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Abstract

In this thesis, an attempt is made to build on the quantitative research in the
field of Islamic finance. Firstly, univariate modelling using special GARCH-type
models is performed on both the FTSE All World and FTSE Shari’ah All World
indices. The AR(1) + APARCH(1,1) model with standardized skewed student-t in-
novations provided the best overall fit and was the most successful at VaR modelling
for long and short trading positions. A risk assessment is done using the Condi-
tional Tail Expectation (CTE) risk measure which concluded that in short trading
positions the FTSE Shari’ah All World index was riskier than the FTSE All World
index but, in long trading positions the results were not conclusive as to which is
riskier. Secondly, under the Markowitz model of risk and return the performance
of Islamic equity is compared to conventional equity using various Dow Jones in-
dices. The results indicated that even though the Islamic portfolio is relatively less
diversified than the conventional portfolio, due to several investment restrictions,
the Shari’ah screening process excluded various industries whose absence resulted
in risk reduction. As a result, the Islamic portfolio provided a basket of stocks
with special and favourable risk characteristics. Lastly, copulas are used to model
the dependency structure between the filtered returns of the FTSE All World and
FTSE Shari’ah All World indices after fitting the AR(1) + APARCH(1,1) model
with standardized skewed student-t innovations. The t copula outperformed the
others and a demonstration of forecasting using the copula-extended model is done.
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Chapter 1

Introduction

From the inception of the first Islamic bank in Egypt in 1963 the concept of Is-
lamic finance has indeed raised some eyebrows1. Recently, Islamic finance has been
growing at a spectacular rate of more than 15% annually with Islamic banks from
China to the United States of America managing funds to the tune of USD $200
billion. Standard and Poor’s rating service believes the potential market for Islamic
financial services is close to USD $4 trillion for 2008 and into the near future. The
growth of Islamic finance has clearly outshone the growth found in conventional
banks2. To compliment this growth, the Muslim population (currently 1.5 billion)
is expected to reach 2.5 billion by 2020 (which will account for 30% of the world’s
population) and in the next few years 40%-50% of the Muslim population’s total
savings will be in the hands of Islamic banks (See The Banker (2007))3. To briefly
introduce Islamic finance, two questions need to be answered: “Why Islamic fi-
nance?” and “What is Islamic finance?”. Following, some research that has been
conducted in this area is mentioned and the goal of this thesis is stated.

1.1 Why Islamic Finance?

To appreciate the answer to this question the thought process of a Muslim must be
understood. Islam teaches Muslims that every aspect of their lives must be based
on their religious teachings; these teachings are believed to be the direct orders from
Allah (God) providing absolute guidance to human beings. It is believed that no

1Other developments include: First modern Islamic bank (Dubai Islamic Bank) founded in
1975, Accounting and auditing organization for Islamic financial institutions (AAOIFI) established
in 1991, Islamic financial services board (IFSB) established in Malaysia in 2002.

2Overview of Islamic Finance - Grail Research (2007).
3Currently, the two largest Islamic banks are Al Rajhi and Kuwait Finance House whose

Assets, Deposits and Net Profits in FY2006 were USD $49,491 million and USD $35,222 million
respectively. ABN Amro, Barclays, BNP Paribas, Citi Islamic Investment Bank, Deutsche Bank,
HSBC Amanah, Llyods TSB and Standard Chartered are some of the leading conventional banks
that offer Islamic financial services worldwide.
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question can be asked for which the Qur’an (religious scripture Muslims are com-
manded to follow) does not provide an answer and clear guidance on that subject
matter. This is observed in the following Qur’anic quotations where Allah says:

This is the Book; in it is guidance sure without doubt to those who fear Allah.
(Qur’an 2:2)

Certainly We have revealed the Book to you in Truth, for (instructing) mankind.
He, then, that receives guidance benefits his own soul: But he that strays injures
his own soul... (Qur’an 39:41).

As a result, the dealings of Muslims must always be in accordance with the re-
ligious teachings that are prescribed - including the way finance and business is
conducted. Conventional financial etiquette fails to meet the Islamic Shari’ah4 re-
quirements on business and trade. Therefore, the need for an alternative system,
which is Shari’ah compliant, is necessary. The next section explains how con-
ventional financial etiquette contradicts the Islamic Shari’ah by highlighting the
differences between Islamic and conventional finance. It should be noted that the
ideology of the Islamic system emphasizes the need for ethical, moral, social and
religious dimensions in order to promote equity and fairness across the society in a
holistic manner. Hence, the system can only be fully appreciated in the context of
Islamic teachings such as wealth distribution and social and economic justice.

1.2 What is Islamic Finance?

Firstly, to clear up any misconceptions about the legitimacy of business in Islam,
Allah says in the Qur’an:

...Allah has permitted trade... (Qur’an 2:275)

...let there be amongst you traffic and trade by mutual good-will... (Qur’an 4:29).

Hence, business is permissible for Muslims. Simply put, Islamic finance is coined
to financial activities that adhere to the Islamic Shari’ah. The major differences
between Islamic and conventional finance sprout from the four fundamentals of
Islamic finance which are: freedom from Gharar (excessive uncertainty), freedom
from Maysir (gambling), freedom from unethical investments (any investment that
goes against any Shari’ah principle. For example, investments in alcohol, pork,
pornography and any other investment deemed unethical by the Shari’ah) and
freedom from Riba (interest payment on debt, usury). Abundant detailed liter-
ature exists on each of these concepts (See Warde (2000) and El-Gamal (2006)).

4The laws by which Muslims adhere to which are derived from the Qur’an and the authentic
sayings of Prophet Muhammad (May the peace and blessings of Allah be upon him).
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A more detailed description of Riba is given in the next section since it is the
most important of the four fundamentals. The restrictions imposed on Islamic
financial activity results in differences among the types of contracts an Islamic
financial system will allow and those offered in mainstream finance. Most conven-
tional derivative instruments and insurance contracts will not be viable due to the
presence of Gharar. A call option that is used purely for speculation on the price of
the underlying contains elements of Maysir and would be unlawful in Islam. Also,
interest payments on bonds and mortgages are not allowed since these contracts are
not free from Riba. Given these restrictions, many Islamically-sound financial con-
tracts have surfaced. Murabahah (cost-plus financing), Musharakah & Mudarabah
(forms of partnerships), Bay’ as-Salam (similar to conventional forward contracts),
Ijarah (resembles a leasing agreement), Sukuk (Islamic bond) and Takaaful (Islamic
insurance) are some of the common contracts (See Iqbal and Mirakhor (2007) for
more details and other Islamic contracts).

1.3 Riba

Riba comes from the Arabic root word raba, meaning to increase. Many Islamic
jurists define the forbidden Riba as trading two goods of the same kind in different
quantities, where the increase is not a proper compensation. According to the
Shari’ah, Riba is: “The premium that must be paid by the borrower to the lender
along with the principal amount as a condition for the loan or for an extension in
the duration of the loan.” Four characteristics which define the prohibited interest
rate are:

• It is positive and fixed ex-ante

• It is tied to the time period and the amount of the loan

• Its payment is guaranteed regardless of the outcome or the purposes for which
the principal was borrowed

• The state apparatus sanctions and enforces its collection

The prohibition of Riba is found in several verses of the Qur’an:

Those who devour usury will not stand except as stands one whom the Evil One by
his touch hath driven to madness. That is because they say: “Trade is like usury,”
but Allah hath permitted trade and forbidden usury. Those who after receiving di-
rection from their Lord, desist, shall be pardoned for the past; their case is for Allah
(to judge); but those who repeat (the offence) are companions of the fire; they will
abide therein (forever). (Qur’an 2:275)

3



O ye who believe! Fear Allah, and give up what remains of your demand for usury,
if ye are indeed believers. (Qur’an 2:278)

O ye who believe! Devour not usury, doubled and multiplied; but fear Allah; that ye
may (really) prosper. (Qur’an 3:130)

That which ye lay out for increase through the property of (other) people, will have
no increase with Allah: but that which ye lay out for charity, seeking the counte-
nance of Allah, (will increase): it is these who will get a recompense multiplied.
(Qur’an 30:39).

The rationale for the prohibition of Riba has been discussed by many Islamic schol-
ars. On the economic side, some argue that the existence of Riba results in an
uneven distribution of wealth throughout society by providing vehicles for the rich
to get richer and the poor to get poorer. Others argue that the modern economic
system has not yet supplied any justification for the existence of even the necessity
of interest rates. On the spiritual side, some argue that human wisdom and under-
standing is limited when compared to the Knowledge of Allah as Allah says in the
Qur’an:

It is He who hath created for you all things that are on earth; then He turned to the
heaven and made them into seven firmaments. And of all things He hath perfect
knowledge. (Qur’an 2:29).

Therefore, any argument posed to fully understand the rationale of the prohibition
of Riba may never yield any optimal comprehension.

The prohibition of giving and receiving Riba is not confined to Islam, but extends
to other religions and ideologies of the historic and modern world. In Judaism, the
Old Testament clearly prohibited dealing with interest. It uses the Hebrew word
neshekh which, similar to Riba, refers to any gain. The following are some quota-
tions from the Old Testament that prohibit usury:

If thou lend money to any of my people that is poor by thee, thou shalt not be to
him as an usurer, neither shalt thou lay upon him usury. (Exodus 22:25)

Take thou no usury of him, or increase: but fear thy God; that thy brother may
live with thee. (Leviticus 25:36)

Thou shalt not lend upon usury to thy brother; usury of money, usury of vict-
uals, usury of any thing that is lent upon usury. (Deuteronomy 23:19)

In Christianity, at the Council of Nicaea in 325, usury was made illegal. In 1179,
Pope Alexander III excommunicated usurers, which was a very harsh punishment
at that time. Some Biblical references that speak against usury include:

4



He that putteth not out his money to usury, nor taketh reward against the innocent.
He that doeth these things shall never be moved. (Psalms 15:5)

He that hath not given forth upon usury, neither hath taken any increase, that
hath withdrawn his hand from iniquity, hath executed true judgement between man
and man... (Ezekiel 18:8)

In thee have they taken gifts to shed blood; thou hast taken usury and increase,
and thou hast greedily gained of thy neighbours by extortion, and hast forgotten me,
saith the Lord GOD. (Nehemiah 5:7)

In Hinduism, the Vedic texts mentions the kusidin (usurer) several times. Also, in
the later Sutra texts more details and references to interest are found. Vasishtha,
who was a well-known Hindu law-maker, made a law forbidding the higher castes of
Brahmanas (Hindu priests) and Kshatriyas (warriors) from being usurers or lenders
at interest. In Buddhism, the Jatakas refers to the giving and taking of interest
in a disparaging manner saying: “hypocritical ascetics are accused of practicing
it.” Even great philosophers like Plato, Aristotle and Cato condemned usury. For
example, Cato in his De Re Rustica said: “And what do you think of usury?” –
“What do you think of murder?”

In modern economics, the legitimacy of interest is not questioned; rather it is
considered as an integral part of the economic system. However, occassionally a few
challenge its purpose. For example, a successful merchant in the early twentieth
century named Silvio Gesell condemned interest. He complained that his sales
were more dependent on the price of money (interest) than consumers’ need or
product quality. Also, Margrit Kennedy, a German economist, criticized the need
for interest and called for interest-free and inflation-free money.

1.4 Brief Literature Review

Amidst the excitement and explosive growth enjoyed by the Islamic financial sector,
there has been very little academic research. Numerous papers and books have been
written which clearly explain the system of Islamic finance in a qualitative nature
(See Elgari (2003), Obaidullah (1999), Rosly (2005), Archer and Karim (2007),
Billah (2003), Iqbal and Mirakhor (2007)).

On the quantitative side, Hassan (2002) examines market efficiency and the
time-varying risk-return relationship for the Dow Jones Islamic Market Index (DJIMI)
from 1996 to 2000. He found the returns of the DJIMI were normally distributed
with good market efficiency. Hakim and Rashidian (2004) examine the relationship
between the DJIMI, Wilshire 5000 Index and the risk-free rate represented by the
yield on the three month treasury bill from 1999 to 2002. They found the DJIMI
was not correlated with neither the Wilshire 5000 Index nor the yield on the three
month treasury bill which they concluded resulted in an Islamic index influenced
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by factors independent from the broad market or interest rates. Hussein (2004)
investigates whether the returns of the FTSE Global Islamic Index is significantly
different from the returns of the FTSE All World Index between 1996 and 2003.
He finds the screening process undergone by the companies in the FTSE All World
Index, before they qualify to be enlisted on the FTSE Global Islamic Index, has no
negative impact on the performance of the FTSE Global Islamic Index. Al-Zoubi
and Maghyereh (2007) compared the relative risk performances of the Dow Jones
Islamic Index (DJIS) and the Dow Jones World Index (DJIM). They showed that
the Value-at-Risk (VaR) is greater for DJIM World than for DJIS Islamic. This
implied the DJIS Islamic was less risky than the broader market basket of stocks,
DJIM World, when portfolio risk is measured by VaR.

1.5 My Contribution

In this thesis, an attempt is made to build on the quantitative research in the Islamic
financial field. The data used are all equity-based, since other forms of Islamic
financial data proved difficult to find. In Chapter 2, univariate financial time series
analyses are done with focus on sufficiently modelling the long memory property of
stock market returns. Model fit and performance are assessed with special attention
given to the model’s ability to be used for risk management purposes. In Chapter 3,
a comparison between the performance of Islamic and conventional equity portfolios
is done using a well-known risk-return model. Chapter 4 introduces the actuarial
tool known as the copula which will be used to model the dependency structure
between Islamic and conventional return series and Chapter 5 concludes this thesis.

6



Chapter 2

Univariate Modelling

2.1 Defining Value-at-Risk (VaR)

In this chapter, VaR estimates for long and short trading positions will be used
to access model fit and investment risk. Hence, it is only appropriate that VaR
be defined. VaR is the most widely used statistic in the world of financial risk
management. It is popular because it summarizes the loss exposure in a given time
horizon with some level of confidence, α, into a single number, V aRα. Statistically,
V aRα for a given distribution is the associated theoretical quantile at α% for that
distribution. Mathematically,

V aR1−α = inf {l ∈ < : FL(l) ≥ 1− α}

for short trading positions and

V aRα = sup {l ∈ < : FL(l) ≤ α}

for long trading positions where L is a random variable with distribution function
FL.

2.2 Financial Time Series

A financial time series is a collection of periodic historical observations/changes of a
certain risk factor. Log-return on equities, indices, exchange rates and commodity
prices are by no means an exhaustive list of common risk factors. In this chap-
ter, a variety of differenced logarithmic stock price series are used. For notational
purposes let Pt represent the price of a given index at time t (t = 0, 1, 2, . . . , n,
where n is the number of observations for that index). It follows that rt =
(lnPt − lnPt−1) 100 is the compounded return (in %) at time t (t = 1, 2, . . . , n− 1)
for the price index defined by the stochastic process Pt. All preceding analysis is
done on the logarithmic return series, rt, with granularity set as daily.

7



2.2.1 Empirical Analysis of Financial Time Series

Extensive research has led to the discovery of many special characteristics of finan-
cial time series (See Taylor (1986), Alexander (2001), Tsay (2002) and Zivot and
Wang (2003)). In the econometric world, these special characteristics have become
so famous they are referred to as stylized facts. These stylized facts include:

• rt exhibits little serial correlation but is not independent and identically dis-
tributed (iid)

• |rt| or r2
t exhibit noticeable serial correlation

• Conditional expected returns are close to zero

• Volatility is not constant over time, it varies

• rt is leptokurtic

• Extreme values of rt appear in clusters

A variety of modelling techniques have been developed which focus on capturing
the effects of these stylized facts. The most commonly referred to process used
in modelling financial time series is undoubtedly the autoregressive conditional
heteroscedastic (ARCH) process originally proposed by Engle (1982). Bollerslev
(1986) later generalized the ARCH process to the generalized autoregressive con-
ditional heteroscedastic (GARCH) process. These processes together with various
extensions and/or variations performed exceedingly well in modeling the stylized
facts present in financial return series (See Bollerslev, Engle and Nelson (1994),
Ding, Granger and Engle (1993), Bhattacharyya et al (2008), Shephard (1996),
Glosten, Jagannathan and Runkle (1993), Fornari and Mele (1997), Yang, Härdle
and Nielsen (1999) and Bühlmann and McNeil (2002)).

2.2.2 Statistical Analysis of Financial Time Series

The procedure of Giot and Laurent (2003) will be implemented to fit the univariate
models to the financial return series and is as follows:

1. Preliminary Data Analysis. A variety of descriptive statistics and di-
agrams are formulated for a given data set. They are used to uncover the
properties (paying close attention to the stylized facts of financial time series)
embedded in the data so that appropriate model selection takes place.

2. Model Estimation . With guidance from the previous step, a variety of
models are fit to the data and their parameters estimated.

3. Model Performance . Each model’s performance in modelling the financial
return time series is assessed by standard misspecification tests together with
its accuracy in forecasting the one-day-ahead long and short VaR. The latter
becomes particularly important from a risk management point of view.
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2.3 The Data

Daily prices for the FTSE All World (FTSEAW) and FTSE Shari’ah All World
(FTSESAW) indices were collected from 22 September 2003 to 22 January 2009.
This gave 1393 realizations of Pt which were transformed by (2.1) to give 1392 log
return observations1.

2.3.1 Methodology of FTSESAW

The FTSESAW selection universe is the large and mid-cap stocks of the FTSEAW
index. These securities undergo a screening process to determine whether the com-
pany is acceptable as an Islamic investment. The screening process is two-fold.
Firstly, any companies whose core business activities involve alcohol, pork-related
products, conventional financial services or entertainment (night clubs, casinos,
pornography, etc.) are excluded. In addition, defense and weapons and tobacco
or tobacco-related products are excluded, even though they are not strictly forbid-
den under the Shari’ah. After the ethical cleansing of companies that profit from
unislamic business activities, the remaining companies are screened using several
financial ratios. This process is intended to filter out companies with unacceptable
debt levels and/or those who earn impure interest (Riba) income. According to the
companies’ financial ratios the company must have:

• Debt less than 33% of total assests

• Cash and interest bearing items less than 33% of total assets

• Accounts receivable and cash less than 50% of total assets

• Total interest and non compliant activities income below 5% of total revenue

The FTSESAW index has been fully certified as Shari’ah compliant through the
issue of a Fatwa (Islamic legal opinion) by the Yasaar Research Inc. scholars who
represent all of the major Shari’ah schools of thought.

2.4 Presenting the Models

As stated before, the financial return time series to be modelled is given by,

rt = (lnPt − lnPt−1) 100, t = 1, 2, . . . , n− 1 (2.1)

where Pt for t = 0, 1, 2, . . . , n represents the price index. Previous research, as
discussed earlier, has highlighted several stylized facts akin to financial return time

1For details on FTSE indexes see http://www.ftse.com/Indices.
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series. One important fact is that they exhibit serial autocorrelation in the first
and second moments. As a result, an initial AR(p) structure is fitted to capture
the serial autocorrelation in the first moment. Therefore,

Φ(L)(rt − µ) = εt (2.2)

where Φ(L) = 1−φ1L−φ2L
2− · · ·−φpLp is an AR lag polynomial of order p with

backshift operator L. The resulting conditional mean µt is given by

µt = µ+

p∑
j=1

φj(rt−j − µ). (2.3)

To model εt we consider the RiskMetrics model (See J.P. Morgan (1996)) and
the Asymmetric Power ARCH (APARCH) model (See Ding et al (1993)) with
normal, student-t and skewed student-t innovations. These models are introduced
below including their associated VaR computations since their ability to forecast
the one-day-ahead VaR in both long and short trading positions is used for model
assessment.

RiskMetrics. This model is equivalent to an Integrated GARCH (IGARCH)
model with fixed ARCH and GARCH coefficients. In this specification

εt = σtzt (2.4)

where zt is iid N(0,1) and

σ2
t = (1− λ) ε2t−1 + λσ2

t−1 (2.5)

with λ = 0.94 for daily data. Let zα and z1−α represent the left and right quan-
tiles of the normal distribution at α%, respectively. Then the one-day-ahead VaR
computed in t− 1 is µt + zασt for long trading positions and µt + z1−ασt for short
trading positions where the conditional standard deviaiton is given by (2.5).

Normal APARCH . One extension of the GARCH model is the normal
APARCH which encompasses several GARCH specifications. A normal APARCH(p, q)
model is given by (2.4) where zt is iid N(0,1) and

σδt = ω +

q∑
i=1

αi (|εt−i| − γiεt−i)δ +

p∑
j=1

βjσ
δ
t−j. (2.6)

ω (ω > 0), αi (αi ≥ 0 for i = 1, 2, . . . , q), γi (−1 < γi < 1 for i = 1, 2, . . . , q),
βj (βj ≥ 0 for j = 1, 2, . . . , p) and δ (δ ≥ 0) are new parameters. Here, δ plays
the role of a Box-Cox transformation of σt while γi reflects the so-called leverage
effect. In practice, low-order GARCH models achieve the same effect in modelling
the stylized facts as high-order ARCH models in a more parsimonious manner. As
a result the APARCH(1,1) model is considered where

σδt = ω + α1 (|εt−1| − γ1εt−1)
δ + β1σ

δ
t−1. (2.7)
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It has been found that a positive (negative) value of γ1 suggests that past nega-
tive (positive) shocks have a more significant impact on current conditional volatil-
ity than past positive (negative) shocks (See Black(1976)). For a more extensive
discussion on the properties of APARCH models see He and Teräsvirta (1999a,b).
Let zα and z1−α represent the left and right quantiles of the normal distribution
at α%, respectively. Then the one-day-ahead VaR computed in t − 1 is µt + zασt
for long trading positions and µt + z1−ασt for short trading positions where the
conditional standard deviaiton is given by (2.7).

Student-t APARCH . It is well known that financial return time series data
is leptokurtic (fat-tailed) and therefore the thin-tailed normal distribution provides
a poor fit to the distribution tails. This has serious risk management implications
where the distribution tails are of extreme importance, for example when modelling
VaR. To correct for this, consider the student-t APARCH(1,1) given by (2.4) where
zt is iid t(0, 1, ν) and σt defined as in (2.7). Let stα,ν and st1−α,ν represent the
left and right quantiles of the standardized student-t distribution with estimated
degrees of freedom ν at α%, respectively. Then the one-day-ahead VaR computed
in t− 1 is µt + stα,νσt for long trading positions and µt + st1−α,νσt for short trading
positions where the conditional standard deviaiton is given by (2.7).

Skewed Student-t APARCH . Together with excess kurtosis, financial return
time series data also exhibit skewness. To facilitate this asymmetric characteristic
the skewed student-t density of Lambert and Laurent (2001) is used. The skewed
student-t APARCH is given by (2.4) where σt is defined by (2.7) and the innovations
zt is iid standardized skewed student-t distributed with

f (z|ξ, ν) =


2

ξ+ 1
ξ

sg [ξ (sz +m) |ν] if z < −m
s
,

2
ξ+ 1

ξ

sg
[
sz+m
ξ
|ν
]

if z ≥ −m
s
,

(2.8)

where g[·|ν] is the unit variance symmetrical student-t density, ξ (ξ > 0) is the
asymmetry coefficient defined such that the ratio of probability masses above and
below the mean is

ξ2 =
Pr (z ≥ 0|ξ)
Pr (z < 0|ξ)

, (2.9)

m is the mean of the non-standardized skewed student-t distribution given by

m =
Γ
(
ν−1
2

)√
ν − 2

√
πΓ
(
ν
2

) (
ξ − 1

ξ

)
(2.10)

and s2 is the variance of the non-standardized skewed student-t distribution given
by

s2 =

(
ξ2 +

1

ξ2
− 1

)
−m2. (2.11)

In the model estimation procedure, log ξ is estimated since its sign reveals the
direction of skewness2. The third moment is positive (negative) and the density is

2Since f
(
zt| 1ξ , ν

)
= f (−zt|ξ, ν) with respect to the zero mean.
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skewed to the right (left) if log ξ > 0 (< 0). The quantile function skst∗α,ν,ξ of a
non-standardized skewed student-t density as given in Lambert and Laurent (2000)
is

skst∗α,ν,ξ =

{ 1
ξ
stα,ν

[
α
2

(1 + ξ2)
]

if α < 1
1+ξ2

,

−ξstα,ν
[

1−α
2

(1 + ξ−2)
]

if α ≥ 1
1+ξ2

,
(2.12)

where stα,ν is the unit variance student-t density quantile function. Thus, the
standardized skewed student-t quantile function becomes

skstα,ν,ξ =
skst∗α,ν,ξ −m

s
. (2.13)

Let skstα,ν,ξ and skst1−α,ν,ξ represent the left and right quantiles of the standardized
skewed student-t distribution with ν degrees of freedom and asymmetry coefficient ξ
at α%, respectively. Then the one-day-ahead VaR computed in t−1 is µt+skstα,ν,ξσt
for long trading positions and µt + skst1−α,ν,ξσt for short trading positions where
the conditional standard deviaiton is given by (2.7).

2.5 Estimation and Analysis

The 3-step procedure outlined in Section 2.2.2 is performed on the FTSEAW and
FTSESAW indices. After model fitting and performance assessment the best model
is selected for each series. The analysis was done using the G@RCH 5.1 module of
OxMetrics 5.1 Enterprise (See Laurent and Peters (2002)).

2.5.1 Preliminary Data Analysis

Descriptive Statistics

Table 2.1 shows that both series are statistically similar. They are negatively
skewed with strong leptokurtic properties. As a result, there are high values for the
Jarque-Bera statistics implying definite non-normality of both return series. The
Box-Pierce Q-statistics on the raw residuals reveals some autocorrelation in the first
moment for both series. There is strong autocorrelation in the second momment
of both series as indicated by the Box-Pierce Q-statistics on the squared returns.
Also, Engle’s LM ARCH tests (See Engle (1982)) conclude that both series exhibit
ARCH effects. Already, several of the stylized facts mentioned earlier have been
observed. Notice, if risk was measured by standard deviation of returns and reward
by the mean of returns then the FTSESAW index outperforms the FTSEAW index
for the period 22 September 2003 to 22 January 2009.
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Stock Indices

FTSEAW FTSESAW

Mean -0.0060 0.0050
Standard Deviation 1.0735 1.0634

Maximum 8.8821 9.1897
Minimum -7.2819 -7.5990
Skewness -0.6444(0.0000) -0.4571(0.0000)

Excess Kurtosis 14.4970(0.0000) 14.9860(0.0000)
Jarque-Bera 12286(0.0000) 13075(0.0000)

Q(20) 106.626(0.0000) 94.1105(0.0000)
Q2(20) 3218.69(0.0000) 3022.69(0.0000)

ARCH(5) 177.29(0.0000) 177.36(0.0000)

Table 2.1: Summary statistics of the FTSEAW and FTSESAW raw returns with
p-values in parentheses.

Descriptive Plots

The descriptive plots verify the observations made from the descriptive statistics.
Figures 2.1 and 2.2 show that the returns of both series fluctuate such that volatility
is not constant over time with extreme values appearing in clusters. There is a clear
exaggeration in the volatility post-2008 for both series. This is due to the current
global financial crisis and in Chapter 3 the repercussions of this highly volatile pe-
riod on Islamic indices will be discussed. The correlograms of the raw residuals in
Figures 2.3 and 2.4 show some serial correlation in the raw returns with significant
values at lags 1 and 2 for both series. Hence, an AR(2) structure is first considered
to capture the serial correlation in the conditional mean. However, φ2 was found
to be insignificant for both series, so the simpler AR(1) model was used. The cor-
relograms for |rt| and r2

t in Figures 2.3 and 2.4 verify the strong serial correlation
in the second moment of both series. The density plots in Figures 2.5 and 2.6 show
the kernel estimate of the density function of the returns distribution compared to
the corresponding normal density. These plots together with the QQ plots against
the normal distribution confirm that both series are not normally distributed since
skewness and leptokurtic properties are present. In light of these preliminary find-
ings, GARCH-type models which have been very successful in capturing the stylized
facts of financial time series are considered.
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2.5.2 Model Estimation

Tables 2.3 and 2.4 reveal several key properties of both series. Firstly, the autore-
gressive effect in the volatility’s specification is strong, β1 > 0.88 for FTSEAW and
FTSESAW, which suggests significant serial correlation. Secondly, γ1 is positive
and significant which means there is a leverage effect for negative returns in the
conditional variance specification. Thirdly, δ is mostly significantly different from
2 but not 1 which implies modelling the conditional standard deviation is more
relevant than modelling the conditional variance using a GARCH process. Finally,
log ξ is negative and significant which suggests that the densities are skewed to the
left and the asymmetric student-t distribution may be needed to fully model both
return series.

AR(1) + RiskMetrics - Parameters

FTSEAW FTSESAW

µ 0.0568(0.0243) 0.0546(0.0259)
φ1 0.1795(0.0300) 0.1898(0.0306)
λ 0.94 0.94

Table 2.2: Parameter estimates for the AR(1) + RiskMetrics model with the stan-
dard errors given in parentheses.

FTSEAW - AR(1) + APARCH(1,1) - Parameters

Normal Student-t Skewed Student-t

µ 0.0261(0.0202) 0.0346(0.0195) 0.0284(0.1607)
φ1 0.1799(0.0264) 0.1786(0.0257) 0.1716(0.0266)
ω 0.0184(0.0046) 0.0183(0.0047) 0.0194(0.0050)
α1 0.0616(0.0101) 0.0664(0.0115) 0.0659(0.0123)
β1 0.8954(0.0214) 0.89980(0.0192) 0.8997(0.0192)
γ1 0.9349(0.1599) 0.9868(0.0605) 0.9932(0.0368)
δ 1.5492(0.3859) 1.3820(0.2900) 1.3654(0.2862)

log ξ - - -0.0925(0.0394)
ν - 14.0835(5.6768) 14.7738(5.9795)

Table 2.3: FTSEAW parameter estimates under the AR(1) + APARCH(1,1) models
with the standard errors given in parentheses.
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FTSESAW - AR(1) + APARCH(1,1) - Parameters

Normal Student-t Skewed Student-t

µ 0.0239(0.0219) 0.0306(0.0213) 0.0234(0.0210)
φ1 0.1950(0.0270) 0.1932(0.0266) 0.1887(0.0272)
ω 0.0211(0.0057) 0.0207(0.0057) 0.0217(0.0060)
α1 0.0582(0.0111) 0.0638(0.0108) 0.0633(0.0110)
β1 0.8864(0.0309) 0.8962(0.0246) 0.8977(0.0240)
γ1 0.7697(0.2888) 0.9352(0.2001) 0.9652(0.1462)
δ 1.8037(0.5550) 1.4790(0.3667) 1.4347(0.3468)

log ξ - - -0.0810(0.0419)
ν - 11.9673(3.8617) 11.9504(3.8518)

Table 2.4: FTSESAW parameter estimates under the AR(1) + APARCH(1,1) mod-
els with the standard errors given in parentheses.

2.5.3 Model Performance

Misspecification Tests

The results of the misspecification tests presented in Tables 2.5, 2.6, 2.7 and 2.8
indicate the serial correlation in the first and second moments for both series have
been successfully captured as observed by the Box-Pierce Q-statistics on the stan-
dardized and squared standardized residuals. The results of Engle’s LM ARCH test
reveals that neither series has any remaining ARCH effects that needs to be mod-
elled. For both series, the residual-based diagnostics (RBD) results for conditional
heteroscedasticity of Tse (2002) concludes the simple RiskMetrics specification of
the conditional variance is unsatisfactory. On the other hand, the APARCH-type
models are preferred as they do not leave any significant heteroscedasticity in the
standardized residuals.

The adjusted Pearson goodness-of-fit test, which compares the empirical distri-
bution of the innovations to the theoretical one, concludes that the normal distribu-
tion under the RiskMetrics model gives a poor fit. However, the normal, student-t
and skewed student-t under the APARCH(1,1) model gives a much better fit. Using
the ranking criteria of maximizing the log likelihood and minimizing the Akaike In-
formation Criteria (AIC), the AR(1) + APARCH(1,1) model with skewed student-t
innovations performs the best since it fully captures the stylized facts present in
both series. The FTSESAW p-values for the misspecification tests were generally
higher than those for the FTSEAW. This means that the models performed bet-
ter in capturing the effects present in the FTSESAW than those present in the
FTSEAW.
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AR(1) + RiskMetrics - Misspecification Tests

FTSEAW FTSESAW

Log Likelihood -1526.0180 -1564.4660
AIC 2.1954 2.2507

Skewness -0.2340(0.0004) -0.1564(0.0171)
Excess Kurtosis 1.1742(0.0000) 1.1907(0.0000)

Jarque-Bera 92.6680(0.0000) 87.9130(0.0000)
Q(20) 23.3550(0.2221) 19.1438(0.4476)
Q2(20) 28.1770(0.0594) 21.8817(0.2373)

ARCH(5) 2.1133(0.0614) 1.5833(0.1617)
P(40) 59.2069(0.0117,0.0200) 41.3908(0.2849,0.3667)

RBD(5) 14.0587(0.0152) 11.4839(0.0426)

Table 2.5: Results of misspecification tests for the AR(1) + RiskMetrics model with
the p-values given in parentheses.

AR(1) + APARCH(1,1) + Normal - Misspecification Tests

FTSEAW FTSESAW

Log Likelihood -1484.8740 -1525.6400
AIC 2.1435 2.2021

Skewness -0.2706(0.0000) -0.1617(0.0137)
Excess Kurtosis 0.9582(0.0000) 1.0974(0.0000)

Jarque-Bera 70.2330(0.0000) 75.9150(0.0000)
Q(20) 19.0495(0.4537) 16.8306(0.6013)
Q2(20) 21.7098(0.2451) 16.0203(0.5911)

ARCH(5) 1.6091(0.1545) 0.4187(0.8360)
P(40) 42.1379(0.1084,0.3368) 29.6092(0.5881,0.8612)

RBD(5) 8.5587(0.1280) 2.1175(0.8327)

Table 2.6: Results of misspecification tests with p-values given in parentheses for
the AR(1) + APARCH(1,1) model with normal innovations.
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AR(1) + APARCH(1,1) + Student-t - Misspecification Tests

FTSEAW FTSESAW

Log Likelihood -1476.5380 -1514.0480
AIC 2.1330 2.1869

Skewness -0.2662(0.0000) -0.1367(0.0371)
Excess Kurtosis 1.0372(0.0000) 1.3293(0.0000)

Jarque-Bera 78.8330(0.0000) 106.8200(0.0000)
Q(20) 18.8684(0.4653) 17.2344(0.5740)
Q2(20) 20.9718(0.2808) 15.1033(0.6549)

ARCH(5) 1.6220(0.1511) 0.3969(0.8512)
P(40) 40.9885(0.1082,0.3833) 34.1494(0.3187,0.6906)

RBD(5) 8.6361(0.1245) 2.4555(0.7832)

Table 2.7: Results of misspecification tests with p-values given in parentheses for
the AR(1) + APARCH(1,1) model with student-t innovations.

AR(1) + APARCH(1,1) + Skewed Student-t - Misspecification Tests

FTSEAW FTSESAW

Log Likelihood -1473.8120 -1511.9980
AIC 2.1305 2.1853

Skewness -0.2687(0.0000) -0.1386(0.0346)
Excess Kurtosis 1.0088(0.0000) 1.3068(0.0000)

Jarque-Bera 75.7750(0.0000) 103.5100(0.0000)
Q(20) 19.2101(0.4434) 17.3965(0.5630)
Q2(20) 21.4712(0.2563) 15.3007(0.6412)

ARCH(5) 1.6550(0.1425) 0.4306(0.8275)
P(40) 32.6552(0.3377,0.7533) 33.0575(0.3201,0.7369)

RBD(5) 9.0274(0.1080) 2.7163(0.7436)

Table 2.8: Results of misspecification tests with p-values given in parentheses for
the AR(1) + APARCH(1,1) model with skewed student-t innovations.
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VaR Backtesting

From a risk managers’ perspective, when choosing an appropriate model for the
return series, the model’s ability to accurately model VaR is very important. Thus,
testing the performance of these models in modelling VaR in both long and short
trading positions is necessary. To access each model’s performance in modelling
VaR, the Kupiec LR test (See Kupiec (1995)) is used. In this test, the failure rate
for long (short) trading positions is equal to the percentage of negative (positive)
returns smaller (larger) than the long (short) trading position one-step-ahead VaR.
The hypotheses H0 : f = α versus H1 : f 6= α is then tested, where f is the
failure rate which is estimated using the empirical failure rate. Tables 2.9, 2.10,
2.11 and 2.12 show that for both series the AR(1) + APARCH(1,1) model with
skewed student-t innovations passes the Kupiec LR tests at all quantiles for both
long and short trading positions. Although the AR(1) + APARCH(1,1) model with
student-t innovations passes the Kupiec LR tests for the FTSESAW returns, the
p-values in the short trading positions are much weaker than those for the AR(1) +
APARCH(1,1) model with skewed student-t innovations. Therefore, with respect
to accurately modelling VaR in long and short trading positions, the best choice for
both series is the AR(1) + APARCH(1,1) model with skewed student-t innovations.

FTSEAW - Long Trading Positions

α 5% 2.5% 1% 0.5% 0.25%

RiskMetrics 0.0668 0.0005 0.0073 0.0033 0.0044
Normal APARCH 0.8637 0.3004 0.0448 0.0827 0.2205

Student-t APARCH 0.5117 0.2310 0.4226 0.9879 0.3877
Skewed Student-t APARCH 0.9608 0.5882 0.8021 0.0896 0.3877

Table 2.9: P-values of the Kupiec LR test for the FTSEAW for long trading posi-
tions.

FTSEAW - Short Trading Positions

α 5% 2.5% 1% 0.5% 0.25%

RiskMetrics 0.5921 0.8377 0.7739 0.7087 0.4441
Normal APARCH 0.5675 0.6261 0.4142 0.0896 0.3877

Student-t APARCH 0.5675 0.2271 0.0004 0.0896 0.3877
Skewed Student-t APARCH 0.8637 0.5882 0.8021 0.0896 0.3877

Table 2.10: P-values of the Kupiec LR test for the FTSEAW for short trading
positions.
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FTSESAW - Long Trading Positions

α 5% 2.5% 1% 0.5% 0.25%

RiskMetrics 0.0118 0.0215 0.0037 0.0013 0.0044
Normal APARCH 0.8637 0.8904 0.0138 0.1571 0.7852

Student-t APARCH 0.5117 0.8377 0.7739 0.7087 0.3877
Skewed Student-t APARCH 0.7477 0.5064 0.5963 0.2214 0.3877

Table 2.11: P-values of the Kupiec LR test for the FTSESAW for long trading
positions.

FTSESAW - Short Trading Positions

α 5% 2.5% 1% 0.5% 0.25%

RiskMetrics 0.9608 0.8904 0.5842 0.6995 0.4441
Normal APARCH 0.3413 0.3055 0.9828 0.7087 0.7919

Student-t APARCH 0.3413 0.1636 0.1565 0.0896 0.3877
Skewed Student-t APARCH 0.9411 0.7553 0.9828 0.7087 0.3877

Table 2.12: P-values of the Kupiec LR test for the FTSESAW for short trading
positions.

Conditional Tail Expectation (CTE)

In addition to VaR, many risk managers are interested in the CTE, which is a
coherent risk measure, unlike VaR. The CTE represents the average loss given that
losses exceed VaR. In other words, when we exceed VaR we are interested in how
bad do things get. Mathematically,

CTE1−α = E [L|L > V aR1−α]

for short trading positions and

CTEα = E [L|L < V aRα]

for long trading positions where L is the loss random variable. Although CTE is
not used as a tool to rank models’ performance, it is considered in order to compare
the riskiness between the FTSEAW and FTSESAW indices.

Tables 2.14 and 2.16 show that the CTE values of the FTSESAW return series,
after Monte Carlo simulations from each model, are genrally larger than the CTE
values of the FTSEAW return series for short trading positions. This suggests, in
short trading positions, the FTSESAW index is riskier than the FTSEAW index
under the CTE risk measure. Based on the CTE risk measure, Tables 2.13 and 2.15
show that at quantiles α = 2.5% and α = 5% the FTSESAW index is generally
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riskier than the FTSEAW index but at α = 1% the reverse observation is made.
Hence, in long trading positions the results are not conclusive as to which index is
the riskier investment.

FTSEAW - Long Trading Positions

α 5% 2.5% 1%

RiskMetrics -1.8095 -1.9902 -2.2987
Normal APARCH -2.0145 -2.2610 -2.8268

Student-t APARCH -1.9626 -2.2343 -2.9654
Skewed Student-t APARCH -2.0173 -2.3340 -3.1111

Table 2.13: CTE for the FTSEAW for long trading positions.

FTSEAW - Short Trading Positions

α 5% 2.5% 1%

RiskMetrics 1.4921 1.7264 2.2554
Normal APARCH 1.6564 1.8318 2.9216

Student-t APARCH 1.6423 1.8622 3.0162
Skewed Student-t APARCH 1.6307 1.8441 2.6467

Table 2.14: CTE for the FTSEAW for short trading positions.

FTSESAW - Long Trading Positions

α 5% 2.5% 1%

RiskMetrics -1.8114 -1.9481 -2.2667
Normal APARCH -2.0851 -2.6025 -2.6524

Student-t APARCH -1.9281 -2.3405 -2.5190
Skewed Student-t APARCH -2.0490 -2.5408 -2.7683

Table 2.15: CTE for the FTSESAW for long trading positions.

FTSESAW - Short Trading Positions

α 5% 2.5% 1%

RiskMetrics 1.6057 1.9612 2.3371
Normal APARCH 1.7227 2.1570 2.5554

Student-t APARCH 1.7174 1.9857 3.0936
Skewed Student-t APARCH 1.6444 2.1539 2.5554

Table 2.16: CTE for the FTSESAW for short trading positions.
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2.5.4 Model Selection

To summarize, after fitting an AR(1) structure to the conditional mean the serial
correlation in the first moment of both series was captured. The APARCH(1,1)
specification of the conditional variance outperformed the RiskMetrics specifica-
tion in modelling the serial correlation in the second moment of both series. The
adjusted Pearson goodness-of-fit test together with the ranking criterion of log like-
lihood and AIC concluded that the AR(1) + APARCH(1,1) model with skewed
student-t innovations provided the best fit for both series. This model also proved
to be the most successful at VaR modelling. Therefore, for the FTSEAW and
FTSESAW return series the AR(1) + APARCH(1,1) model with skewed student-t
innovations performed the best overall.
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Chapter 3

Islamic Equity Performance

Does Islamic equity outperform conventional equity? Does the screening process
undergone by stocks before they qualify for inclusion in the Islamic stock index
have any negative impact on the index’s performance? Hussein (2004) reports the
screening process undergone by the companies in the FTSE All World index before
they qualify to be enlisted in the FTSE Global Islamic Index has no negative impact
on the performance of the FTSE Global Islamic index. In this chapter, to analyze
the index’s performance the Markowitz model of risk and return is considered.

3.1 The Markowitz Model

According to the Markowitz model (See Markowitz (1959)), over a given period, the
risk of an asset is measured by its variance and its return is measured by its mean.
Consider a universe of N assets with returns R1, R2, . . . , RN . Let σij represent the
covariance between Ri and Rj and Σ be the N × N variance-covariance matrix.
Now consider an investor who invests 100% of his wealth into these N assets with
wi invested in asset i. Immediately the budget constraint becomes

w1 + w2 + · · ·+ wN = 1⇔ ~wT~e = 1 (3.1)

where

~w =


w1

w2
...
wN


and ~e is a vector of N ones.

The portfolio return Rp is given by

Rp =
N∑
i=1

wiRi (3.2)
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and the expected portfolio return and variance are

µp = E(Rp) =
N∑
i=1

wiE(Ri) =
N∑
i=1

wiµi = ~wT~µ (3.3)

and

σ2
p = V ar(Rp) =

N∑
i=1

N∑
j=1

xixjCov(Ri, Rj) = ~wTΣ~w (3.4)

where

~µ =


µ1

µ2
...
µN

 and Σ =


σ11 σ12 · · · σ1N

σ21 σ22 · · · σ2N
...

...
. . .

...
σN1 σN2 · · · σNN

 .

The Markowitz model gives the risk-return argument whereby any rational in-
vestor will minimize σ2

p for a given expected portfolio return µp or maximize µp for
a given σ2

p. These two statements can be transformed into the following equivalent
optimization problems:

• Optimization Problem 1

min
wi,i∈1,2,...,N

~wTΣ~w

subject to ~wT~µ = µgiven and ~wT~e = 1

• Optimization Problem 2

max
wi,i∈1,2,...,N

~wT~µ

subject to ~wTΣ~w = σ2
given and ~wT~e = 1

All solutions to optimization problems 1 and 2 represented by (µp, σ
2
given) and

(µgiven, σ
2
p) give a set of portfolios called the efficient set. They can be plotted

on the X-Y plane and this graph is referred to as the efficient frontier for the given
N assets. The portfolios that lie on this efficient frontier are the options available
to the rational investor since they dominate all other portfolios, according to the
risk-return argument.

In some cases, as in the Islamic financial world, the concept of short selling
assets is prohibited. Short selling asset i is defined as borrowing asset i, selling it,
repurchasing it at the end of the period and finally returning it to its owner. With
this added constraint two more equivalent optimization problems arise:
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• Optimization Problem 3

min
wi,i∈1,2,...,N

~wTΣ~w

subject to ~wT~µ = µgiven, ~w
T~e = 1 and wi ≥ 0 ∀ i ∈ 1, 2, . . . , N

• Optimization Problem 4

max
wi,i∈1,2,...,N

~wT~µ

subject to ~wTΣ~w = σ2
given, ~w

T~e = 1 and wi ≥ 0 ∀ i ∈ 1, 2, . . . , N

These optimization problems can be used to formulate sets of mean-variance ef-
ficient portfolios for Islamic and conventional assets. This gives several efficient
frontiers which will be used to access the Islamic equity’s performance in compar-
ison to conventional equity.

3.2 The Data

Data was collected for 5 Islamic Dow Jones indices (Dow Jones US Islamic (DJUSI),
Dow Jones UK Islamic (DJUKI), Dow Jones Canada Islamic (DJCAI), Dow Jones
Europe Islamic (DJEUI) and Dow Jones Asia/Pacific Islamic (DJAPI)) and 5 con-
ventional Dow Jones indices (Dow Jones US (DJUS), Dow Jones UK (DJUK), Dow
Jones Canada (DJCA), Dow Jones Europe (DJEU) and Dow Jones Pacific (DJP))
from the Global Financial database for the period 8 September 1999 to 23 January
2009. This yielded 2414 realizations of Pt which were transformed by (2.1) to give
2413 log-return observations. These indices partitioned most of the Islamic and
conventional financial world into five main geographical areas namely, the United
States of America, the United Kingdom, Canada, Europe and the Asian and Pacific
regions.
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3.2.1 Descriptive Plots and Statistics of Conventional In-
dices

Figure 3.1: Return series of DJUS.

DJUS returns

Mean -0.0059
Standard Deviation 1.2526

Maximum 10.0891
Minimum -8.6950
Skewness -0.1765

Excess Kurtosis 7.8064

Table 3.1: Summary statistics for DJUS returns.
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Figure 3.2: Return series of DJUK.

DJUK returns

Mean -0.0219
Standard Deviation 1.3867

Maximum 12.2515
Minimum -10.9428
Skewness -0.1038

Excess Kurtosis 12.1121

Table 3.2: Summary statistics for DJUK returns.
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Figure 3.3: Return series of DJCA.

DJCA returns

Mean 0.0027
Standard Deviation 1.4693

Maximum 9.1245
Minimum -12.3635
Skewness -0.8769

Excess Kurtosis 10.8133

Table 3.3: Summary statistics for DJCA returns.
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Figure 3.4: Return series of DJEU.

DJEU returns

Mean -0.0177
Standard Deviation 1.3788

Maximum 10.5123
Minimum -10.1614
Skewness -0.2242

Excess Kurtosis 9.2831

Table 3.4: Summary statistics for DJEU returns.
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Figure 3.5: Return series of DJP.

DJP returns

Mean -0.0161
Standard Deviation 1.2616

Maximum 9.2007
Minimum -9.0928
Skewness -0.4657

Excess Kurtosis 5.7517

Table 3.5: Summary statistics for DJP returns.
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3.2.2 Descriptive Plots and Statistics of Islamic Indices

Figure 3.6: Return series of DJUSI.

DJUSI returns

Mean -0.0167
Standard Deviation 1.4243

Maximum 11.7405
Minimum -9.6970
Skewness 0.0387

Excess Kurtosis 6.6542

Table 3.6: Summary statistics for DJUSI returns.
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Figure 3.7: Return series of DJUKI.

DJUKI returns

Mean -0.0141
Standard Deviation 1.5151

Maximum 13.2847
Minimum -9.8481
Skewness -0.0031

Excess Kurtosis 9.3684

Table 3.7: Summary statistics for DJUKI returns.

37



Figure 3.8: Return series of DJCAI.

DJCAI returns

Mean 0.0336
Standard Deviation 1.9823

Maximum 20.1344
Minimum -14.0729
Skewness -0.0862

Excess Kurtosis 13.4719

Table 3.8: Summary statistics for DJCAI returns.
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Figure 3.9: Return series of DJEUI.

DJEUI returns

Mean -0.0092
Standard Deviation 1.4754

Maximum 13.1075
Minimum -9.9084
Skewness 0.1085

Excess Kurtosis 9.1837

Table 3.9: Summary statistics for DJEUI returns.
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Figure 3.10: Return series of DJAPI.

DJAPI returns

Mean -0.0022
Standard Deviation 1.4243

Maximum 9.6905
Minimum -9.6876
Skewness -0.3596

Excess Kurtosis 5.3714

Table 3.10: Summary statistics for DJAPI returns.
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3.3 Risk-Return Performance

To analyze the performance of Islamic equity under the Markowitz risk-return
model three portfolios in four different scenarios are considered. The first port-
folio is purely conventional with N = 5 assets: DJUS, DJUK, DJCA, DJEU and
DJP. The second portfolio is purely Islamic with N = 5 assets: DJUSI, DJUKI,
DJCAI, DJEUI and DJAPI. The third portfolio is a mixture containing all N = 10
assets. The four scenarios considered are:

• Investing with short selling

• Investing without short selling

• Investing in a period of extreme market volatility using only data from 2008-
2009

• Investing without considering the extremely volatile period of 2008-2009

The analysis was done using EXCEL and the solver function was used to com-
pute all constrained optimization problems. To derive the efficient frontiers, the
vector of means ~µ and the variance-covariance matrix Σ for each portfolio is needed.
For notational purposes, let the subscripts I, C and M denote the Islamic, conven-
tional and mixed portfolios with an additional 1, 2 or 3 representing all the data,
the data without 2008-2009 observations and the data with 2008-2009 observations
only. This gives

~µI,1 =


−0.0167
−0.0141
0.0336
−0.0092
−0.0022

 ,ΣI,1 =


2.0279 0.3496 0.2518 0.2723 0.3340
0.3496 2.2946 1.0488 0.9110 0.4835
0.2518 1.0488 3.9279 1.0000 0.5672
0.2723 0.9110 1.0000 2.1759 0.7327
0.3340 0.4835 0.5672 0.7327 2.0277

 ,

~µI,2 =


0.0016
0.0161
0.0695
0.0219
0.0283

 ,ΣI,2 =


1.5507 0.0600 −0.0114 −0.0203 0.0017
0.0600 1.5648 0.1903 0.0807 0.0325
−0.0114 0.1903 2.4208 0.1584 0.0313
−0.0203 0.0807 0.1584 1.5182 0.3274
0.0017 0.0325 0.0313 0.3274 1.5456

 ,

~µI,3 =


−0.1647
−0.2585
−0.2567
−0.2605
−0.2483

 ,ΣI,3 =


5.8551 2.6472 2.3282 2.5924 2.9750
2.6472 8.1180 7.8982 7.5439 4.0560
2.3282 7.8982 15.9979 7.7106 4.8120
2.5924 7.5439 7.7106 7.4127 3.9348
2.9750 4.0560 4.8120 3.9348 5.8512

 ,
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~µC,1 =


−0.0059
−0.0219
0.0027
−0.0177
−0.0161

 ,ΣC,1 =


1.5683 0.2908 0.2923 0.2938 0.0870
0.2908 1.9220 1.0075 0.0177 −0.0595
0.2923 1.0075 2.1578 0.0725 0.0766
0.2938 0.0177 0.0725 1.9003 0.6304
0.0870 −0.0595 0.0766 0.6304 1.5910

 ,

~µC,2 =


0.0146
0.0148
0.0362
0.0181
0.0108

 ,ΣC,2 =


1.0787 −0.0193 0.0280 −0.0148 0.0850
−0.0193 1.1778 0.3595 −0.0311 0.0907
0.0280 0.3595 1.3244 −0.0102 0.0799
−0.0148 −0.0311 −0.0102 1.2522 0.0554
0.0850 0.0907 0.0799 0.0554 1.1565

 ,

~µC,3 =


−0.1693
−0.3146
−0.2637
−0.3033
−0.2274

 ,ΣC,3 =


5.4400 2.7091 2.3500 2.7012 0.2585
2.7091 7.7574 6.0851 0.3128 −0.7184
2.3500 6.0851 8.7201 0.6464 −0.1212
2.7012 0.3128 0.6464 6.9740 3.1894
0.2585 −0.7184 −0.1212 3.1894 5.0068

 ,
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Figure 3.11: Efficient frontiers with and without short selling.
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Figure 3.12: Efficient frontiers without 2008-2009 data and with 2008-2009 data
only.
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From Figure 3.11 the efficient frontiers with short selling allowed for higher
attainable returns and thus dominated the efficient frontiers with the short sell-
ing constraint for all 3 portfolios. Also, with and without short selling, the mixed
portfolio dominates the purely Islamic and purely conventional portfolios. This is
expected since the mixed portfolio is more diversified and more diversity reduces
the standard deviation and hence lowers the risk for every given level of return.
The dominance of the mixed portfolio is observed in all 4 scenarios. Another key
observation is that with or without short selling the Islamic portfolio generally
dominates its conventional counterpart except for a small set of portfolios around
the Islamic minimum-variance portfolio. This suggests that even though the Is-
lamic portfolio is relatively less diversified than the conventional portfolio, due to
several investment restrictions, the Shari’ah screening process excluded various in-
dustries whose absence resulted in risk reduction. As a result, the Islamic portfolio
provided a basket of stocks with special and favourable risk characteristics under
the Markowitz model.

Figure 3.12 shows that the efficient frontiers undergo an upward-left shift when
2008-2009 data is left out. This indicates that the markets in 2008-2009 were
highly volatile with periods of low returns. This extreme volatility is also observed
in the return plots in Figures 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10.
Without 2008-2009 data the dominance of the Islamic portfolio over its conventional
counterpart continues. However, from the efficient frontiers with 2008-2009 data
only there is an interesting observation. The conventional portfolio now dominates
the Islamic portfolio. From an investors viewpoint this suggests, when the markets
go bad, in the sense of extreme volatility and low returns, the conventional portfolio
is the better investment.

To summarize, after analyzing the data under the Markowitz model of risk and
return, the Islamic portfolio outperformed the conventional portfolio except during
the period of 2008-2009. Due to diversification benefits, the mixed portfolio always
dominated the other portfolios. The added constraint of no short selling reduced
the attainable returns for given risk levels for each portfolio without affecting the
hierarchy of efficient frontier dominance. Therefore, there is no conclusive evidence
that the screening process undergone by stocks in the Dow Jones Islamic indices
has a negative impact on the index’s performance in comparison to the Dow Jones
conventional indices. However, in times of extreme market activity the Islamic
portfolio does suffer more than its conventional counterpart.
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Chapter 4

Bivariate Copula Extension to
Univariate Modelling

In Chapter 1, when modelling the FTSEAW and FTSESAW indices the final model
selected was an AR(1) specification for the conditional mean and an APARCH(1,1)
specification for the conditional variance with standardized skewed student-t inno-
vations. This chapter extends this model by fitting a bivariate copula to the AR(1)
+ APARCH(1,1) filtered returns using R statistical software1.

4.1 Filtered Returns

Let ẑt represent the filtered returns of the return series rt where

ẑt =
rt − µ̂t
σ̂t

, t = 1, 2, . . . , 1392 (4.1)

with
µ̂t = µ̂+ φ̂1 (rt−1 − µ̂) (4.2)

and
σ̂δ̂t = ω̂ + α̂1 (|εt−1| − γ̂1εt−1)

δ̂ + β̂1σ̂
δ̂
t−1. (4.3)

µ̂, φ̂1, ω̂, α̂1, γ̂1, δ̂ and β̂1 are the parameter estimates attained after fitting the
AR(1) + APARCH(1,1) model with standardized skewed student-t innovations to

the return series2. Let ~̂zAW and ~̂zSAW represent the filtered returns for the FTSEAW
and FTSESAW return series respectively.

Figure 4.1 indicates that there is some positive correlation between ~̂zAW and
~̂zSAW . It is this dependence the copula will be used to model.

1R is a free statistical software package that can be downloaded from http://cran.r-project.org.
2Some of these parameter estimates may differ from those in Chapter 1 since R uses a slightly

different estimation algorithm than the G@RCH 5.1 module in OxMetrics 5.1.
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Figure 4.1: Plot of ~̂zSAW against ~̂zAW .

4.2 Copula

One way of capturing multivariate dependence is through the multivariate mod-
elling tool known as the copula. A d-dimensional copula is a multivariate distribu-
tion with Uniform(0,1) marginals and distribution function

C(u1, u2, . . . , ud) = Pr(U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud) (4.4)

where U1, U2, . . . , Ud are Uniform(0,1) random variables. Since every continuous
random variable can be transformed to be uniform over (0,1) by its distribution
function, copulas are able to model the multivariate dependence structure without
affecting the marginal distributions. Sklar’s Theorem (See Sklar (1959)) showed
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their exists a unique copula for random variables with continuous distribution func-
tions.

Sklar’s Theorem

Suppose X1, X2, . . . , Xd are random variables with continuous distribution functions
F1, F2, . . . , Fd and joint distribution function F , then there exists a unique copula
C (a distribution function on [0, 1]d with uniform marginals) such that for all ~x =
(x1, x2, . . . , xd)

T ∈ <d:

F (x1, x2, . . . , xd) = C (F1(x1), F2(x2), . . . , Fd(xd)) . (4.5)

Conversely, given any distribution functions F1, F2, . . . , Fd and copula C, F defined
through (4.5) is a d-variate distribution function with marginals F1.F2, . . . , Fd.

4.3 Copula Fitting

After fitting the AR(1) + APARCH(1,1) model recover the residuals or filtered

returns ~̂zAW and ~̂zSAW using (4.1). Table 4.1 gives the initial values for r0 and
σ0 which are needed when calculating µ̂1 and σ̂1 for both series. The marginal
distributions of ~̂zAW and ~̂zSAW , from Chapter 1, are standardized skewed student-t.
Therefore, copula models of the type

F (zAW , zSAW ; θ) = C (FAW (zAW ), FSAW (zSAW ); θ) (4.6)

are fitted where C is a copula function, θ is the dependence parameter of the
copula and FAW and FSAW are the standardized skewed student-t distribution
functions. The parameters of the copula and marginal distributions are estimated
by maximizing the log likelihood function. The gaussian and t copulas which belong
to the elliptical copula class and the Frank, Clayton and Gumbel single parameter
copulas which belong to the Archimedean copula class are considered for capturing
the dependence between ~̂zAW and ~̂zSAW .

The gaussian and t copulas are derived from the multivariate normal and mul-
tivariate t distributions. They have no simple closed form expressions, but like
other multivariate distributions with continuous marginals an implicit copula can
be extracted. On the other hand, the three Archimedean copulas considered do
have simple closed form representations. Their bivariate versions are:

• Frank Copula

CFr
θ (u, v) = −1

θ
ln

[
1 +

(exp−θu−1)(exp−θv−1)

exp−θ−1

]
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• Clayton Copula

CCl
θ (u, v) =

(
u−θ + v−θ − 1

)−1/θ

• Gumbel Copula

CGu
θ (u, v) = exp−[(− lnu)θ+(− ln v)θ]

1/θ

4.3.1 Estimation and Analysis

Initial Values

FTSEAW FTSESAW

r0 0.0312 0.0272
σ0 0.3921 0.3467

Table 4.1: Initial values are taken from a GARCH(1,1) specification with normal
innovations.

Estimation results - Copula

Gaussian t Frank Clayton Gumbel

ρ 0.4502(0.0215) 0.4967(0.0261) - - -
ν - 1.8601(0.1792) - - -
θ - - 3.1408(0.1944) 0.8316(0.0651) 1.4545(0.0371)

Table 4.2: Parameter estimates for the copula with the standard errors given in
parentheses.

Estimation results - Marginals

FTSEAW FTSESAW

ξ ν ξ ν

Gaussian 0.9391(0.0354) 22.4067(10.1015) 0.9603(0.0370) 15.3018(4.6907)
t 0.9635(0.0317) 11.5714(2.8497) 0.9795(0.0325) 11.2142(2.6874)

Frank 0.9107(0.0353) 17.6723(6.7122) 0.9310(0.0373) 13.8829(4.0466)
Clayton 0.8902(0.0337) 18.3066(6.0079) 0.9152(0.0349) 16.6116(5.2073)
Gumbel 0.9805(0.0363) 15.5197(5.1885) 0.9923(0.0378) 11.9017(2.9827)

Table 4.3: Parameter estimates for the marginal distribution functions with the
standard errors given in parentheses.
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Copula Assessment

Copula Log Likelihood

Gaussian -3779.323
t -3691.269

Frank -3787.78
Clayton -3750.259
Gumbel -3773.821

Table 4.4: Maximized log likelihood after fitting each copula to the filtered returns.

Table 4.4 indicates that the t copula has the largest log likelihood value. Hence,
based on maximizing the log likelihood function, the t copula provides the best fit
to the dependence structure between ~̂zAW and ~̂zSAW .

4.4 Forecasting

One of the main reasons for financial time series modelling is to make forecasts.
The ability to predict future outcomes results in making better decisions today.
For example, risk managers may use VaR predictions to understand the future risk
exposure in several situations. If the predicted risk exceeds their risk apetite, they
can attempt to remove themselves from that position and as a result prevent great
losses. Another example is stock market speculators. They do forecasting in order
to predict which trades and positions are most profitable.

This section demonstrates how predictions are made from the copula-extended
APARCH-type model, as compared to the univariate APARCH-type model. The
H-step ahead forecasts from the univariate model are

r̂1392+h = µ̂1392+h + ε̂1392+h, h = 1, 2, . . . , H (4.7)

where
ε̂1392+h = σ̂1392+hẑ1392+h, (4.8)

µ̂1392+h = µ̂+ φ̂1 (r̂1392+h−1 − µ̂) , (4.9)

σ̂1392+h =
(
ω̂ + α̂1(|ε̂1392+h−1| − γ̂1ε̂1392+h−1)

δ̂ + β̂1σ̂
δ̂
1392+h−1

)1/δ̂

(4.10)

and ẑ1392+h are generated from iid standardized skewed student-t distributions with
parameters ν̂ and ξ̂. µ̂, φ̂1, ω̂, α̂1, γ̂1, β̂1, δ̂, ν̂ and ξ̂ are estimated by fitting the
AR(1) + APARCH(1,1) model with standardized skewed student-t innovations to
the FTSEAW and FTSESAW return series.

The copula-extended APARCH-type model generates ẑ∗1392+h for both the FT-
SEAW and FTSESAW together, taking into consideration the dependency structure
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between ~̂zAW and ~̂zSAW . This is done using an alternative representation of (4.6)
given by

C(u1, u2) = F
(
F−1
AW (u1), F

−1
SAW (u2)

)
(4.11)

where û = (u1, u2)
T ∈ [0, 1]2. The H-step ahead forecasts from the bivariate copula-

extended model are

r̂∗1392+h = µ̂∗1392+h + ε̂∗1392+h, h = 1, 2, . . . , H (4.12)

where
ε̂∗1392+h = σ̂∗1392+hẑ

∗
1392+h. (4.13)

µ̂∗1392+h and σ̂∗1392+h are given by (4.9) and (4.10) with r̂1392+h−1, ε̂1392+h−1 and
σ̂1392+h−1 replaced by r̂∗1392+h−1, ε̂

∗
1392+h−1 and σ̂∗1392+h−1.

The 10-step ahead forecasts for the FTSEAW and FTSESAW return series using
the univariate and copula-based models are shown in Figures 4.2 and 4.3. The t
copula was used to model the dependency between ~̂zAW and ~̂zSAW since it gave the
best fit in Section 4.3.1.
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Figure 4.2: FTSEAW 10-step ahead forecasts. The solid line represents the univari-
ate APARCH-type forecasts and the dashed line are the t copula-based forecasts.
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Figure 4.3: FTSESAW 10-step ahead forecasts. The solid line represents the uni-
variate APARCH-type forecasts and the dashed line are the t copula-based fore-
casts.
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Chapter 5

Conclusion

The need for Islamic finance is unquestionable. This ethically driven financial
system thrives on the Islamic teachings of wealth distribution, and social and eco-
nomic justice. Congruent ideologies are observed in other religions such as Judaism,
Christianity, Hinduism and Buddhism. Hence, the need for ethical finance is not
circumscribed to Muslims. Even if it was confined to Muslims, the expected Mus-
lim population by 2020 is 2.5 billion (which will account for 30% of the world’s
population) and The Banker (2007) indicates that in the coming years, 40%-50% of
the Muslim population’s total savings will be in the hands of Islamic banks. Thus,
it is expected that this financial sector will continue to grow and expand world-
wide. The impressive growth enjoyed in the past however, has slowed down on
account of regulatory problems. These problems have resulted in inconsistency and
non-uniformity across different Islamic financial institutions unlike in conventional
financial institutions, where uniformity is attained through various standards set by
various regulatory bodies. Therefore, an appeal is made for the existing Islamic reg-
ulatory bodies to coalesce so that growth is no longer hindered by non-uniformity.
Another problem faced by the Islamic financial industry is the absence of quanti-
tative academic research. The purpose of this thesis was to contribute to Islamic
empirical research by analyzing the log return series of several Islamic stock indices.
Firstly, univariate modelling of the FTSE All World and FTSE Shari’ah All World
return series was done using special GARCH-type models. Secondly, an assessment
of the performance of Islamic indices under the Markowitz model was done using
various Dow Jones indices. Lastly, copulas were used to model the dependency
between the FTSE All World and FTSE Shari’ah All World indices.

After model fitting and testing, the AR(1) + APARCH(1,1) model with stan-
dardized skewed student-t innovations provided the best fit for both the FTSE All
World and FTSE Shari’ah All World return series. This model was also the most
successful at VaR modelling for both long and short trading positions making it
attractive from a risk manager’s perspective. Under the CTE risk measure, in short
trading positions, the Islamic index was riskier due to higher CTE values. However,
in long trading positions the results were not conclusive as to which is the riskier
investment.
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The efficient frontier analysis under the Markowitz model of risk and return
concluded that the Islamic Dow Jones portfolio was generally less risky than the
conventional Dow Jones portfolio, except during the highly volatile period of 2008-
2009. However, a mixture of both portfolios always outperformed the individual
portfolios due to diversification benefits. The added constraint of no short selling
did not affect the hierarchy of portfolio dominance, but for every portfolio, it re-
duced the possible attainable returns. As a result, there was no decisive eveidence
that suggested the screening process undergone by Islamic Dow Jones indices has
a negative impact on the indices performance in comparison to the unrestricted
conventional Dow Jones indices.

Lastly, after fitting the AR(1) + APARCH(1,1) model with standardized skewed
student-t innovations to the FTSE All World and FTSE Shari’ah All World return
series, it was observed that the filtered returns exhibited some positive correlation.
The gaussian, t, Frank, Clayton and Gumbel copulas were used to capture this
dependency and based on maximizing the log likelihood function, the t copula
performed the best.
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