
Assigning Closely Spaced Targets
to Multiple Autonomous

Underwater Vehicles

by

Beverley Chow

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical Engineering

Waterloo, Ontario, Canada, 2009

c© Beverley Chow 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This research addresses the problem of allocating closely spaced targets to mul-
tiple autonomous underwater vehicles (AUV) in the presence of constant ocean
currents. The main difficulty of this problem is that the non-holonomic vehicles are
constrained to move along forward paths with bounded curvatures. The Dubins
model is a simple but effective way to handle the kinematic characteristics of AUVs.
It gives complete characterization of the optimal paths between two configurations
for a vehicle with limited turning radius moving in a plane at constant speed.

In the proposed algorithm, Dubins paths are modified to include ocean currents,
resulting in paths defined by curves whose radius of curvature is not constant. To
determine the time required to follow such paths, an approximate dynamic model
of the AUV is queried due to the computational complexity of the full model. The
lower order model is built from data obtained from sampling the full model. The
full model is used in evaluating the final tour times of the sequences generated by
the proposed algorithm to validate the results.

The proposed algorithm solves the task allocation problem with market-based
auctions that minimize the total travel time to complete the mission. The novelty
of the research is the path cost calculation that combines a Dubins model, an AUV
dynamic model, and a model of the ocean current. Simulations were conducted
in Matlab to illustrate the performance of the proposed algorithm using various
number of task points and AUVs. The task points were generated randomly and
uniformly close together to highlight the necessity for considering the curvature
constraints.

For a sufficiently dense set of points, it becomes clear that the ordering of
the Euclidean tours are not optimal in the case of the Dubins multiple travelling
salesmen problem. This is due to the fact that there is little relationship between
the Euclidean and Dubins metrics, especially when the Euclidean distances are
small with respect to the turning radius. An algorithm for the Euclidean problem
will tend to schedule very close points in a successive order, which can imply long
maneuvers for the AUV. This is clearly demonstrated by the numerous loops that
become problematic with dense sets of points. The algorithm proposed in this
thesis does not rely on the Euclidean solution and therefore, even in the presence
of ocean currents, can create paths that are feasible for curvature bound vehicles.

Field tests were also conducted on an Iver2 AUV at the Avila Pier in California
to validate the performance of the proposed algorithm in real world environments.
Missions created based on the sequences generated by the proposed algorithm were
conducted to observe the ability of an AUV to follow paths of bounded curvature in
the presence of ocean currents. Results show that the proposed algorithm generated
paths that were feasible for an AUV to track closely, even in the presence of ocean
current.

iii

Acknowledgements

First of all, I would like to thank my supervisors, Professor Chris M. Clark
and Professor Jan P. Huissoon, for their guidance, inspiration, and understanding
during the course of this project. I am grateful for the opportunity to work on such
an interesting problem. I would also like to thank Professor Steven Waslander and
Professor Hyock Ju Kwon for agreeing to read this thesis.

A special thanks to California Polytechnic State University for their research
facilities and the use of the Iver2 AUV. I would like to thank Tom Moylan, Ja-
son Felton, and Ian Robbins at the Center for Coastal Marine Sciences for their
assistance with field testing.

Finally, I would like to thank my peers, who through collaboration and thought-
ful discussions, have provided me with valuable advice and feedback along the way.

iv

Contents

List of Tables viii

List of Figures xi

List of Algorithms xii

1 Introduction 1

1.1 Autonomous Underwater Vehicles 1

1.2 Multiple Autonomous Underwater Vehicles 3

1.3 Contributions . 4

1.4 Thesis Outline . 5

2 Background 6

2.1 The Multiple Traveling Salesmen Problem 6

2.2 Literature Review . 8

3 Problem Statement 11

4 Overview of Planner 12

4.1 Clustering . 12

4.2 Auctioning . 13

4.3 Post Processing . 13

5 Path Cost Calculation 14

5.1 Dubins Path . 14

5.2 AUV Dynamic Model . 16

5.3 Modification of Dubins Path . 17

v

5.4 Shortest Time Between Two Waypoints 21

5.4.1 Arcs . 21

5.4.2 Straight line segments . 22

5.5 Path Time Calculation . 23

6 Simulation Results 25

6.1 MTSP Solution . 27

6.2 Proposed Planner Solution . 29

6.3 Discussion . 33

6.4 System Performance . 35

7 Experiment Description 36

7.1 Mission Planning Software . 37

7.2 Connecting to the Iver2 . 38

7.3 Running a mission . 39

7.4 Post-mission . 40

8 Experimental Results 42

8.1 Control Architecture . 42

8.2 Experiment 1 - Traveling Salesman Problem 43

8.3 Experiment 2 - Multiple Traveling Salesman Problem 46

9 Conclusion 51

9.1 Future Work . 52

APPENDICES 53

A REMUS AUV Dynamic Model 54

A.1 Vehicle Kinematics . 54

A.2 Vehicle Rigid-Body Dynamics . 55

A.3 Vehicle Mechanics . 56

A.4 6-DOF Non-linear Model . 57

B Tables of REMUS Parameters 58

C Tables of Non-Linear Coefficients 61

References 62

vi

List of Tables

5.1 Simulation results to map ∆ψ to ∆x and ∆y (uc = 0.5 and ψc = π). 19

5.2 Simulation results to map ∆ψ to ∆tarc 22

5.3 Path costs for the insertion of dj in between every pair of task points. 24

6.1 Simulation Parameters . 25

6.2 Task points are ordered in decreasing distance from centroid. 27

6.3 Summary of simulation results using n = {1, 2, 3, 4, 5} and m = {6,
7, 8,..., 20}. 33

6.4 Summary of path costs for the dataset in Fig. 6.1 with n = 3 and
m = 20. 34

8.1 Converting to latitude and longitude. 44

8.2 Field test results from three randomly generated datasets of 10 task
points for one vehicle. 44

8.3 Field test results from three randomly generated datasets of 20 task
points for 3 vehicles. 47

B.1 STD REMUS Hull Parameters . 59

B.2 Hull Coordinates for Limits of Integration 59

B.3 Center of Buoyancy wrt Origin at Vehicle Nose 59

B.4 Center of Gravity wrt Origin at CB 60

B.5 Moments of Inertia wrt Origin at CB 60

B.6 REMUS Fin Parameters . 60

C.1 Axial Drag Coefficient . 62

C.2 Crossflow Drag Coefficients . 62

C.3 Rolling Resistance Coefficient . 62

C.4 Body Lift and Moment Coefficients 62

vii

C.5 Added Mass Coefficients . 63

C.6 Added Mass Force Cross-term Coefficients 64

C.7 Added Mass K-Moment Cross-term Coefficients 65

C.8 Added Mass M-, N-Moment Cross-term Coefficients 66

C.9 Propeller Terms . 67

C.10 Control Fin Coefficients . 67

viii

List of Figures

5.1 (a) Two waypoints (xk, yk) and (xk+1, yk+1) with αk = π
4

and αk+1 =
3π
4

. (b)-(e) Four ways of connecting two waypoints using Dubins
curves. 15

5.2 Multiple trajectories for different initial and final orientations. (a)
αk = 3π

4
, αk+1 = −3π

4
(b) αk = −3π

4
, αk+1 = π (c) αk = −π

2
, αk+1 = 3π

4
. 15

5.3 Picture of the REMUS AUV. 16

5.4 Dubins Curves between two waypoints with ocean currents uc = 0.25
m/s. (a) ψc=0, (b) ψc = π

2
, (c) ψc = π, and (d) ψc = −π

2
. 18

5.5 Vehicle position for various values of ∆ψ as the vehicle moves along
the maximum curvature ellipse. (a) ∆ψ = π/4. (b) ∆ψ = 3π/4. (c)
∆ψ = 5π/4. 18

5.6 Illustration of the iterative process used to find a tangent to two
curves. 19

5.7 Path between two waypoints for a vehicle moving through water with
current speed uc and ψc = 0 rad. The short tics equally spaced along
the path shows the vehicle heading but not speed. 20

5.8 Illustration of the relative velocities. The vehicles has nominal speed
u and heading ψ, the ocean current has speed uc and direction ψc, and
the vehicle’s velocity along the desired path has magnitude udesired
and orientation ψdesired. Also shown are the perpendicular compo-
nents of the vehicle’s velocity u sin(ψ−ψdesired) and current velocity
ucN = uc sin(ψc − ψdesired) that cancel to give (5.8). 23

5.9 Sequence {s1, s2, s3, s4} and optimal orientations {α1, α2, α3, α4} for
tasks the vehicle currently owns. 24

5.10 Inserting task dj in between every pair of tasks in sequence S. . . . 24

6.1 Dataset of 20 task points randomly generated. 26

6.2 Results from clustering using k -means. Tasks with a circle around it
are assigned to the vehicle responsible for that cluster. 26

ix

6.3 Illustration of task allocation using auctions for solving the MTSP.
(a) All vehicles began with 3 task points determined from clustering.
(b)-(l) Vehicles bid for task points as they were auctioned off and
added the task point to their tour if it submitted the lowest cost. . 28

6.4 Dubins path using sequence generated from solving the MTSP. (a)
uc = 0, (b) uc = 0.25 m/s, ψc = 0 rad. 30

6.5 Illustration of task allocation using the proposed algorithm without
ocean current. 31

6.6 Illustration of task allocation using the proposed algorithm with uc =
0.25 m/s and ψc = 0 rad. 32

6.7 Sequences generated by the “alternating algorithm” and the pro-
posed algorithm using the dataset in Fig. 6.1 with n = 3 and m =
20. (a) Alternating algorithm, uc = 0, (b) Alternating algorithm,
uc= 0.25 m/s, ψc= 0, (c) Proposed algorithm, uc= 0, (d) Proposed
algorithm, uc= 0.25 m/s, ψc= 0. 34

6.8 Processing Time. 35

7.1 Picture of the Iver2 AUV. 36

7.2 VectorMap software with the NOAA Raster Navigational Chart of
the Estero Bay area where the missions took place. 37

7.3 Sample mission file. 38

7.4 UVC software. 39

7.5 UVC software setup screen. 40

7.6 Data of the log file overlayed on the mission map. 41

8.1 Minimum distance between a task point and the line indicating the
actual position of the AUV during a mission. 43

8.2 Dataset of 20 task points randomly generated. 44

8.3 (a) Paths generated for the TSP from Matlab. (b) Field test results
- Texp = 85 s and Davg = 1.71 m. 45

8.4 (a) Paths generated using the ‘alternating algorithm’ from Matlab.
(b) Field test results - Texp = 290 s and Davg = 0.88 m. 45

8.5 (a) Paths generated using the proposed algorithm from Matlab. (b)
Field test results - Texp = 209 s and Davg = 0.42 m. 45

8.6 Dataset of 20 task points randomly generated. 46

8.7 Paths generated for the TSP from Matlab. (b) Field test results for
vehicle 1. (c) Field test results for vehicle 2. (d) Field test results
for vehicle 3. 48

x

8.8 (a) Paths generated using the “alternating algorithm” from Matlab.
(b) Field test results for vehicle 1. (c) Field test results for vehicle
2. (d) Field test results for vehicle 3. 49

8.9 (a) Paths generated using the proposed algorithm from Matlab. (b)
Field test results for vehicle 1. (c) Field test results for vehicle 2.
(d) Field test results for vehicle 3. 50

A.1 Inertial and body-fixed coordinate systems and motion representations. 55

xi

List of Algorithms

1 Iterative Algorithm for finding a tangent to two curves. 21
2 Alternating Algorithm . 29

xii

Chapter 1

Introduction

Autonomous Underwater Vehicles (AUVs) have been used successfully in the past
to solve geological, biological, chemical, and physical oceanographic problems. This
has resulted in a variety of scientific and commercial AUVs to be designed, built,
and deployed. With the increasing feasibility and decreasing expense of AUVs,
interest in using them for ocean sampling, mapping, surveillance, and communi-
cation is growing and multi-AUV operations are beginning to be realized in the
water. As with any multi-robot system, a challenge is to determine which robot
should perform which task in order to cooperatively achieve the global goal in an
optimal manner.

1.1 Autonomous Underwater Vehicles

An AUV is a robot which travels through the water by a propulsion system con-
trolled by an on-board computer. Some of the first AUVs were developed by the
Applied Physics Laboratory at the University of Washington as early as 1957.
They are maneuverable in three dimensions which allows them to follow precise
pre-programmed trajectories under most environmental conditions. Sensors on-
board the AUV sample the ocean as the AUV moves through it, providing the
ability to make both spatial and time series measurements. With the developments
in artificial intelligence, control theory, and computer hardware, AUVs can operate
completely autonomously which gives them the capability of accessing previously
inaccessible ocean locations.

Traditional methods for oceanographic research include using ship based mea-
surements and moorings for sampling the ocean. Over the past two decades, alter-
native technologies such as subsurface floats, remotely operated vehicles (ROVs)
and AUVs have emerged to complement the existing sensing techniques. AUVs
have the potential for large cost-savings compared to current ocean sampling tech-
nologies, especially for sustained real-time measurements [1]. With the development
of solar-powered AUVs, vehicles are capable of operating unattended for months in

1

open ocean areas, periodically relaying data by satellite to shore, before returning
to be picked up.

Some of the applications of AUVs include:

• Commercial : The oil and gas industry uses AUVs to make detailed maps
of the sea-floor before they start building sub-sea infrastructure. Other ap-
plications include inspection of the underwater engineering structures and
pipelines.

• Military : A typical military mission for an AUV is to map an area to deter-
mine if there are any mines, or to monitor a protected area (such as a harbour)
for new unidentified objects. AUVs are also employed in anti-submarine war-
fare to aid in the detection of manned submarines.

• Research: Scientists use AUVs for ocean exploration, monitoring of water
medium, and marine geological surveys. A variety of sensors can be added to
AUVs to measure the concentration of various elements or compounds, the
absorption or reflection of light, and the presence of microscopic life.

When used for oceanographic research, AUVs carry sensors to navigate au-
tonomously and map features of the ocean. Typical sensors include compasses,
thermometers, conductivity and depth sensors, sidescan and other sonars, magne-
tometers, and light scattering sensors. There are mainly three modes of navigation
for AUVs. Long baseline navigation is based on triangulation and requires the AUV
to operate within a net of acoustic beacons. This is mainly used for larger area
missions. When a surface reference such as a support ship is available, ultra-short
baseline positioning can be used to calculate where the sub-sea vehicle is relative
to the known position of the surface transponder by means of acoustic range and
bearing measurements. When it is operating completely autonomously, the AUV
can surface and take its own GPS measurement. Between GPS readings, dead reck-
oning is used where the vehicle relies on the compass heading, the bottom-tracking
Doppler signals, and the inertial navigation system on-board to measure the rate
of travel.

Recently, a new class of AUVs were introduced which mimic designs found in
nature. These biomimetic (or bionic) vehicles are able to achieve higher degrees
of efficiency in propulsion and maneuverability by copying successful designs in
nature. The AquaJelly by Festo [2] is an artificial autonomous jellyfish with an
electric drive unit and an intelligent adaptive mechanism for swarm behaviour.
The Bionik Manta by Evo Logics [3] is a buoyancy-driven glider primarily used for
environment monitoring, hydrographic surveying, seabed mapping, and search and
recovery missions. The concept of using a buoyancy engine instead of a propeller
was first introduced by Webb [4]. A buoyancy engine works by alternating between
floating and sinking, and uses wings to glide horizontally, both on the way up and
on the way down. The advantage of such systems is that it could be deployed for
weeks, months, and eventually years at a time [5].

2

1.2 Multiple Autonomous Underwater Vehicles

Coordinating groups of AUVs can provide significant benefits to a number of ap-
plications including ocean sampling, mapping, surveillance and communication.
Multiple AUVs can acquire oceanographic data and information in spatial and
temporal resolution far exceeding the capabilities of a single AUV.

The advantages to using multi-AUVs are:

• A single AUV cannot perform some tasks alone so a team is required for
successful execution.

• A team can accomplish a given task more quickly than a single AUV can by
dividing the task into sub-tasks and executing them concurrently.

• A team can make effective use of specialists designed for a single purpose,
rather than requiring that a single AUV be capable of performing all tasks.

• A team of AUVs can localize themselves more efficiently if they exchange
information about their position whenever they sense each other.

• A team of AUVs generally provides a more robust solution by introducing
redundancy. Single point of failure can be avoided when there are multiple
vehicles with the same capabilities.

• A team of AUVs can handle simultaneous measurements of spatially disparate
phenomena.

Most current multi-AUV systems are capable of relatively simple missions in-
volving a few, usually homogeneous, AUVs. The requirements of a multi-AUV
system will differ depending on the application. When each vehicle is equipped
with sensors for observing its environment, the group can sample the physical
and/or biological variables in the water. Sampling could be performed in a rel-
atively large area to observe large-scale processes (e.g. upwelling and relaxation),
often referred to as broad-area coverage, or used to observe local phenomena such
as fronts, plumes, eddies, and algae blooms, often referred to as feature tracking.
For broad-area coverage, the requirements of the system will be vehicle endurance
while vehicle speed may be of interest for feature tracking. Also, vehicle-to-vehicle
communication may be impractical for broad-area coverage, but may be feasible
for feature tracking. However, for all applications, coordination is central to the
effective behaviour of the robot team.

Ideally, robots will coordinate and share resources amongst themselves to ac-
complish their mission efficiently and reliably. Coordination can lead to faster task
completion, increased robustness, higher quality solutions, and the completion of
tasks impossible for single robots [6]. One of the challenges with coordinating a
team of robots is the problem of task allocation which is the focus of this thesis.

3

Using a team of AUVs to make measurements requires an algorithm for routing the
AUVs to maximize the information they provide.

This thesis addresses a specific type of problem where n vehicles are required to
visit m task points. The motion of the AUV satisfies a non-holonomic constraint
(i.e. the yaw rate of the vehicle is bounded) which makes the costs of going from one
point to another non-Euclidean and asymmetric. Each task point is to be visited
by one and only one vehicle. Given a set of task points and the yaw rate constraints
on the vehicles, the problem is to assign each vehicle a sequence of task points to
visit and to find a feasible path for each vehicle to follow so that the vehicle passes
through the assigned task points. Each task point is a subgoal that is necessary
for achieving the overall goal of the system that can be achieved independently of
other subgoals. Task independence is assumed, where individual task points can be
considered and assigned independently of each other without ordering constraints.
The objective function is to minimize the total time to visit all of the task points.

This thesis presents an approximate algorithm for the task allocation problem
where vehicles are constrained to move forward along paths with bounded cur-
vatures. The problem has been simplified to limit the robots to operate on the
Euclidean plane. Intentional cooperation is used where robots cooperate explicitly
and with purpose through task negotiations.

The motivation behind this thesis stems from the need to develop task allocation
algorithms for AUVs to operate in real-world environments. An example of one
particular application is the use of multiple AUVs to investigate a possible garbage
dump site in Avila Bay, California. A recent coarse sonar image was used to identify
several closely spaced points of interest. Multiple higher-resolution images taken
from closely spaced locations are required to identify the foreign objects.

Most existing algorithms do not consider the effect of ocean currents which is
inevitable in the ocean. In the presence of currents, the trajectories of AUVs may
be significantly different from the desired path. Keeping the vehicle on the desired
path is critical because measurements must be taken in the right place. AUVs may
be aided by the currents at certain times and hindered at other times. Therefore,
a task allocation algorithm that can use the ocean current to aid the vehicle in the
direction of travel so that the vehicle can stay on the desired path is needed.

1.3 Contributions

The features that differentiate this research to similar problems previously studied
are:

• Kinematic constraints on the vehicle: The non-holonomic constraints of the
AUV causes difficulties when task points are close together. The Dubins
model [7] is a simple but efficient way to handle the kinematic characteristics
of AUVs. It gives complete characterization of the optimal paths between

4

two configurations for a vehicle with limited turning radius moving in a plane
at constant speed.

• Presence of a constant ocean current : Dubins paths are modified to include
ocean currents, resulting in paths defined by curves whose radius of curvature
is not constant. To determine the time required to follow such paths, an
approximate dynamic model of the AUV is queried. Specifically, a lower
order model of the REMUS AUV from [8] is used so that the computational
complexity is reduced.

1.4 Thesis Outline

The rest of the report is organized as follows. Chapter 2 gives an overview of the
task allocation problem and describes various other techniques that have been used
to solve related problems. Chapter 3 begins with the formal problem definition.
Chapter 4 describes the two AUV platforms that were used in validating the pro-
posed algorithm, the REMUS AUV used for simulations and the Iver2 AUV used in
real-world field tests. In Chapter 5, an overview of the proposed algorithm is intro-
duced with the details presented in Chapter 6. Chapter 7 discusses the results from
a simulation done in Matlab to verify that the desired results are achieved. Follow-
ing a satisfactory simulation, the algorithm was tested in the field at the Avila Pier
in California. The report concludes with a summary of results and future work in
Chapter 8.

5

Chapter 2

Background

Several approaches have been applied to the general problem of allocating tasks
between multiple robots in a team. Consider the problem of assigning target points
to a team of robots that are co-operatively exploring an unknown environment.
The goal of the task allocation problem is to have robots visit all targets while
minimizing the total travel time or distance of the robots. When targets are known
before the mission, it is possible to build a schedule of targets for each robot.
Unfortunately, this problem is not straight forward because the cost for a robot
to visit target C depends on whether that robot first visits target A or target B.
This problem is an instance of the multiple traveling salesperson problem (MTSP),
which has received considerable attention in combinatorial optimization. Even in
the restricted case of one salesperson, the MTSP is strongly NP -hard [9]. This
chapter begins with a review of research on the MTSP followed by methods used
to solve related problems.

2.1 The Multiple Traveling Salesmen Problem

A generalization of the well-known traveling salesman problem (TSP) is the MTSP,
which consists of determining a set of routes for n salesmen who all start from and
return back to a home city (depot). Although the TSP has received a great deal
of attention, the research on the MTSP is limited. The purpose of this section
is to review the existing literature on the MTSP, with an emphasis on practical
applications.

The MTSP can in general be defined as follows: Given a set of nodes, let there be
n salesmen located at a single depot node. The remaining nodes (cities) that are to
be visited are called intermediate nodes. Then, the MTSP consists of finding tours
for all n salesmen, who all start and end at the depot, such that each intermediate
node is visited exactly once and the total cost of visiting all nodes is minimized.
The cost metric can be defined in terms of distance, time, etc. Possible variations
of the problem are as follows:

6

• Single vs. multiple depots : In the single depot case, all salesmen start from
and end their tours at a single point. On the other hand, if there exist multiple
depots with a number of salesman located at each, the salesmen can either
return to their original depot after completing their tour or return to any
depot with the restriction that the initial number of salesmen at each depot
remains the same after all the travel. The former is referred as the fixed
destination case whereas the latter is named as the nonfixed destination case.

• Number of salesmen: The number of salesman in the problem may be a
bounded variable or fixed a priori.

• Fixed charges : When the number of salesmen in the problem is not fixed,
then each salesman usually has an associated fixed cost incurring whenever
this salesman is used in the solution. In this case, the minimization of the
number of salesman to be activated in the solution may also be of concern.

• Time windows : In this variation, certain nodes need to be visited in specific
time periods, named as time windows. This is an important extension of
the MTSP and referred to as the multiple traveling salesman problem with
time windows. The MTSP with time windows has immediate applications in
school bus, ship and airline scheduling problems.

• Other special restrictions : These restrictions may consist of bounds on the
number of nodes each salesman visits, the maximum or minimum distance a
salesman travels or other special constraints.

The task allocation problem described in this thesis includes a number of vari-
ations from the standard MTSP:

• The constraints of the vehicle must be considered when calculating the path
costs. While the standard MTSP assumes a fully connected graph, where
the salesman can travel directly between any two cities, this thesis considers
the vehicle’s kinematics and dynamics. As a result, the path connecting two
points are Dubins paths.

• The task allocation algorithm must take into account the effects of ocean
current. This is particularly significant when task points are closely spaced
since some points may not be reachable by a vehicle with curvature constraints
without long maneuvers.

Given the difficulty of the MTSP, researchers have not attempted to solve it
directly or exactly. The majority of research has been experimental in nature, where
researchers construct a multi-robot task allocation architecture, and then validate
it in one or more application domains [10]. This proof-of-concept method has led
to many proposals, each of which has been experimentally validated in simulation
and/or with physical robots. The results of these research will be described in the
next section.

7

2.2 Literature Review

Compared to the TSP, the MTSP is more adequate to model real life situations
since it is capable of handling more than one salesman. These situations arise
mostly in various routing and scheduling problems (e.g. print press schedule, crew
scheduling, bus routing problem, interview scheduling, hot rolling scheduling). This
thesis is an instance of the mission planning problem. Mission planning generally
arises in the context of autonomous mobile robots, where a variety of applications
include construction, military reconnaissance, warehouse automation, post-office
automation and planetary exploration. The mission plan consists of determining
the optimal path for each robot to accomplish the goals of the mission in the
smallest possible time. The mission planner uses a variation of the MTSP where
there are n robots, m goals which must be visited by some robot, and a base
city to which all robots must eventually return. The application of the MTSP in
mission planning was reported by Brummit and Stentz [11] for robots operating
in unstructured environments using a dynamic planning technique. Planning of
autonomous robots was modelled as a variant of the MTSP by Yu et al. [12] in
the field of cooperative robotics and solved using Genetic Algorithm. Similarly, the
routing problems arising in the planning of unmanned aerial vehicle applications,
as investigated by Ryan et al. [13], was modelled as an MTSP with time windows
and solved using a Reactive Tabu Search.

The problem of allocating tasks between multiple robots in a team has been
studied extensively; refer to [10] for a survey of these. Heuristic methods are typ-
ically used since optimizing the performance is often computationally intractable.
One of the earliest studies on social interactions among robots was conducted by
Matarić [14] whose work included following, dispersion, aggregation, homing, and
flocking. A unique feature of Matarić’s work was the use of animal models to develop
very simple algorithms for these behaviours. The Autonomous Robot Architecture
developed in the Mobile Robot Laboratory at Georgia Institute of Technology is
a hybrid reactive-deliberative architecture which is the basis for MissionLab [15].
MissionLab allows users to specify missions and automatically configures the soft-
ware needed for behaviour-based robot control. Parker’s ALLIANCE architecture
[16] is a fault-tolerant, adaptive, distributed, behaviour-based software system for
control of robot teams. It has no centralized control so all robots are fully au-
tonomous and has the ability to perform useful actions even in the presence of
failures of other robots. Also, the robots on the team can detect, with some fi-
nite probability, the effects of their own actions and those of other members of the
team. This is accomplished with the presence of sensors and feedback control on
the robot, as well as an explicit communication mechanism between robots.

Another frequently used method is based on market mechanisms, such as auc-
tions, which have been demonstrated to be fast and robust on real robots. In
market-based multi-robot systems, robots are designed as self-interested agents
and the team of robots are modeled as an economy. The goal of the team is to
complete the tasks successfully while minimizing its individual cost and maximizing

8

its individual profit. Determining the revenues and costs is the key to successful
implementation of a market-based approach. A function is needed to map possible
task outcomes onto revenue values. Another function is needed to map possible
schemes for performing the task onto cost values. As a team, the goal is to execute
the mission such that the profit, which is the revenue minus the cost, is maxi-
mized. The cost and revenue functions could potentially be complex functions and
should be designed to reflect the nature of the application domain. Market-based
approaches distribute planning required for task allocation through the auction
process where each robot locally compute its cost, and encapsulates the costs in
its bids. Auction-based methods balance the trade-off between purely centralized
coordination methods which require a central controller and purely decentralized
coordination methods without any communication between agents, both in terms
of communication efficiency, computation efficiency, and the quality of the solution
[6].

The concept of using an economic model to allocate tasks between agents was
first proposed by Smith [17] in a system called Contract Net. M+ [18] is a dis-
tributed task allocation and achievement scheme for multi-robot cooperation, ad-
dressing many real time issues including plan merging paradigms. Gerkey and
Matarić [19] presented MURDOCH which is a framework achieving a complete dis-
tributed, resource-centric, publisher/subscriber type allocation for instantaneous
assignment. Zlot et al. [20] used TSP heuristics to build target schedules and de-
rived costs that were used in Dias and Stentz’s [21] market-based task allocation
architecture. Dias and Stentz [22] later proposed TraderBots, a combinatorial auc-
tion based task allocation scheme. Lemarie et al. [23] proposed a task allocation
scheme for multi-UAV cooperation with balanced workloads of robots .

Specific work for AUVs include the work by Sariel et al. [24] whose frame-
work is a market-based mechanism capable of re-planning task distributions, re-
decomposing tasks, rescheduling commitments, and re-planning coordination dur-
ing execution. The Orca Project by Turner [25] focused on intelligent mission
control for AUVs and inter-agent communication. The CoDA Project by Turner
and Turner [26] focused on cooperation and used a type of constraint-based reason-
ing called constrained heuristic search for their task assignment mechanism. Their
method combines heuristic search with constraint satisfaction problem techniques,
deciding what to do at any point using heuristics based on the topology and other
properties of the constraint network.

Jeyaraman et al. [27] proposed a hybrid control scheme for a decentralised,
autonomous group of vehicles with bounded curvatures. They constrained their
vehicles to move in a fixed rectangular area without allowing vehicles to cross
paths. Also, they only considered the case where the Euclidean distance between
task points is at least four times the turning radius. The work by Rathinam [28]
also put a constraint on the minimum distance between the task points to be at
least two times the minimum turning radius of the vehicle. Note that this thesis
does not assume the minimum distance between any two task points and there are
no restrictions on the paths of different vehicles crossing.

9

One of the earliest examples of a full-scale, cooperative multiple-AUV demon-
stration in the water was described by Schultz et al. [29]. They conducted missions
where the vehicle’s route was determined not by a preset list of waypoints or ex-
ternal commands, but based on in-flight observed data. Another example was
investigated by Davis et al. [30] for the planning for underwater gliders in the pres-
ence of significant currents. Their work addressed the problem of AUVs operating
in environments with significant currents, similar to this thesis. However, vehicle
dynamics are not accounted for in their routing strategy which this thesis aims to
address.

10

Chapter 3

Problem Statement

This thesis considers the allocation of m targets to n vehicles. Given a set of ve-
hicles {V1, V2, ..., Vn} and targets D = {d1, d2, ..., dm}, the problem is to assign a
sequence of targets Si to each vehicle to visit and a path through the sequence Si.
The objective is to:

Minimize
Ctotal = max

i
C (Si) (3.1)

subject to

D =
⊔
i

Si (disjoint union) (3.2)

dxi, t
dt

= u0 cos (ψi, t)

dyi, t
dt

= u0 sin (ψi, t)

dψi, t
dt

= r, r ∈ [−ω,+ω]

(3.3)

where u0 denotes the nominal vehicle speed, ψi, t the yaw of the vehicle, and ω
represents the bound on the yaw rate. In (3.1), C (Si) is the time required for Vi
to complete its tour Si. Note that (3.2) dictates all tasks to be visited and restricts
each task to be assigned to only one vehicle and (3.3) considers the non-holonomic
constraints of the vehicle.

11

Chapter 4

Overview of Planner

This thesis proposes an approximate algorithm for the task allocation problem
which is not possible to solve in polynomial time. The problem combines the
exponential complexity of integer assignment decisions with non-linear, non-convex
differential equation constraints, making it a Mixed Integer Non-linear Program
with exponential growth in computational time.

The proposed planner constructs feasible paths based on Dubins’ model which
characterizes the optimal path between two configurations of a vehicle with limited
turning radius. The vehicles have been constrained to move in a plane at constant
speed. To determine the time required to track these paths, a lower order dynamic
model is queried to reduce the computational time. The following sections describe
the three main stages of the proposed algorithm.

4.1 Clustering

Let (xj, yj) denote the position of target dj. Given the positions of j = 1, ...,m
task points, the algorithm starts by creating n clusters of task points, where n is
equal to the number of AUVs. The method used in this thesis is k-means [31], which
partitions them points into n clusters by minimizing the total intra-cluster variance,
or the squared error function. For this implementation, k-means is minimized
with respect to the squared Euclidean distance with the initial cluster centroid
positions selected uniformly at random from the range of x. The k-means algorithm
is repeated 3 times, each with a new set of initial centroids. If a cluster loses all
of its member observations during the iterative process, a new cluster consisting of
the one observation furthest from its centroid is created.

After partitioning all task points into clusters, the centroid of all task points is
calculated as:

xcentroid =

∑m
j=1 xj

m
; ycentroid =

∑m
j=1 yj

m
. (4.1)

12

For all i = 1, 2, ..., n clusters, the three task points in each cluster i that are farthest
from the centroid are assigned to i th vehicle. The number of initial task assignments
was chosen to be three because for three tasks forming a loop, the ordering of the
tasks do not matter and always produces the same loop.

4.2 Auctioning

Once each vehicle has three task points assigned to it, the remaining m− 3n tasks
are auctioned via a sequence of first-price one-round auctions similar to work by
Lagoudakis et al. [32]. The unassigned tasks are first ordered according to their
distance from (xcentroid, ycentroid). The greater the distance from the centroid, the
higher the priority the task will have in the order.

Following this order, each task is auctioned off. Each vehicle i can bid on the
task j, where the bid Bi is equal to the cost of traveling a path that consists
of all previously won tasks and the current task being auctioned. Each vehicle
considers the insertion of the new task at every point in the current sequence
Si = (s1, s2, s3, ..., sl) where l is the number of previously won tasks by vehicle i.
Each vehicle submits a bid as the lowest cost (i.e. time) to complete the new tour
as:

Bi (dj, Si) = min
0≤k≤l

C (s1, ..., sk, dj, sk+1, ..., sl) (4.2)

The i th vehicle with the lowest Bi wins target dj and updates its sequence of
targets with S ′i = (s1, ..., sk, dj, sk+1, ..., sl). The calculation of C(S ′i) is the key to
this algorithm’s ability to reduce cost and details are found in Chapter 5.

After a task auction is completed, the auctioning process continues with the
next round of bidding until all tasks are allocated. The advantage of using this
algorithm is that it allows for a decentralized implementation. The calculation of
the bids can be performed locally by each vehicle in parallel. Additionally, each
vehicle can maintain its own sequence of tasks and the costs associated with it.

4.3 Post Processing

After all tasks have been auctioned off, each robot has a sequence of tasks to visit.
Due to the inherent shortcomings of market-based auction mechanisms, the cost
of going backwards through the same sequence of tasks may produce a lower cost
value. A post processing step is added at the end of the algorithm to check for the
possibility that reversing the order of the task points will produce a lower cost.

13

Chapter 5

Path Cost Calculation

To determine the path cost for bidding as described above, the time C(S) for the
AUV to traverse the sequence needs to be calculated. First, the shortest path
between two points is solved using a Dubins model to consider the kinematic con-
straints of the vehicle. Then, the time required to follow the path is calculated using
a dynamic model of the vehicle. However, due to the complexity of a full dynamic
model, it is not possible to query it in a reasonable amount of time. Therefore,
a lower order model based on the full model is described in this chapter. Note
that both the kinematic and dynamic models are modified to consider the effects
of ocean current.

5.1 Dubins Path

In order to calculate the time required to travel between two points, the Dubins
shortest path problem must first be solved. Dubins’ original work [7] derived con-
ditions that characterize the optimal path between two points when both initial
and terminal orientations were specified and his work has been widely studied in
path planning [33]. Sussmann and Tang [34] rederived Dubins’ results as an appli-
cation of Pontryagin’s Maximum Principle. Dubins’ result shows that, given any
two points, the shortest path that considers the constraints expressed in Eq. 3.3
consists of exactly three path segments consisting of a combination of a straight
line segment and maximum curvature arcs.

Graphically, the algorithm starts by drawing two maximum curvature circles
that are tangential to the initial state vector and two maximum curvature circles
that are tangential to the terminal state vector. Dubins’ result indicates that the
optimal trajectory selects an arc on one of the two initial circles, and connects
tangentially to an arc on one of the two terminal circles. If the separation between
the initial and end points is sufficient, this can only be accomplished by a line
segment. There are at most four such line segments, and computation of the travel
distances is straightforward, as shown in Fig. 5.1 for two waypoints with initial and

14

terminal orientations, denoted αk and αk+1 respectively. Note that α is measured
counter-clockwise with respect to the positive x-axis.

−20 −10 0 10 20 30 40 50
−20

−10

0

10

20

30

40

50

β

(b) (c) (d) (e)

k

k+1

α

(a)

α

α

Figure 5.1: (a) Two waypoints (xk, yk) and (xk+1, yk+1) with αk = π
4

and αk+1 = 3π
4

.
(b)-(e) Four ways of connecting two waypoints using Dubins curves.

Finding the shortest path between two points requires repetitively solving the
shortest time algorithm for various entry and exit AUV orientations (i.e. αk, αk+1).
The added challenge here is that there may be a family of paths that connects sk to
sk+1 with only one being the shortest. The multiplicity of paths connecting the two
points complicates the search for initial and final headings so an exhaustive coarse-
resolution search is implemented. In this algorithm, αk and αk+1 is constrained
to Λ = {λπ/4 | λ = 0, ..., 7}. With 8 possibilities for αk and αk+1 and 4 ways of
connecting them, a total of 8 × 8 × 4 = 256 paths are possible for every pair of
waypoints, with one of them being the optimal path. Fig. 5.2 shows three paths
connecting sk, to sk+1. Note that there are additional paths connecting the same
points which are not shown and that different values for αk and αk+1 yield different
costs.

−20 −10 0 10 20 30 40 50
−20

−10

0

10

20

30

40

50

sk

sk+1

(a)
(b)

(c)

Figure 5.2: Multiple trajectories for different initial and final orientations. (a)
αk = 3π

4
, αk+1 = −3π

4
(b) αk = −3π

4
, αk+1 = π (c) αk = −π

2
, αk+1 = 3π

4
.

The cost of traversing the sequence S can then be calculated as:

C(S) = min
(α1,...,αl)∈Λl

l∑
k=1

∆t(sk,αk)→(sk+1,αk+1) (5.1)

15

5.2 AUV Dynamic Model

Calculating the time required to follow a Dubins path requires the knowledge of the
vehicle dynamics. This thesis uses the REMUS AUV model created by Prestero
[8] to which readers are referred to for the full derivation. The REMUS AUV has
a torpedo shape with an ellipsoidal nose, a cylindrical constant radius mid-section,
and a cubic spline tail section as illustrated in Fig. 5.3.

Figure 5.3: Picture of the REMUS AUV.

The vehicle has 6 degrees of freedom (DOF), namely surge, sway, heave, pitch,
roll, and yaw. The AUV is assumed to be neutrally buoyant, completely rigid,
and interacting with an ideal fluid. The vehicle is propelled by a thruster at its
tail and steered by two independent pairs of fins for pitch and yaw control. With
6-DOF and only three independent actuators, the system is considered to be an
underactuated system.

The 6-DOF non-linear model described in Appendix A can be used to simulate
how different control and hydrodynamic forces affect the body-fixed velocities and
the overall change in position and orientation of the vehicle. The simulation requires
the ability to represent the vehicle motion with respect to both body-fixed and
inertial coordinates. Therefore, the twelve states of a vehicle Vi consisting of body-
fixed velocities and inertial coordinates at time t are given by:

Xi, t = [ui vi wi pi qi ri xi yi zi φi θi ψi]
T . (5.2)

Given the complex and highly non-linear nature of the problem, numerical in-
tegration is used to solve for the vehicle position and orientation in time. At each
time step, the vehicle state is updated by the general equation:

Xi, t+1 = f (Xi, t, Ui, t, uc, ψc) (5.3)

where Xi, t is the vehicle state vector, Ui, t = [δs δr Xprop Kprop]
T is the input

vector, uc and ψc are the magnitude and direction of the ocean current respectively.

16

For the input vector, δs is the stern fin angle, δr is the rudder fin angle, Xprop is the
surge force, and Kprop is the yaw torque provided by the propeller.

The function f in (5.3) uses the Euler method of numerical integration to yield
the new vehicle state at each time step as:

X′i, t+1 = Xi, t +
(
Ẋi, t ·∆t

)
(5.4)

where the state vector derivative Ẋi, t is updated using the model Ẋi, t = f (Xi, t, Ui, t)
from [8]. With the presence of a fixed current, the position of the vehicle relative
to the inertial-fixed frame is updated as follows:

xi = x′i + (uc cos (ψc) ·∆t)
yi = y′i + (uc sin (ψc) ·∆t)

(5.5)

where x′i and y′i denote the position of the i th vehicle after the integration step
given in (5.4). By combining (5.4) and (5.5), the function f in (5.3) is realized and
can be used to update the general state of each vehicle. This full 6-DOF non-linear
model is used in evaluating the final tour times of the sequences generated by the
proposed algorithm.

5.3 Modification of Dubins Path

To calculate the shortest path between two points in the presence of ocean current,
the dynamic model is used to determine the feasible states of the vehicle. In the
presence of ocean currents, the shortest path between two points given αk and αk+1

consists of arcs that are no longer circular but elliptic. These ellipses will have
different curvatures depending on the magnitude and direction of the current (Fig.
5.4). The shape of the ellipse depends on the vehicle’s orientation at the start of
the turn and is calculated using the difference between the vehicle’s heading ψ and
the direction of the current ψc.

To determine the shape of the ellipse, Eq. (5.3) was used to determine the state
of the vehicle at each time step with X0 = [1.15 0 0 0 0 0 0 0 0 0 0 0]T ,
and U0 = [0 1.7453 5.1553 0]T , where 1.15 m/s is the nominal speed of the AUV,
1.7453 rad is the rudder fin angle, and 5.1553 N is the propeller surge force. Note
that finding the maximum curvature for the ellipse requires running the simulation
using a maximum rudder fin angle of 1.7453 radians. Data was obtained for discrete
cases of uc = {0.1, 0.2, 0.3, 0.4, 0.5}, and ψc = {κπ/8 for κ = 1, ..., 16} and the
vehicle’s position was recorded at ∆ψ = {κπ/8 for κ = 1, ..., 16}, where ∆ψ is the
fraction of a complete circumnavigation of the ellipse the vehicle travels (Fig. 5.5).
A sample set of data for uc = 0.5 and ψc = π is shown in Table 5.1.

17

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

(a) u
c

s
k+1

s
k

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

s
k+1

s
k

u
c(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

u
c

s
k+1

s
k

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

18

s
k

s
k+1

u
c

(d)

Figure 5.4: Dubins Curves between two waypoints with ocean currents uc = 0.25
m/s. (a) ψc=0, (b) ψc = π

2
, (c) ψc = π, and (d) ψc = −π

2
.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

(a)

∆ yα
k
 = 0

α’
k
 = π/4

∆ x

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

(b)

∆ y

∆ x

α
k
 = 0

α’
k
 = 3π/4

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

∆ y

α
k
 = 0

∆ x

α’
k
 = 5π/4

(c)

Figure 5.5: Vehicle position for various values of ∆ψ as the vehicle moves along the
maximum curvature ellipse. (a) ∆ψ = π/4. (b) ∆ψ = 3π/4. (c) ∆ψ = 5π/4.

Using this data, a lower order model f̃ was created to determine the position
of the vehicle given the change in the vehicle’s heading, and the magnitude and
velocity of the current.

(∆x,∆y) = f̃(∆ψ, uc, ψc) (5.6)

The next step is to find the fraction of a complete circumnavigation of the
ellipse to travel before and after the straight line segment. Finding a line segment
tangent to two curves is solved by using an iterative process. As a starting point,
the slope of the tangent line to two circular arcs of minimum radius (when uc = 0)
is calculated (Fig. 5.6a). Using that value, Pa and Pb are found on the respective
ellipses whose slope is equal to the slope of the tangent (Fig. 5.6b). The position
of Pa and Pb are determined by using f̃ from (5.6). The slope of the line segment
from Pa to Pb is calculated and becomes the new slope for the next iteration (Fig.
5.6c). The process continues until convergence (Fig. 5.6d).

18

Table 5.1: Simulation results to map ∆ψ to ∆x and ∆y (uc = 0.5 and ψc = π).

∆ψ ∆x (m) ∆y(m)

π/8 0.70448 0.076994
π/4 1.1176 0.51249
3π/8 1.2667 1.2823
π/2 1.0244 2.3036
5π/8 0.39305 3.3099
3π/4 -0.69614 4.2793
7π/8 -2.0557 4.9614
π -3.6749 5.3166

9π/8 -5.35 5.2631
5π/4 -6.9225 4.8129
11π/8 -8.2502 4.0362
3π/2 -9.2591 3.0093
13π/8 -9.8188 1.9654
7π/4 -9.9858 1.0254
15π/8 -9.8295 0.33069

2π -9.4509 -0.0197

−5 0 5 10 15 20
−5

0

5

10

15

20

dy
dx

(a)

−5 0 5 10 15 20
−5

0

5

10

15

20

dy
dx

Pa

dy
dx Pb

(b)

−5 0 5 10 15 20
−5

0

5

10

15

20

dy

dx Pa Pb

(c)

−5 0 5 10 15 20
−5

0

5

10

15

20

dy
dx

Pa

dy
dx Pb

(d)

Figure 5.6: Illustration of the iterative process used to find a tangent to two curves.

Note that Fig. 5.6 depicts the desired path for the AUV to follow in the presence
of ocean current. In order for the vehicle to stay on the desired path, the vehicle

19

heading ψ must be calculated to compensate for the effect of current currents. Fig.
5.7 shows the vehicle heading as the vehicle moves from one wayoint to another.

−5 −4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

uc

Figure 5.7: Path between two waypoints for a vehicle moving through water with
current speed uc and ψc = 0 rad. The short tics equally spaced along the path
shows the vehicle heading but not speed.

A summary of the procedure necessary to calculate the path cost between two
points is presented in Algorithm 1. Note that this function uses the function get-
Position. The getPosition function takes as inputs the fraction of a complete cir-
cumnavigation of the ellipse to travel, the position and heading of the vehicle at
the starting point, and the magnitude and orientation of the ocean current and
outputs the final position of the vehicle using the equation in (5.6).

20

Algorithm 1 Iterative Algorithm for finding a tangent to two curves.

1: (x1, y1) := coordinate of starting point
2: (x2, y2) := coordinate of final point
3: θ1 := vehicle heading at starting point
4: θ2 := vehicle heading at final point
5: uc := current velocity
6: ψc := current direction
7: ψdesired := initialize to zero
8: (x1circle, y1circle) := center of maximum curvature circle (starting point)
9: (x2circle, y2circle) := center of maximum curvature circle (final point)

10: r := radius of maximum curvature circle
11: ρ := sqrt((x1-x2)2 + (y1-y2)2)
12: ρcircle := sqrt((x1circle-x2circle)

2 + (y1circle-y2circle)
2)

13: θcircle := atan2(y2circle-y1circle, x2circle-x1circle)
14: Pa := (x1circle + r*cos(θcircle + π/2), y1circle + r*sin(θcircle + π/2))
15: Pb := (x2circle + r*cos(θcircle + π/2), y2circle + r*sin(θcircle + π/2))
16: θPa,Pb := atan2(Pby - Pay,Pbx - Pax)
17: while (abs(ψdesired − θPa,Pb) > epsilon) do
18: ψdesired := atan2(Pby - Pay,Pbx - Pax)
19: ucψdesired := uc cos(ψc - ψdesired)
20: ucN := uc sin(ψc - ψdesired)
21: ψ := −arcsin(ucN/u) + ψdesired
22: ∆θPa := θ1 - ψ
23: ∆θPb := ψ - θ2

24: Pa := getPosition(∆θPa , x1, y1, theta1, uc, ψc)
25: Pb := getPosition(∆θPb , x2, y2, theta2, uc, ψc)
26: θPa,Pb := atan2(Pby - Pay,Pbx - Pax)
27: end while
28: return Pa, Pb.

5.4 Shortest Time Between Two Waypoints

To calculate the time ∆t(sk,αk)→(sk+1,αk+1) in (5.1), a lower order model f̂ is created
based on the full model f from (5.3) as:

∆t(sk,αk)→(sk+1,αk+1) = f̂ [sk, sk+1, αk, αk+1, u0, uc, ψc] (5.7)

5.4.1 Arcs

For arcs, the lower order model is a piecewise linear function built from sampling
the full model. Using the full model, the vehicle orientation can be determined at
a certain time t. In order to find the time required to obtain a specific heading,
linearly interpolation is used on the data obtained from the full model at various

21

fractions of a complete circumnavigation of the ellipse (κπ/8 for κ = 1, ..., 16). The
results are shown in Table 5.2.

Table 5.2: Simulation results to map ∆ψ to ∆tarc

∆ψ ∆tarc (s)

π/8 1.2
π/4 2.2
3π/8 3.3
π/2 4.5
5π/8 5.65
3π/4 6.9
7π/8 8.1
π 9.35

9π/8 10.6
5π/4 11.85
11π/8 13.1
3π/2 14.4
13π/8 15.65
7π/4 16.9
15π/8 18.15

2π 19.3

5.4.2 Straight line segments

For straight line segments, consider a vehicle moving at speed u and heading ψ
through the water with current velocity uc and direction ψc. The vehicle’s velocity
along the desired path has magnitude udesired and direction ψdesired. These velocities
are illustrated in Fig. 5.8. Let ucψdesired = uc cos(ψc − ψdesired) be the current com-
ponent assisting motion along the desired direction and ucN = uc sin(ψc − ψdesired)
be the current component π/2 radians to the left of the desired direction. Staying
on the desired path requires the perpendicular component of the vehicle velocity
u sin(ψ − ψdesired) to cancel the perpendicular component of the current ucN . The
heading ψ and speed udesired along the desired vehicle motion direction are

ψ = − arcsin(ucN/u) + ψdesired, udesired = ucψdesired + u
√

1− (ucN/u)2. (5.8)

As long as |ucN | < u, the vehicle can stay on the desired path, but the velocity
decreases as |ucN | → u. Keeping the vehicle on the desired path is critical because
making measurements in the right places requires the vehicle to stay on track in
the face of currents.

The time required to travel from Pa to Pb can then be calculated as follows:

∆tstraight =
√

(xa − xb)2 + (ya − yb)2/udesired (5.9)

22

// udesired, ψdesired

KKKKKKKKKKKKKKKKKKKKKKKKKKK

%% u, ψ

���������������������

?? uc, ψc

ucN = uc sin(ψc − ψdesired)

u sin(ψ − ψdesired)

Figure 5.8: Illustration of the relative velocities. The vehicles has nominal speed u
and heading ψ, the ocean current has speed uc and direction ψc, and the vehicle’s
velocity along the desired path has magnitude udesired and orientation ψdesired. Also
shown are the perpendicular components of the vehicle’s velocity u sin(ψ−ψdesired)
and current velocity ucN = uc sin(ψc − ψdesired) that cancel to give (5.8).

Combining these results in

∆t(sk,αk)→(sk+1,αk+1) = ∆tarc(sk→Pa) + ∆tstraight(Pa→Pb) + ∆tarc(Pb→sk+1). (5.10)

5.5 Path Time Calculation

When a vehicle bids for task dj and tries to add the new task at every point in the
current sequence S as described in Section 4.2, the vehicle must try every value of
Λ = {λπ/4 | λ = 0, ..., 7} for the orientation at task dj. With the insertion of task
dj in between sk and sk+1, the optimal orientations αk and αk+1 also have to be
recalculated with all values of Λ. The orientations at all other task points in the
sequence S is kept from the previous round of bidding since the addition of task dj
has minimal effect on the rest of the tour. Because the sequence S and the values
for the optimal orientation at each task point with the exception of αk and αk+1 are
kept from the previous round of bidding, (5.7) only needs to be calculated between
tasks (sk−1, sk), (sk, dj), (dj, sk+1), and (sk+1, sk+2). This simplifies the algorithm
and significantly decreases the processing time.

To illustrate this, consider the sequence S = {s1, s2, s3, s4} and optimal orien-
tations {α1, α2, α3, α4} for a list of tasks a vehicle currently owns (Fig. 5.9). The
vehicle starts by inserting task dj in between tasks s1 and s2, trying all values of Λ
for α1, α2, and αdj . The path cost is calculated for all combinations of α1, α2, and
αdj and the configuration that yielded the lowest cost is shown in Fig. 5.10a. The
vehicle then tries to add task dj in between s2 and s3 (Fig. 5.10b), between s3 and
s4 (Fig. 5.10c), and finally between s4 and s1 (Fig. 5.10d). The results are shown
in Table 5.3.

23

s
1

α
1
 = π / 2

α
2
 = 5 π / 4

s
2

s
3

s
4

α
3
 = 3 π / 2

α
4
 = π / 4

Figure 5.9: Sequence {s1, s2, s3, s4} and optimal orientations {α1, α2, α3, α4} for
tasks the vehicle currently owns.

−10 −5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

α
d j

 = π

α
1
 = π / 2

α
2
 = 5 π / 4

(a)

−10 −5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

(b)

α
2
 = 3 π / 2

α
3
 = π / 2

α
d j

 = 5 π / 4

−10 −5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

α
4
 = π / 2

(c)

α
3
 = 3 π / 2

α
d j

 = 0

−10 −5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

(d)

α
4
 = 7 π / 4

α
d j

 = 3 π / 4

α
1
 = 3 π / 4

Figure 5.10: Inserting task dj in between every pair of tasks in sequence S.

Table 5.3: Path costs for the insertion of dj in between every pair of task points.

Insertion point αk αk+1 αdj Cost (sec)

Between s1 and s2 π/2 5π/4 π 111.3
Between s2 and s3 3π/2 π/2 5π/4 110.2
Between s3 and s4 3π/2 π/2 0 82.9
Between s4 and s1 7π/4 3π/4 3π/4 126.3

Since the insertion of task dj between tasks s3 and s4 produced the lowest cost,
the vehicle set S ′ = {s1, s2, s3, dj, s4} and submits a bid value of B(dj) = 82.9.

24

Chapter 6

Simulation Results

The algorithm described in Chapter 4 was implemented in Matlab and was de-
veloped on an Intel 1.66 GHz Core 2 Duo processor T5500 with 2GB RAM and
running Windows XP SP3. To demonstrate the performance of the proposed algo-
rithm, computer simulations were carried out with a model of the REMUS AUV.
Simulations were conducted on 50 datasets, each set containing between 6 and 20
task points. The task points were generated randomly and uniformly inside a square
with side lengths of 25 meters. The task points were generated close together to
highlight the necessity for considering the curvature constraints. As a baseline for
comparison, the “alternating algorithm” described by Savla et al. [35] was used.
Simulations were conducted with the parameters listed in Table 6.1.

Table 6.1: Simulation Parameters

Symbol Value Description

n 1 to 5 Number of AUVs
m 1 to 20 Number of task points
u 1.15 Nominal Translational velocity along x-axis (meters/sec)
uc 0 to 0.5 Current velocity (meters/sec)
ψc −π to + π Current direction from positive x-axis (rad)
δr 1.7453 Rudder fin angle (rad)

Xprop 5.1553 Propeller speed (N)

To illustrate the behaviour of the proposed algorithm, consider one particular
trial with n = 3 and m = 20 using the dataset shown in Fig. 6.1.

Using the k-means clustering method described in Chapter 4, the 20 task points
were partitioned into 3 clusters as shown in Fig. 6.2. It should be noted that Matlab
uses a two-phase iterative algorithm for k-means clustering that only converges to
a local minimum. The problem of finding the global minimum can only be solved
in general by an exhaustive choice of starting points. Therefore, Matlab produces

25

0 5 10 15 20 25

0

5

10

15

20

25

1

2
3

4

5

6

7

89

10

11

12

13

14

15

16

18 17

19

20

Figure 6.1: Dataset of 20 task points randomly generated.

different clusters using the same dataset depending on the starting points chosen
and Fig. 6.2 is one of many solutions.

0 5 10 15 20 25

0

5

10

15

20

25

centroid

cluster 1

cluster 2

cluster 3

Figure 6.2: Results from clustering using k -means. Tasks with a circle around it
are assigned to the vehicle responsible for that cluster.

The centroid for this dataset was calculated to be at (11.7429, 13.3626) and the
distance from each task point to the centroid is shown in Table 6.2.

The three task points in each cluster that were farthest from the centroid were
assigned to the vehicle responsible for the cluster. This resulted in the following
sequence for each vehicle: S1 = {d8, d11, d1}; S2 = {d6, d7, d13}; S3 = {d2, d4, d19}.

26

Table 6.2: Task points are ordered in decreasing distance from centroid.

Task Number Cluster Number Distance to Centroid

8 1 16.281
2 3 15.184
6 2 13.732
11 1 13.126
1 1 12.521
4 3 12.067
9 1 11.549
7 2 11.357
13 2 11.057
15 1 10.773
20 1 10.554
19 3 10.358
12 1 9.335
10 3 9.1847
3 3 8.0338
18 1 7.3387
17 1 4.2854
5 3 4.1767
16 2 3.7267
14 1 0.32833

6.1 MTSP Solution

The MTSP solution uses the clustering and auctioning method as described in
Chapter 4. The difference between the MTSP solution and that of the proposed
algorithm is in the calculation of the bids. The MTSP solution does not consider
the curvature constraints of the vehicle and therefore, assumes the vehicle can turn
on the spot. This results in straight line segments between task points with the
vehicle changing orientations at each task point. The MTSP solution also does not
consider the effect of ocean currents when creating the sequence for each vehicle.

The MTSP solution begins with the sequences generated from clustering. For
this solution, the following sequences were used as a starting point: S1 = {d8, d11, d9};
S2 = {d1, d7, d15}; S3 = {d2, d6, d4}. The unassigned task points were ordered in de-
creasing distance from the centroid as {d13, d20, d19, d12, d10, d3, d18, d17, d5, d16, d14}
and were auctioned off in that sequence.

The first step was to create a path for each vehicle as shown in Fig. 6.3(a). The
shortest times between every pair of task points in the sequence were calculated
and stored in memory. The auction began with task d13 up for bidding. Each
vehicle calculated the minimum cost of adding task d13 to its sequence S and
the values submitted were B1 = 53.296, B2 = 39.717, and B3 = 36.166. Since
vehicle 3 submitted the lowest bid, it won the task and updated its sequence as

27

S3 = {d2, d13, d6, d4} (Fig. 6.3(b)). The process continued until all unallocated
tasks were auctioned off as illustrated in Fig. 6.3.

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(a)

vehicle 1

vehicle 2

vehicle 3

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(b)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(c)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(d)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(e)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(f)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(g)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(h)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(i)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(j)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(k)

0 5 10 15 20 25
−5

0

5

10

15

20

25

30

(l)

Figure 6.3: Illustration of task allocation using auctions for solving the MTSP. (a)
All vehicles began with 3 task points determined from clustering. (b)-(l) Vehicles
bid for task points as they were auctioned off and added the task point to their
tour if it submitted the lowest cost.

28

The final sequences for each vehicle were S1 = {d8, d11, d5, d14, d17, d20, d9}; S2 =
{d1, d7, d16, d12, d18, d15}; S3 = {d2, d19, d10, d3, d13, d6, d4} and the path costs were
41.1820, 36.1909, and 41.4692 respectively.

The next step was to find feasible paths for each vehicle to follow taking into
consideration the curvature constraints of the vehicle as well as the effects of ocean
current. The “alternating algorithm” from [35] works as follows: Given a sequence S
from solving the Euclidean MTSP (i.e. tours that do not consider path curvature),
label the edges on the tour in order with consecutive integers. A Dubins TSP
tour can be constructed by retaining all odd-numbered (except the nth) edges, and
replacing all even-numbered edges with minimum length Dubins paths preserving
the point ordering. In other words, the algorithm consists of the following steps:

Algorithm 2 Alternating Algorithm

1: set (s1,...,sn) := optimal Euclidean TSP ordering S.
2: set α1 := orientation of segment from s1 to s2

3: for i = 2 ,..., n− 1 do
4: if i is even then
5: set αi := αi−1

6: else
7: set αi := orientation of segment from si to si+1

8: end if
9: end for

10: if n is even then
11: set αn := αn−1

12: else
13: set αn := orientation of segment from sn to s1

14: end if
15: return sequence of configurations {(si, αi)}i∈{1,...,n}.

The output of the “alternating algorithm” applied to the sequences generated
above from solving the MTSP is illustrated in Fig. 6.4. The path cost for each AUV
to traverse the sequence was calculated using the method described in Section 5.5
except the orientations at each task point did not need to be tested for all values
of Λ since it was determined using the “alternating algorithm”.

6.2 Proposed Planner Solution

The proposed planner solution was generated by using the path cost calculations
described in Section 5.5. For this solution, the following sequences were used as
a starting point: S1 = {d8, d11, d1}; S2 = {d6, d7, d13}; S3 = {d2, d4, d19}. The
unassigned task points were ordered in decreasing distance from the centroid as
{d9, d15, d20, d12, d10, d3, d18, d17, d5, d16, d14} and were auctioned off in that order.

29

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a)

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

c = 0.25 m/s (b) u

Figure 6.4: Dubins path using sequence generated from solving the MTSP. (a)
uc = 0, (b) uc = 0.25 m/s, ψc = 0 rad.

First consider the case when there was no ocean current. The path cost cal-
culations considered the curvature constraints of the vehicle and generated Dubins
paths between pairs of task points. The first step was to create a path for each
vehicle as shown in Fig. 6.5(a). The auction began with task d9 up for bidding.
Each vehicle calculated the minimum cost of adding task d9 to its sequence S
and the values submitted were B1 = 51.3776, B2 = 56.6235, and B3 = 55.1427.
Since vehicle 1 submitted the lowest bid, it won the task and updated its sequence
as S1 = {d8, d11, d1, d9} (Fig. 6.5(b)). The process continued until all unallo-
cated tasks were auctioned off as illustrated in Fig. 6.5. The final sequences for
each vehicle were S1 = {d8, d11, d18, d1, d9}; S2 = {d6, d7, d12, d15, d20, d17, d16, d13};
S3 = {d2, d4, d5, d14, d3, d10, d19} and the path costs were 52.8016, 52.4127, and
58.3678 respectively.

Next consider the case when there was ocean current with values uc = 0.25 m/s
and ψc = 0 rad. The path cost calculations considered the curvature constraints of
the vehicle as well as the effect of ocean currents. The first step was to create a path
for each vehicle as shown in Fig. 6.6(a). The auction began with task d9 up for
bidding. Each vehicle calculated the minimum cost of adding task d9 to its sequence
S and the values submitted were B1 = 52.8952, B2 = 54.0549, and B3 = 58.8124.
Since vehicle 1 submitted the lowest bid, it won the task and updated its sequence
as S1 = {d8, d11, d1, d9} (Fig. 6.6(b)). The process continued until all unallocated
tasks were auctioned off as illustrated in Fig. 6.6. The final sequences for each
vehicle were S1 = {d8, d11, d17, d12, d1, d9}; S2 = {d6, d7, d14, d20, d15, d18, d16, d13};
S3 = {d2, d4, d3, d10, d19, d5} and the path costs were 54.1014, 57.8366, and 57.5093
respectively.

30

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(a)

vehicle 1

vehicle 2 vehicle 3

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(b)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(c)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(d)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(e)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(f)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(g)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(h)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(i)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(j)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(k)

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

(l)

Figure 6.5: Illustration of task allocation using the proposed algorithm without
ocean current.

31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

c = 0.25 m/s u

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(a)

vehicle 1

vehicle 2 vehicle 3

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(b)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(c)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(d)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(e)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(f
)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(g)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(h)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(i)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(j)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(k)

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(l)

Figure 6.6: Illustration of task allocation using the proposed algorithm with uc =
0.25 m/s and ψc = 0 rad.

32

6.3 Discussion

The results from running the simulation on 50 different datasets are summarized
in Table 6.3 using the following criteria:

Tmax = maxCsim(Si) and Tavg =

∑n
i=1Csim (Si)

n
.

Csim is the cost calculated by running the planned tours Si through the full dynamic
model in Equation (5.3). On average, the proposed algorithm reduced Tmax by
43% over the “alternating algorithm” in the absense of currents and 45% with the
presence of currents.

Table 6.3: Summary of simulation results using n = {1, 2, 3, 4, 5} and m = {6, 7,
8,..., 20}.

No current With current
Tmax Tavg Tmax Tavg

% Improvement % Improvement % Improvement % Improvement
n = 1 36.06 36.06 42.83 42.83
n = 2 37.83 34.26 43.39 38.90
n = 3 47.17 37.63 48.64 46.68
n = 4 52.22 41.05 45.83 37.03
n = 5 41.66 31.21 44.13 40.46

Consider the solutions generated by the “alternating algorithm” and the pro-
posed algorithm for the case where n = 3 and m = 20 using the dataset in Fig. 6.1.
The results are summarized in Table 6.4 and Fig. 6.7 for the different cases. For
the case with no ocean currents, the “alternating algorithm” created paths with
numerous loops when two successive points were close together and the vehicle ori-
entation did not allow for the second point to be reached without long maneuvers
(Fig. 6.7(a)). This was avoided in the proposed algorithm by generating sequences
that were feasible but limited the number of additional loops (Fig. 6.7(c)). Similar
results were obtained with the presence of ocean currents as shown in Fig. 6.7(b)
and Fig. 6.7(d).

Note that the proposed algorithm produced different sequences for the case with
no ocean currents and the case with ocean currents. This is because the bidding
scheme considered the possibility that two successive points that were reachable in
the absence of ocean currents may no longer be reachable without extra loops due to
the increase in turning radius from the ocean currents. Also, the paths generated
by the proposed algorithm attempted to avoid paths that forced the vehicles to
drive against the ocean current. Instead, paths that allowed the ocean current to
aid the vehicle in the direction of travel were favoured.

For a sufficiently dense sets of points, it becomes clear that the ordering of the
Euclidean tours are not optimal in the case of the Dubins MTSP. This is due to

33

Table 6.4: Summary of path costs for the dataset in Fig. 6.1 with n = 3 and m =
20.

No current With current
Alternating Proposed Alternating Proposed
Algorithm Algorithm Algorithm Algorithm

Tmax (s) 89.9 58.4 101.2 59.8
Tavg (s) 75.1 54.5 88.1 57.1

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a)

1
2

3

4

5

6 7

1

2

3

4 5

6

1

2

34
5

6 7

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

c = 0.25 m/s (b)

1
2

7
6

6

5

4

3
3

2

1
4 5

6
5

4 3

2

1

7

u

−5 0 5 10 15 20 25 30

0

5

10

15

20

25

30

(c)

1
2

3

4

5

1

2

3

4 5

6

7

8
1

2

3

4

5
6

7

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

(d) c = 0.25 m/s

7

3

1
2

4

5

6

1

2
3

45

6

8 1

2

3 4

56

u

Figure 6.7: Sequences generated by the “alternating algorithm” and the proposed
algorithm using the dataset in Fig. 6.1 with n = 3 and m = 20. (a) Alternating
algorithm, uc = 0, (b) Alternating algorithm, uc= 0.25 m/s, ψc= 0, (c) Proposed
algorithm, uc= 0, (d) Proposed algorithm, uc= 0.25 m/s, ψc= 0.

the fact that there is little relationship between the Euclidean and Dubins metrics,
especially when the Euclidean distances are small with respect to the turning radius.
An algorithm for the Euclidean problem will tend to schedule very close points in
a successive order, which can imply long maneuvers for the AUV. This is clearly

34

demonstrated by the numerous loops that become problematic with dense sets
of points. The algorithm proposed in this thesis does not rely on the Euclidean
solution and therefore, even in the presence of ocean currents, can create paths
that are feasible for curvature bound vehicles.

6.4 System Performance

The processing time for running the proposed algorithm using n= {1,2,3,4,5} andm
= {1,2,3,...,20} are plotted in Fig. 6.8. As a baseline for comparison, the processing
time for running the TSP solution followed by the “alternating algorithm” is also
shown on the graph for n = 1.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

Number of task points

P
ro

ce
ss

in
g

T
im

e
(s

)

TSP + Alternating Algorithm − 1 AUV

Proposed Algorithm − 1 AUV

Proposed Algorithm − 2 AUVs

Proposed Algorithm − 3 AUVs

Proposed Algorithm − 4 AUVs

Proposed Algorithm − 5 AUVs

Figure 6.8: Processing Time.

The complexity of the algorithm is a result of each vehicle i trying to insert
the new task at every point in the current sequence Si = {s1, s2, ..., sl}, where l
is the number of previously won tasks by Vi, when calculating the bid cost. As l
increases by 1, the number of calculations required by the vehicle i increases by
8 × 8 × 8 = 512 configurations for testing the different orientations at sk, dj, and
sk+1, and for every configuration, there are 4 possible Dubins paths.

35

Chapter 7

Experiment Description

Experiments were conducted at the Avila Pier in California using the Iver2 Au-
tonomous Underwater Vehicle as shown in Fig. 7.1.

Figure 7.1: Picture of the Iver2 AUV.

The Iver2 is a small, low cost AUV developed by Ocean Server Technology Inc.
It is 4 feet long, 6 inches in diameter, and weighs less than 50 pounds. It has
independent control of all 4 control surfaces, a wireless network interface, a simple
user interface, and a robust mechanical design [36]. The Iver2 AUV is similar to the
REMUS AUV in many aspects, and therefore, the governing equations of motion
described above for the REMUS AUV also apply to the Iver2 AUV.

36

7.1 Mission Planning Software

Planning a mission for the Iver2 consists of a user-defined sequence of GPS refer-
enced waypoints that the vehicle follows. To plan a mission, the VectorMap software
that accompanies the Iver2 was used in conjunction with a standard geo-referenced
NOAA Raster Navigational Chart as shown in Fig. 7.2.

Figure 7.2: VectorMap software with the NOAA Raster Navigational Chart of the
Estero Bay area where the missions took place.

The VectorMap GUI allows for quick access to all necessary tools for planning a
mission. After loading a chart in VectorMap, waypoints can be added by navigating
the cursor to the desired location on the map and left clicking the mouse. After
adding the first waypoint, the distance and angle from the first to the second
waypoint is displayed on the screen to allow the user to accurately determine the
heading and distance to the new waypoint.

Besides using the GUI, the ASCII mission files can be created using a text
editor when the waypoint properties such as latitude, longitude, speed, and depth
are known. Fig. 7.3 is a sample mission file called “MTSP-1” as indicated under
the MISSION NAME section. This mission uses the NOAA raster map “18703-1”
as indicated under the FILES section which specifies the directory where the map
is located.

37

MISSION FILE VERSION V1.0
2X ;Latitude ;Longitude ;Distance ;Heading ;Command String
FILES
C:\maps\18703-1.KAP
MISSION NAME
MTSP-1
START
1;35.1701128117688;-120.7413124037010;0;0;D0 P0 VC0 S2;0
2;35.1700499970337;-120.7412832254800;7.4651819;159.207701;D0 P0 VC0 S2;0
3;35.1699753033922;-120.7412747032370;8.3348159;174.671637;D0 P0 VC0 S2;0
4;35.1699810583344;-120.7413128331160;3.521533;280.461139;D0 P0 VC0 S2;0
5;35.1699335175075;-120.7413705619520;7.4423499;224.787693;D0 P0 VC0 S2;0
6;35.1699354922249;-120.7414322546210;5.6072939;272.242419;D0 P0 VC0 S2;0
7;35.1700391153866;-120.7414794903080;12.286304;339.563486;D0 P0 VC0 S2;0
8;35.1700328420136;-120.7413973882980;7.4891049;95.3401622;D0 P0 VC0 S2;0
9;35.1700663870082;-120.7413865384040;3.8550670;14.8098304;D0 P0 VC0 S2;0
10;35.1700529222076;-120.7413495426220;3.6779907;114.00045;D0 P0 VC0 S2;0
11;35.1701128117688;-120.7413124037010;7.4600834;26.881048;D0 P0 VC0 S2;0
END

Figure 7.3: Sample mission file.

Under the START section, all the waypoints and their properties are listed.
The format for each line is: Waypoint Number; Latitude; Longitude; Distance;
Heading; D# P# VC# S# SS; 0, where,

• D = Depth from surface

• H = Height from bottom

• P = Amount of time the vehicle will park

• VC = Video Camera; 0=none, 1=1 camera, 2=2 camera, 3=both cameras

• S = Side Scan; if side scan is enabled, the format is SS Gain Range Channel
Frequency 1

7.2 Connecting to the Iver2

Establishing communication between a notebook and the Iver2 is accomplished
using a portable battery powered WiFi router/access point. The user must first
connect the operating computer to the portable WiFi access point by setting up
the WiFi access point as a wireless network. All vehicles are configured to connect
to the access point as soon as it is powered on. Through the WiFi connection, a

38

user can connect up to 127 different Iver2 AUVs using Windows Remote Desktop
Connection from a single notebook computer. The connection also allows a user to
easily transfer data such mission files or logs between a notebook and the AUV.

7.3 Running a mission

The Underwater Vehicle Console (UVC) resides in the Iver2 and is responsible for
running missions (Fig. 7.4). The first step is to remotely connect to the vehicle to
open the UVC to load a VectorMap mission file. The mission file should be stored
in the shared folder called Missions on the Iver2. Once the mission is loaded, the
UVC can be used to adjust the properties of a mission and also alter the behaviour
of the vehicle. Under the setup menu, the waypoint properties allows the user to
specify the distance at which the Iver2 can continue to the next waypoint when the
current destination waypoint is within those values. For this thesis, the “waypoint
success radius” was set to 4 meters which is the minimum value the UVC will allow
(Fig. 7.5).

Figure 7.4: UVC software.

At this stage, the vehicle’s devices should be checked using the Instruments
panel before launching the vehicle in the water. The Iver2’s devices such as the
GPS, batteries, compass, altimter, and YSI sensor can be checked anytime while
the vehicle is within WiFi range. The GPS reading provides the vehicle’s current
latitude and longitude location and also includes the following:

• True Heading - heading compensated for magnetic variation

• Magnetic Variation - the amount of error between actual North and the
vehicle’s North

• Current Speed - vehicle’s speed according to the GPS in Knots

• Number of Satellites - provides the amount of satellites associated with
the vehicle’s GPS signal

39

Figure 7.5: UVC software setup screen.

• Data Age - the time in seconds that has passed since the new data has
arrived from the GPS

Next, the vehicle can be placed in the water in a safe place and driven to a
starting location. The UVC has a manual mode that allows the user to manually
control the Iver2 AUV when the vehicle is within WiFi range. The propeller can
be forced to move the vehicle in the forward direction or in the reverse direction.
The yaw is controlled by moving the top and bottom fins together.

After driving the vehicle to the start position, the GPS, compass, and depth
sensors should be checked to be receiving valid data. Once the mission starts, the
Iver2’s progress can be checked only if the vehicle is within WiFi range and it is
running a surface mission. For this reason, mission files were created so that task
points were located within a square with side lengths of 35 meters (within WiFi
range) and the vehicle operated at the surface throughout the mission.

7.4 Post-mission

While the vehicle is running a mission, it is continuously logging data that is time
and GPS referenced. After a mission ends, data can be transferred from the vehicle
to the notebook for analysis. The log data can be overlayed on the mission in
VectorMap. After the log file is loaded, a red line is overlayed on the mission map
indicating the vehicle’s actual position during the mission (Fig. 7.6). The data of
the log file is placed in an excel sheet at the bottom of VectorMap. Selecting any

40

point on the vehicles actual position will activate a ‘X’ and the record corresponding
to that point will be highlighted. To further analyze the log data, the file can be
opened with Microsoft Excel.

Figure 7.6: Data of the log file overlayed on the mission map.

41

Chapter 8

Experimental Results

Mission files were created based on the sequences generated by the different algo-
rithms using Matlab and were tested on the Iver2 AUV. The results from running
the experiments were analyzed based on following criteria:

Tmax = maxCexp(Si); Tavg =

∑n
i=1Cexp (Si)

n
; Davg =

∑m
j=1 Dmin (dj)

m
.

where Cexp is the time taken by the Iver2 AUV to traverse the sequence Si during
a mission and Dmin is the minimum distance between a task point and the line
indicating the actual position of the AUV during the mission as shown in Fig.
8.1. Note that for Experiment 1, Tmax = Tavg since there is only one vehicle, and
therefore, it is denoted as Texp.

8.1 Control Architecture

Before describing the results from field tests, the limitations on the control archi-
tecture of the Iver2 AUV must be addressed. The Iver2 AUV control architecture is
based on the UVC developed by the Ocean Server Technology Inc. The UVC pro-
vides an interface to the Iver2 AUV’s sensors, motors, and control processes through
the Remote Desktop Connection. As described in Section 7.3, the UVC declares
victory on the approaching waypoint and will move to the next waypoint when it
has reached the “waypoint success radius” which was set to 4 meters (minimum
allowed value on the UVC).

To execute a planned path, the UVC uses the sequence of waypoints listed in
the ASCII mission file. The goal is to drive the AUV to the waypoint latitude and
longitude coordinate but unfortunately, the UVC will only track the waypoint until
it is within 4 meters, at which point it will start tracking the next waypoint. Due
to the Iver2’s method of control, the AUV was not actually able to track waypoints
precisely, which can be seen in the experimental results.

42

Figure 8.1: Minimum distance between a task point and the line indicating the
actual position of the AUV during a mission.

8.2 Experiment 1 - Traveling Salesman Problem

The first set of experiments were conducted on 3 datasets, each containing 10 task
points generated randomly and uniformly inside a square with side lengths of 25
meters. Consider one particular trial using the dataset shown in Fig. 8.2. The task
positions were converted to latitude and longitude as shown in Table 8.1 to be used
in the mission file.

The first method solves the traveling salesman problem without considering the
curvature constraints of the vehicle or the effects of ocean current (Fig 8.3). The
second method takes the sequence of points generated by the first method and tries
to find a feasible path taking into consideration the curvature constraints of the
vehicle using the “alternating algorithm” (Fig 8.4). The third method uses the
proposed algorithm which considers the curvature constraints of the vehicle as well
as the effect of ocean currents in generating the sequence for the vehicle (Fig 8.5).
Results from field tests are summarized in Table 8.2.

On average, the proposed algorithm reduced the mission time by 34% and re-
duced the average minimum distance to task points by 31% over the “alternating
algorithm”. Although the TSP solution was 50% faster than the proposed solution,
the paths generated were not feasible for the Iver2 AUV which had a turning radius
of 6 meters. This resulted in the Iver2 AUV travelling at times very far from the

43

0 5 10 15 20 25

0

5

10

15

20

25

1

2

3

4

5

6
7

8

9

10

Figure 8.2: Dataset of 20 task points randomly generated.

Table 8.1: Converting to latitude and longitude.

x (m) y (m) Latitude Longitude

9.7976 15.683 35.1700328420136 -120.7413973882980
17.477 9.9296 35.1699810583344 -120.7413128331160
2.341 16.38 35.1700391153866 -120.7414794903080
20.94 9.2902 35.1699753033922 -120.7412747032370
6.631 4.867 35.1699354922249 -120.7414322546210
14.143 17.914 35.1700529222076 -120.7413495426220
10.783 19.41 35.1700663870082 -120.7413865384040
12.234 4.6476 35.1699335175075 -120.7413705619520
17.516 24.568 35.1701128117688 -120.7413124037010
20.166 17.589 35.1700499970337 -120.7412832254800

Table 8.2: Field test results from three randomly generated datasets of 10 task
points for one vehicle.

Texp (s) Davg (m)

TSP 104.3 1.44
Alternating Algorithm 315.3 0.90
Proposed Algorithm 207 0.62

desired task point, with a maximum value of 4.05 meters. The paths generated
by the “alternating algorithm” improved this factor but at the expense of increas-
ing the mission time. The numerous loops created by the “alternating algorithm”
created complex missions for the Iver2 AUV and resulted in longer missions. The

44

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

(a)
task point

(b)

AUV’s actual
path

Figure 8.3: (a) Paths generated for the TSP from Matlab. (b) Field test results -
Texp = 85 s and Davg = 1.71 m.

−5 0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

(a) (b)
task point

intermediate
waypoint

AUV’s actual
path

Figure 8.4: (a) Paths generated using the ‘alternating algorithm’ from Matlab. (b)
Field test results - Texp = 290 s and Davg = 0.88 m.

−5 0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

(a) (b)
task point

intermediate
waypoint

AUV’s actual
path

Figure 8.5: (a) Paths generated using the proposed algorithm from Matlab. (b)
Field test results - Texp = 209 s and Davg = 0.42 m.

45

mission file had 69 lines of code, reflecting the number of intermediate waypoints
used to guide the Iver2 AUV to follow the desired path. The proposed algorithm
had 44 lines of code and this reduced complexity resulted in shorter missions with
better performance.

8.3 Experiment 2 - Multiple Traveling Salesman

Problem

The second set of experiments were conducted on 3 datasets, each containing 20
task points generated randomly and uniformly inside a square with side lengths of
35 meters. These task points were allocated to 3 vehicles, similar to the multiple
traveling salesmen problem. Note that the experiments were conducted using only
one Iver2 AUV. The three sequences generated from the different algorithms were
run one at time.

Consider one particular trial using the dataset shown in Fig. 8.6. The first
method solves the multiple traveling salesman problem without considering the cur-
vature constraints of the vehicle (Fig 8.7). The second method takes the sequences
generated by the first method and tries to find feasible paths for each vehicle using
the “alternating algorithm” (Fig 8.8). The third method uses the proposed algo-
rithm which considers the curvature constraints of the vehicle in generating the
sequence for the vehicle (Fig 8.9). Results from field tests are summarized in Table
8.3.

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

18

17

19

20

Figure 8.6: Dataset of 20 task points randomly generated.

On average, the proposed algorithm reduced Tmax by 47% and reduced Davg by
34% over the “alternating algorithm”. Again, the TSP solution was able to produce
results 39% faster than the proposed algorithm, but the average distance to task

46

Table 8.3: Field test results from three randomly generated datasets of 20 task
points for 3 vehicles.

Tmax (s) Tavg (s) Davg (m)

TSP 89.3 78 1.65
Alternating Algorithm 279 252 1.35
Proposed Algorithm 145.3 133.5 0.84

point is 49% larger. In one instance, the Iver2 AUV only got within 7.11 meteres
from a task point when using the TSP sequence of points. The largest distance the
AUV got to a task point was 3.53 meters using the “alternating algorithm” and
2.71 meters using the proposed algorithm.

The proposed algorithm also performed better with respect to overall mission
time when compared to the “alternating algorithm” because paths were in general
simpler with less loops. The “alternating algorithm” is based on the sequence of
points generated by the solving the Euclidean TSP which tends to schedule closely
spaced points in a successive order. Similar to simulation results from Matlab, the
Iver2 AUV was not able to drive from one point to another point nearby without
long maneuvers when the orientation of the vehicle was not “ideal”. This resulted
in additional loops which are harder to execute on the Iver2 AUV than straight
paths, leading to longer mission times.

Note that all experiments were conducted on the same day in an attempt to test
the different algorithms against each other in similar conditions. However, ocean
currents are constantly changing in magnitude and direction. Before the mission,
real-time information regarding the ocean current along the central California coast
was retrieved from the California Polytechnic State University’s Marine Science
Research and Education Pier. At 15:00 UTC, the ocean current was measured to
be going 0.1515 m/s at 3.9078 radians from the North and these values were used
in the proposed algorithm to create paths for the Iver2 AUV. Unfortunately, the
ocean currents had changed to 0.1248 m/s at 3.7671 radians from the North by
the time the first experiment was conducted and continued changing throughout
the course of the experiments. Because all experiments were conducted on one
AUV, experiments were conducted sequentially and the ocean conditions were not
identical. In an ideal experiment, all test cases would be run at the same time but
since this was not possible, the three methods were alternated such that experiments
using the same dataset were conducted as close as possible in time.

47

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)

vehicle 1

vehicle 2
vehicle 3

(b)

(c) (d)

Figure 8.7: Paths generated for the TSP from Matlab. (b) Field test results for
vehicle 1. (c) Field test results for vehicle 2. (d) Field test results for vehicle 3.

48

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2

vehicle 3

(b)

(c) (d)

Figure 8.8: (a) Paths generated using the “alternating algorithm” from Matlab.
(b) Field test results for vehicle 1. (c) Field test results for vehicle 2. (d) Field test
results for vehicle 3.

49

−5 0 5 10 15 20 25 30 35 40 45

−5

0

5

10

15

20

25

30

35

40

45 (a)
vehicle 1

vehicle 2 vehicle 3

(b)

(c) (d)

Figure 8.9: (a) Paths generated using the proposed algorithm from Matlab. (b)
Field test results for vehicle 1. (c) Field test results for vehicle 2. (d) Field test
results for vehicle 3.

50

Chapter 9

Conclusion

AUVs are seen as ideal platforms for oceanographic research such as ocean sam-
pling, mapping, and monitoring. The main advantage of using AUVs is that they
are a cost-effective way for collecting data on a large spatial or temporal scale. Task
allocation problems naturally arise in these applications where the objective is to
optimally assign task points to a given set of vehicles. The feature that differenti-
ates this task allocation problem from similar problems previously studied in the
literature is that there are constraints on the motion of the vehicle and the presence
of ocean currents. Here, the objective is to minimize the time required to navigate
between task points through a current field.

This thesis addresses the task allocation of closely spaced targets for vehicles
that follow paths of bounded curvature in the presence of constant ocean currents.
The proposed algorithm is based on using a bidding scheme to allocate tasks to
multiple AUVs while using the Dubins set to calculate the path costs for vehicles
with non-holonomic constraints. Bid costs are calculated using a lower order model
created from the 6-DOF non-linear model to reduce the complexity of the algorithm.

The proposed algorithm was developed in Matlab and tested in simulations.
Simulations using the full non-linear model of the REMUS AUV indicate that the
proposed algorithm yield better performance for dense sets of points when compared
to the “alternating algorithm”. It is shown that solutions based on computing
Euclidean tours that do not have curvature constraints have extra loops when task
points are close together relative to the turning radius of the vehicle.

To validate the proposed algorithm in a real world application, the Iver2 AUV
was used for testing at the Avila Pier in California. The Iver2 AUV was equipped
with the VectorMap software for mission planning and UVC for mission execution.
The VectorMap software generated mission files specifying the latitude and longi-
tude of a sequence of waypoints. It also allowed for waypoint properties such as
speed and depth to be specified. A WiFi access point was used to connect the
Iver2AUV with an operating computer, communicating with the Iver2 AUV via a
wireless Ethernet connection. Localization and status information was logged on
the Iver2’s main processor on-board during a mission.

51

Analysis of the log files indicated that the proposed algorithm outperformed
the “alternating algorithm” with respect to the overall mission time as well as the
average distance to task point. The proposed algorithm produced paths through a
set of task points that were feasible for the Iver2 AUV to track closely, even in the
presence of ocean currents.

9.1 Future Work

The developments presented in this thesis may be extended by future research in
several areas. First, this thesis assumes the AUVs travel through water that has a
known uniform velocity. Instantaneous currents at the location of vehicles are avail-
able for certain bodies of water through websites such as the NASA Jet Propulsion
Lab and the Center for Coastal Marine Sciences at the California Polytechnic State
University. This information could be integrated into future developments for dy-
namic task allocation. By utilizing real-time information about the ocean currents,
the task allocation algorithm can update the paths for each vehicle during a mission
as new information is received. This will also allow the system to adapt to dynamic
or unknown scenarios which could result in new task points being generated.

Future developments of the task allocation algorithm could also focus on prece-
dence constraints. Adaptive sampling strategies can be used to change the priority
of task points depending on prior measurements or analysis. When using multi-
ple AUVs for environmental monitoring of large bodies of water, predictive models
and maps are created by repeated measurements. However, because the sampling
volume could be quite large, only a limited number of measurements are usually
available. A task allocation algorithm that can handle ordering constraints on task
points could prioritize the task points according to their impact on these predictive
models and maps.

Another extension of is to implement the task allocation algorithm on a dis-
tributed architecture. This development would eliminate the requirement of a cen-
tralized controller and allow distribution of the computational effort of calculating
path costs across all of the robots in the system.

Finally, the proposed algorithm for path planning can be extended to perform
trajectory planning. A path defines the sequence of task points for the AUV to
follow without regard for timing. A trajectory is a path parameterized by time.
With a trajectory planner, the algorithm should be capable of performing collision
checks as well as handling time-indexed waypoints.

52

APPENDICES

53

Appendix A

REMUS AUV Dynamic Model

A.1 Vehicle Kinematics

The equations of motion will be defined in terms of linear and angular motion
components about the body-fixed coordinate system. The origin of the vehicle
body-fixed coordinate system is chosen to coincide with the center of buoyancy.
The motion of the body-fixed frame of reference is described relative to an inertial-
fixed reference frame. The general motion of the vehicle in six degrees of freedom
can be described by the following vectors:

η1 = [x y z]T ; η2 = [φ θ ψ]T

ν1 = [u v w]T ; ν2 = [p q r]T

τ1 = [X Y Z]T ; τ2 = [K M N]T
(A.1)

where η describes the position and orientation of the vehicle with respect to the
inertial-fixed reference frame, ν the translational and rotational velocities of the
vehicle with respect to the body-fixed frame, and τ the total forces and moments
acting on the vehicle with respect to the body-fixed reference frame. See Fig. A.1
for a diagram of the vehicle coordinate system. Note that φ, θ, and ψ are Euler
angles used to define the relative orientation of the AUV.

The following direction cosine matrix relates translational velocities between
body-fixed and inertial-fixed coordinates: ẋ

ẏ
ż

 = J1(η2)

 u
v
w

 (A.2)

where

J1(η2)=

 cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ
sinψ cos θ cosψ cosφ+ sinψ sin θ sinφ − cosψ sinφ+ sinψ sin θ cosφ
− sin θ cos θ sinφ cos θ cosφ

54

Figure A.1: Inertial and body-fixed coordinate systems and motion representations.

Note that J1(η2) is orthogonal:

(J1(η2))−1 = (J1(η2))T (A.3)

The second direction cosine matrix relates rotational velocities between body-
fixed and inertial-fixed coordinates: φ̇

θ̇

ψ̇

 = J2(η2)

 p
q
r

 (A.4)

where

J2(η2) =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

The vehicle position and orientation at a given time can be found by integrating

(A.2) and (A.4) respectively. The next step is to investigate the vehicle rigid body
dynamics in order to find ν1 and ν2, which are necessary to perform the calculations
in (A.2) and (A.4).

A.2 Vehicle Rigid-Body Dynamics

The locations of the vehicle centers of gravity and buoyancy are defined in terms
of the body-fixed coordinate system as follows:

rG =

xgyg
zg

, rB =

xbyb
zb

 (A.5)

55

Given that the origin of the body-fixed coordinate system is located at the center
of buoyancy, the following represent the equations of motion for a rigid body in six
degrees of freedom, defined in terms of the body-fixed coordinates:

mv

[
u̇− vr + wq − xg

(
q2 + r2

)
+ yg (pq − ṙ) + zg (pr + q̇)

]
=
∑

Xext

mv

[
v̇ − wp+ ur − yg

(
r2 + p2

)
+ zg (qr − ṗ) + xg (qp+ ṙ)

]
=
∑

Yext

mv

[
ẇ − uq + vp− zg

(
p2 + q2

)
+ xg (rp− q̇) + yg (rq + ṗ)

]
=
∑

Zext

Ixxṗ+ (Izz − Iyy) qr − (ṙ + pq) Ixz +
(
r2 − q2

)
Iyz + (pr − q̇) Ixy

+mv [yg (ẇ − uq + vp)− zg (v̇ − wp+ ur)] =
∑

Kext

Iyy q̇ + (Ixx − Izz) rp− (ṗ+ qr) Ixy +
(
p2 − r2

)
Ixz + (qp− ṙ) Iyz

+mv [zg (u̇− vr + wq)− xg (ẇ − uq + vp)] =
∑

Mext

Izz ṙ + (Iyy − Ixx) pq − (q̇ + rp) Iyz +
(
q2 − p2

)
Ixy + (rq − ṗ) Ixz

+mv [xg (v̇ − wp+ ur)− yg (u̇− vr + wq)] =
∑

Next

(A.6)

where mv is the vehicle mass. The first three equations represent translational
motion, the second three represent the rotational motion.

Note that these equations neglect the zero-valued center of buoyancy terms.
These equations can be further simplified with the assumption that the vehicle
products of inertia are small, and that yg is small compared to the other terms [8]:

mv

[
u̇− vr + wq − xg

(
q2 + r2

)
+ zg (pr + q̇)

]
=
∑

Xext

mv [v̇ − wp+ ur + zg (qr − ṗ) + xg (qp+ ṙ)] =
∑

Yext

mv

[
ẇ − uq + vp− zg

(
p2 + q2

)
+ xg (rp− q̇)

]
=
∑

Zext

Ixxṗ+ (Izz − Iyy) qr +mv [−zg (v̇ − wp+ ur)] =
∑

Kext

Iyy q̇ + (Ixx − Izz) rp+mv [zg (u̇− vr + wq)− xg (ẇ − uq + vp)] =
∑

Mext

Izz ṙ + (Iyy − Ixx) pq +mv [xg (v̇ − wp+ ur)] =
∑

Next

(A.7)

A.3 Vehicle Mechanics

In the vehicle equations of motion, external forces and moments are described in
terms of vehicle coefficients. The external forces and moments acting on an under-
water vehicle can be classified as added mass, hydrodynamic damping, restoring
forces, currents, thruster/propeller forces, and control surface/fin forces. Combin-

56

ing these forces and moments on the vehicle yields the following equations:∑
Xext = XHS +Xu|u|u|u|+Xu̇u̇+Xwqwq +Xqqqq +Xvrv̇r +Xrrrr

+Xprop∑
Yext = YHS + Yv|v|v|v|+ Yr|r|r|r|+ Yv̇v̇ + Yṙṙ + Yurur + Ywpwp

+ Ypqpq + Yuvuv + Yuuδru
2δr∑

Zext = ZHS + Zw|w|w|w|+ Zq|q|q|q|+ Zẇẇ + Zq̇ q̇ + Zuquq + Zvpvp

+ Zrqrq + Zuwuw + Zuuδsu
2δs∑

Kext = KHS +Kp|p| +Kṗṗ+Kprop∑
Mext = MHS +Mw|w|w|w|+Mq|q|q|q|+Mẇẇ +Mq̇ q̇ +Muquq

+Mvpvp+Mrprp+Muwuw +Muuδsu
2δs∑

Next = NHS +Nv|v|v|v|+Nr|r|r|r|+Nv̇v̇ +Nṙṙ +Nurur +Nwpwp

+Npqpq +Nuvuv +Nuuδru
2δr

(A.8)

The actual values of these coefficients are derived theoretically and experimen-
tally in [8] and are listed in Appendix B and Appendix C.

A.4 6-DOF Non-linear Model

The completion of the 6-DOF model requires the algebraic manipulation and com-
bination of several equations of motion. When (A.8) is substituted into (A.7),
and all acceleration terms are grouped together, the resulting system can then be
represented in matrix form as:

u̇
v̇
ẇ
ṗ
q̇
ṙ

 = [J3]−1

ΣX
ΣY
ΣZ
ΣK
ΣM
ΣN

 (A.9)

where

J3 =

mv −Xu̇ 0 0 0 mvzG 0

0 mv − Yv̇ 0 −mvzG 0 mvxG − Yṙ
0 0 mv − Zẇ 0 −mvxG − Zq̇ 0
0 −mvzG 0 IX −Kṗ 0 0

mvzG 0 −mvzG −Mẇ 0 IY −Mq̇ 0
0 mvxG −Nv̇ 0 0 0 IZ −Nṙ

Integrating (A.9) provides the solution for the states given by ν in (A.1).

57

Appendix B

Tables of REMUS Parameters

58

Table B.1: STD REMUS Hull Parameters

Parameter Value Units Description
ρ +1.03e+ 003 kg/m3 Seawater Density
Af +2.85e− 002 m2 Hull Frontal Area
Ap +2.26e− 001 m2 Hull Projected Area (xz plane)
Sw +7.09e− 001 m2 Hull Wetted Surface Area
∇ +3.15e− 002 m3 Estimated Hull Volume
W +2.99e+ 002 N Measured Vehicle Weight
B +3.08e+ 002 N Measured Vehicle Buoyancy
Best +3.17e+ 002 N Estimated Hull Buoyancy
xcb(est) +5.54e− 003 m Est. Long. Center of Buoyancy
cd +3.00e− 001 N/A REMUS Axial Drag Coeff.
cdc +1.10e+ 000 N/A Cylinder Crossflow Drag Coeff.
cydβ +1.20e+ 000 N/A Hoerner Body Lift Coeff.
xcp −3.21e− 001 N/A Center of Pressure
α +3.59e− 002 N/A Ellipsoid Added Mass Coeff.

Table B.2: Hull Coordinates for Limits of Integration

Parameter Value Units Description
xt −7.21e− 001 m Aft End of Tail Section
xt2 −2.18e− 001 m Forward End of Tail Section
xf −6.85e− 001 m Aft End of Fin Section
xf2 −6.11e− 001 m Forward End of Fin Section
xb +4.37e− 001 m Aft End of Bow Section
xb2 +6.10e− 001 m Forward End of Bow Section

Table B.3: Center of Buoyancy wrt Origin at Vehicle Nose

Parameter Value Units
xcb +0.00e+ 000 m
ycb +0.00e+ 000 m
zcb +0.00e+ 000 m

59

Table B.4: Center of Gravity wrt Origin at CB

Parameter Value Units
xcg +0.00e+ 000 m
ycg +0.00e+ 000 m
zcg +0.00e+ 000 m

Table B.5: Moments of Inertia wrt Origin at CB

Parameter Value Units
Ixx +1.77e− 001 kg· m2

Iyy +3.45e+ 000 kg· m2

Izz +3.45e+ 000 kg· m2

Table B.6: REMUS Fin Parameters

Parameter Value Units Description
Sfin +6.65e− 003 m2 Planform Area
bfin +8.57e− 002 m Span

xfinpost −8.19e− 001 m Moment Arm wrt Vehicle Origin at CB
δmax +1.75e+ 000 rad Maximum Fin Angle
afin +5.14e+ 000 m Max Fin Height Above Centerline
cmean +7.47e− 002 m Mean Chord Length
t +6.54e− 001 N/A Fin Taper Ratio (Whicker-Felner)
cdf +5.58e− 001 N/A Fin Crossflow Drag Coefficient
ARe +2.21e+ 000 N/A Effective Aspect Ratio
a +9.00e− 001 N/A Lift Slope Parameter
cLα +3.12e+ 000 N/A Fin Lift Slope

60

Appendix C

Tables of Combined Non-Linear
Coefficients

61

Note that all coefficients are calculated for the STD REMUS hull profile as
described in [8].

Table C.1: Axial Drag Coefficient

Parameter Value Units
Xuu −3.90e+ 000 kg/m

Table C.2: Crossflow Drag Coefficients

Parameter Value Units
Yvv −1.31e+ 003 kg/m
Yrrd +6.32e− 001 kg· m/rad2

Zww −1.31e+ 002 kg/m
Zqqd −6.32e− 001 kg· m/rad2

Mwwd +3.18e+ 000 kg/m
Mqq −1.88e+ 002 kg· m2/rad2

Nvvd −3.18e+ 000 kg/m
Nrr −9.40e+ 001 kg· m2/rad2

Table C.3: Rolling Resistance Coefficient

Parameter Value Units
Kpp −1.30e− 001 kg· m2/rad2

Table C.4: Body Lift and Moment Coefficients

Parameter Value Units
Yvv −2.86e+ 001 kg/m
Zww −2.86e+ 001 kg/m
Muwb −4.47e+ 000 kg
Nuvb +4.47e+ 000 kg

62

Table C.5: Added Mass Coefficients

Parameter Value Units
Xu̇ −9.30e− 001 kg
Xv̇ +0.00e+ 000 kg
Xẇ +0.00e+ 000 kg
Xṗ +0.00e+ 000 kg· m/rad
Xq̇ +0.00e+ 000 kg· m/rad
Xṙ +0.00e+ 000 kg· m/rad
Yu̇ +0.00e+ 000 kg
Yv̇ −3.55e+ 001 kg
Yẇ +0.00e+ 000 kg
Yṗ +0.00e+ 000 kg· m/rad
Yq̇ +0.00e+ 000 kg· m/rad
Yṙ +1.93e+ 000 kg· m/rad
Zu̇ +0.00e+ 000 kg
Zv̇ +0.00e+ 000 kg
Zẇ −3.55e+ 001 kg
Zṗ +0.00e+ 000 kg· m/rad
Zq̇ −1.93e+ 000 kg· m/rad
Zṙ +0.00e+ 000 kg· m/rad
Ku̇ +0.00e+ 000 kg
Kv̇ +0.00e+ 000 kg
Kẇ +0.00e+ 000 kg
Kṗ −7.04e− 002 kg· m2/rad
Kq̇ +0.00e+ 000 kg· m2/rad
Kṙ +0.00e+ 000 kg· m2/rad
Mu̇ +0.00e+ 000 kg
Mv̇ +0.00e+ 000 kg
Mẇ −1.93e+ 000 kg
Mṗ +0.00e+ 000 kg· m2/rad
Mq̇ −4.88e+ 000 kg· m2/rad
Mṙ +0.00e+ 000 kg· m2/rad
Nu̇ +0.00e+ 000 kg
Nv̇ +1.93e+ 000 kg
Nẇ +0.00e+ 000 kg
Nṗ +0.00e+ 000 kg· m2/rad
Nq̇ +0.00e+ 000 kg· m2/rad
Nṙ −4.88e+ 000 kg· m2/rad

63

Table C.6: Added Mass Force Cross-term Coefficients

Parameter Value Units
Xuq +0.00e+ 000 kg/rad
Xwq −3.55e+ 001 kg/rad
Xqq −1.93e+ 000 kg· m/rad
Xvr +3.55e+ 001 kg/rad
Xrp +0.00e+ 000 kg· m/rad
Xrr −1.93e+ 000 kg· m/rad
Xur +0.00e+ 000 kg/rad
Xwr +0.00e+ 000 kg/rad
Xvq +0.00e+ 000 kg/rad
Xpq +0.00e+ 000 kg· m/rad
Xqr +0.00e+ 000 kg· m/rad
Yvr +0.00e+ 000 kg/rad
Yvp +0.00e+ 000 kg/rad
Yrra +0.00e+ 000 kg· m/rad
Yrp +0.00e+ 000 kg/rad
Ypp +0.00e+ 000 kg· m/rad
Yup +0.00e+ 000 kg/rad
Ywr +0.00e+ 000 kg/rad
Yura −9.30e− 001 kg/rad
Ywp +3.55e+ 001 kg/rad
Ypq +1.93e+ 000 kg· m/rad
Yqr +0.00e+ 000 kg· m/rad
Zwq +0.00e+ 000 kg/rad
Zuqa +9.30e− 001 kg/rad
Zqqa +0.00e+ 000 kg· m/rad
Zvp −3.55e+ 001 kg/rad
Zrp +1.93e+ 000 kg/rad
Zpp +0.00e+ 000 kg· m/rad
Zup +0.00e+ 000 kg/rad
Zwp +0.00e+ 000 kg/rad
Zvq +0.00e+ 000 kg/rad
Zpq +0.00e+ 000 kg· m/rad
Zqr +0.00e+ 000 kg· m/rad

64

Table C.7: Added Mass K-Moment Cross-term Coefficients

Parameter Value Units
Kwu +0.00e+ 000 kg
Kuq +0.00e+ 000 kg· m/rad
Kww +0.00e+ 000 kg
Kwq +0.00e+ 000 kg· m/rad
Kqq +0.00e+ 000 kg· m2/rad2

Kvv +0.00e+ 000 kg
Kvr +0.00e+ 000 kg· m/rad
Kvp +0.00e+ 000 kg· m/rad
Krr +0.00e+ 000 kg· m2/rad2

Krp +0.00e+ 000 kg· m2/rad2

Kuv +0.00e+ 000 kg
Kvw +0.00e+ 000 kg
Kwr +0.00e+ 000 kg· m/rad
Kwp +0.00e+ 000 kg· m/rad
Kur +0.00e+ 000 kg· m/rad
Kvq +0.00e+ 000 kg· m/rad
Kpq +0.00e+ 000 kg· m2/rad2

Kqr +0.00e+ 000 kg· m2/rad2

65

Table C.8: Added Mass M-, N-Moment Cross-term Coefficients

Parameter Value Units
Mwq +0.00e+ 000 kg· m/rad
Muqa +1.93e+ 000 kg· m/rad
Muu +0.00e+ 000 kg
Mwwa +0.00e+ 000 kg
Muwa +3.46e+ 001 kg
Mvr +0.00e+ 000 kg· m/rad
Mvp −1.93e+ 000 kg· m/rad
Mpp +0.00e+ 000 kg· m2/rad2

Mrr +0.00e+ 000 kg· m2/rad2

Mrp +4.86e+ 000 kg· m2/rad2

Muv +0.00e+ 000 kg
Mvw +0.00e+ 000 kg
Mup +0.00e+ 000 kg· m/rad
Mwr +0.00e+ 000 kg· m/rad
Mwp +0.00e+ 000 kg· m/rad
Mur +0.00e+ 000 kg· m/rad
Mpq +0.00e+ 000 kg· m2/rad2

Mqr +0.00e+ 000 kg· m2/rad2

Nuu +0.00e+ 000 kg
Nwu +0.00e+ 000 kg
Nuq +0.00e+ 000 kg· m/rad
Nwq +0.00e+ 000 kg· m/rad
Nqq +0.00e+ 000 kg· m2/rad2

Nvva +0.00e+ 000 kg
Nvr +0.00e+ 000 kg· m/rad
Nvp +0.00e+ 000 kg· m/rad
Nrp +0.00e+ 000 kg· m2/rad2

Npp +0.00e+ 000 kg· m2/rad2

Nuva −3.46e+ 001 kg
Nvw +0.00e+ 000 kg
Nup +0.00e+ 000 kg· m/rad
Nura +1.93e+ 000 kg· m/rad
Nwp −1.93e+ 000 kg· m/rad
Nvq +0.00e+ 000 kg· m/rad
Npq −4.86e+ 000 kg· m2/rad2

Nqr +0.00e+ 000 kg· m2/rad2

66

Table C.9: Propeller Terms

Parameter Value Units
Xprop 5.16e+ 000 N
Kprop 0 N· m

Table C.10: Control Fin Coefficients

Parameter Value Units
Yuuδr +9.64e+ 000 kg/(m· rad)
Zuuδs −9.64e+ 000 kg/(m· rad)
Muuδs −6.15e+ 000 kg/rad
Nuuδr −6.15e+ 000 kg/rad
Yuvf −9.64e+ 000 kg/m
Zuwf −9.64e+ 000 kg/m
Yurf +6.15e+ 000 kg/rad
Zuqf −6.15e+ 000 kg/rad
Muwf −6.15e+ 000 kg
Nuvf +6.15e+ 000 kg
Muqf −3.93e+ 000 kg·m/rad
Nurf −3.93e+ 000 kg·m/rad

67

References

[1] R. Bachmayer, N. Leonard, J. Graver, E. Fiorelli, P. Bhatta, and D. Paley,
“Underwater gliders: recent developments and future applications,” Inter-
national Symposium on Underwater Technology (UT’04), pp. 195–200, April
2004. 1

[2] AquaJelly, An artificial jellyfish with electric drive unit, Festo AG & Co.
KG, 2008. [Online]. Available: http://www.festo.com/rep/en-us us/assets/
Corporate img/Festo AquaJelly en.pdf 2

[3] Subsea Glider, Evo Logics, 2008. [Online]. Available: http://www.evologics.
de/documents/BionikManta web.pdf 2

[4] D. C. Webb and P. J. Simonetti, “The SLOCUM AUV: An environmentally
propelled underwater glider,” in Proc. of the 11th International Symposium on
Unmanned Untethered Submersible Technology, August 23-25 1999, pp. 75–85.
2

[5] P. Simonetti, “Slocum glider: Design and 1991 field trials,” Webb Research
Corp., Falmouth, MA, Tech. Rep. N00014-90C-0098, September 1992, under
subcontract from Woods Hold Oceanographic Institution. 2

[6] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot coordi-
nation: A survey and analysis,” Proceedings of the IEEE, vol. 94, no. 7, pp.
1257–1270, July 2006. 3, 9

[7] L. Dubins, “On curves of minimum length with a constraint on average curva-
ture and with prescribed initial and terminal position and tangents,” American
Journal of Mathematics, vol. 79, no. 3, pp. 497–516, Jul. 1957. 4, 14

[8] T. Prestero, “Verification of a six-degree of freedom simulation model for the
REMUS autonomous underwater vehicle,” Master’s thesis, Massachusetts In-
stitute of Technology, Cambridge, 1994. 5, 16, 17, 56, 57, 62

[9] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,
3rd ed. Germany: Springer, 2006. 6

68

http://www.festo.com/rep/en-us_us/assets/Corporate_img/Festo_AquaJelly_en.pdf
http://www.festo.com/rep/en-us_us/assets/Corporate_img/Festo_AquaJelly_en.pdf
http://www.evologics.de/documents/BionikManta_web.pdf
http://www.evologics.de/documents/BionikManta_web.pdf

[10] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of task
allocation in multi-robot systems,” Intl. Journal of Robotics Research, vol. 23,
no. 9, pp. 939–954, September 2004. 7, 8

[11] B. L. Brummit and A. Stentz, “GRAMMPS: a generalized mission planner for
multiple mobile robots in unstructured environments,” in Proc. IEEE Inter-
national Conference on Robots and Automation (ICRA’98), May 16-20 1998,
pp. 1564–1571. 8

[12] Z. Yu, L. Jinhai, G. Guochang, Z. Rubo, and Y. Haiyan, “An implementation
of evolutionary computation for path planning of cooperative mobile robots,”
in Proc. of the fourth world congress on intelligent control and automation,
2002, pp. 1798–1802. 8

[13] J. L. Ryan, T. Bailey, J. Moore, and W. Carlton, “Reactive Tabu search
in unmanned aerial reconnaissance simulations,” in Proc. of the 1998 winter
simulation conference, 1998, pp. 873–879. 8

[14] M. J. Matarić, “Minimizing complexity in controlling a mobile robot popula-
tion,” in Proc. IEEE International Conference on Robotics and Automation
(ICRA’92), vol. 1, May 1992, pp. 830–835. 8

[15] MissionLab, User Manual for MissionLab version 7.0, College of Computing,
Georgia Institute of Technology, 2006. [Online]. Available: http://www.cc.
gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab manual-7.0.pdf 8

[16] L. Parker, “Heterogeneous multi-robot cooperation,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Cambridge, Feb. 1994. 8

[17] R. G. Smith, “The contract net protocol: High-level communication and con-
trol in a distributed problem solver,” IEEE Transactions on Computers, vol.
C-29, no. 12, pp. 1104–1113, Dec 1980. 9

[18] S. Botelho and R. Alami, “M+: a scheme for multi-robot cooperation through
negotiated task allocation and achievement,” in Proc. IEEE International Con-
ference on Robotics and Automation (ICRA’99), vol. 2, 1999, pp. 1234–1239.
9

[19] B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multi-robot
coordination,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5,
pp. 758–768, October 2002. 9

[20] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer, “Multi-robot exploration con-
trolled by a market economy,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA’02), Washington, DC, 2002, pp. 3016–3023.
9

69

http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf
http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf

[21] M. Dias and A. Stentz, “A market approach to multirobot coordination,”
The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,
15213, Tech. Rep. CMU-RI-TR-01-26, August 2001. 9

[22] ——, “Opportunistic optimization for market-based multirobot control,” in
Intelligent Robots and System, 2002. IEEE/RSJ International Conference on,
vol. 3, 2002, pp. 2714–2720. 9

[23] T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation scheme
in multi-uav context,” in Proc. IEEE International Conference on Robots and
Automation (ICRA’04), vol. 4, April 26-May 1 2004, pp. 3622–3627. 9

[24] S. Sariel, T. Balch, and J. Stack, “Distributed multi-AUV coordination in
naval mine countermeasure missions,” Georgia Institute of Technology, At-
lanta, Georgia, 30332, Tech. Rep. GIT-GVU-06-04, 2006. 9

[25] R. Turner, “Intelligent control of autonomous underwater vehicles: the Orca
project,” in IEEE International Conference on Systems, Man and Cybernetics,
1995. Intelligent Systems for the 21st Century., vol. 2, Oct 1995, pp. 1717–
1722. 9

[26] R. M. Turner and E. H. Turner, “Self-organization and reorganization of multi-
AUV systems: CoDA project overview,” in Proc. IEEE Workshop on Multiple
AUV Operations, Sebasco Estates, Maine, Jun. 2004. 9

[27] S. Jeyaraman, A. Tsourdos, R. Zbikowski, B. White, L. Bruyere, C. A. Rab-
bath, and E. Gagnon, “Formalised hybird control scheme for a uav group using
dubins set and model checking,” in Proc. IEEE Conference on Decision and
Control (CDC’04), Atlantis, Paradise Island, Bahamas, Dec. 14–17, 2004, pp.
4299–4304. 9

[28] S. Rathinam, R. Sengupta, and S. Darbha, “A resource allocation algorithm
for multivehicle systems with nonholonomic constraints,” IEEE Transactions
on Automation Science and Engineering, vol. 4, no. 1, pp. 98–104, Jan 2007.
9

[29] B. Schulz, B. Hobson, M. Kemp, J. Meyer, R. Moody, H. Pinnix, and
M. St Clair, “Field results of multi-UUV missions using ranger micro-UUVs,”
in Proc. OCEANS 2003, vol. 2, Sept. 2003, pp. 956–961. 10

[30] R. E. Davis, N. E. Leonard, and D. M. Fratantoni, “Routing strategies for
underwater gliders,” Deep-Sea Research II, 2008. 10

[31] J. A. Hartigan and M. A. Wong, “A K -means clustering algorithm,” Applied
Statistics, vol. 28, no. 1, pp. 100–108, 1979. 12

[32] M. Lagoudakis, M. Berhault, S. Koenig, P. Keskinocak, and A. Kleywegt,
“Simple auctions with performance guarantees for multi-robot task allocation,”

70

in Proc. IEEE International Conference on Intelligent Robots and Systems
(IROS’04), vol. 1, Sept. 28-Oct. 2 2004, pp. 698–705. 13

[33] A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,” Robotics and
Autonomous Systems, vol. 34, no. 4, pp. 179–274, Mar. 2001. 14

[34] H. J. Sussmann and G. Tang, “Shortest paths for the reeds-shepp car: A
worked out example of the use of geometric techniques in nonlinear optimal
control,” Department of Mathematics, Rutgers University, New Jersey, Tech.
Rep. SYNCON 91-10, 1991. 14

[35] K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and traveling sales-
person problems for Dubins vehicle,” in American Control Conference, Port-
land, OR, Jun. 2005, pp. 786–791. 25, 29

[36] (2008) Ocean Server Technology Inc - Iver2: Mobile Sensor Platform.
[Online]. Available: http://www.iver-auv.com/products iver2.html 36

[37] W. Malik, S. Rathinam, S. Darbha, and D. Jeffcoat, “Combinatorial motion
planning for multiple vehicle systems,” in Proc. IEEE Conference on Decision
and Control (CDC’06), San Diego, CA, USA, Dec. 13–15, 2006, pp. 5299–5304.

[38] M. P. Georgeff, “Planning,” in Readings in Planning, J. Allen, J. Hendler, and
A. Tate, Eds. San Mateo, CA: Kaufmann, 1990.

[39] J. Latombe, Robot Motion Planning. New York: Kluwer Academic Publishers,
1991.

[40] D. Parsons and J. Canny, “A motion planner for multiple mobile robots,” in
Proc. IEEE International Conference on Robotics and Automation (ICRA’00),
vol. 1, May 1990, pp. 8–13.

[41] C. L. Pape, “A combination of centralized and distributed methods for multi-
agent planning and scheduling,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA’90), vol. 1, May 1990, pp. 488–493.

[42] N. Rugg-Gunn and S. Cameron, “A formal semantics for multiple vehicle task
and motion planning,” in Proc. IEEE International Conference on Robotics
and Automation (ICRA’94), vol. 3, May 1994, pp. 2464–2469.

[43] M. Garey and D. S. Johnson, Computers and Intractability - A Guide to the
Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[44] B. Schulz, B. Hobson, M. Kemp, J. Meyer, R. Moody, H. Pinnix, and
M. St Clair, “Field results of multi-uuv missions using ranger micro-uuvs,”
in Proc. OCEANS 2003., vol. 2, September 2003, pp. 956–961.

[45] E. A. Leveille, “Analysis, redesign and verification for the Iver2 autonomous
underwater vehicle motion controller,” Master’s thesis, University of Mas-
sachusetts Dartmouth, Dartmouth, MA, 2007.

71

http://www.iver-auv.com/products_iver2.html

[46] B. Golden, L. Levy, and R. Dahl, “Two generalizations of the traveling sales-
man problem,” Omega, vol. 9, no. 4, pp. 439–441, 1981.

[47] B. L. Brummit and A. Stentz, “Dynamic mission planning for multiple mobile
robots,” in Proc. IEEE International Conference on Robots and Automation
(ICRA’96), April 22-28 1996, pp. 2396–2401.

72

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Autonomous Underwater Vehicles
	Multiple Autonomous Underwater Vehicles
	Contributions
	Thesis Outline

	Background
	The Multiple Traveling Salesmen Problem
	Literature Review

	Problem Statement
	Overview of Planner
	Clustering
	Auctioning
	Post Processing

	Path Cost Calculation
	Dubins Path
	AUV Dynamic Model
	Modification of Dubins Path
	Shortest Time Between Two Waypoints
	Arcs
	Straight line segments

	Path Time Calculation

	Simulation Results
	MTSP Solution
	Proposed Planner Solution
	Discussion
	System Performance

	Experiment Description
	Mission Planning Software
	Connecting to the Iver2
	Running a mission
	Post-mission

	Experimental Results
	Control Architecture
	Experiment 1 - Traveling Salesman Problem
	Experiment 2 - Multiple Traveling Salesman Problem

	Conclusion
	Future Work

	APPENDICES
	REMUS AUV Dynamic Model
	Vehicle Kinematics
	Vehicle Rigid-Body Dynamics
	Vehicle Mechanics
	6-DOF Non-linear Model

	Tables of REMUS Parameters
	Tables of Non-Linear Coefficients
	References

