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Abstract

This thesis will survey a group of problems related to certain number-theoretic
functions. In particular, for said functions, these problems take the form of when
and how often they are equal over consecutive integers, n and n + 1. The first
chapter will introduce the functions and the histories of the related problems. The
second chapter will take on a variant of the Ruth-Aaron pairs problem, which asks
how often sums of primes of two consecutive integers are equal. The third chapter
will examine, in depth, a proof by D.R. Heath-Brown of the infinitude of consecutive
integer pairs with the same number of divisors—i.e. such that d(n) = d(n + 1).
After that we examine a similar proof of the infinitude of pairs with the same
number of prime factors—ω(n) = ω(n+ 1).

iii



Acknowledgements

I would like to thank all the people who made this possible, especially my
advisor, Dr. Kevin Hare.

iv



Dedication

This is dedicated to my parents who have always been supportive.

v



Contents

List of Tables vii

1 Preliminaries 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Multiplicative Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 History of the Ruth-Aaron Pairs . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Of Divisors and Prime Factors . . . . . . . . . . . . . . . . . . . . . . . 9

2 Ruth-Aaron Pairs of the Second Kind 11

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cyclotomic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 RAP2s of the form (2apb, qc) . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 RAP2s of the form (qc, 2apb) . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Proving c = 2m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Finding m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Determining the pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 RAP2s of form (22npq, rs) . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Solutions to d(z) = d(z + 1) 26

3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Proof of the Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Key Lemma: Finding the Integers δσ . . . . . . . . . . . . . . . . . . . 38

4 Solutions to ω(z) = ω(z + 1) 42

5 Concluding Remarks 45

Appendix A 47

A.1 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References 50

vi



List of Tables

A.1 Ruth Aaron Pairs of the 2nd Type (P (n) = P (n+ 1)) . . . . . . . . 47

A.2 Solutions to d(z) = d(z + 1) . . . . . . . . . . . . . . . . . . . . . . 48

A.3 Solutions to ω(z) = ω(z + 1) . . . . . . . . . . . . . . . . . . . . . . 49

vii



Chapter 1

Preliminaries

1.1 Introduction

The Fundamental Theorem of Arithmetic roughly states that any positive integer

may be represented uniquely as a product of powers of primes. In particular, for

any n > 1, we may write

n =
r∏
i=1

paii

uniquely for some r > 0 and primes pi distinct.

Example 1.1.1. Let n = 540. Then n = 22 · 33 · 5, uniquely.

From this representation, we may quickly deduce information about certain

numbers and collections of numbers. For example, by defining the divisor function

as

d(n) =
r∏
i=1

(ai + 1),

we may determine the number of divisors of an integer n.

Example 1.1.2. Let n = 540 as before. Then d(n) = (2 + 1)(3 + 1)(1 + 1) = 24,

which tells us that 540 has 24 distinct divisors. In fact, its divisors are as follows:

1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 24, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180,

270, and 540.
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Notice that for integers m and n such that gcd(m,n) = 1, we have the multi-

plicative property which gives us:

d(mn) = d(m)d(n).

It is not trivial that the divisor function above has this property, but it will be

shown in the next section. If we define the following sum:

Ns,t(n) =
r∑
i=1

asip
t
i

and vary the s and t, we can produce a family of number-theoretic functions, each

with the additive property :

Ns,t(mn) = Ns,t(m) +Ns,t(n),

whenever gcd(m,n) = 1. The simplest of these is the one for which s = t = 0, and

it is usually denoted ω(n). It is easy to see that

ω(n) =
r∑
i=1

1 = r

is the number of distinct prime factors of a given integer n.

Example 1.1.3. Let n = 540. Then ω(540) = 3, since the only prime factors of

540 are 2, 3, and 5.

If we instead set s = 0 and t = 1, we define a function which we will call P (n).

We can see that

P (n) =
r∑
i=1

pi

is the sum of said prime factors of n, with each prime counting only once.

Example 1.1.4. With n = 540, we have P (n) = 2 + 3 + 5 = 10.

Similarly, if we set s = t = 1, and call the resulting function S(n), we see that

S(n) =
r∑
i=1

aipi
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is the sum of the prime factors of n, where each prime is counted in the sum

according to the the power of that prime represented in n.

Example 1.1.5. We continue to let n = 540 and see that S(n) = 2 ·2+3 ·3+1 ·5 =

18.

This thesis will focus on problems concerning how often we have equality of

various number-theoretic functions over consective integers. In Chapter 2, we will

focus on how often we find

P (n) = P (n+ 1).

It is worth noticing that if we replace P (n) with S(n), we will find many solutions

in common, but we will discuss this later.

In Chapter 3, we will examine a proof by D. R. Heath-Brown [5] which primarily

states that

d(n) = d(n+ 1)

infinitely often.

Chapter 4 will feature a similar proof that shows the same is true in the case of

ω(n).

1.2 Multiplicative Functions

Recall the function

d(n) =
r∏
i=1

(ai + 1),

commonly known as the divisor function has the property d(mn) = d(m)d(n) for

gcd(m,n) = 1. It behooves us to discuss this property in some detail and to prove

that this function does, in fact, possess it. We will also discuss φ(n), the Euler-phi

function, which is another common multiplicative function.

3



This section uses definitions and results from Rosen [11].

Definition 1.2.1. Let f be a real or complex valued function defined over all

positive integers. Then f is said to be number-theoretic or arithmetic.

Definition 1.2.2. Given a number-theoretic function f , we call f multiplicative

if f(mn) = f(m)f(n) whenever gcd(m,n) = 1. Moreover, we call f completely

multiplicative if f(mn) = f(m)f(n) for all positive integers m and n.

Example 1.2.3. Let f(n) = nk for some fixed k. Then f(mn) = (mn)k = mknk =

f(m)f(n) for all m and n. So f is completely multiplicative.

Remark 1.2.4. If f is completely multiplicative, then f is multiplicative.

Suppose that f is a multiplicative function. Notice that powers of any two

distinct primes p and q must be coprime. Thus it follows that f(piqj) = f(pi)f(qj).

By induction, we may make this statement, trivially, for any number of distinct

primes. Namely,

Theorem 1.2.5. Let p1, . . . , pr be a set of distinct primes, and let f be multiplica-

tive. Then for positive integers a1, . . . , ar, we have

f(pa1
1 · · · parr ) = f(pa1

1 ) · · · f(parr )

.

This is a singularly useful statement, because for any multiplicative function f

and any positive integer n, it allows us to find f(n) by breaking down n according to

its unique prime factorization. That is to say, to define a multiplicative function, it

suffices to define it on powers of primes. Moreover, for a completely multiplicative

fuction, it suffices to define it on just the primes.

Although we already have a formula stated for the divisor function, d(n), we

have not actually proven that it holds for all positive integers n, or that it is, in

fact, multiplicative. To do so, let us first properly state the definition of the divisor

function.

Definition 1.2.6. For any positive integer n, denote by d(n) the number of positive

divisors of n. We call this the divisor function.
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First, we will show that d(n) is, in fact, multiplicative. To do this, we introduce

the following general theorem for multiplicative functions.

Theorem 1.2.7. If f is a multiplicative function, then F (n) =
∑

d|n f(d) is also

multiplicative.

Remark 1.2.8. It is clear from the definition of the divisor function that, through

some abuse of notation, d(n) =
∑

d|n 1. Since 1 is clearly multiplicative, it will

follow immediately from the theorem that d(n) is also multiplicative.

Proof of Theorem 1.2.7. Let F (n) =
∑

d|n f(d) for some multiplicative function f .

(For the rest of this proof, d represents individual divisors, not the divisor function.)

Then

F (mn) =
∑
d|mn

f(d).

Moreover, if m and n are coprime, then we may separate the divisors of mn into

divisors of m and divisors of n, and products thereof. Thus, we may rewrite F (mn)

as follows.

F (mn) =
∑
d1|m
d2|n

f(d1d2).

Since gcd(m,n) = 1, we know gcd(d1, d2) = 1 as well. So, since f is multiplicative,

F (mn) =
∑
d1|m
d2|n

f(d1)f(d2)

=
∑
d1|m

f(d1)
∑
d2|n

f(d2)

= F (m)F (n)

The next result follows immediately.

Corollary 1.2.9. The divisor function, d(n) is multiplicative.

We may now construct our original formula for d(n) by observing its behavior

over powers of primes, as allowed by Theorem 1.2.5. It is easy to see that for any

prime p, we have d(p) = 2. It is also apparent that for any prime p and any positive

number a, we have d(pa) = a + 1. Notice if a = 1, we still have d(p1) = 1 + 1 = 2

as desired.
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Example 1.2.10. Let p = 2. As with any prime, 2 has two divisors: 1 and itself.

so d(2) = 2. Suppose, now, that we take some a > 1. For instance, take a = 4.

Then we find the divisors of 24 = 16 by considering 2i for 0 ≤ i ≤ a, which is to say

for a + 1 values of i. In this case, we have: 20, 21, 22, 23, and 24. Since 1, 2, 4, 8,

and 16 are indeed the complete set of divisors for 16, we see that d(24) = 5 = 4 + 1

as desired.

Indeed, since we have d(pa) = a+1 for any p and a, our original formula follows

immediately from Theorem 1.2.5, and we state this as follows.

Theorem 1.2.11. Let d denote the divisor function as defined previously. Let n

be some positive integer with n =
∏r

i=1 p
ai
i as its prime factorization. Then

d(n) =
r∏
i=1

(ai + 1).

Another important multiplicative function which will turn up later is the Euler-

phi function, which is defined as follows.

Definition 1.2.12. The Euler-phi function, denoted φ(n) is defined to be the the

number of positive integers up to, but not exceeding, n that are coprime with n.

We will take for granted that the Euler-phi function is multiplicative and instead

concentrate on deriving the general form. In particular, in the case of φ, we may

define it over powers of primes by simple counting arguments.

Theorem 1.2.13. If p is a positive integer, then p is prime if and only if φ(p) =

p− 1.

Proof. If p is prime, then every positive integer k with 1 ≤ k < p is coprime to p

and so φ(p) = p−1. If p is not prime, then p = 1 or p is composite. Since φ(1) = 1,

φ(p) 6= p − 1 for p = 1. Suppose p is composite. Then there is some positive

integer 1 < d < p with d|p, hence gcd(d, p) = d 6= 1. So for p composite, we have

φ(p) ≤ p− 2, which completes the proof.

Theorem 1.2.14. Let p be prime, and let a be a positive integer. Then φ(pa) =

pa − pa−1.

Proof. For a positive integer less than pa to share a factor with pa, that integer

must be divisible by p. So let us count the integers kp between 1 and pa. There

6



are exactly pa−1 of these. Thus, there are pa − pa−1 integers less than pa that do

not share a factor with pa. The result follows.

Theorem 1.2.15. Let n be a positive integer so that n =
∏r

i=1 p
ai
i . Then

φ(n) = n
r∏
i=1

(
1− 1

pi

)
.

Proof. Since φ is multiplicative, we have

φ(n) =
r∏
i=1

φ(paii ).

By the last theorem, we have for each i

φ(paii ) = paii − p
ai−1
i = paii

(
1− 1

pi

)
.

Thus we have

φ(n) =
r∏
i=1

paii

(
1− 1

pi

)

=

(
r∏
i=1

paii

)(
r∏
i=1

(
1− 1

pi

))

= n
r∏
i=1

(
1− 1

pi

)
.

In addition to the divisor function and the Euler-phi function, which have been

showcased above, there are a number of commonly studied multiplicative functions.

One commonly discussed example is the sum of divisors function, denoted σ(n),

whose name is self-explanatory. A common problem for σ involves perfect numbers

n, for which σ(n) = 2n. For example, 6 is a perfect number, since σ(6) = 1 + 2 +

3+6 = 12. However, for now we will leave the topic of multiplicative functions and

move on to the history of the problems at hand.

1.3 History of the Ruth-Aaron Pairs

Recall that for n =
∏

i p
ai
i ,
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S(n) =
r∑
i=1

aipi,

and

P (n) =
r∑
i=1

pi.

On April 8, 1974, Hank Aaron hit his 715th home run, thus surpassing Babe

Ruth’s career home run record of 714, which in turn was set in 1935, nearly 40

years earlier. With S(n) defined as above, we notice:

S(714) = S(2 · 3 · 7 · 17) = 2 + 3 + 7 + 17 = 29

S(715) = S(5 · 11 · 13) = 5 + 11 + 13 = 29

Thus n = 714 is a solution to the equality S(n) = S(n + 1). That is to say, the

prime factors of these consecutive integers have the same sum. If we used P (n)

instead of S(n) above, we would get the same result, since the multiplicity of each

prime above is 1.

That same year, with the excitement of Hank Aaron’s achievement still fresh,

Carl Pomerance [9] decided to look for more of these “Ruth-Aaron Pairs.” He

found 26 pairs less than 20,000 with a computer search—the smallest was (5, 6),

and the largest (18490, 18491)—and conjectured these pairs to be infinite by way of

a set of polynomials with appropriate solutions that satisfy Schinzel’s Conjecture.

Pomerance’s conjecture, however, remains open to this day.

Nelson, et. al. [9] also suggested RAP’s to be sparse. This was proved, moreover,

by Erdös and Pomerance [3] in 1978. They also provided the following upper bound

for RAP’s: For large x,

#{n|n ≤ x, S(n) = S(n+ 1)} = O

(
x(ln lnx)(ln ln lnx)

lnx

)
.

This bound can be improved to O(x/ lnx), as with the prime numbers. However,

although we know there are infinitely many primes, this bound only shows that
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there might be infitely many RAP’s.

In 1995, Aaron and Erdös received honorary degrees from Emory University

for their various contributions. At the ceremony, both men signed a baseball—the

same baseball—for Pomerance, thus arguably giving Aaron an Erdös number of 1.

(One wonders which of the three was most amused by this fact, although it was

most likely Pomerance.)

Despite having already received an autographed baseball, Pomerance continued

to work on the topic and in 2002 [10] improved the bound to:

#{n|n ≤ x, S(n) = S(n+ 1)} = O

(
x(ln lnx)4

(lnx)2

)
,

thus establishing that the sum of the reciprocals of all RAN’s is bounded, so that

these numbers are sparser than the primes. In particular, we have

∑
n an RAN

1

n
≈ 0.4207.

In Chapter 2, we will examine an analogous question for Ruth-Aaron Pairs of

the Second Kind (RAP2’s); which is to say, we will be examining solutions to the

equation P (n) = P (n+ 1).

1.4 Of Divisors and Prime Factors

Letting d(n) denote the divisor function mentioned earlier, let us note that d(2) =

d(3) = 2 and d(14) = d(15) = 4. These are the first two solutions to the equality

d(n) = d(n+ 1).

In 1952, Erdos and Mirsky [2] asked whether there exist infinitely many integers

n such that d(n) = d(n+1). In the 1970’s, Vaughan [14], as well as Halberstam and

Richert [4], apparently linked this problem in difficulty with solving the Twin Prime

Conjecture. This, fortunately, turned out not to be the case. In 1983, Spiro [13]

showed that d(n) = d(n+5040) occurs infinitely often; and, although the difference

of 5040 arose from difficulties in dealing with powers of the first few primes, this

discovery constituted significant progress toward solving the original question.
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In 1984, Heath-Brown [5] adapted Spiro’s argument in a journal article to deal

with small primes In that article, he presented the following theorem:

Theorem. There are infinitely many integers n such that d(n) = d(n+ 1). More-

over, for large x, the number of such n ≤ x is of order at least x(log x)−7.

The proof, which will be examined in Chapter 3, is essentially an application

of a sieve method. Thus, although it proves existence and minimum frequency,

the proof is nonconstructive. This 1984 proof, moreover, was modified in 2003

by Schlage-Puchta [12] to show that ω(n) = ω(n + 1) infinitely often. The afore-

mentioned proof, which will be covered in Chapter 4, does not make any special

statement of frequency.
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Chapter 2

Ruth-Aaron Pairs of the Second

Kind

2.1 Preliminaries

Let us begin by formally defining some of what was mentioned earlier.

Definition 2.1.1. For n =
∏r

i=1 p
ai
i , we define

S(n) :=
r∑
i=1

aipi.

Note this is the sum of the prime factors of n, counting multiplicity.

Definition 2.1.2. For n =
∏r

i=1 p
ai
i , we define

P (n) :=
r∑
i=1

pi.

Note this is the sum of the prime factors of n, not counting multiplicity.

Example 2.1.3. To demonstrate the difference between these two functions, let

n = 9 which has one prime factor, namely 3, with multiplicity 2. Then S(9) =

2 · 3 = 6, whereas P (9) = 3.

Definition 2.1.4. A Ruth-Aaron pair (RAP) is a pair of consecutive integers

(n, n + 1) such that S(n) = S(n + 1). A Ruth-Aaron pair of the second kind

(RAP2), similarly, is a pair (n, n+ 1) such that P (n) = P (n+ 1)
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Example 2.1.5. Some pairs, including (714, 715), the original RAP, and (5, 6)

satisfy both conditions and are thus both RAPs and RAP2s. However, this usually

happens in the trivial case when the prime factorizations have no repeated primes.

In fact, the smallest nontrivial pair occurs at n = 7, 129, 999. On the other hand,

(24, 25) is an RAP2, since P (24) = 2 + 3 = 5 = P (25); but it not an RAP, since

S(24) = 3 · 2 + 3 = 9, whereas S(25) = 2 · 5 = 10.

This chapter focuses on the set of RAP2s, because they possess a distinct ad-

vantage over the standard set of RAPs in one sense. Namely, because the function

P (n) does not take the multiplicity of prime factors into account, one can classify

certain sets of RAP2s by prime factors alone and then proceed to computationally

determine some or all of the elements of a given class. This will be further explained

later in this chapter, but first we need some tools.

2.2 Cyclotomic Polynomials

Later in this chapter, we will require certain properties of cyclotomic polynomials

in order to manipulate our chosen prime factorizations for n and n+ 1.

Definition 2.2.1. Cyclotomic polynomials, denoted Φd(x), where d is a positive

integer, can be defined recursively as follows.

xn − 1 =
∏
d|n

Φd(x).

Example 2.2.2. The first few cyclotomic polynomials are:

Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1, and Φ4(x) = x2 + 1.

Remark 2.2.3. If k > 1, notice that Φ1(k) = k − 1 > 0. It is easy to see that Φ2(k)

and Φ4(k) are also strictly positive. Notice that k8 − 1 = Φ1(k)Φ2(k)Φ4(k)Φ8(k).

Since the product is clearly positive, and since three of the terms are positive, it

follows that Φ8(k) is also strictly positive. Similarly, it can be shown by induction

that for k > 1, we have Φm(k) > 0 for any m > 0.

Having said that, it also helps to have a more direct definition.

Definition 2.2.4. The mth cyclotomic polynomial, denoted Φm(x), is also defined

12



by

Φm(x) =
m−1∏
k=1

(k,m)=1

(x− e2πik/m).

The next two lemmas are derived by Ianucci and Mintos [7], who are the authors

of the source for this chapter, from theorems of Nagell [8], although we do require

a definition first.

Definition 2.2.5. Let m and n be coprime integers. Then the order of m modulo

n, denoted en(m), is defined so that men(m) ≡ 1 (mod n) and so that h = en(m) is

the smallest positive integer for which this happens.

Remark 2.2.6. By Fermat’s Little Theorem, we know h = en(m)|φ(n), where φ is

the Euler-phi function. In particular, if n is prime, then h|n− 1.

Lemma 2.2.7. Let p and q be odd primes, m a positive integer, h = ep(q) (order

of q modulo p). Then p|Φm(q) if and only if m = hpj for some integer j ≥ 0. If

j > 0 then p||Φm(q).

Example 2.2.8. Let p = 3 and q = 5, so that h = e3(5) = e3(2) = 2. This lemma

implies that 3|Φm(5) if and only m equals 2 times some nonnegative power of 3.

Notice this allows for m = 2 as well as m = 6, 18, · · · . Indeed, we have Φ2(5) = 6,

Φ6(5) = 21, and Φ18(5) = 15, 501, each of which is divisible by 3.

Lemma 2.2.9. Let q be an odd prime and let m be a positive integer. Then 2|Φm(q)

if and only if m = 2j for some integer j ≥ 0. If j > 1 then 2||Φ2j(q).

Example 2.2.10. Let q = 3. Here, we see that Φm(q) is even if and only if m = 2j

is some power of 2. If m = 4, for instance, we have Φ4(3) = 32 + 1 = 10, which is

indeed even. Notice also that 4 is a strictly positive power of 2 and that we also

have 2||10 = Φ4(3) as per the lemma. Alternatively, suppose m = 3. Then we get

Φ3(3) = 32 + 3 + 1 = 13, which is not even, as predicted by the Lemma.

Remark 2.2.11. Notice for the second lemma that the parity of Φm(q) does not

actually depend on the choice of q.

Lemma 2.2.12. For a prime q and an integer m > 0, Φm(q) ≥ (q − 1)φ(m), where

φ is the Euler-phi function.
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Proof. Let q be prime, and let m be a nonnegative number. By the second definition

for cyclotomic polynomials,

Φm(q) =
m−1∏
k=1

(k,m)=1

(q − e2πik/m).

Since Φm(q) is strictly positive by our previous remark, we may write

Φm(q) =
m−1∏
k=1

(k,m)=1

∣∣q − e2πik/m∣∣ .
Because |e2πik/m| = 1 for all 1 ≤ k ≤ m− 1, it follows from the Triangle Inequality

that |q−e2πik/m| ≥ q−1. Finally, since φ(m) is precisely the number of 1 ≤ k ≤ m−1

for which (k,m) = 1, the result follows.

We now have the tools required for the rest of the chapter, so we will proceed

to the problem.

2.3 RAP2s of the form (2apb, qc)

As previously stated, P (n) ignores multiplicies in the prime factors of a given n.

As such, we can construct classes of RAP2s as follows: First, assume two numbers,

n and n + 1, to be consecutive. Next, choose prime factors for those two numbers

so that their primes have the same sum–i.e. so that P (n) = P (n + 1). Then, if

possible, find the powers of those primes for which the assumptions hold; and if

not, determine necessary or likely properties in order to allow an efficient computer

search.

In particular, since consecutive integers come in pairs of even and odd, one of the

two must have 2 as a factor, and the other must not. As a result, since subtracting

2 from a sum does not affect the parity, the sum of the odd prime factors for n and

n + 1 must both be even or both be odd. More to the point, the numbers of odd

primes dividing n and n+ 1 are both even or both odd.

Let us focus on the odd case. Better yet, let us begin with the case where both

numbers have precisely 1 odd prime, and where only one of them is divisible by 2.
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We have two possible forms: (2apb, qc) and (qc, 2apb). Notice that in each case we

also have p+ 2 = q, since the pair must satisfy P (n) = P (n+ 1).

We begin with the form (2apb, qc), which turns out to be the easier case to solve.

Notice that

2apb = qc − 1, (2.1)

since we begin with consecutive integers. Setting p = q − 2, we see that

2apb ≥ 2(q − 2) = q + (q − 4) ≥ q + (5− 4) > q − 1.

So we need c > 1 in (2.1). Setting q = p+ 2 in turn yields

2apb = qc − 1

= (q − 1)(qc−1 + qc−2 + · · ·+ q + 1)

= (p+ 1)(qc−1 + qc−2 + · · ·+ q + 1).

Since (p, p+1) = 1, we must have p+1|2a, and so p+1 = 2t for some integer t ≤ a.

Thus

p = 2t − 1 and q = 2t + 1,

and it follows immediately that t = 2, p = 3, and q = 5. To see this, note that the

powers of 2 modulo 3 are limited to 1 and 2, which means that one of p and q must

be divisible by 3.

So now we have

2a3b = 5c − 1,

with c > 1. Powers of 5 alternate between 1 and 2 modulo 3 for odd and even

powers, respectively. Since 5c ≡ 1 (mod 3), we know 2|c which we denote by

c = 2γ. Hence,

2a3b = (5γ + 1)(5γ − 1).

Trivially, 5γ + 1 ≡ 2 (mod 4), so we know 2||5γ + 1. Moreover, 5γ + 1 ≥ 6 > 2,

so we also have 3|5γ + 1. Furthermore, since (5γ + 1, 5γ − 1) = 2, we also know that

3 - 5γ − 1. With these observations, we can completely factor the right-hand side of

the equation above.

15



5γ − 1 = 2a−1.

5γ + 1 = 2 · 3b.

We also notice that γ is odd (otherwise, we would have 3|5γ−1). Suppose moreover

that γ > 1. Then

5γ − 1 = (5− 1)(5γ−1 + 5γ−2 + · · ·+ 5 + 1).

The second factor on the right is both odd and greater than 1. This contradicts

the observation that 5γ − 1 = 2a−1. Therefore, γ = 1 and c = 2. It immediately

follows that a = 3 and b = 2, yielding the identity 23 · 3 = 52 − 1.

We now summarize this section by the following theorem.

Theorem 2.3.1. If for some positive integer n, (n, n + 1) is an RAP2 with the

form (2apb, qc), then n and n+ 1 must be equal to 24 and 25, respectively. That is

to say, (24, 25) is the only RAP2 of this form.

2.4 RAP2s of the form (qc, 2apb)

We now examine the second case. Again we note that these are consecutive integers.

So,

2apb = qc + 1 (2.2)

Moreover, according to the recursive definition of cyclotomic polynomials, we

may write

2apb = qc + 1 =
q2c − 1

qc − 1
=

∏
d|2c, d-c

Φd(q). (2.3)

2.4.1 Proving c = 2m

As with the previous section, we want to determine possible values for the exponents

a, b, and c. We begin by looking at all possibilities for c. Write c = 2ms, where s
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is odd. We have three cases for s: Either s = 1, s is prime, or s is composite. We

shall examine each case.

Let h = ep(q) be the order of q modulo p so that qh ≡ 1 (mod p). Since q = p+2,

h = ep(2). Since the left-hand side of (2.3) has only 2 and p as prime factors, we

have for Φd(q) in the product on the right-hand side either 2|Φd(q) or p|Φd(q). If

2|Φd(q) then d = 2k for k ≥ 0 by Lemma 2.2.9. In particular, for this case, since

d|2c and d - c, we have d = 2m+1. If p|Φd(q), then d = hpjd for some jd ≥ 0. Since

we only consider d for which d - c and d|2c, we have 2m+1||d, and hence 2m+1||h.

Proposition 2.4.1. Set c = 2ms as above and assume that s > 1. Then s is not

prime.

Proof. Suppose by way of contradiction that s is prime. Since 2c = 2m+1s = hpj

from before (and because s 6= 1), we know that either j = 0 or j = 1. In the second

case, we get h = 2m+1 and s = p. Since j > 0, we have 2 - Φ2c(q) by Lemma 2.2.9

and p||Φ2c(q) by Lemma 2.2.7, which implies that Φ2c(q) = p by (2.3). However,

according to Lemma 2.2.12, Φ2c(q) > q − 1 > p, so that case fails.

Trying the first case (j = 0), we have h = 2c = 2m+1s. Given h = 2m+1s, it

follows from (2.3) that

2apb = Φ2m+1s(q)Φ2m+1(q). (2.4)

If m > 0, then we have p - Φ2m+1(q) by Lemma 2.2.7, 2||Φ2m+1(q) by Lemma 2.2.9,

and Φ2m+1(q) > 2 by Lemma 2.2.12, which is simply impossible. Hence, (2.4) is

only possible if m = 0, and thus h = 2s, which turns (2.4) into

2apb = Φ2(q)Φ2s(q).

This in turn implies 2a = Φ2(q) = q + 1, hence q = 2a − 1. Otherwise, 2|Φ2s(q),

which contradicts Lemma 2.2.9. This gives us p = q − 2 = 2a − 3. Since a > 2

(otherwise p < 2), we have p ≡ 5 (mod 8), which means 2 is not a quadratic residue

of p. This in turn yields 2(p−1)/2 ≡ −1 (mod p) by Euler’s criterion.

This implies that h = ep(2) = p− 1, and since p− 1 = 2a− 4, which is divisible

by 22 (since a > 2), we have 22|ep(2) = h. However, since h = 2s, where s is odd,

it follows that 2||h, which is a contradiction.
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Having shown s is not prime, we proceed to show that s is not composite, which

will leave only s = 1.

Proposition 2.4.2. Set c = 2ms as before. If s is composite, then s = pk for some

k > 1.

Proof. First notice that equation (2.3) can be rewritten as

2apb =
∏
d|s

Φ2m+1d(q). (2.5)

Let h = ep(q) = ep(2). Since the left-hand side of (2.5) has only 2 and p as prime

factors, we have in the product on the right-hand side that either 2|Φ2m+1d(q) or

p|Φ2m+1d(q). In particular, 2|Φ2m+1d(q) if and only if d = 1. Moreover, by Lemma

2.2.7 we have for each integer d|s with d > 1 that 2m+1d = hpjd .

Since for d 6= 1, we have 2m+1d = hpjd for some jd ≥ 0, and since s is assumed

to be composite, there is some t such that 1 < t < s and t|s. So we have

2m+1t = hpjt , and

2m+1s = hpjs .

In particular, this shows that s/t = pjs−jt for all such t, which shows that s

must be some power of p.

Having better defined the cases for which s is composite, we may now discount

all of them in one fell swoop.

Proposition 2.4.3. Set c = 2ms as before. Then s is not composite.

Proof. Recall that if s is composite, then s = pk for some k > 1 so that c =

2mpk. Since 2|Φ2m+1pj(q) if and only if j = 0, it follows that 2a||Φ2m+1(q) and that

Φ2m+1pj(q)|pb for j > 1. However, by Lemma 2.2.12, we see that Φ2m+1pj(q) > 1,

which means that p|Φ2m+1pj(q) whenever j > 0. By Lemma 2.2.7, if j > 0, then

p||Φ2m+1pj(q), hence Φ2m+1pj(q) = p. However, since q = p + 2, we know that

Φ2m+1pj(q) > p by Lemma 2.2.12, which is a contradiction.
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Therefore, with s neither composite nor prime, we are left with one choice.

Proposition 2.4.4. Set c = 2ms as before. Then s = 1 and c = 2m.

As a result of this last statement, we may rewrite Equation (2.2.12) as follows.

2apb = q2m + 1. (2.6)

2.4.2 Finding m

We must now determine the possibilities for m.

Claim 2.4.5. With c = 2m as shown above, m ∈ {0, 1}.

Not surprisingly, the aim of this part of the section is to eliminate all cases

m > 1, and so we begin by supposing m > 1. Then q2m ≡ 1 (mod 4) since q is odd

and m ≥ 1. This implies a = 1, since q2m ≡ 3 (mod 4) otherwise. Now we have

2pb = q2m + 1. (2.7)

Since q2m + 1 = Φ2m+1(q) by nature of Φ, we have p|Φ2m+1(q). Thus h = 2m+1

according to Lemma 2.2.7. Noting that h = ep(2) is defined to be the order of 2

modulo p, we see that h|φ(p); in particular, 2m+1|p − 1. Trivially, we have p ≡ 1

(mod 2m+1). Also, since ep(2) = 2m+1 and Φ2m+1(2) = 22m + 1, we know from

Lemma 2.2.7 that

p|22m + 1. (2.8)

Since p ≡ 1 (mod 2m+1), we can write p = 2m+1t+ 1 for some t. Suppose t is odd.

Since 22m ≡ −1 (mod p) by (2.8),

2(p−1)/2 = 22mt = (22m)t ≡ (−1)t ≡ −1 (mod p).

Therefore,
(

2
p

)
= −1—namely, 2 is not a quadratic residue modulo p—by Euler’s

criterion. However,
(

2
p

)
= 1 on account of the observation that m > 1 implies p ≡ 1

(mod 8). This is a contradiction, and so we must choose t to be even instead, which

means that
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p ≡ 1 (mod 2m+2). (2.9)

To finish off the case m > 1, let us consider the options for b. First, let us

suppose b > 2m. Then (2.7) implies

2pb−2m =
2pb

p2m
=
q2m

p2m
+

1

p2m

=
(p+ 2)2m

p2m
+

1

p2m

=

(
1 +

2

p

)2m

+
1

p2m
.

However, by (2.9), p > 2m+2, so that

2pb−2m <

(
1 +

1

2m

)2m

+ 1 < e+ 1 < 4.

This follows on account of the the fact that the sequence {(1 + 1/n)n}, which of

course converges to e as n → ∞, is increasing. However, this implies that 2p < 4,

which is clearly a contradiction.

Now we suppose b < 2m. Then applying (2.7) again gives us

2 =
(p+ 2)2m

pb
+

1

pb
.

The right-hand side can be rewritten so that

2 =

(
1 +

2

p

)b
(p+ 2)2m−b +

1

pb
.

Hence,

2 > (p+ 2)2m−b ≥ p+ 2 > 2.

This is also a clear contradiction. Thus we must assume b = 2m, and applying (2.7)

yet again yields

2p2m = q2m + 1. (2.10)

Substituting q = p+ 2 yields
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p2m = −p2m + (p+ 2)2m + 1.

=
2m∑
k=1

(
2m

k

)
p2m−k2k + 1. (2.11)

Recall that p > 2m+2 by (2.9). Thus, for each 1 ≤ k ≤ 2m, we have p−k <

2−k(m+2) ≤ 2−mk−2. Therefore

(
2m

k

)
p2m−k2k =

2m(2m − 1) · · · (2m − k + 1)

k!
· p2m−k2k

<
2mk

k!
· p2m−k2k

=
2mk

k!
· p−kp2m2k

≤ 2mk

k!
· 2−mk−1p2m2k

=
1

2k
· 1

k!
· p2m .

It follows from (2.11) and by the series expansion for e1/2 that

p2m <
2m∑
k=1

1

2k
· 1

k!
· p2m < p2m(

√
e− 1 +

1

p2m
) < 0.8p2m ,

and now we have our final contradiction in the case of m > 1.

2.4.3 Determining the pairs

We now return to (2.6) in the knowledge that m = 0 or m = 1. If m = 0, this

becomes

2apb = q + 1 = p+ 3,

which implies p|3, forcing p = 3 and q = 5. This in turn yields 2a3b = 6 with

a = b = 1, which gives us the RAP2 (5, 6).

If m = 1, on the other hand, we have

2apb = q2 + 1,
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by (2.6), which implies a = 1 since q2 ≡ 1 (mod 4)—again, because q is odd.

Hence,

2pb = q2 + 1 = (p+ 2)2 + 1 = p2 + 4p+ 5,

which forces p|5, hence p = 5 and q = 7. So we have 2 · 5b = 50, and thus b = 2,

giving us the RAP2 (49, 50).

The method applied in this section was exhaustive; therefore, (5, 6) and (49, 50)

are the only RAP2s of the form (qc, 2apb). By this section and the last, we now have

the following theorem:

Theorem 2.4.6. The only RAP2s (n, n + 1) with {ω(n), ω(n + 1)} = {1, 2} are

(5, 6), (24, 25) and (49, 50).

2.5 RAP2s of form (22npq, rs)

In this section, we consider a specific class of RAP2s–namely, RAP2s (N,N + 1)

with ω(N) = 2 and ω(N + 1) = 3. The first three pairs are listed below.

(492, 493) = (22 · 3 · 41, 17 · 29)

(2600, 2601) = (23 · 52 · 13, 32 · 172)

(6556, 6557) = (22 · 11 · 149, 79 · 2)

Notice how wide the spread is between these. In fact, there are only 88 RAP2s

of this form for which N is less than 109. (Only 18 of these are less than 107.)

Of these 88, 41–or nearly half, including the first–are of the form (4pq, rs) for odd

primes p < q, r < s. Another six have the form (16pq, rs), the first of which occurs

at N = 24432. Three more have the form (64pq, rs).

To summarize, the case (N,N + 1) = (2aqb, rcsd) yields many more solutions

than either of the simplest two cases for RAP2s, but those solutions appear to be

incredibly sparse. As a result, we cannot tell at a glance whether the number of

such solutions is finite or infinite. The author conjectures, much like in the normal

RAP case, that the larger problem P (N) = P (N+1) has infinitely many solutions;

however, this remains conjecture, as with the original RAP problem.
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Nevertheless, since (N,N + 1) = (2aqb, rcsd) yields the first set of RAP2s which

could be infinite, it is worth paramatrizing these particular solutions for further

examination. In particular, since most of the solutions mentioned before have the

simpler form (22npq, rs), where n ≥ 1, it is prudent to work with this subset.

For pairs of the form (22npq, rs), we have

2 + p+ q = r + s, (2.12)

22npq + 1 = rs. (2.13)

By (2.12), there are integers x, y, and z so that

r = x− y, s = x+ y, (2.14)

p = x− 1− z, q = x− 1 + z.

As a result, we can now work with 3 variables instead of 4. If we substitute (2.14)

into (2.13) and simplify, we end up with

((22n − 1)x− (22n + 1))(x− 1) = (2nz − y)(2nz + y).

At this point, we would like to find a way to determine which of x, y, z are free

variables. Dividing through by (x− 1) gives the following.

(22n − 1)x− (22n + 1)

2nz − y
=

2nz + y

x− 1
=
a

b
. (2.15)

Since a/b represents the fractions above in their lowest terms, (a, b) = 1. We cross

multiply and rearrange the terms to get

(22n − 1)bx+ ay − 2naz = (22n + 1)b,

ax− by − 2nbz = a.

We then solve for x, y in terms of z, which we may now consider the only free

variable, to get:

(a2 + (22n − 1)b2)x = 2n+1abz + a2 + (22n + 1)b2, (2.16)

(a2 + (22n − 1)b2)y = 2n(a2 − (22n − 1)b2)z + 2ab. (2.17)
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The authors discovered many possible quotients a/b satisfying (2.15) but noticed

that some were especially common. These included 2/1 and 7/4 when n = 1 is fixed.

These turn out to be solutions to the Pell equation a2 − 3b2 = 1, thus the search

was focused on pairs a, b that solve the more general Pell equation

a2 − (22n − 1)b2 = 1, (2.18)

where n ≥ 1. Since

2a2 = a2 + (22n − 1)b2 + a2 − (22n − 1)b2

= a2 + (22n − 1)b2 + 1,

We know that a2 + (22n − 1)b2 = 2a2 − 1. And since

a2 + (22n + 1)b2 − 2b2 = a2 + (22n − 1)b2

= 2a2 − 1,

we know a2 +(22n+1)b2 = 2a2 +2b2−1. We may use these observations to simplify

(2.16) and (2.17) to

(2a2 − 1)x = 2n+1abz + 2a2 + 2b2 − 1,

(2a2 − 1)y = 2nz + 2ab. (2.19)

All positive solutions to (2.18) are given by

a1 = 2n, b1 = 1,

aj+1 = 2naj + (22n − 1)bj (j ≥ 1),

bj+1 = aj + 2nbj (j ≥ 1). (2.20)

One can show by induction that 2n|ajbj for all j ≥ 1. So we parametrize z in (2.19).

Since y is an integer, we know that 2a2 − 1|2nz + 2ab. Also, 2a2 − 1 is odd. So we

have
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z ≡ −2ab

2n
(mod 2a2 − 1),

which gives us the following form for z for integers k ≥ 0:

z = (2a2 − 1)k + 2a2 − 1− 2ab

2n

Substituting this into (2.16) and (2.17) yields.

x = 2n+1abk + 2n+1ab− 2b2 + 1, (2.21)

y = 2nk + 2n (2.22)

and if we substitute these last three equations into (2.14), we derive the following

theorem:

Theorem 2.5.1. Let some n ≥ 1 be an integer and let a, b be solutions to (2.18),

the more general Pell equation used earlier. Then (22npq, rs) is a RAP2 if, for an

integer k ≥ 0, the following four quantities are all prime:

p = 2(2n+1ab− 2a2 + 1)k +

(
2n+1 − 2b2 − 2a2 + 1 +

2ab

2n

)
,

q = 2(2n+1ab+ 2a2 − 1)k +

(
2n+1 − 2b2 + 2a2 − 1− 2ab

2n

)
,

r = 2n+1(2ab− 1)k + 2n(2ab− 1)− 2b2 + 1,

s = 2n+1(2ab+ 1)k + 2n(2ab+ 1)− 2b2 + 1.

Remark 2.5.2. Notice that 2ab/2n is always an integer as a result of (2.20). Further-

more, the authors substituted 2k instead of k to ensure the p, q from the theorem

are odd. The numerators retain the term 2ab, because the Pell sequences have the

property b2j = 2ajbj. One shows by induction that for all n, k, if a3j, b3j are used

in Theorem 2.5.1, then at least one of the four values is divisible by 3 (resulting in

no RAP2).

The authors found by way of a computer search that 149 RAP2s of the form

(22npq, rs) less than 234 exist, and of these 116 correspond to n = 1. Of these, 16

correspond to a1 = 2, b1 = 1. Further statistics are available in the original article.
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Chapter 3

Solutions to d(z) = d(z + 1)

3.1 Outline

Recall the divisor function, d(z), which is defined to be the number of divisors of

z, a positive integer. This chapter will focus on a proof by Heath-Brown [5] of the

following theorem, which he presented in 1984.

Theorem 3.1.1. There are infinitely many integers z such that d(z) = d(z + 1).

Moreover, for large x, the number of such z ≤ x is of order at least x(log x)−7.

The proof uses the following sieve, which is a weak version of a result by Hal-

berstam and Richert [4].

Lemma 3.1.2. Let N be a natural number greater than 1, and let ai, bi, 1 ≤ i ≤ N

be integers satisfying

N∏
i=1

ai
∏

1≤t<s≤N

(atbs − asbt) 6= 0. (3.1)

Suppose also that

N∏
i=1

(ain+ bi) (3.2)

has no fixed prime factor—that is to say: no prime divides the product above for all

integers n. Then, for any natural number r sufficiently large, and depending only

on N , there is a positive number δ such that, as x→∞,
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#

{
n; 1 ≤ n ≤ x,

N∏
i=1

(ain+ bi) = Pr

}
≥ δ

x

(log x)N
(
1 +O((log x)−1/2)

)
, (3.3)

where Pr is some pr-smooth number, and where δ and the O constant depend only

on r,N and on the ai’s and bi’s.

Remark 3.1.3. The weakening in the lemma involves weakening the condition for

the lower bound of r. However, for small N , an improvement by Xie [15] leads to a

stronger set of bounds on r than does the original lemma. In particular, for N = 7,

we may take r = 27. This pair will eventually be used both to prove the main

theorem and to give us the lower bound of order x(log x)−7 for the frequency.

By using the pair (N, r) = (2, 14)—also from Xie—we may construct a relatively

simple example for N = 2.

Example 3.1.4. Let a1 = a2 = 1, and let b1 = −1 and b2 = 1. Clearly this satisfies

Property (3.1), since the product is 2. It follows from the lemma and the value of r

given by Xie that the number of positive integers n no larger than x as x→∞ for

which n2 − 1 is p14−smooth, where p14 = 43 is the 14th prime, is of order at least

O(x(log x)−2).

Given this sieve, what remains for the proof is to find a set of linear equations

that will satisfy the sieve and also satisfy d(z) = d(z + 1), and also to confirm

the result N = 7 above. In order to achieve this, we require the following “Key

Lemma” from Heath-Brown’s proof.

Lemma 3.1.5. For any positive integer N there exist N distinct natural numbers

an with the following properties. If m 6= n and dmn = am − an, then

dmn = gcd(am, an) (3.4)

Moreover,

d(am)d

(
an
|dmn|

)
= d(an)d

(
am
|dmn|

)
. (3.5)

This key lemma takes care of small primes and allows adaptation of the sieve

method employed by Spiro, which gave the result for d(z) = d(z + 5040). The

lemma will be proven in later sections so as not to distract the reader from the
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main problem. In the following section, we will outline the proof of the theorem.

In particular, we will use the Key Lemma to construct a set of linear functions

which not only allow us to create instances of d(z) = d(z + 1), but which satisfy

the sieve and thereby allow us to create these instances infinitely often.

3.2 Proof of the Theorem

Let an, dmn be as in Lemma 3.1.5, and let A = N !
∏
an. Let p1, . . . , pN be distict

primes, none of which divides A. We define

rn = pd(an)−1
n ,

so that

d(an) = d(rn), (3.6)

whenever 1 ≤ n ≤ N.

We may illustrate this construction with a trivial case.

Example 3.2.1. Let N = 2, and set

a1 = 2

a2 = 3.

It is clear that 2 and 3 satisfy the properties (3.4) and (3.5). So we set A =

N !
∏
an = 2 · 2 · 3 = 12 and choose p1 = 5 and p2 = 7 so that our chosen primes do

not divide N ! or either an, and thus do not divide A. Since d(2) = d(3) = 2, we set

r1 = p2−1
1 = 5,

r2 = p4−1
2 = 7,

and we note that d(an) = d(rn) for each n.

By the Chinese Remainder Theorem, the system of simultaneous congruences

anAx+ 1 ≡ rn (mod r2
n),
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has a solution with 1 ≤ n ≤ N . Noting that (anA, r
2
n) = 1, let X be any fixed

solution. We set Yn so that

anAX + 1 = rnYn, (3.7)

with

(Yn, Arn) = 1. (3.8)

Writing R =
∏
rn and Rn = R/rn, we define

Fn(x) = anARnRx+ Yn. (3.9)

Remark 3.2.2. Note that the coefficients of Fn(x) will correspond with the coeffi-

cients in (3.1), and in particular, the N from the statements of both lemmas will

correspond.

Example 3.2.3. Continuing with the an and rn defined in the previous example,

we begin by solving the congruences

2 · 12x+ 1 ≡ 5 (mod 52),

3 · 12x+ 1 ≡ 7 (mod 72).

The smallest positive solution to this system is x = 1021, and so we set X = 1021,

although X need not be positive. Now we want to find Y1 and Y2 so that

24 · 1021 + 1 = 5Y1,

36 · 1021 + 1 = 7Y2.

Clearly, Y1 = 4901 and Y2 = 5251, and we see that neither of these is divisible by 2

or 3, so (3.8) holds. We set R = r1r2 = 35 and in this instance, Rn = R/rn simply

yields R1 = r2 = 7 and R2 = r1 = 5. Thus, we have our linear functions defined

according to (3.9) as follows.

F1(x) = 5880x+ 4901,

F2(x) = 6300x+ 5251.

In particular, note that (5880·5251−4901·6300) = −420 6= 0. Hence, the coefficients
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of F1(x) and F2(x) do indeed satisfy (3.1).

Proposition 3.2.4. For Fn, A, and R as defined above,

(Fn(x), AR) = 1. (3.10)

Proof. If p|A then by (3.8) p - Yn, hence by (3.9) p - Fn(x). Similary, since pn|rn,

(3.8) and (3.9) also show that pn - Fn(x). If m 6= n and pm|Fn(x), then pm|Yn by

(3.9), since pm|R. However, (3.7) now gives us

anAX + 1 = rnYn ≡ 0 (mod pm),

since pm|Yn, and

amAX + 1 = rmYm ≡ 0 (mod pm),

since pm|rm. Putting these together yields

anAX + 1 ≡ amAX + 1 ≡ 0 (mod pm).

Since pm|AX, it follows that pm|(am − an) = dmn, which implies pm|am by

Lemma 3.1.5. However, this contradicts our choice of pm, which completes the

proof.

Proposition 3.2.5. If am > an,

am
dmn

rnFn(x) = 1 +
an
dmn

rmFm(x).

Proof. This can be verified from (3.7) and (3.9) as follows.
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am
dmn

rnFn(x) =
am
dmn

rn(anARnRx+ Yn)

=
am
dmn

(anAR
2x+ rnYn)

=
am
dmn

(anAR
2x+ anAX + 1)

=
an
dmn

(
amAR

2x+ amAX +
am
an

)
=

an
dmn

(
amAR

2x+ amAX + 1 +
am
an
− 1

)
=

an
dmn

(
amAR

2x+ rmYm +
am
an
− 1

)
=

an
dmn

rm

(
amARmRx+ Ym +

am
an
− 1

rm

)
=

an
dmn

rm

(
Fm(x) +

am − an
anrm

)
= 1 +

an
dmn

rmFm(x).

Moreover, by (3.10) (and the definition of rn), an/dmn, rn, and Fn(x) are pairwise

coprime. Therefore, by (3.6),

d

(
an
dmn

rmFm(x)

)
= d

(
an
dmn

)
d(am)d(Fm(x)), and

d

(
1 +

an
dmn

rmFm(x)

)
= d

(
am
dmn

rnFn(x)

)
= d

(
am
dmn

)
d(an)d(Fn(x)).

Example 3.2.6. It can be difficult to visualize these properties for arbitrary x.

For fixed x, however, this is fairly straight-forward. Let F1(x) = 5880x + 4901

and F2(x) = 6300x + 5251 as before. Set d12 = |a1 − a2| = 1. Fix X = 0 so that

F1(X) = 4901 and F2(X) = 5251. We now have

a1

d12

r2F2(X) = 2 · 7 · 5251 = 73, 514,

a2

d12

r1F1(X) = 3 · 5 · 4901 = 73, 515,
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and the difference is 1, as predicted.

An immediate result of Lemma 3.1.5 follows:

Corollary 3.2.7. For m 6= n,

d

(
an
dmn

rmFm(x)

)
= d

(
1 +

an
dmn

rmFm(x)

)
,

whenever

d(Fm(x)) = d(Fn(x)). (3.11)

To prove the main theorem, all that remains is to find solutions to (3.11) by

way of the sieve method.

Proposition 3.2.8. Requiring that each factor ain+bi be square-free does not affect

the lower bound in (3.3).

Proof. According to the proof of Lemma 3.1.2 [4], there exists a constant η > 0

such that every prime factor of ain + bi satisfies p ≥ xη. Define Ks to be the the

number of n for which ain+bi contains a square. Since p2|ain+bi implies p� x1/2,

it follows that

Ks �
∑

xη≤p≤x1/2

xp−2 � x1−η.

Thus the instances of such n are sufficiently few.

Proving the main theorem requires the application of Lemma 3.1.2 to the func-

tions Fn(x) for 1 ≤ n ≤ N . So first we show that the coefficients of Fn(x) satisfy

the conditions of the lemma. We begin with condition (3.2) that
∏
Fn(x) has no

fixed prime factor.

Proposition 3.2.9. The product of the Fn(x) for 1 ≤ n ≤ N has no fixed prime

factor.

Proof. If p|AR, then by (3.10) p cannot divide Fn(x). If p - AR, then there exists

precisely one solution to the congruence Fn(x) ≡ 0 (mod p), which we denote

x ≡ xn,p (mod p). Since N ! divides A, p must be greater than N . By the Pigeon

Hole Principle, there exists some x0 such that x0 6≡ xn,p (mod p) for all n. Thus,

p -
∏
Fn(x).
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Proposition 3.2.10. Condition (3.1) holds for the coefficients of Fn(x).

Namely,
N∏
i=1

aiARiR
∏

1≤t<s≤N

(atARtRYs − asARsRYt) 6= 0.

Proof. Trivially, aiARiR 6= 0. By way of contradiction, suppose atARtRYs =

asARsRYt. Since as, at|A with (A,R) = (A, Yn) = 1, the only way to account for

the factors of A is to force as = at. However, since the an are derived from Lemma

3.1.5, they must be distinct. Therefore the condition holds.

To complete the proof of the main theorem, that there exist infinitely many

integers z such that d(z) = d(z + 1), we must only satisfy (3.11).

Proof of Theorem 3.1.1. First, we note that since all the Fn(x) are square-free,

we may use the functions d and Ω, with the usual definitions, interchangeably.

Adding the condition that the ain + bi be square-free to Lemma 3.1.2 and apply-

ing the lemma to the functions Fn(x) yields a sequence of integers x such that

Ω(
∏
Fn(x)) ≤ r. If Ω(Fm(x)) 6= Ω(Fn(x)) for all m 6= n, then we must have

r ≥ Ω
(∏

Fn(x)
)

=
∑
n

Ω(Fn(x)) ≥
N∑
i=1

i =
1

2
N(N + 1).

In other words, if we can find some N for which the associated r is strictly

less than N(N + 1)/2, there exists some pair m,n with m < n ≤ N such that

Ω(Fm(x)) = Ω(Fn(x)), which in turn implies d(Fm(x)) = d(Fn(x)), and thus (3.11)

is satisfied. As remarked previously, forN = 7, we may take r = 27 < N(N+1)/2 =

28. Moreover, by (3.3), the frequency of x ≤ X for which this occurs is at least

O(X(logX)−7), which completes the proof.

Remark 3.2.11. Although the conditions on the ai in Lemma 3.1.5 are fairly simple,

finding suitable sets for arbitrary N is not simple at all. For N = 2, it is clear that

any two consecutive integers will do. For N = 3, there are only 22 examples for

which the an are less than 1000. The smallest are {84, 85, 90} and {84, 90, 91}. For

N = 4, there is no suitable set for which the an are less than 25,000. The difficulty

arises from the fact that the divisor function is multiplicative but not completely

multiplicative. As a result, the symmetry property, namely (3.5), tends to fail.
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Moreover, even using the smallest possible case for N = 2—(2, 3)—we end up

with 4-digit coefficients in the Fn generated during the proof. For N = 3, where

the smallest case is {84, 85, 90}, the coefficients will already be massive. As a result

of this, even if we could find such a set for N = 7, using it to generate the functions

in the proof of the main theorem would prove far too unwieldy for any practical

benefit.

3.3 Key Lemma

We now return to Heath-Brown’s key lemma (Lemma 3.1.5). It should at this point

be noted that by the summary of the proof in the last section, if we can find a set

of values satisfying the sieve and the properties of the lemma for N = 7, then we

can be done with the proof. Nevertheless, the key lemma, in spite of the fact that

it proves existence of such values for all positive N , but does not provide for their

construction, is worth examining for its own sake. So we will do so.

The method of proving this lemma is mainly pairing powers of primes. In other

words: If for some prime p, pe||am and pf ||an, with e > f ≥ 1, then we want

another prime q such that qe||an and qf ||an. Then the left-hand side of (3.5) will

give us (e + 1) for factors of p, plus (f + 1)(e − f + 1) for factors of q. Similarly,

the right-hand side will give us (f + 1)(e− f + 1) for factors of p, plus (e + 1) for

factors of q. Hence, p and q combined will produce the same number of factors on

both sides. If this can be done simultaneously for all pairs m,n, then we will have

proven the lemma.

One might ask whether it is possible to balance both sides of (3.5) without the

constraint e 6= f . Let us consider what happens when 2e||am, an. Then 2(e+1)|am−
an = dmn. This contradicts (3.4), and similar problems arise for other small primes.

Heath-Brown achieves the goal of pairing up primes by choosing N = 2k for

arbitrary k and using the convenient symmetry of the additive group G = Zk
2,

which can easily be equated with the set {0, 1, 2, . . . , N−1} by way of the following

bijection.

Definition 3.3.1. For σ = (σ1, . . . , σk) ∈ G = Zk
2, with σi ∈ {0, 1}, set
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n(σ) =
k∑
`=1

2(`−1)σ`.

Definition 3.3.2. We define Aσ = a1+n(σ) and Dστ = Aσ − Aτ .

By way of said notation, we rewrite the conditions of Lemma 3.1.5 as

Dστ |Aσ (3.12)

and

d(Aσ)d

(
Aτ
|Dστ |

)
= d(Aτ )d

(
Aσ
|Dστ |

)
(3.13)

for all σ 6= τ .

Definition 3.3.3. Using the 1-1 correspondence between the set 0 through N − 1

and G = Zk
2, we define {pσ|σ ∈ G} to be the first N primes.

Definition 3.3.4. With the pσ defined as above, we write

P =
∏
σ∈G

pσ.

Definition 3.3.5. We write Dστ = EστFστ , where Eστ is a product of powers of

the first N primes pπ, and

(Fστ , P ) = 1.

Remark 3.3.6. The main purpose of this distinction between the Eστ and the Fστ

is to deal with the smaller primes (factors of Eστ ) separately in order to avoid the

problems encountered by Spiro.

Proposition 3.3.7. If we can arrange the pσ so that

pn(σ+τ)
σ ||Aτ (3.14)

and

p|Fστ =⇒ p||Fστ , p||Aσ, (3.15)

for all σ ∈ G, then for every σ ∈ G, Aσ satisfies the revised conditions, (3.12) and

(3.13), for Lemma 3.1.5.
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Proof. If σ 6= τ , then π+σ 6= π+τ , and thus n(π+σ) 6= n(π+τ). Since p
n(π+σ)
π ||Aσ

and p
n(π+τ)
π ||Aτ , we have

pmin(n(π+σ),n(π+τ))
π ||Aσ − Aτ = Dστ = EστFστ ,

so that

pmin(n(π+σ),n(π+τ))
π ||Eστ .

Thus, if σ 6= τ ,

Eστ =
∏
π∈G

pmin(n(π+σ),n(π+τ))
π , (3.16)

so that

Eστ |Aσ (3.17)

by (3.14). This agrees with (3.12). Now consider the number of factors contributed

by all the primes pπ corresponding with the left-hand side of (3.13). By way of

(3.14) and (3.16), we get

∏
π∈G

(1 + n(π + σ))
∏
π∈G

(1 + n(π + τ)−min{n(π + σ), n(σ + τ)}).

We substitute ρ = π + σ to get

∏
ρ∈G

(1 + n(ρ))
∏
ρ∈G

(1 + n(ρ+ σ + τ)−min{n(ρ), n(ρ+ σ + τ)}).

This is symmetric in σ and τ and thus agrees with (3.13). For the remaining

(larger) primes, it follows trivially from (3.15) that Fστ |Aσ. This in conjunction

with (3.17) is enough to satisfy (3.12). Moreover, p|Aσ, Aτ =⇒ p|Dστ =⇒ p|Fστ .
The first implication follows from the definition of Dστ ; the second because p is a

large prime. By (3.15), we have p||Aσ, Aτ , Dστ . It follows that

p||Aσ, p -
Aτ
|Dστ |

, p||Aτ , p -
Aσ
|Dστ |

,

and the corresponding factors of p in (3.13) match. If, alternatively, p - Aσ and

pe||Aτ (e ≥ 1), then p - Dστ , thus

p - Aσ, pe|| Aτ
|Dστ |

, pe||Aτ , p -
Aσ
|Dστ |

,
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and the corresponding factors of p still match up on both sides. This suffices for

(3.13).

We must still show how (3.14) and (3.15) can be satisfied. For ease of notation,

set J = (1, 1, . . . , 1) ∈ G so that n(J) = N − 1. We also assign

E∗στ =
∏
π∈G

pmin(n(π+σ),n(π+τ))
π . (3.18)

Proposition 3.3.8. Let δσ (σ ∈ G) be distinct integers with δI = 0 and such that

the following property holds for σ 6= τ .

For E∗στ as defined above, δσ − δτ = E∗στF
∗
στ , where

F ∗στ is square-free, (3.19)

(F ∗στ , P ) = 1, (3.20)

and

(F ∗στ , F
∗
πρ) = 1, {σ, τ} 6= {π, ρ}. (3.21)

Then there exists a constant that, when added to each δσ, yields a set of Aσ that

satisfy (3.14) and (3.15).

Proof. Consider the system of simultaneous congruences

x ≡ −δσ + pN−1
J+σ (mod pNJ+σ), σ ∈ G, (3.22)

x ≡ −δσ − E∗στF ∗στ (mod F ∗2στ ), σ, τ ∈ G, n(σ) < n(τ). (3.23)

The pNJ+σ and F ∗2στ are all pairwise coprime by (3.20) and (3.21). Therefore, by

the Chinese Remainder Theorem, solutions to the system exist. Let x be a solution

sufficiently large so that x+ δσ is positive for all σ, and set Aσ = x+ δσ. Since the

δσ are distinct, so are the Aσ. From (3.22), it follows that
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pN−1
J+σ ||Aσ.

Letting π = J + σ (also, σ = π + J) gives us

pN−1
π ||Aπ+J . (3.24)

If σ 6= π+J , then n(σ+π) < N−1 = n((π+J)+π) = n(J). Hence, p
n(σ+π)
π ||E∗στ

by (3.18). Since Aσ = Aπ+J + (δσ − δπ+J) and δσ − δπ+J = E∗σ,π+JF
∗
σ,π+J , we have

p
n(σ+π)
π ||Aσ − Aπ+J . So it follows from (3.24) that

pn(σ+π)
π ||Aσ

for all σ, π ∈ G. This satisfies (3.14), which only leaves (3.15). Since this construc-

tion of the Aσ yields Fστ = F ∗στ and, similarly, Eστ = E∗στ , we have p|F ∗στ =⇒
p||F ∗στ by (3.19). Moreover, p - E∗στ , so by (3.23) we have p||Aσ whenever n(σ) <

n(τ). If, on the other hand, n(σ) > n(τ), then we have Aτ −Aσ = Dτσ =⇒ Aσ =

Aτ −Dτσ, which gives us

Aσ = Aτ − E∗τσF ∗τσ = x+ δτ − E∗τσF ∗τσ ≡ −2E∗τσF
∗
τσ (mod F ∗2τσ).

Since E∗τσ = E∗στ and F ∗τσ = −F ∗στ , we have

Aσ ≡ 2E∗στF
∗
στ (mod F ∗2στ ).

Since p|F ∗στ implies p - P , which in turn means that p > 2, we conclude that p||Aσ
in both cases. Thus (3.15) is satisfied as well.

All that remains for the lemma is to find suitable integers δσ.

3.4 Key Lemma: Finding the Integers δσ

Set
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ασ =
∏
π

pn(σ+π)
π ,

δσ = ασ − αI + βσP
N ,

with βI = 0 so that δI = 0. Since n(σ + π) < N ,

pn(σ+π)
π ||δσ + αI . (3.25)

The power of pI occuring above, namely n(σ), is different for each σ, hence the

δσ are unique. If σ 6= τ , we have n(σ + π) 6= n(τ + π) so (3.25) implies

pmin(n(σ+π),n(τ+π))
π ||δσ − δτ .

Thus E∗στ |δσ − δτ . Also, (3.20) holds for these δσ.

It now remains to choose the numbers βσ so that our numbers δσ satsify (3.19)

and (3.21). In order to simply the notation, we now equate ασ = αn(σ) and βσ =

βn(σ). For instance, since βI = 0, we now have β0 = 0. We define

gM(β1, . . . , βM−1) =
∏

0≤m<n<M

(αm − αn + (βm − βn)PN),

so that

gN(β1, . . . , βN−1) =
∏

n(σ)<n(τ)

(E∗στF
∗
στ ).

We also define fQ(n) to be 0 if, for some p - Q, p2|n. Otherwise, fQ(n)=1. We can

satisfy (3.19) and (3.21) by finding β1, . . . , βN−1 such that

fP (gN(β1, . . . , βN−1)) = 1. (3.26)

We do this by a sieve process and by induction.

We find the βM by induction on M . For M = 1, base case, gM is constant

and equal to the empty product, namely 1, so that fP (gM) = 1. For the induc-

tion step, suppose (3.26) holds for M − 1 so that there exist β1, . . . , βM−1 so that

fP (gM(β1, . . . , βM−1)) = 1. We set
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h(β) =
∏

0≤m<M

(αm − αM + (βm − β)PN).

Let k = gM(β1, . . . , βM−1). To show (3.26) holds for M , we must find β so that

fP (kh(β)) = 1. (Notice that multiplying k by h(β) is precisely akin to adding on

the Mth term.) First, we find a β∗ so that p - h(β∗) whenever p|k and p - P . Since

p - P , and since h(x) is of degree M ,

h(x) ≡ 0 (mod p)

has at most M solutions (mod p). Furthermore, since P is defined as the product

of the first N primes, p|h(x), and p - P =⇒ p > N ≥M . So p ≥M . Hence, there

must exist some xp for which the congruence fails so that p - h(xp). By the Chinese

Remainder Theorem, we may solve the system of simultaneous congruences

β∗ ≡ xp (mod p)

for all p|k, p - P . Thus, p|k, p - P implies p - h(β∗) as desired. We now define

j(γ) = h(β∗ + kγ), and we wish to find a γ such that fkP (j(γ)) = 1.

By definition of f , the following inequality applies:

fQ(n) ≥ 1−
∑

p2|n,p-Q

1.

Hence

∑
0<γ≤G

fkP (j(γ)) ≥ G−
∑
p-kP

#{γ : 0 < γ ≤ G, p2|j(γ)}. (3.27)

Let

`m = αm − αM + (βm − β∗)PN − kPNγ

so that j(γ) =
∏

m `m. If p|`m, `n with m < n, then p|(`m − `n). However,

`m − `n = αm − αn + (βm − βn)PN ,
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which is a factor of gM(β1, . . . , βM − 1) = k. Thus, if p - kP and p2|j(γ), then p2

must divide one of the factors `m for some m. Since each `m is linear in γ, there is

precisely one γ (mod p2) for which p2|`m. Thus

#{γ : 0 < γ ≤ G, p2|j(γ)} ≤M(Gp−2 + 1).

Moreover, since p2|`m implies p � G, we may say that p ≤ (cG)1/2, where c is

independent of G (but may depend on N and β1, . . . , βM−1). Hence,

∑
p-kP

#{γ : 0 < γ ≤ G, p2|j(γ)} ≤M
∑

N<p≤(cG)1/2

(Gp−1/2 + 1) (3.28)

≤ GN
∑
p>N

p−2 +O(G1/2).

Thus, (3.27) implies

∑
0<γ≤G

fkP (j(γ)) ≥ G−G

(
N
∑
p>N

p−2 +O(G−1/2)

)

Because

1−N
∑
p>N

p−2 > 0,

it follows that the sum on the left-hand side of (3.27) is positive when G is suffi-

ciently large. Therefore, a suitable γ exists, which concludes the inductive proof

that β1, . . . , βN−1 can be found to satisfy (3.26) for arbitrary N .

This completes the proof of Lemma 3.1.5, which in turn completes the proof of

the theorem. Heath-Brown remarks that the last argument requires the fact that

p - P =⇒ p > N both in the construction of β∗ and in (3.28). This is precisely

where the small primes would otherwise have caused trouble had they not been

dealt with as factors of P .
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Chapter 4

Solutions to ω(z) = ω(z + 1)

Recall that for a positive integer z, we defined ω(z) to be the number of prime

factors of z. As with the divisor function, we have the following theorem.

Theorem 4.0.1. There are infinitely many z such that z and z + 1 have the same

number of distinct prime factors.

The argument used in this proof is similar to that given by D. R. Heath-Brown

for d(z) = d(z + 1); however, since that argument depends on powers of primes, it

fails here. Thus, while in the former proof, arbitrarily large sets were constructed

in a systematic way, we will construct a special set, numerically, for the proof of

this theorem.

We use the following sieve estimate, which follows immediately from a theorem

of Heath-Brown [6].

Theorem 4.0.2. Let c1, . . . , c5 ∈ N. Then there are infinitely many natural num-

bers such that
5∑
i=1

2ω(cin+1) ≤ 57.

Assume there exist 5 integers a1, . . . , a5 such that for 1 ≤ i < j ≤ 5, we

have (ai, aj) = |ai − aj|, and ω(ai/|ai − aj|) = ω(aj/|ai − aj|). Set A = a1 · · · a5

and ci = aiA for each i. If n is an integer, then for some pair i 6= j, we have

ω(aiAn+1) = ω(ajAn+1), or else the sum on the left side in the theorem is at least

62. Moreover, by our assumptions, aj(aiAn+1)/|ai−aj| and ai(ajAn+1)/|ai−aj|
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are consecutive integers. It remains to show they have the same number of prime

factors. Since ai|A, we have (ai, ajAn+ 1) = 1. It follows that

ω

(
aj(aiAn+ 1)

|ai − aj|

)
= ω

(
aj

|ai − aj|

)
+ ω(aiAn+ 1)

= ω

(
ai

|ai − aj|

)
+ ω(ajAn+ 1)

= ω

(
ai(ajAn+ 1)

|ai − aj|

)
.

For any n from Theorem 4.0.2, we now have one pair of consecutive integers with

the same number of distinct prime factors. Each pair can only occur for finitely

many n; so, by the Pigeon Hole Principle, there are infinitely many pairs.

Now we find a1, . . . , a5 with the desired properties. There are ten equations to

be checked, which are not all independent. For example, the author shows that

no three integers in the set may be consecutive. To avoid similar difficulties, the

numbers may be chosen so that |ai − aj| are each divisible by many prime factors.

However, these differences should also remain reasonably small, or else the ai will

grow large enough to present significant computational problems in checking each

quintuple.

To this end, after experimentation, the author defines: b1 = 8, b2 = 9, b3 = 12,

b4 = 34, b5 = 576, N = 24·35·53·72·112·13·472·712·271, k = 110245379356152833616

and considers the sequence of quintuples (l ·N + k+ b1, . . . , l ·N + k+ b5). Setting

l = 1202 gives:

a1 = 135987650281178292389624,

a2 = 135987650281178292389625,

a3 = 135987650281178292389628,

a4 = 135987650281178292389650,

a5 = 135987650281178292390192,

where the ai factor as follows:
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a1 = 23 · 13 · 29 · 712 · 431 · 733 · 28311976573,

a2 = 35 · 53 · 7 · 1481 · 3109 · 80737 · 1720429,

a3 = 22 · 3 · 11 · 312 · 472 · 53 · 6899 · 1327224593,

a4 = 2 · 52 · 112 · 13 · 19 · 271 · 1145107 · 293245787,

a5 = 24 · 34 · 72 · 47 · 71 · 271 · 2367951977749.

The quintuple has the following differences:

a2 − a1 = 1, a4 − a2 = 25 = 52,

a3 − a1 = 4 = 22, a5 − a2 = 567 = 34 · 7,

a4 − a1 = 26 = 2 · 13, a4 − a3 = 22 = 2 · 11,

a5 − a1 = 568 = 23 · 71, a5 − a3 = 564 = 22 · 3 · 47,

a3 − a2 = 3, a5 − a4 = 542 = 2 · 271.

It is simple to check that the quintuple along with the differences satisfy the

required properties, thus proving the main theorem.

It is interesting to note, in particular, that a1 and a2 are consecutive integers,

each with 7 prime factors. In fact, it is easy to see that these are the consecutive

integers generated by the choice of n = 0 in the construction of the proof.

Recall, however, that this proof allows for any choice of n. Suppose, for instance,

we chose n = 1. Then we want to find ai and aj so that ω(aiA+ 1) = ω(ajA+ 1).

Unfortunately, even with Mathematica on a fast computer, the size of A makes such

comparisons difficult.
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Chapter 5

Concluding Remarks

When I began the line of research one year ago that lead to this thesis, all I saw

before me was an enjoyable paper on the topic of Ruth-Aaron Pairs of the second

type. Once I got past the baseball anecdotes, however, I began to see that the

methods being used to attempt and to solve a similar group of problems were, in

fact, extraordinarily different.

In Chapter 2, we begin with a fairly direct proof and summary of the simplest set

of RAP2s. Then, for the next case, which appears almost identical but for a switch

between (ω(n), ω(n+1)) = (2, 1) and (ω(n), ω(n+1)) = (1, 2), we immediately find

ourselves thrown into far more detailed proof filled with exhaustive case work. For

all this, we have clear results: The first two cases yield precisely 3 RAP2s: (5, 6),

(24, 25), and (49, 50).

The final section for Chapter 2, however, barely resembles the previous two.

Yes, the topic is still the classification of the RAP2s, but the methods are entirely

different. Whereas the previous two sections are deterministic and rely on more

classical methods, the last parametrizes a case within a case and does so through

entirely computational means.

We return to the classical in Chapter 3 with Heath-Brown’s proof of the exis-

tence of infinitely many solutions to the equation d(z) = d(z+1), and especially his

Key Lemma wherein the natural numbers are afforded nearly unreasonable symme-

try by way of a map to powers of the group Z2. After a long and winding course,

we have a set of parameters to enter into a sieve.
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Except we do not really have them. We know the parameters exist, and the Key

Lemma tells us we can have as many of them as we need, but they are remarkably

difficult to locate. It is only in Chapter 4, in a proof of the infinitude of solutions

to ω(z) = ω(z + 1) that effectively mirrors Chapter 3, that we are able to find a

set of parameters and use a sieve directly. Whereas Chapter 3 is long and winding,

Chapter 4 is a straight run.

There is more to be done, and some questions remain open. There appear to

be infinitely many of both the RAPs and the RAP2s, but these remain conjecture.

The question of equality over consecutive integers may be asked of other arithmetic

functions: φ, σ, Ω, and more. The solutions to one of these might be infinite as in

the case of d and ω or conjecture as with S and P . They might be finite. They

might be trivial. They warrant further study. For now, I let the matter rest.
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Appendix A

A.1 Tables

n n+ 1 P (n)
5 6 5
24 25 5
49 50 7
77 78 18
104 105 15
153 154 20
369 370 44
492 493 46
714 715 29
1682 1683 31
2107 2108 50
2299 2300 30
2600 2601 20
2783 2784 34
5405 5406 75
6556 6557 162
6811 6812 146
8855 8856 46
9800 9801 14
12726 12727 113

Table A.1: Ruth Aaron Pairs of the 2nd Type (P (n) = P (n+ 1))
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z z + 1 d(z)
2 3 2
14 15 4
21 22 4
26 27 4
33 34 4
34 35 4
38 39 4
44 45 6
57 58 4
75 76 6
85 86 4
86 87 4
93 94 4
94 95 4
98 99 6
104 105 8
116 117 6
118 119 4
122 123 4
133 134 4
135 136 8
141 142 4
142 143 4
145 146 4
147 148 6
158 159 4
171 172 6
177 178 4
189 190 8

Table A.2: Solutions to d(z) = d(z + 1)
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z z + 1 ω(z)
1 2 1
2 3 1
3 4 1
4 5 1
7 8 1
8 9 1
14 15 2
16 17 1
20 21 2
21 22 2
31 32 1
33 34 2
34 35 2
35 36 2
38 39 2
39 40 2
44 45 2
45 46 2
50 51 2
51 52 2
54 55 2
55 56 2
56 57 2
57 58 2
62 63 2
68 69 2
74 75 2
75 76 2
76 77 2
85 86 2
86 87 2
87 88 2
91 92 2
92 93 2
93 94 2
94 95 2
95 96 2
98 99 2
99 100 2

Table A.3: Solutions to ω(z) = ω(z + 1)
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