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Abstract 

Mining for oil sands in the Athabasca Basin in northeastern Alberta is rapidly 

expanding.  As economics continue to drive growing mining practices, waste management, 

reclamation and bio-monitoring strategies are becoming increasingly important.   

This project aims to determine the practicality of testate amoebae assemblages as an 

indicator of microbial community health and ecosystem establishment in wetlands impacted 

by oil sand processed materials (OSPM).  Testate amoebae are unicellular, shelled protists 

that live in abundance in soils, leaf litter and in fresh water habitats. This group of protists 

forms shells (or tests) which makes them relatively easy to identify.  Ecological studies have 

shown they occupy specific niches controlled by environmental parameters such as  pH and 

moisture variables. These features make testate amoebae excellent bioindicators, and this 

project explores the potential of applying testate amoebae bioindicators in wetlands affected 

by OSPM. 

Using compound and epifluorescent microscopy techniques, testate amoebae species 

assemblages were identified and tabulated from a series of wetlands with different impacts 

by oil sands processed materials.  Bacterial and fungal proportions were characterized to 

compare with the testate amoebae and identify possible links within the microbial 

community. 

A total of 44 species of testate amoebae were encountered in 24 wetlands, with 

Centropyxis platystoma and Centropyxis aculeata being the most common taxa.  Natural 

peatland sites, not affected by OSPM contained the most diverse assemblage of testate 

amoebae containing Arcella, Assulina, Centropyxis, Englypha, and Heleopera. Open-water 



 

 iv 

wetlands not impacted by OSPM were less diverse than peatland sites, but maintained 

between two and 12 taxa per site.  Open-water sites amended with OSPM contained fewer 

taxa (between 0 and 4 taxa at any given site) and fewer individuals than any other site type, 

with Difflugia being most common.     

Bacteria contributed an average of 65% of the microbial community in open-water 

sites and an average of 80% in peatland sites.  Peatland sites were significantly different 

(P<0.05) from all other site types in terms of testate amoebae, bacteria, and fungal biomass.    

This study demonstrated that differences exist in testate amoebae assemblages 

between site types do exist, this study establishes the fact that testate amoebae are too few 

(<1% of biomass), and not in sync with the other microbial facets studied (bacteria and fungi) 

limiting their use as bioindicators of microbial community establishment in wetlands 

impacted by oil sands processed materials.  However the predominance of bacteria in all site 

types calls attention to their vital role in these sites and their importance in further research in 

oil sands reclamation.   
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1.0 

Testate amoebae are unicellular, shelled protists that live in abundance in soils, leaf litter 

and near/in fresh water habitats (Charman et al., 2000). These protists form shells (or tests) made 

of smooth secreted material, pre-formed plates or cemented particles, which are gathered from 

the surrounding environment (Charman et al., 2000). These particles can include small pieces of 

silica, pollen grains, fungal hyphae, and other organic detritus (Charman et al 2000).  Simple 

tests made by secretion are called autogenous tests, whereas tests formed by the agglutination of 

foreign material are called xenogenous tests; it is not uncommon for organisms to use a 

combination of strategies to construct their tests (Charman et al., 2000).  The shells of testate 

amoebae possess an aperture for the emergence of pseudopodia (Westphal 1976).  

Introduction  
 

Pseudopodia 

are temporary cell extensions that are used for locomotion and taking in food (Woodland et al., 

1998).  Testate amoebae taxa can be differentiated by their test characteristics and the kind of 

pseudopodia they possess (lobose, filiform) (Westphal 1976).   

Testate amoebae reproduce asexually via binary fission.  Reproduction in testate amoebae 

begins with the growth of a second shell and can occur in three ways (Westphal 1976).  In 

delicate organisms, shells divide longitudinally, after which mitosis begins (Westphal 1976).  

More robust shells (like that of Euglypha) begin by producing silica platelets in the cytoplasm 

close to the nucleus (Westphal 1976).  These plates serve to strengthen the shell, eventually 

traveling to the periphery of the protruding cytoplasm as the new cell is being formed, after 

which the nucleus prepares for division (Westphal 1976).  In the third case, the production of the 

new shell begins only after the cytoplasm has protruded to the final size of the new cell, as 

occurs in the Pyxidicula genus (Westphal 1976).  A sexual component to reproduction has not 

been observed in these organisms (Charman et al 2000).  

http://en.wikipedia.org/wiki/Pseudopodia�
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More and more is being learned about the ecology of the wide range of habitats in which 

these protists live.  Testate amoebae have repeatedly shown to be good indicators for natural 

macro-environmental gradients, like pH and hydrology, as well as metal pollutants in aquatic and 

soil environments (Charman and Warner 1992, Gilbert et al 1998(1), Foissner 1999, and 

Mitchell et al 2003).  In the last three decades testate amoebae have been used as indicators of 

sea level change (Charman et al 1998, Gehrels et al 2001, Mediolo et al 1990), paleohydrology 

and paleoclimate (Beyens and Chardez 1995, Smith 1992, 1996, Wilkinson 1994), atmospheric 

pollution (Lüftenegger and Foissner 1989, Balik 1991, Tolonen et al 1992, 1994) and 

limnological variables such as pH, oxygen concentration, temperature and heavy metal content 

(Gilbert et al. 1998(2); Muqi and Wood 1999, Escobar et al 2008).  Studies on the ecology of 

lakes and rivers indicate that testate amoebae respond to pH, and pollution of various types 

(Beyens et al 1986, Burbidge and Schroder-Adams 1998, Dalby et al 2000, Kumar and Patterson 

2000).  These studies also suggest testate amoebae may respond to changes in land use such as 

deforestation, watershed management and chemical use (fertilizers and pesticides) (Fry 1990, 

Mitchell personal communication).  Studies conducted with testate amoebae are predominantly 

focused, but not limited to, indicators of hydrological conditions in peatland soils and primarily 

depth of the water table, (Lüftenegger and Foissner 1989, Balik 1991) or in paleohydrology and 

paleoclimate studies to reconstruct former hydrological conditions.   

Given the sensitivity of testate amoebae to environmental gradients and water chemistry, 

it is not surprising that studies have investigated their use in soil and air pollution monitoring.  

According to a number of studies, diversity and density of testate amoebae were lower in 

polluted or “impacted” peatland (Kandeler et al 1992, Wanner and Dunger 2001, 2002, Balik 

1991) and lake sites (Nguyen-Viet et al 2007(1)), though little is known of the mechanisms 

influencing the tolerance of some species over others.   
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For those living in soils, research suggests that moisture content and pH play a key role in 

their distribution in soils (Charman et al., 2000).  In a study of forested peatland soils situated in 

the boreal region of Canada, the feasibility of testate amoebae as bio-indicators was investigated 

(Warner and Chmielewski 1992).  In this study over twenty-six species were encountered, with 

single taxa or species groups showing differences between control and drained sites (Warner and 

Chmielewski 1992).  These results indicate that testate amoebae are capable of responding 

immediately to changes in habitat, and identified key taxa which deserve special attention as 

potential bioindicators; Cyclopyxis arcelloides and Trinema lineare were two groups which were 

identified as indicators for changes in drainage of this peatland site (Warner and Chmielewski 

1992).  In another study conducted in Frache-Comte, France, Nguyen-Viet et al. found that lead 

contamination reduced density as well as the number of testate amoebae species, the effect was 

in proportion to the lead concentration accumulated in Sphagnum fallax (2007(1)).  This research 

found Nebela carianata, Euglypha strigosa, and H. sphagni to be sensitive species to lead 

contamination while A. discoides and C. aculeate were found to be the most tolerant species.   

Testate amoebae are excellent candidates for environmental indicators for a variety of 

reasons: they are abundant and diverse, about 100 potential species in mosses alone (Charman et 

al., 2000), most species are cosmopolitan, meaning they are not limited to one part of the world 

(although exceptions exist) (Bonnet 1973), their identification is relatively easy based on the 

morphology of their tests (shell) that remains even after the death of the organism, and lastly 

they are good signifiers of disturbance because of their trophic position at the top of the 

microbial food web, and consuming key players in the microbial loop (Gilbert et al 1998, 2000).  

Lastly, studies have shown that testate amoebae are more sensitive than other protozoa (ciliates) 

and responded more dramatically in a study looking at the conversion of soil to agriculture by a 
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reduction in richness or more than 50% compared to unaffected soils (Fry 1990, Mitchell 

personal communication).   

1.1 Testate amoebae as Part of the Microbial Community 

Microorganisms are organisms that are microscopic and are at the base of every 

ecosystem.  They are an incredibly diverse group and include bacteria, fungi, archea and protists 

(Sigee 2005).  These groups play a fundamental role in the nutrient cycling processes of 

ecosystems.  Microorganisms are the primary consumers of organic carbon and they have the 

potential to supply carbon and energy to organisms at higher trophic levels. Although microbial 

communities consist of many groups, bacteria are of paramount importance, as they act as 

intermediaries for nutrient release from detritus and are the only organisms documented as 

consumers of toxic naphthenic acids (Hadwin et al., 2006).  Bacteria are able to remobilize 

nutrients, making them bioavailable at higher trophic levels.  When bacteria are consumed by 

microbial grazers, a significant portion of the nutrients in the bacterial cells will be recycled into 

the food web (Berman et al 1987).  The nutrients supplied by primary producers have also been 

proven to pass through the “microbial loop” to higher trophic levels (Pomeroy 1974, Azam et al., 

1983, Berman et al., 1987).  Bacteria are consumed by other microorganisms (protists), which 

are then consumed by larger aquatic organisms, thus allowing carbon to be cycled through 

multiple trophic levels, which is the basis for the “microbial loop” (Figure 1) (Berman et al., 

1987).  Bacterial communities are of paramount importance but require more intricate sampling 

methods and extraction techniques to characterize than the protists.    
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Figure 1: The Microbial Loop 

This figure shows the flow of nutrients into a food chain through the microbial loop.  The 
microbial loop is indicated by the box, DOC is representative of dissolved organic carbon.  
Bacteria are the only organisms that are able to remobilize dissolved organic carbon making it 
bioavailable at higher trophic levels.  Adapted from http://www.esf.edu/. 

 

Research investigating the composition of and representation of relative components of 

wetland microbial communities, including peatlands in North America, only recently received 

some attention (Batzer and Sharitz 2008).  Most studies relate to protists (specifically the 

community composition and ecology of testate amoebae) to environmental variables, or 

pollutants, with little focus on other fractions of the microbial community (bacteria, fungi, and 

micrometazoa) (Warner 1987, Charman and Warner 1992).   

Testate amoebae are a major part of the microbial community in peatlands ecosystems.  

In a study conducted by Gilbert et al testate amoebae were dominant, contributing 48% of the 

total biomass (2007).  Peatland ecosystems are rich in organic matter content suggesting the 

microbial loop has a vital role in the operation of these ecosystems.  The dominance of testate 

amoebae implies protozoa (including ciliates and heterotrophic flagellates) are central players to 
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the microbial loop in peatland systems, as they are less sensitive to the acidity of the medium 

than other groups (micrometazoa).    

1.2 Oil Sand Mining in Northern Alberta 

Open-pit mining results in the destruction of landscapes and the creation of large 

quantities of tailings that are produced when bitumen is separated from oil sand.  The increasing 

scale of oil sand operations reveals the essential need for reclamation.  While oil sand operators 

claim that reclamation efforts have reached “4357 hectares of land” and millions of dollars have 

been put into reclamation efforts (© 2006 Syncrude Canada Ltd.), there is no standard regarding 

land restoration.  Under the Environmental Protection and Enhancement Act (EPEA) and 

supervised by the Alberta Department of Environment, oil sand operators are required by law to 

reclaim areas affected by mining by creating a landscape of equivalent production to those that 

existed prior to mining activities.   

On-site tailing ponds are constructed to store noxious compounds (tailings, process 

water) produced by the oil sands process (MacKinnon 1989).  In these holding facilities tailings 

become densified and thicken to become what are referred to as mature fine tailings (MFT).  

Over time, as MFT settles, the over-laying water is clarified and reused in the Clark caustic hot 

water process to separate bitumen from oil sand or in reclamation strategies, as a water-cap for 

reclaimed wetlands (Leung et al 2001, Salloum et al 2002).   

Abiotic factors in wetlands that receive oil sands processed materials (OSPM) are 

expected to deviate from those of natural systems.  For example, there will be higher 

concentrations of residual bitumen from the extraction process (MacKinnon and Sethi 1993) and 

elevated levels of naphthenic acids (NA’s), which may be upwards of 30 times higher than 

natural levels (Holowenko et al 2002).  NA levels of 0.3 – 0.5 mg L-1 have been reported in 
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natural wetlands while concentrations as high as 88mg L-1

Naturally occurring microbial communities found in the sediments of open-water habitats 

created by oil sand operators in northern Alberta are exposed to residual levels of bitumen and 

the components associated with oil sands processing (Naphthenic Acids (NA), sulphates, and 

chlorides) (Hadwin et al 2006).  These microbial communities have been shown to have some 

capacity for breaking down hydrocarbons and mixed cultures of bacteria were found to be 

proficient in NA degradation both in natural and in-vitro systems (Hadwin et al 2006).  While 

naturally occurring microbial communities are capable of breaking down these compounds, thus 

reducing the toxicity of oil sands processed materials (OSPM) in impacted wetlands, little is 

known concerning the composition of these communities (Herman et al 1994, Holowenko et al 

2002, Hadwin et al 2006).   

 have been reported in tailings ponds 

(Holowenko et al 2002).   

Wet landscapes with the incorporation of oil sand extraction by-products have been 

recommended as sustainable ecosystems for reclamation strategies.  In created wet landscapes 

MFT is transferred from tailings ponds into open pits created by mining and capped with water 

(either process-affected and/or freshwater) to produce lakes, ponds, and wetlands (Madill et al 

2001, Leung et al 2001).   

In recent years many wetlands have been created or restored to mitigate the damage and 

destruction caused by oil sand mining and a number of strategies have been tested for 

reclamation purposes.  Creation of shallow open-water bodies and wetlands presented new 

challenges for aquatic scientists, to produce high-quality wetland habitats.  Many types of 

wetlands have been created on oil sand leases with different OSPM and non-OSPM amendments 

in order to determine environmental sustainability.  These ponds have allowed researchers the 

opportunity to conduct studies on the effects of different OSPM amendments on aquatic 

organisms and the overall health of reclaimed wetland systems.   
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Created wetlands are put in place with the goal of replacing the functionality of former 

systems that have been lost through disturbance.  Unfortunately, not all functions of a wetland 

are, or can be considered during reclamation efforts and many wetland restoration projects have 

shown that structure does not necessarily imply function (Reinartz and Warne 1993).  Therefore, 

as researchers we are unable to assume that these created systems are functioning properly and 

require biological indicators to provide this information for us.  This project aims to draw on the 

broad knowledge of the testate amoebae community composition and ecology as an indicator of 

the response of the overall microbial community to stressors in the environment as a result of oil 

sands mining.   

1.3  Objectives 

Wetland creation using mining by-products (OSPM, oil sands processed water (OSPW)) 

relies heavily on the ability of aquatic bacteria to metabolize residual hydrocarbons and 

assimilate carbon making it available at higher trophic levels.  Given that testate amoebae are a 

large component of the microbial community, and sensitive to micro-environmental gradients, 

we suspect that species assemblage of testate amoebae can be used as indicators of the whole 

microbial community.  Thus, this project aims to characterize testate amoebae composition in 

representative OSPM wetlands and compare these communities with non-OSPM wetlands, 

including both open-water wetlands and peatlands.  This requires the establishment of protocols 

for characterizing testate amoebae communities in peatland and open-water wetlands, and to 

identify and quantify testate amoebae in various wetland types (peatlands, control, reference, and 

OSPM) that are, or will be, a part of future oil sands reclamation strategies.  Testate amoebae 

will be related to other a parts of the whole microbial community: bacteria and fungi, thus 

protocols must also be established for quantifying these microbial fractions.  The final objective 
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is to assess the practicality of using testate amoebae in various wetlands as indicators of 

microbial community health, wetland establishment, and performance of created wetlands.   

The fundamental purpose of this project is to provide a novel performance indicator to be 

included in the Wetlands Guideline for oil sand operators in the region of Wood Buffalo, 

Alberta.  Ultimately, it will be a standard which oil sands operators can use efficiently and easily 

to determine the status of reclaimed wetlands.  This performance indicator will be based on; 1)an 

index of microbial communities (bacteria and fungi) from varying wetlands (OSPM and non-

OSPM-affected) and 2) testate amoebae assemblages related to general abundance values for 

bacteria and fungi.  It is expected that the success of wetland restoration will be predicted based 

on testate amoebae indicators and biomass measurements of the rest of the microbial community 

(bacteria and fungi).   
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2.0 Materials and Methods  

2.1 

2.1.1 Location 

Study Region 

Fort McMurray (56.66° N 111.21° W), Alberta, lies approximately forty kilometres south 

of two of the largest oil sand mining and refinery operations in the world, Suncor Energy Inc. 

and Syncrude Canada Ltd. (Figure 2).  Syncrude Canada Ltd. and Suncor Energy Inc. can be 

reached on Highway 63 north which runs parallel to the Athabasca River.  On the west side of 

the river lies the Syncrude Canada lease site (Figure 3) occupying approximately 102,000 

hectares (© 2006 Syncrude Canada Ltd.) while the main operation for Suncor Energy Inc. 

(Figure 4) is situated on the east side of the highway and river, and occupies approximately 990 

hectares (Suncor Energy Inc, 2006).  Once on the Syncrude or Suncor lease sites wetlands were 

accessed in pick-up trucks via mining roads, as well as dirt roads specifically created for access 

to research wetlands, all sites were within thirty-five to forty minutes of the main lease site 

access.     

2.1.2 Vegetation 

Fort McMurray and surrounding area are located in the Boreal Plains Ecoregion which 

encompasses the broadleaf forest and the mixed forest (Figure 5 and 6) (National Atlas of 

Canada 1993).  Forestry is the primary industry in the Boreal Plains (National Atlas of Canada 

1993).  Key tree species include white and black spruce, balsam fir, jack pine, tamarack, and 

lodge-pole pines, broadleaf species which are also common within this region are aspen and 

poplar, and birch in some areas (National Atlas of Canada 1993).  Fire has the greatest effect on 

distribution and growth rates of trees in this area, but native insect pests and disease are also 

likely to affect these forests (National Atlas of Canada 1993). 
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Figure 2: Aerial View of Oil Sand Mining and Refinery Operations; Suncor Energy Inc. 

and Syncrude Canada Ltd. Relative to the City of Fort McMurray, Alberta  

(Google Maps, 2009). 

Syncrude Canada Ltd. 

Suncor Energy  
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Figure 3: Aerial View of Wetland Sites on Syncrude Canada Ltd. Lease   
(Google Maps 2009)

Shallow Wetland 

South Ditch 
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Figure 4: Aeriel View of Wetland Sites on Suncor Energy Inc. Lease  

(Courtesy of Suncor Energy Inc.) 
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Figure 5: Forested Ecoregion of Canada 

Fort McMurray and surrounding areas fall into the Boreal Plains Ecoregion (Canada-
Vegetation Cover, Fifth Edition of the National Atlas of Canada. 1993). 

 

Figure 6: Forested Areas within Ecoregion 

 Fort McMurray and surrounding areas fall into the Broadleaf and Mixed Forest areas 
(Canada-Vegetation Cover, Fifth Edition of the National Atlas of Canada. 1993). 
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2.1.3 Wetland Region 

About 20% of the land in the Boreal wetland region is covered by wetlands with bog and 

fens being the most common type of wetland (National Atlas of Canada 1993).  Delta marshes 

are also common around large lakes and rivers, most notable are the Slave River delta (which is 

found in Great Slave Lake), and the Peace-Athabasca delta (located just west of Lake Athabasca) 

(National Atlas of Canada 1993).  Within this region there are over 100 000 beaver ponds 

covering 5 to 10% of its total area (National Atlas of Canada 1993).   

Fort McMurray and surrounding areas fall into the category containing 25-63 % of land 

coverage as wetlands (Figure 7) with marshes (bog, and fen peatlands) being the characteristic 

wetland type in this particular forest region (National Atlas of Canada 1993).   

 

Figure 7: Percentage of Wetland Cover within Ecoregion 

 Fort McMurray and surrounding areas fall into categories of 25-63% of wetland coverage 
(Canada-Vegetation Cover, Fifth Edition of the National Atlas of Canada. 1993). 
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2.1.4 Climate 

Fort McMurray and surrounding area experiences fairly warm summers and cold winters; 

with annual temperatures on average ranging from -18.8 to 16.8º Celsius (National Climate Data 

and Information Archive).  The daily minimum ranges from -2.2º to -24º Celsius in the winter 

months (October to April) but have been recorded as cold as -50º Celsius (National Climate Data 

and Information Archive).  The temperature in summer months ranges from 10º to 21.9º Celsius 

but has been recorded as high as 37º Celsius (National Climate Data and Information Archive).     

The annual precipitation in Fort McMurray is 455 mm, with the majority (310.6 mm) 

falling between May and September in the form of rainfall (National Climate Data and 

Information Archive).  Snow fall, between September and May, accounts for approximately 

155.8 mm of the annual precipitation (National Climate Data and Information Archive).        

2.2 Sampling Methods 

2.2.1 Wetland Sites 

In July of 2007 and 2008, twenty-four wetland sites were selected and sampled (Table 1).  

Field reconnaissance on fifteen sites in the summer of 2007 was completed in order to determine 

the type of wetland sites available, the accessibility to these sites and which sites were being 

used by other groups.  Sites were chosen in roughly equal numbers for each site type (peatland, 

control, reference, OSPM).  The same fifteen wetlands were sampled in 2008, with an additional 

nine wetlands for a total of twenty-four wetland sites (Table 1, and Figures 3 and 4).  Wetlands 

were selected in consultation with scientific staff at Syncrude Canada Limited (Nadia Loubiri 

and Christopher Beierling) and Suncor Energy Incorporated (Wayne Tedder and Christine Daly) 

as well as other research groups (Waterloo Group – Dixon Laboratory, Windsor Group – 

Ciborowski Laboratory).   

N 
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All wetland sites were categorized into one of four categories based on the degree they 

had been affected by oil sand mining; 1) natural peatland sites having never been affected by 

mining, these are Aurora peatland sites which were located on the Aurora lease north of the main 

mine site on the Syncrude Canada Ltd. land lease, 2) natural/control open-water marsh sites 

having never been affected by mining, 3) reference sites on reclaimed mine sites, but without 

OSPM incorporated into the wetland and, 4) OSPM wetlands which have OSPM (oil sands 

process material) or OSPW (oil sands process water) directly incorporated into the wetland.   
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Table 1: Summary of Wetlands Sampled on Suncor Energy Incorporated and Syncrude Canada Limited Lease Sites 

Wetland Site Abbrev. Age Amendment Classification 

Aurora Peat Site #1 AU 1. N/A Naturally occurring peatland - an accumulation of partially decayed vegetation matter Peatland 

Aurora Peat Site #2 AU 2. N/A Naturally occurring peatland - an accumulation of partially decayed vegetation matter Peatland 

Loon Lake LL ~1970 Large pond that is surrounded by roads.  Area was disturbed and possibly excavated, however the area was never mined. Roads were built around 
the pond in the late 60s.  Filled with water from precipitation and runoff. 

Control 

Sand Pit Wetland SP 2004 Opportunistic wetland, natural sand capped w/ peat-mineral mix , receives fresh water from run-off Control 

Sedimentation Pond  SED 2000 This wetland formed opportunistically in 2000 when a damn was constructed adjacent to a depression in the boreal peatland.  Water levels, fed by 
surface runoff, rose to establish this wetland.  The wetland was designed to lower Total Suspended Solids (TSS), derived from the surrounding 
watershed, before the water from this wetland was released into the Athabasca River. 

Control 

MacLean Creek 
Wetland 

MC 2000 This wetland formed opportunistically in 2000 when a damn was constructed adjacent to a depression in the boreal peatland.  Water levels, fed by 
surface runoff, rose to establish this wetland. 

Control 

Beaver Pond BP N/A Natural wetland, was (temporarily) affected in 2004 by removal of other upstream beaver dams threatening nearby access road Control 

Small Beaver Pond SBP N/A Natural wetland Control 

Duck Pond DUCK ~1980 Formed opportunistically after the mid-berm road was constructed.  There was water pooling in the Duck Pond in the early 1980s, although the 
footprint retreated over the years as a result of reclamation activities.   Reclamation placed top soil and planted trees nearby in 1990. 

Reference 

V-Notch Weir V-NOT 1999-
2000 

Natural sediments.  No tailings or process water was ever added to the wetland.  Elevated 
conductivities & pH indicates some seepage from Pond 2/3 enters the wetlands via groundwater movement. 

Reference 

Control Reservoir CON-RES 1999-
2000 

Natural sediments.  No tailings or process water was ever added to the wetland.  Elevated 
conductivities & pH indicates some seepage from Pond 2/3 enters the wetlands via groundwater movement. 

Reference 

Shallow Wetland SW 1993 One of six Large Scale Test Ponds (LSTP) established in 1993. This is a constructed wetland that ranges between 0.5 to 0.75m deep.  Originally, a 
single wetland was constructed to store non-process-affected waters diverted from the West Interceptor Ditch.  Subsequently, a dividing berm was 
constructed to take advantage of the very different topography.  Water levels are supplemented from surface waters collect in and pumped from a 
sump located along the north berm. 

Reference 

South Ditch SD 1993 Constructed with Shallow wetland, after a dividing berm was constructed Reference 

Bill’s Lake BL 1996 Opportunistic wetland that occurred due to the break in slope and depression between the two reclamation sites, resulted in the accumulation of 
water. This resulted in the formation of Bill’s Lake. This lake is part of the capping depth study and was formed in 1996. There is 20 to 50 cm of saline 
overburden at the bottom of the watershed. 

Reference 

Peat Pond PP 1999 The land was graded and contoured in 1999 and reclamation. It is constructed of 80m of saline overburden overlain with 20 cm of peat.  Reference 

High Sulphate HS 1987 reclaimed by adding 15 cm of muskeg soil. This wetland developed naturally in a depression in this reclaimed area in 1987. Water levels rose in the 
depression and were fed by precipitation, runoff and possibly seepage from overburden 

Reference 

Sustainability Ponds  SUS 1991, 
1992 

North SW – 54m x 124m x 8m: and South SW – 49m x 111m x 8m, contain MFT from ponds 1&3and are capped w/ tailings recycle water, 
phosphorus was added to the South SW in 1992 

OSPM 

Jan’s Pond Wetland JANS 1999 A thin layer of CT, constructed over overburden, CT  process water circulates through this wetland at 75L/min OSPM 

1MCT Wetland 1MCT 1999 20cm of peat-mineral mix overlying 1MCT OSPM 

Demonstration Pond DP 1993 Large Scale Test Pond, constructed in 1993. Nine meters of Fine Tailings overlain by 2.5 meters of diverted local surface stream flow.  Constructed in 
Saline 

OSPM 

Mike’s Pond MP 1997 Surface area approximately 4ha, contents – CT Release water from 1997 CT Prototype OSPM 

Natural Wetland  NW 1986 Tailings sand w/ 15cm peat-mineral mix cap, opportunistic wetland, fed by run-off (~25%) and dyke seepage (~75%), CT process water was added to 
the west end in 1996 and 1997 

OSPM 

Test Pond 9 TP9 1993 One of six Large Scale Test Ponds (LCTP) established in 1993. This pond is defined as the Tailings Pond Water Detoxification and consists of 6000m3 OSPM  
tailings pond surface water that was transferred from the Mildred Lake Settling Basin (MLSB). 

4MCT  Wetland 4MCT 1999 4 m, uncapped CT, constructed over overburden, two areas capped w/ 20cm of peat-mineral reclamation mix, CT process water circulates through 
this wetland at 75L/min 

OSPM 
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2.2.2 

In each wetland field plots were identified (meter-square quadrants) in each zone of 

vegetation.  A sediment sample was collected from each zone of vegetation, up to a maximum of 

three samples and designated as “vegetated” or “non-vegetated”.  When two (or three, in the case 

of Shallow Wetland) samples were taken, the first (Loon Lake-1, for example) came from an 

area with the most dense vegetation thus is the “vegetated” sample while sample two (Loon 

Lake-2) was from a deeper area, with less vegetation consequently referred to as the “non-

vegetated” sample.  This technique yielded thirty-five samples from twenty-four wetland sites.  

Plant species were identified in each field plot, vegetation percent cover was estimated visually 

(vascular and non-vascular plants), multi-meter data and a visual survey of water turbidity were 

recorded.  Water turbidity was graded on a scale of 0, which was completely clear, to 3 which 

was completely opaque.  

In open-water sites data gathered included; water depth, water pH, water conductivity and 

dissolved oxygen (Table 3).  A surface sample of two-centimeters of sediment from the 

sediment-water interface was collected, and put in to whirl pak ™ bags and stored in a cooler for 

transport to the laboratory.  All aquatic sediment samples were preserved with a 2% 

gluteraldehyde solution and stored at 4ºC until processing.   

Two peatland sites were sampled for this study; Aurora site 1 and Aurora site 2.  Aurora 

site 1 was located near an open-water marsh and therefore was a “wetter” peatland site compared 

to Aurora site 2.  Two samples were taken in Aurora site 1 and three samples were taken in 

Aurora site 2, each sample from a different elevation from the water table.  In peatland sites data 

gathered included; water table depth, pH and percent vegetation cover.  A surface sample of 

Sphagnum  

Site Characterization and Sediment Sample Collection  
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and peat was collected.  A block, 10 centimeters deep and 5 centimeters wide was cut 

with a serrated bread-knife and bagged.  All peatland samples were transported to the laboratory 

in dark coolers and stored at 4ºC until processing.   

2.3 Analyses 

2.3.1 Testate Amoebae  

Analysis of testate amoebae followed Warner (1987, 1988) and Warner and Charman 

(1994).  For peat samples two cubic centimeters from the top two centimeters of the sample was 

weighed.  In a separate test-tube, two lycopodium spore tablets (1 tablet = 13911 spores) were 

dissolved in concentrated hydrochloric acid (to release the spores) and topped with distilled 

water.  A known number of spores were added to each sample and used to calculate the 

concentration of testate amoebae per gram of sample.  The spore tablets were centrifuged three 

times at 1000 rpm for two minutes each time in an IEC CentraCL2 centrifuge, decanting off 

excess hydrochloric acid and water each time.  After centrifugation spores were poured into a 

beaker with the two cubic centimeters of pre-weighed peat, adding about twenty milliliters of 

distilled water, this solution was boiled for five to ten minutes.  The mixture was then filtered 

using a tea sieve into a small beaker.  The Sphagnum moss was rinsed before being disposed of.  

This solution settled for one to two hours and then the top clear layer of water was decanted.  

The remaining solution was poured into test tubes and centrifuged in an IEC HN-SII centrifuge 

for two minutes three times, decanting excess water each time.  The concentrate was poured into 

small tubes and centrifuged in an IEC HN-SII for two minutes and excess water was decanted.  

Two drops of a mixture of glycerol containing safranin was added and the samples were then left 

in an oven at very low heat overnight to evaporate remaining water.   
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To make slides, a drop from the safranin-glycerol concentrate was smeared on a glass 

slide in a drop of pure glycerol which was then covered by a cover-slip and sealed in each corner 

with nail polish.  The slides were systematically scanned and testate amoebae were counted and 

identified.   

Testate amoebae in sediment samples were processed in much the same way.  Organic 

content was separated out by washing the fresh sediment samples on a coarse screen (150µm 

mesh) and then a fine screen (20µm mesh), lycopodium spores were added and samples were 

stained as described above.    The slides were made, scanned, and testate amoebae were counted 

and identified.    

2.3.2 Bacteria and Fungi 

  Analysis of the bacterial and fungal community components was done using 

epifluorescence microscopy to determine biomass.  Bacterial and fungal isolation followed Fry 

1990, Mitchell personal communication.  Two cubic centimeters of fresh sediment (preserved in 

a gluteraldehyde solution) was weighed and disaggregated using a kitchen food chopper.  The 

sample was washed on a 500µm Nitex™ mesh filter using de-ionized water to bring the total 

volume to 500mL.  This volume was then filtered through a series of Nitex™ screens (300, 100, 

50, 20 and 10µm) in order to remove larger particles from the sample and isolate the bacterial 

and fungal fractions of the sample.  An aliquot of ten milliliters was used for bacterial analysis 

and another ten milliliters for fungal analysis.  

Bacteria samples were filtered through a 10µm white filter to remove all contaminants.  

The sample was then stained with 4,6 diamidino-2-phenylindol (D.A.P.I) solution for thirty 

minutes in the dark.  Once stained, the sample was homogenized with a Vortex Mixer (SB 223-

1) before being vacuum-filtered through a 0.2µm pore size, black nucleopore™ filter mounted 
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over a 0.45µm pore size support filter.  The filter was rinsed three times with one milliliter of de-

ionized water, each time.  The filter was dried with a kimwipe™ and placed on a glass slide in a 

drop of immersion oil.  Another drop of immersion oil was added on top of the filter and covered 

with a cover-slip (22mmX50mm).  The cover slip was gently pressed in to place and the slide 

was covered in aluminum foil and stored at 4ºC until analyses could be performed (two to five 

days).  

Fungal samples were stained with Calcofluor-white M2R (also called Cellufluor) for two 

to four hours in the dark after disaggregation and filtration (as with testate amoebae and bacteria 

samples) down to 15µm.  Once stained, the sample was homogenized with a Vortex Mixer (SB 

223-1) before being vacuum-filtered through 0.8µm pore size, black nucleopore™ filter.  The 

filter was rinsed three times with one milliliter of de-ionized water each time and mounted on a 

glass slide over a drop of immersion oil.  Another drop was added over the filter and a cover-slip 

is laid on top (22mmX50mm). The slides are stored at 4ºC until analyses can be performed (two 

to five days).  

All bacteria and fungi samples were viewed under epifluorescence microscopy at X1000 

magnification.  Ten pictures were taken of each prepared slide (one for each sample) and the 

images were recorded using a digital camera connected to the microscope and a computer.  

Using ImageJ the photos were analyzed.  ImageJ is an image processing program developed by 

the National Institute of Health.  Once photos were captured and saved they were viewed in 

ImageJ and number of bacteria (Beeckman et al 2009) in each field and length of fungal hyphae 

was determined (Protocol in Appendix B). 
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2.3.3 Biomass for Testate Amoebae, Bacteria and Fungi 

Using testate amoebae counts and experimentally determined geometric shapes and sizes 

(Charman et al 2000), an average volume for each species was determined, a conversion factor 

given by Nguyen-Viet et al 2007(1) (1µm3 = 5.6 x 10-7 µg C) permitted volume to be converted 

into biomass (microgram of Carbon per gram of sample (dry weight)) at each site.   

For bacteria, photos were analyzed in ImageJ to yield an average (ten fields of view) 

number of cells per field of view at X1000.  These values were recorded and substituted into the 

following equation (equation 1) to yield the number of cells/weight of dry sample (Fry 1990, 

Mitchell personal communication).   

                               # of Bacteria/gram of Dry weight = (N* S/s *V/v)/DW                    (eqn 1) 

 Where N is the mean number of bacteria per slide (average number of bacteria per field 

of view multiplied by sixteen), S is the useful surface of the filter (determined by measuring 

discoloration on the filter), s is the surface of one field at X1000 magnification, V is the total 

volume of the sample, v is the volume filtered, DW is the dry weight of the sample (Fry 1990, 

Mitchell personal communication).  From number of bacteria per g of dry weight a standard for 

bacterial volume of 0.125µm3 per cell was used to determine bio-volume at each site.  Finally a 

conversion factor given by Nguyen-Viet et al 2006 (1µm3 = 5.6 x 10-7 µg C) was used to convert 

volume into biomass.  

A similar technique was used for fungi where the length and width of hyphae were 

measured and averaged for ten fields of view using ImageJ.  Biovolume (µm3) was determined 

using a derivative of the equation for volume of a cylinder (equation 2);  

                                             V = (π/4)W2(L-W/3)                                                  (eqn

This value is then multiplied by a conversion factor given by 

 2) 

Nguyen-Viet et al 2006 

(1µm3 = 2.5 x 10-7 µg C) in order to give biomass, in µg of Carbon per gram of sample. 
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3.0 Results 

3.1 Environmental Parameters and Sediment Characteristics 

3.1.1 Water Characteristics 

Detailed water chemistry data for each wetland site (in the 2008 field season) are 

provided in Table 2.  The pH in twenty-four wetland sites varied between 3.7 and 8.2.  The pH in 

control, reference, and OSPM wetlands ranged from 6.95 to 8.18.  The pH in peatlands ranged 

from 3.7 to 6.8.  The wetter peatland site (Aurora 1) was more alkaline (pH ranging from 6.76 - 

6.88) when compared to the drier site (Aurora 2, pH ranging from 3.7 to 5.35).   

Dissolved oxygen values for open-water sites spanned 78 and 161% for all sites.  One 

measurement was taken in each site therefore no comparisons can be made between vegetation 

zones.  Conductivities in all sites (open-water and peatland) ranged from 298 to 4689 μS.  

Conductivity values measured in OSPM wetlands ranged from 1330 to 4689 μS but on average 

were greater than 2000 μS.  Reference and control wetlands had conductivity values between 309 

and 2998µS, with the majority of values falling below 1000 μS.   

3.1.2 Vegetation Communities 

A survey of the vegetation composition and cover in each wetland was completed using a 

one meter by one meter quadrant.  The dominant species are highlighted in Table 3 and a full list 

of species is provided in Appendix A.  The plants which make up the communities in each 

wetland varied by wetland type; OSPM wetlands were dominated by Typha latifolia and 

Potamogeton with low percent vegetation cover (both submerged vegetation and emergent, 

Table 2).  The differences between vegetation communities in reference wetlands and control 

wetlands were negligible.  The percent cover in control and reference wetlands was substantially 

higher than the communities present in affected wetlands (OSPM).  These communities 
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encompassed a higher number of taxa as well as a greater number of individuals (Table 3, full 

list in Appendix).  Taxa that were commonly found in open-water control and reference sites 

were Typha latifolia, Potamogeton, Chara ssp. Scirpus, Carex, and Lemna, among others.  

Peatlands were completely dominated by Sphagnum moss with minor communities of Carex and 

Equisetum.   
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Table 2: Summary of Multi-meter Data for 36 Samples from 24 Wetland Sites 

**Dissolved Oxygen was measured in terms of percent saturation (the ratio of DO to the potential capacity expressed in terms of percentage) 

Site Type Cond.(µs)/cm pH % DO Depth(cm) Total % Veg. Cover % Emergent 
Veg. Cover 

Turbidity (1-3) 

AU 1.1 Peatland 712 6.76 N/A 18 100 100 N/A 
AU 1.2 Peatland 407 6.88 N/A 17 100 100 N/A 
AU 2.1 Peatland 303 3.7 N/A 47 100 100 N/A 
AU 2.2 Peatland 350 3.85 N/A 34 100 100 N/A 
AU 2.3 Peatland 1753.0 5.35 N/A 19 100 100 N/A 
LL-1 Open-Water Control 835 7.64 104.8 11 40 40 1 
LL-2 Open-Water Control 835 7.64 104.8 28 0 0 1 
SP-1 Open-Water Control 309 8.18 109.9 35 90 90 2 
SED-1 Open-Water Control 429 7.13 91.2 54 40 0 2 
MC-1 Open-Water Control 433 7.05 96 9 20 0 1 
BP-1 Open-Water Control 2244 7.3 97.8 32 35 0 2 
SBP Open-Water Control 298 8.02 102 40 50 40 2 
DUCK Open-Water Reference 971 7.4 97.7 39 100 90 1 
V-NOT-1 Open-Water Reference 1134 7.08 116.6 12 40 40 2 
CON-RES Open-Water Reference 547 7.06 107.5 14 55 55 2 
SW-1 Open-Water Reference 877 7.5 103.9 12 80 65 1 
SW-2 Open-Water Reference 877 7.5 103.9 40 100 15 1 
SW-3 Open-Water Reference 877 7.5 103.9 50 95 0 2 
SD-1 Open-Water Reference 885 7.8 138 12 40 40 1 
SD-2 Open-Water Reference 885 7.8 138 56 95 0 1 
BL-1 Open-Water Reference 883 6.95 105 35 100 15 3 
BL-2 Open-Water Reference 883 6.95 105 65 90 0 3 
PP-1 Open-Water Reference 1765 7.35 122.3 33 85 0 2 
HS-1 Open-Water Reference 2998 7.71 160.6 32 75 0 2 
HS-2 Open-Water Reference 2998 7.71 160.6 7 60 60 2 
SUS-N Open-Water OSPM 2200 7.68 95.3 32 60 60 3 
SUS-S Open-Water OSPM 2093 7.48 94.6 36 45 45 3 
JANS Open-Water OSPM 2229 7.11 81.6 17 30 30 3 
1MCT Open-Water OSPM 2018 7.39 89.9 11 25 25 3 
DP-1 Open-Water OSPM 2233 7.27 80.4 60 90 0 3 
DP-2 Open-Water OSPM 2233 7.27 80.4 42 80 80 3 
MP Open-Water OSPM 4689 7.97 114 22 45 0 2 
NW-1 Open-Water OSPM 1330 7.8 78 10 70 0 2 
NW-2 Open-Water OSPM 1330 7.8 78 3 100 55 3 
TP9 Open-Water OSPM 1345 6.92 94.4 60 40 40 3 
4MCT-1 Open-Water OSPM 2290 7.97 123 15 0 0 3 
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Table 3: Summary of Vegetation Characteristics of 24 Wetlands Sampled during Field Season 2008 

Dominant species only, Full version in Appendix  

Wetland Wetland Type Identity and Percent 
Cover  

Aurora Peatland 1 Peatland Carex  45 % 
Moss 45 % 

Aurora Peatland 2 Peatland Sphagnum  90% 
Equisetum 20% 

Sedimentation Wetland (SED) CONTROL Potamogeton 40% 
MacLean Creek (MC) CONTROL Lemna 20% 
Loon Lake (LL) CONTROL Scirpus 15% 

Typha latifolia 25% 
Beaver Pond (BP) CONTROL Chara 35% 
Small Beaver Pond (SB) CONTROL 

 
Carex rostrata 40% 
Lemna 10% 

Sandpit Wetland (SP) 
 

CONTROL 
 

Scirpus 40% 
Typha latifolia 50% 

Control Reservoir (CON RES) REFERENCE Typha 25% 
Scirpus 30% 

V Notch Weir (V NOT) REFERENCE Scirpus 40% 
Shallow Wetland (SW) REFERENCE Typha latifolia 50% 

Scirpus 15% 
South Ditch (SD) REFERENCE Typha 30% 

Charales  85% 
High Sulphate (HS) REFERENCE Chara  75% 
Peat Pond (PP) REFERENCE Chara  85% 
Bill’s Lake (BL) REFERENCE Ceratophyllum 90% 
Duck Pond (Duck), formerly South West 
Corner Waste Area 11 

REFERENCE 
 

Utricularia 10% 
Typha latifolia 90% 

Test Pond 9 (TP9) OSPM Typha latifolia 40% 
Natural Wetland (NW) OSPM   Potamogeton 

filiformis 70% 
4 Meter Consolidated Tailings (4MCT) OSPM Typha 60% 
Mike’s Pond (MP) OSPM Potamogeton 45% 
Sustainability Pond North (SUS N) OSPM Typha latifolia 60% 
Sustainability Pond South (SUS S) OSPM  Typha latifolia 45% 
Demo Pond (DP) OSPM Potamogeton 90% 
1 Meter Consolidated Tailings (1MCT) OSPM Typha 25% 
JANS Pond OSPM Typha 20% 

Scirpus 10% 
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3.1.3 Sediment Characteristics 

Bulk density ranged from 0.02 to 1.29 g/cm3 in all site types (Table 4).  In peatland sites 

bulk density ranged from 0.03 to 0.08g/cm3, while percent moisture ranged from 12 to 91%.  The 

expectation was that aquatic sites would have higher bulk density values, and conversely, lower 

percent moisture content when compared to peatland values, due to the mineral substance in 

these sediments.  The actual values for open-water control sites ranged from 0.17 and 1.29 

g/cm3, with percent moisture values of 21 to 81%, reference sites had bulk density values of 0.2 

to 0.79 g/cm3 and OSPM sites had bulk density values of 0.16 to 0.76 g/cm3

Reference sites had organic matter content values ranging from 5.3 to 31%.  In this group 

of sites there were a number of samples that were taken from “vegetated” areas but had organic 

content values less than 20%; Control Reservoir, Shallow wetland-1, South Ditch-1, and Bill’s 

Lake-1.  Percent organic content in OSPM wetlands spanned 3.02 to 55%.  The two sites with 

percent organic content greater than 50 % were Sustainability Pond North and Sustainability 

Pond South.   

.   

Percent organic content in peatland sites ranged from 74 to 99%, consistent with 

complete coverage of Sphagnum moss with minor Carex and Equisetum communities.  Aurora 

site 1 (samples 1.1 and 1.2) was the wetter of the peatland sites with less distance to the water 

table, when compared to Aurora site 2, and though there was no apparent difference in bulk 

density, percent moisture or percent organic content, the percent carbonate content was lower 

(from 0 to 0.31% in Aurora site 1, compared to 0.11 to 1.15% in Aurora site 2).  Aurora site 1 

was also found to be more alkaline (6.76 to 6.88, when compared to 3.7 to 5.35 in Aurora site 2) 

when compared to Aurora site 2, the drier of the two sites.    
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Table 4: Sediment Characteristics of 36 Samples from 24 wetland sites 

Site Site Type Vegetated 
/Not 

Vegetated 
Sample 

Dry 
Weight 
(g/cm3

Bulk 
Density 
(g/cm) 3

% 
Moisture 

) 

% Organic 
Matter 
Content 

% 
Carbonate 

Content 

AU 1.1 Peatland Vegetated 0.32 0.03 67.82 84.62 0.31 
AU 1.2 Peatland Vegetated 0.40 0.05 59.77 74.29 0 
AU 2.1 Peatland Vegetated 0.16 0.03 84.27 81.13 0.64 
AU 2.2 Peatland Vegetated 0.88 0.08 12.02 99.38 0.11 
AU 2.3 Peatland Vegetated 0.09 0.02 91.29 97.50 1.15 
LL-1 Control  Vegetated 0.34 0.32 65.95 9.10 33.19 
LL-2 Control  Non-Vegetated 0.78 1.29 21.79 2.05 18.16 
SP-1 Control Vegetated 0.21 0.23 79.29 29.35 6.85 
SED-1 Control  Vegetated 0.19 0.17 81.10 39.36 15.24 
MC-1 Control  Non-Vegetated 0.52 0.51 48.41 8.73 2.65 
BP-1 Control  Non-Vegetated 0.43 0.36 57.19 10.77 20.16 
SBP Control  Vegetated 0.74 0.85 26.25 41.00 3.04 
DUCK Reference Non-Vegetated 0.22 0.20 77.76 20.36 18.71 
V-NOT Reference  Vegetated 0.26 0.28 73.71 25.77 9.89 
CON-
RES 

Reference  Non-Vegetated 0.54 0.70 46.20 9.74 
3.86 

SW-1 Reference Vegetated 0.60 0.78 40.33 5.97 5.03 
SW-2 Reference Vegetated 0.35 0.35 64.50 9.86 5.07 
SW-3 Reference Non-Vegetated 0.53 0.59 47.41 6.80 4.18 
SD-1 Reference Vegetated 0.32 0.36 67.63 13.17 4.02 
SD-2 Reference Non-Vegetated 0.44 0.44 55.67 11.66 6.54 
BL-1 Reference Vegetated 0.63 0.79 37.09 5.30 7.31 
BL-2 Reference Non-Vegetated 0.54 0.61 45.52 6.58 4.77 
PP-1 Reference Vegetated 0.27 0.28 72.52 31.71 5.46 
HS-1 Reference Vegetated 0.34 0.29 65.87 23.73 7.62 
HS-2 Reference Non-Vegetated 0.26 0.25 73.84 25.20 32.49 
SUS-N OSPM Vegetated 0.16 0.16 83.97 55.38 72.35 
SUS-S OSPM Vegetated 0.23 0.28 76.81 53.21 6.47 
JANS OSPM Non-Vegetated 0.42 0.42 57.66 14.13 29.05 
1MCT OSPM Non-Vegetated 0.25 0.29 74.64 19.05 9.47 
DP-1 OSPM Vegetated 0.51 0.56 48.69 15.30 15.01 
DP-2 OSPM Non-Vegetated 0.51 0.59 49.27 6.09 6.70 
MP OSPM Non-Vegetated 0.56 0.70 43.67 3.02 6.92 
NW-1 OSPM Vegetated 0.38 0.41 61.72 9.75 3.40 
NW-2 OSPM Non-Vegetated 0.33 0.35 66.98 17.12 9.09 
TP9 OSPM Non-Vegetated 0.54 0.76 45.64 3.86 23.55 
4MCT OSPM Non-Vegetated 0.27 0.34 73.07 20.71 37.13 
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3.2 Testate Amoebae Data  

A total of forty-four species of testate amoebae were encountered in the thirty-five 

samples analyzed from twenty-four wetland study sites, Centropyxis platystoma and Centropyxis 

aculeata (shown in Figure 8 a) were the most common species among all sites (Figure 9).  In 

unaffected open-water sites (control and reference) testate amoebae communities were rich in 

Centropyxis, Cyclopyxis, and Difflugia (shown in Figure 8 c).  Communities present in 

“vegetated” samples (Loon Lake-1, South Ditch-1, Sedimentation Pond-1, High Sulphate-1, 

Bill’s Lake-1 and Shallow Wetland-1 and 2) contained populations made up of Amphitrema 

flavum, Acella, Cyclopyxis and Centropyxis platystoma.  “Non-vegetated” samples were found to 

be higher in their Difflugia concentration.   

Peatland sites maintained more diverse assemblages than open-water sites, containing 

more taxa; Arcella, Assulina, Centropyxis, Englypha, and Heleopera (shown in Figure 8 b) but 

also more individuals (Figure 9).  Aurora site 1 contained a large number of Arcella, 

Centropyxis, and Heleopera.  Aurora site 2 (the drier site) was rich in Assulina (shown in Figure 

8 d), Englyphyta and two Heleopera species (sphagni and rosea), this site had more individuals 

and taxa suggesting that drier habitats were conducive to an assortment of testate amoebae.   

Open-water sites affected by OSPM contained fewer taxa and fewer individuals when 

compared to unaffected wetlands (Figure 9).  Taxa most common in OSPM sites were Assulina, 

Difflugia, and Hyalosphenia (Figure 9).    

Using CANOCO 4.5 (ter Braak & Smilauer 2002) a detrended correspondence analysis 

(DCA) was used to ordinate testate amoebae counts by site type (Figure 10, showing axis one, 

which accounted for 14.8% of variance while the second axis accounted for an additional 10.1% 

of variance).  The greatest amount of variability was found in peatland sites (represented by red 

circles).  Testate amoebae assemblages in the open-water control wetlands was the next most 
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variable (represented by yellow downward facing triangles).  There was less diversity in testate 

amoebae communities in reference wetlands indicated by a more centered array of data points 

(green squares, which can be contained within an ellipse).  Data points showing OSPM sites 

(blue diamonds, which are also contained within an ellipse) were clustered in the middle of the 

graph indicating the smallest range of testate amoebae species present in this type of wetland 

(See Figure 9).  DCA analysis was also expressed in terms of testate amoebae species (Figure 

10), Difflugia species were grouped (to the right, highlighted with a dividing line and indicated 

by DF label) indicating a likelihood of these species to appear together.  Nebela were also 

grouped together (at the top of graph, indicated by NE label) but they existed only in low 

numbers in this study.   

 

  
(a) Centropyxis aculeate 

 

 
(b) Heleopera petricola   
 

  
(c) Difflugia  

 
 
 

 
(d) Assulina muscorum 

 Figure 8: Example photos of Testate Amoebae 
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Figure 9: Concentration of Testate Amoebae Species by Site 

Using lycopodium spore counts testate amoebae concentration per cubic centimeter of sample was determined. Each testate amoebae species 
follow the scale indicated at the bottom of the graph (5000 individuals) with the exception of Arcella rotunda, Assulina muscorum, Englypha 
rotunda, Heleopera petricola, Heleopera. Rosea, Heleopera. Sphagni, and Heleopera. Angusticollis; which have the number of individuals 
indicated directly on the graph. 

 

Peatland Sites 

Open-Water Control Sites 

Open-Water Reference 

Sites 

Open-Water OSPM 
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Figure 10: Detrended Correspondence Analysis of Testate Amoebae Counts: By Site 
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Figure 11: Detrended Correspondence Analysis of Testate Amoebae Counts: By Species 
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Testate amoebae data were constrained by environmental parameters, in order to 

determine the relationship between species distribution and environmental variables.  A 

canonical correspondence analysis (CCA) was performed and the results were summarized in 

Figures 12 and 13 (the first axis of the CCA accounted for 16.7 % of variance while the second 

axis accounted for an additional 7.7 % of variance).  Figure 12 shows the ordination of sites, as 

they are constrained by environmental parameters, Figure 13 shows the same ordination but 

represented in terms of testate amoebae species and how they are constrained by environmental 

parameters.  In the CCA ordination of testate amoebae species (Figure 12) peatland sites were 

removed from the analysis.  Peatland sites are very different from open-water sites in terms of 

environmental parameters, consequently their inclusion may have skewed the ordination of 

testate amoebae in these sites.   

All site types are seen in Figure 13 generally fall between turbidity, DO and conductivity, 

indicating these may be the main players in testate amoebae establishment.  Peatland sites 

(indicated by an AU label and red circle symbols) are clearly the outliers in this analysis 

solidifying the fact that these sites are completely different from open-water sites.  The CCA 

expressed in terms of testate amoebae species (Figure 13) revealed that Difflugia, Bullinularia 

and Nebela were found in environments with high vegetation cover percentages (Circled in 

Figure 13) and Hyalosphenia elegans and Nebela carinata were found in sites with deeper water 

(Circled in Figure 13).   

A strong parallel can be seen between Axis 1 and pH (Figure 13), and between sites and 

turbidity, conductivity and DO, indicating which environmental parameters could account for a 

proportion of the variability.  To determine which parameters had the greatest impact on testate 

amoebae assemblages, distribution, correlation coefficients were determined (summarized in 
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Table 5) using SPSS and the axis scores from the output of the CCA.  Conductivity was 

determined to have a highly significant (P<0.01) impact and turbidity had a significant impact 

(P<0.05).  Turbidity was determined on a visual scale (from 1 to 3) in the field, based on clarity 

and water color.  There were no significant environmental parameters for the second axis.   
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Figure 12: Canonical Correspondence Analysis of Testate amoebae Counts Constrained by 

Environmental Parameters: By Site  

 Since the first and second axis account for the greatest amount of variance, only these axes were 
considered for correlation coefficient, with the first axis accounting for 16.7% and the second 
axis adding an additional 7.7%.              
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Figure 13: Canonical Correspondence Analysis of Testate Amoebae Counts Constrained by 

Environmental Parameters: By Species  

 Peatland sites were removed for this analysis.  Since the first and second axis account for the 
greatest amount of variance, only these axes were considered for correlation coefficient, with the 
first axis accounting for 16.7% and the second axis adding an additional 7.7%.              
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Table 5: Correlation Coefficient - Spearman’s Rho 

Using the axis scores from the output of the CCA to determine the impact each environmental 
variable had on the ordination of testate amoebae.  

Axis  Cond. 
(µs)/cm. 

pH DO Water 
Depth 

Total % 
Veg. 

Total % Emergent 
Veg. 

Turbidity 
(1-3) 

Axis 1 Correlation 
Coefficient 
Sig. (2-tailed) 
N 

-.431** 
 

.009 
36 

-.218 
 

.202 
36 

.288 
 

.116 
31 

.130 
 

.451 
36 

.144 
 

.403 
36 

.021 
 

.902 
36 

-.447* 
 

.012 
31 

Axis 2 Correlation 
Coefficient 
Sig. (2-tailed) 
N 

-.227 
 

.183 
36 

.023 
 

.896 
36 

.307 
 

.093 
31 

-.028 
 

.873 
36 

.110 
 

.522 
36 

.040 
 

.816 
36 

-.277 
 

.131 
31 

Axis 3 Correlation 
Coefficient 
Sig. (2-tailed) 
N 

-.233 
 

.171 
36 

-.088 
 

-.610 
36 

.557** 
 

.001 
31 

.162 
 

.344 
36 

.331* 
 

.049 
36 

.138 
 

.421 
36 

-.416* 
 

.020 
31 

Axis 4 Correlation 
Coefficient 
Sig. (2-tailed) 
N 

-.220 
 

.197 
36 

.153 
 

.373 
36 

.480** 
 

.006 
31 

.204 
 

.232 
36 

.281 
 

.097 
36 

-.129 
 

.454 
36 

-.259 
 

.159 
31 

Axis 5 Correlation 
Coefficient 
Sig. (2-tailed) 
N 

-.267 
 

.116 
36 

-.043 
 

.805 
36 

.510** 
 

.003 
31 

.122 
 

.479 
36 

.281 
 

.097 
36 

-.129 
 

.454 
36 

-.259 
 

.159 
31 

Axis 6 Correlation 
Coefficient 
Sig. (2-tailed) 
N 

-.286 
 

.090 
36 

.065 
 

.704 
36 

.544** 
 

.003 
31 

.122 
 

.479 
36 

.280 
 

.098 
36 

.083 
 

.632 
36 

-.342 
 

.062 
31 

Axis 1 and Axis 2 were considered in this analysis because they accounted for the most variance (P<0.05 
indicated by *, P<0.01 indicated by **). 
 
 

3.3 Epifluorescent Photos and Analyzing 

Representative photos for the bacterial preparation (one for each site type) are shown in 

Figure 14(a) (control site), 15(a) (OSPM site) and 15(b) (reference site).  In each photo 

fluorescing areas indicate bacterial DNA.  Figure 14(b) shows the grey-scale image produced by 

ImageJ of MacLean Creek (also seen in Figure 14(a), a control site) in order to count bacterial 

cells per gram of sample which was incorporated into biomass calculations.  Figure 16 shows a 

representative photo for the fungal preparation for a reference site, this photo shows how ImageJ 

uses broken lines to measure the full length of fungal hyphae.   
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3.3.1 Bacteria 

(a)  (b)  

Figure 14: Epifluorescent Photo of Bacterial Sample at 1000X of MacLean Creek (Control 

site) (a), and Converted, grey-scale image of MacLean Creek (b). 

(a) (b)  

Figure 15: Epifluorescent Photo of Bacterial Sample at 1000X of 4MCT (OSPM site) (a) 
and Shallow-Wetland-2 (Reference site) (b). 
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Figure 16:Epifluorescent Photo of Fungal Sample at 1000X of Duck Pond (Formerly South West 

Corner Waste Area 11). 

Showing the line tool used to follow along fungal hyphae and measure the total length to be 

used in biomass calculations.  

 

3.4 Biomass: Testate amoebae, Bacteria and Fungi 

All biomass data (Table 6) were analyzed using analysis of variance (ANOVA) and 

summarized in Figure 17, in terms of percentage of biomass as well as raw biomass data for; 

testate amoebae, bacteria, and fungi.  Average biomass values for each site type are summarized 

in pie-charts in Figures 18 through 21. 

Biomass contributed by testate amoebae made up less than 1% in all open-water sites (with 

the exception of control sites; Small Beaver Pond at 2.4%).  Peatland sites contained an average 

of 2% biomass contribution from testate amoebae.   

Biomass contributed to the community by bacteria fell between 62 and 98% in peatland sites, 

25 and 94% in control sites, between 38 and 92% in reference wetlands and between 41 and 99% 

in OSPM sites.  Fungal biomass made up a major portion of the community in control sites 

contributing between 4.34 and 74% and between 7 and 62% in reference sites.  Overall biomass 
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(including testate amoebae, bacteria and fungi) was drastically higher in peatland sites than any 

other site type.   

Bacterial biomass was found to be higher in peatland Aurora site 2, which was drier and 

more acidic than Aurora site 1.  In open-water control sites bacterial biomass was typically 

higher in samples taken from “vegetated” areas (with ≤20% of organic matter content: Beaver 

Pond and MacLean Creek) with biomass values ranging from 81 to 324 µg of C/g of sample, 

compared to 752 and 997 µg of C/g of sample in “non-vegetated” control samples.   

Bacteria biomass values in reference sites were larger in “non-vegetated” samples: Shallow 

Wetland-2, Bill’s Lake-2, and High Sulphate-2.  Bacterial biomass in “vegetated” samples 

ranged from 29 to 428 µg of C/g of sample.  Not all “non-vegetated” had values greater than 428 

µg of C/g of sample; but the pair-wise trend (Shallow Wetland-1: Shallow Wetland-2, Bill’s 

Lake-1: Bill’s Lake-2 etc.) agrees greater bacterial biomass in “non-vegetated” samples.  This is 

contrary to accepted trends where bacteria are found most abundantly in rhizopheres and in the 

presence of plant communities.   

In OSPM sites “non-vegetated” samples typically had a smaller amount of bacterial biomass.  

Values ranged from 34 to 191 µg of C/g of “non-vegetated” sample and 33 to745 µg of C/g of 

sample in “vegetated” samples.  In “vegetated” samples 4MCT was the anomaly at 33 µg of C/g 

of sample.   

As with reference sites, no clear trend was seen with relationship to fungal biomass, sample 

vegetation, and organic matter content.  Fungal biomass in control sites was typically higher in 

“non-vegetated” sites except in Beaver Pond, with a fungal biomass value of only 39 µg of C/g 

of sample, compared to 260 and 307 µg of C/g of sample in other “non-vegetated” samples 

(Loon Lake-2 and MacLean Creek, respectively).   
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Total biomass values reflected the trends in bacterial and fungal biomass in “vegetated” 

versus “non-vegetated” samples (increase bacterial and fungal biomass in “non-vegetated” 

samples) with Loon Lake-2, Beaver Pond and MacLean Creek having the highest values; 402, 

792, and 1304 µg of C/g of sample, respectively.   

A non-parametric Kruskal-Wallis one-way analysis of variance on ranks was used to analyze 

testate amoebae biomass, bacteria biomass and overall biomass per site type (Table 7).  Dunn’s 

Method was used to determine all pair-wise comparison.  All ANOVA analyses were performed 

using Sigma Plot Version 11.0.   

The results of a Kruskal-Wallis one way ANOVA indicate the testate amoebae biomass is 

significantly different between peatlands and all other site types, and between control and OSPM 

sites, and between reference and OSPM sites but there is no significant difference between 

control sites and reference sites.  Peatland sites were found to be significantly different from all 

open-water sites, with elevated absolute biomass of testate amoebae, bacteria, fungi, and overall 

biomass.  No differences were detected between open-water sites in terms of bacteria, fungi or 

overall biomass.  These results are summarized in Table 7. The mean and standard deviation for 

biomass values for each site type are shown in Table 8.  
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Table 6: Biomass Data: Testate Amoebae, Bacteria, Fungi and Total Biomass 

All measurements are represented in micrograms of Carbon per gram (dry weight) of sample 
Site Site Type Vegetated/ Not 

Vegetated 
Sample 

Age Testate 
Amoebae 

(µg of C/g)  

Bacteria 
(µg of C/g) 

Fungi 
(µg of 
C/g) 

Total 
Biomass  

(µg of C/g) 
AU 1.1 Peatland Vegetated >8yrs 38.45 5543.98 4177.54 9759.97 
AU 1.2 Peatland Vegetated >8yrs 57.12 4993.03 22.51 5072.66 
AU 2.1 Peatland Vegetated >8yrs 362.47 16061.74 746.98 17171.19 
AU 2.2 Peatland Vegetated >8yrs 5.63 1455.19 44.19 1505.01 
AU 2.3 Peatland Vegetated >8yrs 747.44 9649.71 2956.03 13353.18 
LL-1 Control Vegetated >8yrs 0.20 204.82 105.23 310.25 
LL-2 Control Non-Vegetated >8yrs 0.15 141.56 260.6575 402.37 
BP-1 Control Non-Vegetated >8yrs 1.21 752.15 39.07 792.43 
SBP Control Vegetated >8yrs 3.14 81.45 45.74 130.33 
SP-1 Control Vegetated ≤8yrs 1.74 184.37 120.62 306.73 

SED-1 Control Vegetated ≤8yrs 1.11 324.86 132.56 458.53 
MC-1 Control Non-Vegetated ≤8yrs 0.20 997.17 307.1 1304.47 
DUCK Reference Non-Vegetated >8yrs 0.88 692.61 230.2688 923.76 
SW-1 Reference Vegetated >8yrs 0.28 29.5 46.41 76.1879 
SW-2 Reference Vegetated >8yrs 0.87 138.96 113.34 253.17 
SW-3 Reference Non-Vegetated >8yrs 0.23 38 32.86 71.09 
SD-1 Reference Vegetated >8yrs 0.91 212.49 224.6 438.00 
SD-2 Reference Non-Vegetated >8yrs 0.50 143.36 74.23 218.09 
BL-1 Reference Vegetated >8yrs 0.27 86.21 6.55 93.03 
BL-2 Reference Non-Vegetated >8yrs 0.87 194.64 64.5 260.01 
HS-1 Reference Vegetated >8yrs 1.20 428.43 707.92 1137.54 
HS-2 Reference Non-Vegetated >8yrs 1.74 543.5 53.45 598.69 

V-NOT Reference Vegetated ≤8yrs 0.32 77.75 225.71 303.78 
CON-RES Reference Non-Vegetated ≤8yrs 0.21 243.19 13.79 257.19 

PP-1 Reference Vegetated New 0.73 310.2 41.86 352.79 
SUS-N OSPM Vegetated >8yrs 0.22 745.74 17.7 763.66 
SUS-S OSPM Vegetated >8yrs 0.04 300.01 97.09 397.14 
JANS OSPM Non-Vegetated >8yrs 0 492.01 15.91 507.92 
1MCT OSPM Non-Vegetated >8yrs 0.14 555.86 256.61 812.61 
DP-1 OSPM Vegetated >8yrs 0.004 405.36 2.34 407.70 
DP-2 OSPM Non-Vegetated >8yrs 0.003 191.43 26.33 217.76 
NW-1 OSPM Vegetated >8yrs 0.54 703.51 124.32 828.37 
NW-2 OSPM Non-Vegetated >8yrs 0.11 34.52 48.33 82.96 
TP9 OSPM Non-Vegetated >8yrs 0.09 138.55 19.14 157.78 

4MCT OSPM Non-Vegetated >8yrs 0.15 33.89 12.57 46.61 
MP OSPM Non-Vegetated >8yrs 1.74 282.64 10.45 294.83 
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Figure 17: Biomass Percentage and Absolute Biomass Values 

(Testate Amoebae and Fungi values have been reduced by a factor of 10, Bacteria values are reduced by a factor of 1000)
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Table 7: Summary of Kruskal-Wallis Test Results Comparing Site Types 

Comparison P<0.05 for 
Testate Amoebae 

P<0.05 for 
Bacteria 

P<0.05 for Fungi P<0.05 for Overall 
Biomass 

Peatland VS Control Yes Yes Yes Yes 
Peatland VS Reference Yes Yes Yes Yes 

Peatland VS OSPM Yes Yes Yes Yes 
Control VS OSPM Yes No No No 

Control VS Reference No No No No 
Reference VS OSPM Yes No No No 

 

Table 8: Descriptive statistics of Kruskal-Wallis Test  
Measured in µg of Carbon per gram (dry weight) of sample.  
 

Site Type Testate Amoebae Bacteria Fungi Overall Biomass 
Peatland 242.2±316.8 7540.7±5580.5 1589.5±1878.7 9372.4±6269 
Control 93.7 ±220 3117.4 ±4867.8 5.1 ±1.8 3909.3 ±5778.6 
Reference 0.9 ±0.5 250.2 ±206.9 4.361 ±1.2 394.1 ±337.3 
OSPM 0.1 ±0.2 360.1 ±262.0 3.407 ±1.4 422.3 ±300.0 

Values are means ± Std. Dev. P<0.05.  
 

Mann-Whitney Rank Sum Tests (non-parametric data) and T-tests (parametric data) 

were performed in order to determine if a difference in biomass measurements exists 

between Young (≤8years) and Old (>8years) wetlands within a site type.  Each site type was 

analyzed separately (sub-sections of data) in order to take advantage of parametric tests.  No 

significant differences were found between Young and Old sites in control wetlands (9 Old 

sites, 4 Young) or in reference wetlands (10 Old sites, 2 Young).  All OSPM, and peatland 

sites sampled were older than eight years and therefore this analysis did not apply to these 

site types. Mean and standard deviation for these analyses as well as P-values are 

summarized in Tables 9 and 10.   
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Table 9: Descriptive Statistics of Mann-Whitney Rank Sum Test/T-tests for Biomass 

Measurements for Testate Amoebae, Bacteria, Fungi and Overall Biomass, by Site 

Type, and Age (Young ≤8yrs, Old >8yrs) 

Type Age Testate Amoebae Bacteria Fungi Overall Biomass 
Peatland Young N/A N/A N/A N/A 

Old 242.2±316.8 7540.7±5580.5 1589.5±1878.7 9372.4±6269 
Control Young 0.5 ±0.4 410.7 ±404.2 169.8 ±126.1 581.0 ±490.0 

Old 135.1 ±257.5 4320.4 ±5494.6 933.1 ±1541.0 5388.6 ±6480.6 
Reference Young 1.2 ±0.7 247.3 ±89.0 81.2 ±55.7 329.8 ±32.6 

Old 0.8 ±0.5 250.8 ±226.7 155.4 ±208.6 407.0 ±371.2 
OSPM Young N/A N/A N/A  N/A  

Old 0.1 ±0.2 360.1 ±262.0 62.0 ±79.1 422.3 ±300.0 
Values are means ± Std. Dev. No results were found to be statistically significant. P>0.05. 

Table 10: P-Values for Mann-Whitney Rank Sum Tests/T-tests to determine difference 

between Young and Old wetland sites within site types 

Site Type Testate Amoebae Bacteria Fungi Overall Biomass 
Peatland N/A N/A N/A N/A 
Control 0.1 0.2 0.6 0.2 
Reference 0.3 1.0 0.9 0.8 
OSPM N/A N/A N/A N/A 

No results were found to be statistically significant. P>0.05, indicating no differences found between 
Young sites and Old Sites 

Table 11: Descriptive Statistics of Mann-Whitney Rank Sum Test/T-tests for Biomass 

Measurements for Testate Amoebae, Bacteria, Fungi and Overall Biomass, by Site 

Type, and Age (Young <12yrs, Old ≥12yrs) 

Type Age Testate Amoebae Bacteria Fungi Overall Biomass 
Peatland Young N/A N/A N/A N/A 

Old 57.1±30.2 5544±4109 22.5±747 9759±4181 
Control Young 1.18±1.4 173.2±111.5 112.7±103 408.8±279.6 

Old 0.46±0.44 284±160.5 169.8±126.1 581±490 
Reference Young 0.82±0.5 278.4±245.7 93.8±50 464.6±395.2 

Old 0.9±0.6 194±92 53±24.2 253.1±113.3 
OSPM Young 0.0921±0.01 359.8±275.6 47.9±45.7 407.9±291 

Old 0.144±0.04 360.6±284.7 95±139.9 385.7±222.7 
No results were found to be statistically significant. P>0.05, indicating no differences found between 
Young sites and Old Sites 
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Figure 18: Average Biomass Percentages measured in Peatland Sites. 

 
 
Figure 19: Average Biomass Percentages measured in Control Sites. 
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Figure 20: Average Biomass percentages measured in Reference Sites. 

  
 

Figure 21: Average Biomass percentages measured in OSPM Sites. 
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4.0 Discussion 

Primary immigration of microbial and plant communities to heavily disturbed oil sands 

mine sites and their successful colonization is of paramount importance to the restoration of 

biological activity and productivity at these sites (Hadwin et al 2006).  The goal of this 

research project was to characterize the microbial composition in a suite of different oil sands 

wetlands and assess the practicality of using testate amoebae as an indicator of ecosystem 

establishment and microbial community health.  The hypothesis was that microbial 

communities would be poorly represented, testate amoebae abundance and diversity would 

be low, and bacterial and fungal biomass would be minimal in wetlands impacted by oil 

sands processed materials, in contrast to natural, unaffected control type wetlands where one 

would expect well established testate amoebae communities with high abundance, richness 

and diversity and elevated biomass of bacteria and fungi.  

4.1 Testate Amoebae Community Composition 

Multivariate analysis (DCA, without constraints, Figure 10) revealed greater diversity in 

testate amoebae species composition in peatland sites than the other site types: data points for 

peatlands were wide spread across the primary and secondary axes (Figure 10) indicating a 

community with a broad assortment of testate amoebae species likely to colonize peatlands 

compared to open-water aquatic sites (Figure 22).  Peatlands form naturally and have 

different soil and ecology characteristics, with considerably lower pH values (between 3.7 

and 6.8) than open-water sites, which were typically neutral in this study (pH from 6.95 to 

8.18).  The organic content percentages in the peatland sites ranged from 81.13 to 99.38% 

which was much higher than the open-water sites sampled in this study (from 2 to 41%).  The 
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peatland communities were found to contain vastly different vegetation communities than the 

open-water sites and were dominated by Sphagnum moss with minor communities of Carex 

and Equisetum.  Aurora sites 1.1 and 1.2 were the wettest peatland sites in this study and 

contained a total of thirty-five taxa of testate amoebae.  Aurora sites 2.1, 2.2 and 2.3 

cumulatively contained only eleven taxa and were comparatively drier peatland sites.  

Studies have shown testate amoebae diversity in peatlands to be highest in wet sites and 

declines with increasing water content as in aquatic sites (Meisterfeld 1979), which is 

supported by this study, with greater diversity in Aurora sites 1.1 and 1.2, and lower diversity 

in Aurora sites 2.1, 2.2, 2.3 (drier sites), and open-water (aquatic) sites.   

Prominent taxa in the Aurora peatland sites included: Arcella, Assulina, Centropyxis, 

Englypha, and Heleopera (Figure 9).  Among the species reported: Assulina muscorum was 

present in both samples collected from Aurora site 2 (drier site) and Centropyxis plastystoma 

and Cyclopixis arcelloides were present in all samples collected from Aurora site 1.   

Assulina muscorum is a common species found in Sphagnum and terrestrial mosses (Beyens 

and Chardez 1984, Van Kerckvoorde et al 2000) and was the most abundant species in this 

study: with 625 individuals occurring in a single sample.  Centropyxids have been reported as 

occurring more abundantly in the absence of pollutants (Kauppila et al 2006) which is 

consistent with their predominance in the peatland and control type sites.  Gilbert et al 

(1997(1)) also noted that testate amoebae biomass correlated with the biomass of other 

groups (cyanobacteria, bacillariophyceae, heterotrophic bacteria, flagellates, and ciliates) 

suggesting their preferred food source in a peatland, unfortunately that type of association 

was beyond the scope of this study.  Considering more groups in this study would have 
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linked preferred food sources to testate amoebae and potentially changed biomass 

proportions contributed by testate amoebae, bacteria, and fungi based on their relationship to 

other groups.  Changes in biomass proportion could potentially clarify the dynamic between 

testate amoebae, bacterial, and fungal communities suggesting a trend or relationship that 

could be built upon in order to ultimately use testate amoebae as bioindicators in oil sands 

affected wetlands.     

Below (Figure 22) is representation of a characteristic testate amoebae community 

present in a peatland site.  In this site 6 genus and a total of 17 species were represented.  

This is highly diverse when compared to any open-water sites.  Figure 23 is showing the 

biomass composition of the same peatland site (Aurora 1.2) which is dominated by bacteria 

(98%) with Fungi making up the smallest proportion.  Peatlands were the sites in which 

testate amoebae contributed their largest amount of biomass and proportion, as well as the 

greatest number of species.  
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Figure 22: Testate amoebae community in a typical Peatland Site Aurora 1.2 

 

Figure 23: Relative Proportions of Testate Amoebae, Bacteria, and Fungi in Peatland Site 

Aurora 1.2 
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Control wetlands contained diverse and established vegetation communities with a 

higher number of taxa and a greater number of individuals when compared to sites amended 

with OSPM (Table 2, or the list in Appendix A).  Percent organic content varied from 9.1 to 

41%, (higher than percent cover seen in OSPM sites) common taxa included: Typha latifolia, 

Potamogeton, Chara, Scirpus, Carex, and Lemna, among other species that occurred in 

slighter proportions (Table 2, Appendix A).  In open-water wetlands, samples were 

categorized as “vegetated” or “non-vegetated” based on the vegetation communities in the 

vicinity of the sampling zone.  Samples taken from “vegetated” areas typically had higher 

percent organic content, compared to “non-vegetated” samples taken from within the same 

site, or “non-vegetated” samples taken from other sites.  In some cases “vegetated” samples 

had low percent organic content values compared to other “vegetated” samples (from 

different wetlands).  Samples were taken from every “zone” of vegetation that existed within 

a wetland.  Discrepancies that exist between “vegetated” samples from different wetlands can 

be attributed to a particular sample taken from a “zone” of vegetation within a wetland, being 

deemed “vegetated” because it is the most dominant vegetation community in that particular 

wetland.  This does not necessarily entail a thickly “vegetated” area but an area that is most 

vegetated within a particular site.  An example of this is Loon Lake, a control site with 

percent organic content values of 9.1% in the “vegetated” sample and 2.05% in the “non-

vegetated” sample.  Though these results correspond with higher organic content in the 

“vegetated” sample, 9% is considered low organic content compared to other “vegetated” 

control type sites (which typically had organic content percentages greater than 29%).   
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Organic content ranged from 29 to 41% in open-water control wetlands with Loon 

Lake being the only “vegetated” sample from a control type site with less than 29% organic 

content.  Although control sites typically had higher percent vegetation cover and 

consequently higher percent organic content (Table 2) due to the nature of these sites 

(naturally occurring) there is high variability in coverage and species composition of the 

vegetation communities (Table 3).   

Testate amoebae assemblages in control sites were diverse, but less so than peatland 

communities (Figures 9 and 24).  The data points extended across both axes of the DCA 

analysis, suggesting that a range of testate amoebae are able to colonize these sites (Figure 

10).  Open-water control wetlands were characterized by: Centropyxis, Cyclopyxis and 

Difflugia (Figures 9 and 24).  Within these wetlands sites “vegetated” zones were rich in 

Amphitrema, Arcella, Cyclopyxis, and Centropyxis, whereas “non-vegetated” zones 

contained mostly Difflugia.  Centropyxids have been found to be typically more abundant in 

the absence of pollution (Kauppila et al 2006) consistent with a control type site.  

Centropyxis aculeata and C. platystoma were common and have previously been associated 

with aquatic (Schonborn 1982) and wet conditions (Warner 1987).  These taxa are adapted 

for growth in damp or wet environments and associated with marl lake sediments in Ontario, 

as well as with minerotrophic waters (Warner 1987).  Difflugia have been found in bog pools 

and aquatic habitats (Charman et al 2000).  This taxon exists in all site types, including 

OSPM sites where no other groups were able to colonize in sizeable proportions indicating 

robustness or durability of this group.   
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Figure 24 is showing a representative testate amoebae community in open-water control 

wetlands, and exemplifies 5 genus.  Figure 25 shows the corresponding biomass proportions 

of this community, fungi dominate this system (64%) which is not prevalent in control sites, 

or any site type in this study.  In most cases bacteria were dominant making up the greatest 

proportion of the microbial biomass studied.    

 

Figure 24: Testate amoebae community in a typical Open-water Control Site Loon Lake 2 

 

Figure 25: Relative Proportions of Testate Amoebae, Bacteria, and Fungi in Control Site Loon 

Lake 2 

Testate Amoebae 
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CCA analysis suggests that Difflugia, Bullinularia, and Nebela occur in environments 

with high vegetation cover percentages.  Difflugia are considered more robust and have been 

reported in the literature as being abundant in “impacted sites” (Kauppila et al 2006) which 

typically contain less established vegetation communities.  This inconsistency may be due to 

the fact that Difflugia, which is a common genus found in all wetland types, is one of only a 

few taxa that are capable of colonizing, but are not exclusive to OSPM sites.  Also Difflugia, 

when present in unaffected (control) sites appear to be most abundant in the “non-vegetated” 

sample.   

Hyalosphenia elegans and Nebela carinata were identified as species found in sites with 

deeper water.  In a study conducted by Nguyen-Viet et al (2007(1)) Nebela carinata was 

identified as a species sensitive to contamination and typically found in more pristine sites, 

however in this study this species was present in only one site (reference: High Sulphate).   

Using the output from this analysis (CCA), a Spearman’s Rho correlation coefficient 

analysis was used to determine the importance of specific environmental parameters 

measured throughout the field season on the testate amoebae ordination.  Characteristically, 

hydrology, and more specifically water table depth has been the most important factor 

influencing testate amoebae assemblages in research conducted in peatland sites.  In this 

study thirty of thirty-five samples were taken from open-water sites where all communities 

are completely submerged eliminating water table depth as a foremost driving force affecting 

testate amoebae communities in open-water sites.  Multi-meter data taken throughout the 

field season (Table 3) revealed pH values of 6.92 to 8.18, and dissolved oxygen levels 

varying between 78 to 161% in all open-water control and reference wetlands, with no clear 
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relationship to site type.  However, conductivity values were elevated in OSPM sites when 

compared to all other sites.   

Spearman’s Rho revealed conductivity as a highly significant environmental variable in 

shaping the ordination of testate amoebae assemblages in open-water sites.  Turbidity was 

also a significant contributor and has been observed in previous studies as a factor shaping 

testate amoebae assemblages (Gilbert et al. 1998(2), Muqi and Wood 1999, Escobar et al 

2008).  Dissolved oxygen (DO) can be related to vegetation cover, principally submerged 

vegetation, where DO levels would be higher in heavily vegetated areas due to 

photosynthesis, low DO may or may not be a stressor for testate amoebae communities and 

colonization.   

Landscapes in open-water control and peatland sites were different at each sample 

location consequently, dissimilarity in landscape lends itself to accommodating different 

assemblages of flora and fauna due to the different niches that can be filled.  Divergence in 

terms of vegetation community, sediment type (sandy, clay, and peat), location and proximity 

to roads, as well as topography could justify differences in testate amoebae community 

composition in these sites. 

Reference sites had organic matter content values ranging from 5.3 to 31%.  

Vegetation communities in these sites were not largely different from those of control sites (9 

to 41%) in terms of species composition and percent cover.  The most common testate 

amoebae taxa in these sites were Centropyxis, Cyclopyxis and Englypha.  This assemblage is 

comparable to control type wetlands (control sites: Centropyxis, Cyclopyxis and Difflugia).  

On average more taxa were present in “vegetated” samples when compared to “non-
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vegetated” samples, also consistent with the control sites.  In reference sites no particular 

species were linked to “vegetated” or “non-vegetated” samples.  Centropyxis aculeate, C. 

platystoma, and Cyclopyxis arcelloides were common in both “vegetated” and “non-

vegetated” sites.  On average “vegetated” reference areas had lower organic content values 

than control wetlands, less than 20% in Control Reservoir, Shallow Wetland-1, South Ditch-

1, and Bill’s Lake-1.  Reference type wetlands with low organic content values had one 

commonality in their design; the severe pitch of the basin in each of these wetlands could 

potentially reduce the capacity for plants to colonize these sites.   

Figure 26 shows a representive community of testate amoebae present in a open-

water reference site, in which 4 taxa are represented.  This community is comparable to the 

control community of Loon Lake 2 (Figure 24).  Figure 27 is the corresponding biomass 

values for reference site, Duck Pond, this graph indicates that bacteria is prevalent in most 

open-water sites, contrary to Loon Lake 2.   
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Figure 26: Testate amoebae community in a typical Reference site Duck Pond 

 

Figure 27: Relative Proportions of Testate Amoebae, Bacteria, and Fungi in Reference Site 

Duck Pond 

Reference sites (Figure 10) showed a more narrow range of data points in terms of 

testate amoebae assemblage (bordered by an ellipse to show the scope) than peatland and to a 

lesser extent control wetlands, indicating a smaller assemblage of species colonizing these 

sites (Figures 9, 10 and 26).  Since reference sites were either created by oil sands operators 
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or occur opportunistically after land has been reclaimed, these sites varied less in landscape 

compared to control sites (in terms of location, proximity to roads/other wetlands, sediment 

type).  Differences between control and reference sites were minor albeit their surroundings 

and structural dissimilarity, testate amoebae assemblages including dominant taxa and 

vegetation communities were virtually indistinguishable.   

OSPM sites showed the least diversity in testate amoebae communities (Figures 9, 10 and 

28) with all data points being centered in the graph indicating a smaller range of testate 

amoebae capable of living in this site type.  In these sites dissolved oxygen values were 

recorded as less than 100% in all cases (with the exception of 4MCT).  The amount of 

dissolved oxygen in the water is important to aquatic life, suspended particles in the water 

column (common in OSPM wetlands, with turbidity values of 2 to 3) may absorb heat from 

sunlight, thus raising water temperature which in turn lowers dissolved oxygen levels 

(Hochman 1988).  Also suspended particles can prevent sunlight from reaching plants below 

the surface as a result decreasing the rate of photosynthesis, so less oxygen can be produced 

by plants (Hochman 1988).  Low dissolved oxygen values may severely reduce the diversity 

and population of aquatic communities, including plant and microbial communities that may 

be establishing in new wetlands (Hochman 1988).   

Figure 28 and 29 are showing a testate amoebae community composition and biomass 

ratio present in a typical OSPM site.  Demonstration Pond 2 is the model, and shows only 

one taxa of testate amoebae, but in some cases (Jan’s Pond)  no taxa were detected in a 

sample, revealing testate amoebae as sensitive indicators of change in environmental 

conditions.   
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Figure 28: Testate amoebae community in a typical OSPM site Demonstration Pond 2 

 

Figure 29: Relative Proportions of Testate Amoebae, Bacteria, and Fungi in OSPM site 

Demonstration Pond 2 

 

4MCT recorded higher dissolved oxygen values compared to other OSPM sites, as well 

as an elevated organic content percentage.  These characteristics may be attributed to 

sampling limitations.  In 4MCT the only “safe” sampling areas is within arms’ reach of a 

board walk, in a rich Typha latifolia zone which would increase the dissolved oxygen, and 

percent organic content in this sample due to rooted aquatic plants.   
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Characteristically fewer plant species were found colonizing OSPM sites than any other 

site type (Table 2, full list in Appendix A).  The species found in these sites were consistently 

more robust species associated with succession and bioremediation such as; Typha latifolia 

and Potamogeton (Fassett 1940, Smith 1992, Fraga and Kvet 1993).  In a study by Combroux 

et al (2002), Potamogeton and Chara were found to be dominant in early successional 

communities near the River Ain in France, consistent with communities present in OSPM 

sites, indicating a natural robustness of these species.  These typical early successional 

communities were later replaced with more mature communities, with greater diversity and 

abundance which were consistent with control and reference sites in this study.  This 

discovery indicates that though OSPM sites were of comparable age to control and reference 

sites, the vegetation communities in these sites are more analogous to early successional sites 

in other studies, suggestive of hindered development of vegetation communities in wetlands 

impacted by OSPM.     

In OSPM sites, organic content ranged from 3.02 to 55.38% with most values falling 

below 20%.  Reduced organic content and vegetation community diversity appears to have a 

negative correlation with testate amoebae assemblages.  More taxa of testate amoebae 

typically occurred in “vegetated” samples, reduced vegetation and percent cover was 

associated with a reduction in testate amoebae community in this study (Table 3 and Figure 

9).   

Two OSPM sites with percent organic content greater than 50 % were Sustainability 

Pond North and Sustainability Pond South.  These sites are located within twenty feet of each 

other and were difficult to sample as the edges of the basin (similar to the reference sites) 
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were tilted, but in contrast to the reference sites, these sites had greater organic matter 

content (greater than 50%).  Due to the extreme steepness, samples were limited to an area in 

close proximity to the perimeter where the emergent vegetation may have skewed the percent 

organic content in these samples.   

Elevated conductivities were another commonality in OSPM sites, as compared to lower 

levels in control and reference sites (Table 3).  Studies by Holowenko et al. (2002) revealed 

elevated levels of naphthenic acids in tailings (associated with OSPM wetlands and as high 

as 88mg L-1), which may contribute to the prominent conductivity levels measured in OSPM 

sites in the 2007 and 2008 field seasons.  Indirect effects of excess dissolved solids (higher 

conductivity) are primarily the elimination of desirable plants and habitat-forming plant 

species (Brooks and Corey 1964).  Mike’s Pond (an OSPM site) registered the highest 

conductivity value: 4689µS/cm, this site is also associated with depressed organic content 

percentage (3.02%, one of the lowest recorded in this study).  Additional sites with high 

conductivity levels were Jan’s Pond, Demo Pond and 4MCT with values of 2229, 2233 and 

2290µS/cm respectively, but do not appear to be as severely affected in terms of organic 

content (values ranging from 6 to 20% organic content).  This suggests a threshold value of 

conductivity at which point vegetation and testate amoebae communities become adversely 

affected by elevated conductivities, which is expected to be between 3000 and 4000 µS/cm.  

Other factors must be considered with conductivity, such as naphthenic acid toxicity, Mike’s 

Pond has a toxicity of 55±11mg/L (Farwell et al 2009) compared to Demo Pond registering a 

naphthenic acid level of only 8.9±2.7mg/L (Farwell et al 2009) which may be impacting 

organisms differently.     
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In this study Mike’s Pond ordinated separately in all multivariate analysis than all other 

OSPM sites.  In Figure 10 Mike’s Pond shows a different community of testate amoebae with 

greater biomass (1.74µg of C/g, Table 6) compared to other open-water OSPM wetlands.  

This site ordinates more closely with peatland site Aurora 2.3 and control site Small Beaver 

Pond in the DCA indicating a different range of testate amoebae colonizing this site when 

compared to other OSPM sites.  CCA analysis reveals Mike’s Pond as more closely related to 

emergent vegetation and to Aurora site 1.2.  Mike’s Pond is a highly toxic site among all 

OSPM sites with elevated conductivity and naphthenic acid toxicity (Farwell et al 2009) but 

with greater abundance and diversity of testate amoebae.  This site is isolated from other 

sites, and is in a reclaimed landscape, no differences were seen in terms of bacterial and 

fungal biomass indicating a possible effect at higher trophic levels, potentially the absence of 

a predator for testate amoebae permitting them to be present in higher abundance.   

OSPM sites were of comparable age to control and reference wetlands which indicated 

that plant communities and testate amoebae became established in OSPM sites more slowly 

than the reference and control site types.  This could be a symptom of a number of different 

causes.   

OSPM sites are on active mine sites with surrounding landscapes being changed or 

altered relatively frequently resulting in an unstable terrain that may hinder the establishment 

of vegetation and testate amoebae communities.  Also, there are few surrounding plant 

communities from which propagules could originate from, thus reducing the number of 

plants able to colonize these sites.  Due to the fact that OSPM sites have all been created and 

amended by oil sand operators and typically are grouped for easier access by researchers, 
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they are relatively close to roads and exist in landscapes that have been recently or are 

currently disturbed, it was expected that OSPM sites contained fewer taxa of testate 

amoebae. The prominent taxa included Arcella, Difflugia, and Hyalosphenia, (Figures 9 and 

10).  The expectation was that more robust species (in terms of vegetation and testate 

amoebae) were likely to be present in OSPM wetlands due to compromised ecological 

conditions.  In a study by Kauppila et al (2006), Diffligia protaeiformis was associated with 

sites impacted by Copper mine water on the eastern shore of Lake Retunen in eastern 

Finland.  This finding was also supported by Asiolo et al (1996).  Gehrels et al (2006) and 

Nguyen-Viet et al (2007(2)) found that testate amoebae communities in salt marshes with 

elevated conductivities and lead were characterized by the following succession of 

Percent moisture and bulk density (measured for all sites) depend strongly on the 

freshness of samples.  Samples were transported to the laboratory from Alberta, and then 

preserved (at 4º Celsius) until they were processed, the likelihood of maintaining all moisture 

content is improbable.  Therefore the usefulness of bulk density and percent moisture content 

dominant 

taxa: Arcella catinus, A. discoides, Nebela militaris, Trinema lineare, Centropyxis acueleate, 

C. cassis, C. platystoma, and Difflugia pristis.  While Difflugia were present in all site types, 

they were the dominant taxon in OSPM sites.  Difflugia and Arcella have been noted for their 

prominence in many sites, but also for their robustness and likelihood to colonize sites 

impacted by metals or high conductivities (Nguyen-Viet et al 2007, Gehrels et al 2006).  

This study is consistent with literature reporting Difflugia and Arcella as common taxa in 

affected sites.   
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was reduced and percent organic matter content became the most important instruments in 

sediment analysis.   

4.2 Biomass: Relationship of Testate Amoebae to the whole Microbial 
Community 

  In terms of biomass one group was dominant: bacteria made up a major proportion 

(>65% in open-water wetlands and >80% in peatlands) of the microbial community in all site 

types.  The original expectation was that testate amoebae would make up a larger proportion 

of these communities.  However, it should be noted that not all groups of microorganisms 

were considered in this study.  Some of the groups that were not examined in this study 

include cyanobacteria, bacillariophyceae, micro algae, ciliates, and heterotrophic flagellates, 

which may have contributed to the microbial community in peatland and open-water sites 

altering the microbial proportions measured in this study.  By changing the proportions each 

group contributes to the microbial community it may be possible to identify trends that are 

complicated and cannot be clarified with abundance values for bacteria, fungi and testate 

amoebae.     

Testate amoebae biomass in peatlands was significantly higher (P<0.05) than all open-

water site types (control, reference and OSPM) ranging from 5.63 to 747.44 µg of C/g of 

sample (mean of 242±316 µg of C/g of sample) but with no trends in relation to peatland site 

(wet versus dry in peatland site).  These values were variable between site types, but 

comparable to values reported by Nguyen-Viet et al (2007(1)) for testate amoebae associated 

with Sphagnum fallax with biomass values between 14.9 and 524.9 µg of C/g of sample.  

Densities of testate amoebae in this study were comparatively lower than those reported by 
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Warner (1987), who estimated 10 000 cells per liter in an upland Sphagnum magellanicum 

site, with densities for most testate amoebae species less than 5000 individuals per g of 

sample (with a exceptions present in peatland sites Figure 9).  Gilbert et al (1998(2)) reported 

testate amoebae percentages of 48% for a peatland microbial community in Puyde-Dome, 

France, which is substantially higher than peatland sites in this study where testate amoebae 

percentages averaged 2%.  In the study conducted by Gilbert and colleagues (2008(2)) at 

least seven other groups were considered which increased the proportion of testate amoebae, 

albeit biomass values were comparable (0.56 to 1.63 µgC/ml).  Although testate amoebae 

percentages are low in this study (compared to other groups studied, and what has been 

reported in the literature) it may be partially attributed to the few groups studied.   

Testate amoebae biomass proportions in open-water wetlands fell below 1 µg of C/g of 

sample, with no trends in relation to “vegetated” versus “non-vegetated” samples.  Little is 

known about the ecology of testate amoebae and their response to limnological variables, but 

Tolonen (1986) speculated that the principle environmental control on species distribution 

was oxygen concentration and surrounding vegetation.  In a study of sub-tropical lakes in 

Florida, organic matter content in sediment emerged as the only variable that influenced the 

presence/absence of testate amoebae in Florida lakes (Escobar et al 2008).  Organic-rich sites 

were reported to contain large numbers of testate amoebae, whereas sites characterized by 

sandy substrates yielded few or no testate amoebae (Escobar et al 2008).  In this study fewer 

taxa were present in “non-vegetated” samples in reference and control sites when compared 

to “vegetated” samples.   
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Biomass values for testate amoebae were significantly different in sites amended with 

OSPM compared to those without OSPM (Table 6 and 7).  These differences are supported 

by all analyses (DCA multivariate analysis, and raw species counts, Figure 9, 10 and Table 

6), indicating that testate amoebae assemblages, including biomass are different in sites that 

have OSPM incorporated compared to those that do not.  It is also important to note that the 

opposite trend is true for bacterial biomass with elevated biomass measured in sites amended 

with OSPM suggesting a different response to the same environmental status.  It has been 

well documented that bacteria are able to thrive in environments that are typically 

unfavorable to other organisms (Gottschalk 1985).  Bacteria also have been documented as 

successfully remobilizing nutrients from toxic substances such as naphthenic acids (Hadwin 

et al 2006) explaining their prevalence in these sites where no other organisms are able to 

succeed.      

Testate amoebae assemblages and biomass are indicative of differences in wetlands that 

they colonize.  Recent research indicates that testate amoebae have a complex response to 

environmental variables in open-water sites: they may be sensitive to pollution, pH, and 

temperature change (Patterson et al 1996, Reinhardt et al 1998).  No differences between 

control and reference wetlands were detected in terms of testate amoebae biomass even 

though species assemblage varied somewhat by site type, indicating that testate amoebae 

species assemblage act as a better indicator of wetland establishment than general biomass 

measurements.         

Bacterial biomass was significantly different between peatland sites and all other site 

types (Tables 6 and 7).  Significantly more bacteria were measured in peatland sites with 
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values from 1455 to 9649 µg of C/g of sample compared to 226 to 2419 µg of C/g of sample 

reported by Nguyen-Viet et al (2007 (2)).  The average of bacterial cells per slide in peatland 

was 1.1 x 104 compared to 7.29 x 106

Control sites that were considered “vegetated” had lower bacterial biomass values (from 

81 to 324 µg of C/g of sample) compared to “non-vegetated” control samples (752 and 997 

µg of C/g of sample).  This trend is contrary to expectations as heavily vegetated areas would 

have additional 

 cells per milliliter of sample in Gilbert et al (1998(2)).  

Despite the fact that absolute bacterial density and biomass were low in this study compared 

to literature values, this group comprised an average of 80% of the microbial community in 

peatlands and >65% in open-water sites.    

Bacterial biomass in open-water site types fell below 1000 µg of C/g of sample with no 

significant difference between control, reference and OSPM.  The standard deviation of 

biomass values (for all open-water site types) was considerably large suggestive of variable 

bacterial communities in open-water sites, as well as variation between samples. 

organic substrates from which bacteria are able to produce chemical energy, 

also the sample locations were expected to have higher dissolved oxygen values (due to 

photosynthesizing plants) creating an environment more conducive to bacterial life.  The 

exceptions to the trend were Loon Lake, and MacLean Creek.  The “vegetated” sample from 

Loon Lake and MacLean Creek had higher bacterial biomass (consistent with expectations) 

in the “vegetated” sample.  The commonality between these sites was low organic content in 

the “vegetated” sample, making these samples more comparable to “non-vegetated” samples 

from other wetlands.   

http://en.wikipedia.org/wiki/Organic_compound�
http://en.wikipedia.org/wiki/Energy#Chemical_energy�
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During the isolation of the bacterial fraction from a sediment sample mechanical agitation 

was performed only after the sample was rinsed of large organics.  Therefore there is a 

chance that low bacterial biomass in “vegetated” samples may be a symptom of cells being 

lost with larger organics.  The possibility that bacterial cells were present on organics that 

were removed from the sample would reduce the accuracy of this study and unfortunately no 

standard (like lycopodium spores used for testate amoebae analysis) was used to indicate no 

loss of cells through processing.  Running the same sample through mechanical agitation 

before filtration and comparing the resultant biomass to non-agitated samples from this study 

would provide insight into the adequacy of this methodology.   

  Despite bacterial biomass values not being significantly different between site types, the 

absolute biomass values for control sites were higher (3117.4 ±4867.8µg of Carbon/g of 

sample) than reference and OSPM sites (which appear to be comparable; 250.2 ±206.8, 360.1 

±262.0 µg of Carbon/g of sample respectively) (Table 8).  In terms of proportion bacteria 

contributed most in sites amended with OSPM, which may have some ecological bearing as 

this group is able to thrive in conditions that are limiting for both fungi and testate amoebae.   

Analysis of fungal biomass data revealed significant differences between peatlands and 

all open-water sites; fungal biomass in peatland sites was considerably higher than all other 

site types.  No significant differences within open-water sites were detected, however fungal 

biomass in reference sites was intermediate (4.361 ±1.176) compared to control (5.093 

±1.770) and OSPM (3.407 ±1.350) sites indicating a possible transitional community stage 

(Table 6).  No relationship existed with fungal biomass in connection to “vegetated” or “non-

vegetated” samples.   
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Overall, biomass data (all biomass data considered together) were significantly different 

between peatland and all site types but no differences were found between any open-water 

sites.  Peatland sites had elevated overall biomass ranging from 1505 to 13353 µg of C/g of 

sample.  No distinction could be seen between peatland sites Aurora 1 and 2.  In all cases 

(testate amoebae, bacteria and fungi), peatlands had higher biomass values symptomatic of 

the notable differences between peatlands and open-water wetlands.  In all analyses 

differences were pronounced between peatland and open-water sites, emphasizing peatlands 

as a distinctive site type in this study.  In control sites “non-vegetated” samples had 

moderately higher overall biomass, which was primarily contributed by bacteria, but in 

reference and OSPM sites no trends with relationship to “vegetated” or “non-vegetated” 

samples could be established.   

  Younger wetlands were expected to be negatively affected in terms of biomass.  

Variance in biomass measurements between young and older sites would indicate a 

successional change that could be used by oil sands scientists in order to keep an account of 

the progress of an affected wetland.  Mann-Whitney tests (for non-parametric data) were 

used to determine differences between young and old wetlands, using young at ≤8yrs and 

Old at >8yrs (Tables 9 and 10) as well as young at <12yrs and Old at ≥12yrs (Table 11).  

This was done in order to determine if there were differences in intermediate and older aged 

communities.  The standard of <8 years for a younger site (and ≥8 years for older sites) has 

been used in studies on invertebrate populations in the oil sands.  In a study focusing on 

microbial communities it was expected that changes may be occurring more rapidly (1-2yrs) 

and substantially longer (>12yrs).  Unfortunately few wetlands in this study are <8years, 
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while even fewer are younger limiting age as a measure of change in these communities in 

this study.  Using younger sites in future research would be useful in clarifying successional 

changes in these microbial communities.    

Reference and OSPM sites were expected to have the most noteworthy differences 

between young and old wetlands since they have been subject to more disturbances and 

changes than control type sites.  In both cases (8 and 12 yrs) no significant differences were 

seen between young and old wetlands in any case.      

4.3 Testate Amoebae as a Biological Indicator of Microbial Community 
Health 

As open-pit mining continues, landscapes are destroyed every day and large quantities of 

tailings are produced when bitumen is separated from oil sands.  The increasing scale of oil 

sand operations reveals the essential need for reclamation.  Created and restored wetlands are 

intended to replace the functionality of former systems that have been lost through 

disturbance.  Unfortunately, not all functions of a wetland are or can be considered during 

reclamation efforts and many wetland restoration projects have shown that structure does not 

necessarily imply function (Reinartz and Warne 1993) meaning that while these wetlands 

may appear to be similar to natural wetlands, there may be underlying deficiencies.  

Therefore, researchers are unable to assume the functionality of these created systems and 

require biological indicators to provide this information.  By relating testate amoebae 

assemblages to general abundance values for bacteria and fungi, the health and progress of 

restored wetlands was expected to be clarified.   
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Testate amoebae act as biological indicators in many circumstances in both peatland 

(Warner 1987, Lüftenegger and Foissner 1989, Balik 1991, Charman et al 2000) and 

lacustrine ecologies (Escobar et al 2008) due to the fact that they were abundant and diverse, 

their isolation and identification was relatively easy using microscope techniques and test 

characteristics.  For this study their trophic position at the top of the microbial food web was 

ideal for an early signifier of disturbance, or rehabilitation, as they consume the primary 

group which remobilizes nutrients making it bioavailable for higher trophic levels (Gilbert et 

al 1998(1), 1998(2), 2000).  Testate amoebae have model characteristics for straightforward 

monitoring procedures and with easy sampling and identification techniques this group of 

organisms is well suited for the wetlands guideline for oil sand operators.   

Testate amoebae assemblages and biomass daona were sensitive to changes in the 

ecological parameters, namely conductivity, dissolved oxygen and water turbidity as well as 

contaminant levels (OSPM).  Sensitivity was manifested in variations in testate amoebae 

abundance, diversity and richness, and/or species assemblage, with the most robust species 

(Difflugia) being dominant in sites amended with OSPM (Figure 9).  Unfortunately, changes 

in testate amoebae communities were not in harmony with changes in bacterial and fungal 

biomass suggesting, a disconnect or complexity in the relationship between testate amoebae 

and the rest of the microbial loop.  While testate amoebae assemblages and biomass were 

lesser in OSPM sites, bacterial biomass was found to be elevated in OSPM sites.  This trend 

suggests an intricacy to responses to environmental conditions and the dynamic between 

testate amoebae and bacteria that general abundance values cannot convey.  Bacteria 

typically exist in specific niches, greater biomass in sites amended with OSPM does not 
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consequentially indicate improved physical condition of the microbial community.  In this 

situation it is possible one or two groups of bacteria are able to tolerate OSPM conditions, 

and with no competition they have an advantage and are able to thrive.  The bacterial 

community (both aerobic and anaerobic) establishes itself and plays a vital role in 

bioremediation of wastewater (Ali et al 2008).  Bioremediation has emerged as one of the 

most important tools to eliminate or reduce the contamination caused by diverse compounds 

of anthropogenic origin that are spilled into the environment (Vasquez et al 2009), to which 

bacteria are the primary consumers.  

It is clear that testate amoebae assemblages are changing in response to a changing 

environment.  Unfortunately, this study was only able to focus on three groups; testate 

amoebae, bacteria, and fungi, limiting the links that can be drawn from the interaction of 

testate amoebae with the rest of the microbial community.  Bacteria dominated all site types, 

their predominance sites impacted by OSPM suggest that bacteria are able succeed in 

conditions that are problematic for other organisms and remediate the environment.  Further 

bacterial research may reveal specific species of bacteria most able to metabolize the toxic 

compounds (OSPM) which may ultimately be related to specific assemblages of testate 

amoebae.  As tolerant species of bacteria dissipate, and other species of bacteria are able 

colonize it would be expected that fewer toxic elements are present in these sites, allowing 

testate amoebae, the middle trophic indicator to settle.    

This study served as a starting point for microbial work in the Athabasca oil sands, 

highlighting the dominant players (bacteria) and flagging groups that may require more in-

depth research to act as indicators of microbial community health (testate amoebae).   
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Investigation of other microbial groups that contribute to these changes may provide the 

information necessary to more readily understand and interpret the relationships between the 

changing testate amoebae assemblages and the microbial community as a whole.  

Investigation aimed at characterizing bacteria will identify central species, and their 

relationship to testate amoebae.  Additional research will also reveal the mechanisms for why 

differences exist between site types in terms of testate amoebae as well as bacteria and 

processes that are required to restore created wetlands to a pre-industrial state.  Based on this 

study, testate amoebae species assemblages cannot successfully operate as indicators for the 

wetlands guideline for oil sands operators, based on microbial community health in 

reestablishing wetlands impacted by oil sands processed materials but future research is 

expected uncover links between bacteria and testate amoebae.   

4.4 Conclusions 

Based on this study the following statements can be made about testate amoebae and their 

relation to bacteria and fungi in wetlands impacted by OSPM: 

1) Testate amoebae, bacteria, and fungi were most abundant in peatland sites when 

compared to other site types.  

2) Peatland sites were identified as dissimilar when compared to open-water wetlands in 

this study based on testate amoebae assemblages, and biomass for testate amoebae, 

bacteria, and fungi.   
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3) The primary monitored parameters affecting testate amoebae composition in peatland 

sites were soil moisturepH.  Importantparameters affecting testate amoebae 

assemblagesin open-water sites were dissolved oxygen, turbidity and conductivity.   

4) Open-water sites: control, reference, and OSPM maintained comparable  values of 

bacterial, fungal, and overall biomass, with no significant differences between site 

types.    

5) Bacteria contributed the greatest proportion of biomass in each site type suggesting 

their importance in wetlands impacts by oil sands processed materials.   

6) Testate amoebae assemblages as well as biomass values showed sensitivity to a 

changing environment and contaminant levels suggesting promise as a bioindicator in 

wetlands impacted by OSPM.   

7) In this study testate amoebae comprised a small part of microbial communities (<1%) 

compared to other groups considered and had opposing trends in terms of biomass in 

affected sites.  This study suggests that testate amoebae community composition is 

distinctive though they comprise a small proportion of the whole microbial 

community..  Further work, some of which is suggested below, may help to reveal the 

true potential of testate amoebae as biomonitors in the rehabilitation of OSPM 

wetlands and oil sands mining landscapes.  Testate amoebae and the rest of the 

microbial community probably hold the greatest promise  as bioindicators in wetlands 

impacted by oil sands mining. 
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4.5 Recommendations  

 

1) Further research is required to further characterize specific composition of bacterial 

communities and differences in relation to  age of OSPM wetlands.   Such work will 

provide insight into the microbial loop and the role of  testate amoebae in the 

microbial loop.  

a) This study included selected groups (i.e. bacteria, fungi); further work that includes  

additional microbial groups (i.e. cyanobacteria, bacillariophyceae, micro algae, 

ciliates, and heterotrophic flagellates) may provide further insights on role and 

position of testate amoebae in the whole microbial community.  In OSPM-affected 

wetlands bacterial communities make up the majority of the community, 

unfortunately biomass is a crude measure and does not indicate the diversity and 

composition of the specific communities.  With further research it can be determined 

if linkages exist between less diverse bacterial communities and testate amoebae, and 

more diverse bacterial communities and testate amoebae, thus allowing testate 

amoebae (a middle trophic indicator) to be indicative of activity at a bacterial level.   

b) When considering sites for future studies including very young (<1yr), intermediate 

(1>12 yrs) and older sites (>12 yrs) of OSPM wetlands might lead to further insights 

on the position of testate amoebae in the  microbial community as a whole .   
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Appendix A. Detailed Vegetation Data from the 24 Wetland study Sites 
Wetland Wetland Type Water Depth Vegetation 

Test Pond 9 (TP9) OSPM 60cm, very turbid 40% Typha latifolia 
Shallow Wetland (SW) REF 12cm, clear 

40cm, clear 
50cm, less clear 

Typha latifolia 50%, Scirpus 15%, Hippuris 5%, Utricularia <1, Lemna <1 
Utricularia 10%, Hippuris 70%, Scirpus 10%, Carex asturica <5, Lemna <1, Typha <5 
Ceratophyllum 80%, Hippuris 10%, Utricularia <1, Potamogeton filiformis 5% 

South Ditch (SD) 
 

REF 12cm, clear 
56cm, clear 

Scirpus 10%, Typha 30% 
Charales  85%, Potamogeton filiformis 10%, 

Natural Wetland (NW) 
 

OSPM   10cm, less clear 
3cm, turbid 

Potamogeton filiformis 70% 
Carex rostrata 55% 

 

4 Meter Consolidated Tailings (4MCT) OSPM 15cm, turbid N/A 
High Sulphate (HS) 
 

REF 32cm, less clear 
7cm, less clear 

Chara – 75%,  
Typha 60% 

Peat Pond (PP) REF 33cm, less clear Chara  85% 
Bill’s Lake (BL) 
 

REF 
 

35cm, turbid 
65cm, turbid 

Lemna  20%,  Chara 5%, Typha 15%,  
Ceratophyllum 90% 

Beaver Pond (BP) CONTROL 32cm, less clear Chara 35% 
Mike’s Pond (MP) OSPM 22cm, less clear Potamogeton 45% 
Duck Pond (Duck), formerly South West Corner Waste Area 11 REF 

 
39cm, clear Utricularia 10% 

Typha latifolia 90% 
Sandpit Wetland (SP) REF  35cm,less clear  Scirpus 40%, Typha latifolia 50% 

Sedimentation Wetland (SED) CONTROL 54cm, less clear Potamogeton 40% 

MaClean Creek (MC) CONTROL 9cm, clear Lemna 20% 
Loon Lake (LL) 
 

CONTROL 11cm, clear 
28cm, clear 

Scirpus 15%, Typha latifolia 25% 
N/A 

Sustainability Pond North (SUS N) OSPM 32cm, turbid Typha latifolia 60% 
Sustainability Pond South (SUS S) OSPM  36cm, turbid Typha latifolia 45% 

Demo Pond (DP) OSPM 60cm, turbid 
42cm, turbid 

Potamogeton 90% 
Scirpus 80% 

Small Beaver Pond (SB) CONTROL 40cm, less clear Carex rostrata 40%, Lemna 10% 
1 Meter Consolidated Tailings (1MCT) OSPM 11cm, turbid Typha 25% 
Control Reservoir (CON RES) CONTROL 14cm, less clear Typha 25%, Scirpus 30% 
V Notch Weir (V NOT) CONTROL 12cm, less clear Scirpus 40% 
Jans (JANS) OSPM 17cm, turbid Typha 20%, Scirpus 10% 
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Appendix B. Analysis Using ImageJ 

For bacteria the following steps were followed in ImageJ;  

Step 1.  Open Image 

Step 2. Convert color image into an 8-bit greyscale image (imagetype8-bit) 

Step 3.  Invert the greyscale image (editinvert Or press ctrl+shift+I) 

Step 4. Subtract the background (imageadjustbrightness & contrast) 

Step 5. Threshold the image (In the Brightness & Contrast menu click on Thresh and 

carefully adjust the brightness slider so that everything that was in the original image appears 

in the thresholded image.)  

Step 6. Watershed (ProcessBinaryWatershed.  This algorithm uses a density profile to 

determine if one object with a peninsula should actually be two objects. 

Step 7. Analyze Particles for bacteria (AnalyzeAnalyze Particles) 

Step 8. Subtract masks from the original image to check for missed particles (EditInvert 

(or ctrl+shift+I) then revert your original image to the saved version by going to FileRevert 

(or ctrl + r).   ProcessImage Calculator and subtract mask from your original (check  

"Create New Window") 

For fungi the following steps were followed in ImageJ; 

Step 1. Open Image 

Step 2. Set Scale (Go to AnalyzeSet scale in the ImageJ main window and enter the 

following values. Distance in Pixels: 1 – use scale bar (select the length of the scale bar with 

the line tool) 

http://www.dnr.sc.gov/ael/notebook/imagej_counts/counts.html#2�
http://www.dnr.sc.gov/ael/notebook/imagej_counts/counts.html#3�
http://www.dnr.sc.gov/ael/notebook/imagej_counts/counts.html#4�
http://www.dnr.sc.gov/ael/notebook/imagej_counts/counts.html#5�
http://www.dnr.sc.gov/ael/notebook/imagej_counts/counts.html#6�
http://www.dnr.sc.gov/ael/notebook/imagej_counts/counts.html#9�
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Known Distance: The value from the metadata (indicate the known length of the scale bar) 

Pixel Aspect Ratio: 1 – leave this value, Unit of length: micrometer, Global: Checked (this 

ensures the scale is constant for all pictures).  

Step 3. Select Line tool – right click on the picture of the line tool to select the segmented 

line, this allows the tool to follow the length of the hyphea measuring through bends and 

curls.  

Step 4. Measure (ctrl-m will measure and record the measurement in a results box).  

The number of bacteria cells in a field of view ranged from 4.3 X 108 to 2.2 x 1011

 

 and the 

total length of fungal hyphae per field of view ranged from eighteen to one hundred and fifty-

one micrometers.  
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