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Abstract 

Medical devices processing images or audio or executing complex AI algorithms are able to 

run more efficiently and meet real time requirements if the parallelism in those algorithms is 

exploited. In this research a methodology is proposed to exploit the flexibility and short 

design cycle of FPGAs (Field Programmable Gate Arrays) in order to achieve this target. 

Hardware/software co-design and dynamic partitioning allow the optimization of the 

multiprocessor platform design parameters and software code targeting each core to meet real 

time constraints. This is practically demonstrated by building a real life driver vigilance 

monitoring system based on visual cues extraction and evaluation. The application drives the 

whole design process to prove its effectiveness. An algorithm was built to achieve the goal of 

detecting the eye state of the driver (open or closed) and it is applied on captured consecutive 

frames to evaluate the vigilance state of the driver. Vigilance state is measured depending on 

duration of eye closure. This video processing application is then targeted to run on a multi-

core FPGA based processing platform using the proposed methodology. 

Results obtained were very good using the Grimace Face Database and when operating the 

system on one’s face. On operating the device, a false positive of eye closure must take place 

two consecutive times in order to get an alarm, which decreases the probability of failure. 

The timing analysis applied proved the importance of using the concept of parallelism to 

achieve performance constraints. FPGA technology proved to be a very powerful prototyping 

tool for complex multiprocessor systems design. The flexible FPGA technology coupled with 

hardware/software co-design provided means to explore the design space and reach decisions 

that satisfy the design constraints with minimum time investment and cost. 
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Chapter 1 
Reconfigurable Chips as a Processing Platform 

1.1 Introduction 

The introduction of reconfigurable chips has bridged the gap between pure hardware design 

approaches and pure software design approaches [1]. Pure hardware design approaches 

utilize an ASIC (Application Specific Integrated Circuit) and/or a group of commercial off 

the shelf ICs (Integrated Circuits) to build an electronic system. On the other hand, pure 

software design approaches utilize a microcontroller or a microprocessor is used to execute 

programs in order to realize the required functionality. [1] 

The hardware approach provides processing platforms that are characterized by fast 

execution since they are tailored for a specific operation or functionality. The designer 

optimizes the hardware for the required computation by adjusting the different hardware 

parameters such as bit width, number of functional blocks, their structure, etc. But once the 

system is built, it is totally inflexible and cannot be modified after production. Moreover, it 

requires a lot of design effort to integrate new features or functionality in the system and a 

full redesign is usually inevitable. [1] 

On the other hand, the software design approach solves that inflexibility problem but it 

sacrifices performance. Software execution involves the traditional processes of instruction 

fetching, decoding and finally execution, which impose an overhead upon performing the 

same computation on a dedicated hardware circuit.  Moreover it cannot exploit application 

parallelism efficiently due to the sequential nature of program execution. But modifying the 

system or integrating new functionality can easily be achieved by changing the program even 

after production. [1] 

Modern reconfigurable chips prove to be a platform that possesses both flexibility and 

ability to achieve high performance; two qualities that prove useful in achieving superiority 

over both the pure software and pure hardware design trends. In the next section 

reconfigurable systems structure and design cycle will be covered. Our focus will be on 
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FPGAs (Field Programmable Gate Arrays) which are the most famous and widely used 

reconfigurable chips. 

1.2 Field Programmable Gate Arrays 

1.2.1 Structure 

A simple FPGA is mainly composed of arrays of programmable logical blocks. By 

manipulating the programming bits of a logical block it can serve the designer functional 

requirement implementing a tiny portion of the target digital circuit. The logical blocks are 

interconnected together with routing programmable wires. Given that both the logical blocks 

and routing resources are programmable, any design can be mapped to the logical blocks. 

Afterwards, appropriate wiring can be achieved via configuring the interconnecting routing 

resources. [1] 

Many structural decisions have to be made by FPGA manufacturers. For example the 

internal structure of logical blocks, the interconnect shape and programming technology. But 

those issues are out of the scope of this document; interested readers can refer to [1]. It is 

sufficient to know that modern FPGAs consist mainly of LUTs (Look up Tables), memory 

elements and sometimes specialized DSP (Digital Signal Processing) blocks and most of 

them use Static Random Access Memory (SRAM) as means for programming the LUTs and 

interconnect circuit. 

1.2.2 Design Cycle 

FPGA has a very short and low-cost design cycle compared to ASICs. The hardware can be 

realized or modified by just programming the FPGA in the field. Design cycle cost is mainly 

designer time.  

Design cycles stages are as follows: 

1- Design Entry: Using hardware description languages such as VHDL or Verilog. 
2- Logic Synthesis: HDL file(s) logic analysis and technology mapping to implement the 
design logic using device resources such as logic elements. 
3- Place and Route: places design on device resources and routes it through interconnections. 
4- Assembler: produce programming file for device based on place and route results. 
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5- Programming: using the assembler output programming file to realize the design on the 
FPGA. 

 

It should be worth mentioning that the cycle is iterative until satisfactory results are 

reached. Also there are simulators available to test the hardware before the programming 

phase. A functional simulation step may be performed to test that the HDL file describes the 

desired functionality. A post place and route simulation step is optional too in order to ensure 

that the delays caused by the FPGA elements and interconnect did not cause a behavioral 

change in the design operation.   

Moreover, a set of constraints can be introduced by the designer such as pins assignments, 

placement constraints for a certain portion of the circuit or even delay constraints. The 

technology mapping and placement tools can accommodate such constraints [2].  

Advanced tools can support intelligent incremental compilation so that the design cycle 

time can be reduced for upcoming iterations [2]. Figure (1) shows the simple FPGA design 

cycle stages. Interested reader can refer to the design tools manual for more advanced flows 

that involve assignment declaration or using third party tools and simulators. 

 

 

Figure 1:  FPGA Design Cycle 
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1.3 FPGA as a Processing Platform 

FPGAs or reconfigurable chips in general, have been initially used as means to implement 

hardware acceleration blocks. They were usually coupled with a general purpose processor 

that executes the main program and then use the FPGA to execute subsets of the program that 

can exploit hardware parallelism to achieve faster execution. 

Coupling the general purpose processor was done in several ways [1]. Some general 

purpose processors had reconfigurable functional units embedded inside them so that the 

processor may speed up a certain computation. That, however, needs a constant supervision 

of the main processor and parallelism is not achieved. Another popular way was using the 

FPGA as a co-processor and that does not require except initialization and result collection 

from the main processor so the two units can work in parallel. 

Due to advancements in FPGA fabrication, some FPGA families actually contain a 

hardwired microprocessor. For example the Xilinx Virtex II-Pro contain up to two hardwired 

IBM power PC cores. Thus the processor and the reconfigurable fabric are all inside the 

FPGA chip. The former structure allows the whole digital system to reside on the same chip 

or to be a SoC (System on Chip) [3]. 

The rise of soft core processors targeting FPGA has made a dramatic change to the use of 

an FPGA as a processing platform. Soft core processors are provided by FPGA 

manufacturers targeting their FPGAs to be placed on the reconfigurable fabric. They are 

optimized to use the FPGA logic and interconnect resources efficiently to minimize delay 

and to deliver best performance [3]. 

The soft core processor nature allows the designer to specify parameters such as cache 

memory size and the number of functional units (such as floating point units and hardware 

multipliers). The designer can also configure the functional units to suit the application with 

efficient area usage. Moreover, acceleration can be achieved due to the ability to use the 

remaining area of the reconfigurable FPGA to build helper acceleration blocks tailored for 

the application [3]. 
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Soft core processors thus offer a high degree of flexibility which renders them very 

attractive to use for embedded systems. The designer specifies the different parameters to 

achieve high performance and efficient area usage.  

In the next section the soft processor cores features, usage and applications are reviewed. 

Successful significant acceleration achieved by this method will also be covered afterwards. 

1.3.1 Soft Core Processors 

Soft core processors are provided usually by FPGA manufacturers or other third party 

vendors as intellectual property (IP) cores. They have configurable parameters so designers 

have wide flexibility when instantiating the processor core in their design. 

The top two FPGA manufacturers Xilinx and Altera provide the MicroBlaze [4] and Nios 

II [5] cores respectively. 

1.3.1.1 Xilinx MicroBlaze Features 

The fixed feature set of the processor includes [4]:  

■ Thirty-two 32-bit general purpose registers  
■ 32-bit instruction word with three operands and two addressing modes  
■ 32-bit address bus  
■ Single issue pipeline 

Optional features include [4]: 

■ Hardware multiplier 
■ Hardware divider 
■ Hardware barrel shifter 

1.3.1.2 Altera Nios II Features 

The fixed feature set of the processor includes [5]:  

■ Full 32-bit instruction set, data path, and address space 
■ 32 general-purpose registers 
■ 32 external interrupt sources 

Optional features include [5]: 

■ Single-instruction 32 × 32 multiply and divide producing a 32-bit result 
■ Dedicated instructions for computing 64-bit and 128-bit products of multiplication 
■ Floating-point instructions for single-precision floating-point operations 
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■ Single-instruction barrel shifter 

1.3.1.3 Usage 

The feature that makes soft core processors very attractive as a solution targeting 

reconfigurable chips is their flexibility. The designer can obtain higher performance on the 

expense of area by adding more features such as a hardware multiplier. Also he can save 

more area if execution time is not critical. Moreover soft core processors offer competitive 

features similar to other processors targeted for embedded systems plus the ability of adding 

hardware acceleration which even goes beyond the ability of normal processors. 

The vast amount of logic resources available on modern FPGA opened the possibility of 

multi-core processor system on chip using soft core processors. This topic will be covered in 

details in the next chapter.  

A new design methodology emerged that exploits the reconfigurable platform flexibility 

called Hardware/Software Co-Design.  

1.3.2 Hardware/Software Co-Design 

Hardware/Software Co-Design is a design methodology through which the designer builds 

and modifies both the system hardware and software concurrently to achieve better 

performance. This methodology allows the designer to achieve this goal because it offers 

both the advantages of pure hardware approach and pure software approach [6]. 

Reconfigurable chips and mainly FPGAs have actually made those concurrent changes 

easier because of FPGA flexibility and IP cores availability for reuse [6]. The main problem 

of co-design is actually selecting the pieces of software code that are going to be processed 

on dedicated hardware that needs to be implemented on the FPGA. This problem is called 

hardware/software partitioning [6]. 

The partitioning process is successively repeated until satisfactory performance is reached. 

Refinement is achieved by adding constraints on communication delay and load balancing 

between the processor and custom hardware. 
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The partitioning problem can be solved on different levels of abstraction. Computer aided 

design (CAD) tools can be used to solve the problem automatically or it can be solved 

manually by an expert designer. The partitioning problem is formulated by considering the 

properties of both the custom hardware blocks and the software running on the processor. 

This optimization problem can, for example, target the minimization of execution time under 

the constraint of certain area usage on chip [6]. 

1.3.3 Applications of FPGAs as a Processing Platform 

In literature, FPGAs reconfigurability has been exploited to either implement custom 

hardware co-processors or accelerators for an external processor or to implement a full 

system on chip through the usage of soft core processors. 

The flexibility of those platforms allows designers to achieve higher performance compared 

to conventional pure software systems. Moreover they have less cost and design time than 

ASIC based systems. Various approaches were used in order to reach those goals. 

In [7] an FPGA is used to build a hardware acceleration block for visual information 

processing. A PC is connected to the FPGA through the PCI bus and the system runs MPEG-

7 Global Motion Estimation Software with an average factor of improvement of 5 compared 

to the use of the PC alone. 

In [8] the parallel beam backprojection algorithm is totally implemented in hardware based 

on an FPGA. The flexibility of the FPGA allowed the designers to implement a variant of the 

hardware that exploits the parallelism in the algorithm to achieve more acceleration.  The 

first variant executes the algorithm in 19% of the time using a 1 GHz Pentium. The second 

variant which further exploits the parallelism executes the algorithm in 4.6% of the time 

using a 1 GHz Pentium. 

In [9] a custom vector processor is used as a co-processor with Altera Nios II processor 

and is compared with the performance of an automated hardware accelerator generator from 

software functions (Altera Nios C2H [10]). The Nios processor coupled with the co-

processor performance is compared against a stand-alone Nios and Nios with automatically 

generated hardware acceleration block using C2H in three different applications; block 
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matching motion estimation (video processing), image median filter (image processing) and 

AES encryption. 

Much research has also focused on different approaches to select the optimum parameters 

for soft core processors [11, 12]. Some work has been also made to dynamically implement 

hardware acceleration units [13]. 

1.4 Conclusion 

Using FPGA as a processing platform is very attractive because of its flexible nature and 

low-cost design cycle. The flexibility allows further acceleration of the system by adding 

custom hardware tailored towards the application. Results reviewed in the literature support 

that FPGAs are more powerful than both pure hardware and pure software traditional 

implementation methods.  

The high availability of IP cores allows designers to quickly integrate a full processing 

platform and helper hardware blocks. It also unlocks the ability of design reuse. 

Moreover, the design cycle is significantly short due to the emergence of 

hardware/software co-design approaches.  Researchers have also enhanced tools to support 

the co-design approach. 

The literature indicates that soft core processors can be used to efficiently build an 

embedded system with significant performance edge over the pure software approach. 

Additionally, the design procedure is far simpler than using a pure hardware approach. In this 

thesis, soft core processors will be exploited to build the target system. Coupled with the 

flexibility of this platform and the short design cycle, a platform tailored for the application 

will be built and optimized for best performance and lowest area on chip. 

It is also worth mentioning that the vast amount of logic elements in modern FPGAs 

allows designers to include multiple processor cores on a single reconfigurable chip. This 

topic will be discussed thoroughly in the next chapter. 
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Chapter 2 
FPGA Based Multi-Core Parallel Processing Platforms 

2.1 Introduction 

The ever increasing software complexity of modern applications has always posed a 

challenge for microprocessor manufacturers. Hardware designers have always strived to 

boost the performance of their processing platforms to handle those demanding applications 

[14]. However, the old systematic approach of enhancing a single processor is no longer able 

to meet the performance requirements, so manufacturers opted to multi-processor platforms 

[15]. These platforms are now a reality not just a hot research topic. That fact can be justified 

by the new microprocessor generations possessing multiple CPU cores produced by the 

leading manufacturers such as Intel [16] and AMD [17]. 

Embedded systems, especially medical devices, also can make use of such platforms since 

they run complex algorithms in real-time.  Medical devices processing images or audio or 

executing complex artificial intelligence algorithms would be able to run more efficiently and 

meet real-time requirements if the parallelism in those algorithms is exploited. 

This chapter highlights the usage of FPGAs to prototype and to develop multiprocessor 

parallel processing platforms. Multiprocessor systems development and challenges involved 

are discussed, followed by the reasons that make FPGA one of the most suitable platforms 

for design space exploration. Finally, a literature review is presented showing the 

effectiveness of FPGAs in tackling this design problem. 

2.2 Multiprocessor Systems 

2.2.1 Introduction 

Hardware manufacturers have been surrounded by a lot of difficulties which slowed down 

the process of boosting the performance of microprocessors. The old approach of decreasing 

transistor size and manufacturing single processors with a larger number of transistors is no 
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longer able to provide significant improvement [15]. A lot of barriers limited the ability of 

this method to keep up with the ever increasing performance requirements. 

The increased power and heat dissipation posed a serious difficulty and a so-called “Power 

Wall”. Also the inability of memory speed to cope with higher operation frequency of 

modern processors introduced a “Memory wall”. Moreover, instruction level parallelism 

(ILP) can no more be exploited via compiler and architectural modifications which is 

referred to as the “ILP Wall” [14]. 

So multiprocessor/multi-core systems are becoming the only reasonable resort to work 

around that problem though both hardware designers and software programmers face many 

challenges. 

2.2.2 Design Considerations 

In brief, the design considerations can be expressed as questions spanning different design 

aspects as follows [14]: 

 Hardware 
o What is the structure of the processor core building block? 
o Are all processor cores identical (homogenous) or different? 
o How the processor cores are interconnected? 

 Programming Model 
o How to describe applications to exploit the parallel platform? 
o How to program the hardware? 

 Applications 
o How to describe applications to exploit the parallel platform? 
o How to program the hardware? 

 

Those questions, though they seem distinct and separable, are actually related and the 

proposed set of answers must be compatible. A lot of research effort has to be made in order 

to prove that a proposed system will provide the best performance for the application at hand. 
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2.2.3 Programming Challenges 

When it comes to programming parallel processing platforms a range of challenges are faced. 

For decades programmers’ goal was to design software that executes sequentially. Tools such 

as compilers and debuggers have been built putting that in mind as a basic fact. But in the 

parallel processing era, that idea has changed and thus both programmers and tools need to 

change their perspective. In order to unleash the power of a parallel platform the following 

practices in software design have to be applied [15]: 

 Exploiting “Task Parallelism” 
o Breaking down program into subtasks while analyzing and accounting for data 

dependency 
o Assigning subtasks to different processors 

 Exploiting “Data Parallelism” 
o Data splitting over different processors 

 Load Balancing 
o Efficient Task/Data Mapping 
o Scheduling 

Also testing and debugging parallel programs is more challenging because scenarios 

dictated by the presence of more than one processor emerge and need to be tested. 

2.3 Design Space Exploration 

2.3.1 Introduction 

In the previous sections the design considerations and challenges facing the designer of a 

multiprocessor system were presented. Because of the wide set of design parameters, 

flexibility and short design cycle time are required in order to achieve the best performance 

in minimum time. A Field Programmable Gate Array (FPGA) possesses those characteristics 

which make it the best candidate for design space exploration [14]. 

FPGA flexibility allowed the emergence of intellectual property components that can be 

reused in different designs, giving rise to the concept of design reuse. This will be discussed 

in the next section. 
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2.3.2 Intellectual Property and Design Reuse 

The hardware design flow allows simulation and verification of hardware sub-modules. 

Those sub-modules can be reused later on as building blocks to realize larger designs. IP 

(Intellectual Property) components ranging in size and complexity emerged for different 

applications. They are provided to hardware designers to accelerate their design cycle [18, 

19]. Open and protected configurable IP blocks can accelerate FPGA designs significantly, 

since they are ready made and can be directly used in implementing a larger design.  

When it comes to multiprocessor systems there are a wide range of IP cores available to be 

used ranging in granularity from simple functional units to a full processor IP core. Many 

processors are now available as IPs to be used in FPGA designs. In fact FPGA vendors often 

offer these processors (e.g., NIOS II Processor from Altera [5] and MicroBlaze Processor 

from Xilinx [4]). Moreover some vendors equip their FPGAs with hardwired processor cores.  

2.3.3 Design Space Exploration 

Exploiting the short and low cost design cycle, the flexibility of the device and IP cores, 

FPGA proves to be a very powerful design space exploration tool for a multiprocessor 

system. Modern FPGAs have a vast amount of logic elements allowing the construction of 

multiprocessor systems on chip (MPSoC). Though FPGAs MPSoC are not claimed to 

achieve highest performance, they can easily help assessing the ability of the design to 

overcome a certain challenge and their design iteration is quick with no overhead costs [14]. 

FPGAs can explore the different design choices as follows: 

◦ Hardware: 
◦ Easy to vary number of cores 
◦ Various processor IP cores can be used 
◦ Most IP cores are configurable (cache size, functional units), even some support 

custom instructions 
◦ Open IP processor cores are available providing total freedom in changing the 

core 
◦ Easily switch between homogenous and heterogeneous multiprocessor 

architectures  
◦ Different interconnection buses and connection topologies can be explored easily 
◦ Processor cores can be extended with hardware acceleration blocks for certain 

applications/kernels 
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◦ Programming Model: 
◦ Different programming models can be explored 
◦ Creating communication hardware or hardware mutex can help in the abstraction 

of programming model 
◦ Support of standard libraries such as Message Passing Interface (MPI) can make 

the programmer’s job easier when porting parallel applications 
◦ Applications: 

◦ MP each with a different HW acceleration block can satisfy a wide range of 
applications 

2.4 Practical Considerations 

Though FPGAs have a great potential as a design space exploration tool, the usage of an 

FPGA in a practical system may not be the best choice for a final product. FPGAs can be 

used to evaluate relative performance of various MP architectures but they do not achieve the 

maximum performance for each one. Delays associated with programmable interconnects 

and the propagation delay between various logic elements – though optimized by the place 

and route process – are still significant. These factors limit the clock speed that can be used 

for the system. Moreover, FPGAs are not efficient when it comes to power consumption, so 

for a portable device, an FPGA will drain a lot of power which is unfavorable.  

Thus an FPGA is the best platform for prototyping, testing and evaluation of an 

architecture, but the design has to be ported to an ASIC in order to maximize performance 

and minimize power consumption. Another problem that emerges in the process of porting a 

design is the usage of protected IP cores. All IPs used must be available for deployment on 

standard cell ASICs in order for migration to succeed. 

In the next section the proposed hardware design stages of a multiprocessor system are 

highlighted. A section that covers the software design stages follows. It should be noted that 

the hardware and software design stages are overlapping since hardware/software co-design 

methodology is exploited. The proposed design methodology is illustrated in figure (2). 
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2.5 Hardware Design Stages 

• Stage 1: A Simple Single Processor System 
A soft processor core is deployed and integrated with a memory controller and 

interfaced to either on chip or off chip memory.  The system in this stage is capable of 

running a sequential program that implements the required algorithm in C language.  

• Stage 2: Building Helper Interfaces 
Helper interfaces are built for the required system to operate. For example a UART or 

a flash memory controller can be added. Other devices used for the user interface 

such as an LCD controller can be incorporated too. Functions to use those peripherals 

should be built and tested.  

• Stage 3: Adding Extra Cores and Design Exploration 
Extra cores are then added. Hardware design decisions must be taken either through 

experimentation or problem analysis. To ensure that the cores are functional, testing 

programs are run in parallel. 

• Stage 4: Adding Inter-processor Communication Capability 
Communication capabilities are added at this stage. Shared memory or message 

passing mechanisms can be deployed depending on the application. The system is 

then ready for software partitioning. 

• Stage 5: Building Hardware Accelerators 
Depending on each core’s role in the system, hardware acceleration blocks can be 

added. This process requires the analysis of each core program and finding the most 

computationally expensive functions and implementing a hardware acceleration block 

that can perform the same computation. This step is optional; it exploits the FPGA 

flexibility to further achieve a shorter execution time than conventional 

multiprocessor systems. Multiprocessor parameters are tuned in this stage too. 

2.6 Software Design Stages 

• Stage 1: Modeling 
The algorithm is modeled on Matlab or in C language and verified to implement the 

required functionality. The model is used as a base for verification in the next stages. 
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• Stage 2: Porting Code to C Language 
The model code is converted to C language. All modeling language built-in functions 

called must be written from scratch in C. The code is then compiled and fully 

executed on the target processor. 

• Stage 3: Building Helper Functions 
Helper functions for the embedded device are built. They are used to control the 

external peripherals and user interface. Message passing or shared memory utilization 

functions must be built also to achieve inter-processor communication. 

• Stage 4: Parallelizing the Code 
Finally the code is parallelized. In that stage even load balancing should be achieved 

to obtain significant acceleration. Data and task division between cores is one of the 

toughest procedures in building efficient parallel processing systems. Dynamic 

partitioning changes on the software side are done in this stage too. 

 

Figure 2: Proposed Design Methodology 
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2.7 Usage of FPGAs as a Parallel Processing Platform 

In the literature, FPGAs have been used not only as a design space exploration tool, but also 

as a platform that significantly boosts the execution speed of a certain algorithm or 

application running on a single processor. 

In [20] a design space exploration technique based on cosimulation is presented. 

Automated design tools that solve the software partitioning problem were also created in 

order to accelerate MPSoC design cycle. In [21] and [22] two frameworks are created to 

convert a sequential program into an MPSoC implementation automatically.  In [23] a 

research tool is built to automatically build models and optimize the number of cores and 

partition the software on them. 

2.8 Conclusion 

Multiprocessor platforms are becoming the processing platform of choice when the 

application requires fast execution time dictated by either real-time constraints or high 

volume of data to be processed. This is mainly because single processor improvement is 

facing a lot of fabrication challenges and improvement bottlenecks. 

FPGAs prove to be an ideal platform for design space exploration of multiprocessor 

systems to overcome design challenges and to help in making design decisions. The 

flexibility and low cost design cycle, coupled with the availability of processor IP cores, 

makes the process of exploring alternatives smooth and quick. 

In the light of the information reviewed in the literature, FPGAs seem ideal for the 

construction of a cheap multiprocessor embedded system in a limited time. The flexibility 

and short design iteration time will help integrating the system and writing parallel programs 

in a short time with a significant performance gain. 

In this research work, FPGA multi-core platform will serve as a processing engine for a 

driver assistive device. The platform will adapt to the application in order to achieve real-

time video processing constraints. A focus on the device function, which is driver vigilance 

monitoring, and the research done in that field will be given in the next chapter. 
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Chapter 3 
Driver Vigilance Monitoring Systems 

3.1 Introduction 

Driving is a complex task where the driver is responsible of watching the road, taking the 

correct decisions on time and finally responding to other drivers’ actions and different road 

conditions. Vigilance is the state of wakefulness and ability to effectively respond to external 

stimuli. It is crucial for safe driving. 

According to recent statistics driver fatigue or vigilance degradation is the main cause of 

17.9% of fatalities and 26.4% of injuries on Ontario roads [24]. Vigilance levels degrade 

mainly because of sleep deprivation, long monotonous driving on highways and other 

medical conditions and brain disorders such as narcolepsy. Drowsy drivers face difficulties in 

maintaining the level of concentration required on the road. They fail to respond to different 

road stimuli because of their delayed response time, which ultimately leads to serious 

accidents. 

3.2 Research Motivation 

Traffic regulation authorities strive to achieve maximum road safety. Since drivers’ vigilance 

degradation and falling asleep on the wheel is one of the most common reasons of traffic 

accidents, vigilance monitoring is considered a hot research topic. According to a recent 

Canadian survey conducted by Traffic Injury Research Foundation, 1 in 5 Canadian drivers 

fell asleep at the wheel over a 12-month period. Moreover, 57% report having driven when 

drowsy over the same period [25]. Drivers are unaware of the serious consequences of 

driving in that state, so instead of pulling over and taking a break they just continue driving. 

An artificial intelligence device alerting the driver to pull over when he/she starts to sleep 

may save lives. These devices are called driver vigilance monitoring systems. 

In this chapter different types and principles of operation of driver vigilance monitoring 

systems will be highlighted. Also an assessment of each type’s advantages and disadvantages 

will be discussed. 
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3.3 Drivers Vigilance Monitoring Systems 

3.3.1 Sensor Based Vigilance Monitoring Systems 

Sensor based vigilance monitoring systems are based on different kinds of sensors. They are 

subdivided into (a) mechanical sensors installed on the car itself to observe the vehicle 

motion pattern or the driver-vehicle interface interactions and (b) sensors attached to the 

driver to measure physiological signals variation. Some systems incorporate both types of 

sensors in order to achieve higher accuracy of detecting the driver state of vigilance. 

3.3.1.1 Mechanical Sensors 

In the literature, mechanical sensors are widely used to measure different parameters of the 

car motion or driver interaction with the driver-vehicle interfaces in order to detect the 

current state of driver’s vigilance. Those systems assess the driver’s state of vigilance 

indirectly via measuring different variables. 

The pressure exerted by the driver on the steering wheel falls beneath a certain threshold 

for a drowsy driver [26]. This measure is somehow unreliable unless another sensor for the 

car state of motion is incorporated in the system. This is mainly because drivers tend to take 

their hands off the steering wheel at stop state. Also the way drivers hold the steering wheel 

may require multiple pressure sensors distributed all over the steering wheel and processing 

of those multiple signals is required in order to estimate the current grip level. 

Another measure used is the time derivative of the force exerted on the acceleration pedal 

[26]. The pattern of this measure varies according to the driver state of alertness. The 

presence of spikes in the pattern over the general trend indicates that the driver is alert. The 

pattern flattens when the driver is drowsy. This method is very cheap since it requires only a 

force sensor on the acceleration pedal and it is non-intrusive. But the system in [26] has not 

been tested in a real driving environment, so this hypothesis has not been experimentally 

validated. 

In [27] and [28] multiple sensors are incorporated into the system, they measure the 

position of the car inside the traffic lane (lateral car position), the steering wheel angle and 
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vehicle speed. The signals are collected and wavelet transformation is applied followed by a 

statistical analysis to extract features that are finally passed to a classifier to determine the 

driver’s state of vigilance. There is a serious disadvantage of using this method because these 

signals vary with different road conditions such as bends, winds and road deformation. The 

isolation of these factors requires a significant amount of experimentation and classifier 

training. Thus false positives may render the system unreliable. 

3.3.1.2 Physiological State Sensors 

The measurement of physiological signals can reflect the driver’s state of vigilance. Systems 

exploiting the driver’s physiological state use sensors attached directly to the driver followed 

by signal processing techniques to evaluate the driver’s alertness. 

In [29] electroencephalogram (EEG) brain signals are measured using surface sensors 

attached to the driver scalp. The four EEG signals delta, theta, alpha and beta are fed to a 

digital signal processor (DSP) and a neural network is constructed to assess the state of 

vigilance. 

In [30] both EEG and ECG (Electrocardiogram) signals are fed to the system via 128 

electrodes. Statistical analysis is then applied to reach a decision about the state of attention 

of the driver. 

The problem with this kind of systems in general is their intrusive nature. The sensors have 

to be directly in contact with the driver which renders those systems very inconvenient. 

3.3.1.3 Hybrid Sensors 

In order to achieve higher efficiency, these systems combine both mechanical sensors and 

physiological state sensors. Normally these systems are not cost efficient and still have the 

same problem of driver’s inconvenience. 

3.3.2 Visual Cues Based Vigilance Monitoring Systems 

This kind of vigilance monitoring system depends on a camera module that captures the 

driver’s facial image. The image is processed to extract different visual cues that enable the 



 

 20 

system to assess the vigilance state of the driver. Different methods of image processing have 

been proposed in the literature. 

In [31] a face model is used to extract features of interest such as eyelid closure and head 

orientation. Several image processing techniques are used in order to extract these 

parameters. The face is detected using a color distribution model then geometrical properties 

of the human face are used to locate the eyebrows. Afterwards, the eye is located based on its 

relative position to eyebrows. This method proves to be efficient because it can adapt to 

different face orientations and it can detect if the eyes are blocked from the camera view. The 

extracted parameters are then used directly to evaluate the driver vigilance in real-time.  

In [32] and [33] the eyes are detected using circular Hough transform with dynamic 

diameter which detects circles in the image. The circle pairs found are then checked for 

similarity then a neural network classifier is applied to the circle pairs found to verify that the 

circles detected are actually the eyes and if the classifier result is negative then the eyes are 

either blocked or closed. This method proves to be efficient and simple because there is no 

need for face detection and the validation step ensures correct operation of the system. 

In [34] two concentric rings of infrared LEDs (light emitting diodes) are used around the 

camera module. The inner ring illuminates for even fields captured, resulting in an image 

where the iris is very bright. The outer ring illuminates for odd fields, resulting in a dark iris. 

The subtraction of odd image from the even one, after de-interlacing, results in an image 

where background is deemphasized and the eyes appear as bright circles. Still noise blobs 

may appear in pairs. So using eye geometrical properties a support vector machine classifier 

is trained to find out which pair of bright circles represents the actual driver eyes. The 

downside of this method is the usage of extra hardware and more image processing of the 

images captured. But it certainly pays back because of the increased efficiency and simplicity 

of the algorithm applied afterwards. 

In [35] a hierarchical dynamic Bayesian classifiers network is employed to detect the face 

and facial landmarks of the driver. The network is organized so that a top-down approach of 

eye detection is achieved. First the face is detected, followed by eye regions detection. From 

there, the eye brows are detected to finally reach the eye. The classifiers can communicate 



 

 21 

together to achieve the dynamic property of the network. The particle filtering mechanism is 

adjusted through communicating of each node with its parent. Different parameters can be 

extracted from the eye classifier such as driver’s intent beside the vigilance. This method 

complexity is very high and this is its major disadvantage. 

In [36] the fact that the variance of the grey level intensity of an open eye is greater than 

that of a closed eye is exploited. Starting with a candidate eye region the mean and variance 

projection in both vertical and horizontal direction is calculated. Using those values the 

system detects whether the eyes are open or closed. Also pose estimation is incorporated into 

the system to add extra reliability in case of blocked eye. This system is simple and can 

achieve the requirements with minimum cost. 

In [37] the same setup of infrared LEDs used in [34] is deployed to locate the eye pupil. A 

validation step then follows. The only difference between [37] and [34] is the usage of 

Kalman filtering in order to predict the pupil position in the upcoming frame to reduce 

processing required to detect the pupil. 

In [38] and [39] the authors of [37] further enhance the system by integrating other 

conditions such as weather, information about sleep history and work environment to the 

visual cues by using a Bayesian network model. This increases the complexity of the system 

significantly. 

In [40] a very simple system is employed, first of all the eye area region is fed as an input 

(skipping the eye detection step), then using two given images – one with the eye opened and 

one with the eye closed – a distance measure is calculated between the new image and the 

two stored images. A distance threshold is then applied to determine the state of the driver’s 

eyes. Though very simple, the system does not provide sufficient reliability because the 

variation of the face angle and lighting conditions can affect the system’s decision. 

In [41] and [42] the eyes are detected using infrared LEDs and tracking is done using 

Kalman filtering. A finite state machine is then used to model transitions between different 

states of eye opening and closure. Also two states are reserved for the status of tracking 

whether it is working or lost. Both the eye opening and face pose are fused together as a 

measure of vigilance using a fuzzy classifier. 
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Vigilance monitoring systems based on visual cues all possess the advantage of being non-

intrusive which makes them very appealing to vehicle manufacturers because they are very 

convenient for the driver. The cost of a camera module is relatively low; the major system 

cost is the processing platform. Most of the research work reviewed here just models the 

system on a PC which makes it inapplicable in real life.  

3.3.3 Hybrid Vigilance Monitoring Systems 

The hybrid vigilance monitoring systems depend on both sensors and visual cues in 

evaluating the vigilance level of the driver. The sensor signals and visual cues extracted are 

fused together and are processed using artificial intelligence algorithms. 

In [43] an architecture is proposed for that system. The sensor data concerning the vehicle 

such as speed, environmental conditions is collected and forwarded to a traffic risk 

estimation module. Parameters extracted from visual cues and driver-vehicle interface 

sensors are forwarded to a vigilance diagnosis module.  Both modules extract data and send it 

over to a hierarchical manager to assess the current risk level. The risk level is then 

forwarded to a driver warning system that takes decision to fire the alarm. Another module 

works on identifying the driver so that the hierarchical manager might take the driving 

behavior and physical conditions into consideration. No further information about the 

operation of each unit is provided in the paper; it just discusses the overall architecture. 

It is obvious that this is a sophisticated system with high complexity. Thus this solution has 

a relatively high cost and training will require a significant time in order to achieve 

acceptable results. 

3.4 Conclusion 

In this chapter the importance of driver vigilance monitoring systems is discussed. They can 

help reduce the number of traffic accidents on the road significantly. Different kinds of 

systems and research efforts made in that field were covered. 

It is clear that sensor-based systems face a lot of difficulties. First of all, intrusive sensors 

attached to the driver are inconvenient and are not applicable for personal vehicles which 
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represent a large portion of traffic. Usage of mechanical sensors alone is unreliable since 

efficiency is relatively low. 

Vigilance monitoring based on visual cues extraction by a camera has been subject to 

extensive research. Many methods have been discussed in this chapter. The main 

shortcoming of this method is the need for real time processing of video frames which 

requires a high speed platform. Research has been mainly done using modeling languages on 

a PC. In this thesis research will be taken two steps further, first the algorithms will be 

targeted to an embedded processor ready for deployment. Then acceleration will be obtained 

using multiprocessors on an FPGA to achieve real time constraints. This acceleration might 

prove useful in the future. It will allow building a more complex hybrid system without 

violating the real-time constraints. 

A hybrid vigilance monitoring system architecture was discussed in order to achieve 

coverage of current research efforts in this field. 
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Chapter 4 
Driver Vigilance Monitoring Proposed Algorithm 

4.1 Introduction 

In this chapter, the proposed algorithm for driver vigilance monitoring is discussed. The 

algorithm depends on visual cues extracted from the driver image captured by a digital 

camera to be installed on the dashboard. The overall system can be classified as a video-

processing device. The algorithm will be targeted to run on a reconfigurable platform (an 

FPGA to be more specific). Then the platform flexibility and ability to accommodate 

multiple processing cores will be exploited to meet the real-time constraints of the 

application. This will be explained in detail in the next chapters. It is worth mentioning that 

accelerating the algorithm run time opens the door for adding more complex visual cues or 

even implementing a hybrid system that depends on other sensors as explained in chapter 3. 

4.2 Algorithm Stages 

The algorithm proposed is a computer vision algorithm that aids in the detection of the 

current driver state of vigilance. It detects the current state of the driver eyes in a certain 

frame (open or closed). Applying this algorithm on consecutive video frames may aid in the 

calculation of eye closure period. Eye closure periods for drowsy drivers are longer than 

normal blinking, a fact that can be exploited to monitor a driver state of vigilance. The 

algorithm consists of four major stages as the majority of computer vision algorithms: 

1- Pre-processing 

The input image size is adjusted by rescaling and RGB to greyscale conversion takes 

place. 

2- Feature Extraction 

The pre-processed image is then used to extract features. This is mainly done by applying 

edge detection and using face symmetry properties. 
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3- Detection and Segmentation 

The edges and face center are then used to detect the subject face and a novel 

segmentation technique is applied to extract the eye region which is our region of 

interest. 

4- High Level Processing (Classification) 

Finally a classification step is applied in order to decide whether the subject eyes are 

open or closed in this image of the video stream. 

In the next subsections, each stage is further explained in details showing the exact steps 

involved in achieving our target. Figure (3) shows the four stages and the steps involved in 

the algorithm. 

4.2.1 Pre-processing 

Pre-processing is divided into: 

4.2.1.1 Image Rescaling 

Through the manipulation of the registers present in the camera module which delivers a 

maximum resolution of 5 Megapixels, pixels are skipped during the scan out process to 

decrease the image resolution to VGA (640x480). More reduction is applied by the frame 

grabber through further skipping in order to reach a lower resolution image. This step is 

performed to decrease processing load without sacrificing important details. 

4.2.1.2 Bayer Format to Greyscale Conversion 

The camera module pixels are output in a Bayer pattern format consisting of four “color 

components” - Green1, Green2, Red, and Blue (G1,G2, R, B) - representing three filter 

colors. 

The Bayer format is converted by the frame grabber to RGB format. The RGB values are 

then converted to greyscale. 
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Figure 3: Vigilance Monitoring Algorithm Stages and Involved Steps 
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4.2.2 Feature Extraction 

This stage can be further subdivided into: 

4.2.2.1 Face Center Detection Using Symmetry 

Depending on the symmetry properties of the human face, the center of the face can be easily 

detected using the following steps: 

1- Scan the picture using all vertical columns from ¼*number of columns to ¾* number of 
columns. 

2- Calculate absolute difference in intensity between corresponding pixels in each two 
columns with equal distance around the current column (in the range of ¼*number of 
columns). 

3- Find the minimum absolute difference signifying maximum symmetry and mark as face 
center. 

Figure (4) below shows a face image from Grimace Face Database [45] and the 

dissimilarity measure calculated around each column. It is clear that column with minimum 

value corresponds to the face center. 
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Figure 4: Face Image and Dissimilarity Measure Value Graph 
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4.2.2.2 Edge Detection 

Applying Laplacian of Gaussian filter on the image facilitates the detection of edges by 

finding zero crossings. For further processing two binary images are created. One with both 

horizontal and vertical zero crossings (vertical and horizontal edges) and one with only 

horizontal zero crossings (vertical edges only). Figure (5) shows a facial image after applying 

Laplacian of Gaussian filter and detecting zero crossings. 

 

Figure 5: Edges after Applying Laplacian of Gaussian Filter and Detecting Zero Crossings 

4.2.3 Detection and Segmentation 

We need to extract the eye region which is our region of interest. This is done through a 

series of steps that depend on human face characteristics given the features we extracted in 

the previous stage. 

4.2.3.1 Detect Face Vertical Boundaries 

In this step starting with the face center we detected earlier and the binary edges image: 

1- Scan the edges image left of the centerline using a 3 pixel wide column. 
2- Sum up the pixels in the 3 pixel wide columns slice. 
3- Find the maximum, which signify the left edge of the face. 
4- Repeat the previous 3 steps but going right from the centerline to find the right edge. 

Figure (6) below shows the values calculated by summing up edges according to the 

previous steps. The maximums on the two sides of the face center mark the left and right 

boundaries of the face with an acceptable accuracy. 
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Figure 6: Column Slices Edge Pixels Count of Facial Image 

4.2.3.2 Detect Eyebrows 

In order to detect the eye region which is our final goal we have to depend on a visual cue 

that exists in both open eye and closed eye images. So our algorithm depends on eyebrows in 

order to extract the eye region. Searching for eyebrows proceeds in the following steps: 

1- Scan the edges image starting from ¼*rows to 3/5 *rows using a 5 pixel wide row. 

2- In the 5 pixel row slice, sum up the pixels’ intensity in a 32 pixel wide region away from 
the center by 8 pixels on both sides with a positive sign. Then sum up the pixels’ intensity 
from the center till the 8th pixel on both sides with a negative sign. This will ensure there 
is an edge discontinuity near the center (signifying eyebrows). This method excludes 
continuous edges such as hair and forehead edges. 

3- Apply dynamic eyebrows detection method which starts by finding the maximum 
summation calculated in step 2. Then taking the 5 rows around the maximum and 
calculating the variance of each row original pixels in columns center-15 to center-30.  
Then mean variance of the 5 rows is calculated. 

4- If the mean variance calculated is higher than a certain threshold this maximum is 
eliminated and step 4 is repeated again. This dynamic method ensures that the edges of 
the eyes are not mistaken as eyebrows. Since the eye has a high variance opposed to 
eyebrows which normally have a uniform grey level and thus low variance. 
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Figure (7) below shows the values calculated by summing up row slice edges according to 

the previous steps. Notice that the maximum sum is not equivalent to the eyebrows location. 

The dynamic method explained in the previous steps is able to eliminate maximums that do 

not satisfy the variance threshold constraint and successfully locate the eyebrows (refer to 

section 4.3 for results). 
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Figure 7: Facial Image and Equivalent Edge Pixels Count for Each Row 

4.2.3.3 Detect Eye Region 

Starting with eyebrows location, pick up the area below it with 3 pixels and of 16 pixels 

height as the eye region. This number can be tuned because in the application the face 

distance from the camera can be assumed constant (refer to section 4.3 for results). 

4.2.4 High Level Processing (Classification) 

In this final stage we try to find out if the eye is open or closed in the image. This can be 

easily related to the number of vertical edges in the eye region, for closed eyes has absolutely 

no vertical edges but an open eye has numerous edges (pupil edges and eye opening vertical 

edges). So using the following steps we can reach a decision: 
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1- Sum vertical edges of eye region in a 32 pixel wide area 8 pixels away from the center. 
2- High sum signifies open eyes and low sum signifies closed eyes. A threshold can be 

obtained by experimentation. 

Figure (8) below compares vertical edges detected in the eye region of an open eye facial 

image and a closed eye facial image. There is a significant difference in the vertical edges 

count in the region the algorithm sums up leading to accurate detection of eye state.  

 
(a) Open Eye Vertical Edges 

 
(b) Closed Eye Vertical Edges 

Figure 8: Comparison between Open Eyes and Closed Eyes Vertical Edges 

4.3 Algorithm Modeling and Execution Results 

The algorithm was modeled and different parameters were tuned through testing and 

experimentation. The Mathworks Inc. Matlab [44] was used as a modeling platform due to 

the availability of different readymade functions in the Matlab Image Processing Toolbox. 

The toolbox came in handy to rapidly prototype the algorithm. Moreover, it helped debug the 

algorithm showing the effect of application of each step on the given image. 

A set of facial images was used to evaluate the algorithm effectiveness from the Grimace 

Face Database [45] provided for free from the Computer Vision Science Research Group, 

University of Essex, UK. This database was selected because each subject is asked to 

perform different facial expressions including eye closure, which is essential for our research. 

Below algorithm execution results are shown for two subjects each opening eyes for one 

image and closing them for the other. The algorithm accurately detects the eyes region and 

the threshold selected in the classification stage is able to provide the required distinction 

between open eye and closed eye images. 
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4.3.1 Subject 1 

4.3.1.1 Open Eyes 

                
               Original Image                               Face Center Detection Result 

                                           
     Face Vertical Boundaries Detection Result                  Eyebrows Detection Result 

 
Eye Region Detection Result 

Eye State Detection Decision = Eyes Open 
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4.3.1.2 Closed Eyes 

                
               Original Image                                    Face Center Detection Result 

                                                    
Face Vertical Boundaries Detection Result                        Eyebrows Detection Result 

 
Eye Region Detection Result 

Eye State Detection Decision = Eyes Closed 

 



 

 34 

4.3.2 Subject 2 

4.3.2.1 Open Eyes 

            
               Original Image                                      Face Center Detection Result 

                                                
        Face Vertical Boundaries Detection Result                     Eyebrows Detection Result 

 
Eye Region Detection Result 

Eye State Detection Decision = Eyes Open 
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4.3.2.2 Closed Eyes 

                
           Original Image                                  Face Center Detection Result 

                                               
       Face Vertical Boundaries Detection Result           Eyebrows Detection Result 

 
Eye Region Detection Result 

Eye State Detection Decision = Eyes Closed 
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4.4 Limitations and Proposed Solutions 

The algorithm somehow faces numerous problems in detecting the eye region related to 

different face postures. For instance tilted faces fail the face center detection step. The 

detected center is skewed leading to miscalculation of eyebrows location and consequently 

eye region location. 

The proposed solution here is to detect that the face is tilted before proceeding with further 

steps. This can be achieved by calculation of face center position relative to the left and right 

face edges. If center is skewed then the face is tilted and driver is assumed to be vigilant. 

This assumption is based on the fact that a tilted face does not imply a drowsy driver, since it 

is harder to maintain that posture in case of sleepiness. Normally a sleepy driver cannot tilt 

his/her face to watch the road conditions around him/her. Using that logical assumption, such 

cases are directly considered as open eye frames. 

Another problem is the nodding forward case. This case does not affect symmetry, yet the 

eyes will fail to be detected. But there is actually no point of implementing a solution here, 

since the algorithm normal operation will reach the conclusion of a closed eye which is 

normally implied by a nodding down driver. 

Finally, drivers wearing sunglasses prevent the system from detecting the eye. Thus our 

system falls unable to proceed under this condition. An extension can be made in order to 

work around this case by using special hardware. But the problem was not tackled in this 

research. 

The algorithm could accurately detect the eye state of all subjects in the database that 

posses eye open and eye closed images (12 subjects – 24 images). This gave confidence that 

the algorithm can perform well for images that are going to be captured in the final system 

using the camera module. 

4.5 Targeting the algorithm for a Soft Processor Core 

For the purposes of this research an Altera FPGA chip will be used. Thus the Altera Nios II 

soft core processor has been selected as the multiprocessor system building block.  



 

 37 

The first step to build this system is to run the whole algorithm on a single Nios II 

processor. So the Matlab model is converted manually into C language, building all the built-

in Matlab functions in C language from scratch. 

This step took place in the early development stages and the results were verified against 

the Matlab model to ensure consistency. 

4.6 Conclusion 

In this chapter, the proposed algorithm for driver vigilance monitoring is discussed. The 

algorithm is explained in details. Each stage importance and involved steps were highlighted. 

Also some results were displayed which proves the effectiveness of the proposed algorithm. 

The algorithm is relatively simple compared to the other algorithms discussed in chapter 3. 

This simplicity makes it more suited to run on a portable device. The limitations of the 

algorithm were covered and how we worked around them in order to allow the system to be 

more robust.  

Finally the first step of the software implementation was covered, which is targeting the 

algorithm for a single soft processor core based on an FPGA. In the next chapters the 

hardware and software implementation details will be covered using the proposed design 

methodology.  
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Chapter 5 
Single Processor System Development 

5.1 Introduction 

With the driver’s vigilance monitoring algorithm modeled and verified to be functional on 

Matlab, the process of system development started. The hardware/software co-design 

methodology discussed in chapter 2 minimizes design time through the proposed concurrent 

hardware and software development stages. Minimization is achieved by concurrently 

adapting the software code to major hardware architectural changes. Throughout the system 

development process FPGA technology proves to be an ideal design space exploration 

platform because of its flexible dynamic nature. 

In this chapter each stage of the single processor system implementation details and design 

choices will be discussed. Moreover, each section will highlight the role of 

hardware/software co-design and/or dynamic partitioning in reaching a more optimized 

design in less time. The effectiveness of the proposed design methodology in chapter 2 will 

be assessed throughout the upcoming chapters. 

5.2 Single Processor Implementation 

5.2.1 Hardware 

The first stage was to implement a single Nios II processor system. The system was 

integrated using Altera SOPC (System on a Programmable Chip) Builder software. Different 

IP components were used such as an SRAM memory controller to interface the processor to 

an external SRAM memory chip. The memory chip acted as program and data memory for 

the processor. A debug module was also incorporated in the system so that the software 

development environment can communicate with the processor through a USB connection 

via standard input and output streams.  

The whole system hardware was configured on an Altera Cyclone II FPGA based on a 

DE2 evaluation board. The evaluation board provided a lot of external interfaces and helper 
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chips.  For instance, it houses a 512KB SRAM chip that was wired to the SRAM controller 

on the FPGA. For a complete list of resources on the evaluation board please refer to the user 

manual [46]. 

5.2.2 Software 

The Matlab code was previously ported to C language. So the code was compiled and 

targeted towards the Nios processor. The images used to test the model were given as inputs 

stored on the system memory. 

The operation was verified by printing out the outputs of different algorithm stages and 

comparing them against the outputs obtained from Matlab. The system obtained similar 

results to that of the Matlab model and so the final decision about each image eyes state was 

identical to the one obtained by the model. 

5.2.3 Optimizations via Co-Design and FPGA Flexibility 

Even in this very early stage, co-design methodology and FPGA flexibility allowed system 

optimization and tuning to obtain better performance.  

It is worth mentioning that the Nios II processor operates on a 50 MHz clock and that is 

considered slow compared to state of the art processors. The processing time for an image 

was noticeably long. Thus it became apparent that this performance would not be acceptable 

even in the presence of more than one core. But the reconfigurable platform can significantly 

enhance this performance by using special hardware accelerators and modifying the 

processor architecture to speed up the execution of a certain algorithm. 

After a quick timing analysis it was noticed that the edge detector 2d convolution process 

is very time consuming because it acts on floating point numbers. The Nios processor 

executes floating-point multiplications using software emulation. Therefore, on the hardware 

side, a floating-point unit (FPU) core was added. Also embedded multipliers on the Cyclone 

II fabric were used to implement a full hardware multiplier for the processor core integer 

multiplications. 
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On the software side, drivers for the FPU were added and thus each multiplication of type 

float was forwarded to the FPU instead of using software emulation. The same was applied 

for the integer multiplications. 

So the system was optimized in a matter of hours to reduce the execution time 

significantly. A relatively weak processing core was able to handle the task in acceptable 

time (considering that multiple cores will be used). Figure (9) shows the architecture of the 

single processor implementation. 

 

 

 

 

 

 

 

5.3 Adding Camera Interface 

5.3.1 Hardware 

In this stage a camera module equipped with a CCD (Charge Coupled Device) image sensor 

and programmable logic was interfaced to the system. The TRDB_T5M camera module used 

is an advanced 5 Megapixel color camera. The sensor is connected to a digital output 

controller that scans the R, G, B pixels in Bayer’s raw format sequence. The digital output 

speed, resolution, color gain, exposure and many other parameters are programmable using 

registers in the digital output controller. The registers can be read or written using the I2C 

bus. For more information refer to the camera module datasheet [47]. 

The camera input and output pins were connected to the DE2 board prototyping general 

purpose pins. A frame grabber hardware module was built on the FPGA to capture the image.  
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Figure 9: Hardware Layout of the Single Processor Implementation 
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The frame grabber hardware is shown in Figure (10) and can be divided into blocks in the 

following manner:  

1- Capture and Control Unit:  
The unit receives the data stream produced by the camera module. It ensures that the 
values captured belong to a valid frame. It keeps track of the current line position in the 
frame and pixel position in the line. 

The unit has 2 control inputs; one to start streaming frames and one to stop streaming 
frames when the current frame ends. 

2- Bayer to RGB Unit:  
The unit is responsible for receiving the data from the capture unit and deducing the Red, 
Green and Blue components at each pixel position. This is achieved using a line buffer so 
that the four values (R,G1,G2,B) containing colour information are analyzed together. 
The unit produces the red, green and blue components along with a data valid signal to 
ensure that the current data displayed on the outputs is valid. 

3- Four port SDRAM Controller: 
The SDRAM controller has two writing ports and two reading ports. The RGB values are 
divided to two 16-bit values written in different locations simultaneously using the two 
write ports. The ports use FIFO (First In First Out) modules to ensure that no data is 
going to be lost because of the high frequency of the camera output. The memory writes 
data on the edge of the camera clock and data valid line is used as write enable. 
Moreover, the controller has two read ports, which are connected to the Nios II processor 
via parallel input output units (PIO). The processor generates the read enable signal and 
reading clock to ensure that data is fed in at a rate that the processor can handle. 
Finally the controller is connected to the SDRAM chip available on the DE2 board. 

4- I2C Controller and Programmer: 
The controller connects to the I2C camera module lines in order to provide the 
programmer logic access to the camera in the correct format. The programmer then sends 
the registers address and data in order to program the resolution to 640x480 and to adjust 
other camera parameters. 
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Parallel Input Output units (PIOs) were added to the processor in order to connect it to the 

hardware interface: 

1- Reset: output PIO to drive the reset input of the camera interface. 

2- Start Capture: Output PIO to drive the start capture input of the capture and control unit. 

3- End Capture: Output PIO to drive the end capture input of the capture and control unit. 

4- RGB: Input PIO connected to the output signal from the two SDRAM memory read 
ports. 

5- Read Enable:  Output PIO to memory read enable signals. 

6- Memory Read Clock: Output PIO to memory read clock to supply outputs in sequence. 

 

 

 

 

 

 

5.3.2 Software 

For the software component, a driver function was created in the following manner: 

1- The reset is signalled via the reset PIO. 

2- A start capture command is issued via the start capture PIO. 

3- An end capture is issued afterwards right away in order to maintain only one frame in the 
memory. 

4- Memory read enable is set high via the read enable PIO. 

5- Memory read clock is triggered and a pixel is retrieved by the processor. 

6- Step 5 is repeated 640*480 times to retrieve all the pixels. 
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The driver was modified because a lower resolution can be obtained by sub sampling and 

thus accelerating the upcoming processing.  So we skip odd rows and columns and then the 

final image resolution obtained is 320x240 pixels.  

Also the algorithm does not require color information, so only the green component was 

obtained and then treated like greyscale information. It is not accurate for the naked eye, but 

for the computer vision algorithm at hand the color quality is not significant as long as edges 

are preserved. 

5.3.3 Optimizations via Co-Design and FPGA Flexibility 

Co-design and dynamic partitioning were used intensively in the camera interface design 

step. Many alternatives were considered, tested and evaluated. The partitioning of the capture 

functionality between hardware and software was done dynamically by changing the 

hardware architecture and simultaneously adapting the software to the change. 

First of all, minimal custom hardware was used. The camera module was connected 

directly to the processor via PIOs. The software has then to deal with data arrangement and 

Bayer to RGB conversion. Moreover, it has to emulate an I2C controller. But this design 

failed because the frequency in which the camera operates is very high and the processor 

fails to correctly acquire the image. 

The second step was implementing a clock divider to slow down the camera module input 

clock and try to get the data. This method partially succeeded but it was not reliable and the 

module sometimes produced garbage because of the long scanning time. 

Another approach was adopted in which the data is saved to a memory and then dumped 

out so that the rate is controllable. This succeeded and from there the final design emerged. 

The final design allowed the conversion of Bayer to RGB on hardware minimizing the 

software role and accelerating the capture speed. Also an I2C controller IP block was 

coupled by the required sequences as a state machine lifted the burden of camera 

programming off the processor. 
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5.4 Single Processor Fully Functional System 

5.4.1 Hardware 

A UART module was added to the processor in order to send debugging messages to Matlab 

and allow real time verification of the results. Since there was no way to display images on 

the embedded system, the UART is used to transmit the image captured and different results 

such as face center, eyebrows position, eye region boundaries and final decision for each 

frame processed. Matlab will then be used to display results as images and markers to serve 

debugging purposes. The overall system architecture is shown in figure (11). 
 

 

 

 

 

 

 

 

 

 

5.4.2 Software 

Both the algorithm and the capture mechanism were merged together to produce the software 

for this stage. Additionally the UART was used to send debugging data to the PC. Matlab 

was used as a monitoring platform for the system. 

5.4.3 Optimizations via Co-Design and FPGA Flexibility 

No significant changes were made other than integrating the UART hardware and adding 

software drivers and data validation mechanisms for data transmission. 
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5.5 Multiprocessor System Implementation 

The next step is to build a multiprocessor system to accelerate the whole process and produce 

a system that can perform fast enough to meet the real-time constraints of the application. 

The multiprocessor system must be able to handle video stream or multiple consecutive 

frames in order to reach a decision about driver’s state of vigilance.  This will be the focus of 

the next chapter. 

5.6 Conclusion 

In this chapter system development stages and design decisions were covered. It is clear how 

FPGA flexibility and usage of co-design and dynamic partitioning methods made the task 

much easier. They allowed the system to be built in a limited time while still maintaining 

satisfactory performance.  

FPGA flexibility and short design cycle time allowed assessing different design 

alternatives by building rapid prototypes using IP cores and testing different configurations. 

Moreover hardware/software co-design and dynamic partitioning helped reaching initial and 

simple design decisions that achieved an overall performance gain in a short time.   

It is clear that the approach adopted helped to achieve the goals of facilitating design 

exploration for the simple case of using a single processor. The advantages of the method 

will be more apparent when it is exploited to explore the complicated set of design decisions 

for a multiprocessor system in the next chapter. 
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Chapter 6 
Multiprocessor System Development 

6.1 Introduction 

This chapter highlights the multiprocessor system development stages and design decisions. 

After reaching a fully functional system based on a single processor, the need for using a 

multi-core platform is justified. The long execution time of the algorithm developed to 

process a single frame on the Nios II processor is causing multiple frames to be lost. This fact 

renders the system unable to take a decision in real-time about the driver vigilance. 

The use of hardware/software co-design as a tool and FPGA flexibility as an asset will 

form the basis for tackling the problem and exploring the design space as mentioned in 

chapter 2. The design approach effectiveness and ability to allow the designer to reach a 

nearly optimal solution in limited time will be assessed by the end of this chapter. 

6.2 Design Objectives 

Our objective is to develop a system that is able to capture the maximum number of frames 

possible and process them using the algorithm developed. Moreover, the results obtained 

after processing each frame should be collected and a final decision about the driver 

vigilance state should be taken. The frame sequence must also be preserved since it is 

required to determine the duration of eye closure. This duration is the parameter that reflects 

whether the driver is vigilant or not. 

These objectives will be achieved by using multiple Nios II cores integrated on the FPGA 

configurable fabric. The cores will collaborate to process the data and produce the required 

result. 

6.3 Design Requirements 

Building a multiprocessor system is a non-trivial task that not only requires significant design 

effort, but also dictates a list of hardware and software requirements. In the following 
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subsections the different requirements are highlighted. Under each requirement availability 

and limitations are discussed. 

6.3.1 Hardware Requirements 

Multiprocessor platforms are characterized by a complex hardware nature. This complexity 

introduces various requirements that must be satisfied. 

6.3.1.1 Area on Chip 

The FPGA chip must be able to house more than one processor. So the number of available 

logic elements must be large enough in order to fit the required number of cores. 

The Altera Cyclone II EP2C35 FPGA chip was used for this research and it consists of 

around 35,000 logic elements. The Nios II full core equipped with a hardware multiplier and 

a floating point unit uses around 5,000 logic elements. So area is not a limitation for this 

design, because multiple cores can be built along with helper hardware on the same chip. 

Helper hardware and interfaces use around 4,000 logic elements. So theoretically we can use 

six cores on the chip. Practical factors such as ability to place and route the hardware on chip 

can lower this number.   

6.3.1.2 Memory 

Each processor in the system requires the presence of program and data memory. Also extra 

space is required for heap and stack during execution. So the amount of memory needed is 

directly proportional to the number of cores used in the system. 

The DE2 board has only two read and write memories (8MB SDRAM and 512KB 

SRAM). The previous single core fully functional design used the 512 KB SRAM chip as its 

memory. It used around 300KB for program and initialized data and the rest for heap and 

stack. Thus this memory chip cannot be shared with any additional cores. And the SDRAM 

chip was used to buffer the image data produced by the camera module.  

This limitation jeopardized the whole realization of the system at hand. So to work around 

this, the design was modified. Using FPGA flexibility an SRAM controller was built from 
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scratch and interfaced to the camera module and the processor. The SRAM only stored the 

green color component that is used as greyscale directly as mentioned earlier. And thus the 

512KB could fit the image successfully. Then the processor used the SDRAM 8MB chip as 

its program and data memory. Figure (12) shows the modified system. 
 

 

 

 

 

 

 

 

 

Sharing the 8MB chip between multiple cores is now possible allowing up to 16 cores to 

have enough memory to operate. Still the number of cores is limited by available area on 

chip as indicated in the previous subsection.  

6.3.1.3 Communication and Synchronization Logic 

The cores added should be able to synchronize in order to access shared resources (data 

memory or other peripherals). Also they may require communicating with each other to 

exchange data. 

This is achieved via different multiprocessor architectures and topologies. The 

interconnections and extra hardware required for synchronization and/or communication can 

be built on the FPGA configurable fabric.  

6.3.2 Software Requirements 

The software requirements by multiprocessor systems can be divided into hardware and 

software design tools requirements and additional programming requirements. 
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6.3.2.1 Hardware and Software Design Tools 

- Altera Quartus II 7.2 is used during this research for VHDL/Verilog compilation, analysis 

and synthesis. It is also used for fitting the hardware design on the Cyclone II FPGA chip and 

generating the programming file.  

- Altera SOPC Builder (System on a Programmable Chip Builder) is used to generate the 

customized Nios II cores and integrating various interfaces IPs. It is also able to generate bus 

arbiters and connection logic between the processors and the interfaces using the Altera 

Avalon bus standard. 

- Eclipse Nios II Integrated Development Environment is used for building software to target 

the different cores. Also it is able to monitor and debug the software running on multiple 

cores simultaneously. 

6.3.2.2 Additional Programming Requirements 

- Processors communication and synchronization functions 

- Mutual exclusion mechanisms to access shared resources 

6.4 Cores Synchronization and Communication 

After ensuring that the required hardware and software resources are available, we need to 

tackle the design problem of building cores synchronization and communication logic. The 

first step to accomplish this task is analyzing the shared resources and deciding on the 

implementation method for cores synchronization and communication. The synchronization 

mechanism should guarantee mutual exclusion of accessing shared resources. 

Communication mechanism should allow the cores to exchange data when needed. 

6.4.1 Shared Resources Analysis 

It is easy to notice that the most important resource that should be shared across the 

processing cores is the camera module. All cores must be able to access the image buffering 

memory (the 512 KB SRAM in our case). They should be able to retrieve image data by 

accessing the control, address and data buses of the memory. Mutual exclusion should be 

guaranteed so that those buses do not get contaminated. 
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Moreover as mentioned earlier they all need to share the SDRAM and use it as program 

and data memory. Each processor should be assigned an exclusive location in memory that 

should not be accessible by the rest of the cores so that program and data corruption is 

prevented. 

This information leads to the next step of determining how to build synchronization and 

mutual exclusion mechanisms in both hardware and software. FPGA flexibility coupled with 

hardware/software co-design allows the exploration of different mechanisms and evaluating 

their performance and reliability. 

6.4.2 Cores Synchronization and Mutual Exclusion 

Different techniques were evaluated for the system at hand. Reliability is the most important 

parameter in determining the best candidate. 

The following techniques were built and evaluated: 

6.4.2.1 Synchronization via a Mutex Core 

The first solution tested was to use a mutex core offered by Altera for use in multiprocessor 

systems. The mutex core provided means for mutual exclusion, so each core has to 

atomically test and lock the mutex first before accessing the image buffer and release the 

mutex when done. 

The core delivered satisfactory results when it comes to ensuring mutual exclusion but it 

was unable to provide any control or information about the sequence in which the processors 

access the camera module. Our application requires controlling the sequence, or at least 

knowing the sequence in which the camera module was accessed, because the final decision 

about the driver state of vigilance is determined by checking the eyes state in consecutive 

frames. In the case of using a mutex core, any processor can access the camera when the 

mutex core is unlocked thus sequence information was lost. 

A software work around was used in which each processor monitors the mutex core to 

know the current owner and then access the memory next if it is its turn to do so according to 
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a predefined sequence. Yet this method is unreliable and can cause a dead lock, since the next 

processor maybe busy when the previous owner was accessing the camera module. 

Hence this method proved unreliable and unable to provide the application with the 

required deterministic sequence of operation. 

6.4.2.2 Synchronization via Handshaking 

In this technique a token based method is used along with a setup where each core is 

connected to the next using a strobe and acknowledge signal as shown in figure (13) below. 
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Figure (8):  

The first core initially possesses the token and so it has the right to access the camera 

module. After it is done it then signals the next processor by raising a strobe signal high. The 

next processor then acknowledges that it received the token by raising the acknowledge 

signal high. The first processor then lowers the strobe signal. Each two consecutive cores in 

the setup behave the same way to pass the token (or the right to access the camera) till the 

last core is reached. The last core hands the token back to the first processor the same way 

using the loop connection shown in figure (13). 

This method is able to achieve the mutual exclusion condition since the token cannot be 

possessed except by one processor at a certain time. It is worth mentioning that the token is 

just a software variable and this condition must be ensured when writing each of the cores 

program. This method is able to realize a deterministic sequence of operation since the 

system makes sure that the camera module is accessed in turns starting with core 1 and 

ending with core n then looping over again according to the wiring diagram shown in figure 

(13). 
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The only drawback of this technique is that the previous processor has to wait for the 

acknowledge signal from the next one, halting its operation and wasting CPU cycles. So a 

better technique was implemented using interrupts. 

6.4.2.3 Synchronization via Interrupts  Synchronization via Interrupts 

This method is a modified version of the previous method. It uses the same token passing 

mechanism but instead of using a strobe and acknowledge line it uses interrupts as shown in 

figure (14) below. 

This method is a modified version of the previous method. It uses the same token passing 

mechanism but instead of using a strobe and acknowledge line it uses interrupts as shown in 

figure (14) below. 

  

  
  

  

  

  

Similar to the previous method core 1 initially has the token and when it is done accessing 

the camera buffer it signals an interrupt to the next processor. This method ensures mutual 

exclusion and a deterministic access sequence. Moreover, when a CPU is done it just signals 

the interrupt and continues processing. The next processor will receive the interrupt and uses 

the token when it is ready to do so without tying the previous processor up. 

Similar to the previous method core 1 initially has the token and when it is done accessing 

the camera buffer it signals an interrupt to the next processor. This method ensures mutual 

exclusion and a deterministic access sequence. Moreover, when a CPU is done it just signals 

the interrupt and continues processing. The next processor will receive the interrupt and uses 

the token when it is ready to do so without tying the previous processor up. 

Thus in this research work the former synchronization method was selected because it can 

satisfy all the requirements. 

Thus in this research work the former synchronization method was selected because it can 

satisfy all the requirements. 

6.4.3 Cores Program and Data Memory Management 6.4.3 Cores Program and Data Memory Management 

As mentioned earlier the SDRAM chip is shared by all cores to act as program and data 

memory. Luckily the Avalon bus arbiter can prevent simultaneous access to the SDRAM 

chip by multiple cores. And using different addresses that are separated by 1 MB to link the 

program of each core, we ensure that the processors will not access each other’s memory 

space. So corruption is prevented using these two measures. 

As mentioned earlier the SDRAM chip is shared by all cores to act as program and data 

memory. Luckily the Avalon bus arbiter can prevent simultaneous access to the SDRAM 

chip by multiple cores. And using different addresses that are separated by 1 MB to link the 

program of each core, we ensure that the processors will not access each other’s memory 

space. So corruption is prevented using these two measures. 
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6.4.4 Cores Communication 

According to the previous model of synchronization and the fact that the only input for the 

algorithm developed is a single frame, there is no data or instructions dependence between 

cores that requires them to communicate. But it is worth mentioning that to deduce the final 

result the output from each core is needed. 

Cores can operate separately because each one can capture a single frame and start 

processing it. And then the final results can be collected from all cores by a simple hardware 

unit to determine the period of eye closure and produce a final decision about the driver’s 

state of vigilance. 

This dictates a single program multiple data (SPMD) multiprocessor architecture. Since the 

data is different (different frames) but the program executed on each frame is the same. The 

model is depicted in figure (15) below. 

Of course, analysis can be applied on the algorithm itself to divide the processing of each 

frame on more than one processor, yet this initial model can exploit the apparent parallelism 

that exists because of independence between frames and also accessing the camera buffer is 

limited by a single processor at any instance of time. 
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Figure 15: Synchronization and Communication Model 
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6.5 Design Space Exploration 

By now we settled down on the cores communication and synchronization methods and the 

multiprocessor architecture. The next step is to determine the optimal number of cores that 

can satisfy the real-time constraints of our application. 

In order to reach that optimal number of cores and to verify whether the resulting system 

can satisfy the application constraints given the decided architecture, we have to perform a 

software timing analysis. 

The timing analysis gives the designer information about the execution time of the created 

program with different levels of granularity. Timing analysis can be done on the instruction 

level (fine grain analysis), function level or task level (coarse grain analysis). 

 In the upcoming section, the timing extraction method deployed in this research will be 

discussed along with the results obtained. Then, an analysis will be applied on the timing 

information extracted in order to reach an optimal decision about the number of cores that 

need to be used. The criteria of optimization will be area on chip and performance. 

6.5.1 Software Timing Extraction 

For timing extraction a performance timer hardware core was used in the system. It counts 

the number of clock cycles elapsed since calling a timer start command and till a timer stop 

command is issued. The number of cycles can be easily converted to time in seconds given 

that the operating frequency is known. 

Using this technique the frame capture time and processing time were calculated (coarse 

grain timing extraction). Results are shown in table (1) below: 

 

Operation Elapsed Time 

Frame Capture 1.6 sec 

Frame Processing 23 sec 

Table 1: Timing Analysis 
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6.5.2 Software Timing Analysis 

The frame capture time shown in table (1) is constrained by the processor ability to retrieve 

data from the camera module so this timing is lowest achievable time. Yet this capture time 

is satisfactory for the application, since higher frame processing rate would produce 

redundant data.  

As for the frame processing time, it is the time taken to run the developed algorithm and 

obtain the binary result of whether the eye is opened or closed.   

The system will possess multiple cores and each core can handle a different frame. So the 

number of cores should ensure that frames are always retrieved from the camera module 

continuously in steady state. Given the token passing synchronization architecture discussed 

earlier that means that the token should be returned back to the first processor as soon as it is 

done processing to ensure the continuous capture condition is satisfied. This is illustrated by 

figure (16) below. 

Examining the figure it can be easily deduced that the total number of cores required to 

satisfy the continuity condition is: 
n = ceiling (Processing time/Capture time) + 1 (1) 

Using the numbers from table (1):  
n = ceiling (23/1.6) + 1 

n = 16 

The available area allows only six cores, thus we have to resort to further timing analysis 

and deploying hardware accelerators. This will decrease the processing time and lower the 

number of required cores. 
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 Figure 16: Timing of a System Ensuring Continuous Frame Capturing 

6.5.3 Building Hardware Accelerators 

In the previous section, the optimal number of cores was calculated and given the available 

resources it is impossible to build such a system. In this section the possibility of accelerating 

the processing time by deploying hardware acceleration will be discussed. It is essential to 
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mention that the hardware accelerator built will require area on chip and thus area constraints 

should be integrated in our optimization problem. 

6.5.3.1 Area Considerations 

Currently the area usage can be modeled using equation (2) below: 

Area on chip = Number of processors * (Area of each processor + Extra peripherals) 
+ 

Area of helper hardware (2) 

Where extra peripherals stand for processor interfaces to each other and custom hardware 

blocks (for instance floating point unit). Helper hardware consists of shared resources such as 

the camera interface, memory interface, output monitoring logic and arbitration logic. 

Using post-fitting data for a single core system the following logic elements usage in table 

(2) is observed: 

Hardware Block Sub blocks Area (in LE) 

Processor CPU Core 2663 

Extra Peripherals 

FPU Unit 2009 

Inter-processor Communication 14 

Sub Total 2023 

Helper Hardware 

Camera Interface 655 

Memory Interface 875 

Output Monitoring 1 

Arbitration 2147 

Sub Total 3678 

Table 2: Area Usage of Each Hardware Block 

After adding the hardware acceleration block to each processor the total area can be 

calculated using equation (3) below: 

Area on chip = Number of processors * (Area of each processor + Extra peripherals + 

Area of accelerator) + Area of helper hardware  (3) 
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Hence in the process of building the accelerator even though it is going to decrease the 

processing execution time and thus the number of required cores, still hardware area on chip 

should not exceed the number of available logic elements (35,000 LEs). 

Currently the maximum number of cores that can fit on the chip is six cores using equation 

(2) above. 

6.5.3.2 Hardware Accelerator Design 

Now, after laying down the area constraint and the required number of cores (which is 

inversely proportional to execution time), the hardware accelerator should minimize the 

execution time leading to lowering the number of cores required. On the other hand the area 

saved by lowering the number of cores should not be wasted by using a bulky acceleration 

block which might lead to a dead end. 

The design process proceeded first by applying a fine grain timing analysis (on the 

function level). Then second step is selecting the function that consumes most of the 

processing time and implementing a hardware block able to perform this computation. From 

there the hardware accelerator is deployed and functionality is verified. Finally area 

information is extracted and new maximum number of cores is calculated based on the new 

area usage information. Also new timing is extracted and required number of cores is 

obtained. 

1- Timing Analysis on the Function Level:  
Taking time measurements for various functions in the algorithm, the edge detection 
function proves to be the most time consuming part. The 2d convolution process involved 
consumes 75% of the processing time (~17 sec). 

2- Hardware Acceleration Implementation:  
In this step an industry proven automatic ANSI C to hardware creation tool was used. 
Interested reader can refer to [10] in order to know more details about Altera Nios II C2H 
tool. One difficulty was faced is that the tool does not support floating point variables 
which were used in the convolution process. Thus scaling and rounding was applied to 
convolution kernel on the Matlab model and similar edge detection final results were 
obtained. The scaling and rounding method was then applied to the code and the C2H 
tool was able to generate custom hardware that applies 2d convolution. 
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3- Hardware Accelerator Deployment:  
In this step the hardware accelerator was deployed and the system was tested to ensure 
that results did not change after replacing the software function with hardware accelerator 
driver calls. 

4- Area Information Extraction:  
Table (3) below summarizes the area usage for the single processor system after 
deploying the hardware accelerator. Notice that the FPU was removed because it is no 
longer needed and it was replaced with the 2d convolution hardware accelerator.  

Hardware Block Sub blocks Area (in LE) 

Processor CPU Core 2663 

Extra Peripherals 

Hardware Acceleration Unit 1578 

Inter-processor Communication 14 

Sub Total 1592 

Helper Hardware 

Camera Interface 655 

Memory Interface 875 

Output Monitoring 1 

Arbitration 2147 

Sub Total 3678 

Table 3: Area Usage Summary after Adding Hardware Accelerator 

Replacing the FPU with the hardware accelerator decreased the area required by extra 

peripherals thus overall the area decreased and the number of cores that can fit on the chip 

using equation (3) is now seven cores. 

So the addition of the accelerator actually had a positive effect on the area usage of the 

previous design. But it is fair to mention that the FPU could be removed from the previous 

implementation using the scaling technique. Thus maximum number of cores could have 

been 11 cores. Still even using 11 cores without a hardware accelerator cannot satisfy the 

continuous capturing condition (since 16 cores are required). The actual benefit of the 

accelerator should be minimizing the processing time. 
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5- Timing Information Extraction with HW Accelerator: 
The results obtained after applying timing extraction again with coarse granularity with 
hardware accelerator deployed are summarized in table (4) below: 

Operation Elapsed Time 

Frame Capture 1.6 sec 

Frame Processing 9.3 sec 

Table 4: Timing Analysis after Adding Hardware Accelerator 

A dramatic drop in frame processing time can be noticed from 23 to 9.3 seconds which is 

around 60 %. 

Now reusing equation (1) to calculate the required number of cores to satisfy continuous the 

frame capturing condition, we obtain seven cores which can be fitted on the chip. 

Thus from the first iteration adding a hardware accelerator block a feasible design was 

obtained. 

6.6 Final Multiprocessor Design 

The final system designed consists of seven cores and satisfies the continuous capturing 

constraints. The capture time is sufficient for the application, when two consecutive frames 

results are both eyes closed the driver is considered drowsy. 

Each processor is equipped with a hardware acceleration block that decreases processing 

time significantly. Also all processors share a single camera module and memory. 

The system uses token passing synchronization method to ensure mutual exclusion and 

deterministic sequence of operation. Output is forwarded to a simple dedicated output 

monitoring device that reaches a final decision by detecting a pattern of two consecutive 

closed eyes frames. 

Finally the system uses 33463 logic elements out of the 35000 available on chip which can 

be further reduced by using lighter processing cores and removing debugging logic for the 

production cycle. The final design is shown in figure (17) below. 
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Figure 17: Full Multiprocessor System 

 

6.7 Conclusion 

In this chapter the different design requirements for a multiprocessor system were discussed. 

Moreover, the practical system prototype at hand was used to demonstrate those 

requirements.  The problem of choosing the multiprocessor synchronization and 

communication architectures was practically tackled for the target system. Different methods 

were evaluated using the flexibility of FPGA technology and the best candidate was picked 

based on the target application. 

This chapter also covered different design space exploration aspects. We had constrained 

area and target performance requirements that need to be satisfied. Optimal number of 

components could not fit on the available area. Thus again FPGA technology flexibility and 
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leading edge design tools were used to apply dynamic partitioning and converting a time 

consuming software function to an equivalent and much faster hardware block. The steps of 

this process were discussed in details. 

By the end of the chapter, the final design was described and it successfully complies with 

the area constraints and satisfies the required performance for the application. 
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Chapter 7 
Results and Future Work 

7.1 Introduction 

In this chapter all the proposed methods and suggested approaches will be evaluated 

according to the results obtained in the final system. 

Each one of the three main aspects of this research will be discussed in a section 

highlighting the results associated, results indications and future research direction. 

7.2 Driver’s Vigilance Monitoring Algorithm 

In this research a new vigilance monitoring algorithm based on visual cues was implemented. 

It mainly depended on extracting the state of the eye from a set of consecutive frames and 

then reaching a decision based on eye closure duration. 

The main advantage of the algorithm proposed is that it is light and does not depend on 

machine learning techniques. So it does not depend on the vehicle driver facial features and 

does not require training.  

However, the algorithm has some shortcomings; for instance it neither can handle tilted 

faces nor drivers wearing sun glasses. The problem of tilted face was overcome using the fact 

that only a vigilant driver is able to maintain such a posture. Another solution was to rotate 

the face to compensate for the tilt, yet that would increase the processing load significantly. 

As for the sunglasses problem, it requires special hardware to deal with it (which was not 

discussed in this research work). 

Results obtained were satisfactory using the Grimace Face Database [45] and when 

operating the system on my face. On operating the device, a false positive of eye closure 

must take place two consecutive times in order to get an alarm, which decreases the 

probability of failure. 
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Future work on that algorithm consists of making it more robust and adapting it to different 

lighting conditions. Extra processing using special hardware for night mode and for drivers 

wearing sunglasses could also be integrated. 

7.3 Proposed Multiprocessor System Design Methodology 

In this work, a systematic design methodology for multiprocessor systems design was 

proposed. The methodology depends on FPGA technology to reinforce it with flexibility and 

cheap short design iterations. 

The proposed method was created to be generic, yet it was only verified by building a 

system targeting our driver’s vigilance monitoring application. It achieved satisfactory 

performance in a short time and allowed for optimization throughout the different stages of 

design as highlighted in chapter 5 and chapter 6. 

Future work on this method consists of assessing its ability to implement any required 

multiprocessor system. This can be done by trying to utilize it to build different systems 

targeted for different applications. Additionally, its results need to be compared against other 

methods targeting FPGA technology. Yet, to accomplish these goals a dedicated research 

should be conducted. 

7.4  Implemented Driver’s Vigilance Monitoring Device 

By the end of this research work a multiprocessor driver’s vigilance monitoring device was 

implemented. The device was based on the proposed algorithm and was built using the 

proposed methodology. Throughout the development process hardware/software co-design 

coupled with FPGA flexibility allowed easier design space exploration and reaching 

satisfactory performance in a relatively short time. 

The system satisfies the functional and performance requirements constrained under area 

and clock frequency limits allowed by the FPGA chip. 

Future work on the device consists of incorporating more capabilities to it such as using 

more visual cues or integrating other sensors to increase accuracy. Also a practical step 
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towards marketing the device is to migrate it from the development board to a custom board 

with only the required peripherals. 

7.5 Conclusion 

We can conclude the work done throughout the research in the following points: 

- FPGA technology proved to be a very powerful prototyping tool for complex 

multiprocessor systems design 

- Driver vigilance algorithm developed was able to achieve satisfactory results 

- Using multiple processors in the device enabled it to provide performance that meets real-

time constraints 

- The proposed design methodology was applied throughout the whole process and proved to 

be effective 

- The flexible FPGA technology coupled with hardware/software co-design provided means 

to explore the design space and reach decisions that satisfy the design constraints with 

minimum time investment and cost  
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