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Abstract 

As the circuit size increases in modern electronics, the design process becomes 

more complicated.  Even though the hardware design process is divided into multiple 

phases, many of the divided problems are still extremely time consuming to solve.  

One of these NP-hard problems is the routing problem.  As electronics step into the 

deep submicron era, optimizing the routing becomes increasingly important. 

One of the methods to solve global routing is to formulate the problem as an integer 

programming (IP) problem.  This formulation can then be relaxed into a linear 

programming problem and solved using interior point method.  This thesis investigates 

two new approaches to optimize the speed of solving global routing using Karmarkar’s 

interior point method, as well as the effect of combining various optimizations with 

these new approaches.  The first proposed approach is to utilize solution stability as the 

interior point loop converges, and attempt to remove solutions that have already 

stabilized.  This approach reduces the problem size and allows subsequent interior 

point iterations to proceed faster.  The second proposed approach is to solve the inner 

linear system (projection step) in interior point method in parallel. 

Experimental results show that for large routing problems, the performance of the 

solver is improved by the optimization approaches.  The problem reduction stage 

allows for great speedup in the interior point iterations, without affecting the quality of 

the solution significantly.  Furthermore, the timing required to solve inner linear 

system in the interior point method is improved by solving the problem in parallel.  

With these optimizations, solving the routing problem using the IP formation becomes 

increasingly more efficient.  By solving an efficient parallel IP formation rather than a 

traditional sequential approach, more efficient optimal solutions which incorporate 

multiple conflicting objectives can be achieved. 
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1 Introduction 

1.1 Background 

This section introduces the area of routing in VLSI circuit design flow.  Section 

1.1.1 discusses the general VLSI design flow, and section 1.1.2 discusses the various 

phases in the physical design stage. 

1.1.1 Digital Circuit Design Flow 

As the size, computational power and functions in electronics improves, the 

number of digital integrated circuits contained in a chip is increasing drastically.  As 

technology improves, the chip size, transistor density and number of transistors 

increases at an exponential rate.  For instance, the Dual-Core Itanium 2 processor from 

Intel already contains over 1 billion transistors [1].  As shown in Figure 1, the number 

of transistors in the different generations of Intel processors grows rapidly.  If the 

industry continues to follow the prediction of Moore’s law, the number of transistors on 

a chip will be doubled every 1.5 to 2 years.   

 

Figure 1 - The number of transistors on Intel's processors is increasing rapidly in every 

generation. [1] 

 

As the circuit size increases, the design complexity of the hardware requires 

designers to utilize Computer Aided Design (CAD) tools to automate various parts of 

the design process.  Because the design problem is complicated and the problem size is 

very large, it is necessary to break down the design process into different stages.  A 
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typical Very Large Scale Integrated Circuit (VLSI) design flow is shown in Figure 2. 

 

In the first step, the functional requirements of the chip are specified.  In addition, 

constraints such as the required minimum computation speed, maximum power 

consumed, and chip size are decided.  Then, the required functions are defined with 

Register Transfer Level (RTL) language, as specified in the specification phase.  In the 

third step, these functions are then translated to logic equations.  The functionalities 

are described with basic logic operations such as NAND and XOR.  These equations 

are then translated to actual circuits, mapping to the targeted technology available to the 

designer.   

 

At physical design time, the designers perform partitioning, floorplanning and 

placement on the actual circuits.  Then, routing is performed to interconnect different 

blocks of the design together.  Lastly, the design would be sent to a fabrication 

company for actual manufacturing.  Note that, several iterations of revising might be 

required during the design.  For instance, the routing result might be fed back to the 

floorplanning or placement stage to obtain better results, such as lower maximum delay 

and area.   
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Figure 2 - Typical VLSI design flow. 

 

As the number of transistors increases in VLSI design, so does the size of the 

corresponding routing problem and the time needed to solve them.  One way to solve 

the routing problem is to model it as a linear programming (LP) problem, and utilize the 

interior point method to obtain the routing solution [2].  As the size of the problem 

increases, in order to solve the LP problem efficiently one needs to look at ways of 

optimizing the interior point method.  Efficient methods must be used to try to solve 

the routing problem quickly.  This is the main focus of this thesis. 

 

1.1.2 Partitioning, Placement, and Routing 

The physical design step is a complex problem of transforming a design to actual 

circuits, defining all the components’ locations and interconnections.  Because the 

problem is NP-hard [3], the physical design task is divided into several steps to reduce 

complexity and computation time.  As shown in Figure 3, they are partitioning, 
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floorplanning, placement, and routing.  An important characteristic of this approach is 

that the result of one stage is highly dependent on the quality of the previous stage.  For 

instance, the congestion in the routing stage is dependent on the location of the modules, 

which is determined in the placement stage. 

 

 

Figure 3 - The steps required in physical design. 

 

As mentioned in section 1.1.1, the number of transistors is growing exponentially 

every year.  This increase in the size and complexity of the problem makes the layout 

problem much harder to solve.  In the partitioning stage the goal is to divide the circuit 

into different sub-blocks which are intra-related and of a smaller size, such that the 

problem can be solved in reasonable time.  Various factors such as the size and number 

of sub-blocks, and the number of interconnections between the sub-blocks are 

considered when partitioning is performed [4].  Because the partitioning problem is 

NP-hard [5], constructive and iterative heuristics are used to solve the problem [6].  

An example of circuit partitioning is shown in Figure 4.  In this figure, the circuit is 

partitioned into five sub-blocks.  The number of interconnection from sub-block D to 

other sub-blocks is three. 
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Figure 4 - An example of circuit partitioning. [4] 

 

After the partitioning stage, the divided blocks and the interconnections required 

are passed down to the floorplanning phase.  The floorplanning program would first 

determine the relative position of the sub-blocks.  Sub-blocks with a higher number of 

interconnections between them would be placed closer together.  Then, the actual 

length and width of each sub-block are determined.  Most often the goal of the 

floorplanning stage is to optimize the area and wirelength, subject to various constraints 

such as no overlap between module, and the available chip area defined in the 

specification stage.  Also, the resulting floorplan must be routable.  Other 

optimization goals such as power and delay are also considered.  The floorplans can be 

classified as variable-die (chip dimension is variable) or fixed-die (chip dimension is 

fixed).  Because both of these problems are NP-hard, approaches such as constructive, 

iterative, and mathematical programming have been used to solve the floorplanning 

problem [6]. 

 

After the floorplanning, the actual location of each of the sub-blocks must be 

determined.  At this placement stage, the goal is to minimize objectives such as 

wirelength and area, while keeping the routability in mind.  For instance, minimizing 

area can create highly congested area, which affects the routability in the routing stage.  

Since the placement problem is also NP-hard, approaches such as simulated annealing, 

min-cut, force-directed, evolution, numerical optimization, and convex optimization 

methods one used in the past to solve the placement problem [5]. 

 

After the location and dimensions of the sub-blocks are determined, the 

interconnections need to be established.  Usually, the routing stage is divided into two 

stages.  In the global routing stage, the approximate regions for each of the 
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interconnections to go through are determined.  Then, at the detailed routing stage, the 

exact geometries of the interconnections are decided [4].  The goal of the routing stage 

is to optimize objectives such as wirelength, maximum delay, area, number of vias, 

power, and congestion, subject to constraints such as congestion and maximum delay.  

Even though the routing stage is divided into two stages to reduce complexity, the 

routing problem is still NP-hard [6].  Various approaches such as linear programming, 

sequential routing, and meta heuristics are used to solve the routing problem efficiently.  

In addition, to reduce the complexity of the problem, often multi-layer hierarchical 

approaches are used [4]. 

 

1.2 Research Motivations 

This section discusses the motivation for the research, and the research approaches.  

Section 1.2.1 discusses the reason for the need of an efficient routing methodology, and 

section 1.2.2 explains the difficulties and solution in solving the routing problem using 

optimization methods.  Section 1.2.3 gives an overview of the proposed research. 

 

1.2.1 Global Routing 

As the number of transistors increases dramatically, the number of interconnects in 

a chip grows accordingly.  Also, since the transistor sizes decreases in deep submicron 

regime, but the chip area is staying the same or often growing, the interconnects are 

becoming an ever more important factor in determining the various performance 

parameters such as delay, power, and thermal consumption.  This makes efficient 

optimized routing for interconnects an important step in the design flow. 

 

Because the number of transistors is increasing, the complexity of the routing 

process is growing as well.  Additionally, contemporary VLSI design often requires 

routing to fulfill various conflicting objectives.  For instance, one might want to 

simultaneously optimize for delay, power, area and temperature (ie. avoiding EM 

effects and hotspots).  This requires one to optimize the various parameters such as the 

number of via bends, maximum wire congestion, wirelength, and consumed power.  

However, since the parameters are inter-related and often conflicting, achieving these 

objectives simultaneously becomes difficult.  Thus, the routing process becomes very 

time consuming, especially to the VLSI industry where time to market is critical for 

success.  Clearly an efficient method to perform the multi-objective global routing is 

crucial for future VLSI designs. 

 

1.2.2 Solving the Linear System Generated by Routers 

One of the research directions in efficient routing is to translate the problem into an 

optimization problem.  Then, one can apply an interior point method to attempt to 
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solve the system.  Even though the interior point method is able to solve the problem in 

polynomial time [2], the process is still very time consuming.  Various preprocessing 

techniques and optimizations such as preprocessing and problem reduction are done, 

such as the work described in [2] and [7].  However, the critical bottleneck in the 

interior point method is that at each iteration it is required to solve yet another linear 

system (ie. The projection step).  One of the successful research directions in solving 

this inner linear system is to utilize the power of parallel computation.  Because the 

underlying mathematical model of the routing problem is a large sparse linear system, 

the operations required are often parallelizable.  Thus, using multiple processors can 

allow for speedup due to parallel computations.  In the case of shared memory system, 

the decrease in communication costs compared to networked system gives room for 

great speedup to be obtained.  This provides a good methodology to tackle the 

ever-increasing size and complexity of the routing problem. 

 

1.2.3 Overview of Proposed Research 

The objectives of the proposed research are to solve the routing problem efficiently 

in the following way.  After placement, a set of possible routing trees and design 

constraints used, along with an objective function that considers the relative importance 

of various design objectives are used to guide the routing phase.  This data is 

transformed to an optimization model so that an interior point method can be applied.  

Before the interior point method, preprocessing will be done to reduce the problem size.  

The problem is then fed into the interior point method to solve.  During the interior 

point computation, further optimizations will be done to reduce the problem size.  As 

well, the inner linear system in each of the interior point loop will be solved by a 

parallel solver package called PSPASES[8].  Lastly, the solution obtained will be 

rounded off to zeros and ones to represent the final choices on the routing trees. 

 

1.3 Thesis Contributions 

The contributions of this thesis are as follows: 

1. Integrated preprocessing, optimization, and randomized rounding 

techniques for the interior point approach to solve the routing problem. 

2. Proposed a new optimization that further decreases the time required for 

interior point iterations. 

3. Investigated the changes required in the model, interior point method, and 

randomized rounding to adapt to some new features.  This includes 

calculating the maximum edge congestion dynamically and usage of the 

new optimization. 

4. Investigated the effects of utilizing parallel solvers to solve the inner linear 

system in the interior point method efficiently.  
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1.4 Thesis Organization 

Chapter 2 provides the background information in modeling the routing problem, 

the details of the interior point method to solve the problem, and past research on 

parallel solvers.  Furthermore, techniques on preprocessing the problem and 

optimizations on reducing the problem size are discussed.  Chapter 3 discusses the 

proposed new optimization, and the required changes in the model, interior point 

method, and randomized rounding.  Chapter 4 discusses the parameter values found 

experimentally to apply the optimization efficiently, and the results obtained.  Finally, 

Chapter 5 discusses conclusions and possible future work. 
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2 Routing Background and Methodologies 

2.1 Global Routing 

In general, global routing is the problem of finding the interconnection paths 

between parts of the sub-blocks.  The input to global routing is the location of the 

sub-blocks and the position of the terminals (input/output port from the sub-blocks).  

In addition, information about which terminals need to be interconnected (netlist) is 

given.  The goal of global routing is to find the interconnection paths such that various 

objectives such as estimated maximum delay, total wirelength, area, congestion, etc are 

optimized.   

 

The routing problem is usually modeled as a graph problem.  An example of such 

transformation for standard-cells is shown in Figure 5.  The chip area is divided into 

different area (bins), and the cells are assumed to be in the center of the bins [4].  The 

transformation is done such that the vertices represent the input/output ports to the cells, 

and the edges represent possible paths for routing.  In this graph representation, a set of 

vertices and edges represents interconnections from one cell to another. 

 

Figure 5 - Transformation from the modules to a grid graph [4]. 

 

2.2 Sequential Routing 

Global routing algorithms can be classified into sequential routing and integer 

programming routing.  In sequential routing, the nets are sequentially routed one by 

one.  The routing sequence is determined by the relative importance of the nets.  The 

maze runner algorithm proposed by [9] is a sequential routing algorithm for finding the 

optimal route for two terminal nets.  As can be seen in Figure 6, the maze routing 
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algorithm keeps expanding in all direction from the source terminal S, until it reaches 

the destination T.  The disadvantages with maze routing are that it is not capable of 

routing multi-terminal nets.  Further more, it requires a large amount of memory and 

computation for large graphs, because information for each vertex has to be kept and a 

lot of vertices are traversed [10].  Research in [11] and [12] reduces the computation 

time, while [13] and [14] propose line-probe algorithms to reduce the required memory.  

As shown in Figure 7, instead of searching one step at a time, the line-probe algorithm 

keep drawing lines from both the source and the destination until there are combination 

of lines that connects the two terminals.  Both the computation time and the required 

memory are reduced, however the path generated is not guaranteed to be optimal.  To 

route multi-terminal nets, various approaches such as dividing multi-terminal nets into 

set of two terminal nets [15] and generating Rectilinear Steiner Trees [15-21] are used.   

 

 

Figure 6 - Running of maze routing from terminal S to T [4]. 
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Figure 7 - Running of line probe algorithm from terminal S to T [4]. 

 

The main problem of sequential routing is that the algorithm solves the problem 

from a local point of view.  The nature of the sequential routing makes it difficult to 

obtain a globally optimal solution.  Because the nets are routed one at a time, the routes 

generated at the earlier stage can block the nets at the later stage.  To solve this 

problem, research such as rip-up and reroute [23], which try to avoid congestion by 

using congestion estimation in the reroute stage [24], are proposed.  Even though this 

research enhances sequential routing, due to the nature of the sequential method there 

are still some inherent disadvantages.  For instance, one cannot be sure whether a 

feasible solution exists, and whether the obtained solution is globally optimal. 

 

2.3 Integer Programming Routing 

The second class of solvers for the routing problem is integer programming routing.  

In this method, the routing problem is formulated as an integer programming problem.  

A set of routes (trees) are generated for each net, and the problem is solved concurrently.  

The integer programming formulation is shown in Figure 8.  In this formulation, the yj 

variables are integer variables representing each of the n trees generated for the nets.  

A variable yj takes on a value of 1 if this route is used, and 0 if it is not.  Each of these 

trees are weighted by the weights bj, which gives preference to certain trees depending 

on the estimated congestion, wirelength, number of vias(bends), etc.  Constraint 2.1 
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specifies that for each of the t nets in the set of nets �k, at most one tree is selected to 

connect the net.  For the second constraint, the value aij =1 if tree yj passes through 

edge i, and equals to zero if it does not.  Constraint 2.2 states that for all the p edges, 

the maximum congestion caused by the trees has to be less than or equal to value ci.  In 

other words, Constraint 2.1 limits each of the nets to only use one tree, and Constraint 

2.2 limits the tree choices such that the maximum congestion is not violated.  The 

objective function is to choose as many trees as possible (ie. route as many nets as 

possible).  The advantage of this formulation is that it resolves all the routes 

simultaneously, which guarantees a globally optimal solution if one exists.  As shown 

in [4], it is also easy to incorporate multiple optimization goals into the problem, such 

as congestion, via bends, wirelength, and power. 

 

Figure 8 - Integer programming formulation of the routing problem. 

  

2.4 Linear Relaxation 

In the integer programming formulation, the problem is easier to solve when it is 

relaxed to an integer linear programming problem (ILP).  Then various techniques 

such as simulated annealing [25], column generation [26] and interior point method [2] 

can be used to solve the relaxed problem.  Multi-objectives global routing has been 

investigated in [6] for simultaneous optimization of vias, congestion, and wirelength.  

Yang [4] researched additional simultaneous optimization for power.  After the relaxed 

problem is solved, techniques such as choosing the tree with the highest yj value [27] 

and randomized rounding [27-29] are used to obtain integer solutions. 

 

2.5 Hierarchical and Multi-level Routing 

Unfortunately, the solution time of the integer programming problem is related 

exponentially to the number of trees [6].  Since the problem can become large it can be 

very time consuming to solve the routing problem in this formulation.  One approach 

is to divide the circuits into different parts, and solve each part separately using the 

integer programming formulation.  This top-down hierarchical approach is able to 
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reduce the size of the problem, but the problem might become infeasible to solve, and 

the computation time can be large due to the creation of many smaller integer 

programming problem [31].  Another approach is to use a bottom-up hierarchical 

approach proposed by [32].  In this case, the routing region of each sub-problem 

gradually gets larger as the program solves and subsequently merges the different 

regions.   

 

In [33], a multi-level routing approach is proposed.  As shown in Figure 9, the 

circuit is coarsened gradually, estimating information on routing resources in the 

process.  A multicommodity flow algorithm is used to obtain a solution at the coarsest 

level, and then the problem is uncoarsened gradually.  At each level of uncoarsening 

the solution is further improved, and finally at level 1 the solution is fed into a detailed 

router to obtain the final solution.  The advantage of the multi-level routing approach 

is that it can handle large routing problems, because it performs coarsening on the 

problem.  Furthermore, because it can obtain information on routing resources during 

the coarsening process, the completion rate of finding a solution is higher than 

hierarchical approach.  Lastly, it is able to perform routing in less time.    

 

 

Figure 9 - Multi-level routing [4]. 

 

 

2.6 Tree Generation 

For the integer programming formulation, in order to find the routes to use for the 

interconnections one needs to generate the possible routes to choose from.  Since the 

routes in actual circuits run only horizontally and vertically, any generated route will 
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also only run rectilinearly.  Because the number of possible trees is large, initially only 

the minimum trees are considered [6].  This problem is usually formulated as finding 

the different Rectilinear Steiner Minimum Trees (RSMT) to connect the terminals.  

From [34], it was shown that using the Hanan grid (a grid formulated by drawing 

vertical and horizontal lines from the vertices of the graph), every Steiner Minimum 

tree can be formed.  An example of the Hanan grid is shown in Figure 10. 

 

Since the RSMT problem is NP-hard [35], one usually finds the Minimum 

Spanning Tree (MST) first, and then transforms the MST to a RSMT.  This is because 

a MST can be found efficiently in polynomial time [35, 36].  As shown in [38], the 

ratio of the lengths between a MST and a RSMT is less than or equal to 1.5.  Thus, one 

can ensure near optimal RSMT are generated by first generating MST, and then 

transforming the non-rectilinear edges to either L shape or Z shape tree [6].  This 

transformation is shown in Figure 10.  In the figure, the original MST is rectilinearized 

to a rectilinear steiner tree.  To ensure the number of vias is minimized, only 

minimum-bend trees are generated [6].  An example of minimum-bend tree and 

non-minimum bend tree is shown in Figure 11. 

 

 

Figure 10 - Connecting the vertices using Hanan grid, RST, and MST [6]. 

 

 

Figure 11 - Connection between 3 vertices, using (a) minimum bend trees and (b) non-minimal 

bend trees [6]. 
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In the research of [6], since the number of possible minimum-bend trees grows 

exponentially with the number of terminals, to limit the number of tree choices the nets 

are divided into two categories.  The nets with two or three terminals are categorized 

as short nets, and the nets with more terminals are categorized as long nets.  

Minimum-bend trees are produced for two terminals nets.  On the other hand, three 

terminal nets are split into two sets of two terminals nets, and minimum-bend trees are 

generated accordingly.  In the research of [4], RSMT are generated for long nets using 

a program called GeoSteiner.   

 

With these generated trees, it is possible that there are no solutions that satisfy all 

the constraints.  For instance, there are limits on the maximum congestion allowed on 

each of the routing paths (channels).  Thus, with only the minimum trees there might 

be no feasible solution.  To resolve this problem, [6] proposed a congestion estimation 

algorithm to predict upper and lower estimates of the congestion.  For nets with trees 

that pass through congested areas, additional trees are generated to avoid congestion.  

Trees are iteratively added until congestion is eliminated or the algorithm reached the 

iteration limit.  An example of generating additional trees is shown in Figure 12. 

 

 

Figure 12 - Generating additional trees [4]. 
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2.7 Optimization Metrics 

During the routing process, there are various conflicting optimization objectives.  

Firstly, it is preferable to reduce the length of the interconnect.  As chip size stays 

constant/growing and device size scales down, interconnects are becoming increasingly 

dominant in terms of delay, area, power, thermal, and reliability in the deep submicron 

regime.  Second, one wants to reduce congestion in the routing.  Because of finite 

routing resources, some areas in the chip can be congested with trees and become fully 

occupied.  Consequently, interconnects might have to detour from the congested 

region.  Furthermore, congestion can cause hotspots in the chip, and even cause a 

design to be unrouteable.   Third, it is desirable to minimize the number of vias (ie. 

bends in the route).  This is because vias increase manufacturing cost, decrease 

fabrication yield, and generate higher circuit delay.  Finally, in deep submicron regime, 

power consumption of interconnects can no longer be ignored.  Thus, an important 

objective is to minimize the power consumed by the IR drop.  Note that one 

optimization objective might conflict with another.  For instance, to avoid congestion 

one might need to use the non-optimal length route.  This would conflict with the 

objective of reducing wirelength.   

 

2.8 Summary 

This chapter formulated the global routing problem and various routing 

methodologies, including sequential routing, integer programming routing and linear 

relaxation, hierarchical and multi-level routing, and generating routing trees.  We also 

explained the various conflicting optimization metrics involved in solving routing 

problems.  The need for a more efficient routing method that allows for routability 

detection and globally optimal solution was shown.  The next chapter will discuss how 

to address these problems, by means of formulating the problem as an optimization 

problem and applying various optimizations. 
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3 Global Routing Problem Formulation 
In general, the routing problem consists of determining how to formulate paths 

from a source node to a destination node, subject to various constraints such as via 

bends, congestion, and wirelength [3].  Usually, multiple possible routes, called trees, 

are generated for each net.  The problem is to determine which tree to select for the 

nets, subject to various constraints and objectives.   

 

Essentially, the routing problem is a combinatorial problem, where one needs to 

make a decision of choosing a tree or not (1 or 0) for a particular net.  As shown in 

section 2.3, this problem can be formulated as an integer programming (IP) problem.  

This allows the designers to obtain a global optimal solution.  This chapter will 

describe the process of the actual linear relaxation of the IP problem.  Furthermore, 

methods to solve the relaxed problem more efficiently, such as using the interior point 

method, parallel linear solvers, preprocessing, and optimization algorithms are 

described to further speed up the computation time.  Lastly, randomized rounding is 

described to obtain integer solution from the fractional solution.  

 

3.1 Modeling the Routing Problem 

A sample of a routing problem can be seen in Figure 13.  Each pair of source and 

destination nodes forms a net.  The routing problem consists of determining which of 

the trees to use for each net in the circuit.  This problem can be formulated as an 

integer programming problem. 

 

 

Figure 13 - The routing problem consist of deciding which tree to select to connect 

the source and destination node. 

 

The integer programming formulation can be linearly relaxed to linear 

programming (LP) problem for more efficient solving.  As suggested in [1], a routing 
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problem with n trees, t nets, and p edges can be formulated as an LP problem as follows:  

 

Model 1 

 

The variable yj is the decision variable representing whether the tree j is selected or 

not.  The weights bj determines how preferable the corresponding tree is.  Constraint 

1.1 restricts that only 1 tree can be selected for a particular net, and Constraint 1.2 

restricts that the congestion for a particular edge on the routing would not go over value 

ci.  Originally, yj should be binary variables, with yj=1 representing tree j being 

selected, and yj=0 representing tree j not being selected.  Since this is a relaxed version 

of the IP problem, it is possible to have non-integer values for yj.  We want to confine 

the values of yj to be between and including one and zero.  Forcing yj to be less than or 

equal to 1 is done implicitly with the Constraint 1.1, where forcing yj to be greater or 

equal to zero is done explicitly by the Constraint 1.3.  When yj has a non integer value 

between one and zero, it defines how much it is preferred in the tree selection.  For 

instance, yj = 0.6 and yk = 0.1 implies that one would likely select tree j over tree k. 

 

Model 1 hardcodes the congestion constraints into the right hand side of the 

inequality.  What one might want to do is to dynamically determine the congestion 

limit needed, based on a trade off between congestion and other objectives such as 

wirelength and number of via bends.  This is the model proposed by [2].  With �k 

being the set of nets (ie. k=1 represents net 1), and there are t nets, n trees, and p edges, 

the model is:  
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Model 2 

 

In this model, wlj, wbj, and βz are the weights for the wirelength, number of via 

bends, and congestion, whereas Zmax represents the maximum congestion in the system. 

aij represents whether tree j occupies edge i.  This model has several advantages.  

Firstly, the various conflicting objectives can be modeled in the objective function.  

Second, the determination of Zmax’s value is guided by the corresponding weight of Zmax 

in the objective function.  The maximum congestion needed can be dynamically 

calculated in the problem instead of hard coded.   

 

This model can be translated to matrix form as shown in Figure 14.  The matrix A 

represents the left hand side of the constraints from Model 2.  Each of the first n 

columns represents yj (the trees), and the last column represent the variable Zmax.  The 

first t rows of the matrix represents Constraint 2.1, which states that for each of the t 

nets only one tree can be chosen.  The subsequent p rows represents Constraint 2.2, 

which states that the congestion of each of the p edges is less than or equal to Zmax.  The 

last n+1 rows represents Constraint 2.3, which states that all the yj and Zmax variables 

have to be greater or equal to zero. 
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Figure 14 - Model 2 translated in Matrix form. 

 

3.2 Karmarkar’s Interior Point Method 

As suggested in [2], we can relax the IP routing problem to a LP problem, and solve 

it using interior point methods.  The advantage in solving the problem this way is that 

the number of iterations required is independent of the problem size, and it is a 

polynomial time algorithm [2].  In contrast, the standard Simplex algorithm for solving 

LP problems can require an exponential number of iterations, although typically it is 

polynomial in running time.  In practice, the interior point method is polynomial in 

terms of number of trees to choose from, and so the problem formulation is still large in 

size. 
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Interior point methods are used to solve linear programming problems. One of the 

most important breakthroughs in this area is the polynomial-time interior point method 

in [39].  Vanderbei et al. [40] and Barnes [41] developed primal-affine algorithms, 

which use linear transformation instead of projective transformation.  Adler et al. [42] 

developed a dual-affine scaling algorithm, which solve the dual version of the problem 

instead.  Kojima et al. [43] developed a primal-dual interior point algorithm, which 

solves the linear programming problem more efficiently.  Later on, improvements to 

the primal-dual algorithm such as [44] were developed.  The primal-dual algorithm 

merges the constraints of the problem into the objective function by using a logarithmic 

barrier function.  Then, the logarithmic barrier term is decreased at each iteration.  A 

Lagrange-Newton method is then used to solve the problem [45].  To improve the 

efficiency of this method, Predictor-Corrector method in [44] uses higher order terms in 

the Lagrange-Newton method rather than just the first-order term to increase accuracy. 

 

As can be seen from the ILP formulation in section 3.1, there can be many more 

constraints than trees (ie. many edges).  As shown in the left side of Figure 15, the 

Simplex algorithm can be slow in solving such problems, because the iteration jumps 

from one constraint corner point to another [2].  If the number of constraints is large, 

the solution time will be inefficient.  In contrast, as can be seen from the right side of 

Figure 15, the interior point method iteratively traverse from one point in the interior of 

the constraint area to another.  Initially, a feasible solution is determined that is within 

the constrained area.  Spheres are created inside the constrained area, and a nonlinear 

transformation is used to project to the next interior point.  This iterative process 

continues until the difference between the product Ay and the vector b (ie. the error) is 

small enough [39].  Furthermore, research in [46] shows that the interior point method 

can be adapted to construct ellipsoids instead of spheres to accelerate the interior point 

projection.   
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Figure 15 - Two iterations of the Simplex method (left), and interior point method (right) [2]. 

 

This thesis uses Karmarkar’s dual-affine version of the interior point algorithm [42] 

to solve linear systems such as the Model 2 introduced in section 3.1.  Let c be the 

coefficients of the objective function such that we are trying to minimize the vector 

product c x, exitCriterion be some number we set to indicate the criterion for exiting the 

iterations, x
0
 and γ be given such that: 

 

Ax
0
 < b, 0< γ<1 

 

The algorithm runs as follow: 

 

k=-1 

do { 

k = k+1 

v
k
 = b - Ax

k
 

Dk = diag {v1
-k

, v2
-k

, .., vm
-k

} 

dx = (A
T
Dk

2
A) 

-1 
c

 

dv = -A dx 

α = γ min{ -vi
k
/dvi | dvi<0, i=1..m} 
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x
k+1

 = x
k
 + α dx 

exitCondition = |c
T
x

k+1
 - c

T
x

k
| / |c

T
x

k
| 

} until (exitCondition< exitCriterion) 

 

 The initial point x
0
 is defined as: 

 

xj
0 < cmin / rowmax, j=1..n 

cmin = min{ ci } 

rowmax = the maximum number of trees that can occupy any edges in any nets. 

 

As can be seen from the algorithm, at each iteration the linear system: 

 

dx = (A
T
Dk

2
A) 

-1 
c

 

 

needs to be solved.  This step is required to find the projection to the ellipsoid’s 

boundary.  As solving this linear system requires a large amount of computation, this 

step becomes the bottleneck in the interior point iteration.  Since the algorithm might 

iterate 20 to 40 times [2], to solve this linear system efficiently it may be useful to 

utilize a parallel solver.  

 

3.3 Previous Work on Parallel Solvers 

When one analyzes the linear system that comes from interior point solving a 

routing problem: (A
T
Dk

2
A) dx = c, it can be noted that Dk

2
 only has values on the 

diagonal.  Thus, A
T
Dk

2
A is symmetric positive definite if A is full row rank [2].  This 

is an important property to consider when deciding which technique to use to solve this 

linear system.  In the past, there were attempts to use alternatives other than Cholesky 

factorization and Gaussian elimination to solve this type of linear system.  For instance, 

in the research in [2], a Conjugate Gradient (CG) approach using an incomplete 

factorization method to obtain the preconditioner was used.  In the past, there were 

various attempts at parallelizing the CG algorithm.  Unfortunately, most of the 

research has been done on how to parallelize for specific structures of the A matrix 

which are not applicable to our problem.  For instance, [47] looks at sparse 

block-tridiagonal matrix, and concluded that under a message passing parallel 

architectures, ordering of the matrix needs to be done for a parallel version of CG to be 

scalable.  Decker et al. [48] investigated a parallel CG approach for dynamic 

simulations in power systems, which is also in block-tridiagonal matrix form.  In [49], 

attempts to reduce synchronization overhead in the CG algorithm were also proposed.  

Jordan and Bycul [50] investigated the effect of parallelizing the CG algorithm by using 

a row-based distribution for the dense matrix and vector.  Later on, [51] investigated 

the effects of the same approach for sparse matrix, using a storing mechanism such that 

only non-zero entries are recorded.  It was concluded that for a distributed memory 
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system, the speedup is less than one because the communication cost was too high for 

sparse matrices.   

 

Bycul et al.’s [51] empirical results were based on really sparse matrices, with one 

test problem being a six-diagonal matrix.  One of the main reasons for the unsuccessful 

results were due to the extremely high sparsity of the matrix, causing the 

communication cost to far exceed the calculations required.  However, for the problem 

we are trying to tackle, the sparsity is not as severe as the tested problem.  One sample 

of the sparsity pattern in the A
T
Dk

2
A matrix can be seen in Figure 16, for a routing 

problem size of 262 variables (trees).  As can be seen from the sparsity pattern, the 

matrix is sparse but it still contains a fair amount of non-zeros (14.57% non-zero 

entries).  This means there is a higher chance for us to utilize the benefits of parallel 

computing with incurring much communication cost.  Moreover, the machine used for 

this work is a shared memory multi-processor system, which will further mitigate the 

effects of the communication cost. 

 

Figure 16 - Sparsity pattern of the A
T
Dk

2
A matrix, with problem size of 262 rows. 

 

A successful parallel solver for sparse linear systems with symmetric positive 

definite matrix is the PSPASES (Parallel SPArse Symmetric dirEct Solver) package[8].  

The fill reduced ordering uses a parallel multilevel nested dissection algorithm [52], 

which gives orderings appropriate for parallel factorization.  The symbolic and 

numerical factorization phase uses a parallel multifrontal Cholesky factorization [53], 

which has been shown to be scalable and efficient.  The PSPASES implementation 

details can be seen in [54].  It allows any library which follows the MPI (Message 

Passing Interface) standard to be used for communication, and any BLAS (Basic Linear 

Algebra Subprograms) library to be used for vector and matrix operations.  The 

parMETIS package is used to perform parallel graph partitioning and fill-reduced 

ordering.  Since the PSPASES package has not been used to solve the routing problem 

using the linear programming formulation in the past, it is worthy to examine the 

effectiveness of utilizing this package on solving the interior point loop. 
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3.4 Optimization Efficiencies 

This section explains techniques that allow speeding up the solving time of the 

interior point method.  Section 3.4.1 discusses the Remove Constraint Optimization, 

and section 3.4.2 explains a preprocessing technique to reduce the size of the problem 

before starting to solve. 

 

3.4.1 Remove Constraint Optimization (RCO) 

To speed up the iteration time of interior point method, a method was proposed in 

[2] to reduce the problem size as we iterate through the algorithm.  The idea is that as 

we progress through the iterations, the yj values are assumed to be getting closer to the 

solution.  In such case, one can determine which congestion constraints will be 

inactive and remove them.  For instance, with y1 = 0.2, y2 = 0.8, y3 = 0.6, Zmax=1.7: 

 

y1 + y2
 
< Zmax => (0.2+0.8) < 1.7 

y1 + y2 + y3
 
< Zmax => (0.2+0.8+0.6) < 1.7 

 

We can see that the first constraint is not active, as the sum of y1 and y2 is not close 

to Zmax.  Assuming that we have progressed enough through the iterations, the yj values 

may have stabilized to a point such that there would not be major changes in the values.  

In such a case, by removing such non-active constraints, one can reduce the size of the 

problem and speed up the iterations [2].  Since exitCondition indicates the amount of 

progress from one iteration to another, when exitCondition is small, it indicates that one 

is getting closer to the solution.  Thus, exitCondition is a good indicator for when one 

can start to remove non-active constraints.  This threshold needs to be determined 

experimentally.  If exitCondition is too large (ie. the interior point loop is still making 

progress in large steps), constraints might be incorrectly removed because the solution 

has not settled yet.  If exitCondition is too small, then there will be time wasted when 

the interior point method is calculating with unnecessary constraints. 

 

It is also necessary to determine the condition for when to remove a certain 

constraint.  In [2], since Model 1 in section 3.1 is used, a hard coded value was used for 

determining this condition.  An interpretation of its method is that when any row j of 

Constraint 2.2 has aijyj less than a certain value (say 50), then row j can be removed. Ie. 
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However, since the model used in this research is the dynamic constraint model 

(Model 2), this method would not be applicable.  This is because Zmax is a constantly 

changing value, therefore one cannot hardcode a value without knowledge of what Zmax 

would be like relative to the congestion until the solver is finished.  A better remove 

condition would be if the slack (difference between Zmax and the congestion) is greater 

than a certain percentage of Zmax, then the constraint can be removed.  

(Constraint 2.2) 0max

1

<<−∑
=

Zya
t

j

jij  

↓  

Remove Condition: max

1

Zya
t

j

jij <<∑
=

 

↓  

Remove Condition: <−∑
=

t

j

jij yaZ
1

max ConstraintTolerance 

where ConstraintTolerance = *maxZ ConstraintTolerancePercentage 

  

So, in this example, if ConstraintTolerancePercentage=20%, Zmax=50, then a 

constraint row j is removed when the difference between Zmax and congestion is more 

than 10 (20% of Zmax).  This ConstraintTolerancePercentage value needs to be 

determined experimentally.  If the ConstraintTolerancePercentage is set too high, the 

constraints that are actually active and necessary will be incorrectly removed.  If the 

value is set too low, there would be constraints left that could be removed.   

 

3.4.2 Preprocessing 

Before the routing problem is fed into the interior point method, various 

preprocessing techniques can be applied to reduce the size of the matrix A.  The goal is 
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to reduce the matrix size as much as possible to shorten the interior point method’s 

computation time.  By default, most solvers such as CPLEX would apply many 

preprocessing techniques.  The goal in this section is to examine techniques that 

require knowledge of the routing problem itself.   

 

Hare et al. [7] discussed a property that can be utilized to reduce matrix A.  Firstly, 

it utilizes a classical preprocessing technique of removing singleton trees, which 

already reduces the size of matrix A.  If there is only one tree generated for a particular 

net (singleton tree), then this tree and the according constraints can be removed, 

because the net has to pick this tree for routing.  Then, it utilizes a property derived 

from removing the singleton tree to further reduce the matrix size.  Using Model 2 

from section 3.1, the operations are as follow: 

 

1. Find rows in Constraint 2.1 ( 1=∑
∈ k�jy

jy ), such that there is only one yj=1 

(singleton trees).  Say these m singleton trees exist, ie. the set 

=∀= jjTk { singleton tree}. We set yj=1 for all j in Tk.  (We are picking all 

the singleton trees as our choices.) 

2. Remove Constraint 2.1 and Constraint 2.3 for these trees. 

3. Since we are going to use these singleton trees, the singleton trees are going to 

create congestion.  Before we remove these singleton trees from the matrix A, 

we need to put the congestion that these trees occupy into the constraint.  

Therefore, in Constraint 2.2 ( piZya
n

j

jij ..1,0max

1

=≤−∑
=

), for all i, subtract aik 

from the right hand side, where k is in set Tk.  Ie.  

(Constraint 2.2) piZya
n

j

jij ..1,0max

1

=≤−∑
=

 

↓  

piaZya
k

k

Tk

ik

n

Tj
j

jij ..1,0max

1

=−≤− ∑∑
∈

∉
=

 

↓  

piaZya
k

k

Tk

ik

n

Tj
j

jij ..1,max

1

=−≤− ∑∑
∈

∉
=

 

 

4. We can now remove the singleton trees from the matrix.  Since the appropriate 

rows are removed from Step 2, we now only need to remove the columns that 

represents these singleton trees.  We remove all columns k where k is in set Tk 
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from the matrix A. 

5. From the resulting relationship in Step 3, [7] noticed the following:  

piaZ

aySince

piaZ

piayaZ

piaZya

k

k

k

k

k

k

Tk

ik
i

ijj

Tk

ik

Tk

ik

n

Tj
j

jij

Tk

ik

n

Tj
j

jij

..1,max

0,0

..1,

..1,

..1,

max

max

1

max

max

1

=








≥∴

↓

≥≥

=≥

↓

=≥−

↓

=−≤−

∑

∑

∑∑
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∈
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∈
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=

∈
∉
=

 

 

6. From Step 5, a lower bound of Zmax is obtained.  It states that the maximum 

congestion Zmax has to be greater than the maximum congestion on any edge i 

that is occupied by the set of singleton trees Tk.  This allows us to remove any 

edge constraint (Constraint 2.2) for which the maximum congestion is less 

than the maximum edge congestion that is created by the singleton trees.  

Suppose S is all set of {yj} such that {yj} is a valid combination of tree choices, 

ie. only one tree is chosen for each net.  Emax i, the maximum congestion of a 

particular row i of Constraint 2.2, is calculated as follow: 









= ∑
=

∈

n

j

jij
Sy

yaE
j

i

1

max max  

7. Let Cmax be the maximum congestion caused by the singleton trees on any 

edges.  From Step 5 and 6, the constraint elimination criteria is summarized as 

follow: 

a) pi

CZ

aCLet
kTk

ik
i ..1

max

maxmax

max =

≥∴









= ∑
∈  

b) (Constraint 2.2) 0max

1
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=
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n

j

jij  



 

 29 

maxmax

1
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1

ZEya

Zya

i
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n
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jij
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j

jij
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↓

≤

↓

∑

∑
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  c) maxmaxmax ZCEif
i

≤<∴  

Remove Row i. 

 

3.5 Randomized Rounding 

At the end of the interior point loop, the solution obtained is not strictly boolean.  

Trees that are more favourable than others will receive a higher yj value, but these 

values will still be less than 1.  To make a final pick on the trees out of these yj values, 

randomized rounding needs to be performed to round the values to either 1 or 0.  For 

each net, the probability of one of the trees j being selected will be based on the yj 

values.  The bigger the yj value, the higher the probability of being chosen.  The 

randomized rounding algorithm is given in Figure 17.   

 

Randomized Rounding Algorithm 

For each net i 

    If one of the tree values=1, then just select this tree and go to next net. 

    sum=0 

    r= generated random number between 1 and 0 

    For each tree j in net i 

        sum+=yj 

        if ( sum>=r ) then 

            Pick tree j 

            Go to next net. 

        end 

    End 

End 

Figure 17 - Randomized Rounding Algorithm. 

 

3.6 Summary 

This chapter explained how to model the routing problem as an optimization 

problem.  Furthermore, past research on solving this formulation efficiently are 

discussed, including parallel solvers, Remove Constraint Optimization, and 
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preprocessing.  The next chapter will look at two new optimizations, and how they can 

improve the solving time for the routing problem. 
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4 Bew Optimization Routing Model 

4.1 Modified Model 

The multi-objective dynamic Zmax model (Model 2) described in 3.1 was 

implemented for the purpose of this research.  To translate the model in the form Ay<b, 

Constraints 2.3’s equality is transformed: 

 

yj ≥ 0 => -yj < 0 

 

Since the problem benchmarks have the objectives in the minimization format, to 

utilize interior point method (which solves a maximization problem) one needs to 

convert the benchmarks from a minimization problem to a maximization problem.  In 

the process of the conversion, we discovered that there are actually a few steps involved.  

Firstly, one needs to negate the weights in the objective function: 

 

Min ∑ wj yj => Max ∑ (-wj) yj   (a) 

 

Second, we have to solve the relaxed the problem from IP to LP.  Originally, since 

we want to select one tree, the Constraint 2.1 was formulated as (these constraints are 

“active” constraints, the equality is same as inequality):  

 

∑ yj = 1 => ∑ yj ≤ 1 

 

The problem with this is that with the objective function in (a), assuming that the 

overall coefficients for each yj is negative, the algorithm will try to push all the yj to zero, 

to achieve the maximum objective function.  This is because 0≤yj≤1, and so 

-∞≤objective function≤0.  In another words, to achieve the maximum objective 

function value the algorithm will push all the yj to zero to get the most non-negative 

objective value.  However, what we really want to do is to ensure that at least one tree 

is selected for each net.  To enable this, we need to change Constraint 2.1 in Model 2 

to: 

 

∑ (-yj) ≤ -1  (Constraint 2.1a) 

 

Doing so would prevent all of the trees to go to zero simultaneously, because with 

such constraint at least one xj value has to be greater than one for each net.   

 

Originally, as described in section 3.2, we calculate our initial point for interior 

point method by: 

 

y
0

j < cmin / rowmax, for all j 
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The logic behind this is to find a y
0
 value such that y

0
 would not violate Constraint 

2.2.  (i.e. the sum of the congestion for any edges would not be over the maximum 

congestion allowed.)  However, our implementation uses Model 2, where the Zmax is 

dynamically calculated.  Thus, a value for cmin (minimum congestion limit) can not be 

obtained initially.  More importantly, this method of initial point generation guarantees 

that y
0
 < 1, because rowmax > cmin.  Having y

0
<1 could possibly violate our new 

constraint Constraint 2.1a.  For instance, if yj
0
=0.1 for all j, then ∑ (-xj) = 

-(0.1+0.1)=-0.2 is not less than -1.  This violates Constraint 2.1a and consequently 

will make interior point method unable to converge.  Thus, the proposed new initial 

point generation method is: 

 

y
0

j = 1.1, for all j 

Zmax = max congestion caused by the initial point y
0
 

  

The y
0
 values will ensure that the initial point is a feasible solution subject to 

Constraint 2.1a, where as the Zmax value will ensure that Constraint 2.2 would not be 

violated. 

 

Finally, it should be mentioned that the yj solution we obtained from solving the 

relaxed LP model can contain non-integer values.  Although we expect most values to 

go to either 1 or 0, if there are trees that have equal weights, they will share the same 

non-integer value between zero and one.  Thus, to convert back to an integer solution, 

a randomized rounding approach as specified in [4] is performed. 

 

4.2 Remove Tree Optimization (RTO) 

Using the same line of logic with the remove constraint optimization (RCO) 

described in section 3.4.1, another optimization approach is proposed here.  The idea is 

that as we progress through the iterations, yj is going to get closer and closer to the 

optimal solution.  Thus, we don’t expect a great variation in the values of yj.  So, once 

the yj values have stabilized enough, the trees with small yj values should be removed.  

This is summarized as follow: 
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Algorithm 3.2 version 1) 

For each net, do { 

for each tree in current net, do { 

 if (yj < 0.1) { 

  Remove: 

o the column in matrix A and row in vector y representing the tree 

o the row in matrix A and vector b that corresponds to constraint 3 of that tree. 

} 

 } 

} 

 

In this case, vector b is the values of the right hand side of the constraints.  

Essentially, we are removing from the problem the trees that we think are going to be 

unselected.  This will reduce problem size and reduce the iteration time.  However, 

there is one problem with this formulation.  If even the most preferable tree(s) has 

values less than 0.1, then we will remove all possible trees for the current net from the 

problem, and no trees will be chosen.  This can occur in a scenario such as the 

following: 

 

Ex. 3.2a) 

Objective: Min –y1-y2-….-y19-y20 

Subject to:  

-y1-y2-…-y19-y20<-1 

yj>0, for j = 1..20 

 

 In this case, since all the weights for the yj are equal, all the trees are equally 

preferable.  Since the sum of yj can have a max value of -1 (subject to Constraint 2.1a), 

the trees will share this max value equally.  This means that yj = 1/20 = 0.05 for all j.  

This scenario gives rise to two problems:  

 

1.) The tree with the max value for this net is less than 0.1.   

2.) There are more than one tree that contains the max value for current net. 

 

If we apply the remove tree optimization (RTO) to this problem, we will remove all 

possible trees for this net.  To solve problem 1.), we need to check that the tree(s) with 

the max value for this net will not be removed.  For problem 2.), since all the trees with 

the max value for current net are equally preferable, we will just randomly select the 

last tree in the net and remove all the other nets with the same max value.  This step 

actually involves a bit of work.  Since we are also removing the corresponding yj 

values, Constraint 2.1a can be violated.  For instance, in Ex 3.2a), say we are at the 

point when yj=0.1 for all j.  If we remove tree 1 to 19, we are left with y20 = 0.1, so 

Constraint 2.1a is violated, because -0.1 is not less than -1.  Thus, what we want to do 
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is that as we remove the trees, we should add its values to the tree that is going to be 

selected, so that Constraint 2.1a would not be violated.  This give rise to the second 

version of Algorithm 3.2: 

 

Algorithm 3.2 version 2) 

For each net, do { 

maxOfCurrentBet = max { yj | j for current net }; 

if (more than 1 tree for this net has value=maxOfCurrentBet) { 

 treeToSelect = (a tree with value == maxOfCurrentBet); 

  for each tree, do{ 

   if (current tree<0.1 ABD current tree ≠ treeToSelect) { 

    Add current tree’s yj value to treeToSelect’s yj; 

    Set current tree’s yj = 0; 

} 

} 

maxOfCurrentBet = ytreeToSelect; 

} 

for each tree in current net, do { 

  if (yj < 0.1 ABD yj ≠maxOfCurrentBet) { 

   Remove: 

o the column in matrix A and row in vector y representing the tree 

o the row in matrix A and vector b that corresponds to constraint 3 of that tree. 

} 

   } 

} 

 

However, there is one problem with Algorithm 3.2 version2.  Since we have 

increased the yj value of the tree treeToSelect, we could violate Constraint 2.2.  

Consider the following scenario: 

 

Ex.3.2b) 

Objective: Min –y1-y2-….-y19-y20+Zmax 

Subject to:  

-y1-y2-…-y19-y20<-1 

-y20-Zmax<0 

yj>0, for j = 1..20 

 

Suppose yj has values of 0.1, and Zmax=0.2.  When we remove tree j=1..19, we add 

their values to y20.  The updated values are y20=1.  In such case, the constraint 

-y20-Zmax<0 is violated.  Essentially, as we increase the value of the tree that is going to 

be selected, we need to increase the value of Zmax as well.  The value of Zmax will be 

readjusted to the appropriate value at the subsequent iteration.  This gives the version 3 
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of the RTO: 

 

Algorithm 3.2 version 3) 

For each net, do { 

maxOfCurrentNet = max { yj | j for current net }; 

if there are more than 1 tree with value =maxOfCurrentNet for this net { 

 treeToSelect = (a tree with value == maxOfCurrentNet); 

  for each tree, do{ 

   if (current tree<0.1 AND current tree ≠ treeToSelect) { 

    Add current tree’s yj value to treeToSelect’s yj; 

Add current tree’s yj value to Zmax; 

    Set current tree’s yj = 0; 

} 

} 

maxOfCurrentNet = ytreeToSelect; 

} 

for each tree in current net, do { 

  if (yj < 0.1 AND yj ≠maxOfCurrentNet) { 

   Remove: 

o the column in matrix A and row in vector y representing the tree 

o the row in matrix A and vector b that corresponds to constraint 3 of that tree. 

} 

} 

} 

 

So far, we have only considered removing the trees that are not going to be selected.  

A further optimization is to realize that if there’s only one single tree that has a yj value 

greater or equal to one, this means that tree is going to be selected.  We can remove all 

the trees from consideration, and also remove the corresponding Constraint 2.1a from 

the problem.  However, since we have selected a tree, we would need to subtract the 

congestion caused by the selected tree from the right hand side.  This will ensure that 

our Zmax value took the selected tree’s congestion into account.  Lastly, if more than 

one tree has a value greater than or equal to one, then we don’t apply this optimization, 

and just proceed with removing the unselected tree.  This gives the final version of the 

RTO: 
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Algorithm 3.2 Remove Tree Optimization (RTO) 

For each net, do { 

maxOfCurrentNet = max { yj | j for current net }; 

removeAll = false; 

if there’s one and only one tree that satisfy maxOfCurrentBet>=1 { 

  removeAll=true; 

} else { 

if there are more than 1 tree with value=maxOfCurrentNet for this net { 

 treeToSelect = (a tree with value == maxOfCurrentNet); 

  for each tree, do{ 

   if (current tree<0.1 AND current tree ≠ treeToSelect) { 

    Add current tree’s yj value to treeToSelect’s yj; 

 Add current tree’s yj value to Zmax; 

    Set current tree’s yj = 0; 

} 

} 

maxOfCurrentNet = ytreeToSelect; 

} 

} 

for each tree in current net, do { 

 if (removeAll==true OR (yj < 0.1 ABD yj ≠maxOfCurrentBet) ) { 

   Remove: 

o the column in matrix A and row in vector y representing the tree 

o the row in matrix A and vector b that corresponds to constraint 3 of that tree. 

} 

} 

if (removeAll==true) { 

Remove the row in matrix A and vector b that corresponds to constraint 1a. 

Subtract the congestion occupied from selected tree in vector b. 

} 

} 

 

 Obviously, since we removed trees during the optimization, one would need to put 

back the removed yj (with appropriate zeroes and ones value) back into vector y after 

the convergence of the algorithm.  Second, the optimal exitCondition to apply RTO 

needs to be determined experimentally.  If the RTO is applied too early, incorrect tree 

choices might be made because the solution might not have stabilized yet.  If the RTO 

is applied too late, then unnecessary processing time will be wasted on finalizing 

choices that have been made already.   
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4.3 Required Changes in Randomized Rounding 

In actual implementation, the randomized rounding algorithm needs to be modified 

to work properly.  This is due to the nature of the linear relaxation from integer, and 

also the change in the constraints.  The original algorithm described in section 3.5 is 

provided below for reference. 

 

Randomized Rounding Algorithm 

1.  For each net i 

2.      If one of the tree values=1, then just select this tree and go to next net. 

3.      sum=0 

4.      r= generated random number between 1 and 0 

5.      For each tree j in net i 

6.          sum+=yj 

7.          if ( sum>=r ) then 

8.              Pick tree j 

9.              Go to next net. 

10.         End 

11.      End 

12.  End 

 

The first required modification is to change the condition in step 2.  In actual 

interior point computation, even when one exit as late as exitCondition=1e
-6

, the trees 

that should get values of one never reach this value.  Instead, the value might be a 

fractional value such as 0.99998, since the interior point iterations are approaching the 

actual solution with a margin of error.  In order to take this into account, one can take a 

sufficiently accurate value of 0.9999, and step 2 should be changed to: 

 

2.  If one of the tree values>0.9999, then just select this tree and go to next net. 

 

Second, since constraint 1 is changed to: 

 

∑ (-yj) ≤ -1  (constraint 1a) 

 

yj values can become greater than 1.  Essentially, the yj values are coming from the 

larger values and become smaller as the interior point iteration proceeds.  Thus, step 4 

needs to be modified to reflect the fact that the range for the sum of yj values is not in the 

range {0,1} anymore.  Step 4 should be changed to:  

 

4.  r= (generated random number between 1 and 0) * ( ∑
∈ k�jy

jy ) 

Essentially, instead of having the variable r range equal to {0, 1}, we are now 
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having the range equal to {0, sum of all yj that belong to the current net}.  The 

modified version of the randomized rounding algorithm is given below. 

 

Randomized Rounding Algorithm (Modified) 

1.  For each net i 

2.      If one of the tree values>0.9999, then just select this tree and go to next net. 

3.      sum=0 

4.      r= (generated random number between 1 and 0) * ( ∑
∈ k�jy

jy ) 

5.      For each tree j in net i 

6.          sum+=yj 

7.          if ( sum>=r ) then 

8.              Pick tree j 

9.              Go to next net. 

10.         End 

11.      End 

12.  End 

 

4.4 Parallel Solver for Projection Step 

As described in section 3.2, the bottleneck in the interior point iteration is solving 

the linear system involving A
T
D

2
A.  This thesis also investigated the efficiency in 

using the PSPASES package described in section 3.3 to perform parallel solving on the 

linear system (A
T
D

2
A) dx = - c.  The primary advantage of PSPASES package is that it 

is able to efficiently execute all four steps of direct solving in parallel.  The details of 

the implementation can be found in [54].  Firstly, the fill reduced ordering is done 

using a parallel multilevel nested dissection algorithm [52], in which the problem is 

transformed to a graph and partitioned in a multilevel manner.  Each partition is 

distributed to the different processors and ordered using the multiple minimum degree 

algorithm.  The symbolic and numerical factorization phase uses a parallel 

multifrontal Cholesky factorization [53], where the graph is broken into multi parts 

using the elimination tree associated with the matrix A as a guide.  Each part is then 

factored in different processors.  Finally, the triangular solving is also done in parallel, 

using the elimination tree as a guide.  [54]   

 

The PSPASES package allows any MPI compatible library to be used for 

communication between different processors, and any BLAS library to be used for 

matrix and vector operations.  In our implementation, the GotoBLAS library from 

Texas advanced computing center is utilized for performing vector and matrix 

operations, while the MPICH2 library is used for MPI communication between 

different processors. 
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4.5 Summary 

This chapter introduced the two new optimizations, the Remove Tree Optimization 

and the parallel solver.  The required changes in the model and randomized rounding 

algorithm are also discussed.  In the next chapter, the effects of these optimizations and 

their effects when combined with the optimizations discussed in Chapter 3 will be 

examined. 
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5 Experimental Results 
In this chapter, the effects of the various optimizations discussed in chapter 3 and 

chapter 4 will be examined.  Section 5.1 discusses the optimal exit condition found, 

whereas section 5.2 to 5.5 discusses the effects of applying RCO, RTO, simultaneous 

optimization, and the PSPASES parallel solver. 

 

All of the experiments were executed in Windows Vista’s MATLAB environment, 

on an Intel Core 6300 (Dual CPU) machine at 1.86GHz, with 3 gigabyte of memory.  

All of the coding is done in MATLAB, except the parallel solver PSPASES.  Various 

real routing problems of different number of variables (number of trees) were 

benchmarked.  All obtained solutions are randomly rounded using the method 

described in section 3.5 to finalize tree choices for each net. 

 

5.1 Optimal Exit Condition 

During the execution of the interior point method, the calculated solution proceeds 

closer and closer to the actual solution we are trying to achieve.  From section 3.2, one 

can see that the exit point is determined at the condition exitCondition< exitCriterion, 

where exitCondition = |c
T
x

k+1
 - c

T
x

k
| / |c

T
x

k
|.  In other words, when the progress from 

one interior point loop to another is smaller than a certain exitCriterion, then it means 

that one got really close to the solution and it is appropriate to exit from the loop.  An 

appropriate exitCriterion would allow for early exit (less execution time) and small 

error from the final answer (high accuracy). 

 

To find the optimal exitCriterion when no optimization is applied, experiments 

were ran on four different problem sizes.  The obtained objective function value from 

various exitCriterion is shown in Table 1.  No optimization and preprocessing were 

used, and the obtained solution was randomized rounded at the end.  To set a point of 

reference, the 1e
-6

 solution is treated as the final solution value.  This is appropriate 

because each loop progression step is really small, and the solution is very close to the 

actual solution. 

 

 The percentage difference between solutions at various exitCriterion and the 1e
-6

 

solution is shown in Table 2.  As can be seen from the result, the percentage difference 

is insignificant starting at exitCriterion 1e
-3 

as the problem size increases.  A safe 

optimal exitCriterion when no optimizations and preprocessing are applied is 1e
-4

.  
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Table 1. The obtained objective function value from various exitCriterion, for different problem 

sizes.  Bo optimization and preprocessing, with randomized rounding at the end. 

ProbSize exitCriterion 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 

262 -19.38 -18.38 -18.27 -18.22 -18.30 -18.26 

1670 -31.76 -28.90 -28.72 -28.72 -28.73 -28.73 

2386 -32.20 -29.69 -29.48 -29.49 -29.48 -29.47 

7241 

Obj. Fn. 

-90.02 -84.66 -83.00 -83.00 -83.00 -83.00 

 

Table 2. Percentage difference from 1e
-6

 answer, for various problem sizes. 

% Difference from 1e
-6

 answer exitCriterion 

ProbSize 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 

262 6.17% 0.65% 0.08% -0.23% 0.22% 0.00% 

1670 10.58% 0.59% -0.04% -0.01% 0.00% 0.00% 

2386 9.26% 0.74% 0.04% 0.07% 0.03% 0.00% 

7241 8.45% 1.99% 0.00% 0.00% 0.00% 0.00% 

 

5.2 Remove Constraint Optimization (RCO) Results 

To avoid applying remove constraint optimization (RCO) too early and causes 

instability in the linear system, the RCO is applied starting from exitCondition=1e
-3

.  

The results of applying RCO are verified by checking the objective function value in 

Table 3.  As can be seen from the “Obj. Fn. Variation” row, the results are highly 

accurate.  As well, as the problem size gets larger the timing improves with RCO.  As 

shown in Table 4, the average time per loop required after the remove constraint is 

applied is reduced.  This is because the problem size got smaller after the optimization 

is applied.  For larger problems, the effect of the extra cost of optimization time is 

mitigated, because the time saved from subsequent loops dominates the time savings. 

 

Table 3. Results of solving various problems with and without RCO. 

Probem Size (# of 

variables) 262   1670   2386   7241   

Rmv Constr Opt 

Applied? no yes no yes no yes no yes 

                  

# of Iterations 17 17 22 22 21 21 30 30 

Time executed 0.38 0.41 4.56 4.73 6.12 6.44 160.65 154.89 

Obj. Fn. Value -18.30 -18.24 -28.73 -28.73 -29.48 -29.47 -83.00 -83.00 

Time Improvement   -7.27%   -3.85%   -5.15%   3.59% 

Obj. Fn. Variation   -0.32%   0.00%   -0.02%   0.00% 
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Table 4. Average time per loop before and after RCO. 

Probem Size (# of 

variables) 262 1670 2386 7241 

Avg time/loop before 

remove constr opt 0.02 0.19 0.27 5.19 

Avg time/loop after  

remove constr opt 0.02 0.15 0.23 2.85 

% of time reduced -4.55% 31.03% 17.39% 82.11% 

 

5.3 Remove Tree Optimization (RTO) Results 

As discussed in section 4.2, the optimal exitCondition to apply RTO needs to be 

determined experimentally.  It was determined that the optimal point to apply the 

optimization is when exitCondition=1e
-3

.  Due to the result found in section 5.4, the 

exitCriterion is set at 1e
-4

 when generating these results.  The number of trees that was 

removed is shown in Table 5.  Note that the amount of trees that has been removed is 

over 48% for all problem sizes.  This is a significant amount of reduction, and it 

indicates that only a small percentage of tree choices need to be finalized at this point.  

As can be seen from the timing results in Table 6, timing improved as the problem size 

gets larger.  Even though the computation in the RTO consumes extra processing time, 

the reduced loop time saved after the RTO is applied dominates.  For instance, as can 

be seen from Table 7, for problem 7241 the average time per loop is reduced by a factor 

of 106, due to a significant reduction in the problem size.  However, it would require a 

problem almost double the size (13265), to counter balance the RTO computation time 

and obtain a speedup of 32.74%.   

 

Table 5. Bumber of trees removed with RTO, for different problem sizes. 

ProbSize Bumber of Trees Removed 

262 233 

1670 1434 

2386 1922 

7241 6799 

13265 6353 
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Table 6. Bumber of loops and time required to solve with and without RTO. 

Probem Size 

(# of variables) 262   1670   2386   7241   13265   

Rmv Tree Opt 

Applied? no yes no yes no yes no yes no yes 

                      

# of Iterations 13 21 19 26 17 27 26 31 26 36 

Time executed 0.24 0.52 3.93 5.62 5.01 8.89 136.27 177.31 476.70 320.63 

Obj. Fn. Value -18.26 -18.64 -28.72 -29.69 -29.48 -30.13 -83.00 -84.00 -66.12 -66.75 

Time 

Improvement   -119.22%   -43.00%   -77.45%   -30.12%   32.74% 

Obj. Fn. 

Variation   2.08%   3.38%   2.20%   1.20%   0.95% 

 

Table 7. Comparison of loop time before and after RTO. 

Probem Size (# of 

variables) 262 1670 2386 7241 13265 

Avg time/loop before 

remove tree opt 0.02 0.19 0.27 5.04 4.78 

Avg time/loop after remove 

tree opt 0.03 0.03 0.04 0.05 0.48 

% of time reduced -35.00% 540.00% 677.14% 10623.40% 895.83% 

 

5.4 Simultaneous Optimization 

The objective values obtained from applying simultaneous remove tree, RCO, and 

preprocessing on different problem sizes are shown in Table 8, for exit conditions from 

1e
-1

 to 1e
-6

.  Randomized rounding was used at the end.  From the results of section 

5.2 and 5.3, the remove constraint and RTO is applied at condition=1e
-3

.  The 

percentage difference of the resulting objective function value from the 1e
-6

 objective 

function value is shown in Table 9.  As can be seen from the table, the exit condition in 

which zero error from the 1e
-6

 value is achieved is at 1e
-4

.  This indicates that the 

exitCriterion can be set at 1e
-4

. 
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Table 8. Objective function value for different problem sizes, from exitCondition 1e
-1

 to 1e
-6

. 

ProbSize exitCondition With Optimzation? 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 

262 N -19.23 -18.31 -18.30 -18.62 -18.62 -18.62 

 Y -19.38 -18.38 -18.27 -18.22 -18.30 -18.26 

1670 N -29.99 -28.87 -28.73 -29.69 -29.69 -29.69 

 Y -31.76 -28.90 -28.72 -28.72 -28.73 -28.73 

2386 N -30.92 -29.57 -29.49 -30.13 -30.13 -30.13 

 Y -32.20 -29.69 -29.48 -29.49 -29.48 -29.47 

7241 N -86.82 -84.31 -83.00 -84.00 -84.00 -84.00 

 

Obj. Fn. 

Y -90.02 -84.66 -83.00 -83.00 -83.00 -83.00 

 

Table 9. Percentage difference in objective function, wit exitCondition=1e
-6

 as reference. 

% Difference from 1e-6 value exitCondition 

ProbSize 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 

262 3.26% -1.68% -1.72% 0.00% 0.00% 0.00% 

1670 1.02% -2.76% -3.24% 0.00% 0.00% 0.00% 

2386 2.64% -1.85% -2.12% 0.00% 0.00% 0.00% 

7241 3.35% 0.36% -1.19% 0.00% 0.00% 0.00% 

 

The number of loops and the time required to solve different problems are given in 

Table 10.  From the data it can be seen that the required number of loops increase when 

the optimizations are applied.  This is because when the matrix A is modified by 

removing constraints and trees, the left-over yj now contributes a greater portion on the 

exitCondition, and thus the interior point method needs time to arrive at the same 

exitCondition again.  Consequently, it would require more iterations to settle down.  

However, since the matrix size is now significantly smaller, each iteration requires 

much less time to complete.  Thus, as can be seen from Table 11, even though the 

number of loops increases, the time required to obtain a solution is decreasing as the 

problem gets larger.  For the tested problems, in the case of exitCondition=1e
-4

 the 

solving time can reduce by up to 48%.  This is because a significant number of rows 

and columns are removed from the matrix A.  As shown in Table 12, the total number 

of inactive constraints, unchosen trees, singleton trees, and unneeded constraints 

contributes to a big portion of the original matrix A.  In the case of problem size 7241, 

the total number of rows reduced is near 75% of the original matrix.  In addition, in 

RTO and remove singleton trees portion of the preprocessing operation, columns of 

matrix A are reduced as well.  This further reduces the size of matrix A and thus the 

interior point loop time. 
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Table 10. Bumber of loops and solving time, for different exitCondition and problem sizes. 

ProbSize With Optimzation? exitCondition 1e-04 1e-05 1e-06 

nCounts 13 15 17 N 

t (sec.) 0.29 0.34 0.38 

nCounts 24 26 27 

262 

Y 

t (sec.) 0.68 0.75 0.78 

nCounts 19 21 22 N 

t (sec.) 3.76 4.14 4.34 

nCounts 26 29 31 

1670 

Y 

t (sec.) 3.19 3.32 3.41 

nCounts 17 19 21 N 

t (sec.) 4.94 5.48 6.02 

nCounts 28 30 32 

2386 

Y 

t (sec.) 3.58 3.68 3.79 

nCounts 26 28 30 N 

t (sec.) 134.23 144.18 154.14 

nCounts 33 34 39 

7241 

Y 

t (sec.) 113.46 113.53 113.90 

nCounts 36 43 49 N 

t (sec.) 478.37 566.80 655.38 

nCounts 40 42 44 

13265 

Y 

t (sec.) 246.60 251.60 252.31 

 

Table 11. Percentage difference in number of loops and solving time, relative to no optimization. 

ProbSize exitCondition 1e-04 1e-05 1e-06 

nCounts 84.62% 73.33% 58.82% 
262 

t (sec.) 132.60% 121.93% 105.25% 

nCounts 36.84% 38.10% 40.91% 
1670 

t (sec.) -15.24% -19.75% -21.43% 

nCounts 64.71% 57.89% 52.38% 
2386 

t (sec.) -27.51% -32.75% -37.06% 

nCounts 26.92% 21.43% 30.00% 
7241 

t (sec.) -15.47% -21.26% -26.11% 

nCounts 11.11% -2.33% -10.20% 
13265 

t (sec.) -48.45% -55.61% -61.50% 
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Table 12. Bumber of constraints removed, and percentage relative to original number of rows. 

ProbSize Bumber of rows in Matrix A 01exitConditions 1E-04 % of rows removed 

ConstrRemoved 35 7.32% 

TreesRemoved 169 35.36% 

SingletonTreesRemoved 61 12.76% 

262 478 

UnneededConstrRemoved 32 6.69% 

ConstrRemoved 237 7.87% 

TreesRemoved 1037 34.42% 

SingletonTreesRemoved 397 13.18% 

1670 3013 

UnneededConstrRemoved 342 11.35% 

ConstrRemoved 320 7.10% 

TreesRemoved 1063 23.60% 

SingletonTreesRemoved 865 19.21% 

2386 4504 

UnneededConstrRemoved 343 7.62% 

ConstrRemoved 424 3.93% 

TreesRemoved 5500 51.03% 

SingletonTreesRemoved 1299 12.05% 

7241 10779 

UnneededConstrRemoved 815 7.56% 

ConstrRemoved 1079 4.01% 

TreesRemoved 5831 21.72% 

SingletonTreesRemoved 4336 16.15% 

13265 26845 

UnneededConstrRemoved 6394 23.82% 

 

5.5 Using PSPASES 

The PSPASES package, as described in 4.4, was used to solve the linear system 

involving A
T
D

2
A of various sizes.  The solving of the system consists of four steps: 

ordering, symbolic factorization, numerical factorization, and triangular solve. The 

performance in solving each of the systems is listed in Table 13.  As can be seen from 

the table, the ordering and symbolic factorization time always improves as one switches 

from 2 to 4 processors. However, for numerical factorization phase, only the smallest 

and largest problem has improved performance. Since the running time for the smallest 

problem is negligible, it can be concluded that to benefit from parallel computing, the 

problem size needs to be large to overcome the cost of communication overhead. For 

the tested problems, the triangular solve phase receives no benefits from the additional 

2 processors. However, from Table 14, one can see that for the smallest and biggest 

problem, the total solving time has improved by over 10%.  The total solving time is 

dominated by the ordering and numerical factorization phase. Thus, once both of them 

are improved, the total solving time will be improved as well.  This shows that the 
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parallel solving approach improves the solving time, which confirms the research 

results of other parallel interior point methods that use different methodology for 

different problems.  For example, in [55], [56], and [57], parallel interior point solution 

methods have all shown to provide speedup, especially when the percentage of 

computations that can be done in parallel is high. 

 

Table 13. Execution time for different phase during PSPASES solve. 

 

 

Table 14. Total execution time for PSPASES solve. 

 

 

5.6 Summary 

In this section, the effects of the RCO, RTO, simultaneous optimization, and 

parallel solving are discussed.  It can be seen that these methodologies provide 

efficient speedup.  In the next chapter, the conclusions and future work will be 

presented. 
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6 Conclusions and Future Work 
Normal sequential routing approach does not guarantee a global optimal solution.  

An integer programming approach is able to incorporate multiple conflicting design 

objectives, and achieve globally optimal solution.  One major issue in the integer 

programming approach is to speed up the solving process for more efficient routing.  

This research proposed several ways one can optimize the solving time using interior 

point method.  The results demonstrated that the proposed optimization approaches 

provide acceleration and reduces the solving time.  In section 6.1, the effects of the 

optimizations will be concluded, and their limitations, scalability, and contribution will 

be discussed.  A discussion of future work is presented in section 6.2. 

 

6.1 Effectiveness of Optimizations 

Previous approach of optimizations, namely the preprocessing technique from [7] 

and the RCO technique from [2] are applied to speedup solving the routing problem 

using interior point method.  Using a property derived from [7], constraints that will 

never be violated are removed from the problem to reduce the problem size.  

Furthermore, after the interior point loop has stabilized, the constraints that are unlikely 

to be fulfilled are removed as well. 

 

A further problem-downsizing approach is proposed in this research.  After the 

interior point method has progressed enough, solutions that have stabilized can be 

removed from the problem.  This allows a great number of trees and nets to be 

eliminated from the problem, thereby speeding up the subsequent iterations.  In the 

small routing problems, the timing is worsened by using this optimization, because the 

cost to decide what nets and trees to remove is greater than the time saved by the 

subsequent iteration.  However, it was shown that for large problems, the timing can 

improve by as much as 32.74%, with only 0.95% difference in the objective function 

value. 

 

Combined optimizations of preprocessing, RCO, and RTO has also been shown to 

be effective.  From the experiments, it was shown that there was no instability in 

applying the remove constraint and RTO simultaneously.  Furthermore, the timing can 

be improved by as much as 48% for large problems.  Up to three quarters of the 

problem size can be reduced when the optimization is applied, which accelerates the 

solving time greatly. 

 

The downsizing of the problem not only allowed for time saving, but it can also 

help in memory consumption as well.  Furthermore, if the solver is run on a machine 

with limited memory, significant time savings can be achieved by avoiding a constant 

swap in page files.  
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For the RTO optimization, the amount of time improvement will depend on the 

nature of the problem.  The more trees there are for each net, the bigger the problem 

size.  In such case, RTO will perform particularly well, as it will be able to remove a 

large number of trees.  However, note that for the tested problems, the ratio of the 

number of nets to the number of trees is quite low already.  Thus, it is expected that the 

RTO will almost always guarantee improved results. 

 

The key timing bottle neck in the interior point method is to solve the linear system 

involving A
T
D

2
A.  This research investigated the effects of utilizing an efficient 

parallel solver package to speedup the solving time.  By utilizing the efficient 

GotoBLAS and MPICH2 library along with PSPASES, the solving time can be improved 

due to parallel solving.  It was found that for smaller problems, the communication 

cost dominates and no speedup was obtained.  However, for bigger problems, up to 

11.3% speedup can be achieved by using four processors instead of two.  When the 

problem sizes gets bigger and bigger, utilizing even more processors should allow for 

even greater speedup. 

 

For the parallel solving optimization, the amount of speedup will depend on the 

size of the problem and the number of processors utilized and memory size available.  

Furthermore, it will depend on the computer architecture that the solver is running on.  

A shared-memory machine will have a much better performance than a distributed 

system, as the communication cost during data distribution will be significantly lower.  

As well, if the problem size is too small, then using multiple CPUs will actually has an 

adverse effect on the solving time.  This is because the increase in the communication 

time will be greater than the improvement from performing parallel computations.  

However, for larger problems and assuming a shared-memory system is used, it is 

expected that speedup will always be obtained.  As the problem gets larger, higher 

speedup will be obtained due to ability to utilize higher number of CPUs. It is expected 

that the speedup will reach a limit when one reaches the capacity of the shared-memory, 

and swapping to disk will have to be performed.  In such case, this optimization will be 

significantly slowed down, and one solution will be using a distributed array of 

shared-memory system. 

 

It is difficult to compare the results of this optimized routing method compared to 

other people's research, because of the speed, memory, and architecture variance in the 

testing computers.  However, the important thing from the research is not the absolute 

running speed, but the speedup one can obtain from performing these optimizations.  

Regardless of the implementations, the speedup from the optimization will always be 

there. The main impact from this research is in several ways.  Firstly, a new RTO 

optimization is proposed, which allows for significant reduction in the problem size and 

solving time speedup.  Secondly, the combined effects of the RTO optimization and 
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other previous optimization techniques are shown and have proven to be effective in 

reducing the solving time.  Lastly, the bottleneck of the interior point method is 

parallelized solved, and it is shown that this method is effective in obtaining speedup in 

solving routing problems.  These three areas have not been researched before for 

routing, and it provides a valuable insight into how the routing problem can be solved 

more efficiently, when modeled as an optimization problem.  Since the number of 

transistors is increasing greatly in VLSI design, these optimization techniques will be 

useful in obtaining a multiple constrained globally optimal routing solution in 

reasonable time. 

 

6.2 Future Work 

The work completed in this research can be enhanced to further speedup the solver.  

For instance, there are various standard preprocessing techniques to reduce the size of 

the matrix A before the interior point method is applied.  Obviously, if the structure of 

the matrix is changed, further investigation would be required to understand how the 

RCO and RTO optimization need to be modified.   

 

Problems with up to 10
5
 variables were solved in this research.  It would be 

interesting to see the effects of the optimization on bigger problems, such as problems 

with 10
6
 or more variables.  However, the results of the experiment prove that the 

optimization is scalable.  The RTO optimization actually gives better speedup as the 

problem gets larger.  Also, the effectiveness of the RTO optimization is independent of 

the problem size, as long as the problem is greater than a certain size.  Moreover, the 

speedup of the parallel solving technique increases as the problem size increase.  This 

implies that these two optimizations are scalable to the routing problem size.   
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