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Abstract

Transport parameter estimation and contaminant source identification are critical steps in

the development of a physically based groundwater contaminant transport model. Due to

the irreversibility of the dispersion process, the calibration of a transport model of interest

is inherently ill-posed, and very sensitive to the simplification employed in the development

of the lumped models. In this research, a methodology for the calibration of physically

based computationally intensive transport models was developed and applied to a case

study, the Reich Farm Superfund site in Toms River, New Jersey.

Using HydroGeoSphere, a physically based transient three-dimensional computation-

ally intensive groundwater flow model with spatially and temporally varying recharge was

developed. Due to the convergence issue of implementing saturation versus permeability

curve (van Genuchten equation) for the large scale models with coarse discretization, a

novel flux-based method was innovated to determined solutions for the unsaturated zone

for soil-water-retention models. The parameters for the flow system were determined sepa-

rately from the parameters for the contaminant transport model. The contaminant trans-

port and source parameters were estimated using both approximately 15 years of TCE

concentration data from continuous well records and data over a period of approximately

30 years from traditional monitoring wells, and compared using optimization with two

heuristic search algorithms (DDS and MicroGA) and a gradient based multi-start PEST.

The contaminant transport model calibration results indicate that overall, multi-start

PEST performs best in terms of the final best objective function values with equal num-

ber of function evaluations. Multi-start PEST also was employed to identify contaminant

transport and source parameters under different scenarios including spatially and tem-

porally varying recharge and averaged recharge. For the detailed, transient flow model

with spatially and temporally varying recharge, the estimated transverse dispersivity coef-

ficients were estimated to be significantly less than that reported in the literature for the

more traditional approach that uses steady-state flow with averaged, less physically based

recharge values. In the end, based on the Latin Hypercube sampling, a methodology for

comprehensive uncertainty analysis, which accounts for multiple parameter sets and the

associated correlations, was developed and applied to the case study.
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Chapter 1

Introduction

Groundwater is a vital national resource, which in 1995 supplied drinking water for 46%

of the overall population in the United States and 99% of the population in the rural areas

[U.S. EPA, 2002]. In some parts of the world, groundwater serves as the only reliable

source of drinking and irrigation water. However, this vital resource is vulnerable to

contamination from specific sources such as leaking underground storage tanks, septic

systems, spills, landfills, and industrial facilities. With the development of technology,

more and more human activities are polluting the groundwater system.

In the 1970s, the events that happened in Love Canal, New York and Valley of the

Drums, Kentucky attracted people’s attention and showed that past contaminant disposal

practices might endanger public health and the environment. To clean up the sites contam-

inated by hazardous wastes, the U.S. Congress passed the Comprehensive Environmental

Response, Compensation, and Liability Act (CERCLA or Superfund) in 1980. The law

authorizes remedial response action at the sites on the National Priorities List (NPL) with

highest hazard rank. To date, there are a large portion of Superfund sites on the NPL that

are associated with groundwater contamination.

Due to the limited funds available for the cost of cleanup, the U.S.EPA (United States

Environmental Protection Agency) must investigate and find the responsible private par-
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ties liable for the contamination, and partition the remediation costs among them in a way

consistent with their degree of culpability. Unfortunately, because of the slow movement

of groundwater through aquifers, groundwater contamination is frequently discovered long

after it has occurred. It is not easy to obtain sufficient evidence in identification of re-

sponsible private parties through the commonly used forensic techniques, such as chemical

profiling, aerial photography interpretation, federal agency records, private parties’ records

[Morrison, 2000a,b; Atmadja and Bagtzoglou, 2001b], compositional analysis, tracer use,

and contaminant distribution [Michalak , 2001]. This could be confirmed by the fact that

“in 1994, the National Academy of Sciences estimated that over a trillion dollars, or ap-

proximately $4,000 per person in the U.S., would be spent in the next 30 years on clean-up

of contaminated soil and groundwater” [U.S. EPA, 1999]. There is a need for additional

forensic evidence to aid in the identification process, such as the source release history

obtained through inverse modelling methods.

As the direct input of contaminants into the groundwater system, the source release

information is essential to gain further insight about the current contaminant distribution

and predict the future spread of a contaminant plume. These could provide important

information for almost all of the groundwater problems concerning contaminant transport,

including determination of responsible parties’ liability for damage caused to downstream

victims, reliability analysis of contamination issues and the design of remediation systems

[Michalak , 2001; Michalak and Kitanidis , 2004b]. One example is to optimize the sampling

well deployment. Generally, the existing sampling wells do not have the most efficient

locations for identifying the contaminant sources in terms of extent, location, and duration.

To reduce the relatively high cost of installing monitoring wells, the new sampling wells can

be optimally placed with the aid of preliminary contaminant source data. The additional

measurements can, in turn, be utilized to more efficiently and accurately update the source

information activity [Mahar and Datta, 1997].

Acknowledging the significance of contaminant source information, considerable work

has been devoted to it during the past 20 years (refer to Section 2.2 and Table 2.1of

this thesis for the details). Many inverse modelling methods, ranging from deterministic

to stochastic approaches, have been developed to reconstruct the source release history.
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However, many of the attempts to characterize a contaminant source are restricted to

lumped groundwater flow and transport models with simplified representation of hydro-

logic and transport processes. For instance, Skaggs and Kabala [1994] employed Tikhonov

regularization to reconstruct the nonnegative release history of a plume for a 1-D con-

taminant transport problem in a saturated homogeneous aquifer. Woodbury and Ulrych

[1996]; Woodbury et al. [1998] applied the minimum relative entropy (MRE) to a practical

case study with a 3-D constant velocity and constant dispersivity system at the Gloucester

Landfill in Ontario, Canada. Alapati and Kabala [2000] utilized a non-linear least-squares

method (NLS) without regularization to determine the parameters in the source release

function for a 1-D homogeneous system. A more detailed discussion of inverse modelling

attempts will be presented in Chapter 2. Due to the irreversibility of the dispersion pro-

cess, the calibration of transport model of interest is inherently ill-posed, and very sensitive

to the simplification employed in the development of the lumped models. The case study,

that is investigated in this thesis, require the analysis of a regional-scale three-dimensional

variably saturated transient flow system. The assumption of steady-state flow would yield

non-representative results. Typical of field studies, measured concentrations contain un-

certainty and are available for only the later stage of contamination.

Numerical modelling of physically based, field-scale groundwater flow and transport

processes requires high computing demand. Hundreds of realizations of the forward mod-

elling are needed for most of the optimization algorithms. Thus, computation in the

calibration of such a model is exceptionally intensive. To date, few reported studies have

compared the algorithm performance for complex, field-scale applications in the ground-

water field.

For many field-scale groundwater contaminant problems, the expense of data acquisition

combined with the inherent difficulty of obtaining representative values can result in a

sparse or incomplete data base. For many sites, data are restricted to the property owned

by the contaminators. Observed values can be uncertain. This is particularly true at

the margins of a plume where concentrations at instrument detection limit are obtained

from wells with a large screened interval. This sparsity of information can lead to high

uncertainty in the estimation of model parameters. Even a perfectly calibrated model
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cannot entirely remove uncertainty. Neglecting this uncertainty tends to cast serious doubt

on the credibility of the results. For instance, in the forward modelling case of Woodrow

Stering et al. versus Velsicol Chemical Corporation, two groups of reputable modelers hired

by plaintiffs and defendants presented different results only caused by different loading

rate factors [Michalak , 2001]. Owing to the fact that inverse modelling is even more

sensitive to the parameter perturbation, performing a comprehensive uncertainty analysis

is essential to facilitate the partitioning of the responsibility of clean-up of contaminated

sites and the prediction of the ongoing contaminant plume. Additionally, ill-posedness

of the inverse modelling results in the non-uniqueness of the estimated parameters with

correlation. However, no research has been carried out to quantify the uncertainty, not

only incorporating multiple parameter sets but also honouring the parameter correlations

in the groundwater field.

1.1 Research Objectives

The primary objective of this thesis is the development of an effective methodology for the

practical calibration of a physically based, field-scale, computationally intensive ground-

water flow and contaminant transport model. The specific objectives of this research were

to:

1. Develop a computationally efficient approach to calibrate a three-dimensional, phys-

ically based, contaminant transport model;

2. Compare the performance of different optimization algorithms in the analysis of a

field-scale computationally intensive groundwater problem through the application

to the case study: the Reich Farm Superfund site;

3. Investigate the algorithms for an ill-posed problem and a noisy objective function

response surface;

4. Evaluate the impact of the simplified representation of the hydrologic processes on

the estimated parameter values;
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5. Evaluate the impact of different contaminant source characterization on the calibra-

tion results;

6. Quantify the influence of recovered uncertain contaminant source on the forward

modelling of contaminant transport.

1.2 Outline of the Thesis

This thesis consists of five additional chapters, as follows:

Chapter 2 provides the underlying theory employed by HydroGeoSphere to describe

variably-saturated groundwater flow and contaminant transport, a review of the parameter

estimation approaches, and a detailed discussion of the selected optimization algorithms.

Chapter 3 presents the development of a three-dimensional, variably saturated, tran-

sient groundwater flow model for the Reich Farm Superfund site near Toms River, New

Jersey (Figure 3.1 ). The flow model, which incorporates a spatially and temporally vary-

ing recharge [Jyrkama et al., 2002] derived by the hydrologic model HELP3 in conjunction

with GIS, was manually calibrated through trial and error by Sykes and Normani [2002].

A particle tracking was conducted to estimate the travel time from the Reich Farm site to

the Toms River Municipal Parkway well field. This thesis builds on the work of Jyrkama

et al. [2002] and Sykes and Normani [2002] with an emphasis on the contaminant system.

The revision of the spatially and temporally varying recharge model and the flow domain

calibration procedure is beyond the scope of this thesis.

Chapter 4 presents the formulation of the optimization problem, including objective

function definition and the decision variables with box constraints. Multi-start Parameter

ESTimation method (PEST), Dynamically Dimensioned Search (DDS) and Micro Genetic

Algorithm (MicroGA) parameters estimation algorithms were employed to calibrate the pa-

rameters of the transport model for the transient flow field given by the flow model [Sykes

and Normani , 2002] described in Chapter 3. A comparison among those algorithms was

conducted in terms of the performance measure and the computation time. The transport
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models under four different scenarios with spatially and temporally varying and averaging

recharge were calibrated to evaluate the impact of the averaging scheme on the estimated

parameter values. Additionally, the impact of different types of contaminant source char-

acterization on the estimated transport parameters and the calibration performance was

evaluated. The investigation of the behaviour of the three parameter estimation algorithms

for a computationally simple, generic groundwater system is beyond the scope of this thesis.

The scope is restricted to solely the investigation of a computationally intensive problem.

Chapter 5 presents a Latin hypercube simulation to assess the uncertainty of the TCE

breakthrough curves at selected pumping wells and the influent to the air stripper for the

TCE contaminated wells at the Parkway well field. The uncertainty of several transport

parameters was characterized by probability density functions obtained from the calibra-

tion results in Chapter 4. The Latin hypercube sampling method honours the parameter

correlations as well as accounts for multiple parameter sets with the likelihood estimated

on a basis of its associated performance measure.

Chapter 6 presents the conclusions of this thesis, and recommendations for future work.
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Chapter 2

The HydroGeoSphere Model and

Parameter Estimation Algorithms

2.1 HydroGeoSphere Model Description

In this research, the code-HydroGeoSphere [Therrien et al., 2004b], developed from FRAC3DVS

[Therrien et al., 2004a], has been chosen, because the source code is accessible, the model

is readily available at no cost, and it is provided with technical support by the develop-

ers. HydroGeoSphere is a distributed-parameter and fully-integrated model designed to

solve three-dimensional variably-saturated subsurface and surface flow and solute trans-

port equations in granular or discretely-fractured media. Although the model is capable

of handling dual porosity simulations, for the purpose of this computationally intensive

regional study, an equivalent porous media approximation was assumed. To solve the

density-dependent non-linear flow equation, a Picard iterative solver is utilized; however,

only density-independent flow is investigated in this work.

HydroGeoSphere uses the control volume finite element technique which not only con-

serves mass, but also is capable of precisely delineating the details of boundaries. Upstream

weighting of the relative permeabilities and fully-implicit temporal weighting scheme em-

7



ployed in HydroGeoSphere ensure a monotone solution for saturated flow models. There

is no stability criterion for the time step or grid spacing for the implicit solution. Due

to the first-order accuracy of upstream weighting, an adaptive time stepping procedure is

used to enhance the efficiency of the solution process. Given these beneficial features, a

few modifications were still necessary for transport model calibration, and are discussed

further in the Sections 3.4.5 and 4.3.

The assumptions on which HydroGeoShpere is based in order to solve the governing

flow equation include: porous media grains are non-deformable; the system being described

in the model is under isothermal conditions; and the air phase, where present, is infinitely

mobile. HydroGeoShpere is formulated in terms of Richards’ Equation. In order to describe

the three-dimensional variably-saturated flow, the following form of Richards’ Equation was

used:

−5 · (ωmqi) +
∑

Γex ±Q = ωm
∂

∂t
(θsSw) (2.1)

where ωm [dimensionless] is the volumetric fraction of the total porosity of the porous

medium, qi [L T-1] is the fluid flux, Γex represents the volumetric fluid exchange rate [L3

L-3 T-1] between the subsurface domain and any applicable model supported domain types,

Q [L3 L-3 T-1] represents the volumetric fluid flux per unit volume, Sw [dimensionless] repre-

sents the degree of water saturation, and θs is the saturated water content [dimensionless].

The volumetric fraction always will be equal to 1.0 for single porosity calculations. The

term Q is used to represent a source or a sink. In Richards’ Equation, the fluid flux qi [L

T-1] is given by:

qi = −Kijkr 5 (ψ + z) (2.2)

where kr = kr(Sw) represents the relative permeability [dimensionless] of the porous

medium with respect to the degree of water saturation (Sw), ψ is the pressure head [L],

and z is the elevation head [L]. The saturated water content is assumed to be equal to the

porosity. The hydraulic conductivity tensor Kij[L T-1] is given by
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Kij =
ρg

µ
kij (2.3)

where g is the gravitational acceleration [L T-2], µ is the viscosity of the groundwater [M

L-1 T-1], kij is the permeability tensor of the porous medium [L-2] and ρ is the density of

the groundwater [M L-3]. While not invoked in this study, the density of the groundwater

can be dependent on a concentration C [M L-3] of a given solute such that ρ = ρ(C).

Water saturation is related to the water content θ [dimensionless] by the relationship

Sw =
θ

θs

(2.4)

In Equation (2.1), the parameter Γex is expressed as a unit volume of the other domain

types. The possible domain types may be surface wells, tile drains, discrete fractures or

dual continuum.

In Equation (2.1), the primary solution variable is the pressure head. To solve for

this variable, a constitutive relationship is required to relate the pressure head to other

secondary variables such as the saturation and permeability terms. The saturation can be

related to the pressure using the [Brooks and Corey , 1964] relationship:

Sw = Swr + (1− Swr)|αψ|−β for ψ < −1/α

Sw = 1 for ψ ≥ −1/α
(2.5)

and the relative permeability is described by:

kr = S2/β+3
e (2.6)

where α [L-1] is the inverse of the air entry pressure head, β [dimensionless] is a number

which characterizes the pore size distribution, and Se is the effective saturation. The

effective saturation is determined by Se = (Sw + Swr)/(1− Swr), with Swr referring to the

residual water saturation [dimensionless].

The following pressure-saturation relationship was described by [Van Genuchten, 1980]:

Sw = Swr + (1− Swr)
[
1 + |αψ|β]−ν

for ψ < −1/α

Sw = 1 for ψ ≥ −1/α
(2.7)
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with the permeability being described by:

kr = S(lp)
e

[
1− (

1− S1/ν
e

)ν
]2

(2.8)

where: (
v = 1− 1

β

)
, β > 1 (2.9)

and where α and β are obtained by fitting (2.7) and (2.8) to experimental data.

The description of subsurface flow in the saturated zone is done by expanding the

storage term on the right hand side of (2.1) to relate a change in storage to a change in

fluid pressure through compressibility terms. This requires the assumption that the bulk

compressibility of the porous medium is constant for saturated conditions. For unsaturated

conditions, it is assumed that the compressibility effects on the storage of water is negligible

when compared with the changes in saturation. Following [Cooley , 1971; Neumann, 1973],

the following expression for the storage term is developed:

∂

∂t
(θsSw) ≈ SwSs

∂ψ

∂t
+ θs

∂Sw

∂t
(2.10)

where Ss is the specific storage coefficient of the porous medium [L-1].

The solute mass conservation equation is written in terms of concentration as:

∂

∂xi

(
θDij

∂C

∂xj

)
− ∂

∂xi

(qiC) = θ
∂C

∂t
+ ρb

∂Csolid

∂t
(2.11)

where the Darcy flux qi is computed by solving (2.1), ρb is the bulk density, Csolid is the

adsorbed concentration in the solid phase and Dij is the hydrodynamic dispersion tensor

[Bear , 1988]:

θDij = (αl − αt)
qiqj

|q| + αt|q|δij + θτDwδij (2.12)

where αl and αt are the longitudinal and transverse dispersivities respectively, |q| is the

magnitude of the Darcy flux, τ is the tortuosity, Dw is the free solution diffusion coefficient
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or simply the diffusion coefficient and δij is the Kronecker delta. The pore water diffusion

coefficient is obtained by τDw. In literature, the pore water diffusion coefficient is also

referred to as the diffusion coefficient of the porous medium [Bear , 1988]. A linear Fre-

undlich adsorption isotherm is normally assumed between the concentration in the solid

phase and the concentration in the aqueous phase:

Csolid = K ′C (2.13)

where K ′ is the equilibrium distribution coefficient [L3M−1]. Substitution of (2.13) into

(2.11) gives:
∂

∂xi

(
θDij

∂C

∂xj

)
− ∂

∂xi

(qiC) = θ
(
1 +

ρb

θ
K ′

) ∂C

∂t
(2.14)

More frequently, a dimensionless retardation factor, R given by [Freeze and Cherry , 1979],

is used as the indicator to describe the linear adsorption isotherm between the aqueous

and solid phases:

R = 1 +
ρb

θ
K ′ (2.15)

In Equation (2.14), it is important to note that the dispersion and advection terms are

dependent on the Darcy velocity. The water content appears solely as a multiplier on the

accumulation term with the multiplier also including the adsorption-isotherm.

2.2 Methods for the Identification of Contaminant

Transport and Source Parameters

Groundwater flow and contaminant transport models are widely used to predict contami-

nant plume migration and attenuation, to assess the adverse impacts at potential receptors,

and to design efficient strategies for mitigating groundwater contamination problems. The

contaminant source information reconstructed by the calibration of the transport model is

increasingly used as forensic evidence to identify responsible parties for the contamination

and to assign liability among them, due to the limited funds available for the cleanup of

contaminated sites. Because the evolution of the contaminant plume is determined by the
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transport parameters, contaminant source information, and the groundwater flow field,

parameter identification becomes a critical step in the application of the models. Unfor-

tunately, parameter identification is an inherently difficult process due to the dispersive

term in the advective-dispersion equation. Inverse modelling of contaminant transport

in groundwater is an irreversible and ill-posed problem, which is unstable and sensitive

to errors in data [Skaggs and Kabala, 1994; Woodbury and Ulrych, 1996; Snodgrass and

Kitanidis , 1997]. Thus, a considerable effort has been devoted to the estimation of contam-

inant source release history and transport parameters. The first attempt to formulate and

solve this inverse problem was initiated by Gorelick et al. [1983] using a linear optimization

model. Following this work, a variety of inverse modelling techniques have been proposed,

including the estimation of the release history of a known source, identification of the lo-

cation of sources, and recovery of the historical contaminant distribution. An extensive

literature review of commonly used inverse methods has been presented by Atmadja and

Bagtzoglou [2001a].

In general, inverse modelling techniques can be divided into three broad categories based

on their mathematical formulations and applications [Liu and Ball , 1999]: full estimation

methods, parameter estimation methods, and backward tracking. For the cases with no

knowledge of source history, except for the lower and upper concentration bounds, full

estimation methods, which provide a function estimate of the history of contamination,

are more appropriate and therefore received a large amount of attention in the past decade.

If prior knowledge of the source model for a contaminant is known, applying the parameter

estimation methods is more efficient and accurate. In practical situations, the cases with

instantaneous point source that can be solved by the method of backward tracking are not

very common, with this inhibiting the method’s usefulness. However, for certain cases, the

method of backward tracking is still an efficient way to obtain information about the prior

position of contamination or travel time of contamination from an upgradient location.

Table 2.1 provides a brief summary of inverse modelling methods for reconstructing source

release history. A detailed review of the inverse modelling methods for finding the history

of contamination will be presented in the following paragraphs.
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2.2.1 Full estimation methods

Tikhonov regularization

As a regularized least squares method, Tikhonov regularization (TR) enables the ill-posed

inverse problem to be a well-posed optimization problem by adding a regularization term

to the objective function. Then the function to be minimized is

min
(‖y −Gs‖2 + α2‖Ls‖2

)
(2.16)

where y is the vector of measured concentrations; s is the vector to be solved, representing

the source concentration for each time step in this context; G is a matrix of weighted kernel

function, which is the solution of the advective-dispersion equation; L is the regularization

operator; and α is the regularization weight, which determines the relative weight between

these two terms when solving this minimum objective function. Therefore, the Tikhonov

method actually improves the stability of the inverse problem at the expense of accuracy

[Neupauer et al., 2000]. Normally the regularization operator is expressed as a measure of

smoothness of s

‖Ls‖2 =

∫ tb

ta

(
dns

dtn

)2

dt (2.17)

where t is the time; ta and tb denote the starting and ending time for the contaminant

source respectively; dn/dtn is the nth derivative of s. A value of n = 2 is most commonly

used to obtain a smooth solution [Provencher , 1982]. Because the value of α plays a key

role to the accuracy of the regularized solution, several methods have been suggested for

finding an optimal value for α. Most methods require prior knowledge of measurement

error statistics, which is rarely available. One applicable method of estimating α employed

by Skaggs and Kabala [1994]; Liu and Ball [1999] was developed by Provencher [1982],

which seeks an optimal balance between reducing the variance of the solution and biasing

the solution.
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Skaggs and Kabala [1994] applied Tikhonov regularization to reconstruct the contam-

inant source release history. They studied a 1-D contaminant transport problem in a

saturated homogeneous aquifer and attempted to recover the nonnegative release history

of a plume with prior knowledge of point source location. The result shows that “the

regularized solutions are insensitive to round off errors but their accuracy is heavily depen-

dant on the plume measurement errors and the extent to which the plume has dissipated”

[Skaggs and Kabala, 1994]. It would be impossible to reconstruct the history of a plume

that has dispersed to background concentration levels. Finally, they pointed out that the

accuracy of plume measurements has more weight on the recovered plume history than

that of the parameter estimates. Thereafter, a case study was conducted by Liu and Ball

[1999] using this technique to identify the contaminant source history from measured con-

taminant concentrations within a low permeability aquitard at Dover Air Force Base. The

forward modelling of contaminant transport based on the recovered contaminant source

history gave similar results as the measured data for both PCE and TCE, except for the

deeper TCE concentrations. Although the TR technique performs well in the hypotheti-

cal example and field case applications described above, it needs to be remembered that

the introduction of the regularization term to the objective function will bias the anal-

ysis [Provencher , 1982; Skaggs and Kabala, 1994]. Further, because the commonly used

second-order TR attempts to fit a smooth function, TR is not applicable to the case of

step source history [Neupauer et al., 2000]. Finally, TR is a deterministic approach, and

the arbitrariness in selecting the derivative operator and regularization weight suggests

regularized solution is only one solution out of an infinite number possible, not definitely

the best [Woodbury and Ulrych, 1996].

Minimum relative entropy

The principle of minimum relative entropy (MRE) originated from probability theory and

was first introduced by Kullback [1959]. As the general form of maximum entropy approach,

MRE states that given a prior estimate of the probability density function (pdf), subject

to constraints imposed by the observed data, a posterior pdf is chosen to minimize the

16



relative entropy H (q, p) in probability space.

H (q, p) =

∫
q (x) ln

[
q (x)

p (x)

]
dx (2.18)

where, q (x) and p (x) are prior and posterior pdfs respectively. In another words, MRE

attempts to minimize the “distance”, in an information sense, between the prior and the

new constraint [Woodbury and Ulrych, 1993]. This principle has been applied to a wide

variety of fields. Woodbury and Ulrych [1993] originally applied the principle of MRE

to the forward probabilistic modelling of contaminant transport problem in groundwater

hydrology. In their work, MRE was used to estimate the prior pdf of hydrologic parameters

subject to the unimodular constraint and the expected value constraints with the base level

knowledge of a joint boxcar pdf (uniform distribution between upper and lower bounds).

The prior estimate of a parameters’ pdf, which minimizes the relative entropy to the boxcar

pdf, is a multivariate truncated exponential.

Woodbury and Ulrych [1996] extended the MRE’s application to recover the release

history of a groundwater contaminant. By additionally imposing a discrete set of observed

data constraints to the prior estimated pdf derived in Woodbury and Ulrych [1993] and

applying the same derivation procedure, the posterior pdf is a multivariate truncated ex-

ponential as well. They applied this inverse method to the same hypothetical problem

as that of Skaggs and Kabala [1994]. For noise free data, MRE tends to reconstruct the

source release history indistinguishable from the true history and performs better than TR.

For data with noise, if only the noise level is known exactly, MRE is able to recover the

salient features of the source history. Otherwise, MRE is sensitive to the specified noise

level[Neupauer et al., 2000]. If the data contains unknown noise, Ulrych and Woodbury

[2003] shows that the noise level in MRE can be estimated from the data themselves, anal-

ysis of data residuals, and a rigourous approach using the real cepstrum and the Alaike

Information Criterion, and MRE performs well on problems with delta-like sources. The

advantage of MRE is that due to the assumption of the joint boxcar pdf, it is very easy

to enforce parameter lower (nonnegativity) and upper bounds (solubility limit), which are

often hard to handle for other inverse methods. In addition, another advantage of using

the MRE approach is that once the source release history is determined, future behavior

of the plume can be predicted on the basis of probabilistic analysis. Woodbury et al. [1998]
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applied MRE to the practical case study problem with a 3-D constant velocity and constant

dispersivity system at the Gloucester Landfill in Ontario, Canada. “The relative entropy

measure is shown to be very useful in indicating reduction in uncertainty between the

posterior and prior as a result of the new information provided by the physical constraints

and data” [Woodbury et al., 1998].

Geostatistically based methods

Geostatistical approach is a methodology for the analysis of spatially correlated data,

including various techniques such as kriging, which assigns weights to the samples in a

manner to minimize the estimation variance [Kitanidis , 1997]. It is mainly used for spa-

tial interpolation [Kitanidis and Shen, 1996]. Kitanidis [1995] developed a quasi-linear

geostatistical theory for inverse analysis. Snodgrass and Kitanidis [1997] employed this

geostatistical approach combined with Bayesian analysis to the problem of source release

history reconstruction. The source function to be estimated is temporally discretised into

components, which are assigned a known correlation structure with unknown parameters.

Geostatistical approach is very general and actually includes Tikhonov regularization

and many common interpolation schemes as special cases. In addition, it gains the ad-

vantage over some other methods because it makes no assumptions about the nature and

structure of the unknown source function. It is considered to be robust enough to tackle

complex cases with multiple potential sources, spatially varying velocity field, and disper-

sion coefficients [Snodgrass and Kitanidis , 1997]. The solution also incorporates uncer-

tainty in contaminant concentration. Therefore, the confidence interval can be specified.

The limitation of this approach is that the location of the potential source must be known

a priori.

Snodgrass and Kitanidis [1997] modelled the example problem after the commonly used

hypothetical example [Skaggs and Kabala, 1994]. For the unconstrained case, the solutions

compare well with those obtained by Skaggs and Kabala [1995] using the method of quasi-

reversibility. Enforcing the nonnegativity constraint would improve the performance of the

method at the expense of computational efficiency, because more iteration steps are needed
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to converge. The constrained solutions compare favourably with those achieved by Skaggs

and Kabala [1995] using Tikhonov regularization. It has to be noted that the geostatistical

approach for both cases has the advantage of providing a measure of estimation uncertainty

or confidence interval.

Applications of geostatistical approach to contaminant source identification for the

Gloucester Landfill, Ottawa, Ontario, Canada and for the Dover Air Force Base, Delaware

were conducted by Michalak and Kitanidis [2002, 2003, 2004a], in which a Markov chain

Monte Carlo (MCMC) method coupled with Gibbs sampling algorithm and MCMC com-

bined with the application of Lagrange multipliers are implemented to enforce parameter

nonnegativity respectively. The last two applications are related to the estimation of the

source release history at the interface of two homogenous one-dimensional layers with dis-

tinctly different characteristics. The results demonstrate the applicability to field data,

as well as its robustness when applied to a non-uniform domain. Furthermore, the in-

corporation of methods to enforce nonnegative parameter effectively reduces estimation

uncertainty. In this manner, an upper constraint (such as the solubility limit in the case

of concentration) could also be taken into account, which would narrow the confidence

interval further.

Michalak and Kitanidis [2004b] originally extended the geostatistical approach to the

recovery of a historical contaminant distribution at a single time. In the work, they made

use of the adjoint state method to improve the efficiency of calculating the sensitivity

matrix. Another advantage of implementing the adjoint state method is that it allows using

existing groundwater transport codes to carry out the adjoint state simulations [Neupauer

and Wilson, 2001].

Quasi-reversibility

The method of quasi-reversibility (QR) was first developed by Lattes and Lions [1969].

Because the advection-dispersion equation for contaminant transport is not reversible and

ill-posed with a negative time step, the QR method would replace it by an equation which

is close to the original one but stable with reversed time. They substituted the QR op-
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erator (∂/∂t) − ∆ − ε∆2 for the dispersion operator (∂/∂t) − ∆, where ∆ stands for the

Laplacian operator and ε is a positive stabilization parameter. The source release func-

tion or historical contaminant distribution could be obtained by simulating contaminant

transport backward in time. Obviously, the QR method has the same problem as the TR

approach. The quasi-solution is biased by the introduction of a stabilization term which

makes the equation reversible. When ε is relatively small, the quasi-solution will be close

to the regular solution. QR requires complete information of contaminant distribution at

some time as well, which is actually rarely available but can be obtained through interpola-

tion and extrapolation methods. Skaggs and Kabala [1994]; Bagtzoglou and Atmadja [2003]

performed the comparisons of QR to TR and MJBBE (refer to the following paragraph)

respectively. The QR method is consistently less accurate than TR, but it is computa-

tionally less expensive and more straightforward [Skaggs and Kabala, 1994]. The authors

claimed that it is very easy to incorporate heterogeneous parameters in the QR method.

However, up to now, no case study solved by the QR or TR approach has ever incorporated

the heterogeneous parameters. Finally, Bagtzoglou and Atmadja [2003] showed QR to be

inferior to MJBBE for most cases, except for the case with homogeneous parameters and

with initial data which are characterized by uncertainty.

Marching-jury backward beam equation method

Atmadja and Bagtzoglou [2001a]; Bagtzoglou and Atmadja [2003] developed a method

named marching-jury backward beam equation (MJBBE) to recover plume spatial dis-

tributions and source release history. The results demonstrated that MJBBE is computa-

tionally efficient and robust enough to handle heterogeneity. More importantly, it is able

to keep the shape and salient features of contaminant plume or release history. However,

it cannot be used to recover the plume near the initial time, because the errors increase

as the solution is backtracked toward the initial time [Bagtzoglou and Atmadja, 2003]. In

addition, MJBBE requires too much input information including initial and final condi-

tions and the error bounds between the measured and the exact values, which is almost

not available for most field cases.
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Progressive genetic algorithm

Aral et al. [2001] proposed a new combinatorial approach, called progressive genetic algo-

rithm (PGA), to solve the nonlinear optimization model that describes the identification

of contaminant source location and release history in a 2-D heterogeneous aquifer. They

tested this deterministic approach to three different conditions. The computational results

indicate its robustness and effectiveness under those conditions. What’s more, the PGA

method is the only one which has been applied to the identification of the contaminant

source location and release history simultaneously [Aral et al., 2001]. But two requirements

are necessary to solve the identification problem properly: at least one observation data

for each time step; more independent observation data than the number of variables.

2.2.2 Parameter estimation methods

Gorelick et al. [1983] initiated the first attempt to recover sources of groundwater pollution.

They assumed the hydrogeologic parameters were known. They made use of least-squares

regression and linear programming to determine source locations and magnitudes with

the objective function defined by the absolute values of the difference between observed

and simulated data. Error analysis were performed to determine the source locations and

magnitudes in a probability framework.

Wagner [1992] developed an inverse model for simultaneously estimating the model

parameters and characterizing the contaminant source by the method of non-linear maxi-

mum likelihood estimation. A distributed source term is included as parameters in a 2-D

steady-state groundwater flow and contaminant transport model. He applied the model

to investigate a few examples with temporally and spatially varying source release his-

tory. The fairly accurate results demonstrate its usefulness for the cases with a simple

contaminant release scenario.

A 2-D heterogeneous field case study in Denmark was presented by Sonnenborg et al.

[1996] for the first time, in which flow and transport parameters are estimated simultane-

ously with contaminant source strength using nonlinear least squares multiple regression.
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In addition, the sensitivity of this optimization approach to steady-state versus transient

flow conditions was conducted. The estimated parameters with transient flow differed

slightly from those with steady-state flow condition, and resulted in a better fit. However,

the convergence rate under transient flow condition was low, and if the initial parameter

vector was far away from the optimal value, there existed a high probability of ending with

either a local minimum or unrealistic parameter estimates.

Alapati and Kabala [2000] employed a non-linear least-squares method (NLS) without

regularization to determine the parameters in source release function for 1-D homogeneous

systems. They found this method was very sensitive to noise for gradual release scenarios,

but can tolerate a much higher level of measurement noise for catastrophic release scenarios.

Mahar and Datta [1997, 2001] proposed a methodology to determine contaminant

sources and the optimal design of a groundwater quality monitoring network for improved

identification of contaminant sources. In the methodology, an optimization model was

embedded and solved by the projected augmented Lagrangian (PAL) algorithm. They

applied this method to a hypothetical 2-D homogeneous, isotropic, and saturated aquifer

with conservative contaminant. The effects of parameter uncertainty on the contaminant

sources and optimal design were not adequately discussed in their papers. Mahar and

Datta [2000] also used a nonlinear optimization model for identification of contaminant

sources in transient groundwater system.

An analytical solution-based inverse approach was developed by Sidauruk et al. [1998]

to identify the point source location and transport parameters. After taking the logarithm

of an analytical solution, a linear relationship between the plume concentration and the

distance from the source could be set up. Therefore, unlike other methods, the objective

function of this approach is the correlation coefficients of linear regression. The approach

succeeded in estimating source locations and transport parameters for instantaneous and

continuous point sources in a 2-D uniform groundwater flow system. Due to the strict

assumptions made when deriving the analytical solutions, its application is limited to

homogeneous aquifers, uniform flow and simple geometries.

Sciortino et al. [2000] presented a deterministic inverse modelling approach for identi-
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fying the location and size of a rectangular DNAPL pool. In this approach, the DNAPL

pool at the bottom of a 3-D homogeneous, saturated, and half infinite domain was treated

as a Neumann type boundary condition. In other words, the concentration gradient nor-

mal to the DNAPL pool was already known. Then the analytical solution describing the

solute transport was derived by assuming constant mass transfer coefficient governing the

dissolution process across the pool. They formulated the inverse problem as a least squares

minimization problem, and then solved it by the Levenberg-Marquardt method coupled

with a genetic algorithm to avoid local minima or a non-unique global minimum. Three

applications to the controlled bench-scale experiment shows that the inverse solution is

sensitive to the location of the observation wells, the type of residuals minimized, and

errors in the dispersion coefficients.

In summary, unlike the approaches employed for full-estimation problems, there is no

vast difference among the approaches in this category. In fact, almost all of them can be

classified as optimization approaches. They usually follow the same procedure: define an

objective function often expressed as the squared difference between the simulated and

observed data, apply an optimization algorithm to solve the inverse problem subject to

constraints (such as nonnegativity, solubility), and sometimes perform a sensitivity analysis

in the end. It should be noted that all the approaches discussed above have been applied

to estimate the parameters characterizing the contaminant source. Some other stochastic

optimization approaches, having successively identified groundwater flow and contaminant

transport parameters such as simulated annealing, and tabu search, may be appropriate

to solve this kind of problem and need to be examined for their applicability to this field.

2.2.3 Backward tracking for instantaneous point sources

Bagtzoglou et al. [1991, 1992] employed backward location probabilities to identify sources

of contamination. They obtained probability distributions using a random walk method by

reversing the flow field and leaving the dispersion part unchanged. Wilson and Liu [1994]

solved the ADE using the stochastic differential equations backwards-in-time. Wilson and

Liu [1994] kept the dispersion part unchanged and reversed the flow field as well. The
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results are interpreted as location and travel time probability distributions of contamina-

tion. In addition, they took the example of 1-D model to verify that this approach can be

generalized to include first order decay, linear equilibrium adsorption, and non-equilibrium

adsorption. Neupauer and Wilson [1999, 2001, 2002] developed a mathematical modelling

technique to derive the backward probability model in 1-D and multidimensional, het-

erogeneous aquifers using the adjoint state method. Neupauer and Wilson [2003, 2004]

extended the model to incorporate reactive transport including first order decay, linear

equilibrium sorption, and linear non-equilibrium sorption. However, due to the limitation

of an instantaneous point source, this approach cannot find a site’s contaminant release

history.

Inverse modelling of the field-scale contaminant transport problem is extremely com-

putationally demanding. Although rapid development of computer technology relaxes this

type of limitation to some extent, calibration of an inverse modelling problem needs further

investigation, especially when it comes to full estimation approaches. Over parameteriza-

tion frequently associated with full estimation methods tends to cause an automatic cali-

bration method to produce nonsensical results [Kitanidis , 1997; Moore and Doherty , 2006].

More importantly, due to the lack of data in the early contamination stage and the high

noise level in the data of the case study investigated in this thesis (refer to Figure 4.11),

full estimation approaches for this specific case study may not be applicable. Backward

tracking is not an ideal approach for inverse modelling problems with continuous non-point

pollution, reactive contaminants, or a fast changing flow field. Therefore, in this chapter,

a selection of regression methods are applied to the calibration of a physically-based three-

dimensional variably-saturated transient contaminant transport system with appropriate

assumption of the source model. All the computational work was conducted on a Shared

Hierarchical Academic Research Computing Network (Sharcnet).

2.3 Selected Parameter Estimation Algorithm

The main focus of this thesis is the performance comparison of the parameter estimation

for a computationally intensive transport model with alternative algorithms including both
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traditional and newly developed parameter estimation approaches. Parameter estimation

(PEST) method, frequently used for the calibration of hydrologic models, is a gradient-

based local search algorithm. The micro genetic algorithm (MicroGA) is a heuristic opti-

mization approach extensively applied to a variety of water distribution and groundwater

system problems [Savic and Walters , 1997; Reis et al., 1997; Babbar and Minsker , 2006].

Dynamically dimensioned search (DDS) is another stochastic search algorithm, designed

to find multiple good, but not locally optimal solutions [Tolson and Shoemaker , 2007].

“Good” means an agreement is achieved between the simulated and observed data, and

“multiple” is opposed to one global optimal solution. A description of each method is

followed by the reasoning behind its selection and implementation strategy.

2.3.1 Multi-start PEST

Parameter estimation (PEST) method is a model-independent nonlinear parameter esti-

mator. Since its inception in the mid 1990s, PEST has become the industry standard in

the calibration of all kinds of environmental problems [Doherty and Johnston, 2003; Moore

and Doherty , 2006]. The use of an innovative calibration algorithm is only justifiable if its

performance is superior or comparable with PEST. Thus, PEST is selected and serves as

the benchmark optimization algorithm for evaluating alternative approaches.

It is assumed that a natural system can be described by the linear equation:

Xb = c (2.19)

where, X is a constant matrix, a vector b holds the system parameters, and the vector c

denotes the system’s response or observation in the groundwater context. A least square

method is utilized to provide a best linear unbiased estimator of the system parameter

vector b. Non-linear models occurring in most cases must be locally linearized by Taylor’s

theorem with respect to certain values of model parameters b0 so that the least square

theory can apply:

c = c0 + J (b− b0) (2.20)

where, J is the first-order Jacobian matrix denoting the linear relationship between pa-
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rameter b and system response c. If the observation weights are correctly assigned, the

sum of square error Φ can be calculated using:

Φ = (c− c0 − J (b− b0))
t Q (c− c0 − J (b− b0)) (2.21)

By taking the first-order derivative and setting it equal to 0, the parameter vector b can

be expressed as:

b = b0 + u, u =
(
JtQJ

)−1
JtQ (c− c0) (2.22)

where, Q is a diagonal matrix whose ith diagonal element is the square of the weight

attached to the ith observation, and u is the parameter upgrade vector. The linearized

models are only approximately correct at local point b0 on the solution space. Then, the

validity of its linearity at the solution point b is not guaranteed, which will question whether

the objective function is at its local minimum. An iterative approach must be applied.

Figure 2.1, abstracted from the PEST manual, diagrammatically shows the process of

iterative convergence towards the objective function minimum.

Figure 2.1: Iterative improvement of initial parameter values toward the local optimum

The parameter upgrade vector u is not aligned with g, the steepest descent of Φ,

expressed as:

g =
∂Φ

∂b
= −2JtQ (c− c0) (2.23)
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g often leads to the phenomenon of “hemstitching” shown in Figure 2.2 (parameter set

jumps from side to side of a valley in Φ), especially in cases where parameters are highly

correlated.

Figure 2.2: The phenomenon of “hemstitching”

The vector u frequently gives a better parameter upgrade direction than g. Thus a

combination of u and g tends to provide better performance in the initial stages of the

estimation process. The upgrade vector u′ is expressed as:

u′ =
(
JtQJ + αI

)−1
JtQ (c− c0) (2.24)

where, α is the Marquardt parameter introduced by Levenberg to adjust the upgrade

direction, and I is the identity matrix. A large value of α is assumed for the initial

iterations. An upgrade vector closer to the direction of steepest descent results in faster

reduction in the objective function. As the estimation process progresses, decreasing α

makes it possible to avoid hemstitching. The value of α initially is supplied by the user,

and adjusted as the calibration proceeds.

Like all the other gradient based algorithms, the Gauss-Marquardt-Levenberg method

presented above is a local search technique. It can only find the local optimum in the

27



neighbourhood of the solutions around the initial solution. To circumvent the constraint

of local search with PEST, a multi-start method was implemented to endow PEST with

a stochastic feature. As the name implies, the multi-start method executes multiple times

from different initial solutions. In the context of a heuristic search, a multi-start can

be generally viewed as a method that iterates between two components: a constructive

method to create a new starting solution; and an improvement method to improve this

solution by local search. The optimization process operates as follows: a complete solution

is obtained through a constructive approach, then switches to implementation of a local

search procedure, once a local optimum is achieved within the convergence neighbourhood

of the initial solution, compare it with the best solution so far, generate a new starting

solution and enter another loop. Thus, a multi-start algorithm switches between these

two components while keeping the best solution found throughout the search process. The

purpose of diversifying the initial solution and restarting the local search procedure is to

drive the search into new regions of the solution space.

The hybrid multi-start PEST employed in this study can be deemed as a combination

of a stochastic approach and a conventional gradient-based search algorithm. The PEST

approach serves as the solution improvement part. For the constructive component, a

selective random generating approach was utilized. The initial solution sheds light on the

efficiency of the optimization algorithms. A better guess (initial solution) will generate

quicker convergence, especially for the gradient-based algorithms such as PEST. For each

constructive run (or pre-PEST module in this case), 10 solutions, which are considered

as enough samples to provide a starting point for optimization and to not incur heavy

computational cost, were randomly initialized with the parameter constraints enforced,

and then the best one with the least objective function value was selected as the starting

solution for PEST. The use of 10 solutions, as invoked in this study, is problem specific.

The two bases for the comparisons are: the objective function values because they

indicate the quality of the estimates, and the number of function evaluations, which tells

the amount of computational resources required.
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2.3.2 MicroGA

The genetic algorithm (GA) characterized as adaptive global search heuristics, is based on

the Darwinian principle of “survival of the fittest”. GA is composed of techniques inspired

by evolutionary biology such as inheritance, mutation, selection and crossover. Since its

development by John Holland in the 1960s, it has been widely explored in solving practi-

cal optimization problems in science and engineering disciplines. Contrary to a necessary

large number of individuals in each population for classical GA, MicroGA referring to a

small population genetic algorithm with re-initialization was suggested by Goldberg [1989].

Once converged for one generation, a new generation is started with the best individual

and the remainder of the population is filled with new randomly generated parents. Gold-

berg [1989] suggested that a population size of 3 was sufficient to converge, regardless of

the chromosome length (or dimensionality of the optimization problems). MicroGA with

re-initialization can avoid premature convergence, overcome stagnation and more rapidly

converge to the near optimal region [Carroll , 1996; Krishnakumar , 1989; Zhou and Harris ,

2008; Madadi and Balaji , 2008]. Krishnakumar [1989] compared MicroGA with a popula-

tion size of 5 against a simple GA with a population size of 50. Faster and better results

were obtained on two stationary functions and a real world engineering control problem (a

wind shear controller task). Carroll [1996] implemented classical GAs and MicroGAs to the

optimization problems of chemical oxygen-iodine lasers. The uniform crossover MicroGA

with a population size of 5 was identified as the best overall performer in his case study.

By implementing MicroGA concepts within a standard GA procedure, the new strategy

was demonstrated to have a beneficial effect in overcoming the stagnation encountered in

standard GA structure solutions Zhou and Harris [2008]. In addition, [Madadi and Balaji ,

2008] has shown that the method by integrating artificial neural networks (ANN) with

MicroGA requires less function evaluations than ANN, and the computational time can

be reduced substantially. Thus, the feature of re-initialization enables MicroGA to avoid

stagnation and premature convergence, and a relatively small population size makes the al-

gorithm converge faster. For the details on MicroGA algorithm, various types of operators

are introduced and discussed in the following [Goldberg , 1989]:

1. Individual solutions are randomly generated to form an initial population, based
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on the uniform distribution assumption over the entire range of the feasible region. To

apply the GA operators in continuous parameter space, a binary-string representation of

the solution space is required. The genotype of one parameter is a 6-bit binary digit

which contains 26 = 64 schemata. Through a one-to-one mapping of binary integers

to real numbers, 64 real values can be represented by their corresponding 64 schemata,

respectively.The mapping scheme is generally operated in monotonic linear or logarithmic

representation. For example, a parameter with feasible range of [2, 5] is denoted by a 6-bit

binary with linear relationship.

Table 2.2: Linear mapping from binary genotypes to decimal real numbers (vice versa)

Index Binary genotype Decimal real number

1 000000 2.000

2 000001 2.048

3 000010 2.095

4 000011 2.143

5 000100 2.190

. . . . . . . . .

63 111110 4.952

64 111111 5.000

As shown in Table 2.2, 000000 and 111111 represent lower and upper bounds respec-

tively, and the rest are uniformly distributed in the feasible solution space. It might be

noted that the length of binary genotypes place a limit on the accuracy with which the

solution can be found. The more binary digits it contains, the closer it approaches the real

value. Thus, MicroGA is specialized in finding multiple good global solutions as opposed

to precise local optima, which makes it especially suitable to ill-posed calibration problems.

For multiple parameter problems, all the genotype for each parameter can be united to

form a binary 6n-bit string or individual. The 6 binary digits between 6 (i− 1) + 1 and

6i, i = 1, 2, 3, . . . , n represent the ith parameter.
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Each time that the objective function is evaluated, the parameter must be decoded

to decimal equivalent. This conversion would tend to increase the computational time

for traditional GA, because thousands of individuals are normally suggested to ensure the

convergence. In this study, MicroGA requires much fewer individuals, and the forward

modelling of contaminant transport tends to take up most of the computing resources.

Thus the marginal cost of computational time introduced by converting binary into real

form is very trivial.

2. Divide the strings into genotypes for each parameter, convert binary genotypes

into decimal real number, evaluate the individuals by running the contaminant transport

model, assign objective function values as fitness for each individual, and establish the best

individual with the smallest function value. This step is not a typical GA operator, but

necessary for all the GAs.

3. Selection is to choose the individuals in the population that will create offspring for

the next generation. More emphasis is given to the fitter individuals in hopes that their

offspring will have even higher fitness. Strong selection tends to let suboptimal highly

fit individuals take over the population, and consequently reduce the diversity. While,

weak selection will result in slow evolution as inferior individuals can not be sufficiently

screened out. Numerous selection schemes have been proposed in the literature includ-

ing tournament selection and fitness proportionate selection (or roulette-wheel selection).

The MicroGA employs the tournament selection technique for the purpose of computa-

tional efficiency. Two candidate individuals are chosen at random from the population.

For conventional GAs, the fitter the individual, the more likely it is selected. MicroGA

only chooses the better of the two possible parents for mating. Candidate individuals are

returned to the population and can be selected again.

4. The crossover operator varies the sequence of a chromosome (or bit string of individ-

ual) between two parents to create offspring. It roughly mimics the biological recombination

mechanism between two single-chromosome organisms. Among a variety of crossover tech-

niques, a modified single-point crossover method, which generally gets good performance

with MicroGA [Carroll , 1996], is used to exchange continuous sections of chromosomes.

Firstly, a fixed probability, typically 0.5, determines whether the crossover is conducted or
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not. A single crossover point on both parents chromosomes is selected at random. Then,

all bit strings beyond that point are swapped between the two parent’s chromosomes. For

example, the bit strings 10000100 and 1111111 could be crossed over after the third point

in each to produce the two offspring 10011111 and 11100100 for the next generation.

5. Mutation is another fundamental feature for GAs. It involves a probability that an

arbitrary bit in the genetic sequence will be changed from its original state. The purpose is

to allow the algorithm to avoid local minima by preventing the population from becoming

too similar to each other, thus slowing or even stopping the evolution. However, mutation

is not implemented in the MicroGA, and it is replaced by two new operators called Newgen

and Gamicro. To maintain the elite individual, Newgen will surrogate a random offspring

by the best parent if it is not replicated by one of the children. This is particularly true

when a good solution contains building blocks which might be disrupted by a non-respectful

crossover operator. Compared to GAs, an extremely small size of population will result

in the early convergence denoted by the fact that more than 95% of the number of bits in

the micro population are the same as the best member. The Gamicro operator will keep

the best individual and fill the remainder of the population with new randomly generated

parents for the next generation.

6. Check if the maximum number of generations is reached. If not, return to step 2.

Execution time is always a concern for the heuristic approaches. Independence of indi-

viduals within each generation facilitates the parallelization of the MicroGA code without

touching upon memory and processor management. To save the actual elapsed time (the

CPU running time can not be reduced.), MicroGA was parallelized for the work of this

thesis with OpenMP [Sun, 2003], which is a shared memory multiprocessing programming

model. The original and parallel do constructs for objective function call are shown in

Figure 2.3. The first command on the right sets 4 threads to use for the subsequent par-

allel region. A do loop directive is encompassed by a parallel do directive. Two private

parameters, j and funcval, are not shared among multiple processors.

Probability of crossover is set at 0.5 based on a consideration of previous experience

with this MicroGA [Carroll , 1996]. The population size was set to 4, in order to conform

32



call omp_set_num_threads(4)

c$omp parallel do private(j, funcval)

do j=jstart,jend

call func(j,funcval)

fitness(j)=funcval

end do

c$omp end parallel do

do j=jstart,jend

call func(j,funcval)

fitness(j)=funcval

end do

Figure 2.3: Original and parallelized codes of the objective function call with OpenMP.

the maximum number of processors sharing memory on the Sharcnet with AMD’s dual-core

Opteron processors. The generation limit is the maximum objective function call divided

by 4 processors. Thus, OpenMP parallelization will make the calibration almost 4 times

faster than before for the case study of this thesis, because function evaluation requires

much more computing effort than MicroGA itself.

2.3.3 DDS

Dynamically dimensioned search (DDS), developed by Tolson and Shoemaker [2007], is

a novel stochastic single-solution based heuristic global search algorithm. Like MicroGA,

DDS is designed to find multiple good global solutions within the specified parameter range.

Unlike PEST, the stopping criteria for this algorithm is the user-specified maximum num-

ber of function evaluations. It is dynamically and probabilistically adjusted from global

to local search by scaling down the dimensions of decision variables for perturbations in

the neighbourhood as the search proceeds. Thus, DDS is specifically designed for high

dimensional calibration problems that require only good solutions rather than a global op-

timum. Tolson and Shoemaker [2007]compared DDS performance to the shuffled complex

evaluation (SCE) algorithm for multiple optimization test functions and the calibration of

a real case study, the SWAT2000 Cannonsville watershed model with various formulations.

With respect to convergence rates and objective function values, DDS was demonstrated

to be more efficient and effective than SCE in all of the formulations. The complete DDS
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algorithm is summarized as follows:

1. Define the neighbourhood perturbation size, maximum number of function evalua-

tions, m, and randomly generate an initial solution.

2. Evaluate the objective function for the initial solution.

3. For each parameter, determine whether it is selected for the following perturbation

with probability P , where P = 1 − ln (i) /ln (m), i is the iteration count. Generate

a random number from the uniform [0,1] distribution. If the random number is less

than probability P , this parameter will be selected for the perturbation.

4. Perturb the selected parameters using standard normal random variables scaled by

the neighbourhood perturbation size and parameter ranges; all the parameter box

constraints must be honoured.

5. Evaluate the objective function at the new solution and update the best solution if

necessary.

6. Check the stoping criteria. If not, return to step 3.

In step 4, a reflecting boundary is employed to enforce the constraints of the upper and

lower limits on the decision variables. For instance, if the perturbed candidate solution is

0.1 smaller than the lower bound, the new solution will be the minimum plus 0.1. The

scalar neighbourhood perturbation magnitude is the only one algorithm parameter that

defines the standard deviation for random perturbation size as a fraction of the feasible

parameter range. By default, the neighbourhood size parameter of 0.2, recommended

by Tolson and Shoemaker [2007], tends to produce a sampling range over halfway of the

feasible parameter ranges.
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Chapter 3

Development of the Groundwater

Flow Model for the Reich Farm Site

The Reich Farm Superfund site is located in the Pleasant Plains area of Dover Township,

Ocean County, New Jersey. A regional view of the key features near the Reich Farm site

is shown in Figure 3.1. This site has attracted considerable attention from groundwater

modelers as a result of environmental pollution incidents over the past 30 years. Many

groundwater models have been created since 1986 [Sykes and Normani , 2002] (Appendix

A) and [Normani et al., 2003], with most of them being based on MODFLOW and the finite

difference method. In this chapter, a description of the site history and physical setting

are presented and used to construct the conceptual model. Subsequently, the groundwater

flow investigation and contaminant transport simulation analysis using HydroGeoSphere

are described with the objective being the formulation of the optimization problem for the

calibration of contaminant transport parameters.
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Figure 3.1: A regional view of Toms River and locations of key sites

3.1 Site History

In 1971, an independent waste hauler was hired by the Union Carbide Corporation (UCC)

to transport 55 gallon drums of chemical wastes from the Bound Brook facility to the

Dover Township Municipal Landfill (DTML) in Figure 3.1 for disposal. During a 5-month

period in 1971, 5,000 to 6,000 drums of wastes containing aromatic hydrocarbons, phenols,

halogenated aliphatic hydrocarbons, polymeric resins and unspecified petrochemicals were

removed from the UCC facility by the contractor.

In August 1971, the waste removal contractor leased a part of the Reich Farm property

from the owner for the use of storing the empty drums. four months later, the owner of the

property found approximately 4,500 drums of chemical waste on the part of the property

leased to the contractor, and trenches where the wastes were dumped. Of 4,500 drums

of wastes on the Reich Farm property, approximately 10% were partially or completely

dumped, indicating that part of the wastes were discharged into the soil and groundwater
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at the site. This led to contamination of local groundwater, and consequently the source

of drinking water for that area. The remainder of the drums and trench wastes were

removed for burial or incineration. In 1974, approximately 51 additional drums and 29,700

cubic feet of contaminated soil were removed from the Reich Farm property by UCC and

transferred to the Kin-Buc Landfill in Edison, New Jersey. Furthermore, 37 UCC drums

were discovered in Dover Township on two parked trailer trucks of the waste hauler. The

drums were removed by UCC.

Because the local groundwater system, which was serving as a major source of drink-

ing water for Dover Township, was heavily polluted by the dumped organic wastes, the

cleanup action was carried out approximately 2 years after the discovery of the dump. At

the beginning of 1974, an investigation of groundwater quality confirmed that the ground-

water in private wells in the area near the Reich Farm site was contaminated with organic

compounds. But, most chemical testing was not able to identify individual organic com-

pounds at that time. In 1986, additional private well and a few community wells at the

Parkway well field in Figure 3.1 were discovered to contain certain VOCs and/or semi-

volatile organic compounds. The organic compounds were identified as predominantly

trichloroethylene (TCE) and tetrachloroethylene (PCE). In 1996, another chemical re-

leased from organic wastes back in November 1971, styrene-acrylonitrile trimer, was found

in some wells in the Parkway well field.

To reduce the potential exposure to site-related contaminants, many private wells af-

fected by the Reich Farm contaminant plume were closed by the Dover Township Board of

Health after the investigation indicating the presence of organic compounds. A well restric-

tion zone in the area of Reich Farm was also established, following the recommendation

by the New Jersey Department of Environmental Protection. In response to the fact that

the contaminant plume originating from Reich Farm was extending toward the Parkway

well field of United Water Toms River (UWTR), in 1988 UWTR installed a packed tower

aeration (air stripper) treatment system for the output of two community water supply

wells (well 26 and well 28, shown in Figure 3.2) to remove VOCs. The high pumping rate at

the Parkway well field influenced the movement of the contaminant plume and its spatial

distribution, and in fact captured the plume emanating from the Reich Farm site. The
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treated groundwater was used to meet municipal demand. To eliminate contaminated soil

as a long term source of groundwater contamination, in 1995, over 378,000 ft3 of contam-

inated soil was further excavated and treated in an enhanced volatilization unit to meet

the soil cleanup goals, and then backfilled to the excavated area.

Figure 3.2: Discharge area and UWTR well names and locations

In a model study of the Reich Farm contaminant plume [Sykes , 1995], it was deter-

mined that the most effective and reliable method to protect uncontaminated wells was

to continue pumping and treating of groundwater at the existing Parkway well field. The

treated groundwater was allowed to be distributed to the community water supply if the

water quality satisfied Federal and State drinking water standards. However, in November

1996, with the discovery of site-related styrene-acrylonitrile trimer in the community water

supply from two wells (well 26 and well 28), activated carbon adsorption units were built

to enhance the removal of organic chemicals. The treated water was discharged to the

surface area shown in Figure 3.2.

Original data for this study are in US customary units. These original units have been
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preserved in the analysis of this thesis.

3.2 Physical Setting

In the area of the Reich Farm site from Toms River eastward to Barnegat Bay in Figure 3.4,

the surficial geology is primarily the Quaternary unit comprised of undifferentiated allu-

vium deposits, beach sands and gravels, and Cape May Formation, which are composed by

black mud, light-coloured and pebbly sand and quartz. The Cohansey Sand that underlies

the Quaternary unit outcrops in the southern part of the study area. The Cohansey Sand

is predominantly a light-coloured quartz sand, containing very fine- to coarse-grained sand,

silty and clayey sand, and interbedded clay units [Zapecza, 1989]. Along the Toms River,

the Kirkwood Formation outcrops. The basal part of the Kirkwood Formation, which

makes up the underlying upper part of the composite confining unit, contains regionally

extensive clay layers. The upper part of the Kirkwood Formation, which is hydraulically

connected to the overlying Cohansey Sand and surficial deposits, is composed primarily of

dark gray to yellowish-brown fine sand to fine gravel and diatomaceous silty clay.

The Kirkwood Formation and Cohansey Sand comprise the major stratigraphic unit

in the study area: the Kirkwood-Cohansey aquifer system. The aquifer system thickness

is about 120 ft in the northwestern part of the study area and increases to about 220 ft

near Barnegat Bay. The elevation of the base of the Kirkwood-Cohansey aquifer system,

originally interpolated by Zapecza [1989], is shown in Figure 3.9.

3.3 Model Development History for the Reich Farm

site

Many groundwater models of the Reich Farm site have been created. The U.S. Geological

Survey (USGS), in cooperation with the New Jersey Department of Environmental Protec-

tion (NJDEP), created a MODFLOW [McDonald and Harbaugh, 1988] groundwater flow
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model to study the local aquifer system and its interaction with surface water. The aquifer

system’s response to groundwater withdrawals [Nicholson and Watt , 1997] was also evalu-

ated under both steady-state and transient scenarios. The New Jersey Geological Survey

(NJGS) developed a steady-state groundwater flow model, based on MODFLOW, to de-

termine the well head protection areas for the Parkway well field and Well 20 shown in

Figure 3.2 [Spayd , 1997].

The Reich93 Model [Sykes , 1995] was developed, based on the finite difference method

with both MODFLOW and SWIFT3 [Ward et al., 1984], to assess the saturated groundwa-

ter flow and proposed remedial alternatives for the Reich Farm Superfund site. The model

was calibrated for steady-state flow conditions with pumping at Parkway well field and

Well 20. The model was also employed to estimate the transport of TCE and PCE from

the Reich Farm site to determine the well field capture zones under transient groundwater

flow conditions caused by temporally varying pumping rates. Subsequently, a new version

of the Reich93 model, the Reich99 model [Sykes , 1999] was developed by extending the

study domain eastward to Barnegat Bay and separating the Kirkwood Formation from

the Kirkwood-Cohansey aquifer system. The study domain was vertically divided into 4

MODLOW layers. The top 3 layers correspond to the aquifer system, and the bottom layer

is the basal portion of the Kirkwood Formation. Instead of a constant hydraulic conduc-

tivity for the whole domain, a spatially varying hydraulic conductivity field was generated

from lithologic descriptions on drillers logs. The Reich99a model is an improved version of

the Reich99 model through refining the grid in the vicinity of the Parkway well field and

DTML. In addition, recharge variation both in time and space were taken into account for

better representation of varying precipitation from month to month. Therefore, unlike the

Reich99 model, the Reich99a model was designed to simulate transient groundwater flow.

Sykes and Normani [2002] further developed the Reich99a model to evaluate the tran-

sient saturated groundwater flow for the Reich Farm Superfund site. In the model, the

temporally varying recharge distribution was calculated by an integrated analysis approach

[Jyrkama, 2003] using the ArcView GIS environment and a hydrologic water routing model

HELP3 [Schroeder et al., 1994], which simulates daily water movement into the ground,

and accounts for snowmelt, evapotranspiration, vegetative interception, surface runoff, and
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temperature effects. The model included the most up-to-date well borings to further refine

the hydraulic conductivity field. Because data quality plays a key role in model calibration,

a thorough data quality check was performed. Inconsistency of well casing elevations from

different source documents were found, and over 40% of the approximately 1,750 water

level manual measurements were corrected by Sykes and Normani [2002] (Appendix A) as

a result.

3.4 Conceptual Model

The regional-scale conceptual model for the Reich Farm study that was developed by Sykes

[1999] forms the basis for the contaminant transport analysis developed in this thesis. The

study of Sykes and Normani [2002] further developed the groundwater flow conceptual

model, described the MODFLOW implementation of the conceptual model, calibrated

the flow parameters for the model using an innovative method that honoured well logs

obtained from the field-program of the study, and investigated the travel time for average

water particles moving from the Reich Farm site to the Parkway well field. The modelling

framework was used extensively to estimate the capture zones for the Parkway wells and

to recommend flow rates for the wells that would control the contaminants migrating

downgradient from the Reich Farm site. The recommended flow rates formed the basis of

an agreement between the U.S. Environmental Protection Agency and United Water Toms

River, the owner of the Parkway well field. However, this previous work involved no analysis

of contaminant migration from the Reich Farm site. The modelling of Sykes and Normani

[2002] was based on MODFLOW and did not include the unsaturated zone. Because

a necessary component of the contaminant transport analysis of this thesis is migration

through the unsaturated zone, the model HydroGeoSphere was selected. The switch of

models from MODFLOW to HydroGeoSphere necessitated a complete redevelopment of

the numerical aspects of the regional-scale groundwater system. The following sections

of this chapter describe the groundwater conceptual model as developed by Sykes [1999];

Sykes and Normani [2002]; details of the conceptual model are provided in the Appendix

of this thesis. This chapter contains only those elements of the conceptual model and the
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calibration of the groundwater system model that are germane to the HydroGeoSphere

implementation.

3.4.1 Spatial Domain and Boundary Conditions

The regional topographic elevation for the Reich Farm analysis, based on the USGS digital

elevation model, is shown in Figure 3.3. The DEM was used to define domain boundaries

and their features Sykes and Normani [2002]. The boundaries were chosen to match the

topographic features such as rivers, surface water flow lines and divides. It is assumed

that these boundaries could be used to describe groundwater divides, and also that the

directions of groundwater flow along the boundaries are insensitive to changes in pumping

rates at the UWTR Parkway well field. The spatial domain for the groundwater model as
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Figure 3.3: Elevation model for Toms River area

shown in Figure 3.1 extends eastward from Toms River to Barnegat Bay, and includes the

Parkway well field, the Reich Farm Superfund Site, and the Dover Township Municipal
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Landfill. This areal extent is considered to be large enough to reduce the possibility that

the applied lateral boundary conditions will influence the migration of contaminants.

The conceptual model outline for the study domain is shown in Figure 3.4. Toms

River flows through the western side of the top surface of the study domain, and it is

modelled using a constant heads or Dirichlet boundary condition in HydroGeoSphere. The

northern side is conceptualized as a groundwater divide, which is always orthogonal to the

ground elevation contour; therefore it is the divide for the surface water system and can be

regarded as a groundwater flow line (no-flow Neumann boundary condition). The Toms

River estuary and Barnegat Bay are represented in HydroGeoSphere by Dirichlet boundary

conditions, and the specified heads are set to zero representing mean sea level, and a high

hydraulic conductivity of 150 ft/day was assigned to the associated elements beneath the

estuary and Barnegat Bay. The other surface water bodies were initially described by

bed elevation, bed conductivity, bed thickness, reach width, reach length and river flow

depth. This representation of surface water bodies requires time steps small enough so

that HydroGeoSphere was numerically convergent, which makes the inverse modelling of

a transient, combined variably saturated flow and transport model too computationally

intensive and thus infeasible for the analysis of this thesis with current computing resources.

This fact is further developed in Section 4.3.1. To reduce the computational burden,

the rivers and lakes within the domain are either perched or represented using Dirichlet

boundary conditions, depending on their stage elevations. Stage elevations of surface water

bodies including Toms River were estimated from the USGS 7.5 minute quadrangle maps

combined with GIS layers for rivers, ponds and lakes obtained from NJDEP. The stage

elevations were assumed to be constant in time.

The top boundary corresponds to the ground surface, at which a Neumann boundary

condition is applied. The spatially and temporally varying inflow flux rates are equal to

the recharge rates calculated by the HELP3 model at the root depth. The recharge rate

depends on numerous factors that include land use/land cover, surface soils, evapotran-

spiration, weather data, and rainfall [Jyrkama, 2003]. The development of the spatially

and temporally varying recharge using the HELP3 methodology is described in greater

detail in the Appendix of this thesis. HELP3 model assumes that the vertical drainage is
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Figure 3.4: The conceptual model outline

driven by gravity alone (or unit gradient). A conclusion of Jyrkama et al. [2002] is that

the HELP3 methodology is an important component of the calibration of the Reich Farm

groundwater model; the investigation of the recharge methodology further to that devel-

oped by [Jyrkama, 2003] for the Reich Farm study is beyond the scope of this thesis. The

water travel path within the root depth is nearly vertical and the travel time is trivial,

compared to that in the whole domain. The recharge estimated with the HELP3 model at

the root depth is applied to the top surface of the HydroGeoSphere model. The recharge

rate for each finite element grid block is calculated by integrating the recharge rate per

square feet (obtained from the Jyrkama [2003] database for the Reich Farm site) over the

grid area. The average recharge rate for the whole study domain over 30 years was about

16.9 in/year, which is less than the value of 20 in/year used by the USGS and NJGS mod-

els. Figures 3.5 and 3.6 show typical recharge distributions for a dry (May 1981) and a

wet (May 1989) month across the entire modelling domain. It is clear that the recharge

varies significantly both spatially and temporally in the study area.

Below the ground surface, there is an unconfined Kirkwood-Cohansey aquifer system,

which serves as the principal conduit for lateral groundwater flow in the Reich Farm re-
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Figure 3.5: Spatially varying recharge for a dry month - May 1981
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Figure 3.6: Spatially varying recharge for a wet month - May 1989
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gion. The average thickness of this aquifer is approximately 200 feet. Immediately below

the Kirkwood-Cohansey aquifer, there is a clay layer of low hydraulic conductivity that

comprises the bottom of the domain. The bottom surface, defined by Nicholson and Watt

[1997], is represented in modelling by a no-flow Neumann boundary condition. In addition,

all vertical external edges of the study domain are represented by no-flow Neumann bound-

ary conditions, because either flow lines or water divides are assumed at those boundaries.

3.4.2 Three-Dimensional and Variably Saturated Modelling

In Section 3.3, none of the described groundwater flow models for the Reich Farm site

included the vadose zone. The source of contamination is normally located in the vadose

zone. The time lag for the recharge migrating downward to the transient water table

from the location of contamination is not negligible. Compared to the fully saturated

model, the reduction of effective cross-section area in the vadose zone tends to increase the

linear velocity and shorten the water routing. Thus, the vadose zone greatly influences the

migration of the contaminant plume.

The low ratio (around 1:200) of vertical to horizontal dimensions of the study do-

main suggests that a two-dimensional model is sufficient for groundwater flow simulation.

However it is not sufficient for contaminant transport simulation. The migration of con-

taminants may be significantly influenced by the vertical fluxes of groundwater flow in the

Kirkwood-Cohansey aquifer system, especially around the Parkway well field area. Screen

length and location is different for each monitoring and pumping well, so the knowledge

of the vertical contaminant distribution is necessary in order to successfully and accu-

rately fit the measured concentration. Therefore, a three-dimensional variably saturated

groundwater flow and contaminant transport model is developed in this thesis to simulate

the migration pathway of contaminants released from near ground surface at Reich Farm

down through the unsaturated zone to the water table and then down gradient to the

Parkway well field.
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3.4.3 Domain Discretization

Figure 3.7 illustrates the HydroGeoSphere spatial domain discretized with the aid of a two-

dimensional mesh generator and delaunay triangulator–Triangle [Shewchuk , 1997]. The

generation of this two-dimensional mesh was restricted with boundary constraint and in-

ternal physical constraints such as wells and Reich Farm Superfund site locations. To

satisfy the requirement of economy of computational effort, the mesh around the flow lines

between the potential source zone and pumping wells was refined, as much as possible, to

minimize grid Peclet number constraints, but it is coarser elsewhere. The resulting grid is

significantly more refined than the MODFLOW grid developed by Sykes [1999]. The node

number and element number for each layer are 5422 and 10726, respectively. To accurately

describe the contaminant concentration distribution in the vertical direction, the domain is

subdivided into 20 horizontal layers. In total, there are 113862 nodes and 214520 elements

in the domain. From the top to the bottom, there are 1 top surface soil layer with 5 feet

of depth representing surficial geology, 16 layers in the high hydraulically conductive part

of the Kirkwood-Cohansey aquifer system and 3 layers for the basal part of the Kirkwood

Formation, respectively. The interface elevation between the two aquifers, shown in Fig-

ure 3.8, and the bottom of the domain in Figure 3.9, were constructed by interpolation

from well driller’s logs using the kriging method. Such an interpolation is implemented

using SURFER. The interpolated elevations for the sub layers in the basal part of the

Kirkwood Formation are evenly distributed at intermediate distance. For the sake of de-

lineating the water table, the vertical discretization within the Kirkwood-Cohansey aquifer

system is dense for the upper layers, where the water table is most likely to be located, and

sparse for the lower layers. While 20 grid layers were used for the vertical discretization

of regional-scale model, this number is recognized to be insufficient for the detailed mod-

elling of variably saturated flow and the algorithms describing it in HydroGeoSphere. The

limitation of the vertical discretization is further developed in Section 3.4.5 of this thesis.
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Figure 3.7: 2-D triangular finite element for HydroGeoSphere groundwater flow model

3.4.4 Modelling Parameters

Porosity is defined as the ratio of the volume of voids to the bulk volume of a porous media.

It is independent of particle size but depends strongly on size distribution and packing.

For this case study, the main component of the Kirkwood-Cohansey aquifer system is

predominantly a light-coloured fine to coarse mixed sand. The range of value of porosity

for this type of porous medium is 30-40% [Bear , 1988]. Effective porosity is slightly smaller

than porosity, defined as the ratio of the interconnected voids to the bulk volume. In this

conceptual model, effective porosity of 0.3, inherited from the Reich99a model, is suggested

by Sykes [2008]. This value was used in the average water particle travel time analysis

developed for the U.S. Environmental Protection Agency. In this thesis, the porosity is

only used in the accumulation term of Equation 2.14. The accumulation term also includes

the linear adsorption isotherm.

Specific storage is composed of water compressibility and bulk medium compressibility,
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and defined as:

Ss = γ (βp + n · βw)

Where γ is the specific weight of water, n is the porosity of the porous media, βp is the

compressibility of the bulk aquifer, and βw is the compressibility of water. The βp-value

of sand lies in the range 10−7 − 10−9 m2/N [Domenico and Mifflin, 1965]. The specific

weight and compressibility of water at 20◦C are 9.8 × 103 N/m3 and 3.0 × 10−6 m2/N

respectively. Substituting into the equation above, the specific storage is obtained as

3.92×10−3−2.95×10−3 m−1 or 1.19×10−3−0.90×10−3 ft−1. In groundwater hydrology,

this parameter is normally encountered when pumping takes place in a confined, completely

saturated aquifer. For the unsaturated, unconfined shallow aquifer system, specific storage

does not play a key role in supplying the pumping water, because specific storage is far

less than the water capacity. In addition, its impact on the groundwater flow field and the

coupled contaminant transport is considered to be trivial, compared to the water capacity.

In this case study, a unique value of specific storage (1.0 × 10−3 ft−1) is selected at no

expense of the subsequent transport model calibration.

The vertical hydraulic conductivity for the top surface layer in each grid block is an

areally weighted average of conductivities associated with each soil type. The specific con-

ductivity values assigned to soil types are the same as those used in the HELP3 model to

estimate the recharge rate. Based on the Reich99a model by Sykes and Normani [2002] by

matching the simulated and measured hydraulic heads, the horizontal hydraulic conduc-

tivity in Figure 3.10 was calculated using an anisotropy ratio of 20 : 1. The grid blocks

that underly surface water bodies were assigned a horizontal hydraulic conductivity of 150

ft/day. For the layers within the Kirkwood-Cohansey aquifer system, the saturated hori-

zontal hydraulic conductivity distribution was derived by a kriging interpolation algorithm

with no drift, an exponential variogram, and a nugget variance of 225(ft/day)2 [Sykes and

Normani , 2002; Normani et al., 2003]. Known hydraulic conductivities were estimated

based on the data from the logs for wells and borings. Each soil category identified in a

well log was initially assigned a calibrated hydraulic conductivity value. The equivalent

horizontal hydraulic conductivity for the location of each well is the weighted arithmetic

mean of the soil-related horizontal K value, and the weight is proportional to the thickness

of each soil unit identified in the well log. The resulting two-dimensional interpolated field
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shown in Figure 3.11 was used to estimate the hydraulic conductivity for each element. A

constant horizontal hydraulic conductivity of 0.283 ft/day was assigned to the 3 layers in

the bottom of Kirkwood Formation. The vertical hydraulic conductivity was determined

using a horizontal to vertical anisotropy ratio of 20 : 1, which was shown appropriate by

the previous modelling effort.

3.4.5 Flux based method to calculate relative hydraulic conduc-

tivity

The HydroGeoSphere source code is distributed with the model executable program. The

availability of the source code facilitated adapting and modifying the code so that it was

suitable for this analysis of this thesis. In the process of model parameter estimation, it

was observed that the model deficiency of coarse discretization could not be overcome by

parameter adjustment alone. Further investigation into these deficiencies resulted in the

identification of the model modifications as follows.

Modelling unsaturated groundwater flow not only requires a highly intensive computing

effort, but also has numerical convergence issues. This is particularly the case in this study

where a temporally varying recharge boundary condition is applied at the top surface of

the model. A few options are available with HydroGeoSphere to describe the unsaturated

properties of porous media. Van Genuchten and Brooks-Corey expressions are the most

extensively used empirical relationships among relative hydraulic conductivity, water sat-

uration, and capillary pressure. The coefficients are normally provided by the user. The

coarse sandy soils of the Kirkwood-Cohansey aquifer of the Reich Farm study results in

highly nonlinear relationships for both models. Their use requires a very fine temporal and

spatial discretization, which leads to not only an extremely high computing demand, but

also non-convergence issues. HydroGeoShpere also is able to deal with user-defined tabu-

lar linear relationships for the unsaturated properties. Efforts were made to implement all

three methods to model unsaturated flow. However, due to the coarse discretization of the

domain necessary for the field-scale model, neither the intensive computing requirement

or convergence problem could be successively overcome in this case study with the model
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Figure 3.10: Horizontal hydraulic conductivity field for the top surface layer
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as received. In a similar finding, Sousa [2009] observed that ”the original van Genuchten

equation with FEFLOW required sub-centimeter thick layers to achieve convergence; this

is obviously too computationally expensive for a large-scale model. Therefore, a simplified

representation of the pressure head versus relative permeability relationship was used” in

his simulations. In a study of groundwater flow in the Grand River watershed AquaRe-

source Inc. [2007] used linear relationships in FEFLOW to describe the unsaturated zone.

They indicate that it is an industry standard to linearize the pressure versus saturation

relationship for the vadose zone. While such an approximation may enable the simulation

of unsaturated flow, if a solution can be obtained, the resulting saturations can lead to a

misrepresentation of the contaminant migration.

For this case study, because the top soil at the Reich Farm site has an average hy-

draulic conductivity of around 140 ft/day, and is vertically penetrable, the vertical flux

rate in the lower layer of the vadose zone is dominated by the flux in its adjacent upper

layer. Here, a flux-based method to calculate the relative hydraulic conductivity for the

vadose zone is introduced in Figure 3.12. In this method, assuming a unit hydraulic gra-

dient, with this being consistent with the HELP3 model used to estimate recharge, the

effective hydraulic conductivity is equal to the recharge rate for the top layer. Therefore,

the effective unsaturated hydraulic conductivity Kij,eff is equal to the unsaturated Darcy

velocity divided by the vertical hydraulic gradient which is subjectively set to be constant

at 1.0. For the top layer, the recharge flux, calculated using the HELP3 algorithm, is used

as the Darcy velocity. It must be noted that the discharge area, normally related to the

surface water body, is regarded as the first type boundary condition. No discharge flux

calculation is required. The relative permeability kr can be determined by dividing Kij,eff

by the saturated hydraulic conductivity Kij. Then, the groundwater flow simulation can

be conducted in the normal manner, where the water content θ is calculated using the

modelled suction pressure in the vadose zone and the van Genuchten soil water retention

function of equation (2.7) with the fitting parameters α, β, and the residual saturation

Swr. For the other layers in the vadose zone, the unsaturated hydraulic conductivity,

Kij,eff , is set using the Darcy velocity of the upper adjacent layer with a minimum of 0.03

ft/day. Based on experience, a lower value than the minimum tends to result in instability

and non-convergence issues. The soil water retention curve describing water content and
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pressure head relationship still holds, which is represented by the constitutive relationship

equation (2.7) of Van Genuchten [1980]. It is worth noting that the Darcy velocity in the

vadose zone used to determine Kij,eff is updated recursively for each time step until the

convergence is reached. By using the described method for determining estimates of Kij,eff ,

solutions for the unsaturated zone could be obtained for the coarse vertical discretization

necessary for the regional-scale analysis of this thesis. It is re-emphasized that due to the

coarse vertical discretization, a solution for the unsaturated zone could not be obtained

with the traditional algorithms for the unsaturated zone that were implemented in Hydro-

GeoSphere. It also is recognized that the numerical difficulties that were encountered in

the unsaturated zone simulation could possibly be lessened by the use of a boundary con-

dition at the domain surface as invoked in the integrated surface water and groundwater

module of HydroGeoSphere. However, such an implementation requires small time steps

making long-term simulations a computational burden.

Keff, 2, t = qvertical, 1, t-∆t

Top layer

Second layer

Third layer

Forth layer

Keff, 3, t = qvertical, 2, t-∆t

Keff, 4, t = qvertical, 3, t-∆t

Keff, 1, t = R

Recharge Assume a unit vertical
hydraulic gradient

van Genuchten equation holds for the pressure-saturation relationship

Figure 3.12: Flux based method to calculate kr

The parameters in equation (2.7) and the saturated hydraulic conductivity, required

for the variably saturated groundwater simulation, form a set of material properties that

characterize hydraulic properties of a particular soil. Values of these parameters can be

obtained by measurement, but such measurements are time-consuming and require special-

ized equipment. Laboratory based values were not available for this study. An alternative

54



for parameter estimation is the determination of sand, silt and clay content of the soil

followed by estimation for the parameter from a catalog of soil textures [Carsel and Par-

rish, 1988]. For all the 12 Soil Conservation Service (SCS) textural classifications, Carsel

and Parrish [1988] compiled a soil database obtained from measurements, estimated water

retention parameters for the van Genuchten model using a multiple regression equation,

and analyzed the limits of variation for each curve-fitting parameter. As mentioned in Sec-

tion 3.2, the surficial geology is mostly comprised of alluvium deposits, sands and gravels,

and the underlying Kirkwood-Cohansey sand is comprised of quartz sand, silty and clayey

sand. Due to the shortage of data for the actual content of sand, silt and clay, we can

roughly characterize this particular soil as sandy clay based on the soil description, and

determine the proper parameter values of professional judgment as displayed in Table 3.1.

For this case, the saturated volumetric water content θs is equal to porosity n = 0.3, and

the inverse of the air entry pressure head α is 2.0 ft−1.

Table 3.1: Limits of variation and actual values of sandy clay unsaturated hydraulic pa-

rameters for the van Genuchten model

Lower limit Upper limit Selected value

α [ft−1] 0.00 4.57 2.0

β 1.0 1.5 1.4

θr 0 0.12 0.07

The simulated hydraulic head distribution in December 1990 in Figure 3.22 was com-

pared to the results derived from the MODFLOW free surface groundwater flow model

(Reich99a) by Sykes and Normani [2002] (reproduced as Figure 3.13 in this thesis). At

the drawdown area of the Parkway well field, the vadose zone for the MODFLOW model

is deeper. The free surface model (Reich99a) tends to overestimate the hydraulic head

gradient in the vicinity of the wells due to the neglect of the horizontal groundwater flow

in the vadose zone. For other areas of the domain, there is good agreement between the

hydraulic head contours of the two analyses. This justifies the use, in part, of the flux

based method for simulating the groundwater flow in the vadose zone.
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Figures 3.14 and 3.15 show the extracted slices for the water saturation and the flow

lines located at Easting 572550 feet and Northing 427900 feet, respectively. There is

no significant difference between the water saturation distributions for the dry and wet

months, because the water saturation is calculated by the van Genuchten model based

on the pressure heads, which are almost constant given the assumption of unit hydraulic

gradient and the relatively stable water table at the Reich Farm site. However, the vertical

Darcy fluxes at the vicinity of the Reich Farm determined by the recharge are 0.0026 ft/day

for the dry month, and 0.0130 ft/day for the wet month. The flow lines verify the statement

that the top soil at the Reich Farm site is vertically penetrable so that the vertical flux

rate in the lower layer of the vadose zone is dominated by the flux in its adjacent upper

layer. The flow lines in Figures 3.14 and 3.15 become more horizontal when approaching

the water table.

Figure 3.13: Simulated transient piezometric heads in layer 3 of the Reich99a groundwater

flow model in December of 1990 from Sykes and Normani [2002]
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Figure 3.14: Plot of the water saturation distribution and the flow lines at Easting 572550

ft in the vadose zone
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Figure 3.15: Plot of the water saturation distribution and the flow lines at Northing 427900

ft in the vadose zone
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The actual travel time in the vadose zone is the key concern of incorporating the

unsaturated zone. Excluding the vicinity of the pumping well field, the flow direction

is straightly vertical. To verify the flux based approach in estimating the actual travel

time in the vadose zone, the example consists of 1 dimensional transient infiltration in an

unsaturated vertical column. The physical system is 30 ft long in the vertical direction,

with the top face corresponding to the ground surface and the bottom face corresponding to

the water table. The column is evenly vertically discretized into 30 elements. Initially, the

pressure head is determined by a steady-state simulation with the infiltration at the rate

of 16.9 in/year. The temporally varying recharge rate at the Reich Farm is then extracted

from the regional-scale model and applied to this 1-d verification example for a period of 30

years. The porous medium property and the simulation control options are identically the

same as those with the regional model, except that the constitutive relationships for the

porous medium are given by van Genuchten model in Equation (2.7) with the parameters

specified in Table 3.1. Figure 3.16 shows the evolution of particle travel time at different

releasing time for the regional model and the 1-d column. The travel paths are 15 ft long

for both models. In the regional model, the travel time was calculated from the location

of dumping site at 55 ft above the sea level to the water table roughly at 40 ft above the

sea level. In the 1-d column verification example, the travel time was estimated from the

midpoint to the bottom. The evolution of travel time for both models follows the same

trend. The travel time reflects the magnitude of the recharge rate with short travel time

indicating high recharge rate and vice versa. The maximal values of the absolute and

relative difference of travel time are 1.3 years and 0.16 in 1985. At the starting time of the

simulation period, the difference of the travel time is 0.07 years, which is trivial compared

to approximately 19 years of travel time from the dumping site to the pumping well field.

3.4.6 Hysteresis and Capillarity

Hysteresis and capillarity are important effects in groundwater modelling. The hysteresis

behaviour of the groundwater levels can be explained by a time lag in the flux in the

unsaturated zone. If the quick runoff processes, such as saturated overland flow and flow

in macropores, is the main mechanism for discharge or water infiltration down to the water
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tables, the time delays are negligible and the hysteresis effect becomes less pronounced

[Myrabo, 1997]. Capillary effect is strongly influenced by the pore size and connection of

porous media. Capillary rises for coarse sand and sand are only 2-5 cm and 12-35 cm,

respectively [Bear , 1988]. For the case study of the Reich Farm site, sand is the main

component of Kirkwood-Cohansey aquifer. Besides urban areas, most of the lands are

highly vegetated so that plant roots may serve as the major channel for the groundwater

flow in top soil. In addition, observed fast water infiltration demonstrates that flow in

macropores dominates. Therefore, hysteresis and capillary effects are minimized and are

not taken into account.

3.4.7 Pumping Wells

The transient groundwater flow is simulated by monthly averaged flow rates for the UWTR

Cohansey wells (Wells 20, 22, 24, 26, 26B, 28, 29, and 44). At the beginning of the

simulation period in October 1971, only Well-20 was in operation. Plots of the temporally

varying pumping rates for the wells, provided by George Flegal at United Water Toms

River, are shown in Figures 3.17 and 3.18. The varying withdrawal rates of the municipal

pumping well field result in a highly dynamic groundwater flow field, which also necessitates

the use of a transient modelling scheme. Of note in Figures 3.17 and 3.18 is the shut down
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of well 20 and the Parkway wells 26, 28 and 29 in 1988.
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Figure 3.17: UWTR monthly production volumes for Wells No. 20, 22, 24, and 26

3.4.8 Initial Condition

A steady-state groundwater flow analysis was performed to provide the initial condition

for the transient groundwater flow model. In the steady-state simulation, the spatially

varying recharge distribution to the top layer was determined as the average recharge

estimated using HELP3 for each HydroGeoSphere element for the period from October 1971
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Figure 3.18: UWTR monthly production volumes for Wells No. 26B, 28, 29, and 44
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to December 2000. A well-20 pumping rate of 46,420 ft3/day was applied. The pumping

rate is the average for the period from October 1971 to February 1972. The steady-state

hydraulic head distribution in layer 4 of the model is shown in Figure 3.19. From the Reich

Farm site, the groundwater approximately flows from northeast to the southwest towards

Toms River and its estuary. The steady-state groundwater flow established above also

served as the initial condition for transient groundwater modelling. The simulation period

for transient groundwater flow commenced in October 1971 and ended in December 2000.
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Figure 3.19: Steady-state hydraulic heads contour in Oct 1971

3.5 Groundwater Flow Simulation and Calibration

In order to utilize a predictive flow model in simulating contaminant transport and esti-

mating the effectiveness of future potential management practices, the flow model must be
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calibrated to field measured piezometric heads. Model calibration determines a reasonable

parameter set which produces satisfactory performance in fitting the measured data set.

The groundwater flow model calibration procedure discussed in this section follows the

methodology developed by Sykes and Normani [2002]. The results are produced using

HydroGeoSphere.

3.5.1 Observed Water Elevations

A large amount of water level measurements, both spatial and temporal, exist to facilitate

the calibration of the groundwater flow model for the Reich Farm site. Hydraulic heads

at 101 wells shown in Figure 3.20, were measured since 1985 by NUS, Ebasco, CH2M-Hill,

and Malcolm Pirnie Inc. There are over 410,000 discrete measurements, most were from

nine data loggers. However, there were a few issues related to data loggers. When the data

loggers were removed from the monitoring wells for downloading, they still continued to

record water levels at pre-specified times. In addition, discrepancies in water levels were

not always avoidable between readings prior to logger removal and after logger return to the

wells. Thus, the data from loggers were ignored in the calibration of the groundwater flow

model parameters. However, the logger data can be used to validate the appropriateness

of the flow model calibration (refer to Figures A.1 to A.6).

For the manual measurements, a through data quality check was performed by Sykes

and Normani [2002]. It was found that the top of casing elevations for a large portion of the

monitoring wells varied with the different source documents. Some top of casing elevations

had been recorded incorrectly for nearly 10 years, due to transcription errors or using

the wrong elevations. Further, the elevation benchmarks used by different contractors to

calculate water levels were inconsistent with each other. For the measurements at the Dover

Township Landfill wells, significant changes in water levels with time were discovered, which

might be caused by incorrect measurements or clogged well screens. Due to the reasons

stated above, around 20% of approximately 1,750 manual measurements were removed

from the data used for the following parameter calibration. Table 3.2 adjusted from Sykes

and Normani [2002] shows the number of data points in each year and well category.
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Table 3.2: Count of scatter data points by category and year

Category

Year All CH2M DTML EBASCO MPI NUS Other UWTR

1986 151 151

1987 48 1 24 20 3

1988 94 5 47 42

1989 15 15

1990 35 5 12 18

1991 63 6 22 14 21

1992 44 1 13 22 8

1993 54 6 12 22 14

1994 30 3 8 12 7

1997 300 12 45 177 38 28

1998 203 10 35 109 29 20

1999 157 6 48 20 53 18 12

2000 189 7 88 18 43 17 16

All Years 1383 71 142 256 452 383 3 76
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Figure 3.20: Locations of 101 domestic, pumping and monitoring wells

3.5.2 Calibration and Results

An iterative manual calibration procedure was employed to adjust model input parameters

to provide a better match between simulated and measured water levels. The infiltration

of water at the model surface was determined by Jyrkama et al. [2002]. The calculation of

the recharge was based on a LULC/soil combination map, snowmelt, evapotranspiration,

vegetative interception, surface runoff and temperature effects. Most of these factors were

fixed. Thus, the spatially and temporally varying recharge on the top surface was assumed

known, and the remaining parameters that could be perturbed were the hydraulic conduc-

tivity, porosity, and surface water elevations, especially the Toms River along the western

side of the domain.

The hydraulic conductivity field was generated by Sykes and Normani [2002] (refer

to the Appendix of this thesis) using a kriging algorithm, based on the estimated but

adjustable hydraulic conductivities from the lithology in well and boring logs. The value

for each element in the domain was assigned by interpolating the hydraulic conductivity
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field to the 2-D triangle mesh. This process was repeated until a good match was obtained

between simulated and observed water levels. However, ill-posedness due to a solution

highly sensitive to small changes in data can arise when predictions are made at locations or

times distant from observations clustered in space or time [McLaughlin et al., 1996]. In this

case study, the contaminant was released at the beginning of simulation period in October,

1971, but the water level measurements commenced from 1986. There exists the possibility

that the calibrated groundwater flow model in the early stage of the simulation period could

be inappropriately defined. In addition, as a result of pumping activities, the groundwater

flow system in the study domain was highly variable. The future contaminant transport

path is very sensitive to its early migration which in practice is dominated by advective

transport or groundwater flow direction. The contaminant travel time can be roughly

identified as the occurrence of the peak concentration in the concentration breakthrough

curves in the monitoring or pumping wells. Therefore, a particle tracking analysis, based

on the general knowledge of contaminant travel times, was conducted to assist in the flow

model calibration. This analysis, performed in this thesis using HydroGeoSphere, also

provided an initial estimate of the retardation factor.

The bottom layer of the high hydraulic conductive part of the Kirkwood-Cohansey

aquifer system, that most wells were in hydraulic connection with, is believed to be repre-

sentative. Figures 3.21, 3.22, and 3.23 show the hydraulic head contours for this layer in

December of 1980, 1990, and 2000, respectively. The highly dynamic nature of the local

groundwater flow system necessitated the transient model to describe the evolution of the

groundwater flow pattern. Initially, the groundwater around Reich Farm and the Parkway

well field flows from northeast to southwest towards the Toms River and its estuary. The

flow direction gradually shifted to the Parkway well field as a result of the operation of

its pumping wells. Hydraulic heads continued to decline for the same reason, especially

around the Parkway well field forming a head drawdown area. After year 1997, water

mounding formed in the southwest of Parkway well field was caused by recharging the

pumping water from wells 26 and 28 back to the subsurface after air stripper treatment.

A comparison between the HydroGeoSphere simulated and measured water levels is

presented in Figure 3.24. The agreement is considered to be good, given the fact that
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Figure 3.21: Simulated hydraulic head contour in Dec 1980

most of the scatter points lie within the narrow band of a 5 feet diagonal. Table 3.3

represents the averages of the absolute value of residuals between simulated and observed

water levels for monitoring years and well categories. The overall average of the absolute

value of the residuals is 1.93 feet. Except for the category with only 3 measurements,

NUS, Ebasco, and DTML have relatively small average values. Fluctuations of water

level are shown to be greatest near the Parkway wells and become smaller as the distance

from the wells increases. From the time point of view, the largest average value occurred

in 1997, even though there were 300 water level observations in that year. Residuals

from the MPI observations contributed most to the average value, because the recharge

activity commenced in 1997 greatly disturbed the original hydraulic system where the MPI

monitoring wells are located. Early water level observations before 1991 and recent water

level observations after 1997 show more favorable comparisons with the simulated water

levels.

68



Easting [ft]

N
o

rt
h

in
g

[f
t]

570000 580000 590000 600000
400000

410000

420000

430000

440000

54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2

Hydraulic
Head [ft]

Reich Farm site

Figure 3.22: Simulated hydraulic head contour in Dec 1990
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Figure 3.23: Simulated hydraulic head contour in Dec 2000
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Table 3.3: Average of absolute value of head residuals [ft] by category and year

Category

Year All CH2M DTML EBASCO MPI NUS Other UWTR

1986 1.84 1.84

1987 1.09 0.49 0.79 1.17 3.22

1988 1.05 0.78 0.82 1.33

1989 1.47 1.47

1990 0.79 1.77 0.66 0.61

1991 0.89 0.93 0.45 1.07 1.22

1992 2.26 0.31 2.96 1.67 3.01

1993 2.20 1.42 2.94 1.65 2.77

1994 1.38 2.12 0.73 2.04 0.69

1997 3.10 3.84 1.06 3.89 1.15 3.71

1998 2.04 1.86 2.39 2.09 2.09 1.16

1999 1.31 1.67 0.42 1.65 1.82 1.41 1.66

2000 1.72 2.42 0.55 3.37 2.36 3.29 2.64

All Years 1.93 2.02 0.52 1.48 2.71 1.69 3.22 2.50
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Figure 3.24: Scatter plot of observed versus simulated water levels (1383 data points)

3.6 Particle Tracking

Assuming no degradation and dispersion processes, the advective transport of a contami-

nant in the subsurface is identically the same as the movement of average water particles.

A particle tracking analysis was conducted in this thesis by the use of DROG3D devel-

oped by Blanton [1995] at the University of North Carolina at Chapel Hill. DROG3D,

written in Fortran 77, tracks passive particles with given harmonic velocity fields in a

three-dimensional finite element mesh. A 5th order Runge-Kutta algorithm was employed

to integrate the path with an adaptive time step. Both forward and backward particle

tracking are enabled. The code is also able to perform the computation of particle travel

path within evolving seasonal mean or monthly mean velocity fields.

In this case study, particle paths were integrated over 351 monthly mean flow fields

to investigate the movement of average water particles from the Reich Farm Superfund

site. Originating from the source zone delineated by Malcolm Prinie Inc, the particles were
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placed under the top layer with approximately 55 feet above sea level. Figures 3.25 and

3.26 show the water particle paths with varying retardation values and starting times. The

time markers on the paths are spaced at 1 year intervals. Unlike the steady-state scenario,

the average water particle travel paths depend on the starting times and retardation values

in a transient groundwater flow field, because the flow field is significantly shifted towards

the Parkway well field as the pumping activities continue. Comparing Figures 3.25 and

3.26 for average water particle paths with a retardation rate of unity, it can be observed that

only the western most particles released in October 1971 do not migrate to the Parkway

wells.

Based on the TCE breakthrough curve (shown in Figure 4.6) for the air-stripper influent

accommodating flows from Wells 26 and 28, the peak concentration was observed between

1988 and 1991, which approximately corresponds to a travel time of 17 to 20 years with

no dispersion assumption. Given an effective porosity of 0.30, Figure 3.25 shows that

paths from the Reich Farm Superfund site to the Parkway well field roughly have the

travel times of 12, 14, 17, and 20 years for several retardation coefficients in increasing

order. Then, based on average water particle analysis, the TCE retardation coefficient in

this case study is estimated to be between 1.25 and 1.75, which encompass the measured

average retardation factors by EPA-certified Lancaster Laboratories [Gillham, 1998] (1.65

for the soil from the 12-24 ft depth, and 1.65 for the soil from the 24-33 ft depth). The

lower bound of (RTCE) is extended further to compensate the neglection of the dispersion

process, which can possibly delay the occurrence of the peak concentration.

3.7 Summary

In this Chapter, a physically based transient three-dimensional groundwater flow model

was developed using HydroGeoSphere and the methodology presented in Sykes and Nor-

mani [2002] (reproduced, in part, in the Appendix of this thesis). The flow model, which

encompasses the Reich Farm Superfund site located in the Pleasant Plains area of Dover

Township, Ocean County, New Jersey, incorporates a spatially and temporally varying

recharge calculated by the ArcView GIS environment and an accepted hydrologic model
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Figure 3.25: Forward average water particle tracks with varying retardation factors. Time

markers are spaced at 1 year intervals, beginning in October 1971
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Figure 3.26: Forward average water particle tracks with varying retardation factors. Time

markers are spaced at 1 year intervals, beginning in October 1972
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HELP3. The hydraulic conductivity was derived by a kriging interpolation algorithm based

on the estimated hydraulic conductivities from the lithology in well and boring logs. With

highly changing pump rates at the 7 municipal wells, time increments over the approxi-

mately 30 year simulation period varied dynamically between several days and 3 months.

Calibration of such a groundwater flow model was conducted using both approximately 9

years of head data from continuous well records and data over a period of approximately

30 years from traditional monitoring wells. A good agreement between the simulated and

measured water levels was reached.

The simulation from 1971 to 2000 suggested that the groundwater flow around the Reich

Farm gradually shifted to the Parkway well field as a result of the pumping activity. Then,

the contaminants originating from the Reich Farm could be captured by the Parkway well

field. A particle tracking analysis indicates that the retardation factor for TCE is estimated

to be between 1.25 and 1.75, based on the TCE breakthrough curves from Wells 26 and

28 and the occurrence of the peak concentration.
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Chapter 4

Reich Farm Contaminant Transport

Model Calibration Case Study

4.1 Source Characterization

Contaminants in the aquifer from the Reich Farm site are NAPLs, including TCE, PCE and

the styrene-acrylonitrile (SAN) trimer. Only trichloroethylene (TCE) that migrated from

the site through the Kirkwood-Cohansey aquifer, and entered one or more of the Parkway

wells, is modelled in this thesis. The mass transfer process at the interface between NAPLs

and the aqueous phase has been extensively studied in recent years. The linear driving-

force mass transfer model is commonly used to represent the interphase mass transfer flux,

where the mass transfer coefficient can be related to the modified Sherwood number. The

Sherwood number is frequently represented by a function of Reynolds number and the

initial volumetric fraction of NAPLs. Sherwood number correlations were developed by

Miller et al. [1990]; Powers et al. [1992]; Imhoff et al. [1994]; Powers et al. [1994b]; Nambi

and Powers [2003]. However, their applicability is greatly limited by scale problems, and

the difference of porous media or techniques used in experiments and field processes and

methods respectively [Zhu and Sykes , 2000].
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The location, strength and composition of a source play key roles in simulating the

transport of contaminants. Incorrect source characteristics are likely to produce a poor

match to measured concentrations or unsatisfactory predictions even if a good match is

achieved. Simultaneous estimation of both source location and transport parameters can

be problematic, due to the ill-posed nature of the inverse modelling problem. In this case

study, the source locations are well known as a result of the soil sampling program at

Reich Farm, and these locations can be used directly in the model. The contaminant

barrels dumped at the Reich Farm site in 1971 were excavated and removed right after the

incident. The dumping site is delineated in Figure 4.1. The three soil remediation areas,

enclosed by sheetpiles in 1995 and identified as Areas 1, 2 and 3, are deemed as the location

of the contaminant source. The dumping site is at a depth of 5 ft below ground surface.

The representation of source location in the two-dimensional triangle mesh is shown in

Figure 4.2. Vertically, the contaminant source area is considered right beneath the top

HydroGeoSphere model layer, which has a depth of 5 ft. The same layer was used in the

analysis of the release of average water particles. In this thesis, two different models of

mass transfer from the NAPL residual to the solution phase are considered. In the first

model, the NAPL residuals are assumed to be immobile, and a linear equilibrium model

(refer to Equation (2.13)) can be employed to describe the mass transfer from the residual

to the dissolved phase. Therefore, the contaminant source term can be approximated by an

immobile phase that is in equilibrium with the dissolved phase. For this conceptual model,

the source information can be represented by only two parameters: equivalent distribution

coefficient at the source and the initial dissolved phase TCE concentration in Equation

(2.13). A second model is developed in Section 4.7.5. The initial TCE concentration

for the non-source area is 0, and all the transport boundary conditions are assigned as

third-type Cauchy boundaries, where the fluxes are calculated from the flow model. Under

favourable microbial conditions in groundwater, TCE concentrations have been observed

to sharply decline from high levels to low levels. On the other hand, TCE also has been

shown to be strongly conservative at some sites [Benker et al., 1997; McKelvie et al.,

2007]. In the study area of interest, nutrient levels and TCE concentrations are too low to

support microorganisms and there is no co-substrate or oxidant [Providenti et al., 1993].

Therefore, the non-conservative process of biological or chemical decay has been neglected.
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The detailed discussion on calibration with the second source characterization method will

be presented in a later section.

Area 1
Area 2

Area 3

Area 1
Area 2

Area 3

Figure 4.1: Locations of soil remediation areas, monitoring wells, and hydropunch borings

on and near the Reich Farm Superfund site overlaying an aerial photo

4.2 Contaminant Characteristics

TCE is volatile, non-flammable and colourless. It is an industrial solvent that is also the

most commonly found contaminant in groundwater. TCE exposure is associated with

several adverse health effects, and several forms of cancer [U.S. EPA, 2001].

According to U.S. National Primary Drinking Water Regulations (Jun 2003), the max-

imum acceptable TCE concentration for drinking water in the United States is 0.005 mg/L

(or 5 ppb). TCE, with an aqueous solubility ranging from 1300 to 1500 mg/L (or 1.3 to

1.5 ×106 ppb) from 9 to 71◦C (Henry’s law is approximately constant for TCE between 10
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Figure 4.2: Defined source zone elements at the Reich Farm Superfund site

and 95◦C), does not break down very readily in the soil, and it can pass through the soil

into groundwater.

Additionally, because its density of 1.44 mg/l is higher than water, it tends to form pools

of dense nonaqueous phase liquid (DNAPL) and settle at or below the lowest groundwater

strata. The residence time of TCE in groundwater is much longer than in surface waters.

From these subsurface pools, TCE may be slowly released over long periods of time. This

may be problematic because long time exposure to even low levels of TCE can still cause

health concerns. TCE present in soil or groundwater can be transformed by bacteria under

anaerobic conditions into vinyl chloride, which is far more toxic than TCE. Therefore,

extensive research on TCE removal by biological or chemical methods has been carried out

in recent decades.

4.3 Separation of flow and transport model

Extensive investigations have been carried out to estimate the flow parameters. A review

and summary of the inverse problem solution through flow modelling is given by Yeh

[1986]. McLaughlin et al. [1996] reviewed flow inverse problems and provided a more
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general formulation and methodology for parameter estimation. Solutions of the inverse

problems for contaminant transport models have not been studied as extensively as the flow

inverse problems, partly because of the ill-posed nature induced by the dispersion term. In

spite of this limitation, research has been conducted on the coupled flow, transport, and/or

heat inverse problems in an attempt to improve the calibration performance through the

use of more data [Woodbury and Smith, 1988; Sun and Yeh, 1990; Medina and Carrera,

1996; Jiang and Woodbury , 2006; Mayer and Huang , 1999; Friedel , 2005; Wagner , 1992].

However, these studies have not investigated problems that are as computationally intensive

as the problem of this thesis.

Woodbury and Smith [1988] employed the temperature measurements to improve the

resolution of model parameters for a steady-state groundwater flow system. Jiang and

Woodbury [2006] solved the inverse problem for a 2-dimensional steady-state groundwater

flow and heat transport using a full-Bayesian approach. Mayer and Huang [1999] applied

the maximum likelihood method to a coupled inverse problem of the saturated groundwater

flow and solute transport. Calibration of the coupled modelling of vadose zone water, heat

and solute transport was applied to an artificial recharge experiment [Friedel , 2005].

For the case study of this thesis, the field-scale groundwater flow and solute transport

model is transient, variably saturated, and highly computationally intensive. To ensure

the convergence of the solution, adaptive timestepping, based on changes in peizometric

heads, must be used to adjust the timestep values. The result is that the timestep could

be very small when the sharp changes are induced at the transient boundary conditions,

such as pumping rates. More importantly, unsaturated properties of the porous media

are dependent on the transient water saturation of each element, and must be calculated

iteratively for every timestep. Compared to the fully saturated model, one more loop

of computation, which is designed to find the proper unsaturated properties for every

timestep, needs to be embedded in the solution process.

With the current model setup, it takes around 4 hours to run the 30 years groundwater

flow and contaminant transport coupled HydroGeoSphere model on a single 2.2 GHz pro-

cessor with 2 GB of RAM. Such a computationally intensive large scale model is normally

unfeasible for most of the optimization methods, especially for the heuristic algorithms,
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because at least hundreds of model calls are necessary to successively solve the optimization

problem. For example, for the coupled model, 100 model calls would require approximately

17 days computation time on a single processor, while 500 model calls would require more

than 83 days. It is clear that based on computational time, a more efficient modelling

strategy much be developed.

Most of the computation time is attributed to the flow model. As described in Sec-

tion 3.5.2, the flow model has already been well calibrated, and only the transport model is

of interest in this thesis. In addition, in comparison to the measured hydraulic heads, the

concentrations can vary over several orders of magnitude. The selection of the weights in

an objective function or estimator for the misfit of the simulated head and concentrations

as compared to the measured values of head and concentration respectively, which plays

a key role in the calibration process, is subjective. In summary, for the purpose of cali-

bration, decoupling of the flow and transport models is essential for the computationally

intensive problem investigated in this thesis.

Through the separation of the transport model from the flow model, for every timestep,

the transient flow field, head distribution, saturation, flux at the first type boundary con-

ditions and pumping rates at wells are saved when running the flow model and loaded

when dealing with the transport model. Then the required CPU time for each contam-

inant transport model run can be greatly reduced. For the coupled model, the required

CPU time includes the running time for both the flow and transport models. Figure 4.3

compares the TCE concentration breakthrough curves from the coupled model and trans-

port models with three different timestep schemes. For Parkway well 26, the break at the

peak concentration occurring in 1988 was induced by the cease of pumping operation (refer

to Figure 3.17). A variant timestep scheme generally means the use of smaller timesteps

at the beginning and larger timesteps at the end of a simulation. In addition, it tries to

honour the variation of the pumping rates at the Parkway well field. Transport models for

all the three different schemes approximate the coupled model fairly well. Table 4.1 lists

the total timesteps and CPU times for each employed timestep scheme. With an increase

of timestep length, less CPU time is required, but the discrepancy of TCE BTCs at UWTR

26 becomes larger. The simulation with a 1 month timestep needs twice or more computa-
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tion time than the other two timestep schemes, but the advantage of the improved match

to the coupled model is not significant, given the purpose of the analysis of this thesis.

The average simulation time for the variant timestep case is only 25% longer than the use

of the 3 months timestep case, and it does not show the obvious advantage in the match

with the coupled model. Therefore, in the following optimization experiments, the variant

timestep scheme is used. By separating the flow model from the transport model and by

using a variant timestep, the optimization of the transport parameters for 500 model calls

can then be accomplished with a computation time of less than 9 hours. The CPU time for

each model simulation or model call is reduced from the 4 hours required for the coupled

model to around 10 minutes for the separated model.
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Table 4.1: Number of timesteps and computation time for different timestep schemes

Timesteps in total CPU time

1 month timestep 351 ∼24 minutes

3 months timestep 117 ∼8 minutes

Variant timestep 138 ∼10 minutes

Coupled with flow model (Max 1 month) ∼700 ∼4 hours

4.4 Parameterization

Spatial and temporal variations of the model parameters can lead to a large number of

parameter values that must be estimated. However, the estimation of numerous parame-

ters is generally restricted by factors such as a limited number of observations and limited

computing resources for this thesis. A relatively small group of contaminant transport

model parameters were selected as optimization decision variables and their values were

iteratively adjusted to best match measured concentrations. Given the fact that the tran-

sient flow model has been carefully and successfully calibrated, the time varying Darcy

flux distribution in the study domain has been determined. In addition, for this specific

site, the flow field was driven and dominated primarily by the pumping wells. Given the

fact that the pumping rates were well defined, the flow field was well determined. The

unknown parameters of the transport model in Equation (2.14) are transport parameters

including porosity θ, hydrodynamic dispersion tensor Dij, distribution coefficient , K ′ (or

retardation factor R), and others characterizing the contaminant source term including

the equivalent distribution coefficient at the source, K ′
source and the initial source TCE

concentration, CTCE,initial for the first source term model investigated. For the left hand

side (LHS) of Equation (2.14), the Darcy flux is fixed by the calibration of the flow model.

The product of the porosity and the hydrodynamic dispersion tensor is comprised of the

mechanical dispersion and the effective diffusion in Equation (2.12). For a highly dynamic

groundwater system, the diffusion process is dominated by the mechanical dispersion, which

only depends on the dispersivities and the Darcy flux. This statement will be justified in
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Section 4.7.4. On the right hand side (RHS) of Equation (2.14), the porosity and the

retardation factor are inversely related under the conditions that the Darcy flux is fixed

and the diffusion process is negligible. The retardation factor is a function of porosity and

distribution coefficient K ′ shown in Equation (2.15). Therefore, it is impossible to cali-

brate both the porosity and retardation factor (or distribution coefficient which still holds

a one-to-one mapping relationship with porosity) simultaneously. The selected parameters

of the transport model are considered as more uncertain and sensitive compared to the

flow parameters. Then, the unknown transport parameters were reduced to the following:

longitudinal dispersivity, al, transverse dispersivity/longitudinal dispersivity, at/al, trans-

verse vertical dispersivity/longitudinal dispersivity, atv/al, and distribution coefficient, K ′.

All of the parameters are assumed to be constant across the domain over the time duration

of the simulation. Upper and lower limits on parameters that constrain the estimated val-

ues are commonly suggested, because unrealistic parameter values can be obtained both

through the inverse modelling due to its ill-possed nature and a possible lack of sufficient

information. The box constraints listed in Table 4.2 are derived based on field experiment

data [Gelhar et al., 1992] and sensitivity analysis in previous manual calibration efforts by

the author of this thesis.

Table 4.2: Decision variables and box constraints

Decision variables Lower bound Upper bound

Longitudinal dispersivity, al [ft] 1.0 50.0

Transverse/longitudinal dispersivity, at/al 2.0E-03 0.5

Transverse vertical/longitudinal dispersivity, atv/al 1.0E-03 0.2

Distribution coefficient, K ′ [ft3/kg]a 1.2E-03 6.0E-03

Equivalent K ′ at the source , K ′
source [ft3/kg] 2.0E-04 1.0E-02

Initial source TCE concentration, CTCE,initial [kg/ft3]b 2.0E-03 1.0E-02

a 1 kg = 2.204623 lb, 1 ft3/kg = 28316.8 cm3/kg
b 1 kg/ft3 = 3.53× 10−5 kg/cm3 = 3.53× 107 ppb
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4.5 Objective Function Definition

The contaminant transport model calibration focused on replicating the measured solute

concentrations for the Reich Farm TCE plume. The comparison of simulated and observed

values is accomplished quantitatively using an objective function. Parameter values that

produce the best fit are defined as those that give the smallest value of the objective

function. Various forms of objective functions or estimators exist. Some of the estimators

accentuate small residuals (defined as the difference between simulated and measured data),

while others are very sensitive to large residuals or outliers. An example of the latter is the

convex optimization [Boyd and Vandenberghe, 2003]. Both of these two cases could result

in unfavourable outcomes. Thus, an appropriate selection of the objective function plays

an important role in the calibration process

The objective function in PEST is formulated such that the sum of the squared residual

errors (SSE, or L2 estimator based on L2 norm [Xiang et al., 1993]) between the measured

and simulated flux averaged concentrations is minimum at all times. SSE guarantees that

the estimator is unbiased from a statistical point-of-view. The drawback of SSE lies in

the fact that it tries to fit all of the measurements including outliers. The outliers, which

are extreme measurements that do not belong with the other measurements, can arise

from errors in data entry, analytical instrument failure and inherent spatial or temporal

variability in concentrations [Gibbons , 1994]. Given the fact that SSE is equivalent to

assigning more weight to outliers, it is very sensitive to the outliers [Carrera et al., 2005].

SSE in equation (A.1) can be viewed as a weighted average of the absolute residuals, where

the equivalent weights are dependent on the magnitude of the errors.

Minimize

Φ =

Nobs∑
i=1

wi (Cobs,i − Csim,i)
2 =

Nobs∑
i=1

w′
i|Cobs,i − Csim,i|, i = 1, 2, 3, . . . , Nobs (4.1)

where:

w′
i = wi|Cobs,i − Csim,i| (4.2)

and where, Cobs,i and Csim,i are measured and simulated TCE concentrations (ppb) respec-

tively, wi is the weighting factor associated with ith observation (the default value is 1), w′
i
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is the equivalent weighting factor, and Nobs is total number of observations. As a result, the

parameter estimation might be heavily deviated by the outliers. The L1-norm, sum of the

absolute residuals is often considered as a robust estimator as it treats the errors with equal

equivalent weight [Xiang et al., 1993]. To deemphasize the outliers during optimization

and to honour the formulation of objective function definition in PEST simultaneously, a

modified SSE is introduced as follows in (4.3):

Minimize

Φ =

Nobs∑
i=1

wi

(
Cx

obs,i − Cx
sim,i

)2
, i = 1, 2, 3, . . . , Nobs (4.3)

where, the parameter x denotes the strength of deemphasizing factor. The transformed

concentrations are assumed to obey Gaussian statistics. The equivalent weights of residuals

for the newly introduced objective function can be expressed as:

w′
i = wi

(
Cx

obs,i − Cx
sim,i

)2

|Cobs,i − Csim,i| (4.4)

The equivalent weights are dependant on both residuals and observed data themselves.

Thus, the parameter x can only be selected so as to mimic the L1-norm estimator in

the desired range. Figure 4.4 compares equivalent weights by varying x with an average

observed TCE concentration of around 20 ppb. The dashed red line representing the

weights for SSE is a straight line with a slope of 1. For this specific setting, the scenario

with a power of 0.8 is superior than others in approximating the horizontal line of the

L1-norm weights.

Figure 4.4 demonstrates that for a very specific range of observation data, the modified

SSE with a power parameter of 0.8 can produce roughly the same equivalent weights for

residuals as the L1-norm estimator. Its application to other values of observations were

extended and shown in Figure 4.5, which compares SSE, sum of absolute residuals and

modified SSE when the difference between measured and simulated TCE concentration is

less than 10 ppb. The equivalent weights associated with outliers are largely reduced.

It should be noted that no penalty term is adopted in this objective function definition.
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The penalty functions are frequently motivated by the desire to use unconstrained opti-

mization techniques to solve constrained problems. For this case study, the box constraints

in Table 4.2 are relatively easy to be handled by the selected optimization algorithms.

The regularization terms, by adding to the objective function, enable the ill-posed inverse

problem to be a well-posed optimization problem [Skaggs and Kabala, 1994]. However,

the regularization terms improve the stability of the inverse problem at the expense of

accuracy [Neupauer et al., 2000]. In addition, the relative weight assigned to the regular-

ization terms is essential and hard to determine. Therefore, both the penalty term and

the regularization term were not incorporated in the objective function definition for this

thesis, and could be considered for the future work.

4.6 TCE concentration measurements

Concentration observations, which contain information about the dynamics and features

of a groundwater system, are commonly used to estimate the value of model parameters

by minimizing the objective function defined above. Goodness of fit, with clearly realistic

parameter values, suggests appropriate model construction and parameterization.

Pumping and observation wells at 101 locations shown in Figure 3.20 were sampled

and analyzed since 1985 by NUS, Ebasco, CH2M-Hill, and Malcolm Pirnie Inc. Because

different laboratories were used, the detection limits of the analytical method employed to

test groundwater samples for TCE vary from 0.3 to 10 ppb. Because a large portion of

samples referred to as non-detectable can provide valuable information as well, based on

the uniform distribution assumption between 0 and detection limits, an unbiased estimator

of the TCE concentrations for non-detects were equal to one half of the associated detec-

tion limits. In fact, it is trivial of the impact of this arbitrary selection of representative

concentrations for non-detects.

Of the 3947 TCE measurements in total, 135 data were sampled from the Dover Town-

ship Municipal Landfill (DTML; the location is shown in Figure 3.1) monitoring wells and

most of them are below detection limits. DTML monitoring wells are far from the Reich
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Farm Superfund site. Therefore, TCE detected in those wells is believed to originate from

the local landfill. These measurements are not considered in the calibration process. A

further 1836 measurements from the private wells could not be included, because the wells

can not be precisely located. Another portion of the data came from surface water, UWTR

distribution system, and the UWTR intermediate treatment and air stripper effluent mea-

surements. These data are not directly related to the groundwater system and will not be

considered. The remaining 935 TCE measurements shown in Figure 4.6, are used to facili-

tate the calibration of the transport model. The fact that the peak concentration appeared

around 1990 demonstrates approximately 19 years travel time from the Reich Farm site to

the well field. TCE observations are limited to recent times from 1989 to 2001, long after

the start of substantial pumping at the Parkway well field. In a spatial sense, the data

locations are densely clustered in the well field in an area of high hydraulic conductivity.

Data clustering is not problematic in this case, because in the pumping areas with high

hydraulic conductivity, sensitivities of observations to most parameters are inclined to be

relatively small and the clustered wells will not adversely affect the calibration [Hill and

Tiedeman, 2007]. It should be noted that multiple TCE concentration measurements from

the same locations in a timestep of the transport model were not averaged, and they are

still regarded as multiple measurements. Concentration measurements can vary over many

orders-of-magnitude, and suffer from a variety of unexpected random errors, reading error

and equipment error. The concentration measurements at the pumping wells are regarded

less sensitive to the numerical dispersion than those at the monitoring wells, because of the

conservation of the mass balance and the use of flux averaged concentrations, which tend

to suppress the numerical oscillation, especially at the margin of the plume. In addition,

multiple measurements give more confidence, and deserve more weight to be assigned to

them.

Data sources fall into 6 categories listed in Table 4.3, in which air stripper influent is a

mixture of pumping wells 26 and 28. Influent concentration can be calculated through the

following mass balance equation.

Cairstripper =
Q26C26 + Q28C28

Q26 + Q28

(4.5)

where, C26 and C28 are concentrations in well 26 and well 28, and Q26 and Q28 are pumping
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rates of well 26 and well 28. There are 484 (268 from UWTR + 216 from air stripper

influent) of the 935 TCE measurements attributed to well 26 and well 28. Thus, these two

heavily monitored wells are selected to compare the simulated breakthrough curves with

measured data. The approximate extent of the plume delineated in Figure 4.7 is based on

a concentration contouring of the averaged concentration distribution from 1991 to 1993

inclusive. These measurements are from a variety of sampling methods: shallow and deep

observation wells, pumping wells and hydropunch samples. The general trend of plume

migration complies with the particle tracking path discussed in a previous section. TCE

initially migrated with the groundwater flow to the southwest, then shifted towards the

Parkway well field as a result of the pumping operation.
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Figure 4.6: Scatter plot of observed TCE concentrations versus sampled time (935 data

points)

One thing needs to be emphasized here is that measured contaminant concentrations

obtained from pumping and observation wells are flux averaged values over screen intervals.

Their counterparts in the transport model must be the same type of concentrations. Using
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Table 4.3: A list of data sources and number of measurements employed in the calibration.

Category Number of TCE measurements

CH2M 7

EBASCO 17

Air stripper influent 216

MPI 90

NUS 30

UWTR 562
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flux averaged values in calibration avoids the dependence on possible vertical heterogeneity

in the model, which could be problematic for point measurements.

4.7 Results and Discussion

4.7.1 Outline of algorithm comparisons

The comparisons are focused on the ability of each algorithm to optimize the objective func-

tion in calibrating a case specific transport model, in this case for the TCE plume from the

Reich Farm site. Candidate algorithms for comparison include straight PEST, multi-start

PEST, MicroGA, straight DDS, and multi-start DDS. As a result of the stochastic nature

of algorithms compared here, their relative performance must be assessed over multiple

independent optimization trials. On the basis of statistical consideration, algorithms are

compared using 30 optimization trials. For each trial, the maximum number of transport

model evaluations is constantly 500 for DDS and MicroGA. In other words, 500 model eval-

uations serve as a stopping criteria. For PEST, the number of model calls varies depending

on the convergence criteria. In global optimization problems, a performance measure is

frequently utilized for the purpose of algorithm comparison. Average performance measure

denoted by the best solution is plotted against the number of model evaluations for each

algorithm. In other words, for a particular algorithm, the average of the best objective

function value found so far across all optimization trials is computed after each model

call. Because the performance measure can not provide a complete picture of results, the

empirical distribution of final best solutions is also investigated to assist in the comparison.

Algorithm parameters often exert a substantial influence on the effectiveness of the

calibrations. Dozens of algorithm parameters could be employed to tune PEST to the

particular case problem. In this thesis, default settings for all the algorithm parameters

are used. The only one algorithm parameter in DDS, the neighbour size parameter, r, is set

to the default value of 0.2. The individuals in MicroGA are comprised of 60 binary bits (10

binary bits for each parameter). A population size of 4 is recommended for each generation.
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Thus, there are 125 generations in total. Crossover probability is set at 0.5. All the other

algorithm parameters are set to the default value, unless otherwise noted. Computing work

was carried out on a cluster of processors (Sharcnet), which is comprised of thousands of

2.2 GHz AMD’s dual-core Opteron processors with 2 GB Of RAM each. The estimated

simulation time for a single transport model evaluation is around 10 minutes.

4.7.2 Comparison of optimization algorithms

The HydroGeoSphere TCE transport calibration problem described previously is solved

using various optimization algorithms with multi-start technique. Table 4.4 summarizes

the average number of transport model evaluations, CPU time, and elapsed time for each

optimization algorithm. For straight PEST trials, the average number of function evalua-

tions is about 85 plus an additional 10 model evaluation calls, which were utilized by the

constructive run (described in Section 2.3.1) to generate a better initial solution. Then,

a 5 multi-start PEST can provide comparative results with DDS and MicroGA in terms

of the number of transport model evaluations. The actual CPU time was not recorded,

but could be estimated by the number of model evaluations multiplying by the CPU time

for each transport model run, because the computing time assigned to optimization algo-

rithms themselves is negligible. All the computing effort was conducted on the Sharcnet,

where thousands of processors are readily available. Ideally, all the optimization trials

could be run simultaneously on the Sharcnet. Thus, comparing the elapsed time would

make more sense. The actual elapsed time for the multi-start scheme is independent of

the number of multi-start, and equal to CPU time for just one trial. In addition, there

are 4 processors on each node of Sharcnet clusters, so the elapsed time for parallelized

MicroGA is approximately equal to a quarter of the CPU time for one trial. Although

Table 4.4 demonstrates that straight PEST requires the least CPU time and elapsed time,

its calibration performance needs to be compared further with that of the other algorithms.

Figure 4.8 illustrates the average best objective function values against the number of

model evaluations for DDS and MicroGA, and the final best objective function values of

30 trials for PEST. The output of objective function values with PEST occurs at a certain
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Table 4.4: Number of model calls, CPU time, and elapsed time for different algorithms

Algorithm Number of model calls CPU time for 1 trial Elapsed time for 1 trial

PEST ∼85+10 15hr50min 15hr50min

3 multi-start PEST ∼255+30 47hr50min 15hr50min

5 multi-start PEST ∼425+50 79hr10min 15hr50min

MicroGA 500 83hr20min 20hr50min

DDS 500 83hr20min 83hr20min

5 multi-start DDS 500 83hr20min 16hr40min

number of model calls depending on each trial and local search iteration. No intermediate

results are available. Thus, only 30 scattered dots corresponding to 30 trials of each

PEST algorithm are plotted in Figure 4.8. Clearly, both straight DDS and MicroGA are

converging to poor local minima with DDS performing slightly better. The 5 multi-start

DDS is comprised of 5 DDSs, and each can run the transport model evaluations at most

100 times. As the number of model evaluations increases, straight DDS keeps refining

solutions by searching the local neighbourhood further, while the multi-start technique

is capable of eliminating poor solutions. In this case, the marginal benefit of model call

increment is dominated by continued local search in the early stage, but taken over by

the multi-start technique when the total model calls is more than around 100. Some of

the scatter for PEST are far below DDS and MicroGA curves, which indicates that PEST

is more efficiently convergent to fairly good solutions. The probability of finding these

solutions is getting higher with more multi-starts or model evaluations.

Figure 4.9 provides a more complete description of algorithm performance by plotting

all 30 objective function values with fixed levels of computational effort (500 model eval-

uations) for DDS and MicroGA, and various levels in Table 4.4 for PEST. In terms of

final best solutions, multi-start PEST is superior to the heuristic algorithms (DDS and

MicroGA). It is worth noting that at the probability of 0.4, straight PEST is better than

DDS and MicroGA. This may indicate that 40% of the selected initial solutions for PEST

are located in the area of fairly good solutions. Heuristic algorithms are designed to find
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good solutions, instead of precise local or global optima. The performances of two heuris-

tic algorithms, DDS and MicroGA, seem to be nearly indistinguishable from a practical

calibration perspective, while multi-start DDS is slightly better in this case study. Over-

all, knowing that DDS is a more appropriate optimizer for high dimensional (10 or more)

problems when total allowable model evaluations are essentially unlimited (which is not

realistic for such a computationally high demanding transport model calibration) [Tolson

and Shoemaker , 2007], the 3 multi-start PEST with default algorithm parameter setting

and even less model evaluations outperforms DDS in terms of objective function values. It

is also more effective than straight PEST because of substantial performance improvement,

and more efficient than 5 multi-start PEST by having indistinguishable different perfor-

mance measure while requiring less computing effort. However, it should be noted that the

comparison conclusions are largely drawn from very specific circumstances (only one case

study and the limited model evaluation of 500). To guide the selection of estimation in

other inverse modelling problems, algorithm comparisons need to be further investigated.
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4.7.3 Evaluation of contaminant transport model calibration re-

sults

Due to the ill-posed nature of inverse modelling problems, the solutions of concern are

non-unique. Uncertainty analysis incorporating multiple solutions will be carried out in

the next chapter. It must be noted that without exhaustive searching of the feasible

space, it is arduous to determine a global minimum for the ill-posed inverse problems

with complex non-convex response surfaces [Ivanov et al., 2005]. Many solutions exist

that are equally good candidates for the optimal solution. The solution with the best

performance measure cannot 100% guarantee attainment of the global minimum. In this

section, calibration results from the PEST trial with the best performance measure, as

an example, are evaluated to determine whether the estimates are realistic. From the

calibration process, the PEST estimated local optimal combination of parameters and

associated confidence intervals are presented in Table 4.5.
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The estimated retardation factor for the whole study domain is calculated using Equa-

tion (2.15):

R = 1 +
ρb

n
K ′ = 1 +

50.97kg/ft3

0.3
× 3.4× 10−3ft3/kg = 1.67

The measured average retardation factors over 9 samples by EPA-certified Lancaster Lab-

oratories [Gillham, 1998] are 2.17 for the soil collected from the 2-15 ft depth, 1.65 for the

soil from the 12-24 ft depth, and 1.65 for the soil from the 24-33 ft depth. As the TCE

plume mostly migrated in the lower aquifer, the value of 1.65 was selected as the represen-

tative retardation factor of this study domain. Then, a very good agreement was reached

between the calibrated and measured retardation factors. Because there exists a one-to-one

mapping relationship between the retardation factor and porosity, this agreement justifies

the selected porosity of 0.3 in Section 3.4.4.

Table 4.5: Summary of parameter estimates and confidence intervals derived from PEST

calibration trial

Estimated 95% percent confidence limits

Parameter value Lower limit Upper limit

al [ft] 10.1 7.8 12.4

at/al 2.0E-03 -2.8E-02 3.2E-02

atv/al 9.0E-03 6.5E-03 1.1E-02

K ′ [ft3/kg] 3.4E-03 3.2E-03 3.6E-03

K ′
source [ft3/kg] 2.0E-04 -3.0E-03 3.4E-03

CTCE,initial [kg/ft3] 8.1E-03 6.5E-03 9.8E-03

Two parameters, the ratio between transverse and longitudinal dispersivities, and equiv-

alent distribution coefficient at the source, reach the lower bounds. The relatively large

intervals for these two parameters indicate less confidence in the optimized parameter

value. In other words, with the current settings, these parameters are not sensitive to the

performance measure, and consequently not able to be effectively calibrated.

98



To save computation time, the mesh size is enlarged when discretizing the study do-

main, and the flux based concentrations are averaged temporally over 3 months and spa-

tially across well screens. These model simplification techniques definitely contribute to a

large numerical dispersion. More importantly, the variation in the local velocity caused by

the spatial and temporal fluctuation of the recharge tends to increase the advective disper-

sion, compared to the normally used averaged recharge. To verify this phenomenon in this

thesis, the 3 multi-start PEST was employed to calibrate the transport model parameters

under different scenarios including spatially and temporally varying recharge and averaged

recharge. As for the equivalent distribution coefficient at the source, one reason lies in the

coarse discretization of the study domain and the time increments selected for the purpose

of the computational efficiency. The numerical dispersion induced by the truncation error

is proportional to the grid size and the timestep. Given the condition that the total mass

of the contaminants is conserved, the numerical dispersion tends to suppress the sharp

front of the plume, prolong the actual duration of contaminant source release, and reduce

the estimated equivalent distribution coefficient as a result. The other explanation is that

because the contaminated site was cleaned up three times after the dumping event; the

source term might behave like a step-wise function. Therefore, for these two parameters,

negative values of the lower limits of 95% confidence intervals were obtained, due to the

small magnitude of the estimated values and insensitivity to the current performance mea-

sure. In the stochastic analysis of Chapter 5, a positive constraint on all the parameters will

be enforced to produce reasonable estimates and reduce the associated uncertainty. Cal-

culated confidence intervals around other parameters exhibited a relatively narrow range,

suggesting a good level of precision in the final parameter estimates.

Correlation coefficients are defined as the covariance between two parameters divided

by the product of their standard deviations. Hill et al. [1998] suggested that the absolute

value of parameter correlations in the range of 0.80 to 1.0, particularly those in excess of

0.95, may be indicative of problematically strong correlations between parameter pairs.

Strong correlation, dictating the dependency between the parameters, may do harm to the

uniqueness of the optimized parameter values. The correlation coefficient matrix corre-

sponding to the estimated parameters above is summarized in Table 4.6. Longitudinal and

vertical transverse dispersivities have a strong negative correlation of -0.96. This high cor-
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relation does not represent the actual relationship between these two parameters, because

the vertical transverse dispersivity could not be properly calibrated due to the scarcity

of vertically distributed data. For instance, the flux based concentrations were vertically

(perpendicular to the flow direction shown in Figures 3.14, 3.15) averaged over the well

screens. The other strong negative correlation exists between source concentration and the

equivalent distribution coefficient, which indicates that the total mass of the contaminants

at the source, expressed as the product of these two parameters, is constant but unknown.

Table 4.6: PEST parameter cross correlation matrix

al at/al atv/al K ′ K ′
source CTCE,initial

alft 1.00 -0.66 -0.96 -0.53 0.18 0.21

at/al -0.66 1.00 0.58 0.18 0.26 -0.51

atv/al -0.96 0.58 1.00 0.39 -0.13 -0.24

K ′ -0.53 0.18 0.39 1.00 -0.71 0.41

K ′
source 0.18 0.26 -0.13 -0.71 1.00 -0.91

CTCE,initial 0.21 -0.51 -0.24 0.41 -0.91 1.00

Figure 4.10 analyzes the model fit graphically by showing a scatter plot for all simu-

lated versus measured TCE concentrations for all times; around half of the measured TCE

concentrations are below detection limits, and most of the data lie within the bands of

diagonal ± 5 ppb. Table 4.7 represents the averages of the absolute value of residuals be-

tween simulated and observed TCE concentrations for monitoring years and well categories.

Compared to Table 3.3, the relative residuals for TCE concentrations are more pronounced

than hydraulic heads, because (1) concentration measurements can vary many orders of

magnitude, (2) concentrations are more likely affected by the particular representation of

heterogeneity in the model, and (3) due to differences in the sampling methodology and

laboratory analysis of the various contractors for the Reich Farm site.

The overall average of the absolute value of the residuals is 1.48 ppb. Except for

CH2M-Hill with only 7 observations, the air stripper influent, with the highest level of
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Figure 4.10: Scatter plot of observed vs. simulated TCE concentrations (935 data points)

TCE observations, has the largest average residual. In a time sense, the residual for

“all” category is most variable for the peak TCE concentration observed around 1989, and

decreases gradually in both directions of the time scale. No model bias calibration suggests

that residuals, which often follow a normal distribution with mean 0.0, is supposed to be

independent of observed values. The positive correlation between residuals and observed

values here is induced by the new definition of the objective function. To deemphasize the

outliers in the calibration, changing the objective function would produce biased estimates

from a statistical point of view. Thus a trade-off needs to be balanced between unbiased

estimation and better calibration performance.

Given the estimated transport parameters in Table 4.5, running the transport model

simulation generates TCE concentration breakthrough curves for well 26, well 28, and the

air stripper influent (blended effluent from well 26 and well 28), as shown in Figure 4.11.

The calibrated parameters are capable of reproducing the measured TCE breakthrough

curves at Wells 26 and 28 and the air stripper. Their modified SSE in Equation (4.3)
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Table 4.7: Average of absolute value of TCE residuals [ppb] by category and year

Category

Year All CH2M EBASCO Air stripper influent MPI NUS UWTR

1981 0.50 0.50

1984 2.48 2.48

1988 3.50 8.32 2.54

1989 5.45 5.45

1990 3.30 2.82 0.25 5.12 3.66 1.36

1991 3.65 4.73 4.21 0.50 1.43

1992 2.30 0.25 2.55 2.88 1.37

1993 2.14 2.53 0.93 1.66

1994 1.49 0.45 1.32 4.49 1.50

1995 1.88 1.93 1.80

1996 1.48 0.92 1.88

1997 1.45 12.98 1.27 0.82 1.85 1.58 0.98

1998 1.09 0.25 0.83 1.00 0.45 1.15

1999 0.78 1.41 1.23 0.40 0.69

2000 0.86 2.07 0.32 0.68

All Years 1.48 6.74 0.51 2.48 1.76 2.14 0.98
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with a power of 0.8 is 911 over 475 measurements. The break in the peak concentration

occurring in 1988 was caused by the fact that a few pumping wells were out of operation

during that period. The sharp peak concentration at Well 26 occurring in 1997, induced by

the same reason, was captured by the TCE breakthrough curve simulated by the transport

model. For the most densely monitored air stripper, the TCE breakthrough curve closely

follows the trend of the measured concentrations.
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Figure 4.11: Simulated TCE concentration breakthrough curves and observed TCE con-

centration

To examine the TCE plume evolution, Figure 4.12 shows the extracted slice located

at Easting 572775 ft for the vertical concentration contour. It suggests that near the

source, the TCE in the groundwater system sank significantly in a short distance and

then sinks very slowly as it spreads and moves downstream toward the Parkway well

field. This situation would possibly result from the effects of areal recharge creating small

downward vertical velocities especially near the surface, and the effects of advection and

dispersion. The two-dimensional plan view of the TCE concentration contour at elevation
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-50 ft is presented in Figure 4.13. The TCE concentration oscillation around the pumping

wells is caused by the fact that a large maximum timestep of 3 months was employed in

order to save the computing effort. However, the calibration performance measure, mainly

determined by the TCE concentrations from the pumping wells, is not affected, because

the flux averaged concentrations are integrated over the screen length and the influx flow

during each timestep. Then, the oscillation of the TCE concentrations will be cancelled

out. It can be verified by the smoothness of the simulated breakthrough curves for the

pumping wells 26 and 28 in Figure 4.11. Compared to the hand made contour in Figure 4.7,

point values from the numerical model exhibit higher concentrations than flux averaged

observations over well screen intervals.
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Figure 4.12: Plot of vertical TCE concentration at Easting 572775 ft in Dec 1990

4.7.4 Evaluation of the influence of recharge averaging

As discussed previously, the use of varying recharge both in space and time partly at-

tributes to the inability of identifying transverse dispersivities. According to the classical

dispersion theory, the dispersion coefficient in the advection-dispersion equation represents

the spreading of the tracer by diffusion and local dispersive mixing. A critical review on

field-scale dispersion [Gelhar et al., 1992] pointed out that the dispersivity values in the

dispersion coefficient for the field-scale problems were much larger than expected based

on local dispersive mixing. The impact of spatial averaging of local velocity on the mass
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Figure 4.13: Plot of 2D TCE concentration at elevation -50 ft in Dec 1990

dispersion in heterogeneous porous media has been well addressed [Smith and Schwartz ,

1980; Tang et al., 1982; Gelhar and Axness , 1983; Plumb and Whitaker , 1988; Rubin, 1990;

Kitanidis , 1992; Rehfeldt and Gelhar , 1992]. This work has shed light on the mechanism

of macro-dispersion, has explained the large rate of tracer spreading in field scale hetero-

geneous formations caused by the spatial variations, and has suggested methods for the

calculation of macro-dispersion coefficients. Using three-dimensional stochastic transport

theory, Gelhar and Axness [1983] developed a method to predict the macro-dispersivities

resulting from heterogeneous porous media. Rehfeldt and Gelhar [1992] developed a model

to calculate the macro-dispersivity tensor which accounts for spatial variability caused by

geological heterogeneity and temporal variability caused by transient effects. Through

two special cases of unsteady flow, Rehfeldt and Gelhar [1992] found that hydraulic gra-

dient magnitude variation tended to increase the longitudinal macro-dispersivity, whereas

the gradient direction variation was inclined to enlarge the transverse macro-dispersivity.

Most of these authors evaluated the macroscopic dispersion caused by the spatial variation

in the local velocity, which, in turn, is primarily due to the variability in heterogeneous
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hydraulic conductivity, while they overlooked the importance of varying recharge.

The varying recharge can induce variation in local velocity, both in magnitude and

direction, especially for the upper layers where the source of the contaminant is located.

This variation in local velocity will cause the initial tracer mass within the flow domain to

spread and occupy an ever-increasing volume of the porous medium [Bear , 1988]. Swain

and Chin [2003] developed an analytical formulation of enhanced dispersion by surficial

recharge variation for two-dimensional groundwater system. A 9 % increase of groundwater

dispersion was observed for the field case study. Deterministic and stochastic modelings

by Sykes et al. [1982] also have shown that temporal averaging in local velocity may have a

significant impact on mass transport. Theoretical work on the spatial-temporal averaging

method for modelling mass transport was presented by He and Sykes [1996].

In addition to the base-case with varying recharge in time and space, transport model

calibrations under three other scenarios including spatially varying recharge, temporally

varying recharge, and constant recharge were carried out. Following the same procedure

as the base-case analysis, for each scenario, a transient groundwater flow simulation with

varying or averaging recharge was conducted first. The flow distributions for all the out-

put timesteps were saved and loaded when dealing with the contaminant transport models.

Thus, the flow fields depending on the surface recharge are specific to each scenario. Fig-

ure 4.14 illustrates that the averaging of recharge in space and time has a fundamental

impact on the estimated transverse dispersivity. The three evident outliers were excluded

when fitting the trend line to the data set for the case with temporally and spatially

varying recharge. When the averaging scheme is employed, the calibrated macroscopic

transverse dispersivity incorporates not only the inherent contribution to the mechanical

dispersion by the porous media itself, but also the impact of the varying recharge on the

local flow velocity. Calibration of the physically based transport model with temporally

and spatially varying recharge tends to produce the smallest transverse dispersivity. The

estimated transverse dispersivities for other scenarios are greatly enlarged to compensate

for the loss of local deviations of the velocity that results from upscaling the recharge.

The variation reduction of the local vertical velocity for the upper layer of the Reich

Farm model for both the space and time sense is shown in Figures 4.15 and 4.17 respectively
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Figure 4.14: Scatter plot and trend line of estimated longitudinal vs. transverse disper-

sivities for the 3 multi-start PEST for various spatial and temporal averaging schemes for

recharge

107



for various recharge averaging schemes. In accordance with the relative magnitude of the

estimated transverse dispersivities, both figures support the fact that the base-case has

the most varying local velocity field, and that the scenario with constant recharge has the

most uniform velocity distribution. In the upper layers at the source zone area, the flow

is largely influenced by the recharge. Thus, variation of the recharge tends to increase

the local velocity variation and decrease the estimated transverse dispersivity as a result.

The contaminant plume migrates horizontally towards the pumping well locations within

the lower aquifer from layer 12 to layer 17. Its linear velocity distribution in the northing

direction for two extreme cases of constant recharge, and spatially and temporally varying

recharge are shown in Figure 4.16 with no obvious distinct difference. Therefore, unlike

heterogeneous hydraulic conductivity which frequently has an influential impact on local

velocity variation across the whole domain, varying recharge acts primarily on the shallow

layers.

Figure 4.14 also suggests that the temporal averaging seems to be less important than

spatial averaging. The temporally varying recharge is still a monthly averaged value, while

the spatial discretization of recharge for the Reich Farm model has been refined. Thus,

the relative importance of the two averaging schemes can not be determined based solely

on this case study. One point that should be noted is that during the calibration process,

the transverse dispersivity for the base-case reached the lower limit. The upper bound

of the transverse dispersivity range was reached for the scenarios with spatially averaged

recharge. However, the validity of the conclusion relating to the importance of transverse

dispersivity is robust as the extension of the parameter’s feasible range will widen the

differences.

From Figures 4.15, 4.16, and 4.17, the magnitude of linear velocity is mostly above 0.01

ft/day, except for the Barnegat Bay, where the groundwater system is much more stable.

Given the estimated longitudinal dispersivity equal to 10.1 ft, the mechanical dispersion

part in Equation (2.12) is roughly:

αlq = αlvn = 10.1ft× 0.01ft/day × 0.3 = 0.03ft2/day

where, v is the linear velocity. The free solution diffusion coefficient for TCE is 9.3 ×
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Figure 4.15: Vertical linear velocity distributions in layer 5 for scenarios with varying and

averaging recharge in time and space
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Figure 4.16: Linear velocity distributions in northing direction in layer 15 for scenarios

with varying and averaging recharge in time and space

10−4ft2/day [Pankow and Cherry , 1996], far less than the mechanical dispersion coefficient,

which verifies the assumption in Section 4.4 that the diffusion process can be neglected.

4.7.5 Calibration with different contaminant source characteri-

zation methods

As discussed in Section 4.1, NAPL dissolution at the source was simplified using the linear

equilibrium model where the adsorbed phase is always in equilibrium with the dissolved

phase. To evaluate the impact of the contaminant source characterization approaches on

the calibration results, other dissolution model are considered. Abriola and Pinder [1985]

attempted to quantify the interphase mass exchange in porous media by a local equilibrium

assumption, which stated that the concentration of dissolved NAPL in the aqueous phase

was equal to the correspondent NAPL solubility. More investigations have shown that

measured organic solute concentrations, especially in heterogeneous systems, were below

solubility limits, indicating non-equilibrium conditions [Mackay et al., 1991; Geller and

Hunt , 1993; Powers et al., 1991, 1992, 1994b; Nambi and Powers , 2000, 2003]. In fact,

heterogeneity increases the tendency toward preferential flow and kinetic mass transfer.
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averaging recharge in time and space
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Thus, the linear driving-force mass transfer model is commonly used to represent the

interphase mass transfer flux (J0):

J0 = kf (Cs − C) (4.6)

where kf is the mass transfer coefficient, C is the bulk aqueous phase concentration, and

Cs is the effective solubility that would be in equilibrium with the organic phase. The

interfacial areas between two immiscible phases are a fundamental factor affecting the mass

transfer coefficient kf [Powers et al., 1992]. To account for the shrinkage of interfacial areas

caused by NAPL dissolution, one simplified approach borrowed from chemical engineering

is to use idealized geometry of spheres representative of actual NAPL blobs. Powers

et al. [1994a] proposed a phenomenological model describing NAPL dissolution rates by

representing irregular NAPL blobs with a distribution of effective spheres. The primary

limitation of this model lies in the requirement to quantify the NAPL blob shape and size

distribution. Other researchers have avoided the need to quantify the geometry of immobile

NAPL blobs by using lumped mass transfer coefficients [Miller et al., 1990; Powers et al.,

1992, 1994b; Imhoff et al., 1994; Nambi and Powers , 2003]. The dimensionless forms

of lumped mass transfer coefficients, the modified Sherwood number Sh, are frequently

employed in the formulation of mass transfer correlations.

k̂ = kfa0, Sh′ = k̂d2
50/DL (4.7)

where k̂ is the mass transfer rate coefficient, a0 is the interfacial area per unit volume of

porous medium, d50 is the median grain diameter, and DL is the free liquid diffusivity of

the organic species in water. A selection of recently developed correlations is shown in

Table 4.8.

Aside from the valid condition constraints for each lumped mass transfer correlation

listed in Table 4.8, their applicability is also greatly restricted by scale problems and the

difference of porous media or techniques used in experiments and fieldworks respectively

[Zhu and Sykes , 2000]. Furthermore, it should be noted that all these studies were per-

formed in saturated subsurface systems. For unsaturated conditions, the volatilization and
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Table 4.8: Sherwood number correlations from Laboratory investigations.(x/dp is the di-

mensionless distance into the residual saturation zone, θ0
n is initial volumetric fraction of

NAPL in the system, Re employs the Darcy velocity, Re′ employs the interstitial velocity.)

Correlation Valid condition Reference

Sh = 425Re0.75θ0.60
n

0.016 < θn < 0.07
Miller et al. [1990]

0.0015 < Re < 0.1 (steady-state dissolution)

Sh = 57.7Re0.61d0.64
50 U0.41

i

θn=constant
Powers et al. [1992]

0.012 < Re < 0.2 (steady-state dissolution)

Sh = 340Re0.71θ0.87
n

(
x

dp

)−0.31 0 < θn < 0.04

0.0012 < Re < 0.021
Imhoff et al. [1994]

1.4 < x/dp < 180

Sh = 4.13Re′0.60δ0.67U0.37
i

(
θn

θ0
n

)β 0.0003 < θn < 0.065

0.052 < Re′ < 0.08
Powers et al. [1994b]

1.19 < Ui < 3.33

Sh = 37.15Re′0.61S1.24
n

0.01 < Sn < 0.35

(0.0048 < θn < 0.168)
Nambi and Powers [2003]

0.0012 < Re < 0.021
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water/gas partitioning of NAPL serve as other mass transfer processes and need to be

taken into account in contaminant transport models. In an attempt to simply the mass

transfer correlation, Zhu and Sykes [2004] proposed three simple models shown in Table 4.9

based on the NAPL mass conservation as well as the assumption that a linear or nonlinear

power-law relationship exists between the effluent concentration and the remaining NAPL

mass. The simple models lump the entire NAPL source zone, and completely neglect the

spatial variation of the aqueous phase concentration.

Table 4.9: Simple models for the NAPL dissolution [Zhu and Sykes , 2004]

Fundamental relationship Model formulation

L model C0 (t) = Cs
M (t)

M0

C0 (t) = Cse
−λt

N1 model C0 (t) = Cs

[
M (t)

M0

]α

C0 (t) = Cs [(α− 1) λt + 1]α/(1−α) , α > 1

N2 model C0 (t) = βCs

[
M (t)

M0

]α

C0 (t) = βCs [β (δ − 1) λt + 1]δ/(1−δ) , δ = αβ > 1

In Table 4.9, C0 (t) is the residual NAPL zone solute concentration at time t, Cs is the

NAPL solubility, M (t) is the NAPL mass remaining at time t, M0 is the initial NAPL

residual mass, α is a power-law index indicating non-linearity of the initial solute concen-

tration at the source, and β represents the degree of non-equilibrium at the initial stage of

dissolution.

The model L, often used as a hypothetical contaminant source release function, as-

sumes a linear relationship. The model N1 extends the model L by containing a power-law

index to control the rate of NAPL source zone concentration decrease. The model N2 again

incorporates a non-equilibrium indicator to adjust the initial aqueous phase NAPL concen-

tration. Zhu and Sykes [2004] compared them with the lumped mass transfer correlation

of Imhoff et al. [1994] through a 1-D saturated column simulation. It was demonstrated
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that all the simplified models are capable of reproducing the rapid drop and tailing parts

of effluent concentration breakthrough curves with appropriate model parameters. For

simplicity, a modified model L in (4.8) was implemented in HydroGeoSphere, and the

calibration result was compared with those obtained from the linear equilibrium model.

C0 (t) = βCs
M (t)

M0

, C0 (t) = βCse
−λt (4.8)

Following the same procedure and objective function definition employed in the previous

section of this chapter, 3 multi-start PEST was used to calibrate the transport model with

the source term characterized by the modified model L. One source-related parameter

was replaced by the mass of TCE residual per unit volume of the porous medium. Box

constraints associated with each parameter are listed in Table 4.10.

Table 4.10: Decision variables and box constraints

Decision variables Lower bound Upper bound

Longitudinal dispersivity, al [ft] 1.0 50.0

Transverse/longitudinal dispersivity, at/al 2.0E-03 0.5

Transverse vertical/longitudinal dispersivity, atv/al 1.0E-03 0.2

Distribution coefficient, K ′ [ft3/kg] 1.2E-03 6.0E-03

Initial source TCE concentration, βCs [kg/ft3] 1.0E-03 4.0E-02

Initial TCE residual per unit volume, M0 [kg/ft3] 1.0E-03 0.5

Given the model L describing the NAPL residual dissolution process, the optimal pa-

rameters and associated confidence intervals are presented in Table 4.11. Like the previous

calibration attempt, the ratio between transverse and longitudinal dispersivities arrives

at the lower bound. The same explanations lie in the upscaling and the incorporation of

spatially and temporally varying recharge. For the two most sensitive parameters, longitu-

dinal dispersivity and distribution coefficient, empirical cumulative distribution functions

over 30 trials are shown in Figures 4.18 and 4.19. Both parameters, derived on a basis of

the modified model L, tend to have wider ranges. A two-tailed non-parametric Wilcoxon-

Mann-Whitney test was performed. The results demonstrate that for both parameters, the
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computed p-value is lower than the significance level α = 0.05. Thus, the alternative hy-

pothesis that the distributions from two source characterization methods are significantly

different should be accepted with a risk to reject the null hypothesis of less than 0.01%.

Table 4.11: Summary of transport parameter estimates and confidence intervals for the

case with the source term characterized by the modified linear dissolution model

Estimated 95% percent confidence limits

Parameter value Lower limit Upper limit

al [ft] 18.4 12.0 24.8

at/al 2.0E-03 -1.7E-02 2.1E-02

atv/al 4.5E-03 3.5E-03 5.4E-03

K ′ [ft3/kg] 3.2E-03 3.1E-03 3.3E-03

βCs [kg/ft3] 7.6E-03 6.2E-03 9.1E-03

M0 [kg/ft3] 3.5E-03 2.9E-03 4.0E-03

Substituting the optimal parameter values into the transport model, the TCE source

concentration histories and breakthrough curves at the pumping wells are depicted in Fig-

ures 4.20 and 4.21, respectively. A good agreement between the TCE source concentration

profiles was reached. As a result of the cleanup of the dumping site, both source concen-

trations dropped very sharply at the beginning. The lack of smoothness in the curves

in Figure 4.20 were possibly the result of the fluctuation of temporally varying recharge.

Comparing Figure 4.21 to the breakthrough curves in Figure 4.10, no significant difference

is observed. Therefore, different source characterization approaches and parameter settings

yield a similar response in the temporal change in the TCE source concentration, and the

estimated parameters are likely to be unique, even for the commonly shared transport

parameters. However, the target performance measure, TCE concentrations in this case,

is not heavily affected, and can produce comparable breakthrough curves with different

NAPL dissolution models.
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Figure 4.18: Empirical cumulative distribution function of longitudinal dispersivity
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Figure 4.19: Empirical cumulative distribution function of distribution coefficient
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Figure 4.20: Estimated TCE release history at the source area
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Figure 4.21: Simulated TCE concentration breakthrough curves and observed TCE con-

centration with the source term described by the modified linear dissolution model
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4.8 Summary

Due to the limitation on the computing resource and the computationally demanding

modelling of the three-dimensional variably saturated transient groundwater system, the

groundwater flow and contaminant transport models were separated with a variant timestep

scheme that honours the variation of the pumping rates at the Parkway well field being

used. Given the flow model was well determined, three optimization algorithms, multi-

start PEST, MicroGA and DDS were employed to calibrate the transport model with a

modified SSE as the objective function. The modified model is less sensitive to the outliers

than the standard SSE.

The calibration results indicate that overall, multi-start PEST performs best in terms

of the final best objective function values with equal number of function evaluations. The

actual elapsed computer time for multi-start PEST was far less than that for the two

heuristic algorithms. Gradient based methods such as PEST are in general computationally

faster than heuristic algorithms such as MicroGA and DDS, although they can converge

to a local minimum, instead of a global one. Alternatively, heuristic algorithms can ideally

converge to a global minimum with thousands of model evaluations. The objective function

is sensitive to the uncertain measured concentrations. A hybrid algorithm, called multi-

start PEST takes advantage of the robustness of the heuristic methods and of the fast

convergence of gradient based approach. However, in order to guarantee the attainment

of a global minimum, an exhaustive searching of the feasible space is necessary due to the

ill-posed nature of contaminant transport problem and noisy data. Such a search is indeed

impractical for this large scale computationally intensive problem. Thus, the solutions,

obtained from the multi-start PEST calibration attempts, are the local minima or the

candidates for the global minimum.

Multi-start PEST also was employed to identify contaminant transport and source pa-

rameters under different scenarios including spatially and temporally varying recharge and

averaged recharge. For the transient model with spatially and temporally varying recharge,

the estimated transverse dispersivity coefficients were estimated to be significantly less than

that reported in the literature for the more traditional approach that uses steady-state flow
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with averaged, less physically based recharge values.

In addition to the linear adsorption isotherm model characterizing the TCE dissolution

at the source, a modified model L describing the source release, was also implemented and

calibrated by multi-start PEST. The results indicate that the estimated parameters are

different, even for the commonly shared transport parameters. However, the impact on

the target performance measure, TCE concentrations in this case, is trivial.
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Chapter 5

Uncertainty Analysis

Uncertainty is the inherent nature of physical systems due to unavoidable unpredictability.

Some quantities are random in principle, such as brownian motion in the microscopic world;

some vary over time or space, for example the recharge rate in hydrogeology, and are often

termed “variability”; other quantities can be precisely measured, but modelled as uncertain

due to a lack of knowledge. The last type of uncertainty is usually reducible by further

measurement or study.

The third case of uncertainty includes parameter uncertainty, model uncertainty, and

scenario uncertainty [U.S. EPA, 1997]. Model uncertainty arises due to the necessary sim-

plification of real-world processes. Scenario uncertainty stems from errors in professional

judgment and incomplete analysis. The groundwater flow model in this case study was well

calibrated; there is a good fit between simulated and measured groundwater levels from

101 wells over a 20 year time period. The heterogeneity of porous medium and recharge

both in time and space was incorporated in the physically based model, and the boundary

conditions were well-defined based on surface topology. Thus, model and scenario uncer-

tainty, which is difficult to quantify, is largely reduced. This chapter will mainly address

parameter uncertainty.

Parameter uncertainty, which most likely originates from the measurement errors and

121



spatial variability in properties of the medium, is ubiquitous in environmental processes

in subsurface systems. There has been a growing awareness of the need to quantify the

uncertainty associated with outcomes produced by models. Failure to account for this

uncertainty may lead to erroneous results, and may have significant environmental and

economic consequences. Groundwater management, such as remediation planning for con-

taminant cleanup, can be meaningful only if the analysis includes quantitative estimates of

parameter uncertainty, because remediation requirement can increase dramatically due to

parameter uncertainty [Wagner and Gorelick , 1987; James and Oldenburg , 1997]. Over the

past two decades, the significance of the uncertainty associated with parameters has been

recognized, and considered in forward and backward groundwater modelling. There are

relatively fewer studies on uncertainty for the inverse modelling in identifying contaminant

source parameters.

Mishra and Parker [1989] examined the effects of parameter uncertainty, with known

mean and variance, on predictions of unsaturated flow by the comparison of the predicted

and measured results. The experimental results were shown to slightly differ from the

mean of predicted values. Therefore, because the predictions are not frequently linearly

related to the uncertain parameters, simply substituting the mean values of parameters into

the governing equations will not lead to the proper results. Actually, even the uncertain

coefficient of variation (COV) may influence the predictions. Jyrkama [2003] integrated

FORM with MODFLOW in the analysis of the Reich Farm site to estimate the impact

of hydraulic heads and pumping rates caused by the uncertainty of COV. It was shown

that the larger COV results in the higher failure probability of maintaining the head at a

pumping well.

Cawlfield and Wu [1993] evaluated the probability estimate for 1-D advective-dispersive

transport model under four scenarios. The uncertain parameters included flow velocity,

dispersivity, and distribution coefficient. Among them, flow velocity was demonstrated to

be the most important variable for nonreactive transport cases with gamma sensitivity

approximately equal to unity. Tebes-Stevens et al. [2001] examined the impact of uncer-

tainty associated with groundwater flow, contaminant transport and reactive parameters

on the outcome of the solute transport model in the subsurface. The results indicated that
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the concentration is most sensitive to the hydraulic conductivity with relative sensitivity

of 7.57. Further, half of the uncertain parameters of concern have the relative sensitivity

larger than 0.5. Hamed et al. [1996b] investigated the effect of spatial random variability

of the hydraulic conductivity on the failure probability to meet a target concentration level

at a downgradient well. It was shown that the probabilistic events were very sensitive to

hydraulic conductivities along the stream tubes and the tortuous flow path respectively.

Thus, parameter uncertainty seriously impacts the simulation results of forward ground-

water modelling problems. Neglecting the uncertainty generally will reduce the credibility

of model predictions. Uncertainty analysis methods developed in the past thirty years en-

able us to quantify the uncertainty of the estimates, and will be presented in the following

section.

5.1 Stochastic and Uncertainty Modelling Methods

Parameter uncertainty can be propagated into model results and thus bring into question

the utility of deterministic groundwater flow and contaminant transport models. Ap-

proaches to perform uncertainty analysis include interval mathematics, fuzzy theory, and

probabilistic analysis. Interval mathematics is used to estimate the bounds on various

model outputs based on the upper and lower limits of the model inputs and parameters

without probability structures. This method can not provide adequate information on the

nature of output uncertainty, even if the probability structure of parameters is known.

Fuzzy theory’s application to groundwater flow and transport model was initiated by Dou

et al. [1995, 1997]. However, it is considered to be more suitable for qualitative reasoning

rather than quantitative estimation of uncertainty [Isukapalli , 1999]. Probabilistic analysis

is the most widely used method to quantify the uncertainty in physical processes in the

subsurface. In recent years, a few stochastic modelling approaches have been developed

and successfully applied to the forward groundwater modelling method. The approaches

include the Monte Carlo method coupled with stratified sampling and Latin hypercube

sampling, perturbation method, first-order second moment method (FOSM), first-order

reliability method (FORM) and second-order reliability method (SORM).
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5.1.1 Perturbation method

The perturbation method is a simple and efficient stochastic modelling technique. This ap-

proach decomposes the random parameters into mean terms and perturbation terms, and

then propagates parameter uncertainty into the model outputs based on their relationships,

such as partial differential equations describing groundwater flow and contaminant trans-

port [Tang and Pinder , 1977; Gelhar , 1986; Mantoglou and Gelhar , 1987; Li et al., 2004;

Shvidler , 1993; Tiedeman and Gorelick , 1993; Russo, 1993; Satish and Zhu, 1992]. This

method does not require the probability density function of the input random parameters

but rather their statistical moments, for instance mean and covariance. The results are sta-

tistical moments of model outputs. It does not provide any information about probability

density functions. In addition, this method is only valid when perturbation terms are rela-

tively small in comparison to mean terms. Another limitation is the methods applicability

to problems of simple geometry and boundary conditions [Gelhar , 1986].

5.1.2 First-order second moment method

Another uncertainty modelling approach is the first-order second moment (FOSM) method

[Dettinger and Wilson, 1981; Wagner and Gorelick , 1987; James and Oldenburg , 1997;

Kunstmann et al., 2002]. By performing a first-order Taylor series expansion with respect to

all the random parameters at their mean values, the model output can be expressed as the

linear combination of random parameters, where the coefficients are the sensitivities to each

random parameter. Then a common uncertainty propagation approach can be employed to

evaluate the means and variances of model output. Despite the computational advantage

of the FOSM method, it can only be applied to the cases with moderate uncertainty in

parameters, because the method is inherently a linear method. Using a second-order Taylor

series expansion can improve the accuracy of estimated variances. However, the calculation

of second derivatives will give rise to a huge computational burden.
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5.1.3 First and second-order reliability methods

First- and second-order reliability methods (FORM and SORM) with high computational

efficiency were originally developed in the structural engineering field [Madsen et al., 1986],

but have recently been applied to both surface and subsurface problems [Schanz and Sal-

hotra, 1992; Cawlfield and Wu, 1993; Hamed et al., 1995, 1996b,a; Hamed , 2000; Vasquez

et al., 2000; Portielje et al., 2000; Skaggs and Barry , 1997; Jyrkama and Sykes , 2006]. The

goal is to estimate the failure probability of a specific model output exceeding the target

level. So “the method estimates only one percentile of one model output at a time” [Schanz

and Salhotra, 1992]. For the sake of obtaining the probability density function of model

output, FORM or SORM has to be executed repeatedly with a series of target levels.

FORM and SORM are much more efficient than other approaches for low probability

events with a great many parameters. They can also provide a measure of sensitivity of

the failure probability to the random parameters at no extra computational effort with

this enabling the identification of the parameters of the highest influence. The weakness

of these approaches is that they are not always accurate, particularly in the vicinity of

the 50th percentile [Schanz and Salhotra, 1992]. In practice, the accuracy of FORM and

SORM depends on the shape of the limit state surface (where the model output is equal to

the target level). SORM is generally more accurate than FORM, because SORM employs

a second-order approximation to the limit state surface. But SORM has no distinct ad-

vantage over the Monte Carlo method for the cases with a great many parameters [Skaggs

and Barry , 1997].

5.1.4 Sampling based approaches

The Monte Carlo method is probably the most widely used uncertainty modelling method.

“Any existing flow and transport model can be used with the method, provided a random

number generator is available to sample from the prescribed distribution function of the

basic random variables, whether independently or jointly” [Hamed et al., 1996b]. So far, it

has been implemented to both analytical and numerical problems in hydrology [Schanz and
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Salhotra, 1992; Hamed et al., 1995; James and Oldenburg , 1997; Kunstmann et al., 2002;

Fenton and Griffiths , 1993]. The Monte Carlo method is regarded as a most reliable and

robust method of uncertainty analysis, because it makes no assumption or approximation

in application. Therefore, it is often used as the benchmark solution for a problem to verify

other uncertainty modelling methods. This approach is not appropriate for the calculation

of sensitivity analysis to assess the relative importance of each random parameter. What

is more, the major drawback to the classic Monte Carlo approach with random sampling

is the computational cost, especially for the low probability events, because the model has

to be solved for thousands of times to attain an acceptable result. Therefore, sampling

approaches are needed to improve the efficiency of the Monte Carlo method. Stratified

sampling (importance sampling) and Latin hypercube sampling [Melching and Bauwens ,

2001; Portielje et al., 2000; Helton and Davis , 2003] can provide significant computational

benefits.

In stratified sampling, the probability space is divided into strata. The strata should be

mutually exclusive. Then, equal number of samples are generated randomly within each

stratum. It has been proved theoretically that for the same number of realizations, the

variance for the percentile on the estimated distribution function with stratified sampling is

less than that with random sampling [Helton and Davis , 2003]. Indeed, the stratified sam-

pling is always regarded as the best sampling technique if enough information is available

for its appropriate implementation [Helton and Davis , 2003]. The drawback associated

with this technique lies in the difficulty in determining the strata and their probabilities.

“Latin hypercube sampling can be viewed as a compromise procedure that incorporates

many of the desirable features of random sampling and stratified sampling” [Helton and

Davis , 2003]. In Latin hypercube sampling, the range of each parameter is divided into

intervals of equal probability. Equal number of samples are generated within each interval

and paired at random. Latin hypercube sampling has an advantage over random sampling

in variance reduction as well. The relative magnitude of variances calculated by stratified

sampling and Latin hypercube sampling is not identified theoretically. Unlike the stratified

sampling, Latin hypercube sampling does not require identifying the strata and probabil-

ities, and is easy to implement. Thus, Latin hypercube sampling is often the preferred

sampling procedure in Monte Carlo analysis.
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5.2 Derivation of Estimated Parameters Sampling Space

To quantify prediction uncertainty by Latin hypercube sampling, the uncertainty in param-

eters and the associated correlations (or parameters sampling space) must be characterized.

As has been stated, the inverse modelling of a transport model is an ill-posed problem. The

non-uniqueness may arise because of the effects of error and uncertainty in the modelling

process, resulting from model errors, measurement errors, scale effects, and an imperfect

knowledge of the system. Moreover, the optimal calibration result can not guarantee the

best solution, and the selection of only one result to conduct uncertainty analysis is rather

subjective. Table 5.1 shows that even with similar objective function values for the problem

of this thesis, the parameter values can be very different. Therefore, the sampling space

should incorporate all the calibration results, even those with bad performance. The cali-

brated parameter sets with good performance should be more likely to be selected in the

following sampling procedure. A goodness-of-fit measure between simulated and observed

concentrations, that reflects the ability of a parameter set to yield the real situation, is

often considered as an adequate indicator to define the likelihood. Examples of the em-

pirical likelihood measures used in generalized likelihood uncertainty estimation (GLUE)

[Beven and Binley , 1992] applications are shown in Table 5.2. If the shaping factor N

equals 0, each parameter set is given equal weighting. Then, the likelihood function is no

longer dependent on the error variance σ2
e and/or the variance of the observations σ2

obs,

and just follows the frequency of each parameter set. As N is increased, the difference

in the likelihood assigned to parameter sets is magnified with more probability given to

the better optimization trials. As N approaches infinity, only the parameter set with the

smallest error variance σ2
e has non-zero likelihood. As a result, the shaping factor N plays

a significant role in the representation of uncertainty. However, the choice of the shap-

ing factor N is subjective, which will lead to non-uniqueness of uncertainty analysis. In

this section, a new statistically based, empirical approach to allocate the weights for 30

optimization trials from multi-start PEST will be presented.

It is worth noting that the clustering of the solutions (several distinct solutions are

similar and located within the attraction area of the same local minimal.) might be prob-

lematic for optimization algorithms which result in incomplete convergence to the various
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Table 5.1: Selected transport parameter estimates for different calibration trials

Obj Fun al[ft] at/al atv/al K ′[ft3/kg] K ′
source[ft

3/kg] CTCE,initial[kg/ft3]

2126 10.1 2.0E-03 9.0E-03 3.4E-03 2.0E-04 8.1E-03

2133 12.9 2.0E-03 6.8E-03 3.4E-03 2.0E-04 8.7E-03

2136 15.1 2.0E-03 5.7E-03 3.3E-03 2.0E-04 9.5E-03

2162 7.6 2.0E-03 12.6E-03 3.5E-03 2.0E-04 7.6E-03

2225 27.3 2.0E-03 2.8E-03 3.3E-03 4.7E-03 9.8E-03

3426 9.6 0.17 7.6E-02 2.6E-03 1.0E-03 8.0E-03

Table 5.2: Likelihood definitions employed to determine the weight for the parameter sets,

where N is the shaping factor

Likelihood function Description Reference

L (θ) = (σ2
e)
−N

Based on inverse error vari-

ance

Beven and Binley [1992]

L (θ) =

(
1− σ2

e

σ2
obs

)N

Based on Nash and Sutcliffe

efficiency criterion

Freer et al. [1996]

L (θ) = exp (−Nσ2
e) Based on exponential trans-

formation of error variance

Freer et al. [1996]

σ2
obs = 1/Nobs

∑Nobs

i=1

(
Cobs,i − Cobs

)2
, σ2

e =
∑Nobs

i=1 (Csim,i − Cobs,i)
2
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local minima, such as simulated annealing and genetic algorithm. Vasco et al. [1996] devel-

oped a methodology to de-cluster the solutions by partitioning them into groups according

to the “distance” between the parameters. A representative value by averaging the param-

eters is employed to characterize each specific group. The number of partitions (groups)

plays a key role in the de-clustering procedure. In the determination of the number of parti-

tions, it is better to over estimate rather than underestimate, because the underestimation

tends to group clusters that are truly distinct [Vasco et al., 1996]. In this research, the cal-

ibration results for the 30 optimization trials (refer to Table 5.3) from the gradient-based

multi-start PEST are completely convergent to the local minima, which can be partially

verified by the recurrences of the solutions shown in Table 5.4. Each solution from multi-

start PEST is a local minimal of a contraction area. Therefore, 30 optimization trials are

deemed appropriate for the following uncertainty analysis.

Through the calibration of the Reich Farm transport model by multi-start PEST, 30

independent parameter sets and their associated parameter covariance matrixes and sum

of squared errors (SSE) between the simulated and observed concentrations at different

time and locations were obtained. Xiang et al. [1994] proposed the assumption that the

parameter vector obeys a multivariate Gaussian distribution with the estimated parameter

vector as the mean vector and the posterior covariance as the covariance matrix. Thus, for

each parameter set, the parameters are assumed to obey multivariate normal distribution

with given means and covariance matrix obtained through PEST calibration outcomes.

To incorporate all the calibrated parameter sets in Latin hypercube sampling, a weighted

p-multivariate normal distribution for parameter probability space is considered:

X ∼
m∑

i=1

wiNp(µi, σi,j),
m∑

i=1

wi = 1, i, j = 1, 2, 3, . . . , m (5.1)

where, m is the number of parameter sets or calibration trials for each algorithm (30 in this

case), p is the number of variables, µ and σ are the mean and variance-covariance matrix

for each parameter set respectively, w is the weighting factor associated with parame-

ter sets, and the p-multivariate normal distributions for the parameter sets are mutually

independent. The next step is to determine the weighting factor.

Because concentration measurement suffers from a variety of unexpected random errors,
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reading error, equipment error as examples, the observed concentrations are reasonably

assumed to follow a normal distribution with constant variance and the mean equal to the

simulated concentrations, giving:

Cobs,i ∼ N(Csim,i, σ), i = 1, 2, 3, . . . , Nobs (5.2)

where, Cobs,i and Csim,i are measured and simulated TCE concentrations (ppb) respectively,

σ is the standard deviation, and Nobs is the total number of measurements. Equation (5.2)

is assumed to be true for transformation of Cobs,i and Csim,i. Therefore, Y, defined in

Equation (5.3), follows a standard normal distribution, and SSE divided by σ2 is the sum

of squared N(0, 1) or theoretically follows a Chi-squared distribution with the degree of

freedom of Nobs.

Yi =
Cobs,i − Csim,i

σ
∼ N(0, 1), i = 1, 2, 3, . . . , Nobs (5.3)

SSE

σ2
=

Nobs∑
i=1

(
Cobs,i − Csim,i

σ

)2

=

Nobs∑
i=1

Y 2
i ∼ χ2

Nobs
, i = 1, 2, 3, . . . , Nobs (5.4)

Because we have 30 trials for each multi-start PEST algorithm, there are 30 SSEs readily

available and they are assumed to be mutually exclusive. The maximum likelihood method

can be employed to find the value of constant variance. Firstly, the probability density

function of the Chi-squared distribution χ2
n,

f(y) =





1

2n/2Γ(n/2)
yn/2−1e−y/2 y > 0

0 otherwise
(5.5)

where, n is the degree of freedom, equal to the total number of measurements in this case,

and Γ is a gamma function. Then, the likelihood function is

f

(
SSE1

σ2
,
SSE2

σ2
, . . . ,

SSEm

σ2
|σ

)
=

m∏
i=1

f

(
SSEi

σ2

)
, by independency (5.6)
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where, m is the number of trials for each multi-start PEST algorithm. The degree of

freedom is constant, then
m∏

i=1

f

(
SSEi

σ2

)
∝

m∏
i=1

[(
SSEi

σ2

)n/2−1

exp

(
−SSEi

2σ2

)]

∝ σm(2−n)exp

(
−

∑m
i=1 SSEi

2σ2

) (5.7)

Applying the maximum likelihood method by taking the first derivative of the likelihood

function with respect to σ to be 0 yields

df

(
SSE1

σ2
,
SSE2

σ2
, . . . ,

SSEm

σ2
|σ

)

dσ

∝ exp

(
−

∑m
i=1 SSEi

2σ2

)(
m(2− n)σm(2−n)−1 +

∑m
i=1 SSEi

σ3
σm(2−n)

)
= 0

(5.8)

Rearranging gives

m(2− n) +
m∑

i=1

SSEi

σ2
= 0 (5.9)

So

σ2 =
m∑

i=1

SSEi

m(n− 2)
(5.10)

To ensure that the parameter sets with good performance are weighted more than others,

the likelihood function is defined as the complementary cumulative distribution function in

Equation (5.11). In other words, it represents the probability that the calibrated parameter

sets have a performance worse than or equal to the ith parameter set.

Fc

(
SSEi

σ2

)
= P

(
y >

SSEi

σ2

)
=

∫ ∞
SSEi

σ2

f (y) dy, i = 1, 2, 3, . . . , m (5.11)

The likelihood weights associated with the parameter sets are rescaled to give a cumulative

sum of 1.0, and can be determined by the following probability of each SSE in the Chi-

squared distribution.

wi =

Fc

(
SSEi

σ2

)

∑m
i=1 Fc

(
SSEi

σ2

) , i = 1, 2, 3, . . . ,m (5.12)
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The weighted p-multivariate normal distribution for the parameter probability space is

given by.

X =
1

∑m
i=1 Fc

(
SSEi

σ2

)
m∑

i=1

Fc

(
SSEi

σ2

)
Np(µi, Σi), i = 1, 2, 3, . . . , m (5.13)

5.3 Latin Hypercube Sampling Approach

Latin hypercube sampling can be viewed as a compromise procedure that incorporates

many of the desirable features of random sampling and stratified sampling. In Latin hy-

percube sampling, the range of each parameter is divided into intervals of equal probability.

Equal number of samples are generated within each interval and paired at random. In this

case, the number of samples for each sub p-multivariate normal distribution is given by,

nSi = int (winS) , i = 1, 2, 3, . . . , m (5.14)

where, nS is the total number of samples. Then Latin hypercube sampling can be operated

for each sub p-multivariate normal distribution, in which correlations among variables can

also be specified and form part of the definition of the corresponding probability space.

The method by Iman and Conover [1982] for inducing correlation is summarized as follows:

1. Generate nS × k sample matrix X using straight Latin hypercube sampling of k

variables at sample size nS, in which upper and lower bounds for each variable are

imposed.

2. Calculate the P lower triangular matrix of the target correlation matrix C (from the

known covariance matrix σi,j) using Cholesky factorization C = PP′.

3. Generate a new matrix Z that has the same dimension as X, but is otherwise inde-

pendent of X. Each column of Z contains a random permutation of the nS van der

Waerden scores φ−1[i/(nS + 1)], i = 1, 2, 3, . . . , nS, where φ−1 is the inverse of the

standard normal distribution.
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4. Calculate E, the correlation matrix of Z.

5. Calculate Q the low triangular matrix of E by Cholesky factorization, E = QQ′.

6. Calculate matrix Z∗ = S(Q−1)′P′, which has a correlation matrix equal to C.

7. Rearrange the values of each variable in X so they have the same rank as the target

matrix Z∗.

8. Check whether the correlation matrix of rank X is close enough to the target corre-

lation matrix C. If not, repeat the construction procedure for Z∗ (step 3 to 7) until

a suitable approximation to C is obtained.

McKay et al. [1979] proved that Latin hypercube sampling has an advantage over ran-

dom sampling in variance reduction for monotonic functions. For non-monotonic functions,

Helton and Davis [2003] illustrated an example in which Latin hypercube sampling pro-

duced more stable CDF estimates than produced by random sampling. Therefore, Latin

hypercube sampling from each sub p-multivariate normal distribution has a smaller vari-

ance than random sampling:

V ar
(
Y L|Np (µi, σi,j)

) ≤ V ar
(
Y R|Np (µi, σi,j)

)
, i, j = 1, 2, 3, . . . ,m (5.15)

where, Y L and Y R represent the means of model output obtained with equal random

sample size and Latin hypercube sample size. McKay et al. [1979] also show that both

Latin hypercube sampling and random sampling yield unbiased estimates for Y :

E
[
Y L|Np (µi, σi,j)

]
= E

[
Y R|Np (µi, σi,j)

]
, i, j = 1, 2, 3, . . . , m (5.16)

From the conditional variance formula,

V ar
(
Y L

)
= E

[
V ar

(
Y L|Np (µi, σi,j)

)]
+ V ar

(
E

[
Y L|Np (µi, σi,j)

])

= E
[
V ar

(
Y L|Np (µi, σi,j)

)]
+ V ar

(
E

[
Y R|Np (µi, σi,j)

])

≤ E
[
V ar

(
Y R|Np (µi, σi,j)

)]
+ V ar

(
E

[
Y R|Np (µi, σi,j)

])

= V ar
(
Y R

)
(5.17)
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Therefore, Latin hypercube sampling from weighted p-multivariate normal distribution

produces more stable estimates than random sampling. A computer module based on

the Latin hypercube sampling methodology with correlation was developed and used to

investigate parameter uncertainty in the Reich Farm contaminant transport study of this

thesis. The computer module was written in Matlab and generated parameter sets for the

Latin hypercube sampling. The generation of these samples is described in the following

section.

5.4 Generation of Latin Hypercube Samples

The Latin hypercube sampling approach requires that for each input parameter that has

associated uncertainty or variability, a probability distribution be provided. This method

involves the repeated generation of pseudo-random values of the uncertain input variables

drawn from each interval of equal probability by the selected probability distribution and

within the feasible range. In this study, the multivariate probability distribution for each

parameter is obtained through the previous calibration procedure. In order to combine all

of the estimated parameter sets and honour the associated correlation among parameters

simultaneously, a modified Latin hypercube sampling scheme is introduced as follows.

Although density distribution and correlation are readily available for each parameter

set with known likelihood weight, it is not easy to determine the unified correlation over

multiple parameter sets. Instead of making one comprehensive distribution with correlation

over 30 calibration trials, the number of samples for each parameter set is calculated first

by multiplying its likelihood weight with the total sample size. Because the probability

distributions associated with their own parameter sets are mutually independent, Latin

hypercube sampling which honours parameter correlation can be conducted in a normal

manner for each parameter set with given but different sample size. And the statistical

analysis can be conducted by directly grouping Latin hypercube simulations from different

parameter sets, given that each Latin hypercube sample represents an equal probability

in our likelihood definition. The number of Latin hypercube samples plays a key role

in the balance of accuracy and economy of this technique. To avoid the imperfection or
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non-representation caused by a shortage of samples, a number of 300 Latin hypercube

simulations for the 6 random parameters are used in the first attempt for evaluation of the

model uncertainty. When a calibration trial is repeated, the Latin hypercube simulations

assigned to the trial are summed with those of the other similar trials. If the 30 calibration

trials have equal weights, then 10 Latin hypercube simulations would be performed for

each trial, yielding 300 simulations in total. The impact of different sample sizes on the

convergence of the approximation to the actual probability density will be investigated in a

later section. The Chi square likelihood weights assigned to each parameter set for straight

PEST, 3 multi-start PEST, and 5 multi-start PEST are given in Table 5.3. It is obvious

that more weight, and hence Latin hypercube simulations, is allocated to realizations that

accurately predict the observations through the definition of the likelihood measure, and

unfavourable realizations with poor likelihood measure are reasonably removed from the

sampling process. This trend becomes more pronounced in relation to the number of

multi-starts, because the calibrated solution tends to converge to better local optima. In

addition, to compare the variance reduction with the Chi square weighting method, the

uncertainty analysis with the equal likelihood approach was also conducted. Tables 5.4,

5.5 and 5.6 show the number of Latin hypercube samples allocated to each optimization

trial for straight PEST, 3 multi-start PEST, and 5 multi-start PEST estimations. The

parameter sets with bad performance are successfully screened out by the Chi square

weighting method.

Given the likelihood measure, by adding the weighted probability density function over

the different parameter sets, the unified PDF for each parameter can be obtained and

illustrated through Figure 5.1 to Figure 5.6. It should be noted that generation of these

PDFs does not show the correlations between parameters. All the 6 parameter distributions

based on 3 and 5 multi-start PESTs estimates result in very good agreement. However,

PDFs derived from a straight PEST solution differs with the other multi-start PESTs in

terms of probable sampling intervals and the mean values. Straight PEST estimates, which

can be identified as flat distributions with weaker peaks, exhibit more variability than 3

and 5 multi-start PESTs. This can be explained by the fact that an increase in the number

of multi-starts is more likely to lead to the recurrence of good solutions. Figure 5.2 and

Figure 5.5 shows the PDFs for transverse dispersivity and equivalent distribution coefficient
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Table 5.3: Summary of objective function values by PEST estimation and the assigned

weights in constructing the parameter probability space

Straight PEST 3 multi-start PEST 5 multi-start PEST
Trial # Obj Fun Weight Obj Fun Weight Obj Fun Weight

1 2133 0.056 2133 0.042 2133 0.039
2 4687 0.000 2133 0.042 2126 0.039
3 3145 0.054 3145 0.000 3145 0.000
4 2225 0.056 2162 0.041 2162 0.037
5 3145 0.054 2133 0.042 2133 0.039
6 3426 0.025 3426 0.000 2133 0.039
7 2133 0.056 2133 0.042 2133 0.039
8 2126 0.056 2126 0.042 2126 0.039
9 3426 0.025 2133 0.042 2133 0.039
10 3661 0.003 2133 0.042 2133 0.039
11 6311 0.000 2162 0.041 2126 0.039
12 2133 0.056 2133 0.042 2126 0.039
13 3693 0.002 2126 0.042 2126 0.039
14 2133 0.056 2133 0.042 2133 0.039
15 4558 0.000 2133 0.042 2133 0.039
16 3661 0.003 2162 0.041 2162 0.037
17 3446 0.022 2133 0.042 2133 0.039
18 2162 0.056 2162 0.041 2133 0.039
19 2133 0.056 2133 0.042 2133 0.039
20 2133 0.056 2133 0.042 2133 0.039
21 4687 0.000 3145 0.000 3145 0.000
22 8787 0.000 2162 0.041 2162 0.037
23 2136 0.056 2136 0.042 2136 0.038
24 7383 0.000 3145 0.000 2126 0.039
25 3426 0.025 3426 0.000 3426 0.000
26 3145 0.054 2133 0.042 2133 0.039
27 2133 0.056 2133 0.042 2133 0.039
28 2126 0.056 2162 0.041 2133 0.039
29 2133 0.056 2133 0.042 2133 0.039
30 3693 0.002 3670 0.000 3661 0.000
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Table 5.4: Objective function values and the number of samples by the equal likelihood

and the Chi square methods for straight PEST estimation

Trial # Obj Fun Number of recurrences Chi square Equal likelihood

1 2126 2 34 20

2 2133 8 135 80

3 2136 1 17 10

4 2162 1 17 10

5 2225 1 17 10

6 3145 3 48 30

7 3426 3 22 30

8 3446 1 7 10

9 3661 2 2 20

10 3693 2 1 20

11 4558 1 0 10

12 4687 2 0 20

13 6311 1 0 10

14 7383 1 0 10

15 8787 1 0 10

Total — 30 300 300
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Table 5.5: Objective function values and the number of samples by the equal likelihood

and the Chi square methods for 3 multi-start PEST estimation

Trial # Obj Fun Number of recurrences Chi square Equal likelihood

1 2126 2 25 20

2 2133 15 188 150

3 2136 1 13 10

4 2162 6 74 60

5 3145 3 0 30

6 3426 2 0 20

7 3670 1 0 10

Total — 30 300 300

Table 5.6: Objective function values and the number of samples by the equal likelihood

and the Chi square methods for 5 multi-start PEST estimation

Trial # Obj Fun Number of recurrences Chi square Equal likelihood

1 2126 6 70 60

2 2133 16 185 160

3 2136 1 12 10

4 2162 3 33 30

5 3145 2 0 20

6 3426 1 0 10

7 3661 1 0 10

Total — 30 300 300
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(or decay) at the source. The distribution functions differ from the others, where one or

multiple rather complete normal distributions are presented. This mainly resulted from

the incorporation of spatial and temporal varying recharge and the insensitivity of the

parameters to the performance measure.
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Figure 5.1: Unified probability density function for longitudinal dispersivity over 30 cali-

bration trials

The unified probability density functions shown above can not exhibit correlations

among parameters. Sampling accounting for correlations plays a key role in reducing un-

certainty and producing stable numerical estimates. Because it is too tedious to show 2-D

sampling scatter plots for every combination of any two parameters, only the two most

sensitive parameters, longitudinal dispersivity and distribution coefficient, were selected

and plotted in Figures 5.7, 5.8, and 5.9 for straight, 3 multi-start and 5 multi-start PESTs

respectively. The mean values represent the calibrated parameter sets or local optima,

which are surrounded by the randomly generated Latin hypercube samples following spe-

cific correlation patterns. Compared to Figures 5.8 and 5.9, sampling with straight PEST

calibration results (refer to Figure 5.7) incorporates more local optima with different cor-

relation coefficients, and samples are more sparsely distributed within the feasible region.
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Figure 5.2: Unified probability density function for the ratio of transverse dispersivity to

longitudinal dispersivity over 30 calibration trials
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Figure 5.3: Unified probability density function for the ratio of vertical transverse disper-

sivity to longitudinal dispersivity over 30 calibration trials
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Figure 5.4: Unified probability density function for distribution coefficient over 30 calibra-

tion trials
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Figure 5.5: Unified probability density function for the equivalent distribution coefficient

at the source over 30 calibration trials
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Initial Source TCE Concentration [kg/ft3]
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Figure 5.6: Unified probability density function for the initial TCE concentration at the

source over 30 calibration trials

Most of the samples of the uncertainty analysis for 3 and 5 multi-start PESTs emphasize a

few fairly good realizations. Therefore, the overall correlation, which can be deemed as the

weighted averaged value over 30 parameter sets, is much weaker for straight PEST. The

dependency between these two parameters can be easily identified for 3 and 5 multi-start

PESTs, and the coefficients are -0.305 and -0.304, respectively.

5.5 Concentration Breakthrough Curves

The concentration breakthrough curves are generated at 101 wells including all the obser-

vation wells and pumping wells for each of the 300 Latin hypercube trials. Common across

all the trials, 351 time steps were required to complete the simulation from October 1971

to the end of 2000. Then, for each well, 300 concentration values are readily available at

every output time, and can be averaged and sorted to produce the mean, 5th and 95th

concentration percentiles for the concentration breakthrough curves.
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Figure 5.7: Scatter plot produced in a Latin hypercube sampling of size nS = 300 and

parameter sets of size 30 for straight PEST
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Figure 5.8: Scatter plot produced in a Latin hypercube sampling of size nS = 300 and

parameter sets of size 30 for 3 multi-start PEST
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Figure 5.9: Scatter plot produced in a Latin hypercube sampling of size nS = 300 and

parameter sets of size 30 for 5 multi-start PEST

It is redundant to show the uncertainty analysis for every well. Wells 26 and 28, and

the influent to the air stripper were chosen and their uncertain breakthrough curves were

plotted in Figures 5.10, 5.11, and 5.12, respectively. Wells 26 and 28 are used to serve as

drinking water supply wells for the local community. The concentration for the influent

of the air stripper treating the confluent flow from wells 26 and 28 was calculated on a

flux averaging basis. What’s more, both wells and the air striper were relatively densely

monitored, and comprised 51% of the total TCE observations.

In uncertainty analysis, a confidence interval is normally used to measure the precision

of the estimated value. The interval represents the range of the values, consistent with the

data, which is believed to encompass the “true” value with high probability. As shown in

Figures 5.10, 5.11, and 5.12, percentile based confidence intervals are bounded by the 5th

and 95th percentile curves. It seems that the confidence intervals have a linear relationship

with the mean values, which implies that the relative confidence intervals defined by the
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Figure 5.10: Comparison of measured and simulated uncertain TCE concentration break-

through curves for well 26 with 3 multi-start PEST and the Chi square weighting method
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Figure 5.11: Comparison of measured and simulated uncertain TCE concentration break-

through curves for well 28 with 3 multi-start PEST and the Chi square weighting method
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Figure 5.12: Comparison of measured and simulated uncertain TCE concentration break-

through curves for the air stripper with 3 multi-start PEST and the Chi square weighting

method
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following equation are rather constant:

CIrelative =

(
Boundup −Boundlow

Mean

)
(5.18)

where, Boundup and Boundlow represent upper and lower limits for the confidence interval

respectively. The simulated results depicted in Figure 5.13 clearly show that the relative

uncertainty roughly maintains around 0.4 after 1985 for well 26 and the air stripper. For

well 26 and 28, the relative uncertainty is high before 1985, because the numerical dis-

persion, proportional to the squared Darcy velocity and timestep (Dnum ∼ v2∆t/2), will

contribute to the instability which is relatively large for small concentrations in the margin

of the contaminant plume. With given models, the uncertainty caused by numerical error

is unavoidable. However, part of uncertainty depends on the sensitivity of parameters, and

normally has a monotonic increased relationship with perturbation magnitude. When the

observation points are located at either the margin of the contaminant plume or out of the

contaminant plume, the simulated TCE concentration is extremely low, and the numerical

error becomes a dominant factor. The oscillation of relative confidence interval for well

28 in the late of 1990s also is attributed to this explanation. While the use of a smaller

timestep size would reduce the impact of numerical dispersion, the results would not alter

the given explanation.

5.6 Impact of Calibration and Weighting Approaches

on Uncertainty Reduction

As discussed in a previous section, weighting schemes and parameter sets generated by

different calibration algorithms tend to have various definitions of the likelihood measures

and the sampling spaces, with this having a key role in the evaluation of uncertainty. With

the same parameter sets, the Chi square weighting method is more efficient in uncertainty

reduction with narrower 90% confidence intervals in Figure 5.12 than the equal likelihood

approach shown in Figure 5.14.

The uncertain breakthrough curves and related 90% confidence interval at the influ-
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Figure 5.13: Simulated TCE concentration breakthrough curves and the associated relative

confidence intervals for wells 26, 28, and the air stripper with 3 multi-start PEST
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Figure 5.14: Comparison of measured and simulated uncertain TCE concentration break-

through curves for the air stripper with 3 multi-start PEST and the equal likelihood method
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ent to the air stripper for straight and 5 multi-start PESTs are presented in Figures 5.15

and 5.16 for the Chi square and equal likelihood weighting schemes respectively. Compared

to Figures 5.12 and 5.14 with a 3 multi-start PEST, TCE concentration breakthrough

curves with straight PEST show more variability, and are less efficient in uncertainty re-

duction. No obvious difference between 3 and 5 multi-start PESTs was observed in terms of

the mean and 90% confidence intervals of breakthrough curves. This result can be inferred

by the fact that estimated parameter sets with straight PEST contain more diversified

local optima with more evenly assigned likelihood weights, as shown in Table 5.3, and

subsequently, randomly generated Latin hypercube samples are more sparsely distributed

in Figure 5.7 than those in Figures 5.8, and 5.9.

5.7 Impact of the Sample Size on Convergence

Sample size is regarded as an influential factor in the evaluation of sampling based methods.

The unbiased uncertainty estimation will converge to reality as the sample size approaches

infinity. However, with limited computational resources, a trade-off between the efficiency

and the accuracy always arises. To ensure that the numerical estimates are accurate

approximations of the actual distribution, the statistical quantities obtained by ensemble

analysis must converge. Therefore the minimum number Rmin of realizations generated

per randomly sampled parameter set must be identified so that the numerical estimates

do not depend on the number of realizations.

Uncertainty estimation with 300 samples was conducted in a previous section, and a

sample size of 30 [David et al., 1991] is usually deemed as the least number of samples to

apply the central limit theorem in order to obtain the variance-based confidence intervals.

A series of sample sizes is evenly distributed between 30 and 1000 on a logarithmic basis to

yield 30, 100, 300, and 1000. The uncertain breakthrough curves with means and percentile-

based 90% confidence intervals are shown in Figure 5.17. The result shows that not only

the uncertainty decreases considerately as the sample size increased, but also the mean

breakthrough curves are affected by the small sample size. Although the improvement is

evident by comparison of means and confidence intervals with 300 and 1000 samples, the

149



Time [years]

T
C

E
C

on
c

[p
p

b
]

1980 1985 1990 1995 2000
0

20

40

60

80 Air Stripper Simulated

Air Stripper Simulated Mean

Air Stripper Simulated 5 & 95 percentile

Air Stripper Observed

Straight PEST

Time [years]

T
C

E
C

on
c

[p
p

b
]

1980 1985 1990 1995 2000
0

20

40

60

80 Air Stripper Simulated

Air Stripper Simulated Mean

Air Stripper Simulated 5 & 95 percentile

Air Stripper Observed

5 Multistart PEST

Figure 5.15: Simulated means and percentiles of uncertain TCE concentration break-

through curves for the air stripper with straight and 5 multi-start PEST and the Chi

square weighting method
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Figure 5.16: Simulated means and percentiles of uncertain TCE concentration break-

through curves for the air stripper with straight and 5 multi-start PEST and the equal

likelihood method
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Latin hypercube sample size of 300 is considered enough to yield satisfactory results in

terms of the efficiency and the accuracy.
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Figure 5.17: Simulated means and percentiles of uncertain TCE concentration break-

through curves for the air stripper with 3 multi-start PEST and the Chi square weighting

method

Figure 5.18 depicts the means and variance-based 90% confidence intervals of TCE

concentration breakthrough curves for the air stripper with different sample size. In spite

of the fact that the variance-based confidence interval estimates do not depend on the

magnitude of the mean values, and are more stable than those of the percentile-based
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approach, the impact of population size on the CI estimates is still evident. Large sample

size leads to narrow confidence interval curves, and marginal improvement of CI curves

dwindles as the population increases. Both the percentile and variance based uncertainty

analysis with 300 samples provides comparable results to scenarios with more population.

Therefore, for this case study, when the number of samples is larger than 300, Latin

hypercube sampling with 3 multi-start PEST can consistently guarantee convergence of

the approximation towards the actual, but unknown probability density. This conclusion

may be problem specific.

5.8 Summary

Propagating the parameter uncertainty into the model outcome is an important step to

apply the model to the future planning of the well field. Based on multi-start PEST

calibration results, a modified Latin Hypercube sampling approach accounting for corre-

lation between parameters was employed to conduct uncertainty analysis for contaminant

concentration breakthrough curves in pumping wells. Due to the non-uniqueness nature

for ill-posed inverse problems, multiple feasible parameter sets and covariance matrices

(instead of selecting the global optimal for the well-posed inverse problems), which were

generated using the multi-start PEST algorithm, should be employed to form the solution

space. Assuming the observed concentrations follow a normal distribution with constant

variance and the mean equal to the simulated concentrations, the likelihood for each param-

eter set, expressed as the normalized CDF of a Chi square distribution, was determined by

a newly developed Chi square based weighting scheme. The Chi square weighting method

is more efficient than the equal likelihood method in uncertainty reduction.

Impact Evaluation of the impact of sampling size on the estimated uncertainty indicates

that the least number of the sample size to yield satisfactory results in this case study was

300 distributed over 30 feasible parameter sets. The mean and confidence intervals of TCE

breakthrough curves at the municipal wells and influent to air stripper were estimated using

the LHC sampling approach. The results demonstrate that the relative confidence interval
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Figure 5.18: Simulated means and 90 percent confidence intervals of uncertain TCE con-

centration breakthrough curves for the air stripper with 3 multi-start PEST and the Chi

square weighting method
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is considered large at the margin of the contaminant plume as a result of the dominance

of the numerical dispersion.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The emphasis of this thesis is the investigation of a computationally intensive groundwater

contaminant transport problem. This thesis has described the development of a three-

dimensional, physically based, transient, computationally intensive groundwater flow and

contaminant transport model for the Reich Farm Superfund site near Toms River, New

Jersey. The flow system was manually calibrated by Sykes and Normani [2002] using the

method of trial-and-error. The hydraulic conductivity distribution and the spatially and

temporally varying recharge developed in their analysis were adopted for the contami-

nant transport analysis of this thesis. The transport model was efficiently calibrated by a

methodology presented in the preceding chapters; the calibration methods included multi-

start PEST and two heuristic algorithms. Data for the contaminant transport parameter

estimation include measured TCE concentrations at monitoring wells and measured con-

centrations at Toms River Parkway wells 26 and 28. Measured TCE concentrations were

also available for the influent to an air stripper at the Parkway well field. A compar-

ison of the transport model calibration under four different scenarios was conducted to

evaluate the importance of spatially and temporally varying recharge on the estimation

of contaminant parameters. In addition, two different forms of contaminant source char-
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acterization, representing the NAPL dissolution process at the source area, were used in

the calibration to investigate the impact on the parameter estimates and the breakthrough

curves at the pumping wells. In the end, a Latin hypercube simulation comprised of 300

trials distributed in 30 solutions sets was performed on the Sharcnet. Each contaminant

transport trial yielded a simulated TCE concentration breakthrough curve at the pumping

wells. The resulting 300 breakthrough curves for each well were used to generate an un-

certain concentration confidence interval. More concretely, the following conclusions may

be drawn from this study:

• Due to the convergence issue of implementing saturation versus permeability curves

(van Genuchten equation) for the large scale models with coarse discretization, a flux

based method, with an assumption of unit hydraulic gradient in the vadose zone,

was developed to calculate relative hydraulic conductivity in the simulation of the

unsaturated groundwater flow. The flux based approach was compared in a 1-d

column verification example. The difference of actual travel time from the dumping

site to the water table is trivial, compared to the travel time in the whole study

domain.

• The highly varying withdrawal rates of the municipal pumping well field necessi-

tate a small adaptive time step and large computational effort for the simulation of

the coupled transient groundwater flow and contaminant transport. With current

computing resources, it is unrealistic if not impossible to identify the contaminant

source release history and contaminant transport parameters through an optimiza-

tion approach with the coupled system. Through the separation of the transport

model from the flow model, the required computational time for one model run can

be greatly reduced to 10 minutes from 4 hours by using a variant timestep scheme

honouring the variation of the pumping rates. This approach was validated by the

good agreement of the TCE breakthrough curves at well 26 between the separated

and originally coupled model simulation.

• The objective function in PEST is formulated as the sum of the squared residual

errors between the measured and simulated concentrations, which is extremely sen-

sitive to the outliers. To deemphasize the outliers in the optimization and conform
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to the formulation of the objective function definition in PEST, a robust estimator

of the modified SSE is introduced in equation (4.3).

• A three-dimensional, physically based, field-scale groundwater flow and contaminant

model for the Reich Farm Superfund site was developed and implemented in Hy-

droGeoSphere. The model incorporates the vadose zone, highly varying pumping

rates, and spatially and temporally varying recharge. The TCE residuals serving as

the contaminant source are considered to be immobile, and for the base-case anal-

ysis, a linear equilibrium model was employed to describe the mass transfer from

the residual to the dissolved phase. Using an optimization algorithm, the transport

model was adequately calibrated against the observed data (935 TCE concentration

measurements, and most of them are at later time). The decision variables include

four transport parameters (longitudinal dispersivity, transverse dispersivity, verti-

cal transverse dispersivity, distribution coefficient), and two source term parameters

(NAPL source distribution coefficient and initial concentration at the source). The

calibration results indicate that the performance measure is sensitive to the longitudi-

nal dispersivity and distribution coefficient, and that these parameters have relatively

narrow confidence intervals.

• The inclusion of spatially and temporally varying recharge in the model tends to

induce the variation in local velocity in the shallow aquifer, and reduce the macro-

scopic dispersion. Then, the estimated transverse dispersivity will be largely reduced,

and its values are significantly less than that reported in the literature for the more

traditional approach that uses steady-state flow with averaged, less physically based

recharge values. Compared to the transport model calibration under three other sce-

narios, the base-case has the most varying local velocity field and the least transverse

dispersivity. Undoubtedly, the scenario with constant recharge has the most uniform

velocity distribution, and the estimated transverse dispersivity reached the upper

bound.

• Two NAPL residual dissolution models, the linear equilibrium at the interphase and

the modified model L from Zhu and Sykes [2004], were implemented and calibrated in

the case study for the Reich Farm Superfund site. The results demonstrate that the
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estimated parameters are unique, even for the commonly shared transport parame-

ters. However, the impact on the target performance measure, TCE concentrations

in this case, is trivial. Therefore, calibration can only be used to estimate a feasible

range of the parameter values, instead of the accurate values.

• Given the groundwater flow model well calibrated, the contaminant transport pa-

rameters were estimated using optimization with two heuristic search algorithms and

a gradient based multi-start PEST algorithm. In other words, the impact of flow

model on the contaminant transport was not addressed in this thesis. The results for

the calibration of the contaminant transport model demonstrate that all three ap-

proaches are effective and give satisfactory performance. However, the solution sets

are sensitive to the uncertain measured concentrations in the definition of the ob-

jective function. Even with the measured concentrations being certain, thousands of

model evaluations are normally required to achieve a global minimum for the ill-posed

non-convex (or flat response surface) inverse problems. Such an exhaustive search is

indeed impractical, if not impossible, for this large scale computationally intensive

problem. Thus, the solutions are regarded as the local minima or the candidates for

the global minimum.

• The performances of DDS and MicroGA are almost indistinguishable from a prac-

tical calibration perspective. 40% of the selected initial solutions for straight PEST

converge to good solutions. Multi-start PEST, which takes advantage of the robust-

ness of the heuristic methods and of the fast convergence of gradient based approach,

performs best in terms of the final best objective function values with equal number

of function evaluations. As a result of the inherent parallelization of the multi-start

technique, the actual elapsed time for multi-start PEST for one trial is less than 1/5

of those for both DDS and MicroGA when running on the Sharcnet.

• Based on the Latin Hypercube sampling, a methodology for comprehensive uncer-

tainty analysis, which accounts for multiple parameter sets and the associated corre-

lations, was developed and applied to the case study. Two assumptions are necessary

in the derivation of this methodology. For each parameter set, the parameters are

assumed to obey multivariate normal distribution with given means and covariance
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matrix obtained through calibration outcomes. The observed concentrations are as-

sumed to follow a normal distribution with constant variance and the mean equal to

the simulated concentrations. In the method, the likelihood related to each parame-

ter set was determined by the performance measure (objective function value). Given

the uncertainties associated with the contaminant transport parameters for TCE and

the source zone, a 300 Latin hypercube simulation distributed in 30 solution sets was

selected to calculate mean and confidence intervals of TCE breakthrough curves at

the municipal wells and influent to air stripper. The relative confidence interval is

considered large at the margin of the contaminant plume. The main limitation in

performing a sampling based uncertainty analysis is the associated cost and effort.

The uncertainty was propagated into TCE breakthrough curves with series sample

sizes of 30, 100, 300, and 1000. 300 is considered the least number of the sample size

to yield satisfactory results in this case study.

6.2 Recommendations

During the present study, some areas were revealed of interest for future research. They

are listed as follows:

• This study estimated the transport parameters and the contaminant source term in

a transient, but deterministic flow field. However, the flow field usually suffers from

uncertainties, to some extent, because of the imperfect and sparse measurements.

As an important parameter affecting the flow distribution, hydraulic conductivity is

deemed crucial for the modelling of the fate and transport of contaminants in sub-

surface systems. To date, its impact on the inverse problems for finding contaminant

source has not been identified. It is foreseeable that this kind of impact will most

likely be even worse due to the ill-posedness nature of inverse problems.

• To conform to the formulation of the objective function definition in PEST, a mod-

ified SSE was used in the parameter estimation processes. Although the sum of

the squared residuals is normally considered, the definition of the objective function
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controls the relative influence of measurements on the parameter estimates. Except

for the L2-norm estimator, many others are available, including L1-norm estimator,

Huber’s M-estimator, and Cauchy’s estimator. Because the robustness of an estima-

tor is problem-dependent, there is a need to evaluate the performance of different

estimators in the application of this case study.

• This research reconstructed the contaminant source release history with known source

location. However, in some cases, the location and the extent of the contamination

source are not readily available. It would be beneficial to develop a methodology ca-

pable of identifying the contaminant source concentration, duration, and the location

simultaneously for a complex, field scale models.

• Mass transfer, taking place on the interfaces between NAPL residual and aqueous

phases, depends on the size and geometry of NAPL blobs, the history of aqueous

phase movement, and capillary forces. In this research, two simplified source char-

acterization approaches were implemented and calibrated. To provide more accurate

prediction of mass transfer and ongoing contaminant plume migration, physically

based dissolution models could be investigated.

• An important step in the procedure of uncertainty analysis is the calculation of a

likelihood measure for the local optimal parameter sets. Because the choice of the

shaping factor in the conventional likelihood functions is rather subjective, a statisti-

cally based, empirical likelihood definition was developed to determine the probabil-

ity measure for each parameter set, and compared with the equal likelihood method.

However, a thorough comparison between the newly introduced and traditional like-

lihood definitions needs to be investigated.

6.3 Contributions

• Developed a flux based method to calculate relative hydraulic conductivity in the

simulation of the unsaturated groundwater flow;
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• Through the separation of the transport model from the highly varying transient

flow model, the required computational time for the transport model can be greatly

reduced using a variant timestep scheme;

• Compared the performance of different optimization algorithms through the applica-

tion to the case study: the Reich Farm Superfund site;

• Evaluated the impact of the simplified representation of the hydrologic processes on

the estimated parameter values;

• Evaluated the impact of different contaminant source characterization on the cali-

bration results;

• Based on the Latin Hypercube sampling, a methodology for comprehensive uncer-

tainty analysis, which accounts for multiple parameter sets and the associated corre-

lations, was developed and applied to the case study.
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Appendix A

Calibration of the Reich Farm

Groundwater Flow Model by Sykes

and Normani (2002)

This appendix presents the calibration of the Sykes and Normani [2002] Reich Farm

groundwater flow model that forms the basis of the contaminant transport analysis de-

veloped in this thesis; the presentation is included in the thesis as the report by Sykes

and Normani [2002] is not widely available. The text of this appendix is taken directly

from Sykes and Normani [2002] with their permission. Their calibration methodology and

report were reviewed by the U.S. Environmental Protection Agency, the New Jersey Geo-

logical Survey, United Water Toms River and the citizens groups of Toms River including

their attorneys. The groundwater flow conceptual model and calibration methodology de-

veloped by Sykes and Normani [2002] using MODFLOW was followed by the author of this

thesis using a FRAC3DVS/HydroGeosphere framework. This framework is described in

Chapter 3 of this thesis; selected figures cited in this appendix also are included in Chapter

3.
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A.1 Conceptual Model

A.1.1 overview

The Reich99a model and the conceptual model on which it is based encompasses the area

east of the Toms River to Barnegat Bay and encompasses the Reich Farm Superfund site

and the Dover Township Landfill (see Figure 3.1 of this thesis). The northern boundary of

the model domain is assumed to be a groundwater flow line and the boundary is oriented

with a flow line in the surface water system. It is assumed that the direction of groundwater

flow along the northern boundary is insensitive to changes in pumping at the UWTR wells.

Vertical leakage is permitted at streams within the modeled domain. Long Swamp Creek

is an example of such a stream. The top of the first layer of the 4-layer MODFLOW

model corresponds to the ground surface as defined by a digital elevation model. The

4th model layer corresponds to the deeper, less hydraulically conductive portion of the

Cohansey- Kirkwood aquifer and is assigned a horizontal hydraulic conductivity of 0.283

ft/day. The top of this layer is interpolated from well drillers logs; at the UWTR Parkway

Wellfield, the top of the layer corresponds to the top of the clay layer where the screens

of the pumping wells terminate. The bottom of the 4th layer corresponds to the bottom

of the Cohansey-Kirkwood aquifer as defined by Nicholson and Watt in the USGS report

(Figure 5, 1997).

The hydraulic conductivity for MODFLOW layers 1 to 3 varies spatially with the

distribution being developed from well drillers logs. The primary aquifer in the vicinity of

the Reich Farm Site is the Cohansey Formation and is comprised of sand with clay and

gravel lenses. The database for the determination of the lithology and the spatial extent

of the Cohansey formation includes:

• remedial investigation wells and borings associated with the Reich Farm Superfund

Site

• wells and borings for the Dover Township Municipal Landfill site investigation

• borings associated with the drilling of production wells for United Water Toms River
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• other domestic, industrial, or production wells and/or borings as obtained from the

Bureau of

Water Allocation at the New Jersey Department of Environmental Protection. For

the study area, the database includes approximately 1,900 unique well records and their

associated documents, of which only 1,383 records contain a lithologic description. A

summary of the range in depths for those records which contained a lithologic description is

presented in Table A.1. The lithology was determined using the Reich Farm, Dover Landfill

and UWTR well records, plus the domestic, industrial, and production wells/borings that

had a depth greater than 100 ft.

Table A.1: Number of well logs per depth interval

Details of the development of the hydraulic conductivity field for the Cohansey aquifer

are presented in Section 3.4 of this report.

A.1.2 Spatial Domain

For the Sykes and Normani [2002] MODFLOW model, groundwater flow for the Reich

Farm area was investigated by subdividing the spatial domain into 41,600 finite difference

grid blocks. The discretization consists of 200 grid blocks in the westerly to easterly

direction, 208 in the southern to northern direction and 4 layers in the vertical. The

bottom boundary of the domain corresponds to the top of a basal clay layer, immediately

below the Cohansey-Kirkwood formation. The elevation for the top of the basal clay layer

was originally developed by Zapecza (1989) and is presented in Figure 3.9 of this thesis. It

is assumed that there is no flow across this boundary.
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The top of model layer 1 conforms to the ground surface and was determined using

a Digital Elevation Model (DEM) as developed by the U.S. Geological Survey, and sub-

sequently the New Jersey Geological Survey (see Figure 3.3 of this thesis). The top of

model layer 4 was determined using only those wells that were drilled into the Kirkwood

formation, where the Kirkwood formation is identified by fine gray sands and silts and

gray clays. The locations of these wells are shown in Figure 10 of Sykes and Normani

[2002] (not reproduced herein). These locations were determined from a combination of

information provided on the well records, well permits, tax maps of Dover Township, a tax

database containing property owners, property locations by street address and lot / block

number, as well as the 1995/97 aerial digital orthophotography from the NJDEP. ArcView

GIS was integral to the management of the data and determination of the well coordinates.

The interpolated elevation for the top of the Kirkwood formation is shown in Figure 3.8

of this thesis. A kriging algorithm was utilized with a nugget variance of 4 ft2 and a linear

drift. The elevations for the tops of MODFLOW layers 2 and 3 were distributed at inter-

mediate distances between the ground surface elevation and the elevation of the top of the

Kirkwood formation.

A.1.3 Boundary Conditions

An important component of a groundwater flow conceptual model are the boundary con-

ditions. At the boundary blocks of the spatial domain, either the heads must be specified

(Dirichlet or Type I boundary condition) or the flux normal to the boundary must be spec-

ified (Neumann or Type II boundary condition). The most common form of the latter is

the no-flow or groundwater divide boundary condition. For the Reich99a model, all vertical

external edges of the modelling domain are described using a no-flow Type II Neumann

boundary condition. The bottom of layer 4 is also described using a no-flow Neumann

boundary condition.

Boundary conditions for the top surface of the model domain were represented by

prescribed Type I Dirichlet boundary conditions (general head boundary (GHB) condition

as implemented in MODFLOW), leakance from surface water bodies such as rivers, lakes,
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and ponds, and recharge from precipitation. The development of these boundary conditions

is presented in the following two sections.

Surface Water Bodies

The Toms River estuary and Barnegat Bay were represented using a general head boundary

condition. Head elevations for these grid blocks were set to zero feet AMSL, and a high

conductance was selected for these blocks. The River and Surface Water categories are

represented in the Reich99a model using the MODFLOW river package. The surface water

bodies in the Reich99a model were described using river width and length in a grid block,

conductance, stage elevation, and water depth. Stage elevations of rivers and lakes or ponds

were estimated from the USGS 7.5 minute quadrangle maps. The DEM was not sufficiently

accurate to determine the elevation of surface water bodies. GIS layers for rivers, ponds

and lakes were obtained from the NJDEP. Some of these GIS layers were corrected to

reflect the actual locations of water features as shown in the USGS quadrangle maps for

the area. ArcView GIS was used to facilitate the calculation of the grid block properties

and to create the Visual MODFLOW boundaries input file. The stage elevations, surface

water body areas, and conductances were assumed to be temporally invariant.

Recharge

This section describes the methodology used to obtain a temporally varying recharge dis-

tribution, from October 1971 to December 2000, for each finite difference grid block in the

modelling domain and then integrating it into the Reich99a model. The NJGS has de-

veloped A Method for Evaluating Ground-Water-Recharge Areas in New Jersey (Charles

et al., 1993). This methodology results in annual groundwater recharge rates for land

areas five acres or larger. In order to obtain a more spatially and temporally detailed

recharge distribution, an integrated analysis approach was developed using the ArcView

GIS environment and an Agency accepted hydrologic model HELP3.

The HELP (version 3) model was developed for the USEPA Risk Reduction Engi-
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neering Laboratory by the US Army Engineer Waterways Experiment Station. It is a

quasi-two-dimensional, deterministic, water-routing model for determining water balances.

It simulates daily water movement into the ground, and accounts for snowmelt, evapotran-

spiration, vegetative interception, surface runoff and temperature effects.

Both the NJGS recharge method and the integrated method developed for implementa-

tion in the Reich99a model, utilize information from land-use/land-cover (LULC) and soil

maps in a soil water budget analysis. However, not only does the integrated approach allow

for a much smaller spatial and temporal resolution, but it also performs a more sophisti-

cated water budget analysis by including the effects of snowmelt, vegetative interception,

surface runoff and variable temperature and recharge distributions. The integrated anal-

ysis is primarily based on land-use/land-surface cover and soils data as well as the actual

daily precipitation and temperature records for Toms River, New Jersey.

Procedure The New Jersey Department of Environmental Protection (NJDEP) 1995/97

LULC ArcView coverages contain a detailed classification of the land surface cover based on

the Anderson et al. (1976) Classification System. HELP3 uses the Natural Resources Con-

servation Service (NRCS) (formerly Soil Conservation Service) curve number (CN) method

in calculating quantities of surface runoff, therefore, the Anderson codes were matched to

the NRCS land cover categories by grouping them into 11 different LULC group codes, as

presented in Table A.2. These group codes, along with percent imperviousness (IS) infor-

mation, were then combined in ArcView GIS with the USDA soil maps (not reproduced

herein) to obtain a LULC/Soil combination map (not reproduced herein). Combining the

11 LULC groups with 27 soil types resulted in a total of 694 unique LULC/soil combina-

tions. Details of the procedure used to determine the temporal recharge distribution for

each of the combinations are described in the following paragraphs.

NRCS Curve Numbers A curve number for each of the LULC/Soil combinations was

determined using the methodology presented in Chapter 2 of the NRCA TR-55 (USDA,

1986). This methodology was developed specifically for small watersheds in urbanized

areas and is therefore well suited for the Toms River watershed.
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Table A.2: Land Use and Land Cover group codes

The major factors affecting the curve numbers are the hydrologic soil group (HSG),

cover type, treatment, and antecedent runoff condition (ARC). Assuming an average ARC,

and that all impervious areas flow directly into the drainage system, Tables 2.2a, b, and

c in the NRCA TR-55 (USDA, 1986) were used to estimate the CN for each LULC/soil

combination. The hydrologic soil group (HSG) classification for each soil was obtained

from the USDA soil maps, and the cover type classification was based on the groupings

seen in Table A.2. Since groups 1-3 contained impervious areas, their CNs were adjusted

based on Figure 2-3 in TR-55. Due to the lack of information regarding the type of cover

and treatment in agricultural areas, an average CN was used for group 4 soils (i.e. by

averaging all the CNs in Table 2-2b of TR-55 for each HSG). For hydric soils in group 9, a

CN of 98 was assumed to indicate zero recharge potential, whereas a minimum CN of 30

was assumed for dry soils in group 10 to indicate maximum recharge potential. Group 11

was not included in the analysis.

Soils Data The surface soil layering information was derived from the USDA soils

database. In addition to physical and chemical details, the database contains informa-
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tion on soil type, number of layers, layer depths, and soil texture classifications. A HELP3

soil code was assigned to each soil type based on the soil texture classification, which was

then entered into the HELP3 model along with the layer information. For the recharge

analysis, the total depth of the layering was assumed to be 10 ft, with the bottom layer

consisting of coarse to medium sand.

Evapotranspiration The evapotranspiration data for the model is summarized in Table

A.3. The average evaporative zone depths for the given soils and cover types were estimated

by taking 50 per cent of the maximum root depths given in Table 2 in Appendix 7 of

NJGS GSR-32 (Charles et al., 1993). The other evapotranspiration data was obtained

from HELP3 for Edison, New Jersey. A latitude adjustment to 40.00 degrees was also

applied to correspond with the location of the modelling domain.

Table A.3: Evapotranspiration data used in HELP3

* values were generated by HELP3 for Edison, New Jersey.

Leaf Area Index HELP3 requires a value for the maximum leaf area index (LAI) to

calculate transpiration rates for the vegetative cover. These values range from 0 for bare

ground to 5 for maximum vegetal leaf coverage and were assigned based on the LULC

group codes. For example, the LAI for agricultural areas was assumed to be 2.

Weather Data A range of weather data was also essential for the HELP3 model. The

solar radiation values were generated synthetically by HELP3 for Edison, New Jersey
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(with a latitude adjustment to 40.00), whereas actual daily precipitation and daily average

temperature values from January 1970 to December 2000 at Toms River were used in the

HELP3 model. It was assumed that each precipitation event was spatially constant across

the modelling domain.

Results The daily recharge values from HELP3 were summed to obtain a temporally

varying monthly recharge distribution for each LULC/soil combination. Based on the

areal contribution of each combination within a finite difference grid block, an areally

weighted average was then used to calculate the actual recharge distribution. For grid

blocks containing water, the recharge contribution from water was always assumed to be

zero thereby lowering the overall recharge in the block.

Figures 3.5 and 3.6 of this thesis show typical recharge distributions for a dry (May

1981) and a wet (May 1989) month, respectively, across the entire modelling domain. It

is clear that the recharge varies significantly both spatially, and temporally in the study

area. The overall spatial and temporal recharge average for the 31 year time period across

the entire domain was approximately 17.9 in/year.

A.1.4 Hydraulic Conductivity Distribution

The location of the wells and borings used in the estimation of the hydraulic conductivity

distribution are indicated by the circular markers in Figure 3.11 of this thesis. The wells

shown in this figure include the wells and borings for the Reich Farm Superfund Site, the

wells/borings for the Dover Township Municipal Landfill, UWTR wells/borings as well as

domestic, industrial and production wells in the NJDEP database that had a depth greater

than 100 ft. Many logs were not used as they were either located outside the modelling

domain, or there was insufficient information to locate the wells.

The hydraulic conductivity at the location of well j was determined using the following

formula:
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Kj =

∑n
i=1 bijKij∑n

i=1 bij

(A.1)

where Kj is the horizontal hydraulic conductivity at location j, Kij is the hydraulic

conductivity of unit i in a well j log, and bij is the thickness of unit i in a well j log.

The qualitative description of lithology as provided on the well log was assigned a material

category. Each material category was then assigned a hydraulic conductivity value as shown

in Table A.4. Calibration involved adjusting the assigned hydraulic conductivity for the

material categories. Trial 7 in Table A.4 presents the values for hydraulic conductivity

which were used in this report.

The point values for Kj were used to estimate a hydraulic conductivity distribution

using a kriging interpolation algorithm. The kriging parameters included: no drift, an ex-

ponential variogram, and a nugget variance of 225 (ft/day)2. The resulting two-dimensional

interpolated field was used to assign a hydraulic conductivity to each grid block within a

layer, where MODFLOW model layers 1 through 3 are identical, with a distribution as

shown in Figure 3.11 of this thesis. The hydraulic conductivity tends to decrease east-

ward as one approaches the coast. Layer 4 was assigned a constant horizontal hydraulic

conductivity of 0.283 ft/day. The vertical hydraulic conductivity was determined using an

anisotropy ratio of 20:1, horizontal:vertical.

* Coarse to Fine Gravel and Silty GRAVEL categories were only applied to Trial 7

as Trials 1 through 6 predate the inclusion of these two categories within the lithology

database.

A.1.5 Pumping Wells

The transient groundwater flow was simulated using monthly averaged flow rates for the

UWTR Cohansey wells (Wells 20, 22, 24, 26, 26B, 28, 29, and 44). Plots of the temporal

variation in pumping rates for each of the wells are shown in Figure 3.17 and Figure 3.18

of this thesis.
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Table A.4: Material categories and assigned values for horizontal hydraulic conductivity
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A.1.6 Initial Condition

The transient simulation commences in October 1971. The steady-state recharge distribu-

tion was determined as the average recharge for each cell for the period from October 1971

to December 2000. The initial condition was established based on steady-state groundwa-

ter flow (see Figure 3.19 of this thesis) with only UWTR Well 20 pumping at a rate of

48,988 ft3/day, which represents the average production rate for the period October 1971

to March 1972.

A.2 Calibration

Water level measurements for 101 wells were used in the Sykes and Normani [2002] MOD-

FLOW calibration process. A database was created to facilitate the addition of future

water level measurements. The database includes both manual measurements, and water

elevation readings from nine data-loggers installed in monitoring wells between the Re-

ich Farm Superfund Site and the UWTR Parkway Wellfield. The database includes over

410,000 discrete measurements, mostly from the data logger measurements.

A model calibration requires sound observed water elevations. As part of a data quality

check, a large portion of monitoring wells installed during the mid 1980s (NUS, Ebasco,

CH2M-Hill) were found to have different top of casing elevations, depending on the source

documents. Over 40% of the approximately 1,750 manual measurements were corrected as

a result. Some top of casing elevations had been incorrect for nearly 10 years as the result

of using the wrong elevations or as the result of transcription errors. In some cases, well

casings had been modified, but not resurveyed until several years later.

A comparison of water levels recorded at neighboring monitoring wells at Reich Farm

showed large vertical gradients. A review of the lithology associated with those wells did

not indicate a geological means for the existence of those gradients. A similar situation

was noticed in various well pairs. A comparison of water levels based on when the wells

were installed (NUS, Ebasco, and Malcolm Pirnie monitoring well generations) indicated
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a consistent trend. Both NUS and Ebasco were EPAs contractors for the Reich Farm site.

Due to the discrepancies identified and the resulting confusion as to which recorded data

was considered true, it was decided to resurvey all the monitoring wells at Reich Farm as

well as a few other monitoring wells that formed part of the network.

It was discovered that the NUS and Ebasco wells at Reich Farm had been surveyed

to differing elevation benchmarks. Neither of these elevation benchmarks is equivalent to

the present day benchmark. The top of casing for the NUS installed wells (MW-1K to

MW-10) were too low by an average of 0.55 ft, while the Ebasco installed wells (MW-12

to MW-23) were too low by an average of 1.37 ft.

Coordinate locations of monitoring wells were also checked. In some cases the wells

were missurveyed and found to be several hundred feet from their true locations, while

in other cases, coordinates in NAD27 were confused with NAD83, thereby resulting in a

horizontal difference of over 100 ft. Transcription or typographical errors on the part of

the surveyor were also found and corrected.

Time series plots helped to find anomalous data (refer to Sykes and Normani [2002]).

For example, data loggers continued to record water levels at pre-specified times, even

though they had been removed from the monitoring well for downloading. Abrupt changes

in recorded temperature and/or water levels are a key indication. Other issues related to

data loggers included discrepancies in water levels between readings prior to logger removal

and after logger return to the well.

Water level measurements are inconsistent and / or nonrepresentative for some mon-

itoring wells at the Dover Landfill. This effect can be seen by reviewing the water level

hydrographs for the Dover Landfill wells (not reproduced in this thesis, refer to Sykes and

Normani [2002]). For example, wells MW-2 and MW-6 both show significant changes in

water levels over time. These inconsistencies may be due to incorrect measurements and

/ or clogged well screens. Early water level measurements (within a year or two of the

installation date of the wells) and recent water level measurements (June 1999) show more

favorable comparisons with simulated water levels. Water level measurements for MW-1,

MW-2, MW-3, MW-4, MW-5s, and MW-6 that predate May 1999 are not included in the
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scatter plot in Figure 3.24 of this thesis. Water level measurements after May 1999 were

collected and provided by Dan Raviv Associates.

Several model input parameters were adjusted during the calibration phase to provide a

better match between simulated and observed water elevations. Conductivities for surface

water bodies were adjusted to account for the topographic control of the water table near

those surface water bodies.

The hydraulic conductivity distribution for MODFLOW model layers 1 through 3 were

adjusted by first estimating the hydraulic conductivity for each material category as shown

in Table A.4. The weighted average hydraulic conductivity at each well or boring location

is calculated. A hydraulic conductivity field is then interpolated using a kriging algorithm,

and then each grid block in the domain is assigned a hydraulic conductivity based on the

interpolated field. This process was repeated several times until a good match was obtained

between simulated and observed heads as shown on the scatter plot.

Figure 3.24 of this thesis shows a scatter plot for all observed water level measure-

ments for all time; the results are similar to that obtained for the MODFLOW calibration.

Multiple water level measurements in a month were averaged to provide one reading per

month. The upper and lower bands represent plus or minus 5 ft. Table A.5 , with data

from the calibration of Sykes and Normani [2002], represents the number of data points

that are in each year and well category. A similar table was developed for the verification

of the groundwater flow model calibration of this thesis (refer to Table 3.2 and Figure

3.24). Table A.6 represents the averages of the residuals (simulated heads minus observed

heads) for various years and monitoring well categories. A positive number indicates that

the simulated heads are (in an average sense) greater than the observed heads, while a

number near zero indicates that the simulated heads are (in an average sense) nearly equal

to the observed heads. Table A.7 is similar to Table A.6, except that the averages of the

absolute value of the residuals are calculated and are used to illustrate the variation in the

residuals. Numbers closer to zero indicate less scatter about the match line, and a better

fit between simulated and observed values. The overall average residual of all 1,483 scatter

points is 0.044 ft, while the average of the absolute value of the residuals is 1.724 ft.
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Table A.5: Count of scatter plot residuals by category and year

Table A.6: Average of scatter plot residuals in feet by category and year
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Table A.7: Average of absolute value of scatter plot residuals in feet by category and year

As can be seen in Table A.6 and A.7, some years provide a better fit to the data than

in other years. For example, the years 1999 and 2000 provide the best fit to the observed

data in the mid to late 1990s. To facilitate the calibration of the groundwater flow model,

data loggers were installed in selected wells of the Reich Farm study. Figures A.1 to A.6

present a comparison of the transient MODFLOW simulation results to the observed water

levels from data loggers.
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A.3 Conclusions

The groundwater flow model described in the Sykes and Normani [2002] report and the

data upon which is it based have been updated in the following ways:

• The simulation period has been extended to the end of 2000, thereby requiring addi-

tional well pumping rates, temperature and precipitation records, water level readings

and data logger measurements.

• Approximately 100 well records were added to the wells database and 19 wells were

added to the water levels database.

• Software was written for the lithologic visualization of well boring logs that were used

in the development of the spatially variable hydraulic conductivity field.

• Interpolation of the 3-dimensional groundwater flow field to represent the physical

location of a well screen and the water level that would result at that location. This

approach was required to account for the vertical flow gradients that exist at the

Recharge Area.

The Sykes and Normani [2002] report presents the Reich99a calibrated groundwater

flow model for the Cohansey-Kirkwood aquifer system with a domain that extends from

Barnegat Bay to the east, the Toms River to the west, the Toms River estuary to the south

and a surface water divide to the north. The modelling domain includes both the Reich

Farm Superfund Site and the Dover Township Landfill site. The Reich99a model represents

a refinement of the Reich99 model. Results from the Reich99a model are consistent with

those of earlier modelling efforts which used the Reich99 and Reich93 models. Variations

between the simulated and observed water levels can be due to the conceptual model and

inconsistencies or errors in the observed data. Within the model domain, several data

inconsistencies or errors were discovered and rectified:

• Checking and correcting numerous data entry, surveying, and transcription errors

related to water levels, well locations, and well casing elevations.
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• Checking and correcting data entry errors associated with the daily temperature and

precipitation records obtained from the National Climatic Data Centre.

• After resolution of data errors and other inconsistencies, the overall average residual

between simulated and observed water levels for the 1,483 scatter points is 0.044 feet,

while the average of the absolute value of the residuals is 1.724 feet.

The highly dynamic behaviour of the groundwater flow system necessitated the devel-

opment of a transient groundwater flow model. A steady-state groundwater flow model of

the study area is inadequate for describing the evolution and behaviour of the groundwater

flow system from the early 1970s to the end of 2000. A spatially and temporally varying

recharge methodology was developed which uses actual daily temperature and precipita-

tion data from 1970 to the end of 2000. The use of this data was essential, for example,

in capturing the warmer than normal winter of early 1998, which lead to higher than nor-

mal recharge, as evidenced by measured water levels. Estimated travel times from Reich

Farm based on average water particle paths must be based on a transient groundwater flow

system, while a steady-state flow system can be used to estimate pumping well capture

zones. The use of a steady-state groundwater flow system with present day pumping rates

at the UWTR wells will result in the underestimation of average water particle travel times

from Reich Farm as compared to those obtained using a transient model that captures the

temporal evolution of the groundwater flow system.
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