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Abstract

We theoretically study the adhesion and membrane-mediated interaction of cylin-
drical colloids to a flat fluid membrane. There are two ways to approach this
problem. The first way, based on energy, requires finding the equilibrium shape of
the membrane given the placement of the particle(s). In order to do so, we need to
know how the energy of the surface depends on its shape (i.e. the surface Hamil-
tonian), as well as how the adhered colloid deforms the membrane. The second
way to approach this class of problems is “geometrical”, where forces between the
membrane-adhered particles are related directly to the geometry of the deformed
membrane via the surface stress tensor. The surface Hamiltonian allows finding the
stress at any point on the membrane in terms of local geometry. The force acting
on the colloid can then be found by integrating this surface stress tensor along any
contour enclosing the colloid.

In this thesis, using the approach based on free energy calculations, we look into
the problem of cylindrical colloids adhering to a membrane with fixed constant ad-
hesion energy between the membrane and the colloids. Angle-arclength parameter-
ization is used in order to treat the problem beyond small gradient approximation.
We present three different cases here: single cylinder adhering on a membrane, two
cylinders adhering on the same side of the membrane, and two cylinders adhering
on different sides of the membrane. For the single cylinder case we present a struc-
tural phase diagram to separate no wrapping, partial wrapping and closure states
and we compare it to the phase diagram obtained for a related system of spherical
colloids. For two cylinders adhered on the same side of the membrane we obtain
repulsive interaction and transition from shallow to deep wrapping as the cylinders
move apart from each other. We also look into a phase where two cylinders are
vertically stacked and discuss its energetics. For two cylinders adhering to the op-
posite sides of the membrane, attractive interaction is obtained in accordance with
previous results and we further show that in that case two cylinders are generally
in contact and a first-order transition from shallow to full wrapping is possible. In
the last section, we put a framework for the class of problems where the particle
is between the membrane and the supporting interface, where adhesion is assumed
between the interface and the membrane.
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Chapter 1

Introduction

Membranes play a crucial role in both structure and function of cells. Not only
the membranes serve to divide the different space regions but they allow communi-
cation between neighboring compartments. Most significantly the communication
is mediated by the passage of the ions or molecules between the compartments or
by the information transmitted through conformational changes induced in mem-
brane components [1]. Most of the fundamental biochemical functions in cells in-
volve membranes at some point, including processes like DNA replication, protein
biosynthesis, protein secretion, bioenergetics and hormonal responses.

1.1 What Are Membranes?

A membrane is a layer of material which serves as a separating barrier between two
compartments in biochemical environment. Membranes can be of various thickness,
but generally, for the problems we are interested in, it can be assumed that the
thickness of the membrane is much smaller than its length or width, and therefore
it can be represented as a two-dimensional sheet embedded in the three dimensional
space.

We are interested in a biological membrane, which is a bilayer of lipid-type
molecules, with occasional proteins embedded into the membrane. The basic build-
ing block of the bilayer is a lipid molecule, specifically phospholipids and cholesterol.
We are not very concerned about their chemical structure, but rather that the lipid
molecule is an amphiphile, meaning that it consists of two different parts: a hy-
drophilic head and a hydrophobic tail. In an aqueous environment, hydrophobic
tails cannot form hydrogen bonds and therefore water repels them in favor of bond-
ing with itself. However hydrophilic heads are able to form hydrogen bonds and
prefer to stay in the water. This causes amphiphiles to form into aggregate struc-
tures when their concentration in aqueous solution is above the critical value. At
that concentration, called critical micelle concentration, it becomes energetically
favorable for amphiphiles to sacrifice some of their entropy and form into aggre-
gates in order to shield their hydrophobic tails against the surrounding water by
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using the hydrophilic heads. Depending on the relative size of the hydrophilic head
and hydrophobic tail, the morphology of the aggregate can vary from spherical or
cylindrical micelles to bilayers or vesicles. We will be interested in one-component
lipid-bilayer structure shown on the figure 1.1, which is a double layer in which the
hydrophobic tails are sandwiched between two planes of hydrophilic head groups.

We considered the membrane from a mesoscopic point of view assuming that
lateral extension and all deformations are much larger than the thickness of the
membrane.

Figure 1.1: Schematic illustration of a lipid, consisting of a hydrophilic head (repre-
sented by a blue sphere) and a hydrophobic tail (shown in yellow) and illustration
of a lipid bilayer model obtain by coarse-grained simulations (images are taken from
references [2] and [3]).

1.2 Membrane Interaction with Colloids

Many biological processes are controlled by the interaction of macromolecules with
a cell membrane. One of the most important properties of cell membranes is their
ability to control transport mechanisms. The size of the particles (colloids, nanopar-
ticles, viruses etc.) being transported can vary from angstroms, for ions such as
Na+ or Ca2+, to micron-sized viral particles. For small particles the transport
through the cell membrane is mediated by membrane proteins acting as transport
channels [4]. For micron-sized particles however, where sizes are typically much
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larger than membrane thickness, the transport mechanism for entry and exit pro-
cesses is entirely different. Entry of the virus into the cell occurs through a process
called membrane fusion (which occurs during endocytosis, schematically shown on
Fig. 1.2) and viruses exit the cell by budding. In both processes the membrane
envelops the particle that deforms the membrane on a scale much larger then its
thickness. This continues until the full envelopment and subsequent pinching off of
the particle [1]. Viral budding has been verified experimentally by Rhee et al. [6]

Figure 1.2: Schematic Illustration of the process of endocytosis (image taken from
reference [5])

and Garoff et al. [7]

A similar transport mechanism occurs in gene transfection systems as suggested
by Boussif et al. [8]. It is assumed that DNA is complexed into a globular structure,
that enters the cell by adhesion. The interaction with the membrane is a result
of the electrostatic attraction between the positively charged complex with the
negatively charged regions of the membrane.

A great deal of experimental techniques involve the attachment of microbeads
to a membrane. As an example thermodynamic aspects of the deformation and
flow of the membrane into a tether has been discussed by Hochmuth et al in [9].
There thin tethers were extracted from a membrane by attaching a tether to a bead
which was held in place with a force created by an optical laser trap or “tweezer”.
Cell surface tensions were measured by measuring different forces applied on the
beads and different tether flow speeds.

Cell membranes are also probed with atomic force microscopes, where AFM tips
are adhered to a membrane and then are subjected to a force [10]. As for the case
with optical tweezer, here also the object adhering on a cell membrane deforms it
locally, which can be crucial for interpreting experimental result.
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Understanding the adhesion and consequent interaction of the adhered particles
is important in nanocarrier agent design and drug delivery [11]. Flexible mem-
branes of the vesicles in contact with nanoparticles has been studied theoretically
by Lipowsky et al in [12], where it was shown that adhering particles change spon-
taneous curvature of the membrane, which is dependent on the membrane particle
interaction type and the size of the particles. Vesicle interaction with Brownian
dynamics simulation has been studied by Noguchi et al in [13], where budding,
formation of two vesicles and fusion has been observed.

Membrane mediated attraction and aggregation of colloidal particles has been
studied using light microscopy by Koltover et al in [14]. It has been observed that
membrane deformations induce particle interaction on the range which is about
the diameter of the particles. Hydrophobic/hydrophilic interaction of nanoparti-
cles with the membrane was studied computationally by Li et al in [15], and it
was observed that hydrophobicity of nanoparticles can result in inclusion into the
membrane, which hydrophilic nanoparticles only adhere to a membrane.

Experimentally the system was studied by Binder et al in [16], where budding
effects of large viral particles have been observed.

In all above cases it has been shown that nanoparticle adhesion on a mem-
brane induces structural change of the membrane, which range from small to large
deformations.

1.3 Previous Research

We studied the adhesion of cylindrical particles on a fluid membrane. Static and
dynamic aspects of membrane and vesicle configurations of this nature have been
considered in detail in [17]. The process of the adhesion of a particle to a membrane
was considered as a competition between curvature energy (coming from bending
elasticity of the membrane) and geometrical restraints such as fixed surface area
or volume (which create an effective tension). A number of equilibrium shapes
were arranged into phase diagrams, separating regions with different symmetry by
continuous or discontinuous transitions.

Enforced unbinding from a supporting membrane was considered by Boulbitch
in [18] for cylindrical colloids. Adhesion of cylindrical colloids onto a membrane and
their subsequent membrane-induced interaction was discussed previously by Weikl
in [19]. Monge parameterization was used in both cases, where the surface of the
membrane was described by specifying its height h above an arbitrary horizontal
reference plane. In that case, if r is the two-dimensional position-vector in that
plane, the shape of the membrane will be given by h(r). Monge parameterization is
frequently used for studies of this nature, but it is only suitable for small membrane
deformations, where no overhangs are taken into account.

For small membrane deformations, repulsive interaction was observed by Weikl
in [19] between the cylinders adhered at the same side of the membrane and attrac-
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tive interaction between the cylinders adhered at opposite sides. A membrane in
an external harmonic potential was also considered and it was shown that in this
case the interaction of adsorbed cylinders was always attractive.

A related system for spherical colloids was discussed by Deserno in [20]. In this
case arclength parameterization was used, where the membrane profile was given
by specifying, at any point on the membrane, the angle of the tangent with respect
to horizontal as a function of arclength s. This approach is not restricted to small
membrane deformations and allows the consideration of deep wrapping regions,
which occur for large adhesion energies. Structural and energetic aspects of a single
sphere adhering on a membrane were discussed in detail. Both continuous binding
and discontinuous envelopment transitions were observed for spherical particles.

For adhered particles, in another work of Deserno [21] membrane-mediated in-
teractions were discussed relating the forces between the particles directly to the
local geometry of the membrane using balance of torques. General framework for
this “geometrical” approach was proposed and the case of infinitely long cylindrical
colloids was discussed in that framework. Two approaches were suggested, where
in the first one, the problem was treated assuming constant area of wrapping, while
for the second one constant adhesion energy was assumed. For the constant area of
wrapping case, detailed results were brought, discussing the equilibrium shapes of
the membrane as well as forces between the cylindrical colloids. We will concentrate
on the case, where adhesion energy is constant.

We use angle-arclength parameterization used in [20] and consider the system
of cylindrical colloids using the approach based on free energy calculations. We
discuss single cylinder adhering on a membrane, and separate three states - no
wrapping, partial wrapping and closure. We show a phase diagram separating
those and compare it to the phase diagram obtained by Deserno for a system of
spherical colloids. We also discuss two cylinders adhered on a membrane in both
symmetric and anti-symmetric cases in a non-linear regime. In the last section,
using the tools already developed we put a framework for the class of problems,
where colloids are between the membrane supported on an interface.

In the above mentioned problems we assume constant adhesion energy, but in
order to compare with Deserno’s results in [21] we also look into the problem of
two cylinders on the same side of the membrane in the constant wrapping angle
scenario. We look into equilibrium shape profiles of the membrane and compare
quantitatively with the results obtained by Deserno.
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Chapter 2

Model and Energy Considerations

We considered the adhesion of cylindrical colloids to a fluid membrane. The size of
all deformations is assumed to be much larger than the thickness of the membrane,
therefore we model the membrane as a two-dimensional surface in three dimensional
space.

2.1 General Model and Geometry

We model the geometry of the membrane using angle-arclength parameterization
as shown in Fig. 3.1. In order to fully describe our system it is advantageous
to parameterize the membrane shape by specifying the angle of the tangent with
respect to the horizontal as a function of s, arclength of the curve. In that case
we can take into account overhangs and generally will not be restricted to small
membrane deformations. Previous work on this system implemented a more direct
choice, which was to measure h, the deviation from the reference plane, as a function
of coordinate perpendicular to cylinder axis [19, 18], which is useful for small-
gradient approximation. This system was also discussed later on in [21] where
balance of torques was imposed directly from the specific shapes of the membrane.
In this thesis, we use arclength parameterization and look into the energetics of the
system.

In the arclength parameterization membrane shape is given by specifying the
angle ψ with respect to horizontal as a function of s, the arclength of the curve.

ψ = ψ(s). (2.1)

From Fig. 3.1 we can see that it is related to the Cartesian coordinate system
through the following equations

ẋ = cosψ and ẏ = sinψ, (2.2)
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where by dot we indicate the derivative with respect to the arclength s. We can
write it alternatively in the form

dx = cosψds = cosψ
ds

dψ
dψ =

cosψ

dψ/ds
dψ, (2.3)

dy = sinψds = sinψ
ds

dψ
dψ =

sinψ

dψ/ds
dψ. (2.4)

Once ψ = ψ(s) is known, shape of the membrane in parametric form is given by

x(ψ) = x(α) +

∫ ψ

α

cosψ

dψ/ds
dψ, (2.5)

y(ψ) = y(α) +

∫ ψ

α

sinψ

dψ/ds
dψ. (2.6)

In Appendix A we discuss arclength parameterization as well as some notes on
differential geometry used here in more detail.

We study group of proteins or any other entities binding to the membrane that
can be represented as solid long cylindrical objects that induce deformations on
the membrane. They are characterized by a radius R and adhesion energy per unit
area (−w). Cylinders we consider are parallel and their length L in the z-direction
is assumed to be much longer than their radius R, so we ignore any end effects.

As for the membrane, in the absence of the adhering objects it is assumed
planar and is characterized by bending stiffness κ and lateral tension σ (we will
discuss them in detail below). The combination λ =

√
κ/σ defines a lenghtscale

characteristic to the membrane. Membane deformations on a scale smaller than λ
cost in bending energy, while deformations on a larger scale cost predominantly in
tension. In the case where colloid radius is of the same order as λ bending and
tension contributions become comparable and it is the balance between these two,
which determines the equilibrium shape of the membrane. In fact for a typical
cellular membrane tension is σ ' 0.02dyn/cm [22] and typical bending modulus is
κ ' 20kBT , in which case for the characteristical length of the membrane we obtain
λ ' 64nm [7]. Viral capsids are about this big, therefore biological situations are
in the crossover regime.

2.2 Energy Considerations

An accurate physical description of a membrane requires knowing how its energy
changes upon deformations of the membrane. First of all, it costs energy to aggre-
gate lipids onto an interface, because the molecules have to be removed from their
bulk and brought to the boundary between two phases. This energy per unit area of
the membrane is called surface tension σ. The free energy of our membrane is also
dependent on bending deformations of the membrane. We will consider interfaces
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which can be energetically completely described by a Hamiltonian which includes
surface tension and bending energies only. We discuss these two energy terms in
more detail in the following sections.

2.2.1 Surface Tension

Surface tension is a result of an imbalance of the molecular forces in a media. In a
liquid molecules are attracted to each other by various intermolecular forces. Those
in the bulk phase, are pulled equally from all directions by neighbor molecules,
which results in the net force of zero. However, at the surface of the liquid, molecules
are pulled inwards by other molecules inside the liquid and since there is no attrac-
tion with the molecules from the neighboring medium, this results in the net force
directed inwards at the molecules which are at the surface. This force is balanced
with the liquid’s resistance to compression, so net force is eventually zero. However
this results in a liquid trying to squeeze together until it has the lowest surface area
possible. That is why, for example, under zero gravity water forms into a perfect
sphere.

Molecules at the interface have higher energy than those in the bulk, therefore
one can assign a positive energy per unit area of the surface. It is usually defined
as σ. It is minimal if the area of the interface is minimized, which explains the
abovementioned behavior of the water in zero gravity.

The energy per unit surface area, can be interpreted also as a tension. This is
best demonstrated by a rectangular piece of a surface with length l and width h at
a constant temperature shown in Fig. 2.2. Now we increase the surface of the patch
by applying force F on one of the sides of the patch. The free energy increase will
be the applied force times the displacement and we can then write

dE = Fdh = F
dA

l
=
F

l
dA = σdA, (2.7)

where σ is considered as the surface tension. It is given in the units of force per
unit length or energy per unit area, which are equivalent to each other. In SI units
[σ] = N/m (or in energy units J/m2), while in cgs units it is measured in [σ] =
dyn/cm (erg/cm2). In order to obtain the energy for the whole interface we have
to integrate surface tension over the total area of the surface. Then the resulting
Hamiltonian will be

H =

∫
S

σ dA, (2.8)

where by S we denote the total area of the surface patch. For given boundary
conditions, the stable surface can be found by setting variation δH = 0 and finding
local minima of the Hamiltonian 2.8. This leads to the minimization of the surface
area.

8



Figure 2.1: Particles on the interface are missing bonds compared to those in the
bulk, therefore surface has a free energy

Figure 2.2: Interfacial energy interpretation as a surface tension
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Figure 2.3: Saddle surface with the planes of principal curvatures (Author: Eric
Gaba, image taken from Wikipedia)

2.2.2 Bending Energy

Next we consider the elastic energy of the membrane, which is dependent on the
deformations of our membrane. We assume absence of any external fields therefore
any translations and rotations of the membrane do not change its energy. But there
is an elastic energy of the membrane, which is dependent on the deformations of
the membrane. Generally, elastic deformation is defined as any kind of stretching of
a surface. In a harmonic expansion the energy is proportional to the square of the
deformation according to the Hooke’s law. We consider lipid membrane, which is
assumed to be an incompressible two-dimensional fluid. This means that we cannot
stretch/compress them (i.e. increase or decrease the total area) by pulling it from
the sides. In the context of the lipid membrane deformation is described as the
bending of the membrane which still costs energy. It should be dependent on the
curvature of the membrane and dependence should be quadratic.

Let’s first briefly discuss what is a curvature of the membrane. Here we bring
more visual explanation, for more details and definition please refer to the Ap-
pendix A. A differentiable surface at each point has a normal vector n̂ (see Fig. 2.3).
Now at that point we can construct any tangent vector to the surface. We can imag-
ine a plane which contains the normal vector and the tangent vector t̂. This normal
flat surface will cut a plane curve from a surface which will have a curvature ζ at
that point. Now, we can rotate tangent vector around normal vector n̂, thus ro-
tating the normal plane and changing the curve which it cuts from the surface.
For different directions of the plane the curve will have different curvatures and
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maximum and minimum of those at that point on the surface are called principal
curvatures of the surface.

Now since at each point on the surface we have two principal curvatures we
have two include two independent terms into the expression of the energy that will
depend on a quadratic combination of the principal curvatures and are invariant
scalars. A convenient choice is a combination of the Gaussian curvature KG = ζ1ζ2
and mean curvature K = (ζ1 + ζ2)/2

H =

∫
Σ

[
2κ(K −K0)

2 + κ̃KG

]
dA, (2.9)

where κ and κ̃ are proportionality constants called bending rigidity and splay mod-
ulus. The constant K0 is the spontaneous curvature and basically determines how
much membrane is bend in the minimum energy state.

2.2.3 Helfrich Hamiltonian

Including the tension the complete Hamiltonian for the surface then will have the
following form

H =

∫
S

[
2κ(K −K0)

2 + κ̃KG + σ
]
dA. (2.10)

This Hamiltonian was first proposed by W. Helfrich in 1973 [23] and is named
after him.

The spontaneous curvature K0 is assumed 0 further in this thesis, since we
assume symmetric membrane and in equilibrium state our membrane is flat. Also
no topological changes will be considered and therefore second term in 2.10 becomes
0 1.

To sum up, it is assumed that this process can be understood as a balance of
the following three energy contributions.

• Adhesion energy, which is driven by contact energy per unit area −w, and is
proportional to contact area.

• Bending energy of the membrane, which is characterized with bending moduli
of the membrane κ.

• Tension energy, which is proportional to the surface area and is characterized
with lateral tension σ.

1The product of the two principal curvatures, ξ1 and ξ2 is called Gaussian curvature KG.
According to Gauss-Bonnet theorem its integral over the surface of the membrane can be re-
written as an integral over the boundary ∂S of the surface S. Therefore it is invariant under
deformations of S which change neither its boundary nor topology and will result only in an
constant term in energy and can be ommited [20]
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Figure 2.4: Sheet of the membrane wrapping the cylinder. The arclength of the
membrane in contact with cylinder is 2Rα, which multiplied by the length of the
cylinder gives us the contact surface area to be 2RLα.

The total free energy of the system will be composed from the energy of the
membrane which is adhered on the cylinder, and the part corresponding to the
free membrane. Although finding the energy for the adhered part is relatively easy,
because the shape of the membrane is already known, energy for the free part of the
membrane is a functional of the shape of the membrane and needs to be minimized
with respect to it first. We now discuss two cases separately.

2.2.4 Energy for the Adhered Membrane

Assuming that the adhering membrane remains in the fluid state, its energy can
be calculated easily once degree of wrapping, α is known (Fig. 3.1), because the
shape of the membrane is that of the cylinder it adheres to. The area of the colloid
covered by the membrane is given by Aad = RLα (see Fig. 2.4), therefore adhesion
energy will be

Ead = −w2RLα. (2.11)

For the bending part of the energy, since membrane is wrapped around the cylinder
two principal curvatures are known, at any touching point one is the curvature of
the circle with radius R, which is ξ1 = 1

R
, while the other one is 0. (for detailed

derivation please refer to the Appendix A) Bending energy will then be

Ebend =
κ

R2
Aad =

κ

R2
RLα =

κα

R
L. (2.12)
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Finally the work done against the lateral tension σ is proportional through σ to the
excess area pulled towards the wrapping site (taking as a reference flat membrane),
which is ∆Aad = 2RL(α− sinα), giving the tension energy

Eten = σ∆Aad = 2σRL(α− sinα). (2.13)

Thus the total free energy associated with the adhered part of the membrane is a
combination of the above three terms and for the contact angle α has the following
form

Ead = −2wRLα +
κα

R
L+ 2σRL(α− sinα). (2.14)

We now look into the free energy of the free membrane.

2.2.5 Energy for the Free Membrane

Clearly, there is no adhesion in this case, and the only terms contributing to the
free energy are the bending and tension energy terms. In this case membrane shape
is not known a priori, and we need to find the membrane equilibrium profile first.
The free energy F of the free membrane can be expressed as a surface integral over
the bending and tension contributions and therefore is a functional of the shape.
We then will minimize it with respect to the shape of the membrane and find the
equilibrium state.

To write down the free energy for the problem of cylindrical colloids adhering to
a fluid membrane, we use the coordinate system in Fig. 3.1, where a crossection of
the cylinder and membrane is shown. The membrane shape can then be described
by the tangent angle ψ(s) which is a function of the contour variable s. This
parameterization gives two principal curvatures of the membrane at any point as
ψ̇ and 0 (see Appendix A) and for the free part of the membrane we can write the
Helfrich free energy in a simple form,

F =

∫ [
1

2
κ

(
dψ

ds

)2

+ σ

]
Lds, (2.15)

where κ is the bending energy, σ surface tension and L the length of the system in
the z-direction. As mentioned above, an adhering cylinder of radius R is assumed
to have an adhesion energy per unit area −w with the membrane. Long cylinders
LÀ R are assumed and we ignore any end effects.

It is convenient to introduce the following dimensionless quantities

F̃ = FR/κL (2.16)

σ̃ = σR2/κ (2.17)

w̃ = wR2/κ (2.18)

s̃ = s/R. (2.19)
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Now with the reference to the free energy of a freely standing, planar membrane
reduced free energy difference can be expressed as

∆F̃ =

∫ [
1

2

(
dψ

ds̃

)2

+ σ̃(1− cosψ)

]
ds̃. (2.20)

This energy needs to be minimized with respect to the shape function ψ(s̃). La-
grange function Λ = Λ(ψ̇, ψ, s̃) has the following form

Λ(ψ̇, ψ, s̃) =
1

2

(
dψ

ds̃

)2

+ σ̃(1− cosψ). (2.21)

Using this in the Euler-Lagrange equation

∂Λ

∂ψ
=

d

ds̃

∂Λ

∂ψ̇
(2.22)

we obtain second-order differential equation describing the shape of the membrane
ψ(s̃),

2ψ̈ − σ̃ sinψ = 0, (2.23)

which has a first integral

1

2

(
dψ

ds̃

)2

− σ̃(1− cosψ) = H, (2.24)

where H is a constant. This first integral, together with the free energy difference
above(Eq. 2.20), forms the theoretical framework for deducing the free energy of
considered systems.

In the Results section we will look into three separate cases, single cylinder
adhering to a membrane, two cylinders adhering at same membrane side and two
cylinders adhering at different membrane sides. We will also consider the case of
one and two cylinders between the solid interface and the membrane, where we
consider an adhesion between the membrane and the interface.

14



Chapter 3

Results and Conclusions

3.1 Single Cylinder Adhered to a Membrane

We now consider the problem of a single cylinder adhering to a membrane. In an
adsorbed state of single particle adhesion, the membrane wraps around the cylinder
with a contact angle α (see Fig. 3.1). Membrane is asymptotically flat at s̃ → ∞,
therefore boundary conditions ψ → 0 and dψ

ds̃
→ 0 can be imposed in Eq. 2.24.

This renders integration constant H = 0 in Eq. 2.24 and the first-integral of the
Euler-Lagrange equation gets the following form

1

2

(
dψ

ds̃

)2

− σ̃(1− cosψ) = 0, (3.1)

which gives us the shape equation of the membrane (right-hand side)

ψ(s̃) = α−
√

2σ̃

s̃∫
0

√
1− cosψ ds̃. (3.2)

In order to obtain the parametric representation of the shape profile in Cartesian
coordinate system we can use Eqs. 2.5 - 2.6 and membrane profile then can be
expressed in the form

x̃(ψ) = sinα− 1√
2σ̃

ψ∫
α

cosψ√
1− cosψ

dψ, (3.3)

ỹ(ψ) = − cosα− 1√
2σ̃

ψ∫
α

sinψ√
1− cosψ

dψ. (3.4)

For a given σ̃ increasing adhesion energy w̃ causes membrane to wrap cylinders
more deeply with a larger contact angle α. As an example, we bring three different
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Figure 3.1: The coordinate system used to describe the shape of the membrane
for single cylinder adhesion. The curve represents cross section view of membrane
profile and a contact angle is denoted with α

shape profiles in Fig. 3.2 for increasing values of reduced adhesion energy w̃ from top
to bottom. Increasing adhesion causes more wrapping and a full closure of the two
sides of the membrane is expected in the large w̃ regime (see Fig. 3.2(C)). Contact
angle at which such a closure occurs is denoted with αcl and is dependent only
on the characteristic parameters of the membrane. Closure point is characterized
with a vanishing x-coordinate and tangential angle ψ = π/2 at the contact point,
therefore closure contact angle αcl can be determined requiring these conditions in
the shape equation 3.3.

sinαcl +
1√
2σ̃

αcl∫
π/2

cosψ√
1− cosψ

dψ = 0. (3.5)

Carrying out the integral we have

sinαcl +
1√
σ̃

[
ln
α/4

π/8
− 2(cosα/2− cosπ/4)

]
= 0. (3.6)

From the equation above we can see that the closure angle will depend on the
characteristic parameters of the membrane. On Fig. 3.3 we show the dependence
of the closure angle on reduced surface tension of the membrane. Small surface
tension values correspond to closure angle values close to π/2, because for angles
smaller than that overhangs (and therefore closure) are generally not possible. In
stronger surface tension region, where membrane is “tighter”, closure angle values
are higher, meaning that in the closure state, membrane wraps particles more. To
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Figure 3.2: Membrane profile for (A) shallow wrapping, (B) partial wrapping and
(C) closure regimes

0 0.5 1~σ
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1

α cl
 /π

Figure 3.3: Closure angle dependence on the reduced surface tension σ̃
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Figure 3.4: Closure state shape profiles for different reduced surface tension values

illustrate this, we plot three different closure states for different surface tension
values in Fig. 3.4.

We now turn into energy considerations. Free energy of the membrane is a
surface integral over bending and tension contributions and thus is a functional of
its shape. For the part of the membrane adhered on the cylinder the shape of the
bound part is determined by the geometry of the adhered particle, in our case it is
a circular arc. Therefore, as discussed earlier, free energy of the adhered membrane
part (for two sides) takes the form

∆F̃I(ad) = −2w̃α + α + 2σ̃(α− sinα), (3.7)

where first term corresponds to the adhesion energy, while second and third terms
are the contributions from the bending and surface tension energies correspondingly.

As mentioned above for a single cylinder case, for the free part of the membrane
shape equation is found to be 3.2, using this in the Eq. 2.20, for two branches of
the membrane free energy can be written as

∆F̃I =
√

8σ̃

α∫
0

√
1− cosψ dψ. (3.8)

This with the energy for the adhered part of the membrane 3.7 gives us the
total free energy for the membrane in the following form

18



∆F̃I =
√

8σ̃

α∫
0

√
1− cosψ dψ − (2w̃ − 1)α + 2σ̃(α− sinα)

= 8
√
σ̃[1− cos(α/2)]− (2w̃ − 1)α + 2σ̃(α− sinα). (3.9)

For different values of reduced parameters w̃ and σ̃, the above reduced free
energy difference needs to be minimized with respect to the contact angle α.

∂∆F̃I
∂α

=
√

8σ̃
√

1− cosα− (2w̃ − 1) + 2σ̃(1− cosα) = 0, (3.10)

2σ̃(
√

(1− cosα))2 +
√

8σ̃
√

1− cosα− (2w̃ − 1) = 0, (3.11)

√
1− cosα =

−
√

8σ̃ +
√

8σ̃ + 8σ̃(2w̃ − 1)

4σ̃
. (3.12)

Considering the limiting values of the contact angle π ≥ α ≥ 0, we obtain that
in the regime (

√
2σ̃ + 1/2)2 ≥ w̃ ≥ 1/2, where membrane is partially wrapped, a

preferred cosine wrapping angle as a function of w̃ and σ̃ is given by the formula

cosα = 1− (w̃1/2 − 2−1/2)2/σ̃. (3.13)

Figure 3.5 is the resulting state diagram from an analysis of the free energy 3.9.
For any values of σ̃, in the region w̃ ≤ 1/2, the cylinder is in a free, adsorbed state;
as w̃ increases crossing 1/2, the system undergoes a second order phase transition
where the membrane starts to weakly wrap the cylinder. We can expand the free
energy in terms of small contact angle α.

∆F̃I =
√

8σ̃

α∫
0

√
1− cosψ dψ − (2w̃ − 1)α + 2σ̃(α− sinα)

=
√

8σ̃

α∫
0

√
1− 1 +

ψ2

2
+ ... dψ − (2w̃ − 1)α + 2σ̃(α− α +

α3

3!
+ ...)

= −(2w̃ − 1)(α1/2)2 +
√
σ̃(α1/2)4 + ..., (3.14)

where we see that α1/2 is an order parameter, in comparison with a standard Landau
expansion for a second-order phase transition. This second-order phase transition
was obtained earlier in [18], in a system of cylindrical colloids adhering on vesicles,

where it was shown that cylindrical beads with the radius R0 ≤ (κ/2w)
1
2 do not

adhere on a membrane. This type of transition was obtained by Deserno et al.
in [20] in a related system, where spherical colloids were discussed.

As the reduced adhesion energy w̃ further increases for a given σ̃, the membrane
wraps the cylinder more deeply with a larger contact angle α. A full closure of the
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Figure 3.5: State diagram for one cylinder adhering to a membrane

two sides of the membrane is expected in the large w̃-regime. The closure transition
can be calculated from joint consideration of Eq. 3.13 and the requirement that
at the closure point of the shape curve has a vanishing x-coordinate. For a given
reduced surface tension σ̃ using Eq. 3.6 we can easily obtain the value of the closure
angle αcl, which then can be used in Eq. 3.13 to obtain the corresponding value of
w̃ where closure occurs. This process gives us the solid curve in Fig. 3.5.

Considering the problem of adhesion of a single spherical colloid on a membrane
surface, Deserno [20] previously obtained a phase diagram qualitatively similar to
ours in Fig. 3.5. The transition from no-wrapping to partial wrapping phases, for
example, was also shown to be a second order transition. Furthermore, Deserno
has defined a fully enveloped state where a contact angle in his system, similar to
our α, attains a value of π. The transition from the partial wrapping to enveloped
states was shown to be first-order by examination of the free energy. In contrast, in
the cylinder adhesion case, we can show that the transition from partial to closure
states is a smooth crossover with no signature of phase transition.

3.2 Two Cylinders on the Same Membrane Side

We now turn to the problem of adhesion of two parallel cylinders at the same side of
a membrane. Geometry and energy aspects are already considered for the two outer
sides of the membrane, so now we concentrate on the inter-cylinder membrane.
Boundary conditions at the symmetry point can be imposed, where angle with
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Figure 3.6: A crossection of the coordinate system used for the two-cylinder ad-
hesion problem. The symmetric point of the membrane between the two cylinders
has a curvature dψ/ds = ζ

respect to horizontal is ψ = 0, but now the curvature at that point is not vanishing
and has a value which we denote dψ/ds = ζ (see Fig. 3.6). Curvature in the middle
decreases as we increase the distance D between the cylinders, asymptotically going
to 0 when two cylinders are infinity distance apart from each other.

Imposing this boundary conditions in our Eq. 2.24 we get integration constant
H = ζ2/2 and the first integral of the Euler-Lagrange equation now takes the form

1

2

(
dψ

ds̃

)2

− σ̃(1− cosψ) =
1

2
ζ2. (3.15)

From here shape equation of the profile can be found to be

ψ(s̃) = γ −
s̃∫

0

√
ζ2 + 2σ̃(1− cosψ) ds̃, (3.16)

or in parametric form

x̃(ψ) = sin γ −
ψ∫
γ

cosψ√
ζ2 + 2σ̃(1− cosψ)

dψ, (3.17)

ỹ(ψ) = − cos γ −
ψ∫
γ

sinψ√
ζ2 + 2σ̃(1− cosψ)

dψ. (3.18)
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Figure 3.7: (A) Typical shallow and (B) deep wrapping shapes for two cylinders
adhering to the same side of the membrane. (C) Two cylinders vertically stacked

The shape of the membrane clearly is determined by the contact angle γ and the
curvature at the symmetry point ζ. Two different shape profiles are sketched on
Fig. 3.7 (A) and (B). Shape (A) demonstrates typical shallow configuration of the
membrane with relatively small contact angle and therefore small curvature at
the symmetry point, while shape (B) corresponds to the typical deeply wrapped
configuration of the membane, which is characterized by big contact angles. Clearly,
for fixed distance between the cylinders, higher contact angles correspond to higher
curvatures at the symmetry point.

We now look into free energy of the system. In this case free energy is separated
into two parts

∆F̃II(α, γ, ζ) = ∆F̃I(α) + ∆F̃ ′
I(γ, ζ), (3.19)

where ∆F̃I(α) describes the two branches of the membrane on the left and right
sides of the system, and is identical to the free energy in Eq. 3.9. The term ∆F̃ ′

I(γ, ζ)
describes the part of the membrane between the two cylinders (see Fig. 3.6) and
can also be described by the shape equation, Eq. 2.24. As mentioned above, the in-
tegration constant H in Eq. 2.24, however, is related to the curvature of membrane,
dψ/ds = ζ, at the symmetric point in the middle and is found to be H = ζ2/2.
Using this in Eq. 2.20, for the free energy of the membrane between the cylinders,
including the contact energy, we can then write,

∆F̃ ′
I(γ, ζ) =

γ∫
0

ζ2 + 4σ̃(1− cosψ)√
ζ2 + 2σ̃(1− cosψ)

dψ − (2w̃ − 1)γ + 2σ̃(γ − sin γ), (3.20)

where γ is the contact angle shown in Fig. 3.6. For a given set of w̃ and σ̃ the above
free energy needs to be minimized with respect to ζ and γ for a stable state.

In the following we examine the problem from a different perspective. Note
that the reduced distance between the surfaces of two cylinders, D̃ ≡ D/R, can be
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γ ζ D̃(γ, ζ) ∆F̃ ′
I(γ, ζ)

0.1849 0.2250 1.0000 −0.50686
0.2227 0.2252 1.2000 −0.60917
0.2619 0.2264 1.4000 −0.71202
0.2999 0.2258 1.6000 −0.81551
0.3408 0.2272 1.8000 −0.91978
0.3802 0.2268 2.0000 −1.02494
0.4215 0.2272 2.2000 −1.13118
0.4663 0.2290 2.4000 −1.23865
0.5116 0.2302 2.6000 −1.34753
0.5560 0.2302 2.8000 −1.45820
... ... ... ...

Table 3.1: Some values from a table generated for minimizing the free energy

written by the use of the shape function and, in terms of γ and ζ, as,

D̃(γ, ζ) = 2

γ∫
0

cosψ√
ζ2 + 2σ̃(1− cosψ)

dψ + 2(sin γ − 1). (3.21)

In order to observe the variation of the free energy as a function of D̃, we have
minimized the above free energy with respect to ζ and γ under this constraint. We
developed a numerical procedure for this purpose, which we describe below.

Numerically the approach is to fix the distance between the cylinders, solve
Eq. 3.21 to obtain the dependence of the curvature in the middle ζ on the contact
angle γ (or vice versa) for this fixed distance and then, using this relation in equation
for the free energy 3.20, represent it as a function of only one variable. We can
then minimize it and obtain the minimum of the free energy for a given distance
between the cylinders. We implement this in the way described below.

We run two nested loops (one loop inside another) for two independent param-
eters γ and ζ for the values they take in the intervals for contact angle π ≥ γ ≥ 0,
and for the curvature 1 ≥ ζ ≥ 0. As a result we get a table, some rows of which is
shown on Table 3.1, where for all the possible combinations of γ and ζ variables we
have the corresponding distance between the cylinders D̃ and the free energy ∆F̃ .
Note that we haven’t imposed any constrains at this point, that is why the values
of the obtained distances in the third column vary. The integrals for distance and
free energy are calculated using standart Simpson’s rule for numerical integration.

We generate this kind of tables for each fixed adhesion energy we are interested
in. After having the table, it is easy to loop through it and select all the lines (i.e.
pairs (γ, ζ)) which correspond to the same selected distance, and find the minimum
of the free energy out of those. By doing so for different distances, we will find the
minimum of the free energy as a function of distance between the cylinders.
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The precision of the variables and the step size in the loops is chosen based on
the region of resulting values we obtain from distance and free energy calculations.
In our case, step size of 0.0002 in loops for the variables and the precision of the
4th digit was sufficient.

The inter-cylinder free energy is displayed as a function of D̃ for various values
of σ̃ and w̃ in Figs. 3.8. Two typical membrane shapes exists between the two
cylinders. In relatively small w̃ and large σ̃ regime, the membrane wraps two
cylinders with a shallow shape, shown in Fig. 3.7(A). The solid curves in Fig. 3.8
are produced from such configurations. In the region of relatively large w̃ and
small σ̃, a deep membrane shape can develop (Fig. 3.6(B)), which has a lower
inter-membrane free energy in comparison with that of the shallow shape. The
dashed curves in Fig. 3.8 are produced from deep configurations. Take the curve of
w̃ = 1.1 and σ̃ = 0.1 in Fig. 3.8, for example, by increasing D̃, we see a first-order
transition approximately at D̃ = 2.0, signified by the crossing of the two branches of
the free energy, as D̃ moves across the transition point, the inter-cylinder membrane
abruptly jumps from shallow wrapping of the two cylinders (Fig. 3.7(A)) to deep
wrapping (Fig. 3.7(B)), this transition is driven by the adhesion energy that prefers
a more complete wrapping of membrane on the cylinders and is disliked by the
membrane free energy that prefers a smooth variation of the shape function. In
general, for systems with large σ̃, the membrane free energy dominates hence we
see that the shallow shapes are more stable.

Regardless of the fact that system is in shallow or deep configurations, as D̃ in-
creases the inter-cylinder free energy ∆F̃ ′

I generally decreases. Hence, for the prob-
lem of two cylinders adhered to a membrane surface, there is always a membrane-
mediated repulsion interaction between the two cylinders. This conclusion has been
previously drawn by Weikl [19] who has taken an approximation of the Helfrich free
energy for small membrane displacement only. In such an approximation, only shal-
low inter-cylinder membrane can be captured. For the full wrapping this conclusion
has been drawn also by Deserno using the balance of the torques for the membrane
shapes. We have overlayed Weikl’s estimation of the free energy in Fig. 3.8 using
open squares, for every set of numerical solutions, obtained in our calculation. The
comparison between our full calculation and Weikl’s approximation is favorable for
w̃ close to the free-to-partial wrapping transition, where small degree of wrapping
is generally expected.

The competition between shallow and deep shapes of membrane between two
colloid particles has also recently been seen in another system; when two spherical
particles are confined in a cylindrical membrane tube [24], Chen et. al. showed
that this competition can manifest into a more complicated phase diagram, where
both attraction and repulsion between two spheres can be induced by the wrapping
membrane.

We have also considered the configuration where one cylinder vertically stacks
on the other one (see Fig. 3.7(C)). It was expected that for the strong adhesion
energies two cylinders may prefer to stack, since in this case they will have more area
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Figure 3.8: Inter-cylinder free energy dependence on surface-to-surface distance
between two cylinders for three different σ̃ values
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wrapped by the membrane in comparison with the case when they will be infinite
distance apart. To compare the free energies for these two different configurations
the following has been done.

For two cylinders at infinite distance from each other, problem is equivalent to
the single cylinder case, free energy will be just doubled. As discussed, the free en-
ergy for the single cylinder for a given w̃ can be found by minimizing the free energy
given by Eq. 3.9 with respect to contact angle α. For the same adhesion energy,
we can find the free energy of the vertically stacked configuration by minimizing
the free energy given by Eq. 3.20 with respect to curvature in the middle and the
contact angle γ. One can plot free energy dependence on the adhesion energy for
these two configurations and see if there will be a parameter region where vertically
stacked phase will be preferable to the other one. We calculated the energy differ-
ence numerically in a similar way and free energy dependence on adhesion energy
is shown on Fig. 3.9 for both stacked and next to each other configurations.

In the parameter regime studied here, w̃ = [1/2, 10] and σ̃ = [0.01, 1], we
found no evidence that this types of configurations may have lower free energy
than the free energy corresponding to two parallel cylinders separated far apart,
each adhering to the membrane independently, which has been considered above.

In order to be able to compare with the results obtained by Deserno, in the last
part of this section we want to solve the problem, where instead of constant adhesion
energy, constant wrapping angle is assumed. In this case the angle αc = αi + αo,
shown on Fig. 3.10, is assumed constant and we’re interested in the equilibrium
shape profiles of the membrane for different distances between the cylinders. This
has been done by Deserno using the balance of the torques for different membrane
shapes in [21].

We will do the following: for a given constant angle αc, we will look into free
energy dependence as a function of angle αi. In order to compare with Deserno’s
results we need to plot the distance h0 (see Fig. 3.10) of the equilibrium shape as
a function of the distance between the cylinders.

We already know how to find the shape profiles for the outer and inner part of
the membrane. We denote the height of the outer part of the membrane, shown
on Fig. 3.10, as hc and it can be expressed through contact angle αo using Eq. 3.4
describing the shape profile of the membrane

hc(αo) = R−R cosαo−
√

κ

2σ

0∫
αo

sinψ√
1− cosψ

dψ = R−R cosαo +

√
2κ

σ

√
1− cosαo,

(3.22)
where we will rescale this parameter with λ =

√
κ/σ later, in order to be able to

compare with the data obtained by Deserno in [21]. In the same way the height hx
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Figure 3.9: Free energy of the equilibrium shape as a function of adhesion energy w̃.
Dashed line represents energy for configuration where two cylinders are vertically
stacked, and solid line corresponds to the configuration where two cylinders are
infinite distance apart
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Figure 3.10: Geometry of the membrane for two cylinders adhered at same mem-
brane side. Here αc = αi + αo is assumed constant

for the inner part of the membrane can be obtained using Eq. 3.16

hx(αi, ζ) = R−R cosαi −
0∫

αi

sinψ√
ζ2 + 2σ

κ
(1− cosψ)

dψ

= R−R cosαi +
κ

σ

√
ζ2 +

2σ

κ
(1− cosαi)−

κζ

σ
. (3.23)

The distance we are interested in, h0, can then simply be expressed as

h0(αo, αi, ζ) = hc(αo)− hx(αi, ζ). (3.24)

We are interested in the behaviour of h0 as a function of the distance between the
cylinders, which again can be expressed using shape equation 3.3

d(αi, ζ) = 2(R sinαi +

αi∫
0

cosψ√
ζ2 + 2σ

κ
(1− cosψ)

dψ). (3.25)

As we have already discussed how to obtain the free energy for this system, we can
write down free energy in this case in a similar way

F̃ (αi, αo, ζ) =
√

8σκ

αo∫
0

√
1− cosψ dψ +

αi∫
0

κζ2 + 4σ(1− cosψ)√
ζ2 + 2σ

κ
(1− cosψ)

dψ

− 4σR(sinαo + sinαi), (3.26)
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αi αo h̃c(αo) h̃x(αi, ζ) h̃0(αo, αi, ζ) d̃(αi, ζ) F̃ (αo, αi, ζ)
2.436 0.706 0.930 2.515 −1.585 2.000 −11.333
2.387 0.755 1.008 2.470 −1.462 2.100 −12.169
2.340 0.802 1.085 2.430 −1.346 2.200 −12.999
2.275 0.867 1.192 2.351 −1.159 2.300 −13.839
2.198 0.944 1.322 2.248 −0.926 2.400 −14.678
2.130 1.012 1.438 2.168 −0.730 2.500 −15.525
2.045 1.097 1.586 2.058 −0.472 2.600 −16.380
... ... ... ... ... ... ...

Table 3.2: Type of a table generated for the problem of constant wraping angle.
Here distances are scaled with λ

where we omit the terms 2 κ
R
(αi+αo) (bending) and 4σR(αi+αo) (tension), because

constant wrapping angle αi + αo renders those constant, and they won’t play any
role in minimizing the free energy.

In order to numerically obtain h0 dependence on the distance d between the
cylinders we need to find the equilibrium shape by minimizing the free energy.
As above, this is done numerically. We run two nested loops through all possible
values of α0 ≤ αi ≤ αc and curvature 0 ≤ ζ ≤ 1 and generate numerical tables of
the form shown in Table 3.2. For each fixed angle αc we generate a table, which
contains all possible combinations of (αi, ζ) and the corresponding parameters in
it (see Table 3.2). Note that we have only two independent parameters, αi and ζ,
since αo is related to αi through αo = αc − αi. Since we loop through αi and ζ
independently, generated table will contain different distances. We then filter those
rows from the table which have the same distance and find the minimum of the
free energy among those. Doing this procedure for different distances between the
cylindes we obtain h0 (or any other) parameter dependence on the distance between
the cylinders.

We show on Fig. 3.11 free energy dependence on the angle αi for several distances
between the cylinders. As we can see for small distances between the cylinders, two
localy stable solutions for the shape profile exist corresponding to different angles
αi. One corresponding to the smaller value of αi is when inter-cylinder membrane is
in shallow wrapping regime, and since we have fixed the total wrapping angle, outer
part of the membrane has to be wrapping the cylinders deeply. The other solution
corresponding to the larger value of αi is characterized by the deeply wrapping
inter-cylinder membrane and shallow wrapped outer part of the membrane (see
Fig. 3.11). In this particular case, where we chose αc = 170o, we see that global
free energy minimum corresponds to the shape where inter cylinder membrane is in
shallow wrapping regime. We will show, however, that configurations where global
minimum is at the larger angle αi are also possible.

On Fig. 3.12 we show the dependence of the height h̃o on the distance between
the cylinders d̃ (parameters are rescaled with λ in order to compare with Deserno).
Our numerical results are shown in blue color, and analytical solutions are shown
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Figure 3.11: Free energy dependence on the contact angle αi for different distances
between the cylinders. Contact wrapping angle is taken αc = 170o
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Figure 3.12: Height h̃0 dependence on the distance d̃ between the cylinders for three
different wrapping angles αc = 170o (long-dashed line), αc = 180o (solid line) and
αc = 190o (short-dashed line)

in black. Three contact angles are taken, αc = 170o (long-dashed line), αc = 180o

(solid line) and αc = 190o (short-dashed line). We see that for αc = 170o the global
minimum is located at the smaller value of αi, and as we increase the distance
between the cylinders the minimum corresponding to the larger value of αi vanishes.
Opposite to that, for larger wrapping corresponding to the αc = 190o, we see that
global minimum corresponds to the larger value of the angle αi, and the smaller-
angle branch vanishes as we increase the distance.

Our result quantitatively correspond to the results previously obtained by De-
serno.
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3.3 Two Cylinders on the Opposite Membrane

Sides

We now consider the adhesion of two cylinders on opposite sides of the membrane
(see Fig. 3.13).

Figure 3.13: Geometry of the membrane for two cylinders adhered at opposite
membrane sides. Here at symmetry point curvature is 0, and angle with respect to
horizontal is denoted as θ

In this case using the coordinate system in Fig. 3.13, we see that at the middle
point of the membrane stretched between two cylinders the tangent of the curve
makes an angle θ with respect to the horizontal x-axis, while the curvature vanishes
because of the antisymmetry. This gives us an integration constant H = −σ̃(1 −
cos θ) from Eq. 2.24 and we obtain first-integral of the Euler-Lagrange equation

1

2

(
dψ

ds̃

)2

− σ̃(1− cosψ) = −σ̃(1− cos θ). (3.27)

And therefore we can write shape equation in the following form

ψ(s̃) = γ −
√

2σ̃

s̃∫
0

√
cos θ − cosψ ds̃, (3.28)

or in parametric form

x̃(ψ) = sin γ − 1√
2σ̃

ψ∫
γ

cosψ√
cos θ − cosψ

dψ, (3.29)
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ỹ(ψ) = − cos γ − 1√
2σ̃

ψ∫
γ

sinψ√
cos θ − cosψ

dψ. (3.30)

For this problem the free energy can also be separated into two parts,

∆F̃II(α, γ, θ) = ∆F̃I(α) + ∆F̃ ′
I(γ, θ), (3.31)

where, again, ∆F̃I(α) is that considered for a single cylinder adhesion problem and
∆F̃ ′

I(γ, θ) corresponds to the free energy between two cylinders. Taking the contact
energy into account, we have

∆F̃ ′
I =

√
2 ˜sigma

γ∫
θ

cos θ − 2 cosψ + 1√
cos θ − cosψ

dψ − (2w̃ − 1)γ + 2σ̃(γ − sin γ), (3.32)

where γ is the contact angle shown in Fig. 3.13 and θ is the angle with respect to
horizontal at the symmetry point.

In contrast to the three independent parameters case in the section where two
cylinders were on the same side of the membrane, here the angles α, γ and θ are
not independent. That is because in this case we have a constrain that the height
of the membrane part on the right (or left) sides of the system should be the same
as the height of the symmetry point.

We can easily find the height of the membrane from the left or right sides by
solving Eq. 2.24 with a given contact angle α. In a reduced form the height of the
membrane is then given by

H̃(α) ≡ H/R =
1√
2σ̃

α∫
0

sinψ√
1− cosψ

dψ − 2(cosα + 1). (3.33)

Similarly the configuration of the inter-cylinder part of the membrane can also be
found using the same Eq. 2.24, but now using as boundary conditions θ and γ. The
same height can be written now as

H̃(γ, θ) =
1√
2σ̃

γ∫
θ

sinψ√
cos θ − cosψ

dψ − 2(cos γ + 1). (3.34)

Equating these two equations gives rise to a constraint that governs a relation-
ship between the three angular parameters.

H̃(α) = H̃(γ, θ)
2√
2σ̃

√
1− cosα− 2 cosα =

2√
2σ̃

√
cos θ − cos γ − 2 cos γ. (3.35)

Because of this constraint we can no longer treat minimization of two terms in
Eq. 3.31 independently.
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To study membrane-mediated interactions in this case, in the following we are
interested in the free energy as a function of the reduced distance between the
cylinders D̃, which is also a function of the γ and θ as well,

D̃(γ, θ) =
1√
2σ̃

γ∫
θ

cosψ√
cos θ − cosψ

dψ + 2(sin γ − 1). (3.36)

For this purpose, the problem is to minimise the free energy of the total system
taking into account two constrains, the same H̃ and fixed distance D̃.

The numerical procedure used here is exactly the same as the one described in
the section of two cylinders adhering on the same side of the membrane. The only
difference is that we can choose arbitrarily two parameters, let’s say α and γ , and
the third parameter θ is determined from Eq. 3.35. Generation of the table and
consequent search for the minimum of the free energy for fixed distance is done
exactly in the same way as for the previous case.

The inter-cylinder free energy ∆F̃ ′
I is displayed in Fig. 3.14 for various sets of w̃

and σ̃. In the case of relatively weak adsorption, a typical curve contains free energy
minimum somewhere below D̃ = 0 (see, for example, the curve labeled w̃ = 1.25
for σ̃ = 1.0 case, or w̃ = 0.60 for σ̃ = 0.1 case). This usually happens for small
w̃ where two cylinders prefer to be in shallowly wrapped configurations shown in
Fig. 3.15(B) at the energy minimum. The total free energy is dominated by the
contribution from the free energy cost of distorting the membrane shape on the left
and right side of the system.

Previously both in small membrane deformations regime and in “geometrical”
approach by Deserno distances between two cylinders less than D̃ < 0 have not
been discussed. We show that in a large w̃ regime, however, the system prefers
to have a large contact area between cylinders and the wrapping membrane. A
typical configuration of this type is shown in Fig. 3.15(C), where because of the
swapping of the positions of two cylinders, the surface distance defined in Fig. 3.6
attains a value close to −4. The development of the minimum in the free energy
curve near D̃ = −4 can be viewed in the first two plots of Fig. 3.14 in a series
of curves corresponding to increasing w̃. Note that the free energy curve has a
termination point when the system is in a closure state, which is a case where
two cylinders touch the membrane from the other side after the swapping of the
positions. Such a closure states are indicated by filled circles on Fig. 3.14. A first
order phase transition from partially wrapped state (see Fig. 3.15(B)) to a closure
state (see Fig. 3.15(C)) takes place as the free energy minimum becomes deeper.
We show a phase diagram based on this calculations in Fig. 3.16. In the entire
parameter regime considered, the two oppositely adhered cylinders see a membrane-
mediated attraction, which prefers a small separation between the two. The two
attain a close contact, with a distance limited by the excluded volume between two
cylinders. The conclusion of membrane-mediated attraction between two cylinders
was previously suggested by Weikl, who considered a small gradient expansion of
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Figure 3.14: Free energy dependence on surface-to-surface distance D between the
cylinders
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Figure 3.15: Thee example shapes of the two cylinders adhered at opposite mem-
brane sides. (A) Example shape (B) Shallow wrapped touching state and (C)
closure touching state
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Figure 3.16: State diagram for two cylinders adhered on different membrane sides
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the Helfrich model. In Fig. 3.14 we have re-plotted Weikl’s approximation by open
squares. Unsurprisingly, in the weak adsorption regime of the parameter space our
full solution and Weikl’s approximation overlap each other.

3.4 Single Cylinder Between a Membrane And

an Interface

In the following sections we put a framework for the class of problems where the
particle is between the membrane and the supporting interface. In this case the
problem is set a bit differently in the sense that there is no adhesion between the
cylinder and the membrane, but an adhesion between the membrane and the solid
interface. This type of problems have experimental interest given recent research
in biomedical imaging. As an example, imaging of cells involves adhering cell on
an interface and consequently probing it with an atomic force microscope (see for
example [25]). The framework can easily be built on the tools we have already
discussed above.

We use the coordinate system shown on the Fig. 3.17. To obtain shape equation
we note, that situation is very similar to the case where we had two cylinders
adhering on the same side of the membrane regarding the boundary conditions,
with a slight difference that here we have to make sure the symmetry point is at
the interface(i.e. the height of the symmetry point is fixed). Again, we can impose,
that at the contact point with the interface the angle of the tangent with respect
to horizontal is equal to 0, and membrane has a curvature dψ/ds = ζ. Using this
boundary conditions in the Eq. 2.24, we get the shape equations of the membrane

x̃(ψ) = sinα−
ψ∫
α

cosψ√
ζ2 + 2σ̃(1− cosψ)

dψ, (3.37)

ỹ(ψ) = − cosα−
ψ∫
α

sinψ√
ζ2 + 2σ̃(1− cosψ)

dψ. (3.38)

Given the shape of the membrane we can find the distance D of the point along
the axis x where membrane touches the interface, as well as height of the membrane
H.

D̃ = sinα +

α∫
0

cosψ√
ζ2 + 2σ̃(1− cosψ)

dψ, (3.39)

H̃ = 1− cosα +

α∫
0

sinψ√
ζ2 + 2σ̃(1− cosψ)

dψ. (3.40)
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Figure 3.17: The coordinate system used to describe shape of the membrane for
the single cylinder between the membrane and an interface.

We should note here that distance D determines the penalty in the free energy
and is determined by the adhesion energy after finding the equilibrium shape. How-
ever height of the membrane H is not variable and should always be equal to 2R.
This is a necessary condition to make sure membrane touches the interface at some
point. So we have additional condition

1− cosα +

α∫
0

sinψ√
ζ2 + 2σ̃(1− cosψ)

dψ = 2, (3.41)

which gives us the relationship between the curvature at the touching point ζ and
the contact angle α. Now the integral in Eq. 3.41 can be easily solved analytically
and we obtain the relationship between ζ and α in the following form.

ζ2 =

(
1− cosα

1 + cosα
− σ̃(1 + cosα)

2

)2

. (3.42)

We show on Fig. 3.18 the curvature dependence on the contact angle α for
the reduced surface tension σ̃ = 0.1. We should note that the negative curvature
region is forbidden, since at a contact point membrane should merge into a straight
line of the interface, therefore it has to have a positive curvature. This means
that for a given surface tension, there is a forbidden contact angle region, where
it is impossible for the membrane to touch the interface no matter what curvature
we choose. We bring different shape profiles for three different contact angles on
Fig. 3.19.

We now turn to the free energy of the system. In this case we should note that
there is no adhesion between the cylinder and the membrane, instead we have an
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Figure 3.18: Curvature dependence on the contact angle α for the σ̃ = 0.1. The
dashed line indicates the forbidden region for the negative curvatures.

Figure 3.19: Example shape profiles for cylinder between a membrane and an in-
terface.
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adhesion between the membrane and the interface. This results in the free energy
penalty which is proportional to the area of opening, since membrane prefers to
have more contact with the interface. The length of the opening in in x-direction is
shown on the Fig. 3.17 as D. The rest of the energy functional is exactly the same
as in two cylinders case, except that care needs to be taken for the adhesion part.
We write energy functional in the following form.

∆F̃I =

α∫
0

ζ2 + 4σ̃(1− cosψ)√
ζ2 + 2σ̃(1− cosψ)

dψ + α + 2σ̃(α− sinα) + 2w̃D̃, (3.43)

where after using the expression for distance D from Eq. 3.39 we obtain

∆F̃I =

α∫
0

ζ2 + 4σ̃(1− cosψ)√
ζ2 + 2σ̃(1− cosψ)

dψ + α + 2σ̃(α− sinα) (3.44)

+ 2w̃(sinα +

α∫
0

cosψ√
ζ2 + 2σ̃(1− cosψ)

dψ). (3.45)

Now the relation between ζ and α makes energy functional dependent only on the
contact angle α. This means that for given w to find the equilibrium shape we need
to minimize the free energy functional only with respect to the contact angle α.

We plot the free energy as a function of the contact angle α for the different
values of w̃ on Fig. 3.20. We see that for the fixed adhesion energy there is an
optimal shape corresponding to the minimum of the free energy. Higher adhesion
energies correspond to more wrapped states.

3.5 Two Cylinders Between a Membrane and an

Interface

We now turn into the problem of the two cylinders between the membrane and
a solid interface. The schematic illustration of the system in shown on Fig. 3.21,
where now with D we denote the center-to-center distance between the cylinders
and with Dx the length of the opening of the each cylinder (on one side).

Here when writing free energy we need to take into account the distance between
the cylinders. In the general case, when the distance between the cylinder is much
larger than two openings for the inner side of the membrane D À 2Dx free energy
can be written using previously obtained result for the single cylinder 3.45. It has
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Figure 3.20: Free energy dependence on the contact angle for three different adhe-
sion energies.

Figure 3.21: Schematic diagram for two cylinders between the membrane and a solid
interface. Distance D denotes the center-to-center distance between the cylinders,
and distance Dx denotes the length of the opening for each cylinder
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Figure 3.22: Free Energy of the system with two cylinders between a membrane
and an interface as a function of the distance between the cylinders

the following form

∆F̃I = 2

α∫
0

ζ2 + 4σ̃(1− cosψ)√
ζ2 + 2σ̃(1− cosψ)

dψ + 2α + σ̃(α− sinα) (3.46)

+ 4w̃(sinα +

α∫
0

cosψ√
ζ2 + 2σ̃(1− cosψ)

dψ). (3.47)

Now if we move cylinders further apart free energy won’t change, since the
penalty opening area will remain the same. The situation changes however if we
start bringing cylinders together. We show free energy dependence on the distance
between the cylinders on the Fig. 3.22. Note that at some point, where cylinders are
close enough, it is no longer advantageous for the intercylinder membrane to touch
the surface, because the adhesion energy it gains from that contact is not sufficient
to compensate the bending of the membrane. Inter-membrane shape jumps from
wrapped to not wrapped state (see Fig 3.23), with a characteristically first-order
transition. Note however, that transition point comes earlier than the point where
two cylinders are separated with a distance 2Dx, which is shown on Fig. 3.22 with
a dashed line. It is easily explained, given the fact that the adhered part of the
membrane compensates bending.
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Figure 3.23: Membrane profile for the shallow wrapping case when two cylinders
are separated with the distance D <= 2Dt

3.6 Conclusions

We have looked into adhesion and membrane-induced interaction of cylindrical
colloids on a fluid membrane. For a colloid adhesion on a membrane we discussed
separately three different cases: one cylinder adhering on a membrane, two cylinders
adhering on the same side of the membrane and two cylinders adhering at opposite
sides of the membrane. For a single cylinder we separate on a diagram three states,
no wrapping, partial wrapping and closure states. The results are then compared
to the analogious state diagram for a spherical colloids obtained in other work.

For the two cylinders adhering on the same side of the membrane we obtain
always repulsive interaction and a transition from shallow to deep wrapping as
cylinders move further apart. Based on full treatment of the Helfrich model, we
have shown that deep wrapping of the membrane on cylinders can cause significant
structure behaviour that is much richer than the theoretical results obtained from
a small gradient expansion approximation. For two cylinders on the same side case,
we have obtained a new free energy branch that was not considered before, which
is characterisez by the fact that system jumps into deep wrapping regime.

For two cylinders case adhering at opposite sides of the membrane, we have
shown that interaction is always attractive and two cylinders are generally in con-
tact. We have considered further after the contact and showed that a first order
transition from shallow to full wrapping is possible.

In the last section we put a framework for another class of problems, where
this model can easliy be applied. In these kind of problems colloidal objects are
between the membrane adhering on an interface. This kind of systems are often
encountered in the medical imaging techniques.
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Appendix A

Some Notes on the Differential
Geometry of Two-Dimensional
Surfaces

A.1 Surface Definition

Let U be an open subset of R2. We can define a function

~r :

{
R2 ⊃ U → R3

(u1, u2) 7→ ~r(u1, u2).
(A.1)

Such a mapping defines a smooth surface patch S embedded in three dimensional
Euclidian space R3. We can then define two vectors

eµ ≡ ~r,µ :=
∂~r

∂uµ
, (A.2)

which are two linearly independent tangential vectors to the surface patch S at the
point ~r(u1, u2). Any other tangential vector at that point can be represented as a
linear combination of e1 and e2. We can also define a normal vector to the surface
at the same point ~r(u1, u2) as

~n :=
e1 × e2

|e1 × e2|
. (A.3)

Note that by definition ~n is a unit vector while eµ are generally not. Together they
form a local basis in R3

eµ · ~n = 0 and ~n · ~n = 1. (A.4)
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A.2 The Metric Tensor

Once we know the tangent vectors, we can define the metric tensor, or first funda-
mental form of the surface as

gij := ei · ej (A.5)

This is a second-rank, diagonal tensor. Its dual tensor is denoted as gij and is such
that the following is satisfied

gijg
jk = δki , (A.6)

where δki is the Kronecker symbol. Therefore the components of the inverse metric
are given by (

g11 g12

g21 g22

)
=

1

g

(
+g22 −g21

−g12 +g11

)
, (A.7)

where by g we denote the determinant of the metric tensor

g := detg =
1

2
εikεjlgijgkl. (A.8)

In the above expression we used two-dimensional Levi-Civita symbol εik, which is
defined as

εik = δi1δ
k
2 − δk1δ

i
2. (A.9)

The infinitesimal distance between two points on the surface can be written through
the metric in the following way

ds2 = [~r(u1 + du1, u2 + du2)− ~r(u1, u2)]2 =

(
∂~r

∂u1
du1 +

∂~r

∂u1
du2

)2

(A.10)

= (e1du
1 + e2du

2)2 = (eidu
i)2 = (ei · ej)duiduj = gijdu

iduj.

A.3 The Extrinsic Curvature Tensor

Now let’s assume there is a curve C defined on a surface patch S. The curve is
parameterized as ~r(u1(s), u2(s)), where s is the arclength of the curve. At any point
P on the curve C we can construct a tangent vector ~t = ~̇r and a principal normal

vector ~p = ~̇t/|~̇t | = ~̇t/ζ, where dot indicates derivative with respect to arclenght s.
If the angle between ~p and ~n is denoted by θ (see Fig. A.1) we can then write

~p · ~n = cos θ and ~̇t = ζ · ~p (A.11)

We can combine these two and write

ζ cos θ = ~̇t · ~n (A.12)

Since the curve is given in a parametric form as ui(s) we can then write

~̇t(s) = ~̈r(s) =
∂2~r(s)

∂s2
=

∂

∂s

(
∂~r

∂ui
u̇i

)
=

∂2~r

∂ui∂uj
u̇iu̇j +

∂~r

∂ui
üi (A.13)
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Figure A.1: Illustration of the normal curvature ζn (image is taken from refer-
ence [26])

and using the definition of tangential vectors A.2 we can write this in the following
form

~̇t(s) = ei,ju̇
iu̇j + eiü

i (A.14)

Using this in Eq. A.12 and the fact that ei · ~n = 0 we obtain

ζ cos θ = ~̇t · ~n = (ei,j · ~n)u̇iu̇j (A.15)

Left hand side of the expression is called the normal curvature of the surface. It is
defined as

ζn = ζ cos θ = (ei,j · ~n)u̇iu̇j. (A.16)

The expression in the brackets is not dependent on the curve, but is a property of
the surface and is called the extrinsic curvature tensor or the second fundamental
form. It is usually denoted with bij and is given by the formula

bij = ei,j · ~n. (A.17)

We can do reparameterization of the curve, and using

u̇i = (dui/dt)(dt/ds) = ui
′
/s

′
(A.18)

And using this in A.15 we obtain

ζn = ζ cos θ = biju̇
iu̇j =

biju
′iu

′j

s′2 =
biju

′iu
′j

giju
′iu′j

, (A.19)
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where on the last step we used A.11. This shows that the normal curvature can be
represented as a ratio between the second and first fundamental forms.

More visually, it can be understood in the following way. At a point P normal
vector ~n (to the surface) and tangential vector ~t can be constructed. Now we can
imagine a plane going through these two vectors which will cut a flat curve from the
surface. The curvature of that flat curve at a point P (which is simply determined
from the radius of osculating circle at that point) is exactly the normal curvature
of the surface on that point in the direction of tangent vector. Now we can rotate
the tangent vector at the same point P , which will rotate the plane and therefore
the flat curve which the plane cuts from the surface will change. Then a natural
question comes, in which directions normal curvature is extremal. To understand
that we can re-write the Eq. A.19 in a little bit different form.

(bij − ζngij)v
ivj = 0 (A.20)

And after differentiating with respect to vk we obtain

(bik − ζngik)v
i = 0 (A.21)

and to raise the index, we multiply with metric gkj and obtain

(bji − ζnδ
j
i )v

i = 0 (A.22)

This shows that to find the extremal normal curvatures at point P we have to
solve an eigenvalue problem. Eigenvectors of matrix bji will give us the directions
along which normal curvatures are extremal and corresponding eigenvalues will be
extremal curvatures. The extremal curvatures of the surface at a given point are
called principal curvatures and denoted as ζ1 and ζ2. Using this it is useful to define
the trace of the curvature tensor

ζ = Tr(bji ) = gijbij = ζ1 + ζ2 (A.23)

and the Gaussian curvature

ζG = det(bji ) = ζ1ζ2 (A.24)

A.4 Surfaces with Translational Symmetry

If the surface possesses cylindrical symmetry, in a general case we can describe it
by defining a two-dimensional curve and translating it along one of the axis. Then,
the parameterization of the surface can be given in the following form

~r :


R2 ⊃ [−∞;∞]× [a; b] → R3

(y, t) 7→ ~r(y, t) =

x(t)y
z(t)

 (A.25)
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Figure A.2: Illustration of a parameterization of a translationally and rotationally
symmetric surfaces

So here the surface is determined by two functions x(t) and z(t) which define a
curve in the (x, z) plane. Then the translation is done along the y axis. Given the
parameterization A.25 we can find the tangent vectors to be

ey =
∂~r

∂y
=

0
1
0

 and et =
∂~r

∂t
=

ẋ0
ż

 (A.26)

Given the tangent vectors we can construct the metric using the definition A.5

gij =

(
1 0
0 ẋ2 + ż2

)
(A.27)

with the determinant
g = ẋ2 + ż2 (A.28)

The inverse metric can be found to be

gij =

(
1 0
0 1/(ẋ2 + ż2)

)
. (A.29)

By definition A.3 we can find the unit normal vector

~n =
ey × et√

g
=

1√
ẋ2 + ż2

 ż
0
−ẋ

 . (A.30)

Therefore using A.17 we can obtain the second fundamental form

bij =
1√

ẋ2 + ż2

(
0 0
0 ẍż − z̈ẋ

)
. (A.31)

and its mixed version can be obtained by multiplying with with metric to raise one
index.

bji = bikg
kj =

1√
ẋ2 + ż2

(
0 0
0 ẍż−z̈ẋ

ẋ2+ż2

)
. (A.32)

49



Eigenvalues and eigenvectors of this matrix can be found and we can obtain that
two principal curvatures are

κ1 = 0 and κ2 =
ẍż − z̈ẋ

(ẋ2 + ż2)3/2
(A.33)

Eigenvectors are unit vectors along the coordinate lines, so principal directions are
along ey and et. If we parameterize our curve (x(t), z(t)) by its arclength s, and
describe the profile by specifying the angle of the tangent with respect to horizontal
psi as a function of arclength s, we can use the following relations

dr

ds
= cosψ and

dz

ds
= sinψ. (A.34)

These give us a relation

ẋ2 + ż2 = cosψ2 + sinψ2 = 1 (A.35)

and simplify out expressions for curvatures into the following form

κ1 = 0 and κ2 = −ψ̇ (A.36)

A.5 Surfaces with Rotational Symmetry

The other case is when a system possesses rotational symmetry, it can be understood
as a two-dimensional curve which is rotated around some axis (see Fig. A.2). The
parameterization then will be

~r :


R2 ⊃ [0; 2π]× [a; b] → R3

(φ, t) 7→ ~r(φ, t) =

r(t) cosφ

r(t) sinφ

z(t)

 (A.37)

In this case, we have a plain curve defined by two functions r(t) and z(t), which is
then rotated around the axis z. The tangent vectors then can be obtained

eφ =
∂~r

∂φ
=

−r sinφ
r cosφ

0

 and et =
∂~r

∂t
=

ṙ cosφ
ṙ sinφ
ż

 (A.38)

We can construct the metric tensor in the same way

gij =

(
r2 0
0 ṙ2 + ż2

)
, (A.39)

with a determinant
g = r2(ṙ2 + ż2). (A.40)
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The inverse is then

gij =
1

r2(ṙ2 + ż2
)

(
ṙ2 + ż2 0

0 r2

)
. (A.41)

The normal vector in this case is

~n =
eφ × et√

g
=

1√
ṙ2 + ż2

ż cosφ
ż sinφ
−ṙ

 . (A.42)

So the second fundamental form and it’s mixed version can be obtained

bij =
1√

ṙ2 + ż2

(
−rż 0
0 r̈ż − z̈ṙ

)
(A.43)

bji = bikg
kj =

1√
ṙ2 + ż2

(
− ż
r

0
0 r̈ż−z̈ṙ

ẋ2+ż2

)
. (A.44)

The eigenvalues of bji will be the principal curvatures

κ1 = − ż

r
√
ṙ2 + ż2

and κ2 =
r̈ż − z̈ṙ

(ṙ2 + ż2)3/2
(A.45)

Using the arclength parameterization exactly as in the case for translational sym-
metry we can represent our curvatures in the following form

κ1 = −sinψ

r
and κ2 = −ψ̇. (A.46)
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