
Advanced Interior Point Formulation for the Global

Routing Problem

by

David Chor-Cheung Wong

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

©David Chor-Cheung Wong 2009

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

As the circuit size increases in modern electronics, the design process becomes

more complicated. Even though the hardware design process is divided into multiple

phases, many of the divided problems are still extremely time consuming to solve.

One of these NP-hard problems is the routing problem. As electronics step into the

deep submicron era, optimizing the routing becomes increasingly important.

One of the methods to solve global routing is to formulate the problem as an integer

programming (IP) problem. This formulation can then be relaxed into a linear

programming problem and solved using interior point method. This thesis investigates

two new approaches to optimize the speed of solving global routing using Karmarkar’s

interior point method, as well as the effect of combining various optimizations with

these new approaches. The first proposed approach is to utilize solution stability as the

interior point loop converges, and attempt to remove solutions that have already

stabilized. This approach reduces the problem size and allows subsequent interior

point iterations to proceed faster. The second proposed approach is to solve the inner

linear system (projection step) in interior point method in parallel.

Experimental results show that for large routing problems, the performance of the

solver is improved by the optimization approaches. The problem reduction stage

allows for great speedup in the interior point iterations, without affecting the quality of

the solution significantly. Furthermore, the timing required to solve inner linear

system in the interior point method is improved by solving the problem in parallel.

With these optimizations, solving the routing problem using the IP formation becomes

increasingly more efficient. By solving an efficient parallel IP formation rather than a

traditional sequential approach, more efficient optimal solutions which incorporate

multiple conflicting objectives can be achieved.

 iv

Acknowledgements

I am greatly thankful for all the assistance, guidance, and unlimited support from

my supervisor, Dr. Tony Vannelli. Without his knowledge and guidance this thesis

would not have been possible. I would also like to thank Dr. Catherine Gebotys and Dr.

Miguel Anjos for their help and guidance throughout this process. Lastly, special

thanks to Philip Regier, who have provided invaluable technical assistance with his

insight and patience.

 v

Table of Contents

List of Tables ... vii

List of Figures .. viii

1 Introduction ..1

1.1 Background ..1

1.1.1 Digital Circuit Design Flow ...1

1.1.2 Partitioning, Placement, and Routing...3

1.2 Research Motivations ...6

1.2.1 Global Routing ...6

1.2.2 Solving the Linear System Generated by Routers6

1.2.3 Overview of Proposed Research ..7

1.3 Thesis Contributions ..7

1.4 Thesis Organization..8

2 Routing Background and Methodologies...9

2.1 Global Routing ...9

2.2 Sequential Routing ...9

2.3 Integer Programming Routing..11

2.4 Linear Relaxation ...12

2.5 Hierarchical and Multi-level Routing ..12

2.6 Tree Generation ..13

2.7 Optimization Metrics..16

2.8 Summary ..16

3 Global Routing Problem Formulation..17

3.1 Modeling the Routing Problem..17

3.2 Karmarkar’s Interior Point Method..20

3.3 Previous Work on Parallel Solvers ...23

3.4 Optimization Efficiencies...25

3.4.1 Remove Constraint Optimization (RCO)...25

3.4.2 Preprocessing ...26

3.5 Randomized Rounding...29

3.6 Summary ..29

4 New Optimization Routing Model ...31

4.1 Modified Model..31

4.2 Remove Tree Optimization (RTO) ...32

4.3 Required Changes in Randomized Rounding ..37

4.4 Parallel Solver for Projection Step ...38

4.5 Summary ..39

5 Experimental Results..40

5.1 Optimal Exit Condition ..40

5.2 Remove Constraint Optimization (RCO) Results ..41

 vi

5.3 Remove Tree Optimization (RTO) Results ..42

5.4 Simultaneous Optimization ..43

5.5 Using PSPASES ..46

5.6 Summary ..47

6 Conclusions and Future Work ..48

6.1 Effectiveness of Optimizations ..48

6.2 Future Work..50

References ..51

 vii

List of Tables
Table 1. The obtained objective function value from various exitCriterion, for

different problem sizes. No optimization and preprocessing, with randomized

rounding at the end. ..41

Table 2. Percentage difference from 1e
-6

 answer, for various problem sizes.41

Table 3. Results of solving various problems with and without RCO.41

Table 4. Average time per loop before and after RCO. ..42

Table 5. Number of trees removed with RTO, for different problem sizes..................42

Table 6. Number of loops and time required to solve with and without RTO.43

Table 7. Comparison of loop time before and after RTO...43

Table 8. Objective function value for different problem sizes, from exitCondition 1e
-1

to 1e
-6

..44

Table 9. Percentage difference in objective function, wit exitCondition=1e
-6

 as

reference. ..44

Table 10. Number of loops and solving time, for different exitCondition and problem

sizes. ...45

Table 11. Percentage difference in number of loops and solving time, relative to no

optimization..45

Table 12. Number of constraints removed, and percentage relative to original number

of rows..46

Table 13. Execution time for different phase during PSPASES solve.47

Table 14. Total execution time for PSPASES solve. ...47

 viii

List of Figures
Figure 1 - The number of transistors on Intel's processors is increasing rapidly in

every generation. [1] ..1

Figure 2 - Typical VLSI design flow. ...3

Figure 3 - The steps required in physical design..4

Figure 4 - An example of circuit partitioning. [4] ..5

Figure 5 - Transformation from the modules to a grid graph [4].9

Figure 6 - Running of maze routing from terminal S to T [4]......................................10

Figure 7 - Running of line probe algorithm from terminal S to T [4].11

Figure 8 - Integer programming formulation of the routing problem.12

Figure 9 - Multi-level routing [4]...13

Figure 10 - Connecting the vertices using Hanan grid, RST, and MST [6].14

Figure 11 - Connection between 3 vertices, using (a) minimum bend trees and (b)

non-minimal bend trees [6]. ...14

Figure 12 - Generating additional trees [4]. ...15

Figure 13 - The routing problem consist of deciding which tree to select to connect the

source and destination node. ..17

Figure 14 - Model 2 translated in Matrix form. ...20

Figure 15 - Two iterations of the Simplex method (left), and interior point method

(right) [2]. ...22

Figure 16 - Sparsity pattern of the A
T
Dk

2
A matrix, with problem size of 262 rows. ...24

Figure 17 - Randomized Rounding Algorithm...29

 1

1 Introduction

1.1 Background

This section introduces the area of routing in VLSI circuit design flow. Section

1.1.1 discusses the general VLSI design flow, and section 1.1.2 discusses the various

phases in the physical design stage.

1.1.1 Digital Circuit Design Flow

As the size, computational power and functions in electronics improves, the

number of digital integrated circuits contained in a chip is increasing drastically. As

technology improves, the chip size, transistor density and number of transistors

increases at an exponential rate. For instance, the Dual-Core Itanium 2 processor from

Intel already contains over 1 billion transistors [1]. As shown in Figure 1, the number

of transistors in the different generations of Intel processors grows rapidly. If the

industry continues to follow the prediction of Moore’s law, the number of transistors on

a chip will be doubled every 1.5 to 2 years.

Figure 1 - The number of transistors on Intel's processors is increasing rapidly in every

generation. [1]

As the circuit size increases, the design complexity of the hardware requires

designers to utilize Computer Aided Design (CAD) tools to automate various parts of

the design process. Because the design problem is complicated and the problem size is

very large, it is necessary to break down the design process into different stages. A

 2

typical Very Large Scale Integrated Circuit (VLSI) design flow is shown in Figure 2.

In the first step, the functional requirements of the chip are specified. In addition,

constraints such as the required minimum computation speed, maximum power

consumed, and chip size are decided. Then, the required functions are defined with

Register Transfer Level (RTL) language, as specified in the specification phase. In the

third step, these functions are then translated to logic equations. The functionalities

are described with basic logic operations such as NAND and XOR. These equations

are then translated to actual circuits, mapping to the targeted technology available to the

designer.

At physical design time, the designers perform partitioning, floorplanning and

placement on the actual circuits. Then, routing is performed to interconnect different

blocks of the design together. Lastly, the design would be sent to a fabrication

company for actual manufacturing. Note that, several iterations of revising might be

required during the design. For instance, the routing result might be fed back to the

floorplanning or placement stage to obtain better results, such as lower maximum delay

and area.

 3

Figure 2 - Typical VLSI design flow.

As the number of transistors increases in VLSI design, so does the size of the

corresponding routing problem and the time needed to solve them. One way to solve

the routing problem is to model it as a linear programming (LP) problem, and utilize the

interior point method to obtain the routing solution [2]. As the size of the problem

increases, in order to solve the LP problem efficiently one needs to look at ways of

optimizing the interior point method. Efficient methods must be used to try to solve

the routing problem quickly. This is the main focus of this thesis.

1.1.2 Partitioning, Placement, and Routing

The physical design step is a complex problem of transforming a design to actual

circuits, defining all the components’ locations and interconnections. Because the

problem is NP-hard [3], the physical design task is divided into several steps to reduce

complexity and computation time. As shown in Figure 3, they are partitioning,

 4

floorplanning, placement, and routing. An important characteristic of this approach is

that the result of one stage is highly dependent on the quality of the previous stage. For

instance, the congestion in the routing stage is dependent on the location of the modules,

which is determined in the placement stage.

Figure 3 - The steps required in physical design.

As mentioned in section 1.1.1, the number of transistors is growing exponentially

every year. This increase in the size and complexity of the problem makes the layout

problem much harder to solve. In the partitioning stage the goal is to divide the circuit

into different sub-blocks which are intra-related and of a smaller size, such that the

problem can be solved in reasonable time. Various factors such as the size and number

of sub-blocks, and the number of interconnections between the sub-blocks are

considered when partitioning is performed [4]. Because the partitioning problem is

NP-hard [5], constructive and iterative heuristics are used to solve the problem [6].

An example of circuit partitioning is shown in Figure 4. In this figure, the circuit is

partitioned into five sub-blocks. The number of interconnection from sub-block D to

other sub-blocks is three.

 5

Figure 4 - An example of circuit partitioning. [4]

After the partitioning stage, the divided blocks and the interconnections required

are passed down to the floorplanning phase. The floorplanning program would first

determine the relative position of the sub-blocks. Sub-blocks with a higher number of

interconnections between them would be placed closer together. Then, the actual

length and width of each sub-block are determined. Most often the goal of the

floorplanning stage is to optimize the area and wirelength, subject to various constraints

such as no overlap between module, and the available chip area defined in the

specification stage. Also, the resulting floorplan must be routable. Other

optimization goals such as power and delay are also considered. The floorplans can be

classified as variable-die (chip dimension is variable) or fixed-die (chip dimension is

fixed). Because both of these problems are NP-hard, approaches such as constructive,

iterative, and mathematical programming have been used to solve the floorplanning

problem [6].

After the floorplanning, the actual location of each of the sub-blocks must be

determined. At this placement stage, the goal is to minimize objectives such as

wirelength and area, while keeping the routability in mind. For instance, minimizing

area can create highly congested area, which affects the routability in the routing stage.

Since the placement problem is also NP-hard, approaches such as simulated annealing,

min-cut, force-directed, evolution, numerical optimization, and convex optimization

methods one used in the past to solve the placement problem [5].

After the location and dimensions of the sub-blocks are determined, the

interconnections need to be established. Usually, the routing stage is divided into two

stages. In the global routing stage, the approximate regions for each of the

 6

interconnections to go through are determined. Then, at the detailed routing stage, the

exact geometries of the interconnections are decided [4]. The goal of the routing stage

is to optimize objectives such as wirelength, maximum delay, area, number of vias,

power, and congestion, subject to constraints such as congestion and maximum delay.

Even though the routing stage is divided into two stages to reduce complexity, the

routing problem is still NP-hard [6]. Various approaches such as linear programming,

sequential routing, and meta heuristics are used to solve the routing problem efficiently.

In addition, to reduce the complexity of the problem, often multi-layer hierarchical

approaches are used [4].

1.2 Research Motivations

This section discusses the motivation for the research, and the research approaches.

Section 1.2.1 discusses the reason for the need of an efficient routing methodology, and

section 1.2.2 explains the difficulties and solution in solving the routing problem using

optimization methods. Section 1.2.3 gives an overview of the proposed research.

1.2.1 Global Routing

As the number of transistors increases dramatically, the number of interconnects in

a chip grows accordingly. Also, since the transistor sizes decreases in deep submicron

regime, but the chip area is staying the same or often growing, the interconnects are

becoming an ever more important factor in determining the various performance

parameters such as delay, power, and thermal consumption. This makes efficient

optimized routing for interconnects an important step in the design flow.

Because the number of transistors is increasing, the complexity of the routing

process is growing as well. Additionally, contemporary VLSI design often requires

routing to fulfill various conflicting objectives. For instance, one might want to

simultaneously optimize for delay, power, area and temperature (ie. avoiding EM

effects and hotspots). This requires one to optimize the various parameters such as the

number of via bends, maximum wire congestion, wirelength, and consumed power.

However, since the parameters are inter-related and often conflicting, achieving these

objectives simultaneously becomes difficult. Thus, the routing process becomes very

time consuming, especially to the VLSI industry where time to market is critical for

success. Clearly an efficient method to perform the multi-objective global routing is

crucial for future VLSI designs.

1.2.2 Solving the Linear System Generated by Routers

One of the research directions in efficient routing is to translate the problem into an

optimization problem. Then, one can apply an interior point method to attempt to

 7

solve the system. Even though the interior point method is able to solve the problem in

polynomial time [2], the process is still very time consuming. Various preprocessing

techniques and optimizations such as preprocessing and problem reduction are done,

such as the work described in [2] and [7]. However, the critical bottleneck in the

interior point method is that at each iteration it is required to solve yet another linear

system (ie. The projection step). One of the successful research directions in solving

this inner linear system is to utilize the power of parallel computation. Because the

underlying mathematical model of the routing problem is a large sparse linear system,

the operations required are often parallelizable. Thus, using multiple processors can

allow for speedup due to parallel computations. In the case of shared memory system,

the decrease in communication costs compared to networked system gives room for

great speedup to be obtained. This provides a good methodology to tackle the

ever-increasing size and complexity of the routing problem.

1.2.3 Overview of Proposed Research

The objectives of the proposed research are to solve the routing problem efficiently

in the following way. After placement, a set of possible routing trees and design

constraints used, along with an objective function that considers the relative importance

of various design objectives are used to guide the routing phase. This data is

transformed to an optimization model so that an interior point method can be applied.

Before the interior point method, preprocessing will be done to reduce the problem size.

The problem is then fed into the interior point method to solve. During the interior

point computation, further optimizations will be done to reduce the problem size. As

well, the inner linear system in each of the interior point loop will be solved by a

parallel solver package called PSPASES[8]. Lastly, the solution obtained will be

rounded off to zeros and ones to represent the final choices on the routing trees.

1.3 Thesis Contributions

The contributions of this thesis are as follows:

1. Integrated preprocessing, optimization, and randomized rounding

techniques for the interior point approach to solve the routing problem.

2. Proposed a new optimization that further decreases the time required for

interior point iterations.

3. Investigated the changes required in the model, interior point method, and

randomized rounding to adapt to some new features. This includes

calculating the maximum edge congestion dynamically and usage of the

new optimization.

4. Investigated the effects of utilizing parallel solvers to solve the inner linear

system in the interior point method efficiently.

 8

1.4 Thesis Organization

Chapter 2 provides the background information in modeling the routing problem,

the details of the interior point method to solve the problem, and past research on

parallel solvers. Furthermore, techniques on preprocessing the problem and

optimizations on reducing the problem size are discussed. Chapter 3 discusses the

proposed new optimization, and the required changes in the model, interior point

method, and randomized rounding. Chapter 4 discusses the parameter values found

experimentally to apply the optimization efficiently, and the results obtained. Finally,

Chapter 5 discusses conclusions and possible future work.

 9

2 Routing Background and Methodologies

2.1 Global Routing

In general, global routing is the problem of finding the interconnection paths

between parts of the sub-blocks. The input to global routing is the location of the

sub-blocks and the position of the terminals (input/output port from the sub-blocks).

In addition, information about which terminals need to be interconnected (netlist) is

given. The goal of global routing is to find the interconnection paths such that various

objectives such as estimated maximum delay, total wirelength, area, congestion, etc are

optimized.

The routing problem is usually modeled as a graph problem. An example of such

transformation for standard-cells is shown in Figure 5. The chip area is divided into

different area (bins), and the cells are assumed to be in the center of the bins [4]. The

transformation is done such that the vertices represent the input/output ports to the cells,

and the edges represent possible paths for routing. In this graph representation, a set of

vertices and edges represents interconnections from one cell to another.

Figure 5 - Transformation from the modules to a grid graph [4].

2.2 Sequential Routing

Global routing algorithms can be classified into sequential routing and integer

programming routing. In sequential routing, the nets are sequentially routed one by

one. The routing sequence is determined by the relative importance of the nets. The

maze runner algorithm proposed by [9] is a sequential routing algorithm for finding the

optimal route for two terminal nets. As can be seen in Figure 6, the maze routing

 10

algorithm keeps expanding in all direction from the source terminal S, until it reaches

the destination T. The disadvantages with maze routing are that it is not capable of

routing multi-terminal nets. Further more, it requires a large amount of memory and

computation for large graphs, because information for each vertex has to be kept and a

lot of vertices are traversed [10]. Research in [11] and [12] reduces the computation

time, while [13] and [14] propose line-probe algorithms to reduce the required memory.

As shown in Figure 7, instead of searching one step at a time, the line-probe algorithm

keep drawing lines from both the source and the destination until there are combination

of lines that connects the two terminals. Both the computation time and the required

memory are reduced, however the path generated is not guaranteed to be optimal. To

route multi-terminal nets, various approaches such as dividing multi-terminal nets into

set of two terminal nets [15] and generating Rectilinear Steiner Trees [15-21] are used.

Figure 6 - Running of maze routing from terminal S to T [4].

 11

Figure 7 - Running of line probe algorithm from terminal S to T [4].

The main problem of sequential routing is that the algorithm solves the problem

from a local point of view. The nature of the sequential routing makes it difficult to

obtain a globally optimal solution. Because the nets are routed one at a time, the routes

generated at the earlier stage can block the nets at the later stage. To solve this

problem, research such as rip-up and reroute [23], which try to avoid congestion by

using congestion estimation in the reroute stage [24], are proposed. Even though this

research enhances sequential routing, due to the nature of the sequential method there

are still some inherent disadvantages. For instance, one cannot be sure whether a

feasible solution exists, and whether the obtained solution is globally optimal.

2.3 Integer Programming Routing

The second class of solvers for the routing problem is integer programming routing.

In this method, the routing problem is formulated as an integer programming problem.

A set of routes (trees) are generated for each net, and the problem is solved concurrently.

The integer programming formulation is shown in Figure 8. In this formulation, the yj

variables are integer variables representing each of the n trees generated for the nets.

A variable yj takes on a value of 1 if this route is used, and 0 if it is not. Each of these

trees are weighted by the weights bj, which gives preference to certain trees depending

on the estimated congestion, wirelength, number of vias(bends), etc. Constraint 2.1

 12

specifies that for each of the t nets in the set of nets �k, at most one tree is selected to

connect the net. For the second constraint, the value aij =1 if tree yj passes through

edge i, and equals to zero if it does not. Constraint 2.2 states that for all the p edges,

the maximum congestion caused by the trees has to be less than or equal to value ci. In

other words, Constraint 2.1 limits each of the nets to only use one tree, and Constraint

2.2 limits the tree choices such that the maximum congestion is not violated. The

objective function is to choose as many trees as possible (ie. route as many nets as

possible). The advantage of this formulation is that it resolves all the routes

simultaneously, which guarantees a globally optimal solution if one exists. As shown

in [4], it is also easy to incorporate multiple optimization goals into the problem, such

as congestion, via bends, wirelength, and power.

Figure 8 - Integer programming formulation of the routing problem.

2.4 Linear Relaxation

In the integer programming formulation, the problem is easier to solve when it is

relaxed to an integer linear programming problem (ILP). Then various techniques

such as simulated annealing [25], column generation [26] and interior point method [2]

can be used to solve the relaxed problem. Multi-objectives global routing has been

investigated in [6] for simultaneous optimization of vias, congestion, and wirelength.

Yang [4] researched additional simultaneous optimization for power. After the relaxed

problem is solved, techniques such as choosing the tree with the highest yj value [27]

and randomized rounding [27-29] are used to obtain integer solutions.

2.5 Hierarchical and Multi-level Routing

Unfortunately, the solution time of the integer programming problem is related

exponentially to the number of trees [6]. Since the problem can become large it can be

very time consuming to solve the routing problem in this formulation. One approach

is to divide the circuits into different parts, and solve each part separately using the

integer programming formulation. This top-down hierarchical approach is able to

 13

reduce the size of the problem, but the problem might become infeasible to solve, and

the computation time can be large due to the creation of many smaller integer

programming problem [31]. Another approach is to use a bottom-up hierarchical

approach proposed by [32]. In this case, the routing region of each sub-problem

gradually gets larger as the program solves and subsequently merges the different

regions.

In [33], a multi-level routing approach is proposed. As shown in Figure 9, the

circuit is coarsened gradually, estimating information on routing resources in the

process. A multicommodity flow algorithm is used to obtain a solution at the coarsest

level, and then the problem is uncoarsened gradually. At each level of uncoarsening

the solution is further improved, and finally at level 1 the solution is fed into a detailed

router to obtain the final solution. The advantage of the multi-level routing approach

is that it can handle large routing problems, because it performs coarsening on the

problem. Furthermore, because it can obtain information on routing resources during

the coarsening process, the completion rate of finding a solution is higher than

hierarchical approach. Lastly, it is able to perform routing in less time.

Figure 9 - Multi-level routing [4].

2.6 Tree Generation

For the integer programming formulation, in order to find the routes to use for the

interconnections one needs to generate the possible routes to choose from. Since the

routes in actual circuits run only horizontally and vertically, any generated route will

 14

also only run rectilinearly. Because the number of possible trees is large, initially only

the minimum trees are considered [6]. This problem is usually formulated as finding

the different Rectilinear Steiner Minimum Trees (RSMT) to connect the terminals.

From [34], it was shown that using the Hanan grid (a grid formulated by drawing

vertical and horizontal lines from the vertices of the graph), every Steiner Minimum

tree can be formed. An example of the Hanan grid is shown in Figure 10.

Since the RSMT problem is NP-hard [35], one usually finds the Minimum

Spanning Tree (MST) first, and then transforms the MST to a RSMT. This is because

a MST can be found efficiently in polynomial time [35, 36]. As shown in [38], the

ratio of the lengths between a MST and a RSMT is less than or equal to 1.5. Thus, one

can ensure near optimal RSMT are generated by first generating MST, and then

transforming the non-rectilinear edges to either L shape or Z shape tree [6]. This

transformation is shown in Figure 10. In the figure, the original MST is rectilinearized

to a rectilinear steiner tree. To ensure the number of vias is minimized, only

minimum-bend trees are generated [6]. An example of minimum-bend tree and

non-minimum bend tree is shown in Figure 11.

Figure 10 - Connecting the vertices using Hanan grid, RST, and MST [6].

Figure 11 - Connection between 3 vertices, using (a) minimum bend trees and (b) non-minimal

bend trees [6].

 15

In the research of [6], since the number of possible minimum-bend trees grows

exponentially with the number of terminals, to limit the number of tree choices the nets

are divided into two categories. The nets with two or three terminals are categorized

as short nets, and the nets with more terminals are categorized as long nets.

Minimum-bend trees are produced for two terminals nets. On the other hand, three

terminal nets are split into two sets of two terminals nets, and minimum-bend trees are

generated accordingly. In the research of [4], RSMT are generated for long nets using

a program called GeoSteiner.

With these generated trees, it is possible that there are no solutions that satisfy all

the constraints. For instance, there are limits on the maximum congestion allowed on

each of the routing paths (channels). Thus, with only the minimum trees there might

be no feasible solution. To resolve this problem, [6] proposed a congestion estimation

algorithm to predict upper and lower estimates of the congestion. For nets with trees

that pass through congested areas, additional trees are generated to avoid congestion.

Trees are iteratively added until congestion is eliminated or the algorithm reached the

iteration limit. An example of generating additional trees is shown in Figure 12.

Figure 12 - Generating additional trees [4].

 16

2.7 Optimization Metrics

During the routing process, there are various conflicting optimization objectives.

Firstly, it is preferable to reduce the length of the interconnect. As chip size stays

constant/growing and device size scales down, interconnects are becoming increasingly

dominant in terms of delay, area, power, thermal, and reliability in the deep submicron

regime. Second, one wants to reduce congestion in the routing. Because of finite

routing resources, some areas in the chip can be congested with trees and become fully

occupied. Consequently, interconnects might have to detour from the congested

region. Furthermore, congestion can cause hotspots in the chip, and even cause a

design to be unrouteable. Third, it is desirable to minimize the number of vias (ie.

bends in the route). This is because vias increase manufacturing cost, decrease

fabrication yield, and generate higher circuit delay. Finally, in deep submicron regime,

power consumption of interconnects can no longer be ignored. Thus, an important

objective is to minimize the power consumed by the IR drop. Note that one

optimization objective might conflict with another. For instance, to avoid congestion

one might need to use the non-optimal length route. This would conflict with the

objective of reducing wirelength.

2.8 Summary

This chapter formulated the global routing problem and various routing

methodologies, including sequential routing, integer programming routing and linear

relaxation, hierarchical and multi-level routing, and generating routing trees. We also

explained the various conflicting optimization metrics involved in solving routing

problems. The need for a more efficient routing method that allows for routability

detection and globally optimal solution was shown. The next chapter will discuss how

to address these problems, by means of formulating the problem as an optimization

problem and applying various optimizations.

 17

3 Global Routing Problem Formulation
In general, the routing problem consists of determining how to formulate paths

from a source node to a destination node, subject to various constraints such as via

bends, congestion, and wirelength [3]. Usually, multiple possible routes, called trees,

are generated for each net. The problem is to determine which tree to select for the

nets, subject to various constraints and objectives.

Essentially, the routing problem is a combinatorial problem, where one needs to

make a decision of choosing a tree or not (1 or 0) for a particular net. As shown in

section 2.3, this problem can be formulated as an integer programming (IP) problem.

This allows the designers to obtain a global optimal solution. This chapter will

describe the process of the actual linear relaxation of the IP problem. Furthermore,

methods to solve the relaxed problem more efficiently, such as using the interior point

method, parallel linear solvers, preprocessing, and optimization algorithms are

described to further speed up the computation time. Lastly, randomized rounding is

described to obtain integer solution from the fractional solution.

3.1 Modeling the Routing Problem

A sample of a routing problem can be seen in Figure 13. Each pair of source and

destination nodes forms a net. The routing problem consists of determining which of

the trees to use for each net in the circuit. This problem can be formulated as an

integer programming problem.

Figure 13 - The routing problem consist of deciding which tree to select to connect

the source and destination node.

The integer programming formulation can be linearly relaxed to linear

programming (LP) problem for more efficient solving. As suggested in [1], a routing

 18

problem with n trees, t nets, and p edges can be formulated as an LP problem as follows:

Model 1

The variable yj is the decision variable representing whether the tree j is selected or

not. The weights bj determines how preferable the corresponding tree is. Constraint

1.1 restricts that only 1 tree can be selected for a particular net, and Constraint 1.2

restricts that the congestion for a particular edge on the routing would not go over value

ci. Originally, yj should be binary variables, with yj=1 representing tree j being

selected, and yj=0 representing tree j not being selected. Since this is a relaxed version

of the IP problem, it is possible to have non-integer values for yj. We want to confine

the values of yj to be between and including one and zero. Forcing yj to be less than or

equal to 1 is done implicitly with the Constraint 1.1, where forcing yj to be greater or

equal to zero is done explicitly by the Constraint 1.3. When yj has a non integer value

between one and zero, it defines how much it is preferred in the tree selection. For

instance, yj = 0.6 and yk = 0.1 implies that one would likely select tree j over tree k.

Model 1 hardcodes the congestion constraints into the right hand side of the

inequality. What one might want to do is to dynamically determine the congestion

limit needed, based on a trade off between congestion and other objectives such as

wirelength and number of via bends. This is the model proposed by [2]. With �k

being the set of nets (ie. k=1 represents net 1), and there are t nets, n trees, and p edges,

the model is:

 19

Model 2

In this model, wlj, wbj, and βz are the weights for the wirelength, number of via

bends, and congestion, whereas Zmax represents the maximum congestion in the system.

aij represents whether tree j occupies edge i. This model has several advantages.

Firstly, the various conflicting objectives can be modeled in the objective function.

Second, the determination of Zmax’s value is guided by the corresponding weight of Zmax

in the objective function. The maximum congestion needed can be dynamically

calculated in the problem instead of hard coded.

This model can be translated to matrix form as shown in Figure 14. The matrix A

represents the left hand side of the constraints from Model 2. Each of the first n

columns represents yj (the trees), and the last column represent the variable Zmax. The

first t rows of the matrix represents Constraint 2.1, which states that for each of the t

nets only one tree can be chosen. The subsequent p rows represents Constraint 2.2,

which states that the congestion of each of the p edges is less than or equal to Zmax. The

last n+1 rows represents Constraint 2.3, which states that all the yj and Zmax variables

have to be greater or equal to zero.

 20

Figure 14 - Model 2 translated in Matrix form.

3.2 Karmarkar’s Interior Point Method

As suggested in [2], we can relax the IP routing problem to a LP problem, and solve

it using interior point methods. The advantage in solving the problem this way is that

the number of iterations required is independent of the problem size, and it is a

polynomial time algorithm [2]. In contrast, the standard Simplex algorithm for solving

LP problems can require an exponential number of iterations, although typically it is

polynomial in running time. In practice, the interior point method is polynomial in

terms of number of trees to choose from, and so the problem formulation is still large in

size.

 21

Interior point methods are used to solve linear programming problems. One of the

most important breakthroughs in this area is the polynomial-time interior point method

in [39]. Vanderbei et al. [40] and Barnes [41] developed primal-affine algorithms,

which use linear transformation instead of projective transformation. Adler et al. [42]

developed a dual-affine scaling algorithm, which solve the dual version of the problem

instead. Kojima et al. [43] developed a primal-dual interior point algorithm, which

solves the linear programming problem more efficiently. Later on, improvements to

the primal-dual algorithm such as [44] were developed. The primal-dual algorithm

merges the constraints of the problem into the objective function by using a logarithmic

barrier function. Then, the logarithmic barrier term is decreased at each iteration. A

Lagrange-Newton method is then used to solve the problem [45]. To improve the

efficiency of this method, Predictor-Corrector method in [44] uses higher order terms in

the Lagrange-Newton method rather than just the first-order term to increase accuracy.

As can be seen from the ILP formulation in section 3.1, there can be many more

constraints than trees (ie. many edges). As shown in the left side of Figure 15, the

Simplex algorithm can be slow in solving such problems, because the iteration jumps

from one constraint corner point to another [2]. If the number of constraints is large,

the solution time will be inefficient. In contrast, as can be seen from the right side of

Figure 15, the interior point method iteratively traverse from one point in the interior of

the constraint area to another. Initially, a feasible solution is determined that is within

the constrained area. Spheres are created inside the constrained area, and a nonlinear

transformation is used to project to the next interior point. This iterative process

continues until the difference between the product Ay and the vector b (ie. the error) is

small enough [39]. Furthermore, research in [46] shows that the interior point method

can be adapted to construct ellipsoids instead of spheres to accelerate the interior point

projection.

 22

Figure 15 - Two iterations of the Simplex method (left), and interior point method (right) [2].

This thesis uses Karmarkar’s dual-affine version of the interior point algorithm [42]

to solve linear systems such as the Model 2 introduced in section 3.1. Let c be the

coefficients of the objective function such that we are trying to minimize the vector

product c x, exitCriterion be some number we set to indicate the criterion for exiting the

iterations, x
0
 and γ be given such that:

Ax
0
 < b, 0< γ<1

The algorithm runs as follow:

k=-1

do {

k = k+1

v
k
 = b - Ax

k

Dk = diag {v1
-k

, v2
-k

, .., vm
-k

}

dx = (A
T
Dk

2
A)

-1
c

dv = -A dx

α = γ min{ -vi
k
/dvi | dvi<0, i=1..m}

 23

x
k+1

 = x
k
 + α dx

exitCondition = |c
T
x

k+1
 - c

T
x

k
| / |c

T
x

k
|

} until (exitCondition< exitCriterion)

 The initial point x
0
 is defined as:

xj
0 < cmin / rowmax, j=1..n

cmin = min{ ci }

rowmax = the maximum number of trees that can occupy any edges in any nets.

As can be seen from the algorithm, at each iteration the linear system:

dx = (A
T
Dk

2
A)

-1
c

needs to be solved. This step is required to find the projection to the ellipsoid’s

boundary. As solving this linear system requires a large amount of computation, this

step becomes the bottleneck in the interior point iteration. Since the algorithm might

iterate 20 to 40 times [2], to solve this linear system efficiently it may be useful to

utilize a parallel solver.

3.3 Previous Work on Parallel Solvers

When one analyzes the linear system that comes from interior point solving a

routing problem: (A
T
Dk

2
A) dx = c, it can be noted that Dk

2
 only has values on the

diagonal. Thus, A
T
Dk

2
A is symmetric positive definite if A is full row rank [2]. This

is an important property to consider when deciding which technique to use to solve this

linear system. In the past, there were attempts to use alternatives other than Cholesky

factorization and Gaussian elimination to solve this type of linear system. For instance,

in the research in [2], a Conjugate Gradient (CG) approach using an incomplete

factorization method to obtain the preconditioner was used. In the past, there were

various attempts at parallelizing the CG algorithm. Unfortunately, most of the

research has been done on how to parallelize for specific structures of the A matrix

which are not applicable to our problem. For instance, [47] looks at sparse

block-tridiagonal matrix, and concluded that under a message passing parallel

architectures, ordering of the matrix needs to be done for a parallel version of CG to be

scalable. Decker et al. [48] investigated a parallel CG approach for dynamic

simulations in power systems, which is also in block-tridiagonal matrix form. In [49],

attempts to reduce synchronization overhead in the CG algorithm were also proposed.

Jordan and Bycul [50] investigated the effect of parallelizing the CG algorithm by using

a row-based distribution for the dense matrix and vector. Later on, [51] investigated

the effects of the same approach for sparse matrix, using a storing mechanism such that

only non-zero entries are recorded. It was concluded that for a distributed memory

 24

system, the speedup is less than one because the communication cost was too high for

sparse matrices.

Bycul et al.’s [51] empirical results were based on really sparse matrices, with one

test problem being a six-diagonal matrix. One of the main reasons for the unsuccessful

results were due to the extremely high sparsity of the matrix, causing the

communication cost to far exceed the calculations required. However, for the problem

we are trying to tackle, the sparsity is not as severe as the tested problem. One sample

of the sparsity pattern in the A
T
Dk

2
A matrix can be seen in Figure 16, for a routing

problem size of 262 variables (trees). As can be seen from the sparsity pattern, the

matrix is sparse but it still contains a fair amount of non-zeros (14.57% non-zero

entries). This means there is a higher chance for us to utilize the benefits of parallel

computing with incurring much communication cost. Moreover, the machine used for

this work is a shared memory multi-processor system, which will further mitigate the

effects of the communication cost.

Figure 16 - Sparsity pattern of the A
T
Dk

2
A matrix, with problem size of 262 rows.

A successful parallel solver for sparse linear systems with symmetric positive

definite matrix is the PSPASES (Parallel SPArse Symmetric dirEct Solver) package[8].

The fill reduced ordering uses a parallel multilevel nested dissection algorithm [52],

which gives orderings appropriate for parallel factorization. The symbolic and

numerical factorization phase uses a parallel multifrontal Cholesky factorization [53],

which has been shown to be scalable and efficient. The PSPASES implementation

details can be seen in [54]. It allows any library which follows the MPI (Message

Passing Interface) standard to be used for communication, and any BLAS (Basic Linear

Algebra Subprograms) library to be used for vector and matrix operations. The

parMETIS package is used to perform parallel graph partitioning and fill-reduced

ordering. Since the PSPASES package has not been used to solve the routing problem

using the linear programming formulation in the past, it is worthy to examine the

effectiveness of utilizing this package on solving the interior point loop.

 25

3.4 Optimization Efficiencies

This section explains techniques that allow speeding up the solving time of the

interior point method. Section 3.4.1 discusses the Remove Constraint Optimization,

and section 3.4.2 explains a preprocessing technique to reduce the size of the problem

before starting to solve.

3.4.1 Remove Constraint Optimization (RCO)

To speed up the iteration time of interior point method, a method was proposed in

[2] to reduce the problem size as we iterate through the algorithm. The idea is that as

we progress through the iterations, the yj values are assumed to be getting closer to the

solution. In such case, one can determine which congestion constraints will be

inactive and remove them. For instance, with y1 = 0.2, y2 = 0.8, y3 = 0.6, Zmax=1.7:

y1 + y2

< Zmax => (0.2+0.8) < 1.7

y1 + y2 + y3

< Zmax => (0.2+0.8+0.6) < 1.7

We can see that the first constraint is not active, as the sum of y1 and y2 is not close

to Zmax. Assuming that we have progressed enough through the iterations, the yj values

may have stabilized to a point such that there would not be major changes in the values.

In such a case, by removing such non-active constraints, one can reduce the size of the

problem and speed up the iterations [2]. Since exitCondition indicates the amount of

progress from one iteration to another, when exitCondition is small, it indicates that one

is getting closer to the solution. Thus, exitCondition is a good indicator for when one

can start to remove non-active constraints. This threshold needs to be determined

experimentally. If exitCondition is too large (ie. the interior point loop is still making

progress in large steps), constraints might be incorrectly removed because the solution

has not settled yet. If exitCondition is too small, then there will be time wasted when

the interior point method is calculating with unnecessary constraints.

It is also necessary to determine the condition for when to remove a certain

constraint. In [2], since Model 1 in section 3.1 is used, a hard coded value was used for

determining this condition. An interpretation of its method is that when any row j of

Constraint 2.2 has aijyj less than a certain value (say 50), then row j can be removed. Ie.

 26

However, since the model used in this research is the dynamic constraint model

(Model 2), this method would not be applicable. This is because Zmax is a constantly

changing value, therefore one cannot hardcode a value without knowledge of what Zmax

would be like relative to the congestion until the solver is finished. A better remove

condition would be if the slack (difference between Zmax and the congestion) is greater

than a certain percentage of Zmax, then the constraint can be removed.

(Constraint 2.2) 0max

1

<<−∑
=

Zya
t

j

jij

↓

Remove Condition: max

1

Zya
t

j

jij <<∑
=

↓

Remove Condition: <−∑
=

t

j

jij yaZ
1

max ConstraintTolerance

where ConstraintTolerance = *maxZ ConstraintTolerancePercentage

So, in this example, if ConstraintTolerancePercentage=20%, Zmax=50, then a

constraint row j is removed when the difference between Zmax and congestion is more

than 10 (20% of Zmax). This ConstraintTolerancePercentage value needs to be

determined experimentally. If the ConstraintTolerancePercentage is set too high, the

constraints that are actually active and necessary will be incorrectly removed. If the

value is set too low, there would be constraints left that could be removed.

3.4.2 Preprocessing

Before the routing problem is fed into the interior point method, various

preprocessing techniques can be applied to reduce the size of the matrix A. The goal is

 27

to reduce the matrix size as much as possible to shorten the interior point method’s

computation time. By default, most solvers such as CPLEX would apply many

preprocessing techniques. The goal in this section is to examine techniques that

require knowledge of the routing problem itself.

Hare et al. [7] discussed a property that can be utilized to reduce matrix A. Firstly,

it utilizes a classical preprocessing technique of removing singleton trees, which

already reduces the size of matrix A. If there is only one tree generated for a particular

net (singleton tree), then this tree and the according constraints can be removed,

because the net has to pick this tree for routing. Then, it utilizes a property derived

from removing the singleton tree to further reduce the matrix size. Using Model 2

from section 3.1, the operations are as follow:

1. Find rows in Constraint 2.1 (1=∑
∈ k�jy

jy), such that there is only one yj=1

(singleton trees). Say these m singleton trees exist, ie. the set

=∀= jjTk { singleton tree}. We set yj=1 for all j in Tk. (We are picking all

the singleton trees as our choices.)

2. Remove Constraint 2.1 and Constraint 2.3 for these trees.

3. Since we are going to use these singleton trees, the singleton trees are going to

create congestion. Before we remove these singleton trees from the matrix A,

we need to put the congestion that these trees occupy into the constraint.

Therefore, in Constraint 2.2 (piZya
n

j

jij ..1,0max

1

=≤−∑
=

), for all i, subtract aik

from the right hand side, where k is in set Tk. Ie.

(Constraint 2.2) piZya
n

j

jij ..1,0max

1

=≤−∑
=

↓

piaZya
k

k

Tk

ik

n

Tj
j

jij ..1,0max

1

=−≤− ∑∑
∈

∉
=

↓

piaZya
k

k

Tk

ik

n

Tj
j

jij ..1,max

1

=−≤− ∑∑
∈

∉
=

4. We can now remove the singleton trees from the matrix. Since the appropriate

rows are removed from Step 2, we now only need to remove the columns that

represents these singleton trees. We remove all columns k where k is in set Tk

 28

from the matrix A.

5. From the resulting relationship in Step 3, [7] noticed the following:

piaZ

aySince

piaZ

piayaZ

piaZya

k

k

k

k

k

k

Tk

ik
i

ijj

Tk

ik

Tk

ik

n

Tj
j

jij

Tk

ik

n

Tj
j

jij

..1,max

0,0

..1,

..1,

..1,

max

max

1

max

max

1

=








≥∴

↓

≥≥

=≥

↓

=≥−

↓

=−≤−

∑

∑

∑∑

∑∑

∈

∈

∈
∉
=

∈
∉
=

6. From Step 5, a lower bound of Zmax is obtained. It states that the maximum

congestion Zmax has to be greater than the maximum congestion on any edge i

that is occupied by the set of singleton trees Tk. This allows us to remove any

edge constraint (Constraint 2.2) for which the maximum congestion is less

than the maximum edge congestion that is created by the singleton trees.

Suppose S is all set of {yj} such that {yj} is a valid combination of tree choices,

ie. only one tree is chosen for each net. Emax i, the maximum congestion of a

particular row i of Constraint 2.2, is calculated as follow:









= ∑
=

∈

n

j

jij
Sy

yaE
j

i

1

max max

7. Let Cmax be the maximum congestion caused by the singleton trees on any

edges. From Step 5 and 6, the constraint elimination criteria is summarized as

follow:

a) pi

CZ

aCLet
kTk

ik
i ..1

max

maxmax

max =

≥∴









= ∑
∈

b) (Constraint 2.2) 0max

1

≤−∑
=

Zya
n

j

jij

 29

maxmax

1

max

1

ZEya

Zya

i

k

n

Tj
j

jij

n

j

jij

≤≤

↓

≤

↓

∑

∑

∉
=

=

 c) maxmaxmax ZCEif
i

≤<∴

Remove Row i.

3.5 Randomized Rounding

At the end of the interior point loop, the solution obtained is not strictly boolean.

Trees that are more favourable than others will receive a higher yj value, but these

values will still be less than 1. To make a final pick on the trees out of these yj values,

randomized rounding needs to be performed to round the values to either 1 or 0. For

each net, the probability of one of the trees j being selected will be based on the yj

values. The bigger the yj value, the higher the probability of being chosen. The

randomized rounding algorithm is given in Figure 17.

Randomized Rounding Algorithm

For each net i

 If one of the tree values=1, then just select this tree and go to next net.

 sum=0

 r= generated random number between 1 and 0

 For each tree j in net i

 sum+=yj

 if (sum>=r) then

 Pick tree j

 Go to next net.

 end

 End

End

Figure 17 - Randomized Rounding Algorithm.

3.6 Summary

This chapter explained how to model the routing problem as an optimization

problem. Furthermore, past research on solving this formulation efficiently are

discussed, including parallel solvers, Remove Constraint Optimization, and

 30

preprocessing. The next chapter will look at two new optimizations, and how they can

improve the solving time for the routing problem.

 31

4 Bew Optimization Routing Model

4.1 Modified Model

The multi-objective dynamic Zmax model (Model 2) described in 3.1 was

implemented for the purpose of this research. To translate the model in the form Ay<b,

Constraints 2.3’s equality is transformed:

yj ≥ 0 => -yj < 0

Since the problem benchmarks have the objectives in the minimization format, to

utilize interior point method (which solves a maximization problem) one needs to

convert the benchmarks from a minimization problem to a maximization problem. In

the process of the conversion, we discovered that there are actually a few steps involved.

Firstly, one needs to negate the weights in the objective function:

Min ∑ wj yj => Max ∑ (-wj) yj (a)

Second, we have to solve the relaxed the problem from IP to LP. Originally, since

we want to select one tree, the Constraint 2.1 was formulated as (these constraints are

“active” constraints, the equality is same as inequality):

∑ yj = 1 => ∑ yj ≤ 1

The problem with this is that with the objective function in (a), assuming that the

overall coefficients for each yj is negative, the algorithm will try to push all the yj to zero,

to achieve the maximum objective function. This is because 0≤yj≤1, and so

-∞≤objective function≤0. In another words, to achieve the maximum objective

function value the algorithm will push all the yj to zero to get the most non-negative

objective value. However, what we really want to do is to ensure that at least one tree

is selected for each net. To enable this, we need to change Constraint 2.1 in Model 2

to:

∑ (-yj) ≤ -1 (Constraint 2.1a)

Doing so would prevent all of the trees to go to zero simultaneously, because with

such constraint at least one xj value has to be greater than one for each net.

Originally, as described in section 3.2, we calculate our initial point for interior

point method by:

y
0

j < cmin / rowmax, for all j

 32

The logic behind this is to find a y
0
 value such that y

0
 would not violate Constraint

2.2. (i.e. the sum of the congestion for any edges would not be over the maximum

congestion allowed.) However, our implementation uses Model 2, where the Zmax is

dynamically calculated. Thus, a value for cmin (minimum congestion limit) can not be

obtained initially. More importantly, this method of initial point generation guarantees

that y
0
 < 1, because rowmax > cmin. Having y

0
<1 could possibly violate our new

constraint Constraint 2.1a. For instance, if yj
0
=0.1 for all j, then ∑ (-xj) =

-(0.1+0.1)=-0.2 is not less than -1. This violates Constraint 2.1a and consequently

will make interior point method unable to converge. Thus, the proposed new initial

point generation method is:

y
0

j = 1.1, for all j

Zmax = max congestion caused by the initial point y
0

The y
0
 values will ensure that the initial point is a feasible solution subject to

Constraint 2.1a, where as the Zmax value will ensure that Constraint 2.2 would not be

violated.

Finally, it should be mentioned that the yj solution we obtained from solving the

relaxed LP model can contain non-integer values. Although we expect most values to

go to either 1 or 0, if there are trees that have equal weights, they will share the same

non-integer value between zero and one. Thus, to convert back to an integer solution,

a randomized rounding approach as specified in [4] is performed.

4.2 Remove Tree Optimization (RTO)

Using the same line of logic with the remove constraint optimization (RCO)

described in section 3.4.1, another optimization approach is proposed here. The idea is

that as we progress through the iterations, yj is going to get closer and closer to the

optimal solution. Thus, we don’t expect a great variation in the values of yj. So, once

the yj values have stabilized enough, the trees with small yj values should be removed.

This is summarized as follow:

 33

Algorithm 3.2 version 1)

For each net, do {

for each tree in current net, do {

 if (yj < 0.1) {

 Remove:

o the column in matrix A and row in vector y representing the tree

o the row in matrix A and vector b that corresponds to constraint 3 of that tree.

}

 }

}

In this case, vector b is the values of the right hand side of the constraints.

Essentially, we are removing from the problem the trees that we think are going to be

unselected. This will reduce problem size and reduce the iteration time. However,

there is one problem with this formulation. If even the most preferable tree(s) has

values less than 0.1, then we will remove all possible trees for the current net from the

problem, and no trees will be chosen. This can occur in a scenario such as the

following:

Ex. 3.2a)

Objective: Min –y1-y2-….-y19-y20

Subject to:

-y1-y2-…-y19-y20<-1

yj>0, for j = 1..20

 In this case, since all the weights for the yj are equal, all the trees are equally

preferable. Since the sum of yj can have a max value of -1 (subject to Constraint 2.1a),

the trees will share this max value equally. This means that yj = 1/20 = 0.05 for all j.

This scenario gives rise to two problems:

1.) The tree with the max value for this net is less than 0.1.

2.) There are more than one tree that contains the max value for current net.

If we apply the remove tree optimization (RTO) to this problem, we will remove all

possible trees for this net. To solve problem 1.), we need to check that the tree(s) with

the max value for this net will not be removed. For problem 2.), since all the trees with

the max value for current net are equally preferable, we will just randomly select the

last tree in the net and remove all the other nets with the same max value. This step

actually involves a bit of work. Since we are also removing the corresponding yj

values, Constraint 2.1a can be violated. For instance, in Ex 3.2a), say we are at the

point when yj=0.1 for all j. If we remove tree 1 to 19, we are left with y20 = 0.1, so

Constraint 2.1a is violated, because -0.1 is not less than -1. Thus, what we want to do

 34

is that as we remove the trees, we should add its values to the tree that is going to be

selected, so that Constraint 2.1a would not be violated. This give rise to the second

version of Algorithm 3.2:

Algorithm 3.2 version 2)

For each net, do {

maxOfCurrentBet = max { yj | j for current net };

if (more than 1 tree for this net has value=maxOfCurrentBet) {

 treeToSelect = (a tree with value == maxOfCurrentBet);

 for each tree, do{

 if (current tree<0.1 ABD current tree ≠ treeToSelect) {

 Add current tree’s yj value to treeToSelect’s yj;

 Set current tree’s yj = 0;

}

}

maxOfCurrentBet = ytreeToSelect;

}

for each tree in current net, do {

 if (yj < 0.1 ABD yj ≠maxOfCurrentBet) {

 Remove:

o the column in matrix A and row in vector y representing the tree

o the row in matrix A and vector b that corresponds to constraint 3 of that tree.

}

 }

}

However, there is one problem with Algorithm 3.2 version2. Since we have

increased the yj value of the tree treeToSelect, we could violate Constraint 2.2.

Consider the following scenario:

Ex.3.2b)

Objective: Min –y1-y2-….-y19-y20+Zmax

Subject to:

-y1-y2-…-y19-y20<-1

-y20-Zmax<0

yj>0, for j = 1..20

Suppose yj has values of 0.1, and Zmax=0.2. When we remove tree j=1..19, we add

their values to y20. The updated values are y20=1. In such case, the constraint

-y20-Zmax<0 is violated. Essentially, as we increase the value of the tree that is going to

be selected, we need to increase the value of Zmax as well. The value of Zmax will be

readjusted to the appropriate value at the subsequent iteration. This gives the version 3

 35

of the RTO:

Algorithm 3.2 version 3)

For each net, do {

maxOfCurrentNet = max { yj | j for current net };

if there are more than 1 tree with value =maxOfCurrentNet for this net {

 treeToSelect = (a tree with value == maxOfCurrentNet);

 for each tree, do{

 if (current tree<0.1 AND current tree ≠ treeToSelect) {

 Add current tree’s yj value to treeToSelect’s yj;

Add current tree’s yj value to Zmax;

 Set current tree’s yj = 0;

}

}

maxOfCurrentNet = ytreeToSelect;

}

for each tree in current net, do {

 if (yj < 0.1 AND yj ≠maxOfCurrentNet) {

 Remove:

o the column in matrix A and row in vector y representing the tree

o the row in matrix A and vector b that corresponds to constraint 3 of that tree.

}

}

}

So far, we have only considered removing the trees that are not going to be selected.

A further optimization is to realize that if there’s only one single tree that has a yj value

greater or equal to one, this means that tree is going to be selected. We can remove all

the trees from consideration, and also remove the corresponding Constraint 2.1a from

the problem. However, since we have selected a tree, we would need to subtract the

congestion caused by the selected tree from the right hand side. This will ensure that

our Zmax value took the selected tree’s congestion into account. Lastly, if more than

one tree has a value greater than or equal to one, then we don’t apply this optimization,

and just proceed with removing the unselected tree. This gives the final version of the

RTO:

 36

Algorithm 3.2 Remove Tree Optimization (RTO)

For each net, do {

maxOfCurrentNet = max { yj | j for current net };

removeAll = false;

if there’s one and only one tree that satisfy maxOfCurrentBet>=1 {

 removeAll=true;

} else {

if there are more than 1 tree with value=maxOfCurrentNet for this net {

 treeToSelect = (a tree with value == maxOfCurrentNet);

 for each tree, do{

 if (current tree<0.1 AND current tree ≠ treeToSelect) {

 Add current tree’s yj value to treeToSelect’s yj;

 Add current tree’s yj value to Zmax;

 Set current tree’s yj = 0;

}

}

maxOfCurrentNet = ytreeToSelect;

}

}

for each tree in current net, do {

 if (removeAll==true OR (yj < 0.1 ABD yj ≠maxOfCurrentBet)) {

 Remove:

o the column in matrix A and row in vector y representing the tree

o the row in matrix A and vector b that corresponds to constraint 3 of that tree.

}

}

if (removeAll==true) {

Remove the row in matrix A and vector b that corresponds to constraint 1a.

Subtract the congestion occupied from selected tree in vector b.

}

}

 Obviously, since we removed trees during the optimization, one would need to put

back the removed yj (with appropriate zeroes and ones value) back into vector y after

the convergence of the algorithm. Second, the optimal exitCondition to apply RTO

needs to be determined experimentally. If the RTO is applied too early, incorrect tree

choices might be made because the solution might not have stabilized yet. If the RTO

is applied too late, then unnecessary processing time will be wasted on finalizing

choices that have been made already.

 37

4.3 Required Changes in Randomized Rounding

In actual implementation, the randomized rounding algorithm needs to be modified

to work properly. This is due to the nature of the linear relaxation from integer, and

also the change in the constraints. The original algorithm described in section 3.5 is

provided below for reference.

Randomized Rounding Algorithm

1. For each net i

2. If one of the tree values=1, then just select this tree and go to next net.

3. sum=0

4. r= generated random number between 1 and 0

5. For each tree j in net i

6. sum+=yj

7. if (sum>=r) then

8. Pick tree j

9. Go to next net.

10. End

11. End

12. End

The first required modification is to change the condition in step 2. In actual

interior point computation, even when one exit as late as exitCondition=1e
-6

, the trees

that should get values of one never reach this value. Instead, the value might be a

fractional value such as 0.99998, since the interior point iterations are approaching the

actual solution with a margin of error. In order to take this into account, one can take a

sufficiently accurate value of 0.9999, and step 2 should be changed to:

2. If one of the tree values>0.9999, then just select this tree and go to next net.

Second, since constraint 1 is changed to:

∑ (-yj) ≤ -1 (constraint 1a)

yj values can become greater than 1. Essentially, the yj values are coming from the

larger values and become smaller as the interior point iteration proceeds. Thus, step 4

needs to be modified to reflect the fact that the range for the sum of yj values is not in the

range {0,1} anymore. Step 4 should be changed to:

4. r= (generated random number between 1 and 0) * (∑
∈ k�jy

jy)

Essentially, instead of having the variable r range equal to {0, 1}, we are now

 38

having the range equal to {0, sum of all yj that belong to the current net}. The

modified version of the randomized rounding algorithm is given below.

Randomized Rounding Algorithm (Modified)

1. For each net i

2. If one of the tree values>0.9999, then just select this tree and go to next net.

3. sum=0

4. r= (generated random number between 1 and 0) * (∑
∈ k�jy

jy)

5. For each tree j in net i

6. sum+=yj

7. if (sum>=r) then

8. Pick tree j

9. Go to next net.

10. End

11. End

12. End

4.4 Parallel Solver for Projection Step

As described in section 3.2, the bottleneck in the interior point iteration is solving

the linear system involving A
T
D

2
A. This thesis also investigated the efficiency in

using the PSPASES package described in section 3.3 to perform parallel solving on the

linear system (A
T
D

2
A) dx = - c. The primary advantage of PSPASES package is that it

is able to efficiently execute all four steps of direct solving in parallel. The details of

the implementation can be found in [54]. Firstly, the fill reduced ordering is done

using a parallel multilevel nested dissection algorithm [52], in which the problem is

transformed to a graph and partitioned in a multilevel manner. Each partition is

distributed to the different processors and ordered using the multiple minimum degree

algorithm. The symbolic and numerical factorization phase uses a parallel

multifrontal Cholesky factorization [53], where the graph is broken into multi parts

using the elimination tree associated with the matrix A as a guide. Each part is then

factored in different processors. Finally, the triangular solving is also done in parallel,

using the elimination tree as a guide. [54]

The PSPASES package allows any MPI compatible library to be used for

communication between different processors, and any BLAS library to be used for

matrix and vector operations. In our implementation, the GotoBLAS library from

Texas advanced computing center is utilized for performing vector and matrix

operations, while the MPICH2 library is used for MPI communication between

different processors.

 39

4.5 Summary

This chapter introduced the two new optimizations, the Remove Tree Optimization

and the parallel solver. The required changes in the model and randomized rounding

algorithm are also discussed. In the next chapter, the effects of these optimizations and

their effects when combined with the optimizations discussed in Chapter 3 will be

examined.

 40

5 Experimental Results
In this chapter, the effects of the various optimizations discussed in chapter 3 and

chapter 4 will be examined. Section 5.1 discusses the optimal exit condition found,

whereas section 5.2 to 5.5 discusses the effects of applying RCO, RTO, simultaneous

optimization, and the PSPASES parallel solver.

All of the experiments were executed in Windows Vista’s MATLAB environment,

on an Intel Core 6300 (Dual CPU) machine at 1.86GHz, with 3 gigabyte of memory.

All of the coding is done in MATLAB, except the parallel solver PSPASES. Various

real routing problems of different number of variables (number of trees) were

benchmarked. All obtained solutions are randomly rounded using the method

described in section 3.5 to finalize tree choices for each net.

5.1 Optimal Exit Condition

During the execution of the interior point method, the calculated solution proceeds

closer and closer to the actual solution we are trying to achieve. From section 3.2, one

can see that the exit point is determined at the condition exitCondition< exitCriterion,

where exitCondition = |c
T
x

k+1
 - c

T
x

k
| / |c

T
x

k
|. In other words, when the progress from

one interior point loop to another is smaller than a certain exitCriterion, then it means

that one got really close to the solution and it is appropriate to exit from the loop. An

appropriate exitCriterion would allow for early exit (less execution time) and small

error from the final answer (high accuracy).

To find the optimal exitCriterion when no optimization is applied, experiments

were ran on four different problem sizes. The obtained objective function value from

various exitCriterion is shown in Table 1. No optimization and preprocessing were

used, and the obtained solution was randomized rounded at the end. To set a point of

reference, the 1e
-6

 solution is treated as the final solution value. This is appropriate

because each loop progression step is really small, and the solution is very close to the

actual solution.

 The percentage difference between solutions at various exitCriterion and the 1e
-6

solution is shown in Table 2. As can be seen from the result, the percentage difference

is insignificant starting at exitCriterion 1e
-3

as the problem size increases. A safe

optimal exitCriterion when no optimizations and preprocessing are applied is 1e
-4

.

 41

Table 1. The obtained objective function value from various exitCriterion, for different problem

sizes. Bo optimization and preprocessing, with randomized rounding at the end.

ProbSize exitCriterion 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06

262 -19.38 -18.38 -18.27 -18.22 -18.30 -18.26

1670 -31.76 -28.90 -28.72 -28.72 -28.73 -28.73

2386 -32.20 -29.69 -29.48 -29.49 -29.48 -29.47

7241

Obj. Fn.

-90.02 -84.66 -83.00 -83.00 -83.00 -83.00

Table 2. Percentage difference from 1e
-6

 answer, for various problem sizes.

% Difference from 1e
-6

 answer exitCriterion

ProbSize 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06

262 6.17% 0.65% 0.08% -0.23% 0.22% 0.00%

1670 10.58% 0.59% -0.04% -0.01% 0.00% 0.00%

2386 9.26% 0.74% 0.04% 0.07% 0.03% 0.00%

7241 8.45% 1.99% 0.00% 0.00% 0.00% 0.00%

5.2 Remove Constraint Optimization (RCO) Results

To avoid applying remove constraint optimization (RCO) too early and causes

instability in the linear system, the RCO is applied starting from exitCondition=1e
-3

.

The results of applying RCO are verified by checking the objective function value in

Table 3. As can be seen from the “Obj. Fn. Variation” row, the results are highly

accurate. As well, as the problem size gets larger the timing improves with RCO. As

shown in Table 4, the average time per loop required after the remove constraint is

applied is reduced. This is because the problem size got smaller after the optimization

is applied. For larger problems, the effect of the extra cost of optimization time is

mitigated, because the time saved from subsequent loops dominates the time savings.

Table 3. Results of solving various problems with and without RCO.

Probem Size (# of

variables) 262 1670 2386 7241

Rmv Constr Opt

Applied? no yes no yes no yes no yes

of Iterations 17 17 22 22 21 21 30 30

Time executed 0.38 0.41 4.56 4.73 6.12 6.44 160.65 154.89

Obj. Fn. Value -18.30 -18.24 -28.73 -28.73 -29.48 -29.47 -83.00 -83.00

Time Improvement -7.27% -3.85% -5.15% 3.59%

Obj. Fn. Variation -0.32% 0.00% -0.02% 0.00%

 42

Table 4. Average time per loop before and after RCO.

Probem Size (# of

variables) 262 1670 2386 7241

Avg time/loop before

remove constr opt 0.02 0.19 0.27 5.19

Avg time/loop after

remove constr opt 0.02 0.15 0.23 2.85

% of time reduced -4.55% 31.03% 17.39% 82.11%

5.3 Remove Tree Optimization (RTO) Results

As discussed in section 4.2, the optimal exitCondition to apply RTO needs to be

determined experimentally. It was determined that the optimal point to apply the

optimization is when exitCondition=1e
-3

. Due to the result found in section 5.4, the

exitCriterion is set at 1e
-4

 when generating these results. The number of trees that was

removed is shown in Table 5. Note that the amount of trees that has been removed is

over 48% for all problem sizes. This is a significant amount of reduction, and it

indicates that only a small percentage of tree choices need to be finalized at this point.

As can be seen from the timing results in Table 6, timing improved as the problem size

gets larger. Even though the computation in the RTO consumes extra processing time,

the reduced loop time saved after the RTO is applied dominates. For instance, as can

be seen from Table 7, for problem 7241 the average time per loop is reduced by a factor

of 106, due to a significant reduction in the problem size. However, it would require a

problem almost double the size (13265), to counter balance the RTO computation time

and obtain a speedup of 32.74%.

Table 5. Bumber of trees removed with RTO, for different problem sizes.

ProbSize Bumber of Trees Removed

262 233

1670 1434

2386 1922

7241 6799

13265 6353

 43

Table 6. Bumber of loops and time required to solve with and without RTO.

Probem Size

(# of variables) 262 1670 2386 7241 13265

Rmv Tree Opt

Applied? no yes no yes no yes no yes no yes

of Iterations 13 21 19 26 17 27 26 31 26 36

Time executed 0.24 0.52 3.93 5.62 5.01 8.89 136.27 177.31 476.70 320.63

Obj. Fn. Value -18.26 -18.64 -28.72 -29.69 -29.48 -30.13 -83.00 -84.00 -66.12 -66.75

Time

Improvement -119.22% -43.00% -77.45% -30.12% 32.74%

Obj. Fn.

Variation 2.08% 3.38% 2.20% 1.20% 0.95%

Table 7. Comparison of loop time before and after RTO.

Probem Size (# of

variables) 262 1670 2386 7241 13265

Avg time/loop before

remove tree opt 0.02 0.19 0.27 5.04 4.78

Avg time/loop after remove

tree opt 0.03 0.03 0.04 0.05 0.48

% of time reduced -35.00% 540.00% 677.14% 10623.40% 895.83%

5.4 Simultaneous Optimization

The objective values obtained from applying simultaneous remove tree, RCO, and

preprocessing on different problem sizes are shown in Table 8, for exit conditions from

1e
-1

 to 1e
-6

. Randomized rounding was used at the end. From the results of section

5.2 and 5.3, the remove constraint and RTO is applied at condition=1e
-3

. The

percentage difference of the resulting objective function value from the 1e
-6

 objective

function value is shown in Table 9. As can be seen from the table, the exit condition in

which zero error from the 1e
-6

 value is achieved is at 1e
-4

. This indicates that the

exitCriterion can be set at 1e
-4

.

 44

Table 8. Objective function value for different problem sizes, from exitCondition 1e
-1

 to 1e
-6

.

ProbSize exitCondition With Optimzation? 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06

262 N -19.23 -18.31 -18.30 -18.62 -18.62 -18.62

 Y -19.38 -18.38 -18.27 -18.22 -18.30 -18.26

1670 N -29.99 -28.87 -28.73 -29.69 -29.69 -29.69

 Y -31.76 -28.90 -28.72 -28.72 -28.73 -28.73

2386 N -30.92 -29.57 -29.49 -30.13 -30.13 -30.13

 Y -32.20 -29.69 -29.48 -29.49 -29.48 -29.47

7241 N -86.82 -84.31 -83.00 -84.00 -84.00 -84.00

Obj. Fn.

Y -90.02 -84.66 -83.00 -83.00 -83.00 -83.00

Table 9. Percentage difference in objective function, wit exitCondition=1e
-6

 as reference.

% Difference from 1e-6 value exitCondition

ProbSize 1e-01 1e-02 1e-03 1e-04 1e-05 1e-06

262 3.26% -1.68% -1.72% 0.00% 0.00% 0.00%

1670 1.02% -2.76% -3.24% 0.00% 0.00% 0.00%

2386 2.64% -1.85% -2.12% 0.00% 0.00% 0.00%

7241 3.35% 0.36% -1.19% 0.00% 0.00% 0.00%

The number of loops and the time required to solve different problems are given in

Table 10. From the data it can be seen that the required number of loops increase when

the optimizations are applied. This is because when the matrix A is modified by

removing constraints and trees, the left-over yj now contributes a greater portion on the

exitCondition, and thus the interior point method needs time to arrive at the same

exitCondition again. Consequently, it would require more iterations to settle down.

However, since the matrix size is now significantly smaller, each iteration requires

much less time to complete. Thus, as can be seen from Table 11, even though the

number of loops increases, the time required to obtain a solution is decreasing as the

problem gets larger. For the tested problems, in the case of exitCondition=1e
-4

 the

solving time can reduce by up to 48%. This is because a significant number of rows

and columns are removed from the matrix A. As shown in Table 12, the total number

of inactive constraints, unchosen trees, singleton trees, and unneeded constraints

contributes to a big portion of the original matrix A. In the case of problem size 7241,

the total number of rows reduced is near 75% of the original matrix. In addition, in

RTO and remove singleton trees portion of the preprocessing operation, columns of

matrix A are reduced as well. This further reduces the size of matrix A and thus the

interior point loop time.

 45

Table 10. Bumber of loops and solving time, for different exitCondition and problem sizes.

ProbSize With Optimzation? exitCondition 1e-04 1e-05 1e-06

nCounts 13 15 17 N

t (sec.) 0.29 0.34 0.38

nCounts 24 26 27

262

Y

t (sec.) 0.68 0.75 0.78

nCounts 19 21 22 N

t (sec.) 3.76 4.14 4.34

nCounts 26 29 31

1670

Y

t (sec.) 3.19 3.32 3.41

nCounts 17 19 21 N

t (sec.) 4.94 5.48 6.02

nCounts 28 30 32

2386

Y

t (sec.) 3.58 3.68 3.79

nCounts 26 28 30 N

t (sec.) 134.23 144.18 154.14

nCounts 33 34 39

7241

Y

t (sec.) 113.46 113.53 113.90

nCounts 36 43 49 N

t (sec.) 478.37 566.80 655.38

nCounts 40 42 44

13265

Y

t (sec.) 246.60 251.60 252.31

Table 11. Percentage difference in number of loops and solving time, relative to no optimization.

ProbSize exitCondition 1e-04 1e-05 1e-06

nCounts 84.62% 73.33% 58.82%
262

t (sec.) 132.60% 121.93% 105.25%

nCounts 36.84% 38.10% 40.91%
1670

t (sec.) -15.24% -19.75% -21.43%

nCounts 64.71% 57.89% 52.38%
2386

t (sec.) -27.51% -32.75% -37.06%

nCounts 26.92% 21.43% 30.00%
7241

t (sec.) -15.47% -21.26% -26.11%

nCounts 11.11% -2.33% -10.20%
13265

t (sec.) -48.45% -55.61% -61.50%

 46

Table 12. Bumber of constraints removed, and percentage relative to original number of rows.

ProbSize Bumber of rows in Matrix A 01exitConditions 1E-04 % of rows removed

ConstrRemoved 35 7.32%

TreesRemoved 169 35.36%

SingletonTreesRemoved 61 12.76%

262 478

UnneededConstrRemoved 32 6.69%

ConstrRemoved 237 7.87%

TreesRemoved 1037 34.42%

SingletonTreesRemoved 397 13.18%

1670 3013

UnneededConstrRemoved 342 11.35%

ConstrRemoved 320 7.10%

TreesRemoved 1063 23.60%

SingletonTreesRemoved 865 19.21%

2386 4504

UnneededConstrRemoved 343 7.62%

ConstrRemoved 424 3.93%

TreesRemoved 5500 51.03%

SingletonTreesRemoved 1299 12.05%

7241 10779

UnneededConstrRemoved 815 7.56%

ConstrRemoved 1079 4.01%

TreesRemoved 5831 21.72%

SingletonTreesRemoved 4336 16.15%

13265 26845

UnneededConstrRemoved 6394 23.82%

5.5 Using PSPASES

The PSPASES package, as described in 4.4, was used to solve the linear system

involving A
T
D

2
A of various sizes. The solving of the system consists of four steps:

ordering, symbolic factorization, numerical factorization, and triangular solve. The

performance in solving each of the systems is listed in Table 13. As can be seen from

the table, the ordering and symbolic factorization time always improves as one switches

from 2 to 4 processors. However, for numerical factorization phase, only the smallest

and largest problem has improved performance. Since the running time for the smallest

problem is negligible, it can be concluded that to benefit from parallel computing, the

problem size needs to be large to overcome the cost of communication overhead. For

the tested problems, the triangular solve phase receives no benefits from the additional

2 processors. However, from Table 14, one can see that for the smallest and biggest

problem, the total solving time has improved by over 10%. The total solving time is

dominated by the ordering and numerical factorization phase. Thus, once both of them

are improved, the total solving time will be improved as well. This shows that the

 47

parallel solving approach improves the solving time, which confirms the research

results of other parallel interior point methods that use different methodology for

different problems. For example, in [55], [56], and [57], parallel interior point solution

methods have all shown to provide speedup, especially when the percentage of

computations that can be done in parallel is high.

Table 13. Execution time for different phase during PSPASES solve.

Table 14. Total execution time for PSPASES solve.

5.6 Summary

In this section, the effects of the RCO, RTO, simultaneous optimization, and

parallel solving are discussed. It can be seen that these methodologies provide

efficient speedup. In the next chapter, the conclusions and future work will be

presented.

 48

6 Conclusions and Future Work
Normal sequential routing approach does not guarantee a global optimal solution.

An integer programming approach is able to incorporate multiple conflicting design

objectives, and achieve globally optimal solution. One major issue in the integer

programming approach is to speed up the solving process for more efficient routing.

This research proposed several ways one can optimize the solving time using interior

point method. The results demonstrated that the proposed optimization approaches

provide acceleration and reduces the solving time. In section 6.1, the effects of the

optimizations will be concluded, and their limitations, scalability, and contribution will

be discussed. A discussion of future work is presented in section 6.2.

6.1 Effectiveness of Optimizations

Previous approach of optimizations, namely the preprocessing technique from [7]

and the RCO technique from [2] are applied to speedup solving the routing problem

using interior point method. Using a property derived from [7], constraints that will

never be violated are removed from the problem to reduce the problem size.

Furthermore, after the interior point loop has stabilized, the constraints that are unlikely

to be fulfilled are removed as well.

A further problem-downsizing approach is proposed in this research. After the

interior point method has progressed enough, solutions that have stabilized can be

removed from the problem. This allows a great number of trees and nets to be

eliminated from the problem, thereby speeding up the subsequent iterations. In the

small routing problems, the timing is worsened by using this optimization, because the

cost to decide what nets and trees to remove is greater than the time saved by the

subsequent iteration. However, it was shown that for large problems, the timing can

improve by as much as 32.74%, with only 0.95% difference in the objective function

value.

Combined optimizations of preprocessing, RCO, and RTO has also been shown to

be effective. From the experiments, it was shown that there was no instability in

applying the remove constraint and RTO simultaneously. Furthermore, the timing can

be improved by as much as 48% for large problems. Up to three quarters of the

problem size can be reduced when the optimization is applied, which accelerates the

solving time greatly.

The downsizing of the problem not only allowed for time saving, but it can also

help in memory consumption as well. Furthermore, if the solver is run on a machine

with limited memory, significant time savings can be achieved by avoiding a constant

swap in page files.

 49

For the RTO optimization, the amount of time improvement will depend on the

nature of the problem. The more trees there are for each net, the bigger the problem

size. In such case, RTO will perform particularly well, as it will be able to remove a

large number of trees. However, note that for the tested problems, the ratio of the

number of nets to the number of trees is quite low already. Thus, it is expected that the

RTO will almost always guarantee improved results.

The key timing bottle neck in the interior point method is to solve the linear system

involving A
T
D

2
A. This research investigated the effects of utilizing an efficient

parallel solver package to speedup the solving time. By utilizing the efficient

GotoBLAS and MPICH2 library along with PSPASES, the solving time can be improved

due to parallel solving. It was found that for smaller problems, the communication

cost dominates and no speedup was obtained. However, for bigger problems, up to

11.3% speedup can be achieved by using four processors instead of two. When the

problem sizes gets bigger and bigger, utilizing even more processors should allow for

even greater speedup.

For the parallel solving optimization, the amount of speedup will depend on the

size of the problem and the number of processors utilized and memory size available.

Furthermore, it will depend on the computer architecture that the solver is running on.

A shared-memory machine will have a much better performance than a distributed

system, as the communication cost during data distribution will be significantly lower.

As well, if the problem size is too small, then using multiple CPUs will actually has an

adverse effect on the solving time. This is because the increase in the communication

time will be greater than the improvement from performing parallel computations.

However, for larger problems and assuming a shared-memory system is used, it is

expected that speedup will always be obtained. As the problem gets larger, higher

speedup will be obtained due to ability to utilize higher number of CPUs. It is expected

that the speedup will reach a limit when one reaches the capacity of the shared-memory,

and swapping to disk will have to be performed. In such case, this optimization will be

significantly slowed down, and one solution will be using a distributed array of

shared-memory system.

It is difficult to compare the results of this optimized routing method compared to

other people's research, because of the speed, memory, and architecture variance in the

testing computers. However, the important thing from the research is not the absolute

running speed, but the speedup one can obtain from performing these optimizations.

Regardless of the implementations, the speedup from the optimization will always be

there. The main impact from this research is in several ways. Firstly, a new RTO

optimization is proposed, which allows for significant reduction in the problem size and

solving time speedup. Secondly, the combined effects of the RTO optimization and

 50

other previous optimization techniques are shown and have proven to be effective in

reducing the solving time. Lastly, the bottleneck of the interior point method is

parallelized solved, and it is shown that this method is effective in obtaining speedup in

solving routing problems. These three areas have not been researched before for

routing, and it provides a valuable insight into how the routing problem can be solved

more efficiently, when modeled as an optimization problem. Since the number of

transistors is increasing greatly in VLSI design, these optimization techniques will be

useful in obtaining a multiple constrained globally optimal routing solution in

reasonable time.

6.2 Future Work

The work completed in this research can be enhanced to further speedup the solver.

For instance, there are various standard preprocessing techniques to reduce the size of

the matrix A before the interior point method is applied. Obviously, if the structure of

the matrix is changed, further investigation would be required to understand how the

RCO and RTO optimization need to be modified.

Problems with up to 10
5
 variables were solved in this research. It would be

interesting to see the effects of the optimization on bigger problems, such as problems

with 10
6
 or more variables. However, the results of the experiment prove that the

optimization is scalable. The RTO optimization actually gives better speedup as the

problem gets larger. Also, the effectiveness of the RTO optimization is independent of

the problem size, as long as the problem is greater than a certain size. Moreover, the

speedup of the parallel solving technique increases as the problem size increase. This

implies that these two optimizations are scalable to the routing problem size.

 51

References
[1] “Moore's Law: Made real by Intel® innovation”, Nov, 2006.

http://www.intel.com/technology/mooreslaw/index.htm.

[2] A. Vannelli, “An Adaptation of the Interior Point Method for Solving the Global Routing Problem”,

IEEE trans on Computer-Aided Design, vol. 10, pp. 193-203, Feb. 1991.

[3] L.Behjat, D.Kucar, A.Vannelli, “A Novel Eigenvector Technique for Large Scale Combinatorial

Problems in VLSI Layout”, Journal of Combinatorial Optimization, Vol 6, no.3, pp.271-286, 2002.

[4] Z.Yang, “Hierarchical Global Routing with Multi-Objectives”, PhD proposal, Dept Electrical and

Computer Engineering, University of Waterloo, 2005.

[5] C.Luo, “Novel Convex Optimization Approaches for VLSI Floorplanning”, PhD thesis, Dept

Electrical and Computer Engineering, Unversity of Waterloo, 2008.

[6] L.Behjat, “New modeling and optimization techniques for global routing problem”, PhD thesis,

Dept Electrical and Computer Engineering, University of Waterloo, 2002.

[7] W.L.Hare, M.J.J. Liu, T.Terlaky, “Efficient preprocessing for VLSI optimization problems”,

Computational Optimization and Applications, Springer Netherlands, March 15, 2008.

[8] Mahesh Joshi, “PSPASES Home Page”, Nov, 2008.

http://www-users.cs.umn.edu/~mjoshi/pspases/

[9] C. Y. Lee, “An Algorithm for Path Connection and its Application", IRE Transactions on

Electronic Computers, vol. 10, pp. 346-365, 1961.

[10] S. M. Sait and H. Youssef, VLSI Physical Design Automation, McGraw-Hill, London, England,

1995.

[11] J. Soukup, “Fast Maze Router", In Proceedings of the Design Automa-tion Conference, pp.

100-102, 1978.

[12] F. Hadlock, “Finding a Maximum Cut of a Planar Graph in Polynomial Time", SIAM Journal of

Computing, vol. 11, pp. 885-892, 1975.

[13] D. W. Hightower, “A solution to the line routing problem on a continous plane", In Proceedings of

6th Design Automation Workshop, pp. , 1969.

[14] K. Mikami and K. Tabuchi, “A computer program for optimal routing of printed circuit

connectors", In Proceedings of IFIPS Conf., pp. 1475-1478, 1968.

[15] E.S. Kuh and M. Marek-Sadowska, Global Routing, volume 1, pages 133-168. Elsevier Science

Publishers B.B., Amsterdam, Netherlands, 1985.

[16] C.J.Alpert, M. Hrkic, J.Hu, A.B. Kahng, J.Lillis, B. Liu, S.T. Quay, S.S. Sapatnekar, A.J. Sullivan,

and P. Villarrubia. “Buffered Steiner Trees for diffcult Instances”, In Proceedings of International

Symposium on Physical Design, pages4-9, 2001.

[17] S.Areibi, M.Xie, and A. Vannelli, “An efficient Steiner Tree Algorithm for VLSI Global Routing”,

In proceedings of Canadian Conference on Electrical and Computer Engineering, volume 2, pages

1067-1072, 2001

[18] C.Chiang, C.K. Wong, and M. Sarrafzadeh, “A Weighted Steiner Tree-based Global Router with

Simultaneous Length and Density Minimization.”, IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 13:1461-1469, 1994

 52

[19] J. Cong, A.B. Kahng, and K. Leung, “Efficient Algorithms for Minimum Shortest Path Steiner

Arborescence Problem with Application to VLSI Physical Design”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 17(1):24-39, 1998.

[20] J. Cong and P.H. Madden, “Performance Driven Routing with Multiple Sources”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16:410-419, 1997.

[21] J. Hu and S.S. Sapatnekar, “A Timing-Constrained Simultaneous Global Routing Algorithm”,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21:1025-1036,

2002

[22] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. “An Exact Algorithm for Coupling-Free

Routing”, International Symposium on Physical Design, pages 10-15, 2001

[23] W.A. Dees and P.G. Karger, “Automated Rip-Up and Reroute Techniques”, 19th Design

Automation Conference, pages 432-439, 1982.

[24] R. T. Hadsell and P. H. Madden, “Improved Global Routing through Congestion Estimation", In

Proceedings of the Design Automation Conference, pp. 28-34, IEEE/ACM, Anaheim, CA, 2003.

[25] M.P. Vecchi and A. Kirkpatrick, “Global Wiring by Simulated Annealing”, IEEE Transactions on

Computer-Aided Design, 2:215-222, 1983.

[26] G. B. Dantzig, “Linear Programming and Extensions," Princeton, NJ:Princeton University, 1963.

[27] T.C. Hu and M.T. Shing, “A DecompositionAlgorithm for Circuit Routing”, pages 144-152, IEEE

press, New York, 1985.

[28] A.P. Ng, P. Raghavan, and C.D. Thompson, “Experimental Results for a Linear Program Global

Router”, Computer Artificial Intelligence, 6:130-143, 1987.

[29] P. Raghavan, “Probabilistic Construction of Deterministic Algorithms: Approximating Packing

Integer Programs”, Journal of Computer Science, 37:130-143, 1988.

[30] P.Raghavan and C. D. Thompson, “Multi-Terminal Global Routing: A Deterministic

Approximation Scheme”, Algorithmica, 6:73-82, 1991.

[31] W. K. Luk, P. Sipal, M. Tamminen, D. Tang, L. S. Wong, and C. K. Wong, “A hierarchical global

wiring algorithm for custom chip design", IEEE Transactions Computer-Aided Design, vol. 6, pp.

518-533, 1987.

[32] M. Marek-Sadowska, “Global router for gate array", In Proceedings of the IEEE International

Conference on Computer Aided Design, pp.332-337, 1984.

[33] J. Cong, J. Fang, and Y. Zhang, “Multilevel Approach to Full-Chip Gridless Routing", In

Proceedings of the 2001 International Conference on Computer Aided Design, pp. 396-403, 2001.

[34] M. Hanan, “On Steiner's Problem with Rectilinear Distance", SIAM Journal of Applied

Mathematics, vol. 14, pp. 255-265, 1966.

[35] M. R. Garey and D. S. Johnson, “The rectilinear steiner tree problem is np-complete", SIAM

Journal of Applied Mathematics, vol. 32, pp.826-834, 1977.

[36] J.B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem”, In

Proceedings of the American Mathematical Society”, volume 7, pages 48-50, 1956.

[37] R. Tarjan, “Data Structures and Network Algorithms”, Society for Industrial and Applied

Mathematics, 1983.

[38] F. K. Hwang, “On Steiner Minimal Trees with Rectilinear Distance", SIAM Journal of Applied

Mathematics, vol. 30, pp. 104-114, January 1976.

 53

[39] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”, Combinatorica, vol. 4,

no.4, pp. 373-395, 1984.

[40] R.J. Vanderbei, M.S. Meketon, and B.A. Freedman, “A Modification of Karmarkar’s Linear

Programming Algorithm”, Algorithmica, 1:395-407, 1986.

[41] E.R. Barnes, “A Variation on Karmarkar’s Algorithm for Solving Linear Programming Problems”,

Mathematical Programming, 36:174-182, 1986.

[42] I. Adler, N. Karmarkar, M.G.C. Resende, and G.. Veiga, “Data Structures and Programming

Techniques for the Implementation of Karmarkar’s Algorithm”, ORSA Journal on Computing,

1:84-106, 1989.

[43] M. Kojima, S. Mizuno, and A. Yoshise, “A Primal-Dual Interior-Point Method for Linear

Programming, pages 29-47”, Springer-Verlag, New York, 1987.

[44] S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method”, SIAM Journal of

Optimization, 2(4):575-601, 1992.

[45] A.V. Fiacco and G.P. McCormick, “Nonlinear Programming: Sequential Unconstrained

Minimization Techniques”, John Wiley and Sons, New York, 1968.

[46] I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga, “An implementation of Karmarkar’s

algorithm for linear programming”, Math. Program., vol. 44, pp. 297-335, 1989.

[47] Anshul Gupta, Vipin Kumar, and A. H. Sameh., “Performance and scalability of preconditioned

conjugate gradient methods on parallel computers”, IEEE Transactions on Parallel and Distributed

Systems, 1995.

[48] I. C. Decker, D. Falcão, and E.Kaszkurewicz, “Conjugate gradient methods for power system

dynamic simulation on parallel computers,” IEEE Trans. Power Systems, vol. 11, pp. 1218-1227,

Apr. 1996.

[49] E. F. D’Azevedo, V. L. Eijkhout, and C. H. Romaine. Conjugate gradient algorithms with reduced

synchronization overhead on distributed memory multiprocessors. Technical Report 56, Lapack

Working Note, August 2002.

[50] A. Jordan, R. P. Bycul, “The Parallel Algorithm of Conjugate Gradient Method”, Lecture Notes on

Computer Science, Vol. 2326, pp. 156-165, 2002.

[51] R. Bycul, A. Jordan, M. Cichomski, “A new version of conjugate gradient method parallel

implementation”, Proceedings of the International Conference on Parallel Computing in Electrical

Engineering (PARELEC), Warsaw, 2002, pp. 318–322.

[52] G. Karypis, V. Kumar, “Parallel algorithm for multilevel graph partitioning and sparse matrix

ordering”, Journal of parallel and distributed computing, vol.48, pp.71-85, 1998.

[53] A. Gupta, G. Karypis, V. Kumar, “Highly scalable parallel algorithms for sparse matrix

factorization”, IEEE Transactions on Parallel and Distributed Systems”, vol.8, no.5, pp.502-520,

1997.

[54] Gupta, A., Gustavson, F., Joshi, M., Karypis, G., and Kumar, V., “PSPASES: an efficient and

scalable parallel sparse direct solver”, In Kluwer Intl. Series in Engineering and Science, T. Yang,

Ed. Vol. 515. Kluwer, 1999.

[55] De Silva, A. and Abramson, D. A, "A Parallel Interior Point Method and its Application to Facility

Location Problems", Computational Optimization and Applications, Volume 9, Number 3, March

98, pp 249 – 273

 54

[56] G. Karypis, A. Gupta and V. Kumar, "Parallel Formulation of Interior Point Algorithms," Technical

Report 94-20, Dept. of Computer Science, Univ. of Minnesota, Apr. 1994.

[57] R. Levkovitz, J. Anderson, and G. Mitra, "Interior point method for LP on parallel computers," in

System modelling and Optimization, Proc. of the 15th IFIP conf., Zurich, Switzerland, 1991.

