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Abstract

Infectious disease models with switching are constructed and investigated in
detail. Modelling infectious diseases as switched systems, which are systems that
combine continuous dynamics with discrete logic, allows for the use of methods
from switched systems theory. These methods are used to analyze the stability and
long-term behaviour of the proposed switched epidemiological models.

Switching is first incorporated into epidemiological models by assuming the con-
tact rate to be time-dependent and better approximated by a piecewise constant.
Epidemiological models with switched incidence rates are also investigated. Thresh-
old criteria are established that are sufficient for the eradication of the disease, and,
hence, the stability of the disease-free solution. In the case of an endemic disease,
some criteria are developed that establish the persistence of the disease.

Lyapunov function techniques, as well as techniques for stability of impulsive
or non-impulsive switched systems with both stable and unstable modes are used.
These methods are first applied to switched epidemiological models which are in-
trinsically one-dimensional. Multi-dimensional disease models with switching are
then investigated in detail. An important part of studying epidemiology is to con-
struct control strategies in order to eradicate a disease, which would otherwise be
persistent. Hence, the application of controls schemes to switched epidemiologi-
cal models are investigated. Finally, epidemiological models with switched general
nonlinear incidence rates are considered.

Simulations are given throughout to illustrate our results, as well as to make
some conjectures. Some conclusions are made and future directions are given.
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Chapter 1

Introduction

Over the past three centuries, human life expectancy has increased from approxi-
mately 30 years in 1700 to approximate 70 years in 1970 [2]. One of the main causes
of this improvement has come from a decline in deaths as a result of infectious dis-
eases [2]. In contrast to this decline in mortality, both the magnitude and frequency
of epidemics has increased during the 18th and 19th centuries, principally as a re-
sult of an increase of large population centers in increasingly industrialized societies
[2]. This trend then reversed in the 20th century, mainly due to the development
and widespread use of vaccines to immunize susceptible populations [2]. Although
chronic diseases, such as cancer and heart disease, now receive more attention in de-
veloped countries, infectious diseases are still important factors in causing suffering
and mortality in developing countries [27]. The human invasion of new ecosystems,
global warming, increased international travel, and changes in economic patterns
will continue to provide opportunities for the spread of new and existing infectious
diseases [28].

In the 20th century, new infectious diseases have emerged and some existing
diseases have re-emerged [28]. Measles, a serious disease of childhood, still causes
approximately one million deaths each year worldwide [28]. Type A influenza led to
the 1918 pandemic (which is a worldwide epidemic) that killed over 20 million peo-
ple worldwide [28]. Examples of newly emerging infectious diseases include Lyme
disease (1975), Legionnaire’s disease (1976), hepatitis C (1989), hepatitis E (1990),
and hantavirus (1993) [28]. The appearance of the human immunodeficiency virus
(HIV) in 1981, which leads to acquired immunodeficiency syndrome (AIDS), has
become an important sexually transmitted disease throughout the world [28]. New
antibiotic-resistant strains of tuberculosis, pneumonia, and gonorrhea have emerged
[28]. Malaria, dengue, and yellow fever have re-emerged and, as a result of climate
changes, are spreading into new regions [28]. Plague, cholera, and hemorrhagic
fevers (for example, Ebola) continue to erupt occasionally [28]. For other detailed
accounts of important emerging diseases in the 20th century, see [28].

Mathematical models have become important tools in analyzing both the spread
and control of infectious diseases. An English country doctor, Edward Jenner,
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observed that milkmaids who had been infected with cowpox did not get smallpox
[28]. And so, beginning in 1796, he started vaccinating people with cowpox to
protect them from smallpox [28]. This was the world’s first vaccine, taken from the
Latin word vacca for cow [28]. The first known mathematical epidemiology model
was formulated and solved by Daniel Bernoulli in 1760 [43]. Theoretical papers on
infectious disease models by Kermack and McKendrick (1927, 1932, 1933) have had
a major influence in the development of mathematical epidemiology models [55].
These authors were the first to obtain a threshold result that showed the density of
susceptibles must exceed a critical value for an epidemic outbreak to occur [28]. The
foundations of modern mathematical epidemiology based on compartment models
were laid in the early 20th century, and, since the middle of the 20th century,
mathematical epidemiology has grown exponentially [43]. A tremendous number
of models have been formulated, analyzed and applied to a variety of infectious
diseases. Mathematical models have been formulated for diseases such as measles,
rubella, chickenpox, whooping cough, smallpox, malaria, rabies, gonorrhea, herpes,
syphillis, and HIV/AIDS [27]. For a review of mathematical models of infectious
diseases, see [3, 27, 28, 31].

These models may be rather simple, but studying them is crucial in order to gain
important knowledge of the underlying aspects of the spread of infectious diseases
[27]. One purpose of analyzing epidemiology models is to get a clear understanding
of the similarities and differences in the behaviour of solutions of the models, as this
allows us to make decisions in choosing models for certain applications [27]. These
models provide important conceptual results such as thresholds. For example, the
basic reproduction number conceptualizes the rate of spread of a certain disease[28].
Mathematical models and computer simulations are extremely useful tools for build-
ing theories, testing them, assessing quantitative conjectures, answering qualitative
questions and estimating key parameters from data [28]. Epidemiology modelling
can identify trends and suggest crucial data that should be collected, make general
forecasts, and estimate the uncertainty in forecasts [28]. Certainly, understanding
the transmission characteristics of a communicable infectious disease in a region
can lead to improved approaches to decreasing the transmission of said disease [28].

One of the most important aspects of epidemiology is the application of control
schemes to eradicate, or at least supress, a disease. Infectious disease models are
vital for comparing, implementing, evaluating, and optimizing various detection,
prevention, and control programs [28]. These models are very useful in giving rea-
soned estimates for the level of vaccination required for the control of a disease [55].
For example, the World Health Organization (WHO) began an initiative against
smallpox in 1967 when there were approximately 15 million cases per year. The
WHO strategy involved extensive vaccination programs, surveillance for outbreaks,
and containment of these outbreaks by local vaccination programs [28]. Small-
pox was eventually eradicated worldwide by 1977 [28]. This has been considered
the most spectacular success of a vaccination program [47]. The WHO estimates
that the elimination of smallpox worldwide saves over two billion dollars per year
[28]. There are now vaccines that are effective in preventing rabies, yellow fever,
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poliovirus, hepatitis B, parotitis, and encephalitis B [41].

Recently, pulse vaccination has gained in prominence as a control scheme as
a result of its successful application to the control of polyomyelitis and measles
throughout Central and South America [67]. The strategy has also been examined
in the United Kingdom, where children aged five to 16 years were offered a combined
measles and rubella vaccine in 1994 [67]. Coverage of 90% or more was achieved
in 133 of 172 districts, and the mean coverage in England and Wales reached 92%
[67]. Consequently, it was concluded that the pulse vaccination of all children of
school age is likely to have a dramatic effect on the transmission of measles and
should prevent a substantial toll of morbidity and mortality [67]. Pulse vaccination
has been illustrated to be an effective strategy in preventing such viral infections as
rabies, yellow fever, poliovirus, and hepatitis B [61]. In 1988, the WHO set a goal
of global polio eradication by the year 2000 [28]. The WHO strategy has included
routine vaccination, National Immunization Days (during which many people in a
region are vaccinated on a certain day in order to interrupt transmission, i.e., pulse
vaccination), mopping-up vaccinations, and surveillance for acute flaccid paralysis
[28]. Polio has disappeared from many countries from 1990-2000, and it is likely
that polio will soon be eradicated worldwide [28]. The WHO estimates that eradi-
cating polio will save approximately 1.5 billion dollars each year in immunization,
treatment, and rehabilitation around the globe [28]. Eventually, it is possible that
vaccines will prevent malaria, venereal diseases, and even some forms of heart dis-
ease and cancer [48].

A crucial part in the medical and statistical study of an epidemic is its transmis-
sion, which depends on the intrinsic infectiousity of the disease and on population
behaviour [60]. In mathematical modelling, these two aspects are summarized in
the contact rate and the incidence rate of a disease, which are, respectively, the
average number of contacts between individuals that would be sufficient for trans-
mitting the disease and the number of new cases of a disease per unit time [28].
Empirical studies have shown that the transmission of many infections varies sea-
sonally [31]. For example, for childhood infections such as measles, chickenpox,
and rubella, it has been observed that the rates of transmission peak at the start of
the school year and decline significantly during the summer months [31]. For many
diseases, seasonality is one of the main forces driving an epidemic outbreak. An
analysis of the biennial pattern in New York demonstrates that sufficiently large
seasonal variations in transmission can generate a biennial looking cycle [63]. It has
also been observed that data from England and Wales displays a four-year cycle
in poliomyelitis incidence, while measles has also been observed to have a biennial
cycle for the same countries [63].

The objective of this thesis is to formulate new epidemiology models with time-
varying contact rates or time-varying incidence rate structures, and to study the
long-time behaviour of diseases. More specifically, we look to extend epidemiology
models in the literature by the addition of switching, that is, the abrupt change
of the dynamics governing the systems at certain switching times. This switching
will allow the contact rate to be approximated by a piecewise constant function.
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Though there have been some studies on models with time-dependent contact rates
in the literature (for example, see [31, 49, 66]), analytical methods for analyzing
models with time-dependent contact rates are lacking [31]. Since relatively modest
variations in the contact rate can result in large amplitude fluctuations in the trans-
mission of a disease [31], this is an important phenomenon that requires attention.
Switching is a new approach to this problem and has not been studied before as an
application to epidemiology models.

For a given infectious disease model, a specific incidence rate must be cho-
sen appropriately based on the scenario and disease being modelled. There are
numerous incidence rates which have been used in models in the literature; for ex-
ample, the standard incidence, saturation incidences, weakly nonlinear incidences,
psychological-effect incidences, media coverage incidences, and more general non-
linear forms (see [27, 33, 60, 61]). With regards to different forms of the incidence
rate, one of the possible causes of unexpected failures of a vaccination campaign
may be the nonlinearity of the incidence rate [60], which gives extra motivation
in studying time-varying incidence rate structures. Thus, changing the structure
of the incidence rate over time, which has not been investigated in the epidimi-
ology literature, may be very useful in giving new insights and new directions for
future work. Taking a switched systems approach will also allow us to easily extend
switched infectious disease models to include control techniques, such as constant
and pulse control. Hence, the contributions of this thesis will be a method to an-
alyze epidemiology models with time-dependent parameters and function forms,
which are easily extendable to many different models, as will be shown.

The idea of switching the dynamics of a system comes from the area of hybrid
and switched systems. Hybrid and switched systems are described using a mixture
of continuous dynamics and logic-based switching [64]. The classical view of such
systems is that they evolve according to mode-dependent continuous dynamics,
and experience transitions between modes that are triggered by certain events [64].
A switched system usually arises in two cases [12]: One is when there are abrupt
changes in the structure or the parameters of a dynamical system, which can be due
to, for example, variations in environmental factors. Second, when a continuous
system is controlled using a switched controller, which can achieve better perfor-
mance than a continuous controller in certain cases. It is also possible for a system
to not be asymptotically stabilizable by a single continuous controller, but can be
by a switched controller [42].

The area of hybrid dynamical systems (HDS) is a new discipline which bridges
applied mathematics, control engineering, and theoretical computer science [17].
Many problems facing scientists as they seek to control complex physical systems
using computers naturally fit into the HDS framework [17]. Indeed, there is a grow-
ing demand in industry for methods to model, analyze, and understand systems
that combine continuous components with logic-based switching [64]. Practical ex-
amples of switched systems include areas as diverse as mechanical systems, the au-
tomotive industry, air traffic control, robotics, intelligent vehicle/highway systems,
robotics, integrated circuit design, multimedia, manufacturing, power electronics,
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switched-capacitor networks, chaos generators, computer disk drives, automotive
engine management, high-level flexible manufacturing systems, job scheduling, in-
terconnected power systems, and chemical processes [12, 17, 22, 42]. The majority
of switched systems literature covers continuous and discrete switched systems, but
these systems do not encompass real world applications which exhibit dynamics
with an impulsive effect at switching points [22]. Examples of systems which can
be described by switching states with abrupt changes at the switching instances
include biological neural networks, bursting rhythm models in pathology, optimal
control modes in economics, frequency-modulated signal processing systems, and
flying object motions [22]. There are few reports dealing with hybrid impulsive and
switched systems and the corresponding control problem [22]. Hybrid and impul-
sive systems will be important when we look to add pulse control to the switched
models.

Switched systems can lead to interesting behaviour, such as the instability of
a switched system comprised solely of stable continuous subsystems [42] and the
switched and impulsive control of unstable continuous subsystems that leads to a
stable switched system [22, 23]. Hybrid control has also received growing interest,
due to its advantages in improving transient response, and providing an effective
mechanism to deal with highly complex systems and systems with large uncertain-
ties [22]. Further, impulsive and switching control is an effective method in achiev-
ing stabilization of complex systems using only small control impulses in different
modes, even though the complex system behaviors may follow unpredictable pat-
terns [22]. A substantial part of the switched systems literature is concerned with
conditions guaranteeing stability. Some common techniques to show stability of
these systems are the switched invariance principle [6, 24, 25] and common/multiple
Lyapunov function techniques [8, 9, 12, 62]. There is literature on families of sub-
systems that are triangularizable [53], as well as those that commute [56]. Work
has been done on the control of discrete switched systems [11], the stabilization
of nonlinear switched systems using control [54], and criteria for the instability of
switched systems under arbitrary switching [65]. A general overview of hybrid and
switched systems and its literature can be seen in [12, 13, 42, 64].

This thesis is organized as follows: Chapter 2 establishes the necessary mathe-
matical background for systems of ordinary differential equations, systems of impul-
sive differential equations, epidemiology models and switched systems. In Chapter
3, variations of the basic one dimensional SIS model with switching will be inves-
tigated in detail. Some sufficient conditions for the eradication of the disease are
developed, as well as some results for the endemic case. In Chapter 4, disease
models that are intrinsically at least two dimensional will be analyzed thoroughly,
and threshold criteria for the eradication of the disease are established. In Chap-
ter 5, control strategies are applied to switched epidemiology models and studied.
In Chapter 6, more general switched epidemiology models will be developed and
analyzed. Finally, some conclusions are drawn and future directions are given in
Chapter 7. Simulations are given throughout the thesis.
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Chapter 2

Mathematical Background

In order to analyze infectious disease models with switching, it is necessary to first
establish some background theory from differential equations (DEs), impulsive dif-
ferential equations (IDEs), mathematical epidemiology and switched systems the-
ory. This background theory will help in mathematically formalizing the practical
questions in epidemiology, such as: Will there be an epidemic? If so, how severe
will it be? What will be the long-term behaviour of the disease? And so on.

In Section 2.1, some classical theory of ordinary differential equations will be
given. This theory will be the backbone for the rest of the thesis. It will formalize
the practical problems in a mathematical sense. It will also outline some important
fundamental theories, such as existence and uniqueness, as well as some practical
methods for proving stability, such as the Lyapunov function method and LaSalle’s
Invariance Principle. The concept of partial stability, which will be used in the
thesis, is outlined in Section 2.1.2. In Section 2.1.3, impulsive differential equations
will also be introduced and discussed in some detail.

In Section 2.2, the mathematical formulation of infectious disease models will be
posed. The formulation taken will be deterministic continuous ordinary differential
equations. Important concepts will be outlined, and illustrated, for some of the
more classic epidemiology models from the literature. Finally, control schemes will
be introduced, a vital part of epidemiology as it pertains to the control, prevention
and eradication of diseases around the world.

In Section 2.3, switched systems will be introduced, with some practical appli-
cations and interesting results. The motivation for developing the switched systems
theory will be for use in applying it to infectious disease models.
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2.1 Preliminaries

2.1.1 Systems of Differential Equations

Unless otherwise specified, the material in this section is taken from [45]. Consider
the following system of autonomous ordinary differential equations (ODEs):

x′ = f(x), (2.1)

where x = (x1(t), . . . , xn(t))T and f(x) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))T . The
system is said to be autonomous because the right-hand side of equation (2.1) does
not explicitly depend on t. If the initial condition x(t0) = x0 ∈ D ⊂ Rn, where D
is an open set, Rn is the n-dimensional Euclidean space, and t0 ∈ R, is added to
the system, the system becomes an initial value problem (IVP):{

x′ = f(x),

x(t0) = x0.
(2.2)

A solution to this IVP is a differentiable function φ(t; x0) if φ′(t; x0) = f(φ(t; x0))
and φ(t0; x0) = x0. Since the IVP is autonomous, without loss of generality we can
take t0 = 0. This can be seen easily by defining a new time variable τ = t − t0.
It is desirable, for mathematical reasons and for real-world applications, to know
whether or not there exists a unique solution to (2.2).

Theorem 2.1.1. Let D be an open subset of Rn and assume that f ∈ C1[D, Rn].
Then for all x0 ∈ D, there exists an α > 0 such that the IVP (2.2) has a unique
solution x(t) = φ(t; x0) on the interval [−α, α].

Here C1[D, Rn] is the space of continuously differentiable functions that map
D to Rn. In applications such as epidemiology, where the independent variable t
represents the physical quantity of time, it is important that the model is mathe-
matically and biologically well-posed, that is, there exists a unique solution which is
defined for all time t ≥ 0. In order to address this problem, the following definitions
are needed:

Definition 2.1.1. Let x(t) by a solution of the IVP (2.2) defined on an interval J ,
then J is called a right-maximal interval of existence for x(t) if there does not exist
an extension of x(t) over an interval J1 so that x(t) remains a solution of the IVP
(2.2) on J1, and J is a proper subset of J1 with different right endpoints. A left-
maximal interval of existence for x(t) can be defined similarly. A maximal interval
of existence for x(t) is an interval which is both a left-maximal and right-maximal
interval.

The following theorems can now be stated, which establish global existence of
a solution.
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Theorem 2.1.2. Let f ∈ C1[Rn, Rn] and φ(t; x0) be a solution of (2.2) on a max-
imal interval J . Then J = (−∞,∞) if one of the following is true:

(i) φ(t; x0) is bounded on J ,

(ii) f(x) is bounded on Rn.

Theorem 2.1.3. Let f ∈ C1[Rn, Rn], and let φ(t; x0) be a solution of (2.2) on a
maximal right interval J . Then, either J = [0,∞) or J = [0, β∗) with β∗ < ∞ and
‖φ(t; x0)‖ → ∞ at t → β∗.

Here, the usual Euclidean norm is used, ‖x‖ =
√

x2
1 + . . . + x2

n. A corollary of
these theorems can be stated, which will give sufficient conditions for a solution to
exist on a maximal interval of J = [0,∞).

Definition 2.1.2. A subspace Γ ⊂ D is said to be an invariant set of (2.2) if all
solutions φ(t; x0) starting in Γ remain in Γ for all time t ∈ R.

Definition 2.1.3. A subspace Γ ⊂ D is said to be a positively invariant set of (2.2)
if all solutions φ(t; x0) starting in Γ remain in Γ for all time t ≥ 0.

Definition 2.1.4. A set Γ ⊂ D is compact if it is closed (that is, contains all of
its limit points) and bounded (that is, there exists an M > 0 such that ‖x‖ ≤ M
for all x ∈ Γ).

Corollary 2.1.4. Let f ∈ C1[Rn, Rn], and let φ(t; x0) be a solution of (2.2) on a
maximal right interval J . Suppose Γ is a compact set that is positively invariant to
the IVP (2.2). If x0 ∈ Γ then the maximal interval of existence is J = [0,∞).

This follows from Theorem 2.1.3 which can be seen easily: if Γ is compact and
positively invariant then the solution φ(t; x0) will be bounded for all time t ≥ 0,
hence Theorem 2.1.3 can be applied and the maximal interval is J = [0,∞).

Now that the existence and uniqueness of the solution x(t) to the IVP (2.2) has
been established, the next important step is determining an analytical solution. In
the special case that f(x) = Ax, where A ∈ Rn×n is a constant matrix, a unique
solution can be given explicitly.

Theorem 2.1.5. Assume f(x) = Ax, A ∈ Rn×n, then the IVP (2.2) has a unique
solution for all time t ∈ R, which is given by

x(t) = eAtx0, (2.3)

where eAt is the matrix exponential, defined as follows:

eAt :=
∞∑

k=0

Aktk

k!
,

which converges for all time t ∈ R.
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Unfortunately, there is no general method for solving the nonlinear IVP (2.2)
analytically. However, in many real world applications (e.g. population, mechan-
ical and infectious disease models) there are important qualitative features which
may be gathered. Important questions one may ask are: What will the long-term
behaviour of the solution be? Will the solution converge to a constant value, a peri-
odic function, diverge, or something else? If two solutions of the IVP (2.2), φ1(t; x1)
and φ2(t; x2), begin close to each other, that is, φ1(0; x1) = x1 ≈ φ2(0; x2) = x2, will
the solutions stay close to each other for all time? Many of these kinds of questions
are answered by studying the stability of the IVP (2.2).

Definition 2.1.5. A point x̄ is said to be an equilibrium point of the IVP (2.2) if
f(x̄) = 0, since x(t) = x̄ is then, by inspection, a solution to the IVP.

Note that if f(x̄) = 0 for x̄ 6= 0 then this equilibrium point can be shifted to

the origin. Set y = x− x̄, then y′ = x′ = f(x) = f(y + x̄) = f̃(y) and then the IVP
becomes {

y′ = f̃(y),

y(0) = y0,
(2.4)

with y0 = x0 − x̄, and the initial time has been taken to be zero, i.e. t0 = 0. Then,
without loss of generality, assume the equilibrium points are shifted to the origin,
i.e. f(0) = 0. The equilibrium point x = 0 is often called the trivial solution.
The long-term behaviour of the IVP (2.2) can be characterized using the following
stability concepts.

Definition 2.1.6. Consider the IVP (2.2). Assume f(0) = 0 and let φ(t; x0) be the
solution of the IVP such that φ(0; x0) = x0 where x0 ∈ D, then the origin, x = 0,
is said to be

(i) stable if for all ε > 0 there exists a δ > 0 such that ‖x0‖ < δ implies
‖φ(t; x0)‖ < ε for all t ≥ 0,

(ii) asymptotically stable if (i) holds and there exists a β > 0 such that ‖x0‖ < β
implies

lim
t→+∞

φ(t; x0) = 0,

(ii) exponentially stable if there exist constants α, γ, C > 0 such that if ‖x0‖ < α
then ‖φ(t; x0)‖ < C‖x0‖e−γt for any t ≥ 0,

(iv) globally asymptotically (exponentially) stable if it is asymptotically (exponen-
tially) stable and β (α) is arbitrary,

(v) unstable if (i) fails to hold.

Note that exponential stability implies asymptotic stability. Stability is useful
in answering the question of whether two solutions will stay close to each other if
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they begin close to each other. Asymptotic stability helps in giving a mathematical
formulation for the long-term behaviour of the system, without necessarily knowing
the analytical solution. Exponential stability is more attractive than asymptotic
stability because it also gives information on the rate at which the solution converges
to the origin.

The next step then is finding a procedure to show the solution of the IVP (2.2)
satisfies any of the above definitions (2.1.6). In the linear case, f(x) = Ax, the
following simple condition for the stability of the IVP (2.2) follows from Theorem
2.1.5.

Theorem 2.1.6. Suppose f(x) = Ax for the IVP (2.2), and A ∈ Rn×n is a Hurwitz
matrix1, then the origin of the system is asymptotically stable. If there exists an
eigenvalue λ of A such that Re(λ) > 0, then the origin is unstable.

In the more general case where the IVP is nonlinear, one approach is linearizing
(2.2) about an equilibrium point. This gives information about the behaviour of
trajectories of solutions to the IVP (2.2) near the equilibrium points. The approach
is to consider the linear approximation of f(x) at an equilibrium point. Assume
that f has continuous partial derivatives with respect to x. The derivative of
f(x) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))T is an n × n matrix Df(x), called the
Jacobian matrix, defined by

Df(x) =

(
∂fi

∂xj

)
, i, j = 1, 2, . . . , n.

Suppose that x is close to the origin, and f(0) = 0 (that is, the origin is an
equilibrium point of the IVP (2.2)), then by Taylor’s theorem

f(x) = f(0) + Df(0) · x + R(x),

= Df(0) · x + R(x),

with R(x) the remainder such that R(x)/‖x‖ → 0 as x → 0. Hence, the nonlinear
system (2.1) can be written as

x′ = Df(0) · x + R(x).

This leads to the linearization of the nonlinear system (2.1),

z′ = Df(0)z. (2.5)

The linearized system (2.5), with initial condition z(0) = x0 imposed, can give
information about the nonlinear IVP (2.2), seen, for example, in the following
theorem.

1All eigenvalues have real parts that are negative.
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Theorem 2.1.7. Suppose that f(0) = 0 and that the constant matrix Df(0) is
Hurwitz. Then there exists a neighbourhood U about the origin such that for some
constants M, k > 0, the solution φ(t; x0) of (2.2) satisfies

‖φ(t; x0)‖ ≤ Me−kt‖x‖, ∀ x ∈ U, t ≥ 0.

Another technique to investigate the stability of the IVP (2.2) is the method
of Lyapunov functions, developed by A.M. Lyapunov in the late 19th century.
Consider an auxilliary function V (x) ∈ C1[D, R], then the time-derivative of V (x)
along solutions of the IVP (2.2) is:

V̇ (x) =
dV (x(t))

dt
= ∇V (x) · f(x), (2.6)

where ∇ is the gradient operator, and · is the dot product. Hence, V increases or
decreases along solutions of the IVP (2.2) based on the sign of ∇V (x) ·f(x). In the
case that the IVP (2.2) is a mechanical system, the auxilliary or Lyapunov function
V (x) often represents the total energy of the system.

Theorem 2.1.8. Suppose that f(0) = 0 for the IVP (2.2), D ⊂ Rn an open set
containing the origin, and V ∈ C1[D, R] such that V (x) > 0 for all x 6= 0 and
V (0) = 0, then

(i) V̇ (x) ≤ 0 for all x ∈ D implies the origin is stable,

(ii) V̇ (x) < 0 for all x ∈ D \ {0} implies the origin is asymptotically stable,

(iii) V̇ (x) > 0 for all x ∈ D \ {0} implies the origin is unstable.

When the conditions V (x) > 0 for all x 6= 0 and V (0) = 0 are satisfied, the
function V is said to be positive definite. This method does not require explicit
knowledge of the analytical solution of the IVP (2.2), which is its main strength.
Intuitively, if ∇V (x) · f(x) < 0 for x ∈ D \ {0} then V decreases along all orbits
in D \ {0}, and so orbits will cut the level sets of V inward. This should continue
until the orbit is forced to approach the origin as t → ∞, hence the origin is
asymptotically stable. Similarly, the other cases can be described intuitively (see
[45]). In the linear case, f(x) = Ax, there are methods for constructing a Lyapunov
function of the system (see [45]), unfortunately, for the nonlinear IVP (2.2), there
is no general method for constructing a Lyapunov function, which is this method’s
main weakness.

In some cases it is possible to construct Lyapunov functions such that V̇ (x) is
negative semi-definite, that is, V̇ (x) ≤ 0 for all x ∈ D, which implies stability.
Often, it is more desirable to find sufficient conditions for asymptotic stability, and
this is possible for many problems thanks to the contributions of Barbashin and
Krasovski in 1952 and then later by LaSalle. These are summarized in the following
theorem, often called LaSalle’s Invariance Principle. First, a few definitions are
needed.
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Definition 2.1.7. A point p ∈ D is called an ω-limit point of x0, where x0 = x(0),
if there exists a sequence {tn} such that tn →∞ as n →∞ and

lim
n→∞

x(tn) = p.

The set of all ω-limit points of x0 is called the ω-limit set of x0, denoted ω(x0).

Definition 2.1.8. A function V (x) : Rn → R+ is said to be radially unbounded if
V (x) →∞ as ‖x‖ → ∞.

Theorem 2.1.9. (LaSalle’s Invariance Principle)
Let V ∈ C1[D, R+], where D ⊂ Rn is an open subset, and R+ is the nonnegative
real line, be positive definite and radially unbounded. Assume that

(i) V̇ (x) = ∇V (x) · f(x) ≤ 0 for all x ∈ Ω such that cl(Ω) ⊂ D.

(ii) x(t) = φ(t; x0) is a solution of system (2.2) such that φ(t; x0) ∈ Ω for all
t ≥ 0.

Then for some real number c, ω(x0) ⊆ E
⋂

V −1(c), where

E = {x ∈ cl(Ω)| V̇ (x) = 0}, and V −1(c) = {x ∈ cl(Ω)|V (x) = c}.

Here cl(Ω) denotes the closure of the set Ω, and R+ denotes the positive real
line. This theorem leads to the following corollary.

Corollary 2.1.10. Assume that f(0) = 0. If

(i) D ⊂ Rn is a bounded and positively invariant set of (2.2),

(ii) V ∈ C1[Rn, R] is bounded from below and V̇ (x) ≤ 0 for all x ∈ D, and

(iii) the set Z = {x ∈ cl(D)| V̇ (x) = 0} does not contain any whole orbits except
the origin,

then for all x0 ∈ D, the solution φ(t; x0) of IVP (2.2) converges to the origin as
t →∞.

Combining Theorem 2.1.8 with Corollary 2.1.10 leads to a weaker condition
which guarantees asymptotic stability of the origin.

Theorem 2.1.11. Suppose that f(0) = 0, D ⊂ Rn an open set containing the
origin and V (x) ∈ C1[Rn, R+] is positive definite. Then the trivial solution of the
IVP (2.2) is asymptotically stable if the following two conditions hold:

(i) V̇ (x) ≤ 0 for all x ∈ D, and
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(i) the set Z = {x ∈ cl(D)| V̇ = 0} does not contain any whole orbits except the
trivial solution.

In the discussion so far, we have considered the case where the IVP (2.2) has an
equilibrium point. Another important possibility in many applications (including
epidemiology) is the existence of an isolated periodic orbit. It is said to be isolated
if the orbit contains a neighbourhood about it which contains no other periodic
orbits. This is, in fact, only possible for a nonlinear system. This periodic solution
may possibly attract nearby solutions, leading to a physical system which has an
oscillatory steady state. The solution ϕ(t; x0) of the IVP (2.2) is said to be a
periodic solution if there exists a T > 0 such that ϕ(t + T ; x0) = ϕ(t; x0) for all
time t ∈ R. The minimal T for which this equality holds is called the period of the
periodic solution. Unfortunately, many of the methods for proving the existence of
periodic orbits are only available in R2.

Theorem 2.1.12. (Dulac’s Criterion)
Let D ⊂ R2 be a simply connected open set and f(x) ∈ C1[D, R2]. If there exists a
function B ∈ C1[D, R2] such that

∇ ·Bf = div(Bf) =
∂(B1f1)

∂x1

+
∂(B2f2)

∂x2

is nonzero and does not change sign in D, then the system (2.1) has no periodic
orbits lying entirely in D.

Here ∇·Bf is the divergence of Bf . It is also possible to eliminate the existence
of periodic solutions using Lyapunov functions. The next method is applicable to
the Rn case.

Theorem 2.1.13. Let V ∈ C1[D, R], where D ⊂ Rn is an open set. If V̇ (x) ≤ 0,
V (x) is bounded from below on D, and the set Z = {x ∈ cl(D)| V̇ (x) = 0} contains
no whole orbits except possibly equilibrium points of (2.1), then the system (2.1)
has no periodic solutions lying entirely in D.

One of the most famous theorems in this area is the Poincaré-Bendixson Theo-
rem, which gives sufficient conditions for the existence of a periodic solution.

Theorem 2.1.14. (Poincaré-Bendixson Theorem)
Let f ∈ C1[D, Rn], with D ⊂ R2 an open set. Let x0 ∈ D and ω(x0) be a nonempty
ω-limit set of (2.2) with x ∈ R2. If

(i) ω(x0) ⊂ D is bounded, and

(ii) ω(x0) contains no equilibrium points,

then ω(x0) is a periodic orbit.

From this theorem, we can get the following corollary.

Corollary 2.1.15. Let Γ be a positively invariant compact set of (2.2) with x ∈ R2,
then Γ contains an equilibrium point or a periodic solution of (2.2).
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2.1.2 Partial Stability

The material in this section is taken from [70]. In contrast to the stability con-
cepts outlined in (2.1.6) for an ODE IVP (2.2), it is also possible to analyze the
stability and stabilization of dynamical systems with respect to just a given part
of the variables characterizing a system rather than all variables. This problem is
often referred to as a problem of partial stability. These types of problems natu-
rally arise in applications, for example from the requirement of proper performance
of a system, certainly, a lot of actual phenomena can be formulated in terms of
partial stability. For example, the concept of partial stability will be useful in our
analysis of switched epidemiology systems, where the stability of the variables for
the infected portion of the population is most important.

A.M. Lyapunov, the founder of the modern theory of stability, was the first to
formulate the problem of partial stability. Later, works by V.V. Rumyantsev drew
the attention of many mathematicians around the world to this problem, which
resulted in it being intensively studied. The method of Lyapunov functions became
the most useful method, which turned out to be very effective in analyzing both
theoretical and applied problems. Consider again the ODE IVP (2.2). Suppose
now that the variables constituting the state vector x of IVP (2.2) are divided into
two groups:

1. the variables y1, . . . , ym with respect to which the stability of the trivial solu-
tion x = 0 is to be investigated;

2. the remaining variables z1, . . . , zp.

That is, x(t) = (y1(t), . . . , ym(t), z1(t), . . . , zp(t))
T = (y(t), z(t))T with m > 0, p ≥ 0

and n = m + p. This partitioning depends on the nature of the problem being
investigated. It is assumed that the choice of the basic variables, y1, . . . , ym, has
already been made before studying the partial stability problem. This formulation
means that the partial stability problem is a problem of stability with respect to
a prescribed part of the variables, namely, the basic variables. Variables z1, . . . , zp

are correspondingly called the uncontrollable variables.

The behaviour of the variables z1, . . . , zp of system (2.2) is, in principle, of no
interest in the study of the partial stability problem. However, the dynamics of the
basic variables y1, . . . , ym are related to the dynamics of the uncontrollable variables
z1, . . . , zp. As a result, the analysis of the partial stability problem requires a definite
analysis of the behaviour of all the variables of system (2.2). Of course, the specifics
of such a complete analysis stem from the desire to study only partial properties of
the system, namely, the basic variables, y1, . . . , ym.

Definition 2.1.9. Assume f(0) = 0 and let φ(t; x0) = (y(t; x0), z(t; x0))
T be the

solution of the IVP (2.2) such that φ(0; x0) = x0 = (y0, z0)
T where x0 ∈ D, then

the origin, x = 0, is said to be
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(i) y-stable if for all ε > 0 there exists a δ > 0 such that ‖y0‖ < δ implies
‖y(t; x0)‖ < ε for all t ≥ 0,

(ii) asymptotically y-stable if (i) holds and there exists a β > 0 such that each
solution φ(t; x0) with ‖y0‖ < β implies

lim
t→+∞

y(t; x0) = 0,

(ii) exponentially y-stable if there exist constants α, γ, C > 0 such that if ‖y0‖ < α
then for a solution φ(t; x0): ‖y(t; x0)‖ < C‖y0‖e−γt for any t ≥ 0,

(iv) globally asymptotically (exponentially) stable if it is asymptotically (exponen-
tially) stable and β (α) is arbitrary,

(v) unstable if (i) fails to hold.

These definitions are based on those found in [70]. For an intuitive idea of
partial stability, consider the case that x = (y1, y2, z1)

T ∈ R3. Then, there are
two basic variables of interest and one uncontrollable variable z1. Partial stability
of the origin x = 0 implies that for any ε > 0 there exists a δ > 0 such that if
the initial conditions (y10, y20) ∈ {(y1, y2) ∈ R2| y2

1 + y2
2 < δ2} then the solution

y(t; x0) remains in the ε-cylinder H(ε) = {(y1, y2)| y2
1 + y2

2 < ε2} for all time t ≥ 0.
The stability is not interested in what happens with the uncontrollable variable z1.
Further, the initial conditions must be in a δ-cylinder, which will depend on the ε
chosen, but the δ will not give a required condition on the initial condition for z1.
Hence, only the initial values of the basic variables must be close to the origin for
stability to be satisfied.

2.1.3 Systems of Impulsive Differential Equations

The material in this section, unless otherwise specified, is taken from [37]. Many
evolution processes are characterized by a sudden change in the state of the system
at certain times. These sudden abrupt changes have a duration that is negligi-
ble compared to the duration of the process. Hence, it is natural to assume that
these perturbations of the system act instantaneously. This leads to the idea of
impulsive differential equations (IDEs), differential equations involving impulsive
effects. Many biological phenomena involving thresholds, bursting rhythm mod-
els in medicine and biology, optimal control models in economics, and frequency
modulated systems exhibit impulsive effects. Certainly, IDEs appear as a natural
description of observed evolution phenomena of several real world problem, includ-
ing control schemes in epidemiology.

In order to construct a system of impulsive differential equations, we use the
Dirac delta function. Construct it as follows [71]: consider the following function,
for any ε > 0,

Iε(t) =

{
1
ε
, 0 ≤ t ≤ ε,

0, t > ε.
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Then the Dirac delta function, which is not a function but rather a generalized
function, can be regarded as the limit of the sequence of functions δ(t) = limε→0 Iε(t)
and is defined by the integral:∫ ∞

−∞
f(t)δ(t)dt = f(0).

Further, it is also possible to translate this result,∫ ∞

−∞
f(t)δ(t− a)dt = f(a).

Introduce the Dirac function into the IVP (2.2) as an input control u(t), similar to
the procedure in [22]: {

x(t)′ = f(x(t)) + u(t),

x(t0) = x0,
(2.7)

where

u(t) = c
∞∑

k=1

x(t)δ(t− tk),

and c > 0 is a constant. The sequence of times {tk}∞k=1 are the moments of impulsive
control, and t0 < t1 < t2 < . . . < tk < . . . → ∞ as k → ∞. When t 6= tk, the
system evolves as the ODE IVP (2.2). The intuitive idea is that this control acts
as an impulsive force: at the times t = tk, an impulsive force of magnitude c is
applied to the system. Observe that, from (2.7),

lim
h→0+

x(tk + h)− x(tk) = lim
h→0+

∫ tk+h

tk

[
f(s) + p

∞∑
k=1

x(s)δ(s− tk)

]
ds = px(tk).

Define x(t+k ) := limh→0+ x(tk + h), and ∆x(tk) := x(t+k )− x(tk), then the IVP (2.7)
can be re-written as: 

x′ = f(x), t ∈ (tk−1, tk],

∆x = cx, t = tk,

x(t+0 ) = x0, k = 1, 2, . . .

(2.8)

This system has a difference equation which models the impulsive effect, and it is
called an impulsive differential equation (IDE) IVP.

For a more general construction of impulsive differential equations, consider an
evolution process described by an autonomous ODE IVP (2.2) (with f : D → Rn,
D ⊂ Rn is an open set), combined with the following two mathematical objects:

(i) the sets M(t), N(t) ∈ D for all t ∈ R+; and

(ii) the operator A(t) : M(t) → N(t) for all t ∈ R+.
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Consider a solution φ(t; x0) of the IVP (2.2) and consider the point Pt =
(t, φ(t; x0)) ∈ R+×D which behaves as follows: It begins its motion from an initial
point Pt0 = (t0, x0) and moves along the curve {(t, x) ∈ R+×D| t ≥ t0, x = φ(t; x0)}
until the first time t1 when the point Pt meets the set M(t). At time t1, the operator
A(t) then acts on the point Pt1 by transferring it to Pt+1

= (t1, x
+
1 ) ∈ R+ × N(t1),

with x+
1 = A(t1)x(t1). The point Pt continues along the curve x(t) = φ(t, x+

1 ) as
the solution of the IVP (2.2) beginning at Pt1 = (t1, x

+
1 ) until it again meets the

set M(t) at the time t2 > t1. Then, at t2, the operator A(t) again acts on the point
by transferring it to Pt+2

= (t2, x
+
2 ) ∈ R+ × N(t2) with x+

2 = A(t2)x(t2). The pro-

cess continues in this way, and the IVP (2.2) coupled with the two objects (i), (ii)
characterize an impulsive differential system.

The points described by Pt form an integral curve which defines a function that
is a solution to the impulsive differential system. The moments tk where the set
M(t) were crossed by the curve Pt are called the moments of impulsive effect. It
should be apparent from this that the solution of the impulsive differential system
is either continuous or piecewise continuous with discontinuities at the times tk
where Pt hits the set M(t). The solution could possibly have no discontinuities if
the integral curve Pt does not ever cross M(t), it could have a finite number of
discontinuities, or it could also have a countably infinite number of discontinuities.
Assume, without loss of generality, that the solutions of the impulsive differential
system are left continuous at the moments of impulse tk, k = 1, 2, . . ., that is,

x(tk) = x(t−k ) := lim
h→0+

x(tk − h), x(t+k ) := lim
h→0+

x(tk + h).

Consider the special case that M(t) is a sequence of planes t = tk, such that
tk → ∞ as k → ∞, and define the operator A(t) only for times t = tk so that
A(tk) = A(k) : D → D, x → A(t)x = x + Ik(x), where Ik : D → D. Following from
this, the set N(t) is also defined only for t = tk, and hence N(k) = A(k)M(k). This
leads to the IDE IVP: 

x′ = f(x), t 6= tk,

∆x = Ik(x), t = tk,

x(t+0 ) = x0, k = 1, 2, . . .

(2.9)

Notice that system (2.9) is a more general formulation than the impulsive system
(2.8) because of the more general impulsive functions Ik. Any solution φ(t; x0) on
the interval (α, β) of the impulsive IVP (2.9) satisfies the following [7]:

(i) (t, φ(t; x0)) ∈ R×D for t ∈ (α, β), and φ(t+0 ; x0) = x0 where x0 ∈ D.

(ii) For t ∈ (α, β), t 6= tk, φ′(t; x0) = f(φ(t; x0)).

(iii) φ(t; x0) is continuous from the left in (α, β) and if tk 6= α 6= β, then φ(t+k ; x0) =
φ(tk; x0) + Ik(φ(tk; x0)).

Next, we establish existence and uniqueness of the IDE IVP (2.9), based on
Theorem 1.3 in [7] for the non-autonomous case.
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Theorem 2.1.16. [7]
Assume f ∈ C1[D, Rn] and y+Ik(y) ∈ D for each k = 1, 2, . . ., and y ∈ D. Then for
each x0 ∈ D there exists a unique solution φ(t; x0) of the IVP (2.9) which is defined
in an interval of the form (t0, ω), where ω is a constant, and is not continuable to
the right of ω.

Denote J+ = J+(t+0 , x0) the maximal interval of the form (t0, ω) in which the
solution φ(t; x0) is defined. Now we are prepared to establish sufficient conditions
for global existence of a solution, based on Theorem 1.4 of [7].

Theorem 2.1.17. [7]
Assume f ∈ C1[D, Rn] and y + Ik(y) ∈ D for each k = 1, 2, . . ., and y ∈ D.
Let φ(t; x0) be a unique solution of the IVP (2.9) on a maximal interval J+. If
there exists a compact set Ω ⊂ D such that φ(t; x0) ∈ Ω for t ∈ J+(t+0 , x0) then
J+ = (t0,∞)

Actually, in the case of IDE IVPs of the form (2.9), uniqueness is straightfor-
ward, it follows from the non-impulsive case. The following theorem is based on
Corollary 2.2.1 of [37] for the non-autonomous case.

Theorem 2.1.18. Uniqueness of solutions of the IVP (2.2) for every (t0, x0) im-
plies the uniqueness of solutions of the IVP (2.9).

One final note is that if t0 6= 0, it is possible to shift the initial time to zero
using τ = t− t0, 

x′ = f(x), τ ∈ (hk−1, hk],

∆x = px, τ = hk,

x(0+) = x0,

(2.10)

with hk = tk − t0. Hence, without loss of generality, in the case of IDEs with
impulses at fixed times, we may take t0 = 0. For both a broader and more in depth
discussion of impulsive differential systems, including systems with variable impulse
times, global existence, stability, and Lyapunov function methods, see [7, 37].

2.2 Epidemiology

2.2.1 Model Formulation

The continuous deterministic approach is taken here, where the spread of the in-
fectious disease is modelled as a system of ordinary differential equations. For an
example of a stochastic or discrete time approach, see [31]. Mathematical infectious
disease models are built from various components that represent the physical spread
of the disease. Some of these components are the epidemiological compartment
structure, the incidence rate form, the compartmental waiting time distributions,
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the population demographic structure, and the epidemiological-demographic inter-
actions [27]. Because there are many choices for these various components, based
on the situation being modelled, the combinatorial possibilities are enormous [27].
Certainly, there are many modifications and extensions which depend critically on
the disease being modelled and should be incorporated [55]. The interest of this
thesis is dealing with the spread of acute communical infectious diseases, rather
than chronic diseases, that is, those diseases which are conferred to individuals and
have a relatively short lifespan. Examples of acute diseases are rubella, measles, in-
fluenza, gonorrhea, etc. Acute diseases have a relatively shorter lifespan because the
individuals have a natural immune response and eventually eliminate the disease.

In classic deterministic epidemiological models, the population is split into dif-
ferent compartments. These compartments are well established in the literature
and describe the current state of the individual. The notation for the various com-
partments has become somewhat standard [27]. The most common compartments
are the susceptible class, S, for individuals that are healthy and can obtain the
disease, the infected class, I, for individuals that are infected with the disease and
capable of spreading it, the exposed class, E, for individuals exposed to the disease
but not yet infectious, the removed class, R, for individuals who have immunity,
or have been removed from the general population, the passively immune class,
M , for individuals who have been transferred immunity through birth and finally
the vaccinated class V for individuals who have gained a vaccine immunity through
some type of control program. Often, the disease models are named based on which
compartments are used and the flow of individuals in these compartments, for ex-
ample the SIS, SIR, SIRS, and SEIR models, which will be introduced in the next
section.

It has been observed that acute infections have infectious periods that are dis-
tributed around a mean value [31]. This implies the probability an individual moves
from the infected class to another class is dependent on how long they have been
infected [31]. A usual simplifying assumption made is that the period of infection is
a constant, which leads to an exponentially distributed infectious period [31]. Tak-
ing the common assumption that the infected are removed linearly with removal
rate g > 0 gives that the fraction of infectives still infected t units after becoming
infectious are P (t) = e−gt, and this corresponds to an average waiting time of 1/g
[28]. For example, the average infectious period for measles is about one week [28].
Alternatively to the exponential waiting time construction outlined above, another
possibility is assuming the waiting time distribution is a step function [28]:

P (t) =

{
1, 0 ≤ t ≤ τ

0, t ≥ τ.

Here, individuals have the disease for exactly a time τ > 0 and then are immedi-
ately recovered. This leads to a delay-differential equation [28]. A more general
construction of the waiting time is assuming the fraction P (t) of infectives still in-
fected after t units is a nonincreasing, piecewise continuous function with P (0) = 1
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and limt→∞P (t) = 0 [28]. This leads to the rate of individuals leaving the com-
partment at time t as −P ′(t), and the mean waiting time in the compartment is∫∞

0
t(−P ′(t))dt =

∫∞
0

P (t)dt [28]. For example, substituting the usual assumption
of P (t) = e−gt leads to the waiting time of 1/g, as expected. Motivated by this
discussion, a common assumption is that the movements between the M, E, and I
compartments are governed by terms like δM, aE, and gI in an ordinary differential
equations model [28].

Assume that the disease can be obtained two ways: sufficient direct or indirect
contact of infected individuals (known as horizontal transmission) and the transfer
of a disease from a mother to her newborn or unborn child transplacentally (known
as vertical transmission) [33]. Vertical incidence is usually included in epidemiol-
ogy models by assuming that a fixed fraction of newborns are infected vertically
(transplacentally) [28]. For examples of literature studying models with vertical
transmission, see [32, 40, 43, 48, 51, 57]. The horizontal incidence, on the other
hand, is more complicated to construct and varies from model to model. The most
common horizontal incidence rate, usually called the standard incidence, is con-
structed as follows from basic principles [28]: assume that β > 0 is the average
number of adequate contacts (i.e., contacts sufficient for transmission) of a person
per unit time. That is, β is the product of the nominal contact rate and transmis-
sion probability [31], and is commonly called the contact rate or transmission rate.
Suppose Ic and Sc denote the number of susceptibles and individuals, respectively,
in a population, denoted by N , then βIc/N is the average number of adequate con-
tacts with infectives per unit time of one susceptible, which is the force of infection
for this particular horizontal incidence rate; the per capita rate of new infections
in susceptible individuals [31]. Then, (βIc/N)Sc = βNSI (I = Ic/N, S = Sc/N)
is the standard incidence rate; the number of new cases per unit time due to the
Sc = NS susceptibles. This horizontal incidence rate is also sometimes referred to
as frequency dependent transmission or mass action transmission [31]. For a more
detailed derivation of the standard horizontal incidence rate, see page 18 of [31].

The simplest horizontal incidence is the density dependent (or pseudo mass
action) rate ηScIc = ηN2SI, with η as a mass action coefficient, which has some-
times been used in models [28]. The parameter η has no direct epidemiological
interpretation, but comparing it with the standard formulation gives β = ηN , and
hence, this form implicitly assumes that the contact rate increases linearly with
the population size [28]. It might seem plausible that the population the contact
rate would increase with population size, but this is naive because the daily con-
tact patterns of people are often similar in large and small communities [28]. For
example, we should not expect an infected individual who lives in New York (pop-
ulation 8 million) to transmit a disease 50 times more than someone who lives in
Cambridge, Massachusetts (population 100,000) [31]. Indeed, for human diseases
the contact rate seems to be only very weakly dependent on the population size
[28]. On the other hand, the standard incidence rate is consistent with the con-
cept that individuals are infected through their daily encounters, which are largely
independent of community size [28]. The distinction between these two incidence
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rates becomes especially pronounced when the 1/N term cannot be absorbed into
the constant, that is, when the total population size is varying [31]. There are
other possible incidence rates which have been conceived and are possibly more
realistic in certain scenarios. For example, saturation incidence rates, incidence
rates which take into account psychological effects, time-dependent incidence rates
and density-dependent incidence rates. For examples of literature discussing and
analyzing different incidence rates, see [19, 27, 33, 34, 39, 41, 43, 44, 52, 60, 61].

Another important feature is the population dynamics of a model, which be-
comes important when the spread of the disease is measured in years. In this case,
births and deaths should be considered. The most common assumption is an ex-
ponential growth or decay population model N ′ = (b − d)N , where N is the total
population, b > 0 is the birth rate and d > 0 is the death rate. Often it is assumed
that the birth rate is equal to the death rate, b = d = µ. This leads to an aver-
age lifetime of 1/µ, and it also means the population size is constant [28]. These
models are appropriate when the time period of the disease is relatively short or
when the natural births balance the natural deaths [27]. Infectious disease models
with constant population size are not suitable when the disease-related deaths are
significant or when the inflow and outflow are not balanced [27]. In these cases,
models with a variable total population size are needed, which are often more diffi-
cult to analyze mathematically because the population size is an additional variable
which is governed by a differential equation [27]. There have been many infectious
diseases which have caused enough deaths so that the population size has not re-
mained even approximately constant [27]. Infectious diseases which have debilitated
and regulated human populations include plague (the black plague resulted in the
deaths of a quarter of the world population), measles, scarlet fever, diptheria, tu-
berculosis, smallpox, malaria and the pneumonias [27]. Further, diseases caused by
viruses, bacteria, and protozoans, combined with low nutritional status still cause
significant childhood mortality in developing countries [27]. When disease-induced
mortality cannot be ignored, it is usally included in the models by the addition of a
disease-induced mortality rate, α > 0, into the population dynamics, for example,
N ′ = (b−d)N−αIc. There are many different models for the population dynamics,
which have been studied in the literature. For examples of models with different
demographic structures and their analyses, see [18, 20, 27, 28, 30, 38, 49, 58].

2.2.2 Threshold Criteria

One of the main goals of studying epidemiology models is to analyze the spread of a
disease in order to try to understand its underlying principles. The reason for this
is to be able to come to some conclusions about the severity and duration of the
epidemic. Certainly, it is desired to be able to answer important questions such as:
Will there be an epidemic? If so, how long will it last? How severe might it be? Can
the disease be eradicated through some type of control scheme? Mathematically,
most of these questions translate to studying the stability properties of the models’
disease-free solution.
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Thresholds that dictate the persistence or eradication of a disease are very
important in epidemiology [72]. Hence, one of the main goals of disease modelling
is to establish criteria based on the parameters and structure of the system that
will ensure disease eradication. This has been done in many of the classical models
in the literature, and there are three commonly used threshold numbers. The
following descriptions of the threshold numbers in this section is taken from [28],
unless otherwise specified.

The first number, which is most often used, is the basic reproduction number,
usually denoted R0, which is defined as the average number of secondary infections
produced by one infected individual in a wholly susceptible population. It is as-
sumed that the infected individual is present in the host population for their entire
infectious period and, further, that the infected individual mixes with susceptibles
in a normal way. The second threshold number sometimes considered is the contact
number σ, which is defined as the average number of adequate contacts of a typical
infective during their infectious period. Here, an adequate contact means one that
is sufficient for transmitting the disease, if the individual contacted by a susceptible
is infected. The last threshold number considered is the replacement number R,
which is defined to be the average number of secondary infections produced by a
typical infective during the entire infectious period. This is the actual number of
secondary cases coming from a typical infective.

These three threshold numbers are all equal at the beginning of the spread of
a disease when there is only one infective present. Although R0 is only defined
at the time of invasion, the other threshold numbers, σ and R, are defined for
all time. For most models, the contact number remains constant as the infection
spreads, and is equal to the basic reproduction number. For an example of a model
where this is not true, see the model for pertussis in Section 8 of [28]. Finally, after
the introduction of infectives into a population, the susceptible fraction should be
less than one, so that not all subsequent adequate contacts will result in a new
case. This leads to the fact that the replacement number R is always less than the
contact number σ after the invasion. Combining these results:

R ≤ σ ≤ R0.

The equality comes at the time of invasion, R0 = σ in most models, and R < σ
after the invasion for all models.

Often in mathematical epidemiology, threshold theorems establish that if a par-
ticular model’s basic reproduction number satisfies R0 ≤ 1, then the disease will
eventually be eradicated. The threshold criteria theorems in this thesis will be
established based on R0, since if R0 ≤ 1 then it is also true that R ≤ σ ≤ 1. See
Table 2.1 for a list of basic reproduction numbers, R0, for some real-world diseases,
and see [2] for more real-world epidemiological data. For a table of the mathemati-
cal expression of basic reproduction numbers for common infectious disease models
(based on the models’ parameters), some of which will be discussed in detail in the
next section, see [44]. For an explicit derivation of the basic reproduction num-
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bers for general compartmental disease models, as the spectral radius of a next
generation matrix, see [14, 16].

Alternatively, in the case that the disease is not eradicated, there is usually an
endemic equilibrium, which represents a persistent population of infected individ-
uals. In the literature, threshold theorems usually establish that R0 > 1 implies
that the endemic equilibrium is asymptotically stable. This might not always be
straightforward to prove, and alternative method of illustrating the endemicity of a
disease are the persistence or permanence of the disease. These concepts are com-
mon in the literature and are outlined in, for example, [19, 51, 69]. Let I represent
the fraction of individuals in the infectived class, then we define persistence and
permanence similarly as in [19]:

Definition 2.2.1. In an epidemiology system, a disease is said to be persistent if
there is an η > 0 (independent of initial conditions) such that the solution I(t) of
the system with initial condition I(0) = I0 > 0 satisfies

lim
t→∞

inf I(t) ≥ η.

Definition 2.2.2. In an epidemiology system, a disease is said to be permanent
if there exists a compact region Ω0 ∈ int(Ω)2 such that every solution I(t) of the
epidemiology system with initial condition I(0) will eventually enter and remain in
the region Ω0.

Disease Infectious pe-
riod (days)

Average age at
infection (years)

R0

Measles 6 to 7 4.4 to 5.6 13.7 to 18.0
Whooping cough 21 to 23 4.1 to 5.9 14.3 to 17.1
Rubella 11 to 12 10.5 6.7
Chicken pox 10 to 11 6.7 9.0
Poliomyelitis 14 to 20 11.2 6.2

Table 2.1: Epidemiological data from [2].

2.2.3 Classical Models

The SIR Model without Population Dynamics

For the classic epidemic model, the population is split into three compartments:
susceptibles, Sc, infectives, Ic and removed, Rc. Assume that the total population
is N = Sc + Ic + Rc. To formulate this model, we assume that:

2int(Ω) is the interior of the meaningful domain Ω
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1. The rate of increase of infectives (and loss of susceptibles) is proportional to
the number of infectives and susceptibles present, normalized by the total
population. That is, assume that the incidence rate takes the standard form
βScIc/N , with β > 0 as the contact rate, the average number of contacts of
a person per unit time.

2. The rate of removal of infectives is proportional to the number of infectives.
That is, assume an exponentially distributed waiting time with a removal rate
g > 0, and hence, the average infectious period will be 1/g.

3. The incubation period of the disease is negligible in length, hence when a
susceptible is infected, they are immediately infectious and able to spread the
disease.

4. All individuals in the population mix homogeneously, so that every pair of
individuals has an equal probability of coming into contact with one another.

5. The dynamics of the disease are short enough such that population dynamics
are negligible, that is, assume a closed population.

The flow of the model is S → I → R, hence the name SIR model. This
formulation leads to the the SIR model without population dynamics, sometimes
called the classical epidemic model because the duration of the disease is assumed
to be short compared to the time scale of the population dynamics. This model
was initially studied in depth by Kermack and McKendrick in 1927 [31], has since
been studied extensively, for example in [28, 29, 31, 55], and is given by

Ṡc = −β
ScIc

N
,

İc = β
ScIc

N
− gIc,

Ṙc = gIc.

(2.11)

This model is good for acute diseases with relatively short lifespans, for example
influenza [55]. Notice that Ṡc + İc + Ṙc = 0, hence total population satisfies N ′ = 0,
that is, the constant population assumption is built into the model. Since this is an
autonomous differential equation system, it is assumed, without loss of generality,
that t0 = 0. Use S = Sc/N , I = Ic/N , R = Rc/N to get

Ṡ = −βSI,

İ = βSI − gI,

Ṙ = gI,

(2.12)

where the variables now represent the fraction of individuals in each class. Since
S + I + R = 1, the initial conditions are S(0) = S0, I(0) = I0, R(0) = R0 such
that S0 + I0 + R0 = 1. It is assumed that S0 > 0, I0 > 0 to make the problem
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biologically interesting, and it is often assumed that R0 = 0. Note that S+I+R = 1
and the physical domain of interest is ΩSIR = {(S, I, R) ∈ R3

+| S + I + R = 1},
which is invariant to the system. This follows from {Ṡ + İ + Ṙ}S+I+R=1 = 0,
Ṡ |S=0 = µ > 0, İ |I=0 = 0, and Ṙ |R=0 = gI ≥ 0. Note that since S + I + R = 1,
the model is intrinsically two dimensional, and the equation for R is often omitted,
which simplifies the system.

This model is well-posed, both mathematically and epidemiologically, and has
a unique solution which exists for all positive time given certain initial conditions
[28]. There are infinitely many equilibrium points on the S-axis. Given S0, I0, g, β,
it is desired to determine how the disease will spread in time. More specifically, a
question which arises is whether or not there will be an epidemic, that is, whether
or not I ever increases. Observe that at the initial time t0 = 0,

dI

dt

∣∣∣∣
t=0

=

{
I0(βS0 − g) > 0, if S0 > g/β,

I0(βS0 − g) < 0, if S0 < g/β.
(2.13)

If S0 > g/β then I initially increases, and hence there is an epidemic. Notice
S ′ ≤ 0 for all time, which implies that S ≤ S0, and it follows that if S0 < g/β then
İ = I(βS − g) ≤ I(βS0 − g) ≤ 0 for all t ≥ 0. Hence, in this case, I ≤ I0 for all
time and I converges to zero [55]. Hence, for this model, the basic reproduction
number can be defined as

R0 =
β

g
, (2.14)

and, based on the above discussions, if R0 < 1/S0 there is no epidemic, whereas if
R0 > 1/S0 there will be an epidemic.

It is possible to determine the severity of the epidemic as follows,

dI

dS
= −I(βS − g)

βSI
= −1 +

g

βS
,

and, upon integration, the phase plane trajectories are [55]:

I + S − g ln S

β
= I0 + S0 −

g ln S0

β
.

The maximum of I occurs when İ = 0, that is, at S = g/β, therefore [55],

Imax =
g

β
ln

(
g

β

)
− g

β
+ I0 + S0 −

g

β
ln S0 = 1− g

β
+

g

β
ln

(
g

βS0

)
.

In this case we are assuming R0 = 0, and hence S0 + I0 = 1. It is also possible to
investigate the long-term behaviour of the susceptibles and removed as follows:

dS

dR
= −βS

g
.
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Hence, S = S0e
−βR/g, which can be used (see [55]) to determine that limt→∞S(t)

is the positive root 0 < z < g/β of the equation

S0 exp

(
−β(1− z)

g

)
= z.

Hence, we see the disease does not die out due to a lack of susceptibles, but rather
a lack of infectives [55].

The SIR Model with Population Dynamics

For the classical endemic model, the same assumptions are made as above except
now the duration of the disease is assumed to be long enough such that population
dynamics become important. More specifically, choose to now incorporate the
births and deaths of individuals. The assumption that the disease lasts long is
what gives the model its endemic name. Assume that the birth rate µ > 0 is equal
to the natural death rate, hence the mean lifetime of an individual is 1/µ. Assume
that all individuals may have children, and, all the children are born healthy, and
hence are born into the susceptible class. Assume that there is no disease induced
mortality rate. The endemic SIR model is a good model for nonfatal diseases such
as hepatitis B and measles [47]. The flow of this model again is S → I → R (see
Figure 2.1).

Figure 2.1: Flow of SIR System (2.16).

This model has been studied extensively in the literature, for example [28, 29,
31, 35], and is given by: 

Ṡc = µN − β
ScIc

N
− µSc,

İc = β
ScIc

N
− gIc − µIc,

Ṙc = gIc − µRc,

(2.15)
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with Sc + Ic + Rc = N . Since Ṡc + İc + Ṙc = 0, normalize the variables again such
that S + I + R = 1 to get: 

Ṡ = µ− βSI − µS,

İ = βSI − gI − µI,

Ṙ = gI − µR,

(2.16)

where S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0. The meaningful domain for this
system is the plane ΩSIR = {(S, I, R) ∈ R3

+| S+I +R = 1}, and so S0 +I0 +R0 = 1

must be satisfied. Since {Ṡ + İ + Ṙ}S+I+R=1 = 0, Ṡ |S=0 = µ > 0, İ |I=0 = 0, and
Ṙ |R=0 = gI ≥ 0, this domain is invariant to the system, hence the model is well-
posed biologically.

Since S + I + R = 1, the model is intrinsically two dimensional, it is possible
for us to omit the equation for R and then to use the meaningful two dimensional
domain Ωl

SI = {(S, I) ∈ R2
+|S + I ≤ 1}. Along these boundaries, Ṡ |S=0 = µ > 0,

İ |I=0 = 0, and {Ṡ + İ} |S+I=1 = −gI ≤ 0 and so this domain is also invariant to
the system. The usual approach in this thesis will be to use the domain ΩSIR and
not the domain Sl

SI associated with a reduced system. Define

R0 = σ =
β

µ + g
, (2.17)

which is the contact rate times the mean death-adjusted infectious period in a
wholly susceptible population. This quantity is the model’s basic reproduction
number, an important threshold criteria, as discussed earlier, as it is the average
number of secondary infections produced by a single infected individual in a wholly
susceptible population. There is a disease-free solution Q̄ = (S̄, Ī, R̄) = (1, 0, 0)
and an endemic solution

Q∗ = (S∗, I∗, R∗) =

(
1

R0

,
µ

µ + g

(
1− 1

R0

)
,

g

µ + g

(
1− 1

R0

))
. (2.18)

It is called the endemic solution because at this equilibrium the disease persists.
Notice that the endemic solution is in the physically reasonable domain only if
R0 ≥ 1. In fact, there is a bifurcation when R0 = 1, for this value we get that
Q̄ = Q∗.

In this model, the long-term behaviour is completely dictated by the value ofR0.
If R0 ≤ 1 then Q̄ is globally asymptotically stable in the meaningful domain ΩSIR,
while if R0 > 1 then Q∗ is globally asymptotically stable in the meaningful domain
[29]. This is reasonable intuitively, ifR0 < 1 then each infected individual is passing
the infection on to less than one susceptible, on average. An investigation into the
stability of the endemic solution (see [31]) shows that the solution approaches the
endemic equilibrium with damped oscillations when R0 > 1. It can be shown that
the period of oscillations is approximately 2π

√
AG, where A = 1/(µ(R0−1)) is the

mean age of infection and G = 1/(µ + g) is the mean period of a host’s infectivity.
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The approach to the endemic equilibrium with damped oscillations has a bio-
logical interpretation [28]: when R0 = σ > 1 (recall that σ is the contact number),
each infected individual is infecting more than one susceptible person, on average,
then for some small initial number of infectives I0 > 0, the susceptible population
will decrease as the virus spreads, until the susceptible population is at a low level.
At this point, there are few susceptibles and it is hard for infectives to spread the
disease, hence the infectives decrease. After the infective fraction has decreased
to a low level, the slow processes of the natural deaths of the recovered and the
births of new susceptibles gradually increase the susceptible fraction until σS is
large enough such that that another smaller epidemic occurs [28]. This process
continues, alternating between epidemics and slow regeneration of susceptibles, un-
til the solution approaches the endemic equilibrium. At the endemic equilibrium,
the replacement number R = σS∗ is 1, which makes sense intuitively since if the
replacement number were greater than or less than 1, the infectives would be in-
creasing or decreasing, respectively [28]. See Figure 2.2, or Figures 5 and 6 in [28],
for phase plane portraits of the SIR model.

Figure 2.2: Phase plane portraits of SIR system (2.16) with different initial condi-
tions and basic reproduction numbers. Simulation done in MATLAB c©.

The SIS Model

Another prominent model in the literature is the SIS model, it has been analyzed
extensively, for example, in [29, 30, 31, 35, 55]. In this model, susceptibles become
infected with the disease and once recovered return to the susceptible class imme-
diately. Hence, there is no natural immunity conferred from being infected by the
disease. Some infections, for example gonorrhea and other sexually transmitted
diseases [72], do not give rise to acquired immunity in the host. Hence, there is no
removed class in this model. Include population dynamics as in (2.16), assuming
the birth rate, µ > 0, is equal to the natural death rate. The flow of this model is
S → I → S (see Figure 2.3).
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Figure 2.3: Flow of SIS System (2.19).

Mathematically, after normalizing the variables by the total population (which
is again a constant), the SIS model is given as:{

Ṡ = µ− βSI − µS + gI,

İ = βSI − gI − µI,
(2.19)

where S, I represent the fractions of the population in each class. The initial
conditions are S(0) = S0 > 0, I(0) = I0 > 0 such that S0 + I0 = 1. The normalized
variables satisfy S+I = 1 and hence the meaningful domain for this system is ΩSI =
{(S, I) ∈ R2

+|S + I = 1}. Notice that {Ṡ + İ} |S+I=1 = 0, Ṡ |S=0 = µ + gI > 0, and

İ |I=0 = 0, and so this domain is invariant to the system. The basic reproduction
number for this model is the same as for the SIR models,

R0 =
β

µ + g
. (2.20)

There is a disease-free solution Q̄ = (1, 0) and an endemic solution

Q∗ = (S∗, I∗) = (1/R0, 1− 1/R0) . (2.21)

Since S + I = 1, the model is intrinsically one-dimensional and we may omit the
equation for S and solely focus on the equation for I:

İ = −βI2 + (β − g − µ)I, (2.22)

with 0 ≤ I ≤ 1 and I(0) = I0 > 0. This equation has equilibrium points I = 0
and I = 1 − 1/R0, which are associated with the disease-free solution Q̄ and the
endemic solution Q∗, respectively.

The equation (2.22) is a Bernoulli differential equation which has a unique
solution that can be found explicitly [29], as follows: define λ := β − µ − g, then,
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for R0 6= 1, İ − λI = −βI2, and hence

İ

I2
− λ

I
= −β.

Use the substitution y = I−1 to get ẏ = − 1
I2 İ . This change of variables gives

ẏ + λy = β which can be solved to get y = Ce−λt + β/λ for some constant C to be
determined. Use the initial condition I(0) = I0 > 0 to get C = 1/I0 − β/λ. Then,

I(t) =
1

( 1
I0
− β

λ
)e−λt + β

λ

=
e(µ+g)(R0−1)t

R0(e(µ+g)(R0−1)t − 1)/(R0 − 1) + 1/I0

.

For R0 = 1: İ = −βI2 implies
∫

dI
I2 =

∫
−βdt, which, after intergration, gives

−1/I = −βt + C where C is a constant to be determined. Use the initial condition
I(0) = I0 to get C = −1/I0. This implies I(t) = 1/(βt + 1/I0). Combining the
cases,

I(t) =


e(µ+g)(R0−1)t

R0(e(µ+g)(R0−1)t − 1)/(R0 − 1) + 1/I0

, for R0 6= 1,

1

βt + 1/I0

, for R0 = 1.

(2.23)

By inspection, if R0 ≤ 1 then I(t) converges to zero and hence Q̄ is asymptotically
stable. For R0 > 1, I(t) converges to 1 − 1/R0, and so Q∗ is asymptotically
stable. Therefore, the number R0 entirely determines the long-term behaviour of
the disease. Notice that the basic reproduction number (2.20) is the same in the
SIR model with population dynamics (2.17), this implies that the disease spreads
at the same rate in these two models.

The SIRS Model

The SIRS model is also prominent in the literature, for example, see [31, 35]. This
infectious disease model makes the same assumptions as the SIR model with pop-
ulation dynamics (2.16), with the important difference that individuals do recover
from the disease with immunity, as in the SIR model, but only do so temporarily.
For example, herpes simplex tends to relapse after recovery [40]. In fact, following
recovery, many sexually transmitted diseases such as gonorrhea and chlamydia are
known to result in little or no acquired immunity [18]. Assume individuals lose
immunity at rate θ > 0, hence, the average period of immunity is 1/θ. Along with
the other assumptions of the SIR model (2.16), this leads to

Ṡ = µ− βSI − µS + θR,

İ = βSI − gI − µI,

Ṙ = gI − µR− θR,

(2.24)
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with S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0, such that S0 + I0 + R0 = 1. The
flow of this model is S → I → R → S. The variables have been normalized such
that S + I + R = 1, and hence represent the fractions of individuals in each class.
The meaningful physical domain for this system is ΩSIR = {(S, I, R) ∈ R3

+|S + I +

R = 1}, which is invariant since {Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ + gI > 0,
İ |I=0 = 0 and Ṙ |R=0 = gI ≥ 0. Note that the SIS model can be regarded as the
limiting case of the SIRS model in the limit 1/θ → 0. The basic reproduction
number for this model is [44]:

R0 =
β

µ + g
. (2.25)

There is a single disease-free equilibrium point Q̄ = (S̄, Ī, R̄) = (1, 0, 0). and an
endemic equilibrium

Q∗ = (S∗, I∗, R∗) =

(
1

R0

,
µ + θ

µ + θ + g

(
1− 1

R0

)
,

g

µ + θ + g

(
1− 1

R0

))
. (2.26)

Since S+I +R = 1, the equation for R can be omitted, and the model can be made
intrinsically two dimensional. Notice that if R0 ≤ 1 then I ′ < 0 in ΩSIR unless
S = 1 or I = 0, hence the disease is eradicated. The SIRS model has the same
basic reproduction number as the SIR model with population dynamics (2.17), and
hence spreads at the same rate fundamentally. One important difference between
these models arises from the waning immunity rate θ: as the waning immunity
is increased (and hence the immunity period 1/θ is reduced), the prevalence of
disease at the endemic equilibrium increases dramatically, and the period of the
damped oscillations decreases [31]. Further, we expect the convergence rate to the
equilibrium points will be different in the SIR and SIRS models. The SIS is the
limiting case of this phenomenon (1/θ → 0) and hence the prevalence of the disease
will also be dramatically increased in the SIS model (2.19) as compared to the SIR
model (2.16).

The SEIR Model

Many diseases incubate inside the hosts for a period of time before the hosts become
infectious, hence the assumption that the incubating period is negligible may be
a very poor one. Examples of such diseases include hepatitis B, Chagas’ disease,
HIV/AIDS and tuberculosis, the last two having latent stages that may last for
years [49, 40]. Motivated by this, assume that once a susceptible makes an adequate
contact with an infective they enter a latent period before becoming infectious. In
this stage, an individual has been exposed but is not yet infectious. Denote this
class of exposed individuals as E. Assume that individuals who have been exposed
become infectious at a rate a > 0, and so, the infection has an average incubating
period 1/a. This leads to the SEIR model, which is common in the literature, for
example, see [31, 32, 38, 39, 49, 63]. It uses the same assumptions on the infectious
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period, incidence rate and population dynamics as the SIR model (2.16) and is
given by: 

Ṡ = µ− βSI − µS,

Ė = βSI − aE − µE,

İ = aE − gI − µI,

Ṙ = gI − µR,

(2.27)

with S(0) = S0 > 0, I(0) = I0 > 0, E(0) = E0, R(0) = R0, such that S0 + I0 +
E0 + R0 = 1 and the variables have been normalized to be fractions of individuals
in each class. The flow of this model is S → E → I → R. The meaningful physical
domain for this system is

ΩSEIR = {(S, E, I, R) ∈ R4
+|S + E + I + R = 1},

which is invariant to the system since {Ṡ+Ė+İ+Ṙ} |S+I+E+R=1 = 0, Ṡ |S=0 = µ > 0,
Ė |E=0 = βSI ≥ 0, İ |I=0 = 0, and Ṙ |R=0 = gI ≥ 0. For this model, define the ba-
sic reproduction number [44]:

R1 =
βa

(µ + g)(µ + a)
. (2.28)

Intuitively, this threshold is the product of the contact rate β, the average
fraction a/(a + µ) surviving the latent period, and the average infectious period
1/(µ + g) [28]. There is a single disease-free equilibrium point Q̄ = (S̄, Ē, Ī, R̄) =
(1, 0, 0, 0) and an endemic equilibrium

Q∗ = (S∗, E∗, I∗, R∗) =

(
1

R1

,
µ(µ + g)

βa
(R1 − 1),

µ

β
(R1 − 1),

g

β
(R1 − 1)

)
. (2.29)

Since S + E + I + R = 1, the equation for R can be omitted, hence this model is
intrinsically three dimensional. Recall the reproduction number R0 = β/(µ + g)
for the SIS (2.19), SIR (2.16) and SIRS (2.24) models. Notice that for the SEIR
model, the reproduction number

R1 = R0 ·
a

µ + a
,

which implies that R1 ≤ R0. Further, since the mean lifetime of an individual
1/µ is usually much greater than the incubation period 1/a, then a >> µ and
hence a/(a + µ) ≈ 1 [31], and so the reproduction number is close to the SIR
model’s reproduction number R0 (2.17). If the latent period is small compared
to the infectious period (a/g >> 1), which is usually the case, the latent period
can be ignored [49]. In this limit, the model becomes the SIR model [49]. Again,
the dynamics of the model are determined by the reproduction number, if R1 ≤ 1
then disease-free solution is asymptotically stable, and if R1 > 1 then the endemic
solution is asymptotically stable [38], and is approached with damped oscillations
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[31]. In fact, it can be shown that the period of oscillations is approximately
2π
√

AG, where A = 1/(µ(R1 − 1)) is the mean age of infection and G = 1/(µ +
g) + 1/(µ + a) is the mean period of a host’s infectivity [31]. The SEIR model has
a slower rate of growth of the disease after its introduction because of the latent
period delaying an exposed person in becoming infectious [31].

2.2.4 Control Schemes

Constant Control

Most developed countries have cohort immunization programs in place with varying
degress of success [4]. These program, sometimes also called constant immunization,
are based on the concept of time-constant immunization [66], in which members of
the susceptible population are continuously vaccinated. For example, recently, the
strategy for measles immunization in many areas of the Western world recommends
a vaccination dose at 15 months of age and a second dose at around 6 years of age
[67]. There are a lot of studies on constant control schemes in the literature, for
example, see [2, 31, 36, 41, 43, 46, 47, 48, 51, 66, 68, 73].

Consider the constant vaccination of a fraction 0 ≤ p ≤ 1 of susceptible newborn
infants, moving them to the removed class R with permanent immunity. Hence,
assume that the immunity acquired naturally or from the vaccination are the same.
This scheme has been studied in, for example, [31, 66, 73], and, when applied to
the SIR model (2.16), the model becomes:

Ṡ = (1− p)µ− βSI − µS,

İ = βSI − gI − µI,

Ṙ = gI + µp− µR,

(2.30)

where the variables have been normalized such that S + I + R = 1, and the initial
conditions are S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0, with S0+I0+R0 = 1. The
meaningful domain is ΩSIR = {(S, I, R) ∈ R3

+| S + I + R = 1}, which is invariant
to the system. The effect of this strategy reduces the birth rate µ of susceptibles,
which can be seen from the model in the (1− p)µ term. There are two equilibrium
points, a disease-free solution Q̄ = (1− p, 0, p) and an endemic solution

Q∗ = (S∗, I∗, R∗) =

(
µ + g

β
,
µ

β
(Rp

0 − 1),
g

β
(Rp

0 − 1) + p

)
. (2.31)

Consider the linear change of variables [31]: S = Ŝ(1 − p), I = Î(1 − p), R =
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R̂(1− p) + p. Apply these to the system to get [31]:

dŜ

dt
= µ− β(1− p)ŜÎ − µŜ,

dÎ

dt
= β(1− p)ŜÎ − gÎ − µÎ,

dR̂

dt
= gÎ − µR̂.

(2.32)

From this, it is apparent that changing the birth rate has the effect of transforming
the contact rate from β to β(1−p). Indeed, the basic reproduction number for this
model is [31]

Rp
0 =

β

µ + g
· (1− p). (2.33)

Notice that Rp
0 = (1−p)R0 from the non-vaccination SIR model (2.17), and hence,

the basic reproduction rate has been reduced by a factor 1 − p. If Rp
0 < 1 then

the disease-free solution Q̄ of system (2.30) is locally asymptotically stable in the
meaningful domain ΩSIR, if Rp

0 > 1 then endemic solution Q∗ of system (2.30) is
locally asymptotically stable in the meaningful domain ΩSIR [67]. Note that the
requirement Rp

0 < 1 implicitly defines a minimum vaccination rate which must
be reached to achieve what is commonly referred to as herd immunity [29]. More
specifically, for this strategy to successfully eradicate the disease, we require p >
pcrit := 1−1/R0, where R0 is the basic reproduction number of the non-vaccination
SIR model (2.16).

Pulse Control

Pulse vaccination strategies are based on the suggestion that an epidemic can be
more effectively controlled when the natural temporal process of the epidemics is
antagonized by a temporal process [4, 66]. Theoretical results show that a pulse
vaccination strategy can be distinguished from conventional constant immunization
in leading to disease eradication at relatively low values of vaccination [4]. Recently,
pulse vaccination has gained prominence for its highly successful control of poly-
omyelitis and measles throughout Central and South America [41]. This technique
was first proposed as a control scheme for measles in [4] by Shulgin et. al and has
since been further developed, for example in [19, 21, 43, 48, 51, 58, 61, 66, 67, 73].

More specifically, pulse vaccination is the control technique of immunizing a
portion of all age cohorts of the susceptible population in a very short time period
with respect to the dynamics of the disease. This is in contrast to the constant
control scheme outlined in the previous section, where the vaccinations are applied
continuously in time. The motivation for this strategy [66] is to notice that in the
SIR model (2.16) I ′ = βSI − µI − gI = I(βS − µ− g) < 0 if

S <
µ + g

β
:= Scrit. (2.34)
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That is, so long as the susceptible population is controlled such that it is always
less than some critical value Scrit, then I ′ < 0 in ΩSIR for all t ≥ 0 unless I = 0,
which means the infection will burn out and there will be no epidemic.

And so, applying this scheme to the SIR model (2.16) by impulsively vaccinat-
ing a portion 0 ≤ p ≤ 1 of the susceptible population every T time units, giving
them permanent immunity. In mathematical terms, discrete time vaccination can
be represented by Dirac δ functions as inputs to the above system, causing discon-
tinuous jumps in the state of the systems [4], see [66] for a derivation from first
principles. This leads to an IDE system:

Ṡ = µ− βSI − µS, t ∈ ((k − 1)T, kT ]

İ = βSI − gI − µI,

Ṙ = gI − µR,

S(t+) = S(t)− pS(t), t = kT

I(t+) = I(t),

R(t+) = R(t) + pS(t),

(2.35)

where k = 1, 2, . . ., and the total population is constant. Here

S(kT+) := lim
h→0+

S(kT + h).

The initial conditions are S(0+) = S0 > 0, I(0+) = I0 > 0, R(0+) = R0. The
meaningful domain is ΩSIR, which is invariant.

The following derivations and analyses in this section are taken from [66]. Since
(1, 0, 0) is no longer an equilibrium point of the system, we begin the analysis by
showing the existence of a periodic disease-free solution, motivated by the fact that
I ≡ 0 is a solution to the differential equation for I. Under these conditions, the
system becomes: 

Ṡ = µ(1− S), t ∈ ((k − 1)T, kT ]

Ṙ = −µR,

S(t+) = S(t)− pS(t), t = kT

R(t+) = R(t) + pR(t).

(2.36)

For (k− 1)T < t ≤ kT , integrate and solve the equation for S between pulses, and
use S + R = 1 (since I = 0):{

S(t) = 1 + (S((k − 1)T )− 1)e−µ(t−(k−1)T ),

R(t) = 1− S(t).
(2.37)

Immediately after the pulse vaccination,

S(kT+) = (1− p)[1 + (S((k − 1)T )− 1)e−µT ] := F (S((k − 1)T )).
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This defines a stroboscopic mapping Sk = F (Sk−1) where Sk−1 := S((k − 1)T ).
This mapping has a unique fixed point:

S∗ = F (S∗) =
(1− p)(1− e−µT )

1− (1− p)e−µT
.

Further, notice that ∣∣∣∣dF (S(kT ))

dS(kT )

∣∣∣∣
S(kT )=S∗

= (1− p)e−µT < 1,

which implies that the fixed point is globally asymptotically stable in ΩSIR (follows
from Lemma 2.1 of [43]). Set S∗ = S((k − 1)T ) to get the periodic disease-free
solution [66], for (k − 1)T < t ≤ kT :

S̃(t) = 1− pe−µ(t−(k−1)T )

1− (1− p)e−µT
,

Ĩ(t) = 0,

R̃(t) = 1− S̃(t).

(2.38)

For the pulse SIR model (2.35), define the basic reproduction number:

R0(T ) =
β

µ + g

1

T

∫ T

0

S̃(t)dt. (2.39)

It can be shown, using Floquet theory (see [50] for background material on Floquet

theory), that if 1
T

∫ T

0
S̃(t)dt < g+µ

β
:= Scrit, that is, if R0(T ) < 1, then the periodic

disease-free solution (S̃(t), 0, R̃(t)) is locally asymptotically stable [66]. Notice that

R0(T ) = R0
1

T

∫ T

0

S̃(t)dt < R0,

with R0 the basic reproduction number of the SIR model without pulse vaccina-
tion (2.17). Hence, the reproduction number of this model has been reduced, as
expected.

Since S̃(t) is explicitly known, we can evaluate the integral in (2.39) as is done
in [66],

1

T

∫ T

0

S̃(t)dt =
1

T

∫ T

0

[
1− pe−µt

1− (1− p)e−µT

]
dt =

1

T

[
t +

pe−µt

µ[1− (1− p)e−µT ]

]T

0

,

= 1 +
p− peµt

µT [eµT + p− 1]
=

(µT − p)(eµT − 1) + µpT

µT (eµT + p− 1)
.

Then, for R0(T ) < 1, T and p need to satisfy [66]:

(µT − p)(eµT − 1) + µpT

µT (eµT + p− 1)
<

µ + g

β
:= Scrit, (2.40)
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in order for the disease to be eradicated. From this, the tradeoff between how large
the interpulse time T can be and how small the proportion of population vaccinated
p needs to be is more clear. Further, the maximum allowable interpulse time T
(given a vaccination portion p) can be calculated by noticing that the function on
the left in (2.40) is an increasing function of T [66] and so reaches Tmax at equality.
Simplify using Taylor expansions, by reasonably assuming the period of pulses is
much shorter than the mean life-time, T << 1/µ, and by assuming the duration
of the disease is much shorter than the average mean life-time, 1/g << 1/µ. After
neglecting higher order terms this leads to [66]:

T 1
max ≈

gp

µβ

1

1− p/2− g/β
. (2.41)

Returning to the earlier pulse vaccination motivation of requiring that S(t) <
Scrit from (2.34) for all t ≥ 0, the maximum allowable interpulse time, T 2

max, can
be calculated for this constraint. Recall that the minimum number of susceptibles
occurs immediately after pulse vaccinations (S∗), while the maximum number of
susceptibles occurs just before the vaccination (S∗/(1 − p)). Thus, to guarantee
S(t) < Scrit, S∗/(1− p) < Scrit is required. We can arrive at the expression for T 2

max

by evaluating this at equality, that is, S∗ = (1− p)Scrit, to get [66]:

T 2
max =

1

µ
ln

(
1 +

pScrit

1− Scrit

)
.

It is important to note that, as expected, T 2
max ≥ T 1

max for all 0 ≤ p ≤ 1 [66].

Comparison of Control Schemes

Before implementing any control scheme, it is important to investigate the strat-
egy’s advantages and disadvantages. Certainly, in choosing control strategies for
the eradication of a disease, the possible schemes should be analyzed rigorously and
compared in detail. In practice, a range of constraints and trade-offs influence the
choice of control strategy, and hence their inclusion in any modelling investigation
is important [31]. These limitations may be logistical, in terms of the maximum
number of units of vaccine that can be given in a certain time frame, or epidemiolog-
ical, such as adverse reactions to a particular vaccine [31]. Economic considerations
should also be included in epidemiological models, since control schemes should be
judged through cost-benefit analyses [31]. Ultimately, the desirability of imple-
menting a new type of control strategy (such as pulse control) depends on two
factors [4]: the risks attached to the scheme and the costs of implementation and
long-term maintenance.

In a constant vaccination scheme, the vaccination affects the amplitude and the
period of the epidemic, but it does not antagonize the underlying dynamics of the
disease [67]. It can be seen easily from the constant vaccination model introduced
in the previous section (2.30) that, in effect, it reduces the birth rate of susceptibles
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[66]. Indeed, this is equivalent to an unvaccinated population with a reduced basic
reproduction number [31]. In most countries, pediatric immunization programs are
already established and any pulse vaccination strategy is likely to be in addition to
constant immunization rather than an alternative [31].

Many countries have encountered difficulties in eliminating the spread of diseases
with cohort immunization, even when the vaccination coverage is relatively high
[4]. This is largely due to the persistence of pockets of susceptible individuals,
often in poor communities in large urban centers [4]. For example, the critical
vaccination level required for measles eradication is about 94%, and 86% for rubella
[28]. Further, the vaccine efficacy for these diseases is approximately 0.95, which
means 5% of those who are immunized do not gain immunity [28]. Therefore, to
reach the levels necessary to achieve what is referred to as herd immunity, at least
0.99 would need to be immunized for measles and 0.91 for rubella [28]. It would
be both difficult and expensive to implement a cohorti mmunization for such a
high coverage of the population [66]. In fact, it is unrealistic practically, and it
usually leads to a two-dose program as an attractive alternative, which has been
implemented in some countries [28]. It is noted that even if a constant vaccination
program does not eradicate a disease, it can still be useful in reducing the prevalence
of the infection [31].

As discussed in the previous section, in contrast to constant control, a pulse
control strategy is based on the suggestion that in some cases epidemics can be more
efficiently controlled when its natural temporal process is antagonized by another
temporal process, that is, by a vaccination process that is pulsed in time rather
than continuous [66, 67]. Recent research shows that pulse vaccination strategy
(PVS) might be an optimal choice in cases of highly infectious diseases outbreaks,
such as a new smallpox epidemic [60]. Pulse vaccination is gaining prominence as
a strategy for the elimination of childhood infections such as measles, rubella (for
example the UK vaccination campaign in 1994 [66]) parotitis, and phthisis [51].
Another well-publicized example is PVS’s success in controlling poliomyelitis and
measles in Central and South America [31].

Results show that pulse vaccination strategies can be distinguished from time-
constant immunization strategies in leading to disease eradication at relatively low
values of vaccination [4]. Indeed, this is one of this scheme’s main benefits compared
to the continuous control schemes. Compared to continual pediatric vaccination
(2.30), it also has the additional advantage that it is often logistically simpler to
implement [31]. On a practical level, it seems essential to determine before hand
the time between successive pulses required for the effective implementation of
the pulse strategy (2.35) [67]. This is actually not a major problem, as for many
pulse models, an explicit relation between the pulse vaccination portion p and the
interpulse time T can be established explicitly. In some cases, such as developing
countries, where levels of vaccine coverage are often low (for example, less than
65% by age 5 years), analyses suggest that the interpulse times may be too short
to make a pulse program a sensible strategy [4]. Even in this case, a pulse strategy
can still be useful in reducing the prevalence of the infection. For other types of
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control schemes, such as quarantine, ring vaccination and targeted vaccination, as
well as how they compare, see [31].

The following cost-effectiveness analysis is taken from [66]. It is important to
know the cost-effectiveness of schemes when deciding which control strategy to
implement. For example, the number of people requiring the vaccination every
pulse interval time T in the pulse strategy (2.35) might be close to the number of
newborns requiring vaccination over the same period T in the constant vaccination
scheme (2.30). As is done in [66], the cost here is taken to be the mean number of
individuals per time unit requiring vaccination.

In the constant vaccination scheme (2.30), the number of individuals vaccinated
per time unit is N(p) = pµ, from the system equations. For the pulse vaccination
scheme (2.35), the average number of people requiring vaccination per time unit is

N(p, T ) =
1

T
pS̃(kT−),

with k = 1, 2, . . ., and where pS̃(kT−) is the number of people impulsively vacci-
nated at time kT . From earlier, and using a Taylor series expansion,

S̃(kT−) =
eµT − 1

p− 1 + eµT
≈ µT

p + µT
.

And hence we have
N(p, T ) ≈ pµ

p + µT
,

which is minimized when T is at a maximum, that is, T = T 1
max from (2.41), which

gives:

N(p, T 1
max) ≈ µ− µg

β(1− p/2)
≈ µ.

And so, the minimum number of vaccinations required for pulse vaccination is
approximately µ, and is approximately independent of p. One interesting note is
that regardless of the vaccination portion p (and associated interpulse time Tmax

used) roughly the same number of people will be vaccinated under this pulse scheme.
Compared to the constant control scheme cost N(p) = pµ, we see the two costs
are approximately equal when p ≈ 1, which is usually the case from eradication
requirements.

2.3 Switched and Hybrid Systems

2.3.1 Introduction

Hybrid and switched systems, which have applications in disciplines such as com-
puter science, control engineering and applied mathematics, usually arise in two
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contexts [12]: When there is a natural system that experiences abrupt changes
based on factors (for example, environmental) governing the system. The second
scenario is using switching controllers to stabilize a non-switched dynamical system.
In both cases, switched systems evolve according to mode-dependent continuous dy-
namics, and experience transitions between modes that are triggered by events [64].
Consider the following motivating example from [64]:

Example 2.3.1. Consider a car that has a manual gearbox. Travelling along a
certain fixed path, the motion of the car can be characterized by its velocity v(t)
and its position s(t). The system has two control inputs: the current angle of the
throttle (u) and the current engaged gear (g). The response of the velocity to the
current throttle input depends on which gear is currently engaged. The dynamics of
this vehicle system can be interpreted as a hybrid system. Each mode (engaged gear)
evolves the dynamics in a continuous manner according to a differential equation.
The transitions between modes are abrupt and are triggered by the driver in the
form of gear changes. See Figure 2.4.

Figure 2.4: A hybrid model of a car with a manual gearbox, based on an image
from [64].

Another simple example is a home climate-control system. Due to its on-off
nature, a thermostat can be modelled as a discrete-event system, whereas the fur-
nace or air conditioner is modelled as a continuous time-system [17]. For more
examples, see [64]. For a review of the literature on hybrid and switched systems,
see [12, 13, 42, 64].

Switched systems typically arise in the context of hybrid systems, which are
systems that combine continuous dynamics (typcally modelled by differential or
difference equations) and event-driven logic (typically modelled by finite or infinite-
state automaton) [25]. For an example of a simple hybrid system, see [25]. As
discussed above, switched systems are dynamical systems consisting of continuous-
time subsystems (or modes) and a logical rule that orchestrates switching between
them [17]. Mathematically, a switched system can be described by a family of
ordinary differential equations [17]:{

x′ = fi(x),

x(t0) = x0,
(2.42)
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where {fi : i ∈ ℵ} is a family of sufficiently regular functions from Rn → Rn

that is parameterized by an index set ℵ and a piecewise constant function of time
σ(t) : R+ → ℵ, usually called a switching signal or switching rule [42]. The switched
system works as follows: the i′s are picked based on the switching rule, that is,
i = σ(t) : R+ → ℵ : (tk−1, tk] → ℵ and the system evolves according to the
current value of σ. We assume that the switching rule is left-continuous, that is,
σ(t−k ) := limh→0+σ(tk − h) = σ(tk). For an illustration of a simple switching rule,
see Figure 2.5.

The set ℵ is usually a compact, finite subset of a finite-dimensional linear vector
space [42]. The times t0 < t1 < . . . < tk < . . . → ∞ form the switching time
sequence {tk}∞k=0. The case of infinitely fast switching, usually called chattering [42],
is not considered here. The switching rule may be time-dependent (synchronous
switching), state-dependent (asynchronous switching), Markovian, or something
more sophisticated such as hybrid feedback with memory in the loop [42]. To be
clear, for a particular choice i = p with p ∈ ℵ, x′ = fp(x) is called a subsystem or
mode of the switched system (2.42).

Figure 2.5: Example of a switching rule σ(t) with switch times tk = 0, 1, 3, 4.

Recall that an ODE IVP (2.2) admits a family of solutions that can be parame-
terized solely by the initial condition x0, whereas the switched system (2.42) admits
a family of solutions that is parameterized both by the initial condition x0 and the
switching signal σ [25]. Hence, one initialization of the switched system (2.42) is{

x′ = fσ(x),

x(t0) = x0.
(2.43)

It is also possible to construct switched systems from a control systems approach.
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Consider the control ODE system

ẋ(t) = u(t), (2.44)

with state x ∈ Rn, and controller u ∈ Rn. Following the method of [17], as-
sume that there is a collection of nonlinear state feedback controllers: u(t) ∈
{f1(x), . . . , fm(x)}, where fi(x) are continuously differentiable vector-valued func-
tions such that fi(0) ≡ 0 for all i. Incorporate these controllers into the system
(2.44) by constructing the control input as follows, following the procedure of [22]:

u(t) =
∞∑

k=1

fik(x)lk(t), where lk(t) =

{
1, if t ∈ (tk−1, tk],
0, otherwise,

with discontinuity points t1 < . . . < tk < . . . → ∞ as k → ∞ and where
ik ∈ {1, 2, . . . ,m} = ℵ. Based on the contruction of lk(t), it is apparent that
the controller switches its value at every tk, hence it is a switching controller. The
system can then be rewritten as:{

ẋ = fik(x), t ∈ (tk−1, tk],

x(t0) = x0 k = 1, 2, . . .
(2.45)

where ik ∈ {1, 2, . . . ,m} = ℵ. Based on the construction of the switched controller,
we say the switching times tk are governed by a switching signal σ = σ(t) : R+ →
{1, 2, . . . ,m} i.e. (tk−1, tk] → ik ∈ {1, 2, . . . ,m} , where σ is a piecewise continuous
function. It is apparent that the control system (2.45) is a switched system.

A solution of the switched system (2.42) is a continuous function ϕ(t) : R+ → Rn

which satisfies the following: there exists a switching sequence {tk}∞k=0 and indices
i1, i2, i3, . . ., with ik ∈ ℵ, associated with a switching rule σ such that ϕ(t) is an
integral curve of the vector field fik(x) for t 6= tk [6]. The switched system has
an equilibrium point x̄ if fi(x̄) = 0 for all i. Sometimes in this thesis we refer to
such a point as a common equilibrium point, or equilibrium point common to all
subsystems. Without loss of generality, it is possible to shift such a point to the
origin using y = x− x̄ as before (see Section 2.1.1). The definitions of stability for
switched systems (for example, found in [6]) are analogous to the definitions (2.1.6)
from the classical theory of ODEs. For a switched system (2.42), it is also possible
to assume, without loss of generality, that t0 = 0, since, if this is not the case, it is
possible shift the time by defining a new time variable τ = t− t0 and new switching
times hk = tk − t0.

Since analytical solutions of the switched system (2.42) are, in general, not
known explicitly, there are three basic problems most often studied in switched
systems literature [42]:

1. Find conditions that guarantee that the origin of the switched system (2.42)
is asymptotically stable for any switching signal σ.
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2. Identify those classes of switching signals σ for which the origin of the switched
system (2.42) is asymptotically stable.

3. Construct a switching signal σ that makes the origin of the switched system
(2.42) asymptotically stable.

Problem 1

The first problem is of particular importance in the area of feedback control, where
a given plant is being controlled by switching between a set of stabilizing con-
trollers. This process is usually governed by a decision maker (supervisor) such as
a computer-controlled system [42]. This plant-multicontroller system is illustrated
in Figure 2.6.

Figure 2.6: Multicontroller architechture, based on image from [42].

Certainly, if any one of the stabilizing controllers leads to instability of the
system then one switching rule that guarantees instability is the supervisor choosing
that particular controller to be in the system’s loop indefinitely [42]. This raises
the first important point of this problem, which is that all subsystems (or modes)
of a switched system must be stable in order for asymptotic stability to be possible
for an arbitrary switching signal σ [42]. It is often the case that if each stabilizing
controller is kept in the loop for a sufficient amount of time, then the origin of
the switched system will be asymptotically stable [42]. This raises the second
important point for switched systems, the stability of all individual subsystems (or
modes) is not a sufficient condition for asymptotic stability of the origin of the
overall switched system (2.42) for an arbitrary switching signal σ. This interesting
phenomenon is illustrated in the following example, where a switched system with
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two stable subsystems is switched in such a way that the solution trajectory is
unstable, taken from [42].

Example 2.3.2. Consider the switched system (2.42) with fi(x) = Aix, i = 1, 2,
and

A1 =

(
−0.1 1
−2 −0.1

)
, A2 =

(
−0.1 2
−1 −0.1

)
.

These matrices are Hurwitz, hence, the trivial solution is asymptotically stable for
each subsystem. It is possible to construct a switching signal for these matrices
that results in an unstable trajectory: if x1x2 < 0 choose subsystem 1 to be active,
otherwise choose subsystem 2 to be active. See Figure 2.7 for an illustration of this
example, or see Figure 2 of [42].

Figure 2.7: The instability of a switched system with two stable subsystems. The
left pictures shows the (stable) dynamics of the two subsystems: subsystem 1 (x′ =
A1x) and subsystem 2 (x′ = A2x) from Example 2.3.2. The right picture shows
a trajectory of the switched system under a partilcular switching signal leading to
isntability. Simulations done in MATLAB c©.

One condition which does guarantee the asymptotic stability of the origin of
the switched system (2.42) under arbitrary switching is the existence of a so-called
common strict Lyapunov function.

Definition 2.3.1. [6]
The auxilliary function V (x) ∈ C1[D, R+], where D ⊂ Rn is an open set, is a
common strict Lyapunov function for the switched system (2.42) if V is positive
definite and if

∇V (x) · fi(x) < 0 (2.46)

for all x ∈ D \ {0} and for all i ∈ ℵ.

Then the following theorem then can be given.

Theorem 2.3.1. [42]
If the switched system (2.42) has a common strict Lyapunov function V (x) then
the origin of system (2.42) is globally asymptotically stable for arbitrary switching.
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Problem 2

The second problem arises out of the first. Illustrated by the example of the in-
stability of a switched system with stable subsystems, conditions are desired on
the switching signal such that the overall switched system is asymptotically stable.
This usually leads to restrictions on the rate at which the system can switch modes
[42]. More specifically, if all subsystems are stable and if the switching is sufficiently
slow, asymptotic stability is guaranteed [42]. Motivated by this, we are interested
in formalizing the concept of sufficiently slow switching.

One important concept in this area is that of multiple Lyapunov functions.
In this problem, it is assumed that all the subsystems are stable and that each
subsystem has a Lyapunov function. The family of individual Lyapunov functions
for each subsystem gives rise to the concept of multiple Lyapunov functions, defined
as follows.

Definition 2.3.2. [6]
A switched system (2.42) has multiple strict Lyapunov functions if, for each i ∈ ℵ,
there exists a function Vi ∈ C1[D, R+], D ⊂ Rn an open set, that is positive definite,
and for all x ∈ D \ {0}, ∇Vi(x) · fi(x) < 0.

Then, so long as the switched system’s energy (measured by the Lyapunov
functions) is not increasing at the switching times, asymptotic stability is ensured.

Theorem 2.3.2. [24]
If the switched system (2.42) has multiple strict Lyapunov functions {Vi : i ∈ ℵ}
such that

Vp2(x(tk)) ≤ Vp1(x(tk)) (2.47)

at every switching time tk where the switching rule σ switches from p1 to p2, then
the trivial solution of system (2.42) is globally asymptotically stable for arbitrary
switching.

It is possible to weaken the condition (2.47) on the value of the Lyapunov
functions at the switching times. If the switched system (2.42) has multiple strict
Lyapunov functions {Vi : i ∈ ℵ} such that, for any times tj > tk, where tk is the
last time the system switched out of mode i and tj is the next time that the system
switches back into mode i,

Vi(x(tj)) ≤ Vi(x(tk)), (2.48)

then the switched system (2.42) is stable [64]. See Figure 2.8 for an illustration.

Further, it is possible to weaken the condition (2.48) even further. Denote Vσ(t)

to be the multiple Lyapunov function that is active at the time t, based on the
switching rule σ. If there exists a constant ε > 0 with the property that for any two
switching times ti and tj such that i < j and σ(ti) = σ(tj), the following is true

Vσ(tj)(x(tj+1))− Vσ(ti)(x(ti+1)) ≤ −ε‖x(ti+1)‖2, (2.49)
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Figure 2.8: An example of possible trajectories of two Lyapunov functions along
solutions to a switched system (2.42), based on image from [64]. The red line
corresponds to the first Lyapunov function being active, the blue line corresponds
to the second Lyapunov function being active. Switch times are tk = 0, 1, 2.5, 3, 4.
The condition (2.48) is satisfied by these multiple Lyapunov functions.

Figure 2.9: An example of possible trajectories of two Lyapunov functions along
solutions to (2.42), based on image from [42]. The red line corresponds to the
Lyapunov function V1 being active. The blue line corresponds to the Lyapunov
function V2 being active. The condition (2.49) is satisfied.
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then the origin of the switched system (2.42) is asymptotically stable. See Figure
2.9 for an illustration of this condition.

In the case that the switched system (2.42) is linear, fi(x) = Aix, it is possible
to construct Lyapunov functions with a general procedure (for example, see [42]),
however, as in the case of conventional Lyapunov theory in ODEs (see Section
2.1.1), there is no general method for constructing either a common or multiple
Lyapunov function(s) for a nonlinear switched system (2.42). Further, and unlike
the case of conventional ODEs theory, the multiple Lyapunov theorems here require
explicit knowledge of the solution trajectory at the switching points tk, when there
are switches from one auxilary function to another [62]. This might seem to defeat
the purpose of this approach, but often the case is that either the energy conditions
(such as (2.47), (2.48), or (2.49)) are trivially satisfied or that the switching signal
is constructed exactly with these energy conditions in mind. That is, the system
is a switching controller system and the rule is specially constructed so that the
non-increasing energy requirements outlined above are satisfied. See problem 3 for
a more detailed account of stabilizing switching controllers.

Alternatively, another approach to guaranteeing the switching is sufficiently
slow is to restrict the admissable switching signals. This is especially convenient
when the switching signals are trajectory dependent [25]. The switching signal of
system (2.42) is said to have a dwell time if there exists a constant η > 0 such
that tk − tk−1 ≥ η for all switching times tk. When the switched system (2.42)
is linear, that is, fi(x) = Aix for all i, such that all matrices Ai are Hurwitz, the
required lower bound on η to ensure asymptotic stability of the switched system
(2.42) can be calculated explicitly from the parameters of the individual subsystems
(see [42]). In the general nonlinear case of the switched system (2.42), it is also
possible to make suitable assumptions under which a sufficiently large dwell-time
will ensure asymptotic stability of the switched system [42]. If there exists constants
a, b ≥ 0, T > 0 such that Nσ(T ) ≤ a+ bT where Nσ(T ) is defined to be the number
of discontinuities of a switching signal σ on the interval [0, T ), then the switching
signal σ is said to have an average dwell-time (in this case, it is 1/b) [42]. Note
that this is more general than a dwell-time: in the case where a = 0, b = 1/η,
the system has dwell-time η > 0. Intuitively, a switching signal has an average
dwell-time ηavg > 0 if it switches more quickly than ηavg on some switch intervals,
but on average it switches no faster than ηavg. If the switched system (2.42) has
a switching signal which satisfies this average dwell-time property, then conditions
can be established based on the parameters of the switched system such that the
trivial solution will be globally asymptotically stable (see [42]). For more on the
stability of switched systems with average-dwell time, see [26, 64]. To review other
sets of admissable switching signals see [25].

Problem 3

The third problem is mainly a control problem. In this case, conditions are desired
such that the switching signal σ stabilizes a switched system with entirely unstable
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subsystems. Consider the switched system (2.42) in the linear case, fi(x) = Aix,
and assume that ℵ = [1, 2], then one condition that leads to a a stabilizing switching
signal is if the matrix pencil γα(A1, A2) := αA1 + (1− α)A2, for α ∈ [0, 1] contains
a stable matrix [42]. This problem leads to a linear matrix inequality which must
be solved. Consider the following example from [42].

Example 2.3.3. Consider the switched system (2.42) with fi(x) = Aix, i = 1, 2.
Take

A1 =

(
0.1 −1
2 0.1

)
, A2 =

(
0.1 −2
1 0.1

)
.

The eigenvalues of both of these matrices have positive real parts. It is possible
to construct a stabilizing switching signal for these matrices: if x1x2 < 0 choose
subsystem 1 to be active, otherwise choose subsystem 2 to be active. See Figure
2.10 for an illustration of this example, or see Figure 5 of [42].

Figure 2.10: The stabilization of a switched system with two unstable subsystems.
The left pictures shows the (unstable) dynamics of the two subsystems: subsystem
1 (x′ = A1x) and subsystem 2 (x′ = A2x) from Example 2.3.3. The right picture
shows a trajectory of the switched system under the stabilizing switching signal
outlined in the example. Simulations done in MATLAB c©.

In other words, it is possible to construct a positive definite matrix P such that
Rn \ {0} is covered by the union of two open conic regions Ω1 := {x| xT (AT

1 P +
PAT

1 )x < 0} and Ω2 := {x| xT (AT
2 P + PAT

2 )x < 0} [42]. The function V (x) =
xT Px decreases along solutions of the first system (x′ = A1x) in the region Ω1 and
decreases along solutions of the second system (x′ = A2x) in the region Ω2 [42].
Using this property, it is possible to construct a stabilizing switching signal such
that V decreases along solutions of the switched system, which implies asymptotic
stability [42].

There are many results on stabilizing switching signals in the case that there
exists a stable convex combination of the linear subsystems, for some other exam-
ples, see [42]. Other examples of stabilizing switching signals can be found in [62]
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(where asynchronous switching is considered) and [17] (where both asynchronous
and synchronous switching are considered). It is important to note that not only
can switching signals stabilize switched systems with unstable subsystems [42], but
switching between controllers in a certain way can also improve performance over
a fixed continuous controller [12]. It can also prove to be easier to find a switching
controller to perform a desired task versus finding a continuous one [17].

2.3.2 Invariance Principle for Switched Systems

The invariance principle in classical ODE theory (see Theorem 2.1.9) fails to hold for
switched systems under completely arbitrary switching [6]. Appropriate restrictions
need to be applied to the admissible trajectories, and hence to the switching signal
σ [6]. Here, we look to establish an invariance principle for switched systems which
exhibit a weak common Lyapunov function, and the following material is taken
from [6], unless otherwise stated.

Assume, without loss of generality, t0 = 0 and denote the set of all switching
signals σ(t) : [0, +∞) → ℵ by S. Denote Sinf-dwell ⊂ S the set of all switching signals
σ which have nonvanishing dwell times, that is, there exists a η > 0, dependent on
the specific solution φ(t; x0) of switched system (2.42) such that

inf
k

tk − tk−1 ≥ η, (2.50)

for all k = 1, 2, . . . , where {tk} is the sequence of switching times associated to
φ(t; x0). We require the following definitions in order to state an invariance principle
for switched systems.

Definition 2.3.3. A set Ω is said to be weakly invariant with respect to the switched
system (2.42) if for each x0 ∈ D, D an open subset of Rn containing the origin,
there exists an index i ∈ ℵ, a solution φ(t; x0) of the vector field fi(x) and a real
number b > 0 such that φ(0; x0) = x0 and φ(t; x0) ∈ Ω for either t ∈ [−b, 0] or
t ∈ [0, b].

Definition 2.3.4. A solution φ(t; x0) of the switched system (2.42) is said to be
attracted by a compact set Ω if for each ε > 0 there exists a time T > 0 such that
for all t ≥ T , φ(t; x0) ∈ B(ε, Ω), where B(ε, x) is the open ball of radius ε centered
on x and

B(ε, Ω) =
⋃
x∈Ω

B(ε, x).

Note that if φ(t; x0) is attracted by Ω, then it is necessary and sufficient that

lim
t→+∞

dist(φ(t; x0), Ω) = 0.
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Definition 2.3.5. The auxilliary function V (x) ∈ C1[D, R+], where D ⊂ Rn is an
open set, is a common weak Lyapunov function for the switched system (2.42) if V
is positive definite and if

∇V (x) · fi(x) ≤ 0 (2.51)

for all x ∈ D and for all i ∈ ℵ.

We are now in a position to state an invariance principle for switched systems
that have a common weak Lyapunov function.

Theorem 2.3.3. [6]
Let V (x) : D → [0, +∞) be a weak common Lyapunov function for the switched sys-
tem (2.42). Let Dl be the connected component of the level set {x ∈ D| V (x) < l}
for some constant l > 0. Assume that Dl is bounded and let Z = {x ∈ D| ∃ i ∈
ℵ such that ∇V (x) · fi(x) = 0}. Further, let Ω be the union of all compact, weakly
invariant sets which are contained in Z

⋂
Dl. Then every solution φ(t; x0) associ-

ated with a switching signal σ ∈ Sinf-dwell and with x0 ∈ Dl is attracted by Ω.

For examples of applying this invariance principle to switched systems, see the
examples in [6].
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Chapter 3

One-Dimensional Switched
Epidemiological Models

The epidemiological models discussed in Section 2.2 can be made more realistic by
using time-varying parameters. As discussed in Chapter 1, the contact rate has been
observed to vary over the seasons periodically [31]. Another possibility is to consider
the seasonal variation in the birth rate, but since µ is usually relatively small, this
will not effect the model in the same way as a seasonal variation in the contact
rate. Further, changes in the birth rate or removal rate are not as destabilizing as
a change in the contact rate with respect to causing changes in the dynamics [31].
The approach of using a temporally forced model with β = β(t) has been studied
in the literature for some models, for example, see [31, 49, 57, 58, 59, 60, 63, 66].
This approach’s drawback is that for more complicated models alternative methods
of analysis are needed [31].

The alternative approach studied here is to approximate the contact rate as a
piecewise constant. For example, taking into account the cyclical variation in the
contact rate over a one year period, consider the approximation:

β =

{
β1 during the winter,

β2 during the other seasons.
(3.1)

This gives a better approximation of the contact rate and it allows the use of a
multitude of techniques from switched systems theory (some of which are detailed
in Section 2.3). Further, it is possible to easily extend this method to approximate
the birth rate µ, the removal rate g, or any other parameter in these epidemiological
models as piecewise constants.

Another benefit of a switched systems approach is that it allows for the epi-
demiological structures of the compartments to change in time. For example, as
discussed in Section 2.2, there are different choices for the horizontal incidence rate,
and it is apparent that the choice depends on the circumstances of the specific dis-
ease considered. There can be both advantages and disadvantages to a specific
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choice of incidence rate, and hence, it can be beneficial, for example, to be able
to use one incidence rate for some time and different one entirely at a later time.
Using a switched systems approach allows for this possibility:

f(S, I) =

{
f1(S, I) for the earlier periods of a disease,

f2(S, I) for the later period.

Switching the incidence rate will be the focus of Chapter 6.

This chapter is structured as follows: In Section 3.1, the one-dimensional model
SIS model with switching will be introduced and studied. Threshold criteria en-
suring stability of the disease-free solution will be established. The permanence of
the disease will then be investigated. In Section 3.2, a switched SIS model with
vertical transmission will be considered. Then, in Section 3.3, SIS models with
varying total population sizes will be studied. The generalization to switching the
contact rate, removal rate and birth rate will be examined in Section 3.4. Finally,
simulations will be given in Section 3.5.

3.1 Switching the Contact Rate in the SIS Model

The contact rate, which is the average number of adequate contacts of a person
per unit time, is traditionally assumed to be a constant in these epidemic models
[28, 29, 31]. Introduce switching into the SIS model (2.19) by assuming the contact
rate, β, is a parameter which varies over time. Assume it varies in a simple way:
it is a piecewise constant that switches its value at the switching times tk, where
t0 = 0 < t1 < . . . < tk → ∞ as k → ∞. Here we have assumed, without loss of
generality, that the initial time is zero. Assume there are m different contact rates
βi > 0 with which to approximate β as a piecewise constant parameter, that is,
i ∈ {1, . . . ,m}. Consider a switching rule σ = σ(t) : R+ → {1, 2, . . . ,m}, where σ
is a piecewise continuous function, assumed to be continuous from the left. Denote
the set of all such switching rules as S. Then the value of i follows the switching
rule, and hence, βi follows the switching rule. This leads to the following new
switched SIS model: 

Ṡc = µN − βiScIc

N
+ gIc − µSc,

İc =
βiScIc

N
− gIc − µIc,

(3.2)

where i ∈ {1, . . . ,m} follows the switching rule σ(t). The variables Sc, Ic are,
respectively, the number of susceptible and infected individuals, and N = Sc + Ic

is the total population. Since Ṡc + İc = 0, the total population is constant and the
variables may be normalized using S = Sc/N and I = Ic/N ,{

Ṡ = µ− βiSI − µS + gI,

İ = βiSI − gI − µI.
(3.3)
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The meaningful physical domain for this system is ΩSI = {(S, I) ∈ R2
+| S + I = 1}.

Notice that {Ṡ + İ} |S+I=1 = 0, Ṡ |S=0 = µ + g > 0 and İ |I=0 = 0 which implies
the domain is invariant to each subsystem, and hence is invariant to the switched
system (3.3). Suppose the initial conditions satisfy S(0) = S0 > 0, I(0) = I0 > 0,
such that (S0, I0) ∈ ΩSI .

Since the domain is invariant and the switched system has continuously differ-
entiable functions on the right-hand side, the model is well-posed, biologically and
mathematically. For each subsystem, define the basic reproduction number, from
the non-switched case (2.20)

Ri =
βi

µ + g
, (3.4)

the average number of secondary infections produced by a single infected individual
in a wholly susceptible population. Note that each subsystem has its own basic
reproduction number, this stems from the fact that as the contact rate changes, so
does the rate at which the disease spreads. There is a single disease-free equilibrium
point Q̄ = (S̄, Ī) = (1, 0) that is common to all subsystems. Each subsystem also
has its own unique endemic equilibrium

Q∗
i = (S∗i , I

∗
i ) =

(
1

Ri

, 1− 1

Ri

)
, (3.5)

which exist in the meainingful domain only if Ri ≥ 1. Since S + I = 1, the system
is intrinsically one-dimensional:

İ = (βi − g − µ)I − βiI
2. (3.6)

Each subsystem (i.e., each i) is a Bernoulli differential equation, whose full solution
can be found [29], as was done in Section 2.2.3. For t ∈ (tk−1, tk], k = 1, 2, . . ., with
switching rule σ(t) = ik on this interval:

I(t) =


e(µ+g)(Rik

−1)t

Rik(e
(µ+g)(Rik

−1)t − 1)/(Rik − 1) + 1/I(tk−1)
, for Rik 6= 1,

1

βikt + 1/I(tk−1)
, for Rik = 1.

(3.7)

If R1, . . . ,Rm ≤ 1, then it is apparent, from system (3.3), that I ′ < 0 in ΩSI for
I 6= 0. Thus, since S +I = 1, the disease-free solution Q̄ is asymptotically stable in
the meaningful domain ΩSI . It is important to note that the requirement Ri ≤ 1
for all i is restrictive from a biological standpoint. This requirement states that the
disease can never spread fast enough for one infective to, on average, infect more
than one susceptible. For many diseases this is simply not true (see Table 2.1), and
so, in a more realistic case, conditions are desired for the eradication of the disease
when some of the basic reproduction numbers are greater than one. This idea can
be captured with the following definition: for some switching rule σ(t), define, for
any time t ≥ 0, the time-weighted mean:

〈Rσ〉 :=
1

t

∫ t

0

Rσ(s)ds. (3.8)
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Define Ti(t) to be the total activation time in the ith subsystem in the interval (0, t].
The following lemma is needed before we establish stability conditions, in order to
make the threshold criteria biologically meaningful.

Lemma 3.1.1. Consider a general switched epidemiology system with basic re-
production numbers Ri = Ai/B for i = 1, 2, . . . ,m where A1, . . . , Am, B > 0 are
constants. If

〈Rσ〉 < 1− ε, (3.9)

for t ≥ h, with constants ε > 0, h ≥ 0 and switching rule σ ∈ S, then it follows that∑m
i=1(Ai −B)Ti(t) < −ct for t ≥ h, with c > 0 a constant.

Proof. (3.9) implies, from the definition,

1

t

∫ t

0

Aσ(s)

B
ds < 1− ε,

for t ≥ h, which implies

1

t

∫ t

0

(Aσ(s) −B)ds < −εB.

Define c = εB, then ∫ t

0

(Aσ(s) −B)ds < −ct.

Thus, ∫ T1(t)

0

(A1 −B)ds + · · ·+
∫ Tm(t)

0

(Am −B)ds < −ct,

and
m∑

i=1

∫ Ti(t)

0

(Ai −B)ds < −ct.

Hence
m∑

i=1

(Ai −B)Ti(t) < −ct (3.10)

for t ≥ h.

We are now ready to establish a less restrictive threshold criteria for the eradi-
cation of the disease.

Theorem 3.1.2. If 〈Rσ〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the disease-free solution Q̄ of system (3.3) is exponentially stable
in the meaningful domain ΩSI .
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Proof. This proof has been adapted from one in [22]. Let ik follow the switching
rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t) and,

I ′ = −βikI
2 + (βik − µ− g)I ≤ (βik − µ− g)I = λikI,

where λik := βik − µ− g. Then, for t ∈ (tk−1, tk],

I(t) ≤ I(tk−1) exp[λik(t− tk−1)], (3.11)

Thus, since I ≥ 0 for all t ≥ 0, I is bounded in the 1-norm, based on the effects of
the switching rule. Apply (3.11) successively on each subinterval.

For t ∈ (0, t1]:

I(t) ≤ I0 exp[λi1t], hence I(t1) ≤ I0 exp [λi1t1] .

For t ∈ (t1, t2]:

I(t) ≤ I(t1) exp [λi2(t− t1)] ≤ I0 exp [λi1t1 + λi2(t− t1)] .

...
For t ∈ (tk−1, tk]:

I(t) ≤ I0 exp [λi1t1 + . . . + λik(t− tk−1)], (3.12)

= I0 exp

[
m∑

i=1

λiTi(t)

]
. (3.13)

It then follows from Lemma 3.1.1 with Ai = βi and B = µ + g that I(t) ≤
I0 exp (−ct) for some c > 0 and for all t ≥ 0. Thus, since the system is intrinsically
one-dimensional with S = 1 − I, the disease-free equilibrium Q̄ of system (3.3) is
exponentially stable in the meaningful domain ΩSI .

Intuitively, it makes sense that 〈Rσ〉 < 1 − ε results in the eradication of the
disease. During some seasons, the disease may be spreading rapidly, but on average,
one infective is infecting less than one susceptible during their infectious period.
The requirement that 〈Rσ〉 < 1 − ε instead of 〈Rσ〉 < 1 stems from the fact that
there is a possible limiting case where

limt→∞ 〈Rσ〉 = 1.

This is a very pathological case, it is meaningful mathematically but not biologically,
and so to avoid it the ε requirement is added. Practically, the basic reproduction
numbers will not be exactly one, and so this extra condition is not restrictive.

Further, one may ask, what if the average basic reproduction number is not
below one to begin with, but is eventually below one, that is, 〈Rσ〉 < 1 − ε for
t ≥ h, with h ≥ 0. We should expect that the disease is still eventually eradicated,
which is indeed the case.
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Corollary 3.1.3. If 〈Rσ〉 < 1 − ε for all t ≥ h, with constants ε > 0, h ≥ 0 and
switching rule σ ∈ S, then the solution converges to the disease-free solution Q̄ of
system (3.3) in the meaningful domain ΩSI .

Proof. From the proof of Theorem 3.1.2, beginning with equation (3.13), we have
I(t) ≤ I0 exp [

∑m
i=1 λiTi(t)] for t ≥ h, then, by Lemma 3.1.1, we have that I(t) ≤

I0 exp(−ct) for some c > 0 and t ≥ h. Then, since S = 1 − I, it is apparent that
the solution converges to the disease-free equilibrium Q̄ in the meaningful domain
ΩSI .

From a practical point of view, it can be difficult to approximate the basic
reproduction number, and even more so when it is changing over time. Motivated by
this, suppose that, without loss of generality, R1, . . . ,Rr < 1 and Rr+1, . . . ,Rm ≥
1, and define

R− = max
i=1,...,r

Ri, R+ = max
i=r+1,...,m

Ri. (3.14)

Further, define T−(t) and T+(t) to be the total activation times in stable subsys-
tems 1, . . . r + 1, and unstable subsystems r + 1, . . . m, during the interval (0, t],
respectively. Now conditions can be given that require only knowledge of at most
two reproduction numbers (one from the first set, another from the second set),
that ensure exponential stability in the meaningful domain.

Theorem 3.1.4. If T+(t) ≤ qT−(t) for some constant q ≥ 0 then (R− − 1) +
q(R+ − 1) < 0 implies the disease-free solution Q̄ of system (3.3) is exponentially
stable in the meaningful domain ΩSI .

Proof. This proof has been adapted from one in [23]. Note that t = T− + T+ ≤
(1 + q)T−. Proceed from equation (3.12), for t ∈ (tk−1, tk]:

I(t) ≤ I0 exp [λi1t1 + . . . + λik(t− tk−1)],

= I0 exp [(µ + g)((Ri1 − 1)t1 + . . . + (Rik − 1)(t− tk−1))],

≤ I0 exp
[
(µ + g)((R− − 1)T−(t) + (R+ − 1)T+(t))

]
,

≤ I0 exp
[
(µ + g)((R− − 1) + q(R+ − 1))T−(t)

]
,

≤ I0 exp

[
(µ + g)((R− − 1) + q(R+ − 1))

t

q + 1

]
,

Then, since S = 1− I, it follows that the disease-free equilibrium Q̄ of system (3.3)
is exponentially stable in the meaningful domain ΩSI .

Since it has been observed that the contact rate varies seasonally, as discussed
earlier, we should consider a switching rule that is periodic, motivated by [22].
Suppose that the switching rule σ satisfies tk − tk−1 = τk with τk+m = τk. Further,
assume that Ri = Rk for t ∈ (tk−1, tk], and Rk+m = Rk. Finally, define one period
of the switching rule T := τ1 + τ2 + . . . + τm. Denote the set of switching rules that
satisfy this property Speriodic ⊂ S. Then, motivated by a theorem in [22], we state
the following theorem.
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Theorem 3.1.5. If the switching rule is periodic σ ∈ Speriodic and (R1−1)τ1+ . . .+
(Rm − 1)τm < 0, then the disease-free solution Q̄ of system (3.3) is asymptotically
stable in the domain ΩSI .

Proof. First we show convergence. It follows from equation (3.12), that for t ∈
(0, T ]:

I(t) ≤ I0 exp [λ1τ1 + . . . + λm(t− (T − τm))],

where, from before, λi := βi − µ− g. From this,

I(T ) ≤ I0 exp [λ1τ1 + . . . + λmτm],

= I0 exp [(µ + g)((R1 − 1)τ1 + . . . + (Rm − 1)τm)].

Define η := exp [(µ + g)((R1 − 1)τ1 + . . . + (Rm − 1)τm)]. Then I(T ) ≤ ηI0 < I0

since η < 1 from the conditions of the theorem. Similarly, it can be shown that
I(hT ) ≤ ηI((h− 1)T ) for any integer h = 1, 2, . . ., then

I(hT ) ≤ ηI((h− 1)T ) ≤ η(ηI((h− 2)T )) ≤ . . . ≤ ηhI0,

and hence the sequence {I(hT )} converges to zero as h →∞.

Furthermore, without loss of generality, take t ∈ (tk−1, tk], with hT < tk ≤
(h + 1)T , then

I(t) ≤ I(hT ) exp[λ1τ1 + . . . + λk(t− tk)] ≤ I(hT )eM , (3.15)

with M > 0 a constant, and since at the switching times the sequence I(hT ) is
converging to zero, then as k, h →∞ the solution I(t) is converging to zero.

The next step is to show stability of the solution (recall definition 2.1.6). We
will assume the worst case scenario for growth of the disease in a periodic scenario,
where the disease spreads the most during the first r intervals. More specifically,
suppose that, R1, . . . ,Rr ≥ 1 and Rr+1, . . . ,Rm < 1. Then, λ1, . . . , λr ≥ 0 and
λr+1, . . . , λm < 0. It follows that, during the interval (0, T ], the maximum value I
can attain is

Imax = I0e
λ1τ1+...+λrτr := I0B.

For any ε > 0, choose δ = ε/B and suppose that I0 < δ, then it follows that in
the interval (0, T ], I(t) ≤ Imax = I0B < δB = ε. This can be generalized easily to
any interval (tk−1, tk], with hT < tk ≤ (h + 1)T , h = 1, 2, . . ., since on this interval,
I(t) ≤ I(hT )B < I0B < δB = ε. Hence, the solution is also stable. Therefore,
since S = 1 − I and the system is intrinsically one-dimensional, the disease-free
equilibrium Q̄ of system (3.3) is asymptotically stable in the meaningful domain
ΩSI .

Finally, in the scenario that the reproduction numbers are greater than one,
which is an important realistic case, the permanence and persistence (see definition
2.2.2 and definition 2.2.1) of the disease should be investigated.
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Theorem 3.1.6. If R1, . . . ,Rm > 1 then the solution of system (3.3) will converge
to the convex hull of the set of endemic points Γ = {Q∗

1, . . . , Q
∗
m}, that is, the disease

will be permanent.

Proof. Recall the endemic equilibrium points I∗i = 1 − 1/Ri. The convex hull is
co(Γ) = {(S, I) ∈ R2

+| I∗min ≤ I ≤ I∗max, S = 1 − I}, where I∗min = 1 − 1/Rmin

and I∗max = 1 − 1/Rmax are, respectively, the minimum and maximum endemic
equilibrium points. Rewrite the equation for I as İ = (µ+g)(Ri−1)I−βiI

2. First
show this set is positively invariant when Ri > 1 for all i. For any i, at I = I∗min:

İ = (µ + g)(Ri − 1)I∗min − βi(I
∗
min)

2,

= (µ + g)I∗min [(Ri − 1)−RiI
∗
min] ,

= (µ + g)I∗min

[
Ri

Rmin

− 1

]
≥ 0.

For any i, at I = I∗max:

İ = (µ + g)(Ri − 1)I∗max − βi(I
∗
max)

2,

= (µ + g)I∗max [(Ri − 1)−RiI
∗
max] ,

= (µ + g)I∗max

[
Ri

Rmax

− 1

]
≤ 0.

Since S = 1− I, co(Γ) is positively invariant. Thus, if I0 ∈ co(Γ) then I(t) ∈ co(Γ)
for all t ≥ 0, regardless of the switching rule. Now consider 0 < I < I∗min (recall the
initial condition is I0 > 0, and so I = 0 is not considered), then for any i,

İ = (µ + g)(Ri − 1)I − βiI
2 = βiI

(
Ri − 1

Ri

− I

)
> βiI

(
1

Rmin

− 1

Ri

)
≥ 0,

until possibly I = I∗min and at this point I enters co(Γ). It is also possible, based
on a switching rule such as σ(t) ≡ argmini βi for all t ≥ 0, that the solution will
asymptotically converge to co(Γ). Similarly, for I∗max < I ≤ 1,

İ = (µ + g)(Ri − 1)I − βiI
2 = βiI

(
Ri − 1

Ri

− I

)
< βiI

(
1

Rmax

− 1

Ri

)
≤ 0,

until possibly I = I∗max, where I enters co(Γ). As before, it is also possible to
asymptotically approach it. Thus, the solution converges to the convex hull of the
set Γ.

Recall the definition for persistence (2.2.1).

Conjecture 3.1.7. If 〈Rσ〉 > 1 for all t ≥ h, with h ≥ 0 and switching rule σ ∈ S,
then the disease of system (3.3) will be persistent.
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Recall that in the non-switching disease models (see Section 2.2), it is easy to
analyze the endemic solution because it is a single equilibrium. Here, the solution
will move between the m different endemic equilibriums based on the switching
signal. Though the dynamics might be complicated, the disease will be permanent
and the solution will converge to the convex hull of ΩSI . See the simulations in
Section 3.5 for illustrations.

3.2 Switched SIS Model with Vertical Transmis-

sion

A complication to the SIS model is to consider both horizontal and vertical trans-
mission. Recall that vertical transmission is the direct transmission of communica-
ble diseases by an infected mother to her newborn or unborn child, transplacentally
[33]. Examples of human diseases that transmit both horizontally and vertically are
rubella, hepatitis and AIDS [57]. A typical vertical incidence term in a determinis-
tic model is the product of the probability of transmission per birth, the birth rate
and the number of infected women [27]. Assume that 0 ≤ ρ ≤ 1 is the probability
that a mother with the disease does not transmit it transplacentally, then (1 − ρ)
is the probability that a child gains the infection transplacentally. This vertical
transmission is incorporated into the model then by assuming that a flux µ(1− ρ)I
enters the I through birth and the remaining births from infected mothers which
are not infected, µρI, enters the S class as normal. The switched SIS model with
vertical transmission then is,{

Ṡ = µ(S + ρI)− βiSI − µS + gI,

İ = µ(1− ρ)I + βiSI − gI − µI.
(3.16)

with i ∈ {1, . . . ,m} according to a switching rule σ and the variables have been
normalized, as before, since the total population is constant. As before, the mean-
ingful domain is ΩSI , and the initial conditions considered are S(0) = S0 > 0,
I0 = I(0) > 0. Notice that {Ṡ + İ} |S+I=1 = 0, Ṡ |S=0 = µρ + g > 0 and İ |I=0 = 0,
hence the domain is invariant to each subsystem. In the limit ρ = 1, the model
becomes the SIS model (3.3), and in the limit ρ = 0, all infectives give birth to
infected babies. For each subsystem, use the modified basic reproduction numbers
from the non-switched case (for example, found in [48]):

Ri =
βi

ρµ + g
. (3.17)

which biologically represent the average number of secondary infections produced
by a single infected individual. Notice that these reproduction numbers are greater
than when there is only horizontal transmission (3.4). This makes sense biologically,
as there are now infected individuals being recruited through birth. There is a single
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disease-free equilibrium point Q̄ = (S̄, Ī) = (1, 0) that is common to all subsystems
and each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i ) =

(
1

Ri

, 1− 1

Ri

)
, (3.18)

which exists in the meaningful domain if Ri ≥ 1. Again, since S+I = 1, the system
is intrinsically one-dimensional. In the case that R1, . . . ,Rm ≤ 1, then I ′ < 0 in
the domain ΩSI for I 6= 0, and since S + I = 1, the disease-free equilibrium Q̄ is
asymptotically stable in the meaningful domain ΩSI .

Theorem 3.2.1. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the disease-free equilibrium Q̄ of system (3.16) is exponentially
stable in the domain ΩSI . If the switching rule is periodic σ ∈ Speriodic and (R1 −
1)τ1 + . . . + (Rm − 1)τm < 0 then the disease-free equilibrium Q̄ is asymptotically
stable in the domain ΩSI .

Proof. Let ik follow the switching rule σ(t) ∈ S, then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − gI − ρµI ≤ (βik − ρµ− g)I = λikI, (3.19)

where λik := βik − ρµ − g. Then, since S + I = 1, it follows from the proof
of Theorem 3.1.2, beginning at equation (3.11), and using Lemma (3.1.1) with
Ai = βi and B = ρµ + g, that the disease-free equilibrium Q̄ of system (3.16) is
exponentially stable in the meaningful domain ΩSI . If the switching rule is periodic
then the proof follows from inequality (3.19) and the proof of Theorem 3.1.5.

Again, it is important to outline the permanence of the disease in the case that
the basic reproduction numbers are large.

Theorem 3.2.2. If R1, . . . ,Rm > 1 then the solution of system (3.16) will converge
to the convex hull of the set of endemic points Γ = {Q∗

1, . . . , Q
∗
m}, that is, the disease

will be permanent.

Proof. Recall the endemic equilibrium points I∗i = 1 − 1/Ri. The convex hull is
co(Γ) = {(S, I) ∈ R2

+| I∗min ≤ I ≤ I∗max, S = 1 − I}, where I∗min = 1 − 1/Rmin

and I∗max = 1 − 1/Rmax are, respectively, the minimum and maximum endemic
equilibrium points. Rewrite the equation for I as İ = (ρµ + g)(Ri − 1)I − βiI

2.
First show this set is positively invariant when Ri > 1 for all i. For any i, at
I = I∗min:

İ = (ρµ + g)(Ri − 1)I∗min − βi(I
∗
min)

2,

= (ρµ + g)I∗min [(Ri − 1)−RiI
∗
min] ,

= (ρµ + g)I∗min

[
Ri

Rmin

− 1

]
≥ 0.
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For any i, at I = I∗max:

İ = (ρµ + g)(Ri − 1)I∗max − βi(I
∗
max)

2,

= (ρµ + g)I∗max [(Ri − 1)−RiI
∗
max] ,

= (ρµ + g)I∗max

[
Ri

Rmax

− 1

]
≤ 0.

Since S = 1− I, co(Γ) is positively invariant. Thus, if I0 ∈ co(Γ) then I(t) ∈ co(Γ)
for all t ≥ 0, regardless of the switching rule. Now consider 0 < I < I∗min, then for
any i,

İ = (ρµ + g)(Ri − 1)I − βiI
2 = βiI

(
Ri − 1

Ri

− I

)
> βiI

(
1

Rmin

− 1

Ri

)
≥ 0,

until possibly I = I∗min and at this point I enters or asymptotically approaches
co(Γ). Similarly, for I∗max < I ≤ 1,

İ = (ρµ + g)(Ri − 1)I − βiI
2 = βiI

(
Ri − 1

Ri

− I

)
βiI

(
1

Rmax

− 1

Ri

)
≤ 0,

until possibly I = I∗max, where I enters co(Γ). It is also possible to asymptotically
approach co(Γ) based on the switching rule. Thus, the solution converges to the
convex hull of the set Γ.

3.3 Switched SIS Model with Varying Population

Size

It is commonly postulated in mathematical epidemiology that the births and deaths
are equal, and hence balance each other [35]. However, for many acute infectious
diseases, such as measles, chickenpox, and pertussis, the susceptible class is mainly
composed of young people whose rate of natural mortality does not necessarily
coincide with that of the population as a whole [33]. In developed countries, due
to relatively low child mortality, the natural mortality rate is considerably lower
than the birth rate and can be neglected [33], whereas for developing countries,
where child mortality is commonly high, the mortality rate may exceed the birth
rate [35]. Indeed, as discussed in Section 2.2, there have been many real-world
examples where infectious diseases have resulted in the population size not being
even approximately constant [27]. Therefore, it is desired to investigate the case
where the birth rate b > 0 is not necessarily equal to the natural death rate d > 0.
Two different population demographic structures will be investigated here.

For the first model, assume a simple birth-death demographic structure for the
total population N based on the differential equation N ′ = (b − d)N , where bN
are births and dN are the natural deaths. In the absence of births and deaths, i.e.
b = d = 0, the model is suitable for describing an epidemic in a short time period,
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for example less than one year [27]. This leads to models without population
dynamics, such as the classical epidemic model (2.12) studied earlier. If b = d 6= 0,
then there is an inflow of susceptibles from births, but the population size is a
constant because of the corresponding deaths. This is the demographic structure
that is most often assumed in the literature, that is, births b = µ > 0 and natural
deaths d = µ > 0. If b − d 6= 0, then the population is exponentially growing or
decaying. Then, the model is, with switching,

Ṡc = bN − βiScIc

N
+ gIc − dSc,

İc =
βiScIc

N
− gIc − dIc,

(3.20)

where Sc, Ic are the actual number of infected and susceptible individuals, and the
total population is N = Sc + Ic, which is not necessarily constant and satisfies the
differential equation N ′ = (b− d)N . Normalize the equations using I = Ic/N and
S = Sc/N . Then S + I = 1, and

S ′ =
S ′c
N
− S

N ′

N
, I ′ =

I ′c
N
− I

N ′

N
,

hence, the model becomes, {
Ṡ = b− βiSI + gI − bS,

İ = βiSI − gI − bI,
(3.21)

with i ∈ {1, . . . ,m} and initial conditions S(0) = S0 > 0, I(0) = I0 > 0 in the
meaningful domain ΩSI . The domain is invariant to each subsystem, since {Ṡ +
İ} |S+I=1 = 0, Ṡ |S=0 = b + g > 0, and İ |I=0 = 0. Define the basic reproduction
numbers

Ri =
βi

b + g
. (3.22)

There is a single disease-free equilibrium point Q̄ = (S̄, Ī) = (1, 0) that is common
to all subsystems. Each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i ) =

(
1

Ri

, 1− 1

Ri

)
. (3.23)

Again, since S + I = 1, the system is intrinsically one-dimensional. In the
case that R1, . . . ,Rm ≤ 1 then I ′ < 0 in ΩSI for I 6= 0, hence the disease-free
equilibrium Q̄ is asymptotically stable in the meaningful domain ΩSI . Notice that
system (3.21) is identitcal to the switched SIS model (3.3) if b is replaced with µ.
Then, the theorems in Section 3.1 apply to this system, with an important caveat,
that is, the theorems will guarantee that the fraction I converges to zero, but it
does not necessarily mean the total infected individuals, Ic = I/N , will converge
to zero since the population is now non-constant, and possibly growing without
bound. From Ic = IN , Sc = SN , then if b − d = 0 it follows that the population
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N is constant, and hence Ic will converge to zero if I converges to zero. In the case
that b − d < 0, then the total population N will exponentially converge to zero,
and so I converging to zero certainly implies that Ic will converge to zero. In the
final case, that is, when b − d > 0, then the population is growing exponentially.
In this case, since S → 1 as t →∞, it is apparent that Sc → N and hence Ic → 0,
since N = Sc + Ic.

The constraint b = d = µ, which is often used in this thesis, might seem too
restrictive based on the introductory discussions of this section. Certainly, since
births and deaths occur independently in real populations [33], this might seem to
be a very poor approximation, but this assumption is justified by the fact that for
many infectious dieases the processes occur on a considerably shorter time-scale
than the populational demographic process (perhaps HIV is the only exception
among human diseases) [33].

In the case of infectious diseases such as AIDS, one should modify the constant
population assumption to incorporate disease-related deaths [40]. Disease-related
deaths and persistence of a disease can actually reverse a naturally growing pop-
ulation into a stable or decaying population [27]. Assume the birth rate b > 0 is
different from the death rate d > 0. Assume that there is also a disease-induced
mortality rate α > 0, then the population satisfies N ′ = (b− d)N −αIc. This leads
to the switched model, 

Ṡc = bN − βiScIc

N
− dSc + gIc,

İc =
βiScIc

N
− gIc − dIc − αIc,

(3.24)

where Sc, Ic are the number of infected and susceptible individuals, and N = Sc+Ic.
Normalize the equations using I = Ic/N and S = Sc/N . This leads to{

Ṡ = b− βiSI − bS + gI + αSI,

İ = βiSI − gI − bI − αI + αI2,
(3.25)

with i ∈ {1, 2, . . . ,m}, initial conditions S(0) = S0 > 0, I0 = I(0) > 0, and mean-
ingful physical domain ΩSI . The domain invariance follows from {Ṡ+İ} |S+I=1 = 0,
Ṡ |S=0 = b + g > 0, and İ |I=0 = 0. The αSI and αI2 terms are nonlinear positive
feedbacks induced by α. At any time that individuals die from the disease, the pop-
ulation size decreases and hence the fraction of individuals in each class increases
[49]. Define the basic reproduction numbers,

Ri =
βi

b + g + α
. (3.26)

There is a single disease-free equilibrium point Q̄ = (S̄, Ī) = (1, 0) that is common
to all subsystems. Each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i ) =

(
b + g

βi − α
,
b + g + α

βi − α
(Ri − 1)

)
. (3.27)
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Notice that the endemic solution is only in the meaningful domain when Ri ≥ 1.
Again, since S + I = 1, the system is intrinsically one-dimensional.

Theorem 3.3.1. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S then the disease-free solution Q̄ of system (3.25) is locally exponentially
stable in the meaningful domain ΩSI .

Proof. Linearize the system (3.25) about the disease-free equilibrium Q̄ = (1, 0):{
Ṡ = −βiI − bS + gI + αI,

İ = βiI − gI − bI − αI.
(3.28)

Let ik follow the switching rule σ(t) ∈ S, then for t ∈ (tk−1, tk], ik = σ(t) and,

I ′ = (βik − g − b− α)I = λikI, (3.29)

where λik := βik − g− b−α. Thus, following the proof of Theorem 3.1.2, beginning
at equation (3.11), and using S = 1 − I the disease-free equilibrium Q̄ of system
(3.25) is locally exponentially stable in the domain ΩSI .

Notice that in this theorem, the criteria using the basic reproduction number
(3.26) only give local results. Unfortunately, it is only possible to conject that if
〈Rσ〉 < 1 − ε, the solution will converge to the disease-free solution in the en-
tire meaningful domain ΩSI . If we consider the non-physical basic reproduction
numbers

Rnon
i =

βi

µ + g

instead, we will get the desired results globally in the domain ΩSI (see Theorem
3.3.2). These reproduction numbers do not contain the disease-induced death rate α
and hence it is not being used in expressing how fast or slow the disease will spread.
The disease-induced death should actually help to eradicate the disease and thus it
should be used in the threshold criteria. Hence, these reproduction numbers may
not adequately describe how the disease spreads, from a biological viewpoint; they
may be too strict. Whenever this is the case, the notation Rnon

i will be used, with
the superscript non signifying possible non-physical basic reproduction numbers.
In this case, using these non-physical reproduction number leads to global results
but at the cost of stricter criteria.

Theorem 3.3.2. If 〈Rnon
σ 〉 < 1−ε for all t ≥ 0, with constant ε > 0 and σ ∈ S, then

the disease-free solution Q̄ of system (3.25) is exponentially stable in the meaningful
domain ΩSI .

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βiSI − gI − bI − αI + αI2 ≤ (βik − b− g)I = λikI,

where λik := βik − g − b. Thus, following the proof of Theorem 3.1.2, beginning
at equation (3.11), and using S = 1 − I, the disease-free equilibrium Q̄ of system
(3.25) is exponentially stable in domain ΩSI .
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Theorems 3.3.1 and 3.3.2 establish that the fractions of infected individuals in
the population I → 0 as t → ∞, but again, since the population is non-constant,
this does not necessarily imply that the actual number of infected individuals, Ic,
go to zero. Recall that the infected fraction is I = Ic/N , and hence Ic = IN , but
if I → 0 and N → ∞ it is not immediately clear what will happen to the actual
infected number of individuals. We must again look at the different cases.

Recall the equation for the population dynamics, N ′ = (b − d)N − αIc = (b −
d− αI)N . Then, if b < d, it is clear that the total population is going to zero, and
hence I → 0 implies Ic → 0. If b = d, then N ′ = −αIN ≤ 0, and hence the total
population should approach a constant since I → 0, and hence Ic → 0. Finally, if
b > d, then the total population will grow without bound since I → 0. In this case,
since S → 1 use Sc = SN to get Sc → N and then N = Sc + Ic implies Ic → 0.

Theorem 3.3.3. If R1, . . . ,Rm > 1 then the solution of system (3.25) will converge
to the convex hull of the set of endemic points Γ = {Q∗

1, . . . , Q
∗
m}, that is, the disease

will be permanent.

Proof. The endemic equilibrium points can be written as I∗i = (βi−g−b−α)/(βi−
α). The convex hull is co(Γ) = {(S, I) ∈ R2

+| I∗min ≤ I ≤ I∗max, S = 1− I}, where

I∗min =
βmin − g − b− α

βmin − α
, I∗max =

βmax − g − b− α

βmax − α

are, respectively, the minimum and maximum endemic equilibrium points. Rewrite
the equation for I as İ = (βi − g − b − α)I − (βi − α)I2. First show this set is
positively invariant when Ri > 1 for all i. For any i, at I = I∗min:

İ = (βi − g − b− α)I∗min − (βi − α)(I∗min)
2,

= I∗min

(
βi − g − b− α− (βi − α)

βmin − g − b− α

βmin − α

)
,

= (βi − α)I∗min

[
βi − g − b− α

βi − α
− βmin − g − b− α

βmin − α

]
≥ 0.

For any i, at I = I∗max:

İ = (βi − g − b− α)I∗max − (βi − α)(I∗max)
2,

= I∗max

(
βi − g − b− α− (βi − α)

βmax − g − b− α

βmax − α

)
,

= (βi − α)I∗max

[
βi − g − b− α

βi − α
− βmax − g − b− α

βmax − α

]
≤ 0.

Since S = 1− I, co(Γ) is positively invariant. Thus, if I0 ∈ co(Γ) then I(t) ∈ co(Γ)
for all t ≥ 0, regardless of the switching rule. Now consider 0 < I < I∗min, then for
any i,

İ = (βi − g − b− α)I − (βi − α)I2 = I(βi − α)

[
βi − g − b− α

βi − α
− I

]
> 0,
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until possibly I = I∗min and at this point I enters co(Γ). It is also possible, based
on a switching rule such as σ(t) ≡ argmini βi for all t ≥ t0, that the solution will
asymptotically converge to co(Γ). Similarly, for I∗max < I ≤ 1,

İ = (βi − g − b− α)I − (βi − α)I2 = I(βi − α)

[
βi − g − b− α

βi − α
− I

]
< 0,

until possibly I = I∗max, where I enters co(Γ). As before, it is also possible to
asymptotically approach it. Thus, the solution converges to the convex hull of the
set Γ.

3.4 Switching the Contact Rate, Removal Rate

and Birth Rate in the SIS Model

There are other seasonal variations in these models that can be considered, aside
from the contact rate. For example, fluctuations in birth rates is another possibility
[49]. The switched systems approach does not require these variations to be seasonal
or periodic, so we could also consider the case where the infectious period of a
disease could decrease steadily over a long period of time, due to advancements in
medicine. Motivated by this, suppose that the contact rate can take on values from
β1, . . . , βm > 0, the birth rate (assumed to be equal to the death rate) can take
on values µ1, . . . , µj > 0 and the removal rate is approximated by the constants
g1, . . . , gl > 0, then the switched SIS model is{

Ṡ = µi − βiSI − µiS + giI,

İ = βiSI − giI − µiI,
(3.30)

with i ∈ {1, . . . , h} where h = m ·j ·l, and the variables have been normalized under
the assumption of a constant population. The initial conditions are S(0) = S0 > 0,
I(0) = I0 > 0. Here {Ṡ + İ} |S+I=1 = 0, Ṡ |S=0 = µi + gi > 0, and İ |I=0 = 0. And
so, ΩSI is invariant to each subsystem. Define the basic reproduction number

Ri =
βi

µi + gi

. (3.31)

There is a single disease-free equilibrium point Q̄ = (S̄, Ī) = (1, 0) that is common
to all subsystems. Each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i ) =

(
1

Ri

, 1− 1

Ri

)
, (3.32)

which exist in the meaningful domain if Ri ≥ 1. Since S + I = 1, the system is
intrinsically one-dimensional. Observe from (3.30), that if R1, . . . ,Rm ≤ 1, then it
is apparent, from the system (3.3), that I ′ < 0 in ΩSI for I 6= 0. Therefore, since S+
I = 1, the disease-free solution Q̄ is asymptotically stable in the meaningful domain
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ΩSI . A less restrictive condition is again desired, such that some reproduction
numbers are greater than one. Recall that Ti(t) is defined as the total activation
time in subsystem i during the interval (0, t].

Theorem 3.4.1. If
∑h

i=1(βi − µi − gi)Ti(t) ≤ −ct for all t ≥ 0, with constant
c > 0 and switching rule σ ∈ S, then the disease-free solution Q̄ of system (3.30)
is exponentially stable in the meaningful domain ΩSI .

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − gikI − µikI ≤ (βik − µik − gik)I = λikI,

where λik := βik − µik − gik . Then, for t ∈ (tk−1, tk], from (3.13)

I(t) ≤ I(tk−1) exp[λik(t− tk−1)], (3.33)

Thus, since I ≥ 0 for all t ≥ 0, I is bounded in the 1-norm, based on the effects
of the switching rule. Then, from the proof of Theorem 3.1.2, applying (3.33)
successively on intervals, it follows that for t ∈ (tk−1, tk]:

I(t) ≤ I0 exp [λi1t1 + . . . + λik(t− tk−1)],

= I0 exp

[
m∑

i=1

λiTi(t)

]
,

Hence I(t) ≤ I0 exp (−ct) for all t ≥ 0. Thus, since S = 1 − I, the disease-
free solution Q̄ of system (3.30) is exponentially stable in the meaningful domain
ΩSI .

Theorem 3.4.2. If R1, . . . ,Rm > 1 then the solution of system (3.30) will converge
to the convex hull of the set of endemic points Γ = {Q∗

1, . . . , Q
∗
m}, that is, the disease

will be persistent.

Proof. Recall the endemic equilibrium points are I∗i = 1 − 1/Ri. The convex hull
is co(Γ) = {(S, I) ∈ R2

+| I∗min ≤ I ≤ I∗max, S = 1 − I}, where I∗min = 1 − 1/Rmin,
and I∗max = 1 − 1/Rmax are, respectively, the minimum and maximum endemic
equilibrium points. Rewrite the equation for I as İ = (µi + gi)(Ri − 1)I − βiI

2.
First show this set is positively invariant when Ri > 1 for all i. For any i, at
I = I∗min:

İ = (µi + gi)(Ri − 1)I∗min − βi(I
∗
min)

2,

= (µi + gi)I
∗
min [(Ri − 1)−RiI

∗
min] ,

= (µi + gi)I
∗
min

[
Ri

Rmin

− 1

]
≥ 0.
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For any i, at I = I∗max:

İ = (µi + gi)(Ri − 1)I∗max − βi(I
∗
max)

2,

= (µi + gi)I
∗
max [(Ri − 1)−RiI

∗
max] ,

= (µi + gi)I
∗
max

[
Ri

Rmax

− 1

]
≤ 0.

Since S = 1− I, co(ΩSI) is positively invariant. Thus, if I0 ∈ co(ΩSI) then I(t) ∈
co(ΩSI) for all t ≥ 0, regardless of the switching rule. Now consider 0 < I < I∗min,
then for any i,

İ = (µi + gi)(Ri − 1)I − βiI
2 = βiI

(
Ri − 1

Ri

− I

)
> βiI

(
1

Rmin

− 1

Ri

)
≥ 0,

until possibly I = I∗min and at this point I enters co(Γ). Hence the solution enters
or asymptotically converges to co(Γ). Similarly, for I∗max < I ≤ 1,

İ = (µi + gi)(Ri − 1)I − βiI
2 = βiI

(
Ri − 1

Ri

− I

)
< βiI

(
1

Rmax

− 1

Ri

)
≤ 0,

until possibly I = I∗max, where I enters co(Γ). As before, it is also possible to
asymptotically approach it. Thus, the solution converges to the convex hull of the
set Γ.

3.5 Simulations

The simulations in Chapters 3-6 of this thesis were done in MATLAB c© using a
built-in ODE solver, for example, as is done in [1]. That is, an ODE-solver was
used on whichever subsystem was currently active to numerically solve the ODE
system. For the simulations here, take t0 = 0, S0 = 0.75, I0 = 0.25 and i ∈ {1, 2}.
For the switching signal use

σ(t) =

{
1 during winter,

2 otherwise.
(3.34)

Recall that the variables have been normalized so that S + I = 1. The constants
µ = 0.07 and g = 0.3 are used here, taken from [48]. The simulations are in
non-dimensional units.
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Figure 3.1: Switched SIS System (3.3). Simulation with β1 = 1.5 and hence
R1 = 4.054 during the winter season and β2 = 1 and hence R2 = 3.041 during
the other seasons, hence 〈Rσ〉 = 3.041 for t large. Here we see that the solution
I converges to the convex hull of the two endemic equilibriums I = 0.630 and
I = 0.753, marked by the black lines. This follows from Theorem 3.1.6. The effects
from seasonal changes in the contact rate are apparent from the jagged trajectories.
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Figure 3.2: Switched SIS System (3.3) Simulation with β1 = 0.8 (and hence
R1 = 2.162) during the winter season and β2 = 0.2 (and hence R2 = 0.5) during
the other seasons, hence 〈Rσ〉 = 0.946 for t large. We see the solution converges to
the disease-free equilibrium, following from Theorem 3.1.5.
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Figure 3.3: Switched SIS System with Vertical Transmission (3.16). Sim-
ulation with β1 = 0.8, β2 = 0.2, ρ = 0.4, which give R1 = 2.439 and R2 = 0.610,
and hence 〈Rσ〉 = 1.067 for t large. Here we see that the disease is persistent.
Notice that if ρ = 0 then the disease dies out (see Figure 3.2), hence, the addition
of vertical transmission results in the persistence of the disease.
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Figure 3.4: Switched SIS System with Disease-Induced Mortality (3.25).
Parameters b = 0.07, d = 0.01, α = 1, β1 = 1.5, β2 = 1. Hence, R1 = 1.095
and R2 = 0.730, then 〈Rσ〉 = 0.821 for t large. The solution converges to the
disease-free solution, which is ensured, at least locally, by Theorem 3.3.1. Notice
that if α = 0 and we take b = d = µ = 0.07 then 〈Rσ〉 = 3.041 for t large, as in
Figure 3.1. It is apparent that the disease-induced mortality helps in achieving the
eradication of the disease.
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Chapter 4

Multi-Dimensional Switched
Epidemiological Models

In this chapter, switching will be introduced in infectious disease models that cannot
be reduced to one dimension. That is, they are intrinsically at least two dimensional.
Switching will be incorporated into these models in the same way as Chapter 3;
the contact rate will be assumed to vary in time as a piecewise constant. First, a
switched SIR model with population dynamics will be considered in Section 4.1. In
Section 4.2, a switched SIR model is considered without population dynamics. In
Section 4.3, a switched SIR model with vertical transmission is considered. Sections
4.4 and 4.5 will study switched SIRS and MSIR models. Section 4.6 investigates
switched models where the incubating period is not negligible, that is, SEIR models.
Switched SIR models with different population demographic structures, such that
the total population is non-constant, are considered in Section 4.7. Finally, some
interesting switched transport models are considered in Section 4.8, where transport
between multiple cities is possible. The endemicity of diseases for these multi-
dimensional models are discussed briefly in Section 4.9. Simulations are given in
Section 4.10.

4.1 Switching the Contact Rate in the SIR Model

Introduce switching into the SIR model with population dynamics (2.16) by assum-
ing the contact rate, β, is a parameter which varies over time. Assume there are m
different contact rates β1, . . . , βm > 0 with which to approximate β as a piecewise
constant parameter. Consider a switching rule σ = σ(t) : R+ → {1, 2, . . . ,m}, and
denote the set of all such switching rules is S. This leads to the following new
switched SIR model: 

Ṡ = µ− βiSI − µS,

İ = βiSI − gI − µI,

Ṙ = gI − µR,

(4.1)

71



with i ∈ {1, . . . ,m}, initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0,
and the variables have been normalized, i.e. S + I + R = 1, since the population is
constant. The meaningful physical domain for this system is

ΩSIR = {(S, I, R) ∈ R3
+| S + I + R = 1}.

Notice that

{Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ > 0, İ | I=0 = 0, Ṙ |R=0 = gI ≥ 0,

hence this domain is invariant to the switched system. For this model, define the
basic reproduction numbers

Ri =
βi

µ + g
, (4.2)

for each subsystem, from the non-switched case (2.17). These reproduction numbers
are the same as for the switched SIS model (3.3), this is because in both models
the disease spreads biologically at the same rate. There is a single disease-free
equilibrium point Q̄ = (S̄, Ī, R̄) = (1, 0, 0) that is common to all subsystems.
Further, each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i , R∗

i ) =

(
1

Ri

,
µ

µ + g

(
1− 1

Ri

)
,

g

µ + g

(
1− 1

Ri

))
. (4.3)

An endemic equilibrium is only physically meaningful when Ri ≥ 1, and when
Ri = 1, the endemic solution is equal to the disease-free solution. Since S+I +R =
1, the system is intrinsically two-dimensional and it is possible to omit the equation
for R, though, in the work of this thesis, this is not required. If R1, . . . ,Rm ≤ 1
then, from system (4.1), I ′ < 0 in ΩSIR unless I = 0 or S = 1, hence the solution
will converge to the disease-free solution.

Theorem 4.1.1. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the solution of system (4.1) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSIR. If the switching rule
is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then the solution
of system (4.1) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSIR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − µI − gI ≤ (βik − µ− g)I = λikI, (4.4)

where λik := βik−µ−g. Thus, it follows from the proof of Theorem 3.1.2, beginning
at equation (3.11), that I(t) ≤ I0 exp (−ct), for some c > 0, and hence the disease-
free solution is exponentially I-stable in the domain ΩSIR. Then, by inspection of
system (4.1) with I = 0, the solution will converge to the disease-free solution Q̄.
If the switching signal is periodic, then it follows from the bound (4.4) and the
proof of Theorem 3.1.5 that the disease-free solution is asymptotically I-stable and
the solution will converge to the disease-free solution, in the meaningful domain
ΩSIR.
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Recall, from Definition 2.1.9, that the asymptotic I-stability of the disease-free
equilibrium Q̄ implies that for all ε > 0, there exists a δ > 0 such that I0 < δ
implies that I(t) < ε for all t ≥ 0 and, for any 0 < I0 ≤ 1,

lim
t→+∞

I(t) = 0.

The physical interpretation is that if the initial number of infectives is small then
the number of infectives will stay small, and that, perhaps most importantly, the
disease will eventually be eradicated for any initial condition of infectives.

Since the reproduction numbers (4.2) are the same as those of the SIS model
(3.4), the criteria for disease eradication is the same. Fundamentally, the disease
spreads at the same rate for both the switched SIS (3.3) and switched SIR (4.1)
models. There are, however, a few differences between these models. First, we
expect the convergence rates to be different in these two models. Specifically, since
there is no immunity in the switched SIS model, infectives are moved back into the
susceptible class and hence the disease should take longer to die out. Moreover, in
the endemically persistent case, notice that the endemic level I∗i in the switched
SIR model (4.3) is lower than the corresponding endemic level I∗i in the switched
SIS model (3.5).

Furthermore, since this model is intrinsically two-dimensional, the mathematical
analysis in the case R1, . . . ,Rm > 1 is not as straightforward. Recall that in
the non-switching SIR model (2.16), when R0 > 1, the solution converges to the
endemic solution in an oscillatory fashion. Hence, in this switched case, when
R1, . . . ,Rm > 1, because of the oscillatory nature of the solution, it is possible to
start in the convex hull of the endemic points Γ = {Q∗

1, . . . , Q
∗
m} and to leave this

set, but we conjecture that the disease will be persistent in this case (see Section
4.9). In the switched SIS model (3.3), the solutions approaches the equilibriums
exponentially, and not with oscillations, because it is intrinsically one-dimensional
and hence oscillations are not possible.

4.2 Switched SIR Model without Population Dy-

namics

Introduce switching into the SIR model without population dynamics (2.12). Here,
the time scale of the disease is assumed to be short compared to the time scale of
the population demographics such that they can be ignored. Assume the contact
rate is approximate by β1, . . . , βm > 0:

Ṡ = −βiSI,

İ = βiSI − gI,

Ṙ = gI,

(4.5)
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with i ∈ {1, 2, . . . ,m}, initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0,
and the variables have been normalized since the population is constant. The mean-
ingful physical domain for this system is ΩSIR. Notice that {Ṡ+İ+Ṙ} |S+I+R=1 = 0,

Ṡ |S=0 = 0, İ | I=0 = 0 and Ṙ |R=0 = gI > 0, hence this domain is invariant to the
system. For this model, define the basic reproduction numbers

Ri =
βi

g
, (4.6)

for each subsystem, from the non-switched system (2.14).

There are an infinite number of equilibrium points on the S-axis and there
are no endemic equilibriums. And so, instead of considering the stability of any
equilibrium point, we instead focus on two questions: Will the disease die out
(i.e., limt→∞ I = 0 )? Will there be an epidemic (i.e. will I > I0 at any time
t ≥ 0)? From the equation for S ′, it is clear that S ≤ S0 for all time t ≥ 0. Thus,
I ′ = βiSI − gI ≤ (βiS0 − g)I. Hence, if R1, . . . ,Rm < 1/S0 then I ′ < 0 in ΩSIR

unless I = 0 or S = 1. Since I0 > 0 and S ≤ S0, then S = 1 is not possible, hence
the disease dies out.

Theorem 4.2.1. If 〈Rσ〉 < 1/S0−ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the disease will be eradicated (limt→∞ I = 0) and there will be no
epidemic (I ≤ I0 for all time t ≥ 0). If the switching rule is periodic σ ∈ Speriodic

and (R1 − 1/S0)τ1 + . . . + (Rm − 1/S0)τm < 0 then, again, the disease will be
eradicated and there will be no epidemic.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − gI ≤ (βikS0 − g)I = λikI, (4.7)

where λik := βikS0 − g. Thus, by the proof of Theorem 3.1.2, beginning with
equation (3.11), I(t) ≤ I0 exp(−ct) for some c > 0. Hence I ≤ I0 for all time t ≥ 0
and so there is no epidemic. The periodic switching case follows from the bound
(4.7) and the proof of Theorem 3.1.5.

4.3 Switched SIR Model with Vertical Transmis-

sion

Consider the SIR model with population dynamics (2.16) but now with vertical
transmission as well as horizontal. Assume 0 ≤ ρ ≤ 1 to be the fraction of new-
borns that are born healthy from infected mothers. Assume the contact rate is
approximated by β1, . . . , βm > 0, then the switched model is

Ṡ = µ(S + R + ρI)− βiSI − µS,

İ = µ(1− ρ)I + βiSI − gI − µI,

Ṙ = gI − µR,

(4.8)
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with i ∈ {1, 2, . . . ,m}, initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0,
and the variables have been normalized. Since

{Ṡ+İ+Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µR+µρI > 0, İ | I=0 = 0, Ṙ |R=0 = gI ≥ 0,

the meaningful domain ΩSIR is invariant to each subsystem. For this model, the
basic reproduction numbers are

Ri =
βi

ρµ + g
, (4.9)

for each subsystem. These are identical to the reproduction numbers (3.17) from
the SIS model with vertical transmission. There is a single disease-free equilibrium
point Q̄ = (S̄, Ī, R̄) = (1, 0, 0) that is common to all subsystems. Each subsystem
also has a unique endemic solution

Q∗
i = (S∗i , I

∗
i , R∗

i ) =

(
1

Ri

,
µ

µ + g

(
1− 1

Ri

)
,

g

µ + g

(
1− 1

Ri

))
. (4.10)

Since S + I +R = 1, the model is intrinsically two-dimensional. If R1, . . . ,Rm ≤ 1,
then, from (4.8), I ′ < 0 in ΩSIR unless I = 0 or S = 1, hence the disease will be
eradicated.

Theorem 4.3.1. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the solution of system (4.8) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSIR. If the switching rule
is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then the solution
of system (4.8) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSIR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − ρµI − gI ≤ (βik − ρµ− g)I = λikI, (4.11)

where λik := βik − ρµ − g. Thus, it follows from the proof of Theorem 3.1.2,
beginning with equation (3.11), that I(t) ≤ I0 exp (−ct), and hence the disease-
free solution is exponentially I-stable in ΩSIR. Further, system (4.8) with I = 0
will converge to the disease-free solution, by inspection. If the switching signal is
periodic, then it follows from the bound (4.11), the proof of Theorem 3.1.5 and a
similar analysis as above, that the solution converges to the disease-free solution,
which is asymptotically I-stable, in the meaningful domain ΩSIR.

4.4 Switched SIRS Model

Assume now that the infectious disease confers a temporary immunity to individuals
once they eliminate the disease. Assume individuals lose their temporary immunity
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at a rate θ > 0, hence the immune period is 1/θ. That is, consider the SIRS model
(2.24) with switching in the contact rate:

Ṡ = µ− βiSI − µS + θR,

İ = βiSI − gI − µI,

Ṙ = gI − µR− θR,

(4.12)

with i ∈ {1, 2, . . . ,m}, initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0,
and the variables have been normalized such that S+I+R = 1, since the population
is constant. The meaningful physical domain for this system is ΩSIR, which is
invariant to each subsystem since {Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ + θR > 0,

İ | I=0 = 0 and Ṙ |R=0 = gI ≥ 0. This model is intrinsically two-dimensional. For
this model, the basic reproduction numbers for each subsystem are the same as
from the SIR model (4.2), Ri = βi/(µ + g) Fundamentally the disease spreads at
the same rate in the SIR and SIRS models, whether the immunity is temporary or
permanent. In fact, if there is no immunity at all (switched SIS model (3.3)), the
basic reproduction rate still does not change.

There is a single disease-free equilibrium point Q̄ = (S̄, Ī, R̄) = (1, 0, 0) that is
common to all subsystems. Further, each subsystem also has an endemic equilib-
rium

Q∗
i = (S∗i , I

∗
i , R∗

i ) =

(
1

Ri

,
µ + θ

µ + θ + g

(
1− 1

Ri

)
,

g

µ + θ + g

(
1− 1

Ri

))
. (4.13)

The endemic solution is only physically meaningful when Ri ≥ 1. Observe that if
R1, . . . ,Rm ≤ 1 then I ′ < 0 in ΩSIR unless I = 0 or S = 1, hence the disease will
be eradicated.

Theorem 4.4.1. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the solution of system (4.12) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSIR. If the switching rule
is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then the solution of
system (4.12) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSIR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − µI − gI ≤ (βik − µ− g)I = λikI, (4.14)

where λik := βik − µ− g. Thus, it follows from the proof of Theorem 3.1.2, I(t) ≤
I0 exp (−ct), and hence the disease-free solution is exponentially I-stable. Then,
looking at system (4.12) with I = 0, by inspection, R and S, converge to zero and
one, respectively. Hence, the solution converges to the disease-free equilibrium Q̄ in
the domain ΩSIR. If the switching signal is periodic, then it follows from the bound
(4.14) and the proof of Theorem 3.1.5 that the solution converges to the disease-free
solution, which is asymptotically I-stable, in the meaningful domain.
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The analysis of this model might seem to be identical to the switched SIR model
(4.1), since the reproduction numbers are the same, but one difference which should
be highlighted is that in this case, when the disease is persistent, the endemic points
I∗i (4.13) are higher than the corresponding endemic points in the switched SIR
model with permanent immunity (4.3). This is reasonable biologically, because the
loss of immunity should result in more individuals being infected when the disease
is persistent. Another difference is that when 〈Rσ〉 < 1, we should expect the
infection to be eradicated more slowly and the susceptible fraction to converge to
one faster. This is because the removed class is being sent back into the susceptible
class, because of the temporary immunity. As a result of this, the infectives have
more susceptibles to infect. See the simulation of this model in Section 4.10 (Figure
4.4) for a comparison.

4.5 Switched MSIR Model

Some diseases, such as chickenpox, result in the transfer of antibodies across the
placenta if the mother has been infected [28]. Suppose that all mothers who are
infected (infected class) or have been infected in the past (removed class) give birth
to children with temporary passive immunity, denoted by the passively immune
class M . Realistically, all women should be out of the passively immune class before
they give birth to a child, but theoretically a passively immune mother would also
transfer some antibodies to her newborn child [28]. For an example of an MSEIR
model with non-constant population, see [28].

Assume that individuals born into the passively immune class lose immunity
at a rate δ > 0, hence the passive immunity has average period 1/δ. Assume
birth rate µ > 0 equal to natural death rate, assume removal rate g > 0, and
assume the immunity acquired by defeating the infection is permanent. Introduce
switching into this model by assuming the contact rate βi > 0 switches, and hence
is approximated by a peicewise constant. This switched model then is,

Ṁ = µ(M + I + R)− δM − µM,

Ṡ = µS − βiSI − µS + δM,

İ = βiSI − gI − µI,

Ṙ = gI − µR,

(4.15)

with i ∈ {1, 2, . . . ,m}, initial conditions M(0) = M0, S(0) = S0 > 0, I(0) =
I0 > 0, R(0) = R0, and the total population is constant. The variables have been
normalized and the meaningful domain for this system is

ΩMSIR = {(M, S, I, R) ∈ R4
+| M + S + I + R = 1}.

Notice that {Ṁ + Ṡ + İ + Ṙ} |M+S+I+R=1 = 0, Ṡ |S=0 = δM ≥ 0, İ | I=0 = 0,

Ṙ |R=0 = gI ≥ 0 and Ṁ |M=0 = µI + µR ≥ 0, hence this domain is invariant to
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each subsystem. For this model, again define the basic reproduction numbers Ri =
βi/(µ+ g) for each subsystem, which are the same as the switched SIS model (3.4),
switched SIR model (4.2), and switched SIRS model (4.12). Hence, the addition of
the M class actually does not biologically alter the spread of the disease. There is
a single common disease-free equilibrium point Q̄ = (M̄, S̄, Ī, R̄) = (0, 1, 0, 0) and
each subsystem also has an endemic equilibrium Q∗

i = (M∗
i , S∗i , I

∗
i , R∗

i ), with,

M∗
i =

µ

δ + µ
(1− 1/Ri) ,

S∗i =
1

Ri

,

I∗i =
δ

δ + µ

µ

µ + g
(1− 1/Ri) ,

R∗
i =

g

δ + µ

µ

µ + g
(1− 1/Ri) .

Here we see the endemic equilibrium points are again different from the SIR and
SIRS cases. From the equation for I ′, it is apparent that if R1, . . . ,Rm ≤ 1, then
I ′ < 0 in ΩMSIR unless I = 0 or S = 1. Hence the the disease will be eradicated.

Theorem 4.5.1. If 〈Rσ〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and switch-
ing rule σ ∈ S, then the solution of system (4.15) will converge to the disease-free
equilibrium Q̄, which is exponentially I-stable, in the domain ΩMSIR. If the switch-
ing rule is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then the
solution of system (4.15) will converge to the disease-free equilibrium Q̄, which is
asymptotically I-stable, in the domain ΩMSIR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − µI − gI ≤ (βik − µ− g)I = λikI, (4.16)

where λik := βik − µ− g. Thus, it follows from the proof of Theorem 3.1.2, I(t) ≤
I0 exp (−ct), and hence the disease-free solution is exponentially I-stable. Then,
looking at the system (4.15) with I = 0, it is apparent, by inspection, that R
converges to zero. Then, it is obvious that M will converges to zero, and hence S
converges to one. Therefore, the solution converges to the disease-free equilibrium
Q̄ in the domain ΩMSIR. If the switching signal is periodic, then it follows from
the bound (4.16) and the proof of Theorem 3.1.5 that the solution converges to the
disease-free solution, which is asymptotically stable, in the meaningful domain.

4.6 Switched SEIR Model

Assume that the infection has an incubating period. In this stage, an individual
has been exposed but is not yet infectious. We denote this compartment by E.
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That is, consider the SEIR model (2.27) with switching in the contact rate,
Ṡ = µ− βiSI − µS,

Ė = βiSI − aE − µE,

İ = aE − gI − µI,

Ṙ = gI − µR,

(4.17)

with i ∈ {1, 2, . . . ,m}, initial conditions S(0) = S0 > 0, I(0) = I0 > 0, E(0) =
E0, R(0) = R0, and the total population is constant. The variables have been
normalized to represent fractions of individuals in each class. The meaningful
physical domain for this system is

ΩSEIR = {(S, E, I, R) ∈ R4
+| S + E + I + R = 1}.

For this system,
{Ṡ + Ė + İ + Ṙ} |S+I+E+R=1 = 0,

Ṡ |S=0 = µ > 0, Ė |E=0 = βiSI ≥ 0, İ | I=0 = aE ≥ 0, Ṙ |R=0 = gI ≥ 0,

hence this domain is invariant to each subsystem. For this model, use the basic
reproduction numbers from the non-switching case (2.28),

Ri =
βia

(µ + g)(µ + a)
(4.18)

for each subsystem.

There is a common single disease-free equilibrium point Q̄ = (S̄, Ē, Ī, R̄) =
(1, 0, 0, 0) and each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , E

∗
i , I

∗
i , R∗

i ) =

(
1

Ri

,
µ(µ + g)

βia
(Ri − 1),

µ

βi

(Ri − 1),
g

βi

(Ri − 1)

)
. (4.19)

Since S + E + I + R = 1, the system is intrinsically three-dimensional. For the
switched SEIR model (4.17), when R1, . . . ,Rm ≤ 1 it is not obvious whether or not
I converges to zero. Here, Lyapunov functions from the non-switced case are used to
prove stability of the disease-free solution using common weak Lyapunov techniques,
specifically, the invariance principle for switched systems (see Section 2.3.2). Denote
the set Sinf-dwell ⊂ S to be all switching signals σ which have nonvanishing dwell
times, that is, there exists an η > 0, dependent on the specific solution of the
switched system, such that

inf
k

tk − tk−1 ≥ η, (4.20)

where {tk} is the sequence of switching times associated to the switching signal.

Theorem 4.6.1. If R1, . . . ,Rm < 1 for any dwell-time switching rule σ ∈ Sinf-dwell,
then the solution of system (4.17) converges to the disease-free equilibrium Q̄ in the
meaningful domain ΩSEIR.
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Proof. Consider the Lyapunov function V (E, I) = aE + (a + µ)I, similar to the
one from [40]. Define Ωl

EI = {(E, I) ∈ R2
+| E + I ≤ 1}, which is invariant to

system (4.17). This Lyapunov function satisfies V (0, 0) = 0 and V (E, I) > 0 for
(E, I) ∈ Ωl

EI \ {(0, 0)}. Along trajectories of subsystem i:

V̇ = a(βiSI − aE − µE) + (a + µ)(aE − gI − µI),

= βiaSI − (µ + g)(µ + a)I,

= (RiS − 1)(µ + g)(µ + a)I.

Hence, ifRi < 1 for all i then V̇ ≤ 0 and hence V (E, I) is a common weak Lyapunov
function. Then, since Z = {(E, I) ∈ Ωl

EI | V ′ = 0} is the set (E, I) = (c, 0) for any
0 ≤ c ≤ 1 and by inspecting the limiting equations of (4.17) with I = 0, it follows
that the solution converges to the disease-free equilibrium Q̄ by Theorem 2.3.3.

Many infectious diseases transmit through both horizontal and vertical modes,
for example, rubella, herpes simplex, hepatitis B, and Chagas’ disease [40]. Hence,
consider the SEIR model (2.27) with the addition of vertical transmission and
switching in the contact rate. Suppose that a portion 0 ≤ ρ ≤ 1 of exposed and
a portion 0 ≤ q ≤ 1 of infectives are born directly into the exposed class E. The
switched model then is,

Ṡ = µ(1− ρE − qI)− βiSI − µS,

Ė = µ(ρE + qI) + βiSI − aE − µE,

İ = aE − gI − µI,

Ṙ = gI − µR,

(4.21)

with meaningful domain ΩSEIR, i ∈ {1, 2, . . . ,m}, and initial conditions as before.
Observe that

{Ṡ + Ė + İ + Ṙ} |S+I+E+R=1 = 0, Ṡ |S=0 = µ(1− ρE − qI) ≥ 0,

Ė |E=0 = µqI + βiSI ≥ 0, İ | I=0 = aE ≥ 0, Ṙ |R=0 = gI ≥ 0,

thus the domain is invariant to each subsystem. For this model, define the basic
reproduction numbers, from the non-switched case [40]:

Ri =
βia

(µ + g)(µ + a)− µρ(µ + g)− µqa
(4.22)

for each subsystem. An interesting interpretation of this basic reproduction number,
as the Taylor series expansion of all the generations of offspring and how they
transmit the disease, can be found in [40].

There is a single disease-free equilibrium point Q̄ = (S̄, Ē, Ī, R̄) = (1, 0, 0, 0)
that is common to all subsystems. Further, each subsystem also has an endemic
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equilibrium Q∗
i = (S∗i , E

∗
i , I

∗
i , R∗

i ) [40]:

S∗i =
1

Ri

,

E∗
i = 1− S∗i − I∗i −R∗

i ,

I∗i =
aµRi

βia + ρµ(g + µ)Ri + qµaRi

(1− 1/Ri),

R∗
i =

agRi

βia + ρµ(g + µ)Ri + qµaRi

(1− 1/Ri).

Theorem 4.6.2. If R1, . . . ,Rm < 1 for any dwell-time switching rule σ ∈ Sinf-dwell,
then the solution of system (4.21) converges to the disease-free equilibrium Q̄ in the
meaningful domain ΩSEIR.

Proof. Consider the Lyapunov function V (E, I) = aE + (a + µ − ρµ)I from [40].
This Lyapunov function satisfies V (0, 0) = 0 and V (E, I) > 0 when (E, I) ∈
Ωl

EI \ {(0, 0)}. Along trajectories of subsystem i:

V̇ = a(βiSI + ρµE + qµI − aE − µE) + (a + µ− ρµ)(aE − gI − µI),

= βiaSI − [(µ + g)(µ + a− ρµ)− µqa]I,

= (RiS − 1)(µ + g)(µ + a− ρµ− µqa)I.

Hence, if Ri < 1 for all i then V̇ ≤ 0 and, therefore, V (E, I) is a common weak
Lyapunov function. Then, since Z = {(E, I) ∈ Ωl

EI | V ′ = 0} is the set (E, I) =
(c, 0) for 0 ≤ c ≤ 1, and by inspecting the limiting equations of (4.21) with I = 0,
it follows that the solution converges to the disease-free equilibrium Q̄ by Theorem
2.3.3.

Assume now that the birth rate b > 0 is different from the death rate d > 0.
Also assume that there is a disease-induced mortality rate α > 0. Certainly, AIDS
is an example of a disease with an incubating period and disease-induced mortality
[40]. Assume switching in the contact rate, then this leads to:

Ṡc = b− βi
ScIc

N
− dSc,

Ėc = βi
ScIc

N
− aEc − dEc,

İc = aEc − gIc − dIc − αIc,

Ṙc = gIc − dRc,

(4.23)

with Sc, Ec, Ic, Rc representing the number of individuals in the susceptible, ex-
posed, infectious and removed class, respectively. Further, the total population
N = Sc + Ec + Ic + Rc satisfies the differential equation N ′ = (b − d)N − αIc.
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Normalize the equations using S = Sc/N, E = Ec/N, I = Ic/N, R = Rc/N . This
gives: 

Ṡ = b− βiSI − bS + αSI,

Ė = βiSI − aE − bE + αEI,

İ = aE − gI − bI − αI + αI2,

Ṙ = gI − bR + αRI,

(4.24)

with i ∈ {1, 2, . . . ,m}, S(0) = S0 > 0, I(0) = I0 > 0, E(0) = E0, R(0) = R0,
and the normalized variables satisfy S + E + I + R = 1. The αSI, αEI, αIR
and αI2 terms are positive feedback terms due to the disease-induced mortality.
The meaningful physical domain for this system is ΩSEIR. Notice that {Ṡ + Ė +
İ + Ṙ} |S+I+E+R=1 = 0, Ṡ |S=0 = b > 0, Ė |E=0 = βiSI ≥ 0, İ | I=0 = aE ≥ 0 and

Ṙ |R=0 = gI ≥ 0, hence this domain is invariant to each subsystem. For this model,
define the basic reproduction numbers, from the non-switched case [38]:

Ri =
βia

(b + g + α)(b + a)
(4.25)

for each subsystem. These are smaller than the corresponding ones from the SEIR
system (4.18) because of the disease-induced mortality.

There is a single disease-free equilibrium point Q̄ = (S̄, Ē, Ī, R̄) = (1, 0, 0, 0)
that is common to all subsystems. Further, each subsystem also has a unique
endemic equilibrium Q∗

i = (S∗i , E
∗
i , I

∗
i , R∗

i ) where I∗i satisfies the cubic [38]:(
1− α

a + b
I∗i

)(
1− α

α + g + b
I∗i

)(
1 +

βi − α

b
I∗i

)
= Ri, (4.26)

and the other endemic states satisfy

S∗i =
b

b + βiI∗i − αI∗i
,

E∗
i =

g + α + b− αI∗i
a

I∗i ,

R∗
i = 1− S∗i − E∗

i − I∗i .

It was shown in the non-switched case [38] that when Ri > 1 this system has a
unique solution such that I∗i > 0. For the proof of the stability of the disease-free
solution, the following lemma is needed.

Lemma 4.6.3. [38]
Let ∆ = {(x, y) ∈ R2

+| x + y ≤ 1} and define the function h(x, y) = (a1 − b1)x +
(c1 − b1)y + b1, where the constants a1, b1, c1 > 0. The maximum of h(x, y) in the
domain ∆ then is,

max
(x,y)∈ ∆

h(x, y) = max{a1, b1, c1}.
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Now, we can state a theorem for the eradication of the disease.

Theorem 4.6.4. If R1, . . . ,Rm < 1 for any dwell-time switching rule σ ∈ Sinf-dwell,
then the solution of system (4.24) converges to the disease-free equilibrium Q̄ in the
meaningful domain ΩSEIR.

Proof. Consider the Lyapunov function V (E, I) = aE + (a + b)I from [38]. This
Lyapunov function satisfies V (0, 0) = 0 and V (E, I) > 0 for (E, I) ∈ Ωl

EI \{(0, 0)}.
Along trajectories of subsystem i:

V̇ = a(βiSI − aE − bE + αEI) + (a + b)(aE − gI − bI − αI + αI2),

= [βiaS − (a + b)(g + α + b) + αaE + α(a + b)I]I,

≤ [βia(1− E − I)− (a + b)(g + α + b) + αaE + α(a + b)I]I,

= [hi(E, I)− (a + b)(g + α + b)]I,

where hi(E, I) = (αa − βia)E + (α(a + b) − βia)I + βia. Then, applying Lemma
4.6.3 in the domain Ωl

EI ,

V̇ ≤ [max{αa, βia, α(a + b)} − (a + b)(g + α + b)]I,

and so, since Ri < 1, it follows that V ′ ≤ 0. Therefore, V (E, I) is a common
weak Lyapunov function. Notice that V ′ = 0 if (E, I) = (c, 0) or possibly if
max{αa, βia, α(a + b)} = (a + b)(g + α + b), which implies Ri = 1, but we assumed
Ri < 1. Then, it follows that Z = {(E, I) ∈ Ωl

EI | V ′ = 0} is the set (E, I) = (c, 0),
with 0 ≤ c ≤ 1, and by inspecting the limiting equations of (4.24) with I = 0, it
follows that the solution converges to the disease-free equilibrium Q̄ by Theorem
2.3.3.

Theorem 4.6.4 gives sufficient conditions for the eradication of the infected frac-
tion of the population. From Ic = IN and since the population, N , is non-constant
and possibly growing without bound, this does not necessarily imply that the ac-
tual number of infected individuals, Ic, go to zero. Recall the equation for the
population dynamics is N ′ = (b− d)N − αIc = (b− d− αI)N . Then, if b < d, it is
clear that the total population is going to zero, and hence I → 0 implies Ic → 0.
If b = d, then N ′ = −αIN ≤ 0, and hence the total population should approach a
constant since I → 0. Thus, in this case, Ic → 0. Finally, if b > d, then the total
population will grow without bound since I → 0. In this case, since S → 1 use
Sc = SN to get Sc → N and then N = Sc + Ec + Ic + Rc implies Ic → 0. It also
follows that Ec and Rc both approach zero as well.

4.7 Switched SIR Models with Varying Total Pop-

ulation

Assume that the birth rate b > 0 is different from the death rate d > 0. Assume
also that there is a disease-induced mortality α > 0, then the population satisfies
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N ′ = (b − d)N − αIc. Apply this to the SIR model with switching in the contact
rate, 

Ṡc = bNc −
βiScIc

N
− dSc,

İc =
βiScIc

N
− gIc − dIc − αIc,

Ṙc = gIc − dRc,

(4.27)

where Sc, Ic, and Rc are the number of susceptible, infected and removed individ-
uals, respectively, and N = Sc + Ic + Rc. Normalize the equations using I = Ic/N
and S = Sc/N . This leads to

Ṡ = b− βiSI − bS + αSI,

İ = βiSI − gI − bI − αI + αI2,

Ṙ = gI − bR + αIR,

(4.28)

with i ∈ {1, 2, . . . ,m}, S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0, and S+I+R = 1.
The meaningful physical domain for this system is ΩSIR = {(S, I, R) ∈ R3

+| S + I +
R = 1}. The domain is invariant to each subsystem:

{Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = b > 0, İ | I=0 = 0, Ṙ |R=0 = gI ≥ 0.

The αSI,αIR and αI2 terms are positive feedback terms due to mortality from the
disease. For each subsystem, define the basic reproduction numbers

Ri =
βi

b + g + α
. (4.29)

There is a single disease-free equilibrium point Q̄ = (S̄, Ī, R̄) = (1, 0, 0) that is
common to all subsystems.

Theorem 4.7.1. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the solution of system (4.28) locally converges to the disease-free
equilibrium Q̄, which is locally exponentially I-stable, in the domain ΩSIR. If the
switching rule is periodic σ ∈ Speriodic and (R1−1)τ1+. . .+(Rm−1)τm < 0 then the
solution of system (4.28) locally converges to the disease-free equilibrium Q̄, which
is locally asymptotically I-stable, in the domain ΩSIR.

Proof. Linearize the system (4.28) about the disease-free equilibrium Q̄ = (1, 0, 0):
Ṡ = −βiI − bS + gI + αI,

İ = βiI − gI − bI − αI,

Ṙ = gI − bR,

(4.30)

Let ik follow the switching rule σ(t) ∈ S, then for t ∈ (tk−1, tk], ik = σ(t) and,

I ′ = (βik − g − b− α)I = λikI, (4.31)
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where λik := βik − µ − g − α. Thus, it follows from the proof of Theorem 3.1.2,
beginning at (3.11), that I(t) ≤ I0 exp (−ct), and hence the disease-free solution Q̄
is exponentially I-stable. Then, by inspection of system (4.30) with I = 0, R and S,
converge to zero and one, respectively. Hence, the solution converges locally to the
disease-free equilibrium Q̄ of system (4.28) in the domain ΩSIR. If the switching
signal is periodic, then it follows from the bound (4.31) and the proof of Theorem
3.1.5 that the solution converges locally to the disease-free solution, which is locally
asymptotically I-stable, in the meaningful domain.

It is conjectured here that if 〈Rσ〉 < 1 − ε for some constant ε > 0, then
the solution will converge to the disease-free solution Q̄ of system (4.28) in the
meaningful domain ΩSIR, that is, the disease will be eradicated. If we again demand
that the more strict non-physical reproduction numbers Rnon

i = βi/(b+ g) are used
(similar to the analysis in Section 3.3), we will get the desired result of exponential
stability in the entire domain ΩSIR.

Theorem 4.7.2. If 〈Rnon
σ 〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching

rule σ ∈ S, then the solution of system (4.28) converges to the disease-free solution
Q̄, which is exponentially I-stable, in the meaningful domain ΩSIR.

Proof. Let ik follow the dwell-time switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk],
ik = σ(t) and,

I ′ = βiSI − gI − bI − αI + αI2 ≤ (βik − b− g)I = λikI,

where λik := βik−b−g. Thus, following the proof of Theorem 3.1.2, the disease-free
solution Q̄ of system (4.28) is exponentially I-stable, and, inspecting system (4.28)
with I = 0, the solution converges to Q̄ in the domain ΩSIR.

Theorems 4.7.1 and 4.7.2 give sufficient conditions for the eradication of the
infected fraction of the population. From Ic = IN and since the population is non-
constant, and potentially growing without bound, this does not necessarily mean
that the actual number of infected individuals vanishes. Recall the equation for
the population dynamics N ′ = (b − d)N − αIc = (b − d − αI)N . If b < d, it is
clear that the total population is going to zero, and hence I → 0 implies Ic → 0.
If b = d, then N ′ = −αIN ≤ 0, and hence the total population should approach a
constant since I → 0, and hence Ic → 0. Finally, if b > d, then the total population
will grow without bound since I → 0. In this case, since S → 1 use Sc = SN to
get Sc → N and then N = Sc + Ic + Rc implies Ic → 0. It also follows that Rc

approaches zero as well.

Another possible demographic model is N ′ = A− dN −αIc, where A > 0 is the
rate of immigration of individuals, d > 0 is the rate of natural mortality, and α is the
disease-induced mortality. Without the disease, the population size N approaches

85



A/d. There have been models of HIV/AIDS that have used this structure [27].
Applying this structure to the SIR model with switched contact rate gives:

Ṡc = A− βiScIc

N
− dSc,

İc =
βiScIc

N
− gIc − dIc − αIc,

Ṙc = gIc − dRc,

(4.32)

where Sc, Ic, and Rc are the actual number of susceptible, infected and removed
individuals, respectively, and N = Sc + Ic + Rc. The initial conditions are Sc(0) =
S0 > 0, Ic(0) = I0 > 0, Rc(0) = R0. From the differential equation for N(t), it is
apparent that A− (d + α)N(t) ≤ N ′(t) ≤ A− dN(t). Then it follows that [20]:

A

d + α
≤ lim

t→∞
inf N(t) ≤ lim

t→∞
sup N(t) ≤ A

d
.

Hence, the meaningful physical domain for this system is

TSIR = {(Sc, Ic, Rc) ∈ R3
+| Sc + Ic + Rc ≤ A/d}.

We choose to use the notation T for the domain, instead of the usual Ω, here
because the variables have not been normalized. To show it is invariant, observe
that

{Ṡc + İc + Ṙc} |Sc+Ic+Rc=A/d = −αIc ≤ 0,

Ṡc |Sc=0 = A > 0, İc | Ic=0 = 0, Ṙc |Rc=0 = gIc ≥ 0.

Therefore, the domain is invariant. For this model, the basic reproduction numbers
are Ri = βi/(d + g + α) for each subsystem, which are the same the other SIR
model with varying population size modelled in this section (4.29).

There is a single disease-free equilibrium point Q̄ = (S̄, Ī, R̄) = (A/d, 0, 0) that
is common to all subsystems. Since Sc +Ic +Rc = N and because N is varying, this
model is intrinsically three-dimensional. It is interesting to note in this case that
the normalization of variables S = Sc/N , I = Ic/N and R = Rc/N does not help
to simplify the system. In the case that R1, . . . ,Rm ≤ 1 then I ′ < 0 in TSIR unless
Ic = 0 or Sc = N , hence the solution converges to the disease-free equilibrium Q̄ in
the meaningful domain TSIR.

Theorem 4.7.3. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the solution of system (4.32) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain TSIR. If the switching rule
is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then the solution of
system (4.32) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain TSIR.
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Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′c = (βikSc/N − g − d− α)Ic ≤ (βik − g − d− α)Ic = λikIc, (4.33)

where λik := βik − g − d − α. Thus, it follows from the proof of Theorem 3.1.2,
beginning with equation (3.11), that Ic(t) ≤ I0 exp (−ct), and hence the disease-free
equilibrium Q̄ is exponentially I-stable. The limiting equation for R then can be
written as Ṙc = −dRc which implies Rc converges to zero. Since N ′ = A−dN−αIc,
then Ic → 0 implies that N → A/d, and N = Sc + Ic + Rc then implies that
Sc → A/d. Hence, the solution converges to the disease-free equilibrium Q̄ of
system (4.32) in the domain TSIR. If the switching signal is periodic, then it follows
from the bound (4.33) and the proof of Theorem 3.1.5 that the solution converges
to the disease-free solution Q̄, which is asymptotically I-stable, in the meaningful
domain.

4.8 Switched Multi-City SIS Models

Communicable infectious diseases such as influenza, foot-and-mouth disease, SARS
and sexually transmitted diseases (STDs) can be easily transmitted from one geo-
graphic region to another due to population dispersal from individuals travelling,
and so, the effect of travel on the spread of a disease should be considered [72]. In
2003, SARS began in one province in China and spread to most parts of China and
some other cities in the world due to the travel of infected individuals [46]. Another
example is the outbreak of measles in Iceland due, in part, to new infectives entering
the country from other regions [68]. There has been some work done on transport
models in the literature for the non-switched case, for example, see [10, 46, 68, 72],
and the switched models in this section are motivated by these works.

To begin an analysis of this situation, assume that there are two cities and that
only susceptibles may travel between the two cities at a per capita rate α > 0,
sometimes called the dispersal rate. Assume the standard incidence rate βiScIc/N
in both cities, where βi > 0 follows a switching rule σ(t) ∈ S. Furthermore, assume
that individuals do not die, recover or give birth while travelling. Assume that the
removal rate is g > 0 for both cities, and the birth rate is µ > 0 for both cities.
Let Sc1 , Sc2 be the number of susceptible individuals in the first and second city,
respectively. Similarly define Ic1 , Ic2 . Assume there is no immunity conferred from
recovery. That is, each city is modelled as a switched SIS model, with extra terms
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from travelling,

Ṡc1 = µN1 − βi
Sc1Ic1

N1

− µSc1 + gIc1 − αSc1 + αSc2 ,

İc1 = βi
Sc1Ic1

N1

− gIc1 − µIc1 ,

Ṡc2 = µN2 −
Sc2Ic2

N2

− µSc2 + gIc2 − αSc2 + αSc1 ,

İc2 = βi
Sc2Ic2

N2

− gIc2 − µIc2 ,

(4.34)

where i ∈ {1, 2, . . . ,m}, N1 = Sc1 + Ic1 , N2 = Sc2 + Ic2 , and N1 + N2 = N . Notice
that Ṡc1+Ṡc1+Ṡc1+Ṡc1 = 0, which gives N ′ = 0, and hence the total population, N ,
is constant, though N1 and N2 are not necessarily constant. The initial conditions
are Sc1(0) = Sc1,0 > 0, Sc2(0) = Sc2,0 > 0, Ic1(0) = Ic1,0 > 0, Ic2(0) = Ic2,0 > 0.
The meaningful physical domain for this system is TSISI = {(Sc1 , Ic1 , Sc2 , Ic2) ∈
R4

+| Sc1 + Ic1 + Sc2 + Ic2 = N}. Observe that

{Ṡc1 + İc1 + Ṡc2 + İc2} |Sc1+Ic1+Sc2+Ic2=N = 0,

Ṡc1 |Sc1=0 = (µ + g)Ic1 + αSc2 ≥ 0, İc1 | Ic1=0 = 0,

Ṡc2 |Sc2=0 = (µ + g)Ic2 + αSc1 ≥ 0, İc2 | Ic2=0 = 0,

hence this domain is invariant. For this model, define the basic reproduction num-
bers

Ri =
βi

µ + g
(4.35)

for each subsystem. There is a disease-free equilibrium point

Q̄ = (S̄c1 , Īc1 , S̄c2 , Īc2) = (N/2, 0, N/2, 0)

that is common to all subsystems. Notice that in the case that there is no dispersal
from travelling, that is, α = 0, the model becomes two independent cities that
are modelled by the switched SIS model (3.3). Also note that, since each city is
modelled as a switched SIS model, the reproduction numbers considered are the
same as for the SIS model (3.4). If R1, . . . ,Rm < 1 then, in the domain TSISI ,
I ′c1 < 0 unless Ic1 = 0 and I ′c2 < 0 unless Ic2 = 0, hence the disease is eradicated in
both cities.

Theorem 4.8.1. If 〈Rσ〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and switch-
ing rule σ ∈ S, then the solution of system (4.34) converges to the disease-free
equilibrium Q̄, which is exponentially (Ic1 , Ic2)-stable, in the domain TSISI . If the
switching rule is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then
the solution of system (4.34) converges to the disease-free equilibrium Q̄, which is
asymptotically (Ic1 , Ic2)-stable, in the domain TSISI .
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Proof.

Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t) and,

(Ic1 + Ic2)
′ = βik

(
Sc1Ic1

N1

+
Sc2Ic2

N2

)
− (g + µ)(Ic1 + Ic2),

≤ (βik − g − µ)(Ic1 + Ic2),

= λik(Ic1 + Ic2), (4.36)

where λik := βik − µ − g. Then, by the proof of Theorem 3.1.2, beginning with
equation (3.11), we have that Ic1 + Ic2 ≤ (Ic1,0 + Ic2,0) exp(−ct) for some c > 0.
Since Ic1 , Ic2 ≥ 0, the solution Q̄ is exponentially (Ic1 , Ic2)-stable in TSISI . Since
Ic1 and Ic2 are converging to zero, the limiting equations for Sc1 and Sc2 are{

Ṡc1 = −αSc1 + αSc2 ,

Ṡc2 = −αSc2 + αSc1 .
(4.37)

Sc1 +Sc2 = N then implies that Sc1 and Sc2 both converge to N/2. Hence, the solu-
tion of system (4.34) converges to the disease-free equilibrium Q̄ in the meaningful
domain TSISI . If the switching signal is periodic, then it follows from the bound
(4.36) and the proof of Theorem 3.1.5 that the solution converges to the disease-free
solution, which is asymptotically (Ic1 , Ic2)-stable, in the meaningful domain.

In developing countries, there can be dense crowds on trains, airplanes, and
other mass transportation, which may have relatively poor sanitary conditions.
Under these conditions, the transmission of the virus between travelling individuals
may be an important factor for the outbreak of infectious diseases [10]. This leads
to an important question: how do transport-related infections affect the dynamics
and spread of infectious diseases [10]? Assume, as above, that there are two cities
modelled as switched SIS systems and that susceptibles and infectives may both
travel between the two cities at a per capita rate α > 0. Assume additionally that
the disease is transmitted at a contact rate 0 ≤ γ ≤ 1 during travel. Assume a
standard incidence rate for individuals travelling from city j, then the travelling
incidence rate should be

γ
(αScj

)(αIcj
)

αNj

= γ
(αScj

)(αIcj
)

(αScj
) + (αIcj

)
= γα

Scj
Icj

Scj
+ Icj

.

Also, assume that infectives do not recover, die or give birth during travel. Then
the switched model is:

Ṡc1 = µN1 − βi
Sc1Ic1

N1

− µSc1 + gIc1 − αSc1 + αSc2 − αγ
Sc2Ic2

N2

,

İc1 = βi
Sc1Ic1

N1

− gIc1 − µIc1 − αIc1 + αIc2 + αγ
Sc2Ic2

N2

,

Ṡc2 = µN2 − βi
Sc2Ic2

N2

− µSc2 + gIc2 − αSc2 + αSc1 − αγ
Sc1Ic1

N1

,

İc2 = βi
Sc2Ic2

N2

− gIc2 − µIc2 − αIc2 + αIc1 + αγ
Sc1Ic1

N1

,

(4.38)
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where i ∈ {1, 2, . . . ,m}, N1 = Sc1 + Ic1 , N2 = Sc2 + Ic2 , and N1 + N2 = N . The
total population, N , is constant, and the initial conditions are Sc1(0) = Sc1,0 >
0, Sc2(0) = Sc2,0 > 0, Ic1(0) = Ic1,0 > 0, Ic2(0) = Ic2,0 > 0. The flow of the model
can be seen in Figure 4.1.

Figure 4.1: Flow of Switched Multi-city System (4.38).

The meaningful physical domain for this system is TSISI . Because 0 ≤ γ ≤ 1,
it follows that

αScj
− αγ

Scj
Icj

Scj
+ Icj

≥ 0.

This is reasonable physically since these terms represent the difference between the
number of susceptible individuals travelling from city j and those being infected
while travelling from city j. This requirement is also needed for the well-posedness
of the system, observe that TSISI is invariant because

{Ṡc1 + İc1 + Ṡc2 + İc2} |Sc1+Ic1+Sc2+Ic2=N = 0,

Ṡc1 |Sc1=0 = (µ + g)Ic1 + αSc2 − αγ
Sc2Ic2

N2

≥ 0, İc1 | Ic1=0 = αIc2 + αγ
Sc2Ic2

N2

≥ 0,

Ṡc2 |Sc2=0 = (µ + g)Ic2 + αSc1 − αγ
Sc1Ic1

N1

≥ 0, İc2 | Ic2=0 = αIc1 + αγ
Sc1Ic1

N1

≥ 0.

Consider the basic reproduction numbers, from the non-switched case [10]:

Ri =
βi + αγ

µ + g
. (4.39)

There is a disease-free equilibrium point Q̄ = (S̄c1 , Īc1 , S̄c2 , Īc2) = (N/2, 0, N/2, 0)
that is common to all subsystems.

Theorem 4.8.2. If 〈Rσ〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and switch-
ing rule σ ∈ S, then the solution of system (4.38) converges to the disease-free
equilibrium Q̄, which is exponentially (Ic1 , Ic2)-stable, in the domain TSISI . If the
switching rule is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then
the solution of system (4.38) converges to the disease-free equilibrium Q̄, which is
asymptotically (Ic1 , Ic2)-stable, in the domain TSISI .
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Proof.

Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t) and,

(Ic1 + Ic2)
′ = βik

(
Sc1Ic1

Sc1 + Ic1

+
Sc2Ic2

Sc2 + Ic2

)
− (g + µ)(Ic1 + Ic2)

+ αγ

(
Sc1Ic1

Sc1 + Ic1

+
Sc2Ic2

Sc2 + Ic2

)
,

≤ (βik + αγ − g − µ)(Ic1 + Ic2),

= λik(Ic1 + Ic2), (4.40)

where λik := βik +αγ−g−µ. Then, by the proof of Theorem 3.1.2, beginning with
equation (3.11), it follows that Ic1 + Ic2 ≤ (Ic1,0 + Ic2,0) exp(−ct) for some c > 0.
Since Ic1 , Ic2 ≥ 0, the solution Q̄ is exponentially (Ic1 , Ic2)-stable in TSISI . Then,
Ic1 and Ic2 are converging to zero, and the limiting equations for Sc1 and Sc2 are{

Ṡc1 = −αSc1 + αSc2 ,

Ṡc2 = −αSc2 + αSc1 .
(4.41)

From Sc1 + Sc2 = N , by inspection, Sc1 and Sc2 , both converge to N/2. Hence,
the solution converges to the disease-free equilibrium Q̄ of system (4.38) in the
meaningful domain TSISI . If the switching signal is periodic, then it follows from
the bound (4.40) and the proof of Theorem 3.1.5 that the solution converges to
the disease-free solution, which is asymptotically (Ic1 , Ic2)-stable in the meaningful
domain.

One important remark is that it is possible for the disease to be endemic in
both cities because of travelling infections, seen in the reproduction numbers (4.39)
in the αγ term, and to be eradicated in the same scenario with a restriction on
travelling infections (γ = 0). That is, the travelling infections alone can result
in the disease being endemic. Further, if there are no travelling infections, the
reproduction numbers are reduced to the ones for the previous multi-city model
(4.35). If α = 0, the cities are isolated and act as two separate switched SIS
models, and hence the disease will spread in the same way as the switched SIS
model (3.3) in both cities. This gives rise to the idea of controlling the spread of
a disease by limiting travel and screening individuals, which will be discussed in
Section 5.1.7.

Another factor which can affect the spread of a disease in a city is its media
coverage. Motivated by a media coverage model for an SIS model found in [41],
which is a good model for influenza [41], we incorporate media coverage into these
switched multi-city models. Consider a model of two cities and assume that city 1
has a media coverage c1 > 0, and that city 2 has media coverage c2 > 0. Assume a
standard incidence rate for horizontal transmission of the disease, with a reduced
contact rate βi − c1 and βi − c2 in city 1 and city 2, respectively, due to the cities’
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media coverage. Assume that the contact rates βi satisfy βi ≥ c1 and βi ≥ c2 for all
i, so that the media coverage cannot make the contact rate negative. The higher
the media coverage number, the more efficient the city is at spreading knowledge
of the disease, and hence the lower the contact rate with infected individuals.

Assume that susceptibles and infectives may travel between the two cities at
two different rates. This is reasonable as the vital and epidemiological parameters
may depend on the cities [72]. Assume individuals travel from city 1 to 2 at a
rate α1 and from city 2 to city 1 at a rate α2. Assume a travelling contact rate of
0 ≤ γ ≤ 1, and a standard incidence for travelling infections:

γ
(αjScj

)(αjIcj
)

αjNj

= γαj

Scj
Icj

Scj
+ Icj

,

where αj is the dispersal rate from city j. Furthermore, assume that the disease
has infectious period 1/g1 in city 1, and 1/g2 in city 2. Assume that in city 1 the
birth rate is µ1 > 0, which is equal to the death rate, and in city 2 the birth rate is
µ2 > 0, which is again equal to the death rate. Then the switched multi-city model
is:

Ṡc1 = µ1N1 − (βi − c1)
Sc1Ic1

N1

− µ1Sc1 + g1Ic1 − α1Sc1 + α2Sc2 − α2γ
Sc2Ic2

N2

,

İc1 = (βi − c1)
Sc1Ic1

N1

− g1Ic1 − µ1Ic1 − α1Ic1 + α2Ic2 + α2γ
Sc2Ic2

N2

,

Ṡc2 = µ2N2 − (βi − c2)
Sc2Ic2

N2

− µ2Sc2 + g2Ic2 − α2Sc2 + α1Sc1 − α1γ
Sc1Ic1

N1

,

İc2 = (βi − c2)
Sc2Ic2

N2

− g2Ic2 − µ2Ic2 − α2Ic2 + α1Ic1 + α1γ
Sc1Ic1

N1

, (4.42)

where i ∈ {1, 2, . . . ,m}, N1 = Sc1 + Ic1 , N2 = Sc2 + Ic2 and N1 +N2 = N . The total
population, N , is constant and the initial conditions are Sc1(0) = Sc1,0 > 0, Sc2(0) =
Sc2,0 > 0, Ic1(0) = Ic1,0 > 0, Ic2(0) = Ic2,0 > 0. The meaningful physical domain for
this system is TSISI . Since 0 ≤ γ ≤ 1,

αjScj
− γαj

Scj
Icj

Scj
+ Icj

≥ 0,

and hence the model is well-posed:

{Ṡc1 + İc1 + Ṡc2 + İc2} |Sc1+Ic1+Sc2+Ic2=N = 0,

Ṡc1 |Sc1=0 = (µ1+g1)Ic1+α2Sc2−α2γ
Sc2Ic2

N2

≥ 0, İc1 | Ic1=0 = α2Ic2+α2γ
Sc2Ic2

N2

≥ 0,

Ṡc2 |Sc2=0 = (µ2+g2)Ic2+α1Sc1−α1γ
Sc1Ic1

N1

≥ 0, İc2 | Ic2=0 = α1Ic1+α1γ
Sc1Ic1

N1

≥ 0,

and hence the domain is invariant to the switched system (4.42). Define the non-
physical basic reproduction numbers

Rnon
i =

βi − cmin + αmaxγ

µmin + gmin

, (4.43)
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where αmax = max{α1, α2}, cmin = min{c1, c2}, µmin = min{µ1, µ2}, and gmin =
min{g1, g2}. There is a disease-free equilibrium point

Q̄ = (S̄c1 , Īc1 , S̄c2 , Īc2) =

(
α2

α1 + α2

N, 0,
α1

α1 + α2

N, 0

)
(4.44)

that is common to all subsystems. Since Sc1 + Ic1 + Sc2 + Ic2 = N , the system is
intrinsically three-dimensional.

Theorem 4.8.3. If 〈Rnon
σ 〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and switch-

ing rule σ ∈ S, then the solution of system (4.42) converges to the disease-free
equilibrium Q̄, which is exponentially (Ic1 , Ic2)-stable, in the domain TSISI . If the
switching rule is periodic σ ∈ Speriodic and (Rnon

1 −1)τ1+ . . .+(Rnon
m −1)τm < 0 then

the solution of system (4.42) converges to the disease-free equilibrium Q̄, which is
asymptotically (Ic1 , Ic2)-stable, in the domain TSISI .

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

(Ic1 + Ic2)
′ = (βik − c1)

Sc1Ic1

Sc1 + Ic1

+ (βik − c2)
Sc2Ic2

Sc2 + Ic2

− (g1 + µ1)Ic1 ,

− (g2 + µ2)Ic2 + α1γ
Sc1Ic1

Sc1 + Ic1

+ α2γ
Sc2Ic2

Sc2 + Ic2

,

≤ (βik − cmin + αmaxγ − gmin − µmin)(Ic1 + Ic2),

= λik(Ic1 + Ic2), (4.45)

where λik := βik − cmin +αmaxγ− gmin−µmin. Then, by the proof of Theorem 3.1.2,
we have that Ic1 +Ic2 ≤ (Ic1,0 +Ic2,0) exp(−ct) for some c > 0. Since Ic1 , Ic2 ≥ 0, the
solution Q̄ is exponentially (Ic1 , Ic2)-stable in TSISI . So, Ic1 and Ic2 are converging
to zero, and the limiting equations for Sc1 and Sc2 are{

Ṡc1 = −α1Sc1 + α2Sc2 ,

Ṡc2 = −α1Sc2 + α2Sc1 .
(4.46)

Then, since Sc1 + Sc2 = N , Sc1 and Sc2 , converge to

S̄c1 =
α2

α1 + α2

N, S̄c2 =
α1

α1 + α2

N.

Hence, the disease-free equilibrium Q̄ of system (4.42) is exponentially (Ic1 , Ic2)-
stable in the meaningful domain TSISI . If the switching signal is periodic, then it
follows from the bound (4.45) and the proof of Theorem 3.1.5 that the solution
converges to the disease-free solution, which is asymptotically (Ic1 , Ic2)-stable, in
the meaningful domain.

Notice since c1, c2 > 0, and if we take g1 = g2 = g, µ1 = µ2 = µ, then the
basic reproductions of this model (4.43) are less than the previous model without
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media coverage (4.39). This is expected because the media coverage should help in
eradicating the disease. It is important to remark that the reproduction numbers
(4.43) are non-physical in the sense that they don’t have a biological interpretation.
Indeed, it is conjectured that these reproduction numbers are too restrictive, the
disease does not actually spread this fast. Hence, even when 〈Rnon

σ 〉 > 1, it may be
possible to achieve stability of the disease-free solution (see Figure 4.10).

Finally, consider a model with n different cities and assume the contact rate
is βi > 0 in all cities. Assume that susceptibles and infectives both travel from
city j at a per capita rate α. Assume the disease has removal rate g > 0 and it
does not confer immunity. Assume the birth rate and death rate are µ > 0 for
all individuals and assume that individuals travelling may get infected at a rate
0 ≤ γ ≤ 1. Assume a standard incidence rate, as in the other switched transport
models. Assume that individuals do not die, give birth or become removed while
travelling. The switched model then is

Ṡc1 = µN1 − βi
Sc1Ic1

N1

− µSc1 + gIc1 − αSc1 +
α

n− 1

[
n∑

j=2

Scj
− γ

n∑
j=2

Scj
Icj

Nj

]
,

İc1 = βi
Sc1Ic1

N1

− gIc1 − µIc1 − αIc1 +
α

n− 1

[
n∑

j=2

Icj
+ γ

n∑
j=2

Scj
Icj

Nj

]
,

Ṡc2 = µN2 − βi
Sc2Ic2

N2

− µSc2 + gIc2 − αSc2 +
α

n− 1

 n∑
j=1
j 6=2

Scj
− γ

n∑
j=1
j 6=2

Scj
Icj

Nj

 ,

İc2 = βi
Sc2Ic2

N2

− gIc2 − µIc2 − αIc2 +
α

n− 1

 n∑
j=1
j 6=2

Icj
+ γ

n∑
j=1
j 6=2

Scj
Icj

Nj

 ,

...

˙Scn = µNn − βi
ScnIcn

Nn

− µScn + gIcn − αScn +
α

n− 1

[
n−1∑
j=1

Scj
− γ

n−1∑
j=1

Scj
Icj

Nj

]
,

˙Icn = βi
ScnIcn

Nn

− gIcn − µIcn − αIcn +
α

n− 1

[
n−1∑
j=1

Icj
+ γ

n−1∑
j=1

Scj
Icj

Nj

]
, (4.47)

where i ∈ {1, 2, . . . ,m}, Nj = Scj
+ Icj

and
∑n

j=1 Scj
+ Icj

= N , with the total
population N a constant. The initial conditions are Scj

(0) = Scj,0
> 0, Icj

(0) =
Icj,0

> 0, for j = 1, . . . , n. The meaningful physical domain for this system is

Tmulti =

{
(Sc1 , . . . , Sn, Ic1 , . . . , In) ∈ R2n

+ |
n∑

j=1

Scj
+ Icj

= N

}
.
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Notice that (
n∑

j=1

Ṡcj
+ İcj

)
|∑n

j=1 Si+Ii=N = 0,

Ṡcj
|Scj =0 ≥ 0 since 0 ≤ γ ≤ 1, and İcj

| Icj =0 ≥ 0, hence this domain is invariant to

the switched system. For this model, define the basic reproduction numbers

Ri =
βi + αγ

µ + g
(4.48)

for each subsystem. There is a disease-free equilibrium point

Q̄ = (S̄c1 , . . . , S̄cn , Īc1 , . . . , Īcn) = (N/n, . . . , N/n, 0, . . . , 0) (4.49)

that is common to all subsystems. Notice that this system has intrinsic dimension
2n− 1.

Theorem 4.8.4. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the disease will be eradicated in all cities of system (4.47). If the
switching rule is periodic σ ∈ Speriodic and (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0 then,
again, the disease will be eradicated in all cities of system (4.47).

Proof.

Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t) and,

n∑
j=1

İcj
= βik

n∑
j=1

Scj
Icj

Scj
+ Icj

− (g + µ)
n∑

j=1

Icj
+ γ

n∑
j=1

α
Scj

Icj

Scj
+ Icj

,

≤ (βik − g − µ + γα)
n∑

j=1

Icj
,

= λik

n∑
j=1

Icj
, (4.50)

where λik := βik − g − µ + γα. Then, by the proof of Theorem 3.1.2, and since
Icj

≥ 0 for all j, it follows that Icj
converges to zero for all j = 1, 2, . . . , n. If the

switching signal is periodic, then it follows from the bound (4.50) and the proof of
Theorem 3.1.5 that the infectives converge to zero in the meaningful domain.

4.9 Persistence of the Disease

As discussed in Section 4.1, when the reproduction numbers are above one for
systems that are intrinsically at least two-dimensional, the solution will approach
the endemic equilibriums with damped oscillations. This stems from the non-
switched case and was discussed earlier in Section 2.2. The following conjecture is
made on the endemicity of the disease for switched models in this chapter.
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Conjecture 4.9.1. For any model in this chapter with physically meaningful re-
production numbers and for any switching signal σ ∈ S such that 〈Rσ〉 > 1, the
disease is persistent, that is there exists a positive constant η > 0 (independent of
I0) such that every solution with I(0) = I0 > 0 satisfies

lim
t→∞

inf I(t) ≥ η.

4.10 Simulations

For the switching rule in these simulations, motivated by practical applications, we
use

σ(t) =

{
1 during winter,

2 otherwise,
(4.51)

as in Section 3.5. The variables in these simulations are normalized by total popu-
lation, the initial condition is taken to be t0 = 0, and the units are non-dimensional.
The initial conditions are S0 = 0.75, I0 = 0.25, R0 = 0, unless otherwise specified.
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Figure 4.2: Switched SIR System (4.1). Motivated by the measles parameters of
[66], which give relatively high reproduction numbers, use the parameters β1 = 18,
β2 = 3, g = 1, µ = 0.1. This implies 〈Rσ〉 = 6.136 for t large. Though the solution
is not contained between the endemic minimum and maximum, Imin = 0.0576 and
Imax = 0.0854, it is clear that the solution is persistent.
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Figure 4.3: Switched SIR System (4.1). The parameters used here are β1 = 3,
β2 = 0.2, g = 1, µ = 0.02. These give R1 = 2.941, R2 = 0.196 and thus 〈Rσ〉 =
0.882 for large t. The disease is eradicated by Theorem 4.1.1
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Figure 4.4: Switched SIRS System (4.12). Parameters are β1 = 3, β2 = 0.2,
g = 1, µ = 0.02, θ = 1 and hence 〈Rσ〉 = 0.882 for t large, and the disease is
eradicated by Theorem 4.4.1. Comparing this figure with Figure 4.3 of the switched
SIR simulation with the same parameters, it seems as though it takes longer for
the disease to die out, even though the susceptible population seems to converge to
one faster. Physically, as the removed class moves back into the susceptible class
due to the temporary immunity, this leads to more susceptibles for the infectives
to infect.
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Figure 4.5: Switched SEIR System (4.17). Here 1/a = 1/0.3 for the latent
period from [49], with other parameters β1 = 1, β2 = 0.6, a = 0.3, g = 1, µ = 0.02.
Initial conditions are S0 = 0.75, I0 = 0.25, E0 = 0, R0 = 0. Hence, R1 = 0.919
and R2 = 0.551, then by Theorem 4.6.1, the solution converges to the disease-free
equilibrium.
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Figure 4.6: Switched SEIR System (4.17). Here 1/a = 1/0.3 for the latent
period from [49], with other parameters β1 = 2, β2 = 0.6, a = 0.3, g = 1, µ = 0.02.
Initial conditions are S0 = 0.75, I0 = 0.25, E0 = 0, R0 = 0. Hence, R1 = 1.838 and
R2 = 0.551, which implies 〈Rσ〉 = 0.873 for t large. Hence, we can conject that
〈Rσ〉 < 1 is a sufficient condition for the eradication of the disease.
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Figure 4.7: Multi-city Switched System (4.38). Parameters are β1 = 2, β2 =
0.4, g = 1, µ = 0.02 and the transport parameters are α = 0.1 and γ = 1,
similar to the ones from [10]. In this case, we have normalized the variables by the
total population, since it is a constant, and the initial conditions are S10 = 0.65,
I10 = 0.2, S20 = 0.15, I20 = 0. From the parameters, 〈Rσ〉 = 0.882 for t large, and
the solution converges to S1 = S2 = 0.5, I1 = I2 = 0 by Theorem 4.8.2.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

 

 

City 1 Susceptible
City 1 Infective
City 2 Susceptible
City 2 Infective

Figure 4.8: Multi-city Switched System (4.38). Same parameters as Figure
4.7 only now α = 0.4, that is, individuals are travelling at a higher rate. Because of
this, we have 〈Rσ〉 = 1.176, for t large, and we see the disease persists. Notice that
if travel was restricted, α = 0, then the time average of the reproduction numbers
would drop to 〈Rσ〉 = 0.784 for t large and the disease would be eradicated in both
cities.
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Figure 4.9: Multi-city Switched System (4.42). The variables have been nor-
malized by the total population, which is constant, and the initial conditions are
S10 = 0.65, I10 = 0.2, S20 = 0.15, I20 = 0. For city 1: µ1 = 0.02, g1 = 2, α1 = 0.2,
and c1 = 0.3. For city 2: µ2 = 0.05, g2 = 1, α2 = 0.4, and c2 = 0.1. In both cities
β1 = 1.5, β2 = 0.4, and γ = 1. We see the media coverage, life expectancy and
removal rates are all better in city 1, and, more people want to travel from city 2
to city 1. Here 〈Rnon

σ 〉 = 0.956 for t large, the infectives drop to zero in both cities
and S1 → 2/3, S2 → 1/3 by Theorem 4.8.3.
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Figure 4.10: Multi-city Switched System (4.42). Same parameters as Figure
4.9 only now β1 = 2, β2 = 0.8, and hence 〈Rnon

σ 〉 = 1.373 for large t. This illustrates
the fact that since the reproduction numbers are non-physical, they are indeed too
strict in this case, as we can see the disease is eradicated in both cities and S1 → 2/3,
S2 → 1/3.
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Chapter 5

Control Schemes Applied to
Switched Epidemiological Models

As outlined in Section 2.2, control strategies are extremely important in epidemiol-
ogy as practical applications. Indeed, control schemes can eradicate diseases which
are otherwise persistent. In this chapter, both constant and pulse control schemes
with contact rate switching will be introduced, analyzed, and discussed. In Sec-
tion 5.1, constant control schemes are investigated. The schemes include constant
vaccination of newborns (Section 5.1.1), constant vaccination of a portion of sus-
ceptibles (Section 5.1.2), constant treatment of infectives (Section 5.1.3), constant
treatment of infectives with waning immunity (Section 5.1.4), constant vaccination
with progressive immunity (Section 5.1.5), constant treatment of infectives with
progressive immunity (Section 5.1.6), and finally a screening process applied to a
multi-city transport model (Section 5.1.7). In Section 5.2, pulse control strategies
are studied. The pulse schemes considered are pulse treatment (Section 5.2.1),
pulse vaccination (Section 5.2.2), pulse vaccination with vaccine failure (Section
5.2.3), and finally a pulse vaccination with a reduced infective class (Section 5.2.4).
Simulations are presented in Section 5.3.

5.1 Constant Control Schemes

5.1.1 Switched SIR with Constant Vaccination of Newborns

Introduce switching into the SIR model with constant vaccination of newborns
(2.30). Here, a fraction 0 ≤ p ≤ 1 of the newborns are continuously vaccinated
and removed from the population. This model also assumes that the permanent
immunity acquired through vaccination is the same as the natural immunity ob-
tained from infected individuals eliminating the disease naturally. Add switching
by approximating the contact rate by a piecewise constant. More specifically, as-
sume it is approximated by the values β1, . . . , βm > 0, which follow a switching rule
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σ = σ(t) : R+ → {1, 2, . . . ,m}, where σ ∈ S is a piecewise continuous function.
Then the switched model with constant control is:

Ṡ = µ(1− p)− βiSI − µS,

İ = βiSI − gI − µI,

Ṙ = gI − µR + pµ,

(5.1)

with S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0, i ∈ {1, . . . ,m} and the to-
tal population is constant. One of the main benefits of this model is that it is
straightforward to implement: simply vaccinate a portion p of all susceptible new-
borns. The method’s main drawback is that it can be very expensive as the portion
of newborns required to be vaccinated can be very high (recall from 2.2.4). The
meaningful physical domain for this system is

ΩSIR = {(S, I, R) ∈ R3
+| S + I + R = 1}.

Notice that
{Ṡ + İ + Ṙ} |S+I+R=1 = 0,

Ṡ |S=0 = µ(1− p) ≥ 0, İ |I=0 = 0, and Ṙ |R=0 = gI + pµ ≥ 0, hence this domain is
invariant. The constant vaccination appears in the µp terms, in the limit p = 0,
the model becomes the normal non-vaccinating switched SIR model (4.1). Define
the basic reproduction numbers

Rp
i =

βi

µ + g
(1− p) (5.2)

for each subsystem. The superscript p indicates that the reproduction numbers are
associated with a particular control scheme. Observe that Rp

i ≤ Ri = βi/(µ + g)
from the switched SIR system (4.2) without vaccination. Equality is only achieved
in the limit p = 0, that is, when there is no vaccination. There is a single disease-free
equilibrium point Q̄ = (S̄, Ī, R̄) = (1 − p, 0, p) that is common to all subsystems.
Further, each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i , R∗

i ) =

(
µ + g

βi

,
µ

βi

(Rp
i − 1),

g

βi

(Rp
i − 1) + p

)
. (5.3)

Recall from Section 2.2.4 that the linear change of variables, S = Ŝ(1 − p), I =
Î(1 − p), R = R̂(1 − p) + p, transforms this model into the switched SIR model
(4.1) with contact rates βi(1 − p) instead of βi. Hence, we make the following
conjecture.

Conjecture 5.1.1. If 〈Rp
σ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching

rule σ ∈ S, then the solution of system (5.1) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSIR. If the switching rule
is periodic σ ∈ Speriodic and (Rp

1 − 1)τ1 + . . . + (Rp
m − 1)τm < 0 then the solution

of system (5.1) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSIR.
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Notice that, as in the non-switched case (see Section 2.2.4), the constraint
〈Rp

σ〉 < 1− ε implicitly defines a critical vaccination portion p > pcrit that must be
achieved for eradication, where

pcrit := 1− 1− ε

〈Rσ〉
,

with Rσ = βσ/(µ+g) from the unvaccinated switched SIR model (4.2). Due to the
efficacy of different vaccinations, this critical value may be unrealistically high, as
discussed in Section 2.2.4.

5.1.2 Switched SIR Model with Constant Vaccination of
Susceptibles

Consider the control technique of constant vaccination of susceptibles. In this
scheme a fraction 0 ≤ p ≤ 1 of the entire susceptible population, not just the
newborns, is being continuously vaccinated. Assume that the permanent immunity
acquired through vaccination is the same as the natural immunity obtained from
infected individuals defeating the disease. Apply this to the switched SIR model
(4.1): 

Ṡ = µ− βiSI − µS − pS,

İ = βiSI − gI − µI,

Ṙ = gI − µR + pS,

(5.4)

with i ∈ {1, 2, . . . ,m}, S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0, and the
total population is constant. The meaningful physical domain for this system
is ΩSIR. Notice that {Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ > 0, İ |I=0 = 0 and
Ṙ |R=0 = gI + pS > 0, hence this domain is invariant to each subsystem. For this
model, define the basic reproduction numbers (from non-switched case [73]):

Rp
i =

βi

µ + g

µ

µ + p
(5.5)

for each subsystem. There is a single disease-free equilibrium point

Q̄ = (S̄, Ī , R̄) =

(
µ

µ + p
, 0,

p

µ + p

)
(5.6)

that is common to all subsystems. Further, each subsystem also has an endemic
equilibrium

Q∗
i = (S∗i , I

∗
i , R∗

i ),

=

(
µ + g

βi

,
µ

µ + g

(
1− 1

Rp
i

)
,

µ

µ + g

(
1− 1

Rp
i

)
+

p

µ

µ + g

βi

)
. (5.7)

Observe that Rp
i ≤ Ri from the non-vaccinated switched SIR system (4.1) again,

as expected.
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Conjecture 5.1.2. If 〈Rp
σ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching

rule σ ∈ S, then the solution of system (5.4) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSIR. If the switching rule
is periodic σ ∈ Speriodic and (Rp

1 − 1)τ1 + . . . + (Rp
m − 1)τm < 0 then the solution

of system (5.4) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSIR.

Comparing this model to the constant vaccination of newborns model with
switching (5.1), it is apparent that instead of constantly vaccinating a portion of
newborns, a portion of the entire susceptible population is now being continuously
vaccinated. Since the natural birth rate µ is usually very small, the fraction µp
of newborns being continuously vaccinated in (5.1) will be small, whereas in this
model, a larger group of susceptibles can be continuously vaccinated in this model
because it is a portion of the entire susceptible population, pS. Due to this, we
expect that this model should require a smaller value of p to achieve eradication
(see the simulations in Section 5.3). Furthermore, the requirement 〈Rp

σ〉 < 1 − ε
implicitly defines a critical vaccination portion p > pcrit, which we expect will result
in disease eradication, where

pcrit := (〈Rσ〉 − 1)

(
µ

1− ε

)
,

with Ri = βi/(µ + g) from the unvaccinated switched SIR model (4.2).

5.1.3 Switched SIR Model with Constant Treatment of In-
fectives

Consider the control technique of constantly treating (curing) a fraction 0 ≤ p ≤ 1
of infected individuals. Assume that when they are treated, they are immediately
cured with permanent immunity and hence are moved to the removed class R.
Apply this to the switched SIR model (4.1):

Ṡ = µ− βiSI − µS,

İ = βiSI − gI − µI − pI,

Ṙ = gI − µR + pI,

(5.8)

with i ∈ {1, 2, . . . ,m}, S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0, and the
total population is constant. The pI terms represent the constant treatment of
infectives. The meaningful physical domain for this system is ΩSIR. Notice that
{Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ ≥ 0, İ |I=0 = 0 and Ṙ |R=0 = gI + pI ≥ 0,
hence this domain is invariant to each subsystem. For this model, define the basic
reproduction numbers

Rp
i =

βi

µ + g + p
(5.9)
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for each subsystem. Here Rp
i ≤ Ri from the non-vaccination system (4.1). There

is a single disease-free equilibrium point Q̄ = (S̄, Ī , R̄) = (1, 0, 0) that is common
to all subsystems. Further, each subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i , R∗

i ) =

(
1

Rp
i

,
µ

βi

(Rp
i − 1),

g + p

βi

(Rp
i − 1)

)
. (5.10)

If Rp
1, . . . ,Rp

m ≤ 1, then I ′ < 0 in ΩSIR unless I = 0 or S = 1, hence, the solution
converges to the disease-free solution Q̄ and the disease will be eradicated.

Theorem 5.1.3. If 〈Rp
σ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching

rule σ ∈ S, then the solution of system (5.8) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSIR. If the switching rule
is periodic σ ∈ Speriodic and (Rp

1 − 1)τ1 + . . . + (Rp
m − 1)τm < 0 then the solution

of system (5.8) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSIR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − µI − gI − pI ≤ (βik − µ− g − p)I = λikI, (5.11)

where λik := βik − µ − g − p. Thus, it follows from the proof of Theorem 3.1.2,
beginning at equation (3.11), that I(t) ≤ I0 exp (−ct), and hence the disease-free
solution Q̄ is exponentially I-stable. Then, by inspection of system (5.8) with I = 0,
R and S, converge to zero and one, respectively. Hence, the solution converges
to the disease-free equilibrium Q̄ in the domain ΩSIR. If the switching signal is
periodic, then it follows from the bound (5.11) and the proof of Theorem 3.1.5 that
the solution converges to the disease-free solution, which is asymptotically I-stable,
in the meaningful domain.

Mathematically, this model is simpler to analyze than the constant vaccina-
tion models discussed in the previous two sections, (5.1) and (5.4), because the
treatment is being applied to the infected population directly. Practically, this
model has a drawback that it may be more difficult to implement, as it might not
be straightforward to identify the infected individuals and treat them directly. It
could also be expensive, and unrealistic to implement (see simulations). As before,
the constraint 〈Rp

σ〉 < 1− ε implicitly defines a critical treatment portion p > pcrit

in order to achieve eradication, where

pcrit :=
〈βσ〉
1− ε

− µ− g. (5.12)

5.1.4 Switched SIR Model with Constant Treatment of In-
fectives and Waning Immunity

Consider again the control scheme of constant treatment applied to a switched SIR
model (5.8). Suppose that the immunity, gained naturally or from the treatment
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process, is temporary. Assume the immunity has waning rate θ > 0, hence the
immune period is 1/θ > 0. Then the model now is

Ṡ = µ− βiSI − µS + θR,

İ = βiSI − gI − µI − pI,

Ṙ = gI + pI − µR− θR,

(5.13)

with i ∈ {1, 2, . . . ,m}, S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0, and the
total population is constant. The meaningful physical domain for this system is
ΩSIR. Notice that {Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ + θR > 0, İ |I=0 = 0 and
Ṙ |R=0 = gI + pI ≥ 0, hence this domain is invariant. Define the basic reproduction
numbers

Rp
i =

βi

µ + g + p
(5.14)

for each subsystem. These reproduction numbers are the same as for the switched
constant treatment model (5.9), as the disease will still spread at the same rate
with or without temporary immunity. There is a single disease-free equilibrium
point Q̄ = (S̄, Ī, R̄) = (1, 0, 0) that is common to all subsystems. Further, each
subsystem also has an endemic equilibrium

Q∗
i = (S∗i , I

∗
i , R∗

i ),

=

(
1

Rp
i

,
µ + θ

µ + g + p + θ

(
1− 1

Rp
i

)
,

g + p

µ + g + p + θ

(
1− 1

Rp
i

))
. (5.15)

If Rp
1, . . . ,Rp

m ≤ 1, then I ′ < 0 in ΩSIR unless I = 0 or S = 1, hence, the solution
converges to the disease-free solution Q̄ and the disease will be eradicated.

Theorem 5.1.4. If 〈Rp
σ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching

rule σ ∈ S, then the solution of system (5.13) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSIR. If the switching rule
is periodic σ ∈ Speriodic and (Rp

1 − 1)τ1 + . . . + (Rp
m − 1)τm < 0 then the solution of

system (5.13) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSIR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = βikSI − µI − gI − pI ≤ (βik − µ− g − p)I = λikI, (5.16)

where λik := βik − µ − g − p. Thus, it follows from the proof of Theorem 3.1.2,
beginning at equation (3.11), that I(t) ≤ I0 exp (−ct), and hence Q̄ is exponentially
I-stable. Then, by inspection of system (5.13) with I = 0, R and S, converge to zero
and one, respectively. Hence, the solution converges to the disease-free equilibrium
Q̄ in the domain domain ΩSIR. If the switching signal is periodic, then it follows
from the bound (5.16) and the proof of Theorem 3.1.5 that the solution converges
to the disease-free solution, which is asymptotically I-stable, in the meaningful
domain.
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Notice that even with waning immunity, the same critical treatment rate is
required. That is, the critical treatment portion for this model p > pcrit is the same
as for the critical treatment level for the treatment model without waning immunity
(5.12). The difference between the constant treatment with and without waning
immunity is that the endemic level I∗i for waning immunity (5.15) is higher than
the corresponding endemic infective level I∗i without waning immunity (5.10) from
the system without waning immunity. We should also expect that the convergence
rate will be different between these two systems, more specifically, that the disease
will be eradicated faster in the constant treatment model without waning immunity
(5.8) compared to the model with waning immunity (5.13).

5.1.5 Switched SIR Model with Constant Vaccination and
Progressive Immunity

The constant vaccination or treatment models discussed so far have assumed that
as soon as individuals begin either the treatment or vaccination process, they are
immediately vaccinated or cured. These models have ignored the time it takes for
individuals to obtain immunity by completing a vaccination or treatment process.
In constrast to this, consider the usual proposed vaccination schedule for hepatitis
B: individuals are vaccinated immediately, then again in one month, then a third
time in 6 months [47]. Usually 30−50% of individuals will gain anti-HB antibodies
after the first dose, 80 − 90% will gain them after the second dose, and virtually
all the individuals will have them one month after the last dose [47]. The anti-HB
antibdody concentrations may decline slowly, but will stay at effective levels for
protection possibly for more than 10 years [47].

Motivated by the above discussion, instead of assuming that individuals who are
vaccinated gain immunity immediately, assume they begin the vaccination process
in a class V , and take time to complete the program to gain immunity and enter the
removed class R. Begin from a basic SIR model (2.16) and suppose that susceptible
individuals begin the vaccination process at a constant rate 0 ≤ p ≤ 1. Suppose the
mean period of vaccine-induced immunity is 1/γ before the vaccinated susceptibles
acquire permanent immunity, hence they move into the removed class at an average
rate of γ > 0. Introduce switching into the model by assuming that while they are
in the vaccinated class, individuals can still possibly contract the disease and do
so at the rate β2i > 0. Assume that susceptible individuals normally contract the
disease with contact rate β1i > 0 and standard incidence rate. Then, reasonably
assume that β2i < β1i for all i, since the individuals being vaccinated may have
partial immunity during the vaccination process [47]. The efficacy of the vaccine
will determine the values β2i and γ, the better the vaccine, the lower the partially
immune contact rates β2i and the faster the vaccination process is, hence the higher
the value of γ. This model was based on the non-switched version from [47], which
is a good model for diseases such as hepatitis B and measles [47]. In model, we
use the notation SV IR for the model instead of SIRV , because of the flow of
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the model: the susceptibles flow into both the vaccinated and infective class, the
vaccinated flows into the infective class and removed class and the infected class
flows into the removed class. With switching, the model is

Ṡ = µ− β1iSI − µS − pS,

V̇ = pS − β2iV I − γV − µV,

İ = β1iSI + β2iV I − gI − µI,

Ṙ = gI + γV − µR,

(5.17)

with S(0) = S0 > 0, I(0) = I0 > 0, V (0) = V0, R(0) = R0, i ∈ {1, . . . ,m} and
the total population is constant. Often it is assumed that V0 = 0. The meaningful
physical domain for this system is

ΩSV IR = {(S, V, I, R) ∈ R4
+| S + V + I + R = 1}.

Notice that
{Ṡ + İ + Ṙ + V̇ } |S+I+R+V =1 = 0,

Ṡ |S=0 = µ > 0, İ |I=0 = 0, V̇ |V =0 = pS ≥ 0 and Ṙ |R=0 = gI + γV ≥ 0, hence this
domain is invariant to each subsystem. For this model, define the basic reproduction
numbers for each subsystem [47],

Rp
i =

β1iµ

(µ + g)(µ + p)
+

β2ipµ

(µ + γ)(µ + g)(µ + p)
(5.18)

Notice that as the efficacy of the vaccine goes up, and hence β2i goes down or γ goes
up, in the limit as β2i → 0 or γ →∞, the reproduction numbers will approach the
reproduction numbers of the SIR model with constant vaccination of susceptibles
(5.4). However, it is noted in [47] that it is much more difficult to increase the
efficacy of the vaccine as compared to controlling the vaccination rate p. There is
a single disease-free equilibrium point [47],

Q̄ = (S̄, V̄ , Ī , R̄) =

(
µ

µ + p
,

pµ

(µ + γ)(µ + p)
, 0,

pγ

(µ + γ)(µ + p)

)
(5.19)

that is common to all subsystems. Further, if Rp
i > 1 then the subsystem i also

has an endemic equilibrium Q∗
i = (S∗i , I

∗
i , R∗

i , V
∗
i ), where I∗i is the positive root of

g(I) = A1I
2 + A2I + A3(1−Ri) [47], with

A1 = (µ + g)β1iβ2i > 0,

A2 = (µ + g)[(µ + p)β2i + (µ + γ)β1i]− β2iβ1iµ,

A3 = (µ + g)(µ + p)(µ + γ) > 0,

and

S∗i =
µ

µ + p + β1iI∗i
,

V ∗
i =

pµ

(µ + p + β1iI∗i )(µ + γ + β2iI∗i )

R∗
i = 1− S∗i − I∗i − V ∗

i .
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Conjecture 5.1.5. If 〈Rp
σ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching

rule σ ∈ S, then the solution of system (5.17) converges to the disease-free equi-
librium Q̄, which is exponentially I-stable, in the domain ΩSV IR. If the switching
rule is periodic σ ∈ S and (Rp

1 − 1)τ1 + . . . + (Rp
m − 1)τm < 0 then the solution of

system (5.17) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSV IR.

The constraint 〈Rp
σ〉 < 1−ε implicitly defines a critical vaccination level p > pcrit

that must be achieved in order for the disease to be eradicated by the control
scheme. Define another basic reproduction number for each subsystem:

Rnon
i =

β1i + β2i

µ + g
.

Notice that these reproduction numbers do not consider the vaccination rate p, and
further, Rnon

i ≥ Rp
i for all i. Hence, this is a stricter assumption of how quickly the

disease will spread; based on the actual structure of the system, the disease should
spread slower than this.

Theorem 5.1.6. If 〈Rnon
σ 〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and σ ∈ S,

then the solution of system (5.17) converges to the disease-free equilibrium Q̄, which
is exponentially I-stable, in the domain ΩSV IR. If the switching rule is periodic
σ ∈ Speriodic and (Rnon

1 − 1)τ1 + . . . + (Rnon
m − 1)τm < 0 then the solution of system

(5.17) converges to the disease-free equilibrium Q̄, which is asymptotically I-stable,
in the domain ΩSV IR.

Proof. Let ik follow the dwell-time switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk],
ik = σ(t) and,

I ′ = β1ikSI + β2ikV I − gI − µI ≤ (β1ik + β2ik − µ− g)I = λikI, (5.20)

where λik := β1ik + β2ik − µ− g. Thus, it follows from the proof of Theorem 3.1.2,
beginning at equation (3.11), that I(t) ≤ I0 exp (−ct), and hence Q̄ is exponentially
I-stable. Then, the limiting equation for S is S ′ = µ−µS−pS, which, by inspection,
converges to S̄. Further, the equation for V becomes V ′ = pS̄−γV −µV , and hence
V converges to V̄ . Finally, using R = 1 − S − I − V , it is clear that R converges
to R̄. Hence, the solution converges to the disease-free equilibrium Q̄ in ΩSV IR. If
the switching signal is periodic, then it follows from the bound (5.20) and the proof
of Theorem 3.1.5 that the solution converges to the disease-free solution, which is
asymptotically I-stable, in the meaningful domain.

5.1.6 Switched SIR Model with Constant Treatment and
Progressive Immunity

Consider again the progessively immune switched SV IR model (5.17), but now
consider the constant treatment of infectives at a rate 0 ≤ p ≤ 1, instead of constant
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vaccination of susceptibles. Assume that infected individuals enter a treatment
process, which takes on average 1/γ, and while they are in this process they are
able to be infected at a reduced rate β2i < β1i, as before. Then the switched model
is, 

Ṡ = µ− β1iSI − µS,

V̇ = pI − β2iV I − γV − µV,

İ = β1iSI + β2iV I − gI − µI − pI,

Ṙ = gI + γV − µR,

(5.21)

with i ∈ {1, 2, . . . ,m}, S(0) = S0 > 0, I(0) = I0 > 0, V (0) = 0, R(0) = R0, and
the total population is constant. Again, this model requires explicit knowledge of
the infected individuals in the population. The meaningful physical domain for this
system is ΩSV IR. Notice that {Ṡ + V̇ + İ + Ṙ} |S+V +I+R=1 = 0, Ṡ |S=0 = µ > 0,
İ |I=0 = 0, Ṙ |R=0 = gI + γV ≥ 0 and V̇ |V =0 = pI ≥ 0 hence this domain is invari-
ant. For this model, define the basic reproduction numbers for each subsystem,

Rp
i =

β1i + β2i

(µ + g + p)
. (5.22)

There is a single disease-free equilibrium point

Q̄ = (S̄, V̄ , Ī , R̄) = (1, 0, 0, 0) (5.23)

that is common to all subsystems. If Rp
1, . . . ,Rp

m < 1, then I ′ < 0 in ΩSV IR unless
I = 0, hence, the disease will be eradicated.

Theorem 5.1.7. If 〈Rp
σ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching

rule σ ∈ S, then the solution of system (5.21) converges to the disease-free equilib-
rium Q̄, which is exponentially I-stable, in the domain ΩSV IR. If the switching rule
is periodic σ ∈ Speriodic and (Rp

1 − 1)τ1 + . . . + (Rp
m − 1)τm < 0 then the solution of

system (5.21) converges to the disease-free equilibrium Q̄, which is asymptotically
I-stable, in the domain ΩSV IR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = β1ikSI + β2ikV I − gI − µI − pI ≤ (β1ik + β2ik − µ− g − p)I = λikI, (5.24)

where λik := β1ik +β2ik−µ−g−p. Thus, it follows from the proof of Theorem 3.1.2,
beginning at equation (3.11), that I(t) ≤ I0 exp (−ct), and hence Q̄ is exponentially
I-stable. Then, the limiting equation for S is S ′ = µ − µS, which, by inspection,
converges to one. Further, the equation for V becomes V ′ = −γV −µV , and hence
V converges to zero. Finally, using R = 1 − S − I − V , R converges to zero.
Hence, the solution converges to the disease-free equilibrium Q̄ of system (5.21) in
ΩSV IR. If the switching signal is periodic, then it follows from the bound (5.24) and
the proof of Theorem 3.1.5 that the solution converges to the disease-free solution,
which is asymptotically I-stable, in the meaningful domain.
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The constraint 〈Rp
σ〉 < 1 − ε implicitly defines a critical treatment portion

p > pcrit in order to achieve eradication, where

pcrit :=
〈β1σ + β2σ〉

1− ε
− µ− g. (5.25)

5.1.7 Switched Multi-City Model with a Screening Process

It has been suggested (for example in [46, 68]) that restricting the travel of infected
individuals is important in controlling the spread of a disease. For many diseases,
it may be difficult to identify infected individuals in order to restrict their travel.
However, the recent case of the SARS epidemic was a good example of a case where
it was possible, due to the global awareness of the seriousness of this disease [46]. In
2003, when SARS was spreading, entry and exit screenings, including visual inspec-
tion to detect symptoms, temperature screening via thermal scanning, distributing
health alert notices and administering questionnaires to assess symptoms and possi-
ble exposure were done at mass transit centers to identify infected individuals [46].
In fact, it is possible to eradicate a disease that is led by transport-related infection
using entry screening even when the disease would be endemic in both isolated
cities [46]. The switched model in this section was motivated by the non-switched
entry screening models studied in [46, 68].

Assume that there are two cities and that susceptibles and infectives may travel
between the two cities as follows: assume individuals travel from city 1 to 2 at a
rate α1, and from city 2 to city 1 at a rate α2. Assume there is a screening process
with 0 ≤ p ≤ 1 being the probability of successfully detecting an infected individual
during the screening process. Assume that susceptible individuals are never falsely
identified as being infected (no false positives). Do not consider population dynam-
ics for the screened classes Vc1 and Vc2 , that is, individuals who are being screened
do not die or give birth. When the infected individuals are identified, assume that
they will be isolated for treatment (for example in hospitals) as was done for the
SARS infection in 2003 [46]. Assume that individuals in the screened classes are
removed at a constant rate f > 0 and re-enter the susceptible population. As
before, assume that individuals do not give birth or die, or recover while they are
travelling. Assume a standard incidence rate for the horizontal incidence of the
disease while individuals are travelling, with travelling contact rate 0 ≤ γ ≤ 1.

112



This gives the model:

Ṡc1 = µN1 − βi
Sc1Ic1

N1

− µSc1 + gIc1 + fVc1 − α1Sc1 + α2Sc2 − α2γ
Sc2Ic2

N2

,

İc1 = βi
Sc1Ic1

N1

− gIc1 − µIc1 − α1Ic1 + (1− p)α2Ic2 + (1− p)α2γ
Sc2Ic2

N2

,

V̇c1 = pα2Ic2 + pα2γ
Sc2Ic2

N2

− fVc1 ,

Ṡc2 = µN2 − βi
Sc2Ic2

N2

− µSc2 + gIc2 + fVc2 − α2Sc2 + α1Sc1 − α1γ
Sc1Ic1

N1

,

İc2 = βi
Sc2Ic2

N2

− gIc2 − µIc2 − α2Ic2 + (1− p)α1Ic1 + (1− p)α1γ
Sc1Ic1

N1

,

V̇c2 = pα1Ic1 + pα1γ
Sc1Ic1

N1

− fVc2 , (5.26)

where i ∈ {1, 2, . . . ,m}, N1 = Sc1 +Ic1 , N2 = Sc2 +Ic2 and N1 +Vc1 +N2 +Vc2 = N .
The total population, N , is constant and the initial conditions are Sc1(0) = Sc1,0 >
0, Sc2(0) = Sc2,0 > 0, Ic1(0) = Ic1,0 > 0, Ic2(0) = Ic2,0 > 0, Vc1(0) = Vc1,0 , Vc2(0) =
Vc2,0 . The meaningful physical domain for this system is

TSIV SIV = {(Sc1 , Ic1 , Vc1 , Sc2 , Ic2 , Vc2) ∈ R6
+|Sc1 + Ic1 + Vc1 + Sc2 + Ic2 + Vc2 = N}.

Notice that, since 0 ≤ γ ≤ 1, we have that

{Ṡc1 + İc1 + V̇c1 + Ṡc2 + İc2 + V̇c2}
∣∣
Sc1+Ic1+Vc1+Sc2+Ic2+Vc2=N = 0,

Ṡc1

∣∣∣∣Sc1=0 = (µ + g)Ic1 + fVc1 + α2Sc2 − α2γ
Sc2Ic2

Sc2 + Ic2

≥ 0,

Ṡc2

∣∣∣∣Sc2=0 = (µ + g)Ic2 + fVc2 + α2Sc1 − α2γ
Sc1Ic1

Sc1 + Ic1

≥ 0,

İc1

∣∣∣∣Ic1=0 = (1− p)α2Ic2 + (1− p)α2γ
Sc2Ic2

Sc2 + Ic2

≥ 0,

İc2

∣∣∣∣Ic2=0 = (1− p)α1Ic1 + (1− p)α1γ
Sc1Ic1

Sc1 + Ic1

≥ 0,

V̇c1

∣∣∣∣Vc1=0 = pα2Ic2 + pα2γ
Sc2Ic2

Sc2 + Ic2

≥ 0, V̇c2

∣∣∣∣Vc2=0 = pα1Ic1 + pα1γ
Sc1Ic1

Sc1 + Ic1

≥ 0,

which implies the domain is invariant to the switched system. For this model, define
the non-physical basic reproduction numbers

Rp,non
i =

βi + (1− p)αmaxγ

µ + g + pαmin

(5.27)

for each subsystem, where αmax = max{α1, α2} and αmin = min{α1, α2}. These
reproduction numbers do take into account the screening probability p, but they
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are not physically meaningful because of the use of the max and min functions.
Hence the theorems established are sufficient but we conject they are not necessary.
There is a disease-free equilibrium point

Q̄ = (S̄c1 , Īc1 , V̄c1 , S̄c2 , Īc2 , V̄c2) =

(
α2

α1 + α2

N, 0, 0,
α1

α1 + α2

N, 0, 0

)
(5.28)

that is common to all subsystems.

Theorem 5.1.8. If 〈Rp,non
σ 〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and

switching rule σ ∈ S, then the solution of system (5.26) converges to the disease-
free equilibrium Q̄, which is exponentially (Ic1 , Ic2)-stable, in the domain TSIV SIV . If
the switching rule is periodic σ ∈ Speriodic and (Rp,non

1 −1)τ1+. . .+(Rp,non
m −1)τm < 0

then the solution of system (5.26) converges to the disease-free equilibrium Q̄, which
is asymptotically (Ic1 , Ic2)-stable in the domain TSIV SIV .

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

(Ic1 + Ic2)
′ = βik

(
Sc1Ic1

Sc1 + Ic1

+
Sc2Ic2

Sc2 + Ic2

)
− (g + µ)(Ic1 + Ic2)− pα2Ic2 − pα1Ic1

+ (1− p)α1γ
Sc1Ic1

Sc1 + Ic1

+ (1− p)α2γ
Sc2Ic2

Sc2 + Ic2

,

≤ (βik + (1− p)αmaxγ − g − µ− pαmin)(Ic1 + Ic2),

= λik(Ic1 + Ic2), (5.29)

where λik := βik + (1− p)αmaxγ − g− µ− pαmin. Thus, it follows from the proof of
Theorem 3.1.2, beginning at equation (3.11), that Ic1 + Ic2 ≤ (Ic1,0 + Ic2,0) exp(−ct)
for some c > 0. Since Ic1 , Ic2 ≥ 0, the solution Q̄ is exponentially (Ic1 , Ic2)-stable
in TSIV SIV . The limiting equations for Vc1 and Vc2 then are V ′

c1
= −fVc1 and

V ′
c2

= −fVc2 , respectively, and hence, by inspection, Vc1 and Vc2 both converge to
zero. The limiting equations for Sc1 , Sc2 are{

Ṡc1 = −α1Sc1 + α2Sc2 ,

Ṡc2 = −α1Sc2 + α2Sc1 .
(5.30)

Then, since Sc1 +Sc2 = N , Sc1 and Sc2 converge to S̄c1 and S̄c2 . Hence, the solution
converges to the disease-free equilibrium Q̄ of system (5.26) in the meaningful
domain TSIV SIV . If the switching signal is periodic, then it follows from the bound
(5.29) and the proof of Theorem 3.1.5 that the solution converges to the disease-free
solution, which is asymptotically I-stable, in the meaningful domain.

Again, notice that the constraint 〈Rp,non
σ 〉 < 1− ε will implicitly define a critical

vaccination rate pcrit such that p > pcrit will ensure that the disease is eradicated. In
this case, because of the non-physicalality of the reproduction numbers, the critical
vaccination rate may be higher than necessary for eradication.
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5.2 Pulse Control Schemes

5.2.1 Switched SIR Model with Pulse Treatment

Introduce switching into a SIR model with pulse control, similar to the model
(2.35). Instead of impulsively vaccinating a portion p of susceptibles, this strategy
impulsively treats a portion of infectives. More specifically, at certain times tk
assume a fraction of the infected population is cured of the disease. Assume that
immediately after the pulse treatment the individuals are healthy and permanently
immune (and hence removed). Though it might seem unreasonable physically for
individuals to be cured instantaneously, as discussed in Section 2.2.4, it is assumed
that the time scale of the treatment is very short (for example, given a needle with
the cure) compared to the time scale for the dynamics of the disease.

Suppose that there are m different pulses, that is, 0 ≤ p1, . . . , pm ≤ 1, and at
the pulse times tk, k = 1, 2, . . ., it is possible to apply one of the pulses. Hence,
these pulses can have varying strengths. The switching times are t0 = 0 < t1 <
t2 < . . . < tk < . . . → ∞. At each switch time tk, k = 1, 2, . . . , an impulsive cure
is applied to a fraction 0 ≤ pi ≤ 1 of the infected population. This is an impulsive
type of control, and, combined with switching in the contact rate, β1, . . . , βm > 0,
leads to a new impulsive switching model:

Ṡ = µ− βiSI − µS, t ∈ (tk−1, tk]

İ = βiSI − gI − µI,

Ṙ = gI − µR,

S(t+) = S(t), t = tk

I(t+) = I(t)− piI(t),

R(t+) = R(t) + piI(t)

(5.31)

where k = 1, 2, . . ., and i ∈ {1, . . . ,m} follows the piecewise continuous switching
rule σ ∈ S. Since the population is constant, the variables have been normalized so
that S + I + R = 1, hence the meaningful domain of interest is ΩSIR. Assume that
for all switched pulse control models in Section 5.2 that the solutions are continuous
from the left at the moments of impulse tk, that is,

(S(tk), I(tk), R(tk)) = (S(t−k ), I(t−k ), R(t−k )) = limh→0+(S(tk−h), I(tk−h), R(tk−h)),

and
(S(t+k ), I(t+k ), R(t+k )) = limh→0+(S(tk + h), I(tk + h), R(tk + h)).

This domain is invariant since

{Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ > 0, İ | I=0 = 0, Ṙ |R=0 = gI ≥ 0.

Further, the impulsive difference equations will not move the solution to outside
the meaningful domain. As discussed briefly in Section 2.1.3, we assume for these
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disease models that there is no impulsive effect at the initial time t0, which can be
taken to be zero without loss of generality. Assume initial conditions S(0+) = S0 >
0, I(0+) = I0 > 0 and R(0+) = R0 such that (S0, I0, R0) ∈ ΩSIR. In this model,
the basic reproduction numbers are the SIR reproduction numbers (4.2),

Ri =
βi

µ + g
. (5.32)

The switched system (5.31) has a disease-free solution Q̄ = (1, 0, 0) common to
all subsystems. Since S + I + R = 1, the system is intrinsically two-dimensional.
Recall that Ti(t) is defined to be the total activation time of the ith subsystem in
the interval (0, t].

Theorem 5.2.1. Let pi = p for all i. If (k−1) ln(1−p)+
∑m

i=1(βi−µ−g)Ti(t) ≤ −ct
for t ∈ (tk−1, tk], with constant c > 0 and switching rule σ ∈ S, then the solution
of system (5.31) converges to the disease-free solution Q̄, which is exponentially
I-stable, in the domain ΩSIR.

Proof. This proof follows from a proof in [22]. Let ik follow the switching rule
σ(t) ∈ S. Then, for t ∈ (tk−1, tk], ik = σ(t) and,

İ = βiSI − gI − µI ≤ (βik − µ− g)I = λikI, (5.33)

where λik := βik − µ− g. Then, for t ∈ (tk−1, tk]:

I(t) ≤ I(tk−1
+) exp[λik(t− tk−1)], (5.34)

Thus, since I ≥ 0 for all t ≥ 0, I is bounded in the 1-norm, based on the effects of
the switching rule. Furthermore, immediately after each tk,

I(tk
+) = (1− p)I(tk) (5.35)

Now apply (5.34) and (5.35) successively on each subinterval.

For t ∈ (0, t1]:
Using (5.34), I(t) ≤ I0 exp[λi1t] ⇒ I(t1) ≤ I0 exp [λi1t1].
Using (5.35), I(t1

+) = (1− p)I(t1).
Combining gives I(t1

+) ≤ I0(1− p) exp [λi1t1] .

For t ∈ (t1, t2]:
Using (5.34), I(t) ≤ I(t+1 ) exp [λi2(t− t1)] ≤ I0(1− p) exp [λi1t1 + λi2(t− t1)].
Using (5.35), I(t2

+) = (1− p)I(t2).
Combining gives → I(t2

+) ≤ I0(1− p)2 exp [λi1t1 + λi2(t2 − t1)] .
...
For t ∈ (tk−1, tk]:

I(t) ≤ I0(1− p)k−1 exp [λi1t1 + . . . + λik(t− tk−1)],

= I0 exp

[
(k − 1) ln(1− p) +

m∑
i=1

λiTi(t)

]
,

≤ I0 exp (−ct).
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Thus, Q̄ is exponentially I-stable in ΩSIR. Then, from the limiting equations of
system (5.31) with I = 0, it is apparent that the solution converges to the disease-
free solution Q̄ in the domain ΩSIR.

The condition (k − 1) ln(1 − p) +
∑m

i=1 λiTi(t) ≤ −ct is not easily verified.
To improve this, consider the situation where Ri ≥ 1 for all i, which implies
λi := βi − µ − g ≥ 0 for all i. For many diseases, this is the case, see Table 2.1.
A switching signal is considered to have a dwell-time if there exists an η > 0 such
that tk − tk−1 ≥ η. Define the set of all such switch rules to be Sdwell ⊂ S. This
is reasonable biologically, as the contact rate should not switch too quickly, for ex-
ample, seasonal switching. Then, in this scenario, more easily verifiable conditions
can be established.

Theorem 5.2.2. Suppose 0 ≤ pi < 1 for all i and R1, . . . ,Rm ≥ 1. If the switch
rule satisfies σ ∈ Sdwell and there exists a constant α > 1 such that ln(α(1− pi)) +
η(µ + g)(Ri − 1) ≤ 0 for all i then the solution of system (5.31) converges to the
disease-free solution Q̄, which is asymptotically I-stable, in the domain ΩSIR.

Proof. This proof is motivated from one in [23]. Let ik follow the switching rule
σ ∈ Sdwell. Then, for t ∈ (tk−1, tk], ik = σ(t) and,

İ = βiSI − gI − µI ≤ (βik − µ− g)I = λikI, (5.36)

where λik := βik − µ− g. Notice Ri ≥ 1 for all i implies λi ≥ 0. Since İ ≤ λikI, for
t ∈ (tk−1, tk]:

I(t) ≤ I(tk−1
+) exp[λik(t− tk−1)], (5.37)

Thus, since I ≥ 0 for all t ≥ 0, I is bounded in the 1-norm, based on the effects of
the switching rule. Furthermore, immediately after each tk,

I(tk
+) = (1− pik)I(tk) (5.38)

Now apply (5.37) and (5.38) successively on each subinterval.

For t ∈ (0, t1]:
Using (5.37), I(t) ≤ I0 exp[λi1t] hence I(t1) ≤ I0 exp [λi1t1].
Using (5.38), I(t1

+) = (1− pi1)I(t1).
Combining gives I(t1

+) ≤ (1− pi1)I0 exp [λi1t1] .

For t ∈ (t1, t2]:
Using (5.37), I(t) ≤ I(t+1 ) exp [λi2(t− t1)] ≤ I0 exp [λi1t1 + λi2(t− t1)].
Using (5.38), I(t2

+) = (1− pi2)I(t2).
Combining gives I(t2

+) ≤ (1− pi1)(1− pi2)I0 exp [λi1t1 + λi2(t2 − t1)] .
...
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For t ∈ (tk−1, tk]:

I(t) ≤ I0(1− pi1) · · · (1− pik−1
) exp [λi1t1 + . . . + λik(t− tk−1)],

I(t) ≤ I0(1− pi1) · · · (1− pik−1
) exp [λi1t1 + . . . + λik(t− tk−1)],

≤ I0(1− pi1) · · · (1− pik−1
) exp [λi1η + . . . + λikη],

= I0
1

αk(1− pik)
α(1− pi1)e

(λi1
η) · · ·α(1− pik)e

(λik
η),

= I0
1

αk(1− pik)
α(1− pi1)e

(µ+g)(Ri1
−1)η · · ·α(1− pik)e

(µ+g)(Rik
−1)η,

≤ I0
1

αk(1− pik)
,

Thus, Q̄ is asymptotically I-stable. Then, from the limiting equations of system
(5.31) with I = 0, it is apparent that the solution converges to the disease-free
solution Q̄ in the domain ΩSIR.

Now consider the case where the switching signal is periodic, that is tk− tk−1 =
τk, with τk+m = τk. Further, assume that Ri = Rk, on the interval (tk−1, tk],
Rk+m = Rk, and pi = 0 unless t = kT where T := τ1 + . . . + τm, k = 1, 2, . . ., and
pi = p. The period of the switching signal is T , hence, pulses are applied at the
end of each period. Denote the set of all periodic switching signals for impulsive
switched systems that satisfy the above as Speriodic-pulse ⊂ S.

Theorem 5.2.3. If switching rule is periodic σ ∈ Speriodic-pulse and

ln(1− p)

µ + g
+ (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0,

then the solution of system (5.31) converges to the disease-free solution Q̄, which
is asymptotically I-stable, in the domain ΩSIR.

Proof. First we show convergence. Since there are no impulses applied until after
one period, T , is complete, proceed from equation (3.12) from the proof of Theorem
3.1.2, for t ∈ (0, T ]:

I(t) ≤ I0 exp [λ1τ1 + . . . + λm(t− (T − τm))], (5.39)

where λi := βi − µ− g. Immediately after T , apply the first impulse,

I(T+) ≤ I0(1− p) exp [λ1τ1 + . . . + λmτm],

= I0 exp [ln(1− p) + λ1τ1 + . . . + λmτm],

= ηI0,

where η := exp [ln(1− p) + λ1τ1 + . . . + λmτm] < 1 from the conditions of the the-
orem. Similarly, it can be shown that I(hT+) ≤ ηI((h − 1)T+) for any integer
h = 1, 2, . . .. Then I(hT+) ≤ ηI((h− 1)T+) ≤ η(ηI((h− 2)T+)) ≤ . . . ≤ ηhI0, and
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hence the sequence {I(hT+)} converges to zero as h → ∞. Furthermore, without
loss of generality, take t ∈ (tk−1, tk] with hT < tk ≤ (h + 1)T ,

I(t) ≤ I(hT+)(1− p)h exp[λ1τ1 + . . . + λk(t− tk)]. (5.40)

Since the exponents are finite numbers, I(t) ≤ I(hT+)(1−p)heM for some constant
M > 0 where the sequence {I(hT+)} is converging to zero, hence the solution is
converging to zero as h →∞.

It remains to show stability of the solution. We will look at the worst case
scenario for growth of the disease in a periodic scenario, with the disease spreading
fastest at the beginning: suppose that R1, . . . ,Rm ≥ 1 and Rr+1, . . . ,Rm < 1,
then it follows that λ1, . . . , λr ≥ 0 and λr+1, . . . , λm < 0. Then, during the interval
(0, T ], the maximum value I can attain is

Imax = I0e
λ1τ1+...+λrτr := I0B.

For any ε > 0, choose δ = ε/B and suppose that I0 < δ. It follows that in the
interval (0, T ], I ≤ Imax = I0B < δB = ε. More generally, in the interval (tk−1, tk],
where hT < tk ≤ (h+1)T , it follows that I(t) ≤ I(hT+)(1−p)hB < I0(1−p)hB <
δB = ε. Hence, the solution is also stable.

Therefore, Q̄ is asymptotically I-stable. Then, from the limiting equations of
system for (5.31) with I = 0, it is apparent that the solution converges to the
disease-free solution Q̄ in the domain ΩSIR.

Recall the condition for eradication for the non-pulse treatment system (4.1)
for a periodic switching rule in Theorem 4.1.1: (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0.
By inspection, it is now easier to obtain eradication of the disease using the pulse
treatment. This follows from the fact that the pulse treatment is affecting the
disease eradication criteria with the ln(1 − p) < 0 terms, which are helping to
achieve eradication, as expected. In the case of periodic switching, the conditions
on p required for eradication are easier to evaluate. The theorem defines a critical
value for the pulse treatment that must be achieved in order to eradicate the disease,
p must satisfy

(1− p)e(µ+g)[(R1−1)τ1+...+(Rm−1)τm] < 1,

and hence, for eradication,

p > 1− e−(µ+g)[(R1−1)τ1+...+(Rm−1)τm] := pcrit.

5.2.2 Switched SIR Model with Pulse Vaccination and Pulse
Treatment

Consider now the control strategy of applying impulsive vaccinations to a fraction
of the susceptible population at certain times tk, as well as impulsive treatments.
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As in Section 2.2.4, the motivation for this strategy is to notice that in the switched
SIR model (4.1), İ = I(βiS−µ− g) < 0 if S < (µ + g)/βi := Scrit. That is, so long
as size of the susceptible population is controlled so that it is always less than some
critical value Scrit, then İ < 0 for all t ≥ 0. This means the infection will burn
out and there will be no epidemic. Apply impulses periodically every T time units
to a portion p of the susceptible population (with vaccinations) and a portion p of
the infected population (with treatments), giving them permanent immunity, and
sending them to the immune class R. Hence this scheme combines pulse vaccination
with pulse treatment. In this case, demand that the switching rule σ ∈ Speriodic-pulse.
Hence, after m intervals an impulse is applied and the switching rule repeats itself.
Since the motivation for periodicity of the switching rule is the seasonal (yearly)
variations in the contact rate, this means applying a vaccination pulse yearly, which
is not unrealistic. Apply this technique to the switched SIR model (4.1):

Ṡ = µ− βiSI − µS, t ∈ (tk−1, tk]

İ = βiSI − gI − µI,

Ṙ = gI − µR,

S(t+) = S(t)− pS(t), t = kT

I(t+) = I(t)− pI(t),

R(t+) = R(t) + pS(t) + pI(t),

(5.41)

where k = 1, 2, . . . , and i ∈ {1, . . . ,m} follows the switching rule σ ∈ Speriodic-pulse,
that is, T = τ1 + . . . + τm. The initial conditions are S(0+) = S0 > 0, I(0+) =
I0 > 0, R(0+) = R0 and the variables have been normalized, since the population
is constant. The meaningful domain is ΩSIR, which is invariant to the switched
system, since

{Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ > 0, İ | I=0 = 0, Ṙ |R=0 = gI ≥ 0,

and the impulsive difference equations will not move the solution to outside the
meaningful domain. The basic reproduction numbers are

Ri =
βi

µ + g
, (5.42)

unchanged from the non-pulse switched SIR model (4.2). Observe that the usual
disease-free solution (1, 0, 0) is no longer an equilibrium point of the system. As in
Section (2.2.4), motivated by the fact that I = 0 is an equilibrium solution to the
differential equation I ′, begin the analysis of this system by showing the existence
of a periodic disease-free solution, denoted Q(t), in which I(t) = 0 for all t ≥ 0.
Under these conditions, the system reduces to:

Ṡ = µ(1− S), t ∈ ((k − 1)T, kT ]

Ṙ = −µR,

S(t+) = S(t)− pS(t), t = kT

R(t+) = R(t) + pS(t).

(5.43)
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where T = τ1 + . . . + τm. This reduced system is not a switched system, and
was shown to asymptotically converge to the periodic disease-free solution Q(t) =

(S̃(t), 0, R̃(t)) in Section (2.2.4), where, from equation (2.38), S̃(t) = 1− pe−µ(t−(k−1)T )

1− (1− p)e−µT
, (k − 1)T < t ≤ kT

R̃(t) = 1− S̃(t).

(5.44)

Theorem 5.2.4. If the switching rule is periodic σ ∈ Speriodic-pulse and

ln(1− p)

µ + g
+ (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0,

then the solution of system (5.41) will converge to the periodic disease-free solution
Q(t), which is asymptotically I-stable, in the meaningful domain ΩSIR.

Proof. Let ik follow the periodic switching rule σ ∈ Speriodic-pulse. Then, for t ∈
(tk−1, tk], ik = σ(t) and,

İ = βiSI − gI − µI ≤ (βik − µ− g)I = λikI, (5.45)

where λik := βik − µ − g. Additionally, after each time T : I(kT+) = I(kT ) −
pI(kT ). Then, from the proof of Theorem 5.2.3, beginning at equation (5.39), Q(t)
is asymptotically I-stable. The limiting system then becomes

Ṡ = µ(1− S), t ∈ ((k − 1)T, kT ]

Ṙ = −µR,

S(t+) = S(t)− pS(t), t = kT

R(t+) = R(t) + pS(t).

where T = τ1 + . . . + τm. This is the reduced system (5.43), which converges to the
periodic disease-free solution Q(t) in the meaningful domain ΩSIR.

Notice that when the system is in equilibrium, it is a non-switched system,
hence the cost of this scheme is comparable to the cost of the constant vaccination
of newborns scheme (5.1) (see Section 2.2.4). Though, when the infectives have not
been treated, there will be an extra cost incurred in their pulse treatment, hence
this model should be costlier, from a standpoint of number of individuals which
must be vaccinated or treated, compared to the constant vaccination of newborns
scheme.

The advantage of this scheme is that it is possible to eradicate a disease with
a relatively lower vaccination rate p as compared to the constant control schemes.
This comes from the fact that if the inter-pulse period is relatively short, then
the pulse scheme can be applied often enough such that the susceptibles are kept
below a critical threshold. In the case of constant control schemes, as discussed in
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Section 2.2.4, because of the efficacy of the vaccine, the vaccination levels required
for eradication might be unrealistically high and not feasible.

Finally, the constraint in Theorem 5.2.4 implicitly defines a critical vaccination
portion pcrit such that

p > 1− e−(µ+g)[(R1−1)τ1+...+(Rm−1)τm] := pcrit,

with reproduction numbers (5.42), in order for this pulse control scheme to achieve
disease eradication.

5.2.3 Switched SIR Model with Pulse Control and Vaccine
Failure

Two important aspects should be considered with regards to a switched pulse vacci-
nation and treatment model such as (5.41): the temporal duration and the efficacy
[58]. With regards to the temporal duration of the vaccine, assume for this model
that the immune period is finite. As for the efficacy, no vaccine can guarantee im-
munization, indeed, the probability of a vaccinated person becoming infected after
a critical contact with an infected individual should be considerably reduced, but
it is not zero [58]. This is a serious problem in vaccination programs, for example,
it is particularly relevant in the case of vaccination against measles [58].

We introduce these two aspects into a pulse control SIR model as in [58]: use
a reduced force of infection for the vaccinated to become infected, g(I) = ωβiI,
which is reduced by a factor 0 ≤ ω ≤ 1 with respect to the regular force of infection
g(I) = βiI for the susceptible individuals. In the limit ω = 1, the vaccine is
completely failing and when ω = 0 the vaccine has a perfect efficacy. Since the
duration of the immune period is finite, suppose individuals in the vaccinated class
V have immune period 1/θ, with θ > 0 the removal rate of the immunity, and hence
θV is the flux of vaccinated subjects into the susceptible class. Then, combined
with the SIR model with switched contact rate βi (4.1), the model is

Ṡ = µ− βiSI − µS + θV, t ∈ (tk−1, tk]

İ = βiSI + ωβiV I − gI − µI,

Ṙ = gI − µR,

V̇ = −ωβiV I − µV − θV,

S(t+) = S(t)− pS(t), t = kT

I(t+) = I(t)− pI(t),

R(t+) = R(t),

V (t+) = V (t) + pS(t) + pI(t),

(5.46)

where i ∈ {1, . . . ,m} follows a switching rule σ ∈ Speriodic-pulse, T = τ1 + . . . + τm,
and the variables have been normalized since the population is constant. The
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initial conditions are S(0+) = S0 > 0, I(0+) = I0 > 0, R(0+) = R0, V (0+) = V0.
The meaningful domain, which is invariant, is ΩSIRV = {(S, I, R, V ) ∈ R4

+| S + I +
R + V = 1}. This can be seen since

{Ṡ + İ + Ṙ + V̇ } |S+I+R+V =1 = 0,

Ṡ
∣∣∣S=0 = µ + θV > 0, İ

∣∣∣I=0 = 0, Ṙ
∣∣∣R=0 = gI ≥ 0, V̇ |V =0 = 0,

and, further, the impulsive difference equations will not move the solution to outside
the meaningful domain. Define the reproduction numbers

Ri =
βi(1 + ω)

µ + g
(5.47)

for each subsystem. In seeking a disease-free solution, set I = 0 and observe that
R converges to zero in this case, hence the limiting system becomes

Ṡ = (µ + θ)(1− S), t ∈ ((k − 1)T, kT ]

V̇ = −(µ + θ)V,

S(t+) = S(t)− pS(t), t = kT

V (t+) = V (t) + pS(t).

(5.48)

where T = τ1 + . . . + τm. This reduced system is not a switched system, and
a similar approach as in Section (2.2.4) gives that this system converges to the
periodic solution, for (k − 1)T < t ≤ kT , S̃(t) = 1− pe−(µ+θ)(t−(k−1)T )

1− (1− p)e−(µ+θ)T
,

Ṽ (t) = 1− S̃(t).

(5.49)

Hence, system (5.46) has the periodic disease-free solution Q(t) = (S̃(t), Ĩ(t), R̃(t), Ṽ (t)) =

(S̃(t), 0, 0, 1− S̃(t)).

Theorem 5.2.5. If the switching rule is periodic σ ∈ Speriodic-pulse and

ln(1− p)

µ + g
+ (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0

then the solution of system (5.46) converges to the periodic disease-free solution
Q(t), which is asymptotically I-stable, in the meaningful domain ΩSIRV .

Proof. Let ik follow the periodic switching rule σ ∈ Speriodic-pulse. Then, for t ∈
(tk−1, tk], ik = σ(t) and,

I ′ = [βik(S + ωV )− (g + µ)]I,

≤ [βik(1 + ω)− (µ + g)]I,

= λikI,
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where λik := βik(1 + ω) − (µ + g). Additionally, after each time T : I(kT+) =
I(kT ) − pI(kT ). Then, from the proof of Theorem 5.2.3, beginning at equation
(5.39), Q(t) is asymptotically I-stable. Then the limiting equations are

Ṡ = µ(1− S) + θV, t ∈ ((k − 1)T, kT ]

Ṙ = −µR,

V̇ = −µV − θV,

S(t+) = S(t)− pS(t), t = kT

R(t+) = R(t),

V (t+) = V (t) + pS(t).

where k = 1, 2, . . . , and T = τ1 + . . . + τm. By inspection, R converges to zero,
and the equations for S and V form the reduced system (5.48), therefore, the
solution converges to the periodic disease-free solution Q(t) of system (5.46) in the
meaningful domain ΩSIRV .

The constraint on the reproduction numbers in Theorem 5.2.5 implicitly defines
a critical vaccination portion pcrit such that

p > 1− e−(µ+g)[(R1−1)τ1+...+(Rm−1)τm] := pcrit,

with reproduction numbers (5.47), is required in order for this pulse control scheme
to achieve disease eradication.

5.2.4 Switched SIR Model with Pulse Control and a Re-
duced Infective Class

There is another possibility in a model of vaccine failure, instead of vaccine failures
causing infection, suppose that vaccinees who are infected become infectious, but
with a reduced level of infectivity. This leads to, from [58], the addition of a second
class of infected individuals, who have a reduced contact rate βvi < βi, with βvi > 0,
and an increased removal rate gv ≥ g > 0. Represent this reduced class by Iv. These
assumptions are physically reasonable, the individuals in the reduced infective class
should have a reduced level of infectivity, and hence contact rate, and should also
have a reduced infectious period, hence an increased removal rate. Assume, as
in the model (5.46), reduced forces of infection for the vaccinated individuals to
become infected: g(I) = ωβiI, and g(Iv) = ωβviIv, which are reduced by a factor
0 ≤ ω ≤ 1 with respect to the regular force of infection βiI for the susceptible
individuals. In the limit ω = 1, the vaccine is completely failing and when ω = 0 the
vaccine has a perfect efficacy. Assume that individuals who have been vaccinated
successfully, represented by the class V , only have temporary immunity, that is,
assume an average vaccine-induced immunity period 1/θ. Applying this scheme to
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the switched SIR model (4.1) gives:

Ṡ = µ− (βiI + βviIv)S − µS + θV, t ∈ (tk−1, tk]

İ = S(βiI + βviIv)− gI − µI,

İv = ωV (βiI + βviIv)− gvIv − µIv,

Ṙ = gI + gvIv − µR,

V̇ = −ωV (βiI + βviIv)− µV − θV,

S(t+) = S(t)− pS(t), t = kT

I(t+) = I(t)− pI(t),

Iv(t
+) = Iv(t)− pI(t),

R(t+) = R(t),

V (t+) = V (t) + pS(t) + pI(t) + pIv(t),

(5.50)

where k = 1, 2, . . . , i ∈ {1, . . . ,m} follows a switching rule σ ∈ Speriodic-pulse with
T = τ1 + . . . + τm, and the variables have been normalized since the population is
constant. The initial conditions are S(0+) = S0 > 0, I(0+) = I0 > 0, Iv(0

+) = Iv0 ,
R(0+) = R0, V (0+) = V0. The meaningful domain, which is invariant, is

ΩSIIvRV = {(S, I, Iv, R, V ) ∈ R5
+| S + I + Iv + V + R = 1}.

The invariances follows from

{Ṡ + İ + İv + Ṙ + V̇ } |S+I+Iv+R+V =1 = 0,

Ṡ
∣∣∣S=0 = µ + θV > 0, İ

∣∣∣I=0 = βviSIv ≥ 0, İv |Iv=0 = ωβviV Iv ≥ 0,

Ṙ
∣∣∣R=0 = gI + gvIv ≥ 0, V̇ |V =0 = 0.

Further, the impulsive difference equations will not move the solution to outside
the meaningful domain. Define the reproduction numbers

Ri =
βi(1 + ω)

µ + g
(5.51)

for each subsystem. Again, seek a disease-free solution by setting I = 0, Iv = 0,
and, following the procedure as in Section 5.2.2, the disease-free solution is the
periodic solution Q(t) = (S̃(t), Ĩ(t), Ĩv(t), R̃(t), Ṽ (t)) = (S̃(t), 0, 0, 0, 1− S̃(t)), with

S̃(t) as in (5.49).

Theorem 5.2.6. If the switching rule is periodic σ ∈ Speriodic-pulse and

ln(1− p)

µ + g
+ (R1 − 1)τ1 + . . . + (Rm − 1)τm < 0

then the solution of system (5.50) converges to the periodic disease-free solution
Q(t), which is asymptotically (I, Iv)-stable, in the meaningful domain ΩSIIvRV .
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Proof. Let ik follow the periodic switching rule σ ∈ Speriodic-pulse. Then, for t ∈
(tk−1, tk], ik = σ(t) and,

(I + Iv)
′ = [βik(S + ωV )− (µ + g)]I + [βvik(S + ωV )− (µ + gv)]Iv,

≤ [βik(S + ωV )− (µ + g)](I + Iv),

≤ [βik(1 + ω)− (µ + g)](I + Iv),

= λikI,

where λik := βik(1 + ω) − (µ + g). Additionally, after each time T : I(kT+) +
Iv(kT+) = I(kT ) + Iv(kT )− p(I(kT ) + Iv(kT )). Then, from the proof of Theorem
5.2.3, beginning at equation (5.39), it follows that Q(t) is asymptotically (I, Iv)-
stable. The limiting equations of the system then are

Ṡ = µ(1− S) + θV, t ∈ ((k − 1)T, kT ]

Ṙ = −µR,

V̇ = −µV − θV,

S(t+) = S(t)− pS(t), t = kT

R(t+) = R(t),

V (t+) = V (t) + pS(t).

where T = τ1 + . . . + τm. By inspection, R converges to zero, and the equations
for S and V form the reduced system (5.48), therefore, the solution converges to
the disease-free periodic solution Q(t) of system (5.50), in the meaningful domain
ΩSIIvRV .

Again, the constraint in Theorem 5.2.6 implicitly defines a critical vaccination
portion pcrit such that

p > 1− e−(µ+g)[(R1−1)τ1+...+(Rm−1)τm] := pcrit,

with reproduction numbers (5.51), is required in order for this pulse control scheme
to achieve disease eradication.

5.3 Simulations

For the switching rule in these simulations, motivated by practical applications, we
use

σ(t) =

{
1 during winter,

2 otherwise,
(5.52)

as in Section 3.5. The variables in these simulations are normalized by total popu-
lation, the initial condition is taken to be t0 = 0, and the units are non-dimensional.
Initial conditions are S0 = 0.75, I0 = 0.25, R0 = 0 unless otherwise specified.
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Figure 5.1: Constant Vaccination of Newborns Switched System (5.1).
Parameters used are motivated by the measles parameters of [66], β1 = 18, β2 = 3,
g = 1, µ = 0.1. This gives 〈Rσ〉 = 6.136 for t large (same parameters as Figure
4.10 with p = 0). With p = 0.85 (pcrit = 0.84), we get 〈Rp

σ〉 = 0.920 for t large, and
the disease is eradicated.
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Figure 5.2: Constant Vaccination of Susceptibles Switched System (5.4).
Parameters are the same as in Figure 5.1 except now the vaccination rate is p = 0.57
(pcrit = 0.51), leading to 〈Rp

σ〉 = 0.92 for t large and the disease is eradicated.
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Figure 5.3: Constant Treatment of Infectives Switched System (5.8). Pa-
rameters are the same as in Figure 5.1 except now, even with p = 1, we have that
〈Rp

σ〉 = 3.214 for t large. It seems as though this scheme is less effective than the
constant vaccination schemes, where eradication is possible.
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Figure 5.4: Constant Vaccination Switched System with Progressive Im-
munity (5.17). V0 = 0 and parameters are β11 = 18, β12 = 3 for the susceptibles
contracting the disease, β21 = 1, β22 = 0.17 for the vaccinated contracting the dis-
ease, and g = 1, µ = 0.1, γ = 1. The vaccination rate is p = 0.8 and this leads to
〈Rp

σ〉 = 0.71 for t large and the disease is eradicated. If p = 0 then we would have
〈Rp

σ〉 = 6.136 for large t and the disease would persist.
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Figure 5.5: Screening Process in Switched Multi-city System (5.26). Initial
conditions are S1,0 = 0.65, I1,0 = 0.2, V1,0=0, S2,0 = 0.15, I2,0 = 0, V2,0 = 0.
Parameters are β1 = 2, β2 = 0.4, α1 = α2 = 0.4, γ = 1, f = 1, µ = 0.02, g = 1,
and the screening rate is p = 0.3, that is, 30% of infected individuals travelling are
properly screened. There are no false positive screens. The screening process leads
to 〈Rp,non

σ 〉 = 0.947 for large t and the disease is eradicated by Theorem 5.1.8. If
p = 0 then we would have 〈Rnon

σ 〉 = 1.176 for large t and the disease would persist
(see Figure 4.10).
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Figure 5.6: Switched SIR Model with Pulse Vaccination and Treatment
(5.41). Parameters used are β1 = 6, β2 = 1, g = 1, µ = 0.1. The top picture is
the switched SIR system (4.1) with p = 0, and 〈Rσ〉 = 2.046 for large t; we see the
disease persists. In the bottom picture, we use p = 0.7 (pcrit = 0.68), τ1 = 0.25,
and τ2 = 0.75 which implies we pulse vaccinate and treat 70% of susceptibles and
infectives every 1 time unit. The disease is eradicated which follows from Theorem
5.2.4.
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Figure 5.7: Switched SIR Model with Pulse Vaccination and Treatment
and Vaccine Failure (5.46). Parameters used are β11 = 4, β12 = 0.5, g = 1,
θ = 1, µ = 0.1 with vaccine failure rate ω = 0.5. Then, 〈Rσ〉 = 1.7045 for t large
and the disease persists. Apply pulse vaccination and treatment with p = 0.85
(pcrit = 0.847) and the disease is eradicated by Theorem 5.2.5.
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Figure 5.8: Switched SIR Model with Pulse Vaccination and Treatment
and a Reduced Infective Class (5.50). Parameters used are β11 = 4, β12 = 0.5,
g = 1, θ = 1, µ = 0.1 with vaccine failure rate ω = 0.5. Now, we also have reduced
infective class, use βv1 = 2 < β1, βv2 = 0.2 < β2, gv = 3 > g. Then, 〈Rσ〉 = 1.7045
for large t and the disease persists. Apply pulse vaccination and treatment with
p = 0.85 (we need pcrit = 0.847) and the disease is eradicated by Theorem 5.2.6.
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Chapter 6

Switched Epidemiological Models
with General Nonlinear Incidences

As discussed in Chapter 1, a vital issue in the study of an epidemic is its transmis-
sion, which depends on how infectious a disease is and on the population behaviour
[60]. These two aspects are summarized in what is commonly referred to as the
incidence rate. Recall from Section 2.2 that the horizontal incidence rate in an
epidemiological model is the flow rate of susceptible individuals from the suscep-
tible class into the infected class (or into the exposed class if the latent period is
significant and not being ignored) because of direct contact between susceptible
and infectious individuals. A vital part of vaccination strategy planning is deter-
mining the minimum number of individuals that need to be vaccinated in order
to eradicate the disease at hand. In medical literature, there are some reported
cases in which high levels of vaccination have not resulted in disease eradication
[60]. These unexpected failures might be due to the inefficacy of the vaccine, or
due to an unusually higher contact rate, but it has been pointed out it could also
be because the nonlinear dependence on the number of infected individuals was
not properly accounted for in the incidence rate [60]. Hence, it is important to
investigate models with nonlinear incidence rates.

As throughout the thesis, we denote Sc, Ic the number of individuals in the sus-
ceptible class and infected class, respectively, S and I the fractions of individuals
in the susceptible and infected class, respectively, and N is the total population.
The pseudo mass-action incidence rate f(Sc, Ic) = ηScIc, which is linearly depen-
dent with respect to the number of infected individuals, might be unrealistic in
scenarios for certain diseases, for example, it is not consistent with the known re-
sult that daily contact patterns are largely independent of community size [28]. On
the other hand, the standard incidence rate f(Sc, Ic) = βScIc/N is consistent with
this observed result, though it is not perfect either. One possible need for modi-
fication of this incidence rate is the inclusion of a saturating effect, that is, when
the fraction of infectives is relatively high in a population, exposure to the disease
is virtually certain and the transmission rate might respond slower than linear to
further increases in the number of infectives (a saturating effect) [33]. Further, the
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underlying assumption of homogeneous mixing may be invalid [33]. This effect was
observed in a study on the spread of the cholera epidemic in 1973 [33]. Finally, large
epidemics also certainly induce psychological effects: when there is a high fraction
of infected individuals in a population, the susceptibles, wary of the disease, will go
to extra lengths to avoid infection, resulting in a possible decrease in the incidence
rate as the infective fraction increases [60].

In the literature, there have been many studies on nonlinear incidence rates aside
from the standard incidence, some of which we detail here. One common nonlinear
incidence rate which has been studied takes the form f(S, I) = βIpSq, with p, q > 0
[34]: The case p ≤ 1 represents the saturation effect, since, when the fraction of
infectives is relatively high, transmission of the disease will respond slower than
linearly with respect to I. If p > 1, the incidence rate is convex with respect to
I, which can arise in particular cases as a consequence of community effects but
is hardly common. There are many other examples of saturating incidence rates:
f(Sc, Ic) = βIc(1− kIc)Sc, k a constant, has been used, for example, in models for
measles [27].

f(Sc, Ic) =
βScIc

1 + kIc

was used in the modelling of cholera [27]. Other examples of saturation incidences
are f(S, I) = βSI/(1 + αS), α > 0, β > 0 [19], f(S, I) = SI(a− bE−vI) [60], and

f(S, I) =
kSI l

1 + αIh
,

which has a saturating behaviour for l = h, a maximum and then decreases when
l < h, and a saturating contact rate for h = l − 1 [60]. Some other interesting
examples of nonstandard incidence rates are f(S, I) = βSIp(1 − I)q−1 with p >
1, q ≥ 1, β > 0 [15], and f(S, I) = βSI(1 + vIp), β > 0, v > 0, p ≥ 0 [15], which
take into account the psychological effects of an epidemic [60].

A more general formulation is f(S, I) = g(I)S, where g(I) is called the force of
infection. For example, consider the family: g(I) = kI(1 + h(I)), h(0) = 0, h′(I) >
0, and h′′(I) ≤ 0 for I > 0 [60]. In the paper [60], more general classes of forces
of infection are considered: g(I, t) ≤ q(t)I such that q(t) = gI(0, t) > 0, as well as
generic forces of infection g(I, t) such that there exists a λ(t) > 0 with g(I, t) ≤
λ(t)I. For example, the force of infection

g(I) = kI

(
1 +

vI2

1 + vI2

)
has asymptote 2kI as I →∞ and satisfies g(I) ≤ 2kI [60].

In this chapter, models with switched incidence rates will be investigated, begin-
ning with a switched SIR model with a weakly nonlinear incidence rate in Section
6.1. Threshold conditions are also established for a switched SIR model with con-
cave nonlinear forces of infection. A more generalized switched epidemiological
model with weakly nonlinear incidence rate and contact switching is considered in
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Section 6.2. In Section 6.3, a switched SIR model with weakly nonlinear incidence
and pulse control is investigated. Finally, a more general epidemiological model
with weakly nonlinear incidence, contact switching and pulse control is considered
in Section 6.4.

6.1 Switched SIR Model with General Nonlinear

Incidences

One example of an incidence rate, different from the standard incidence rate as-
sumption, is the saturation incidence rate f(S, I) = βSI/(1+ νS), with 0 < ν < 1,
studied in, for example [19, 43, 61]. Notice f(0, I) = f(S, 0) = 0, f(S, I) > 0 for
S, I 6= 0 and fI , fS ≥ 0. Use this saturation incidence in replace of the standard
incidence in the switched SIR model (4.1),

Ṡ = µ− βiSI

1 + νS
− µS,

İ =
βiSI

1 + νS
− gI − µI,

Ṙ = gI − µR,

(6.1)

with i ∈ {1, 2, . . . ,m} following a switching rule σ ∈ S, initial conditions S(0) =
S0 > 0, I(0) = I0 > 0, R(0) = R0, and normalized variables since the population is
constant. The meaningful domain is

ΩSIR = {(S, I, R) ∈ R3
+| S + I + R = 1},

which is invariant to the system since

{Ṡ + İ + Ṙ} | S+I+R=1 = 0, Ṡ |S=0 = µ > 0, İ | I=0 = 0, Ṙ |R=0 = gI ≥ 0.

The basic reproduction numbers are

Ri =
βi

(µ + g)(1 + ν)

for each subsystem, and the disease-free equilibrium is Q̄ = (1, 0, 0).

Theorem 6.1.1. If 〈Rσ〉 < 1− ε for all t ≥ 0, with constant ε > 0 and switching
rule σ ∈ S, then the solution of system (6.1) converges to the disease-free solution
Q̄, which is exponentially I-stable, in the meaningful domain ΩSIR.

Proof. Let ik follow the switching rule σ(t). Then for t ∈ (tk−1, tk], ik = σ(t) and,

I ′ =
βiSI

1 + νS
− gI − µI ≤ (βik/(1 + ν)− µ− g)I = λikI,
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where λik := βik/(1 + ν) − µ − g. Then, by proof of Theorem 3.1.2, beginning at
equation (3.11), the disease-free equilibrium Q̄ of system (6.1) is exponentially I-
stable. By inspecting the system with I = 0, it is apparent that S and R converge
to one and zero, respectively. Hence, the solution converges to the disease-free
equilibrium Q̄ in the meaningful domain ΩSIR.

As outlined in the introduction to this chapter, there are many possible nonlinear
incidence rates, each of which have advantages and disadvantages depending on the
disease being modelled and the behaviour of the population. Motivated by this and
the illustration in system (6.1), assume that the incidence rate can change forms
f1(S, I), . . . , fm(S, I) by switching. That is, assume the horizontal incidence rate is
the switched function fi(S, I), with i ∈ {1, . . . ,m} which follows a switching rule
σ ∈ S. Apply this to the switched SIR model (4.1):

Ṡ = µ− fi(S, I)− µS + gI,

İ = fi(S, I)− gI − µI,

Ṙ = gI − µR,

(6.2)

with i ∈ {1, 2, . . . ,m}, initial conditions S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0,
and the variables have been normalized by the total population, which is constant.
From physical considerations, assume that fi(S, 0) = fi(0, I) = 0 for all (S, I) ∈
Ωl

SI = {(S, I) ∈ R2
+| S + I ≤ 1}, then meaningful domain ΩSIR is invariant to

system (6.2). The disease-free solution Q̄ = (S̄, Ī, R̄) = (1, 0, 0) is a common
equilibrium point of the system. From the non-switched version of system (6.2)
studied in [33], if

∂fi

∂I
> 0,

∂fi

∂S
> 0,

∂2fi

∂I2
≤ 0,

then there exist unique endemic equilibriums Q∗
i = (S∗i , I

∗
i ) for each subsystem

when Ri ≥ 1 [33], which are the solutions to

µ = fi(S
∗
i , I

∗
i ) + µS∗i + gI∗i , (µ + g)I∗i = fi(S

∗
i , I

∗
i ), R∗

i = 1− S∗i − I∗i . (6.3)

The basic reproduction numbers of this system are [33]:

Ri =
1

µ + g

∂fi(S̄, Ī)

∂I
. (6.4)

Recall the biological meaning of the reproduction number; it is the average num-
ber of secondary infections produced by a single infected individual in a wholly
susceptible population. Then this reproduction number makes sense intuitively,

∂fi(S̄, Ī)

∂I

represents the rate of change of the infectives present when the system is at its
disease-free solution and a single infective is introduced into a wholly suscepti-
ble population. Further, 1/(µ + g) normalizes the spread by the average disease-
adjusted lifetime of an infective person.
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Notice that many of the rates outlined in the first section in this chapter satisfy
the weakly nonlinear property f(S, I) ≤ βI, for some constant β > 0. Motivated
by this, we consider the non-physical reproduction numbers for system (6.2):

Rnon
i =

βi

µ + g
,

which might be too strict, but can be used to establish criteria for the eradication
of the disease.

Theorem 6.1.2. Assume fi(S, I) ∈ C1[Ωl
SI , R+] and fi(S, I) ≤ βiI for all (S, I) ∈

Ωl
SI and all i = 1, 2, . . . ,m. If 〈Rnon

σ 〉 < 1− ε for all t ≥ 0, with constant ε > 0 and
switching rule σ ∈ S, then the solution of system (6.2) converges to the disease-free
solution Q̄, which is exponentially I-stable, in the meaningful domain ΩSIR. If the
switching rule is periodic σ ∈ Speriodic and (Rnon

1 − 1)τ1 + . . . + (Rnon
m − 1)τm < 0,

then the solution of system (6.2) converges to the the disease-free solution Q̄, which
is asymptotically I-stable, in the meaningful domain ΩSIR.

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = fik(S, I)− gI − µI ≤ (βik − µ− g)I = λikI, (6.5)

where λik := βik − µ − g. Then, by proof of Theorem 3.1.2, starting at equation
(3.11), the disease-free equilibrium Q̄ of system (6.2) is exponentially I-stable in
the meaningful domain ΩSIR. Then, by looking at the limiting equations of system
(6.2) with I = 0, it is apparent that the solution converges to the disease-free
equilibrium Q̄. In the case that the switch signal is periodic, then it follows from
the bound (6.5) and the proof of Theorem 3.1.5 that the solution converges to
the disease-free equilibrium Q̄, which is asymptotically I-stable, in the meaningful
domain ΩSIR.

Next, consider the case where the incidence rates are not necessarily weakly
nonlinear, but instead the forces of infection, h(I) from f(S, I) = h(I)S, satisfy
a concavity condition. Recall that the set Sinf-dwell ⊂ S denotes the set of all
switching signals σ which have nonvanishing dwell times, that is, there exists a
η > 0, dependent on the specific solution of the switched system, such that

inf
k

tk − tk−1 ≥ η, (6.6)

where {tk} is the sequence of switching times associated to the switching signal.

Theorem 6.1.3. Assume fi(S, I) = hi(I)S with hi(0) = 0, hi(I) > 0 for I 6= 0,
hi(I) ∈ C1[[0, 1], R+], and

dhi

dI
> 0,

d2hi

dI2
≤ 0.

If R1, . . . ,Rm < 1 for a switching rule σ ∈ Sinf-dwell, then the solution of system
(6.2) converges to the disease-free solution Q̄, which is asymptotically (S, I)-stable,
in the meaningful domain ΩSIR.
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Proof. This proof follows similarly from the non-switched SIR model with concave
general nonlinear incidence rates [33]. Consider the Lyapunov function V (S, I) =
S−lnS+I−1, which is continuously differentiable for S ≥ ε. Define Ωε

SI = {(S, I) ∈
R2

+| S ≥ ε, S + I ≤ 1}, then V (1, 0) = 0 and V > 0 for (S, I) ∈ Ωε
SI \ {(1, 0)}.

Further,
∂V

∂S
= 1− 1/S,

∂2V

∂S2
= 1/S2,

∂V

∂I
= 1,

∂2V

∂I2
= 0,

which implies (S, I) = (1, 0) is the only minimum of the Lyapunov function in the
domain Ωε

SI . Take the time-derivative along solutions to the subsystem i:

dV

dt
= (1− 1/S)

dS

dt
+

dI

dt

= (1− 1/S) (µ− hi(I)S − µS) + hi(I)S − (µ + g)I,

= µ [(1− 1/S) (1− S)]︸ ︷︷ ︸
A

+(µ + g)I

(
hi(I)

(µ + g)I
− 1

)
︸ ︷︷ ︸

Bi

. (6.7)

First notice that since 0 ≤ S ≤ 1, (1 − 1/S)(1 − S) ≤ 0, and hence A < 0 for
ε ≤ S < 1 and A = 0 only if S = 1. Next, consider the Bi term. From the concavity
condition on hi, it follows that hi(I)/I ≤ ∂hi(0)

∂I
for all I > 0, hence, following [33],

hi(I)

(µ + g)I
≤ 1

µ + g

∂hi(0)

∂I
= Ri.

Thus Ri < 1 gives Bi < 0 for all i. Therefore, it follows that V ′ < 0 unless
(S, I) = (1, 0). Hence, V (S, I) is a common strict Lyapunov function. Since ε is
arbitrary, consider the limit ε → 0, then the disease-free solution is asymptotically
(S, I)-stable by Theorem 2.3.1 in ΩSIR. Further, by inspection of system (6.2) with
S = 1, I = 0, it is apparent that the solution will converge to the disease-free
equilibrium Q̄.

Example 6.1.1. Consider the switched SIR system (6.2) with general nonlinear in-
cidence rates fi(S, I) = hi(I)S with i ∈ {1, 2, 3, 4} following a dwell-time satisfying
switching rule σ ∈ Sinf-dwell. Consider the standard forces of infections h1(I) = β1I,
and h2(I) = β2I, and the saturating forces of infection h3(I) = β3 sin(πI/2) and
h4(I) = β4 sin(πI/2). Notice that for all i:

∂2hi

∂I2
≤ 0.

Hence by inspection, each fi satisfies the necessary conditions of Theorem 6.1.3.
Furthermore, the reproduction numbers are

R1 =
β1

µ + g
, R2 =

β2

µ + g
, R3 =

π

2

β3

µ + g
, R4 =

π

2

β4

µ + g
.

If R1,R2,R3,R4 < 1 then, by Theorem 6.1.3, the solution converges to the disease-
free solution Q̄, which is asymptotically (S, I)-stable, in the domain ΩSIR. This
example is illustrated Figure 6.1.
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Figure 6.1: Switched Concave Incidences Example. In the top image, parame-
ters are g = 1, µ = 0.01, β1 = 0.6, β2 = 0.2, β3 = 0.6, β4 = 0.2. The incidence rates
are f1 = β1SI, f2 = β2SI, f3 = β3S sin(πI/2) and f4 = β4S sin(πI/2). From t = 0
to t = 5, the standard incidence rates f1 and f2 are switched between seasonally.
After t = 5, the saturating incidence rates f3 and f4 are switched between season-
ally. Then the reproduction numbers are R1 = 0.594, R2 = 0.198, R3 = 0.933,
R4 = 0.311, hence all the conditions of Theorem 6.1.3 are satisfied and the disease
is eradicated. In the bottom image, the parameters are the same except β3 = 12,
which implies R3 = 18.66 and the disease is still eradicated.
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6.2 Switched General Epidemiological Model with

Weakly Nonlinear Incidences

Consider a more general epidemiological model now, based on a non-switched model
in [58]. Assume that there are susceptible and infective compartments, and that
susceptibles move into the infective class with horizontal incidence rate gi(I)S. As-
sume the birth rate is µ > 0, which is equal to the death rate. Assume that there
are nY other compartments Y1, Y2, . . . , YnY

which represent the various compart-
mental stages in the progression of the specific disease of interest. Assume that it
is possible for these Yj compartments to filter back into the susceptible class, with
a rate θj ≥ 0. Furthermore, assume that the infective class filters into the Yj com-
partments through a function Ψ(I, Y ). Assume that the spread of the disease in
compartments Yj are governed by a vector function Υ(S, I, Y ). Then, the switched
model is, 

Ṡ = µ− gi(I)S − µS +

nY∑
j=1

θjYj,

İ = gi(I)S − µI + Ψ(I, Y ),

Ẏ = Υ(S, I, Y ),

(6.8)

with i ∈ {1, 2, . . . ,m} following a switching rule σ ∈ S, Y ∈ RnY
+ , and initial

conditions S(0) = S0 > 0, I(0) = I0 > 0, Y (0) = Y0 ∈ RnY
+ . The variables have

been normalized by the total population so that S + I +
∑nY

j=1 Yj = 1. The force
of infections gi(I), i = 1, . . . ,m, are assumed to be sufficiently smooth functions
satisfying gi(0) = 0 and gi(I) > 0 for I > 0 from physical considerations. Assume
that Υ = (Υ1, Υ2, . . . , ΥnY

)T is a sufficiently regular vector function, such that
(Υ1(S, 0, Y ), . . . , ΥnY

(S, 0, Y ))T = −(f1(S, Y ), . . . , fnY
(S, Y ))T where fj ≥ 0 for all

S, Y for j = 1, . . . , nY . That is, Υ(S, 0, Y ) = −f(S, Y ) for some vector function
f ∈ RnY

+ that satisfies f ≥ 0 component-wise for all S, Y . Further, assume that
Υ1(S, I, 0), . . . , ΥnY

(S, I, 0) ≥ 0 for all S, I. Assume that Ψ(I, Y ) is a sufficiently
smooth scalar function that maps a vector to a real number and that Ψ(0, Y ) = 0.
Finally, assume θk ≥ 0 for k = 1, . . . , nY . For example, for the switched SIRS
model (4.12), gi(I) = βiI, θ1 = θ, Ψ(I, Y ) = −gI, Υ(S, I, Y ) = gI − µY , where
Y = R ∈ R+.

The condition S + I +
∑nY

j=1 Yj = 1 implicitly assumes that the functions satisfy
µ − µ(S + I) + Υ1 + Υ2 + . . . + ΥnY

+ Ψ +
∑nY

j=1 θjYj = 0. This, along with
the conditions on the functions outlined above, implies the meaningful domain
ΩSIY = {(S, I, Y ) ∈ R2+nY

+ | S + I +
∑nY

j=1 Yj = 1} is invariant, and hence the
model is physically and mathematically well-posed. From the assumptions on the
functions, the disease-free solution is

Q̄ = (1, 0, 0, . . . , 0︸ ︷︷ ︸
nY

).

Recall the notation Ωl
SI = {(S, I) ∈ R2

+| S + I ≤ 1}.
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Theorem 6.2.1. Assume gi ∈ C1[Ωl
SI , R+], gi(I) ≤ βiI for all i and Ψ(I, Y ) ≤

−CI, with C > 0 a constant. If 〈Rnon
σ 〉 < 1− ε for all t ≥ 0, with constant ε > 0,

switching rule σ ∈ S, and non-physical reproduction numbers

Rnon
i =

βi

µ + C
,

then the solution of system (6.8) converges to the disease-free solution Q̄ of sys-
tem (6.8), which is exponentially I-stable, in the meaningful domain ΩSIY . If the
switching rule is periodic σ ∈ Speriodic and (Rnon

1 − 1)τ1 + . . . + (Rnon
m − 1)τm < 0,

and the solution of system (6.8) converges to the disease-free solution Q̄, which is
asymptotically I-stable, in the meaningful domain ΩSIY .

Proof. Let ik follow the switching rule σ(t) ∈ S. Then for t ∈ (tk−1, tk], ik = σ(t)
and,

I ′ = gik(I)S − µI + Ψ(I, Y ) ≤ βikSI − µI − CI ≤ (βik − µ− C)I = λikI, (6.9)

where λik := βik−µ−C. Then, by proof of Theorem 3.1.2, beginning with equation
(3.11), Q̄ is exponentially I-stable. Then from Υ(S, 0, Y ) = −f(S, Y ), it is clear
that all the variables Y1, . . . , Yk converge to zero. And S = 1− I −

∑nY

j=1 Yj implies
S converges to one. Hence, the solution converges to the disease-free equilibrium
Q̄ in the meaningful domain ΩSIY . In the case that the switching rule is periodic,
then it follows from the bound (6.9) and the proof of Theorem 3.1.5 that the
solution converges to the disease-free solution, which is asymptotically I-stable, in
the meaningful domain ΩSIY .

6.3 Switched SIR Model with Pulse Vaccination

and Treatment and Weakly Nonlinear Inci-

dences

Now consider adding pulse treatment and pulse vaccination (see Section 5.2.2) to a
switched SIR model with general nonlinear incidence rates fi(S, I). The incidences
follow a switching rule, which is assumed to be periodic, that is, σ ∈ Speriodic-pulse.
The model then is,

Ṡ = µ− fi(S, I)− µS, t ∈ (tk−1, tk]

İ = fi(S, I)− gI − µI,

Ṙ = −µR + gI,

S(t+) = S(t)− pS(t), t = kT

I(t+) = I(t)− pI(t),

R(t+) = R(t) + pS(t) + pI(t),

(6.10)
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where k = 1, 2, . . ., i ∈ {1, . . . ,m} according to a switching rule Speriodic-pulse, T =
τ1 + . . . + τm, and we have normalized the variables by the total population (S +
I + R = 1), which is constant. The initial conditions are S(0+) = S0 > 0, I(0+) =
I0 > 0, R(0+) = R0. Notice that

{Ṡ + İ + Ṙ} |S+I+R=1 = 0, Ṡ |S=0 = µ > 0, İ | I=0 = 0, Ṙ |R=0 = gI ≥ 0,

and the impulsive difference equations do not move the solution to outside the
domain at the times kT , hence the domain is invariant to the switched system.
From physical considerations, assume that fi(S, 0) = fi(0, I) = 0, and fi(S, I) > 0,
for all (S, I) ∈ Ωl

SI = {(S, I) ∈ R2
+| S + I ≤ 1}. From these conditions, it follows

that there exists a periodic disease-free periodic solution Q(t) = (S̃(t), Ĩ(t), R̃(t)) =

(S̃(t), 0, 1− S̃(t)), given in (5.44). The basic reproduction numbers of this system
are [33]:

Ri =
1

µ + g

∂fi(S̄, Ī)

∂I
. (6.11)

Theorem 6.3.1. Assume fi(S, I) ∈ C1[Ωl
SI , R+] and fi(S, I) ≤ βiI for all i. If the

switching rule is periodic σ ∈ Speriodic-pulse and

ln(1− p)

µ + g
+ (Rnon

1 − 1)τ1 + . . . + (Rnon
m − 1)τm < 0,

where

Rnon
i =

βi

µ + g
,

then the solution of system (6.10) converges to the periodic disease-free solution
Q(t) of system (6.10), which is asymptotically I-stable, in the meaningful domain
ΩSIR.

Proof. Let ik follow the switching rule σ(t) ∈ Speriodic-pulse. Then, for t ∈ (tk−1, tk],
ik = σ(t) and,

İ = fi(S, I)− gI − µI ≤ (βik − µ− g)I = λikI,

where λik := βik−µ−g. Additionally, after each time T : I(kT+) = I(kT )−pI(kT ).
Then, from the proof of Theorem 5.2.3, beginning at equation (5.39), it follows that
Q(t) is asymptotically I-stable. The limiting system then becomes

Ṡ = µ(1− S), t ∈ ((k − 1)T, kT ]

Ṙ = −µR,

S(t+) = S(t)− pS(t), t = kT

R(t+) = R(t) + pS(t).

where T = τ1 + . . . + τm. This is the reduced system (5.43), which converges to
the periodic disease-free solution Q(t) of system (6.10) in the meaningful domain
ΩSIR.
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6.4 Switched General Epidemiological Model with

Pulse Control and Weakly Nonlinear Inci-

dences

Consider the general epidemiological model with switched forces of infections (6.8),
but now incorporate pulse vaccination and pulse treatment control schemes by
introducing a vaccinated class V . Here it is assumed that the immunity gained
through vaccination is permanent. Assume that the switching signal is periodic,
σ ∈ Speriodic-pulse.

Ṡ = µ− gi(I)S − µS +

nY∑
j=1

θjYj, t ∈ (tk−1, tk]

İ = gi(I)S − µI + Ψ(I, Y ),

Ẏ = Υ(S, I, Y ),

V = 1− S − I −
nY∑
j=1

Yj,

S(t+) = S(t)− pS(t), t = kT

I(t+) = I(t)− pI(t),

Y (t+) = Y (t),

V (t+) = V (t) + pS(t) + pI(t),

(6.12)

with i ∈ {1, 2, . . . ,m}, Y ∈ RnY
+ , initial conditions S(0+) = S0 > 0, I(0+) = I0 > 0,

Y (0+) = Y0, and the variables have been normalized so that S+I+V +
∑nY

j=1 Yj = 1.
Here T = τ1 + . . . + τm is one period of the periodic switching rule σperiodic-pulse.
From natural considerations, assume gi(0) = 0 and gi(I) > 0 for I > 0. Assume
that Υ, Ψ and θj satisfy the same conditions as in Section 6.2.

The meaningful domain for this system is ΩSIY V = {(S, I, Y ) ∈ R3+nY
+ | S +

I + V +
∑nY

j=1 Yj = 1}. The conditions on the functions outlined above, along with
the fact that the impulsive difference equations do not move solutions to outside
this meaningful domain, imply the domain ΩSIY V is invariant to this impulsive
switched system. Hence, the model is physically well-posed. There is not a disease-
free equilibrium point for this system, but motivated by I = 0 being a solution to
the differential equation for I, set I = 0 and seek the long-term solution,

Ṡ = µ− gi(I)S − µS, t ∈ (tk−1, tk]

V = 1− S,

S(t+) = S(t)− pS(t), t = kT

V (t+) = V (t),

(6.13)
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with T = τ1 + . . . + τm. This leads to the disease-free periodic solution

Q(t) = (S̃(t), Ĩ(t), Ỹ1(t), . . . , ỸnY
(t), Ṽ (t)) = (S̃(t), 0, 0, . . . , 0︸ ︷︷ ︸

nY

, 1− S̃(t)),

with S̃(t) given in (5.44). Recall the notation Ωl
SI = {(S, I) ∈ R2

+| S + I ≤ 1}.

Theorem 6.4.1. Assume gi ∈ C1[Ωl
SI , R+], gi(I) ≤ βiI for all i, and Ψ(I, Y ) ≤

−CI, for a constant C > 0. If the switching rule is periodic σ ∈ Speriodic-pulse and

ln(1− p)

µ + C
+ (Rnon

1 − 1)τ1 + . . . + (Rnon
m − 1)τm < 0,

where

Rnon
i =

βi

µ + C
,

then the solution of system (6.12) converges to the periodic disease-free solution
Q(t), which is asymptotically I-stable, in the meaningful domain ΩSIY V .

Proof. Let ik follow the switching rule σ(t) ∈ Speriodic-pulse. Then, for t ∈ (tk−1, tk],
ik = σ(t) and,

İ = gi(I)S − µI + Ψ(I, Y ) ≤ (βik − µ− C)I = λikI,

where λik := βik − µ − C. Additionally, after each time T : I(kT+) = I(kT ) −
pI(kT ). Then, from the proof of Theorem 5.2.3, beginning at equation (5.39), Q(t)
is asymptotically I-stable. Then, from Υ(S, 0, Y ) = −f(S, Y ), it is clear that the
variables Y1, . . . , YnY

converge to zero. The system then reduces to (6.13) and hence
the solution converges to the disease-free periodic solution Q(t) in the meaningful
domain ΩSIY V .
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Chapter 7

Conclusions and Future Directions

Infectious disease models are invaluable for both the building and testing of theories
[27]. Certainly, they are used in comparing, planning, implementing and evaluating
various detection, prevention and control programs [27]. Indeed, one of the most
important issues in epidemiology is the controlled eradication of a disease. In
this thesis we constructed and analyzed a new type of switched model for the
spread of diseases. Threshold criteria were established ensuring the eradication of
the disease and hence convergence to the so-called disease-free solution for many
different models. Considering the importance of control strategies, switched models
with control schemes were also considered. We looked at classical and interesting
models that are found in the mathematical epidemiology literature and analyzed
these models when switching was introduced to them.

In Chapter 3 the basic SIS model with switching was studied. This model, which
is intrinsically one-dimensional, was analyzed under basic switching, switching with
vertical transmission, switching with varying total population, and switching in
the contact rate, removal rate and birth rate. Threshold criteria ensuring the
eradication of the disease, that are mathematically straightforward to evaluate,
were established in the chapter. Proofs were also given for permanence of the
disease in the endemic case. Simulations were given at the end of the chapter.

In Chapter 4, multi-dimensional models with switching were studied. The most
common models, SIR, SIRS, and SEIR were all investigated with switching. We
also looked at a switched MSIR for transplacental antibody transfer, as well as SIR
models with varying population and some interesting switched multi-city transport
models. Similarly to Chapter 3, some intuitively reasonable, and straightforward
to evaluate, threshold criteria were established for the eradication of the disease.
Since these models were all intrinsically at least two dimensional, the persistence of
the disease was conjectured when the reproduction numbers were all greater than
one. Simulations were again given at the end of this chapter.

Chapter 5 investigated models with control schemes. In Section 5.1, the constant
control strategy of vaccination or treatment was considered with switching. This
investigation encompassed the switched SIR model with constant vaccination of
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newborns, constant vaccination of susceptibles, constant treatment of infectives
and constant treatment of infectives with waning immunity. Some other interesting
models were investigated with switching, such as constant control models with
progressive immunity and a screening process for infected individuals travelling in
a switched multi-city model. In Section 5.2, the pulse control strategy applied to
the SIR model was considered with the addition of switching in the contact rate.
Both pulse treatment and pulse vaccination systems were studied, including models
with vaccine failure and a reduced infective classes. Finally, some simulations were
given to illustrate the benefits of control strategies.

In Chapter 6, more general epidemiological models with switching were studied.
First, models with switched weakly nonlinear incidence rates were considered, as
well as models with switched concave forces of infection. A general epidemiology
with switching was also discussed, with general compartments and switching weakly
nonlinear forces of infection. Pulse control schemes applied to these generalized
switched epidemiological models were also investigated. Threshold criteria were
given that were relatively simple to verify.

There are many benefits to a switching approach in infectious disease models. It
allows us to approximate the contact rate to be a time-varying parameter without
needing to change the models into non-autonomous systems. Because of this, we
have relatively straightforward methods from switched systems theory to prove eas-
ily verifiable eradication criteria for time-varying contact rates. More specifically,
it enables us to vary the contact rates such that the reproduction numbers can be
larger than one temporarily, by using a proof for switched systems with stable and
unstable modes. In the temporally forced non-autonomous approach, β = β(t),
the analytical methods are more difficult and for some models and scenarios not
available. The switching rule considered can be restricted, for example to peri-
odic switching, to guarantee disease eradication for these switched epidemiological
models, including pulse control models with switching. These methods are easily
extendible so that any parameter can be approximated by a piecewise constant,
including the level of vaccination in the pulse control models.

Further, another benefit to a switched systems approach can be seen in Chapter
6, where switching in the structure of the incidence rate is considered. This is
an interesting possibility in that the horizontal incidence rate can change over
time, which could be advantageous for certain infectious disease scenarios. This is
not trivial in the non-switched approach, and to the author’s knowledge has not
been studied. Another flexibility is that the switching in these models does not
necessarily need to be time-dependent, it could also be state-dependent. That is,
the parameters or incidence rate structure could switch values based on the state
of the epidemiological compartments.

Since these methods are easily adapted to many different infectious disease
models, as illustrated in this thesis, there is a great possibility for future work with
this approach. Certainly, one area which could be investigated is infectious models
with delay. These systems of delay differential equations, which can arise from a
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latent period of the disease, lead to some interesting behaviour (see [19, 20, 21, 30,
61]). These models could be considered as delay switched systems, which is a new
area in switched systems that is being investigated currently (for example, see [5]).

Another area for future direction is to consider infectious models without the
homogeneous mixing assumption. Realistic epidemiological models include both
time and age as independent variables, as it has been observed that age groups mix
heterogeneously, risks from an infection may be age related, vaccination programs
often focus on specific ages, and epidemiological data is often age specific [28]. Then,
considering epidemiological models with age structure and switching would lead to
switched systems of partial differential equations, which is an area currently in its
infancy. Epidemiological models with age structure can be found in [28, 31, 55].

One disadvantage to the approaches taken in this thesis is that if the dynamic
structure of the disease spread is not captured in the differential equation for I, then
the method used in proofs for both stable and unstable subsystems fails to establish
threshold criteria. Other methods must be resorted to, such as multiple and com-
mon Lyapunov function techniques (for example, in the switched SEIR models in
Section 4.6). In the cases where a Lyapunov function is not easily constructed, con-
jectures were made (for example, in the constant vaccination of newborns scheme in
Section 5.1.1). Hence, one possible direction is to generalize the method for stable
and unstable subsystems to deal with models where the dynamics of the disease
are captured in other compartments.

Finally, epidemiological models with a spatial structure could be also considered
as switched systems. That is, models with both a temporal dependence and spatial
dependence. Such models lead to systems of partial differential equations which
may exhibit interesting phenomena, such as spatial waves (travelling waves), rather
than temporal waves [55].
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