. It is clear that this transfer function belongs in H2(C+), so ĥ ∈ H2(C+).

By the Paley-Wiener Theorem [8, Appendix 6.21], Gθ− ĝ(0)θ ∈ L2(R+), which
consequently implies that Gθ ∈ L2(R+) + Rθ since ĝ(0) ∈ R. Thus the first and
third conditions in Proposition 3.5.6 are satisfied. To show the second condition,
note that

0 ≤ N(t, ξ)ξ ≤ λ1κ(t)ξ2.

By the assumption on κ (assumption 5 in the theorem statement), there exists
0 < a < 1/|f(G)| and t0 ≥ 0 such that

0 ≤ N(t, ξ)ξ ≤ aξ2, for every (t, ξ) ∈ [t0,∞)× R.

Thus Proposition 3.5.6 can be applied, yielding that N(·, w̃) ∈ L2(R+) and the
limit of

∫ t
0
N(τ, w̃(τ))dτ as t→∞ exists and is finite. Hence (Φ(x))′ = −N(·, w̃) ∈

L2(R+), and

lim
t→∞

(Φ(x))(t) = (Φ(x))(0)− lim
t→∞

∫ t

0

N(τ, w̃(τ))dτ

exists and is finite, which proves the first result of Theorem 3.5.9.

(2) Let w1 := ĝ(0)Φ(x) and let w2 := η + (Φ(x))(0)(Gθ − ĝ(0) +H((Φ(x))′). Note
that

(H(Φ(x))′)(t)

=

∫ t

0

(G ◦ (Φ(x))′(τ)− ĝ(0)(Φ(x))′(τ)) dτ

= (G ◦ Φ)(x(t))− (G ◦ Φ)(x(0))− ĝ(0) [(Φ(x))(t)− (Φ(x))(0)] .

It is easily verified that w1 and w2 form a valid decomposition of w. By re-
sult (1), w∞1 := ĝ(0)Φ∞ exists and is finite. Considering the components of w2,
η ∈ L2(R+), and from the proof of result (1), it was argued by the Paley-Wiener
Theorem (see [8, Appendix 6.26]) that Gθ− ĝ(0)θ ∈ L2(R+). Also, by Assumption
3.5.5, ĥ ∈ H∞(C+), which implies that H maps L2(R+) to itself. From result (1),
(Φ(x))′ ∈ L2(R+), so H(Φ(x))′) ∈ L2(R+). Therefore w2 ∈ L2(R+).

With the additional assumption described in the result of (2), the first two
terms of w2 → 0 as t → ∞. It remains to show that lim

t→∞
(H(Φ(x)′))(t) = 0.

Since H is bounded, linear, and shift-invariant, there exists a function h where
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H((Φ(x))′) = h ? (Φ(x))′. Again by the Paley-Wiener Theorem (see [8, Appendix
6.26]), h (whose Laplace transform is in H2(C+)) belongs in L2(R+). From Ap-
pendix C of [9], the term (H(Φ(x)′))(t) is a convolution of two functions in L2(R+)
and hence has a zero limit.

(3) Rewrite the system (3.25) as

x′ = κ(ρ− w1 − w2). (3.30)

The aim is to prove lim
t→∞

w1 = w∞1 = ρ. Suppose w∞1 > ρ. Lemma 3.5.7 can be used

with g = x, f1 = κ, f2 = ρ− w1 and f3 = w2. Then x is approximately ultimately
non-increasing and lim

t→∞
x(t) = −∞. Hence by (N5),

lim
t→∞

Φ(x(t)) = Φ∞ = inf NVS Φ.

Since it was assumed in the theorem statement that µ ∈ NVS Φ,

ρ = ĝ(0)µ ≥ ĝ(0)Φ∞ = w∞1 .

A contradiction is reached. If the same argument is made for w∞1 < ρ, the conclu-
sion that w∞1 = ρ is reached. Finally, in letting e1 = ρ − w1 and e2 = −w2, the
required decomposition for the additional property that lim

t→∞
e(t) = 0 is achieved.

(4) Two cases will be considered independently based on whether or not κ belongs
to L1(R+). Suppose it does, considering the system in the form above in (3.30), w1

is bounded, and w2 ∈ L2(R+). By the fact that κ ∈ L1(R+) and that it is bounded,
the L2-norm of κ must also be bounded. Note that

‖κ‖2 =

(∫ ∞
0

(κ(t))2dτ

) 1
2

≤
(

max
t∈[0,∞)

|κ(t)|
)1/2(∫ ∞

0

|κ(t)|dτ
)1/2

= ‖κ‖
1
2
∞ ‖κ‖

1
2
1

<∞

Finally, κ(ρ − w1 − w2) will be shown to belong to L1(R+). For the first two
terms, ρ and w1 are both bounded so κρ and κw1 both belong to L1(R+). For the
last term, an appeal is made to Hölder’s inequality. Since both κ and w2 are in
L2(R+),

‖κw2‖1 ≤ ‖κ‖2 ‖w2‖2 <∞.
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Hence x′ ∈ L1(R+), and is integrable and hence x is bounded. If κ /∈ L1(R+),
then by result (3), w1(t) → ρ as t → ∞. Therefore w1 = ĝ(0)Φ(x) implies that
Φ∞ ∈ int(NVS(Φ)). By (N6), x is bounded. �

Next, the main result of the section is presented.

Theorem 3.5.10. [18, Thm 3.2] Let g ∈ L1
α(R+) + Rδ0 for some α < 0, where δ0

is the Dirac distribution with support at 0. Let r1, r2 ∈ R, κ > 0 and q ∈ L2(R+)
with lim

t→∞
q(t) = 0.

Let Φ : C(R+) → C(R+) be a hysteresis operator that satisfies assumptions
(N1) - (N6) with associated Lipschitz constant λ > 0.

Let ĝ denote the Laplace Transform of g, and ĝ(0) > 0, r1 +
r2

ĝ(0)
∈ NVS Φ,

and define f(ĝ) = inf
ω∈R∗

Re

(
ĝ(iω)

iω

)
. For every κ such that

0 < κ <

{
1

λ|f(ĝ)| , f(ĝ) 6= 0

∞, f(ĝ) = 0
, (3.31)

and y0 ∈ R, there exists a unique solution y ∈ W 1,1
loc (R+) to

y′ = κ(r1(g ? θ) + q + r2θ − (g ? Φ(y))), y(0) = y0 ∈ R, (3.32)

such that lim
t→∞

y′(t) = 0, and lim
t→∞

(Φ(y))(t) = r1 +
r2

ĝ(0)
and (Φ(y))′ ∈ L2(R+).

Moreover, if r1 +
r2

ĝ(0)
∈ int NVS Φ, then y is bounded.

This result is pertinent because it describes asymptotic properties and will be
useful in showing asymptotic tracking in the next theorem. Theorem 3.5.10 states
the limit of the hysteresis operator and guarantees that the solution of the differ-
ential equation (3.32) tends to zero as t tends to infinity.

Proof: It will be shown that this current setup satisfies the previous theorem
with (3.32) taking the role of (3.25). First, since g ∈ L1

α(R+) + Rδ0 with α < 0,
hence ĝ is holomorphic and bounded on the open right-half plane. Furthermore,
−tg(t) ∈ L1

α(R+) + Rδ0 since the exponential decay will eventually dominate the
polynomial factor. Its Laplace transform ĝ′(s) must also exist, and

|ĝ′(0)| <∞, and

lim sup
s→0,Re s>0

∣∣∣∣ ĝ(s)− ĝ(0)

s

∣∣∣∣ = |ĝ′(0)|
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From the assumptions of this theorem ĝ(0) > 0 thus Assumption 3.5.5 is satis-
fied. Next, by the Final Value Theorem, g ? θ − ĝ(0)→ 0 as t→∞ where θ is the
unit step function. Also g ? θ− ĝ(0) ∈ L2(R+) by the Paley-Wiener Theorem, since
its Laplace transform is in H2(C+). Comparing (3.32) with the system found in
Theorem 3.5.9, let ρ = ĝ(0)r1 + r2 and η = r1(ĝ(0)− g ? θ)− q, which is in L2(R+)
since each term is in L2(R+).

Therefore Theorem 3.5.9 can be applied to (3.32). The properties lim
t→∞

y′(t) = 0,

(Φ(y))′ ∈ L2(R+), and lim
t→∞

(Φ(y))(t) exists are true. Moreover, y is bounded,

provided that r1 + r2
ĝ(0)

is an interior point of NVS Φ. Finally, it is claimed that

Φ∞ = r1 + r2/ĝ(0). This can be verified from equation (3.32) by applying the
properties shown already. As t → ∞, y′(t) → 0, q → 0, (g ? θ)(t) → ĝ(0) and
(g ? Φ(y))(t) → ĝ(0)Φ∞ by use of the Final Value Theorem. As t → ∞, equation
(3.32) becomes

0 = κ(r1ĝ(0) + r2 − ĝ(0)Φ∞)

Dividing both sides by κ and rearranging the terms yields

Φ∞ = r1 +
r2

ĝ(0)
. �

3.5.5 PID Control of Systems with Hysteresis

In this section, asymptotic tracking of the system (3.22) is presented. See Figure
3.5. The transfer function Ĝ(s) is the second-order system described in equation
(3.22). It is shown that through the manipulation of the control parameters, the de-
sired closed-loop properties can be achieved even without the presence of derivative
control.

Theorem 3.5.11. [18, Thm 4.3] Let Φ : C(R+)→ C(R+) be a hysteresis operator
satisfying (N1) - (N6), with associated Lipschitz constant λ > 0. Let r, d1, d2 ∈ R
and assume that rk − d1 ∈ NVS Φ. Consider two cases,

Case (a): KD = 0 and KP , KI > 0 such that

(A) 0 < KI <
KP k
c

< ck
λm
.

Case (b): KP , KI , KD > 0 such that

(B1) 0 < KI <∞,

(B2) KP >
cKI

k
,
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(B3) KD >
mKP

c
,

Then there exists a unique solution x ∈ C2(R+) of the closed-loop system given
by (3.22) such that

lim
t→∞

x(t) = r , lim
t→∞

x′(t) = 0, lim
t→∞

x′′(t) = 0, lim
t→∞

(Φ(u+ d2θ))(t) = rk − d1

Moreover, if rk − d1 is an interior point of NVS Φ, then the control signal u
given by (3.1) is bounded.

It is useful to know the steady-state result of the control under the hysteretic
effects. Note that asymptotic tracking of a constant reference signal is the result of
this theorem.

Proof. The aim of this proof is to demonstrate that the system satisfies the as-
sumptions of Theorem 3.5.10. Several functions must first be defined and it will be
shown that those functions live in the desired spaces.

Let p(s) := ms2 + cs+ k, let h be the solution of the initial value problem

p

(
d

dt

)
h = 0, h(0) = 0, h′(0) =

1

m
,

and let ρ be the solution of the initial-value problem

p

(
d

dt

)
ρ = 0, ρ(0) = x0, ρ′(0) = v0.

By direct substitution, the function x

x = h ?
[
Φ
(
−KP (x− rθ)−KDx

′ −KI

∫ ·
0
(x(τ)− r)dτ + (u0 + d2)θ

)
+ d1θ

]
+ ρ,

satisfies the system (3.22). Define w(t) = u(t) + d2. The following calculation can
easily be verified by direct substitution. The Dirac distribution δ0 is the identity
element of convolution, and differentiation of a convolution yields: (g ? h)′(t) =
g(t)h(0) + g ?h′ = g(t) ?h(0)δ0 + (g ?h′)(t) (see Appendix A.3). Thus, for all t ≥ 0,

w(t) = u(t) + d2

= −KP (x− r)−KDx
′ −KI

∫ ·
0

(x(τ)− r)dτ + u0 + d2.

Differentiating and defining
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g :=
KD

KI

[
h′′ +

1

m
δ0

]
+
KP

KI

h′ + h,

and

q := −KD

KI

ρ′′ − KP

KI

ρ′ − ρ.

yields

w′ = −KPx
′ −KDx

′′ −KI(x− rθ) (3.33)

= KI(rθ + q − d1g ? θ − g ? Φ(w)), (3.34)

where

w(0) = −KP (x0 − r)−KDv0 + u0 + d2.

Note that w′ has the form of y′ in Theorem 3.5.10 with κ = KI , r1 = −d1, and
r2 = r. With this setup in mind, the rest of the assumptions will be shown to hold.
The denominator of both of the transfer functions of h and ρ is p(s), whose roots

are: −c±
√
c2−4km
2

, which clearly have negative real part. The poles of the transfer
functions of h and ρ all lie in the left-half complex plane, which implies that the
functions and their derivatives decay exponentially and are hence in L2(R+). See
Appendix A.4 for a detailed explanation.

Because linear combinations of h, ρ and their derivatives are exponentially de-
caying, q ∈ L2(R+) and lim

t→∞
q(t) = 0, and g ∈ L1

α(R+) + Rδ0 for some α < 0. The

Laplace transform of g is

ĝ(s) =
1

KI

KDs
2 +KP s+KI

ms2 + cs+ k
.

Therefore ĝ(0) = 1/k > 0. Also, by assumption rk − d1 = r2/ĝ(0) + r1 ∈ NVS Φ.
It remains to show that KI satisfies the role of κ as described in Theorem 3.5.10,
by verifying (3.31). Consider
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f(ĝ) = inf
ω∈R∗

Re

(
ĝ(iω)

iω

)
= inf

ω∈R∗
Re

(
KD(iω)2 +KP iω +KI

KI(m(iω)3 + c(iω)2 + kiω)

)
= inf

ω∈R∗
Re

(
−KDω

2 +KI +KP iω

KI(−cω2 + i(kω −mω3))
· −cω

2 − i(kω −mω3)

−cω2 − i(kω −mω3)

)
= inf

ω∈R∗
1

KI

(
KDcω

4 −KIcω
2 +KPkω

2 −KPmω
4

c2ω4 + (kω −mω3)2

)
, let ξ = ω2 vary from (0,∞)

= inf
ξ∈R+

1

KI

(
(KPk −KIc) + ξ(KDc−mKP )

m2ξ2 + (c2 − 2mk)ξ + k2

)
= inf

ξ∈R+

(
(KPk −KIc) + ξ(KDc−mKP )

KI((mξ − k)2 + c2ξ)

)
.

where ξ = ω2 and let ζ : R+ → R be defined by

ζ(ξ) =
(kKP − cKI) + ξ(cKD −mKP )

KI((mξ − k)2 + c2ξ)
.

At this point, each of the two cases are considered separately and are each shown
to satisfy (3.31).

Case (a): Let KD = 0, and assume (A) holds. From (A), kKP − cKI > 0. The
denominator of ζ is positive for all ξ ≥ 0. Since KD = 0, if ξ > kKP−cKI

mKP
, then

ζ(ξ) < 0. Thus f(ĝ) defined above is negative. Also,

f(ĝ) ≥ inf
ξ∈R+

µ(ξ),

where µ(ξ) :=
−mKP ξ

KI((mξ − k)2 + c2ξ)
. The function µ attains a global minimum over

R+ at ξ = k/m, and hence

0 > f(ĝ) ≥ µ(k/m) = −mKP

c2KI

.

By (A), 1 < c2/(λmKP ), hence
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0 < KI <
KIc

2

λmKP

≤ 1

λ|f(ĝ)|
.

Thus, if KD = 0, (3.31) is satisfied by choosing κ = KI .

It remains to show that the hypothesis holds for Case b). Let KP , KI , KD > 0
and (B1), (B2), (B3) hold, then both terms in the numerator of ζ are positive,
as is the denominator, so ζ(ξ) ≥ 0 for all ξ ∈ R+. Along with f(ĝ) = lim

ξ→∞
ζ(ξ) = 0,

KI = κ can take on any real value, hence the assumption in equation (3.31) is
satisfied.

Therefore, all the hypotheses of Theorem 3.5.10 are satisfied. Hence, there ex-
ists a unique solution w ∈ C1(R+) to (3.34), such that w′(t)→ 0 and (Φ(w))(t)→
rk − d1 as t→∞. Finally, consider (3.34),

KDe
′′ +KP e

′ +KIe = −w′,

with −w′ as the input to the system. Since KP , KI > 0, and KD ≥ 0 and w′(t)→ 0
as t → ∞ (shown above), e(t) → 0 (that is, x(t) → r). By an application of the
Final Value Theorem, e′(t) = x′(t) → 0 as t → ∞. From equation (3.33), as
t approaches ∞, x′′(t) approaches 0 since all the other components decay to 0.
Finally, if r1 + r2/ĝ(0) = −d1 + rk ∈ int NVS Φ, then boundedness of w, and hence
by its definition, boundedness of u follows.

3.6 Verification of Results for First-Order Sys-

tem

The work presented in [18] is in the context of second-order systems. A verifica-
tion that the results hold true for a first-order system is given here. Logemann’s
approach (building on successive theorems) will be especially useful in this context.
As in the previous setup, u(t) is the PID controller (3.21). Consider

Mx′(t) + σx(t) = Φ(u(t) + d2) + d1, x(0) = x0. (3.35)

The results of applying Theorem 3.5.10 to the first-order system (3.35) are sum-
marized in the following corollary.

Corollary 3.6.1. Let Φ : C(R+)→ C(R+) be a hysteresis operator satisfying (N1)
- (N6), with associated Lipschitz constant λ > 0. Let r, d1, d2 ∈ R and assume that
rσ − d1 ∈ NVS Φ. Let M , σ > 0. Consider two cases,
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Case (a): KD = 0 and let KP , KI > 0 such that:

(A) 0 < KI <
KP σ
M

Case (b): Let KP , KI , KD > 0 such that:

(B1) 0 < KI <∞,

(B2) KP >
KIM

σ
,

(B3) KD <
M(KPσ −MKI)

σ2
,

Then there exists a unique solution x(t) of the closed-loop system given by
equation (3.35) such that

lim
t→∞

x(t) = r , lim
t→∞

x′(t) = 0, lim
t→∞

(Φ(u+ d2θ))(t) = rσ − d1.

Moreover, if rσ − d1 is an interior point of NVS Φ, then the control signal u given
by equation (3.1) is bounded.

Proof. The structure of this proof is very similar to that of Theorem 3.5.11.

Let p(s) := Ms+ σ, and h be the solution of the initial value problem

p

(
d

dt

)
h = 0, h(0) =

1

M
.

Similarly, let ρ be the solution to the initial value problem:

p

(
d

dt

)
ρ = 0, ρ(0) = x0.

As before, define x(t) which satisfies equation (3.35), and define w(t), q(t) and
g(t) in the same manner as for the proof of Theorem 3.5.11:

x = h ? [Φ(u+ d2)θ + d1θ] + ρ,

w = u+ d2θ,

w′ = KI(rθ + q − d1g ? θ − g ? Φ(w)),

q = −KD

KI

ρ′′ − KP

KI

ρ′ − ρ,

g =
KD

KI

[h′′ + h′(0)δ0] +
KP

KI

[h′ +
1

M
δ0] + h.
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Since ρ and h are exponentially decaying functions, q ∈ L2(R+) and g ∈
L1
α(R+) + Rδ0, for some α < 0. The Laplace transform of g yields

ĝ(s) =
1

KI

MKP s+MKI −KDsσ

M(Ms+ σ)
, where ĝ(0) =

1

σ
> 0.

It remains to show that κ, or in the present context KI , satisfies the required
assumption in each of the cases, but first, a calculation of f(ĝ) must be performed.
Again, let

f(ĝ) = inf
ω∈R∗

Re

(
ĝ(iω)

iω

)
,

= inf
ξ∈R+

(ζ(ξ)) .

Note that ξ = ω2 > 0. After some algebraic computations, the following be-
comes the equation to be minimized:

ζ(ξ) =
1

KI

−M2KI +MKPσ −KDσ
2

M3ξ +Mσ2
.

Case (a): Let KD = 0, and (A) hold. The third term in the numerator disap-
pears. By condition (A), KP and KI must be chosen such that −MKI +KPσ > 0.
Hence, the function ζ is always positive, and approaches 0 as ξ becomes arbitrarily
large. The assumption (3.31) is satisfied with f(ĝ) = 0.

Case (b): Let KD > 0, such that (B1), (B2) and (B3) hold. Under a similar
argument as case (a), ζ is positive and ζ → 0 as ξ →∞.

Hence all the required assumptions are satisfied, and Theorem 3.5.10 can be
applied. By the same arguments used at the end of Theorem 3.5.11, the conclusions
of this corollary follow.
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3.7 Other Forms of Control of Hysteretic Sys-

tems

While the work presented in this thesis is focused on the PID control of hysteretic
systems, there has been some control work done outside of this area. A brief
overview of other methods of control applied to hysteretic systems will be presented
here. The modeling of the hysteretic system may vary from paper to paper, and
may include models not mentioned in the modelling section. Several papers are
concerned with specific applications such as the control of magnetostrictives. The
focus here is on the control method rather than the hysteresis model, and on the
results achieved (for example, stability and tracking).

3.7.1 Optimal Control

The optimal control problem is well known in the literature. Suppose there are
a set of differential equations that govern the dynamics of a system. The system
is subject to some inputs, and there are certain optimization criteria that need
to be met. The optimal control law is the solution that satisfies the optimization
criteria while at the same time minimizing a cost functional that is chosen based
on design parameters. For a physical example, consider the well-known inverted
pendulum and cart system. There is a pendulum that is free to swing about an
axis of rotation, attached to a cart that can exhibit motion on a one dimensional
track. The control can accelerate the cart back and forth. Given an initial angle of
the pendulum and starting reference point on the track, the optimization criteria
requires the system to balance the pendulum upright, while bringing the cart to
a desired origin point. The state-space formulation considers four states: position
and velocity of each of the pendulum (angular quantities in this case) and the cart.
The cost function is chosen to be some combination of those four quantities.

In [3], a general system is introduced that can contain hysteretic components
modeled by the Preisach model. They find viscosity solutions to the derived
Hamilton-Jacobi-Bellman equation, which are solutions that can have points where
the solution is not differentiable, but still satisfies the system in an appropriate
sense. The value function is shown to be bounded. The same concept is evaluated
by the same author while considering the play operator and the Prandtl-Ishlinskii
operator in [2]. An example of a special case of optimal control, linear quadratic
regulator, can be found in [31], applied to a hysteretic system.

3.7.2 Sliding Mode Control

Contrary to many other control theory formulations, the control law produced by
sliding mode control is not continuous. The control switches between different
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Figure 3.6: A controlled hysteretic system with inverse compensation

smooth control laws. Intuitively, the method used to drive the system towards the
stable equilibrium is dependent on its position relative to the equilibrium. The
movement towards this surface is known as a sliding mode. Continuing with the
cart-pendulum example mentioned previously, the stable surface is the pendulum
in the upright position and the cart returning to its origin on the track. A sliding
mode controller for this system can take on two values, a positive or negative value
with the same magnitude. The input is driven towards the equilibrium, should it
in some sense exceed it, a switch to the other value will occur and vice-versa.

In [20], a sliding-mode enhanced adaptive (see below regarding adaptive control)
control method is applied towards a piezoelectric actuation system. By employing
Lyapunov stability methods, the system is shown to exhibit system stability and
tracking convergence. Position control using a sliding-mode based robust controller
of a shape memory alloy actuator is proposed in [35] and experimental results are
discussed. The modeling and control of Terfenol-D, a magnetostrictive is discussed
in [30]. Using the Jiles-Atherton model as a basis to describe the inherent hys-
teresis, a sliding mode controller was shown experimentally to have better tracking
than a PID controller in the presence of uncertainties and unmodeled components.
The results were shown experimentally, while the focus of this thesis has been on
theoretical results.

3.7.3 Inverse Compensation

Efforts have been made to include components in the controller that consider in-
verse compensation to a hysteresis operator. In theory, this is a clever idea to have
the effects of the hysteresis negated. Inverse compensation can be used with any
type of control. This inverse operator simply has to be placed directly in front of
the hysteresis operator. According to Figure 3.6, the control problem is reduced to
controlling a non-hysteretic system. The operator C is a general controller to the
system.
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The drawback is in the difficulty of deriving this inverse. In application, ap-
proximations to an inverse are formulated. In [31], the control of a magnetostrictive
material from a physical perspective, by using the Jiles-Atherton model is consid-
ered. Since then, the Jiles-Atherton model has not been as commonly used as a
model to describe magnetic hysteresis due to its improper closure of minor loops,
however the techniques used to obtain this inverse model are still of interest. As
a practical application, a magnetostrictive material is modeled to be a cantilever
beam, and controlled using linear quadratic regulator, a form of optimal control.
In [13], an inverse compensation model is proposed for the physical Presiach model
based on Gibbs energy. In [36], inverses for both the Preisach model and a physical
model are constructed. The inversion error is shown to be bounded in magnitude.
In fact, in both [17] and [36], algorithms (in the Preisach model context) are given
to approximate the input to the hysteresis to yield the desired output. For [36], H̄,
an approximate input is recovered from M , in no more than a sum of the corners
in the Preisach boundary and the discretization level. In [14], an inverse to the
Preisach model is used to construct the controller. Experimental data is presented.
The focus in these papers was to provide working inverse models to hysteresis rather
than to formulate results regarding stability and tracking.

3.7.4 Adaptive Control

In adaptive control, the control law changes according to system variables. To
clarify, consider the example of the control of stabilizing the flight of an aeroplane.
As fuel is being consumed, the mass of the aeroplane decreases. This change in
mass can be compensated in the control law. One such method is in [37], where
the authors perform adaptive identification of the inverse to the Preisach model
(see above section on inverse compensation). This update is performed on the
piecewise-continuous weight function, which in turn requires an update to the in-
verse. Two identification schemes are presented, one based on the hysteretic output
and the other based on time-difference of the output. The former is found to be
more effective, as it achieves asymptotic tracking. Experimental data is shown with
a magnetostrictive material, Terfenol-D.

In a more general sense, adaptive control can be an update to the parameters of
the control law. In [43] and [45], adaptive control laws are used to control a general
class of nonlinear ODEs, to which the input exhibits stop and play hysteresis. In
both sources, stability is shown by finding a Lyapunov function. In [15], a control
law for a second-order spring-mass-damper system using the Bouc-Wen model for
hysteresis in the spring component is proposed. Expressions that bound the errors
of transient displacement, asymptotic displacement, transient velocity, and asymp-
totic velocity are provided.
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Chapter 4

Simulations

Computations were performed using MATLAB R© to visualize and simulate some of
the theory presented. Three hysteresis operators were considered: backlash, elastic-
plastic and Preisach operators. As an application, one can consider the tracking
of a certain signal (for example, constants, ramps, sinusoids etc.) by an actuator
that exhibits hysteresis. Originally, Simulink R© was considered in performing these
simulations however the programming of the Preisach model in Simulink proved
to be a challenge. Instead, all of the simulations were performed in MATLAB R©

using a Runge-Kutta fourth order fixed-step ODE solver. The code is available in
Appendix B.

4.1 System Description

Recall that the equations that govern the closed-loop system (3.10) - (3.15) are:

e(t) = r(t)− y(t),

u(t) = KP e(t) +KI exp(-εt)

∫ t

0

exp(ετ)e(τ)dτ,

v(t) = Φ(u(t)),

y′(t) = Mv(t)− σy(t),

where Φ represents the hysteresis operator. Refer to Figure 3.4, where Ĝ(s) = M
s+σ

.
Since this is in fact a closed loop, the entire system can be rewritten as a single
equation, dependent on r(t) and y(t). This equation becomes

y′(t) = −σy(t) +MΦ

[
KP (r(t)− y(t)) +KI exp(-εt)

∫ t

0

exp(ετ) (r(τ)− y(τ)) dτ

]
.

(4.1)
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As mentioned above, the fourth-order Runge-Kutta numerical scheme is used.
Note that equation (4.1) is written in the form y′(t) = f(t, y). Given yn, time tn
and timestep h, the method to obtain yn+1 is the following,

k1 = f(tn, yn),

k2 = f(tn +
1

2
h, yn +

1

2
hk1),

k3 = f(tn +
1

2
h, yn +

1

2
hk2),

k4 = f(tn + h, yn + hk3),

k =
1

6
(k1 + 2k2 + 2k3 + k4)

yn+1 = yn + hk

tn+1 = tn + h.

A weighted average of the slopes k, considered at four different points varying
from tn to tn+1 is used to compute the next input value. Since the chosen method
was an explicit scheme, a relatively small timestep was used. In all simulations the
timestep never exceeded h = 0.01s. The integral in Equation (4.1) is computed by
a simple trapezoidal rule. This was chosen for the sake of computational simplicity.
Finally, the history of the input u(t) in calculating k1 to k4 was chosen to not have
an affect on another. To clarify, the input history used to calculate k1 to k4 is the
same. Only the last value of the input u(t) differed according to the definitions of
the coefficients.

The numerical scheme was entirely self-written. Despite the superiority of the
built-in techniques available in MATLAB R©, an issue arose with the need to access
the solution in previous timesteps as the solution was being computed. The output
function, y, was provided only at the end of the computation. Accessing previous
timesteps that the hysteresis operator required as the solution was being solved
proved to be a challenge. Regardless of whether or not this was possible through
modifying the code, it was much quicker to implement a self-written solver.

4.2 Implementation of Hysteresis Operators

The implementation of the hysteresis operators is discussed in the following section.
Both the backlash and the elastic operators are programmed to work very quickly,
while the Preisach model being a much more complex and difficult model to im-
plement, took longer to run, but less than thirty seconds to produce a ten-second
long simulation on a dual 1.66 GHz Processor.
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4.2.1 Backlash Operator and Elastic-Plastic Operator

Using the notation provided in its definition, recall that the backlash operator
takes the parameters ξ and h (denoted by bfac in the code) in addition to the input
history to determine its current value. The initial value is given by the parameter
ξ. The lagging factor h represents a dead zone, that the input must first overcome
in order to see a change in the output. Upon close inspection, only the current
value of the input, as well as the two previous timesteps (rather than the entire
input history) are required. The need for the previous timesteps, is to determine
if the input changes direction (from increasing to decreasing or vice versa). Should
the input change direction, the current interval would no longer be monotone. A
new interval must begin, that is, i = i + 1, ti = t, and Bh,ξ(u(ti)) is updated to
Bh,ξ(u(t)). The function bh is programmed exactly as it is defined.

The elastic-plastic operator is programmed in the same fashion. The code uses
the variable efac rather than h, since h is used for the timestep length. The only
difference compared to the backlash operations was the need for the value of u(ti)
in addition to Eh,ξ(u(ti)). Similar to the latter value, u(ti) is fed through the system
as an input and an output that changes only to u(t) should it change direction.
The function eh was straightforward to program.

4.2.2 Preisach Operator

First, a gridsize and a saturation value usat of the input is chosen (recall assump-
tion (A4)). Together, the two parameters determine the size of the array (2
round( usat

gridsize
), round( usat

gridsize
) required to represent the Preisach plane. The top

right and bottom right portions are always 0, as they are not part of the Preisach
plane. The grid is rotated compared to the original definition given in Section 2.3.
This change facilitated the input of the Preisach plane into a matrix (see Figure 4.1).

At each time step, u(t) is provided. The cells affected by the boundary are
modified, and the corresponding cells that switch their relays are updated. For
example, Figure 4.1 represents the an initialized Preisach plane with usat = 10 and
gridsize = 1, where the input has been increased from u = 0 to u = 5. The plane
and the boundary are both drawn onto the matrix. The model allows for cells to
take values other than +1 and −1. Should the boundary traverse a cell, a fractional
value dependent on the amount of area in each of the +1 or the −1 regions is con-
sidered. See Figure 4.2, the input has been monotonically increased from u = 0, to
u = 7, then monotonically decreased to u = 2.5.

The weight function used is based on experimental data of Terfenol-D, a magne-
tostrictive material. This data was obtained by Sina Valadkhan [39]. The method
described previously where the Preisach plane is subdivided into square-shaped cells
where a constant value is assumed over each cell is used. A detailed explanation of
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Figure 4.1: MATLAB R© Preisach Plane at u = 5 (from u = 0)

Figure 4.2: MATLAB R© Preisach Plane: u = [0, 7, 2.5]
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Figure 4.3: Preisach Major Loop with Terfenol-D Data

this weight function can be found in [39]. The weight function is a matrix of the
same size as the grid for the Preisach plane, which is then multiplied cell by cell
with the Preisach plane for a given input history. The sum of the entries of the
resultant matrix is multiplied by the area of each grid. This value is the output of
the Preisach model at that timestep. A major loop of the hysteresis can be found
in Figure 4.3. The reader is referred to Section 1.4 of [25] for an alternate numerical
implementation of the Preisach model.

4.3 Results

While the theory presented in this thesis does not cover the stability and tracking
of ramps and sinusoids, their simulation is presented here to demonstrate the ef-
fectiveness of a PI controller for these applications. The stability results found in
Section 3.4 provide a range of parameters for which stability is guaranteed. Since
the aim was to use a practical PI controller, the parameter ε was chosen to be small
to mimic a pure integral controller. It is shown however in Section 3.6 that for a
first order system, the conditions that had to be satisfied for asymptotic tracking
were

0 < KI <
KPσ

M
and KP > 0.
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Figure 4.4: Weight Function from Terfenol-D Data

The parameters σ = M = 1 were used in performing the simulations. The
required conditions became 0 < KI < KP , KP > 0. The performance became
better for larger values of KI and KP provided that the necessary conditions were
satisfied. With practical application however, these parameters are limited by the
maximum output of an actuator. It will be seen that these conditions are not
necessary, but only sufficient for stability.

4.3.1 Tracking a Constant Reference Signal

Backlash and Elastic-Plastic Operators

A reference signal of r(t) = 1 was tracked with the backlash and elastic-plastic
operators acting on the controller. In Figure 4.5, both the backlash factor and the
elastic-plastic factor were set to 3 with 0 initial condition. The controller parameters
were chosen to be KP = 10, and KI = 5. In comparison to the controller acting
with no hysteresis, an overshoot is produced with the backlash operator. The
nature of the backlash operator is that the output is a delayed version of the input.
When a larger control effort is required, the system must wait until the backlash is
overcome. This delay in control effort causes the system to drift past the desired
value. The elastic-plastic operator has a limit in terms of control effort that can be
exerted, resulting in the slower response seen in Figure 4.5.

Should the conditions be violated, the system may still be stable. The effect
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Figure 4.5: Tracking of a Constant Reference Signal: Backlash and Elastic-Plastic,
KP = 10, KI = 5, bfac = 3, efac = 3

of using KI > KP is shown for the backlash operator with KP = 5 and KI = 10
in Figure 4.6. It can be seen in Figure 4.6 that the system is stable, but tracking
occured very slowly as many overshoots (and undershoots) were observed. The
reasoning behind the overshoots was the same as previously described. The system
exhibited change only after enough error was accumulated in the integral. As the
output of the system approached the reference signal, the error e(t) decreased,
requiring an even longer time for the integral to grow.

Preisach Operator

Since assumptions (A1) - (A4) were shown to imply (N1) - (N6), the results
shown in Section 3.6 are applicable to the Preisach operator. The piecewise constant
function can be approximated arbitrarily closely by a continuous function. The
major loop produced by the Terfenol-D data has an upper limit of 0.7468, so only
values between −0.7468 and 0.7468 can be tracked. This is shown in Figure 4.3.

4.3.2 Tracking Of Other Reference Signals

Although the theory presented in this thesis only covers the tracking of constant
reference signals, the application of tracking other signals can be performed with
suitable parameters. Figures 4.8 and 4.9 demonstrate the tracking of a piecewise
ramp function with the three programmed hysteresis operators. The ramp function
in Figure 4.9 is scaled due to the saturation of the Preisach model for the given
weight function. The tracking of sinusoidal functions with varying amplitude can
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Figure 4.6: Tracking of a Constant Reference Signal: Backlash, KP = 5, KI = 10,
bfac = 3

Figure 4.7: Tracking of a Piecewise Constant: Preisach Operator, KP = 100,
KI = 10
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Figure 4.8: Tracking of a Piecewise Ramp Function: Backlash and Elastic Plastic
Operators, KP = 10, KI = 5

be seen in Figures 4.10 and 4.11.
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Figure 4.9: Tracking of a Piecewise Ramp Function: Preisach Operator, KP = 100,
KI = 10

Figure 4.10: Tracking of a Sinusoidal Function with Varying Amplitude: Backlash
and Elastic Plastic Operators, KP = 20, KI = 10, r(t) = 0.2(5− t) sin(0.4t)
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Figure 4.11: Tracking of Sinusoidal Function with Varying Amplitude: Preisach
Operator, KP = 100, KI = 40, r(t) = 0.05(5− t) sin(0.4t) + 0.0540
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Chapter 5

Conclusions and Future Work

In this thesis the control of systems with hysteresis was mathematically investi-
gated. A review of hysteresis models was presented including a detailed formu-
lation of the Preisach, backlash and elastic-plastic models. An overview of some
of the other control methods employed to solve this control problem were discussed.

The control of two similar hysteretic systems has been the focus of this thesis.
The first system whose output exhibited hysteretic effects, used a PI controller to
track a reference signal. A BIBO-stability property is shown for continuous signals,
and the tracking of a constant signal was shown to be asymptotic. In particular,
a bound on the time to reach an arbitrarily small error was found. The original
plant is extended to include a first-order system, and stability is shown for a range
of parameters. Some simulations were performed on this first-order system.

The second system described the PID control of a second-order system. The
input to the second-order system was modeled to include hysteresis. The tracking
for a constant reference signal was shown to be asymptotic. The results were then
verified for a first order system. Both systems included hysteresis described by two
different sets of assumptions. The assumptions for each of these systems were com-
pared, and the assumptions used for the first system was found to be essentially a
subset of the those used in the second system.

Possible avenues of future work include extending the results for both systems
to linear systems of arbitrary order. Such an extension would allow for better
modelling of the actuator. Experimental results suggest that this bound is only
a sufficient condition for stability. Alternative theory could be investigated that
would guarantee stability and tracking for a larger range of parameters.
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Appendix A

Proofs and Details

Detailed calculations/details and proofs that were omitted in other sections are
presented here.

A.1 Existence and Uniqueness Proof

The reasoning behind defining the following conditions may not be intuitive, but
will become more apparent in subsequent theorems as to why they were defined
in that manner. Logemann breaks his findings into successive theorems, which are
each small steps to the final product. As a result, an existence uniqueness proof will
be provided for a more general system, than that of Theorem 3.5.9. The pertinent
system is:

x′(t) = (F (u))(t), t > α, (A.1)

x(t) = w(t), t ∈ [0, α], (A.2)

where α ≥ 0 and w ∈ C([0, α]), (if α = 0, then C([0, α]) = R). Assume that
F : C(R+)→ L1

loc(R+) is causal and satisfies (H1) and (H2) where:

(H1) For all a ≥ 0 and v ∈ C([0, a]), there exist δ > 0, γ > 0, and a function
f : [0, γ]→ R+, with f(0) = 0, continuous, such that for all ε ∈ (0, γ].

∫ a+ε

a

|(F (v1))(τ)− (F (v2))(τ)|dτ ≤f(ε) max
τ∈[a,a+ε]

|v1(τ)− v2(τ)|,

for all v1, v2 ∈ C(w; δ, ε)

where B(v; δ, ε) := {p ∈ C([0, α + ε]) : p|[0,α] = v, max
t∈[α,α+γ]

|p(t) − v(α)| ≤ δ}. This

was defined earlier in Equation (3.23) to be the ε - long extensions of v(t) from α,
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Figure A.1: Depicting the set B(w; δ, ε)

that are within δ of v(α). This set is depicted in Figure A.1. An element of the
set B(v; δ, ε) must be identical to the function v from [0, α] and continuous, within
(and including) the boundary of shaded box from (α, α + ε].

The second hypothesis is:

(H2) For all a > 0 and v ∈ C([0, a)), there exists c > 0 such that

∫ t

0

|(F (v))(τ)|dτ ≤ c(1 + max
τ∈[0,t]

|v(τ)|), for all t ∈ [0, a).

The existence and uniqueness claim is as follows:

Lemma A.1.1. For every α ≥ 0 and every w ∈ C([0, α]), there exists a unique so-
lution x of (A.1), defined on a maximal interval [0, tmax) with tmax > α. Moreover,
if tmax <∞, then

lim sup
t→tmax

|x(t)| =∞.

Proof. First, existence and uniqueness will be established on a small interval, then
uniqueness will be established on the maximal solution, then finally it will be shown
that if tmax <∞ then the solution becomes unbounded.

Step 1. Existence and uniqueness on a small interval.
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The aim here is to define an operator that has a fixed point, which is a solution
to Equation (A.1). If the operator is a contraction mapping, then the fixed point
must be unique, and hence existence and uniqueness can be established on a small
interval. First, the desired operator, acting on y ∈ C([0, α + ε]) is:

(Γε(y))(t) =

{
w(t), t ∈ [0, α]

w(α) +
∫ t
α
(F (y))(τ)dτ, t ∈ (α, α + ε],

with the metric d(v1, v2) = max
τ∈[α,α+ε]

|v1(τ)− v2(τ)|. Since the range of the functions

in C(w; δ, ε) on [α, α + ε] is a closed set, then (B(w; δ, ε), d) is a complete metric
space. It remains to show that for small enough ε ∈ (0, γ], Γε acting on B(w; δ, ε)
is a contraction map. As a result, the following two properties must be shown.

1) Γε(B(w; δ, ε)) ⊂ B(w; δ, ε).

2) There exists 0 < λ ≤ 1 that for every v1, v2 ∈ B(w; δ, ε),

d(Γε(v1)), (Γε(v2))) ≤ λd(v1, v2).

For the first condition, consider the definition of Γε. Given v ∈ B(w; δ, ε), it is
clear that Γε(v) = w on [0, α] and that it is continuous on [0, α + ε]. It remains
to show that for small enough ε, Γε(v) does not escape the δ-bound. Defining the
following function facilitates the next calculation.

w̃(t) =

{
w(t), t ∈ [0, α]

w(α), t ∈ (α, α + ε].

It is clear that w̃ belongs to B(w; δ, ε). Considering t ∈ [α, α + ε], an estimation
yields:
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|((Γε)(v))(t)− w(α)| =
∣∣∣∣∫ t

α

(F (v))(τ)dτ

∣∣∣∣
≤
∫ t

α

|(F (v))(τ)|dτ

≤
∫ α+ε

α

|(F (v))(τ)|dτ

≤
∫ α+ε

α

|(F (v))(τ)− (F (w̃))(τ)|dτ +

∫ α+ε

α

|(F (w̃))(τ)|dτ, by (H1),

≤ f(ε) max
τ∈[α,α+ε]

|v(τ)− w(α)|+
∫ α+ε

α

|(F (w̃))(τ)|dτ

≤ f(ε)δ + f̃(ε),

where f̃(ε) =
∫ α+ε

α
|(F (w̃))(τ)|dτ . The first term approaches 0 because f(ε) → 0+

as ε → 0+. Since F (w̃) ∈ L1
loc(R+), taking ε → 0+ results in f̃(ε) → 0+. Given

δ, ε can be shrunk small enough that |((Γε)(v))(t)− w(α)| = |
∫ t
α
(F (v))(τ)dτ | ≤ δ.

Let ε1 be the largest of such ε. Note that such an ε1 can be found, since it the
inequality includes the endpoint. Thus for ε ∈ (0, ε1], Γε(B(w; δ, ε)) ⊂ B(w; δ, ε).
Next, since Γε(v1) = Γε(v2) on t ∈ [0, α] only t ∈ [α, α + ε] need to be considered.

|Γε(v1)− Γε(v2)| ≤
∫ α+ε

α

|(F (v1))(τ)− (F (v2))(τ)|dτ

≤ f(ε)d(v1, v2).

Since this is valid for all t ∈ [0, α + ε], the max case is included. Again by
shrinking ε, f(ε) < 1 can be achieved. Let ε2 be such an ε (the same largest
argument made for ε1 cannot be made here since it is a strict inequality). Take
ε∗ = min(ε1, ε2). For all ε ∈ (0, ε∗], Γε is a contraction map on B(w; δ, ε). There
exists a unique solution x to the system (A.1) on B(w; δ, ε). However, this does
not exclude the case that other solutions could exist outside of this space. That
is, other solutions could protrude out of the shaded box when the boundary is
reached. For this reason, let ε∗∗ ≤ ε∗ be the first time the boundary is reached (if
the boundary is not reached then let ε∗∗ = ε∗). If t ∈ [α, α+ ε∗∗), |x(t)−w(α)| < δ,
no other solutions can exist on this interval. Thus, there exists a unique solution
x ∈ C([0, α + ε∗∗]) to (A.1).

Step 2 Extended Uniqueness.

The idea is to apply Step 1 repeatedly using the subsequent α+ ε∗∗ as the new
α. Uniqueness will be demonstrated to hold in this process. Let x1 ∈ C([0, α1))
and x2 ∈ C([0, α2)) be solutions to (A.1) on their respective domains of definition.
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Let β := min{α1, α2}. Claim that x1 = x2 on [0, β). Seeking a contradiction, define:

α∗ := inf{t ∈ [0, β) : x1(t) 6= x2(t)} < β,

That is, α∗ is the last point on which the functions x1, x2 are equal. Let
x(t) = x1(t) = x2(t) on [0, α∗]. Apply Step 1 again on α∗, so that there exists
ε such that 0 < ε < β−α∗, where there exists a unique solution x on C([0, α∗+ ε]),
contradicting the definition of α∗.

Step 3 Existence of a maximal solution.

If Steps 1 and 2 are applied successively, then a unique maximal solution is
obtained. Formally, let T be the set of all τ > α s.t. there exists a solution xτ

to (A.1) on the interval [0, τ). From Step 1, T 6= 0. Let tmax := sup T and define
x : [0, tmax) → R by setting x(t) = xτ (t) for t ∈ [0, τ) where τ ∈ T. Since this
applies to all τ ∈ T, then this is the maximal solution of (A.1). Uniqueness follows
from Step 2.

Step 4 If tmax <∞, x is unbounded.

This is the last claim of Lemma A.1.1. It will be shown via a contrapositive
proof. Consider x bounded on [0, t1) where t1 <∞. Integrating A.1 yields:

x(t) = x(α) +
∫ t
α
(F (x))(τ)dτ, for all t ∈ [α, t1)

By(H2), there exists c > 0 such that,

∫ t

α

|(F (x))(τ)|dτ ≤ c(1 + sup
τ∈[0,t1]

|x(τ)|) <∞,

so F (x) ∈ L1([0, t1]), and lim
t→t1

x(t) exists and is finite. Step 1 can be applied.

However, since t1 was arbitarily chosen, this argument works for all t1 ∈ (0,∞).
Therefore tmax =∞.

A.2 Showing (3.25) satisfies Lemma A.1

The system in (3.25) will be shown to satisfy (H1) and (H2), and that there is
no finite escape time (that is from Lemma A.1, x must be bounded locally). Let
F : C(R+)→ L1

loc(R+) be defined by
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F (v) := κ(ρ− η − (G ◦ Φ)(v))

To show that F satisfies (H1). Let a ≥ 0, and v ∈ C([0, a]).∫ a+ε

a

|(F (v1))(τ)− (F (v2))(τ)|dτ =

∫ a+ε

a

|κ(t)(G(Φ(v1)− Φ(v2)))(τ)|dτ

≤ ‖κ‖L∞(R+)

∫ a+ε

a

|κ(t)(G(Φ(v1)− Φ(v2)))(τ)|dτ

by Holder’s inequality, using the function itself 1

≤
√
ε ‖κ‖L∞(R+) ‖G‖ ‖(Φ(v1)− Φ(v2))‖L2([a,a+ε])

≤ ε ‖κ‖L∞(R+) ‖G‖ ‖(Φ(v1)− Φ(v2))‖C([a,a+ε]) , by (N3)

≤ ελ1 ‖κ‖L∞(R+) ‖G‖ ‖(v1 − v2)‖C([a,a+ε])

Assumption (H1) holds with

f(ε) := ελ1 ‖κ‖L∞(R+) ‖G‖.

To establish (H2), let a > 0, v ∈ C([0, a)). For t ∈ [0, a),

∫ t

0

|(F (v))(τ)|dτ ≤ ‖κ‖L∞(R+)

∫ t

0

|ρ− η(τ)− ((G ◦ Φ)(v))(τ)|dτ,

≤ ‖κ‖L∞(R+) [ρt+

∫ t

0

|η(τ)|dτ +

∫ t

0

|(G(Φ(v)))(τ)|dτ ],

≤ ‖κ‖L∞(R+) [ρa+

∫ a

0

|η(τ)|dτ +

∫ t

0

|(G(Φ(v)))(τ)|dτ ].

Considering only the last term:

∫ t

0

|(G(Φ(v)))(τ)|dτ = ‖G(Φ(v)) · 1‖L1
[0,t]

, using Holder’s inequality

≤ ‖G(Φ(v))‖L2
[0,t]
‖1‖L2

[0,t]

≤
√
t

(∫ t

0

|(G(Φ(v)))(τ)|2dτ

) 1
2

,

taking the supremum and factoring out the terms of the integral,

≤ t ‖G‖ max
τ∈[0,t]

|(Φ(v))(τ)|, by (N4) and t ≤ a,

≤ a ‖G‖ β(1 + max
τ∈[0,t]

|v(τ)|)
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Since max
τ∈[0,t]

|v(τ)| > 0, from the above two sets of inequalities:

∫ t

0

|(F (v))(τ)|dτ ≤ ‖κ‖L∞(R+) [ρa+

∫ a

0

|η(τ)|dτ + a ‖G‖ β(1 + max
τ∈[0,t]

|v(τ)|)],

≤ ‖κ‖L∞(R+) [ρa+

∫ a

0

|η(τ)|dτ + a ‖G‖ β] · (1 + max
τ∈[0,t]

|v(τ)|).

The operator F satisfies (H2) with

c := ‖κ‖L∞(R+) [ρa+
∫ a

0
|η(τ)|dτ + a ‖G‖ β].

There exists a unique solution x to A.1 defined on a maximal interval [0, tmax).
It remains to show that x does not have finite escape time, that is, x is bounded
locally. Let t1 > 0 be an arbitrary time. Integrating (3.25) for t ∈ [0, t1) yields:

x(t) = x(0) +

∫ t

0

[κ(τ)(ρ− η(τ) + (G(Φ(x)))(τ))]dτ .

However, the bound on max
σ∈[0,t]

|x(σ)| will be considered in place of the usual |x(t)|.

This will be more useful since (N4) yields x back in this form, and the proof relies
on an application of Gronwall’s Lemma. Making an estimate using the same tools
as seen previously in this proof:

max
σ∈[0,t]

|x(σ)| ≤ |x(0)|+‖κ‖L∞(R+) [ρt+

∫ t

0

|η(τ)|dτ+

∫ t

0

|(G(Φ(u)))(τ)|dτ ], for all t ∈ [0, t1).

(A.3)

Estimating the last term (and applying (N4) in the second last step) yields:

∫ t

0

|(G(Φ(x)))(τ)|dτ ≤
√
t

(∫ t

0

|(G(Φ(x)))(τ)|2dτ

) 1
2

,

≤
√
t1 ‖G‖

(∫ t

0

max
σ∈[0,τ ]

|(Φ(x))(σ)|2dτ

)1/2

≤
√
t1 ‖G‖

(∫ t1

0

max
σ∈[0,τ ]

(1 + |x(σ)|)2dτ

)1/2

≤
√

2t1 ‖G‖
(∫ t1

0

max
σ∈[0,τ ]

(1 + |x(σ)|2)dτ

)1/2

.
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The last step used the inequality 2a2 +2b2 ≥ (a+b)2 +(a−b)2 ≥ (a+b)2. Next,
let x̃(t) := max

σ∈[0,t]
|x(σ)|. Since t1 is fixed, there exists constants β1 and β2 (simply

by equating components) such that

x̃(t) ≤ β1 + β2

(∫ t

0

(1 + (x̃2(τ)))dτ

)1/2

.

Thus,

x̃2(t) ≤

(
β1 + β2

(∫ t

0

(1 + x̃2(τ))dτ

)1/2
)

≤ 2β2
1 + 2β2

2

(∫ t

0

(1 + x̃2(τ))dτ

)
≤ 2β2

1 + 2β2
2t1 + 2β2

2

∫ t

0

x̃2(τ)dτ, for all t ∈ [0, t1).

Applying Gronwall’s Lemma:

x̃2(t) ≤ (2β2
1 + 2β2

2t1) exp (2β2
2t1), for all t ∈ [0, t1).

But since t1 was chosen arbitrarily, this argument holds for t1 ∈ (0,∞), so x is
bounded locally. Hence x does not have finite escape time.

A.3 Leibniz’s Rule for Convolution Differentia-

tion

Here, Leibniz’s integral rule will be applied to the differentiation of a convolution.
Let g and h be functions defined on the right-half real line, and let f(τ, t) =
g(τ)h(t− τ).

d

dt
(g(t) ? h(t))

=
d

dt

(∫ t

0

g(τ)h(t− τ)dτ

)
=
d

dt

(∫ t

0

f(τ, t)dτ

)

Leibniz’s rule states:
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∂

∂z

∫ b(z)

a(z)

f(x, z)dx =

∫ b(z)

a(z)

∂f

∂z
dx+ f(b(z), z)

∂b

∂z
− f(a(z), z)

∂a

∂z
,

so from above:

d

dt
(g(t) ? h(t))

=f(t, t) + 0 +

∫ t

0

g(τ)h′(t− τ)dτ

=g(t)h(0) + g(t) ? h′(t)

=g(t) ? h(0)δ0 + g(t) ? h′(t)

but since convolution is commutative:

d

dt
(g(t) ? h(t))

=
d

dt
(h(t) ? g(t))

=h(t) ? g(0)δ0 + h(t) ? g′(t)

A.4 Left Half Complex Plane Poles → Exponen-

tially Decaying Functions

A brief justification of the poles of a second-order transfer function having negative
real part→ exponentially decays is given here. This result can be readily extended
to higher order systems. It can be verified that:

ĥ(s) =
1

ms2 + cs+ k
.

Note that the coefficients of the polynomial in the denominator of ĥ(s) are real.
The transfer function of ρ has the same denominator, so the exact same argument
can be applied. This implies that the roots of p(s) := ms2 + cs+ k are either real,
or occur in complex conjugates. By the fundamental theorem of algebra, ĥ(s) can
be written as:

ĥ(s) =
1
m

(s− a1)(s− a2)
,

where in general a1, a2 ∈ C. Since p(s) is a second degree real coefficient polynomial,
either the roots are both strictly real, or are complex conjugates. Suppose all of
a1, a2 are real. Then there exists a unique partial fraction decomposition, such that:
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ĥ(s) =
A1

s− a1

+
A2

s− a2

such that A1, A2 ∈ R. By linearity of the Laplace transform, h(t) is the sum of the
inverse Laplace transforms of each of the terms above.

L−1(ĥ(s)) = h(t) = A1e
a1t + A2e

a2t

Knowing that a1, a2 < 0 it is clear that h exponentially decays as t→∞. Con-
sider the other case, where a1, a2 are complex conjugates. Hence, the polynomial
(s− a1)(s− a2) = (s2 − (a1 + a2)s + a1a2) would have real coefficients. Again, by
partial fraction decomposition, there exists a unique B1, B2 ∈ R such that

ĥ(s) =
B1s+B2

s2 − (a1 + a2)s+ a1a2

,

whose inverse Laplace transform would be h(t) = f(t)eRe(a1)t, where f(t) is a
bounded oscillatory function (a sum of sine and cosine functions). Again by the
Hurwitz condition, Re(ai) < 0 for i = 1, 2, therefore h exponentially decays as
t → ∞. Therefore if the poles of ĥ(s) are Hurwitz, then h decays exponentially
and hence h ∈ L2

α(R+). Because of the form of h, any linear combination of its
derivatives must also be exponentially decaying.
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Appendix B

MATLAB R© Code

The code used to produce the simulations will be presented here. The following is
the code used for the backlash model.

function [y,binc] = backlashfast(u1,u2,u3,curbinc,bfac)

%u1 = present u, u2 = u one time step ago,

%u3 = u one time step before u2

%Initial operator value.

y = bh(bfac,u1,curbinc);

if sign(u1-u2) ~= sign(u2-u3)

binc = y;

else

binc = curbinc;

end

%When u ceases to be monotone,

%the next subinterval in the partition

%begins.

end

function output = bh(h,v,w)

output = max(v-h,min(v+h,w));

%Defines the bh function needed to define the backlash operator.

end

The elastic-plastic operator is defined similarly.
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%Defined structurally the same as the fast backlash operator.

function [y,einc,uinc] =...

elasticplasticfast(u1,u2,u3,cureinc,curuinc,efac)

y = eh(efac,u1 - curuinc + cureinc);

if sign(u1-u2) ~= sign(u2-u3)

einc = y;

uinc = u1;

else

einc = cureinc;

uinc = curuinc;

end

function output = eh(h,u)

output = min(h,max(-h,u));

end

The Preisach model required several functions. The function buildlinesegments
identified the locations of all the line segments that form the boundary. The func-
tion findbound found all the relevant points that make up the boundary from a
given input.

function [v,boundaryout] =...

preisachtestweight(u,usat,boundaryin,weight)

%v,boundaryout

%a is the distance from the bottom of the

%cell to where the boundary is

%b is 1 if a had to be modified

%(i.e. the rounding function put a and the

%boundary in two different cells)

%c is a fix in the case of boundary = usat, or -usat

%initialize plane

gridsize = 0.5;

%note, gridsize must divide usat

%(i.e. usat/gridsize must be a natural number)

relsize = round(usat/gridsize);

plane = zeros(relsize*2,relsize);

for i=1:1:relsize
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for j=1:1:i

plane(i,j) = -1;

plane(relsize*2-i+1,j) = 1;

end

plane(i,i) = -0.5;

plane(relsize*2-i+1,i)=0.5;

end

if abs(u(end)) < usat

%initialize weighting

%if new corner emerges, or a corner is erased....

if size(boundaryin,2)>1

if sign(boundaryin(end) - boundaryin(end-1)) ~=...

sign(u(end) - boundaryin(end)) || abs(u(end)) >= abs(boundaryin(end-1))

boundary = findbound(u,usat);

else

boundary = [boundaryin(1:end-1),u(end)];

end

else

boundary(1) = min(usat,max(-usat,u(end)));

if size(u,2) > 1

boundary(1) = min(usat,max(-usat,u(end-1)));

end

if sign(boundary(1))==...

-sign(u(end)-boundary(1)) && abs(boundary(1))~=usat

boundary(2) = u(end);

end

end

lineseg = buildlinesegments(boundary);

a=0;

b=0;

c=0;

boundaryout = boundary;

%offset for boundary

if abs(boundary) == usat

c = 1;

end

%Start editing the plane:

%cls for current line segment

corners = zeros(size(plane));

for cls = 0:1:size(lineseg,1) - 1
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%LOCATE CORNERS

if lineseg(end-cls,3)/gridsize ~=...

floor(lineseg(end-cls,3)/gridsize)

locy = relsize - floor(lineseg(end-cls,4)/gridsize);

locx = floor(lineseg(end-cls,3)/gridsize)+1;

corners(locy,locx) = corners(locy,locx) + 1;

end

end

for cls = 0:1:size(lineseg,1) - 1

%find the sign of y2-y1

incdec = sign(lineseg(end-cls,4)-lineseg(end-cls,2));

%if there is no change, then the boundary is complete

%(i.e. we’ve hit the

%0 slope part of the boundary, note that this might not always occur

if incdec == 0

if a~=1 && a~=0

if term == 1

plane(starty-i+b,stopx) = 2*a - a^2;

else

plane(starty+i-b,stopx) = a^2 - 1;

end

end

break

end

%

diffx = lineseg(end-cls,1)/gridsize -...

floor(lineseg(end-cls,1)/gridsize);

b = 0;

%Consider two seperate cases,

%where xmin does not fall on an edge of the

%cell, and one that does

if diffx ==0

%xmin touches the edge of a cell

a = (lineseg(end-cls,2))/gridsize - ...

floor((lineseg(end-cls,2))/gridsize);

else

%xmin does not touch the edge of a cell

a = -incdec*diffx + (lineseg(end-cls,2))/gridsize -...

floor(lineseg(end-cls,2)/gridsize);

end
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if a > 1;

a = a-1;

b = 1;

end

if a < 0;

a = a + 1;

b=1;

end

%y2-y1 < 0

if incdec == -1

startx = floor(lineseg(end-cls,1)/gridsize) + 1;

stopx = floor(lineseg(end-cls,3)/gridsize) + 1;

starty = relsize - floor(lineseg(end-cls,2)/gridsize);

stopy = relsize - floor(lineseg(end-cls,4)/gridsize);

%Build the in between points to the corners

for i = 1+ceil(diffx):1:stopx-startx

plane(starty + i -1 - b+c,startx + i - 1) = a^2 - 1;

plane(starty + i -b,startx + i -1) = 2*a-a^2;

%Rewrite cells:

if starty+i-1-b > relsize + 1

for j = 1:1:starty+i-1-b - relsize

plane(starty + i - 1 - b - j, startx + i - 1) = -1;

end

end

if starty+i-1-b < relsize - 1

for j = 1:1:relsize - (starty+i-1-b) - 1

plane(starty + i - b + j, startx + i - 1) = 1;

end

end

end

%Corners: (can only handle 1 per cell, for now...)

if lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize)~=...

0 && lineseg(end-cls,4) - lineseg(end-cls-1,4) ~=0

diffx1 = lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize);

diffx2 = ceil(lineseg(end-cls,3)/gridsize) -...

lineseg(end-cls,3)/gridsize;

%oa and ob determine the cells in the same column

%as the corner cell

%that need to be changed
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oa = 0; ob = 0;

if ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize - diffx1 >= 0

a1 = ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize - diffx1;

a2 = ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize;

b1 = a2;

if ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize - diffx2 >= 0

b2 = ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize - diffx2;

else

b2 = 0; ob = 1;

diffx2 = b1;

end

else

a1 = 0; oa = 1;

a2 = ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize;

diffx1 = a2;

b1 = a2;

if ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize - diffx2 >= 0

b2 = ceil(lineseg(end-cls,4)/gridsize) -...

lineseg(end-cls,4)/gridsize - diffx2;

else

b2 = 0; ob = 1;

diffx2 = b1;

end

end

negarea = (a1 + a2)/2*diffx1 + (b1 + b2)/2*diffx2;

plane(stopy,stopx) = 1 - 2*negarea;

if stopy ==1

plane(stopy, stopx) = (oa*(1 -(ceil(lineseg(end-cls,3)/gridsize) -...

lineseg(end-cls,3)/gridsize) -diffx1)^2 + ob*(1-...

(lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize)) - diffx2)^2) - 1;

else

plane(stopy-1,stopx)=(oa*(1-(ceil(lineseg(end-cls,3)/gridsize)-...

lineseg(end-cls,3)/gridsize) -diffx1)^2 + ob*(1-...

(lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize)) - diffx2)^2) - 1;
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end

if stopy-1-b > relsize + 1

for j = 1:1:stopy-1-b - relsize

plane(stopy - j - 1, stopx) = -1;

end

end

if stopy-1-b < relsize - 1

for j = 1:1:relsize - (stopy-1-b) - 1

plane(stopy + j, stopx) = 1;

end

end

end

end

%y2-y1 > 0

if incdec == 1

startx = floor(lineseg(end-cls,1)/gridsize) + 1;

stopx = floor(lineseg(end-cls,3)/gridsize) + 1;

starty = relsize - floor(lineseg(end-cls,2)/gridsize);

stopy = relsize - floor(lineseg(end-cls,4)/gridsize);

%Build the in between points to the corners

for i = 1+ceil(diffx):1:stopx-startx

plane(starty - i + b,startx + i - 1) = a^2-1;

plane(starty + 1 - i + b, startx + i - 1) = 2*a - a^2;

%Rewrite cells:

if starty-i + b > relsize + 1

for j = 1:1:starty-i+b-relsize

plane(starty - i + b - j, startx + i - 1) = -1;

end

end

if starty-i+b < relsize

for j = 1:1:relsize-(starty-i+b)-1

plane(starty - i + b + j + 1, startx + i - 1) = 1;

end

end

end

%Corners: (can only handle 1 per cell, for now...)

if lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize)~=...

0 && lineseg(end-cls,4) - lineseg(end-cls-1,4) ~=0
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diffx1 = lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize);

diffx2 = ceil(lineseg(end-cls,3)/gridsize) -...

lineseg(end-cls,3)/gridsize;

%oa and ob determine the cells

%in the same column as the corner cell

%that need to be changed

oa = 0; ob = 0;

if lineseg(end-cls,4)/gridsize -...

floor(lineseg(end-cls)/gridsize) - diffx1 >= 0

a1 = lineseg(end-cls,4)/gridsize - diffx1 -...

floor(lineseg(end-cls,4)/gridsize);

a2 = lineseg(end-cls,4)/gridsize -...

floor(lineseg(end-cls,4)/gridsize);

b1 = a2;

if lineseg(end-cls,4)/gridsize -...

floor(lineseg(end-cls,4)/gridsize) - diffx2 >= 0

b2 = lineseg(end-cls,4)/gridsize - diffx2 -...

floor(lineseg(end-cls,4)/gridsize);

else

b2 = 0; ob = 1;

diffx2 = b1;

end

else

a1 = 0; oa = 1;

a2 = lineseg(end-cls,4)/gridsize -...

floor(lineseg(end-cls,4)/gridsize);

diffx1 = a2;

b1 = a2;

if lineseg(end-cls,4)/gridsize -...

floor(lineseg(end-cls,4)/gridsize) - diffx2 >= 0

b2 = lineseg(end-cls,4)/gridsize - diffx2 -...

floor(lineseg(end-cls,4)/gridsize);

else

b2 = 0; ob = 1;

diffx2 = b1;

end

end

posarea = (a1 + a2)/2*diffx1 + (b1 + b2)/2*diffx2;

plane(stopy,stopx) = 2*posarea - 1;

if stopy == size(plane,1)

plane(stopy,stopx) = 1-...

(oa*(1-(ceil(lineseg(end-cls,3)/gridsize) -...
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lineseg(end-cls,3)/gridsize) -diffx1)^2 + ob*(1-...

(lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize)) - diffx2)^2);

else

plane(stopy+1,stopx) = 1-...

(oa*(1-(ceil(lineseg(end-cls,3)/gridsize)-...

lineseg(end-cls,3)/gridsize) -diffx1)^2 + ob*(1-...

(lineseg(end-cls,3)/gridsize -...

floor(lineseg(end-cls,3)/gridsize)) - diffx2)^2);

end

if stopy-1-b > relsize + 1

for j = 1:1:stopy-1-b - relsize

plane(stopy - j, stopx) = -1;

end

end

if stopy-1-b < relsize - 1

for j = 1:1:relsize - (stopy-1-b) - 1

plane(stopy + j + 1, stopx) = 1;

end

end

end

end

term = incdec;

end

%Fix the borders

for i = 1:1:usat/gridsize

if plane(i,i)<=-1

plane(i,i) = -0.5;

end

if 0<=plane(i+1,i) && plane(i,i)~=-0.5

plane(i,i) = plane(i,i) + 0.5;

if i > 1

plane(i-1,i) = 0;

end

end

if corners(i,i)~=0 && plane(i,i) <=0

plane(i,i) = plane(i,i)+ 0.5;

end
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if plane(end-i+1,i) >=1

plane(end-i+1,i) = 0.5;

end

if 0>= plane(end-i,i) && plane(end-i+1,i)~= 0.5

plane(end-i+1,i) = plane(end-i+1,i) -0.5;

if i > 1

plane(end-i+2,i) = 0;

end

end

v = sum(sum(plane.*weight));

end

else

v = sum(sum(weight))*sign(u(end));

boundary(1) = usat*sign(u(end));

boundaryout = boundary;

end

function boundary = findbound(u,usat)

%Finds the information necessary for the Preisach boundary

[val,ind] = max(abs(u));

if val > usat

boundary(1) = usat*sign(u(ind));

else

boundary(1) = sign(u(ind))*val;

end

minmax = sign(u(ind));

unew = u(ind:end);

k=2;

while max(size(unew))>1

if minmax == 1

[val,ind] = min(unew);

if abs(val) > usat

boundary(k) = -usat;

else

boundary(k) = val;

end

k=k+1;

unew = unew(ind:end);

minmax=minmax*-1;

end
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if minmax== -1

[val,ind]=max(unew);

if abs(val) > usat

boundary(k) = usat;

else

boundary(k) = val;

end

k=k+1;

unew = unew(ind:end);

minmax=minmax*-1;

end

if size(unew,2) > 1

if unew(1) == unew(2)

unew = unew(2:end);

k = k-1;

end

end

end

if size(boundary,2)>1

if boundary(end)==boundary(end-1)

boundary = boundary(1:end-1);

end

end

end

function lineseg = buildlinesegments(boundary)

%lineseg is a matrix carrying details about the line segments:

%column 1: xmin, column 2: y at xmin, column 3: xmax,

%column 4: y at xmax

%initialize the line segments:

lineseg = zeros(size(boundary,2),4);

lineseg(1,1) = 0;

lineseg(1,2) = 0;

lineseg(1,3) = 10;

lineseg(1,4) = 0;

%The first two lines don’t satisfy

%the "-1", "+1" properties since they

%deal with the 0 boundary

lineseg(2,1) = 0;

lineseg(2,2) = boundary(1);

lineseg(2,3) = abs(boundary(1));

lineseg(2,4) = 0;
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lineseg(1,1) = lineseg(2,3);

lineseg(1,2) = lineseg(2,4);

for i = 3:1:size(boundary,2)+1

%Build line segment matrix according to boundary

%See Drawings

lineseg(i,1) = 0;

lineseg(i,2) = boundary(i-1);

if boundary(i-1)-boundary(i-2)>0

%Increasing

lineseg(i,3) = (lineseg(i-1,3) -...

lineseg(i-1,4) + lineseg(i,2))/2;

lineseg(i,4) = (lineseg(i-1,4) -...

lineseg(i-1,3) + lineseg(i,2))/2;

else

%Decreasing

lineseg(i,3) = (lineseg(i-1,4) +...

lineseg(i-1,3) - lineseg(i,2))/2;

lineseg(i,4) = (lineseg(i-1,4) +...

lineseg(i-1,3) + lineseg(i,2))/2;

end

for j=i:-1:2

lineseg(j-1,1)=lineseg(j,3);

lineseg(j-1,2)=lineseg(j,4);

end

end

check = 0;

i=1;

while check ~=1

if lineseg(i,1) ==lineseg(i,3)

lineseg = [lineseg(1:i-1,:);lineseg(i+1:end,:)];

i = i-1;

end

if i == size(lineseg,1)

check = 1;

end

i=i+1;

end

The procedure that ran the ode4 Runge-Kutta solver was identical for all three
hysteresis operators. Only the code for the backlash operator is presented here.
Running the code for thee other operators would simply require a change in each
place the backlash function is called and the inputs to each function.
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function [time,y] = ...

ode4backlashfast(Kp,Ki,M,sigma,h,timesteps,bfac,Xi,r)

y = zeros(1,timesteps);

y(1) = 0;

y(2) = 0;

u = zeros(1,timesteps);

u(1) = 0;

u(2) = 0;

e = zeros(1,timesteps);

e(1) = r(0) - y(1);

e(2) = r(h) - y(2);

v = zeros(1,timesteps);

time = 0:h:h*timesteps-h;

t = 0;

curbinc = Xi;

epsilon = 0.001;

cumerror = h*(e(1) + e(2))/2;

k1 = M*bh(bfac,Kp*r(0),Xi);

k2 = -sigma*(0.5*h*k1) + M*bh(bfac,Kp*(r(0.5*h) - 0.5*k1*h) +...

Ki*(0.25*h*(r(0.5*h) + r(0) - 0.5*h*k1)),Xi);

k3 = -sigma*(0.5*h*k2) + M*bh(bfac,Kp*(r(0.5*h) - 0.5*k2*h) +...

Ki*(0.25*h*(r(0.5*h) + r(0) - 0.5*h*k1)),Xi);

k4 = -sigma*(h*k3) + M*bh(bfac,Kp*(r(h) - h*k3) +...

Ki*0.5*(r(0.5*h) + r(0) - h*k1),Xi);

for i=3:1:timesteps

y(i) = y(i-1) + h*(k1+2*k2+2*k3+k4)/6;

e(i) = r(t) - y(i);

cumerror = cumerror + h*(exp(epsilon*t)*e(i) +...

exp(epsilon*(t-h))*e(i-1))/2;

u(i) = Kp*(e(i)) + Ki*exp(epsilon*-t)*cumerror;

k1 = -sigma*y(i) +...

M*backlashfast(u(i),u(i-1),u(i-2),curbinc,bfac);

u(i) = Kp*(r(t+0.5*h) - y(i) - 0.5*k1*h) + ...

Ki*exp(-epsilon*(t+0.5*h))*(cumerror + ...

0.25*h*(exp(epsilon*(t+0.5*h))*(r(t+0.5*h) ...

- y(i) -0.5*h*k1)+exp(epsilon*t)*(r(t) - y(i))));

k2 = -sigma*(y(i) + 0.5*k1*h) +...

M*backlashfast(u(i),u(i-1),u(i-2),curbinc,bfac);

u(i) = Kp*(r(t+0.5*h) - y(i) - 0.5*k2*h) +...

Ki*exp(-epsilon*(t+0.5*h))*(cumerror +...

0.25*h*(exp(epsilon*...

(t+0.5*h))*(r(t+0.5*h) - y(i)-...
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0.5*h*k1)+exp(epsilon*t)*(r(t) - y(i))));

k3 = -sigma*(y(i) + 0.5*k2*h) +...

M*backlashfast(u(i),u(i-1),u(i-2),curbinc,bfac);

u(i) = Kp*(r(t+h) - y(i) - h*k3) +...

Ki*exp(-epsilon*(t+h))*(cumerror +...

0.5*h*(exp(epsilon*(t+h))*(r(t+h) - y(i) -h*k1)+...

exp(epsilon*t)*(r(t) - y(i))));

k4 = -sigma*(y(i) + k3*h) +...

M*backlashfast(u(i),u(i-1),u(i-2),curbinc,bfac);

%Rewrite u(i) to be what we expected it to be originally

u(i) = Kp*e(i) + Ki*exp(epsilon*-t)*cumerror;

[void,binc] = backlashfast(u(i),u(i-1),u(i-2),curbinc,bfac);

curbinc = binc;

v(i-1) = backlashfast(u(i),u(i-1),u(i-2),curbinc,bfac);

t = t+h;

%i

end

v(i) = backlashfast(u(i),u(i-1),u(i-2),curbinc,bfac);

y(end) = y(end-1) + h*(k1+2*k2+2*k3+k4)/6;
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