
Model-guided Code Assistance for

Framework Application Development

by

Hon Man Lee

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Hon Man Lee 2009

Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Object-oriented frameworks are currently widely used in software application de-
velopment. Unfortunately, they are known to be generally di�cult to use because of
the di�culty in understanding the concepts and constraints in di�erent frameworks.
With the formalization of framework concepts and constraints in domain-speci�c
modeling languages called framework-speci�c modeling languages (FSMLs), previ-
ous works have shown that round-trip engineering between models of applications
using frameworks and the application code is possible to aid framework application
development.

Framework-speci�c modeling languages only capture, however, framework con-
cepts and constraints and hence, lack the expressiveness of general-purpose mod-
eling languages. For this reason, the complete code for an entire framework appli-
cation cannot be generated from the model in the model editor using round-trip
engineering, and the user would need to switch to the code editor to program the
application logic code. Also, since models are only abstractions of code, implemen-
tation details in code may be missing in models. Although default implementation
details can be used when generating code from a model, the generated code might
require further customization by the user, which would also require switching to
the code editor.

To reduce the need for the user to switch between the model editor and the code
editor and to reduce the need to customize the generated code, this thesis presents a
model-guided approach to providing code assistance for framework application de-
velopment directly in the code editor, where additional implementation details can
also be obtained. An approach to building a context-sensitive code assistant that
aids the user in the implementation of framework concepts with the consideration
of framework constraints is described. A prototype has further been implemented
and applied on two widely popular frameworks. The evaluation in this thesis an-
alyzes and characterizes framework concepts and shows that the framework-based
code assistant can reduce the need to customize the generated code in the code
editor when compared to code generation from the model editor.

iii

Acknowledgments

I begin by thanking my supervisor, Professor Krzysztof Czarnecki, for accepting
me as his student and guiding me through the journey of research. I am also
thankful for his advice on not only my research, but also on other matters that has
helped me to develop personally.

I must also thank Michal Antkiewicz, who is a colleague of mine in the Genera-
tive Software Development Lab and whom I have collaborated with for the research
presented in this thesis. His patience in introducing me to his doctoral work on
framework-speci�c modeling languages and its support for round-trip engineering,
which this research builds upon, is much appreciated.

I would also like to thank my other colleagues in the Generative Software De-
velopment Lab. They were supportive of me and provided me with an encouraging
and enjoyable environment to work in.

My thanks also goes to my thesis committee members, Professor Ric Holt and
Professor Patrick Lam, for taking the time out of their busy schedules to read my
thesis and to provide valuable comments on it.

Finally, I would also like to thank my family for their unconditional love and
support for me.

iv

Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Research Contributions . 4

1.2 Thesis Organization . 4

2 Related Work 5

2.1 Code Assistants in Current Integrated
Development Environments . 5

2.1.1 Autocompletion . 5

2.1.2 Error Identi�cation with Quick Fixes 7

2.1.3 Quick Assist . 8

2.2 Literature Survey . 8

2.2.1 Code Generation . 8

2.2.2 Round-trip Engineering . 9

2.2.3 Improvements on Autocompletion in Traditional Integrated
Development Environments 9

2.2.4 Mining-Based Code Assistants 10

2.2.5 Generation of Domain-Speci�c Integration Development En-
vironments . 11

3 Review of Framework-Speci�c Modeling Languages and Round-

trip Engineering with Framework-Speci�c Models 12

3.1 Framework-Speci�c Modeling Languages &
Framework-Speci�c Models . 12

3.2 Round-trip Engineering with
Framework-Speci�c Models . 15

v

4 Framework-Based Code Assistant 17

4.1 Methodology . 17

4.1.1 Prerequisites for Using the Framework-Based Code Assistant 17

4.1.2 Identifying Code Assistant Proposals 18

4.1.3 Executing a Code Asssistant Proposal 19

4.2 Implementation . 20

4.3 An Example Walk-through for an Apache Struts Application 22

4.4 Another Example-Walk Through for a Java Applet 25

5 Evaluation 29

5.1 Test Data . 30

5.2 Phase 1 of the Study . 30

5.2.1 Setup of Phase 1 . 30

5.2.2 Results and Analysis of Phase 1 32

5.3 Phase 2 of the Study . 34

5.3.1 Setup of Phase 2 . 34

5.3.2 Results and Analysis of Phase 2 35

5.4 Threats to Validity . 37

6 Conclusion 39

6.1 Future Work . 39

APPENDICES 42

A Mapping Types & Constraints in Framework-Speci�c Modeling

Languages 43

B Code Queries for Reverse Engineering 46

C Code Transformations for Forward Engineering 49

D Applications used in Evaluation 53

D.1 Struts . 53

D.2 Applets . 53

References 55

vi

List of Tables

5.1 Result of phase 2 of the study for the Java Applet framework 35

5.2 Result of phase 2 of the study for the Apache Struts framework . . 36

A.1 Mapping types for structural code patterns for XML 43

A.2 Constraints . 43

A.3 Constraints and parameters for forward engineering 44

A.4 Mapping types for structural code patterns for Java 44

A.5 Mapping types for behavioural code patterns for Java 45

B.1 Code queries for the callsTo mapping type 46

B.2 Code queries for the callsRec mapping type 46

B.3 Code queries for the argVal mapping type 47

B.4 Code queries for the argSameObj mapping type 47

B.5 Code queries for the before mapping type 47

B.6 Code queries for the retTypes mapping type 47

B.7 Code queries for the assgnNew mapping type 47

B.8 Code queries for the assignNull mapping type 48

C.1 Code transformation for the class mapping type 49

C.2 Code transformation for the assignableTo mapping type 49

C.3 Code transformation for the �eld mapping type 50

C.4 Code transformation for the methods mapping type 50

C.5 Code transformation for the argIsThis mapping type 50

C.6 Code transformation for the argIsField mapping type 50

C.7 Code transformation for the argIsNew mapping type 50

C.8 Code transformation for the argIsVar mapping type 50

C.9 Code transformation for the callsTo mapping type 51

vii

C.10 Code transformation for the callsRec mapping type 51

C.11 Code transformation for the argVal mapping type 51

C.12 Code transformation for the argSameObj mapping type 51

C.13 Code transformation for the retTypes mapping type 51

C.14 Code transformation for the assgnNew mapping type 51

C.15 Code transformation for the assgnNull mapping type 52

viii

List of Figures

1.1 Framework-speci�c concepts intertwined with application logic . . . 2

2.1 An example of the two modes of Eclipse content assist 6

2.2 An example of Eclipse error identi�cation and quick �x 7

2.3 An example of Eclipse quick assist 8

3.1 Overview of framework application modeling 13

3.2 Struts FSML . 14

3.3 An example of model-code synchronization 16

4.1 Awesomebar in Mozilla Firefox . 19

4.2 Framework-based code assistant in XML editor 21

4.3 Original framework-speci�c model for Apache Struts application ex-
ample . 22

4.4 Framework-based code assistant for Struts 23

4.5 Suggestions for the feature forwards in Apache Struts 24

4.6 Resulting framework-speci�c model for Apache Struts application
example . 25

4.7 Applet FSML . 27

4.8 Original framework-speci�c model for Java applet example 27

4.9 Keyword programming for Java applet example 27

4.10 Resulting code for Java applet example 28

4.11 Resulting framework-speci�c model for Java applet example 28

5.1 Variability in code pattern location for feature instances in sample
applications for the Java applet framework 31

5.2 Variability in code pattern location for feature instances in sample
applications for the Apache Struts framework 32

ix

5.3 Framework feature code entangled with application logic code . . . 38

6.1 Other framework-based IDE extensions 41

x

Chapter 1

Introduction

Object-oriented frameworks are currently used in many domains for software ap-
plication development. A framework implements concepts in a speci�c domain
that applications can instantiate, in a process often known as framework instan-
tiation, and de�nes constraints that applications must follow when instantiating
the concepts. For example, version 1.x of the Apache Struts Java web framework
implements concepts such as forms, actions and forwards. Forms store user inputs,
and actions process the inputs, returning forwards that redirect to actions or web
pages. To instantiate the concept forward in an action, the framework application
programming interface (API) for Struts provides the method �ndForward(String) in
the ActionMapping class, enabling a method call to �ndForward(String) on Action-
Mapping objects in Action classes. A constraint that is imposed by the framework
on the instantiation of forward is that the value of the parameter in the method
call must be either a local forward or a global forward de�ned in a Struts XML
con�guration �le. A local forward only works for the Action class that it is de�ned
for whereas a global forward works for all Action classes.

Despite their popularity, frameworks are notoriously di�cult to use [Hou et al.,
2005, Kirk et al., 2007]. Applications that instantiate frameworks are required to
use many di�erent mechanisms to instantiate the concepts de�ned in frameworks,
such as extending framework API classes, implementing framework API interfaces,
and making framework API calls [Antkiewicz et al., 2008]. Framework concepts are
sometimes tightly coupled or delocalized and are often not well documented [Hou
et al., 2005]. Kirk et al.'s empirical study on framework reuse [Kirk et al., 2007]
identi�ed four major problems with the use of frameworks: understanding the
functionality of framework components, understanding the interactions between
framework components, understanding the mapping from the problem domain to
the framework implementation, and understanding the architectural assumptions
in the framework design.

Framework-speci�c modeling languages (FSMLs) [Antkiewicz and Czarnecki,
2006, Antkiewicz, 2008] were proposed by Michal Antkiewicz to formalize the con-
cepts and constraints in di�erent frameworks. FSMLs are domain-speci�c mod-

1

Chapter 1. Introduction 2

eling languages that can be used to express framework-speci�c models, which are
models that describe framework concepts instantiated in application code. Michal
further demonstrated the feasibility of round-trip engineering, which involves re-
verse engineering, forward engineering, and synchronization, with the Java applet
framework and a subset of the Eclipse framework that captures the interaction
between Eclipse workbench parts [Antkiewicz, 2008]. Reverse engineering extracts
framework-speci�c models from application code, forward engineering generates ap-
plication code from framework-speci�c models, and synchronization synchronizes
changes between models and code. Instead of merely overwriting the existing model
in reverse engineering and the existing code in forward engineering, synchronization
allows both the model and the code to be independently modi�ed and synchronized
through incremental updates [Sendall and Küster, 2004]. Unlike most current com-
mercial tools that only support round-trip engineering between UML class diagrams
and code and hence, generating only class frames and method declarations without
bodies, round-trip engineering for FSMLs generates functional code of framework
concepts captured by FSMLs, including method calls inside method bodies.

While reverse engineering involves the extraction of an abstract representation
of the code from the code itself, forward engineering requires the generation of
code from an abstract representation of the code that may lack some implemen-
tation details. For example, Figure 1.1 is an example of a code snippet from a
Struts application. The example demonstrates that, to generate the method call

Figure 1.1: Framework-speci�c concepts intertwined with application logic

Chapter 1. Introduction 3

findForward(String) for the concept forwards, besides knowing the class and
method to generate the method call in, forward engineering needs to know the
exact line in the method body to place the method call in. The example also
demonstrates how a FSML concept might be completely intertwined into the ap-
plication logic code, which is not captured by the framework-speci�c model since
framework-speci�c models only capture instantiations of framework concepts. In
the example, depending on whether the user authenticates successfully or not, dif-
ferent web pages are returned as forwards.

The current implementation for forward engineering attempts to generate code
at �xed location prede�ned in the FSMLs, such as in the last line of the method
body in the previous example, and completely ignores the user's existing code. Af-
ter adding new concepts in the framework-speci�c model in the model editor, the
implementation relies on the user to manually synchronize the changes between the
model and the code to generate code and to manually customize the generated code
in the code editor. Unlike general purpose modeling languages, since FSMLs are
domain-speci�c modeling languages that only cover selected framework concepts,
working in the code editor is necessary to program application logic that is out-
side the scope of the FSMLs. The frequent switching between model editor and
code editor and the need to customize the generated code interrupts the �ow of
development and impedes the practicability of round-trip engineering with FSMLs.

To bridge the abstraction gap between model and code and to reduce the inter-
ruption in the �ow of development from switching between the model editor and the
code editor, this thesis proposes an approach of providing code assistance directly
in the code editor that is guided by framework-speci�c models of the code extracted
using reverse engineering. We describe a framework-based code assistant that pro-
vides context-sensitive suggestions to implementing framework concepts with the
consideration of framework constraints. The framework-based code assistant can
generate code from the model as in forward engineering, but can be invoked in the
code editor directly and automatically synchronizes code changes with the model.
Also, the code assistant allows for code to be generated at varying location and
provides the code context information that is required in code generation. We have
also implemented a prototype to demonstrate the feasibility of the approach and
has applied the prototype on two widely popular frameworks, the Apache Struts
framework, which has a corresponding FSML that only supported reverse engineer-
ing previously, and the Java applet framework. The evaluation in this thesis tests
the hypothesis that the framework-based code assistant approach reduces the e�ort
required to produce framework application code compared to forward engineering
from the model editor. The evaluation focuses on examining the di�erences be-
tween the two approaches in their need to customize the generated code by moving
the code to the intended location. We �rst classify the variability in location in
instances of framework concepts in code and then, we manually inspect the code
to understand the extent to which instances of framework concepts entangle with
application logic code.

Chapter 1. Introduction 4

1.1 Research Contributions

The key contributions in this thesis are:

• A model-guided approach to providing advanced context-sensitive code assis-
tance to aid the implementation of framework concepts with the consideration
of framework constraints

• A prototype implementation of the approach and its application to two FSMLs
to support two widely popular frameworks

• Analysis and characterization of every feature in the two FSMLs to show
that framework-based code assistance lowers developers' e�ort to produce
code in framework applications when compared to forward engineering from
the model editor

1.2 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 describes related work, �rst surveying code assistants found in
today's IDEs and then surveying other related work in the research literature.

• Chapter 3 reviews key concepts about framework-speci�c modeling languages
applicable to creating framework-speci�c models that guide the proposed
framework-based code assistant. The chapter also brie�y reviews round-trip
engineering with framework-speci�c models, which our framework-based code
assistant relies on.

• Chapter 4 presents the framework-based code assistant. The chapter �rst
describes a general methodology of creating the code assistant, after which a
description of a prototype implementation of the code assistant is presented.
Finally, the chapter walks-through two examples of using the prototype on
two applications, each using a di�erent framework.

• Chapter 5 evaluates the framework-based code assistant by analyzing every
feature in two FSMLs and comparing the e�ort required to produce framework
application code using the code assistant with forward engineering from the
model editor previously supported in round-trip engineering with FSMLs.

• Chapter 6 concludes this thesis and presents a list of possible directions for
future work.

Chapter 2

Related Work

This chapter �rst examines code assistants in current integrated development envi-
ronments (IDEs) and then surveys the literature and compares the approaches in
the literature with the approach proposed in this thesis.

2.1 Code Assistants in Current Integrated

Development Environments

This section gives an overview of three types of code assistants found in current
IDEs: autocomplete, error identi�cation with quick �xes, and quick assists.

2.1.1 Autocompletion

By far the most common code assistant in current IDEs is autocompletion. Much
like the autocompletion found in address bars and web forms in most modern web
browsers, or �elds in dialog boxes in most modern operating systems, autocomple-
tion in IDEs attempts to complete the typing the user has started, which in this
case is code in the source code editor. Several names for autocompletion have been
used in di�erent IDEs. For example, autocompletion is known as IntelliSense in
Microsoft Visual Studio and as content assist in Eclipse. The following list is a list
of capabilities of Content Assist in Eclipse, adapted from [Carlson, 2005]:

• Complete type, variable, or method names anywhere in your code

• Guess new variable or parameter names from their types

• Insert code templates representing common coding patterns

• In Javadoc comments, insert HTML tags or standard Javadoc tags

• Fill �eld values in dialogs and wizards

5

Chapter 2. Related Work 6

A study done recently by Murphy et al. [Murphy et al., 2006] on how Java soft-
ware developers use the Eclipse IDE reports that content assist in Eclipse is the
�fth most-used command in the IDE, ranking it among common editing commands
such as copy and paste. Indeed, autocompletion is a command that software de-
velopers heavily rely on in software development. Besides alleviating the burden of
remembering long method signatures in APIs or programming keywords by auto-
matically completing pre�xes entered by the user, it is often used as documentation
browser. It is a common practice for developers to invoke autocompletion without
entering a pre�x and then scroll through the complete list of method calls suggested
by autocompletion to identify the method call that matches the user's intent. In
fact, both Eclipse and Visual Studio automatically trigger autocompletion when
the user types in �.�, �->�, or �::� after a receiver object, proposing the complete
list of possible method calls from the receiver object type's API. Contrary to the
case when the pre�x of the desired method call is entered before invoking autocom-
pletion, in this case, the user usually does not have in mind the particular method
call desired when invoking autocompletion. We distinguish these two modes of us-
ing autocompletion by calling the mode where the pre�x of the target code is �rst
entered before invoking autocompletion completion-based autocompletion and the
mode where no pre�x is entered before invoking autocompletion suggestion-based
autocompletion, usually as a mean of documentation. Figure 2.1(a) shows an ex-
ample of completion-based autocompletion in Eclipse and Figure 2.1(b) shows an
example of suggestion-based autocompletion.

(a) Eclipse Completion-based Autocompletion

(b) Eclipse Suggestion-based Autocompletion

Figure 2.1: An example of the two modes of Eclipse content assist

Eclipse also provides content assist support in its XML editor through the
Eclipse web standard tools project. However, the suggestions are based purely

Chapter 2. Related Work 7

on the XML schema and are not framework-speci�c.

A recent version of Eclipse, version 3.4, has added support for code templates
in its content assist that is similar to the framework-based code assistant presented
in this thesis for the user. The di�erence, however, is that our approach is guided
by a model, and the user can easily add support for a new framework by specifying
the framework concepts and constraints declaratively with a new FSML. In the
Eclipse approach, although new code templates can be speci�ed in an XML �le, no
constraint checking is supported and only a limited set of context is supported. Also,
the code templates in Eclipse does not allow cross-cutting code to be generated,
such as code generated in both Java and XML �les when maintaining a framework's
referential integrity constraint.

2.1.2 Error Identi�cation with Quick Fixes

Another common code assistant found in current IDEs is code error identi�cation.
As in autocompletion, similar ideas are also easily found in everyday applications.
For example, in word processors, as the user types, spell checking runs continuously
in the background, and words with spelling mistakes are automatically underlined.
In IDEs, as the user programs, code building runs continuously in the background,
and code with compilation errors are automatically underlined in the code editor. In
addition to code error identi�cation, Eclipse further o�ers common �xes for the code
errors identi�ed, called quick �xes, which is analogous to the spelling suggestions
in word processors. For example, when a return statement is missing in the body
of a method with a return type of String, the method name is underlined with
the error message �this method must return a result of type String� and the quick
�x mechanism proposes the following �xes: 1) adding the statement return null;
to the body of the method or 2) change the return type of the method to �void�.
Figure 2.2(a) is a screenshot of the example described for error identi�cation and
Figure 2.2(b) for quick �x. Readers are referred to [Ecl, 2007b] for a complete list
of supported quick �xes in Eclipse.

(a) Eclipse Error Identi�cation

(b) Eclipse Quick Fix

Figure 2.2: An example of Eclipse error identi�cation and quick �x

Chapter 2. Related Work 8

2.1.3 Quick Assist

Similar to quick �xes, Eclipse also o�ers what is called quick assist. Quick assist
is a small set of actions, much like quick �xes, but not necessarily for code with
compilation errors. Instead, the actions are a set of common code transformations
that programmers may perform, such as converting from a set of switch and case
statements to a set of if-else statements or assigning an expression to a variable.
Figure 2.3 shows a screenshot of quick assist in action, suggesting the assignment
of an expression to a variable. Refer to [Ecl, 2007a] for a complete list of supported
quick assists in Eclipse.

Figure 2.3: An example of Eclipse quick assist

2.2 Literature Survey

Related work in the literature can be broadly grouped into several categories: code
generation, round-trip engineering, mining-based code assistants, improvements on
autocompletion in traditional IDEs, and generation of domain-speci�c IDEs. Each
of these categories is described in the subsections below.

2.2.1 Code Generation

In general, the generation of code from model can be seen as a type of model-
to-code transformation, which can be classi�ed into visitor-based approaches and
template-based approaches [Czarnecki and Helsen, 2003]. Visitor-based approaches
traverse the internal representation of a model to generate code. On the other hand,
template-based approaches use code templates and control structures in the tem-
plates to traverse the model and expand the parameters in the templates. Most code
generation tools on the market and in the literature uses the template-based ap-
proach. Examples of such tools include Java Emitting Templates (JET) [Ecl, 2007],
Xpand in openArchitectureWare(oAW) [ope, 2008], and XDoclet [XDo, 2005]. On
the other hand, forward engineering in FSMLs, which the proposed framework-
based code assistant works on, uses the visitor-based approach. Forward engineer-
ing with FSMLs does not impose a strict structure on the generated code and can
be used on code manually written. Also, it does not require mechanisms such as
protected regions and partial classes, which are currently commonly used to pro-
tect changes to the generated code in the template-based approach. The tradeo�

Chapter 2. Related Work 9

is that code templates are easier to write than code transformations from models.
Since the proposed framework-based code assistant is intended to be used in any
code, including code that is not generated using the code assistant, a visitor-based
approach is more appropriate than the code template approach.

2.2.2 Round-trip Engineering

A number of commercial computer-aided software engineering (CASE) tools on
the market support round-trip engineering between UML class diagrams and code.
These tools only create class frames and method declarations without method bod-
ies. One e�ort towards round-trip engineering of executable code is FUJABA [Nickel
et al., 2000]. Unlike round-trip engineering with FSML, which only models frame-
work concepts, FUJABA uses a high-level visual programming language called story
diagrams that combines UML class diagrams and UML behavioral diagrams and
supports round-trip engineering to produce complete executable Java code. As a
result, FUJABA does not have the problem of integrating generated code with
manually written code as all the code is captured in the story diagrams. With the
manually written code in the story diagrams however, the story diagrams become
more complicated and more di�cult to understand. The di�erence between FU-
JABA and round-trip engineering with FSMLs is that FSMLs are domain-speci�c
modeling languages that only capture domain-speci�c concepts whereas FUJABA's
story diagrams are based on UML, which is a general-purpose modeling language
that works on a lower level of abstractions than domain-speci�c modeling languages.

There is also a large body of theoretical work in the literature on the theories
of round-trip engineering and bidirectional transformation in general [Sendall and
Küster, 2004, Antkiewicz and Czarnecki, 2007, Foster et al., 2005, Stevens, 2007,
Xiong et al., 2007]. Among them, [Antkiewicz and Czarnecki, 2007] discusses the
need for a decision function as an additional input to select one input from a set
of possible targets. In this sense, framework-based code assistant can be seen as a
decision function in the context of forward engineering in round-trip engineering.

2.2.3 Improvements on Autocompletion in Traditional Inte-

grated Development Environments

There are several e�orts in the literature that aim to improve the traditional auto-
completion found in current IDEs.

Keyword programming in Java [Little and Miller, 2007] allows users to input
keywords in the code editor, which are then translated to a list of possible valid
Java expressions in the current context. While we have also adapted the keyword
programming approach in the framework-based code assistant presented in this the-
sis, keyword programming in Java only generates single method calls, whereas the
framework-based code assistant described in this thesis is designed for frameworks

Chapter 2. Related Work 10

and hence, supports a variety of mechanisms that frameworks use to implement ab-
stractions, potentially involving multiple instructions code that are cross-cutting.

Robbes et al. [Robbes and Lanza, 2008] investigated the problem of sorting pro-
posals, which are typically alphabetically sorted, in the traditional autocompletion.
They used program history to improve the ranking of proposals and presented a
test to evaluate di�erent algorithms for ranking proposals. While we also consider
ranking of proposals in this thesis, the focus of our research is on raising the level
of abstraction in these proposals such that code for framework instantiation can be
generated.

Mylyn [Kersten and Murphy, 2005] introduced the concept of task context to
reduce information overload in IDEs by �ltering and ranking information presented
to the user using the user's interaction history with the IDE. Similar to [Robbes
and Lanza, 2008], it also attempts to rank autocompletion proposals such that
more relevant proposals are ranked higher. Our approach also ranks proposals and
reduces information overload by grouping programming language constructs into
framework concepts.

2.2.4 Mining-Based Code Assistants

There is a large body of work on code assistants based on mining on existing sample
applications.

Strathcona [Holmes and Murphy, 2005] allows users to request examples for a
class, a method, or a �eld declaration during framework instantiation based on the
current code context. The tool �rst extracts structural information, such as the
parent class of each class and the type of �elds in each class, of sample applications
on a server. It then matches the structural information in the current code in the
code editor with those on the server based on six heuristics. It �nally returns code
examples that occur most frequently in the set after applying the heuristics.

FrUiT [Bruch et al., 2006] also aims to suggest a set of relevant code from sample
applications for framework instantiation. However, they use association rule mining
to mine for associations between the structural information in the current context
in the code editor and the sample applications on the server.

XSnippet [Sahavechaphan, 2006] also attempts to suggest code by mining sam-
ple applications. However, their approach is targeted towards �nding code snippets
that are relevant to object instantiation.

Jungloid Mining (Prospector) [Mandelin et al., 2005] also mines in sample
applications to suggest code but is targeted to the problem of �nding example code
that transforms an object of an input type to an object of an output type.

Automatic Method Completion [Hill and Rideout, 2004] attempts to automat-
ically complete the current method the user is at in the code editor. The tool
precomputes a 154-dimensional vector of metrics for each method in a set of sam-
ple applications on a server. It then uses the K-Nearest Neighbor data mining

Chapter 2. Related Work 11

algorithm to compare the vector of metrics of the current method with the precom-
puted metrics on the server to �nd a relevant method that is similar to and longer
than the current method.

Compared to these tools, the framework-based code assistant described in this
thesis is based on a language-oriented approach that formalizes framework concepts
and constraints using domain-speci�c modeling instead of mining from sample ap-
plications. The domain-speci�c modeling approach avoids inaccuracy inherited in
data mining techniques by always mapping the current code to a framework-speci�c
model and suggests and generates code based on interpreting the metamodel of the
framework-speci�c model.

2.2.5 Generation of Domain-Speci�c Integration Develop-

ment Environments

The creation of language programming tools and IDEs based on programming lan-
guage description has long been the subject of research, dating back to the 80's
[Reps and Teitelbaum, 1984]. Of these, recent e�orts include Eclipse IDE Meta-
tooling Platform (IMP) [Charles et al., 2007], TOPCASED [Farail et al., 2006], and
Textual Generic Editor (TGE) [ATLAS, 2008]. Compared to the code assistant de-
scribed in this thesis that supports multiple proposals to aid the implementation of
a framework concept and generates cross-cutting code, the autocompletion gener-
ated for the programming environments in these works are more primitive, typically
supporting only keywords in the language. There are also works on generating pro-
gramming environments speci�c to frameworks [Bjarnason and Hedin, 1997, Hakala
et al., 2001], but framework-based code assistants are not discussed in these works.

Chapter 3

Review of Framework-Speci�c

Modeling Languages and Round-trip

Engineering with

Framework-Speci�c Models

This chapter starts with an overview of framework-speci�c modeling languages,
which are used to express framework-speci�c models that the framework-based code
assistant in the next chapter interprets. The chapter then provides an overview of
round-trip engineering with framework-speci�c modeling languages.

3.1 Framework-Speci�c Modeling Languages &

Framework-Speci�c Models

A framework-speci�c modeling language (FSML) [Antkiewicz, 2008, Antkiewicz and
Czarnecki, 2006] is a domain-speci�c modeling language (DSML) designed for a par-
ticular framework and formalizes that framework's API concepts and constraints.
FSMLs are used to express framework-speci�c models. A framework-speci�c model
models how an application uses a framework's API by describing instances of con-
cepts from the framework's FSML that are implemented by the application. Fig-
ure 3.1 describes the relationship of FSML, framework-speci�c models, frameworks,
and applications.

In FSMLs, concepts are formalized as a cardinality-based feature model [Czar-
necki et al., 2004]. Feature modeling is a technique for modeling commonality and
variability in domain analysis [Kang et al., 1990], software product lines [Weiss and
Lai, 1999, Clements and Northrop, 2001], and generative programming [Czarnecki
and Eisenecker, 2000]. Since frameworks are designed to be highly extensible and
reusable, feature models can be used to model framework concepts and constraints.

12

Chapter 3. Review of Framework-Speci�c Modeling Languages and Round-trip
Engineering with Framework-Speci�c Models 13

Figure 3.1: Overview of framework application modeling

In a feature model, a concept is decomposed into a hierarchy of features. Each fea-
ture is a property of a concept and has a cardinality constraint attached to it. The
cardinality constraint speci�es the number of instances of the feature that should
exist in any con�guration of the feature model. Features can also be organized into
feature groups that have group cardinalities. A feature in a FSML can have a map-
ping de�nition attached, which speci�es how the feature can be implemented and
located in the code. Mapping de�nition for a feature is de�ned by assigning concrete
values to parameters in one of the reusable mapping types. Mapping de�nition can
also capture referential integrity constraints. These constraints are constraints on
the consistency between two source artifacts, such as Java and XML, in a FSML.
A complete list of supported mapping types and constraints and their descriptions
from [Antkiewicz, 2008] is reproduced in Appendix A for convenience. Also refer
to [Antkiewicz et al., 2009] for a description of a method of engineering new FSMLs.
Semantically, a feature model describes a set of legal con�guration of the features,
known as feature con�gurations. A framework-speci�c model is, hence, a feature
con�guration that describes how an application implements framework concepts in
terms of a FSML.

To illustrate, Figure 3.2 shows a feature model of the Struts FSML. The hi-
erarchical nature of the feature model is shown using indentation (subfeatures are
further right). Feature cardinality constraints are speci�ed in square brackets and
mapping de�nitions are speci�ed in angle brackets after the name of a feature.
For example, the code pattern that the feature ActionImpl (Figure 3.2, line 31)
corresponds to is a Java class and the code pattern that the feature forwards (Fig-
ure 3.2, line 40) corresponds to is the method findForward in the control �ow of
that class. The mapping de�nition of the feature forwards uses the mapping type c
callsTo: receiver:r [statement:s] and assigns r to the value ActionMapping and s to
the value �ndForward(String). The parameter c is determined implicitly using the
context mechanism, which retrieves the value of the parameter from the instance
of the closest parent feature with the required mapping type. In this case, the
required mapping type is a class since c is a class. The closest such parent feature
is the feature ActionImpl on line 31 of Figure 3.2 and so, c takes on the value of
ActionImpl. Any number of instances of the feature forwards is possible in a legal

Chapter 3. Review of Framework-Speci�c Modeling Languages and Round-trip
Engineering with Framework-Speci�c Models 14

1 [1..1] StrutsApplication <project>
2 ![1..1] name (String) <projectName>
3 [1..1] StrutsCon�g <xmlDocument: `/WEB−INF/struts−con�g.xml'> <xmlElement name: `struts−con�g'>
4 [0..∗] FormDecl <xmlElements: `form−beans/form−bean'> <xmlElement>
5 [1..1] name (String) <xmlAttribute>
6 [1..1] formType (String) <xmlAttribute: `type'>
7 [0..1] isDynaActionForm <valueEqualsTo attribute: ../formType value: `DynaActionForm'>
8 [0..∗] formProperty <xmlElements: `form−property'> <xmlElement>
9 [1..1] name (String) <xmlAttribute>
10 [0..1] type (String) <xmlAttribute>
11 [0..∗] ForwardDecl <xmlElements: `global−forwards/forward'> <xmlElement>
12 [1..1] name (String) <xmlAttribute>
13 [1..1] path (String) <xmlAttribute>
14 [1..1] target (ActionDecl) <where attribute: path equalsTo: ../path>
15 [0..∗] ActionDecl <xmlElements: `action−mappings/action'> <xmlElement>
16 [1..1] path (String) <xmlAttribute>
17 [0..1] name (String) <xmlAttribute>
18 [0..1] type (String) <xmlAttribute>
19 [1..1] actionImpl (ActionImpl) <where attribute: quali�edName equalsTo: ../type>
20 [0..∗] forwards <xmlElements: `forward'> <xmlElement>
21 [1..1] name (String) <xmlAttribute>
22 [1..1] path (String) <xmlAttribute>
23 [0..1] input (String) <xmlAttribute>
24 [0..∗] FormImpl <class>
25 ![1..1] name (String) <className>
26 [0..1] package (String) <quali�er>
27 [1..1] quali�edName (String)
28 [0..1] local <isLocal>
29 ![1..1] extendsActionForm <assignableTo: `ActionForm'> <subsumedBy: extendsDynaActionForm>
30 [0..1] extendsDynaActionForm <assignableTo: `DynaActionForm'>
31 [0..∗] ActionImpl <class>
32 ![1..1] name (String) <className>
33 [0..1] package (String) <quali�er>
34 [1..1] quali�edName (String)
35 [0..1] local <isLocal>
36 ![1..1] extendsAction <assignableTo: `Action'> <subsumedBy: extendsDispatchAction>
37 [0..1] extendsDispatchAction <assignableTo: `DispatchAction'>
38 [0..∗] actionMethod (String) <methods: `ActionForward ∗(ActionMapping, ActionForm,

HttpServletRequest, HttpServletResponse)'>
39 [0..1] overridesExecute <methods: `ActionForward execute(ActionMapping, ActionForm,

HttpServletRequest, HttpServletResponse)'>
40 [0..∗] forwards <callsTo: `ActionForward ActionMapping.�ndForward(String)' location: `ActionForward

execute(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse)' position: `after'>
41 [1..1] name (String) <valueOfArg: 1>
42 [1..1] forward <constraint>
43 <1−2>
44 [0..1] localForward (ForwardDecl) <where attribute: name equalsTo: ../../name> <and attribute: ../

type equalsTo: ../../../quali�edName>
45 [0..1] globalForward (ForwardDecl) <where attribute: name equalsTo: ../../name> <andParentIs

instanceOf: `StrutsCon�g'>
46 [0..∗] inputForwards <callsTo: `ActionForward ActionMapping.getInputForward()' location: `ActionForward

execute(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse)' position: `after'>
47 [1..1] name (String) <valueOf attribute: input class: `ActionDecl'> <where attribute: type equalsTo: ../../

quali�edName>

Figure 3.2: Struts FSML

Chapter 3. Review of Framework-Speci�c Modeling Languages and Round-trip
Engineering with Framework-Speci�c Models 15

con�guration as indicated by the cardinality [0..*]. The exclamation mark (!)
before the feature extendsAction indicates that the feature for subclassing the Ac-
tion class is an essential feature. Without the essential feature, the feature's parent
won't exist as a concept instance in the framework-speci�c model. For example, a
class X is not an Action class if it does not subclass the Action class. Although class
X satis�es the mapping de�nition of ActionImpl (Figure 3.2, line 31) as a class, if
it does not have the essential feature extendsAction, the instance of the feature
ActionImpl will not be present in the framework-speci�c model. An example of a
feature that corresponds to an XML element is ForwardDecl (Figure 3.2, line 11).
Its mapping de�nition speci�es that each instance of the feature in a feature con�g-
uration corresponds to an XML element on the path global-forwards/forward,
in the XML document that an instance of its parent feature, StrutsConfig, cor-
responds to. An example of a referential constraint is the two constraints on line
44 of Figure 3.2 of the Struts FSML. The �rst constraint, <where attribute: name
equalsTo: ../../name>, states that the subfeature name (Figure 3.2, line 12) of the
current feature, which is a ForwardDecl feature (Figure 3.2, line 11) with the map-
ping de�nition <xmlElements: `global-forwards/forward'> to refer to the the XML
element global-forwards/forward in the XML �le struts-con�g.xml, must equal to
the feature name (Figure 3.2, line 32) two levels up the tree of the current fea-
ture, which is the name of the current Java Action class. Similarly, the second
constraint, <and attribute: ../ type equalsTo: ../../../quali�edName>, states that
the feature type (Figure 3.2, line 18) in the XML �le must equal to the quali�ed
name of the Java Action class (Figure 3.2, line 34). The feature localForward and
globalForward is a feature group and its group cardinality on line 43 of Figure 3.2
states that a forward can be a localForward and/or a globalForward.

3.2 Round-trip Engineering with

Framework-Speci�c Models

FSMLs are designed to support round-trip engineering, which involves reverse en-
gineering, forward engineering, and synchronization. This section brie�y reviews
each of these activities.

To reverse engineer a framework-speci�c model from application code, code
queries are run. Code queries use static code analysis to extract instances of frame-
work concepts in a FSML from the application code and have been shown to achieve
high precision and recall [Antkiewicz et al., 2008]. The code query for each mapping
type from [Antkiewicz, 2008] is reproduced in Appendix B. Prior to invoking the
framework-based code assistant described in the next chapter, a framework-speci�c
model must already exists in the project and the model must be extracted from the
project code using reverse engineering.

To forward engineer is to generate code from a framework-speci�c model. Code
transformations are executed for each instance of a feature in a framework-speci�c

Chapter 3. Review of Framework-Speci�c Modeling Languages and Round-trip
Engineering with Framework-Speci�c Models 16

model. The code transformation for each mapping type from [Antkiewicz, 2008]
is reproduced in Appendix C. Forward engineering requires special parameters in
the mapping de�nition for some features that are not necessary in reverse engineer-
ing, since code transformation may require additional information that has been
abstracted away by code queries. For example, the parameter location for the
feature forwards on line 40 of Figure 3.2 of the Struts FSML takes on the value of
execute(ActionMapping, ActionForm, HttpServletRequest, HttpServletResponse)

and the parameter position takes on the value after. The two parameters state
that code generated using code transformation should be inserted in the method
with the signature execute(ActionMapping, ActionForm, HttpServletRequest,

HttpServletResponse) and should be inserted at the end of the method. These
two parameters in the FSML set the default location and position of the generated
code. The complete list of parameters currently used in forward engineering with
FSMLs, from [Antkiewicz, 2008], are reproduced in Table A.3 in Appendix A. For
features such as forwards where the generated code intertwines with the applica-
tion logic (Figure 1.1), it is clear that code customization is required after forward
engineering.

Round-trip engineering allows models and code to be modi�ed independently
and later synchronized through incremental updates. The ability to synchronize
changes prevents the target model from being replaced completely in reverse engi-
neering, or the target code from being replaced completely in forward engineering.
Prior to the work presented in this thesis, one can edit the model directly in the
model editor or edit the code directly, but without any model support. In either
case, the user needs to invoke synchronization to keep both the model and code
consistent. The user can decide for each change whether to update the change from
the model to code, update the change from the code to the model, discard the
change, or ignore the change. Figure 3.3 shows a screenshot after manually coding
an instance of the two features forward (Figure 3.2, line 20 and line 40) in the code
editor in a Java class called AddAccountImpl and in the Struts con�guration XML
�le and manually invoking model-code synchronization.

Figure 3.3: An example of model-code synchronization

Chapter 4

Framework-Based Code Assistant

This chapter describes our framework-based code assistant that is guided by framework-
speci�c models. The code assistant provides context-dependent suggestions and
aids the user in the implementation of framework concepts with the consideration
of framework constraints. We �rst give a general methodology for the approach.
Then, we discuss a prototype implementation of the framework-based code assis-
tant. Finally, we walk through two examples of using the framework-based code
assistant with the prototype, one for the Apache Struts framework and one for the
Java applet framework.

4.1 Methodology

This section describes the general methodology for creating a framework-based
code assistant. We �rst state the prerequisites of using the framework-based code
assistant. Next, we discuss the criteria for identifying a proposal in the framework-
based code assistant. Finally, we present the steps of executing a code assistant
proposal.

4.1.1 Prerequisites for Using the Framework-Based Code As-

sistant

Before invoking a code assistant in the code editor, a framework-speci�c model
of the current working project must already exist in the project, and the model
must have been extracted from the project code using reverse engineering. The
framework-speci�c model must contain a feature instance corresponding to the
currently opened �le in the code editor so that a code context for the code assistant
can be retrieved. Since the framework-based code assistant proposes subfeatures of
an instantiated feature, it only works for subfeatures (not necessarily direct) of a
feature corresponding to a source artifact, such as a Java class �le or a XML �le.

17

Chapter 4. Framework-Based Code Assistant 18

Also, by the de�nition of an essential feature, a feature instance corresponding to
the opened �le may only exist in a framework-speci�c model if all of its essential
features are present and instantiated in the model.

4.1.2 Identifying Code Assistant Proposals

When the code assistant is invoked at a speci�c location where the code to be
inserted is desired, it identi�es instances of features whose code pattern contain the
cursor position. This process makes use of traceability links from feature instances
in the framework-speci�c model to code, created during reverse engineering as each
feature instance is created in the model. Each traceability link maps a feature
instance in the framework-speci�c model to the corresponding part of the code,
according to the mapping de�nition of the FSML feature instantiated. To map the
code where the user invokes the code assistant back to the model, the traceability
links are interpreted in the reverse direction. However, there might be multiple
feature instances corresponding to a single cursor position: when a feature is the
context feature of its children features, the code area that the feature covers might
be a superset of the code area that its children features cover. For example, the
feature forwards (Figure 3.2, line 40) in the Struts FSML covers only a method call
in the code, whereas its parent feature ActionImpl (Figure 3.2, line 31) covers an
entire class, including any method call that corresponds to the feature forwards.
For this reason, we sort the list of code patterns based on the size of the code ranges
in increasing order. The rationale is that a feature instance that maps to a smaller
code range is more speci�c and is more likely to be the current context for the user.

Given the feature instances representing the current code context, in the case
of suggestion-based autocompletion, the framework-based code assistant lists im-
mediate subfeatures of each feature instance as proposals, with the subfeatures of
a feature instance that maps to a smaller code range higher up in the proposal list.
However, if adding a subfeature to the model will violate the subfeature's cardinal-
ity constraint, the framework-based code assistant �lters out the subfeature from
the list of proposals. In the case of completion-based autocompletion, all subfea-
tures that do not contain all of the keywords entered by the user in the feature's
name are also �ltered out. The keyword support in the framework-based code as-
sistant is comparable to the new �Awesomebar� introduced in a recent version of
the internet browser Mozilla Firefox. The Awesomebar has keyword support to au-
tocompletion in the location bar to reduce the need for users to remember pre�xes
of addresses such that keywords to web page titles and tags can also be matched.
Figure 4.1 shows an example of Awesomebar, directly from Mozilla. Also, keyword
�ltering is more suitable than pre�x �ltering in framework-based code assistant
since framework concepts can be implemented using di�erent mechanisms and the
use of keywords can abstract away these di�erent types of mechanisms. The �rst
keyword that the user entered in the set of keywords must also match the name of
the FSML the framework-speci�c model is expressed in. This criterion is especially

Chapter 4. Framework-Based Code Assistant 19

Figure 4.1: Awesomebar in Mozilla Firefox

important in the case when multiple framework-speci�c models exist in the project,
representing di�erent frameworks used in the project's application code.

4.1.3 Executing a Code Asssistant Proposal

When the user selects a proposal from the list of proposals in the framework-based
code assistant, the code assistant �rst opens a new transaction. It then instantiates
the feature corresponding to the proposal and all its mandatory subfeatures in the
model in a depth-�rst manner. The feature instance instantiated for the feature
corresponding to the proposal uses the location information in the current cursor
position so that the generated code for the feature instance later produced using
code transformation can be placed in the current cursor position. If a feature to be
instantiated is a feature group, the di�erent alternatives in the feature group are
presented to the user. After the user selects a feature from the feature group so that
the group constraint is satis�ed, the instantiation of other features continues. If a
feature to be instantiated requires values in the mapping de�nition that are missing,
the user is prompted to provide the missing values. For example, the feature name
(Figure 3.2, line 32) does not have a default value and its instantiation requires the
user to input a value corresponding to the name of the Action class. If a feature,
such as the feature on line 42 of Figure 3.2, has the mapping de�nition �constraint�,
it means that the subfeatures of the feature contain a referential constraint on
another feature in the current level and so, the code assistant processes the feature
with the mapping de�nition �constraint� before other features on the same level
in the feature model. If a feature has a referential integrity constraint between
two features as its mapping de�nition, one of which requires user inputs, the code
assistant make suggestions for the user input based on the other feature in the
constraint. Alternatively, the user can enter a new value for the feature that requires
an input value, in which case, the other feature in the constraint is also instantiated,
keeping the referential integrity constraint satis�ed. For example, the constraint
on line 45 of Figure 3.2 allows the list of global forwards declared in the XML
�le to be presented to the user as suggestions to the input for the feature name

(Figure 3.2, line 41). If the user chooses to enter a new value for the feature name,
the code assistant instantiates a new instance of the feature name (Figure 3.2, line

Chapter 4. Framework-Based Code Assistant 20

12) under ForwardDecl so that the referential integrity constraint is honoured. As
each feature is instantiated, the feature's associated code transformation is stored in
a queue. After all features are instantiated for the proposal in the model, the code
assistant executes the queue of code transformation in order and the generated code
is highlighted in the code editor. If all feature instantiation and code transformation
succeeds, the changed model and the changed code are committed to the �le system,
and the code assistant closes the transaction.

4.2 Implementation

To demonstrate the feasibility of the approach, we implemented the framework-
based code assistant described in the previous section as a set of Eclipse plugins.
The current implementation provides framework-based code assistance for both
Java and XML �les, each extending the content assist mechanism in Eclipse. The
framework-based code assistant plugin for Java implements the extension point
org.eclipse.jdt.ui.javaCompletionProposalComputer in Eclipse, which con-
tributes to the proposal computer for the content assist process in the default Java
editor. For XML, as such an extension point does not currently exist in Eclipse for
the default XML editor, we wrote a new XML editor with framework-based code
assistant support. Both the Java framework-based code assistant plugin and the
XML framework-based code assistant plugin works for any FSMLs. In other words,
the number of Eclipse plugins corresponds to the number of types of source artifacts
that needs to be supported, but is independent on the number of frameworks that
needs to be supported. A new framework can be supported as long as a FSML is
written for the framework, and all the required code queries and code transforma-
tions, which are reusable among di�erent frameworks, have been implemented to
support reverse engineering and forward engineering.

When the user presses Ctrl-Space, the shortcut key for content assist in Eclipse,
in either the XML or the Java code editor, the code assistant searches in the
project for all framework-speci�c models expressed using any known FSMLs. The
code assistant then presents a list of proposals to the user based on interpreting
the models described in section 4.1.2 and sorts the proposals by the size of the
corresponding context feature instance's code pattern's size range. The syntax for
each proposal name is:

FSML: feature name, (context name, framework name)

Once the user selects a proposal, whenever code transformations in forward
engineering requires a value for a parameter in the mapping de�nition from the
user, the framework-based code assistant displays a popup dialog box to the user,
prompting the user for the value. The code assistant also presents suggestions
through constraints in a drop-down menu in a dialog box.

Chapter 4. Framework-Based Code Assistant 21

The existing infrastructure for round-trip engineering handles the forward en-
gineering for each feature. Forward engineering for Java uses the Eclipse Java
Development Tools (JDT) API, whereas forward engineering for XML uses the
Eclipse Web Tools Platform (WTP) API. Both APIs manipulate the abstract rep-
resentation of the �le, which is abstract syntax tree (AST) for Java or document
object model (DOM) for XML, and generates code from the abstract representation
before applying pretty-printing onto the generated code.

Figure 4.2 shows a few screenshots of a simple example of framework-based code
assistant for the XML editor in action. The next two sections describe in detail two
more sophisticated examples of the framework-based code assistant invoked from
the Java editor for two di�erent applications, each using a di�erent framework.

(a) Proposals in XML Editor (b) Entering the value for FormDecl's feature
name

(c) Resulting XML Code

Figure 4.2: Framework-based code assistant in XML editor

Chapter 4. Framework-Based Code Assistant 22

4.3 An ExampleWalk-through for an Apache Struts

Application

This section illustrates the use of the prototype implementation of framework-
based code assistant by walking through an example of its use in an Apache Struts
application.

Suppose the user is in a Struts Action class called AddAccountAction in the
Java editor. In addition to forwarding to the page �success�, de�ned in the existing
struts-con�g.xml, the user wishes to forward to the page �failure� if an error occurs.
Figure 4.3 shows a textual rendering of the original framework-speci�c model in
the project.

1 StrutsApplication <project>
2 StrutsCon�g
3 ActionDecl
4 path ('addAccount')
5 name ('AddAccountForm')
6 type ('action.AddAccountAction')
7 actionImpl (ActionImpl AddAccountAction)
8 ForwardDecl
9 name ('success') <xmlAttribute>
10 path ('/addAccount2.jsp') <xmlAttribute>
11 ActionImpl
12 name ('AddAccountAction')
13 quali�edName ('action.AddAccountAction')
14 extendsAction
15 forwards
16 name ('success')
17 forward
18 localForward (ForwardDecl success)

Figure 4.3: Original framework-speci�c model for Apache Struts application exam-
ple

When the user presses Ctrl-Space to invoke the framework-based code assistant
in the Java editor, because the Action class instantiates the concept ActionImpl
(Figure 4.3, line 11), the reverse navigation will �rst identify that concept's in-
stance in the framework-speci�c model. Next, by interpreting the metamodel of the
framework-speci�c model, the Struts FSML, the code assistant will propose the fea-
tures that can be instantiated in the feature instance, forwards (Figure 3.2, line 40)
and inputForwards (Figure 3.2, line 46), as shown in Figure 4.4. After the user se-
lects the proposal forwards, the framework-based code assistant creates an instance
of the feature forwards in the framework-speci�c model and stores its associated
code transformation, the method call mapping.findForward(null) at the current
cursor position, in a queue. Notice that, because the feature forwards speci�es that
the receiver of the method call is of type ActionMapping, the framework-based code
assistant automatically uses the only variable of type ActionMapping in the current
scope to generate the method call. Next, the code assistant proceeds to process
all the subfeatures of the feature forwards that have the mapping de�nition �con-
straint� and sees that the feature forward (Figure 3.2, line 42) is such a feature and

Chapter 4. Framework-Based Code Assistant 23

Figure 4.4: Framework-based code assistant for Struts

is mandatory. It asks the user to make a choice between the feature groups since
at least one and at most two features in the group are required. Should the user
chooses localForward instead of globalForward, the code assistant instantiates
the feature and proceeds to process the feature localForward (Figure 3.2, line 44).
The feature localForward contains a referential integrity constraint that speci�es
that the value of the feature name (Figure 3.2, line 43) must match the value of the
feature name (Figure 3.2, line 12), and the value of the feature type (Figure 3.2, line
18) in the forward declaration must match the value of the feature qualifiedName
(Figure 3.2, line 34) in the Action class. The framework-based code assistant thus
displays a dialog box with suggestions to the user for the possible values of name
(Figure 3.2, line 41). The dialog box suggests the value �success� and provides an
option for the user to enter a new value, as in Figure 4.5. Since the user wants
�failure� instead of �success�, the user chooses the new value and enters the value
�failure�. At this time, the code assistant automatically creates a new instance of the
feature ForwardDecl (Figure 3.2, line 11) and sets the value of the subfeature name
(Figure 3.2, line 12) and the value of the feature name (Figure 3.2, line 41) to �fail-
ure�. The code assistant also stores in a queue the associated code transformation
for the feature name in ForwardDecl, which is <forward name=�failure�> under
the AddAccountAction XML declaration in Struts-Con�g.xml. Also, the user will
be prompted for a value for the feature path (Figure 3.2, line 13) since it is manda-
tory. After the user enters �/addAccount.jsp�, the feature is instantiated and its
associated code transformation, an XML attribute for the XML declaration for
failure, is also stored in the queue. After the feature localForward is processed,
the code assistant returns to process the feature name(Figure 3.2, line 41) that it
has deferred before to �rst process the feature forward with the mapping de�nition
�constraint�. The feature already has the value �failure� from before, so its asso-
ciated code transformation, a replacement of the method call findForward(null)

Chapter 4. Framework-Based Code Assistant 24

Figure 4.5: Suggestions for the feature forwards in Apache Struts

argument to the value �failure�, is stored in a queue. Since no more mandatory
subfeatures exist, the queue of code transformations is executed and the changes to
the framework-speci�c model are committed. As a result of executing a proposal
from the code assistant, the code below are added to the Struts con�guration XML
�le and a method call mapping.findForward(�failure�) has been generated at
the cursor position.

<action path="/addAccount" type="action.AddAccountAction"

name="AddAccountForm">

<forward name="success" path="/addAccount2.jsp"/>

<forward name="failure" path="/addAccount.jsp"/>

</action>

Figure 4.6 shows the resulting framework-speci�c model.

Chapter 4. Framework-Based Code Assistant 25

1 StrutsApplication <project>
2 StrutsCon�g
3 ActionDecl
4 path ('addAccount')
5 name ('AddAccountForm')
6 type ('action.AddAccountAction')
7 actionImpl (ActionImpl AddAccountAction)
8 ForwardDecl
9 name ('success') <xmlAttribute>
10 path ('/addAccount2.jsp') <xmlAttribute>
11 ForwardDecl
12 name ('failure') <xmlAttribute>
13 path ('/addAccount.jsp') <xmlAttribute>
14 ActionImpl
15 name ('AddAccountAction')
16 quali�edName ('action.AddAccountAction')
17 extendsAction
18 forwards
19 name ('success')
20 forward
21 localForward (ForwardDecl success)
22 forwards
23 name ('failure')
24 forward
25 localForward (ForwardDecl failure)

Figure 4.6: Resulting framework-speci�c model for Apache Struts application ex-
ample

4.4 Another Example-Walk Through for a Java Ap-

plet

This section walks through another example of using the framework-based code
assistant on an application implemented with a di�erent framework, the Java applet
framework. Figure 4.7 shows a feature model of the Applet FSML.

1 AppletModel <project>
2 [0..∗] Applet <class>
3 [1..1] name (String) <fullyQuali�edName>
4 ![1..1] extendsApplet <assignableTo: `Applet' local: true> <subsumedBy: extendsJApplet>
5 [0..1] extendsJApplet <assignableTo: `JApplet'>
6 [0..1] overridesLifecycleMethods
7 !<1−5>
8 [0..1] init <methods: `void init()'>
9 [0..1] start <methods: `void start()'>
10 [0..1] paint <methods: `void paint(Graphics)'>
11 [0..1] stop <methods: `void stop()'>
12 [0..1] destroy <methods: `void destroy()'>
13 [0..∗] showsStatus <callsReceived: `void Applet.showStatus(String)' location: 'void init()' position: `after'>
14 [0..∗] message (String) <valueOfArg: 1>
15 [0..∗] registersMouseListener <callsTo: `void Component.addMouseListener(MouseListener)' position: `after'

location: `void init()'>
16 !<1−1>
17 [0..1] this <argumentIsThis: 1>
18 [1..1] implementsMouseListener <assignableTo: `MouseListener'>
19 [1..1] deregisters <callsTo: `void Component.removeMouseListener(MouseListener)' location: `void

destroy()'>
20 ![1..1] this <argumentIsThis: 1>
21 [0..1] mouseListenerField <argumentIsField: 1> <�eld>
22 [1..1] listenerField (String) <�eldName>
23 [1..1] typedMouseListener <�eldOfType: `MouseListener'>

Chapter 4. Framework-Based Code Assistant 26

24 [1..1] initialized <assignedNew: `void MouseListener()' initializer: true>
25 [1..1] deregisters <callsTo: `void Component.removeMouseListener(MouseListener)' location: `void

destroy()'>
26 ![1..1] �eld <argumentIsField: 1 sameAs: ../../listenerField>
27 [0..∗] registersMouseMotionListener <callsTo: `void Component.addMouseMotionListener(

MouseMotionListener)' position: `after' location: `void init()'>
28 !<1−1>
29 [0..1] this <argumentIsThis: 1>
30 [1..1] implementsMouseMotionListener <assignableTo: `MouseMotionListener'>
31 [1..1] deregisters <callsTo: `void Component.removeMouseMotionListener(MouseMotionListener)'

location: `void destroy()'>
32 ![1..1] this <argumentIsThis: 1>
33 [0..1] mouseMotionListenerField <argumentIsField: 1> <�eld>
34 [1..1] listenerField (String) <�eldName>
35 [1..1] typedMouseMotionListener <�eldOfType: `MouseMotionListener'>
36 [1..1] initialized <assignedNew: `void MouseMotionListener()' initializer: true>
37 [1..1] deregisters <callsTo: `void Component.removeMouseMotionListener(MouseMotionListener)'

location: `void destroy()'>
38 ![1..1] �eld <argumentIsField: 1 sameAs: ../../listenerField>
39 [0..∗] registersKeyListener <callsTo: `void Component.addKeyListener(KeyListener)' position: `after' location

: `void init()'>
40 !<1−1>
41 [0..1] this <argumentIsThis: 1>
42 [1..1] implementsKeyListener <assignableTo: `KeyListener'>
43 [1..1] deregisters <callsTo: `void Component.removeKeyListener(KeyListener)' location: `void destroy()

'>
44 ![1..1] this <argumentIsThis: 1>
45 [0..1] keyListenerField <argumentIsField: 1> <�eld>
46 [1..1] listenerField (String) <�eldName>
47 [1..1] typedKeyListener <�eldOfType: `KeyListener'>
48 [1..1] initialized <assignedNew: `void KeyListener()' initializer: true>
49 [1..1] deregisters <callsTo: `void Component.removeKeyListener(KeyListener)' location: `void destroy()

'>
50 ![1..1] �eld <argumentIsField: 1 sameAs: ../../listenerField>
51 [0..∗] Thread <�eld>
52 [1..1] thread (String) <�eldName>
53 ![1..1] typedThread <�eldOfType: `Thread'>
54 [1..1] InitializesThread
55 !<1−1>
56 [0..1] initializesThreadWithRunnable <assignedNew: `void Thread(Runnable)' position: 'after' location

: `void init()'>
57 <1−1>
58 [0..1] this <argumentIsThis: 1>
59 [1..1] implementsRunnable <assignableTo: `Runnable'>
60 [0..1] helper <argumentIsNew: 1 signature: `void Runnable()'>
61 [0..1] variable (String) <argumentIsVariable: 1 signature: `void Runnable()'>
62 [0..1] runnableField <argumentIsField: 1> <�eld>
63 [1..1] typedRunnable <�eldOfType: `Runnable'>
64 [1..1] name (String) <�eldName>
65 [1..1] initialized <assignedNew: `void Runnable()' initializer: true>
66 [0..1] initializesWithThreadSubclass <assignedNew initializer: true subtypeOf: `Thread'> <class>
67 [1..1] name (String) <�eldType> <fullyQuali�edName>
68 [1..1] overridesRun <methods: `void run()'>
69 [1..1] extendsThread <assignableTo: `Thread'>
70 [1..1] nulli�esThread <assignedNull location: `void destroy()' position: `after'>
71 [0..∗] singleTaskThread <callsTo: `void Thread(Runnable)' position: 'after' location: `void init()' statement:

true>
72 <1−1>
73 [0..1] runnable <argumentIsNew: 1 signature: `void Runnable()'>
74 [0..1] runnableField <argumentIsField: 1> <�eld>
75 [1..1] typedRunnable <�eldOfType: `Runnable'>
76 [1..1] name (String) <�eldName>
77 [1..1] initialized <assignedNew: `void Runnable()' initializer: true>
78 [0..∗] parameter <callsReceived: `String Applet.getParameter(String)' location: `void init()'>
79 [0..∗] name <valueOfArg: 1>
80 [0..1] providesParameterInfo <methods: `String[][] getParameterInfo()'>
81 [1..1] providesInfoForParameters <constraint: ../parameter implies: ../providesParameterInfo>

Chapter 4. Framework-Based Code Assistant 27

Figure 4.7: Applet FSML

Suppose the user is writing a Java applet for the game of Tic-tac-toe and wishes
to �rst implement the part where the Java applet will respond to mouse clicks. The
framework-speci�c model of the user's current code is shown in Figure 4.8. The user
types in the keyword �Applet� and �Mouse�, as in Figure 4.9, and the framework-
based code assistant proposes the two features containing the word �Mouse� that can
be instantiated in the current feature instance Applet (Figure 4.8, line 1): registers-
MouseListener (Figure 4.7, line 15) and registersMouseMotionListener (Figure 4.7,
line 27).

1 Applet
2 name (`TicTacToe')
3 extendsApplet
4 overridesLifecyleMethods
5 init

Figure 4.8: Original framework-speci�c model for Java applet example

Figure 4.9: Keyword programming for Java applet example

The user selects the RegistersMouseListener proposal and the framework-
based code assistant creates an instance of the registerMouseListener feature.
Its associated code transformation, an addMouseListener(null) call at the current
cursor position, is also stored in a queue. Since the feature also contains a feature
group that is marked essential, the code assistant proposes the two features in the
group, this and mouseListenerField, to the user. Suppose the user chooses this,
the code assistant creates an instance of the feature this, together with storing
its associated code transformation in a queue, and the code assistant continues
the process with its subfeatures. The two features, implementsMouseListener
(Figure 4.7, line 18) and deregisters (Figure 4.7, line 19), are all then instantiated
with its code transformation in the queue, before the subfeature of deregisters,
this (Figure 4.7, line 20), which refers to the argument of the deregister call, and
its associated code transformation. The resulting code is shown in Figure 4.10, and
the resulting framework-speci�c model is shown in Figure 4.11.

Chapter 4. Framework-Based Code Assistant 28

Figure 4.10: Resulting code for Java applet example

1 Applet
2 name (`TicTacToe')
3 extendsApplet
4 overridesLifecyleMethods
5 init
6 registerMouseListener
7 this
8 implementsMouseListener
9 deregisters
10 this

Figure 4.11: Resulting framework-speci�c model for Java applet example

Chapter 5

Evaluation

This chapter presents a study, conducted in two phases, that evaluates the proposed
model-guided framework-based code assistant approach to code generation. The
study tests the hypothesis that the framework-based code assistant approach to
code generation reduces the e�ort to produce framework application code when
compared to forward engineering from the model editor.

In general, the framework-based code assistant is able to reduce the e�ort in
producing code comparing to forward engineering from the model editor in several
ways. Firstly, unlike forward engineering from the model editor, framework-based
code assistant does not require on-demand synchronization between the code and
the model since as a code assistant proposal executes, the code assistant not only
creates new feature instances in the model, but also generates code for the new
feature instances, automatically keeping both the model and the code synchronized.
Secondly, unlike the current implementation of the model editor that requires new
feature instances to be created one-by-one, our framework-based code assistant
automatically creates instances of all mandatory subfeatures recursively. Thirdly,
framework-based code assistant allows the user to work directly in the code editor
instead of having to switch back and forth between the model editor and the code
editor, which both reduces the user's cognitive load from context switches and
avoids the need to synchronize changes between model and code. Lastly, framework-
based code assistant generates code at the location where the user invokes the code
assistant, avoiding the need for the user to move the generated code to the desired
location after forward engineering from the model editor that would again require
switching from the model editor to the code editor. The evaluation in this section
concentrates on the last advantage and attempts to further understand the need to
move code in the old approach of forward engineering from the model editor, and
how much of this e�ort can be reduced by using the framework-based code assistant
instead.

The �rst phase of the study analyzes every feature in both the Applet FSML and
the Struts FSML by reverse engineering a set of sample applications instantiating
the two frameworks and classifying the variability in the code pattern location in

29

Chapter 5. Evaluation 30

the feature instances, so that the extent to which the generated code needs to be
moved can be assessed in the next phase. The second phase of the study involves
calculating the extent that moving the generated code is required using forward
engineering from the model editor and compares the result with the framework-
based code assistant approach. We then manually inspect the code with varying
code pattern location to further re�ne the result.

5.1 Test Data

The study uses a set of a total of 90 sample applications, 84 of which are Java applets
and 6 of which are applications that uses the Apache Struts framework. The set
of applications is the same set of applications that was used in [Antkiewicz et al.,
2008] to evaluate the precision and recall of code queries for reverse engineering.
We grouped all the Java applets into one project and created a project for each
of the 6 Apache Struts applications. Applications for both frameworks contain
a mix of sample applications shipped with the framework and other open source
applications. The complete list of applications is reproduced for convenience in
Appendix D.

5.2 Phase 1 of the Study

5.2.1 Setup of Phase 1

In the �rst phase of the study, we �rst extracted a framework-speci�c model for each
of the projects and then recorded the number of feature instances for each FSML
feature. We then analyzed the mapping de�nition for each feature in both FSMLs
to see whether, without the forward engineering parameters (Table A.3), there are
other points of variation in the location of the code patterns that are not covered
by the other parameters in the mapping de�nition. For example, given the map-
ping de�nition for the feature extendsApplet in the Applet FSML, c assignableTo:
Applet local:true, the corresponding code pattern must be in class c, as class c

extends Applet. On the other hand, given the mapping de�nition of the feature
showStatus in the Applet FSML, c callsReceived: void Applet.showStatus(String)
location:void init() position:after, ignoring the forward engineering parameters lo-
cation and position, the corresponding code pattern can be in any line within any
method body. For each feature that has a varying location, we grouped its feature
instances by the method that the code patterns appear in. We also manually post-
process the data to ensure that for code that appears in a helper method with no
other code inside it, instead of using the helper method as the location, the method
the call site resides in is used in the data instead, since neither code assistant nor
forward engineering from model editor generates helper methods.

Chapter 5. Evaluation 31

Figure 5.1: Variability in code pattern location for feature instances in sample
applications for the Java applet framework

Chapter 5. Evaluation 32

Figure 5.2: Variability in code pattern location for feature instances in sample
applications for the Apache Struts framework

5.2.2 Results and Analysis of Phase 1

The result of phase 1 of the study is presented in Figure 5.1, for the entire set
of sample applications for the Java applet framework, and in Figure 5.2, for the
applications for the Apache Struts framework. The �rst column of both graphs
shows the names of each feature in the the corresponding FSML and the second
column records the number of feature instances of each feature found in the sample
applications, grouped by the method that the code patterns appear in. The rows
for all the features that have varying code pattern location are highlighted.

We �rst examine the number of feature instances in the set of sample applica-
tions. Interestingly, numerous features have no feature instances, but there are a
few features with many feature instances. For example, there are a total of 164
instances of the feature parameter, averaging almost 2 instances per Java applet.
There are also as many as 498 instances of the subfeature name for parameter, since
data �ow analysis in reverse engineering matches all possible values of the name pa-
rameter in the parameter method call. Since the subfeature name for parameter
does not have varying location and is not relevant in this study, the full number is
cut o� and is not shown in the graph due to space limitations.

Next, we examine the features that have varying locations. Out of a total of 71
features in the Applet FSML that have mapping de�nitions, a total of 22 features,
or 31%, have varying location. For the Struts FSML, we omitted the features that

Chapter 5. Evaluation 33

map to XML code patterns because they do not vary in location. Only 2 features out
of 23 features that have Java mapping de�nitions in the Struts FSML have varying
location. After examining each of these features in both FSMLs carefully, we found
that these are features with either the forward engineering parameter location or
the forward engineering parameter initializer. The forward parameter location
is as expected, since it speci�es the method that the generated code should be in-
serted into. The forward engineering parameter initializer speci�es whether a �eld
assignment should be created in the �eld's initializer. Normally, the forward engi-
neering parameter initializer is set to true as a default value in mapping de�nitions.
However, if the �eld assignment is not created in the �eld's initializer, there are
also other locatioins where this pattern can be generated, namely, when the �eld
assignment is in some other method bodies, away from the �eld's initializer.

For the Applet FSML, we can see that 12 of the 22 features that can have
varying location have no feature instances in the sample set of 84 applications.
Out of the 10 features that have one or more feature instances, 8 feature instances
have varying location, and 2 have no varying location. It is interesting to see that
both of the features with no varying location are deregister calls and are mandatory
subfeatures of the corresponding register calls. In other words, when the user selects
the proposal from the code assistant for the register calls, the deregister calls should
be generated automatically. For the 8 features with varying locations, the feature
showStatus is the only feature that has no clear single best location. This result
might not be as surprising if one understands the concept of showStatus in Java
applet. ShowStatus displays a message in the status window and, depending on
the application logic, di�erent messages are usually displayed. For this reason, the
code pattern for the showStatus feature instances appear inside a large variety of
method bodies. The other 7 features all have one location where the code patterns
appear in at least more than 20% of the time.

For the Struts FSML, both features with varying locations have a single best
location. However, for the feature forwards, the best location, which is the execute
callback method in an Action class, still accounts for only 23% of the total number
of feature instances. Further analysis reveals that 83% of the feature instances of the
feature forwards also instantiates the feature extendsDispatchAction. Dispatch
Action is a special type of Action class that, instead of dispatching to the default
callback method named execute, dispatches to a public method that is named by
the request parameter whose name is speci�ed in the Struts XML con�guration �le.
For example, with the XML code below in the Struts XML con�guration �le, the
value of the request parameter with the name �method� will be the method that
will be dispatched to in the Action class.

<action path="/saveSubscription"

type="org.apache.struts.actions.DispatchAction"

name="subscriptionForm" scope="request"

input="/subscription.jsp" parameter="method"/>

Therefore, the URL

Chapter 5. Evaluation 34

http://localhost:8080/myapp/saveSubscription.do?method=update

will execute the method update in the saveSubscription Action class. In that case,
since the value of the request parameter can only be determined at runtime, only
the developer knows the location the code for the concept forwards should be in.

Given the analysis above, we can categorize the features into anchored and
floatable. Anchored features are ones that are not possible to have a varying
location for their code patterns and are all features whose rows are not highlighted
in Figure 5.1. Floatable features are ones that are possible to have a varying lo-
cation for their code patterns. Floatable features can be further categorized as
non-floating, semi-floating, and free-floating. Non-�oating features are
�oatable features that have code patterns that usually occur in a �xed location.
Semi-�oating are �oatable features that have code patterns that have varying loca-
tions, but one location dominates more than 20% of the time and appears to be a
good default location. Free-�oating features are �oatable features that have code
patterns that have no clear defaults and seem to have unpredictable locations.

5.3 Phase 2 of the Study

5.3.1 Setup of Phase 2

From phase 1 of the study, we calculate the percentage and the number of feature
instances that are not handled by the default location. These are feature instances
that would require the user to move the generated code from the default location
to the desired location when using forward engineering from the model editor.
The framework-based code assistant, on the other hand, can safely be invoked in
the desired location as the user programs and generates the code in place hence,
requiring no further customization. Since phase 1 of the study concentrated on
the variability in the location, namely, the method that the code patterns is in,
this phase involves inspecting the code manually to see whether the line that the
code pattern appears in in a method body also matters, or in other words, whether
the code patterns entangles with application logic. Code patterns that entangle
with the application logic are code that even with a default location, which is the
method to place the code patterns in, requires further customization to integrate
the generated code with the application logic inside a method body. In other
words, these code patterns that entangle with the application logic code again
require code customization by moving the code within a method body when using
forward engineering from the model editor, but not when using framework-based
code assistant.

Chapter 5. Evaluation 35

Partial Applet FSML >0 In-
stances

of Instances
without De-
faults

% of Instances
without De-
faults

Can Code Entan-
gle with Application
Logic?

[0..*] showsStatus Yes 35 100.00% Yes

[0..*] message (String)

[0..*] registersMouseListener Yes 5 17.86% No

!<1-1>

[0..1] this

[1..1] implementsMouseListener

[1..1] deregisters Yes 0 0.00% No

![1..1] this

[0..1] mouseListenerField

[1..1] listenerField (String)

[1..1] typedMouseListener

[1..1] initialized No N/A N/A N/A

[1..1] deregisters No N/A N/A N/A

![1..1] �eld

[0..*] registersMouseMotionListener Yes 3 16.67% No

!<1-1>

[0..1] this

[1..1] implementsMouseMotionListener

[1..1] deregisters Yes 0 0.00% No

![1..1] this

[0..1] mouseMotionListenerField No N/A N/A N/A

[1..1] listenerField (String)

[1..1] typedMouseMotionListener

[1..1] initialized No N/A N/A N/A

[1..1] deregisters No N/A N/A N/A

![1..1] �eld

[0..*] registersKeyListener Yes 1 25.00% No

!<1-1>

[0..1] this

[1..1] implementsKeyListener

[1..1] deregisters No N/A N/A N/A

![1..1] this

[0..1] keyListenerField No N/A N/A N/A

[1..1] listenerField (String)

[1..1] typedKeyListener

[1..1] initialized No N/A N/A N/A

[1..1] deregisters No N/A N/A N/A

![1..1] �eld

[0..*] Thread

[1..1] thread (String)

![1..1] typedThread

[1..1] InitializesThread

!<1-1>

[0..1] initializesThreadWithRunnable Yes 9 33.33% Yes

<1-1>

[0..1] this

[1..1] implementsRunnable

[0..1] helper

[0..1] variable (String)

[0..1] runnableField

[1..1] typedRunnable

[1..1] name (String)

[1..1] initialized No N/A N/A N/A

[0..1] initializesWithThreadSubclass Yes 2 40.00% No

[1..1] name (String)

[1..1] overridesRun

[1..1] extendsThread

[1..1] nulli�esThread Yes 5 26.32% Yes

[0..*] singleTaskThread No N/A N/A N/A

<1-1>

[0..1] runnable

[0..1] runnableField

[1..1] typedRunnable

[1..1] name (String)

[1..1] initialized No N/A N/A N/A

[0..*] parameter Yes 41 25.00% No

[0..*] name

Table 5.1: Result of phase 2 of the study for the Java Applet framework

5.3.2 Results and Analysis of Phase 2

Table 5.1 presents the result for the Java applets and Table 5.2 presents the result
for the Struts Application.

As in the result from the �rst study, the �rst column in both �gures shows the
features in each FSML with the row of the features that can have variable location in

Chapter 5. Evaluation 36

Partial Applet FSML >0 In-
stances

of Instances
without De-
faults

% of Instances
without De-
faults

Can Code Entan-
gle with Application
Logic?

[0..*] ActionImpl

![1..1] name (String)

[0..1] package (String)

[1..1] quali�edName (String)

[0..1] local

![1..1] extendsAction

[0..1] extendsDispatchAction

[0..*] actionMethod (String)

[0..1] overridesExecute

[0..*] forwards Yes 227 74.43% Yes

[1..1] name (String)

[1..1] forward

<1-2>

[0..1] localForward (ForwardDecl)

[0..1] globalForward (ForwardDecl)

[0..*] inputForwards Yes 2 20.00% Yes

[1..1] name (String)

Table 5.2: Result of phase 2 of the study for the Apache Struts framework

its code pattern highlighted. The next three columns in both �gures are calculations
directly derived from the result of the �rst phase of the study. The �rst of these
three columns shows whether the feature has more than one feature instance in the
sample set of applications. The other two of the three columns show the number
and the percentage of feature instances that are not handled by the default location,
which we de�ned in phase 1 of the study to be the method the code patterns of
the feature instances appear in more than 20% of the time. Framework-based code
assistant has a clear advantage over forward engineering from the model editor
in these feature instances, since framework-based code assistant allows code to be
generated in any location as the user programs, but for forward engineering from
the model editor, the code patterns for these instances would require manual code
movement in the code editor. The last column shows, from manual code inspection,
whether code patterns for the feature instances entangle with other application logic
code. The implication for the features that do is that even feature instances with a
default location will require further code customization, namely, moving the code
to a speci�c line within a method, since forward engineering from the model editor
will not be able to place the generated code in the expected location without fully
understanding the user's application logic code. The rest of this section describes
the �ndings during manual code inspection of the feature instances to see whether
the code patterns for the feature instances of each feature entangle with application
logic code.

For the Applet FSML, the feature showStatus always entangles with the ap-
plication logic since, as described previously, depending on the application logic,
di�erent messages are displayed in the status window. Figure 5.3(a) gives an ex-
ample of such a case. Depending on the value of r, di�erent messages are displayed
to the user in the status window.

The features for the register listener and deregister listener calls are always just
a single method call that has no dependency on the application logic code. There
are a few examples, however, when the register listener calls in an applet are to
register listeners not for the applet itself, but for a component used in the applet.

The feature initializesThreadWithRunnable corresponds to an assign-new

Chapter 5. Evaluation 37

call. A common micropattern with this feature is that the variable that the thread
is assigned to is often checked to make sure that it is null and/or the thread is
not alive before assigning it to the new thread variable again. Also, sometimes,
a thread is only initialized under other special circumstances that are application
speci�c. One such example is shown in Figure 5.3(b). The thread is only initialized
if the command received is �blink�.

The feature initializesThreadWithSubclass is generally not entangled with
the application logic and is just assigned to a variable that is subsequently used.
Therefore, forward engineering from the model editor can safely generate the call
at the beginning of the method, so that application logic code can use the variable
later on in the method.

The feature nullifiesThread is usually a single assign-to-null statement. Of-
tentimes, like initializesThreadWithRunnable, the thread is usually checked
to see that it is not already null before assigning to null. Also, one example of
nullifiesThread involves nullifying the thread when an application-speci�c ex-
ception arises (Figure 5.3(c)).

The feature parameter is usually entangled with the application logic, but it is
always possible to refactor the code such that the getParameter call is �rst assigned
to a variable in the beginning of a method body before using it with the application
logic code in the rest of the method body. Hence, we consider it as not entangled,
and no further customization is needed when forward engineering the concept from
the model editor. Figure 5.3(e) shows an example from the set of sample appli-
cations where the getParameter calls can be refactored into variable assignment
statements in the beginning of the method that the code for the framework concept
resides in.

For the Struts FSML, both the forwards and inputForwards feature can entan-
gle with the application logic code when di�erent pages are forwarded depending on
the application logic. Figure 5.3(d) shows such an example from the set of sample
applications.

5.4 Threats to Validity

There are a few threats to validity in the evaluation presented in this chapter.
Firstly, the feature instances that are used in the analysis are from framework-
speci�c models that are reverse engineered from application code. Therefore, the
accuracy of the code queries that are used in reverse engineering greatly a�ects the
feature instances in the evaluation. However, a previous study [Antkiewicz et al.,
2008] has shown the code queries to be of very high precision and recall, so that the
feature instances used in the evaluation should be a relatively accurate representa-
tion of the actual feature instances in the sample application code. Secondly, we
did not consider coding style in the evaluation, which would likely a�ect the evalua-
tion result. More speci�cally, the location of a code pattern can also be a�ected by

Chapter 5. Evaluation 38

(a) showStatus (b) initializesThreadWithRunnable

(c) nulli�esThread (d) forwards

(e) parameter

Figure 5.3: Framework feature code entangled with application logic code

coding style and so increases the advantage the framework-based code assistant has
over forward engineering from the model editor, since the framework-based code
assistant allows code to be generated at any valid location.

Several factors also a�ect the generalization of the result: the sample appli-
cations, the concepts the FSMLs cover, and the frameworks that we used. We
have put in e�orts to reduce the threats of validity from the sample applications
by selecting a mix of applications shipped with the framework and open source
applications. Biases in the concepts the FSMLs cover are also minimized by the
fact that the FSMLs are created prior to the inception of the framework-based code
assistant in this thesis. Although the two frameworks that are chosen are widely
popular frameworks, an investigation on the generalization of the result to other
frameworks remains future work.

Chapter 6

Conclusion

Object oriented frameworks are useful and popular in application development but
are known to be di�cult to use. With the formalization of framework concepts and
constraints in a framework-speci�c modeling language, advanced context-sensitive
code assistance, guided by a framework-speci�c model expressed using the language,
can be provided to the user directly in the code editor. The code assistance aids the
user in implementing framework concepts with the consideration of framework con-
straints. Compared to code generation from the model editor, our framework-based
code assistant: 1) avoids the need to synchronize changes between the model and
the code, 2) automatically forwards all mandatory subfeatures recursively, 3) allows
the user to work directly in the code that avoids the switching between the model
editor and the code editor, since working in the code editor is inevitable given that
FSML is not a general purpose modeling language, and 4) reduces the need to per-
form code customization that occurs when generating code at �xed location from
the model editor. The evaluation in this thesis characterizes features into anchor,
non-�oating, semi-�oating, and free-�oating features and �nds that a number of
features are semi-�oating or free �oating and entangles with the application logic
code. When performing code generation from the model editor, these features re-
quire moving the generated code to the desired location, but our framework-based
code assistant does not require such code customization.

6.1 Future Work

Several possible directions for future work follow:

User study and further evaluation. While we have evaluated our framework-
based code assistant by comparing it against forward engineering from the model
editor where code is generated at �xed locations, a user study to evaluate the
usability of our approach remains future work. For example, we could design a
user study to compare the framework-based code assistant described in this thesis
against programming-language based code assistants found in traditional IDEs in

39

Chapter 6. Conclusion 40

order to assess productivity improvements. More FSMLs can also be designed and
tested with the framework-based code assistant to evaluate the usefulness of the
assistant across a larger variety of frameworks.

Framework-based code assistants as recommender systems. Framework-
speci�c modeling languages can be extended to record the likelihood of a feature
by expressing the languages as probabilistic feature models [Czarnecki et al., 2008].
With support for probabilities in the FSMLs, recommendations can be suggested
to the user in the form of quick assists or any new user interface that suggests
the recommendations with associated con�dence levels as the user programs. Also,
much like how Firefox's keyword support in its �Awesomebar� ranks the result by
frequency and recency of visits to the page, and how some of the related work in
the literature described in section 2.2 ranks proposals according to the likelihood
of a proposal, such as Mylyn [Kersten and Murphy, 2005], FrUiT [Bruch et al.,
2006], and Improving Autocompletion using Program History [Robbes and Lanza,
2008], probabilistic feature models can also be used to help rank proposals in our
framework-based code assistant. Proposals that are more likely to be used or rele-
vant can be ranked higher in the proposal list in the code assistant.

Other framework-speci�c IDE extensions. Framework-based code assis-
tants can be seen as a type of framework-speci�c IDE extensions. We have ex-
plored this topic and the use of framework-speci�c models in supporting di�erent
framework-speci�c IDE extensions in [Lee et al., 2008]. For example, �gure 6.1(a)�
6.1(c) show an example of framework-based error identi�cation with quick �xes by
performing model validation, and �gure 6.1(d) shows an example of a framework-
based content outline. Future work can also include framework support in the IDE
using framework-speci�c models for other phases of software development, includ-
ing compilation, debugging, testing, deployment, and version control, such that a
full framework-based IDE can be realized.

Chapter 6. Conclusion 41

(a) Framework-Based Error Identi�cation (b) Framework-Based Quick Fix

(c) Resulting Code after Applying Framework-
Based Quick Fix

(d) Framework-Based Content Out-
line

Figure 6.1: Other framework-based IDE extensions

APPENDICES

42

Appendix A

Mapping Types & Constraints in

Framework-Speci�c Modeling

Languages

The following tables are from [Antkiewicz, 2008] and are provided below for conve-
nience only.

Table A.1: Mapping types for structural code patterns for XML
Structural Pat-
tern Expression

Structural Element(s) Matched

p xmlDocument: h matches a XML document at path h in project p

d xmlElement: n matches a root XML element with the name n of the XML document d

e xmlElements: p matches a XML elements at path p relative to XML element e

e xmlAttribute[: n]
matches a value of XML attribute called e of the XML element e. The parameter n

is optional: the name of the feature is used in its absence
e xmlElementValue matches a value of the XML element e

Table A.2: Constraints
Structural Pat-
tern Expression

Structural Element(s) Matched

where: f contains: g true if the value of the feature f contains the value of the feature g

where: f equalsTo: g true if the value of the feature f is the same as the value of the feature g

valueEqualsTo: f

value: v
true if the value of the feature f is the same as the value v

andParentIs: f true if the the parent of the reference value is feature f

valueOf: f class: p matches the value of the feature f which is the parent of feature p
constraint: f im-
plies: g

false if the feature f is present and the feature g is missing. True otherwise (implica-
tion)

43

Appendix A. Mapping Types & Constraints in Framework-Speci�c Modeling
Languages 44

Table A.3: Constraints and parameters for forward engineering
Constraint Meaning

subsumedBy: f
speci�es that the code transformation for a feature should not be executed if the
feature f is present

Parameter Meaning

initializer: i
parameter i speci�es whether a �eld assignment should be created in the �eld's ini-
tializer

location: s
speci�es that the code should be inserted in the body of the method with the signature
s

position: p
parameter p speci�es whether the code should be inserted at the beginning (p=before)
or at the end (p=after) of the method's body

receiverExpr: e speci�es the expression e that should be inserted as a receiver of a method call

Table A.4: Mapping types for structural code patterns for Java
Structural Pat-
tern Expression

Structural Element(s) Matched Abbreviation

project matches a Java project project
p projectName matches the name of the project p projectName
class matches a Java class class
c fullyQuali�ed-
Name

matches the fully quali�ed name of the class c fqName

c className matches the simple name of the class c className
c quali�er matches the quali�er (package name) of the class c quali�er

c assignableTo: t

[concrete: r] [local:
p]

matches if objects of the class c are assignable to the type t. The optional
parameter r speci�es that only concrete classes should be matched. The
optional parameter p speci�es that only source types of the project p

should be matched

assignable

c isLocal: p matches if the class c is a source class of the project p isLocal
�eld matches a �eld �eld
f �eldName matches the name of the �eld f �eldName
f �eldOfType: t matches if objects of the type t are assignable to the �eld f �eldOfType

c methods: s
matches methods with signature s that are implemented or overridden
by the class c. The signature may contain * for the method name to
match any method name

methods

c allMethods: s
matches methods with signature s that are implemented, overridden or
inherited by the class c. The signature may contain * for the method
name to match any method name

allMethods

x annotated-
With: t

matches a Java 5 annotation of type t placed on element x. The element
x can be a class, a method, or a �eld

annotatedWith

a attribute: n matches the value of attribute called n of a Java 5 annotation a attribute

a hasNoAttribute
matches if the annotation a has no attributes (i.e., the annotation is a
marker annotation)

noAttribute

mc argumen-
tIsThis: i class:
c

matches if the ith argument of the method call mc is a this literal
assignable to the class c.

argIsThis

mc argumentIs-
Field: i [sameAs:
f]

matches if the ith argument of the method call mc is a �eld. Parameter
f is optional and speci�es a constraint that the matched �eld must be
the same as the �eld that the feature f corresponds to.

argIsField

mc argumentIs-
New: i signature:
s

matches if the ith argument of the method call mc is a constructor call
of the signature s

argIsNew

mc argumentIs-
Variable: i matches if the ith argument of the method call mc is a variable argIsVar

Appendix A. Mapping Types & Constraints in Framework-Speci�c Modeling
Languages 45

Table A.5: Mapping types for behavioural code patterns for Java
Behavioural Pat-
tern Expression

Run-time Event Pattern(s) Matched Abbrev.

c callsTo: s re-
ceiver: r [statement:
s]

matches method calls to methods with the signature s received by objects
assignable to the type r in the control �ow of instances of the class c.
The optional parameter s speci�es whether only method calls which are
individual statements should be matched.

callsTo

callsTo($c o): call($s) && target($r) && cflow(execs(o))

c callsReceived: s
matches method calls to methods with the signature s received by objects
assignable to the class c

callsRec

callsRec($c o): call($s) && target(o)

mc valueOfArg: i matches run-time values of the ith argument of the method call mc argVal

argVal(): $mc && args(.., $i, ..)

c argument: i

ofCall: mc1
sameAsArg: j

ofCall: mc2

matches if the ith argument of the method call mc1 points to the same

object as the jth argument of the method call mc2, in the control �ow
of objects of the class c

argSameObj

argSameObj($c o): $argVal(mc2, j) && dflow[j, i]

($argVal(mc1, i)) && execs(o)

c methodCall: mc1
before: mc2

matches if in the control �ow of instances of the class c, the method call
mc1 occurs at least once before the occurrence of method call mc2

before

before($c o): execs(o) && ($mc1+ $mc2)

m returnedObject-
Types: c

matches all possible types of the objects returned by the method m from
the point of view of the class c that implements, overrides, or inherits m

retTypes

retTypes(): execution($m) && returnTypes() && this($c)

f assignedNull matches assignments to the �eld f with the null value assignNull
assignNull(Object o): set($f) && args(o) && if(o == null)

f assignedNew: cs

[subtypeOf: t]

matches assignments to the �eld f with an object returned by a con-
structor call with the signature cs. The optional parameter subtypeOf
speci�es that only constructor calls that create instance of the subtype
of the type t should be matched

assignNew

assignNew(Object o): set($f) && args(o) && dflow[o, i]

(call($cs) && returns(i))

Helper De�ni-
tions

matches executions of methods in instances of class c

execs($c o) : execution(* *(..)) && this(o);

Appendix B

Code Queries for Reverse

Engineering

The following tables are from [Antkiewicz, 2008] and are provided below for conve-
nience only.

Code Query Query Expression
Abbrev. Result

getCallsWH∗ c getCallsInHierarchy: s receiver: r
a set of method calls with the signature s within the bodies of the class c and its superclasses,
such that the receiver of each call is assignable to the type r

getCallsCF c getCallsCFlow: s receiver: r
a set of method calls with the signature s in the control �ow of every implemented, inherited,
and overridden method of the class c, such that the receiver of each call is assignable to the
type r

Table B.1: Code queries for the callsTo mapping type

Code Query Query Expression
Abbrev. Result

getCallsRec∗ c getCallsReceived: s
a set of method calls with the signature s, such that the receiver of each call is assignable
to the type c

getCallsRecTI c getCallsReceivedTI: s
a set of method calls with the signature s, such that the receiver of each call is assignable
to the type c. In the case when the type of the receiver is more general then the type c,
the query traverses the receiver's data�ow graph backwards to infer its more speci�c type

Table B.2: Code queries for the callsRec mapping type

46

Appendix B. Code Queries for Reverse Engineering 47

Code Query Query Expression
Abbrev. Result

getArgValLC∗ mc getArgValLiteralConstant: i

value of the ith argument of the method call mc retrieved from a static final variable or
a literal

getArgValCP mc getArgValConstantProp: i

set of values of the ith argument of the method call mc retrieved using interprocedural
constant propagation limited in scope to the class that contains the called method

getArgValPE mc getArgValPartialEval: i

set of values of the ith argument of the method call mc retrieved using partial evaluation

Table B.3: Code queries for the argVal mapping type

Code Query Query Expression
Abbrev. Result

argIsThis∗ c thisAsArgument: i ofCall: mc1 andArg: j ofCall: mc2

true i� both the ith argument of the method call mc1 and the jth argument of the method
call mc2 are the literal this and the resolved type of the literal is class c

argIsPrvFieldAO c prvFieldAsArgument: i ofCall: mc1 andArg: j ofCall: mc2 givenCSeq: cs

true i� both the ith argument of the method call mc1 and the jth argument of the method
call mc2 are references to the same private �eld of class c whose value has been assigned
once before both calls

Table B.4: Code queries for the argSameObj mapping type

Code Query Query Expression
Abbrev. Result

isBeforeWH∗ c is: mc1 before: mc2 inHierarchyGivenCSeq: cs
true i� the method calls mc1 and mc2 are located within the bodies of callback methods
m1 and m2, respectively, such that the method m1 occurs before the method m2 in the
callback sequence cs OR
true i� mc1 occurs before mc2 in the c�ow of the method m1 if m1 = m2. Methods m1

and m2 can be any implemented, inherited or overridden methods of the class c
isBeforeCF c is: mc1 before: mc2 inCFlowGivenCSeq: cs

true i� the method calls mc1 and mc2 occur in the control �ows of callback methods m1

and m2, respectively, such that the method m1 occurs before the method m2 in the callback
sequence cs OR
true i� mc1 occurs before mc2 in the c�ow of the method m1 if m1 = m2. Methods m1

and m2 can be any implemented, inherited or overridden methods of the class c

Table B.5: Code queries for the before mapping type

Code Query Query Expression
Abbrev. Result

getRetTypesWS∗ m returnStmsWithinAndSuper: c
a set of types of objects returned by the method m (excluding Object) retrieved from type
bindings of return statements within the body of the method, including bodies of super
methods if called. The type of the returned literal this is interpreted as class c

getRetTypesMST m returnStmsMostSpeci�cType: c
a set of types of objects returned by the method m (excluding Object) retrieved from return
statements, inferring the most speci�c type in the data �ow of each returned object. The
type of the returned literal this is interpreted as class c

Table B.6: Code queries for the retTypes mapping type

Code Query Query Expression
Abbrev. Result

getAssgnNew∗ f getAssignedNew: cc
a set of assignments to the �eld f with the constructor call cc

Table B.7: Code queries for the assgnNew mapping type

Appendix B. Code Queries for Reverse Engineering 48

Code Query Query Expression
Abbrev. Result

getAssgnNull∗ f getAssignedNull
a set of assignments to the �eld f with the null literal

Table B.8: Code queries for the assignNull mapping type

Appendix C

Code Transformations for Forward

Engineering

The following tables are from [Antkiewicz, 2008] and are provided below for conve-
nience only.

Code Transformations for Structural Patterns

Tables C.1-C.8 present code transformations for structural patterns from Table A.4.
Code transformation addMethod is also used for the mapping type allMethods.

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addClass p addClass: n [in: q] | q=�
creates a compilation unit with a class declaration named n in package q. Retrieves values
of the parameters n and q from subfeatures with mapping types className and qualifier

or fullyQualifiedName

Table C.1: Code transformation for the class mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addAssignableTo c addAssignableTo: t [concrete: e] | e=true
If t is an interface, adds a c implements t superinterface declaration or adds t to the
existing list of implemented interfaces. If t is a class, adds a c extends t superclass
declaration. If e=true, adds implementations of the unimplemented methods of the su-
perinterface or an abstract superclass

Table C.2: Code transformation for the assignableTo mapping type

Code Transformations for Behavioural Patterns

Tables C.9-C.15 present code transformations for behavioural patterns from Ta-
ble A.5. There is no code transformation for the mapping type before. It is the

49

Appendix C. Code Transformations for Forward Engineering 50

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addField c addField: n ofType: t

adds a �eld declaration in the class c named n of type t. Retrieves values of the parameters
n and t from subfeatures with mapping types fieldName and fieldOfType, respectively

Table C.3: Code transformation for the �eld mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addMethod c addMethod: s [name: n]
adds a method declaration of signature s in the class c. If method name n is given,
replaces the name from the signature s with n. If the signature contains * for the method
name, the parameter n is mandatory. Retrieves the value of the parameter n from a
feature with the mapping type methods

Table C.4: Code transformation for the methods mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsThis mc addArgIsThis: i

adds the literal this as the ith argument of the method call mc

Table C.5: Code transformation for the argIsThis mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsField mc addArgIsField: i [sameAs: f]

adds the �eld f as the ith argument of the method call mc. If f is not speci�ed, retrieves
the name of the �eld from a subfeature with the mapping type fieldName

Table C.6: Code transformation for the argIsField mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsNew mc addArgIsNew: i signature: s

adds the constructor call of the signature s as the ith argument of the method call mc.
Creates an anonymous subclass if necessary and adds implementation of unimplemented
methods

Table C.7: Code transformation for the argIsNew mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgIsVar mc addArgIsVar: i name:n signature: s

adds a variable called n as the ith argument of the method call mc. Adds the variable
declaration and initializes the variable with a constructor call of the signature s. Retrieves
the value of the parameter n from the feature with the mapping type argIsVar

Table C.8: Code transformation for the argIsVar mapping type

responsibility of the FSML designer to specify target methods such that the �rst
method call occurs before the second one.

Appendix C. Code Transformations for Forward Engineering 51

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addCallTo c addCallTo: s [receiverExpr: r] location: l [position: p] | r=�, p=after
creates a method call to a method with the signature s with the receiver expression r in
the method of signature l of the class c at the position p ∈ {before, after}

Table C.9: Code transformation for the callsTo mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addCallRec c addCallTo: s [receiverExpr: r] location: l [position: p] | r=�, p=after
creates a method call to a method with the signature s with the receiver expression r in
the method of signature l of the class c at the position p ∈ {before, after}

Table C.10: Code transformation for the callsRec mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgVal mc addArgVal: i [values: v]

adds values of the ith argument of the method call mc. Adds a literal for a single value.
For multiple values create a variable and multiple assignments with values v

Table C.11: Code transformation for the argVal mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addArgSameObj c addArgument: i ofCall: mc1 andArg: j ofCall: mc2

adds the literal this that resolves to class c as both the ith argument of the method call

mc1 and the jth argument of the method call mc2

Table C.12: Code transformation for the argSameObj mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addRetTypes m addReturnStms: c ifkey: i
for each type t from the list of types c adds a return statement to the method m

returning an object of that type. Adds each return statement at the beginning of
the method and preceeds each return statement with an if statement of the form if

(t.class.equals(x))), where t is the type and x is the name of the method's ith param-
eter.

Table C.13: Code transformation for the retTypes mapping type

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addAssgnNew
f addAssignedNew[: cc] [initializer: i] [location: l position: p] [subtypeOf: t] | i=false,
p=after
Two variants: (1) adds an assignment to the �eld f with the constructor call of the
signature cc. (2) adds an assignment to the �eld f with the constructor call to the
default constructor of a subclass of the type t. Retrieves values of the parameters n and q

from subfeatures with mapping types className and qualifier or fullyQualifiedName.
Regardless of the variant: if i=true, adds the assignment in �eld's initializer; otherwise,
adds the assignment in the method l at position p ∈ {before, after}. Creates an anonymous
subclass if necessary and adds implementation of unimplemented methods

Table C.14: Code transformation for the assgnNew mapping type

Appendix C. Code Transformations for Forward Engineering 52

Code Transfor- Transformation Expression | Default values for optional parameters
mation Abbrev. Result

addAssgnNull f getAssignedNull location: l [position: p] | p=after
adds an assignment to the �eld f with the null literal in the method l at position p

∈ {before, after}

Table C.15: Code transformation for the assgnNull mapping type

Appendix D

Applications used in Evaluation

The following is a list of applications used to do the experiment and is the same
list as the one used to evaluate the precision and recall of code queries in reverse
engineering from [Antkiewicz, 2008]. The list is provided below for convenience
only.

D.1 Struts

The set applications used in the study consists of 6 applications.

• 2 example Struts applications shipped with the framework: Cookbook and
Mailreader 1.3.8;

• 1 large, open-source, production quality application: Apache Roller Weblog-
ger 3.1; and

• 3 small, open-source applications: Ajax Chat 1.2, Beer4all, and Pools 2.5.

D.2 Applets

The set of applets used in the study consists of 84 applets. The applets are divided
in a few groups.

• 20 applets examples shipped with Sun's JDK;

• 51 applets obtained from the internet by George Fairbanks and used in
his study of design fragments: ANButton, Antacross, AquaApplet, Blink-
ingHelloWorld2, BrokeredChat, Bsom1,ButtonTest, Client, ConsultOMatic,
ContextTestExecutor, Demographics, DotProduct, Envelope, ErrorMessage,
Fireworks, FormelnApplet, GammaButton, Geometry, HelloTcl, HitMeter,

53

Appendix D. Applications used in Evaluation 54

HmFetcher, Iagttager, InspectClient3, JScriptExample, KeyboardAndFocus-
Demo, LinProg, MarchingAnts, MouseDemo, MyApplet, MyApplet, Nick-
Cam, ScatterPlotApplet, Scope, SilentThreat, SimplePong, SimpleSunAp-
plet, SmtpApp, SuperApplet, SwatchITime, hyperbolic.Test, TetrisApp, URL-
ExampleApplet, ungrateful.Ungrateful, ungrateful.OutPanel, UrcrcCalendar,
VeChat, notprolog.WPrologGUI, notprolog.WProlog, WebStart, YmpyraAp-
pletti, CaMK;

• 8 applets by R. Bowles: Bioquiz, Calculator, Crystal, Frogs, LightRays, Man-
del, Mastermind, Starscape; and

• 5 applets from three open-source project (SourceForge): JugglingLab (3 ap-
plets), snirc 1.0 (1 applet: Chat), sudoku (1 applet: Main).

References

Michal Antkiewicz. Framework-Speci�c Modeling Languages. PhD thesis, Univer-
sity of Waterloo, 2008. (Cited on pages 1, 2, 12, 13, 15, 16, 43, 46, 49, and 53.)

Michal Antkiewicz and Krzysztof Czarnecki. Design space of heterogeneous syn-
chronization. In Generative and Transformational Techniques in Software Engi-
neering II: International Summer School, GTTSE 2007, Braga, Portugal, July
2-7, 2007. Revised Papers, pages 3�46, 2007. (Cited on page 9.)

Michal Antkiewicz and Krzysztof Czarnecki. Framework-speci�c modeling lan-
guages with round-trip engineering. In MoDELS 2006: Proceedings of the 9th
International Conference on Model Driven Engineering Languages and Systems,
pages 692�706, 2006. (Cited on pages 1 and 12.)

Michal Antkiewicz, Thiago T. Bartolomei, and Krzysztof Czarnecki. Automatic
extraction of framework-speci�c models from framework-based application code.
In ASE '07: Proceedings of the 22nd IEEE/ACM international conference on
Automated software engineering, pages 214�223, 2007.

Michal Antkiewicz, Thiago Tonelli Bartolomei, and Krzysztof Czarnecki. Fast ex-
traction of high-quality framework-speci�c models from application code. Journal
of Automated Software Engineering, 2008. (Cited on pages 1, 15, 30, and 37.)

Michal Antkiewicz, Krzysztof Czarnecki, and Matthew Stephan. Engineering
of framework-speci�c modeling languages. Transactions of Software Engineer-
ing,Special Issue on Language Engineering, 2009. (Cited on page 13.)

ATLAS. ATLAS MegaModel Management (AM3) Home page, 2008. http://www.
eclipse.org/gmt/am3/. (Cited on page 11.)

Elizabeth Bjarnason and Görel Hedin. Tool support for framework-speci�c language
extensions. In Object-Oriented Technology, European Conference on Object-
Oriented Programming (ECOOP) Workshop, pages 129�132, 1997. (Cited on
page 11.)

J. Bosch, P. Molin, M. Mattsson, and P.O. Bengtsson. Framework - problems
and experiences. In M. Fayad, D. Schmidt, and R. Johnson, editors, Building
Application Frameworks. John Wiley, 1999.

55

http://www.eclipse.org/gmt/am3/
http://www.eclipse.org/gmt/am3/

References 56

Marcel Bruch, Thorsten Schäfer, and Mira Mezini. FrUiT: Ide support for frame-
work understanding. In Eclipse '06: Proceedings of the 2006 OOPSLA workshop
on eclipse technology eXchange, pages 55�59, 2006. (Cited on pages 10 and 40.)

David Carlson. Eclipse Distilled. Eclipse. Addison-Wesley Professional, 2005. (Cited
on page 5.)

Philippe Charles, Robert M. Fuhrer, and Stanley M. Sutton Jr. IMP: A meta-
tooling platform for creating language-speci�c IDEs in Eclipse. In ASE '07: Pro-
ceedings of the 22nd IEEE/ACM international conference on Automated software
engineering, pages 485�488, 2007. (Cited on page 11.)

Paul Clements and Linda Northrop. Software Product Lines: Practices and Pat-
terns. Addison-Wesley, 2001. (Cited on page 12.)

Steve Cook. The domain-speci�c IDE, 2008. Keynote at Code Generation.

K. Czarnecki, S. She, and A. Wasowski. Sample spaces and feature models: There
and back again. SPLC '08. 12th International, pages 22�31, Sept. 2008. (Cited
on page 40.)

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,
tools, and applications. Addison-Wesley Publishing Co., 2000. (Cited on page 12.)

Krzysztof Czarnecki and Simon Helsen. Classi�cation of model transformation
approaches. In OOPSLA03 Workshop on Generative Techniques in the Context
of Model-Driven Architecture, 2003. (Cited on page 8.)

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged con�gura-
tion using feature models. In SPLC '04: Proceedings of the 3rd international
conference on Software Product Lines, pages 266�283, 2004. (Cited on page 12.)

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software Process: Im-
provement and Practice, 10(1):7�29, 2005.

Java Emitter Templates Component. Eclipse Foundation, 2007. http://www.

eclipse.org/modeling/m2t/?project=jet. (Cited on page 8.)

Help -Eclipse SDK. Eclipse Foundation, 2007a. http://help.eclipse.

org/help33/index.jsp?topic=/org.eclipse.jdt.doc.user/concepts/

cquickassists.htm. (Cited on page 8.)

Help -Eclipse SDK. Eclipse Foundation, 2007b. http://help.eclipse.org/

help33/topic/org.eclipse.jdt.doc.user/concepts/cquickfix.htm. (Cited
on page 7.)

http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.user/concepts/cquickassists.htm
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.user/concepts/cquickassists.htm
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.user/concepts/cquickassists.htm
http://help.eclipse.org/help33/topic/org.eclipse.jdt.doc.user/concepts/cquickfix.htm
http://help.eclipse.org/help33/topic/org.eclipse.jdt.doc.user/concepts/cquickfix.htm

References 57

Patrick Farail, Pierre Gau�llet, Agusti Canals, Christophe Le Camus, David Sci-
amma, Pierre Michel, Xavier Crégut, and Marc Pantel. The TOPCASED project:
a toolkit in open source for critical aeronautic systems design. In ERTS '06: Em-
bedded Real Time Software, 2006. (Cited on page 11.)

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. Combinators for bi-directional tree transformations: a linguis-
tic approach to the view update problem. In POPL '05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 233�246, New York, NY, USA, 2005. ACM. ISBN 1-58113-830-X. (Cited
on page 9.)

Markku Hakala, Juha Hautamäki, Kai Koskimies, Jukka Paakki, Antti Viljamaa,
and Jukka Viljamaa. Generating application development environments for Java
frameworks. In GCSE '01: Proceedings of the 3rd International Conference on
Generative and Component-Based Software Engineering, pages 163�176, 2001.
(Cited on page 11.)

Anders Hessellund, Krzysztof Czarnecki, and Andrzej W¡sowski. Guided develop-
ment with multiple domain-speci�c languages. In MoDELS 2007: Proceedings of
the 10th International Conference on Model Driven Engineering Languages and
Systems, 2007.

Abbas Heydarnoori, Krzysztof Czarnecki, and Thiago Tonelli Bartolomei. Sup-
porting framework use via automatically extracted concept-implementation tem-
plates. In Proceedings of the 23rd European Conference on Object-Oriented Pro-
gramming (ECOOP), July 2009.

Rosco Hill and Joe Rideout. Automatic method completion. In ASE '04: Proceed-
ings of the 19th IEEE international conference on Automated software engineer-
ing, pages 228�235, 2004. (Cited on page 10.)

Reid Holmes and Gail C Murphy. Using structural context to recommend source
code examples. In In ICSE �05: Proceedings of the 27th international conference
on Software engineering, pages 117�125. ACM Press, 2005. (Cited on page 10.)

D. Hou and H.J. Hoover. Using scl to specify and check design intent in source
code. volume 32, pages 404�423, June 2006.

Daqing Hou. FCL: Automatically Detecting Structural Errors in Framework-Based
Development. PhD thesis, University of Alberta, 2004.

Daqing Hou, Kenny Wong, and H. James Hoover. What can programmer questions
tell us about frameworks? In IWPC '05: Proceedings of the 13th International
Workshop on Program Comprehension, pages 87�96, 2005. (Cited on page 1.)

Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson.
Feature-oriented domain analysis (FODA) feasibility study. (CMU/SEI-90TR
-21), 1990. (Cited on page 12.)

References 58

Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for IDEs. In
AOSD '05: Proceedings of the 4th international conference on Aspect-oriented
software development, pages 159�168, 2005. (Cited on pages 10 and 40.)

Douglas Kirk, Marc Roper, and Murray Wood. Identifying and addressing problems
in object-oriented framework reuse. volume 12, pages 243�274, Hingham, MA,
USA, 2007. Kluwer Academic Publishers. (Cited on page 1.)

Herman Hon Man Lee, Michal Antkiewicz, and Krzysztof Czarnecki. Towards
a generic infrastructure for framework-speci�c integrated development environ-
ment extensions. In 2nd International Workshop on Domain-Speci�c Program
Development (DSPD), in association with GPCE, 2008. (Cited on page 40.)

Greg Little and Robert C. Miller. Translating keyword commands into executable
code. In UIST '06: Proceedings of the 19th annual ACM symposium on User
interface software and technology, pages 135�144, New York, NY, USA, 2006.
ACM. ISBN 1-59593-313-1.

Greg Little and Robert C. Miller. Keyword programming in Java. In ASE '07: Pro-
ceedings of the 22nd IEEE/ACM international conference on Automated software
engineering, pages 84�93, 2007. (Cited on page 9.)

David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid min-
ing: helping to navigate the API jungle. In PLDI '05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and implementa-
tion, pages 48�61, 2005. (Cited on page 10.)

Gail C. Murphy, Mik Kersten, and Leah Findlater. How are Java software develop-
ers using the Eclipse IDE? IEEE Software, 23(4):76�83, 2006. ISSN 0740-7459.
(Cited on page 6.)

Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In ICSE
'00: Proceedings of the 22nd international conference on Software engineering,
pages 742�745, New York, NY, USA, 2000. ACM. ISBN 1-58113-206-9. (Cited
on page 9.)

openArchitectureWare. openArchitectureWare.org, 2008. http://www.

openarchitectureware.org. (Cited on page 8.)

Thomas Reps and Tim Teitelbaum. The synthesizer generator. SIGSOFT Softw.
Eng. Notes, 9(3):42�48, 1984. (Cited on page 11.)

Romain Robbes and Michele Lanza. How program history can improve code com-
pletion. pages 317�326, Sept. 2008. doi: 10.1109/ASE.2008.42. (Cited on pages 10
and 40.)

http://www.openarchitectureware.org
http://www.openarchitectureware.org

References 59

Naiyana Sahavechaphan. Xsnippet: mining for sample code. In OOPSLA '06: Pro-
ceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 413�430. ACM Press,
2006. (Cited on page 10.)

Shane Sendall and Jochen Küster. Taming model round-trip engineering. In Pro-
ceedings of Workshop �Best Practices for Model-Driven Software Development,
2004. (Cited on pages 2 and 9.)

Perdita Stevens. A landscape of bidirectional model transformations. In Genera-
tive and Transformational Techniques in Software Engineering II: International
Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers,
pages 408�424, 2007. (Cited on page 9.)

David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering: A
Family-Based Software Development Process. Addison-Wesley, 1999. (Cited on
page 12.)

XDoclet. XDoclet Team, 2005. http://xdoclet.sourceforge.net. (Cited on
page 8.)

Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and Hong
Mei. Towards automatic model synchronization from model transformations. In
ASE '07: Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 164�173, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-882-4. (Cited on page 9.)

http://xdoclet.sourceforge.net

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Research Contributions
	1.2 Thesis Organization

	2 Related Work
	2.1 Code Assistants in Current Integrated Development Environments
	2.1.1 Autocompletion
	2.1.2 Error Identification with Quick Fixes
	2.1.3 Quick Assist

	2.2 Literature Survey
	2.2.1 Code Generation
	2.2.2 Round-trip Engineering
	2.2.3 Improvements on Autocompletion in Traditional Integrated Development Environments
	2.2.4 Mining-Based Code Assistants
	2.2.5 Generation of Domain-Specific Integration Development Environments

	3 Review of Framework-Specific Modeling Languages and Round-trip Engineering with Framework-Specific Models
	3.1 Framework-Specific Modeling Languages & Framework-Specific Models
	3.2 Round-trip Engineering with Framework-Specific Models

	4 Framework-Based Code Assistant
	4.1 Methodology
	4.1.1 Prerequisites for Using the Framework-Based Code Assistant
	4.1.2 Identifying Code Assistant Proposals
	4.1.3 Executing a Code Asssistant Proposal

	4.2 Implementation
	4.3 An Example Walk-through for an Apache Struts Application
	4.4 Another Example-Walk Through for a Java Applet

	5 Evaluation
	5.1 Test Data
	5.2 Phase 1 of the Study
	5.2.1 Setup of Phase 1
	5.2.2 Results and Analysis of Phase 1

	5.3 Phase 2 of the Study
	5.3.1 Setup of Phase 2
	5.3.2 Results and Analysis of Phase 2

	5.4 Threats to Validity

	6 Conclusion
	6.1 Future Work

	APPENDICES
	A Mapping Types & Constraints in Framework-Specific Modeling Languages
	B Code Queries for Reverse Engineering
	C Code Transformations for Forward Engineering
	D Applications used in Evaluation
	D.1 Struts
	D.2 Applets

	References

