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Abstract

Copper-induced toxicity in aqueous systems depends on its speciation and bioavail-
ability. Dissolved organic matter (DOM) and reduced sulfur species can complex
copper, influencing speciation and decreasing bioavailability. DOM composition
in estuaries can vary, depending on allochthonous, autochthonous, or wastewater
source. At a molecular level, variability in DOM quality potentially results in differ-
ent copper binding affinities. The aim of this study was to characterize and quantify
DOM and reduced sulfur in estuaries and investigate possible correlations between
these parameters and the capacity to complex copper, reducing its toxicity. This
study will have implications on the development of marine-specific toxicity pre-
diction models. DOM was characterized in seventy-one estuarine samples through
DOC concentration and fluorescence measurements, combined with spectral resolu-
tion techniques, to quantify humic-, fulvic-, tryptophan-, and tyrosine-like fractions.
Reduced sulfur was measured by the chromium-reducible sulfide (CRS) technique.
Acute copper toxicity tests were done on a subset of samples expressing extreme
DOC, fluorescent allochthonous, autochthonous, and CRS concentrations. The
results showed significant differences in DOM quality, independent of DOC con-
centration. In terms of total fluorescent material, humic-like material ranged from
9.48% to 66.1%, followed by fulvic-like with a range of 14.5% to 63.2%, and 0.00%
to 36.5% for tryptophan-like and 0.64% to 25.2% for tyrosine-like material. CRS
was widely variable among the samples; concentrations ranging from 0.5 nM to
7800 nM. The toxicity results suggested DOC was a very good predictive measure
of copper EC50 in estuaries (r2 = 0.84) independent of DOM quality. Furthermore,
CRS was saturated at low copper concentrations indicating strong binding sites for
copper, suggesting that while CRS is protective, it does not bind copper at toxico-
logically relevant concentrations and therefore is not a good predictive measure of
copper toxicity.
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Chapter 1

Introduction

1.1 Copper in Coastal Marine and Estuarine En-

vironments

Copper is naturally found in rocks and sediment which contribute dissolved

copper into surface waters through natural erosion and runoff. Natural runoff

has been reported to contribute between 0.03 µg Cu·L−1 and 0.23 µg Cu·L−1

(0.0005 µM to 0.004 µM) into surface coastal seawater (Bowen, 1985). With its

durability, malleability, and conductivity benefits, elemental copper is widely used

in numerous industrial processes, which increases dissolved copper concentrations

via wastewater runoff. In addition, antifouling paints on the hulls of recreational

vessels has been a major concern in coastal waters, releasing an average of 3.7 to

4.3 µg Cu·cm−2·day−1 (Schiff et al., 2004). With over 53% of the US population

living along the coast, growing by 1.1 million per year (NOAA, 2004), it is

important to research the toxicity of copper in these environments. Although

it is an essential element, with a recommended daily allowance of 0.9 mg·day−1

for adult men and women (Food and Nutrition Board and Institute of Medicine,

2001), elevated concentrations of copper by way of industrial output increase its

potential detrimental impact on aquatic life.

As copper enters estuarine systems, it undergoes a complex set of reactions
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influenced by pH, salinity, and other various ions, which results in heterogeneity

of aqueous copper species. An equilibrium model of Cu(II) species with respect to

salinity is illustrated in Figure 1.1.
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Figure 1.1: Proposed equilibrium model describing the change in Cu(II) speciation across a
salinity gradient from 0 to 35 � with a pH of 8 (Adapted from: Leppäkoski and Bonsdorff
(1989)). ‘CuHum’ represents copper-humic complexation, signifying copper bound to organic
matter across the salinity gradient seen here.

For marine systems, in terms of water chemistry conditions, pH has the least

effect because seawater is a natural buffer system with a relatively constant

pH between 7.8 and 8.3 in coastal marine waters (Millero, 2001) and 7.5 to

8.8 in estuaries (Day et al., 1989). At equilibrium, copper speciation varies

among free copper ions, complexation by dissolved natural ligands (possibly

Cu(OH)2, copper-humic (CuHum), Cu(CO)3, CuOH+, CuOHCO+
3 , CuSO4,
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CuCl+, Cu(CO)2−
2 ), and adsorption on particulate or colloidal matter (possibly

CuHum) across the salinity gradient, as seen in Figure 1.1. The copper species

readily available for biotic uptake, known as ‘bioavailable’ species, typically refer

to free Cu2+ and CuOH+ (Figure 1.1) (De Schamphelaere and Janssen, 2002).

Therefore, copper toxicity in estuaries is influenced by the chemical character-

istics of the site in which the copper is found. Furthermore, these chemical

characteristics potentially vary over time and by location. This suggests that

copper toxicity may have both spatial and temporal dependence. In particular,

bioavailability of copper in estuarine waters is influenced by both natural and

anthropogenic input from surrounding coastal environments. In the development

of a marine-specific biotic ligand model (BLM), these measurements would be

used as input parameters for a computerized chemistry-based BLM, similar to

existing freshwater BLMs. Freshwater BLMs, such as the HydroQual© BLM,

is a numerical approach to predicting metal toxicity through complex chemical

equilibrium modelling (DiToro et al., 2001; Santore et al., 2001; Paquin et al., 2002).

The focus of this thesis project is to determine the protective effects of two

potential input parameters for a marine-specific BLM: dissolved organic matter

(DOM) and chromium(II) reducible sulfide (CRS). DOM is known to vary in con-

centration and molecular composition with respect to its origin such as watershed

runoff, autotroph activity in the water column, and wastewater effluent. Similarly,

CRS is thought to vary with source in addition to naturally-occurring hydrolysis

and reduction reactions in marine waters. Both DOM and CRS are known to com-

plex copper and so have the potential to mitigate copper toxicity in coastal marine

and estuarine environments. DOM (represented as dissolved organic carbon con-

centrations) is predictive of copper EC50 (Arnold et al., 2006), but the correlation

between copper EC50 and CRS is unknown.
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1.2 Dissolved Organic Matter

One of the most common measures of DOM is done by quantifying dissolved

organic carbon (DOC) concentrations in mg C·L−1. Increases in the concentration

of DOC will decrease the bioavailability and toxicity of copper in marine water

(Arnold, 2005). Typical DOC concentrations in the open ocean range from about

0.7 mg C·L−1 to 0.9 mg C·L−1, coastal zones are around 2 mg C·L−1, and river

estuaries have been reported with concentrations that may reach 10 mg C·L−1 and

higher (Dafner and Wangersky, 2002b, and references therein).

DOM can be characterized based on differences in molecular size, shape,

and reactive functional moities. In terms of molecular size, DOM can be

considered a subset of total organic matter (total OM). Total OM describes a

broad classification of organic molecules in aquatic systems. Further classifica-

tion has been done on total OM based on molecular size, as illustrated in Figure 1.2.

Figure 1.2: Classification of organic matter, based on molecular size (Adapted from: Dafner
and Wangersky (2002b)). OM = organic matter, HMW = high molecular weight, LMW = low
molecular weight.
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Total OM is commonly separated into particulate OM and DOM (Figure

1.2). This initial separation is based on filtration through a 0.45 µm membrane

filter. Further classification of DOM separates colloidal OM (1 nm to 1 µm)

from truly dissolved OM (>1 µm) (Dafner and Wangersky, 2002b). Colloidal OM

can be further separated into three classes: high molecular weight colloidal OM

(10 kDa to 0.2 µm), low molecular weight colloidal OM (10 kDa to 1 kDa), and

ultrafiltrate OM (<1 kDa) (Dafner and Wangersky, 2002b). In this study, DOM is

operationally defined as OM that passes through a 0.45 µm membrane filter.

Characterization of DOM based on molecular shape and reactive functional

groups is especially important with respect to copper complexation. The nature,

or ‘quality’ of marine DOM, is influenced by input sources. In the open ocean,

DOM is predominantly aliphatic (Harvey et al., 1983) where most of it originates

from marine microorganisms and rainwater input (Dafner and Wangersky, 2002b).

Furthermore, marine DOM from the open ocean has been found to exist as large

macromolecular structures linking lipids, carbohydrates, acetates and proteins

(Aluwihare et al., 1997; Dafner and Wangersky, 2002b). Amino acids, as macro-

molecular protein structures, are found to contribute about 20% DOC, which was

seen in Chesapeake Bay (Sigleo and Means, 1990). This amount of amino acids

may be a significant contribution of amine functional groups capable of reacting

with Cu(II). The molecular structures of tryptophan and tyrosine, which are easily

characterized amino acids, are illustrated in Figure 1.3.
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Figure 1.3: Molecular structures of tryptophan (left) and tyrosine (right).
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In contrast, coastal marine and estuaries contain more aromatic DOM,

originating from terrestrial degradation and lignin oxidation (Harvey et al., 1983).

Examples of highly aromatic DOM are humic structures primarily consisting of

humic and fulvic acids, as illustrated with representative structures in Figure

1.4. Both humic and fulvic material contain aromatic structural groups with

an abundance of carboxylic and phenolic reactive functional groups, followed by

amine, and sulfidic reactive functional groups to a lesser extent, all of which could

potentially bind to metals (Malcolm, 1990).
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Figure 1.4: Representative fragment structures of humic acid (top) and fulvic acid (bottom).
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The difference between humic and fulvic material is twofold. Humic material

is typically considered higher in molecular weight ranging from 1,500 kDa to 5,000

kDa, whereas fulvic acid ranges from about 600 to 1,000 kDa (Malcolm, 1990).

However, there is some ambiguity in these values since the actual structures that

make up humic and fulvic material have not been fully characterized (Hessen and

Tranvik, 1998). The second and more commonly accepted difference is that humic

material is insoluble in solutions below pH 2, which was operationally-defined with

origins in soil chemistry (Ma et al., 2001; McDonald et al., 2004, and references

therein). In coastal marine and estuarine waters where the pH is approximately

8.0, the high abundance of carboxylic functional groups in gives these humic

substances a net negative charge via deprotonation, resulting in available sites for

copper complexation (Harvey et al., 1983).

A high population along the coast results in higher amounts of anthropogenic

effluent, which contributes higher quantities of both terrestrial and proteinaceous

material through increased wastewater runoff and algal activity. Sedlak et al.

(1997) proposed that a large percentage of copper found in wastewater effluent

is complexed with strong ligands (logK>10), as opposed to humic substances that

otherwise contribute moderately-strong binding sites. Furthermore, van Veen et al.

(2002) found that the complexation capacity of wastewater DOM with copper de-

creased copper toxicity by 4-fold in both fresh and estuarine waters. Since charac-

terization of DOM in coastal marine and estuarine waters is a focus of this study,

the variation in DOM quality with respect to site location is key and may influence

the bioavailability of copper in these environments.

1.2.1 DOM Quality

In terms of organic matter quality based on input source, DOM can be ini-

tially categorized by two broad end-member classes: allochthonous carbon and

autochthonous carbon (McKnight et al., 2001). However, there is considerable
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variability within the nature of these two end-members themselves. A simple

diagram illustrating the range of organic matter quality by input source can be

found in Figure 1.5.

Figure 1.5: Scale of organic matter quality with respect to input source (Schwartz et al., 2004;
Winter et al., 2007).

Allochthonous carbon is derived from terrestrial input, consisting primarily

of humic and fulvic material (McKnight et al., 2001), representative structures

shown in Figure 1.4. In contrast, autochthonous carbon is generated in the

water column through microbial and algal activity (McKnight et al., 2001). It

is highly proteinaceous in nature and is characterized by amino acid structural

groups. Example structures of amino acid binding blocks are shown in Figure

1.3. Intermediate between the two end-member classes is wastewater-derived

organic matter, which include material of both humic and proteinaceous fractions

in different proportions. Baker (2001) reported distinct fluorescent signatures

of tryptophan and fulvic acid in approximately equal intensity ratios present in

sewage wastewater effluent.

Relative amounts of allochthonous and autochthonous carbon can be approxi-

mated by their specific absorption coefficient at 340 nm (SAC340). Schwartz et al.

(2004) quantified the influence of allochthonous and autochthonous carbon on metal
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toxicity to rainbow trout in freshwater systems based on the optical characteristics

of these end-members at 340 nm. Toxicity studies reported that both optically-dark

allochthonous and optically-light autochthonous material significantly decreased

copper bioavailability, however the former had a greater protective effect than the

latter (Schwartz et al., 2004). Winter et al. (2007) further characterized DOM

in freshwater via fluorescence spectroscopy, where qualitative separation of al-

lochthonous carbon into humic- and fulvic-like fractions and autochthonous car-

bon into tryptophan- and tyrosine-like fractions was performed. Fluorescence, in

combination with parallel factor analysis (PARAFAC) has been a useful tool in

quantifying a defined number of fluorescent fractions in both fresh and marine wa-

ter (Mopper and Schultz, 1993; Coble, 1996; Stedmon and Markager, 2005; Hall

and Kenny, 2007).

1.2.2 DOM Quality Characterized by Fluorescence

Fluorescence spectroscopy is a highly sensitive and selective technique that can

elucidate molecules from a heterogeneous system based on their aromatic structural

groups. When the molecules are excited with a wavelength of UV or visible light

(high energy) some of the energy is absorbed to produce a short-lived (order of

10−9 s) excited state. The excited molecule can release energy by re-emitting heat

or light of longer wavelengths (lower energy). A Jablonski Diagram can be used to

illustrate the energy-level transition from excitation to emission, as seen in Figure

1.6.
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Figure 1.6: A Jablonski diagram indicating the absorption of energy once the molecule is excited,
followed by emission between 10−6 and 10−9 seconds, unique to fluorescence.

The difference in energy between the ground state (S0) and the excited singlet

states (S1, S2,...Sn) identifies the wavelengths of the energy absorbed. Following

absorption (or excitation), vibrational relaxation to the lowest energy sublevel of

Sn occurs, which is considered radiationless that converts light to heat (Figure

1.6). At this point, one of three scenarios can take place: radiationless internal

conversion back down to S0, radiationless intersystem crossing between other

singlet or triplet states (S1 ←− S2 for example), or fluorescence. Fluorescence

describes the emission of radiation as a photon corresponding to S0 ←− S1

transition (Figure 1.6). The wavelength of fluorescence emission is dependent on

the energy difference between the S0 and S1 states where a lesser (less energy)

difference returns a longer fluorescence wavelength.

Simple fluorophores typically have a unique emission maximum, however may

absorb more than one excitation wavelength. The fluorescent emission spectral

shape is independent of the excitation wavelengths, resulting in excitation/emission
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(Ex/Em) pairs for different fluorophores. A fluorescence excitation-emission matrix

(FEEM) is the result of compiling data from simultaneous scanning of excitation

and emission wavelengths over the fluorescence spectrum. When observed as a

contour plot, FEEMs provide qualitative information on the molecular structures

of fluorophores based on their peak positions. Therefore distinctions can be made

between fluorophores in a complex mixture in solution, based on their fluorescing

characteristics. An example of a fluorescence contour plot can be found in Figure

1.7.
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Figure 1.7 is of Nordic River DOM dissolved in artificial seawater. The key

features in Figure 1.7 are the Ex/Em wavelength pairs at approximately 275 - 325

nm / 425 nm and 275 - 325 nm / 460 nm. For allochthonous carbon within DOM,

fulvic-like and humic-like fractions are the predominant fluorescent components,

due to their high abundance of aromatic structural groups, and can be detected

by Ex/Em wavelengths of 300 - 350 nm / 400 - 450 nm and 250 - 390 nm /

460-520 nm respectively (McKnight et al., 2001; Stedmon and Markager, 2005).

For autochthonous carbon, the fluorescent groups consist of fractions incorporating

the amino acids tryptophan and tyrosine due to their aromaticity. FEEMs of pure

tryptophan and tyrosine dissolved in synthetic seawater are illustrated in Figure

1.8. The intensity values, labelled along the contour lines in Figures 1.7 and 1.8

are related to the abundance of each fluorophore as well as its fluorescence efficiency.
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Tryptophan-like and tyrosine-like Ex/Em peaks are in the ranges of 225 - 275

nm / 350 nm and 225 - 275 nm / 300 nm respectively (Baker, 2001; Stedmon and

Markager, 2005). Phenylalanine also contains an aromatic ring in its molecular

structure, but cannot be easily identified by fluorescence due to its low quantum

yield. Phenylalanine is relatively nonpolar and so does not exhibit a strong dipole-

moment when excited with high energy, which equates to a small extinction coef-

ficient resulting in low absorption as identified by Beer’s Law. Lower absorption

results in lower emission that may not be detectable during the excitation-emission

scans. However, the Em/Ex wavelength pairs for phenylalanine are 280 nm / 240

nm (Du et al., 1998). Although only a small fraction of total DOM is fluorescent,

fluorescence spectroscopy provides insight into the qualitative differences between

organic fractions in DOM.

1.2.3 Parallel Factor Analysis

To quantify in relative terms, the humic-, fulvic-, tryptophan-, and tyrosine-like

fractions observed by fluorescence, spectral deconvolution via PARAFAC is

used. PARAFAC is a 3-dimensional algorithm that defines a minimum number

of independent fluorescent components, their fluorescent spectra, as well as

their abundance in each water sample analyzed (Stedmon et al., 2003). It

is accomplished through converting a series of large multi-variate data sets

into a simple linear calculation that includes the number of components, the

component spectra, and the abundance of each component as three separate

variables. This mathematical approach has been successful in identifying separate

fluorescent fractions in both freshwater (Stedmon et al., 2003), estuaries, and

seawater (Stedmon and Markager, 2005; Hall and Kenny, 2007; Nadella et al., 2009).

When using PARAFAC, it is important to set the model to extract a number of

fluorescent components that is considered mathematically reasonable in describing

the data. Since this tri-linear model is calculated simultaneously for all fluorescent
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components, a higher number of components results in a better fit of data

with little undefined residual data, typically attributed to spectroscopic noise.

Consequently, higher amounts of residual data is modelled and true components

are separated and defined as multiple, correlating components. Recently, Stedmon

and Markager (2005) resolved 8 components that described the fluorescent data

of 1276 freshwater samples using PARAFAC analysis. With a very large data

set as reported in Stedmon and Markager (2005), 8 components was considered

spectrally reasonable in defining groups of fluorophores with similar fluorescing

characteristics, as seen in Figure 1.9.

Figure 1.9: Spectra of 8 components defined by PARAFAC (Stedmon and Markager, 2005).

Stedmon and Markager (2005) found that higher than 8 components resulted in

the modelling of instrument noise and the separation of components into co-varying

components. Similarly, Hall and Kenny (2007) reported using PARAFAC to resolve

5 components from FEEMs of 2 estuarine and 1 freshwater sample. Differences

between marine and freshwater humic acid was observed and both tryptophan-like

and tyrosine-like components were resolved. However, their 5th component had no

conclusive identification and was classified as mathematical noise (Hall and Kenny,

2007). This study aims for a more simple classification scheme by resolving 4

fluorescent components in a data set of 72 coastal marine and estuarine samples.

It is expected that 4 components would be mathematically reasonable, resulting in
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little residual data, as well as spectroscopically reasonable in identifying humic-,

fulvic-, tryptophan-, and tyrosine-like fluorescent fractions. This scheme should

result in the simplest model that describes the data statistically well.

1.3 Reduced Sulfur

Sulfur is classified as a Group B soft ligand with a broad span of oxidation states

(±2, 4, 6). These characteristics result in a strong affinity for coordination with

soft Group B metals, such as copper, due to their high polarizability. Another

characteristic of sulfur is its ability to form catenated sulfide ions (S2−
n ), which serve

as chelating ligands for soft metals resulting in (meta)stable metal-sulfide clusters.

However the molecular structure of these metal-sulfide clusters are not well

understood (Bianchini and Bowles, 2002), which makes quantifying reduced sulfur

with respect to metal toxicity difficult. Dehnen et al. (1996) has demonstrated

the stability of (meta)stable copper-sulfide clusters through molecular modeling

techniques, as seen in Figure 1.10.
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Figure 1.10: Proposed model structures of copper-sulfide clusters as Cu2nSn (Dehnen et al.,
1996).

The models illustrated in Figure 1.10 are representative theoretical structures

and isomers of copper-sulfide clusters, calculated as an attempt to explain obser-

vations in aquatic systems (Dehnen et al., 1996). Recent research has focused

on complexation between reduced sulfur and copper in oxic waters due to its

strong coordination capabilities with copper and potential importance to copper

bioavailability (Bowles et al., 2002; Bianchini and Bowles, 2002; Smith et al.,

2002). Reduced sulfur includes free sulfide anions (S2−, HS−), metal-sulfides

(Figure 1.10) and pyrite complexes, polysulfides (Na2S4), thiosulfates (Na2S2O8),

sulfites (Na2SO3), and thiols (R-SH) (Bowles et al., 2003). This group of sulfur

species were once thought to be of little importance in oxygenated aquatic systems,

due to spontaneous oxidation. However research has shown that reduced sulfur is
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kinetically stabilized when bound to metals such as Cu(I,II) and Ag(I), in both

freshwater (Rozan et al., 2000; Bowles et al., 2003) and seawater (Luther and

Tsamakis, 1989). Research by Kramer et al. (2007) proposed that reduced sulfur

in natural freshwater systems form complexes with metals, particularly copper due

to its relative abundance, either intermixed within natural organic matter, or as

colloid clusters surrounded by NOM through electrostatic attraction (Figure 1.11).

Figure 1.11: Proposed model structures of metal sulfide clusters in freshwater, either inter-
connected with natural organic matter (left) or bound externally through electrostatic attraction
(right) (Kramer et al., 2007).

From Figure 1.11, two possible metal sulfide clusters were proposed: 1) metal

sulfide clusters interconnected with NOM through multi-metal, multi-ligand

association, and 2) metal sulfide colloid complexes within nano-pores of NOM,

associated by electrostatic bonds (Kramer et al., 2007). In addition, Smith et al.

(2004) suggested reduced sulfur may contribute strong binding sites in natural

waters for metals within groups 11 and 12 (logK>11 for Ag(I)). Strong binding

sites refer to metal ion complexation with binding constants (logK ) of 12 - 14 and

concentrations between 1 and 40 nM·dm−3 (Town and Filella, 2000). Research

by Al-Farawati and van den Berg (1999) found that in seawater, sulfide had a

higher binding affinity to free copper than other free metals such as aluminium,

lead, and silver at environmentally relevant concentrations, with over 99% of

the reduced sulfur complexed as Cu(HS)+. However, in the presence of organic

ligands, Cu(HS)+ complexation dropped to about 28%, and copper-organic matter

complexation was at 71%. Since the molecular structure of these complexes are
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not fully understood, it is possible that observations made by Al-Farawati and

van den Berg (1999) may be attributed to structures illustrated in Figure 1.11.

However, it was reported that over 99% of the copper in solution was complexed

with either reduced sulfur or organic matter (Al-Farawati and van den Berg, 1999).

High complexation of copper with reduced sulfur alone or in combination with

organic matter would markedly affect its bioavailability in natural waters. It is

important to determine its implications as a protective ligand and/or predictive

measure in coastal marine and estuarine environments.

Reduced sulfur has not been used as a predictive measure for quantifying

copper bioavailability because current analytical methods for measuring reduced

sulfur are difficult, time consuming, and the results are generally inconsistent

(Bianchini and Bowles, 2002). Furthermore, the methods that do exist are not

capable of identifying the nature of all reduced sulfur species. A method known

as methylene blue sulfide (MBS) determination is commonly used for hydrogen

sulfide and metal sulfide determination (Cline, 1969; Tang and Santschi, 2000).

However, it was found to estimate less than 25% of metal sulfide clusters with soft

Group B metals such as Ag2S, CoS, CuS, HgS, MnS, and PbS due to incomplete

oxidation of sulfides (Bowles et al., 2002). Cathodic stripping voltammetry (CSV)

has been used to identify metastable metal-sulfide clusters such as CuS, however

resultant peaks may be indiscernible from free sulfide and thiols (Al-Farawati and

van den Berg, 1999). In addition, results from conventional CSV may be unstable

due to precipitation with the mercury in the voltammetric cell (Al-Farawati and

van den Berg, 1999). Furthermore, CSV instrumentation is not typically available

for use because of high costs.

A method for reduced sulfur determination suggested by Bowles et al. (2003)

known as CRS is an acceptable method because Cr(II) successfully releases reduced

sulfur in forms of pyritic sulfur, elemental sulfur, and polysulfides (Canfield et al.,

19



1986), otherwise undetected by MBS (Bowles et al., 2002). This method can

measure reduced sulfur, at nanomolar scale provided trace analytical techniques

for clean labware are strictly followed. With good analytical practices, CRS results

in approximately 94 - 109% recovery with 3.9 - 25% precision (Bowles et al.,

2003). In addition, extensive studies show there is no interference by sulfate ions

in CRS determination (Bowles et al., 2003; Canfield et al., 1986, and references

therein). Sulfate interference would result in over-estimation of CRS, which is

unfavourable, especially in marine waters where sulfate concentrations are high

compared to sulfide (Bowles et al., 2003). However, this method is very time

consuming such that only four samples can be analyzed per day, and does not

account for some metal sulfides, such as Ag(I)S. In addition, CRS does not measure

organic sulfides, such as thiols, which are also believed to play a major role in

copper speciation (Bowles et al., 2003). In terms of quantifying inorganic sul-

fide species, CRS can be applied with acceptable recovery and good reproducibility.

Studies on reduced sulfur and/or CRS determination in freshwater have reported

CRS concentrations up to 600 nM in freshwater rivers (Rozan et al., 2000). Luther

and Tsamakis (1989), Al-Farawati and van den Berg (1999), Bianchini and Bowles

(2002) and references therein reported an overall concentration of <0.001 to 162 nM

of reduced sulfur in marine and coastal waters by means of voltammetry, HPLC,

GC, and various spectroscopic methods such as UV/Vis. However, no published

results were found on CRS determination in coastal marine or estuaries. Smith et al.

(2002) concluded that in freshwater, reduced sulfur contributes strong binding sites

for metal ions such as Cu2+. If evidence suggests that reduced sulfur binds strongly

with copper in estuarine environments and if toxicologically-relevant concentrations

are found, then it may be beneficial to develop more reliable methods for quick

reduced sulfur determination.
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1.4 Ambient Water Quality Criteria for Copper

Metals in freshwater has been studied for about thirty years in terms of speciation

and bioavailability, physiological effects on aquatic organisms, and toxicity, result-

ing in development of regulatory guidelines (Paquin et al., 2002, and references

therein). In terms of copper regulations in freshwater, the U.S. EPA (2007)

currently bases its water quality criteria (WQC) on the knowledge that copper

bioavailability and toxicity is a function of water chemistry such as concentrations

of DOC, inorganic ligands, and competing cations for binding sites on the aquatic

organisms (McGeer et al., 2000; DiToro et al., 2001; Santore et al., 2001; Paquin

et al., 2002). At a molecular level, bioavailable copper is measured based on the

concentrations and binding affinities of free copper ions to organic and inorganic

abiotic ligands (Allen and Hansen, 1996). Furthermore, if copper concentrations

exceed available abiotic ligand binding sites or if the binding affinities of abiotic

ligands to copper are relatively low, then copper has the capacity to bind with

biotic ligands.

Biotic ligand is the generalized term for sites on aquatic organisms where metals

can bind, such as the transport proteins within fish gills (Figure 1.12) (Paquin

et al., 2002). If the accumulation of copper reaches a critical concentration at the

biotic ligand, toxic effects occur (Paquin et al., 2002). This critical value may be

written in terms of acute lethal accumulation at the biotic ligand that kills 50%

of the test organisms (LA50). With the addition of organic or inorganic abiotic

ligands, the concentration of bioavailable copper decreases via complexation and

so the concentration of free copper that will kill 50% of the species, acute LC50,

is higher than the LA50. The endpoint of toxicity is commonly lethality, however

acute concentrations that disrupt growth, development, or fecundity of 50% of the

test organisms (EC50) can be measured as well.

Toxicity criteria concentrations for metals, such as LC50, LA50, and EC50, were
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commonly reported as total dissolved metal concentrations, however reports argue

the necessity to report toxicity data based on bioavailable metal species, which is

key in quantifying the toxic effects at the biotic ligand (Allen and Hansen, 1996;

Eriksen et al., 2001). Research done by Pagenkopf et al. (1974) and Allen (1993),

among others, have suggested that in freshwater, copper toxicity was dependent

on free copper(II) ion concentrations. In marine water, similar findings have been

published by Sunda and Gillespie (1979), in which it was suggested that the total

bioavailable copper in marine water at pH 8.1 is equal to 101.8×Cufree. This

equation approximates the concentration of hydroxy copper species in addition to

free copper(II), which would be present at that pH. These hydroxy copper species

are also considered bioavailable (De Schamphelaere and Janssen, 2002). However,

when calculating bioavailable copper based on equilibrium modelling, numerous

approximations based on theoretical models are applied, resulting in approximated

free copper values.

The Canadian Environmental Quality Guidelines (CEQG) for copper is

currently based on total copper concentrations that are considered ‘safe’ copper

levels in both fresh and marine water. The Canadian freshwater copper criteria

range from 2 to 4 µg Cu·L−1 (0.03 - 0.06 µM), depending on water hardness,

and the saltwater criteria state a limit of 3 µg Cu·L−1 (0.05 µM) (CCME,

2007). The U.S. EPA has established that regulations of bioavailable metals

are variable with respect to site-specificity for both fresh and marine waters

(U.S. EPA, 2007). The research involved in determining the freshwater copper

criteria has advanced into the development of a computer model that describes

copper toxicity based on site-specific water chemistry characteristics and the

binding capacity of copper to biotic ligands, known as the BLM (Santore et al.,

2001; DiToro et al., 2001; Paquin et al., 2002). A basic schematic displaying the

protective and competitive effects of ligands and cations with respect to metal

toxicity at the site of toxic action (generic biotic ligand) is illustrated in Figure 1.12.
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Figure 1.12: Schematic of chemical, physiological, and toxicological effects on the biotic ligand
in natural waters. This schematic was the basis for the computerized chemical equilibrium BLM,
which quantifies metal toxicity given specific water chemistry parameters. (Paquin et al., 2002)

The framework for the BLM (Figure 1.12) is a complex chemical equilibrium

model designed for aqueous systems that calculates simultaneous metal-ligand

concentrations and relates the calculated concentration of metal-biotic ligand to

the predetermined LA50 for that specific metal and test freshwater species. From

Figure 1.12, a metal (M) is capable of binding to the biotic ligand, which could

initiate a toxic effect. However, this metal may compete with other cations in the

water for the same binding sites on the biotic ligand, such as Na+ at the Na+/H+

channel. Furthermore, this metal may form complexes with various organic and

inorganic anions, such as DOM, decreasing its bioavailability, as illustrated on

the left-most portion of Figure 1.12. Combining the concentration of the metal,

complexation with anions, and competition for the biotic ligand with cations, the

overall free metal concentration that is available to bind to the biotic ligand can

be calculated.
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The idea for a BLM originally stemmed from work done by Pagenkopf (1983).

The BLM unifies numerical models applicable to natural aquatic systems such as

chemical equilibria in soils and solutions (CHESS) (Santore and Driscoll, 1995)

and the Windermere humic aqueous model (WHAM), which calculates chemical

and electrostatic interactions in the aquatic environment (Tipping, 1994). Using

these models, calculated output from the BLM include acute toxicity for a variety

of freshwater organisms in addition to concentrations of bioavailable species of

several metals such as copper, lead, cadmium, and silver. These calculated output

values are determined by user-selected metal and test organisms in addition to

water chemistry input parameters including temperature, pH, DOC, Ca2+, Mg2+,

Na+, K+, Cl−, SO2−
4 , and alkalinity. It is currently available for freshwater criteria,

adapted by the U.S. Environmental Protection Agency (U.S. EPA, 2007).

Industrial and municipal growth along the coasts of North America result

in higher anthropogenic output in estuaries and coastal marine waters, possibly

increasing metal concentrations to unsafe levels. For industries along the coasts

that release metal-containing effluent, an efficient numerical method for predicting

metal bioavailability based on their water chemistry measurements would be

beneficial and cost-effective. A predictive computerized method for coastal waters,

similar to the freshwater BLM, would be quick, allowing for fast responses to

improving wastewater treatment methods if necessary.

Research on predicting copper toxicity in coastal marine and estuarine water

has recently come into focus (Arnold, 2005). Prior to site-specific calculations

of copper toxicity in marine and estuarine waters (such as with the BLM for

freshwater), a criteria for safe levels of copper was calculated based on available

reported toxicity data in marine water (U.S. EPA, 1995a). In terms of copper

toxicity in marine and estuarine waters, it is ideal to protect the most sensitive
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species, which is determined by plotting all the available dissolved copper toxicity

data with respect to each tested species, showing the probability distribution of

genus mean acute values (GMAV), as seen in Figure 1.13. These data indicate

that Mytilus is an especially sensitive genus, and therefore is an ideal test

species for establishing copper water quality criteria. Indeed, Mytilus sp. was

used as the standard for the final acute value (FAV) at the 95% limit (Arnold, 2005).

Figure 1.13: Plot of genus mean acute values of available seawater organisms to copper toxicity.
The aim is to select a final acute value (FAV) that would protect 90% of genus’ population.
However for the case of copper criteria, the U.S. EPA lowered it to 9.625 µg Cu·L−1 to protect
the Mytilus species because of its high commercial importance (Arnold, 2005).

In Figure 1.13, the FAV refers to the copper concentration that will kill

approximately 50% of the Mytilus population. A final acute criterion (FAC) is

calculated from the FAV (FAV/2), yielding a value of 4.3 µg Cu·L−1 (0.068 µM),

which describes the approximate ‘safe’ level that protects 95% of the Mytilus

population from lethality (U.S. EPA, 2007). Final chronic criterion (FCC) of 3.1
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µg Cu·L−1 (0.049 µM) for dissolved copper in marine water is approximated by

dividing the FAC by an experimentally-determined acute-to-chronic ratio (ACR)

(U.S. EPA, 1995a; Arnold, 2005). Applications of these criterion values to natural

marine and estuarine systems involves a water effect ratio (WER) calculation.

The WER is the quotient of measured LC50 for the natural water in question and

the LC50 performed in laboratory reference waters, which is meant to ‘correct’

the FAC making it applicable for that particular site (Paquin et al., 2002, and

references therein). This simple approach allows for approximations of site-specific

safe levels of copper without the necessity of understanding the effects of water

chemistry (Wood et al., 1997). This WQC was implemented into the most recent

documents issued by the U.S. EPA (2007).

A marine-specific BLM is under development that will incorporate abiotic and

biotic ligands pertaining to saltwater characteristics in order to assess site-specific

marine water copper criteria. However, in the meantime there exists a simple

model to approximate EC50 in marine water based on the strong linear relationship

between DOC and EC50 as proposed by Arnold et al. (2006). This relationship is

shown in Figure 1.14.
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Figure 1.14: Plot of dissolved copper EC50 with respect to DOC concentrations in marine water
(Arnold et al., 2006). Toxicity tests were performed on the embryos of Mytilus sp. in natural
water samples collected along coastal North America.

The solid line is a linear regression of the plotted points, with the equation

EC50=11.22 DOC0.6 (r2=0.76, p<0.0001). The dotted lines represent a factor of

2 from the line, which is the generally accepted predictability limits for toxicity

modeling (Santore et al., 2001; DiToro et al., 2001; Paquin et al., 2002).

1.5 Research Objectives and Approach

A primary research objective of this thesis was to determine whether DOM quality

and CRS are appropriate input parameters in the development of a marine-specific

BLM. In order to meet these objectives, coastal marine and estuarine water sam-

ples were characterized through measurements of DOC, DOM quality, and CRS.

Following characterization, these measureables were tested for protective and/or

predictive relationships with copper EC50. In terms of identifying potential in-

put parameters, predictive relationships with copper EC50 is key. Would DOM

quality contribute a better approximation of copper toxicity than DOC concentra-

tions? Furthermore, does CRS need to be a measureable input in the BLM as well?
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Currently, the available HydroQual BLM software Version 2.2.3 (Santore, 2007)

includes an input for CRS, but it is currently deactivated. The answers to these

questions will have implications on copper regulation in coastal marine and estuar-

ine environments. The approach taken to achieve these objectives are outlined in

the following list:

1. Develop a sampling strategy to obtain a set of coastal marine and estuarine
water samples along the east, west, and south coasts of North America that
vary in salinity and input sources (i.e. allochthonous, autochthonous, and
wastewater material).

2. Measure the quantity and quality of DOM in the water samples through DOC
and fluorescence analysis.

3. Determine the quantity of reduced sulfur via CRS in the water samples.

4. Analyze data for extreme DOC, fluorescent, and CRS signatures, i.e. high
CRS/low DOC, by factorial analysis to identify a good sample subset for
toxicity analysis.

5. Run static 48-hr acute EC50 assays on the sample subset using embryos of
Mytilus galloprovincialis. DOC, CRS, and fluorophore concentrations will be
re-measured to account for any natural changes to the samples. Absorbance
measurements at 340 nm will be performed, along with total copper mea-
surements by inductively-coupled plasma with optical emission spectroscopy
(ICP-OES).

6. Analyze the data for possible correlations between the water chemistry mea-
surements (DOC, CRS, fluorescence) and total copper EC50.

The testable hypotheses for this thesis is outlined in the following list:

1. Fluorescence measurements in combination with PARAFAC would identify
a reasonable set of operationally-defined DOM fractions that best describe
DOM quality and their relative concentrations in each coastal marine and
estuarine water sample.

2. Fluorescence measurements of DOM quality would contribute an improved
approximation of copper EC50 from DOC, particularly the allochthonous flu-
orescent components, such as humic and fulvic material.
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3. Optically-defined allochthonous carbon, through SAC340 measurements,
would be more protective than autochthonous with respect to copper tox-
icity.

4. Reduced sulfur, through CRS measurements, would be protective of copper
toxicity and a necessary input parameter for a marine-specific BLM.

In the following chapters, the steps taken to achieve the objectives of this thesis

will be addressed in detail. Chapter 2 includes experimental details common to

all experimental and computational methods applied in this thesis. Chapters 3

and 4 are intended for submission as journal publications. External contributions

to these chapters was limited to collection of the marine and estuarine samples,

assistance with developing the partial factorial design, and free copper calculations.

In Chapter 3, measurements of DOC, fluorescence, and CRS are addressed in detail

as a means to characterize source variability. Chapter 4 discusses the factorial

analysis and selection of a sample subset along with toxicity measurements. The

toxicity results obtained here were pooled with a subset of data published by Arnold

(2005) and Arnold et al. (2006). Chapter 5 contains a summary and conclusions of

the research and experimental findings of this thesis.
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Chapter 2

Methods

2.1 Reagent and Material Preparation

2.1.1 Synthetic Seawater

Synthetic seawater was prepared by dissolving commercial-grade sea salt mixtures

(Kent Marine, Atlanta, GA, USA) in millipore grade water (MilliQ water) (18.2MΩ)

and adjusted to 30� salinity using a PINPOINTr Salinity Monitor (American

Marine Inc., Ridgefield, CT). It was prepared in 20 L batches and replenished

every week. This synthetic sea salt was recommended for use in marine copper

toxicity tests by Arnold et al. (2007). All chemical characterization measurements

described in Sections 2.3 and 2.4 were performed on this synthetic seawater for

comparisons. All marine standard solutions and dilutions were prepared using this

synthetic seawater as the solvent. The reference toxicity tests were performed using

this synthetic seawater.

2.1.2 Tyrosine and Tryptophan Solutions

A 5×10−4 M stock solution of reagent-grade L-tryptophan (>98% pure, Sigma-

Aldrich, St. Louis, MO) and a 5×10−3 M stock solution of reagent-grade L-tyrosine

30



(>98% pure, Sigma-Aldrich, St. Louis, MO) were prepared using synthetic seawater

(Section 2.1.1. These stock solutions were used to prepare diluted solutions of

2.5×10−7 M pure tryptophan and 5×10−7 M pure tyrosine. A mixture solution

containing both tryptophan and tyrosine at concentrations of 2.5×10−7 M and

5×10−7 M respectively was prepared as well. These diluted pure and mixture

solutions were used to calibrate PARAFAC during spectral analysis.

2.1.3 ZnHg Amalgam for the Jones Reductor

The amalgamated zinc in the Jones Reductor column (Jones, 1888) was prepared

by mixing 150 g 20 mesh Zn (99.8% pure, Sigma-Aldrich, St. Louis, MO), 150 mL

MilliQ water, 3.0 g mercuric chloride (99.5% pure, Alfa Aesar, Ward Hill, MA), and

1 mL 16 N HNO3. The supernatant was discarded and the amalgam was rinsed

thoroughly with MilliQ water. All of the amalgam was spooned into a glass column,

plugged at the bottom with glass wool to hold the amalgam within the column.

The column was filled with deoxygenated MilliQ water and plugged at both ends

to store the amalgam in a wet and reducing environment.

2.1.4 Chromium(II)

A 1 M solution of Cr(III) was prepared by dissolving crystalline CrCl3·6H2O (98%

pure, Sigma-Aldrich, St. Louis, MO) in 50% v/v HCl (prepared from 12 N HCl).

Under Ar, the Cr(III) was reduced by a Jones Reductor (see Section 2.1.3. The

resulting Cr(II) solution was collected in an Erlenmeyer flask at the base of the

reductor and sealed with a septum and Parafilm to prevent exposure to the atmo-

sphere. The airspace in the flask was purged with Ar when aliquots of the Cr(II)

solution were removed. Removal of Cr(II) aliquots was done with a clean, dry sy-

ringe and long-nose needle inserted through the septum. This solution is stable in

reduced form for about two weeks.
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2.1.5 Mixed Diamine Reagent (Parts A and B)

The mixed diamine reagent (MDR) was prepared in two parts (A and B) (Andreae

et al., 1991) with increased acidity (Bowles et al., 2003). Part A consisted of dis-

solved N,N-dimethyl-p-phenylenediamine (98% pure, Aldrich, St. Louis, MO) in

50% v/v HCl and stored in a Nalgene bottle at 4�. Part B consisted of dissolved

FeCl3·6H2O (99.0% pure, Fluka, Switzerland) in 50% v/v HCl and stored in a Nal-

gene bottle at 4� as well. Equivolumes of parts A and B were mixed immediately

prior to use.

2.2 Sampling and Storage of Samples

A sampling strategy was devised prior to collection to ensure the sampling sites

varied in salinity from brackish to marine and varied in natural and anthropogenic

input sources such that both DOM quality and CRS concentrations should vary.

These sources included wastewater, allochthonous sources (terrestrial degradation),

autochthonous sources (autotroph activity, in situ), and a mixture of the three

sources.

Ambient water samples were collected by Ray Arnold (Copper Development

Association) and Scott Smith (Wilfrid Laurier University) from 71 marine and

estuarine sites along the east, west, and south coasts of North America. Samples

were collected in clean, 2 L opaque, high density polyethylene (HDPE) bottles.

The bottles were rinsed three times with sampling water on-site before the actual

sample was taken. The samples were collected near the water’s surface and

the bottles were capped while submerged to avoid air contact with the water

during transport to the lab for analysis. One sample was collected at each site

and sampling was done either near the shoreline or off a dock a few metres off shore.

The ambient water samples were shipped in coolers (approximately 24 hours)
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at about 4�. On arrival, pH, salinity and fluorescence was immediately measured,

followed by DOC and CRS. Salinity was measured with a PINPOINTr Salinity

Monitor and pH was measured with a Tananger dual pH meter (Scientific Systems

Inc., USA) using an Orion double junction reference electrode and Ag/Ag-Cl pH

electrode (Thermo Electron Corp., USA). Methodology for fluorescence, DOC, and

CRS measurements can be found in Sections 2.3 and 2.4. To minimize oxidation of

the reduced sulfur, the samples were stored under argon. The bottles were stored

at 4�. All precautions were made to ensure minimal contamination to the bottles

and water samples during collection, transport, analyses, and storage.

2.3 Characterization of Organic Matter

2.3.1 Fluorescence Measurements

An aliquot from each of the 72 water samples (71 collected, plus synthetic

seawater) was passed through a 0.45 µm pore size GMF GD/X membrane filter

(25 mm diameter) (Whatman, Florham Park, NJ) and the filtrate was measured

using a Varian Cary Eclipse Fluorescence Spectrophotometer (Varian, Mulgrave,

Australia) in a 1 cm quartz cuvette. Fluorescence scans of emission wavelengths

from 250 nm to 600 nm in 1 nm increments were measured for every 10 nm

excitation wavelength between 200 nm and 450 nm. The excitation and emission

monochromator slit widths were both set to 5 nm for all the measurements. The

scan speed was at a rate of 400 nm·min−1 and the photomultiplier tube (PMT)

was set to high detection (800 V).

The fluorescence data was processed in MatlabTM (The MathWorks, Natick,

MA) to produce 3-dimensional FEEMs, displayed as contour plots. Rayleigh scat-

terings were removed from the preprocessed data and replaced with not-a-number

(NaN) values, which would otherwise cause mathematical interferences in subse-

quent spectral analyses. The Matlab scripts used to produce the contour plots are

33



found in Appendix A.1.

2.3.2 Spectral Analysis of Organic Matter

Fluorescence indices for every water sample was calculated to approximate DOM

source, as proposed by McKnight et al. (2001) using Equation 2.1:

FIEx370 =
Em450

Em500
(2.1)

where FI is the fluorescence index, and Em450 and Em500 are the emission

intensities at 370 nm excitation. These FI values were compared to qualitative

observations of each site with respect to DOM source.

The 72 FEEMs were spectrally resolved using PARAFAC to elucidate four

operationally-defined fluorescent fractions and observe their individual spectra.

PARAFAC spectrally deconvolutes the three-way data set of excitation, emission,

and intensity from the original FEEMs by mathematically breaking down these

components into a linear equation incorporating the components spectra, their

relative abundance, and quantum efficiencies (Stedmon et al., 2003) (Figure 2.1).
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Figure 2.1: Graphical representation of the three-way PARAFAC model (Adapted from Nahorniak and Booksh (2003) and Stedmon et al. (2003)).

35



where fijk is the FEEM of the ith water sample with j emission wavelength,

and k excitation wavelength, Fxi is the fluorophore abundance value of the nth

fluorophore component defined by PARAFAC in sample i, Xnij is the emission

wavelength (j ) of component x in sample i, Ynik is the excitation wavelength k

of component x in sample i, and Enijk is residual, or mathematical noise, not

accounted for by PARAFAC (Stedmon et al., 2003). N defines the number of re-

solved fluorophore components and there are 4 components defined in this study.

With this equation, the abundance value of each fluorophore component defined in

PARAFAC can be calculated for every measured water sample based on the spectra

of the components and the intensity of the Ex/Em peaks in the FEEM. These calcu-

lated abundance values are referred to here as ‘concentrations’, although it must be

noted that they are not true concentrations. Rather, they are linearly proportional

to their molar concentrations. If the molecular identity of the fluorophore and its

quantum efficiency is known, then Equation 2.2 can then be applied (Guilbault,

1973):

F = kC (2.2)

where F is the fluorophore abundance value described by PARAFAC, k is

the linear proportionality constant incorporating the quantum efficiency of the

fluorophore, and C is the molar concentration of the fluorophore. The components

of DOM resolved by PARAFAC have no defined structure, however they do have

similar structural characteristics to known compounds. Therefore, only approxima-

tions can be made on the relative concentrations of each component using Equation

2.2 provided that total fluorescent organic matter is used as an approximation for

DOM as a whole (Stedmon and Markager, 2005). Concentrations (C, Equation

2.2) of the fluorophores quantified here were be approximated through the use of

standard solutions of Suwanee River Fulvic Acid (SRFA) and pure tryptophan and

tyrosine. Since the molecular identity of each fraction defined by PARAFAC is not

known, the degree of uncertainty in the approximated concentrations cannot be
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verified. Calculations to approximate the concentrations of each fluorophore can be

found in Appendix C. The calculated concentration units are represented in equiv-

alents of SRFA, pure tryptophan, and pure tyrosine appropriately. In this study,

the fluorophore abundance values will be used, which limits these values to internal

comparisons only. This approach provided insight into both the qualitative and

quantitative differences within DOM in coastal marine and estuarine environments.

The PARAFAC algorithms used were from PLS Toolbox version 4.1.1 in

MatlabTM (Eigenvector Research, Inc., WA). The fluorescence data of all 72 samples

were inputted into PARAFAC for simultaneous analysis. In addition, fluorescence

data from the tryptophan and tyrosine standards were added to the dataset after

every 10 additions of ambient water fluorescence data to simultaneously calibrate

the analysis. The Matlab scripts used to input the dataset and quantify the abun-

dance of these four fractions is found in Appendix A.2. The mathematical output

consisted of the individual spectra, [X, Y ], of four fluorescent components and the

relative ‘concentration’, F , of each fraction in each water sample. Two spectra were

of allochthonous material and labelled as fulvic-like and humic-like fractions based

on their average molecular weights, at Ex/Em 354 nm / 460 nm and 467 nm / 548

nm respectively (Wu et al., 2003). Since the molecular weight of humic material

is generally higher than fulvic material, it was assumed that the spectrum emit-

ting higher fluorescence wavelengths was more humic-like. FEEMs of tryptophan

and tyrosine standards were used to identify the remaining two spectra resolved by

PARAFAC.

2.3.3 DOC Analysis

Quantitative measurements of organic matter in the ambient water samples was

approximated through DOC analysis. DOC concentrations were measured with

a Shimadzu TOC-5050A Total Carbon analyzer using an ASI-5000A autosampler

(Mandel Scientific, Guelph, ON). Prior to measurements of the ambient water sam-
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ples, solutions of total carbon (TC) as 5 mg C·L−1 and 10 mg C·L−1 potassium hy-

drogen phthalate (C6H4(COOH)(COO−K+)) dissolved in synthetic seawater were

used as marine standards to verify the accuracy of the analyzer with marine sam-

ples. A 10 mL aliquot of each ambient water sample was passed through a 0.45

µm pore size GMF GD/X membrane filter (25 mm diameter), acidified with 16 N

HNO3, and sparged with N2 for 15 minutes immediately prior to analysis in order

to remove inorganic carbon as suggested by Dafner and Wangersky (2002a). Two

vials of acidified MilliQ water were placed between every 10 ambient water samples

in the autosampler to ensure any salt deposits were rinsed thoroughly from the

analyzer syringes. The TC marine standard solutions were treated the same way

as the ambient water samples prior to analyzing.

2.3.4 Specific Absorption Coefficient at 340 nm

Absorbance measurements at 340 nm were performed using a 1 cm quartz cuvette.

An LS-1 tungsten halogen lamp light source was shone through the cuvette, the

signal was detected by a USB2000 fiber optic spectrometer and the signal was

visualized using the Ocean Optics Spectra Suite version 1.4.2 (Ocean Optics Inc.,

Dunedin, FL). References of synthetic seawater were used. SAC340 can be calculated

using the following equation (Equation 2.3) (Schwartz et al., 2004):

SAC340 = 2, 303× Abs340

DOC
(2.3)

2.4 Quantification of Reduced Sulfur

The CRS method used here involves a redox reaction between Cr(II) and either

the metal bound to sulfide, or the partially oxidized sulfide under acidic, anoxic

conditions. Two representative chemical reactions involving oxidation of metal-

sulfides (M-S) and sulfites are shown in Equations 2.4 and 2.5:
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Cr2+
aq + M − Saq + 2H+

aq −→ Cr3+
aq + M+

aq + H2Sg (2.4)

6Cr2+
aq + SO2−

3aq + 8H+
aq −→ 6Cr3+

aq + H2Sg + 3H2Oaq (2.5)

Through purge-and-trap techniques, the reduced sulfur is protonated under

acidic conditions to produce gaseous H2S and transferred by N2 (purged) to a

NaOH solution where it is redissolved and deprotonated (trapped). MDR is then

added to the basic solution to develop with S2−, producing methylene blue coloured

complex, which can be analyzed via colorimetric techniques.

2.4.1 Chromium(II) Reducible Sulfide

The CRS method was followed as outlined by Bowles et al. (2003). A simple

schematic of the reaction apparatus is illustrated in Figure 2.2. The apparatus was

made of borosilicate glass with ground glass joints, and Teflon tubing.
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Figure 2.2: Simple schematic of the reaction apparatus used in the CRS measurements (Adapted
from: Bowles et al. (2003)). 1. reaction tube (60 mL), 2. Teflon-lined silicon injection septum,
3. glass connecting piece, 4. trapping tube (40 mL). Six of these apparati were set up to run
simultaneously - two were used as a reference and the rest were used to run two samples in
duplicate. The high purity N2 gas ran through individual pressure meters to ensure each apparatus
was purged at 65 mL·min−1. The glass joints produced air-tight seals and the trapping tubes were
held in place with plastic clips.

A 30 mL aliquot of the ambient water was transferred into a clean, dry reaction

tube (Figure 2.2). 15 mL of 0.05 M NaOH was dispensed into the trapping tube

and attached to the reaction tube via the connecting piece, held in place with a

plastic clip (Figure 2.2). High purity N2 was allowed to flow through the system at

65 mL·min−1 for 5 minutes, monitored with an airflow pressure meter. The frosted

glass joints sealed the apparatus, creating a closed system, but Teflon tape was

used to seal any leaks as needed. 5 mL of 1 M Cr(II) followed by 5 mL of 50%

v/v HCl were transferred into the reaction tube through the septum (Figure 2.2)

and the system was again purged with N2 at 65 mL·min−1 for 30 minutes. While

purging, equivolumes of parts A and B of the MDR reagent (preparation described

in Section 2.1.5) were dispensed into an opaque vial and stored in the dark until

use. With the gas shut off, the 15 mL NaOH in the trapping tube was transferred

into a clean dry borosilicate glass vial and rinsed with 5 mL deoxygenated MilliQ
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water. 0.5 mL of the prepared MDR reagent was pipetted into the vial, the vial

was immediately capped and shaken, and the solution was stored in the dark for

24 hours to allow the methylene blue coloured complex to develop. Six of these

apparati were set up and run simultaneously. Two were used as a reference with

deoxygenated MilliQ water and two samples were run in duplicate.

2.4.2 Colorimetric Analysis

The final coloured solution in the vials were analyzed colorimetrically with a 10 cm

quartz cuvette. An LS-1 tungsten halogen lamp (Ocean Optics Inc., Dunedin, FL)

light source was shone through the cuvette, the signal was detected by a USB2000

fiber optic spectrometer (Ocean Optics Inc., Dunedin, FL) and the signal was

visualized using the Ocean Optics Spectra Suite version 1.4.2 (Ocean Optics Inc.,

Dunedin, FL). To avoid saturating the detector, the measurement time was set to

4 ms and averaged 100 measurements. One of the reference solutions was measured

first to calibrate the instrument. A dark (light off) and light (light on) reference

was subtracted from every intensity reading. This allowed for internal calculations

of absorbance within the software. Subtraction of the reference absorbance was

done on each sample to remove variation with the light source. Each reference

followed by each sample was measured in triplicates of triplicates, with removal

and replacement of the cuvette between each triplicate measure, at 670.11 nm

and an average absorbance was calculated. Calculations as described by Beer’s

Law determined the concentration of sulfide, with an experimentally-determined

extinction coefficient of ε = 4.0× 104L ·mol−1cm−1. A concentration factor of 2/3

was included to account for the concentration difference from the 30 mL in the

reaction tube and 20 mL in the trapping tube.
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2.5 Analysis and Comparisons between Fluores-

cent DOM and CRS

The data collected from fluorescence and CRS measurements were used to iden-

tify possible correlations between each measured quality index of humic-, fulvic,

tryptophan-, and tyrosine-like fractions, as well as between FI and CRS. The qual-

ity index values for each fluorescent fraction was calculated using Equation 2.6:

qualityindex =
F

DOC
(2.6)

where F represents the fluorophore concentration (Arb) and DOC is in mg

C·L−1. Using these 6 variables, a 6Ö6 Pearson correlation matrix was applied

based on the correlation coefficient equation (Equation 2.7):

r =
Σ(xy)− nxy

(n− 1)sxsy

(2.7)

where x and y are the values of variables 1 and 2, x, y, sx, and sy are the

averages and standard deviations of variables 1 and 2, and n is the sample size

(n=72). Correlation coefficients and probability of each variable combination were

calculated in Matlab�. The data used in this analysis can be found in Appendix B.

2.6 Acute Copper EC50 Toxicity Assay

The methodology for running copper toxicity tests were obtained from the standard

operating procedures at Pacific EcoRisk (Fairfield, CA). These procedures followed

the guidelines in A.S.T.M. International (2004) for the 48-hour static acute toxicity

tests starting with Mytilus sp. embryos.
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2.6.1 Sample Selection

A subset of samples were selected from the 72 listed in Appendix B to measure

copper toxicity, based on the measurements of DOC, fluorescence, and CRS. A 23

factorial design (Box et al., 1978) was implemented to initially divide the sample

set into eight categories through simultaneous comparisons of three parameters:

DOC, tryptophan, and CRS. From these categories, samples were selected that

best represented extreme concentrations of these parameters.

2.6.2 Mussel Handling

Estuarine bivalve mussels (Mytilus galloprovincialis) were purchased from Proteus

SeaFarms International Inc. (Ojai, CA, USA). Upon arrival, they were gently

transferred into aerated synthetic seawater at 12� and allowed to acclimate for 1

- 2 days before use in tests. The synthetic seawater was replaced every 1 - 2 days.

The mussels were not genetically verified and so are referred to here as Mytilus sp.

2.6.3 Test Solution Preparation

1 L of each sample, selected in the partial factorial, was upward adjusted to 30 �

± 1 � (as per U.S. EPA (1995b)) using commercial-grade sea salt, or downward

adjusted with MilliQ water. Following salinity adjustment, the sample was filtered

through Purabind 0.45 µm filters (Whatman, Florham Park, NJ). The filtrate was

divided into seven aliquots, prepared in volumetric flasks: one was set as a refer-

ence sample and six were spiked with Cu(II), using Cu(NO3)2 stock, to produce

concentrations that encompassed the predicted EC50 for Mytilus sp. This predicted

EC50 was calculated based on the equation, EC50 = 11.22DOC0.6 (Arnold et al.,

2006). The reference and spiked filtrate aliquots were stored under Ar overnight

at 4� to equilibrate, prior to the toxicity assay. Separate sub-aliquots of the ref-

erence solutions were used to re-measure pH, CRS, DOC, fluorescence, and SAC340.
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Aliquots of 10 mL were added to 20 mL glass scintillation vials (cleaned in 10%

HNO3, rinsed thoroughly with MilliQ and allowed to dry, then rinsed with synthetic

seawater before use). Five replicates of each concentration and five replicates of the

reference solution were prepared in this manner. Ten additional reference vials (10

mL each) were set up for test monitoring. Vials were stored at 18� in preparation

for the addition of embryos.

2.6.4 Total Copper Analysis

Total dissolved copper was measured on 10 mL sub-aliquots of all the reference and

copper-spiked filtrate aliquots prior to the toxicity assay. Standards of 1, 10, 50,

and 100 µg·L−1 were prepared using synthetic seawater and the Cu(NO3)2 stock.

These standards and the sample aliquots were transferred into 15 mL polypropy-

lene centrifuge tubes (Corning Inc. Corning, NY, USA) and acidified with 16

N trace metal-analysis grade HNO3. Total copper measurements were performed

by inductively-coupled plasma with optical emission spectroscopy (Perkin Elmer

Optima 3000DV ICP-OES, Toronto, ON., Canada) with multi-element standard

parameters, set in axial mode. Measurements were taken at the copper spectral

line of 324.752 nm.

2.6.5 Spawning

Mussels were inspected for cracked shells and disposed of if cracks were found.

Large mussels were selected and cleaned by scraping off detritus and cutting off all

byssal threads. Once cleaned, they were transferred into synthetic seawater at 4�

for about 10 minutes or until the spawning bath was ready.

The spawning bath and several 250 mL beakers were filled with synthetic

seawater and warmed to 20�. Clean mussels were roughly placed into the bath

(completely submerged) and monitored for spawning activity. Each spawning
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mussel was individually removed from the bath by inserting a disposable plastic

pipette into the bivalve opening, thoroughly rinsing with clean warm synthetic

seawater, and then submerging in one of the 250 mL beakers to collect isolated

gametes. Isolated gametes were inspected under a light microscope for egg

quality (round, uniform in size), as seen in Figure 2.3, and sperm motility (active

movements). About 2 to 3 good spawning males and females were used for each test.

�����

Figure 2.3: Good Mytilus sp. eggs. They can be either round or egg-shaped with small to no
vacuoles present (lighter shade within egg). If there are a small number of abnormal eggs, it may
still be used since abnormalities may produce good embryos.

The presence of >90% poor quality eggs (oblong shape, abnormal size, highly

vacuolated), nonmotile sperm, and hermaphrodites rendered the gametes unusable

and were discarded.

2.6.6 Gamete Fertilization and Embryo Production

Within 1 hour of spawning, an egg stock suspension was prepared by pipetting

concentrated eggs from the bottom of the spawning beakers of good quality eggs
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into 250 mL synthetic seawater. A 1 L egg suspension of about 1000 eggs·mL−1 was

prepared by pouring a small aliquot of the stock into 1 L of synthetic seawater. The

concentration was determined by viewing a 100 µL aliquot of the suspension under

a microscope to ensure about 100 eggs were present. This was done in triplicate

and an average was taken to obtain the exact egg concentration. The suspension

was stirred continuously to keep eggs from settling while measuring the concen-

tration. The egg stock was stored at 18� until the end of the test, then disposed of.

The egg suspension was divided into four 100 mL beakers. A small amount

of concentrated, motile sperm was obtained from the spawning beakers. 0.025,

0.05, 0.1, and 0.2 mL of the concentrated sperm was pipetted into one of the 100

mL beakers, gently stirred immediately with a glass stir rod, and stored at 18�

for 2 hours, gently stirred every 20 minutes. After this time, the embryos were

quantified and examined for fertilization. Solutions with the lowest volume of

sperm stock added and highest (up to 95%) amount of normal embryo development

were selected for the test. Embryos were left to develop (if necessary) to the 4-cell

stage prior to test inoculation. The suspension concentration was double checked

prior to inoculation (number of eggs·mL−1 = number of embryos·mL−1). An image

of the 4-cell embryonic stage is in Figure 2.4.
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Figure 2.4: Mytilus sp. embryos in the 4-cell stage. Once they are in this stage of development,
they can be injected into the reference and test solutions to initiate the toxicity assay. If >10%
are seen in the 8-cell stage, they cannot be used.

2.6.7 Test Inoculation

An aliquot of the embryo suspension (mixing continuously) containing about 100

embryos was pipetted into each glass scintillation vial containing 10 mL test, ref-

erence, and monitoring solutions (see Section 2.6.3) to initiate the toxicity assay.

The inoculated vials were capped with unlined polyethylene caps and placed in a

temperature chamber at 18� ± 0.1� for 48 hours.

2.6.8 Test Termination and Water Chemistry Measure-

ments

After 48 hours, the developmental progress was observed from a monitoring vial to

ensure >90% were in the normal D-shaped prodissoconch shell development stage,

illustrated in Figure 2.5, otherwise the vials were left until complete development

to this stage. Tests that required more than 54 hours for development were

discarded.
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Figure 2.5: Normal embryo development of Mytilus sp. after 48 hours of fertilization. Normal
development is observed as D-shaped calcified shell formation as well as good, consistent, brown
flesh formation.

The test acceptability was >90% normal development or >30% survival in the

control treatment. 1 - 2 mL of 5% v/v gluteraldehyde was pipetted into each vial to

terminate the test. The end point was abnormal shell development as a measure of

adverse effects. All ‘normal’, ‘abnormal’, and ‘dead’ embryos were counted under a

dissecting microscope at 50Ö magnification. The percentage of larvae that did not

survive or develop normally was calculated for each replicate. Strict guidelines were

followed to ensure identification of abnormal development was consistent between

all toxicity tests.

2.6.9 Test Enumeration

After fixation, the larvae were observed in the vial under a dissecting microscop.

A grid was drawn on the base of the vial to aid in counting. All larvae from all

test vials were observed separately. The number of normal (Figure 2.5), abnormal

(abnormally-shaped shell, poor quality flesh colour), and dead (empty shell, no

brown flesh) larvae were counted. Images of typical abnormal and dead larvae are
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found in Figure 2.6. Unfertilized eggs were not counted.

Figure 2.6: One dead D-shell (left-most) and three abnormal larvae.

2.6.10 Toxicity Analysis

The 50% shell development inhibitory concentration (EC50) was estimated with

95% confidence intervals for each sample by probit analysis using the Statistical

Analysis System software (SAS Institute Inc., Cary, NC, USA). The toxicity data

obtained here was pooled with data from Arnold (2005) and Arnold et al. (2006)

in which their sampling sites were the same as ones among the 72 analyzed in this

study. To statistically justify pooling the data together, a t-test was performed

on the intensive values, EC50 · DOC−1, of the two data sets to show that with

95% confidence there is no significant difference between the data, other than what

can be described as random variation. The full statistical analysis can be found in

Appendix E.
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2.6.11 Data Pooling

To assign fluorescence values to the sample set obtained from Arnold (2005) and

Arnold et al. (2006), the assumption was made that the fluorescent fractions (Arb.)

per mg of DOC (‘quality index’) remains constant. So the measured fluorescence

values for the same sites in this study were normalized to DOC and multiplied by

the DOC concentrations reported in Arnold (2005); Arnold et al. (2006). Further-

more, the new re-measured fluorophore concentrations were adjusted to account

for instrumentation drift by using a correction factor that was determined by com-

paring fluorescence measurements obtained in Chapter 3 and in Chapter 4. This

factor was applied to all the new fluorescent data. This adjustment was performed

to ensure pooling of fluorophore concentrations in the two data sets was valid. This

assumption allowed for separate comparisons of total copper EC50 as a function

of DOC, fluorescence humic-, fulvic-, tryptophan-, and tyrosine-like fractions using

both data sets, and analyzed for linear responses.
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Chapter 3

Chemical Characterization of

DOM and CRS in Coastal Marine

and Estuaries

3.1 Introduction

Metal toxicity in aquatic environments is influenced by the chemical character-

istics of the water in which the metal is found, such as pH and concentrations

of inorganic and organic ligands. Furthermore, these chemical characteristics

potentially vary over time and by location. This suggests that metal toxicity has

both spatial and temporal dependence. In particular, bioavailability of metals

in coastal marine and estuarine waters are influenced by input from surrounding

coastal environments. With over 53% of the US population living along the coast

(NOAA, 2004), it is important to research the nature of these inputs and quantify

the variability of water quality with respect to metal toxicity. In the development

of a marine-specific biotic ligand model (BLM), these measurements would be

used as input parameters for a computerized chemistry-based BLM, similar to

existing freshwater BLMs. Freshwater BLMs, such as the HydroQual© BLM,

is a numerical approach to predicting metal toxicity through complex chemical
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equilibrium modelling (DiToro et al., 2001; Santore et al., 2001; Paquin et al.,

2002). The focus of this chapter is on characterization of two potential parameters

with respect to spatial variability, for a marine-specific BLM: dissolved organic

matter (DOM) and chromium(II) reducible sulfide (CRS).

DOM is operationally defined here as organic matter passed through a 0.45 µm

membrane filter. The molecular nature, or quality of organic matter, is influenced

by input source. Its concentration as a whole is commonly approximated by

quantifying dissolved organic carbon (DOC) in mg C·L−1. Typical DOC con-

centrations in the open ocean range from about 0.7 mg C·L−1 to 0.9 mg C·L−1,

coastal marine waters are around 2 mg C·L−1, and estuaries have been reported

with concentrations that can reach up to approximately 10 mg C·L−1 (Dafner and

Wangersky, 2002b, and references therein).

DOM can be characterized, by input source, through several spectroscopic tech-

niques. DOM can be initially categorized by two broad end-member classes: al-

lochthonous carbon and autochthonous carbon (McKnight et al., 2001). However,

there is considerable variability within the nature of these two end-members them-

selves. Allochthonous and autochthonous carbon can be approximated by their

specific absorption coefficients at 340 nm (SAC340), defined by Equation 3.1:

SAC340 = 2, 303
Abs340

DOC
(3.1)

which is a calculated measure of organic matter based on molecular size

and structure. In freshwater, it was shown that optically-darker allochthonous

material is more protective of copper, cadmium and lead toxicity (as acute LT50

for rainbow trout, based on comparisons of SAC340 (Schwartz et al., 2004). Further

characterization can be done through fluorescence spectroscopy, which is a highly

selective and sensitive spectroscopic technique that can differentiate fluorescent

molecules (fluorophores) in a heterogeneous system based on their different
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fluorescent properties. A fluorescence excitation-emission matrix (FEEM) is the

result of compiling data from simultaneous scanning of excitation and emission

wavelengths over the fluorescence spectrum. When observed as a contour plot,

FEEMs provide qualitative information on the molecular structures of fluorophores

based on their peak positions and intensity.

McKnight et al. (2001) suggested a method for inferring DOM source based

on fluorescence index (FI), calculated by the ratio of emission intensities at 450

nm and 500 nm, at 370 nm excitation. Fluorescence indices of approximately

1.4 and 1.9 indicate terrestrial-sourced and microbially-derived DOM respectively

(McKnight et al., 2001). Based on FEEM analysis, allochthonous carbon can be

detected in the Ex/Em ranges of 300 - 350 nm / 400 - 450 nm and 250 - 390 nm

/ 460 - 520 nm, suggesting the presence of terrestrially-derived fulvic and humic

material respectively (Smith and Kramer, 1999; McKnight et al., 2001; Wu et al.,

2003; Stedmon and Markager, 2005). Autochthonous carbon can be detected by

the Ex/Em peaks of 225 - 275 nm / 350 nm and 225 - 275 nm / 300 nm identifying

microbially-derived tryptophan-like and tyrosine-like fractions respectively (Baker,

2001; Stedmon and Markager, 2005). Recently, Winter et al. (2007) identified

humic-, fulvic-, tryptophan-, and tyrosine-like fractions in freshwater through

fluorescence. In seawater, fluorescence spectroscopy has been a useful technique

for DOM characterization as well (Mopper and Schultz, 1993; Coble, 1996; Hall

and Kenny, 2007).

To quantify in relative terms, the humic-, fulvic-, tryptophan-, and tyrosine-like

fractions observed by fluorescence, parallel factor analysis (PARAFAC) is used

here. Through spectral deconvolution of a stack of FEEMs, PARAFAC quantifies

a minimum number of fluorescent components to describe each FEEM. Stedmon

and Markager (2005) resolved 8 components by PARAFAC that described the

fluorescent data of 1,276 samples. This chapter aims for a more simple classifi-
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cation scheme by resolving 4 operationally-defined fractions of humic-, fulvic-,

tryptophan-, and tyrosine-like material in a sample set of 72 coastal marine and

estuarine waters. This classification scheme is designed to describe a minimum

number of components that will best describe DOM, with the possibility of

usefullness in improving metal toxicity predictions for regulatory purposes.

Reduced sulfur in aquatic systems were once thought to be of little importance

in oxygenated systems. However research has shown that they are (meta)stabilized

when bound to Class B metals, such as Cu(I,II) and Ag(I), in both freshwater

(Rozan et al., 2000; Bowles et al., 2003) and seawater (Luther and Tsamakis,

1989). Studies on reduced sulfur and/or CRS determination in freshwater have

reported CRS concentrations up to 600 nM in freshwater rivers (Rozan et al.,

2000). Bianchini and Bowles (2002) and references therein reported an overall

concentration of <0.001 to 162 nM in open ocean and coastal marine waters,

however no published results were found on CRS determination in coastal marine

or estuarine waters. Smith et al. (2002) reported that in freshwater, reduced

sulfur contributes strong binding sites for metal ions such as Cu2+. These findings

may have implications in quantifying metal bioavailability in coastal marine and

estuarine environments.

In this chapter, characterization of fluorescent DOM and CRS are reported in 69

unconcentrated samples of coastal marine and estuarine ambient waters, collected

along the east, west, and south coasts of North America. In addition, 3 reference

waters were used in this study, 2 of which were collected from Granite Canyon Ma-

rine Laboratories and 1 was lab-created synthetic seawater, for a total of 72 water

samples. This chapter will focus on changes in DOC concentrations with salin-

ity and the concept of DOM quality will be addressed, with both qualitative and

quantitative measures of fluorescent humic-, fulvic-, tryptophan-, and tyrosine-like

fractions. The varying concentrations of these four fractions will be investigated
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with respect to different source inputs and compared to FI-defined input source.

Following discussions on DOM, this chapter will focus on the span of CRS concen-

trations on unfiltered samples of the same marine and estuarine environments. The

change in CRS with respect to DOC will be evaluated, with freshwater data shown

for comparison.

3.2 Experimental Section

3.2.1 Reagent and Material Preparation

Synthetic Seawater

Synthetic seawater was prepared by dissolving commercial-grade sea salt mixtures

(Kent Marine, Atlanta, GA, USA) in millipore grade water (MilliQ water) (18.2MΩ,

MilliQ) and adjusted to 30� salinity using a PINPOINTr Salinity Monitor (Amer-

ican Marine Inc., Ridgefield, CT). All chemical characterization measurements de-

scribed in Sections 3.2.3 and 3.2.4 were performed on this synthetic seawater for

comparisons. All marine standard solutions and dilutions were prepared using this

synthetic seawater as the solvent.

Tyrosine and Tryptophan Solutions

A 5×10−4 M stock solution of reagent-grade L-tryptophan (>98% pure, Sigma-

Aldrich, St. Louis, MO) and a 5×10−3 M stock solution of reagent-grade L-tyrosine

(>98% pure, Sigma-Aldrich, St. Louis, MO) were prepared using synthetic seawater

as described above. These stock solutions were used to prepare diluted solutions

of 2.5×10−7 M pure tryptophan and 5×10−7 M pure tyrosine. A mixture solution

containing both tryptophan and tyrosine at concentrations of 2.5×10−7 M and

5×10−7 M respectively was prepared as well.
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Chromium(II)

A 1 M solution of Cr(III) was prepared by dissolving crystalline CrCl3·6H2O (98%

pure, Sigma-Aldrich, St. Louis, MO) in 50% v/v HCl (prepared from 12 N HCl).

Under Ar, the Cr(III) was reduced by a Jones Reductor (Jones, 1888). The resulting

Cr(II) solution was collected in an Erlenmeyer flask at the base of the reductor and

sealed with a septum and Parafilm to prevent exposure to the atmosphere. This

solution is stable in reduced form for about two weeks.

Mixed Diamine Reagent (Parts A and B)

The Mixed Diamine Reagent (MDR) was prepared in two parts (A and B) (An-

dreae et al., 1991) with increased acidity (Bowles et al., 2003). Part A consisted of

dissolved N,N-dimethyl-p-phenylenediamine (98% pure, Aldrich, St. Louis, MO) in

50% v/v HCl and stored in a Nalgene bottle at 4�. Part B consisted of dissolved

FeCl3·6H2O (99.0% pure, Fluka, Switzerland) in 50% v/v HCl and stored in a Nal-

gene bottle at 4� as well. Equivolumes of parts A and B were mixed immediately

prior to use.

3.2.2 Sampling and Storage of Samples

A sampling strategy was devised prior to collection to ensure the sampling sites

varied in salinity from brackish to marine and varied in natural and anthropogenic

input sources such that both DOM quality and CRS concentrations should vary.

These sources included wastewater, allochthonous sources (terrestrial degradation),

autochthonous sources (autotroph activity, in situ), and a mixture of the three

sources. Ambient water samples were collected from 71 marine and estuarine

sites along the east, west, and south coasts of North America. Samples were

collected in clean, 2L opaque, high density polyethylene (HDPE) bottles. The

bottles were rinsed three times with sampling water on-site before the actual

sample was taken. The samples were collected near the water’s surface and
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the bottles were capped while submerged to avoid air contact with the water

during transport to the lab for analysis. One sample was collected at each site

and sampling was done either near the shoreline or off a dock a few metres off shore.

The ambient water samples were shipped in coolers (approximately 24 hours)

at about 4�. On arrival, pH, salinity and fluorescence was immediately measured,

followed by CRS and DOC. To minimize oxidation of the reduced sulfur, the samples

were stored under argon. The bottles were stored at 4�. All precautions were made

to ensure minimal contamination to the bottles and water samples during collection,

transport, analyses, and storage.

3.2.3 Characterization of Organic Matter

DOC Analysis

DOC concentrations were measured with a Shimadzu TOC-5050A Total Carbon

Analyzer using an ASI-5000A Autosampler (Mandel Scientific, Guelph, ON). Prior

to measurements of the water samples, total carbon standards, as 5 mg C·L−1 and

10 mg C·L−1 potassium hydrogen phthalate (C6H4(COOH)(COO−K+)) dissolved

in synthetic seawater, were used as marine standards to verify the accuracy of the

analyzer with marine water. An aliquot of each water sample was passed through

a 0.45 µm pore size GMF GD/X membrane filter (25 mm diameter) (Whatman,

Florham Park, NJ), acidified with 16 N HNO3 and sparged with N2 for 15 minutes

immediately prior to analysis in order to remove inorganic carbon as suggested by

Dafner and Wangersky (2002a). Acidified MilliQ was used to flush the analyzer

after every 10 water sample measurements to ensure any salt deposits were rinsed

thoroughly from the analyzer syringes. The total carbon marine standards were

treated the same way as the ambient water samples prior to analyzing.
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Fluorescence Measurements

An aliquot of each water sample was passed through a 0.45 µm pore size GMF

GD/X membrane filter and the filtrate was measured using a Varian Cary Eclipse

Fluorescence Spectrophotometer (Varian, Mulgrave, Australia) in a 1 cm quartz

cuvette. Fluorescence surface scans of emission wavelengths from 250 nm to 600 nm

in 1 nm increments were measured for every 10 nm excitation wavelength between

200 nm and 450 nm. The excitation and emission monochromator slit widths

were both set to 5 nm for all the measurements. The scan speed was at a rate of

400 nm/min and the photomultiplier tube (PMT) was set to high detection (800 V).

The fluorescent data was processed in MatlabTM (MathWorks, Natick, MA)

to produce 3-dimensional FEEMs. Rayleigh scatterings were removed from the

preprocessed data and replaced with Not a Number (NaN) values, which would

otherwise cause mathematical interferences in subsequent spectral analyses.

Spectral Analysis of Organic Matter

Fluorescence indices for every water sample was calculated to approximate DOM

source, as proposed by McKnight et al. (2001) using Equation 3.2:

FIEx370 =
Em450

Em500
(3.2)

where FI is the fluorescent index, and Em 450 and Em 500 is the emission

intensity at 370 nm excitation. These FI values were compared to qualitative

observations for each site with respect to DOM source.

The 72 FEEMs were spectrally resolved using PARAFAC to elucidate four

operationally-defined fluorescent fractions and observe their individual spectra. The

PARAFAC algorithms used were from PLS Toolbox version 4.1.1 in MatlabTM

(Eigenvector Research, Inc., WA). The two spectra of allochthonous material were
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labelled as fulvic-like and humic-like based on their average molecular weights at

Ex/Em 354 nm/460 nm and 467 nm/548 nm respectively (Wu et al., 2003). Since

the molecular weight of humic material is generally higher than fulvic, it was as-

sumed that the spectrum emitting higher fluorescence wavelengths was humic-like.

FEEMs of tryptophan and tyrosine standards were used to identify the remaining

two spectra resolved by PARAFAC. The abundance values calculated by PARAFAC

are linearly proportional to the actual concentration of each component, such that

F = kC, where C is the concentration in mg·L−1, F is the fluorophore abundance

value (arbitrary units), and k is the linear proportionality constant that incorpo-

rates the molecular identity and quantum efficiency of the fluorophore. Concen-

trations of these fluorophores can be approximated through the use of standard

solutions of Suwanee River Fulvic Acid (SRFA) and pure tryptophan and tyrosine.

The molecular identity of each fraction defined by PARAFAC is not known, so

the degree of uncertainty in the approximated concentrations cannot be verified.

Calculations to approximate the concentrations of each fluorescent component can

be found in Appendix C. In this study, the fluorophore abundance values will be

used and referred to herein as ’concentrations’, which limits these values to internal

comparisons only.

3.2.4 Chromium(II) Reducible Sulfide

The CRS method was followed as outlined by Bowles et al. (2003). Full details

on background and methodology can be found in Chapter 2 Section 2.4. A 30

mL unfiltered aliquot of each ambient water sample was initially purged with

high purity N2 at a rate of 65 mL·min−1, monitored with an airflow pressure

meter. Equivolumes of acidic 1 M Cr(II) and 50% v/v HCl were added to

the water sample under anoxic conditions and the acidic mixture was purged

again for 30 minutes. Protonated sulfur (as H2S) released from this mixture,

was trapped in a 15 mL solution of 0.05 M NaOH. With the N2 shut off, the

NaOH containing S2− was transferred into a dry borosilicate glass vial and
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rinsed once with 5 mL degassed MilliQ. Equivolumes of parts A and B of

the MDR reagent were mixed and pipetted into the vial, which was shaken,

and stored in the dark for 24 hours for development of the methylene blue

coloured complex. Each water sample was measured in duplicate. Degassed MilliQ

was used as a reference and analyzed concurrently with each set of samples by CRS.

The final coloured solution in the vials were analyzed colorimetrically with a 10

cm quartz cuvette. An LS-1 tungsten halogen lamp light source and a USB2000

fiber optic spectrometer was used (Ocean Optics Inc., Dunedin, FL). Calcula-

tions as described by Beer’s Law determined the concentration of sulfide, with

an experimentally-determined extinction coefficient ε = 4.0× 104L ·mol−1cm−1. A

concentration factor of 2/3 was included to account for the concentration difference

from the 30 mL in the reaction tube and 20 mL in the trapping tube.

3.2.5 Analysis and Comparisons between Fluorescent

DOM and CRS

The data collected from fluorescence and CRS measurements were used to iden-

tify possible correlations between each measured quality index of humic-, fulvic,

tryptophan-, and tyrosine-like fractions, as well as between FI and CRS. The qual-

ity index values for each fluorescent fraction was calculated using Equation 3.3:

QualityIndex =
F

DOC
(3.3)

where F represents the fluorophore concentration (Arb) and DOC is in mg

C·L−1. Using these 6 variables, a 6Ö6 Pearson correlation matrix was implemented

based on the correlation coefficient equation (Equation 3.4):

r =
Σ(xy)− nxy

(n− 1)sxsy

(3.4)
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where x and y are the values of variables 1 and 2, x, y, sx, and sy are the

averages and standard deviations of variables 1 and 2, and n is the sample size.

Correlation coefficients and probability of each variable combination were calculated

in Matlab�.

3.3 Results and Discussion

3.3.1 Sampling

The 69 ambient water samples represented coastal marine and estuarine waters

across the coasts of North America varying in both salinity and source inputs

ranging from allochthonous, autochthonous, and wastewater sources. A map of

the 69 sample sites plus the 3 reference sites is shown in Figure 3.1. Salinity of the

water samples ranged from 1.9� to 38.3� with a pH range of 7.19 to 8.40.

Figure 3.1: Aerial view of North America displaying each of the 72 sample site locations
(Adapted from: http://www.maps.google.ca.). Sites are pinpointed based on primary source,
such that A=allochthonous, Au=autochthonous, W=wastewater, and M=mixed source
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The samples were divided based on primary input, indicating the main source

of DOM, including allochthonous (A), autochthonous (Au), wastewater (W), and

a mixture of the three (M). Upon observations of the physical location of each

water site, the majority of the samples were labelled as mixtures typically due

to high anthropogenic activity near the coast alongside terrestrial areas such as

small forrests. Observations were considered unbiased, based only on images of

the surrounding environments. Out of the 72 samples pinpointed in Figure 3.1, 3

were listed as Au, 8 as W, 11 as A, and the rest (50) as M. 2 of the 3 reference

water sites labelled as autochthonous-source were from Granite Canyon Marine

Laboratory (Monterey County, CA), where samples were collected off the coast

of the Pacific Ocean, outside of San Francisco Bay. Water from this source has

been used as reference waters in marine toxicity tests (Arnold, 2005). The third

reference sample was lab-created synthetic seawater. Some other noted sample

sites here that have been researched in the past in relation to toxicity include San

Francisco Bay (Martin et al., 1984; Long et al., 1990; Hoenicke et al., 2003; Arnold,

2005), Chesapeake Bay (Lenwood et al., 1998; Hall et al., 2004), and Galveston

Bay (Tang et al., 2002). A list of these sites and their primary input sources can

be found in Table 3.3.1.
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Table 3.1: Description of sampling sites. The categories under ‘Primary Input’ are: W =
Wastewater effluent from nearby treatment plants; Au = Autochthonous or pristine environment
primarily consisting of marine organism degradation; A = Allochthonous (terrestrial degradation)
material from forrests and marshes along the water line with very little to no anthropogenic
activity nearby; M = Mixture of both autochthonous and allochthonous sources from urban
or industrial sites including, boat docks, public beaches, paths/roadways near the water line,
neighbourhood developments, parks, and small terrestrial sites.

ID Location Waterway Latitude (N) Longitude (W) Date Time Primary Input
GCML-1 Monterey, CA Granite Canyon Marine Lab (used as reference) 070507 Au
GCML-2 Monterey, CA Granite Canyon Marine Lab (used as reference) 070507 Au
SFBay-1 San Francisco, CA 070507 W
SFBay-2 San Francisco, CA 070507 W
RA-1 Sewaren, NJ Arthur Kill 40 32 43.12 74 15 13.90 071207 920 W
RA-2 Belmar, NJ Shark River 40 10 45.72 74 02 02.82 071207 1015 M
RA-3 Gilford Park, NJ Barnegat Bay 39 56 58.85 74 06 49.45 071207 1112 M
RA-4 Fairfield, MD Baltimore Har-

bor / Chesa-
peake Bay

39 12 31.70 76 31 57.39 072507 1220 W

RA-5 Morgantown, MD Potomac River 38 21 52.58 76 58 59.07 072507 1350 W
RA-6 Norfolk, VA Elizabeth River

/ Chesapeake
Bay

36 50 26.46 76 18 08.91 072507 1736 M

RA-7 Delaware City, DE Delaware Bay 39 34 43.99 75 35 11.77 072607 936 A
RA-8 Portland, ME Casco Bay 43 38 34.05 70 15 06.08 081307 717 M
RA-9 Portsmouth, NH Piscataqua

River
43 04 45.07 70 45 27.82 081307 836 M

RA-10 Boston, MA Dorchester Bay
/ Boston Har-
bor

42 19 36.97 71 02 49.36 081307 836 M

RA-11 Narragansett, RI Narragansett
Bay

41 42 59.60 71 21 29.88 081307 1220 M

RA-13 S. Padre Island, TX Laguna Madre 26 04 09.79 97 09 38.50 083107 925 M
RA-14 Corpus Christi, TX Corpus Christi

Bay
27 47 59.29 97 23 27.25 083107 1340 W

RA-15 Point Comfort, TX Lavaca Bay 28 39 57.15 96 34 32.49 083107 1530 A
RA-16 Clear Lake, TX Galveston Bay 29 33 49.47 95 00 50.76 090107 705 M
RA-17 Clear Lake, TX Galveston Bay 29 45 40.84 95 04 57.24 1010 W
RA-18 Crown Island, CA San Diego Bay 32 37 50.71 117 07 43.12 091607 1750 M
RA-19 Coronado Cays, CA San Diego Bay 32 37 50.71 117 08 00.62 091607 1830 M
RA-20 Bay Shores, CA Newport Bay 33 36 47.03 117 54 39.81 09607 540 M
RA-21 Long Beach, CA Long Beach

Harbor
33 45 37.26 118 11 50.56 091607 700 M

RA-22 Oxnard, CA Channel Islands
Harbor

34 10 22.81 119 13 24.54 091607 1050 M

RA-23 Baywood Park, CA Morro Bay 35 19 36.80 120 50 29.54 091607 1540 M
RA-24 Vallejo, CA San Pablo Bay 38 05 45.52 122 15 29.11 091707 1130 M
RA-25 Inverness, CA Tomales Bay 38 06 09.68 122 50 17.19 091707 1320 A
RA-26 Fields Landing, CA Humbolt Bay 40 43 34.79 124 13 17.38 091807 925 M
RA-27 North Bend, OR Coos Bay 43 24 22.98 124 13 14.89 091807 1552 M
RA-28 Newport, OR Yaquina Bay 44 37 47.55 124 03 08.94 091907 1020 M
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ID Location Waterway Latitude (N) Longitude (W) Date Time Primary Input
RA-29 Astoria, OR Columbia River 46 11 26.75 123 50 57.13 091907 1555 M
RA-30 Laidlow, WA Fray’s Harbor 46 51 43.66 124 04 19.92 092007 1040 A
RA-31 Olympia, WA Budd Inlet 47 03 30.25 122 53 49.19 092007 1237 M
RA-32 Tacoma, WA Puget Sound 47 15 43.69 122 26 23.40 092007 1320 W
RA-33 Seattle, WA Puget Sound 47 36 13.50 122 20 21.50 092007 1430 M
RA-34 Halifax, NS Armview Terr. 44 38 19.01 63 36 32.28 100507 1327 M
RA-35 Halifax, NS Bedford Basin 44 40 33.39 63 36 55.33 100507 1400 M
RA-36 Halifax, NS Bedford Basin 44 42 52.90 63 40 23.12 100507 1430 M
RA-37 Digby, NS Annapolis

Basin
44 37 29.96 65 45 16.29 100607 1310 M

RA-38 Pictou, NS East River of
Pictou

45 40 28.40 62 42 31.90 100707 1120 M

RA-39 Tatamagouche, NS Tatamagouche
Bay

45 42 13.55 63 16 46.35 100707 1309 A

RA-40 Slidell, LA Lake Pontchar-
train

30 13 06.59 89 47 26.51 101307 950 M

RA-41 Biloxi, MS Back Bay 30 24 49.43 88 53 46.95 101307 1110 M
RA-42 Mobile, AL Mobile Bay 30 41 14.12 88 00 49.29 101307 1300 M
RA-43 Pensacola, FL Pensacola Bay 30 25 00.25 87 11 38.33 101307 1430 M
RA-44 Panama City, FL St. Andrews

Bay
30 11 11.32 85 44 11.36 101407 810 M

RA-45 Apollo Beach, FL Tampa Bay 27 45 45.66 82 25 16.12 101407 1710 M
RA-46 Cockroach Bay, FL Cockroach Bay

/ Tampa Bay
27 41 13.82 82 31 14.61 101407 1740 A

RA-47 Tampa, FL Tampa Bay 27 39 11.99 82 40 32.21 101407 1813 M
RA-48 Tampa, FL Tampa Bay 27 56 28.41 82 32 09.80 101507 1035 M
RA-49 Fort Pierce, FL Indian River 27 27 05.66 80 19 20.48 101507 1450 M
RA-50 Titusville, FL Indian River 28 37 13.06 80 48 29.17 101507 1620 M
RA-51 Jacksonville, FL St. Johns River 30 19 13.07 81 40 16.48 101607 1025 M
RA-52 Brunswick, GA St. Simons

River
31 09 02.27 81 28 33.11 101607 1215 A

RA-53 Darien, GA Altamaha River 31 20 13.25 81 26 55.54 101607 1250 A
RA-54 Pea Ridge, NC Albemarle

Sound
35 57 34.89 76 29 15.90 101707 750 M

RA-55 New Bern, NC Neuse River 35 06 23.22 77 02 03.31 101707 1025 M
RA-56 Wilmington, NC Cape Fear River 34 13 14.69 77 58 51.37 101707 1300 A
RA-57 Charleston, SC Charleston Har-

bor
32 46 25.21 79 55 27.86 101807 740 A

RA-58 Vancouver, BC Burrard Inlet 49 17 14.58 123 06 37.68 120907 0920 M
RA-59 Vancouver, BC Burrard Inlet 48 18 00.35 123 07 17.74 120907 0930 M
RA-60 Vancouver, BC Coal Harbour 49 17 41.98 123 07 57.68 120907 1248 M
RA-61 Vancouver, BC English Bay 49 16 26.85 123 08 03.31 120907 1413 M
RA-62 Vancouver, BC False Creek 49 16 20.30 123 06 13.76 120907 1525 M
SS-1 Port Hastings, NS Canso Strait 45 39 19.04 61 24 19.82 041707 A
SS-2 Bedford, NS Moir’s Pond 44 42 51.80 63 40 35.71 042707 M
SS-3 Bedford, NS Mill Cove 44 42 52.90 63 40 23.12 042707 M
SS-4 Halifax, NS Bedford Basin 44 40 33.39 63 36 55.33 042707 M
SS-5 Halifax, NS Bedford Basin 44 38 19.01 63 36 32.28 042707 M
SS-6 Halifax, NS Halifax Har-

bour
44 37 29.05 63 33 49.60 042707 M
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3.3.2 Characterization of Organic Matter

DOC Analysis

DOC concentrations were measured as an approximation of DOM in each of the

72 water samples. A plot of DOC with increasing salinity is illustrated in Figure

3.2. Points are grouped based on primary input of organic matter.
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Figure 3.2: Plot of DOC with increasing salinity, separated based on primary organic matter
input (A=allochthonous, Au=autochthonous, M=mixed source, and W=wastewater). There is
no significant relationship between DOC and salinity.

DOC concentrations measured here spanned from 0.80 mg C·L−1 to 20.66 mg

C·L−1. Although there appeared to be a slight decrease in DOC with salinity, no

statistically significant correlation between DOC and ionic strength was observed.

The notion that DOC concentrations may drop significantly with higher salinity
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can be attributed to the salting-out effect. This salting-out effect refers to the

decrease in solubility of non-electrolytes with an increase in ionic strength (Xie

et al., 1997; Millero, 2001). This effect has been observed using organic molecules

in lab-created NaCl solutions (Xie et al., 1997) and of DOM in natural estuarine

and marine coastal waters (Mantoura and Woodward, 1983). Furthermore,

Mantoura and Woodward (1983) stated that estuarine samples collected near

sewage or industrial effluent are expected to have abnormally high, yet localized,

organic matter concentrations that do not contribute to the overall DOC found in

marine water. A subset of water samples collected here that measured abnormally

high DOC (> 5 mg C·L−1) are shown in Table 3.2. Observations of these sites are

given in detail.
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Table 3.2: List of water samples with abnormally high DOC concentrations.
ID Location Salinity

(�)
DOC (mg
C·L−1)

Primary Input Site Description

SFB-1 San Francisco, CA 26.7 5.7 Wastewater Along shore of San Francisco Bay. Pooling
and movement of water in this area decreases
flow to the Pacific Ocean.

SFB-2 San Francisco, CA 27.0 5.0 Wastewater Along shore of San Francisco Bay, near open-
ing to Pacific Ocean.

RA-1 Sewaren, NJ 27.3 6.9 Wastewater Off dock on Arthur Kill. Heavy industrial
area, receiving effluents from several large
treatment plants.

RA-2 Belmar, NJ 32.4 9.5 Mixed source Shark River inlet, off a boat dock near opening
of marshland outlet.

RA-14 Corpus Christi, TX 18.0 5.4 Wastewater Off roadway in Corpus Christi Bay, near open-
ing of Tule Lake Channel, containing effluents
from several treatment plants along the river
path.

RA-15 Point Comfort, TX 7.8 6.7 Allochthonous Along shoreline between Matagorda Bay and
Lavaca Bay near outflowing river through
marsh-like forrest area.

RA-16 Seabrook, TX 9.7 5.3 Mixed source Off boat dock in Galveston Bay, near opening
of channel from Clear lake.

RA-17 La Porte, TX 4.0 5.8 Wastewater Off shore of Ship Channel, downstream from
several treatment plants.

RA-40 Slidell, LA 14.3 5.9 Mixed source Off a boat dock in an enclosed inlet near
Grand Lagoon, which empties into Lake
Pontchartrain. Area is predominantly residen-
tial.

RA-41 Biloxi, MS 19.7 6.2 Mixed source Off boat dock in Bay of Biloxi, near opening
of a small stream, originating from a small
treatment plant.

RA-45 Apollo Beach, FL 29.5 5.7 Mixed source Off boat dock in highly residential area.
Spaces of greenery along shoreline, con-
tributed by Apollo Beach Golf Club. Water
empties into Tampa Bay.

RA-46 Cockroach Bay, FL 31.0 5.5 Allochthonous Along shoreline of marsh-like waters, originat-
ing from Cockroach Bay.

RA-48 Tampa, FL 31.0 5.020 Mixed source Off a boat docking station in a residential /
commercial area.

RA-50 Titusville, FL 30.6 12.4 Mixed source Off boat dock within Yacht Basin, which
opens into the Indian River. Parks and for-
rest areas along the river.

RA-51 Jacksonville, FL 3.9 15.1 Mixed source Off boat dock on St. John’s River at a point
of river narrowing. Commercial area along the
shoreline.

RA-52 Brunswick, GA 29.2 6.5 Allochthonous Off dock along Marshes of Glynn. Marsh con-
tinues to the ocean.

RA-53 Darien, GA 2.7 20.7 Allochthonous Off dock on Champneys River. Islands of for-
rest and field areas along the river right to the
ocean.

RA-54 Pea Ridge, NC 3.6 6.9 Mixed source Off dock in Albemarle Sound. Residential and
forrest areas along shoreline.

RA-55 New Bern, NC 11.0 15.0 Mixed source Off dock on Neuse River. Highly residen-
tial and commercial area along shoreline.
Marsh/wetlands directly upstream.

RA-56 Wilmington, NC 24.9 7.4 Allochthonous Small inlet pool directly off Brunswick River.
Forrests and badland-type areas along shore-
line and upstream. Small treatment plant lo-
cated farther upstream.
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Fluorescence Measurements

At a molecular level, the nature of organic matter has a significant aromatic char-

acter, identified through measurements of fluorescence spectroscopy to produce

FEEMs for each of the 72 water samples. Using MatlabTM , the FEEMs were

visualized as contour plots to show the fluorescence intensity at each Ex/Em

wavelength pair.

There was a clear qualitative indication of the presence of humic-, fulvic-,

tryptophan-, and tyrosine-like fractions present in each sample based on their

distinctive Ex/Em intensity signals, similar to what was seen by Wu et al. (2003)

of humic and fulvic fractions, Baker (2001) of fulvic and tryptophan fractions, and

Winter et al. (2007) of all four fractions in freshwater. Furthermore, it was evident

from comparing the FEEMs between samples that the relative abundance of these

fractions varied with site location. Figure 3.3 contains two representative FEEMs

for illustration.
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Figure 3.3: Fluorescence excitation-emission matrices of two ambient water samples. The
Baltimore Harbour in Fairfield, MD (A) has higher tyrosine- and tryptophan-like fractions, seen
by the high intensity peaks at 225 nm/350 nm and 275 nm/350 nm Ex/Em. Indian River in Fort
Pierce, FL (B) has higher humic- and fulvic-like components, which is seen by the high intensity
peaks at about 325 nm/420 nm and 350 nm/500 nm Ex/Em.
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The Figure 3.3A sample is from Baltimore Harbor in Fairfield, MD, downstream

from a large treatment plant (11.6 � salinity) and the Figure 3.3B corresponding

sample is from Indian River in Fort Pierce, FL off a boat dock near parks and

marshes (32.0 � salinity). These two FEEMs optically illustrate very different

organic matter quality, with a difference in excitation peaks of about 100 nm and

a difference in emission peaks of about 125 nm. There was strong evidence of

wastewater effluent in Baltimore Harbor as indicated by the high intensity signals

at 225 nm / 350 nm Ex/Em. These signals are unique to tryptophan-like fractions,

which are good indicators of wastewater (Baker, 2001). Indian River displayed

high intensity peaks at 325 nm / 420 nm and 350 nm / 500 nm Ex/Em, indicating

the presence of fulvic-like and humic-like fractions from terrestrial runoff (Smith

and Kramer, 1999; Wu et al., 2003). The intensity values, labelled along the

contour lines in Figure 3.3 are related to the abundance of each fluorophore as

well as its fluorescence efficiency, suggesting that fluorophore concentrations in

each sample can only be compared between the same fluorophore. Concentrations

cannot be compared between different fluorophores, contributing to differences in

fluorescing efficiency. The intensity values of tryptophan-like material in Figure

3.3A are up to 900, suggesting a high abundance of tryptophan, whereas in Figure

3.3B intensity values of humic and fulvic material are up to 450. Despite the

optical difference between these two samples, the DOC concentrations were very

similar at 4.8 mg C·L−1 and 4.3 mg C·L−1 for Baltimore Harbor and Indian River

respectively. Quantitative comparisons of fluorophores normalized to DOC will be

discussed in Section 3.3.4.

Spectral Analysis of Organic Matter

The four most prevalent fluorescent fractions in all the FEEMs were defined by

PARAFAC. The components that described the system were labelled as fulvic-like,

humic-like, tryptophan-like, and tyrosine-like fractions as illustrated in Figure 3.4.
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Figure 3.4: Spectra of the four main components that describe organic matter quality within the
72 water samples. The top two components represent fulvic-like (A) and humic-like (B) material.
The bottom two components represent tryptophan-like (C) and tyrosine-like (D) material. This
analysis described 97.843% of the fluorescent data as defined by MatlabTM .

The concentrations obtained by PARAFAC were normalized to DOC, using

Equation 3.3 (quality index values). The use of intensive values in this manner

allowed for comparisons of fluorophore concentrations between samples, indepen-

dent of DOC concentration. A broad span of fluorophore concentrations in the 72

water samples can be seen in Figure 3.5.
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Figure 3.5: Quality index of A) humic-, B) fulvic-, C) tryptophan-, and D) tyrosine-like fractions
(green = allochthonous, blue = autochthonous, white = mixed source, and gray = wastewater).
The index values were arranged in decreasing order to identify the span of contributions from
each fluorescent fraction for every mg of DOC.
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The plots in Figure 3.5 display the large difference in fluorescent fractions,

independent of DOC. It can be seen that the large dataset of water samples rep-

resented very different DOM quality based on input source. As expected, higher

humic and fulvic material and lower tryptophan and tyrosine material were iden-

tified in allochthonous sources, as seen in green in Figure 3.5. Furthermore, blue

autochthonous-sourced water showed high tyrosine content, indicative of microbial

and algal activity in the open ocean. Wastewater-source water (gray bars in Figure

3.5) typically have high tryptophan and fulvic material (Baker, 2001), but this was

not seen for every water sample, likely attributed to dilution of effluent if the sam-

ple collection was too far downstream from the source. No trends of quality index

were expected from the mixed-source water samples. Overall, the water samples

used here clearly show the large span and variation of each fluorescent component,

suggesting that DOM quality has significant spatial dependence in estuarine and

coastal marine environments.

3.3.3 Chromium(II) Reducible Sulfide

The concentrations of CRS spanned six orders of magnitude, ranging from 0.07

nM ± 0.01 nM to 7703 nM ± 98 nM. Figure 3.6 is a plot of CRS concentrations

in decreasing order.
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Figure 3.6: Log CRS concentrations in decreasing order. Colour schemes are as described in
Figure 3.5. The lowest CRS concentrations were found in autochthonous-sourced sites, and the
highest in wastewater.

The highest two samples, seen on the left side of the plot in Figure 3.6, were

collected directly in San Francisco Bay in highly polluted water near wastewater

effluent. The lowest two samples on the right side of the plot were from Granite

Canyon Marine Laboratory. With the exclusion of the two (lowest) samples from

Granite Canyon, CRS spanned four orders of magnitude in the coastal marine

and estuarine water samples. Wastewater-source sites appeared to have the

highest CRS concentrations, as seen in gray in Figure 3.6, however this trend

was inconsistent. Furthermore, the majority of allochthonous-source sites (green)

had relatively high CRS concentrations. Comparisons between DOC and CRS

identified a strong correlation in allochthonous-source water, as shown in Figure 3.7.
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Figure 3.7: DOC compared to CRS for each of the 72 water samples. There was no significant
correlation between these two measurements (r2 = 0.14, p = 0.001) as a whole. However, a
strong correlation was seen between DOC and CRS in allochthonous-source water samples (r2 =
0.79, p < 0.001). A=allochthonous, Au=autochthonous, W=wastewater, M=mixed source.

Research done by Kramer et al. (2007) suggested a significant linear correlation

between DOC and CRS (r2 ' 0.5) in freshwater (lower solid line in Figure 3.7),

and a stronger linear correlation between DOC and CRS from wastewater sources

(r2 ' 0.55). This correlation allowed for approximations of CRS for regulatory

purposes. It was thought that if this correlation existed in marine water, it would

have implications in marine toxicity analyses. However, a significant correlation

was seen only in allochthonous-source waters, as shown in Figure 3.7 with a

correlation coefficient of r2=0.79, p<0.001. It should be noted that the CRS

concentrations in the research by Kramer et al. (2007) spanned from 0 nM to
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350 nM, whereas the concentrations in this study spanned 6 orders of magnitude.

Further insight into estuaries and coastal marine water with primary allochthonous

DOM input would be needed to draw conclusions on this observation. However,

an overall correlation between estuarine and coastal marine DOC and CRS was

not seen in this broad span of CRS concentrations.

3.3.4 Analysis and Comparisons between Fluorescent

DOM and CRS

A Pearson correlation matrix allowed for direct comparisons between each quality

index of humic-, fulvic-, tryptophan-, and tyrosine-like material, FI, and CRS, to

identify possible correlations in a systematic fashion. Correlation coefficients and

probability for each variable combination is presented in a 6Ö6 matrix in Table 3.3.

A scatterplot matrix of the 6Ö6 dataset in Table 3.3 can be found in Appendix

D. In addition, correlation coefficients were calculated for each input source of

allochthonous, autochthonous, wastewater, and mixed samples separately, as four

separate correlation matrices, which can also be found in Appendix D.
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Table 3.3: Correlation matrix for fluorescent DOM and CRS. Values are correlation coefficients and probability, listed as r(p). HA=humic index,
FI=fulvic index, Trp=tryptophan index, Tyr=tyrosine index, FI=fluorescent index, CRS=chromium(II) reducible sulfide.

HA FA Trp Tyr FI CRS
HA 1.0 0.47(<0.001) 0.27(0.03) -0.34(0.004) -0.19(>0.1) 0.33(0.005)
FA 0.47(<0.001) 1.0 0.33(0.005) 0.03(>0.1) 0.05(0.04) 0.43(0.002)
Trp 0.27(0.03) 0.03(>0.1) 1.0 0.72(<0.001) 0.26(0.03) 0.05(>0.1)
Tyr -0.34(0.004) 0.03(>0.1) 0.72(<0.001) 1.0 0.44(0.001) -0.36(0.002)
FI -0.19(>0.1) 0.05(0.04) 0.26(0.03) 0.44(0.001) 1.0 -0.27(0.02)
CRS 0.33(0.005) 0.43(0.002) 0.05(>0.1) -0.36(0.002) -0.27(0.02) 1.0
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Comparisons between the four fluorophores and FI examined the consistency

of FI calculations in relation to input source, presented in Figure 3.8. Each point

represents the qualitative observations of primary DOM source from Table 3.3.1.
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Figure 3.8: Plot of quality index values of A) humic-like, B) fulvic-like, C) tryptophan-like,
and D) tyrosine-like fractions with increasing FI. Points are labelled based on input source:
A=allochthonous, Au=autochthonous, W=wastewater, M=mixed source.
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As seen in Figure 3.8, the majority of the qualitative observations coincided

with the FI values for input source. FI values of ∼1.9 indicate autochthonous

DOM whereas ∼1.4 indicate allochthonous DOM (McKnight et al., 2001). Figure

3.8A clearly shows allochthonous (Au) points on the higher end of the x-axis,

allochthonous (A) on lower end, and wastewater in the middle, indicating a

mixture of both allochthonous and autochthonous material. The same trend can

be seen in Figures 3.8B-D. In addition, Au points are on the lower end of the

y-axis in Figure 3.8A, indicating lower humic proportions in comparison to humic

from other sources. However relatively higher tyrosine proportions of Au can be

seen in Figure 3.8D, compared to other tyrosine sources. This comparison between

FI (dependent of source) and fractions defined by PARAFAC (independent of

source), confirms the validity of the qualitative observations of each water site.

Upon observations of Table 3.3, linear correlations were found between tryp-

tophan and tyrosine index values followed by humic and fulvic index values with

coefficients of 0.72 and 0.47 respectively. Figure 3.9 presents the plots of humic to

fulvic, and tryptophan to tyrosine, showing these linear correlations. Statistically

significant linear correlations between the two autochthonous and allochthonous

fluorescent components can likely be attributed to originating from the same

source, microbial and terrestrial respectively, independent of DOC concentration.
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Figure 3.9: Comparisons of fluorescent A) humic index to fulvic index and B) tryptophan index
to tyrosine index. A significant correlation between these components was calculated at 0.47,
p<0.001 and 0.72, p<0.001 respectively. A=allochthonous, Au=autochthonous, W=wastewater,
M=mixed source.
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Based on Figure 3.9, it is interesting to note that the amount of fluorescent

tryptophan and tyrosine in coastal marine and estuarine environments may be

predicted based on the linear equation Tyr = 0.4055Trp + 0.0182 regardless of

DOC concentrations. Furthermore, the equation FA = 0.6507HA + 0.1014 repre-

sents the linear combination of humic and fulvic material in these environments.

However with a lower coefficient of 0.47, there is greater variability in this linear

relationship. Separation of the input source points in Figure 3.9A identified the

greatest correlation in the mixed source (r=0.81, p<0.001), followed by wastewater

(r=0.77, p=0.02), with allochthonous source waters with the least significant

correlation of r=0.10, p=0.1. However, in comparing allochthonous-source points

in Figure 3.9B, the correlation was among the highest with r=0.82, p=0.003 in

comparison to wastewater (r=0.87, p=0.005) and mixed-source (r=0.78, p<0.001).

The number of autochthonous samples is insufficient in this study to draw

conclusions on any correlations.

Comparisons between CRS and the four fluorophores of humic, fulvic, trypto-

phan, and tyrosine-like material is presented in Figure 3.10.
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Figure 3.10: Comparisons of fluorescent A) humic index, B) fulvic index, C) tryptophan index,
and D) tyrosine index to log CRS concentrations with correlation coefficients of 0.33, p=0.005,
0.43, p=0.002, 0.05, p>0.1, and -0.36, p=0.002 respectively. Correlation calculations were per-
formed on a linear scale, however CRS was presented on a log scale due to the large span of
concentrations. A=allochthonous, Au=allochthonous, W=wastewater, M=mixed source.
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No significant correlation was identified in any of the fluorescent fractions to

CRS from Figure 3.10. However, separation of the points by input source identified

a strong correlation of the allochthonous (A) humic index (Figure 3.10A, r=0.83,

p=0.003), followed by tyrosine index in Figure 3.10D (r=-0.76, p=0.01), trypto-

phan index in Figure 3.10C (r=-0.73, p=0.01), with fulvic index having the least

correlation of r=-0.37, p>0.1 in Figure 3.10B. The wastewater (W) points did not

show any significant correlation to CRS, the strongest correlation being between

fulvic index and CRS (r=0.45) with a p-value greater than 0.1. Although the sam-

ple size of autochthonous (Au) samples is too small for acceptable identification of

correlations between fluorophore indices and CRS (n=3), it was interesting to see

the nearly perfect correlation between tryptophan Au and CRS in Figure 3.10C

with r=1.0, p=0.01. Further insight into comparisons of tryptophan and CRS in

the open ocean is needed to draw conclusions on this correlation.

3.4 Conclusions

Characterization of DOM and CRS were performed on 72 marine and estuarine

samples. DOM in each sample was first characterized by quantifying DOC con-

centrations. Further characterization was performed by fluorescence spectroscopy

which identified humic-like, fulvic-like, tryptophan-like, and tyrosine-like fractions.

These four fractions were quantified via PARAFAC and compared internally to

numerically identify differences in DOM quality with varying salinity and input

sources.

CRS measurements were performed on unfiltered aliquots of the 72 ambient

water samples. CRS concentrations spanned six orders of magnitude from 0.07

nM to 7703 nM. On comparing CRS to DOC, there was no significant correlation

between the two measurements when comparing the sample set as a whole. How-

ever, a strong correlation was seen between DOC and CRS for the allochthonous
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samples (r2=0.79).

Evaluations on the linear relationships between the six variables of humic index,

fulvic index, tryptophan index, tyrosine index, FI, and CRS using Pearson’s corre-

lation matrix identified a statistically significant linear correlation between trypto-

phan and tyrosine r=0.72, p<0.001 with allochthonous and wastewater contributing

the strongest correlation of r=0.82, p=0.003 and 0.87, p=0.005 respectively. FI val-

ues calculating predominant allochthonous and autochthonous material based on

fluorescence correlated with the qualitative observations identifying allochthonous

and autochthonous water samples such that the majority of the allochthonous-

labelled samples had low FI (∼1.4) and the majority of autochthonous-labelled

samples had high FI (∼1.9), with wastewater-labelled samples in the middle. Al-

though the quality indices did not have any statistically significant linear corre-

lations with CRS, the humic index, contributed from allochthonous samples, dis-

played a strong linear correlation (r=0.83, p=0.003). The tyrosine and tryptophan

indices, contributed from allochthonous samples as well, displayed significant in-

verse correlations with CRS of r=-0.76, p=0.01 and r=-0.73, p=0.01 respectively.

Overall, coastal marine and estuarine waters show significant spacial variation in

DOC concentrations, DOM quality, and CRS concentrations. Although many sig-

nificant linear correlations were found between DOM and CRS quantity measure-

ments, the observations made here open the door to in depth analyses of these

correlations and possible causation may be identified.
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Chapter 4

Protective Effects of DOM and

CRS on Copper Toxicity in

Coastal Marine and Estuaries

4.1 Introduction

Metal toxicity in aquatic environments is influenced by the chemical characteristics

of the water. These chemical characteristics can vary over time and by location,

which may alter the bioavailability of metals. With over 53% of the US population

living along the coast (NOAA, 2004), the water chemistry of coastal marine and

estuarine environments is impacted by increasing anthropogenic input. It is im-

portant to research the nature of these inputs and quantify the variability of water

chemistry with respect to metal toxicity. Biotic ligand models (BLMs), such as

the HydroQual© BLM, are widely used for predicting deleterious effects of metals

in freshwater environments. These models are dependent on water chemistry and

organism physiology, which makes up the framework for calculating the chemical

equilibrium within a system (DiToro et al., 2001; Santore et al., 2001; Paquin

et al., 2002). In the development of a marine-specific BLM, these water chemistry

measurements would be used as input parameters for a software-based approach,
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similar to existing freshwater BLMs. The focus of this chapter is on identifying the

protective effects of dissolved organic matter (DOM) and chromium(II) reducible

sulfide (CRS) that were originally characterized and quantified in Chapter 3.

Biotic ligand is the generalized term for sites on aquatic organisms where

bioavailable metals, such as copper, can bind (Paquin et al., 2002, and references

therein). When the copper accumulation at the biotic ligand reaches a critical

concentration, toxic effects occur (Paquin et al., 2002). In the presence of organic or

inorganic abiotic ligands, such as DOM and CRS, the concentration of bioavailable

copper decreases via complexation. To determine the protective effects of these

ligands, acute toxicity tests are performed in which the concentration of total

copper that will affect 50% of the species is measured. The endpoint of acute

toxicity is commonly lethality, namely LC50, however acute concentrations that

disrupt growth, development, or fecundity of 50% of the test organisms (EC50) can

be measured as well.

Toxicity criteria concentrations of metals, such as LC50 and EC50, were

commonly reported as total dissolved metal concentrations, however reports argue

the necessity to report toxicity data based on bioavailable metal species, which

is key in quantifying the toxic effects at the biotic ligand (Allen and Hansen,

1996; Eriksen et al., 2001). Research done by Pagenkopf et al. (1974) and Allen

(1993), among others, have suggested that in freshwater, copper toxicity was

dependent on free copper(II) ion concentrations. In marine water, both free

copper(II) and copper-hydroxy species may be considered bioavailable (Sunda and

Gillespie, 1979; De Schamphelaere and Janssen, 2002). However, when calculating

bioavailable copper based on equilibrium modelling, numerous approximations

based on theoretical models are applied, resulting in approximated free copper

values.
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The Canadian Environmental Quality Guidelines (CEQG) for copper is

currently based on total copper concentrations that are considered ‘safe’ copper

levels in both fresh and marine water. The Canadian freshwater copper criteria

range from 2 to 4 µg Cu·L−1 (0.03 - 0.06 µM), depending on water hardness, and

the saltwater criteria state a limit of 3 µg Cu·L−1 (0.05 µM) (CCME, 2007). The

U.S. EPA has established that regulations of bioavailable metals are variable with

respect to site-specificity for both fresh and marine waters (U.S. EPA, 2007).

Research on predicting copper toxicity in marine and estuarine water has

recently come into focus (Arnold, 2005). Prior to site-specific calculations of

copper toxicity in marine and estuarine waters (such as with the BLM for

freshwater), a criteria for safe levels of copper was calculated based on available

reported toxicity data in marine water (U.S. EPA, 1995a). In terms of copper

toxicity in marine and estuarine waters, the most sensitive species should be

protected. Arnold (2005) indicated that Mytilus is an especially sensitive genus,

and therefore is an ideal test species for establishing copper water quality criteria.

Current water quality guidelines for copper in coastal marine and estuarine

systems are based on toxicity of Mytilus, with an acute criterion of 4.3 µg Cu·L−1

(0.068 µM), which describes the approximate ‘safe’ level that protects 95%

of the Mytilus population from lethality (U.S. EPA, 2007). Further details on

calculations of copper criteria in estuarine systems is found in Chapter 1 Section 1.4.

DOM has been found to be protective of metal toxicity (Morel, 1983) and is

currently an input parameter in freshwater BLMs, measured as dissolved organic

carbon (DOC). DOC is operationally defined as organic matter that passes

through a 0.45 µm membrane filter. In coastal marine and estuarine systems,

copper toxicity is found to be strongly influenced by DOC, independent of any

other water chemistry measurements, within a factor of 2 (Arnold, 2005; Arnold

et al., 2006). However, variation in DOM protectiveness has been found in
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both freshwater (Schwartz et al., 2004) and marine water spiked with exogenous

DOM (Nadella et al., 2009), so there is a possibility that measurements of

DOM source material would improve toxicity predictions. Schwartz et al. (2004)

reported specific absorption coefficients at 340 nm (SAC340) of different DOM

source material in freshwater as a characterization method of DOM that could

be applied to distinguish the protective effects of DOM from different sources.

High SAC340 is indicative of allochthonous carbon originating from terrestrial

runoff where low SAC340 is indicative of autochthonous carbon, which originates

directly from the water column (McKnight et al., 2001). Toxicity studies reported

that optically-dark allochthonous carbon significantly decreased bioavailability

of copper, lead, and cadmium, relative to autochthonous carbon in freshwater

(Schwartz et al., 2004).

Characterization of DOM by fluorescence spectroscopy can differentiate

fluorescent molecules (fluorophores) in a heterogeneous system based on different

fluorescent properties. A fluorescence excitation-emission matrix (FEEM) is the

result of compiling measured fluorescence data from simultaneous scanning of

excitation and emission wavelengths. Based on FEEM analysis, allochthonous

carbon can be detected in the Ex/Em ranges of 300-350 nm / 400-450 nm and

250 - 390 nm / 460-520 nm, suggesting the presence of terrestrially-derived fulvic

and humic material respectively (Smith and Kramer, 1999; McKnight et al., 2001;

Wu et al., 2003; Stedmon and Markager, 2005). Autochthonous carbon can be

detected by the Ex/Em peaks within of 225 - 275 nm / 350 nm and 225 - 275 nm /

300 nm identifying microbially-derived tryptophan-like and tyrosine-like fractions

respectively (Baker, 2001; Stedmon and Markager, 2005). Recently, Winter

et al. (2007) identified humic-, fulvic-, tryptophan-, and tyrosine-like fractions

in freshwater through fluorescence. In seawater, fluorescence has been a useful

technique for DOM characterization as well, through characterization of the open

ocean (Mopper and Schultz, 1993; Coble, 1996) and estuaries (Hall and Kenny,

2007). Mopper and Schultz (1993) identified a higher abundance of proteinaceous
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material near the surface of marine water as compared to a higher abundance of

humic-like material farther down (300 m to 4001 m) in samples collected from

the Atlantic and Pacific Oceans, based on the fluorescence Ex/Em wavelengths of

approximately 270 nm / 320 nm and 310 nm / 430 nm and respectively.

To quantify in relative terms, the humic-, fulvic-, tryptophan-, and tyrosine-like

fractions observed by fluorescence, parallel factor analysis (PARAFAC) is used

here. Through spectral deconvolution of a stack of FEEMs, PARAFAC quantifies

a minimum number of fluorescent components to describe each FEEM in a set

of related samples. Stedmon and Markager (2005) resolved 8 components by

PARAFAC that described the fluorescent data of 1,276 samples. In Chapter 3,

a simple classification scheme was implemented, resolving 4 operationally-defined

fractions of humic-, fulvic-, tryptophan-, and tyrosine-like material. Here, these

four components will be analyzed for correlations with copper toxicity and

contributions of fluorescence measurements will be addressed in terms of improving

metal toxicity predictions for regulatory purposes.

The presence of reduced sulfur in marine environments has been reported at

concentrations of <0.001 � 162 nM in marine and coastal waters by means of

voltammetry, HPLC, GC, and various spectroscopic methods such as UV/Vis

(Luther and Tsamakis, 1989; Al-Farawati and van den Berg, 1999; Bianchini and

Bowles, 2002, and references therein). Reduced sulfur is known to bind strongly to

copper in aquatic systems, primarily via (meta)stable complexation (Rozan et al.,

2000). Furthermore, it may bind to copper, as Cu(I) and Cu(II), in the presence

of other competing metal ions and in the presence of other ligands such as DOM

(Al-Farawati and van den Berg, 1999). Very little is known of reduced sulfur in

coastal marine and estuarine systems in terms of its protective effects on copper

toxicity. A method known as CRS can accurately measure reduced sulfur with

approximately 95% recovery, as HS−, metal sulfides, pyrite, polysulfides, S0, thio-
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sulfates, and sulfites, in nM (Bowles et al., 2003). In Chapter 3, CRS was measured

on 72 unfiltered coastal marine and estuarine samples. Here, CRS will be analyzed

for correlations with copper toxicity in 10 of the 72 samples measured in Chapter

3, in relation to protective effects and as a potentially predictive measure of toxicity.

The objectives of this study were to (I) measure acute copper EC50 in coastal

marine and estuarine waters, (II) identify the relationships between total copper

EC50 values and concentrations of humic-, fulvic-, tryptophan-, and tyrosine-like

fractions, SAC340, and CRS, and (III) evaluate whether organic matter quality and

CRS concentrations should be included as input parameters in a marine-specific

BLM. The samples used in this study were a subset of the 72 samples analyzed in

Chapter 3. The subset was statistically selected to represent the extreme concen-

trations of each measured parameter for correlation analysis.

4.2 Experimental Section

4.2.1 Reagent Preparation

Synthetic Seawater

Synthetic seawater was prepared by dissolving commercial-grade sea salt (Kent

Marine, Atlanta, GA, USA) in MilliQ water (18.2MΩ) and adjusted to 30� ± 1�

salinity using a PINPOINTr Salinity Monitor (American Marine Inc., Ridgefield,

CT). This synthetic sea salt was recommended for use in marine copper toxicity

tests by Arnold et al. (2007). All marine standard solutions and dilutions were

prepared using this synthetic seawater. The reference toxicity tests were performed

using this synthetic seawater.
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Copper Nitrate solution

A 10−4 M solution of reagent grade Cu(NO3)2 (>99.99%, Aldrich, USA) was pre-

pared using synthetic seawater as described above. This stock solution was used

to prepare diluted copper solutions with the ambient water samples for toxicity

testing. When not in use, this Cu(NO3)2 stock was stored in a covered bottle at

4�.

4.2.2 Sample Selection

A subset of samples were selected from the 72 listed in Chapter 3 to measure

copper toxicity, based on the measurements of DOC, fluorescence, and CRS. A 23

factorial design (Box et al., 1978) was implemented to initially divide the sample

set into eight categories through simultaneous comparisons of the main effects of

three parameters: DOC, tryptophan, and CRS. From these categories, samples

were selected that best represented extreme concentrations of these parameters.

Nine samples were selected for toxicity analysis, and are listed in Table 4.1.

4.2.3 Toxicity Measurements

Preparation of Samples

Collection and storage of the ambient water samples used here are described in

Chapter 2 Section 2.2. 1 L of each sample was adjusted to a salinity of 30 � ±

1 � (as per U.S. EPA (1995b)) using either commercial-grade sea salt, or MilliQ

water, measured with a PINPOINTr Salinity Monitor (American Marine Inc.,

Ridgefield, CT). Following salinity adjustment, the sample was filtered through

Purabind 0.45 µm filters (Whatman, Florham Park, NJ). The filtrate was divided

into seven aliquots: one was set as a reference sample and six were spiked with

Cu(II), using Cu(NO3)2 stock, to produce concentrations that encompassed the

predicted EC50 for Mytilus sp. This predicted EC50 was calculated based on the
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equation, EC50 = 11.22DOC0.6 (Arnold et al., 2006). The aliquots spiked with

Cu(II) were left to equilibrate overnight prior to the toxicity assay. Sub-aliquots,

separated from the reference filtrate solutions, were used to measure pH, CRS,

DOC, fluorescence, and SAC340.

Water Chemistry

Water chemistry measurements, namely pH, DOC, fluorescence, and CRS were

made shortly after salinity adjustments and filtration as suggested by Arnold et al.

(2006). Background theory and detailed procedures on these water chemistry

measurements are described in Chapter 2 Section 2.2 for pH, Section 2.3 for DOC

and fluorescence, and Section 2.4 for CRS. pH of the reference filtrate was measured

with a Tananger dual pH meter (Scientific Systems Inc., USA) using an Orion

double junction reference electrode and Ag/Ag-Cl pH electrode (Thermo Electron

Corp., USA). DOC was measured with a Shimadzu TOC-5050A Total Carbon

Analyzer using an ASI-5000A Autosampler (Mandel Scientific, Guelph, ON) on a

10 mL sub-aliquot of the reference filtrate. Pretreatment for DOC measurements

was acidification with 16 N trace metal-analysis grade HNO3 followed by sparging

with N2 for 15 minutes.

Fluorescence of the reference filtrate was measured using a Varian Cary Eclipse

Fluorescence Spectrophotometer (Varian, Mulgrave, Australia) in a 1 cm quartz

cuvette. Fluorescence scans of emission wavelengths from 250 nm to 600 nm in

10 nm increments were measured for every 1 nm excitation wavelength between

200 nm and 450 nm. The excitation and emission monochromator slit widths were

both set to 5 nm for all the measurements. The scan speed was at a rate of 400

nm·min−1 and the photomultiplier tube was set to high detection (800 V). Rayleigh

light scattering was replaced with not-a-number (NaN) to avoid interference in

subsequent spectral analyses.
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Spectral resolution via parallel factor analysis (PARAFAC) was performed on

the fluorescence data simultaneously to identify the spectra and quantification

of four components within each water sample. This analysis described over

98% of the fluorescent data. Two of the components were loosely labelled as

humic-like and fulvic-like based on the assumption that higher molecular weight

humic material fluoresces at higher wavelengths (Wu et al., 2003). The other two

components were labelled as tryptophan-like and tyrosine-like based on similar

Em/Ex wavelength pairs of pure tryptophan and tyrosine standards. Full details

on the identification of these fluorescent components can be found in Section

3.3.2. The PARAFAC algorithms used were from PLS Toolbox Version 4.1.1 in

MatlabTM (Eigenvector Research Inc., WA, USA). The Matlab scripts used to

remove the Rayleigh light scattering and analyze the data via PARAFAC can be

found in Appendix A. The contribution of each component to total fluorescence,

identified by PARAFAC, are linearly proportional to their actual concentration,

where the unknown proportionality constant includes the fluorescence quantum

efficiency, which is dependent on the molecular identity of that fraction. These

values are referred to here as fluorophore ‘concentrations’ (arbitrary units, Arb.)

and are restricted to internal comparisons only.

CRS was measured on a 30 mL sub-aliquot of the reference filtrate based on

the method outlined by Bowles et al. (2003). Pretreatment for CRS measurements

included sparging with high purity N2, acidification with 50% v/v HCl, and

addition of 1 M Cr(II), all under anoxic conditions. Through purge-and-trap

techniques, reduced sulfur was collected in a vial of 0.05 M NaOH. Addition

of a methylene diamine reagent and storage in the dark overnight resulted in

development of a methylene blue coloured complex. Absorbance of the blue

complex was measured colorimetrically. Calculations as described by Beer’s

Law determined the concentration of sulfide, with an experimentally-determined

extinction coefficient ε = 4.0× 104L ·mol−1cm−1.
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Absorbance measurements at 340 nm with a 1 cm quartz cuvette were performed

on the reference filtrate using a LS-1 tungsten halogen lamp light source, USB2000

fiber optic spectrometer as a detector, and Ocean Optics Spectra Suite Version

1.4.2 (Ocean Optics Inc., Dunedin, FL). References of synthetic seawater were

used. SAC340 was calculated based on the equation SAC340 = 2303×Abs340/DOC

(Schwartz et al., 2004).

Total dissolved copper was measured on sub-aliquots of the sample filtrates,

including the reference aliquots and ones spiked with Cu(NO3)2 prior to the toxicity

assays. Standards of 1, 10, 50, and 100 µg·L−1 were prepared using synthetic

seawater and the Cu(NO3)2 stock. These standards and the sample aliquots were

transferred into 15 mL polypropylene centrifuge tubes (Corning Inc. Corning, NY,

USA) and acidified with 16 N trace metal-analysis grade HNO3. Total copper

measurements were performed by inductively-coupled plasma with optical emission

spectroscopy (Perkin Elmer Optima 3000DV ICP-OES, Toronto, ON., Canada)

with multi-element standard parameters and set in axial mode. Optical emission

measurements were taken at the copper spectral line of 324.752 nm.

Toxicity Assay

All toxicity tests on the nine selected samples and synthetic seawater were

conducted using embryos collected from adult estuarine bivalve mussels Mytilus

galloprovincialis that were purchased from Proteus SeaFarms International, Inc.

(Ojai, CA, USA). The mussels were not genetically verified and so are referred to

here as Mytilus sp.

The toxicity tests were performed following the guidelines for the 48-hour static

acute toxicity tests starting with Mytilus sp. embryos, from A.S.T.M. International

(2004). Full details on the methodology of the toxicity assay can be found in

Chapter 2 Section 2.6. The tests were conducted in 20 mL glass scintillation vials

98



with five replicates per concentration and 10 mL of the solution in each vial. 10

adult Mytilus sp. mussels were thoroughly scraped and cleaned of byssal threads

and epibionts, then transferred into a seawater bath (30.0�) at 4� for about 5

minutes. Followed by lightly dropping the mussels into a seawater bath maintained

at 20� to induce spawning. Once a mussel began releasing gametes, it were quickly

rinsed and transferred into a separate 250 mL beaker filled with seawater in order to

collect pure gametes from each mussel. Embryos were examined for quality under

a light microscope at 200Ö magnification. Good quality eggs were identified as

dark and round, with little to no visible vacuoles. Sperm were checked for motility

under a microscope at 200Ö magnification. Motile sperm were pooled together for

use in the toxicity test. Good quality eggs were suspended in seawater (∼1000

eggs·mL−1). A small aliquot of sperm was injected into the egg suspension and

gently stirred to initiate fertilization. The suspension was examined periodically

under a microscope to ensure 90-95% fertilization. Once the embryos reached the 4-

cell stage, they were resuspended by constant stirring to generate a uniform solution.

To initiate the tests, approximately 100 eggs were transferred into each scintillation

vial and incubated for 48 hours in a temperature-controlled chamber maintained at

18� ± 1�. After 48 hours, one of the controls was observed for >90% normal D-

shaped prodissoconch shell development. Tests that required more than 54 hours for

development were discarded. The test acceptability was >90% normal development

or >30% survival in the control treatment. 1 - 2 mL of 5% v/v gluteraldehyde was

pipetted into each vial to terminate the test. The end point was abnormal shell

development as a measure of adverse effects. All ‘normal’, ‘abnormal’, and ‘dead’

embryos were counted under a dissecting microscope at 50Ö magnification The

percentage of larvae that did not survive or develop normally was calculated for

each replicate. Strict guidelines were followed to ensure identification of abnormal

development was consistent between all toxicity tests.

99



Toxicity Analysis

The 50% shell development inhibitory concentration (EC50) was estimated with

95% confidence intervals for each sample by Probit Analysis using the Statistical

Analysis System software (SAS Institute Inc., Cary, NC, USA). Acute EC50

values were reported as total dissolved copper measured in solution. Free copper

concentrations at the EC50 were calculated for each water sample based on water

chemistry measurements of toxicity test solutions including salinity, pH, and DOC.

These calculations were done by R. Santore (HydroQual, personal communication).

Data Pooling

Toxicity data obtained in this study was pooled with some of the toxicity data

from Arnold (2005) and Arnold et al. (2006), as the sampling sites were some of the

same as ones among the 72 analyzed in Chapter 3. To statistically justify pooling

the data, a t-test was performed on the intensive values, EC50 · DOC, of the

two data sets to show that with 95% confidence there is no significant difference

between the data, other than what can be described as random variation. The full

statistical justification can be found in Appendix E.

To assign fluorescence values to the samples obtained from Arnold (2005) and

Arnold et al. (2006), the assumption was made that the fluorescence values normal-

ized to DOC (fluorescence (Arb.) per mg DOC, referred to here as ‘quality index’)

remains constant over time. The quality index values were then multiplied by the

DOC concentrations reported in Arnold (2005) and Arnold et al. (2006). Further-

more, the new fluorophore concentrations measured here were adjusted to account

for instrumentation drift by using a correction factor that was determined by com-

paring fluorescence measurements obtained in this chapter and in Chapter 3 Section

3.3.2. This factor was applied to all the new fluorescent data. This adjustment al-

lowed for separate analyses of total copper EC50 as a function of DOC, fluorescence
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humic-, fulvic-, tryptophan-, and tyrosine-like fractions using both data sets.

4.3 Results and Discussion

4.3.1 Sample Selection

A subset of the 72 samples from Chapter 3 were selected for toxicity measurements

based on the concentrations of DOC, CRS, and humic-, fulvic-, tryptophan-,

and tyrosine-like fluorescent fractions. Samples representing extreme high and

low concentrations of each parameter (and combinations within) would provide

quantitative insight into their individual protective effects on copper toxicity in

estuarine environments. Initial categorization of the 72 sites was based on main

effects of DOC, tryptophan, and CRS using a 23 partial factorial design. Humic

and fulvic material were strongly correlated to each other (Figure 4.1A) and also

to DOC, so only one parameter (DOC) was used to represent DOC, humic, and

fulvic concentrations. Similarly, tryptophan and tyrosine were strongly correlated

(Figure 4.1B) and so were represented as one parameter, Tryptophan.
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Figure 4.1: Comparison plots between A) fluorescent humic and fulvic material and B) fluores-
cent tryptophan and tyrosine material. The plotted points are separated by source material in each
sample: A=allochthonous, Au=allochthonous, W=wastewater, M=mixed source (see Chapter 3,
Table 3.3.1).
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A partial factorial was implemented due to the nature of the water samples

(i.e. not all of the conditions in a full factorial could be satisfied, which include

every possible high and low combination of each parameter). From the partial

factorial based on the three parameters of DOC, tryptophan, and CRS, a subset

of samples were selected as shown in Table 4.1.

Table 4.1: Results from 23 partial factorial design with a focus on main effects of the three
parameters, DOC, Trp, and CRS. Details on the locations of these sample sites can be found in
Table 3.3.1.

Extreme Signatures (+ = high, � = low)
Water Sample DOC Trp CRS
Artificial Seawater Reference
Arthur Kill + + �
Chesapeake Bay + + +
Potomac River + + �
San Diego Bay � � +
Tomales Bay + � +
Puget Sound � � �
Halifax Harbour � � �
Albemarle Sound + + +
Coal Harbour + � �

High DOC, tryptophan, and CRS represented concentrations of approximately

≥3.0 mg C·L−1, ≥0.1 (Arb.), and ≥100 nM whereas low DOC, tryptophan, and

CRS were approximately <3.0 mg C·L−1, <0.1 (Arb.), and <100 nM respectively.

Outside of the parameter restriction in this partial factorial design, Arthur Kill

and Albemarle Sound were selected because they both had DOC concentrations

of 6.9 mg C·L−1 but their humic and fulvic fraction were very different (0.30 and

0.75 respectively for Arthur Kill; 0.85 and 1.29 respectively for Albemarle Sound).

These selections allowed for separate comparisons of protective effects of humic

and fulvic material, which will be discussed in detail in Section 4.3.3. Table 4.2

contains a list of sample sites from Arnold (2005) and Arnold et al. (2006) that

were pooled with the data collected in this study. The same sites were sampled in
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2007 and fluorescence was measured in Chapter 3, Section 3.3.2.

Table 4.2: List of sample sites, DOC concentrations, and measured EC50 obtained from Arnold
(2005) and Arnold et al. (2006) that were pooled with the sample set used in this study.

DOC EC50

Water Sample (mg C·L−1) (µg Cu·L−1)
Granite Canyon 1 0.8 6.3
Granite Canyon 1.2 10.9
Narragansett Bay 1.5 16.8
West Galveston Bay 3.3 24.8
Galveston Bay 8.7 71.0
Mugu Lagoon 1.9 17.4
Puget Sound 1.3 13.9
San Francisco Bay 5.7 34.8
San Francisco Bay 5.0 37.2

4.3.2 Sample Characterization in Exposure Media

Salinity adjustments were performed prior to filtering of the samples and are

shown in Table 4.3. It was expected that some DOC might be lost during the

storage period and/or the filtration, however this was not the case. The DOC

concentrations showed no change outside the expected measurement variability

(Table 4.3).

1Obtained from Granite Canyon Marine Laboratory and used as a reference.
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Table 4.3: Measurements of pH, DOC, and salinity of the water samples in preparation for
toxicity assays. Measurements are shown from both before and after salinity adjustments and
filtration.

pH DOC (mg C·L−1) Salinity (�)
Water Sample Before After Before After Before After
Artificial Seawater n/a 8.17 n/a 1.1 n/a 30.6
Arthur Kill 7.40 7.78 6.9 6.9 27.3 29.9
Chesapeake Bay2 7.45 8.1 n/a 3.6 11.6 29.9
Potomac River 7.84 8.02 3.2 3.2 10.7 29.9
San Diego Bay 8.03 8.02 2.2 2.3 38.0 29.9
Tomales Bay 7.80 7.80 3.2 3.4 35.0 30.2
Puget Sound 7.62 7.52 1.6 1.9 29.5 29.5
Halifax Harbour 7.65 7.65 1.6 1.6 31.3 29.9
Albemarle Sound 7.58 7.58 6.9 6.9 3.6 30.2
Coal Harbour 7.80 7.44 3.0 3.3 19.7 30.2

As shown in Table 4.3, there was no apparent trend between the direction of

salinity adjustment and change in DOC, suggesting that the variability may have

been within the instrumental error. Additionally, the fluorescence results after

salinity adjustments and filtration did not vary from the original measurements as

seen in Table 4.4.

2Additional samples were taken from this site specifically for the toxicity assay and so DOC
was not measured prior to salinity adjustments. Since the DOC measurement initially taken from
this site was on a sample collected months earlier, comparisons to the salinity-adjusted sample
used here would not be accurate.
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Table 4.4: Fluorescent measurements of humic-(HA), fulvic-(FA), tryptophan-(Trp), and
tyrosine-like (Tyr) fractions in solutions prepared for toxicity assays. Measurements are shown
from both before and then after storage, salinity adjustments, and filtration.

HA FA Trp Tyr
Water Sample Before After Before After Before After Before After
Artificial Seawater n/a 0.00 n/a 0.48 n/a 0.14 n/a 0.09
Arthur Kill 0.30 0.33 0.75 0.78 0.12 0.11 0.10 0.09
Chesapeake Bay n/a 0.34 n/a 0.83 n/a 0.17 n/a 0.18
Potomac River 0.39 0.30 0.67 1.10 0.13 0.10 0.09 0.09
San Diego Bay 0.15 0.14 0.31 0.20 0.07 0.06 0.08 0.07
Tomales Bay 0.47 0.43 0.70 0.83 0.03 0.01 0.06 0.08
Puget Sound 0.12 0.12 0.20 0.20 0.02 0.02 0.06 0.06
Halifax Harbour 0.12 0.04 0.19 0.74 0.04 0.08 0.06 0.06
Albemarle Sound 0.88 0.77 1.27 1.80 0.13 0.01 0.09 0.08
Coal Harbour 0.38 0.56 0.37 0.57 0.01 0.17 0.12 0.22

CRS measurements on the filtered samples returned concentrations that were

much lower than what was originally measured on the unfiltered samples in Chapter

3. Section 3.3.3 (Table 4.5). This difference in concentration suggests that CRS

may be predominantly present as particulate matter. To a lesser extent, CRS

may have oxidized during storage, however precautions were made to ensure that

exposure to the atmosphere was minimal by storing the samples under argon.
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Table 4.5: Measurements of CRS concentrations (± standard deviation) in preparation of tox-
icity assays. Measurements are shown from both before and after storage, salinity adjustments,
and filtration.

CRS (nM) ± std dev.
Water Sample Before After
Artificial Seawater n/a 17.22±1.18
Arthur Kill 75.00±9.43 27.78±3.93
Chesapeake Bay 1880±575 44.17±0.00
Potomac River 75.00±11.78 25.56±0.78
San Diego Bay 1484±36.1 24.44±7.07
Tomales Bay 116.9±20.0 39.17±7.07
Puget Sound 27.50±1.18 30.00±2.36
Halifax Harbour 25.83±3.14 4.17±0.39
Albemarle Sound 112.2±7.1 28.33±5.50
Coal Harbour 23.33±0.78 23.33±1.18

4.3.3 Toxicity Assay

Comparisons of total copper EC50 and DOC concentrations resulted in a strong

linear correlation (r2=0.84) to the predictive equation line suggested by Arnold

et al. (2006) from the pooled data sets of samples from Tables 4.1 and 4.2. The

plot of total copper EC50 with increasing DOC concentration is shown in Figure 4.2.
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Figure 4.2: Plot of pooled results from this study, with 95% confidence intervals, and that of
samples listed in Table 4.2 illustrating total dissolved copper EC50 as a function of DOC. The
solid line is the predictive equation line suggested by Arnold et al. (2006), where the r2 for the
data points from the line is 0.84 (p=0.0001, n=19). The dotted lines represent a factor of 2 of
the predictive equation. The plotted points are separated by source material in each sample:
allochthonous (A), autochthonous (Au), mixed source (M), and wastewater (W).

Although the datasets were pooled, the data obtained in this study can be

differentiated from those published by Arnold (2005) and Arnold et al. (2006)

with the presence of error bars on the points measured here, in Figure 4.2. This

same figure (4.2) can be found in Appendix E Figure E.1 with the points from

both datasets distinguished with different markers. The solid line represents the

predictive equation, EC50 = 11.22DOC0.6 from Arnold et al. (2006) while the

dotted lines represent a factor of 2 about the line. Linear regression through sum

of squares was calculated to express the fit of the plotted points to the predictive
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equation, resulting in a r2 of 0.84 (p=0.0001, n=19). This strong linear correlation

between DOC and EC50 suggests DOC as a major component in coastal marine

and estuaries with protective effects on copper toxicity via complexation (Nadella

et al., 2009) possibly independent of any other water chemistry parameters, within

acceptable predictability limits of a factor of 2 (Arnold et al., 2006).

SAC340 has been suggested as a measure of DOM quality and showed good

correlation with metal toxicity to rainbow trout in freshwater (Schwartz et al.,

2004). In the coastal marine and estuarine samples measured here, only a weak

correlation was seen between SAC340 and total copper EC50 (r2=0.28, Figure 4.3).
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Figure 4.3: Plot of total copper EC50 with increasing SAC340 on the samples measured in this
study. The solid line is the line of best fit (y = 0.46x + 18.13, r2 = 0.28, n=10).
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SAC340 is a measure of colour, which is an intensive property and might not

correlate with EC50 (Figure 4.3), which depends on the amount of DOC (extensive

property). Comparisons of absorbance at 340 nm to total copper EC50 displayed a

relatively stronger linear correlation (r2 = 0.52, n=10). A positive correlation was

expected here because absorbance is proportional to DOC.

Based on the idea that allochthonous material should be more protective

(Schwartz et al., 2004) due to its prevalent phenolic and carboxylic groups, and

that allochthonous is primarily made up of humic and fulvic material, it was

thought that DOC will show higher protectiveness when relative amounts of

fluorescent humic- and fulvic-like material are high. Lorenzo et al. (2006) identified

fulvic material as the prominent fraction of marine DOM in terms of protective

effects on copper toxicity. Humic-like and fulvic-like fluorescent fractions compared

to total copper EC50 identified a strong linear correlation (r2 = 0.84, p<0.0001

and 0.88, p<0.0001 respectively) as shown in Figure 4.4 A and B. However, there

was no significant relationship between the lower molecular weight autochthonous

fractions and EC50 (Figure 4.4 C and D) with r2 values of 0.40, p=0.004 and 0.21,

p=0.05 respectively.
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Figure 4.4: Plot of total dissolved copper EC50 as a function of fluorescent A) humic-, B) fulvic-,
C) tryptophan-, and D) tyrosine-like concentrations on the samples measured in this study and
from samples listed in Table 4.2. The plotted points are separated by source material in each
sample: A=allochthonous, Au=autochthonous, W=wastewater, M=mixed source.
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The fluorescent humic-like and fulvic-like fractions (Figure 4.4 A and B) appear

to be good predictive measures of total copper toxicity in the tested coastal marine

and estuarine samples. These findings agree with research by Nadella et al. (2009)

where concentrations of fulvic material, estimated by fluorescence, displayed strong

protective effects in marine water, suggesting a difference in protectiveness with

DOM source. The fluorescent autochthonous fractions, Figure 4.4 C and D, did

not influence copper toxicity to a significant extent. The association constants (log

K) for 1:1 complex formation with tryptophan and tyrosine to Cu2+ are 8.29 and

7.81 ± 0.1 respectively (Martell and Smith, 1974). However, it is possible that

the measured tryptophan and tyrosine fractions are embedded within dissolved

proteins as peptide bonds and therefore not able to bind metal. Aluwihare et al.

(1997) suggested that in situ organic matter may be predominantly found as

clusters of proteins, carbohydrates, and lipids. If this is the case, then it is likely

that the amine groups are not readily available to chelate free copper, despite the

strong affinity of amines to Cu(II).

To further illustrate the difference in DOM quality in the water samples and

the use of DOC as a good predictive measure, the quality index and SAC340 values

were contrasted with the DOC-EC50 relationship from Figure 4.2. Comparisons in

this manner would result in one of three observations: 1) quality index increases

with DOC, suggesting that the fluorophore concentrations in these samples may

be influenced by DOC concentrations and cannot be considered ‘different’ in DOM

quality, 2) quality index is constant and independent of DOC concentrations,

suggesting that the fluorophore concentrations may be linearly proportional to

DOC concentrations and cannot be considered different in DOM quality, or 3)

no significant correlation between quality index and DOC, suggesting that the

samples collected can be considered different in DOM quality. Figure 4.5 contains

five plots of the DOC-EC50 relationship (from Figure 4.2) on a linear scale, with

quality index or SAC340 for each point indicated.
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Figure 4.5: Plots of DOC vs. EC50, as seen in Figure 4.2. The numeric values of each point
in the plots refer to fluorescent A) humic index, B) fulvic index, C) tryptophan index , and D)
tyrosine index. In plot E), the values are SAC340.

Figure 4.5 illustrates that the estuarine samples used in the toxicity assays

indeed varied in organic matter quality. More specifically, all the quality index

values are randomly distributed when plotted against EC50, expressed with low r2

values (0.10, 0.12, 0.07, 0.29, and 0.28 for humic, fulvic, tryptophan, tyrosine, and

SAC340 respectively) indicating no significant correlation between quality index

and EC50. For example, in Figure 4.5 B, the fulvic index measured at 0.44 and

0.46 near the low end of the EC50 scale, with values at 0.11, 0.26, and 0.34 at

higher EC50. In addition, in Figure 4.5 E there exists two points on the right

hand side that overlap. These points are of Arthur Kill and Albemarle Sound

116



with SAC340 values of 2.21 and 13.28 respectively. They have approximately the

same DOC concentration (see Section 4.3.1, Table 4.1) and EC50, yet the SAC340

measurement is different by an order of magnitude. This variability in optical qual-

ity suggests that DOC is a very good predictive measure regardless of DOM quality.

The idea that CRS binds strongly to copper suggests that CRS may be

protective towards copper toxicity and potentially predictive as well. To address

this notion in coastal marine and estuarine waters, CRS and total copper EC50

were compared on a 1:1 plot using the same units (µM) for both measurements to

identify whether CRS is a good predictive measure of copper toxicity. This plot is

illustrated in Figure 4.6.
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Figure 4.6: Plot of log EC50 as a function of dissolved CRS, both represented in µM. All the
points appear above the 1:1 line (right side of the plot), which suggests CRS is a strong ligand
for copper.

The 1:1 line in Figure 4.6 represents the toxicologically-relevant range of

CRS concentrations. All the points are above the 1:1 line, suggesting that CRS

contributes strong binding sites as described by Town and Filella (2000), and all

CRS available binding sites for copper appear to be completely saturated before

the EC50 concentration regime. The findings here imply that although CRS seems

to be very protective of copper toxicity in coastal marine and estuaries, it may

not be a useful predictive measure. However, the toxicity assays were performed

on filtered samples, so in some cases a significant amount of CRS was filtered out

or possibly lost during storage (Table 4.5). Unfiltered CRS may have a stronger

influence on copper toxicity predictions.
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Free, or bioavailable, copper concentrations were calculated at each EC50 based

on total copper and DOC. A comparison between total copper EC50 and free

copper EC50 is shown in Figure 4.7.
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Figure 4.7: Comparison between total copper EC50 and free copper EC50. The correlation
between these two variables is not considered significant (r2=0.26, p=0.03). The plotted points
are separated by source material in each sample: allochthonous (A), autochthonous (Au), mixed
source (M), and wastewater (W).

The free copper concentrations at the EC50 plotted in Figure 4.7, was ap-

proximately 3.85Ö10−3 µg·L−1 ± 2.21Ö10−3 µg·L−1. A slight downwards slope

was observed in in Figure 4.7, but is not considered a statistically significant

trend (r2=0.26, p=0.03). A decreasing trend suggests that higher total copper
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results in less free copper required to elicit a toxic effect on the organisms,

which is counterintuitive to the free-ion activity model (FIAM), where the free

metal ion dictates the uptake and toxic effect in the test species (Morel, 1983;

Campbell, 1995). However, other water chemistry measurements, such as calcium

ion concentrations, are not expected to be the same in each water sample, and

were not included in the calculations here. Although most ion concentrations

are relatively constant in marine water, estuaries with relatively low salinity may

express freshwater chemistry characteristics, such as variable Ca2+ concentrations,

which would have an effect on the bioavailability of copper, as seen in freshwater

(Erickson et al., 1996). Furthermore, Cu-humic complexes at higher concentrations

may have toxic effects at the biotic ligand, which has been reported by Lorenzo

et al. (2005) and Nadella et al. (2009), which are not included in the free

copper EC50 calculations in Figure 4.7. It should also be noted that the model

used to here calculate the free copper concentrations at the EC50 is not fitted

to the measurements from this study, and is still in the early stages of development.

4.4 Conclusions

The findings in this study suggest that DOC is a very good predictive measure of

copper toxicity in most coastal marine and estuarine environments and support

the validity of the predictive equation found in Arnold et al. (2006) independent of

source. The influence of DOM quality on copper toxicity appears to be marginal

in comparison to the acceptable predictability for calculating toxicity. In addition,

strong binding sites contributed from amine groups within autochthonous material

appear to be unavailable for copper binding in the samples analyzed here as they

are likely embedded within protein structures (i.e. peptide bonds).

Dissolved CRS concentrations contribute strong binding sites to copper,
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but do not appear to be present in sufficient number of binding sites to reach

toxicologically-relevant concentrations in coastal marine and estuarine environ-

ments. An important factor here is that toxicity assay protocol requires sample

filtration prior to testing, which was assumed to greatly reduce the CRS concen-

trations in each sample. Comparisons should be made to CRS and EC50 values

performed on unfiltered samples to identify its protective effects and possibly

competition for binding sites to TOC.

Calculations of free copper at the EC50 did not result in a constant concentration

as would be expected if DOC were the only factor contributing to protection. An

average free copper concentration at the EC50 was calculated at 3.85Ö10−3 µg·L−1

± 2.21Ö10−3 µg·L−1. The variability in this concentration suggested that other

water chemistry measurements may have an influence on bioavailable copper in

coastal marine and estuarine environments, especially in low salinity where water

chemistry measurements may show similarities in ion variability as in freshwater.

Furthermore, there is the possibility of toxicity from Cu-humic complexes, which are

currently not included in the free copper calculations. The correlation between total

copper EC50 and DOC is very strong and is sufficient to approximate copper toxicity

in coastal marine and estuarine environments independent of other water chemistry

measurements. Additional characteristic measures (i.e. fulvic-like, humic-like) do

not dramatically improve predictive power.
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Chapter 5

Summary and Conclusions

The goal of this thesis was to test the following hypotheses:

1. Fluorescence measurements in combination with PARAFAC would identify
a reasonable set of operationally-defined DOM fractions that best describe
DOM quality and their relative concentrations in each coastal marine and
estuarine water sample.

2. Fluorescence measurements of DOM quality would contribute an improved
approximation of copper EC50 from DOC, particularly the allochthonous flu-
orescent components, such as humic and fulvic material.

3. Optically-defined allochthonous carbon, through SAC340 measurements,
would be more protective than autochthonous with respect to copper tox-
icity.

4. Reduced sulfur, through CRS measurements, would be protective of copper
toxicity and a necessary input parameter for a marine-specific BLM.

Coastal marine and estuarine ambient water samples were collected from

71 sites along the east, west, and south coasts of North America. Including

artificial seawater, a total of 72 samples were used in this study. Through

communication with Ray Arnold and Scott Smith as well as aerial imagery

(http://www.maps.google.ca), each sample was labelled based on primary DOM

input including allochthonous, autochthonous, wastewater, or a mixture of
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the three. DOM in each sample was first characterized by quantifying DOC

concentrations. From hypothesis 1), fluorescence measurements in combination

with PARAFAC provided good qualitative and quantitative measures of four

operationally-defined fractions: humic, fulvic, tryptophan, and tyrosine. These

four fluorescent fractions were successfully quantified via PARAFAC analysis,

describing approximately 98% of the fluorescent data. Furthermore, calculations

of FI (McKnight et al., 2001) and comparisons to fluorescent fractions confirmed

the observations and primary source labels.

CRS measurements were performed on unfiltered aliquots of the 72 ambient

water samples as well. CRS concentrations spanned six orders of magnitude

from 0.07 nM to 7703 nM. On comparing CRS to DOC, there was no significant

correlation between the two measurements. A correlation has been found between

DOC and CRS in freshwater (Kramer et al., 2007). For regulatory purposes, a

correlation between these two parameters would have been ideal so that CRS

concentrations in coastal marine and estuarine waters could be estimated based

on DOC measurements, however this was not the case. Further analysis identified

a strong linear correlation between DOC and CRS from allochthonous-source

samples only (r2=0.79), similar to what was identified by Kramer et al. (2007)

where terrestrially-derived DOM was likely the predominant contributor of DOC.

The quality index of each fluorophore, FI, and CRS were compared internally

via Pearson correlation matrix to numerically identify linear correlations in DOM

quality with varying input sources. Strong correlations were found between

tryptophan and tyrosine index (r=0.72), followed by humic index and fulvic index

(r=0.47). No strong correlations were found between quality index values and CRS,

however humic, tryptophan, and tyrosine index values from allochthonous-source

samples presented significant correlations. Humic index showed a significant

positive correlation (r=0.83), while tryptophan index and tyrosine index showed
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significant negative correlations of -0.76 and -0.73 respectively.

The toxicity findings in this study suggest that DOC is a very good predictive

measure of copper toxicity in most estuarine environments and support the validity

of the predictive equation found in Arnold et al. (2006). The toxicity data obtained

here fell very close to their predicted values (r2 = 0.84). From hypothesis 2) and

3) the influence of DOM quality on copper toxicity in the coastal marine and

estuarine water samples appeared to be marginal in comparison to the acceptable

predictability for calculating toxicity. However, humic and fulvic fractions were

better correlated to EC50 on a linear scale than tryptophan and tyrosine fractions

(r2s of 0.84, 0.88, 0.40, and 0.21 respectively). This strong correlation between

fulvic material eludes to the fact that copper may be predominantly bound to

available phenolic and carboxylic groups. Furthermore, the amino acids (trypto-

phan and tyrosine) may be bound within proteins, resulting in embedded amine

groups unavailable for copper binding. In regards to SAC340 measurements, there

was no direct improvement to copper toxicity predictions (r2 = 0.52). In fact,

samples with the same DOC and SAC340 measurements different on an order of

magnitude, resulted in the same total copper EC50.

From hypothesis 4), the results from this study identified dissolved CRS

as contributors of strong binding sites to copper, but do not seem to reach

toxicologically-relevant concentrations in estuaries and so may not be significant

predictive measures of copper toxicity. These findings give insight into the

protectiveness of dissolved CRS on copper toxicity since only filtered samples were

used. However further studies on unfiltered samples may identify particulate CRS

as as relevant input for toxicity predictions.

Free copper at the EC50 was calculated based on DOC and total copper for

each water sample. The high variability in free copper concentrations suggested
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that other water chemistry measurements may have an influence on bioavailable

copper in coastal marine and estuarine environments, especially in low salinity

where water chemistry measurements may show similarities in ion variability as

in freshwater. Furthermore, there is the possibility of toxicity from Cu-humic

complexes, which are currently not included in the free copper calculations.

DOC appeared to be a good predictive measure of copper toxicity in most situa-

tions regardless of the source of DOM or other water chemistry measurements. For

regulatory purposes, this measurement would be easy and reliable. Fluorescence

spectroscopy may improve overall toxicity predictions, however these improvements

may only be marginal. An important factor here is that toxicity assay protocol

requires sample filtration prior to testing, which greatly reduced the CRS concen-

trations in each sample. Comparisons should be made to CRS and EC50 values

performed on unfiltered samples to identify its protective effects and possibly com-

petition for binding sites to total organic carbon.
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Appendix A

Matlab Scripts

A.1 Producing Contour Plots of FEEMs

A.1.1 summary prelim data.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script is designed to process the fluorescence data %

% and produce a contour plot %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear global; figure(1); close; figure(2); close;

colordef white

%Processes ASW_071508_ctrl.xls file to convert it into a FEEM

name=’ASW_071508_ctrl’;

%Calls preprocess_fluor_data_xls_file.m script

preprocess_fluor_data_xls_file(name);

%Produces FEEM

simplereport(name,[50 100 150 200 250 300 350 400 450...

500 550 600 650 700 750 800 850 900 950 1000]);

A.1.2 preprocess fluor data xls.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script is designed to remove Rayleigh light scattering %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function II = preprocess_fluor_data_xls_file(name)

% start by loading the data from the xls file

txt=[’data=xlsread(’’’,name,’’’);’]; eval(txt);

[n,m]=size(data); em=data(2:n,1); ex=data(1,2:m); F=data(2:n,2:m)’;

%% ----------- remove first artifact peak -----------------%

contour(em,ex,F,50,’k’); title(’select lower limit’)

[x,y]=ginput(10)

[Plow]=polyfit(x,y,3); ycalc=polyval(Plow,x);

plot(x,y,’ko’,x,ycalc,’k’); pause

contour(em,ex,F,50,’k’); title(’select upper limit’)

[x,y]=ginput(10)

[Phigh]=polyfit(x,y,3); ycalc=polyval(Phigh,x);

plot(x,y,’ko’,x,ycalc,’k’); pause

for i=1:size(ex,2)

if ex(i)>=ex(1)

for j=1:size(em,1)

lowerlimit=polyval(Plow,em(j));

upperlimit=polyval(Phigh,em(j));

if ex(i)>lowerlimit

if ex(i)<upperlimit

F(i,j)=NaN;

end

end

end

end

end

% ---- remove second artifact peak -----------------%

contour(em,ex,F,50,’k’); title(’select lower limit’)

[x,y]=ginput(10)

[Plow]=polyfit(x,y,3); ycalc=polyval(Plow,x);

plot(x,y,’ko’,x,ycalc,’k’); pause

contour(em,ex,F,50,’k’); title(’select upper limit’)

[x,y]=ginput(10)

[Phigh]=polyfit(x,y,3); ycalc=polyval(Phigh,x);

plot(x,y,’ko’,x,ycalc,’k’); pause

for i=1:size(ex,2)

if ex(i)>=ex(1)
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for j=1:size(em,1)

lowerlimit=polyval(Plow,em(j));

upperlimit=polyval(Phigh,em(j));

if ex(i)>lowerlimit

if ex(i)<upperlimit

F(i,j)=NaN;

end

end

end

end

end

txt=[’save ’,name,’.mat’]; eval(txt)

II=1;

end

A.1.3 simplereport.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script is designed to display the FEEM as a contour plot %

% with intensity contours, specified in summary_prelim_data.m %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function II=simplereport(name,vector)

txt=[’load ’,name,’.mat’]; eval(txt);

figure(1); clf

[C,h]=contour(em,ex,F,vector,’k’);

xlabel(’em (nm)’); ylabel(’ex (nm)’);

set(h,’ShowText’,’on’,’TextStep’,get(h,’LevelStep’)*2)

txt=[’print ’,name,’.eps -depsc2’]; eval(txt);

txt=[’print ’,name,’.png -dpng’]; eval(txt);

txt=[’print ’,name,’.jpg -djpeg’]; eval(txt);

figure(1)

129



A.2 Parallel Factor Analysis

A.2.1 PARAFAC process Sarah.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This script is designed to calculate all the FEEMs simultaneously to %

% identify the spectra of a defined number of components and their %

% relative abundance, or ’concentration’ in each sample, based on the FEEM %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear; clear global

%’ones(# mat files, type size(F) in command window to get other 2 numbers)’

Fnew=ones(120,26,351); Fnew=Fnew*NaN;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(1,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(2,:,:)=F;

name=’SFBay1_071107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(3,:,:)=F;

name=’SFBay2_071107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(4,:,:)=F;

name=’GCML1_071107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(5,:,:)=F;

name=’GCML2_071107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(6,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(7,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(8,:,:)=F;

name=’RA1_071307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(9,:,:)=F;

name=’RA2_071807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(10,:,:)=F;

name=’RA3_071807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(11,:,:)=F;

name=’RA4_072807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(12,:,:)=F;

name=’RA5_072807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(13,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(14,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(15,:,:)=F;

name=’RA6_072807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(16,:,:)=F;

name=’RA7_072807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(17,:,:)=F;

name=’RA8_081607’;txt=[’load’,name,’.mat’];eval(txt); Fnew(18,:,:)=F;

name=’RA9_081607’;txt=[’load’,name,’.mat’];eval(txt); Fnew(19,:,:)=F;

name=’RA10_081607’;txt=[’load’,name,’.mat’];eval(txt); Fnew(20,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(21,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(22,:,:)=F;

name=’RA11_081607’;txt=[’load’,name,’.mat’];eval(txt); Fnew(23,:,:)=F;

name=’RA13_091007’;txt=[’load’,name,’.mat’];eval(txt); Fnew(24,:,:)=F;

name=’RA14_091007’;txt=[’load’,name,’.mat’];eval(txt); Fnew(25,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(26,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(27,:,:)=F;

name=’RA15_091007’;txt=[’load’,name,’.mat’];eval(txt); Fnew(28,:,:)=F;

name=’RA16_091007’;txt=[’load’,name,’.mat’];eval(txt); Fnew(29,:,:)=F;
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name=’RA17_091007’;txt=[’load’,name,’.mat’];eval(txt); Fnew(30,:,:)=F;

name=’RA18_091907’;txt=[’load’,name,’.mat’];eval(txt); Fnew(31,:,:)=F;

name=’RA19_091907’;txt=[’load’,name,’.mat’];eval(txt); Fnew(32,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load ’,name,’.mat’];eval(txt); Fnew(33,:,:)=F;

name=’Trp_25e-8M’;txt=[’load ’,name,’.mat’];eval(txt); Fnew(34,:,:)=F;

name=’RA20_091907’;txt=[’load’,name,’.mat’];eval(txt); Fnew(35,:,:)=F;

name=’RA21_091907’;txt=[’load’,name,’.mat’];eval(txt); Fnew(36,:,:)=F;

name=’RA22_091907’;txt=[’load’,name,’.mat’];eval(txt); Fnew(37,:,:)=F;

name=’RA23_091907’;txt=[’load’,name,’.mat’];eval(txt); Fnew(38,:,:)=F;

name=’RA24_092407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(39,:,:)=F;

name=’RA25_092407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(40,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(41,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(42,:,:)=F;

name=’RA26_092407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(43,:,:)=F;

name=’RA27_092407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(44,:,:)=F;

name=’RA28_092407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(45,:,:)=F;

name=’RA29_092507’;txt=[’load’,name,’.mat’];eval(txt); Fnew(46,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(47,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(48,:,:)=F;

name=’RA30_092507’;txt=[’load’,name,’.mat’];eval(txt); Fnew(49,:,:)=F;

name=’RA31_092507’;txt=[’load’,name,’.mat’];eval(txt); Fnew(50,:,:)=F;

name=’RA32_092507’;txt=[’load’,name,’.mat’];eval(txt); Fnew(51,:,:)=F;

name=’RA33_092507’;txt=[’load’,name,’.mat’];eval(txt); Fnew(52,:,:)=F;

name=’RA34_101107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(53,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(54,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(55,:,:)=F;

name=’RA35_101107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(56,:,:)=F;

name=’RA36_101107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(57,:,:)=F;

name=’RA37_101107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(58,:,:)=F;

name=’RA38_101107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(59,:,:)=F;

name=’RA39_101107’;txt=[’load’,name,’.mat’];eval(txt); Fnew(60,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(61,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(62,:,:)=F;

name=’RA40_101607’;txt=[’load’,name,’.mat’];eval(txt); Fnew(63,:,:)=F;

name=’RA41_101607’;txt=[’load’,name,’.mat’];eval(txt); Fnew(64,:,:)=F;

name=’RA42_101707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(65,:,:)=F;

name=’RA43_101707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(66,:,:)=F;

name=’RA44_101707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(67,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(68,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(69,:,:)=F;

name=’RA45_101807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(70,:,:)=F;

name=’RA46_101807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(71,:,:)=F;

name=’RA47_101807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(72,:,:)=F;

name=’RA48_101807’;txt=[’load’,name,’.mat’];eval(txt); Fnew(73,:,:)=F;

name=’RA49_102207’;txt=[’load’,name,’.mat’];eval(txt); Fnew(74,:,:)=F;
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name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(75,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(76,:,:)=F;

name=’RA50_102307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(77,:,:)=F;

name=’RA51_010808_dil’;txt=[’load’,name,’.mat’];eval(txt);

Fnew(78,:,:)=F*2;

name=’RA52_102307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(79,:,:)=F;

name=’RA53_102307_dil’;txt=[’load’,name,’.mat’];eval(txt);

Fnew(80,:,:)=F*2;

name=’RA54_102307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(81,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(82,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(83,:,:)=F;

name=’RA55_102407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(84,:,:)=F;

name=’RA56_102407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(85,:,:)=F;

name=’RA57_102407’;txt=[’load’,name,’.mat’];eval(txt); Fnew(86,:,:)=F;

name=’RA58_121207’;txt=[’load’,name,’.mat’];eval(txt); Fnew(87,:,:)=F;

name=’RA59_121307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(88,:,:)=F;

name=’RA60_121307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(89,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(90,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(91,:,:)=F;

name=’RA61_121307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(92,:,:)=F;

name=’RA62_121307’;txt=[’load’,name,’.mat’];eval(txt); Fnew(93,:,:)=F;

name=’SS1_090707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(94,:,:)=F;

name=’SS2_090707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(95,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(96,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(97,:,:)=F;

name=’SS3_090707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(98,:,:)=F;

name=’SS4_090707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(99,:,:)=F;

name=’SS5_090707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(100,:,:)=F;

name=’SS6_090707’;txt=[’load’,name,’.mat’];eval(txt); Fnew(101,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(102,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(103,:,:)=F;

name=’RA1_071608_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(104,:,:)=F;

name=’RA4_062608_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(105,:,:)=F;

name=’RA5_071608_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(106,:,:)=F;

name=’RA19_070208_ctrl’;txt=[’load’,name,’.mat’];eval(txt);Fnew(107,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(108,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(109,:,:)=F;

name=’RA25_070808_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(110,:,:)=F;

name=’RA33_070208_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(111,:,:)=F;

name=’RA60_070808_ctrl_dil’;txt=[’load’,name,’.mat’];eval(txt);

Fnew(112,:,:)=F*2;

name=’ASW_071508_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(113,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(114,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(115,:,:)=F;

name=’RA34_072308_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(116,:,:)=F;
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name=’RA54_072308_ctrl’;txt=[’load’,name,’.mat’];eval(txt); Fnew(117,:,:)=F;

name=’Tyr_5e-7M’;txt=[’load’,name,’.mat’];eval(txt); Fnew(118,:,:)=F;

name=’Trp_25e-8M’;txt=[’load’,name,’.mat’];eval(txt);Fnew(119,:,:)=F;

name=’Tyr_5e-7M_Trp_25e-8M_041208’;txt=[’load’,name,’.mat’];eval(txt);

Fnew(120,:,:)=F;

f=dataset(Fnew);

f.author=’Sarah DePalma’;

f.axisscale{1}=[1:1:120]; %last number = number of mat files

f.axisscale{2}=ex;

f.axisscale{3}=em;

f.axisscalename{1}=’Sample number’;

f.axisscalename{2}=’Emission wavelength’;

f.axisscalename{3}=’Excitation wavelength’;

f.title{1}=’Sample mode’;

f.title{2}=’Emission mode’;

f.title{3}=’Excitation mode’;

numberofcomponents=4;

options=parafac(’options’);

options.stopcrit(4)=103600*5;

for i=1:3 %three dimensions

istr=num2str(i);

txt=[’options.constraints{’,istr,’}.nonnegativity=1;’];

eval(txt);

end

model=parafac(f,numberofcomponents,options)

for i=1:numberofcomponents

istr=num2str(i);

txt=[’emspec’,istr,’=(model.loads{2}(:,’,istr,’));’];eval(txt)

txt=[’exspec’,istr,’=(model.loads{3}(:,’,istr,’));’];eval(txt)

txt=[’conc’,istr,’=(model.loads{1}(:,’,istr,’));’];eval(txt)

txt=[’surf’,istr,’=emspec’,istr,’*exspec’,istr,’’’;’];eval(txt)

end

if numberofcomponents==4; save four; end

A.2.2 PARAFAC summary of 4 components.m

clear; clear global
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load four.mat;

figure(1);

subplot(221);contour(em,ex,surf1,3,’k’);

xlabel(’emission’); ylabel(’excitation’); title(’component 1’)

subplot(222);contour(em,ex,surf2,3,’k’);

xlabel(’emission’); ylabel(’excitation’); title(’component 2’)

subplot(223);contour(em,ex,surf3,3,’k’);

xlabel(’emission’); ylabel(’excitation’); title(’component 3’)

subplot(224);contour(em,ex,surf4,3,’k’);

xlabel(’emission’); ylabel(’excitation’); title(’component 4’)

name=[’parafac_4_components’];

figure(1)

txt=[’print ’,name,’.eps -depsc2’]; eval(txt);

txt=[’! ps2pdf -dEPSCrop ’,name,’.eps’]; eval(txt);

figure(2);

subplot(221); plot(conc1,’ko’);

xlabel(’site’); ylabel(’conc’); title(’component 1’)

subplot(222); plot(conc2,’ko’);

xlabel(’site’); ylabel(’conc’); title(’component 2’)

subplot(223); plot(conc3,’ko’);

xlabel(’site’); ylabel(’conc’); title(’component 3’)

subplot(224); plot(conc4,’ko’);

xlabel(’site’); ylabel(’conc’); title(’component 4’)

name=[’plots_4_components’];

figure(2)

txt=[’print ’,name,’.eps -depsc2’]; eval(txt);

txt=[’! ps2pdf -dEPSCrop ’,name,’.eps’]; eval(txt);
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Appendix B

Water Chemistry Measurements

of 72 Coastal Marine and

Estuarine Samples
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Table B.1: Water chemistry measurements of all seventy-two estuarine water samples. Mea-
surements of pH, salinity, DOC, CRS, and fluorescence were made. FI represents fluorescence
index, calculated using Equation 2.6.

DOC Fluorescence Intensity

ID pH � (mg C·L−1) CRS (nM) HA (Arb) FA (Arb) Trp (Arb) Tyr (Arb) FI
1 SFBay-1 7.74 26.7 5.700 7736.11 ± 648.18 0.9935 1.3252 0.1481 0.1914 1.490
2 SFBay-2 7.77 27.0 5.000 7702.78±98.21 0.7355 1.3396 0.1043 0.1335 1.554
3 GCML-1 7.49 38.3 1.200 0.07±0.82 0.2398 0.0642 0.0521 0.0871 1.836
4 GCML-2 7.51 38.0 0.800 0.01±0.78 0.0610 0.0721 0.0110 0.0485 1.575
5 RA-1 7.40 27.3 6.936 75.00±9.43 0.3040 0.7510 0.1153 0.0960 1.435
6 RA-2 7.74 32.4 9.502 43.33±11.78 0.3141 0.4372 0.1061 0.1090 1.388
7 RA-3 7.75 22.4 2.260 98.33±0.00 0.6296 0.8922 0.1298 0.1227 1.376
8 RA-4 7.45 11.6 4.759 1880.00±575.11 0.2725 1.1714 1.0429 0.3704 1.398
9 RA-5 7.84 10.7 3.183 75.00±11.78 0.3868 0.6722 0.1322 0.0899 1.459
10 RA-6 8.40 24.9 4.500 301.67±54.21 0.7797 1.1461 0.1757 0.0944 1.363
11 RA-7 7.66 9.1 2.917 158.33±91.92 0.4877 0.9197 0.0654 0.0819 1.480
12 RA-8 7.73 32.0 1.588 66.67±21.21 0.1956 0.2308 0.0483 0.0637 1.602
13 RA-9 7.87 32.0 1.746 106.67±87.21 0.2012 0.2782 0.0428 0.0650 1.334
14 RA-10 7.85 33.1 1.700 86.67±44.78 0.1707 0.2023 0.0713 0.0766 1.534
15 RA-11 7.63 30.6 2.921 90.00±21.21 0.2685 0.4408 0.1467 0.1123 1.356
16 RA-13 8.10 37.2 1.585 39.17±4.32 0.1011 0.1456 0.0350 0.0607 1.333
17 RA-14 7.93 18.0 5.358 58.61±6.68 0.7318 1.2311 0.0943 0.0691 1.432
18 RA-15 8.19 7.8 6.664 343.33±33.00 1.4115 1.8796 0.0755 0.0519 1.521
19 RA-16 7.83 9.7 5.325 2155.42±483.39 0.8463 1.4371 0.2063 0.1031 1.420
20 RA-17 7.60 4.0 5.765 179.17±0.39 1.2175 1.9694 0.1723 0.1023 1.522
21 RA-18 8.07 37.2 2.052 443.89±5.50 0.1854 0.3370 0.0608 0.0720 1.495
22 RA-19 8.03 38.0 2.188 1483.61±36.14 0.1479 0.3143 0.0711 0.0789 1.398
23 RA-20 7.98 35.7 1.348 145.28±7.86 0.1263 0.1953 0.0428 0.0630 1.486
24 RA-21 8.00 24.5 4.004 354.17±1.18 0.4166 0.9422 0.2814 0.2406 1.595
25 RA-22 7.83 35.0 1.443 14.72±5.11 0.1412 0.2431 0.0450 0.0852 1.641
26 RA-23 8.20 36.5 2.180 1216.39±217.63 0.3386 0.3903 0.0461 0.0640 1.451
27 RA-24 7.78 20.0 2.623 695.83±22.00 0.3624 0.6038 0.0661 0.0707 1.462
28 RA-25 7.80 33.1 3.180 116.94±20.03 0.4668 0.6990 0.0281 0.0567 1.297
29 RA-26 8.04 35.7 1.664 159.72±7.46 0.1215 0.1359 0.0276 0.0559 1.491
30 RA-27 7.82 35.0 1.587 216.67±7.86 0.1883 0.2683 0.0301 0.0572 1.478
31 RA-28 7.79 35.7 1.192 270.28±10.61 0.0952 0.1636 0.0480 0.0484 1.766
32 RA-29 7.84 4.2 2.261 48.61±3.14 0.2269 0.2890 0.0646 0.0740 1.480
33 RA-30 7.74 28.8 2.354 184.72±22.39 0.3199 0.3612 0.0253 0.0597 1.404
34 RA-31 7.28 28.8 1.461 56.39±3.14 0.1580 0.2319 0.0632 0.0646 1.337
35 RA-32 7.46 24.9 1.199 30.56±8.25 0.1021 0.1523 0.0148 0.0505 1.554
36 RA-33 7.62 29.5 1.646 27.50±1.18 0.1161 0.2004 0.0248 0.0551 1.449
37 RA-34 7.65 31.3 1.619 25.83±3.14 0.1213 0.1893 0.0459 0.0565 1.370
38 RA-35 8.07 30.2 2.024 18.06±0.00 0.1817 0.2713 0.0500 0.0615 1.415
39 RA-36 7.99 34.3 2.108 17.92±2.36 0.2047 0.3225 0.0658 0.0720 1.699
40 RA-37 7.87 30.2 1.302 28.33±0.98 0.0847 0.1178 0.0452 0.0596 1.385
41 RA-38 7.74 29.9 2.353 35.28±8.25 0.1507 0.2621 0.0527 0.0743 1.372
42 RA-39 7.63 8.8 2.787 323.06±21.61 0.5485 0.5742 0.0346 0.0686 1.393
43 RA-40 7.52 14.3 5.894 126.94±1.57 0.8360 1.3668 0.1269 0.0725 1.343
44 RA-41 7.69 19.7 6.215 1233.06±101.35 0.9820 1.5787 0.2745 0.1961 1.424
45 RA-42 7.91 12.3 4.595 463.61±34.57 0.8558 1.1510 0.1156 0.0932 1.773
46 RA-43 8.27 30.6 2.665 171.39±47.14 0.2898 0.4537 0.0427 0.0552 1.252
47 RA-44 8.18 36.1 2.508 239.44±18.07 0.2612 0.3946 0.0390 0.0603 1.306
48 RA-45 7.90 29.5 5.724 573.61±56.18 0.8836 1.3517 0.1571 0.1578 1.375
49 RA-46 8.24 31.0 5.500 331.94±33.39 0.8661 1.1496 0.0381 0.0610 1.384
50 RA-47 8.22 35.7 3.545 292.78±1.57 0.3603 0.6168 0.0461 0.0639 1.409
51 RA-48 7.87 31.0 5.020 939.72±102.92 0.5343 1.0230 0.0774 0.0700 1.398
52 RA-49 8.06 32.0 4.331 1284.72±165.78 1.1233 1.2851 0.0000 0.0482 1.416
53 RA-50 7.99 30.6 12.380 134.72±12.18 0.9111 1.7172 0.0751 0.0706 1.523
54 RA-51 7.68 3.9 15.140 1735.56±8.25 3.5210 2.9766 0.0059 0.1025 1.238
55 RA-52 7.39 29.2 6.549 731.67±61.28 1.2210 1.5714 0.0000 0.0535 1.334
56 RA-53 7.19 2.7 20.660 1551.11±34.96 5.2787 2.6554 0.0000 0.0509 1.215
57 RA-54 7.58 3.6 6.934 112.22±7.07 0.8780 1.2700 0.1275 0.0939 1.459
58 RA-55 7.98 11.0 15.010 83.33±5.50 1.3237 1.8232 0.0941 0.0801 1.332
59 RA-56 7.42 24.9 7.431 296.25±35.36 1.4091 1.7224 0.0223 0.0765 1.515
60 RA-57 7.80 19.7 3.424 166.67±15.91 0.4206 0.6891 0.0478 0.0658 1.437
61 RA-58 7.55 25.9 1.587 30.28±3.54 0.1321 0.1519 0.0154 0.0337 1.407
62 RA-59 7.58 27.7 1.807 21.39±4.32 0.1308 0.1562 0.0075 0.0420 1.380
63 RA-60 7.44 21.1 3.011 23.33±0.78 0.3845 0.3688 0.0138 0.1179 1.333
64 RA-61 7.69 24.9 1.795 9.72±0.39 0.1627 0.2077 0.0189 0.0378 1.438
65 RA-62 7.68 25.2 1.799 19.58±0.59 0.1738 0.2424 0.0293 0.0406 1.422
66 SS-1 7.88 32.0 2.429 0.1692 0.2533 0.0483 0.0620 1.362
67 SS-2 7.22 1.9 5.229 20.42±2.95 0.9041 0.8390 0.1378 0.1179 1.255
68 SS-3 7.70 17.6 3.983 17.92±2.36 0.5595 0.6193 0.0329 0.0553 1.331
69 SS-4 7.38 27.7 2.014 18.06±0.00 0.2278 0.6132 0.0698 0.0587 1.575
70 SS-5 7.49 29.9 1.961 25.83±3.14 0.2070 0.2730 0.1009 0.0895 1.391
71 SS-6 7.78 31.3 1.924 0.1745 0.2347 0.0880 0.0759 1.604
72 ASW 7.80 30.0 1.087 17.22±1.18 0.0000 0.4750 0.1435 0.0894 1.960
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Appendix C

Fluorophore Concentration

Calculations

The following is a list of approximated concentrations of each fluorophore, defined

by PARAFAC, in each water sample. The concentration (C) of a fluorophore in

solution is linearly proportional to its fluorescent abundance value (F) defined by

PARAFAC such that F = kC where k is an experimentally-determined linear

proportionality constant that is unique to the molecular identity and quantum

efficiency of that fluorophore. In this study, PARAFAC was used to identify four

fluorescent fractions in DOM from coastal marine and estuarine waters. Two of

the fractions were defined as humic-like and fulvic-like based on their molecular

weight difference, described by Wu et al. (2003). The other two fractions were

defined as tryptophan-like and tyrosine-like based on comparisons with FEEMs of

pure tryptophan (Trp) and tyrosine (Tyr) standard solutions.

Although the molecular structures of these four fluorescent DOM fractions

are not known, they have similar structures to common standard material, where

Suwanee River Fulvic Acid (SRFA) can be used to approximate the concentrations

of the humic and fulvic material in SRFA equivalents, and pure Trp and Tyr

standards can be used to approximate the concentrations of the tryptophan and
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tyrosine material in Trp and Tyr equivalents, respectively. In order to approximate

the concentrations in this manner, the fluorophore abundance values must be

normalized to DOC (fluorophore abundance per mg DOC, referred to as ‘quality

index’) so that comparisons between components in natural samples to standards

can be achieved on a per mg basis.

Spectral deconvolution of the FEEMs from 72 water samples was performed

simultaneously with the three standards (SRFA, Trp, and Tyr) in PARAFAC. Table

C.1 presents the concentrations, fluorophore abundance values, and calculated k of

the three standards.

Table C.1: Determination of linear proportionality constants for Trp, Tyr, humic and fulvic
acid based on spectral deconvolution by PARAFAC.

Concentration Fluorophore k
Standard mmol·L−1 mg C·L−1 Abundance (Arb) (L·mg−1 cm−1)
Trp 5.10Ö10−2 3.30Ö10−2 0.6182 18.73
Tyr 9.08Ö10−2 5.40Ö10−2 3.938 7.293
HASRFA n/a 20 0.2940 0.0147
FASRFA n/a 20 0.0512 0.0030

Dividing the fluorescence index by the appropriate linear proportionality con-

stants, the concentrations of each fluorophore can be approximated, as seen in

Table C.2. Note that the units of each concentration are represented as equivalents

of their representative standards. For example, a humic acid concentration of 2

represents 2 SRFA equivalents.
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Table C.2: Approximations of the fluorophore component concentrations. The concentrations
of fluorescent humic (HA) and fulvic (FA) fractions are both represented in SRFA equivalents.
The concentrations of fluorescent tryptophan (Trp) and tyrosine (Tyr) are represented in Trp and
Tyr equivalents respectively.

[HA] [FA] [Trp]Ö10−3 [Tyr]Ö10−3

SRFA 1.0 1.0 0.0 0.0
Trp 0.0 0.0 1.0 0.0
Tyr 0.0 0.0 0.0 1.0
SFB-1 11.86 89.42 1.39 4.60
SFB-2 10.01 103.05 1.11 3.66
GCML-1 13.59 20.58 2.32 9.96
GCML-2 5.19 34.66 0.73 8.32
RA-1 2.98 41.64 0.89 1.90
RA-2 2.25 17.70 0.60 1.57
RA-3 18.95 151.84 3.07 7.45
RA-4 3.90 94.67 11.7 10.7
RA-5 8.27 81.22 2.22 3.87
RA-6 11.79 97.96 2.08 2.88
RA-7 11.37 121.27 1.20 3.85
RA-8 8.38 55.90 1.62 5.50
RA-9 7.84 61.28 1.31 5.11
RA-10 6.83 45.77 2.24 6.18
RA-11 6.25 58.04 2.68 5.27
RA-13 4.34 35.33 1.18 5.25
RA-14 9.29 88.37 0.94 1.77
RA-15 14.41 108.48 0.61 1.07
RA-16 10.81 103.80 2.07 2.66
RA-17 14.37 131.39 1.60 2.43
RA-18 6.15 63.17 1.58 4.81
RA-19 4.60 55.25 1.73 4.95
RA-20 6.37 55.72 1.69 6.41
RA-21 7.08 90.51 3.75 8.24
RA-22 6.66 64.80 1.66 8.10
RA-23 10.57 68.86 1.13 4.02
RA-24 9.40 88.54 1.35 3.69
RA-25 9.99 84.54 0.47 2.44
RA-26 4.97 31.41 0.88 4.60
RA-27 8.07 65.02 1.01 4.94
RA-28 5.43 52.79 2.15 5.57
RA-29 6.83 49.16 1.53 4.49
RA-30 9.24 59.02 0.57 3.48
RA-31 7.36 61.05 2.31 6.07
RA-32 5.79 48.85 0.66 5.78
RA-33 4.80 46.83 0.80 4.59
RA-34 5.10 44.97 1.51 4.79
RA-35 6.11 51.55 1.32 4.16
RA-36 6.61 58.84 1.67 4.68
RA-37 4.43 34.80 1.85 6.27
RA-38 4.36 42.84 1.20 4.33
RA-39 13.39 79.24 0.66 3.37
RA-40 9.65 89.19 1.15 1.69
RA-41 10.75 97.70 2.36 4.33
RA-42 12.67 96.34 1.34 2.78
RA-43 7.40 65.48 0.86 2.84
RA-44 7.08 60.51 0.83 3.30
RA-45 10.50 90.83 1.47 3.78
RA-46 10.71 80.39 0.37 1.52
RA-47 6.91 66.92 0.69 2.47
RA-48 7.24 78.38 0.82 1.91
RA-49 17.64 114.12 0.00 1.53
RA-50 5.01 53.35 0.32 0.78
RA-51 15.82 75.62 0.02 0.93
RA-52 12.68 92.29 0.00 1.12
RA-53 17.38 49.43 0.00 0.34
RA-54 8.61 70.44 0.98 1.86
RA-55 6.00 46.72 0.34 0.73
RA-56 12.90 89.15 0.16 1.41
RA-57 8.36 77.41 0.74 2.64
RA-58 5.66 36.81 0.51 2.91
RA-59 4.92 33.25 0.22 3.18
RA-60 8.69 47.11 0.24 1.78
RA-61 6.17 44.50 0.56 2.88
RA-62 6.57 51.82 0.87 3.10
SS-1 4.74 40.11 1.06 3.50
SS-2 11.76 61.71 1.41 3.09
SS-3 9.56 59.80 0.44 1.90
SS-4 7.69 117.10 1.85 3.99
SS-5 7.18 53.54 2.75 6.26
SS-6 6.17 46.92 2.44 5.41
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Appendix D

Pearson Correlation Matrices
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Figure D.1: Scatterplot matrix of the following 6 variables: humic index (HA), fulvic index (FA), tryptophan (Trp) index, tyrosine index (Tyr),
fluorescent index (FI), and logCRS. Each cell of the scatterplot matrix represents a separate scatterplot where the x-axis is indicated by the labelled
cell in the same column and the y-axis is indicated by the labelled cell in the same row.
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Table D.1: Correlation matrix for fluorescent DOM and CRS based on values obtained from
allochthonous-source samples only (sample set of 11). Values are correlation coefficients and prob-
ability, listed as r(p). HA=humic index, FI=fulvic index, Trp=tryptophan index, Tyr=tyrosine
index, FI=fluorescent index, CRS=chromium(II) reducible sulfide.

HA FA Trp Tyr FI CRS
HA 1.0 0.10(0.1) -0.49(>0.1) -0.62(0.05) -0.26(0.05) 0.83(0.003)
FA 0.10(0.1) 1.0 0.50(0.1) 0.22(0.05) 0.65(0.04) -0.37(>0.1)
Trp -0.49(>0.1) 0.50(0.1) 1.0 0.82(0.003) 0.52(0.1) -0.73(0.01)
Tyr -0.62(0.05) 0.22(0.05) 0.82(0.003) 1.0 0.31(0.03) -0.76(0.01)
FI -0.26(0.05) 0.65(0.04) 0.52(0.1) 0.31(0.03) 1.0 -0.66(0.04)
CRS 0.83(0.003) -0.37(>0.1) -0.73(0.01) -0.76(0.01) -0.66(0.04) 1.0

Table D.2: Correlation matrix for fluorescent DOM and CRS based on values obtained from
autochthonous-source samples only (sample set of 3).

HA FA Trp Tyr FI CRS
HA 1.0 -0.84(0.1) -0.62(>0.1) -0.31(>0.1) -0.99(0.04) 0.61(>0.1)
FA -0.84(0.1) 1.0 0.95(>0.1) 0.78(>0.1) 0.80(>0.1) 0.94(>0.1)
Trp -0.62(>0.1) 0.95(>0.1) 1.0 0.94(0.05) 0.57(>0.1) 1.0(0.01)
Tyr -0.31(>0.1) 0.78(>0.1) 0.94(0.05) 1.0 0.24(>0.1) 0.94(0.1)
FI -0.99(0.04) 0.80(>0.1) 0.57(>0.1) 0.24(>0.1) 1.0 0.56(0.1)
CRS 0.61(>0.1) 0.94(>0.1) 1.0(0.01) 0.94(0.1) 0.56(0.1) 1.0
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Table D.3: Correlation matrix for fluorescent DOM and CRS based on values obtained from
wastewater-source samples only (sample set of 8).

HA FA Trp Tyr FI CRS
HA 1.0 0.77(0.02) -0.40(>0.1) -0.41(>0.1) 0.48(>0.1) 0.28(>0.1)
FA 0.77(0.02) 1.0 0.20(>0.1) 0.02(>0.1) 0.15(0.01) 0.45(0.1)
Trp -0.40(>0.1) 0.20(>0.1) 1.0 0.87(0.005) -0.58(0.1) 0.31(>0.1)
Tyr -0.41(>0.1) 0.02(>0.1) 0.87(0.005) 1.0 -0.25(>0.1) 0.36(0.1)
FI 0.48(>0.1) 0.15(0.01) -0.58(0.1) -0.25(>0.1) 1.0 0.11(>0.1)
CRS 0.28(>0.1) 0.45(0.1) 0.31(>0.1) 0.36(0.1) 0.11(>0.1) 1.0

Table D.4: Correlation matrix for fluorescent DOM and CRS based on values obtained from
mixed-source samples only (sample set of 50).

HA FA Trp Tyr FI CRS
HA 1.0 0.81(<0.001) 0.06(>0.1) -0.15(0.05) -0.04(>0.1) 0.44(0.002)
FA 0.81(<0.001) 1.0 0.35(0.01) 0.02(>0.1) 0.14(0.1) 0.49(<0.001)
Trp 0.06(>0.1) 0.35(0.01) 1.0 0.78(<0.001) 0.24(0.09) 0.07(0.1)
Tyr -0.15(0.05) 0.02(>0.1) 0.78(<0.001) 1.0 0.25(0.08) -0.17(0.1)
FI -0.04(>0.1) 0.14(0.1) 0.24(0.09) 0.25(0.08) 1.0 0.03(0.1)
CRS 0.44(0.002) 0.49(<0.001) 0.07(0.1) -0.17(0.1) 0.03(0.1) 1.0
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Appendix E

Application of a Significance Test

for Comparison of the Means of

Two Samples

The goal here is to assess whether variations between the toxicity data collected

in this study and published data from Arnold (2005) and Arnold et al. (2006) are

significant at a 95% confidence limit. The significance test (t-test) can be used

here, as suggested by Miller and Miller (1993). Tables E.1 and E.2 are measured

results of acute toxicity tests performed on the listed subset of samples by Ray

and myself respectively.
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Table E.1: Measured DOC and EC50 results from Arnold et al. (2006).

# ID DOC EC50 EC50/mg DOC
R1 RA-22 1.9 17.4 9.1579
R2 RA-33 1.3 13.9 10.6923
R3 RA-11 1.5 16.8 11.2000
R4 SFBay-2 5 37.2 7.4400
R5 RA-16 3.3 24.8 7.5152
R6 SFBay-1 5.7 34.8 6.1053
R7 RA-17 8.7 71 8.1609
R8 GCML-1 0.8 6.3 7.8750
R9 GCML-2 1.2 10.9 9.0833

Mean 8.5811
Standard Deviation 1.62

Table E.2: Measured DOC and EC50s from my experimental results.

# ID DOC EC50 EC50/mg DOC
S1 ASW 1.087 12.656 11.6431
S2 RA-4B 3.606 22.719 6.3003
S3 RA-19 2.326 19.008 8.1720
S4 RA-25 3.374 20.665 6.1248
S5 RA-33 1.880 16.037 8.5303
S6 RA-60 3.327 20.451 6.1470
S7 RA-1 6.936 31.576 4.5525
S8 RA-5 3.183 30.964 9.7279
S9 RA-34 1.619 15.959 9.8573
S10 RA-54 6.934 31.186 4.4975

Mean 7.555
Standard Deviation 2.40

A plot of the two data sets is illustrated in Figure E.1.
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Figure E.1: Plot of total copper EC50 with respect to DOC. Data sets from Tables E.1 and E.2
are plotted in O and X respectively. The solid line represents the predictive equation EC50=11.22
DOC0.6, determined by linear regression on a dataset of sample size n=75 (Arnold et al., 2006).

The equation of the line for the data plotted as X in Figure E.1 is EC50=12.44

DOC0.5 (r2=0.86, p=0.002, n=10) whereas O is EC50=9.52 DOC0.9 (r2=0.92,

p=0.001, n=9). The equation of the line for all the points is EC50=10.27 DOC0.7

(r2=0.89, p=0.001, n=19) (Figure E.1). Given that the plot of the two data sets

shows them to be almost overlapping and that the difference in means (1.03) is

small, initial observations show that the toxicity data is very similar. However, a

t-test was used to statistically show whether the variation between the data could

be attributed to random error. In order to compare the two data sets in Tables

E.1 and E.2, the EC50 values were normalized to DOC. This removes the change

in EC50 with respect to DOC, resulting in comparisons between intensive values as
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opposed to extensive. Intensive values allow for statistical comparisons since the

average and standard deviation can now be calculated between each data set.

The null hypothesis for the t-test states that there is no significant difference

between the two data sets, other than that which can be attributed to random

variation (Miller and Miller, 1993). A pooled estimate of the standard deviation

was calculated from the two individual standard deviations using Equation

E.1, followed by application of a calculated t value (Equation E.2) where t has

n1 + n2 − 2 degrees of freedom:

spooled =

√
s2
1(n1 − 1) + s2

2(n2 − 1)

n1 + n2 − 2
(E.1)

tcalc =
| x̄1 − x̄2 |

spooled

√
n1n2

n1 + n2

(E.2)

where x is the sample mean, s is the standard deviation, and n is the sample

size of 1 and 2 data sets of Rays and my data respectively. The results of the

t-test are found in Table E.3.

Table E.3: Results from the t-test as a comparison of the means of two samples.

df 17
spooled 2.191
tcalc 0.774
t95 2.11

The calculated value of t was less than the critical value (P = 0.05), and so the

null hypothesis was retained. Since the data points overlapped in Figure E.1 and

the t-test showed no evidence of a difference, the results obtained in this study were
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significantly similar to the data published in Arnold et al. (2006) and differences

between the two data sets can be attributed to random variation.
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Appendix F

Toxicity Data
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Table F.1: Water chemistry measurements and toxicity results samples from Arnold (2005) and Arnold et al. (2006) (1 - 9) and from this study
(10 - 19). DOC is reported in mg C·L−1. Toxicity data is reported as total dissolved copper (in µg Cu·L−1) with p=0.05 lower and upper confidence
limits. Calculated toxicity data is based on the equation EC50 = 11.22DOC0.6 (Arnold et al., 2006). Free copper concentrations were calculated by
R. Santore at HydroQual© and reported in µg Cu·L−1.

ID DOC CRS (nM) HA (Arb) FA (Arb) Trp (Arb) Tyr (Arb) SAC340 Calc EC50 LCL UCL EC50 LCL UCL Free Cu
1 RA-22 1.9 n/a 0.1859 0.3201 0.0593 0.1122 n/a 16.49 8.24 32.98 17.4 n/a n/a 5.03Ö10−3

2 RA-33 1.3 n/a 0.0917 0.1583 0.0196 0.0435 n/a 13.13 6.57 26.26 13.9 n/a n/a 7.05Ö10−3

3 RA-11 1.5 n/a 0.1379 0.2264 0.0753 0.0577 n/a 14.31 7.16 28.62 16.8 n/a n/a 8.20Ö10−3

4 SFBay-2 5.0 n/a 0.7355 1.3396 0.1043 0.1335 n/a 29.47 14.73 58.94 37.2 n/a n/a 3.01Ö10−3

5 RA-16 3.3 n/a 0.5245 0.8906 0.1278 0.0639 n/a 22.97 11.48 45.93 24.8 n/a n/a 2.25Ö10−3

6 SFBay-1 5.7 n/a 0.9935 1.3252 0.1481 0.1914 n/a 31.88 15.94 63.76 34.8 n/a n/a 1.87Ö10−3

7 RA-17 8.7 n/a 1.8373 2.9720 0.2600 0.1544 n/a 41.09 20.54 82.17 71 n/a n/a 2.24Ö10−3

8 GCML-1 0.8 n/a 0.2398 0.0642 0.0521 0.0871 n/a 9.81 4.91 19.63 6.3 n/a n/a 3.29Ö10−3

9 GCML-2 1.2 n/a 0.0610 0.0721 0.0110 0.0485 n/a 12.52 6.26 25.03 10.9 n/a n/a 4.91Ö10−3

10 ASW 1.087 17.22±1.18 0.0000 0.4750 0.1435 0.0894 0.00 11.80 5.90 23.59 12.656 11.427 14.322 7.75Ö10−3

11 RA-4B 3.606 44.17±0.00 0.3364 0.8314 0.1727 0.1793 8.30 24.22 12.11 48.44 22.719 20.524 25.587 1.98Ö10−3

12 RA-19 2.326 24.44±7.07 0.1358 0.2044 0.0558 0.0674 0.99 18.62 9.31 37.24 19.008 17.9 20.331 3.66Ö10−3

13 RA-25 3.374 39.17±7.07 0.4338 0.8340 0.0142 0.0753 7.96 23.27 11.64 46.55 20.665 19.55 22.065 1.90Ö10−3

14 RA-33 1.880 30.00±2.36 0.1161 0.2004 0.0248 0.0551 4.90 16.39 8.19 32.77 16.037 14.038 19.467 4.23Ö10−3

15 RA-60 3.327 23.33±1.18 0.5631 0.5741 0.1754 0.2158 15.00 23.08 11.54 46.16 20.451 19.285 21.652 2.01Ö10−3

16 RA-1 6.936 27.78±3.93 0.3277 0.7785 0.1116 0.0892 2.21 35.86 17.93 71.73 31.576 30.771 32.391 9.72Ö10−4

17 RA-5 3.183 25.56±0.78 0.2966 1.0958 0.0974 0.0949 26.53 22.47 11.24 44.945 30.964 30.132 31.654 5.89Ö10−3

18 RA-34 1.619 4.17±0.39 0.0425 0.7403 0.0815 0.0606 8.06 14.98 7.49 29.96 15.959 15.15 16.749 5.92Ö10−3

19 RA-54 6.934 28.33±5.50 0.7716 1.7987 0.0000 0.0853 13.28 35.86 17.93 71.72 31.186 30.098 32.073 9.66Ö10−4
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